1R - 23

Annual GW Mon. REPORTS

DATE: 2008

ALUEIVED 2008 ANNUAL MONITORING REPORT 2889 MAR 18 PM 1 25

MONUMENT 17

SE 1/4 NW 1/4 of SECTION 29, TOWNSHIP 19 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO PLAINS EMS NUMBER: TNM MONUMENT-17-KNOWN **NMOCD REFERENCE: 1R-123**

Prepared For:

PLAINS MARKETING, L.P. 333 CLAY STREET, SUITE 1600 HOUSTON, TEXAS 77002

Prepared By:

NOVA Safety and Environmental

2057 Commerce Street Midland, Texas 79703

February 2009

Ronald K. Rounsaville

Project Manager

Brittan K. Byerly, P.G

President

TABLE OF CONTENTS

INTRODUCTION1
SITE DESCRIPTION AND BACKGROUND INFORMATION
FIELD ACTIVITIES1
LABORATORY RESULTS2
SUMMARY4
ANTICIPATED ACTIONS4
LIMITATIONS5
DISTRIBUTION6
FIGURES Figure 1 – Site Location Map
Figure 2A – Inferred Groundwater Gradient Map – February 22, 2008 2B – Inferred Groundwater Gradient Map – May 30, 2008 2C – Inferred Groundwater Gradient Map – August 22, 2008 2D – Inferred Groundwater Gradient Map – November 13, 2008 Figure 3A – Groundwater Concentration and Inferred PSH Extent Map – February 22, 2008 3B – Groundwater Concentration and Inferred PSH Extent Map – May 30, 2008 3C – Groundwater Concentration and Inferred PSH Extent Map – August 22, 2008 3D – Groundwater Concentrations and Inferred PSH Extent Map – November 13, 2008
TABLES Table 1 – 2008 Groundwater Elevation Data Table 2 – 2008 Concentrations of BTEX and TPH in Groundwater Table 2 – 2008 Concentrations of PAH in Groundwater
APPENDICES Appendix A – Release Notification and Corrective Action (Form C-141)
ENCLOSED ON DATA DISK
2008 Annual Monitoring Report 2008 Tables 1, 2 and 3. Groundwater Floration, RTEV, TPH and RAH Concentration Date

2008 Tables 1, 2 and 3 – Groundwater Elevation, BTEX, TPH and PAH Concentration Data 2008 Figures 1, 2A-2D, and 3A-3D

Electronic Copies of Laboratory Reports

(

9

Historic Table 1 and 2 – Groundwater Elevation and BTEX, TPH, PAH Concentration Tables Historic Table 1 and 2 – Groundwater Elevation and BTEX, TPH, PAH Concentration Tables

INTRODUCTION

On behalf of Plains Marketing, L.P. (Plains), NOVA Safety and Environmental (NOVA) is pleased to submit this Annual Monitoring Report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1 of each year. Beginning on May 29, 2004, project management responsibilities for the Monument 17 Site (the site) were assumed by NOVA. The site, which was formerly the responsibility of Enron Oil Trading and Transportation (EOTT), is now the responsibility of Plains. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. The report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2008 only. Historic data tables as well as 2008 laboratory analytical reports are provided on the enclosed disk. For reference, the Site Location Map is provided as Figure 1.

Groundwater monitoring was conducted during each quarter of 2008 to assess the levels and extent of dissolved phase constituents and Phase Separated Hydrocarbon (PSH). Each groundwater monitoring event consisted of measuring static water levels in monitor wells, checking for the presence of PSH on the water column and purging and sampling of each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 foot were sampled as per a NMOCD directive.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the site is SE ¼ of the NW ¼ of Section 29, Township 19 South, Range 37 East. No information with respect to the release date, volume of crude oil released or recovered, excavation volumes, or pipeline repair is currently available as the release occurred while the pipeline was operated by Texas New Mexico Pipeline Company (TNM). The Release Notification and Corrective Action Form (C-141) is provided as Appendix B. The initial site investigation, consisting of the installation of eight groundwater monitor wells (MW-1 through MW-8), was performed by previous consultants.

Currently, there are eight groundwater monitor wells (MW-1 through MW-5 and MW-7 through MW-9) present on site.

FIELD ACTIVITIES

Groundwater Monitoring

Quarterly monitoring events for the reporting period were performed according to the following sampling schedule, which was approved by the NMOCD in correspondence dated April 28, 2004 and amended in NMOCD correspondence dated June 21, 2005:

		NMOCD A	pproved Sampling Schedule	nga (1945) Silabagar agam (1959) Silabagar agam (1959)	Survey Barrier Committee .
MW-1	Quarterly	MW-4	Semi-Annual	MW-7	Quarterly
MW-2	Quarterly	MW-5	Annually	MW-8	Annually
MW-3	Quarterly	MW-6	Plugged and Abandoned	MW-9	Quarterly

The site monitor wells were gauged and sampled on the following dates: February 22, May 30, August 22, and November 13, 2008. During each sampling event, sampled monitor wells were purged of a minimum of three well volumes of water or until the wells failed to produce water using a PVC bailer or electric Grundfos pump. Groundwater was allowed to recharge and samples were collected using disposable Teflon samplers. Water samples were placed in clean glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a polystyrene tank and disposed at a licensed disposal facility.

Locations of the monitor wells and the inferred groundwater gradient, which were constructed from measurements collected during the four quarterly monitoring events, are depicted on Figures 2A through 2D, the Inferred Groundwater Gradient Maps. Groundwater elevation data for 2008 is provided as Table 1. Historic groundwater elevation data beginning at project inception is provided on the enclosed data disk.

The most recent Groundwater Gradient Map, Figure 2D, indicates a general gradient of approximately 0.001 feet/foot to the southeast as measured between groundwater monitor wells MW-5 and MW-9. This is consistent with data presented on Figures 2A and 2B from earlier in the year. The corrected groundwater elevations ranged between 3,587.22 and 3,589.06 feet above mean sea level, in monitor wells MW-9 on August 22, 2008 and MW-5 on February 22, 2008, respectively.

LABORATORY RESULTS

Ø

•

Groundwater samples obtained during the quarterly sampling events of 2008 were delivered to TraceAnalysis, Inc. in Midland, Texas for determination of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) constituent concentrations by EPA Method 8021B, and Polynuclear Aromatic Hydrocarbons (PAH) concentrations by EPA Method 8270C. Monitoring wells containing measurable amounts of PSH were analyzed for Total Petroleum Hydrocarbons (TPH) concentrations by EPA Method 8015M. A listing of BTEX and TPH constituent concentrations for 2008 are summarized in Table 2 and the PAH constituent concentrations for 2008 are summarized in Table 3. Copies of the laboratory reports generated for 2008 are provided on the enclosed data disk. The quarterly groundwater sample results for BTEX constituent concentrations are depicted on Figures 3A through 3D.

Monitor well MW-1 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from <0.005 mg/L during the 1st quarter to 0.0431 mg/L during the 3rd quarter of the reporting period. Benzene concentrations were above the NMOCD regulatory standard of 0.01 mg/L during the 3rd quarter of 2008. Toluene concentrations were below laboratory method detection limits (MDL) and NMOCD regulatory standard of 0.75 mg/L during all four quarters of the reporting period. Ethylbenzene concentrations ranged from <0.001 mg/L during the 4th quarter to 0.0380 mg/L during the 2nd quarter of the reporting period. Ethylbenzene concentrations were below the NMOCD regulatory standard of 0.75 mg/L during all four quarters of 2008. Xylene concentrations ranged from <0.001 mg/L during the 4th quarter to 0.0160 mg/L during the 2nd quarter of the reporting period. Xylene concentrations were below NMOCD during all four quarters of 2008. PAH analysis during the 4th quarter sampling event

indicated elevated concentrations above MDLs for dibenzofuran (0.000861 mg/L), which is below WOCC standards.

(Ass.)

•

Monitor well MW-2 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from 0.0035 mg/L during the 1st quarter to 0.0467 mg/L during the 3rd quarter of the reporting period. Benzene concentrations were above NMOCD regulatory standards during the 2nd, 3rd and 4th quarters of the reporting period. Toluene and ethylbenzene concentrations were below the MDL and NMOCD regulatory standard during all four quarters of the reporting period. Xylene concentrations ranged from 0.001 mg/L during the 2nd quarter to 0.0022 mg/L during the 3rd quarter of the reporting period. Xylene concentrations were below NMOCD regulatory standards during all four quarters of the reporting period. PAH analysis during the 4th quarter sampling event indicated no elevated concentrations were detected above the respective MDLs.

Monitor well MW-3 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from 0.0031 mg/L during the 4th quarter to 0.0329 mg/L during the 2nd quarter of the reporting period. Benzene concentrations were above the NMOCD regulatory standard during the 1st and 2nd quarters of 2008. Toluene concentrations were below MDL and NMOCD regulatory standards during all four quarters of the reporting period. Ethylbenzene concentrations ranged from <0.001 mg/L during the 1st, 3rd and 4th quarters to 0.002 mg/L during the 2nd quarter of the reporting period. Ethylbenzene concentrations were below the NMOCD regulatory standards during all four quarters of 2008. Xylene concentrations ranged from <0.001 mg/L during the 3rd and 4th quarters to 0.0017 mg/L during the 2nd quarter of the reporting period. Xylene concentrations were below NMOCD during all four quarters of 2008. PAH analysis during the 4th quarter sampling event indicated elevated concentrations above MDLs for fluorene (0.000252 mg/L) and dibenzofuran (0.00159 mg/L), which are below WQCC standards.

Monitor well MW-4 is sampled on a semi-annual schedule and analytical results indicate BTEX constituent concentrations were below the MDL and NMOCD regulatory standards for each constituent during the 2nd and 4th quarter sampling events. Monitor well MW-4 has exhibited thirty-five consecutive monitoring events below NMOCD regulatory limits. PAH analysis during the 4th quarter sampling event indicated no elevated concentrations were detected above the respective MDLs.

Monitor well MW-5 is sampled on an annual schedule and analytical results indicate BTEX constituent concentrations were below the MDL and NMOCD regulatory standard for each constituent during the 4th quarter sampling event. The analytical results indicate BTEX constituent concentrations have been below NMOCD regulatory standards for the last thirty-five consecutive quarters. PAH analysis during the 4th quarter sampling event indicated elevated concentrations above MDLs for fluorene (0.000408 mg/L) and dibenzofuran (0.00117 mg/L), which are below WQCC standards.

Monitor well MW-7 is sampled on a quarterly schedule and analytical results indicate benzene concentrations ranged from <0.001 mg/L during the 1st, 2nd and 3rd quarters to 0.0013 mg/L during the 4th quarter of 2008. Benzene concentrations were below the NMOCD regulatory standard during all four quarters of the reporting period. Toluene, ethylbenzene and xylene

concentrations were below the MDL and NMOCD regulatory standard during all four quarters of the reporting period. Monitor well MW-7 has exhibited twelve consecutive monitoring events below NMOCD regulatory limits. PAH analysis during the 4th quarter sampling event indicated elevated concentrations above MDLs for fluorene (0.00262 mg/L), phenanthrene (0.00123 mg/L) and dibenzofuran (0.0065 mg/L), which are below WQCC standards.

Monitor well MW-8 is sampled on an annual schedule and analytical results indicate BTEX constituent concentrations were below the MDL and NMOCD regulatory standards for each constituent during the 4th quarter sampling event. Monitor well MW-8 has exhibited twenty-three consecutive monitoring events below NMOCD regulatory limits. PAH analysis during the 4th quarter sampling event indicated no elevated concentrations were detected above the respective MDLs.

Monitor well MW-9 is sampled on a quarterly schedule and analytical results indicate BTEX constituent concentrations were below the MDL and NMOCD regulatory standards for each constituent during all four quarters of the reporting period. Monitor well MW-9 has exhibited eight consecutive monitoring events below NMOCD regulatory limits. PAH analysis during the 4th quarter sampling event indicated elevated concentrations above MDLs for dibenzofuran (0.000223 mg/L), which is below WQCC standards.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code.

SUMMARY

This report presents the results of four groundwater monitoring and sampling events for the annual monitoring period of calendar year 2008. Currently, there are eight groundwater monitor wells (MW-1 through MW-5 and MW-7 through MW-9) on-site. The most recent inferred groundwater gradient indicates a general gradient of approximately 0.001 feet/foot to the southeast as measured between groundwater monitor wells MW-5 and MW-9. During the reporting period, no measurable thickness of PSH was detected in any of the site monitor wells.

A review of the laboratory analytical results indicates benzene concentrations were above applicable NMOCD regulatory standards in three of the eight monitor wells during at least one quarter of the reporting period. Toluene, ethylbenzene and xylene concentrations were below NMOCD regulatory standards for all eight monitor wells during the four quarters of the 2008 reporting period.

ANTICIPATED ACTIONS

Groundwater monitoring and quarterly sampling will continue through 2009. An annual groundwater monitoring report will be submitted by April 1, 2010.

A Soil Closure Proposal will be submitted to the NMOCD in the future. The proposal will present a strategy to address the remaining soil issues at the site.

LIMITATIONS

8

6

NOVA has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

NOVA has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. NOVA has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. NOVA has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. NOVA also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of NOVA and/or Plains.

DISTRIBUTION

Copy 1 Ed Hansen

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Drive

Santa Fe, NM 87505

Copy 2: Larry Johnson

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division, District 1

1625 French Drive Hobbs, NM 88240

Copy 3: Jason Henry

Plains Marketing, L.P. 2530 State Highway 214 Denver City, TX 79323 jhenry@paalp.com

Copy 4: Jeff Dann

Plains Marketing, L.P.

333 Clay Street Suite 1600

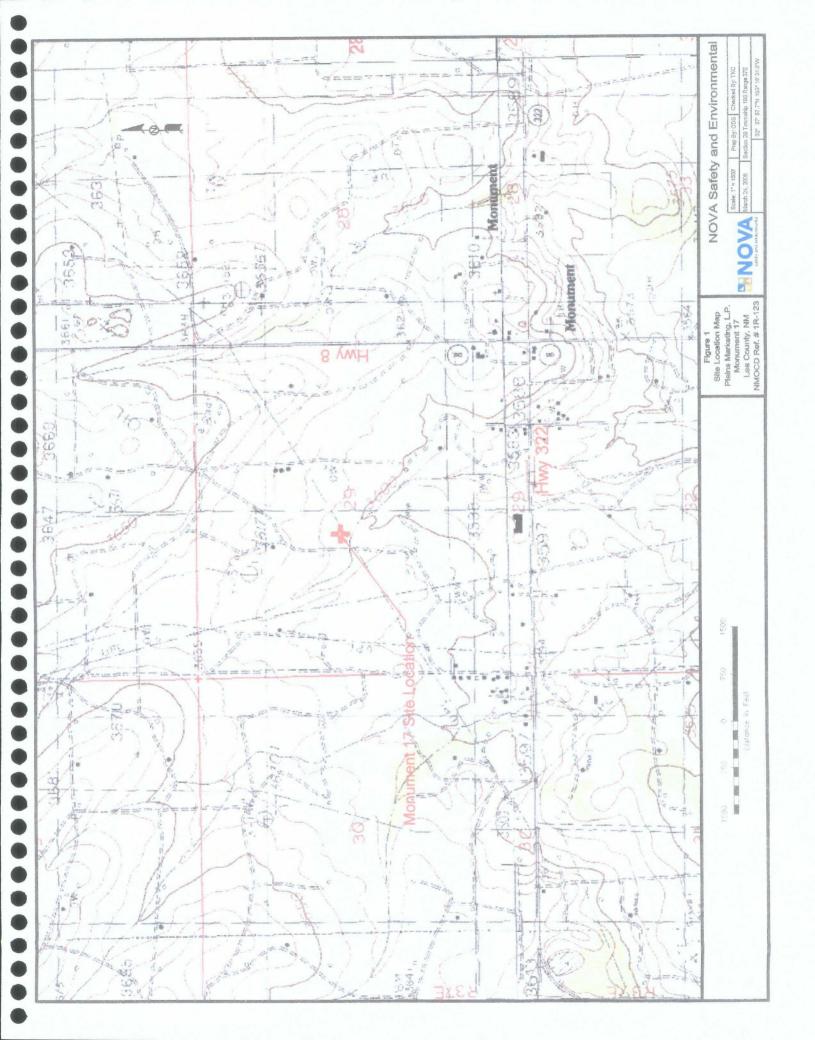
Houston, TX 77002 jpdann@paalp.com

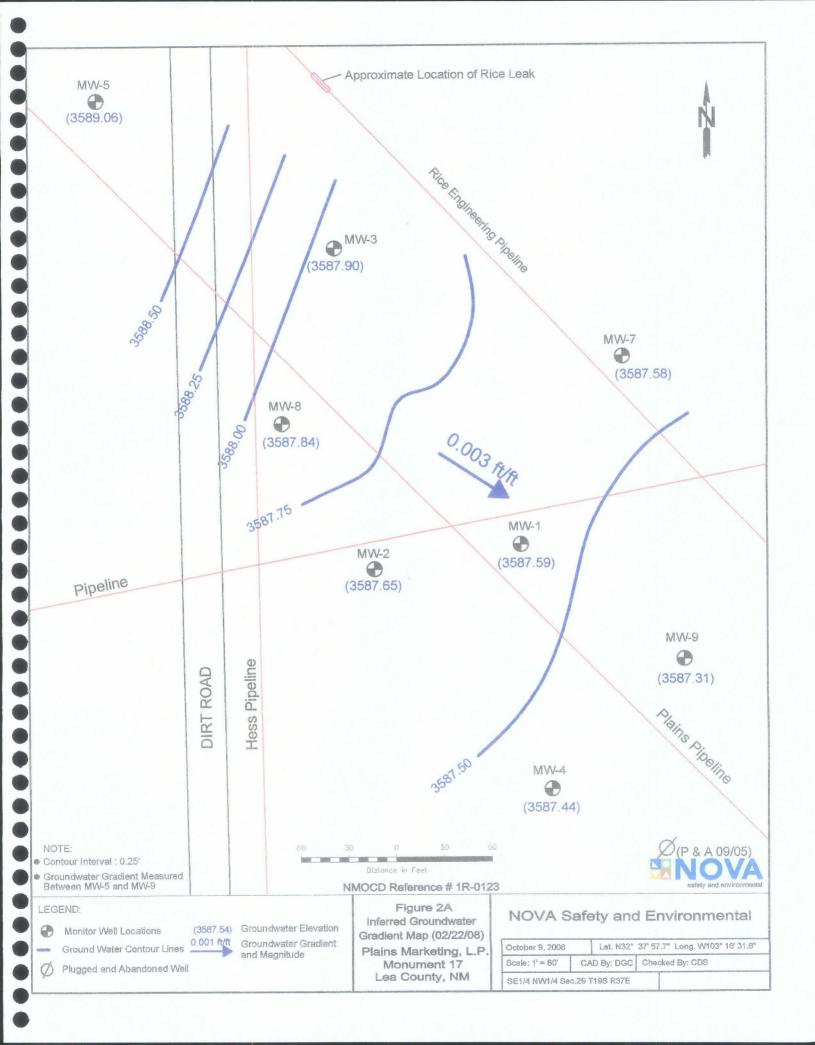
Copy 5: NOVA Safety and Environmental

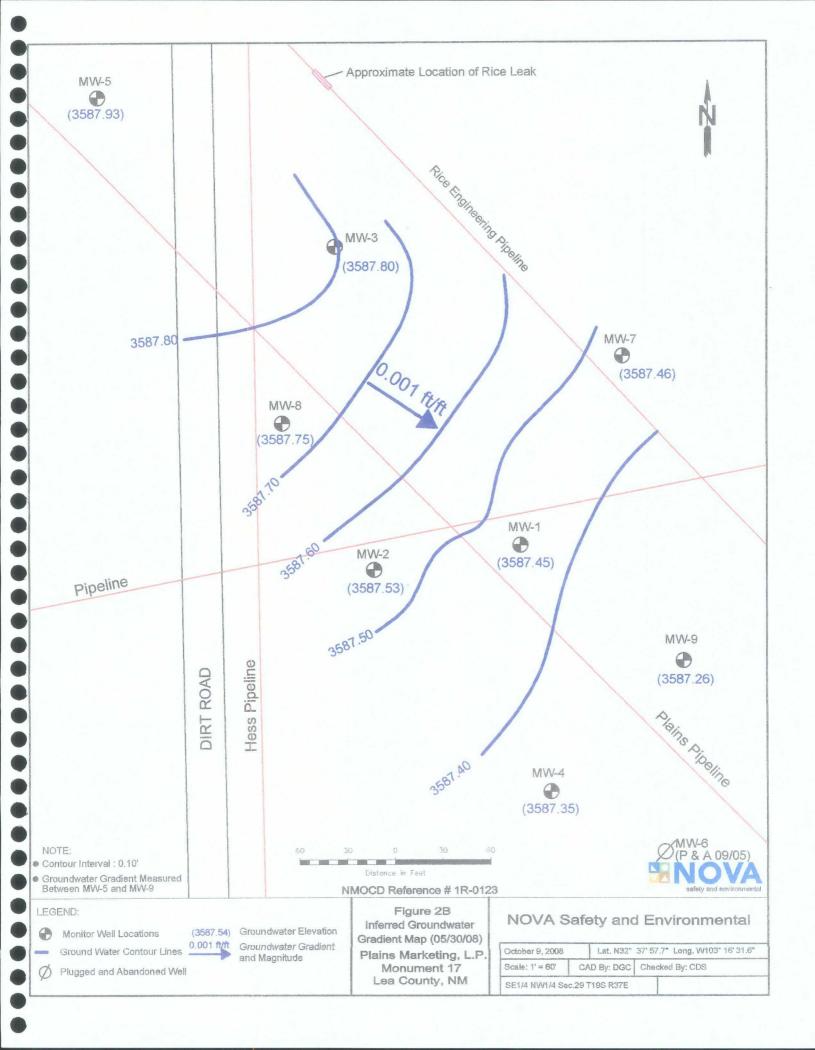
2057 Commerce Street Midland, TX 79703

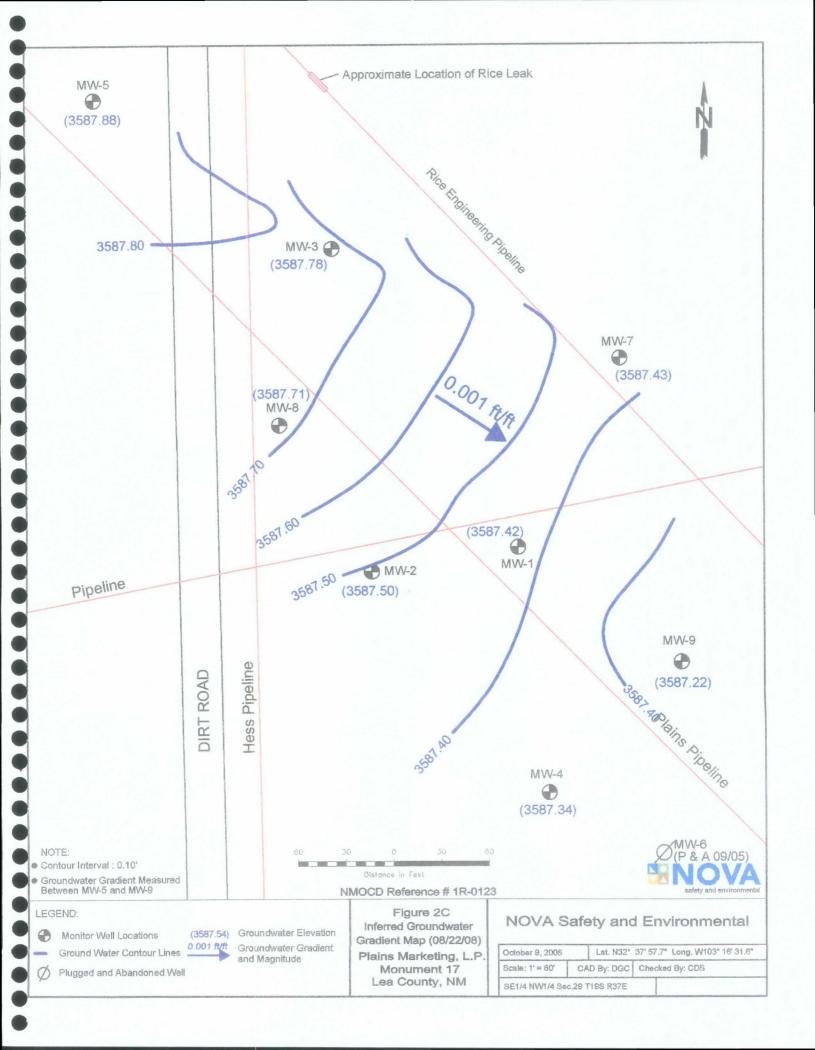
rrounsaville@novatraining.cc

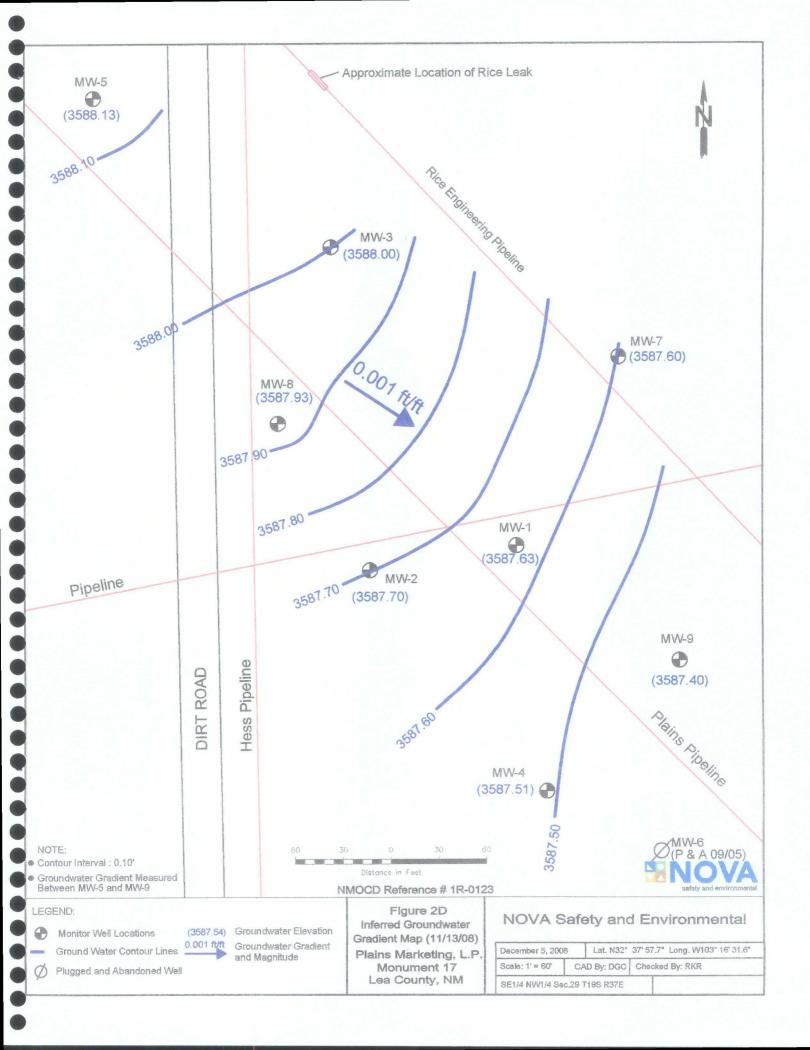
FIGURES

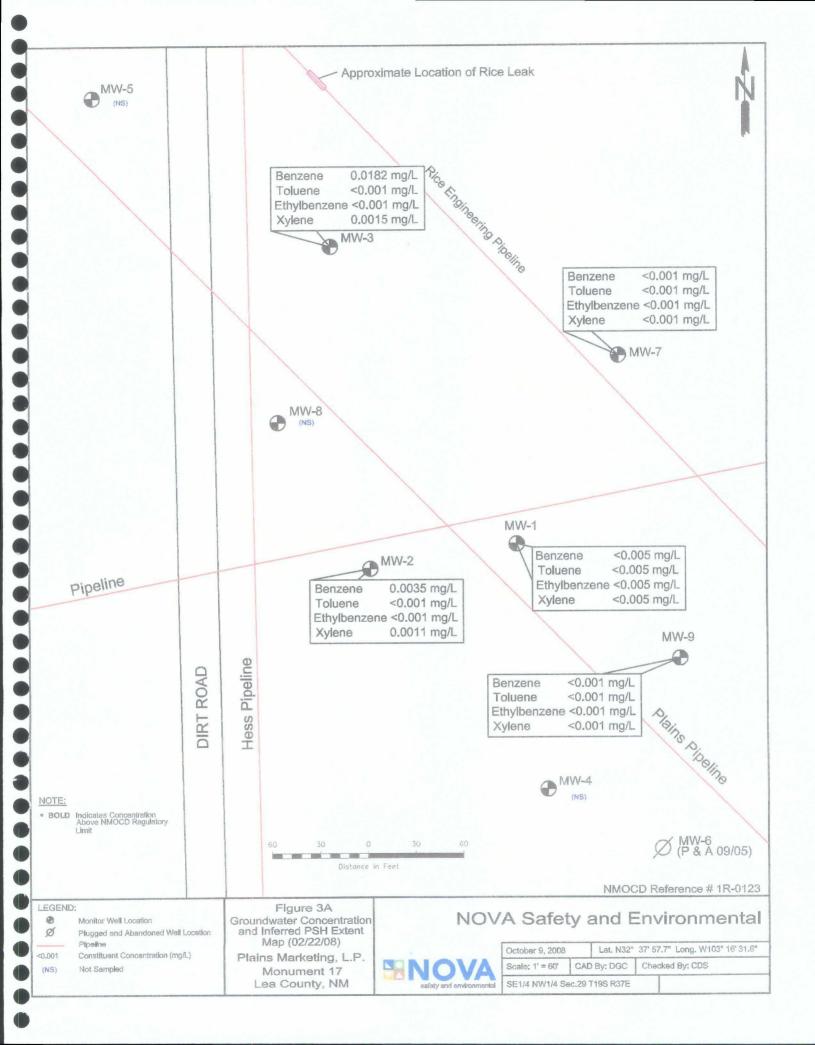

*

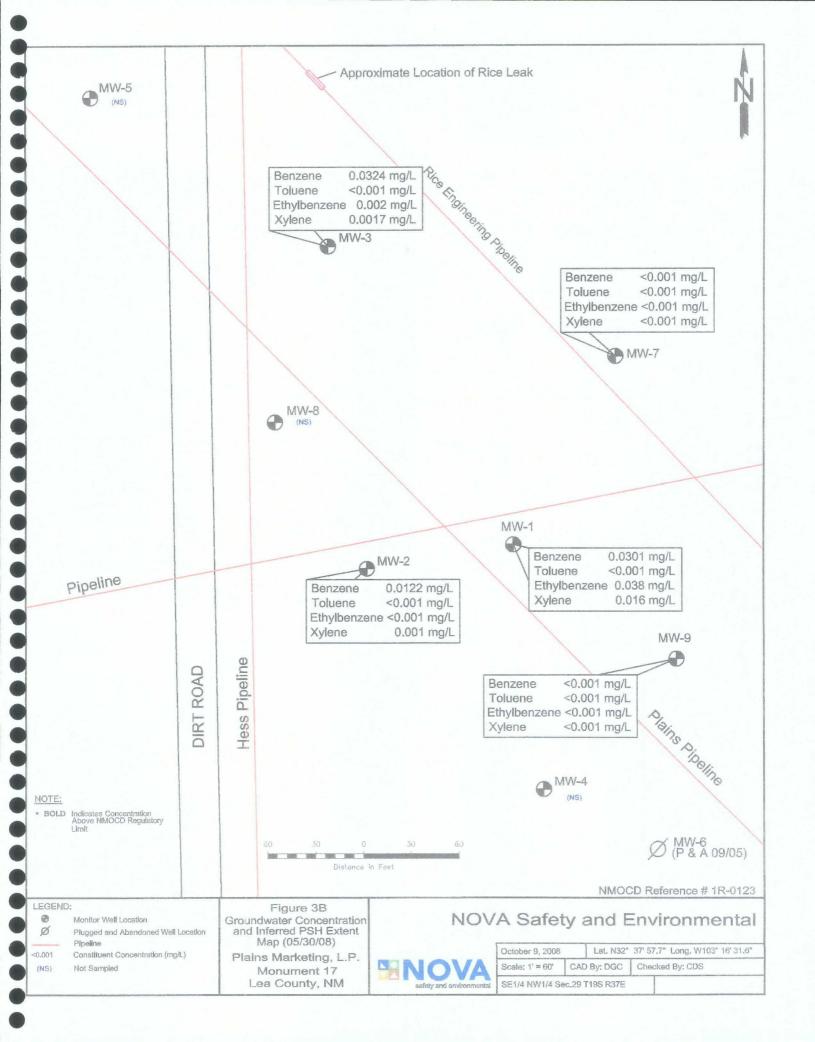

1

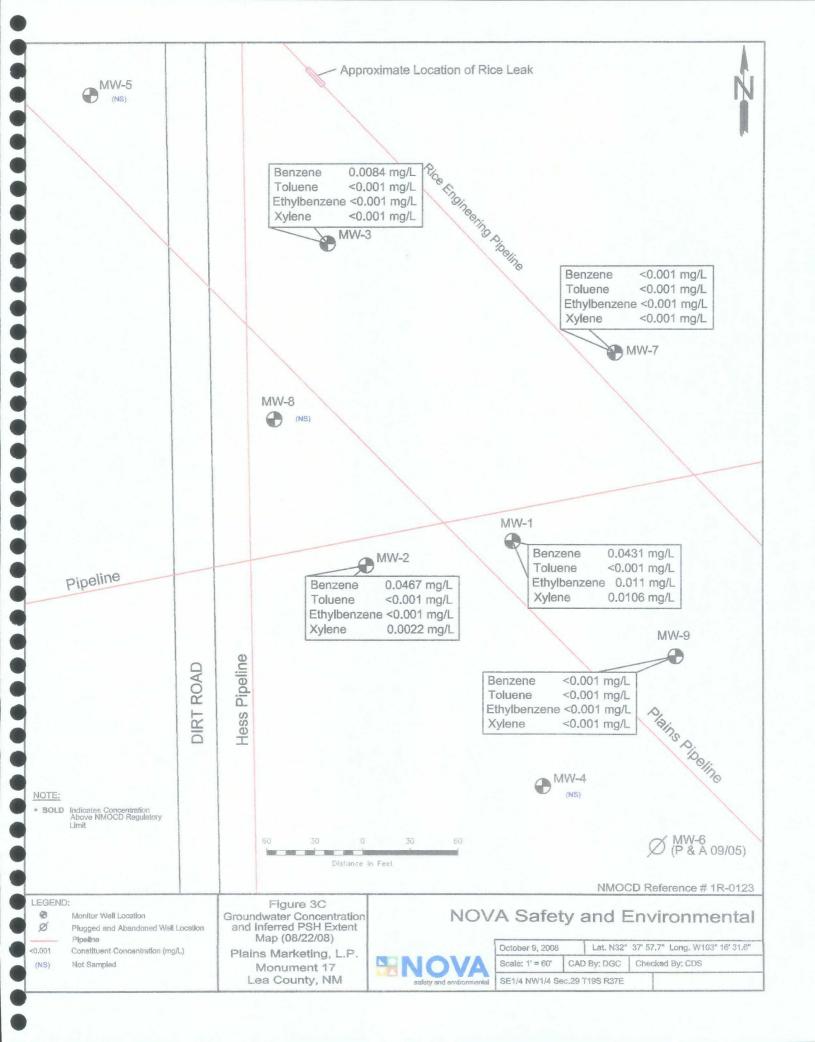

3

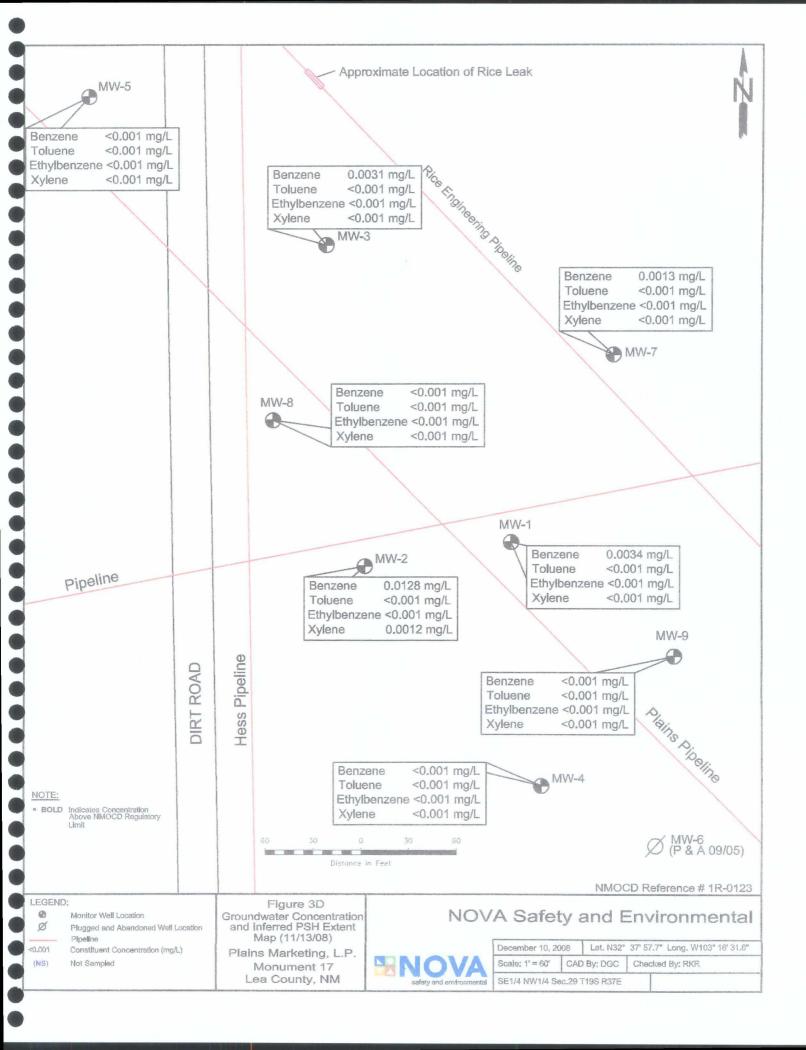

()


3









TABLES

•

0 1 • The same of the sa 1 0 •

TABLE 1

2008 - GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. MONUMENT 17 LEA COUNTY, NEW MEXICO NMOCD Reference # 1R-0123

SAMPLE	SAMPLE	TOP OF	ДЕРТН ТО	ДЕРТН ТО	PSH	CORRECTED
LOCATION	DATE	CASING	PRODUCT	WATER	THICKNESS	GROUND WATER
		ELEVATION	11102001		111101111200	ELEVATION
MW - 1	02/22/08	3,607.16	-	19.57	0.00	3,587.59
MW - 1	05/30/08	3,607.16		19.71	0.00	3,587.45
MW - 1	08/22/08	3,607.16	-	19.74	0.00	3,587.42
MW - 1	11/13/08	3,607.16	-	19.53	0.00	3,587.63
MW - 2	02/22/08	3,607.08		19.43	0.00	3,587.65
MW - 2	05/30/08	3,607.08		19.55	0.00	3,587.53
MW - 2	08/22/08	3,607.08	-	19.58	0.00	3,587.50
MW - 2	11/13/08	3,607.08	_	19.38	0.00	3,587.70
MW - 3	02/22/08	3,608.43	-	20.53	0.00	3,587.90
MW - 3	05/30/08	3,608.43	-	20.63	0.00	3,587.80
MW - 3	08/22/08	3,608.43	-	20.65	0.00	3,587.78
MW - 3	11/13/08	3,608.43	-	20.43	0.00	3,588.00
MW - 4	02/22/08	3,606.12		18.68	0.00	3,587.44
MW - 4	05/30/08	3,606.12	-	18.77	0.00	3,587.35
MW - 4	08/22/08	3,606.12	-	18.78	0.00	3,587.34
MW - 4	11/13/08	3,606.12	-	18.61	0.00	3,587.51
MW - 5	02/22/08	3,610.17	-	21.11	0.00	3,589.06
MW - 5	05/30/08	3,610.17	-	22.24	0.00	3,587.93
MW - 5	08/22/08	3,610.17	-	22.29	0.00	3,587.88
MW - 5	11/13/08	3,610.17	-	22.04	0.00	3,588.13
MW - 7	01/11/08	3,607.38	-	19.76	0.00	3,587.62
MW - 7	02/22/08	3,607.38	-	19.80	0.00	3,587.58
MW - 7	04/25/08	3,607.38	-	19.89	0.00	3,587.49
MW - 7	05/30/08	3,607.38	,	19.92	0.00	3,587.46
MW - 7	07/03/08	3,607.38	•	19.94	0.00	3,587.44
MW - 7	08/01/08	3,607.38		19.94	0.00	3,587.44
MW - 7	08/19/08	3,607.38	-	19.96	0.00	3,587.42
MW - 7	08/22/08	3,607.38	-	19.95	0.00	3,587.43
MW - 7	09/25/08	3,607.38	-	19.94	0.00	3,587.44
MW - 7	10/01/08	3,607.38	-	20.00	0.00	3,587.38
MW - 7	10/23/08	3,607.38	-	19.44	0.00	3,587.94
MW - 7	10/28/08	3,607.38	-	19.79	0.00	3,587.59
MW - 7	11/06/08	3,607.38	-	19.80	0.00	3,587.58
MW - 7	11/13/08	3,607.38	-	19.75	0.00	3,587.63
MW - 7	11/13/08	3,607.38	-	19.78	0.00	3,587.60
MW - 8	02/22/08	3,607.99	-	20.15	0.00	3,587.84
MW - 8	05/30/08	3,607.99	ı	20.24	0.00	3,587.75
MW - 8	08/22/08	3,607.99	•	20.28	0.00	3,587.71
MW - 8	11/13/08	3,607.99	-	20.06	0.00	3,587.93
MW - 9	02/22/08	3,606.83	-	19.52	0.00	3,587.31
MW - 9	05/30/08	3,606.83	_	19.57	0.00	3,587.26
MW - 9	08/22/08	3,606.83	-	19.61	0.00	3,587.22
MW - 9	11/13/08	3,606.83	-	19.43	0.00	3,587.40
		5,510,00			5.00	5,557.10
Flevations based on th						

Elevations based on the North America Vertical Datum of 1929.

^{*} Complete Historical Tables are presented on the attached CD.

TABLE 2

2008 - CONCENTRATIONS OF BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. MONUMENT 17 LEA COUNTY, NEW MEXICO NMOCD Reference # 1R-0123

All Concentrations are reported in mg/L

CAMPLE	CAREDIE	All Concentrations are reported in mg/L Methods:SW 846-8021B, 5030												
SAMPLE LOCATION	SAMPLE DATE	I I I I FTHVI_			m, p - XYLENES	o- XYLENE								
NMOCD Reg	ulatory Limit	0.0100	0.75	0.75	Total XY									
					0.62									
MW-1	02/22/08	< 0.005	< 0.005	< 0.005	<0.0									
MW-1	05/30/08	0.0301	< 0.001	0.0380	0.0	160								
MW-l	08/22/08	0.0431	< 0.001	0.0106										
MW-1	11/13/08	0.0034	<0.001 <0.001		< 0.001									
MW - 2	02/22/08	0.0035	< 0.001	< 0.001	0.00	011								
MW - 2	05/30/08	0.0122	< 0.001	< 0.001	0.0	01								
MW - 2	08/22/08	0.0467	< 0.001	< 0.001	0.00	220								
MW - 2	11/13/08	0.0128	< 0.001	< 0.001	0.00	012								
MW - 3	02/22/08	0.0182	< 0.001	< 0.001	0.00	150								
MW - 3	05/30/08	0.0329	< 0.001	0.002	0.00									
MW - 3	08/22/08	0.0084	< 0.001	< 0.001	<0.0									
MW - 3	11/13/08	0.0031	< 0.001	< 0.001	<0.0									
				5.55										
MW - 4	02/22/08	Not Sampled o	n Current Samp	le Schedule		<u> </u>								
MW - 4	05/30/08	<0.001	<0.001	<0.001	<0.0	001								
MW - 4	08/22/08		n Current Samp			501								
MW - 4	11/13/08	<0.001	<0.001	<0.001	<0.0	001								
101.00	11/13/00	-0.001	-0.001	-0.001	-0.	501 								
MW - 5	02/22/08	Not Sampled o	n Current Samp	de Schedule										
MW - 5	05/30/08		n Current Samp											
MW - 5	08/22/08		n Current Samp											
MW - 5	11/13/08	<0.001	<0.001	<0.001	<0.0	201								
IVI W - 3	11/13/00	~0.001	~0.001	0.001	<0.1	JO 1								
) (IV 7	02/26/09	z0.001	~ 0.001	z0.001	-0.4	201								
MW - 7	02/26/08	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.0									
MW - 7	05/30/08 08/22/08	<0.001			<0.0									
MW - 7			<0.001	<0.001	<0.0									
MW - 7	11/13/08	0.0013	<0.001	<0.001	<0.0>	JO 1								
) (VII 0	02/22/09	NI 4 C 1. 1	<u> </u>	1 0 1 1 1										
MW - 8		Not Sampled or												
MW - 8	05/30/08			ple Schedule										
MW - 8		08/22/08 Not Sampled on Current Sample Schedu			<0.001									
MW - 8	11/13/08	<0.001	<0.001	<0.001	<0.0	JUI								
) (IV o	02/22/00	-0.001	-0.001	-0.001		201								
MW-9	02/22/08	<0.001	<0.001	<0.001	<0.0									
MW-9	05/30/08	<0.001	<0.001	<0.001 <0		001								
MW-9	08/22/08	<0.001	<0.001	<0.001	<0.0									
MW-9	11/13/08	< 0.001	< 0.001	< 0.001	<0.0	001								

^{*} Complete Historical Tables are presented on the attached CD.

TABLE 3

0

•

()

4 4 4

()

0

0

•

1

POLYCYCLIC AROMATIC HYDROCARBON CONCENTRATIONS IN GROUNDWATER - 2008

PLAINS MARKETING, L.P.
MONUMENT 17
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1R-123

John concentrations are renorted in ma/l

	Dibenzofuran		0.000861		ENo ecol	000185		00159	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 miles	.000185	161 113 113 113 113 113 113 113 113 113	0.00117	T	1000	0.0065	307.0-10		<0.000184	7 / A	0.000003	0223
			ш		17.1 19.1	8	i i	°		ैं। '	₹	· ·	4	┷					_	100 miles	~ ·	
	2-Methylnaphthalene		< 0.000184			<0.000185		<0.000184	1	10 PM	<0.000185		<0.000184			<0.000926	And the state of the		<0.000184	£	-0 000 tea	0.000
	I-Methylnaphthalene	i 'i/øta ch'n i	<0.000184		****	.000185	500	000184	1		000185		<0.000184		新建工器	<0.000926	36.7°. 7°6.		000184		20 000184	
			_		*	8	100 mg	8	i i	ψ* (//#	₹	788 116 126 245 245	_	_	を 製造		e de la companya de l	e s	8	gir Gar Gar		-
	Ругеве		<0.000184		4.7	<0.000185	than,	<0.000184	(7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		<0.000185		<0.000184		计算过程	<0.000926	40.00		<0.000184		7810000	0.0001
	Ррепяпіргепе		84		• •	<0.000185	4 T	<0.000184		-	000185	34.29	<0.000184	_	\$ 15 m	0.00123			-000184	(a)	V 10000	\rightarrow
			184 <0.0001			_	3,			ં	₹	2.			swa.			() ()	8		_	
	9n9lkfthqaN	J\gm &0.0	<0.00018			<0.000185	カ 	<0.000184	100 A		<0.000185		<0.000184			<0.000926		 S.	<0.000184		ZO 000184	0.0001
	eneny(d)-6,2,1]onebni	J\gm \$000.0	<0.000184 <			<0.000185	(A)	<0.000184 <	5		<0.000185		<0.000184 <	-		<0.000926			000184 <	P)	ZO 000187	
		B 7000 0	_				31. 31.	+	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				+-	+-				. "	8			
	Fluorene		<0.000184			<0.000185	3 (a)	0.000252			<0.000185	() ()	0 000408		건민회의	0.00262			<0.000184		70 000 184	0.00010
	THE STREET STREET		-			_	100 100 400 100	1_		-	-	(3) 9999 (3) (4) 400	1	\leftarrow		\Box	10000			3.70		
C, 3510	Fluoranthene		4 <0.000184	ì		5 <0.000185	18 A	4 < 0.000184			5 <0.000185	\$30 00 00	4 <0 000184	_		9 <0.000926	AND COMMON OF	let.	4 <0.000184	19 c	1 <0 000184	
SW846-8270C,	Dibenz[a,h]anthracene	J\2m £000.0	0.000184	1		<0.000185		<0.000184			<0.000185		<0.000184			<0.000926	Of the state of the		0.000184		70 000 187	0.00010
A SW8			.000184 <0.			.000185 <	17	000184 <	8	***	_	73				$\overline{}$	600		.000184 <0.	(A)	000	-
EPA	Сһтузепе	J/gm 2000.0	0		151	8		8			<0.000185		<0.000184	-		<0.000926	The state of the s		8	100 miles	1	<i>,</i>
	Benzo[k]Auoranthene	J\2m 2000.0	000184			.000185		000184			.000185		000184			.000926			.000184	M. C. 100	700000	1000
			184 <0.			.000185 <0.	187 187	184 <0			000185 <0.		000184 <0	_		926 <0.0		σω da	000184 <0.	60.2	_	
	Benzo[g,h,i]perylene	-	<0.000			8		<0.000184	30 A		8		8			<0.000926	10 (2)		8	. P	701000	
	Benzo[b]fluoranthene	J/gm 2000.0	<0.000184			<0.000185		<0.000184			<0.000185		<0.000184			000926	The second second		<0.000184	57 27	70 000 64	
i												V.				<0.000926 <0.0009				284	781	104
	Benzo[a]pyrene	J\2m 7000.0	<0.000184			<0.000185	i en	<0.000184	4 400	はの調整のは	<0.000185	on On Vie	<0.000184			<0.000			<0.000184		70 000 PA	-0.000
	Benzo[a]anthracene	J/gm 1000.0	<0.000184		1 2 m	<0.000185	100 A.C.	<0.000184	To water system a Series		<0.000185	10.	<0.000184		100	<0.000926	e v voosithates.		<0.000184		79.0000	70.000104
							3					100	_	_		926 <0.				2	107	7
	эпээвт из пА	_	<0.000184			<0.000185		<0.000184	i i		<0.000185	54.5 \$4.5 14.5	<0.000184		1. S.	<0.000926		200	<0.000184	,1	<0.000194	70.00
	Acensphthylene		< 0.000184		er eri Er	<0.000185	2.5	<0.000184	1	- C-	<0.000185	The state of	<0.000184	101000	1. T. S.	<0.000926	3		<0.000184	3.61	70 000 184	1000
				H	**	_			\$ 50 C	400	_	28 28 28 28		+				gan gan gan gan gan gan gan gan gan gan		1 C.		$\overline{}$
	ənədidqanəəA		<0.000184			<0.000185		<0.000184	See as william		<0.000185		<0.000184		10. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	<0.000926	S AND WASHINGTON		<0.000184	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z 00000	70.000
PLE TE		inant ater 1- \	11/13/08		3	11/13/08	110 120 130 180	┼	110	24	11/13/08	50	11/13/08	+			7. J. J. J. S.	W. C.	-	(A)	279	+
_	SAMPLE DATE	Contami NM aking w ections 3	11/1		i Ka Colle Pp V u Lomb	11/1	1000 1100 1000 1000	11/13/08	(1) (2) (4)	38			E	_		11/13/08	î		11/13/08	_	- 20	1/1
	SAMPLE	Maximum Contaminant Levels from NM WQCC Drinking water standards Sections 1- 101.UU and 3-103.A.	MW-1			MW-2	1990 1990 1900	MW-3	2.00 (S. 1990)		MW-4	1000	MW-5			MW-7	Carlo Oren Control		MW-8	\$ 60 P. CO.	NGIV O	7- W.
	SA	Max Leve WQC stand 101.0	_		i i	2		2	Cong. 40-507.55		2		2			2	1	ß.	2	16		

APPENDICES

0

APPENDIX A: Form C-141

•

•

0

District I 1625 N. French Dr., Hobbs, NM 88240 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 2 Copies to appropriate District Office in accordance

Form C-141

Revised October 10, 2003

with Rule 116 on back side of form

Attached

Release Notification and Corrective Action OPERATOR x Initial Report Final Report Plains Pipeline, LP Camille Revnolds Name of Company Contact: Address: 3705 E. Hwy 158, Midland, TX 79706 Telephone No. 505-441-0965 Monument # 17 Pipeline Facility Name Facility Type: Surface Owner: Mineral Owner Lease No. New Mexico State Land Office LOCATION OF RELEASE Feet from the East/West Line County Unit Letter Section Township Range Feet from the North/South Line 29 19S 37E Lea Latitude 32 degrees 37' 57.7" N Longitude 103 degrees 16' 31.6" W NATURE OF RELEASE Volume Recovered Type of Release: Volume of Release: Source of Release: Date and Hour of Occurrence Date and Hour of Discovery Unknown Was Immediate Notice Given? If YES, To Whom? Yes No Not Required By Whom? Date and Hour Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ☐ No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Describe Area Affected and Cleanup Action Taken.* NOTE: Texas-New Mexico Pipeline was the owner/operator of the pipeline system at the time of the release, initial response information is I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. OIL CONSERVATION DIVISION Signature: Approved by District Supervisor: Printed Name: Camille Reynolds Title: Remediation Coordinator Approval Date: **Expiration Date:**

Conditions of Approval:

cjreynolds@paalp.com

Phone:

(505)441-0965

E-mail Address:

Date: 3/21/2005

Attach Additional Sheets If Necessary