15 3 1R --

Annual GW Mon. REPORTS

Basin Environmental Consulting, LEC IV E

2800 Plains Highway P. O. Box 381 Lovington, New Mexico 88260 cjbryant@basin-consulting.com Office: (575) 396-2378 Fax: (575) 396-1429

ŵ Effective Solutions

2009 (MAR 30 PM 1 31

2008 ANNUAL MONITORING REPORT

VACUUM 10-INCH TO JAL SW ¼ SW ¼ SECTION 20, TOWNSHIP 19 SOUTH, RANGE 37 EAST LATITUDE 32°, 38', 21.3" NORTH, LONGITUDE 103°, 16', 46.2" WEST LEA COUNTY, NEW MEXICO PLAINS SRS NUMBER: 2002-10248 NMOCD REF NO: 1RP-0385

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STREET, SUITE 1600 HOUSTON, TEXAS 77002

PREPARED BY:

BASIN ENVIRONMENTAL CONSULTING, LLC P. O. Box 381 Lovington, New Mexico 88260

March 2009

Camille Bry

Project Manager

VED

2008 MAR 30 PM 1 31

March 23, 2009

Mr. Edward Hansen New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Plains All American – 2008 Annual Monitoring Reports 2 Sites in Lea County, New Mexico 1 Site in Eddy County, New Mexico

Dear Mr. Hansen:

Plains All American is an operator of crude oil pipelines and terminal facilities in the state of New Mexico. Plains All American actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and work plans developed in consultation with the New Mexico Oil Conservation Division (NMOCD). In accordance with the rules and regulations of the NMOCD, Plains All American hereby submits our Annual Monitoring reports for the following sites:

Lovington Gathering WTI	1RP-838 AP	Section 06, T17S, R37E, Lea County
Vacuum 10-Inch to Jal	1RP-0385	Section 20, T19S, R37E, Lea County
Ballard Grayburg 5-Inch	2R-0053	Section 10, T18S, R29E, Eddy County

Basin Environmental Consulting, LLC (Basin) prepared these documents and has vouched for their accuracy and completeness, and on behalf of Plains All American, I have personally reviewed the documents and interviewed Basin personnel in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that Plains All American submits the enclosed Annual Monitoring Reports for the above facilities.

If you have any questions or require further information, please contact me at (575) 441-1099.

Sincerely,

Jáson Henry Remediation Coordinator Plains All American

CC: Larry Johnson, NMOCD, Hobbs, NM

Enclosures

2530 State Hwy, 214 • Denver City, TX 79323 • (575)441-1099

TABLE OF CONTENTS

INTRODUCTION	.1
SITE DESCRIPTION AND BACKGROUND INFORMATION	.1
RECENT FIELD ACTIVITIES	.2
LABORATORY RESULTS	2
SUMMARY	4
ANTICIPATED ACTIONS	.4
LIMITATIONS	5
DISTRIBUTION	6

FIGURES

0

0

•

0

•

0

0

0

Ø

•

0

Figure 1 – Site Location Map

Figure 2A – Inferred Groundwater Gradient Map – March 13, 2008
Figure 2B – Inferred Groundwater Gradient Map – June 21, 2008
Figure 2C – Inferred Groundwater Gradient Map – September 18, 2008
Figure 3A – Groundwater Concentration Map – March 13, 2008
Figure 3B – Groundwater Concentration Map – June 21, 2008
Figure 3C – Groundwater Concentration Map – September 18, 2008

Figure 3D – Groundwater Concentration Map – November 19, 2008

_ . _ . _ .

TABLES Table 1 – Groundwater Elevation Data Table 2 – Concentrations of Benzene and BTEX in Groundwater Table 3 – Concentrations of Poly Aromatic Hydrocarbons in Groundwater

APPENDICES

Appendix A – Laboratory Reports Appendix B - Release Notification and Corrective Action (Form C-141)

INTRODUCTION

(1)

6

0

6

6

0

8

0

0

9

0

6

0

9

(

9

9

0

0

0

(

6

8

() () Basin Environmental Service Technologies, LLC, (Basin), on behalf of Plains Marketing, L.P., (Plains), prepared this annual report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an annual report by April 1 of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2008 only. Soil related site activities are summarized in several letters and reports previously submitted to the NMOCD. For reference, the Site Location Map is provided as Figure 1.

Groundwater monitoring was conducted during four (4) consecutive quarters of 2008 to monitor the groundwater for dissolved phase benzene, toluene, ethylbenzene and xylene (BTEX) constituents. Each groundwater monitoring event consisted of measuring static water levels in the monitoring wells, checking for the presence of phase-separated hydrocarbons (PSH) on the water column, and purging and sampling of each well exhibiting sufficient recharge.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the site is SW¹/₄, SW¹/₄ Section 20, Township 19 South, Range 37 East. The site latitude is 32° , 38° , 21.3° North and the site longitude is 103° , 16° , 46.2° West. In February 2007, at the request of Plains, Basin assumed groundwater sampling responsibility for the Vacuum 10-Inch to Jal site.

On September 18, 2002, Environmental Plus, Inc. (EPI) responded to the pipeline release on behalf of Link Energy, LLC (Link) now Plains, to repair the pipeline and excavate the impacted soil. The Vacuum 10-Inch to Jal pipeline was subsequently cold cut and capped under the direction of Link personnel. Approximately 250 barrels of crude oil was released from the pipeline and 80 barrels was recovered. The release site is located in the pipeline right-of-way, in a pasture containing numerous oil production facilities and utilized for cattle grazing. A visibly stained surface area was observed, measuring approximately 450 feet long by 150 feet wide. Excavation activities during the initial response and subsequent remediation of the site covered an area measuring approximately 600 feet long by 200 feet wide and ranged in depth from approximately 12 to 18 feet below ground surface (bgs).

EPI submitted a *Site Characterization and Soil Closure Report*, dated July 2006; this report was subsequently approved by NMOCD, Santa Fe. The approved work plan proposed mechanically separating the caliche rock and soil, utilizing the caliche rock as partial backfill material, transporting the separated soil to an NMOCD approved land farm, and obtaining non-impacted backfill from the landowner. Backfilling of the excavation was completed in the 3rd quarter of 2006.

Based on the laboratory results from the excavation soil sampling and delineation soil borings, five (5) groundwater monitoring wells and three (3) recovery wells were initially installed to evaluate the quality of the groundwater. In September 2005, groundwater monitoring well MW-9 was installed as agreed upon between Plains, NMOCD Santa Fe and the landowner.

Currently, there are six (6) groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5, and MW-9) and three (3) recovery wells (RW-1, RW-2, and RW-3) on site. During the four (4) quarterly sampling events of 2008, there was no PSH observed in the monitoring wells or recovery wells.

RECENT FIELD ACTIVITIES

() ()

(1)

The site monitoring wells were gauged and sampled on March 13, June 21, September 18, and November 19, 2008. During the quarterly sampling events, the monitoring wells and recovery wells, designated to be sampled, were purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon bailers. Groundwater samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer mounted polystyrene tank and disposed of at an NMOCD approved disposal in Monument, New Mexico.

Locations of the groundwater monitoring wells and the inferred groundwater elevations, which were constructed from the measurements collected during the quarterly monitoring events, are depicted on Figures 2A through 2D. The groundwater elevation data is provided as Table 1.

The Inferred Groundwater Gradient Map, Figure 2D, indicates a general gradient of approximately 0.017 feet/foot to the east-southeast as measured between groundwater monitor wells MW-3 and MW-4. The corrected groundwater elevations ranged from 3,600.96 feet above mean sea level in monitor well MW-2 on June 21, 2008 to 3,607.59 feet above mean sea level in recovery well RW-1 on November 19, 2008.

LABORATORY RESULTS

Groundwater samples were collected from the groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-9) and recovery wells (RW-1, RW-2 and RW-3) during the quarterly monitoring events and were delivered to Environmental Laboratory of Texas, a XENCO Laboratories Company, Odessa, Texas for determination BTEX constituent concentrations by EPA Method SW846-8021b. Pursuant to an NMOCD request the groundwater monitoring wells were sampled annually for concentrations of Poly Aromatic Hydrocarbons (PAH) utilizing EPA Method 8270C. A summary of BTEX and PAH constituent concentrations for 2008 are presented in Table 2 and Table 3, respectively, the laboratory reports are provided as Appendix A.

Monitor Well MW-1 is sampled on a quarterly schedule and the analytical results indicates benzene and BTEX concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

Monitor Well MW-2 is sampled on a quarterly schedule and the analytical results indicate benzene and BTEX concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

0

A

6

() ()

0

9

0

0

1

() **(**)

1

0

0

•

6

() () ()

1

0

0

4

9

0 0 0 **Monitor Well MW-3** is sampled on a quarterly schedule and the analytical results indicate benzene and BTEX concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

Monitor Well MW-4 is sampled on a quarterly schedule and the analytical results indicate benzene, ethylbenzene and total xylene concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Toluene concentrations ranged from less than the MDL during the 2nd, 3rd and 4th quarters to 0.002 mg/L during the 1st quarter of 2008. Toluene concentrations were less than the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

Monitor Well MW-5 is sampled on a quarterly schedule and the analytical results indicate benzene and BTEX concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

Monitor Well MW-9 is sampled on a quarterly schedule and the analytical results indicate benzene and BTEX concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

Recovery Well RW-1 is sampled on a quarterly schedule and the analytical results indicate toluene, ethylbenzene and total xylene concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Benzene concentrations ranged from less than the MDL during the 1st, 2nd, and 4th quarters to 0.001 mg/L during the 3rd quarter. Benzene concentrations were less than the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

Recovery Well RW-2 is sampled on a quarterly schedule and the analytical results indicate benzene and BTEX concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH

constituent concentrations were less than the MDL for each constituent during the 4^{th} quarter of 2008.

Recovery Well RW-3 is sampled on a quarterly schedule and the analytical results indicate benzene and BTEX concentrations were less than the MDL and the NMOCD regulatory standard during all four (4) quarters of the 2008 reporting period. Analytical results indicate PAH constituent concentrations were less than the MDL for each constituent during the 4th quarter of 2008.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code.

SUMMARY

(

0

0

6

0

6

8

0

9

8

0

0

0

.

0

1 B 2

6

6

.

0

0

B

This report presents the results of groundwater monitoring activities for the 2008 monitoring period. Currently, there are six (6) groundwater monitoring wells (MW-1, MW-2, MW-3, MW-4, MW-5 and MW-9) and three (3) recovery wells (RW-1, RW-2 and RW-3) on-site. The Inferred Groundwater Gradient Map, Figure 2D, indicates a general gradient of approximately 0.017 feet/foot to the east-southeast as measured between groundwater monitor wells MW-3 and MW-4.

The laboratory results for the groundwater samples, obtained during the four (4) 2008 reporting periods, indicated benzene and BTEX constituent concentrations were less than the NMOCD regulatory standard for all the on-site groundwater monitoring wells and recovery wells.

The laboratory analytical results indicate all BTEX constituent concentrations in monitor wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-9 and recovery wells RW-2 and RW-3 have been less than the NMOCD regulatory standard during the last eight (8) consecutive quarterly sampling events. The laboratory analytical data indicates all BTEX constituent concentrations in recovery well RW-1 have been less than the NMOCD regulatory standard for seven (7) of the last eight (8) quarters. Laboratory analytical data of the sample collected from recovery well RW-1 during the 3rd quarter of 2007 indicated a benzene concentration of 0.013 mg/L. The analytical results for the 3rd quarter 2007 are incongruous with the analytical results prior and subsequent to this sampling event. Groundwater Elevation Data and Concentrations of Benzene and BTEX in Groundwater are provided as Table 1 and Table 2, respectively.

ANTICIPATED ACTIONS

Basin, on behalf of Plains, respectively requests NMOCD approval to cease groundwater monitoring and sampling at the Vacuum 10-Inch to Jal site. Monitor wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-9 and recovery wells RW-1, RW-2 and RW-3 will be plugged and abandoned using New Mexico Office of the State Engineer (NMOSE) guidelines. The plugging and abandonment activities will be conducted by a State of New Mexico certified water well drilling company and Plains will provide the NMOCD with plugging reports documenting the plugging procedures.

LIMITATIONS

0

v,tá

6

8

•

0

0

0

.

Basin has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin and/or Plains.

DISTRIBUTION

•

0

0

0

6) 6)

Copy 1:	Edward Hansen New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 edwardj.hansen@state.nm.us
Copy 2:	Larry Johnson New Mexico Oil Conservation Division 1625 N. French Drive Hobbs, New Mexico 88240 <u>larry.Johnson@state.nm.us</u>
Copy 3:	Jeff Dann Plains Marketing, L.P. 333 Clay Street Suite 1600 Houston, Texas 77002 jpdann@paalp.com
Copy 4:	Jason Henry Plains Marketing, L.P. 2530 State Highway 214 Denver City, Texas 79323 jhenry@paalp.com
Copy 5:	Basin Environmental Service Technologies, LLC P. O. Box 301 Lovington, New Mexico 88260 cjbryant@basin-consulting.com

Copy Number:_____

0000 • ***** 6 0 • • . ð Ò Õ **6 9** 9 6) 0 9 1 0 (0

·

. .

Figures

.

.

.

.

•

000

6

.

•

•

Tables

.

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION		
MW-1	12/30/02	3,627.07	18.96	18.97	0.01	3,608.11		
	01/02/03	3.627.07	18.96	18.97	0.01	3,608.11		
	01/06/03	3,627.07	18.95	18.96	0.01	3,608.12		
	01/13/03	3.627.07	Sheen	18.96	0.00	3,608.11		
	01/28/03	3.627.07	-	18.95	0.00	3,608.12		
<u> </u>	01/30/03	3.627.07	-	18.97	0.00	3,608.10		
	03/03/03	3.627.07	Sheen	18.94	0.00	3,608.13		
	02/11/04	3,627.07	-	18.95	0.00	3,608.12		
	03/24/04	3,627.07	-	18.93	0.00	3,608.14		
	05/11/04	3,627.07		18.96	0.00	3,608.11		
	06/11/04	3,627.07	-	18.98	0.00	3,608.09		
	07/08/04	3,627.07	-	19.00	0.00	3,608.07		
	08/17/04	3,627.07	-	19.07	0.00	3,608.00		
	09/13/04	3,627.07	_	19.02	0.00	3,608.05		
	10/06/04	3,627.07	-	12.32	0.00	3,614.75		
	11/16/04	3,627.07	_	15.69	0.00	3,611.38		
	12/10/04	3,627.07	-	18.74	0.00	3,608.33		
	01/14/05	3,627.07	-	19.07	0.00	3,608.00		
	02/21/05	3,627.07	-	19.12	0.00	3,607.95		
	05/09/05	Not Gauged						
	11/18/05		N	lot Gauged				
	11/22/05		N	lot Gauged		<u></u>		
	01/12/06	3,627.07	-	20.77	0.00	3,606.30		
	03/03/06	3,627.07	-	11.74	0.00	3,615.33		
	03/16/06	3,627.07	-	20.17	0.00	3,606.90		
	03/20/06	3,627.07		20.02	0.00	3,607.05		
	04/11/06	3,627.07	_	20.17	0.00	3,606.90		
	07/20/06	3,627.07	-	20.17	0.00	3,606.90		
	08/09/06	3,627.07		19.72	0.00	3,607.35		
	10/17/06	3,627.07	-	19.78	0.00	3,607.29		
<u> </u>	11/27/06	3,627.07		19.84	0.00	3,607.23		
	01/04/07	3,627.07	-	19.85	0.00	3,607.22		
	03/21/07	3,627.07	-	19.84	0.00	3,607.23		
	04/26/07	3,627.07	-	19.53	0.00	3,607.54		
L	05/31/07	3,627.07	-	19.51	0.00	3,607.56		
	06/20/07	3,627.07		19.52	0.00	3,607.55		
	07/31/07	3,627.07		19.53	0.00	3,607.54		
	08/13/07	3,627.07	-	19.53	0.00	3,607.54		
	09/26/07	3,627.07	-	19.53	0.00	3,607.54		
	10/16/07	3,627.07	-	19.52	0.00	3,607.55		
1	11/07/07	3,627.07	-	19.52	0.00	3,607.55		

•

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	12/06/07	3,627.07	-	19.50	0.00	3,607.57
	03/13/08	3,627.07	-	19.55	0.00	3,607.52
	06/21/08	3,627.07	-	19.56	0.00	3,607.51
	09/18/08	3.627.07	-	19.55	0.00	3,607.52
	10/21/08	3,627.07	-	19.54	0.00	3,607.53
	11/19/08	3.627.07	-	19.52	0.00	3,607.55
	12/16/08	3,627.07		19.55	0.00	3,607.52
						영화 영관 수 관련적
MW-2	01/02/03	3,625.94	22.48	22.49	0.01	3,603.46
	01/06/03	3,625.94	-	22.50	0.00	3,603.44
	01/13/03	3,625.94	-	22.45	0.00	3,603.49
	01/28/03	3,625.94	_	22.42	0.00	3,603.52
	01/30/03	3,625.94		22.45	0.00	3,603.49
	03/03/03	3,625.94	-	22.41	0.00	3,603.53
	02/11/04	3,625.94	-	24.75	0.00	3,601.19
	03/24/04	3,625.94	-	24.65	0.00	3,601.29
	05/11/04	3,625.94	-	24.81	0.00	3,601.13
	06/11/04	3,625.94	-	24.87	0.00	3,601.07
	07/08/04	3,625.94	-	24.85	0.00	3,601.09
	08/17/04	3,625.94	-	24.82	0.00	3,601.12
	09/13/04	3,625.94	-	24.80	0.00	3,601.14
	10/06/04	3,625.94	-	15.61	0.00	3,610.33
	11/16/04	3,625.94	-	20.60	0.00	3,605.34
	12/10/04	3,625.94	-	19.75	0.00	3,606.19
	01/14/05	3,625.94	-	22.80	0.00	3,603.14
	02/21/05	3,625.94	-	23.82	0.00	3,602.12
	05/09/05	3,625.94	-	24.41	0.00	3,601.53
	11/18/05		<u> </u>	Not Gauged	_	
	11/22/05	3,625.94	-	26.07	0.00	3,599.87
	01/12/06	3,625.94	-	19.87	0.00	3,606.07
	03/03/06	3,625.94	-	24.92	0.00	3,601.02
	03/16/06	3,625.94	-	25.21	0.00	3,600.73
	03/20/06	3,625.94		<u>25.31</u>	0.00	3,600.63
	03/21/06	3,625.94	-	24.95	0.00	3,600.99
	04/11/06	3,625.94	-	25.25	0.00	3,600.69
	07/20/06	3,625.94	-	25.27	0.00	3,600.67
	08/09/06	3,625.94	-	25.02	0.00	3,600.92
	10/17/06	3,625.94	-	22.60	0.00	3,603.34
	11/27/06	3,625.94	-	23.96	0.00	3,601.98
	12/11/06	3,625.94		24.42	0.00	3,601.52
	01/04/07	3,625.94	-	24.68	0.00	3,601.26

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-2	03/21/07	3,625.94	-	24.85	0.00	3,601.09
	04/26/07	3,625.94	-	24.87	0.00	3,601.07
	05/31/07	3,625.94	-	24.85	0.00	3,601.09
	06/20/07	3,625.94	-	24.86	0.00	3,601.08
<u> </u>	07/31/07	3,625.94	_	24.89	0.00	3,601.05
	08/13/07	3,625.94	_	24.87	0.00	3,601.07
	09/26/07	3,625.94	-	24.87	0.00	3,601.07
	10/16/07	3,625.94	-	24.89	0.00	3,601.05
	11/07/07	3,625.94	-	24.91	0.00	3,601.03
	12/06/07	3,625.94		24.93	0.00	3,601.01
	03/13/08	3,625.94	-	24.93	0.00	3,601.01
	06/21/08	3,625.94	-	24.98	0.00	3,600.96
	09/18/08	3,625.94	-	24.95	0.00	3,600.99
	10/21/08	3,625.94	-	24.91	0.00	3,601.03
	11/19/08	3,625.94	-	24.92	0.00	3,601.02
	12/16/08	3,625.94	-	24.93	0.00	3,601.01
	and the second					ar an
MW-3	01/02/03	3,624.81	16.83	16.84	0.01	3,607.98
	01/06/03	3,624.81	-	16.73	0.00	3,608.08
	01/13/03	3,624.81	-	16.80	0.00	3,608.01
	01/28/03	3,624.81	Sheen	16.82	0.00	3,607.99
	01/30/03	3,624.81	-	16.84	0.00	3,607.97
	03/03/03	3,624.81	_	16.82	0.00	3,607.99
	02/11/04	3,624.81	-	18.83	0.00	3,605.98
	03/24/04	3,624.81	-	18.81	0.00	3,606.00
	05/11/04	3,624.81	-	18.52	0.00	3,606.29
	06/11/04	3,624.81	-	18.73	0.00	3,606.08
	07/08/04	3,624.81	-	18.77	0.00	3,606.04
	08/17/04	3,624.81	-	18.83	0.00	3,605.98
	09/13/04	3,624.81	-	18.85	0.00	3,605.96
	10/06/04	3,624.81	-	12.85	0.00	3,611.96
	11/16/04	3,624.81	-	18.03	0.00	3,606.78
	12/10/04	3,624.81	-	18.24	0.00	3,606.57
	01/14/05	3,624.81	-	18.70	0.00	3,606.11
	02/21/05	3,624.81	-	18.88	0.00	3,605.93
	05/09/05		N	Not Gauged		
	11/18/05		١	Not Gauged		
	11/22/05		١	Not Gauged		
	01/12/06	3,624.81	-	17.27	0.00	3,607.54
	03/03/06	3,624.81	-	18.66	0.00	3,606.15
	03/16/06	3,624.81	-	18.97	0.00	3,605.84

Page 3 of 11

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-3	03/20/06	3,624.81	-	19.01	0.00	3,605.80
	03/21/06	3.624.81	-	18.79	0.00	3,606.02
	04/11/06	3.624.81	-	18.98	0.00	3,605.83
	07/20/06	3.624.81	-	18.81	0.00	3,606.00
	08/09/06	3,624.81	-	18.72	0.00	3,606.09
	10/17/06	3,624.81	-	18.35	0.00	3,606.46
	11/27/06	3,624.81	-	18.43	0.00	3,606.38
	12/11/06	3,624.81	-	18.48	0.00	3,606.33
	01/04/07	3,624.81	-	18.56	0.00	3,606.25
	03/21/07	3.624.81	_	18.58	0.00	3,606.23
	04/26/07	3,624.81	-	18.55	0.00	3,606.26
	05/31/07	3,624.81	-	17.84	0.00	3,606.97
	06/20/07	3,624.81	-	18.06	0.00	3,606.75
	07/31/07	3,624.81	-	18.53	0.00	3,606.28
	08/13/07	3,624.81	-	18.49	0.00	3,606.32
	09/26/07	3,624.81	-	18.41	0.00	3,606.40
	10/16/07	3,624.81	-	18.48	0.00	3,606.33
	11/07/07	3,624.81	-	18.56	0.00	3,606.25
	12/06/07	3,624.81	-	18.58	0.00	3,606.23
	03/13/08	3,624.81	-	18.65	0.00	3,606.16
	06/21/08	3,624.81	-	18.65	0.00	3,606.16
	09/18/08	3,624.81	-	18.61	0.00	3,606.20
	10/21/08	3,624.81	-	18.45	0.00	3,606.36
	11/19/08	3,624.81	-	18.55	0.00	3,606.26
	12/16/08	3,624.81	-	18.63	0.00	3,606.18
			and a second		star for a formal i	
MW-4	01/02/03	3,624.95	-	19.53	0.00	3,605.42
	01/06/03	3,624.95	-	19.55	0.00	3,605.40
	01/13/03	3,624.95	-	19.54	0.00	3,605.41
	01/28/03	3,624.95	-	19.52	0.00	3,605.43
	01/30/03	3,624.95	-	19.54	0.00	3,605.41
	03/03/03	3,624.95	-	19.55	0.00	3,605.40
	02/11/04	3,624.95	-	22.44	0.00	3,602.51
	03/24/04	3,624.95	-	22.43	0.00	3,602.52
	05/11/04	3,624.95	-	22.30	0.00	3,602.65
	06/11/04	3,624.95	-	22.41	0.00	3,602.54
	07/08/04	3,624.95	-	22.43	0.00	3,602.52
	08/17/04	3,624.95	-	22.45	0.00	3,602.50
	09/13/04	3,624.95	-	22.40	0.00	3,602.55
	10/06/04	3,624.95	-	14.60	0.00	3,610.35
	11/16/04	3,624.95	-	20.57	0.00	3,604.38

0

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-4	12/12/04	3,624.95	-	19.46	0.00	3,605.49
	01/14/05	3,624.95	-	22.24	0.00	3,602.71
	02/21/05	3,624.95	-	22.52	0.00	3,602.43
	05/09/05	3,624.95	-	22.61	0.00	3,602.34
	11/18/05		<u>ا</u>	lot Gauged		
	11/22/05	3,624.95	_	22.98	0.00	3,601.97
	01/12/06	3,624.95	-	22.68	0.00	3,602.27
	03/03/06	3,624.95	-	22.43	0.00	3,602.52
	03/16/06	3,624.95	-	22.70	0.00	3,602.25
	03/20/06	3,624.95	-	22.69	0.00	3,602.26
	03/21/06	3,624.95	-	34.30	0.00	3,590.65
	04/11/06	3,624.95	-	22.70	0.00	3,602.25
	07/20/06	3,624.95	-	22.70	0.00	3,602.25
	08/09/06	3,624.95	-	22.27	0.00	3,602.68
	10/17/06	3,624.95	-	22.09	0.00	3,602.86
	11/27/06	3,624.95	-	22.27	0.00	3,602.68
	12/11/06	3,624.95	-	22.33	0.00	3,602.62
	01/04/07	3,624.95	-	34.51	0.00	3,590.44
	03/21/07	3,624.95	-	22.35	0.00	3,602.60
	04/26/07	3,624.95	-	22.34	0.00	3,602.61
	05/31/07	3,624.95	-	22.29	0.00	3,602.66
	06/20/07	3,624.95	-	22.30	0.00	3,602.65
	07/31/07	3,624.95	-	22.33	0.00	3,602.62
	08/13/07	3,624.95	_	22.32	0.00	3,602.63
	09/26/07	3,624.95	-	22.31	0.00	3,602.64
	10/16/07	3,624.95	-	22.33	0.00	3,602.62
	11/07/07	3,624.95	-	22.38	0.00	3,602.57
	12/06/07	3,624.95	-	22.34	0.00	3,602.61
	03/13/08	3,624.95	-	22.39	0.00	3,602.56
	06/21/08	3,624.95	-	22.39	0.00	3,602.56
	09/18/08	3,624.95	-	22.38	0.00	3,602.57
	10/21/08	3,624.95	-	22.33	0.00	3,602.62
	11/19/08	3,624.95	-	22.35	0.00	3,602.60
	12/16/08	3,624.95	-	22.38	0.00	3,602.57
· · · ·	844 - S.					
MW-5	01/02/03	3,624.15	_	12.97	0.00	3,611.18
	01/06/03	3,624.15	-	12.98	0.00	3,611.17
1	01/13/03	3,624.15	-	13.00	0.00	3,611.15
	01/28/03	3,624.15	-	12.88	0.00	3,611.27
	01/30/03	3,624.15	_	13.00	0.00	3,611.15
	03/03/03	3,624.15	-	18.87	0.00	3,605.28

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-5	02/11/04	3,624.15	-	13.03	0.00	3,611.12
	03/24/04	3,624.15	-	13.01	0.00	3,611.14
	05/11/04	3,624.15	-	12.81	0.00	3,611.34
	06/11/04	3,624.15	-	12.96	0.00	3,611.19
	07/08/04	3,624.15	-	13.00	0.00	3,611.15
	08/17/04	3,624.15	_	13.02	0.00	3,611.13
	09/13/04	3,624.15	_	13.05	0.00	3,611.10
	10/06/04		N	Not Gauged		
	11/16/04	3,624.15	-	12.23	0.00	3,611.92
	12/10/04	3,624.15	-	11.88	0.00	3,612.27
	01/14/05	3,624.15	-	13.00	0.00	3,611.15
	02/21/05	3,624.15	-	13.14	0.00	3,611.01
	05/09/05	3,624.15	-	13.22	0.00	3,610.93
	11/18/05		1	Not Gauged		
	11/22/05	3,624.15	_	12.88	0.00	3,611.27
	01/12/06	3,624.15	-	17.92	0.00	3,606.23
	03/03/06	3,624.15	-	17.65	0.00	3,606.50
	03/16/06	3,624.15		17.93	0.00	3,606.22
	03/20/06	3,624.15	-	17.94	0.00	3,606.21
	03/21/06	3,624.15	-	19.35	0.00	3,604.80
	04/11/06	3,624.15	-	17.94	0.00	3,606.21
	07/20/06	3,624.15	-	17.91	0.00	3,606.24
	08/09/06	3,624.15	_	17.52	0.00	3,606.63
	10/17/06	3,624.15	_	20.57	0.00	3,603.58
	11/27/06	3,624.15	-	20.62	0.00	3,603.53
	12/11/06	3,624.15	-	20.69	0.00	3,603.46
	01/04/07	3,624.15	-	20.74	0.00	3,603.41
	03/21/07	3,624.15	-	20.75	0.00	3,603.40
	04/26/07	3,624.15	-	20.54	0.00	3,603.61
	05/31/07	3,624.15	-	20.45	0.00	3,603.70
	06/20/07	3,624.15		20.47	0.00	3,603.68
	07/31/07	3,624.15	-	20.55	0.00	3,603.60
	08/13/07	3,624.15	-	20.49	0.00	3,603.66
	09/26/07	3,624.15	_	20.43	0.00	3,603.72
	10/16/07	3,624.15	-	20.45	0.00	3,603.70
	11/07/07	3,624.15	-	20.55	0.00	3,603.60
	12/06/07	3,624.15	-	20.59	0.00	3,603.56
	03/13/08	3,624.15	-	20.66	0.00	3,603.49
	06/21/08	3,624.15	-	20.65	0.00	3,603.50
	09/18/08	3,624.15	-	20.59	0.00	3,603.56
	10/21/08	3,624.15	-	20.37	0.00	3,603.78

Page 6 of 11

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-5	11/19/08	3,624.15	-	20.53	0.00	3,603.62
	12/16/08	3,624.15	-	20.60	0.00	3,603.55
MW-9	05/09/05		Ň	lot Gauged		•
	09/20/05	3,627.84	-	27.60	0.00	3,600.24
	11/18/05		N	lot Gauged		• · · ·
	11/22/05		Ν	lot Gauged		
	01/12/06	3,627.84	-	22.01	0.00	3,605.83
	03/03/06	3.627.84	-	21.34	0.00	3,606.50
	03/16/06	3.627.84	-	22.02	0.00	3,605.82
	03/20/06	3,627,84	-	22.01	0.00	3,605.83
	03/21/06	3,627.84	-	21.71	0.00	3,606.13
	04/11/06	3,627.84	· _	22.01	0.00	3,605.83
	07/20/06	3.627.84	-	22.00	0.00	3,605.84
	08/09/06	3.627.84	-	21.67	0.00	3,606.17
	10/17/06	3.627.84	-	21.56	0.00	3,606.28
	11/27/06	3.627.84	-	21.60	0.00	3,606.24
	12/11/06	3.627.84	_	21.62	0.00	3,606.22
	01/04/07	3.627.84	_	21.63	0.00	3,606,21
	03/21/07	3.627.84	-	21.64	0.00	3.606.20
	04/26/07	3.627.84	-	21.63	0.00	3,606,21
	05/31/07	3.627.84	-	21.64	0.00	3.606.20
	06/20/07	3.627.84	_	21.64	0.00	3,606.20
	07/31/07	3,627.84	-	21.65	0.00	3,606.19
	08/13/07	3,627.84	-	21.64	0.00	3,606.20
	09/26/07	3,627.84	-	21.64	0.00	3,606.20
	10/16/07	3,627.84	-	21.65	0.00	3,606.19
	11/07/07	3,627.84	-	21.67	0.00	3,606.17
	12/06/07	3,627.84	-	21.69	0.00	3,606.15
	03/13/08	3,627.84	-	21.70	0.00	3,606.14
	06/21/08	3,627.84	-	21.75	0.00	3,606.09
	09/18/08	3,627.84	-	21.75	0.00	3,606.09
	10/21/08	3,627.84	-	21.72	0.00	3,606.12
	11/19/08	3,627.84	_	21.75	0.00	3,606.09
	12/16/08	3,627.84	-	21.75	0.00	3,606.09
					and the second second	a) in the second se
RW-1	01/02/03	3,626.68	-	19.04	0.00	3,607.64
	01/06/03	3,626.68	18.76	18.79	0.03	3,607.92
	01/13/03	3,626.68	18.20	18.30	0.10	3,608.47
	01/28/03	3,626.68	18.11	18.21	0.10	3,608.56
	03/03/03	3,626.68	18.05	18.20	0.15	3,608.61

0

(† 6

5.

6

0

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION	
RW-1	03/25/03	3,626.68	18.10	18.15	0.05	3,608.57	
	06/16/03	3,626.68	18.04	18.05	0.01	3,608.64	
	06/24/03	3,626.68	18.05	18.06	0.01	3,608.63	
	07/10/03	3,626.68	18.06	18.07	0.01	3,608.62	
	08/12/03	3,626.68	18.07	18.08	0.01	3,608.61	
	11/07/03	3,626.68	18.04	18.10	0.06	3,608.63	
	12/29/03	3,626.68	18.05	18.10	0.05	3,608.62	
	03/03/04	3,626.68	18.04	18.10	0.06	3,608.63	
	03/24/04	3,626.68	18.21	18.22	0.01	3,608.47	
	05/11/04	3,626.68	18.09	18.11	0.02	3,608.59	
	06/11/04	3,626.68	Sheen	18.18	0.00	3,608.50	
	07/08/04	3,626.68	Sheen	18.14	0.00	3,608.54	
	08/17/04	3,626.68	Sheen	18.10	0.00	3,608.58	
	09/13/04	3,626.68	Sheen	18.20	0.00	3,608.48	
	10/06/04	3,626.68	Sheen	13.30	0.00	3,613.38	
	11/16/04	3,626.68	Sheen	17.73	0.00	3,608.95	
	12/10/04	3,626.68	Sheen	17.91	0.00	3,608.77	
	01/14/05	3,626.68	-	18.21	0.00	3,608.47	
	02/21/05	3,626.68	-	18.33	0.00	3,608.35	
	05/09/05	3,626.68	-	18.68	0.00	3,608.00	
	11/18/05	Not Gauged					
	11/22/05		Ň	lot Gauged			
	01/12/06	3,626.68	-	18.50	0.00	3,608.18	
	03/03/06	3,626.68	-	19.74	0.00	3,606.94	
	03/16/06	3,626.68		19.80	0.00	3,606.88	
	03/20/06	3,626.68	-	19.65	0.00	3,607.03	
	03/21/06	3,626.68	-	19.34	0.00	3,607.34	
	04/11/06	3,626.68		19.06	0.00	3,607.62	
	07/20/06	3,626.68	-	19.46	0.00	3,607.22	
<u> </u>	08/09/06	3,626.68		19.16	0.00	3,607.52	
L	10/17/06	3,626.68	-	19.06	0.00	3,607.62	
	11/27/06	3,626.68	-	19.07	0.00	3,607.61	
	12/11/06	3,626.68	-	19.10	0.00	3,607.58	
L	01/04/07	3,626.68	-	19.10	0.00	3,607.58	
	03/21/07	3,626.68	-	19.06	0.00	3,607.62	
	04/26/07	3,626.68	-	19.04	0.00	3,607.64	
	05/31/07	3,626.68	-	19.06	0.00	3,607.62	
	06/20/07	3,626.68	-	19.05	0.00	3,607.63	
	07/31/07	3,626.68	-	19.05	0.00	3,607.63	
	08/13/07	3,626.68	-	19.05	0.00	3,607.63	
	09/26/07	3,626.68	-	19.04	0.00	3,607.64	

Page 8 of 11

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
RW-1	10/16/07	3,626.68	-	19.05	0.00	3,607.63
	11/07/07	3,626.68	-	19.06	0.00	3,607.62
	12/06/07	3,626.68	-	19.08	0.00	3,607.60
	03/13/08	3,626.68	-	19.10	0.00	3,607.58
	06/21/08	3,626.68	-	19.11	0.00	3,607.57
	09/18/08	3,626.68	-	19.12	0.00	3,607.56
	10/21/08	3,626.68	-	19.08	0.00	3,607.60
	11/19/08	3,626.68	-	19.09	0.00	3,607.59
	12/16/08	3,626.68	-	19.07	0.00	3,607.61
RW-2	01/02/03	3,626.71	17.02	17.03	0.01	3,609.69
	01/06/03	3,626.71	Sheen	19.08	0.00	3,607.63
	01/13/03	3.626.71	-	16.01	0.00	3,610.70
	01/28/03	3,626.71	-	16.03	0.00	3,610.68
	01/30/03	3,626.71	-	16.01	0.00	3,610.70
	03/03/03	3,626.71	-	16.07	0.00	3,610.64
	02/11/04	3.626.71	-	21.20	0.00	3,605,51
	03/24/04	3.626.71	-	18.36	0.00	3,608,35
	05/11/04	3.626.71	-	18.40	0.00	3,608,31
	06/11/04	3.626.71	-	18.53	0.00	3,608.18
	07/08/04	3,626,71		18.57	0.00	3,608.14
	08/17/04	3,626.71	-	18.56	0.00	3,608.15
	09/13/04	3,626.71	-	18.48	0.00	3,608.23
	10/06/04	3,626.71	-	13.75	0.00	3,612.96
	11/16/04	3,626.71	-	17.66	0.00	3,609.05
	12/10/04	3,626.71	-	17.80	0.00	3,608.91
	01/14/05	3,626.71	-	18.49	0.00	3,608.22
	02/21/05	3,626.71	-	18.57	0.00	3,608.14
	05/09/05	3,626.71	-	16.68	0.00	3,610.03
	11/18/05		<u> </u>	Not Gauged		
	11/22/05		١	Not Gauged		······
	01/12/06	3,626.71	-	19.00	0.00	3,607.71
	03/03/06	3,626.71	-	18.56	0.00	3,608.15
	03/16/06	3,626.71	-	18.78	0.00	3,607.93
	03/20/06	3,626.71	-	19.78	0.00	3,606.93
	03/21/06	3,626.71	-	18.48	0.00	3,608.23
	04/11/06	3,626.71	-	18.75	0.00	3,607.96
	07/20/06	3,626.71	-	18.85	0.00	3,607.86
	08/09/06	3,626.71	-	19.51	0.00	3,607.20
	10/17/06	3,626.71	-	20.47	0.00	3,606.24
	11/27/06	3,626.71	-	20.56	0.00	3,606.15

0

Page 9 of 11

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
RW-2	12/11/06	3,626.71	-	20.55	0.00	3,606.16
	01/04/07	3,626.71	-	20.61	0.00	3,606.10
	03/21/07	3,626.71		20.55	0.00	3,606.16
	04/26/07	3,626,71	-	20.40	0.00	3,606,31
	05/31/07	3.626.71	-	20.42	0.00	3.606.29
	06/20/07	3.626.71		20.43	0.00	3.606.28
	07/31/07	3.626.71	-	20.45	0.00	3.606.26
	08/13/07	3.626.71	-	20.45	0.00	3,606,26
	09/26/07	3.626.71	-	20.46	0.00	3.606.25
	10/16/07	3.626.71	-	20.46	0.00	3.606.25
	11/07/07	3,626,71	-	20.46	0.00	3,606,25
	12/06/07	3,626.71	-	20.48	0.00	3,606.23
	03/13/08	3,626.71	-	20.52	0.00	3,606.19
	06/21/08	3,626.71	-	20.56	0.00	3,606,15
	09/18/08	3,626.71	-	20.58	0.00	3,606.13
	10/21/08	3.626.71	-	20.50	0.00	3.606.21
	11/19/08	3,626.71	-	20.41	0.00	3,606.30
	12/16/08	3,626.71	-	20.51	0.00	3,606.20
			, · ·		3 ²⁴	
RW-3	01/02/03	3,623.35	-	19.45	0.00	3,603.90
	01/06/04	3,623.35	-	18.89	0.00	3,604.46
	01/13/03	3,623.35	_	23.74	0.00	3,599.61
	01/28/03	3,623.35	-	18.81	0.00	3,604.54
	01/30/03	3,623.35	-	23.74	0.00	3,599.61
	03/03/03	3,623.35	-	18.90	0.00	3,604.45
	02/11/04	3,623.35	-	21.26	0.00	3,602.09
	03/24/04	3,623.35	-	21.04	0.00	3,602.31
	05/11/04	3,623.35	-	20.74	0.00	3,602.61
	06/11/04	3,623.35	-	20.91	0.00	3,602.44
	07/08/04	3,623.35	-	20.86	0.00	3,602.49
	08/17/04	3,623.35	-	20.92	0.00	3,602.43
	09/13/04	3,623.35	-	21.00	0.00	3,602.35
	10/06/04	3,623.35	-	13.60	0.00	3,609.75
	11/16/04	3,623.35	-	18.85	0.00	3,604.50
	12/10/04	3,623.35	_	17.42	0.00	3,605.93
	01/14/05	3,623.35		20.14	0.00	3,603.21
	02/21/05	3,623.35	-	20.69	0.00	3,602.66
	05/09/05		N	lot Gauged	<u> </u>	
	11/18/05		N	lot Gauged		
	11/22/05		N	lot Gauged		······································
	01/12/06	3,623.35		24.94	0.00	3,598.41

0

0 0

0

0

8

0

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

0

8

0

0

0

•

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
RW-3	03/03/06	3,623.35	-	21.31	0.00	3,602.04
	03/16/06	3,623.35	-	21.62	0.00	3,601.73
	03/20/06	3,623.35	_	21.33	0.00	3,602.02
	03/21/06	3,623.35	-	34.55	0.00	3,588.80
	04/11/06	3,623.35	-	21.60	0.00	3,601.75
	07/20/06	3,623.35	_	21.62	0.00	3,601.73
	08/09/06	3,623.35	-	21.01	0.00	3,602.34
	10/17/06	3,623.35	-	19.79	0.00	3,603.56
	11/27/06	3,623.35	-	20.38	0.00	3,602.97
	12/11/06	3,623.35	-	20.58	0.00	3,602.77
	01/04/07	3,623.35	-	20.80	0.00	3,602.55
	03/21/07	3,623.35	-	21.04	0.00	3,602.31
	04/26/07	3,623.35	-	20.93	0.00	3,602.42
	05/31/07	3,623.35	-	20.77	0.00	3,602.58
	06/20/07	3,623.35	-	20.78	0.00	3,602.57
	07/31/07	3,623.35	-	20.83	0.00	3,602.52
	08/13/07	3,623.35	-	20.86	0.00	3,602.49
	09/26/07	3,623.35	-	20.90	0.00	3,602.45
	10/16/07	3,623.35	-	20.89	0.00	3,602.46
	11/07/07	3,623.35	-	20.90	0.00	3,602.45
	12/06/07	3,623.35	-	21.04	0.00	3,602.31
	03/13/08	3,623.35	-	21.18	0.00	3,602.17
	06/21/08	3,623.35	-	21.24	0.00	3,602.11
	09/18/08	3,623.35	-	21.20	0.00	3,602.15
	10/21/08	3,623.35	-	21.16	0.00	3,602.19
	11/19/08	3,623.35	_	21.01	0.00	3,602.34
	12/16/08	3,623.35	-	21.09	0.00	3,602.26
	· · · ·	V 500-1				

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

0

0

9

•

Ø

(1

		METHODS: EPA SW 846-8021B, 5030					
SAMPLE	SAMPLE			ETHYL-	M,P-		
LOCATION	DATE			BENZENE	XYLENES		
		(mg/L)	(mg/L)	(ma/L)	(mg/L)	(mg/L)	
MW-1	01/30/03	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	
	03/03/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	02/11/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	
	08/17/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	
	05/09/05	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	
	11/22/05	< 0.001	< 0.001	<0.001	<0.002	< 0.001	
	03/21/06	<0.001	< 0.001	< 0.001	<0.002	< 0.001	
	06/01/06	< 0.001	<0.001	< 0.001	<0.002	<0.001	
	08/09/06	< 0.001	<0.001	< 0.001	<0.002	<0.001	
	11/27/06	< 0.001	< 0.001	<0.001	<0.002	<0.001	
	03/21/07	< 0.001	< 0.001	<0.001	<0.001	<0.001	
	05/31/07	<0.001	0.002	< 0.001	< 0.001	< 0.001	
	09/26/07	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	
	12/06/07	< 0.001	<0.002	< 0.001	< 0.002	<0.001	
	03/13/08	< 0.001	<0.002	< 0.001	< 0.002	<0.001	
	06/21/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	09/18/08	< 0.001	<0.002	< 0.001	< 0.002	< 0.001	
	11/19/08	< 0.001	< 0.002	<0.001	< 0.002	<0.001	
÷ ,					and and a second se		
MW-2	01/30/03	<0.001	<0.001	< 0.001	<0.001	0.004	
	03/03/03	<0.001	<0.001	<0.001	< 0.001	<0.001	
	02/11/04	<0.001	<0.001	<0.001	<0.002	<0.001	
	08/17/04	<0.001	<0.001	<0.001	<0.002	<0.001	
	05/09/05	<0.001	<0.001	<0.001	<0.002	<0.001	
	11/18/05	<0.001	<0.001	<0.001	<0.002	<0.001	
	03/21/06	<0.001	0.002	<0.001	<0.002	<0.001	
	06/01/06	<0.001	<0.001	<0.001	<0.002	<0.001	
	08/09/06	<0.001	<0.001	<0.001	<0.002	<0.001	
· · · · · · · · · · · · · · · · · · ·	11/27/06	0.001	<0.001	<0.001	<0.002	<0.001	
	03/22/07	<0.001	<0.001	<0.001	< 0.001	<0.001	
	06/01/07	<0.001	<0.001	<0.001	<0.001	<0.001	
	09/26/07	<0.001	<0.001	<0.001	< 0.002	<0.001	
	12/06/07	<0.001	< 0.002	<0.001	< 0.002	<0.001	
	03/13/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	06/21/08	< 0.001	< 0.002	<0.001	<0.002	<0.001	
	09/18/08	< 0.001	< 0.002	<0.001	<0.002	<0.001	
	11/19/08	<0.001	<0.002	<0.001	<0.002	<0.001	
<u>MW-3</u>	01/30/03	<0.001	<0.001	<0.001	<0.001	<0.001	
	03/03/03	<0.001	<0.001	<0.001	< 0.001	<0.001	

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

0

0

0

		METHODS: EPA SW 846-8021B, 5030				
SAMPLE	SAMPLE			ETHYL-	M,P-	
LOCATION	DATE			BENZENE	XYLENES	U-ATLENES
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-3	02/11/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	08/17/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	05/09/05	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	11/18/05	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	03/21/06	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
·····	06/01/06	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	08/09/06	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	11/27/06	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	03/21/07	< 0.001	<0.001	< 0.001	< 0.001	< 0.001
	05/31/07	< 0.001	0.002	< 0.001	<0.001	<0.001
	09/26/07	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	12/06/07	< 0.001	< 0.002	<0.001	< 0.002	< 0.001
	03/13/08	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001
	06/21/08	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001
	09/18/08	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001
	11/19/08	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001
				2.		
MW-4	01/30/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	03/03/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	02/11/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	08/17/04	<0.001	< 0.001	< 0.001	< 0.002	< 0.001
	05/09/05	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	11/18/05	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	03/21/06	< 0.001	0.003	0.001	<0.002	<0.001
	06/01/06	<0.001	<0.001	<0.001	< 0.002	<0.001
	08/09/06	0.001	< 0.002	0.010	0.005	< 0.001
	11/27/06	< 0.001	<0.001	<0.001	< 0.002	< 0.001
	03/21/07	<0.001	<0.001	<0.001	<0.001	<0.001
	05/31/07	<0.001	0.007	<0.001	< 0.001	<0.001
	09/26/07	<0.001	<0.001	<0.001	< 0.002	<0.001
	12/06/07	<0.001	<0.002	<0.001	<0.002	<0.001
	03/13/08	<0.001	0.002	<0.001	<0.002	< 0.001
	06/21/08	< 0.001	<0.002	<0.001	< 0.002	<0.001
	09/18/08	<0.001	<0.002	<0.001	<0.002	< 0.001
	11/19/08	<0.001	<0.002	<0.001	< 0.002	< 0.001
	· 44 · 44 · 4	· · · ·			e	
MW-5	01/30/03	<0.001	<0.001	<0.001	<0.001	<0.001
	03/03/03	<0.001	<0.001	< 0.001	< 0.001	< 0.001
	02/11/04	< 0.001	< 0.001	<0.001	< 0.002	<0.001
	08/17/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

		METHODS: EPA SW 846-8021B, 5			8021B, 5030	030	
SAMPLE	SAMPLE	RENZENE		ETHYL-	M,P-		
LOCATION	DATE			BENZENE	XYLENES		
		(ing/c)	(ing/L)	(mg/L)	(mg/L)	(ing/c)	
MW-5	05/09/05	<0.001	<0.001	< 0.001	<0.002	< 0.001	
	11/18/05	< 0.001	<0.001	< 0.001	<0.002	< 0.001	
	03/21/06	<0.001	< 0.001	<0.001	<0.002	< 0.001	
	06/01/06	< 0.001	<0.001	<0.001	<0.002	< 0.001	
	08/09/06	<0.001	<0.001	< 0.001	<0.002	< 0.001	
	11/27/06	<0.001	<0.001	<0.001	<0.002	< 0.001	
	03/22/07	<0.001	<0.001	<0.001	<0.001	<0.001	
	06/01/07	<0.001	<0.001	<0.001	<0.001	<0.001	
	09/26/07	<0.001	<0.001	<0.001	<0.002	<0.001	
	12/06/07	<0.001	< 0.002	<0.001	<0.002	<0.001	
	03/13/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	06/21/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	09/18/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	11/19/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		and the second second		
MW-9	09/20/05	0.003	0.009	0.003	0.007	0.002	
	03/21/06	<0.001	<0.001	<0.001	<0.002	<0.001	
	06/01/06	<0.001	<0.001	<0.001	<0.002	<0.001	
	08/09/06	<0.001	<0.001	<0.001	<0.002	<0.001	
	11/27/06	<0.001	<0.001	<0.001	<0.002	<0.001	
	03/21/07	<0.001	<0.001	<0.001	<0.001	<0.001	
	06/01/07	<0.001	<0.001	<0.001	<0.001	<0.001	
	09/26/07	<0.001	<0.001	<0.001	<0.002	<0.001	
	12/06/07	<0.001	<0.002	<0.001	<0.002	<0.001	
	03/13/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	06/21/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	09/18/08	<0.001	<0.002	<0.001	<0.002	<0.001	
	11/19/08	<0.001	< 0.002	<0.001	<0.002	<0.001	
	n de la grande de la composition de la La composition de la c						
RW-1	01/30/03	< 0.001	<0.001	<0.001	<0.001	<0.001	
	03/03/03	Not Sample	ed Due to Pres	sence of Phase	Separated Hy	drocarbons	
	02/11/04	Not Sample	ed Due to Pres	sence of Phase	Separated Hy	drocarbons	
	08/17/04	Not Sample	ed Due to Pres	sence of Phase	Separated Hy	drocarbons	
	05/09/05	Not Sample	ed Due to Pres	sence of Phase	Separated Hy	drocarbons	
	11/22/05	< 0.001	< 0.001	<0.001	<0.002	<0.001	
	03/21/06	<0.001	<0.001	<0.001	<0.002	<0.001	
	06/01/06	0.002	<0.001	< 0.001	< 0.002	< 0.001	
	08/09/06	0.001	<0.001	0.009	0.005	<0.001	
		0.020	<0.001	0.035	0.004	0.001	
	03/22/07	<0.001	<0.001	<0.001	<0.001	<0.001	

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

6

0

		METHODS: EPA SW 846-8021B, 5030				
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)
B\W1	06/01/07	<0.001	<0.001			<0.001
1.00-1	09/26/07	0.001		<0.001		
	12/06/07	<0.013		<0.001	<0.002	<0.001
	03/13/08	<0.001	<0.002	<0.001		<0.001
	06/21/08	<0.001	<0.002	<0.001	<0.002	<0.001
	00/21/00	0.001		<0.001	<0.002	<0.001
	11/19/08	<0.001	<0.002	<0.001	<0.002	<0.001
	11/10/00	-0.001			-0.002	
BW-2	01/30/03	0.008	<0.001	<0.001	0.001	0.001
	03/03/03	0.000	<0.001	<0.001		<0.001
	02/11/04	<0.002	<0.001	<0.001	<0.001	<0.001
	08/17/04	<0.001	<0.001	<0.001	<0.002	<0.001
	05/09/05	<0.001	<0.001	<0.001	<0.002	<0.001
	11/22/05	<0.001	<0.001	<0.001	<0.002	<0.001
	03/21/06	<0.001	<0.001	<0.001	<0.002	<0.001
	06/01/06	<0.001	<0.001	<0.001	<0.002	<0.001
	08/09/06	<0.001	<0.001	<0.001	<0.002	<0.001
	11/27/06	<0.001	<0.001	<0.001	<0.002	<0.001
	03/22/07	<0.001	<0.001	<0.001	<0.001	<0.001
	06/01/07	<0.001	0.001	<0.001	<0.001	<0.001
 	09/26/07	<0.001	<0.001	<0.001	<0.002	<0.001
	12/06/07	< 0.001	< 0.002	<0.001	<0.002	< 0.001
	03/13/08	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001
	06/21/08	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001
	09/18/08	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001
	11/19/08	< 0.001	< 0.002	< 0.001	< 0.002	< 0.001
		5 F. 5			10 10 10 10 10 10 10 10 10 10 10 10 10 1	
RW-3	01/30/03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	03/03/03	< 0.001	< 0.001	< 0.001	<0.001	< 0.001
	02/11/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	08/17/04	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	05/09/05	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	11/18/05	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001
	03/21/06	< 0.001	0.008	0.001	< 0.002	<0.001
	06/01/06	<0.001	<0.001	< 0.001	<0.002	<0.001
	08/09/06	< 0.001	<0.001	< 0.001	<0.002	< 0.001
I	11/27/06	< 0.001	<0.001	< 0.001	< 0.002	<0.001
	03/22/07	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
	06/01/07	<0.001	0.001	<0.001	< 0.001	< 0.001
	09/26/07	<0.001	< 0.001	<0.001	< 0.002	<0.001
TABLE 2

Ö 9

6

6

0

6

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER

PLAINS MARKETING, L.P. VACUUM 10-INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO: 2002-10248 NMOCD REF NO: 1RP-0385

			METHODS:	EPA SW 846-	8021B, 5030	
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)
RW-3	12/06/07	0.001	<0.002	<0.001	< 0.002	<0.001
	03/13/08	<0.001	< 0.002	<0.001	<0.002	<0.001
	06/21/08	<0.001	< 0.002	<0.001	< 0.002	<0.001
	09/18/08	<0.001	< 0.002	<0.001	<0.002	<0.001
	11/19/08	<0.001	< 0.002	<0.001	<0.002	< 0.001
1	1 4 70 - 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4					
NMOCD CRITE	ERIA (mg/L)	0.01	0.75	0.75	0.	62

TABLE 3

CONCENTRATIONS OF POLY AROMATIC HYDROCARBONS IN GROUNDWATER

PLAINS MARKETING, L.P. VACUUM 10 INCH TO JAL LEA COUNTY, NEW MEXICO PLAINS SRS NO. 2006-10248 NMOCD REF NO: 1RP-385

Π	Pyrene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	4
	Phenanthrene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	4	<0.005	3
	SnilsdidgeN	<0.005		<0.005	الم من هرماني. د واعد د المرياني	<0.005		<0.005	1. 1. Ke	<0:005		<0.005		<0.005		<0.005	د م	<0.005	
	2-Methylnaphthalene	<0.005		<0.005	BANKS CAL	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
	յ-Methylnaphthalene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	÷;
	ənəry ^q (b,ɔ-ɛ,ઽ,I)onəbnI	<0.005	aller of the second	<0.005	ور میں میں اور	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
	Filuorene	<0.005	المنظرية . والأسلام الأراد	<0.005		<0.005		<0.005	1. S. S.	<0.005	2325	<0.005		<0.005		<0.005		<0.005	
8270C	Fluoranthene	<0.005		<0.005		<0.005		<0.005	Series .	<0.005		<0.005		<0.005		<0.005	•	<0.005	
SW 846	Dibenz(a,h)Anthracene	<0.005		<0.005		<0.005		<0.005		<0.005	1	<0.005		<0.005	**	<0.005		<0.005	
D: EPA	Chrysene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
JETHO	Benzo(g,h,i)perylene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
V	Benzo(k)fluoranthene	<0.005		<0.005		<0.005	1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	<0.005		<0.005		<0.005		<0.005	•	<0.005		<0.005	
	Benzo(b)fluoranthene	<0.005		<0.005		<0.005	18	<0.005		<0.005	1. 2. 2. 2.	<0.005		<0.005	• · ·	<0.005		<0.005	
	Benxo(a)pyrene	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	
	Benzo(a)anthracene	<0.005		<0.005	4. 1. e.A	<0.005		<0.005		<0.005		<0.005	12 13 14 14 1	<0.005		<0.005		<0.005	
	Апthracene	<0.005		<0.005		<0.005	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	<0.005		<0.005		<0.005	Sec. 1	<0.005		<0.005		<0.005	
	Acenaphthylene	<0.005	A Sector A	<0.005		<0.005		<0.005		<0.005		<0.005		<0.005	2 - 1 - 2 - 1 - 1	<0.005		<0.005	· ·
	Acenaphthene	<0.005		<0.005		<0.005		<0.005	Sale State	<0.005		<0.005		<0.005		<0.005		<0.005	
	Sample Date	11/19/08	And And And And	11/19/08	1. 2. 2	11/19/08		11/19/08		11/19/08		11/19/08		11/19/08	ن لو د س	11/19/08		11/19/08	
	Sample Location	MW-1		MW-2		MW-3	1	MW-4	1	MW-5		9-WM		RW-1		RW-2	• • •	RW-3	

.

Appendices

Appendix A Laboratory Reports

Analytical Report 299638

for

PLAINS ALL AMERICAN EH&S

Project Manager: Camille Reynolds

Vacuum 10-Inch to Jal 2002-10248

28-MAR-08

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

0

28-MAR-08

0

8

6

e

9

6

9.1.9 9

Ce.

6

6

F

Project Manager: **Camille Reynolds PLAINS ALL AMERICAN EH&S** 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 299638 Vacuum 10-Inch to Jal Project Address: Lea County, NM

Camille Reynolds:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 299638. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 299638 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 299638

PLAINS ALL AMERICAN EH&S, Midland, TX

Vacuum 10-Inch to Jal

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1	W	Mar-13-08 08:00		299638-001
MW-3	W	Mar-13-08 08:40		299638-002
MW-4	W	Mar-13-08 09:45		299638-003
MW-5	W	Mar-13-08 10:35		299638-004
MW-9	W	Mar-13-08 11:40		299638-005
MW-2	W	Mar-13-08 12:50		299638-006
RW-3	W	Mar-13-08 13:55		299638-007
RW-2	W	Mar-13-08 14:45		299638-008
RW-1	W	Mar-13-08 15:30		299638-009

Certificate of Analysis Summary 299638 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Vacuum 10-Inch to Jal

Contact: Camille Reynolds Project Id: 2002-10248

Date Received in Lab: Fri Mar-14-08 12:10 pm Report Date: 28-MAR-08

Ductors I accelent. Les County MMs					and and			
I I OFEN EXCANOLIN THE COUNTY, MAN					Project Manager:	Brent Barron, II		
	Lab Id:	299638-001	299638-002	299638-003	299638-004	299638-005	299638-006	
, , ,	Field Id:	MW-1	MW-3	MW-4	MW-5	6-WW	MW-2	
Analysis Kequested	Depth:							
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER	
	Sampled:	Mar-13-08 08:00	Mar-13-08 08:40	Mar-13-08 09:45	Mar-13-08 10:35	Mar-13-08 11:40	Mar-13-08 12:50	
BTEV-MTRF hv FDA 80318	Extracted:	Mar-17-08 17:00	Mar-17-08 17:00	Mar-17-08 17:00	Mar-17-08 17:00	Mar-17-08 17:00	Mar-17-0817:00	_
	Analyzed:	Mar-18-08 00:45	Mar-18-08 01:03	Mar-18-08 01:21	Mar-18-0801:39	Mar-18-08 01:57	Mar-18-08 02:52	C'
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L R	RL
Benzene		0100.0 UN	ND 0.0010	ND 0.0010	0100-0 QN	ND 0.0010	ND 0.00	010
Toluene		ND 0.0020	ND 0.0020	0.0022 0.0020	ND 0.0020	ND 0.0020	ND 0.0(020
Ethylbenzene		0100.0 CIN	ND 0.0010	ND 0.0010	ND 0.0010	0100'0 CIN	0.0 UD 0.0	010
m.p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.00	020
o-Xylene		ND 0.0010	ND 0.0010	0100-0 CIN	0100.0 CN	ND 0.0010	ND 0.0	010
Xylenes, Total		Ð	£	Ð	Ð	QN	QN	
Total BTEX		Ð	Ð	0.0022	QN	QN	CIN	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughou this analytical report research the back judgment of XENCO Laboratories. XENCO Laboratories assumes to responsibility and makes no warrany to the end use of the data herdy presented. Our liability is limited to the amount invoiced for this work order unless outnewise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Brent Barron

Odessa Laboratory Director

PLAINS ALL AMERICAN EH&S, Midland, TX Project Name: Vacuum 10-Inch to Jal

> Project Id: 2002-10248 Contact: Camille Reynolds Project Location: Lea County, NM

Date Received in Lab: Fri Mar-14-08 12:10 pm Report Date: 28-MAR-08

	Lab Id:	299638-007	299638-008	299638-009	
A Damadad	Field Id:	RW-3	RW-2	RW-1	
Analysis Requestion	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Mar-13-08 13:55	Mar-13-08 14:45	Mar-13-08 15:30	
RTFX-MTRF hv FPA 8021B	Extracted:	Mar-17-08 17:00	Mar-17-08 17:00	Mar-17-08 17:00	
	Analyzed:	Mar-18-08 03:10	Mar-18-08 03:28	Mar-18-08 03:46	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Senzene		0100.0 CN	ND 0.0010	ND 0.0010	
foluene		ND 0.0020	ND 0.0020	ND 0.0020	
Sthylbenzene		0100.0 CIN	ND 0.0010	ND 0.0010	
n,p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	
Xylene		0100.0 CIN	ND 0,0010	ND 0.0010	
Kylenes, Total		QN	QN	QN	
fotal BTEX		QN	Ð	QN	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. In interpretations and results expressed throughout this analytical report reportes the best guident of XENCO Laboratories. XENCO Laboratories assume no responsibility and makes no warranty to the enduate of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron Odessa Laboratory Director

Page 5 of 13

0

0

6

8

- 10 10

6

Ø

•

6

6

Ŏ

Č O

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

5	3	Y		\sim
) (1	. I	d	0
6) <i>F</i>	1	and -
n r	\sim	20	-	Pr-
مبه	\sim	چېنې	-	Ęυ

•

0

f:

6

¢,

Form 2 - Surrogate Recoveries

Project Name: Vacuum 10-Inch to Jal

ork Order #: 299638		Project I	D: 2002-1024	8	
Lab Batch #: 717385 Sample: 299637-	002 S / MS Ba	tch: ¹ Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX-MTBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R {D}	Control Limits %R	Flags
Anaryus	0.0204	0.0200		80.120	
4-Bromofluorobenzene	0.0304	0.0300	101	80-120	
	002 SD / MSD D	() () M-tu	in Watan	00 120	
Lab Baten #: 717383 Sample: 299037- Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX-MTBE by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0304	0.0300	101	80-120	
4-Bromofluorobenzene	0.0343	0.0300	114	80-120	
Lab Batch #: 717385 Sample: 299638-	.001 / SMP Ba	tch: 1 Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX-MTBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags
1.4-Difluorobenzene	0.0329	0.0300		80-120	
4-Bromofluorobenzene	0.0338	0.0300	113	80-120	
Lab Batch #: 717385 Sample: 299638-	-002 / SMP Ba	tch: 1 Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX-MTBE by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R D]	Control Limits %R	Flags
14 Diffuencies	0.0222	0.0300	111	80-120	
1,4-Dinuoronenzene	0.0333	0.0300	-		
4-Bromofluorobenzene	0.0333	0.0300	111	80-120	
4-Bromofluorobenzene Lab Batch #: 717385 Sample: 299638-	0.0333 0.0333 -003 / SMP Ba	0.0300 0.0300 tch: 1 Matr	111 ix: Water	80-120	
4-Bromofluorobenzene Lab Batch #: 717385 Sample: 299638- Units: mg/L	0.0333 0.0333 -003 / SMP Ba	0.0300 0.0300 tch: 1 Matr	ix: Water	80-120	
4-Bromofluorobenzene Lab Batch #: 717385 Sample: 299638- Units: mg/L BTEX-MTBE by EPA 8021B	0.0333 0.0333 003 / SMP Ba SU Amount Found [A]	0.0300 tch: 1 Matr RROGATE R True Amount B	111 ix: Water ECOVERY S Recovery %R	80-120 STUDY Control Limits %R	Flags
4-Bromofluorobenzene Lab Batch #: 717385 Sample: 299638- Units: mg/L BTEX-MTBE by EPA 8021B Analytes	0.0333 0.0333 0.0333 0.0333 0.0333 Ba SU Amount Found [A]	0.0300 tch: Matr RROGATE R True Amount B	111 ix: Water ECOVERY S Recovery %R [D]	80-120 STUDY Control Limits %R	Flags

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

1	
	5 (1) (10)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Contraction

0 0

0

0

### Form 2 - Surrogate Recoveries



Project Name: Vacuum 10-Inch to Jal

ork Order #: 299638	G 1 200(28.004/SMD	_	i i ject ii	<b>D.</b> 2002-1024	ro		
Lab Batch #: /1/383	Sample: 299638-0047 SMP	Ba	tch: Matr	ix: water			
Units: mg/L		SU	RROGATE R	ECOVERY	STUDY		
BTEX-MTBE	by EPA 8021B ytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Fla	
1,4-Difluorobenzene		0.0331	0.0300	110	80-120		
4-Bromofluorobenzene		0.0341	0.0300	114	80-120		
Lab Batch #: 717385	Sample: 299638-005 / SMP	Ba	tch:   Matr	ix: Water	•		
Units: mg/L	Г	SU	RROGATE R	ECOVERY	STUDY	_	
BTEX-MTBE	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Fli	
Anal	ytes					L	
1,4-Difluorobenzenc		0.0329	0.0300	110	80-120	ļ	
4-Bromofluorobenzene	<u> </u>	0.0340	0.0300	113	80-120	L	
Lab Batch #: 717385	Sample: 299638-006 / SMP	Ba	tch: 1 Matr	ix: Water	2002-10248           Water           COVERY STUDY           Recovery         Limits           %R         %R           10         80-120           114         80-120           Water         Control           Limits         %R           100         80-120           Water         Control           COVERY STUDY         File           %R         %R           101         80-120           113         80-120           113         80-120           Water         Control           Limits         %R           %R         %R           109         80-120           Water         Control           Init         80-120           Water         Water           COVERY STUDY         Water           COVERY STUDY         Mater           COVERY STUDY         Mater		
Units: mg/L		SU	RROGATE R	ECOVERY	STUDY		
BTEX-MTBE	by EPA 8021B	Amount Found [A]	True Amount  B]	Recovery %R	Control Limits %R	- Fla	
Anal	ytes			{D}			
1,4-Difluorobenzene		0.0333	0.0300	111	80-120		
4-Bromofluorobenzene		0.0328	0.0300	109	80-120		
Lab Batch #: 717385	Sample: 299638-007 / SMP	Ba	tch: 1 Matr	ix: Water			
Units: mg/L		SU	RROGATE R	ECOVERY	STUDY		
BTEX-MTBE	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Fl	
1 4-Difluorobenzene		0.0331	0.0300	110	80.120		
4-Bromofluorobenzenc		0.0343	0.0300	114	80-120		
Lab Batch #: 717385	Sample: 299638-008 / SMP	Pa	tch·   Mate	ix Water	<u> </u>	L	
Units: mg/L		SU	RROGATE R	ECOVERY	STUDY		
BTEX-MTBE	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	FL	
Anal	ytes	11	121	[D]			
1,4-Difluorobenzene		0.0332	0.0300	111	80-120	<u> </u>	
		And		1			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	_
mana	l
241,142	1
10-1- mining	
anninn	

**() ()** 

### Form 2 - Surrogate Recoveries



### Project Name: Vacuum 10-Inch to Jal

ork Order #: 299638			Project II	<b>D:</b> 2002-1024	18			
Lab Batch #: 717385	Sample: 299638-009 / SN	IP Bat	tch: ^l Matri	x: Water				
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY			
BTEX-MTBE	by EPA 8021B ytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0330	0.0300	110	80-120			
4-Bromofluorobenzene		0.0339	0.0300	113	80-120			
Lab Batch #: 717385	Sample: 506013-1-BKS /	BKS Bat	tch: 1 Matri	x: Water	J2-10248         ater         VERY STUDY         Control         Limits         %R         [D]         110         80-120         ater         VERY STUDY         covery         Limits         %R         [D]         102         80-120         102         80-120         105         80-120         105         80-120         105         80-120         ater         VERY STUDY         covery         Limits         %R         %R <t< td=""></t<>			
Units: mg/L		SU	<b>RROGATE RI</b>	ECOVERY	STUDY			
BTEX-MTBE	by EPA 8021B ytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0307	0.0300	102	80-120			
4-Bromofluorobenzene		0.0314	0.0300	105	80-120			
Lab Batch #: 717385	Sample: 506013-1-BLK /	BLK Ba	tch: 1 Matri	ix: Water				
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY			
BTEX-MTBE	by EPA 8021B ytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0334	0.0300	111	80-120			
4-Bromofluorobenzene		0.0327	0.0300	109	80-120			
Lab Batch #: 717385	Sample: 506013-1-BSD /	BSD Ba	tch: 1 Matri	ix: Water				
Units: mg/L		SU	<b>RROGATE RI</b>	ECOVERY	STUDY			
BTEX-MTBE	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R IDI	Control Limits %R	Flags		
1.4-Difluorobenzene	<u> </u>	0.0305	0.0300	102	80-120			
-,		0.0505	0.0500	102	00-120			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

0

0





Project Name: Vacuum 10-Inch to Jal



Work Order #: 299638 Lab Batch ID: 717385 Units: mg/L Analyst: SHE

Date Prepared: 03/17/2008

Batch #: 1

Sample: 506013-1-BKS

**Project ID:** 2002-10248 Date Analyzed: 03/17/2008

Matrix: Water

	N .
	~
	E
I	E
	Ś
I	5
I	2
	Ξ
I	$\geq$
i	0
	C
l	E
I	2
I	പ
	F
I	◄
	Ú
	1
	Ы
I	5
I	ā
I	<b>F</b> -1
I	$\mathbf{\Sigma}$
I	Ħ
	Ë,
	3
	E
l	4
I	Ą
I	8
I	
I	Ъ
I	$\mathbf{Z}$
	F
ļ	3
	2
	¥
I	5
I	Y
۱	8
I	$\leq$
I	¥
۱	Z
I	Ą
I	2
I	щ
I	
۱	
۱	
I	

BTEX-MTBE by EPA 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[ <b>A</b> ]	[B]	Result [C]	8% [U]	[3]	Duplicate Result [F]	%R [G]	%	%R	%RPD	
Benzene	QN	0.1000	0.0919	92	0.1	0.0969	26	5	70-125	25	
Toluene	Q	0.1000	0.0919	92	0.1	0.0973	67	9	70-125	25	
Ethylbenzene	QN	0.1000	0.0945	95	0.1	0.1011	101	7	71-129	25	
m,p-Xylenes	QN	0.2000	0.1862	93	0.2	0.1997	100	7	70-131	25	
o-Xylene	QN	0.1000	0.0973	97	0.1	0.1044	104	7	71-133	25	

Relative Percent Difference RPD = 200*((D-F)/(D+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)[E] All results are based on MDL and Validated for QC Purposes





Work Order # : 299638 Lab Batch ID: 717385

**Project Name: Vacuum 10-Inch to Jal** 



Project ID: 2002-10248

QC- Sample ID: 299637-002 S Date Prepared: 03/17/2008

Batch #:

Matrix: Water SHE ---Analyst:

Date Analyzed: 03/18/2008	ate Prepared:	03/17/20	80(	Ans	ılyst: S	HE					
Reporting Units: mg/L		W	ATRIX SPIKI	TAM / 3	RIX SPI	KE DUPLICAT	E RECC	VERY S	TUDY		:
BTEX-MTBE by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	QN	0.1000	0.1001	100	0.1000	0.0974	76	m	70-125	25	
Toluene	DN	0.1000	0.1019	102	0.1000	0660.0	66	3	70-125	25	
Ethylbenzene	ND	0.1000	0.1040	104	0.1000	0.1017	102	2	71-129	25	
m,p-Xylenes	QN	0.2000	0.2037	102	0.2000	0.1996	100	2	70-131	25	
o-Xylene	ND	0.1000	0.1080	108	0.1000	0.1055	106	2	71-133	25	

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Page 11 of 13

### Environmental Lab of Texas

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

TAT brebries/2 × × × ×× × 🗍 NPDES *** TE '88' 13 PIE •ม เษเษรก Project Name: VACUUM 10-INCH TO JAL Phone: 432-563-1800 Fax: 432-563-1713 🛛 TRRP M H O H M ISA 31EX 80548\2030 PLEX 8560 × × × × × PO #: PAA - C. J. Reynolds Project Loc: Les County, NM Project #: 2002-10248 Report Format: X Standard A S BH OA IO DO CO CI PD HO SE DED / des / bee + 'HOS 'IO) suon IN BN BY .6J) 5001 XI :на 1.814 энал 9108 <u>8</u> 8 GW GW ß N N N - cv M-DUNKING M3(GL Other ( Specify) kdutton@basinenv.com ander NBUR NBUR NBOH HOR HCI ( C ( ) 12600 West I-20 East Odessa, Texes 79765 (505) 396-1429 X х × × × ONH 83 × × × × oO to .tt lielic 2 N 2 paratiiR bio Fax No: e-mail: 0945 1140 1250 0840 1035 0800 na2 amil 5 PAGE 01 OF 13-Mar-08 13-Mar-08 13-Mar-08 13-Mar-08 13-Mar-08 13-Mar-08 Basin Environmental Service Technologies, LLC belqms2 els0 uldaQ galbr ւկեսը ճայսպես Re Lowington, NM 88260 (505) 441-2124 the P. O. Box 301 Ken Dutton 799638 FIELD CODE MW-4 MW-5 MW-9 MW-2 RW-3 MW-3 MW-1 Company Address: Sampler Signature: Project Manager: Company Name City/State/Zip: Telephone No: (lab use only) ORDER #: 5 E 30 Ŀ ર (vino esu dai) # 6/ 7

××

× ×

GW

× × >

X

N N

1445

13-Mar-08

**RW-2** 

15

8

RW-1

7

ipecial Instructions:

1355 1530

13-Mar-08 13-Mar-08 z z z z z z z z G QQQXXXX QQQ

 Individual Continuents:

 Sample Contrainers: Indict

 Sample Contrainers: Indict

 Sample Contrainers: Indict

 VOCS Free and on contrainer(s)

 free
 Custody seals on containing(s)

 free
 Custody seals on containing(s)

Date SYY UN S

ved bev

1 me

Date

 $\mathcal{G}_{\mathbf{k}}$ 

ceived by

344 3 12.10 14 AN LOS DY DO

Durinted b

ပ္

0 5

Temperature Upon Receipt:

Z. 14.08 12.10

fre

Received by ELOT:

뷤

Sau

Sample Hand Deliven by Sampler/Cilent I by Counter? U

×

### Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client'	Plains
Date/ Time:	3 14-08 12:10
Lab ID # :	219638
Initi <b>als</b> :	al

### Sample Receipt Checklist

	· · · · · · · · · · · · · · · · · · ·	~		Client Initials
#1	Temperature of container/ cooler?	Yes)	No	50 0
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5	Chain of Custody present?	(es	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinquished/ received?	Yes	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	Yeg	No	Not Applicable
#1D	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	Yeş	No	See Below
#13	Samples properly preserved?	Yes	No	See Below
#14	Sample bottles intact?	Ves	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Y/es	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	(Yes)	No	Not Applicable

### Variance Documentation

_____

Date/ Time:

Contact:

8 68

Contacted by: Regarding:

Corrective Action Taken:

Check all that Apply:

See attached e-mail/ fax

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

### Analytical Report 306425

for

### PLAINS ALL AMERICAN EH&S

**Project Manager: Camille Reynolds** 

Vacuum 10-inch to Jal 2002-10248

27-JUN-08



12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta



27-JUN-08

Project Manager: **Camille Reynolds PLAINS ALL AMERICAN EH&S** 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: 306425 Vacuum 10-inch to Jal Project Address: Lea County, NM

### **Camille Reynolds:**

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 306425. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 306425 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America





### Sample Cross Reference 306425

### PLAINS ALL AMERICAN EH&S, Midland, TX

Vacuum 10-inch to Jal

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1	W	Jun-21-08 09:00		306425-001
MW-3	W	Jun-21-08 10:00		306425-002
MW-4	W	Jun-21-08 10:40		306425-003
MW-5	W	Jun-21-08 11:15		306425-004
MW-9	W	Jun-21-08 11:45		306425-005
MW-2	W	Jun-21-08 12:10		306425-006
RW-3	W	Jun-21-08 12:55		306425-007
RW-2	W	Jun-21-08 13:05		306425-008
RW-1	W	Jun-21-08 13:20		306425-009

9

9

9

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Vacuum 10-inch to Jal

Project Id: 2002-10248 Contact: Camille Reynolds Project Location: Lea County, NM

Date Received in Lab: Mon Jun-23-08 05:06 pm Report Date: 27-JUN-08

					Project Manager: H	srent Barron, II	
	Lab Id:	306425-001	306425-002	306425-003	306425-004	306425-005	306425-006
turlinite Damadad	Field Id:	I-WM	MW-3	MW-4	MW-5	6-WM	MW-2
naisanhay sistinuy	Depth:						
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
	Sampled:	Jun-21-08 09:00	Jun-21-08 10:00	Jun-21-08 10:40	Jun-21-08 11:15	Jun-21-08 11:45	Jun-21-08 12:10
RTEX by EPA 8021B	Extracted:	Jun-26-08 10:00	Jun-26-08 10:00	Jun-26-08 10:00	Jun-26-08 10:00	Jun-26-08 10:00	Jun-26-08 10:00
	Analyzed:	Jun-26-08 12:59	Jun-26-08 13:24	Jun-26-08 13:47	Jun-26-08 14:11	Jun-26-08 14:35	Jun-26-08 14:59
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL
Benzene		ND 0.0010	0100.0 CIN	ND 0.0010	0100.0 CIN	ND 0.0010	ND 0.001(
Toluene		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.002(
Ethylbenzene		010010 CIN	ND 0.0010	0100.0 CIN	ND 0.0010	010070 CIN	0100'0 CIN
m.p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.002(
o-Xylene		ND 0.0010	0100.0 CN	0100.0 UN	ND 0.0010	ND 0.0010	ND 0.0010
Total Xylenes		Ð	Ð	Ð	GN	Ð	£
Total BTEX		Ð	Ð	Ð	Q	Ð	£

This analytical report, and the entire data package it represents, has been made for your exclusive and contridential use. The interpretations and results expressed throughout this smallfust report (restent the best juggment of XENCO Laborations. XENCO Laboratories assumes to responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Director Brent Brent Barron



**Project Name: Vacuum 10-inch to Jal** 

Contact: Camille Reynolds Project Location: Lea County, NM Project Id: 2002-10248

Date Received in Lab: Mon Jun-23-08 05:06 pm Report Date: 27-JUN-08

					Project Manager: Brent Barron, II
	Lab Id:	306425-007	306425-008	306425-009	
Auchicic Dacuactad	Field Id:	RW-3	RW-2	RW-1	
naicanhavi sistinuv	Depth.	-			
	Matrix:	WATER	WATER	WATER	
	Sampled:	Jun-21-08 12:55	Jun-21-08 13:05	Jun-21-08 13:20	
BTEX hv EPA 8021B	Extracted:	Jun-26-08 10:00	Jun-26-08 10:00	Jun-26-08 10:00	
	Analyzed:	Jun-26-08 15:23	Jun-26-08 15:47	Jun-26-08 16:11	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Benzene		ND 0.0010	0100:0 CIN	ND 0.0010	
Toluene		ND 0.0020	ND 0.0020	ND 0.0020	
Ethylbenzene		ND 0.0010	ND 0.0010	0100.0 CIN	
m,p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	
o-Xylene		ND 0.0010	ND 0.0010	0100.0 UN	
Total Xylenes	-	Ð	Ð	Ð	
Total BTEX		Ð	Ð	Ð	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed broughout this analytical report represent the tws liquement of XENCO Laboratories. XENCO Laboratories assumes no responsibility and masks no warranty to the red use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Brent Barron

Odessa Laboratory Director



8

9

0

•

0

•

0

0

0

•

6

C.

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

D1.

r.,

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

	_
man	ŝ
12 4 - 1 4 C	ķ
	ò
- CONTROLLINE	ŀ

•

B

1

0

0

### Form 2 - Surrogate Recoveries



Project Name: Vacuum 10-inch to Jal

ork Order #: 306425			Project II	<b>):</b> 2002-1024	8	
Lab Batch #: 726590	Sample: 306425-001 / SM	P Ba	tch:  Matri	x: Water		
Units: mg/L		SU	RROGATE RE	ECOVERY S	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount  B	Recovery %R [D]	Control Limits %R	Flags
		0.0341	0.0300	114	80-120	L
4-Bromofluorobenzene		0.0299	0.0300	100	80-120	
Lab Batch #: 726590	Sample: 306425-001 S / N	1S Ba	tch: 1 Matri	x: Water	L	
Units: mg/L	<b>-</b>	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by	EPA 8021B lytes	Amount Found [A]	True Amount  B	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0275	0.0300	92	80-120	
4-Bromofluorobenzene		0.0312	0.0300	104	80-120	
Lab Batch #: 726590	Sample: 306425-001 SD /	MSD Ba	tch: 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RE	ECOVERY S	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount  B	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0274	0.0300	91	80-120	
4-Bromofluorobenzene		0.0306	0.0300	102	80-120	
Lab Batch #: 726590	Sample: 306425-002 / SM	P Ba	tch: 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
BTEX by	EPA 8021B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0337	0.0300	112	80-120	
4-Bromofluorobenzene		0.0292	0.0300	97	80-120	
Lab Batch #: 726590	Sample: 306425-003 / SM	P Ba	tch: 1 Matri	x: Water		
Units: mg/L		SU	<b>RROGATE RI</b>	ECOVERY	STUDY	
BTEX by Ana	EPA 8021B lytes	Amount Found [A]	True Amount  B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0343	0.0300	114	80-120	
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

~	3	v	
Da	1	D	0 U
	-	A	
	Y 197		-
فنعذ	~~~	يتمحد	00.1

0

0

9

### Form 2 - Surrogate Recoveries



Project Name: Vacuum 10-inch to Jal

ork Order #: 306425	C	n n	Project II	): 2002-1024	-8	
Lab Batch #: 720390	Sample: 306425-0047 SMF	Bat	ch:   Matri	x: Water	CTUDV	
BTEX by E	PA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Allary	<u>ytes</u>	]		<u>  ""</u>	1 120	
4-Bromofluorobenzene		0.0337	0.0300	98	80-120	
			0.0500	<u> </u>		<u></u>
Lab Batch #: 720390 Units: mg/L	Sample: 306425-0057 SIVIE	Bat SU	ch: Matri RROGATE RI	x: Water	STUDY	
BTEX by E Anal	PA 8021B vtes	Amount Found [A]	True Amount  B]	Recovery %R [D]	Control Limits %R	Flags
I,4-Difluorobenzene		0.0341	0.0300	114	80-120	I
4-Bromofluorobenzene		0.0300	0.0300	100	80-120	[
Lab Batch #: 726590	Sample: 306425-006 / SMI	P Ba	tch: ¹ Matri	ix: Water		
Units: mg/L	ſ	SU	RROGATE RF	ECOVERY f	STUDY	
BTEX by E	PA 8021B	Amount Found [A]	True Amount [B]	Recovery %R IDI	Control Limits %R	Flags
t 4-Difluorohenzene	<u></u>	0.0333	0.0300	<u>                                      </u>	80-120	┣───
4-Bromofluorobenzene		0.0307	0.0300	102	80-120	t
· · · · · · · · · · · · · · · · · · ·	L		Matri	• Water	L	
Lab Batch #: 120570	Sample: 500+25-007 / 500	Dat SU	Ch: Main		STUDY	
BTEX by E	PA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4-Difluorobenzene		0.0342	0.0300	'	80-120	<b> </b>
4-Bromofluorobenzene		0.0291	0.0300	97	80-120	
Lab Batch #: 726590	Sample: 306425-008 / SMI	P Ba	tch: 1 Matri	ix: Water	L	<u> </u>
Units: mg/L	[	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by E	PA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0339	0.0300	113	80-120	<u> </u>
	ł		<u> </u>	· · · · · · · · · · · · · · · · · · ·	f	<u> </u>

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

	$\overline{\mathbf{n}}$	~~~
PQ	<b>a</b> : I	(Q 0)
	ACC NO	$\rightarrow$
luce	$\alpha \alpha$	CICID
1.	S. Break	and the second se

(†

6

8

6

### Form 2 - Surrogate Recoveries



### Project Name: Vacuum 10-inch to Jal

Vork Order #: 306425		Project II	<b>D:</b> 2002-1024	8	
Lab Batch #: 726590 Sample: 306	5425-009 / SMP Ba	tch: 1 Matri	ix: Water		
Units: mg/L	SU	<b>RROGATE RI</b>	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0353	0.0300	118	80-120	
4-Bromofluorobenzene	0.0290	0.0300	97	80-120	
Lab Batch #: 726590 Sample: 51	1261-1-BKS / BKS Ba	tch: 1 Matri	ix: Water		
Units: mg/L	SU	RROGATE RI	ECOVERYS	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0277	0.0300	92	80-120	
4-Bromofluorobenzene	0.0334	0.0300	111	80-120	
Lab Batch #: 726590 Sample: 51	1261-1-BLK / BLK Ba	tch:   Matri	ix: Water		
Units: mg/L	SU	<b>RROGATE RI</b>	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0336	0.0300	112	80-120	
4-Bromofluorobenzene	0.0298	0.0300	99	80-120	
Lab Batch #: 726590 Sample: 51	1261-1-BSD / BSD Ba	tch: 1 Matri	ix: Water	·	
Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0329	0.0300	110	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis
*** Poor recoveries due to dilution
Surrogate Recovery [D] = 100 * A / B
All results are based on MDL and validated for QC purposes.

E NVIRONMENTAL



**BS / BSD Recoveries** 



Project Name: Vacuum 10-inch to Jal

Work Order #: 306425 Lab Batch ID: 726590 Analyst: BRB

Date Prepared: 06/26/2008

Batch #: ]

Sample: 511261-1-BKS

Project ID: 2002-10248 Date Analyzed: 06/26/2008 Matrix: Water

Units: mg/L		BLAN	K /BLANK S	PIKE / B	TANK S	PIKE DUPL	ICATE I	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	Ð	0.1000	0.1034	103	0.1	0.0985	66	5	70-125	25	
Toluene	Q	0.1000	0.1019	102	0.1	0.0967	67	5	70-125	25	
Ethylbenzene	Ð	0.1000	0.1143	114	0.1	0.1082	108	5	71-129	25	
m,p-Xylenes	Ð	0.2000	0.2317	116	0.2	0.2192	110	6	70-131	25	
o-Xvlene	£	0.1000	0.1113	111	0.1	0.1053	105	9	71-133	25	

Relative Percent Difference RPD = 200*[(D-F)/(D+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes







Work Order #: 306425

Lab Batch ID: 726590

Date Analyzed: 06/26/2008 1 rting I Inite n d

Project ID: 2002-10248

QC- Sample ID: 306425-001 S Date Prepared: 06/26/2008

Matrix: Water -BRB Analyst: Batch #:

Reporting Units: mg/L		M	ATRIX SPIKI	E / MATI	RIX SPII	KE DUPLICA	TE RECO	<b>VERY</b> 8	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ΟN	0.1000	0.0904	06	0.1000	0.0856	86	5	70-125	\$	
Toluene	DN	0.1000	0.0869	87	0.1000	0.0823	82	9	70-125	9	
Ethylbenzene	DN	0.1000	0.0946	95	0.1000	0.0910	16	4	71-129	4	
m.p-Xylenes	ΩN	0.2000	0.1909	95	0.2000	0.1838	92	3	70-131	3	
o-Xylene	ND	0.1000	0.0951	95	0.1000	0.0915	92	3	71-133	3	

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(D-G)/(D+G)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Page 11 of 13

### Environmental Lab of Texas

Project Manager: Curt Stanley

Project Name: VACUUM 10-INCH TO JAL Phone: 432-563-1800 Fax: 432-563-1713 Project #: 2002-10248 12600 West F-20 East Odessa, Texas 79765 PAGE 01 OF 01 Company Name Basin Environmental Service Technologies, LLC

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

1	1						r		~	- 51			- 51	-51	-	-	ন					
		8		<b>—</b>	3 54 7	· · · ·	4	TAT historia		-	4	-	-1	귀	4	귀	귀			in a	Star	0
1	1	G		h			-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					-+	-+	-+	-+	-+		2	్రార	ŝ	
													-						an	61	50-	1
		البسمة									-				-+		-		(action of the second s	00 ×	ara il	. 0
		n			┝─	•••••	~	WHON												10.7%	2 W.	-
		KR.			⊢			HCt						-						Stall.	H	2
	-#	ő		U	h	×T	10	BLEX EQSI IN 2030 W BLEX B	×	×	×	×	×	×	×	×	×		5.6	S)		
<	- You			er o	Ħ	1		Services											ento Inter Spak	(s)	Para	280
NN.	Rey	v		R.	Ħ	1	•••••	Votacijes											era era	100	Cetwo	-uo
Cut	3	ndar		R	Π	Τ	95	united as an fra Ca Ci Pu Hy											S and	5.5.4	Past	í) a
ပိ	¥.	Sta			CLP.	Ter.		SAR / ESP / CEC											50.00	10	Sang Sang	ratur
3	đ	$\mathbf{X}$			L.	۴Ļ		Anisms (CI, SO4, Alkalmity)											Co Co	stor	du A A	adte
10	÷	Ð						Cations (Ca, Mg, Na, K)											2 % 5	399	ŝ	<u></u>
ect	đ.	Puna						9001 X1 9001 X1 91d1								_				2	2	2 N
bro		นั้น		L		-#	551 T	SAL ARE CONTRACTOR												F	۴.	Ĕ
		öda		1		ŀ	É	RENDERE BREADING - MA	3	N	3	A	N	3	X	3	3				<u> </u>	
		a.				F	ž	Some - 15 JOIGA DUNING - ANG	9	ပ	σ	Ö	U	0	C	0	0					<u> </u>
ļ			E			t	e l	(र्यक्रम्प्रेड) भवत)												13	ä	$\mathcal{G}$
			8	1			n and	ovoji														S
			- N N N				ŝ	*0'5'sH														
			sin			ľ	5	ROCN														
			P.G		•		50	105'H														
		1429	Υ@	$\sim$			ŝ	BON DH	×	×	×	×	<u> </u>	×	×	×	<u>×</u>					i.
		396-	nle	3.6	5		ŝ	50NH														
		(50	sta		5	Ľ	4			~	×	<u></u>	~	~	X	<u>~</u>	×				1	·
		51	0	4	Į.		ł	The second second													1	(
			άġ	<.	j J		ł							-							1	$\mathcal{O}$
		Fax N	e-ma	2	ŝ 0			beigine2 emiT	900	1000	1040	1115	1145	1210	1255	1305	1320					10 10
							1														1	2 3
				P.	) 2-	5		50/00/00 502 G	2008	2008	2008	2008	2008	2008	2008	2008	2008			d by:	ifa o	any EL
			1	13	í.			tologo (m)	12	121	1211	121	121	21	1211	21	21			No.	aive	8 8
			L,	-4	Š						9	С				-	6			å.	2°	\$12
			-t	þ	0			diqeQ Balba3												10/	ê	844
			4	þ				diteo Depinaige B						_						5	<u> </u>	
	8	1	. \$																	35		
	6826		(A)	k	Γ		1													30	ã	Day
5	WW	2	G	ť	١.															12	ļ	
3	Ś	22		5		r	2														1	
e c	ingl	5) 44	1	Ĩ		~		ado	-		4	ŝ	ത	N		~					1)	
a	Č.	3	<	)		$\mathbb{C}$	9	Ŭ	Š	Š	M	N	Ň	Ň	M	N.	×				V	
ŝŝ			9			J	1	Ť.	8	1	2	2	2	2	æ	IZ.	LE .			11.	¥	(
addre	ä	ö	natu		-	4	2	-											ľ	N.	1	
Ϋ́Υ	12/2	₽ R	Sig			Ę	2													V	n	
han	Stat	thor	2 ler		[	V	7												層入	ĘΚ	11	
din'	Xty/	elec	me		18	,	.												la 🤇	12	E .	à
0	Q	1	th		8 00	_ R				10	~		5		P	80	5		i lus	悸	15the	ada 1
					19		2	(yino seu del) a BAJ	· g	0	8	8	8	8	8	8	8	4	ock:	P.	nbuş	and.
					E	<u> </u>	σĮ		1		1	١Ĩ		ĩ	1	L	Ĩ	L	1.25 (	12	Në	1ž

### Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

Client,	Plains
Date/ Time:	06-23-08 @ 1706
Lab ID # :	3010425
initials:	AL

8

• 

0

0 0 

(

### Sample Receipt Checklist

			Citem	Initials
11 Temperature of container/ cooler?	(Yes)	No		
2 Shipping container in good condition?	(Yes)	No		
#3 Custody Seals intact on shipping container/ cooler?	Yes	No	CNot Present >	
#4 Custody Seals intact on sample bottles/ container?	(Yes)	NO	Not Present	
#5 Chain of Custody present?	Ves7	No		
#6 Sample instructions complete of Chain of Custody?	(Yes)	No		
#7 Chain of Custody signed when relinquished/ received?	(Yes)	No		
#8 Chain of Custody agrees with sample label(s)?	(Yes)	No	ID written on Cont./ Lid	
#9 Container label(s) legible and intact?	Yes/	No	Not Applicable	
#10 Sample matrix/ properties agree with Chain of Custody?	(Yes)	No		
#11 Containers supplied by ELOT?	Ves	No_		
#12 Samples in proper container/ bottle?	(Yes)	No	See Below	
#13 Samples properly preserved?	Yes/	No	See Betow	
#14 Sample bottles intact?	Ves	No		
#15 Preservations documented on Chain of Custody?	Yes	No		
#16 Containers documented on Chain of Custody?	(Yes)	No		
#17 Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below	
#18 All samples received within sufficient hold time?	(Yes)	No	See Below	/
#19 Subcontract of sample(s)?	Yes	No	(Not Applicable)	
#20 VOC samples have zero headspace?	(Yes)	No	Not Applicable	
Variance Docur	nentation		Date/ Time:	
Regarding:				
Corrective Action Taken:				
Check all that Apply:  See attached e-mail/ fax Client understande and units	id lite to pre			

### Analytical Report 312880

23°

28-2

() ()

0

6

6

6

9

**(7)** 

5

for

### PLAINS ALL AMERICAN EH&S

**Project Manager: Camille Reynolds** 

Vacuum 10-Inch to Jal 2002-10248

23-SEP-08





E84880

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215 - Odessa/Midland, TX T104704215-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta Page 1 of 13



23-SEP-08

8

8

6

6

9

9

0

0

•

0

0

0

9

**()** 

0

0

0



Project Manager: **Camille Reynolds PLAINS ALL AMERICAN EH&S** 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: **312880** Vacuum 10-Inch to Jal Project Address: Lea County, NM

### **Camille Reynolds:**

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 312880. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 312880 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



a normandean teanna a' seanna ann an an t-stàinn an t-stàinn an t-stàinn an t-stàinn an t-stàinn ann an t-stàin Tainn an t-stàinn ann an t-s



### Sample Cross Reference 312880

### PLAINS ALL AMERICAN EH&S, Midland, TX

Vacuum 10-Inch to Jal

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-9	W	Sep-18-08 13:40		312880-001
MW-2	W	Sep-18-08 14:10		312880-002
MW-4	W	Sep-18-08 15:00		312880-003
MW-5	W	Sep-18-08 15:40		312880-004
MW-3	W	Sep-18-08 16:20		312880-005
MW-1	W	Sep-18-08 16:55		312880-006
RW-2	W	Sep-18-08 17:15		312880-007
RW-3	W	Sep-18-08 17:45		312880-008
RW-1	W	Sep-18-08 18:00		312880-009

0



Ø

Ö O Contact: Camille Reynolds

Certificate of Analysis Summary 312880 PLAINS ALL AMERICAN EH&S, Midland, TX



6

Project Name: Vacuum 10-Inch to Jal Date Received in Lab: Fri Sep-19-08 04:53 pm

Report Date: 23-SEP-08

					Project Manager: H	srent Barron, II	
	Lab Id:	312880-001	312880-002	312880-003	312880-004	312880-005	312880-006
Australia Damandad	Field Id:	6-WIN	MW-2	MW-4	MW-5	MW-3	I-WW
naisan hay sisting	Depth:						
	Matrix:	WATER	WATER	WATER	WATER	WATER	WATER
	Sampled:	Sep-18-08 13:40	Sep-18-08 14:10	Sep-18-08 15:00	Sep-18-08 15:40	Sep-18-08 16:20	Sep-18-08 16:55
RTEX hv EPA 8021B	Extracted:	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08
	Analyzed:	Sep-22-08 21:04	Sep-22-08 21:27	Sep-22-08 21:50	Sep-22-08 22:12	Sep-22-08 22:35	Sep-22-08 22:57
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL
Benzene		0100.0 CIN	ND 0.0010	0100:0 CIN	ND 0.0010	0100.0 UN	0100'0 CIN
Toluene		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020
Ethylbenzene		ND 0.0010	0100.0 CIN	ND 0.0010	ND 0.0010	010070 GN	0100-0 CIN
m,p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020	ND 0.0020
o-Xylene		ND 0.0010	ND 0.0010	ND 0.0010	010070 CIN	010070 GN	0100 ⁻⁰ 0100
Total Xylenes		Ð	Q	Ð	Ð	QN	Ð
Total BTEX		Ð	QN	Q	Ð	QN	Ð

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. In interpretations and resultis expressed throughout this analytical report repressed the best juptment of XENCO Laboratories. XENCO Laboratories usuants no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Director Brent Barron



Contact: Camille Reynolds Project Location: Lea County, NM

Certificate of Analysis Summary 312880
 PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: Vacuum 10-Inch to Jal



0

Date Received in Lab: Fri Sep-19-08 04:53 pm

Report Date: 23-SEP-08

					Project Manager: Brent Barron, IL	
	Lab Id:	312880-007	312880-008	312880-009		
Analysis Roonastad	Field Id:	RW-2	RW-3	RW-I		<u>,                                     </u>
naicanhau actimuv	Depth:					
	Matrix:	WATER	WATER	WATER		
	Sampled:	Sep-18-08 17:15	Sep-18-08 17:45	Sep-18-08 18:00		
BTEX by EPA 8021B	Extracted:	Sep-22-08 16:08	Sep-22-08 16:08	Sep-22-08 16:08		
	Analyzed:	Sep-22-08 23:20	Sep-22-08 23:43	Sep-23-08 00:06		
	Units/RL:	mg/L RL	mg/L RL	mg/L RL		
Benzene		0100.0 CN	0100.0 CIN	0.0014 0.0010		
Toluene		ND 0.0020	ND 0.0020	ND 0.0020		
Ethylbenzene		0100:0 GN	ND 0.0010	0100 0 QN		
m.p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020		
o-Xylene		ND 0.0010	0100.0 CIN	ND 0.0010		
Total Xylenes		Ð	Ð	Ð		
Total BTEX		Q	Ð	0.0014		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. In interpretations and results expressed travegional this analytical report representable the best judgement of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranyt on the end use of the data hneeby presented. Our liability is limited to the amount invoiced for this work order unites otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron Odessa Laboratory Director



.

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- * Outside XENCO'S scope of NELAC Accreditation

**Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.** Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
1381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
5017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477
IG	NCO	
---------	----------	---
ାର୍ଦ୍ଦର	RELIGION	ì

0

0

0

8

0

#### Form 2 - Surrogate Recoveries

Project Name: Vacuum 10-Inch to Jal

^ ^^ / CLIR	Project I	<b>D:</b> 2002-1024	·8	
Bat	RROGATE R	ix: water	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	I	ן וען	I]	L
0.0367	0.0300	122	80-120	**
0.0261	0.0300	87	80-120	
)-001 S / MS Bat	tch:  Matr	ix: Water	<u>study</u>	<u> </u>
Amount Found [A]	True Amount [B]	Recovery %R  D	Control Limits %R	Flags
0.0280	0.0300	03	80-120	i
0.0248	0.0300	83	80-120	i
-001 SD / MSD Bat	RROGATE R	ix: Water ECOVERY	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
0.0276	0.0300	1= . 02	90-120	
0.0252	0.0300	84	80-120	I
		· Woter		
D-0027 SMIP Bai	tch: 1 Maur	ix: Water	OTTINU	
Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		ן טן		i
0.0361	0.0300	120	80-120	
0.0263	0.0300	88	80-120	
0-003 / SMP Ba	tch: 1 Matr	rix: Water		
SU	RROGATE R	ECOVERY S	STUDY	
Amount	True	T	Control	
Found [A]	Amount [B]	Recovery %R 1D1	Limits %R	Flags
Found [A]	Amount [B]	Recovery %R  D]	80-120	**
	)-001 / SMP       Bat         SU         Amount         Found         [A]         0.0367         0.0261         )-001 S / MS         Bat         SU         Amount         Found         [A]         0.0261         )-001 S / MS         Bat         0.0280         0.0280         0.0248         )-001 SD / MSD         Bat         SU         Amount         Found         [A]         0.0276         0.0252         0-002 / SMP         Ba         SU         Amount         Found         [A]         0.0252         0-002 / SMP         Ba         O.0361         0.0263	Project II D-001 / SMP Batch: I Matr SURROGATE R Amount [A] IBJ O.0367 O.0300 O.0261 O.0300 O.0261 O.0300 O.001 S / MS Batch: I Matr SURROGATE R Amount [A] IBJ O.0280 O.0300 O.0248 O.0300 O.0248 O.0300 O.001 SD / MSD Batch: I Matr SURROGATE R Amount [A] IBJ O.0276 O.0300 O.002 / SMP Batch: I Matr SURROGATE R Amount [A] IBJ O.0276 O.0300 O.002 / SMP Batch: I Matr SURROGATE R Amount [A] IBJ O.0276 O.0300 O.002 / SMP Batch: I Matr SURROGATE R Amount [A] IBJ O.0361 O.0300 O.0300 O.003 / SMP Batch: I Matr SURROGATE R	Project ID: 2002-1024           0-001 / SMP         Batch:         I         Matrix: Water           SURROGATE         RECOVERY S           Amount         True         Recovery           [A]         [B]         %R           [D]         0.0367         0.0300         122           0.0261         0.0300         87           0.0261         0.0300         87           0-001 S / MS         Batch:         I         Matrix: Water           SURROGATE         Recovery         %R           [A]         [B]         %R           OO01 S / MS         Batch:         I         Matrix: Water           SURROGATE         Recovery         %R           [A]         [B]         %R           IOI         Matrix:         Water           SURROGATE         Recovery         %R           IA]         [B]         %R <td>Amount Found [A]         True Amount [B]         Matrix: Water           0.0367         0.0300         122         80-120           0.0367         0.0300         122         80-120           0.0367         0.0300         122         80-120           0.0367         0.0300         122         80-120           0.001 S / MS         Batch:         1         Matrix: Water           SURROGATE RECOVERY STUDY           Amount Found         True Matrix: Water           SURROGATE RECOVERY STUDY           Amount Found         True (B]         Recovery %R (D]         Control Limits %R           0.0280         0.0300         93         80-120           0.0248         0.0300         83         80-120           0.0248         0.0300         83         80-120           0.01 SD / MSD         Batch:         1         Matrix: Water           SURROGATE RECOVERY STUDY           Amount Found [A]         True [B]         Recovery %R [D]         Control Limits %R           0.0276         0.0300         92         80-120           0.022 / SMP         Batch:         1         Matrix: Water           SURROGATE RECOVERY STUDY</td>	Amount Found [A]         True Amount [B]         Matrix: Water           0.0367         0.0300         122         80-120           0.0367         0.0300         122         80-120           0.0367         0.0300         122         80-120           0.0367         0.0300         122         80-120           0.001 S / MS         Batch:         1         Matrix: Water           SURROGATE RECOVERY STUDY           Amount Found         True Matrix: Water           SURROGATE RECOVERY STUDY           Amount Found         True (B]         Recovery %R (D]         Control Limits %R           0.0280         0.0300         93         80-120           0.0248         0.0300         83         80-120           0.0248         0.0300         83         80-120           0.01 SD / MSD         Batch:         1         Matrix: Water           SURROGATE RECOVERY STUDY           Amount Found [A]         True [B]         Recovery %R [D]         Control Limits %R           0.0276         0.0300         92         80-120           0.022 / SMP         Batch:         1         Matrix: Water           SURROGATE RECOVERY STUDY

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

	<u> </u>		<u> </u>
15 d 3		ď	0)
$ $ $\square$ $\square$	$\mathbf{M}$		
16000	και	M	œ}

6

0

Õ

0

8

٩

#### Form 2 - Surrogate Recoveries

Project Name: Vacuum 10-Inch to Jal

<b>/ork Orders :</b> 312880,		Pro	ject ID: 2002-1024	18	
Lab Batch #: 734916 Sample	2: 312880-004 / SMP	Batch: 1	Matrix: Water		
Units: mg/L		SURROGAT	<b>FE RECOVERY</b>	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amou [B]	nt Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0364	0.030	0 121	80-120	**
4-Bromofluorobenzene	0.0257	0.030	0 86	80-120	
Lab Batch #: 734916 Sample	2: 312880-005 / SMP	Batch: 1	Matrix: Water		
Units: mg/L		SURROGAT	TE RECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	Truc Amou [B]	nt Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0367	0.030	0 122	80-120	**
4-Bromofluorobenzene	0.0251	0.030	0 84	80-120	
Lab Batch #: 734916 Sample	2: 312880-006 / SMP	Batch: 1	Matrix: Water	<u></u>	
Units: mg/L		SURROGAT	E RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amou [B]	nt Recovery %R	Control Limits %R	Flags
Analytes					
1,4-Difluorobenzene	0.0365	0.030	0 122	80-120	**
	0.0256	0.030	0 85	80-120	
Lab Batch #: 734916 Sample	2: 312880-007 / SMP	Batch: 1	Matrix: Water		
Units: mg/L		SURROGAT	<b>FE RECOVERY</b>	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amou [B]	nt Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0364	0.030	0 121	80-120	**
4-Bromofluorobenzene	0.0258	0.030	0 86	80-120	 
Lab Batch #: 734916 Sample	e: 312880-008 / SMP	Batch: 1	Matrix: Water	<u>,,</u> ,	
Units: mg/L	[	SURROGAT	E RECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found	True	nt Recovery	Control Limits %P	Flags
Analytee	[A]	B	IDI		
Analytes	[A]	0.030	0 121	80-120	**

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.



6

**6 6 6** 

0

8

#### Form 2 - Surrogate Recoveries

Project Name: Vacuum 10-Inch to Jal

Vork Orders : 312880,		Project I	<b>D:</b> 2002-1024	8	
Lab Batch #: 734916 Sample: 312880-	009 / SMP Ba	tch: ¹ Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0412	0.0300	137	80-120	**
4-Bromofluorobenzene	0.0226	0.0300	75	80-120	**
Lab Batch #: 734916 Sample: 516098-	I-BKS/BKS Ba	tch: 1 Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount {B}	Recovery %R  D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0279	0.0300	93	80-120	
4-Bromofluorobenzene	0.0243	0.0300	81	80-120	
Lab Batch #: 734916 Sample: 516098-	I-BLK / BLK Ba	tch: ¹ Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0362	0.0300	121	80-120	**
4-Bromofluorobenzenc	0.0259	0.0300	86	80-120	····
Lab Batch #: 734916 Sample: 516098-	1-BSD / BSD Ba	tch: ¹ Matr	ix: Water		
Units: mg/L	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0280	0.0300	93	80-120	
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.



**BS / BSD Recoveries** 



Ă ě

Project Name: Vacuum 10-Inch to Jal

Work Order #: 312880 Lab Batch ID: 734916 Analyst: ASA

Date Prepared: 09/22/2008

Batch #: ]

Sample: 516098-1-BKS

Project ID: 2002-10248 Date Analyzed: 09/22/2008 Matrix: Water

**BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY** 

Units: mg/L		BLAN	K /BLANK S	PIKE / B	LANK S	PIKE DUPL	ICATE F	RECOVE	RY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	[B]	Kesult [C]	[D]	[3]	Duplicate Result [F]	دا [6]	%	%R	%RPD	
Benzene	QN	0.1000	0.1052	105	0.1	0.1034	103	2	70-125	25	
Toluene	QN	0.1000	0.1005	101	0.1	0660.0	66	2	70-125	25	
Ethylbenzene	QN	0.1000	0.1021	102	0.1	0.1002	100	2	71-129	25	
m,p-Xylencs	QN	0.2000	0.2121	106	0.2	0.2085	104	2	70-131	25	
o-Xylene	Q	0.1000	0.0966	<i>L</i> 6	0.1	0.0961	96	-	71-133	25	

Relative Percent Difference RPD = 200*((C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes



D

Form 3 - MS / MSD Recoveries



Project Name: Vacuum 10-Inch to Jal

Work Order #: 312880

Lab Batch ID: 734916 Date Analyzed: 09/23/2008

Reporting Units: mg/L

Project ID: 2002-10248

Batch #: 1 Matrix: Water Analyst: ASA

QC- Sample ID: 312880-001 S

Date Prepared: 09/22/2008

L

		Z	ATRIX SPIKI	I MAT	RIX SPIE	CE DUPLICAT	LE RECC	<b>VERY S</b>	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[Y]	[B]		[0]	Ξ		[6]				
Benzene	QN	0.1000	0.0910	91	0.1000	0.1002	100	6	70-125	25	
Toluene	QN	0.1000	0.0858	86	0.1000	0.0939	94	6	70-125	25	
Ethylbenzene	ND	0.1000	0.0855	86	0.1000	0.0936	94	6	71-129	25	
m,p-Xylenes	QN	0.2000	0.1770	89	0.2000	0.1937	67	6	70-131	25	
o-Xylene	ND	0.1000	0.0833	83	0.1000	0.0912	91	6	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C.A)/B Relative Percent Difference RPD = 200*(C.F.P)/(C+F)] ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Page 11 of 13

## 0 Õ Õ ě Ő 8 6 • 0 0

# Environmental Lab of Texas

anager: <u>Curr Stanley</u> Anana Basin Environment			P P	10 III	6		8 S	A er ssa	Text	HAIN 20 E		573	TODY I	SECC ojact	Name Name	AND SOL	ANA Pr	M 10	S RE 432-1	QUES 63-17 63-17	F 8 T			
ngton, NM 8821	8					ĺ	ļ			1	1			Proje	Po Po	8 d	C Co	J. Re	A Note					<b>1</b> i
41-2124					Fax No:	Ξ	051 3	96-14	ន				Repo	rt For	iteri	×	Sland	lard		] TÅR		ž	DES	
	J. W	aff.	2	3.40	kuco <del>oli</del> nail:	ଥା	stan	lev	<u>0</u> ,5a	Sine	N.	E		L				Analy	a For				F	
		20					Ŀ				1			Щ		Ē	ala	$\square$	H					
		dtqaD grinnige	ujdog Bujpu	bəlqms2 ələC	belgane2 amfi	מו א מן המוסומות? מו א מן המוסומות?	87			ноч	20'S'#	Sheet (Speedy)	2 105/105 - 5 μλεκουπουρ - Α δρης - 15 μλεκουπουρ - Α	85108 W2108 L'814 Hd	PH 1X 1009 1X 1009	(Automotive (C) ( 204, Alternative)	ARIESPICE	Sagge jo	800/600/000 0958 x 3179 % 0602/01508 X 31	0			INSH TAT (Pre-Schedule) 24, 48	TAT bysbriet
	T	8	- <b>-</b>	/18/2008	1340	4 <b>~</b>	×	1-			-	-	ß		<u></u>	4	<u> </u>	<u> </u>		1	1	+	1	s ×
~			6	/18/2008	1410	~	×	1	×				GW						<b>×</b>					×
-			6	/18/2008	1500	2	×		×				δW						~					×
		+	-	/18/2008	1540	~	×	7	<u> </u>		+		MB						~		1	+		×
	+	╉	5	V18/2008	1620	~	×	┦	×		+	-	3	1	+	1	+		-		+	╉	1	×[
	+	+	-	/18/2008	1655	2	×	7	<u>_</u>			-	8	1	╉		+	1	7	+	Ŧ	╉	1	×
		╉	ອັດ 	118/2008	1715	~ ~	××	7-	× ×	1	╀		33		+-	1	+		~ ~		+	+		x x
			6	/18/2008	1800	2	×	Ĥ	-				GW				-		Ě					×
										_												_		
															287	bora Inche XCs F	ory C Conta Tee of	thers Head	inte: Intect			ഹ	zz	
C C		N.	<u>10</u>	ceived by.							$\vdash$	å	 2	e li	<u>933</u> [	stody stody	Po stand	on or other	(a) Intaine Iolar(s	(s) (	<del>(</del> 10 ~	ດ	z z(3	
EG. 1		Time		perved by								പ്		en la compañía de la	<u>8</u>		Hand	Deliv	LPS B	Ë	ч С	ē 	zzş	
8	8	9ui	2	In which ELO	t a	4	<u>ر ا</u>				3	80	0.91	ہ ہ ن	िंग	. iadiu	Ŋ.	-8	Receit	2	5.4	0	ę	
																							ł	l

,

#### Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

Client:	Basin Env. / Plains
Date/ Time:	9.19.08 10:53
Lab ID # :	317830
Initials:	<u>A1</u>

#### Sample Receipt Checklist

				Client Initials
#1	Temperature of container/ cooler?	Yes	No	4.9 °C
#2	Shipping container in good condition?	Cles	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present>
#4	Custody Seals intact on sample bottles/ container?	Yes)	No	Not Present
#5	Chain of Custody present?	Yes	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinquished/ received?	(Yes	No	<u> </u>
#8	Chain of Custody agrees with sample label(s)?	(Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	(res)	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(les)	No	
#11	Containers supplied by ELOT?	Fes	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	(Yes)	No	See Below
#14	Sample bottles intact?	Nes	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Nes	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

#### Variance Documentation

Date/ Time:

-----

Contact:

Q

Ð

D

8

0

Ø

Contacted by:

Regarding:

Corrective Action Taken:

Check ail that Apply:

See attached e-mail/ fax

_

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

#### Analytical Report 318210

for

#### PLAINS ALL AMERICAN EH&S

**Project Manager: Daniel Bryant** 

Vacuum 10-inch to Jal 2002-10248

26-NOV-08





12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215-08B - Odessa/Midland, TX T104704400-08

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta



26-NOV-08



Project Manager: **Daniel Bryant PLAINS ALL AMERICAN EH&S** 1301 S. COUNTY ROAD 1150 Midland, TX 79706

Reference: XENCO Report No: **318210 Vacuum 10-inch to Jal** Project Address: Lea County, NM

#### **Daniel Bryant**:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 318210. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 318210 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY





#### Sample Cross Reference 318210

#### PLAINS ALL AMERICAN EH&S, Midland, TX

Vacuum 10-inch to Jal

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-9	W	Nov-19-08 08:30		318210-001
MW-2	W	Nov-19-08 09:05		318210-002
MW-4	W	Nov-19-08 09:50		318210-003
MW-5	W	Nov-19-08 10:35		318210-004
MW-3	W	Nov-19-08 12:00		318210-005
MW-1	W	Nov-19-08 12:50		318210-006
RW-2	W	Nov-19-08 13:40		318210-007
RW-3	W	Nov-19-08 14:10		318210-008
RW-1	W	Nov-19-08 15:00		318210-009

0



#### **Certificate of Analysis Summary 318210** PLAINS ALL AMERICAN EH&S, Midland, TX



Project Name: Vacuum 10-inch to Jal

<b>Project Id:</b> 2002-10248				Dat	e Receiv	ed in Lab:	Nov-20-(	08 08:07 am	
Contact: Daniel Bryant					Rej	port Date:	26-NOV-	-08	
Project Location: Lea County, NM					Project	Manager:	Gracie A	valos	
	Lab Id:	318210-0	)01	318210-0	)02	318210-	.003	318210-0	004
Analysis Requested	Field Id:	MW-9	}	MW-2		MW-4	4	MW-5	
	Depth:							l	
	Matrix:	WATE	R	WATE	R	WATE	3R	WATE	R
······································	Sampled:	Nov-19-08 (	08:30	Nov-19-08	09:05	Nov-19-08	09:50	Nov-19-08	10:35
BTEX by EPA 8021B	Extracted:	Nov-21-08	17:05	Nov-21-08	17:05	Nov-21-08	, 17:05	Nov-21-08	17:05
<b>D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D I D D D D D D D D D D</b>	Analyzed:	Nov-22-08 (	22:26	Nov-22-08	22:49	Nov-22-08	23:11	Nov-22-08	23:33
	Units/RL:	mg/L	RL	mg/L_	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.0010	ND	0,0010	ND	0.0010	NDND	0.0010
Toluenc		ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
m,p-Xylcnes		ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020
o-Xylene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Total Xylenes		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Total BTEX		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
SVOA PAHs List by EPA 8270C		Nov-21-08	11:30	Nov-21-08	11:33	Nov-21-08	11:36	Nov-21-08	11:39
Analyzed:		Nov-24-08	15:40	Nov-24-08	16:24	Nov-24-08	17:49	Nov-24-08	18:33
Units/RL:		mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Acenaphthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Acenaphthylene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(a)anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(a)pyrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(b)fluoranthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(k)fluoranthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Benzo(g,h,i)perylene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Chrysene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Dibenz(a,h)Anthracene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Fluoranthene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Fluorenc		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Indeno(1,2,3-c,d)Pyrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
I-Methylnaphthalene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
2-Methylnaphthalene		ND	0.005	ND	0,005	ND	0.005	ND	0.005
Naphthalene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Phenanthrene		ND	0.005	ND	0.005	ND	0.005	ND	0.005
Pvrene	1	ND	0.005	ND	0.005	ND	0.005	ND	0.005

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

Odessa Laboratory Director

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi



5

.

,A

#### **Certificate of Analysis Summary 318210** PLAINS ALL AMERICAN EH&S, Midland, TX



Project Name: Vacuum 10-inch to Jal

Project Id: 2002-102	48			Dat	e Receiv	ed in Lab:	Nov-20-0	08 08:07 am	
Contact: Daniel Br	yant				Rep	oort Date:	26-NOV	-08	
Project Location: Lea Coun	ty, NM				Project	Manager:	Gracie A	valos	
	Lab Id:	318210-0	005	318210-0	006	318210-	007	318210-0	008
Analysis Requested	Field Id:	MW-3		MW-I		R W-2		RW-3	
	Depth:								
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R
	Sampled:	Nov-19-08	12:00	Nov-19-08	12:50	Nov-19-08	13:40	Nov-19-08	14:10
BTEX by EPA 8021B	Extracted:	Nov-21-08	17:05	Nov-21-08	17:05	Nov-21-08	17:05	Nov-21-08	17:05
DIER by Errouin	Analyzed:	Nov-22-08	23:55	Nov-23-08	00:17	Nov-23-08	00:39	Nov-23-08	01:01
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Toluene		ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010	. ND	0.0010
m,p-Xylenes		ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020
o-Xylene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Total Xylenes		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Total BTEX		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
SVOA PAHs List by EPA 82'	70C <i>Extracted</i> :	Nov-21-08	11:42	Nov-21-08	11:45	Nov-21-08	11:48	Nov-21-08	11:51
	Analyzed:	Nov-24-08	19:17	Nov-25-08	11:49	Nov-25-08	12:33	Nov-24-08	21:29
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Acenaphthene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Acenaphthylene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Anthracene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Benzo(a)anthracene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Benzo(a)pyrene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Benzo(b)fluoranthene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Benzo(k)fluoranthene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Benzo(g,h,i)perylene	·····	ND	0.005	ND	0.025	ND	0.025	ND	0.005
Chrysene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Dibenz(a,h)Anthracene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Fluoranthene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Fluorene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Indeno(1,2,3-c,d)Pyrene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
1-Methylnaphthalene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
2-Methylnaphthalene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Naphthalene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Phenanthrene		ND	0.005	ND	0.025	ND	0.025	ND	0.005
Pyrene		ND	0.005	ND	0.025	ND	0.025	ND	0.005

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

Odessa Laboratory Director

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi



) () ()

ŏ

õ

6

## **Certificate of Analysis Summary 318210** PLAINS ALL AMERICAN EH&S, Midland, TX



Project Name: Vacuum 10-inch to Jal

<b>Project Id:</b> 2002-10248			Date Received in Lab:	Nov-20-08 08:07 am
Contact: Daniel Bryant			Report Date:	26-NOV-08
Project Location: Lea County, NM			Project Manager:	Gracie Avalos
	Lab Id:	318210-009		
Analysis Requested	Field Id:	RW-1		
	Depth:			
	Matrix:	WATER		
	Sampled:	Nov-19-08 15:00		
BTEX by EPA 8021B	Extracted:	Nov-21-08 17:05		
	Analyzed:	Nov-23-08 01:24		
	Units/RL:	mg/L RL		
Benzene		ND 0.0010		
Toluene		ND 0.0020		
Ethylbenzene		ND 0.0010		
m,p-Xylenes		ND 0.0020		
o-Xylene		ND 0.0010		
Total Xylenes		ND 0.0010	·	
Total BTEX		ND 0.0010		
SVOA PAHs List by EPA 8270C	Extracted:	Nov-21-08 11:54		
	Analyzed:	Nov-24-08 22:13		
	Units/RL:	mg/L RL		
Acenaphthene		ND 0.005		
Acenaphthylene		ND 0.005		
Anthracene		ND 0.005		
Benzo(a)anthracene		ND 0.005		
Benzo(a)pyrene		ND 0.005		
Benzo(b)fluoranthene		ND 0.005		
Benzo(k)fluoranthene		ND 0.005		
Benzo(g,h,i)perylene		ND 0.005		
Chrysene		ND 0.005		
Dibenz(a,h)Anthracene		ND 0.005		
Fluoranthene		ND 0.005		
Fluorene		ND 0.005		
Indeno(1,2,3-c,d)Pyrene		ND 0.005		
I-Methylnaphthalene		ND 0.005		
2-Methylnaphthalene		ND 0.005		
Naphthalene		ND 0.005		
Phenanthrene		ND 0.005		
Pyrene		ND 0.005		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Brent Barron

Odessa Laboratory Director

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi



6



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr. Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9110



Ċ,

000

6

0

#### Form 2 - Surrogate Recoveries

#### Project Name: Vacuum 10-inch to Jal

<b>Vork Orders :</b> 318210,			Project I	<b>D:</b> 2002-1024	8	
Lab Batch #: 741164 Sample	: 318210-001 / SMP	Ba	itch: ¹ Matr	ix: Water		
Units: mg/L		st	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes				ועו		
1,4-Difluorobenzene		0.0325	0.0300	108	80-120	
4-Bromofluorobenzene		0.0250	0.0300	83	80-120	
Lab Batch #: 741164 Sample	: 318210-002 / SMP	Ba	ntch: I Matr	ix: Water		
Units: mg/L	Γ	st	JRROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B		Amount Found [A]	True Amount  B]	Recovery %R [D]	Control Limits %R	Flags
14-Difluorobenzene		0.0324	0.0300	108	80-120	
4-Bromofluorobenzene		0.0254	0.0300	85	80-120	
		0.0231	0.0500		00 120	
Lab Batch #: 741164 Sample	: 318210-003 / SMP	Ba	tch: Matr	ix: Water		
Units: mg/L			RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0325	0.0300	108	80-120	
4-Bromofluorobenzene		0.0251	0.0300	84	80-120	
Lab Batch #: 741164 Sample	- 318210-004 / SMP	Ba	toh: 1 Matr	iv. Water		
Lab Batch #. / HTO Sample	510210-0047 SM		IREN: 4 MAU		STUDY	
		50				
BTEX by EPA 8021B Analytes		Amount Found [A]	Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0324	0.0300	108	80-120	
4-Bromofluorobenzene		0.0252	0.0300	84	80-120	
Lab Batch #: 741164 Sample	: 318210-005 / SMP	Ra	tch:   Matr	ix: Water		
Uniter ma/l	Г	SU	RROGATE R	ECOVERY	STUDY	
Umis: mg/L	-					
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
BTEX by EPA 8021B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

1		37
577	$\Gamma R $	Ĩ.
$  \mathcal{L} \mathcal{L}$	use	
Rectoo	ഹിവിന	
2.456.62	a see as a see a se	a:

Ø

#### Form 2 - Surrogate Recoveries

#### Project Name: Vacuum 10-inch to Jal

Vork Orders : 318210,			Project II	<b>D:</b> 2002-1024	18	
Lab Batch #: 741164	Sample: 318210-006 / SMI	Ba Ba	tch: ¹ Matri	ix: Water		
Units: mg/L		SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by D	EPA 8021B Ivtes	Amount Found [A]	True Amount  B	Recovery %R {D]	Control Limits %R	Flags
1 4-Difluorobenzene		0.0325	0.0300	108	80-120	
4-Bromofluorobenzene		0.0249	0.0300	83	80-120	
Lab Batch #: 741164	Sample: 318210-007 / SMI	) Ba	tch: 1 Matri	ix: Water	L	
Units: mg/L			RROGATE RI	ECOVERY	STUDY	
BTEX by	EPA 8021B Ivtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I,4-Difluorobenzene		0.0322	0.0300	107	80-120	
4-Bromofluorobenzene		0.0250	0.0300	83	80-120	
Lab Batch #: 741164	Sample: 318210-008 / SMI	by Ba	tch: 1 Matri	ix: Water		
Units: mg/L	]	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by I	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0323	0.0300	108	80-120	
4-Bromofluorobenzene		0.0245	0.0300	82	80-120	
	Sample: 318210-009 / SMI	) Ba	teh: 1 Matri	iv Water	L	
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	-
BTEX by I	EPA 8021B lvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0356	0.0300	119	80-120	
4-Bromofluorobenzene		0.0276	0.0300	92	80-120	
Lab Batch #: 741164	Sample: 318339-002 S / M	S Ba	tch: 1 Matri	x: Water		
Units: mg/L	ſ	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by I	EPA 8021B lytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0271	0.0300	90	80-120	
4-Bromofluorobenzene		0.0276	0.0300	92	80-120	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

 Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.



0

0 6 and the

0 •

0

Õ 9

0

0 

#### Form 2 - Surrogate Recoveries

#### Project Name: Vacuum 10-inch to Jal

Work Orders : 318210,		Project II	<b>D:</b> 2002-1024	18	
Lab Batch #: 741164 Sample: 318339-002 S	D / MSD Ba	tch: ¹ Matri	x: Water		
Units: mg/L	SU	<b>RROGATE RI</b>	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0273	0.0300	91	80-120	
4-Bromofluorobenzene	0.0274	0.0300	91	80-120	
Lab Batch #: 741164 Sample: 519821-1-BK	S/BKS Ba	tch: 1 Matri	x: Water		
Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0273	0.0300	91	80-120	
4-Bromofluorobenzene	0.0263	0.0300	88	80-120	
Lab Batch #: 741164 Sample: 519821-1-BL	K/BLK Ba	tch: 1 Matri	x: Water		
Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0323	0.0300	108	80-120	
4-Bromofluorobenzene	0.0246	0.0300	82	80-120	
Lab Batch #: 741164 Sample: 519821-1-BSI	D/BSD Ba	tch:   Matri	x: Water		
Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount  B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0276	0.0300	92	80-120	
-		1	1	1 1	

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution Surrogate Recovery  $[D] \approx 100 * A / B$ All results are based on MDL and validated for QC purposes.



#### Form 2 - Surrogate Recoveries

Project Name: Vacuum 10-inch to Jal

IP Ba	Project II tch:  Matri RROGATE RE	<b>):</b> 2002-1024 x: Water <b>COVERY</b> S	8 STUDY	
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
0.046	0.050	92	43-116	
0.024	0.050	48	21-100	
0.046	0.050	92	35-114	
0.013	0.050	26	10-94	
0.066	0.050	132	33-141	
0.042	0.050	84	10-123	
IP Ba	tch:   Matri	x: Water		
su	RROGATE RE	ECOVERY S	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
0.050	0.050	100	43-116	
0.023	0.050	46	21-100	
0.044	0.050	88	35-114	
0.012	0.050	24	10-94	
0.066	0.050	132	33-141	
0.043	0.050	86	10-123	
IP Ba	tch: ¹ Matri	x: Water		
SU	RROGATE RE	COVERY S	STUDY	
Amount Found [A]	True Amount  B}	Recovery %R [D]	Control Limits %R	Flags
0.042	0.050	84	43-116	
0.020	0.050	40	21-100	
0.040	0.050	80	35-114	
0.011	0.050	22	10-94	
0.056	0.050	112	33-141	
0.046	0.050	92	10-123	
	P         Ba           SU         Amount           Found         [A]           0.046         0.024           0.046         0.013           0.066         0.042           IP         Ba           SU         Amount           Found         [A]           0.050         0.023           0.044         0.012           0.050         0.023           0.044         0.012           0.066         0.043           IP         Ba           SU         Amount           Found         [A]           0.050         0.023           0.044         0.012           0.066         0.043           IP         Ba           SU         Amount           Found         [A]           0.042         0.020           0.042         0.020           0.040         0.011           0.056         0.046	Project II           P         Batch:         I         Matri           SURROGATE         R           Amount         True           Found         Amount           IBI         I           0.046         0.050           0.024         0.050           0.046         0.050           0.046         0.050           0.046         0.050           0.046         0.050           0.046         0.050           0.046         0.050           0.046         0.050           0.046         0.050           0.046         0.050           0.042         0.050           0.042         0.050           0.050         0.050           0.050         0.050           0.044         0.050           0.043         0.050           0.043         0.050           0.043         0.050           0.043         0.050           0.042         0.050           0.043         0.050           0.040         0.050           0.041         0.050           0.042         0.050	Project ID: 2002-1024           P         Batch:         1         Matrix:         Water           SURROGATE         RECOVERY         Summed and time         Recovery         %R           Amount         True         Recovery         %R         [D]           0.046         0.050         92         0.024         0.050         48           0.046         0.050         92         0.013         0.050         26           0.046         0.050         132         0.042         0.050         84           P         Batch:         1         Matrix:         Water           SURROGATE         Recovery         %R         [D]           0.042         0.050         84           P         Batch:         1         Matrix:         Water           SURROGATE         Recovery         %R         [D]           0.050         0.050         100         0.023           0.050         0.050         132         0.050         88           0.012         0.050         24         0.066         0.050         132           0.043         0.050         86         132         0.043         0.050         84	Project ID: 2002-10248           P         Batch:         1         Matrix: Water           SURROGATE RECOVERY STUDY           Amount Found IAI         True Amount IBI         Recovery %R IDI         Control Limits %R           0.046         0.050         92         43-116           0.046         0.050         92         43-116           0.046         0.050         92         35-114           0.013         0.050         26         10-94           0.066         0.050         132         33-141           0.042         0.050         84         10-123           IP         Batch:         1         Matrix: Water           SURROGATE RECOVERY STUDY           Amount Found IAI         True Amount IBI         Recovery %R IDI         Control Limits %R           0.050         0.050         100         43-116           0.023         0.050         24         10-94           0.066         0.050         132         33-141           0.012         0.050         24         10-94           0.066         0.050         132         33-141           0.043         0.050         86

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.



#### Form 2 - Surrogate Recoveries

Project Name: Vacuum 10-inch to Jal

Work Orders : 318210,			Project II	<b>):</b> 2002-1024	18	
Lab Batch #: 741394	Sample: 318210-004 / SM	MP Ba	tch: ¹ Matri	x: Water		
Units: mg/L		SU	<b>RROGATE RI</b>	COVERY	STUDY	
SVOA PAHs List	t by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R  D	Control Limits %R	Flags
2-Fluorobiphenyl	, 	0.044	0.050	88	43-116	
2-Fluorophenol		0.023	0.050	46	21-100	
Nitrobenzene-d5		0.052	0.050	104	35-114	
Phenol-d6		0.012	0.050	24	10-94	
Terphenyl-D14	<u></u>	0.057	0.050	114	33-141	-
2,4,6-Tribromophenol		0.044	0.050	88	10-123	
Lab Batch #: 741394	Sample: 318210-005 / SI	MP Ba	tch: ¹ Matri	x: Water		
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
SVOA PAHs List	t by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Eluorohinhenyl		0.040	0.050	80	42 116	
2-Fluorophenol		0.040	0.050	46	43-110	
Nitrobenzene-d5	········	0.023	0.050	40 80	21-100	
Phenol-d6		0.040	0.050	24	10-94	
Tembenyl-D14		0.012	0.050	140	33-141	
2 4 6-Tribromonhenol		0.070	0.050	07	10-123	
		0.040	0.030	92	10-125	l
Lab Batch #: 741394	Sample: 318210-0067 Sf	MP Ba	tch: Matri	x: Water		
Units: mg/L		SU	RROGATE RI	ECOVERY	STUDY	
SVOA PAHs List	by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analy	ytes					
2-Fluorobiphenyl		0.048	0.050	96	43-116	
2-Fluorophenol		0.022	0.050	44	21-100	
Nitrobenzene-d5		0.051	0.050	102	35-114	
Phenol-d6		0.020	0.050	40	10-94	
Terphenyl-D14		0.068	0.050	136	33-141	
2,4,6-Tribromophenol		0.057	0.050	114	10-123	

** Surrogates outside limits; data and surrogates confirmed by reanalysis
*** Poor recoveries due to dilution
Surrogate Recovery [D] = 100 * A / B
All results are based on MDL and validated for QC purposes.



6

#### Form 2 - Surrogate Recoveries

#### Project Name: Vacuum 10-inch to Jal

<b>Vork Orders :</b> 318210,		Project II	<b>D:</b> 2002-1024	+8	
Lab Batch #: 741394 Sample: 318210-0	07 / SMP Ba	tch: 1 Matri	ix: Water		
Units: mg/L	SU	<b>RROGATE RJ</b>	ECOVERY S	STUDY	
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.042	0.050	84	43-116	
2-Fluorophenol	0.020	0.050	40	21-100	
Nitrobenzene-d5	0.043	0.050	86	35-114	
Phenol-d6	0.016	0.050	32	10-94	
Terphenyl-D14	0.044	0.050	88	33-141	
2,4,6-Tribromophenol	0.053	0.050	106	10-123	
Lab Batch #: 741394 Sample: 318210-0	08 / SMP Ba	tch: 1 Matri	ix: Water	L	
Units: mg/L	SU	RROGATE RI	ECOVERY S	STUDY	
SVOA PAHs List by EPA 8270C	Amount Found [A]	True Amount  B]	Recovery %R	Control Limits %R	Flags
Analytes		<b>1</b> - <b>1</b>	[D]		l
2-Fluorobiphenyl	0.045	0.050	90	43-116	
2-Fluorophenol	0.019	0.050	38	21-100	i
Nitrobenzene-d5	0.040	0.050	80	35-114	i
Phenol-d6	0.011	0.050	22	10-94	
Terphenyl-D14	0.068	0.050	136	33-141	1
2,4,6-Tribromophenol	0.043	0.050	86	10-123	
Lab Batch #: 741394 Sample: 318210-0	09 / SMP Bat	tch: 1 Matri	ix: Water		
Units: mg/L	SU	RROGATE RI	COVERY S	STUDY	
SVOA PAHs List by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2.Fluorohinkenvi	0.037	0.050	74	42.116	
2-Fluorophenot	0.015	0.050	30	43-110	
Nitrobenzene-d5	0.045	0.050	90	35-114	
Phenol-d6	0.010	0.050	20	10-94	
Terphenvl-D14	0.062	0.050	124	33-141	
2,4,6-Tribromophenol	0.031	0.050	62	10-123	

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.



6

6

6

, ¢, ÷

#### Form 2 - Surrogate Recoveries

Project Name: Vacuum 10-inch to Jal

Work Orders : 318210,			Project II	<b>):</b> 2002-1024	8	
Lab Batch #: 741394 Sample	e: 519935-1-BKS /	BKS Ba	tch: 1 Matri	x: Water		
Units: mg/L		SU	RROGATE RE	COVERY S	STUDY	
SVOA PAHs List by EPA 8 Analytes	270C	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		0.049	0.050	98	43-116	
2-Fluorophenol		0.045	0.050	90	21-100	
Nitrobenzene-d5		0.048	0.050	96	35-114	
Phenol-d6		0.038	0.050	76	10-94	
Terphenyl-D14		0.064	0.050	128	33-141	
2,4,6-Tribromophenol	······································	0.040	0.050	80	10-123	
Lab Batch #: 741394 Sample	e: 519935-1-BLK /	BLK Ba	tch: 1 Matri	x: Water	<u> </u>	
Units: mg/L		SU	RROGATE RE	COVERY	STUDY	
SVOA PAHs List by EPA 8 Analytes	270C	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	e.	0.049	0.050	98	43-116	
2-Fluorophenol		0.040	0.050	80	21-100	
Nitrobenzene-d5		0.049	0.050	98	35-114	
Phenol-d6		0.030	0.050	60	10-94	
Terphenyl-D14		0.069	0.050	138	33-141	
2,4,6-Tribromophenol		0.051	0.050	102	10-123	
Lab Batch #: 741394 Sample	e: 519935-1-BSD /	BSD Ba	tch: ¹ Matri	x: Water		
Units: mg/L		SU	RROGATE RE	COVERY	STUDY	
SVOA PAHs List by EPA 8 Analytes	270C	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl		ND	0.050	0	43-116	**
2-Fluorophenol		ND	0.050	0	21-100	**
Nitrobenzene-d5		0.005	0.050	10	35-114	**
Phenol-d6		0.001	0.050	2	10-94	**
Terphenyl-D14		ND	0.050	0	33-141	**
2,4,6-Tribromophenol		ND	0.050	0	10-123	**

** Surrogates outside limits; data and surrogates confirmed by reanalysis
*** Poor recoveries due to dilution
Surrogate Recovery [D] = 100 * A / B
All results are based on MDL and validated for QC purposes.



# BS / BSD Recoveries



Ŏ

Project Name: Vacuum 10-inch to Jal

Work Order #: 318210

Analyst: ASA Lab Batch ID: 741164

Units: mg/L

Date Prepared: 11/21/2008

Batch #: 1

Sample: 519821-1-BKS

Project ID: 2002-10248 Date Analyzed: 11/22/2008 Matrix: Water BLANK / BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Dunicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[ <b>B</b> ]	[C]	[0]	[E]	Result [F]	6	2			
Benzene	Q	0.1000	0.1003	100	0.1	0.0985	66	2	70-125	25	
Toluene	Ð	0.1000	0.0931	93	0.1	0.0902	90	e.	70-125	25	
Ethylbenzene	Ð	0.1000	0.0918	92	0.1	0.0882	88	4	71-129	25	
m,p-Xylenes	QN	0.2000	0.1858	93	0.2	0.1760	88	5	70-131	25	
o-Xylene	Ð	0.1000	0.0888	89	0.1	0.0857	86	4	71-133	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(Fy[E] All results are based on MDL and Validated for QC Purposes



# **BS / BSD Recoveries**



Project Name: Vacuum 10-inch to Jal

Work Order #: 318210 Lab Batch ID: 741394 Analyst: KAN

Date Prepared: 11/21/2008

Batch #: 1

Sample: 519935-1-BKS

5

Project ID: 2002-10248 Date Analyzed: 11/24/2008 Matrix: Water

RI ANK /RI ANK SDIKE / RI ANK SDIKE NI DI ICATE DECOVEDY STI DV

Units: mg/L		DLAIN			TAIND		ICALE F			1	
SVOA PAHs List by EPA 8270C	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[g]	5	[n]	E	Kesult [F]	<u>5</u>				
Acenaphthene	Ð	0.050	0.045	90	0.05	0.047	94	4	54-114	25	
Acenaphthylene	QN	0.050	0.049	86	0.05	0.048	96	2	53-113	25	
Anthracene	QN	0.050	0.041	82	0.05	0.042	84	2	56-116	25	
Benzo(a)anthracene	QN	0.050	0.050	100	0.05	0.049	86	2	59-116	25	
Benzo(a)pyrene	Q	0.050	0.048	96	0.05	0.048	96	0	58-118	25	
Benzo(b)fluoranthene	QN	0.050	0.046	92	0.05	0.046	92	0	54-123	25	
Benzo(k)fluoranthene	₽	0.050	0.059	118	0.05	0.059	118	0	52-122	25	
Benzo(g,h,i)perylene	QN	0.050	0.046	92	0.05	0.046	92	0	47-129	25	
Chrysene	QN	0.050	0.054	108	0.05	0.054	108	0	58-116	25	
Dibenz(a,h)Anthracene	QN	0.050	0.044	88	0.05	0.044	88	0	46-131	25	
Fluoranthene	QN	0.050	0.047	94	0.05	0.046	92	2	55-120	25	
Fluorene	QN	0.050	0.048	96	0.05	0.048	96	0	56-114	25	
Indeno(1,2,3-c,d)Pyrene	QN	0.050	0.046	92	0.05	0.045	90	2	44-132	25	_
1-Methylnaphthalene	QN	0.050	0.043	86	0.05	0.044	88	2	47-113	25	
2-Methylnaphthalene	DN	0.050	0.042	84	0.05	0.044	88	5	57-106	25	
Naphthalenc	Q	0.050	0.043	86	0.05	0.045	06	5	53-110	25	
Phenanthrene	QN	0.050	0.042	84	0.05	0.042	84	0	56-116	25	
Pyrene	Ð	0.050	0.054	108	0.05	0.052	104	4	57-119	25	

Relative Percent Difference RPD = 200*((C-F)/(C+F) Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

 Image: Startage
 Image: Startage



and i

Ò

Project Name: Vacuum 10-inch to Jal



Work Order #: 318210

Lab Batch ID: 741164

Date Analyzed: 11/23/2008 1/~ Donorting Haiter

ASA -Batch #: Analyst:

QC- Sample ID: 318339-002 S

Date Prepared: 11/21/2008

Matrix: Water

Project ID: 2002-10248

		Μ	ATRIX SPIKI	E / MATI	RIX SPII	KE DUPLICA'	re reco	OVERY S	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	B]		х»к [0]	E]	Kesun [r]	[6]	%	Nov	WWD	
Benzene	ND	0.1000	0660.0	66	0.1000	0.0951	95	4	70-125	25	
Toluene	ND	0.1000	0.0940	94	0.1000	0.0877	88	7	70-125	25	
Ethylbenzene	ND	0.1000	0.0877	88	0.1000	0.0828	83	6	71-129	25	
m,p-Xylenes	ND	0.2000	0.1778	89	0.2000	0.1651	83	7	70-131	25	
o-Xylene	ND	0.1000	0.0863	86	0.1000	0.0814	81	9	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

# Environmental Lab of Texas

					ES	Г		- Z/	_	141 (Pre-Schedule) 24	spuers	×	×	×	×	×	×	×	×	×					N	
					ûdN		Т	_			ria ne				-				_		-	z	2 20	5 <del>(</del> )	zz	0
																						X	90		<del>ଅ</del> କ୍ଷି	
. 8 2	₹				n		$\vdash$			8510	HA9	×	×	×	×	×	×	×	×	×	$\neg$				, s	
	2				TRR				•		IDU IDU					-				-	$\neg$			~	Ę	
2.58	3						E	×	0	0518\2020 0+ BIEX 858	a xara	×	×	×	×	×	×	×	×	×		. 6	Ř	(s)	م. –	id a
4 64 54	N.		Ş	Yart		1	- 26			50)(B)	0×u <b>e</b> S			ļ								ents Prov	(s)		<b>P</b>	Rec
L TS	N.	248	dy.	N.B.	dard		ŝ-	Η	34		. Crighterio V Chiefblec		_				_		_			Tiers -		55	콼	nod
2	-nno	2-10	5	ö	Slark		5	1		2301 CEC	37 BAS		-	-	-				_	-	-	500		seals	Page 20	ture
2	× ×	200	5	A.	X		۱ ^۲	5		(CI' ZOH' VIPALUIA)	SUCKUY											nple (			1 2 2 2	bedu
E D	ame	1	5	- a	÷					(CR MP3' NS K)	sucie.)									_	_	13	2 3 2	33	<u>%</u>	<u>1</u> 2
ŝ	ect N	Proj	oject		Ē				99	109 WEID9 1911	ાના				_						-		Ê		ę	<u>ت</u> ۾
RF F	Pro		ď		port		<b>.</b>	Ч	ž	атто уновае энаклочи	ON ≖dN		,		1	~	~						F		Ē	r va
100					Rel				Matr	noshjos - s jatemounou	o - Mo	S	NO N	9 N	Š	ş	Š	Ş	8 0	Š						5
ŝ	- 1	ł	}	ł	ł			1	2	(Apoeds)	Uther (		_	_						-	-		Date		Date	
5 *	ļ	Ì				ы		Ì	C21/06		GUON				-											1
East 1976	1					2			20,0	۰ <u>۰</u>	) S-EN								_							
SET SET			İ			ine.			2		HOPN 'OS'H			-				-	_		_					
, Te						bas			ration	421	HCI	×	×	×	×	×	×	×	x	×	-		1			
600 1988					142	N.G			Level.		ONH															
5 Q			ļ		98	anle		I	π		1 801	×	×	×	×	×	×	×	×	×	_					
				}	5	CSI				ensingno) to eAOV S. redm	Tobal #.	n	5	3	-	9	•	e		n			1			
					~					ردىمر	lig blord															
	Ì				Fax No	, M				beigme&	əmiT	330	905	50	035	200	250	340	410	200						
	5					1707				<u></u>					-	-	-	_	1	_						440
	6	Ľ				N.				balqme2	əjsO	9/2008	9/2008	9/2008	9/2008	9/2008	8/2008	9/2008	9/2008	9/2008			ed by		λή β	10 V V
	PAGE	res, L		- 1		3						11/1	11/1	111	11	114	11/1	11/1	11/1	11			(eoei			¢ect
0		Balond				LAL			Ì	g Depth	nibria												e F	5	и 9	a:
		ice Te				1	_			AlqsO grin	niged												1	Ĩ	E	-
-		Ser				S.	0																-	9		
5		ienta		8826(		Ň	'nΓ		-														al a	2	Date	Date
2	2	LOUT	ā	WN	2	X																		Ξ	ļ/	
5	tanle	EN	E NO	Long	141-2	7					ш									Ì			1			
	S LUI	-use	Ö	orling	5051 4	3		S			60	6-7	ŝ	Ţ	ş	۲-3	4-1 -	3	7	I				N		
3	01	ωį				$-\frac{1}{2}$		1			IELD	M	₹	ž	ş	٨V	₹	ş	8	₹		_		Υl	$\sim$	
5	ager	ame	dree	ä	ö	natul		فلا			u.											ň	Į.,	3		
	Man.	Ň	ny Ac	le/Z	ne h	r Sig	1	n	'													<u>ب</u> ا	Ľ	H	/	
5		mpai	mpai	//Sta	de	nple									1							ĝ (			$\mathbf{X}$	4
2	<b>6</b>	00	õ	đ	Te,	Sar	(Aluo	7	į													L SE	100	F	a Maria	thed b
							a use	1		(Ajuo esn qej)	#8¥1	õ	0	۳J	뉤	Ъ	Ŕ	ğ	ž	ঙ্গ	1	eclar (	- and			inquis
1									õ	<u> </u>		ĽĽ	φ	P	Ψ	ĽΨ	ЦIJ	<u> </u>	Y	Ч		<u>\$</u>	K.		1	£.

#### Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In



#### Sample Receipt Checklist

_				Client Initia
#1	Temperature of container/ cooler?	(Yes	No	
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	C Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	(Not Present
#5	Chain of Custody present?	(Yes	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinquished/ received?	des	No	
#8	Chain of Custody agrees with sample label(s)?	(Yes.	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	Ves	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	(Yès`	No	
#11	Containers supplied by ELOT?	Tes	No	
#12	Samples in proper container/ bottle?	(Yes)	No	See Below
#13	Samples properly preserved?	(Yes)	No	See Below
#14	Sample bottles intact?	Yes	No	
#15	Preservations documented on Chain of Custody?	Tes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	TYES	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

Variance Documentation

____

Date/ Time:

Contact: Regarding:

6

A

0

8

0

0

_____

Corrective Action Taken:

Check all that Apply:

### See attached e-mail/ fax Client understands and w Cooling process had beg

Contacted by:

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

### Appendix B Release Notification and Corrective Action (Form C-141)

6

5 4 A G 0 0 B .

District I 1625 N. French Dr., Hobbs, NM 88240 District II 1301 W. Grand Avenue, Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

ŧ

1. St. day 6 • Ø 1 e 6 6 E

#### State of New Mexico Energy Minerals and Natural Resources

**Oil Conservation Division** 1220 South St. Francis Dr. Santa Fe NM 87505

Form C-141 Revised March 17, 1999

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

0.555.0	<b>TO</b> D ((		Relea	se Notifica	tion and	Co	rrective A	ction		
OPERA	ATOR "	INFORM	IATION	ONLY NON	N-REPOF	TA	BLE" 🔀 II	nitial R	leport	Final Report
Name of Con	npany F	OTT Enorm	u Dinalina		Conta	ct	Erent Hornon	dan		
Address	E	OTTENEIg	y Pipenne		Talan	onal	Frank Hernand	dez		
5805 Fast F	Jiohway S	RO/PO BO	x 1660 M	idland TX 707		ione i	015 638	3700		
Facility Name	ngnway (	<u>5071.0. D</u>	<u>x 1000, Ivi</u>		Facilit	v Tur	915,050.			
Taomy Name	Vacuum	n 10" to Jal 9	9-18-02 #2	002-10248	1 acim	y i ył	10" Crude (	Dil Pipel	ine	
					<u>-</u>			<u> </u>		
Surface Owne	er			Mineral Ov	vner				Lease N	
Jim T. Coope	r								{	
				LOCAT		DEI	FASE		<b>.</b>	
Unit Letter	Section	Township	Range	Feet from the	North/South	Line	Feet from the	Fast/W	/est Line	County: Lea
Cint Deller	Section	ronnonp	range		i tortin ooutii	Unie	r cer from the		est Ente	Lat.: 32°38′21.3″N
М	20	19S	37E		·					Lon: 103° 16'46.2"W
				NATI	BE OF D	ET F	ASF			
Type of Releas					Volu	me of	Release	T	Volume R	ecovered
	Crude	Oil					250 1	obls		80 bbls
Source of Relea	ase	~			Date	and I	lour of Occurrence	e	Date and I	Hour of Discovery
Was Incore dist.	10" S		9-18	$\frac{1}{100}$	0:00 AM	L	9-18-02	2 1:00 PM		
10 Steel Pipeline       9-18-02 10:00 AM       9-18-02 1:00 PM         Was Immediate Notice Given?       If YES, To Whom?       If YES, To Whom?         Xes       No       Not Required       Paul Sheeley, Hobbs NMOCD (9-18-02)										
	Yes   No   Not Required       Paul Sheeley, Hobbs NMOCD (9-18-02)									
By whom?	Pat McCas	land (Environ	mental Plu	inc)	Date	and F	our: NMOCD n	otified on	9-18-02	2:45 PM
Was a Waterco	urse Reach	ied? $\Box$ Y	es 🛛 No	i, iiic. j	If YI	ES. Vo	lume Impacting t	he Water	rcourse.	
If a Watercours	se was Imp	acted, Descri	be Fully.*							
Describe Cause The cause of the remediation. Describe Area of Spill Area = ~2 a NMOCD app	e of Proble te release v Affected at 35,197 ft ² roved facil	m and Remec vas internal/e nd Cleanup A 150'X 490'. 1 lity. The site	lial Action xternal corr action Take Near surfact will be deli	Faken.* osion. The line han.* soil will be chara neated and remed	as been repair acterized in a iated.	ed. C	ontaminated soil	is stockp 261 and	iled on a pl	lastic barrier on site awaitin DCD approval, disposed of
		formation giv	ven above is	true and complet	te to the best	of my	knowledge and u	nderstand	d that pursu	ant to NMOCD rules and ases which may endanger
I hereby certify regulations all c public health or should their ope or the environm federal, state, or	that the in operators a r the enviro erations ha nent. In ad r local law	re required to onment. The ve failed to a dition, NMO s and/or regu	o report and acceptance dequately in CD accepta lations.	of the certain reac of a C-141 report ivestigate and ren nee of a C-141 re	by the NMO nediate contai	ons ar CD m nination relieve	arked as "Final Roon that pose a three operator of a	eport" do eat to gro responsib	bes not relie bund water, bility for co	eve the operator of liability surface water, human hea mpliance with any other
I hereby certify regulations all c public health or should their ope or the environm federal, state, or Signature:	that the in operators a r the enviro erations ha hent. In ad r local law	re required to onment. The ve failed to a dition, NMO s and/or regu	acceptance dequately in CD accepta lations.	of the certain red of a C-141 report ivestigate and ren nee of a C-141 re	by the NMO nediate contai	ons ai CD ma ninati- relieve	on that pose a three the operator of a <b>OIL CONS</b>	eport" do eat to gro responsib	TION	eve the operator of liability surface water, human heal mpliance with any other <b>DIVISION</b>
I hereby certify regulations all c public health or should their ope or the environm federal, state, or Signature: Printed Name: F	Frank Herr	re required to mment. The ve failed to a dition, NMO s and/or regu	o report and acceptance dequately in CD accepta lations.	of the certain red of a C-141 report ivestigate and ren nee of a C-141 re	Approv	ons at CD m nination relieve	arked as "Final Roon that pose a three the operator of a OIL CONS	eport" do eat to gro responsib ERVA	wes not relie bund water, ility for co	eve the operator of liability surface water, human heal mpliance with any other <b>DIVISION</b>
I hereby certify regulations all c public health or should their ope or the environm federal, state, or Signature: Printed Name: F	Frank Herr	re required to onment. The ve failed to a dition, NMO s and/or regu handez	o report and acceptance dequately in CD accepta lations.	of the certain red of a C-141 report ivestigate and ren nee of a C-141 re	Approv	ons at CD maination relieve ed by	District Supervise	ERVA	A Date:	eve the operator of liability surface water, human heal mpliance with any other <b>DIVISION</b>