District I 1625 N. French District II 1301 W Grand District III 1000 Rio Brazo District IV 1220 S St. Fran	s Road Azter	NM 87410	APR 24		Conserv South	New Mex and Natura vation Div St. Franc , NM 875	vision is Dr.		Form C-141 Revised October 10, 2003 Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form
			Rele	ease Notific	cation	and Co	prective A	ction	
						OPERA		🛛 🛛 Initi	al Report / D Final Report
		Atlantic Rich					uronda Smith		
				lano, TX 75074			No. – 972-509-7 ne – Abandoned		
		worth Main	тапк ва		1	acting Typ	e – Abandoned		
Surface Ow	ner – Jay A	Anthony		Mineral C)wner –	Federal		Lease 1	No. – LC 030180 A
				LOCA	TION	OF RE	LEASE		
Unit Letter	Section	Township	Range	Feet from the	North/	South Line	Feet from the	East/West Line	County
H	13	26S	36E						Lea
								l	
			L	atitude_ <u>32° 02</u>	<u>.685' N</u>	_ Longitud	e_103° 12.720'	W	
				NAT	URE	OF REL	EASE		
		ic Hydrocarb	ons				Release – Unkno		Recovered – None
Source of Re							lour of Occurrenc	e N/A Date and	Hour of Discovery N/A
Was Immedi	ate Notice C		Yes [No 🛛 Not Re	eanired	If YES, To	Whom?		
By Whom?						Date and H	lour '	<u></u>	
Was a Water	course Reac	hed?					olume Impacting t	he Watercourse.	
			Yes 🛛	No			r c		
If a Watercou	irse was Im	pacted, Descr	ibe Fully.*	e					
			-						
Site is an aba at 111.5' bgs vertical and l confirmation	ndoned batt A second horizontal do s are attache e ranking cr	monitor well elineation was ed in this remo iteria for the s	oric hydro was set at s performe ediation pl	carbon impacted the site by the lar d at the site using an. During the de	ndowner ; a backh elineatior	and showed oe and air ro 1, all sample:	no levels of hydro tary rig. All plot s were screened for	ocarbons or BTEX maps of sample po or chlorides and the	te and groundwater was proven above WQCC Standards. A ints, field analytical and lab ere were no results above er -0 points. Total ranking for
The Remedia the site will I excavated m be capped w backfilled in approved by 48 hours before I hereby cert regulations a public health should their or the enviro	ation Action be to excava aterial will b ith a 1' thick to the excav the landowr bre work be ify that the i ll operators or the enviro operations h nment. In a	te all impacte be blended on c layer of red ation and con her. Once the gins and befor nformation gi are required t ronment. The ave failed to a	e site will d soil to a site with c bed clay c toured to t project is re backfill iven above o report ar acceptanc adequately OCD accep	be Benzene – 10 depth of 4' bgs a lean native soil up ompacted and tes he surrounding a complete a final of of the remediated is true and comp ad/or file certain r ce of a C-141 repo- investigate and r	nd horizontil the bl ted to 95 ⁶ rea. The closure re <u>t soil.</u> lete to the elease no ort by the emediate	ontally until lended mater % dry densit site will be eport will be e best of my otifications a NMOCD m contaminati	he RAL's are met ial meets the RAI y. After installati e-vegetated with submitted to the I knowledge and u nd perform correc arked as "Final R on that pose a thr	t (Dimensions sho L's. All areas with on of the clay barr a seed mixture nat NMOCD. NMOC Inderstand that pur tive actions for rel eport" does not rel eat to ground wate	250 ppm. Remediation plan for wn on wall plot map). The impacted soil below 4' bgs will ier the remediated soil will be ive to the surrounding area and D Hobbs Office will be notified suant to NMOCD rules and eases which may endanger ieve the operator of liability r, surface water, human health ompliance with any other

Signature: Doctor	\bigcirc	OIL CONSERVATION DIVISION					
Printed Name: Duronda Smith		Approved by District Supervision NMENTAL ENGINEER					
Title: Manager Discontinued Operations		Approval Date: 4.27.09	Expiration Date:				
E-mail Address: smithd92@bp.com		Conditions of Approval:	Attached				
Date: 2-13-09	Phone: 972-509-7022		IRP# 2083				

Attach Additional Sheets If Necessary

k

Remediation Plan

-

Prepared for Atlantic Richfield 1701 Summit Ave Suite 2 Plano, TX 75074

Farnsworth Main Tank Battery Lea County, NM

1RP-09-2-2083

Prepared by Elke Environmental, Inc. P.O. Box 14167 Odessa, TX 79768

Phone (432) 366-0043 Fax (432) 366-0884

TABLE OF CONTENTS

- I. Site History and Remediation Plan
- II. Plat Maps and Aerial Photo of Site
- III. Field Analytical from Delineation of Site
- IV. Monitor Well Logs
- V. Lab Summaries and Lab Reports
- VI. C-141 for Remediation Plan

Section I

Site History and Remediation Plan

,

P.O. Box 14167 Odessa, TX 79768 Phone (432) 366-0043 Fax (432) 366-0884

February 13, 2009

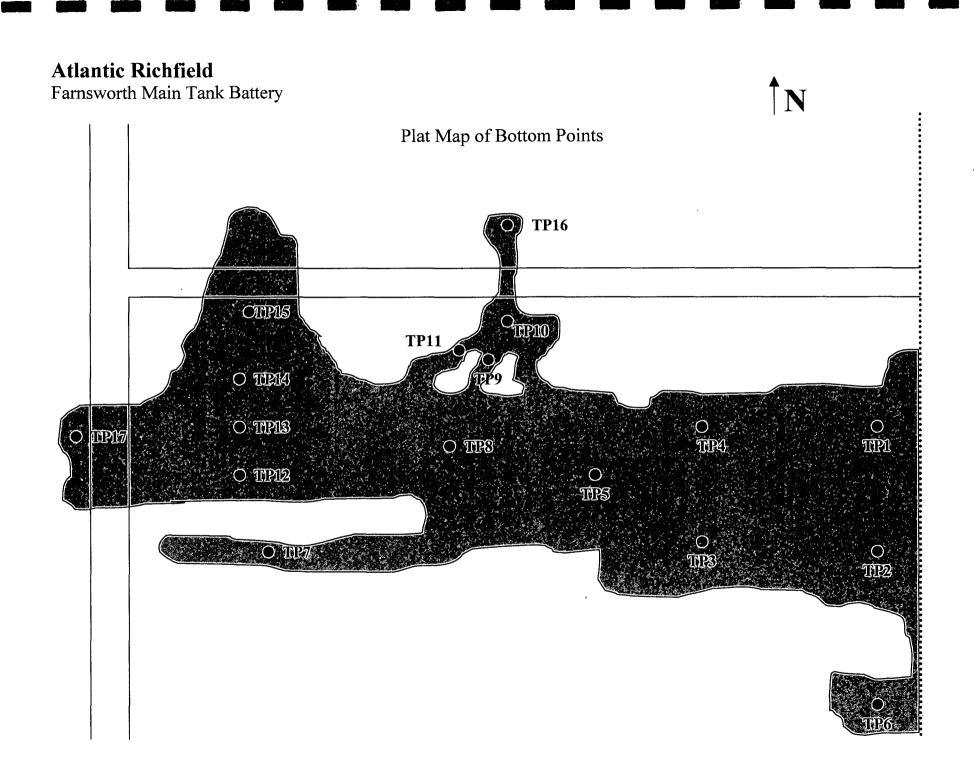
New Mexico Oil Conservation Division Mr. Larry Johnson 1625 N. French Dr. Hobbs, New Mexico 88240

> Re: Site History and Remediation Plan Atlantic Richfield – Farnsworth Main Tank Battery UL'H' Sec. 13 T26S R36E Lea County, NM 1RP-09-2-2083

Mr. Larry Johnson,

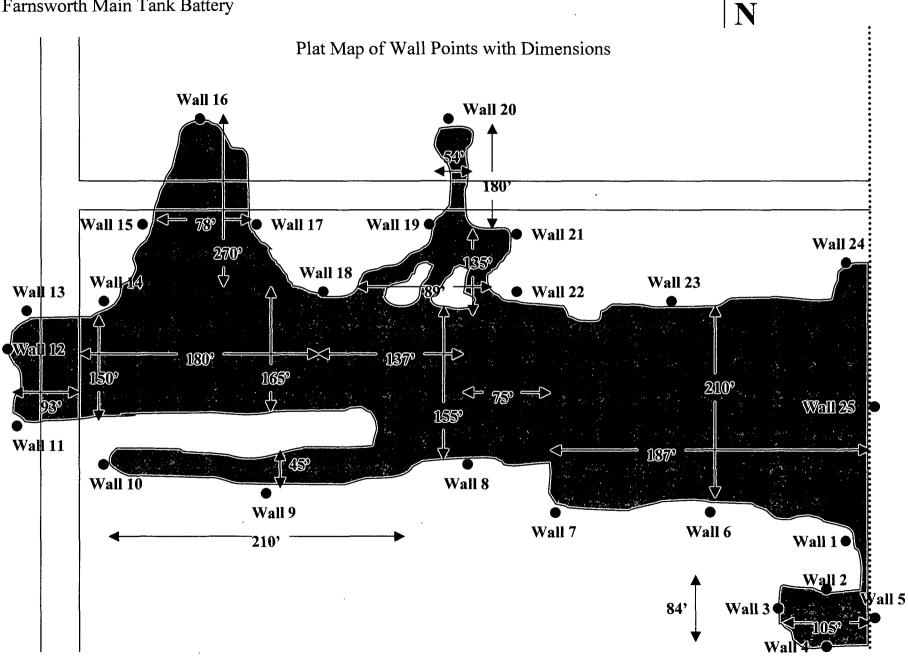
Elke Environmental was contracted by Atlantic Richfield to complete the delineation and remediation of the Abandoned Farnsworth Main Tank Battery. A monitor well was installed at the site to confirm groundwater and analyze the groundwater. The water level is 111.5' bgs and the analysis of the groundwater proved to be protected water. Horizontal delineation was completed with a backhoe at depths of two, five, ten and fourteen foot depths at each wall test point. Vertical delineation was started with a backhoe and completed with an air rotary rig. A field vapor headspace measurement was used in place of a lab BTEX. Field Analysis is enclosed in Section III. Two consecutive clean samples were used to determine the bottom of the vertical delineation points with lab confirmations of TPH 8015M and Chloride. Lab Reports are enclosed in Section IV. Test Point 13 was sampled at 100' bgs and was above the NMOCD Standards. A second monitor well was installed in the impacted area by the landowner before delineation of the site. A sample of the groundwater was analyzed for BTEX and TPH 8015M. The result showed no impact of groundwater. The Lab Report of the water samples is included in Section IV. Plat maps and an aerial photo of the site is enclosed in Section II.

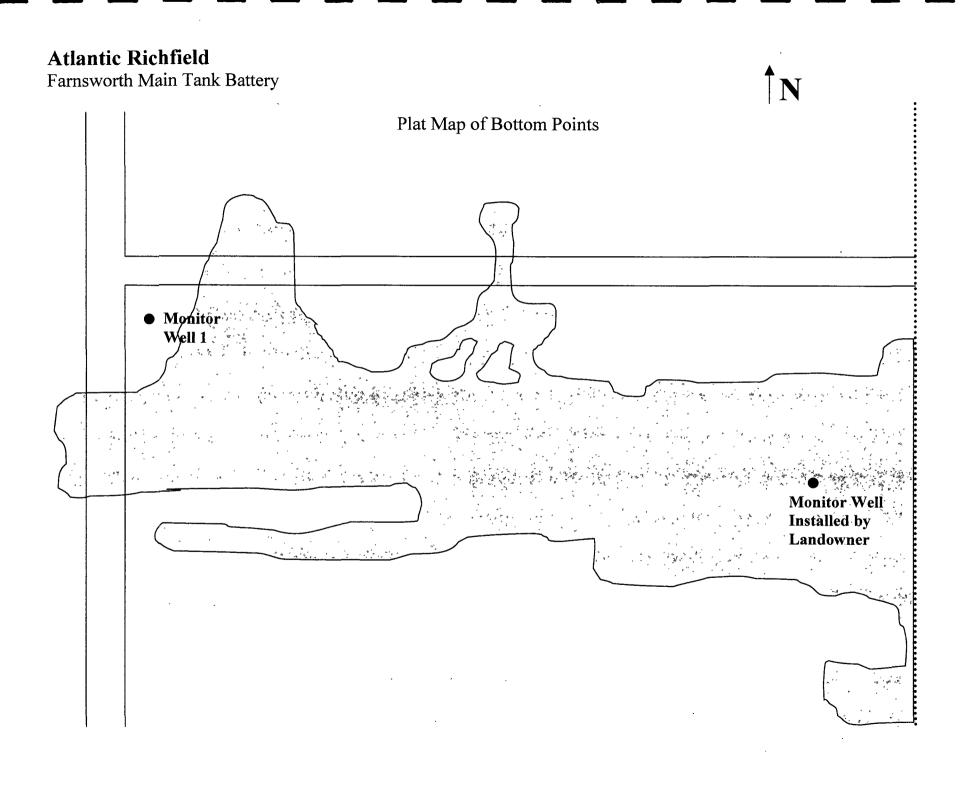
Atlantic Richfield proposed to excavate four foot of impacted soil from the entire site and blend with clean adjacent soil to below the Recommended Action Levels of 5,000ppm TPH using Method 8015M; 50ppm Total BTEX and 10ppm Benzene using Method 8021B; and 250ppm Chloride using Method 300.1. A one foot thick layer of red bed clay will be installed in areas where impacted soil is below four foot bgs. The red bed clay will be compacted and tested to confirm a standard of at least 95% dry density. The remediated soil will backfilled and contoured to the surrounding area. The entire site will be re-vegetated using the hydro-mulching method with a seed mixture approved by the landowner. If you have any questions about the enclosed report please contact me.


Sincerely.

Logan Anderson Project Manager

Section II


Plat Maps and an Aerial Photo of the Site


.-

Atlantic Richfield

Farnsworth Main Tank Battery

Section III

÷

Field Analytical of Site

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client_Atlantic Richfield Analyst _____ Logan Anderson

Site Farnsworth Main Battery

Sample II	D Date	Depth	TPH / PPM	Cl / PPM	PID / PPM	GPS
TP1	10-27-08	2'	3,850	224	84.1	32° 02.676' N 103° 12.638' W
TP1	10-27-08	4'	7,480		177	30° 02.676' N 103° 12.638' W
TP1	10-27-08	6'	9,000		238	30° 02.676' N 103° 12.638' W
TP1	10-27-08	8'	10,570		301	30° 02.676' N 103° 12.638' W
TP1	. 10-27-08	10'	11,980		333	30° 02.676' N 103° 12.638' W
TP1	10-27-08	12'	9,850		327	30° 02.676' N 103° 12.638' W
TP1	10-27-08	14'	8,480	171	163	30° 02.676' N 103° 12.638' W
TP1	11-3-08	20'			128	30° 02.676' N 103° 12.638' W
TP1	11-3-08	25'			121	30° 02.676' N 103° 12.638' W
TP1	11-3-08	30'			111	30° 02.676' N 103° 12.638' W
TP1	11-3-08	35'			113	30° 02.676' N 103° 12.638' W
TP1	11-3-08	40'	10,900		128	30° 02.676' N 103° 12.638' W
TP1	11-3-08	45'	6,460		79.5	30° 02.676' N 103° 12.638' W
TP1	11-3-08	50'	15,830		85.1	30° 02.676' N 103° 12.638' W
TP1	. 11-3-08	55'	2,338	111	27.2	30° 02.676' N 103° 12.638' W
TP1	11-3-08	60'	361	98	18.1	30° 02.676' N 103° 12.638' W
TP2	10-27-08	2'	17,450	159	880	32° 02.664' N 103° 12.637' W

Analyst Notes_____

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client Atlantic Richfield

Analyst Logan Anderson

Site Farnsworth Main Battery

Sample ID	Date	Depth	TPH / PPM	CI / PPM	PID / PPM	GPS
TP2	10-27-08	4'	15,680		420	32° 02.664' N 103° 12.637' W
TP2	10-27-08	6'	16,720		720	32° 02.664' N
TP2	10-27-08	8'	15,450		590	<u>103° 12.637' W</u> 32° 02.664' N
TP2	10-27-08	10'	17,200		610	<u>103° 12.637' W</u> 32° 02.664' N
						<u>103° 12.637' W</u> 32° 02.664' N
TP2	10-27-08	12'	14,310		688	<u>103° 12.637' W</u> 32° 02.664' N
TP2	10-27-08	14'	11,740	76	710	<u>103° 12.637' W</u> 32° 02.664' N
TP2	11-03-08	20'			204	103° 12.637' W
TP2	11-03-08	25'			239	32° 02.664' N 103° 12.637' W
TP2	11-03-08	30'			124	32° 02.664' N 103° 12.637' W
TP2	11-03-08	35'			127	32° 02.664' N 103° 12.637' W
TP2	11-03-08	40'	2,266		33.6	32° 02.664' N 103° 12.637' W
TP2	11-03-08	45'	770	87	39.8	32° 02.664' N 103° 12.637' W
TP2	11-03-08	50'	810	115	29.1	32° 02.664' N 103° 12.637' W
TP3	11-03-08	2'	8,220	47	137	32° 02.664' N
TP3	11-03-08	4'			199	103° 12.653' W 32° 02.664' N
TP3	11-03-08	6'			139	103° 12.653' W 32° 02.664' N
		-				<u>103° 12.653' W</u> 32° 02.664' N
TP3	11-03-08	8'			138	103° 12.653' W

Analyst Notes_

Field Analytical Report Form

Client Atlantic Richfield Analyst Logan Anderson

.

Site _____ Farnsworth Main Battery

Sample ID	Date .	Depth	TPH / PPM	CI / PPM	PID / PPM	GPS
TP3	11-03-08	10'			147	32° 02.664' N 103° 12.653' W
TP3	11-03-08	12'			56.2	32° 02.664' N 103° 12.653' W
ТР3	11-03-08	14'	7,670	89	174	32° 02.664' N 103° 12.653' W
TP3	11-03-08	20'	480	54	13.9	32° 02.664' N 103° 12.653' W
TP3	11-03-08	25'	118	96	14.0	32° 02.664' N 103° 12.653' W
TP4	10-27-08	2'	1,310	131	72.1	32° 12.672' N 103° 12.653'W
TP4	10-27-08	4'			173	32° 12.672' N 103° 12.653'W
TP4	10-27-08	6'			156	32° 12.672' N 103° 12.653'W
TP4	10-27-08	8'			144	32° 12.672' N. 103° 12.653'W
TP4	10-27-08	10'			178	32° 12.672' N 103° 12.653'W
TP4	10-27-08	12'			189	32° 12.672' N 103° 12.653'W
TP4	10-27-08	14'	11,260	75	154	32° 12.672' N 103° 12.653'W
TP4	11-03-08	20'	330	89	13.1	32° 12.672' N 103° 12.653'W
TP4	11-03-08	25'	240	57	13.8	32° 12.672' N 103° 12.653'W
TP5	10-28-08	2'	9,470	98	9.9	32° 02.672' N 103° 12.673' W
TP5	10-28-08	5'	3,610		8.7	32° 02.672' N 103° 12.673' W
TP5	10-28-08	10'	10,630		26.3	32° 02.672' N 103° 12.673' W

Analyst Notes_

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client_Atlantic Richfield Analyst _____ Logan Anderson

Site ____ Farnsworth Main Battery _____

Sample ID	Date	Depth	TPH / PPM	Cl/PPM	PID / PPM	GPS
TP5	10-28-08	14'	748	77	10.1	32° 02.672' N 103° 12.673' W
TP5	11-04-08	20'	65	111	11.2	32° 02.672' N 103° 12.673' W
TP5	11-04-08	25'	52	189	6.4	32° 02.672' N 103° 12.673' W
TP6	10-28-08	2'	36	46	0.0	320 02.638' N 103°12.634' W
TP6	10-28-08	5'	23	54	0.0	320 02.638' N 103°12.634' W
TP7	10-28-08	2'	1,640	72	0.0	32° 02.664' N 103° 12.719' W
TP7	10-28-08	5'	2,042	81	0.0	32° 02.664' N 103° 12.719' W
TP8	10-28-08	2'	782	53	0.1	32° 02.676' N 103° 12.691' W
TP8	10-28-08	5'	44	44	0.0	32° 02.676' N 103° 12.691' W
TP9	10-28-08	2'	46	76	0.0	32° 02.690' N 103° 12.679' W
TP9	10-28-08	5'	32	98	0.0	32° 02.690' N 103° 12.679' W
TP10	10-28-08	. 2'	4,190	143	0.0	32° 02.704' N 103° 112.678' W
TP10	10-28-08	5'	1,412	137	0.0	32° 02.704' N 103° 112.678' W
TP11	10-28-08	2'	22	150	0.0	32° 02.693' N 103° 12.689' W
TP11	10-28-08	5'	23	127	0.0	32° 02.693' N 103° 12.689' W
TP12	10-28-08	2'	32	26	0.0	32° 02.678' N 103° 12.711' W
TP12	10-28-08	5'	21	69	0.0	32° 02.678' N 103° 12.711' W

Analyst Notes_____

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client_Atlantic Richfield Analyst _____ Logan Anderson

Site _____ Farnsworth Main Battery ______

Sample ID	Date	Depth	TPH / PPM	CI / PPM	PID / PPM	GPS
TP13	10-28-08	2'	6,020	117	53.8	32° 02.688' N 103° 12.708' W
TP13	10-2808	5'	7,790		1.3	32° 02.688' N 103° 12.708' W
TP13	10-28-08	10'	11,890		97.8	32° 02.688' N 103° 12.708' W
TP13	10-28-08	14'	8,170		82.6	32° 02.688' N 103° 12.708' W
TP13	11-04-08	20'			374	32° 02.688' N 103° 12.708' W
TP13	11-04-08	25'			305	32° 02.688' N 103° 12.708' W
TP13	11-04-08	30'			307	32° 02.688' N 103° 12.708' W
TP13	11-04-08	35'			322	32° 02.688' N 103° 12.708' W
TP13	11-04-08	40'			225	32° 02.688' N 103° 12.708' W
TP13	11-04-08	45'			181	32° 02.688' N 103° 12.708' W
TP13	11-04-08	50'	5,340		74.7	32° 02.688' N 103° 12.708' W
TP13	11-04-08	55'			149	32° 02.688' N 103° 12.708' W
TP13	11-04-08	60'			140	32° 02.688' N 103° 12.708' W
TP13	11-04-08	65'			196	32° 02.688' N 103° 12.708' W
TP13	11-04-08	70'			174	32° 02.688' N 103° 12.708' W
TP13	11-04-08	75'			156	32° 02.688' N 103° 12.708' W
TP13	11-04-08	80'	8,630		128	32° 02.688' N 103° 12.708' W

Analyst Notes_

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client_Atlantic Richfield Analyst _____ Logan Anderson

Site Farnsworth Main Battery

	Sample ID	Date	Depth	TPH / PPM	Cl / PPM	PID / PPM	GPS
	TP13	11-04-08	85'			112	32° 02.688' N 103° 12.708' W
	TP13	11-04-08	90'	5,200		95.2	32° 02.688' N 103° 12.708' W
	TP13	11-04-08	95'	2,419	89	74.1	32° 02.688' N 103° 12.708' W
	TP13	11-04-08	100'	361	116	16.9	32° 02.688' N 103° 12.708' W
	TP14	10-28-08	2'	714	78	0.0	32° 02.700' N 103° 12.706' w
	TP14	10-28-08	5'	42	113	0.0	32° 02.700' N 103° 12.706' w
0 -	TP15	10-28-08	2'	46	98	0.1	32° 02.714' N 301° 12.708' W
	TP15	10-28-08	5'	29	95	0.0	32° 02.714' N 301° 12.708' W
	TP16	10-28-08	, 2'	17,900		0.0	32° 02.730' N 302° 12.676'W
	TP16	10-28-08	5'	1,960	88	0.0	32° 02.730' N 302° 12.676' W
	TP16	10-28-08	10'	2,610	87	0.0	32° 02.730' N 302° 12.676' W
n [TP17	10-29-08	2'	6.220	78	0.0	32° 02.686' N 103° 12.739' W
	TP17	10-29-08	5'	5,360		0.0	32° 02.686' N 103° 12.739' W
	TP17	10-29-08	10'	6,990		0.0	32° 02.686' N 103° 12.739' W
	TP17	10-29-08	14'	5,140		0.0	32° 02.686' N 103° 12.739' W
	TP17	11-04-08	20'	251	54	10.2	32° 02.686' N 103° 12.739' W
	TP17	11-04-08	25'	115	62	9.0	32° 02.686' N 103° 12.739' W

Analyst Notes_____

Field Analytical Report Form

Client Atlantic Richfield Analyst Logan Anderson

Site Farnsworth Main Battery

	Sample ID	Date	Depth	TPH / PPM	Cl / PPM	PID / PPM	GPS
IJ	Wall 1 A	10-28-08	2'	30	98	0.0	32° 02.654' N 103° 12.635' W
	Wall 1 A	10-28-08	5'	2,473	103	0.1	32° 02.654' N 103° 12.635' W
	Wall 1 A	10-28-08	10'	4,227	74	0.0	32° 02.654' N 103° 12.635' W
U	Wall 1 A	10-28-08	14'	574	111	0.0	32° 02.654' N 103° 12.635' W
	Wall 2 A	10-29-08	2'	117	116	0.0	32° 02.642' N 103° 12.633' W
	Wall 2 A	10-29-08	5'	33	79	0.0	32° 02.642' N 103° 12.633' W
U	Wall 2 A	10-29-08	10'	42	84	0.0	32° 02.642' N 103° 12.633' W
	Wall 2 A	10-29-08	14'	51	91	0.0	32° 02.642' N 103° 12.633' W
	Wall 3 A	10-29-08	2'	42	201	0.0	32° 02.641' N 301° 12.645' W
	Wall 3 A	10-29-08	5'	117	76	0.0	32° 02.641' N 301° 12.645' W
	Wall 3 A	10-29-08	10'	275	84	0.0	32° 02.641' N 301° 12.645' W
	Wall 3 A	10-29-08	14'	313	198	0.2	32° 02.641' N 301° 12.645' W
U	Wall 4 A	10-29-08	2'	76	117	0.0	32° 02.629' N 103° 12.639' W
	Wall 4 A	10-29-08	5'	23	45	0.0	32° 02.629' N 103° 12.639' W
	Wall 4 A	10-29-08	10'	45	52	0.0	32° 02.629' N 103° 12.639' W
	Wall 4 A	10-29-08	14'	41	59	0.0	32° 02.629' N 103° 12.639' W
	Wall 5 A	10-29-08	2'	2,960	111	0.6	32° 02.635' N 103° 12.628' W

Analyst Notes_

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client Atlantic Richfield Analyst Logan Anderson

Site Farnsworth Main Battery

Sample ID	Date	Depth	TPH / PPM	Cl / PPM	PID / PPM	GPS
Wall 5 A	10-29-08	5'	29	97	0.0	32° 02.635' N 103° 12.628' W
Wall 5 A	10-29-08	10'	190	85	0.0	32° 02.635' N 103° 12.628' W
Wall 5 A	10-29-08	14'	359	42	0.0	32° 02.635' N 103° 12.628' W
Wall 6 A	10-29-08	2'	139	79	0.0	32° 02.654' N 103° 12.661' W
Wall 6 A	10-29-08	5'	78	87	0.0	32° 02.654' N 103° 12.661' W
Wall 6 A	10-29-08	10'	64	104	0.1	32° 02.654' N 103° 12.661' W
Wall 6 A	10-29-08	14'	62	78	0.0	32° 02.654' N 103° 12.661' W
Wall 7 A	10-29-08	2'	3,460	72	16.7	32° 02.656' N 103° 12.677' W
Wall 7 A	10-29-08	5'	2,170	114	11.2	32° 02.656' N 103° 12.677' W
Wall 7 A	10-29-08	10'	2,580	119	9.9	32° 02.656' N 103° 12.677' W
Wall 7 A	10-29-08	14'	1,940	137	9.8	32° 02.656' N 103° 12.677' W
Wall 8 A	10-29-08	2'	330	172	0.0	32° 02.661' N 103° 12.699' W
Wall 8 A	10-29-08	5'	210	154	0.0	32° 02.661' N 103° 12.699' W
Wall 8 A	10-29-08	10'	98	165	0.0	32° 02.661' N 103° 12.699' W
Wall 8 A	10-29-08	14'	147	98	0.0	32° 02.661' N 103° 12.699' W
Wall 9 A	10-29-08	2'	470	184	0.0	32° 02.661' N 103° 12.718' W
Wall 9 A	10-29-08	5'	230	169	0.0	32° 02.661' N 103° 12.718' W

Analyst Notes_____

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client Atlantic Richfield Analyst Logan Anderson

Site Farnsworth Main Battery

Sample ID	Date	Depth	TPH / PPM	Cl / PPM	PID / PPM	GPS
Wall 9 A	10-29-08	10'	• 111	184	0.0	32° 02.661' N 103° 12.718' W
Wall 9 A	10-29-08	14'	150	97	0.0	32° 02.661' N 103° 12.718' W
Wall 10 A	10-29-08	2'	76	25	0.7	32° 02.667' N 103° 12.729' W
Wall 10 A	10-29-08	5'	101	116	1.1	32° 02.667' N 103° 12.729' W
Wall 10 A	10-29-08	10'	92	117	• 0.3	32° 02.667' N 103° 12.729' W
Wall 10 A	10-29-08	14'	141	121	0.0	32° 02.667' N 103° 12.729' W
Wall 10 A Wall 11 A	10-29-08	2'	232	76	0.0	32° 02.677' N 103° 12.744' W
Wall 11 A	10-29-08	5'	111	58	0.0	32° 02.677' N 103° 12.744' W
Wall 11 A	10-29-08	10'	47	94	0.0	32° 02.677' N 103° 12.744' W
Wall 11 A	10-29-08	14'	54	109	0.0	32° 02.677' N 103° 12.744' W
Wall 12 A	10-29-08	2'	78	176	0.0	32° 02.695' N 103° 12.742' W
Wall 12 A	10-29-08	5'	47	144	0.0	32° 02.695' N 103° 12.742' W
Wall 12 A	10-29-08	10'	54	171	0.0	32° 02.695' N 103° 12.742' W
Wall 12 A	10-29-08	14'	62	184	0.0	32° 02.695' N 103° 12.742' W
Wall 13 A	10-29-08	2'	77	111	0.0	32° 02.697' N 103° 12.736' W
Wall 13 A	10-29-08	5'	24	127	0.0	32° 02.697' N 103° 12.736' W
Wall 13 A	10-29-08	10'	104	89	0.0	32° 02.697' N 103° 12.736' W

Analyst Notes

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client_Atlantic Richfield Analyst _____ Logan Anderson

Site Farnsworth Main Battery

Sample ID	Date	Depth	TPH / PPM	CI / PPM	PID / PPM	GPS
Wall 13 A	10-29-08	14'	115	54	0.0	32° 02.697' N 103° 12.736' W
Wall 14 A	10-29-08	2'	. 84	201	0.0	32° 02.705' N 103° 12.717' W
Wall 14 A	10-29-08	5'	53	48	0.0	32° 02.705' N 103° 12.717' W
Wall 14 A	10-29-08	10'	21	59	0.0	32° 02.705' N 103° 12.717' W
Wall 14 A	10-29-08	14'	46	65	0.0	32° 02.705' N 103° 12.717' W
Wall 15 A	10-29-08	2'	107	213	0.0	32° 02.716' N 103° 12.716' W
Wall 15 A	10-29-08	5'	49	201	0.0	32° 02.716' N 103° 12.716' W
Wall 15 A	10-29-08	10'	88	199	0.0	32° 02.716' N 103° 12.716' W
Wall 15 A	10-29-08	14'	76	204	0.0	32° 02.716' N 103° 12.716' W
Wall 16 A	10-29-08	2'	78	117	0.0	32° 02.735' N 103° 12.702' W
Wall 16 A	10-29-08	5'	23	119	0.0	32° 02.735' N 103° 12.702' W
Wall 16 A	10-29-08	10'	45	148	0.0	32° 02.735' N 103° 12.702' W
Wall 16 A	10-29-08	14'	46	99	0.0	32° 02.735' N 103° 12.702' W
Wall 17 A	10-29-08	2'	99	108	0.0	32° 02.710' N 103° 12.697' W
Wall 17 A	10-29-08	5'	104	184	0.0	32° 02.710' N 103° 12.697' W
Wall 17 A	10-29-08	10'	37	193	0.0	32° 02.710' N 103° 12.697' W
Wall 17 A	10-29-08	14'	58	217	0.0	32° 02.710' N 103° 12.697' W

Analyst Notes

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client Atlantic Richfield Analyst Logan Anderson

Site Farnsworth Main Battery

Sample ID	Date	Depth	TPH / PPM	Cl / PPM	PID / PPM	GPS
Wall 18 A	10-29-08	2'	44	58	0.0	32° 02.700' N 103° 12.695' W
Wall 18 A	10-29-08	5'	18	69	0.0	32° 02.700' N 103° 12.695' W
Wall 18 A	10-29-08	10'	56	78	0.0	32° 02.700' N 103° 12.695' W
Wall 18 A	10-29-08	14'	27	63	0.0	32° 02.700' N 103° 12.695' W
Wall 19 A	10-29-08	2'	97	88	0.0	32° 02.709' N 103° 12.680' W
Wall 19 A	10-29-08	5'	88	109	0.0	32° 02.709' N 103° 12.680' W
Wall 19 A	10-29-08	10'	22	112	0.0	32° 02.709' N 103° 12.680' W
Wall 19 A	10-29-08	14'	101	154	0.0	32° 02.709' N 103° 12.680' W
Wall 20 A	10-29-08	2'	17	149	0.0	32° 02.736' N 103° 12.674' W
Wall 20 A	10-29-08	5'	21	74	0.0	32° 02.736' N 103° 12.674' W
Wall 20 A	10-29-08	10'	47	92	0.0	32° 02.736' N 103° 12.674' W
Wall 20 A	10-29-08	14'	54	84	0.0	32° 02.736' N 103° 12.674' W
Wall 21 A	10-30-08	2'	101	104	0.0	32° 02.717' N 103° 12.670' W
Wall 21 A	10-30-08	5'	75	83	0.0	32° 02.717' N 103° 12.670' W
Wall 21 A	10-30-08	10'	98	92	0.0	32° 02.717' N 103° 12.670' W
Wall 21 A	10-30-08	14'	44	109	0.0	32° 02.717' N 103° 12.670' W
Wall 22 A	10-30-08	2'	27	111	0.0	32° 02.689' N 103° 12.666' W

Analyst Notes_____

P.O. Box 14167 Odessa, TX 79768

Field Analytical Report Form

Client Atlantic Richfield Analyst Logan Anderson

Site Farnsworth Main Battery

Sample ID	Date	Depth	TPH / PPM	Cl / PPM	PID / PPM	GPS
Wall 22 A	10-30-08	5'	33	94	0.0	32° 02.689' N 103° 12.666' W
Wall 22 A	10-30-08	10'	51	67	0.0	32° 02.689' N 103° 12.666' W
Wall 22 A	10-30-08	14'	24	88	0.0	32° 02.689' N 103° 12.666' W
Wall 23 A	10-30-08	2'	1,400	114	9.1	32° 02.685' N 103° 12.647' W
Wall 23 A	10-30-08	5'	2,470	91	11.2	32° 02.685' N 103° 12.647' W
Wall 23 A	10-30-08	10'	981	54	0.0	32° 02.685' N 103° 12.647' W
Wall 23 A	10-30-08	14'	504	63	0.0	32° 02.685' N 103° 12.647' W
Wall 24 A	10-30-08	2'	35	201	0.0	32° 02.692' N 103° 12.635' W
Wall 24 A	10-30-08	5'	46	174	0.0	32° 02.692' N 103° 12.635' W
Wall 24 A	10-30-08	10'	51	53	0.0	32° 02.692' N 103° 12.635' W
Wall 24 A	10-30-08	14'	27	122	0.0	32° 02.692' N 103° 12.635' W
Wall 25 A	10-30-08	2'	3,570	27	4.3	32° 02.672' N 103° 12.627' W
Wall 25 A	10-30-08	5'	20,150	99	159	32° 02.672' N 103° 12.627' W
Wall 25 A	10-30-08	10'	4,590	154	141	32° 02.672' N 103° 12.627' W
Wall 25 A	10-30-08	14'	6,280	103	170	32° 02.672' N 103° 12.627' W

Analyst Notes_____

Section IV

Monitor Well Logs

angle me de lite

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

			L NUMBER)					OSE FILE NUM	ABER(S)			
No 1	ARCO F	arnsw	orth Main Ba	attery	MW-1							
Ĕ	WELL OW	NER NAM	E(S)					PHONE (OPTI	ONAL)			
CA	Atlantic											
Ĭ			ING ADDRESS		s			CITY		STATE		ZIP
ELI			Avenue, Suit	е 2				Plano		тх	75	074
M									· · · · · · · · · · · · · · · · · · ·			
N I	WEL	.		Dł	EGREES		ECONDS					
F	LOCATI	ON	LATITUDE		32	2	42.00 N	1	REQUIRED: ONE TEN	TH OF A SEC	COND	
ER	(FROM C	iPS)	LONGITUDE		103	12	43.00 W	* DATUM REC	QUIRED: WGS 84			
GENERAL AND WELL LOCATION	DESCRIPT	ION RELA	TING WELL LOCA	TION TO) STREET ADDRES	S AND COMMON LA	NDMARKS	I	·····			
1. G						o south turn in		A-B Lease I	Road			
		ginay	10, go puor									
	(2.5 ACI	E)	(10 ACRE)	1	(40 ACRE)	(160 ACRE)	SECTION		TOWNSHIP	NORTH	RANGE	🗍 EAST
Ŧ	1	4	1/4		1/4	1/4						WEST
NO	SUBDIVISI			1			LOT NUM	IBER	BLOCK NUMBER		UNIT/TRA	
Ĕ												
2. OPTIONAL	HYDROGR	APHIC SU	RVEY						MAP NUMBER		TRACT NU	MBER
7												
				OFNOFF					NAME OF WELL DI			
	LICENSE N		NAME OF L						Straub Corpo		IPAN I	
		1478	Raymon						· · · · · ·			
	DRILLING			1	DEPTH OF COM	PLETED WELL (FT)			E DEPTH (FT) DEPTH WATER FIRST ENCOUNTERED (FT)			
N	01-20)-2009	01-20-2	009		120		120				
II					- ·	, ,			STATIC WATER LEVEL IN COMPLETED WELL (FT)			
¢M/	COMPLET	ED WELL	IS. ARTESI	AN	DRY HOLE	SHALLOW (U	NCONFINED)			113		
3. DRILLING INFORMATION	DRILLING	FLUID:	🗸 AIR		MUD	ADDITIVES -	SPECIFY.					
NI (DRILLING	METHOD		v	HAMMER	CABLE TOOL	Потн	ER – SPECIFY:				
ONI									1	T		
ILL		H (FT)	BORE H			CASING ATERIAL		NECTION (CASING)	INSIDE DIA. CASING (IN)		G WALL IESS (IN)	SLOT SIZE (IN)
DR	FROM	TO	DIA. (I	(1)					· · · · ·			
۳. ۲	120	100				PVC SCREEN		FJ	2		154	.010
	100	+43'	' 6		SCH 40	PVC RISER		FJ	2	.0	154	RISER
									l		· .	
	DEPT	H (FT)	THICKN	ESS	FC				ATER-BEARING S			YIELD
VTA	FROM	то	(FT)		<u></u>	(INCLUDE WAT	ER-BEARING	CAVITIES O	R FRACTURE ZON	VES)		(GPM)
TRA	120	113	7	-		RED C	LAYEY SA	ND/SOFT S/	ANDSTONE			
GS												
RIN												
EA												
R B												
4. WATER BEARING STRATA	METHOD	JSED TO F	STIMATE VIELD)F WATE	ER-BEARING STRA	ТА			TOTAL ESTIMATE	D WELL YIFI	.D (GPM)	
M											()	
4												
	FOR OSI	INTER	NAL USE						WELL RECO	RD & LOG	(Version 6/	(9/08)

FOR OSE INTERNAL OSE	WELL RECORD & LOG	(version 6/9/08)	
FILE NUMBER	POD NUMBER	TRN NUMBER	•
LOCATION			PAGE 1 OF 2

đ	TYPE OF	F PUMP:	SUBMER		☐ JET □ CYLINDER	☑ NO PUMP – WELL NOT EQUIPPED ☐ OTHER – SPECIFY:			
SEAL AND PUMP			DEPTH	I (FT)	BORE HOLE	MATERIAL TYPE AND SIZE	AMOUNT	METHO PLACE	
Ч	ANNULAR FROM TO SEAL AND 120 97 GRAVEL PACK 97 2		. 6	DIA. (IN) Mathematical and a state of the s			.OAD		
						TOPL			
S.			2	+43"	6	63/8 BENTONITE HOLEPLUG2.5 BAGS6CEMENT1 BAG		TOPL	
	DEPTI	H (FT)	THICK	NESS		COLOR AND TYPE OF MATERIAL ENCOUNTE	RED	WAT	TER
	FROM	то	(F1	Г)	(INCL)	JDE WATER-BEARING CAVITIES OR FRACTU	RE ZONES)	BEAR	JNG?
	0	15	1:	5		BROWN SAND	· ·	T YES	Ø NO
	15	45	3	0		RED/TAN CALCIFIED SAND		☐ YES	Ø NO
	45	65	20	0		RED CLAYEY SAND		VES 1	NO NO
	65	80	15	5		RED SLIGHT CALCIFIED CLAYEY SA	ND	T YES	🗹 NO
E	80	86	6	i	•	RED SLIGHT CALCIFIED CLAYEY SA	AND	TYES	Ø NO
WEI	86	100	14	4		SANDY RED CLAY		The second secon	🗹 NO
OF	100	120	20	0	F	RED CLAYEY SAND (SOFT SANDSTO	ONE)	☑ YES	🗖 NO
DOJ	TD	120						T YES	🗖 NO
GEOLOGIC LOG OF WELL								🗖 YES	🗖 NO
TOC								YES	□ NO
GEO								☐ YES	□ NO
6.							<u> </u>	T YES	□ NO
, v								T YES	🗖 NO
								T YES	□ NO
		•						U YES	□ NO
								☐ YES	🗖 NO
								T YES	□ NO
		•	ATTACH	ADDITION	AL PAGES AS NE	EEDED TO FULLY DESCRIBE THE GEOLOGIC I	OG OF THE WELL	1	
			METHOD:	BAILE	R D PUMP	AIR LIFT OTHER – SPECIFY:			
NAL INFO	WELL	TEST	TEST RESU	LTS - ATTA	CH A COPY OF D	ATA COLLECTED DURING WELL TESTING, IN	CLUDING START TI	ME, END TI	ME,
			AND A TAE	BLE SHOWI	NG DISCHARGE	AND DRAWDOWN OVER THE TESTING PERIO	D		
			MENTS OR EXPL						
& ADDITIO	2X2 PA	D - 4'X4	'X60" ABO	VE GROU	JND SURFAC				
& Al									
	s.	,							
7. TÈST									
			······						
Ħ						ST OF HIS OR HER KNOWLEDGE AND BELIEF O THAT HE OR SHE WILL FILE THIS WELL REC			
SIGNATURE						ON OF WELL DRILLING:			2
l CN									
8. SI	 		SIGNATUR	E OF DRILL	LER	DATE			

5 - e

. .

•

 FOR OSE INTERNAL USE
 WELL RECORD & LOG (Version 6/9/08)

 FILE NUMBER
 POD NUMBER
 TRN NUMBER

 LOCATION
 PAGE 2 OF 2

.

P.O. Box 14167 Odessa, TX 79768

Monitor Well Report Form

Client Atlantic Richfield

Date 1-23-2009

Site _____ Farnsworth Main Tank Battery

Monitor Well ID	Depth of Water	Total Depth of Well	Feet of Water	Gallons of Water to Purge	Gallons of Water Purged	Time
MW-1	111.50'	122.85'	11.35'	5.55	5.5	11:53am
	· ·					
				•		,
						· · · · · · · · · · · · · · · · · · ·
- · ·		-				
	_					

Notes .Signature

Section V

10 A 4 A

Lab Summaries and Lab Reports

Lab Analytical Summary

Bottom and Wall Confirmations

Sample ID	TPH 8015M Mg/kg	Chloride mg/kg
TP1 @ 55'	898	ND
TP1 @ 60'	172	ND
TP2 @ 45'	341.6	ND
TP2 @ 50'	290.6	ND
TP3 @ 20'	63.3	ND
TP3 @ 25'	21	ND
TP4 @ 20'	88.3	ND
TP4 @ 25'	48.7	ND
TP5 @ 20'	17.3	ND
TP5 @ 25'	29	ND
TP6 @ 2'	ND	ND
TP6 @ 5'	ND	ND
TP7 @ 2'	279	ND
TP7 @ 5'	163.5	ND
TP8 @ 2'	130	ND
TP8 @ 5'	20.3	ND
TP9 @ 2'	ND	ND
TP9 @ 5'	ND	ND
TP10 @ 2'	237	ND
TP10 @ 5'	143.9	ND
TP11 @ 2'	ND	ND
TP11 @ 5'	ND	ND
TP12 @ 2'	ND	ND

Lab Analytical Summary

Bottom and Wall Confirmations

Sample ID	TPH 8015M Mg/kg	Chloride mg/kg
TP12 @ 5'	16.5	ND
TP13 @ 95'	600.4	ND
TP13 @ 100'	436.1	ND
TP14 @ 2'	179.6	ND
TP14 @ 5'	15.9	ND
TP15 @ 2'	ND	ND
TP15 @ 5'	ND	ND
TP16 @ 5'	372	ND
TP16 @ 10'	187.3	ND
TP17 @ 20'	ND	ND
TP17 @ 25'	ND	ND
Wall 1 @ 2'	30.1	ND
Wall 1 @ 5'	122.2	ND
Wall 1 @ 10'	401	ND
Wall 1 @ 14'	19.4	ND
Wall 5 @ 2'	244	ND
Wall 5 @ 5'	ND	ND
Wall 5 @ 10'	19.1	ND
Wall 5 @ 14'	29.5	ND
Wall 10 @ 2'	ND	ND
Wall 10 @ 5'	ND	ND
Wall 10 @ 10'	ND	ND
Wall 10 @ 14'	ND	ND

Lab Analytical Summary

Bottom and Wall Confirmations

Sample ID	TPH 8015M Mg/kg	Chloride mg/kg
Wall 15 @ 2'	ND	ND
Wall 15 @ 5'	ND	ND
Wall 15@ 10'	ND	ND
Wall 15 @ 14'	ND	ND
Wall 20 @ 2'	ND	ND
Wall 20 @ 5'	ND	ND
Wall 20 @ 10'	ND	ND
Wall 20 @ 14'	36.5	ND
Wall 25 @ 2'	1,216	ND
Wall 25 @ 5'	6,011	ND
Wall 25 @ 10'	2,417	ND
Wall 25 @ 14'	4,483	ND

Lab Analytical Summary

SPLP of Impacted Soil Below 4' BGS

Sample ID	Total TPH 8015M / ppm	SPLP TPH 8015M / ppm
TP1 @ 10'	9,467	136.06
TP2 @ 10'	580	1.72
TP13 @ 10'	4,082	147.89
TP17 @ 10	2,359	3.95

Report Date: July 26, 2007

Summary Report

Cliff Brunson BBC International 1324 W. Marland Hobbs, NM, 88240

Report Date: July 26, 2007

Work Order: 7071719

Project Location: Jal, NM Project Name: Farnsworth Main Tank Battery

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
130163	MW-1 002-002A	water	2007-07-13	12:50	2007-07-17
130164	Trip Blank	water	2007-07-13	00:00	2007-07-17

	TPH DRO	TPH GRO
	DRO	GRO
Sample - Field Code	(mg/L)	(mg/L)
130163 - MW-1 002-002A	<5.00	<0.100
130164 - Trip Blank		<0.100

Sample: 130163 - MW-1 002-002A

Param	Flag	Result	Units	\mathbf{RL}
Benzene		<1.00	$\mu g/L$	1.00
Toluene		<1.00	$\mu { m g}/{ m L}$	1.00
Ethylbenzene		<1.00	$\mu { m g}/{ m L}$	1.00
m,p-Xylene		<1.00	$\mu { m g}/{ m L}$	1.00
o-Xylene		<1.00	$\mu { m g}/{ m L}$	1.00

Sample: 130164 - Trip Blank

Param	Flag	\mathbf{Result}	Units	\mathbf{RL}
Benzene		<1.00	$\mu g/L$	1.00
Toluene		<1.00	$\mu { m g}/{ m L}$	1.00
Ethylbenzene		<1.00	$\mu { m g}/{ m L}$	1.00
m,p-Xylene		<1.00	$\mu g/L$	1.00
o-Xylene		<1.00	$\mu g/L$	1.00

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Analytical Report 316199

for

Elke Environmental, Inc.

Project Manager: Logan Anderson

Atlantic Richfield

10-NOV-08

E84880

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215 - Odessa/Midland, TX T104704215-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

Page 1 of 45

10-NOV-08

Project Manager: Logan Anderson Elke Environmental, Inc. 4817 Andrews Hwy P.O. Box 14167 Odessa, tx 79768 Odessa, TX 79762

Reference: XENCO Report No: **316199** Atlantic Richfield Project Address: Farnsworth Main Battery

Logan Anderson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 316199. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 316199 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America -----

-

Sample Cross Reference 316199

Elke Environmental, Inc., Odessa, TX

Atlantic Richfield

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TP5 @ 14'	S	Oct-28-08 08:47	14 ft	316199-001
TP6 @ 2'	S	Oct-28-08 09:01	2 ft	316199-002
TP6 @ 5'	S	Oct-28-08 09:14	5 ft	316199-003
TP7 @ 2'	S	Oct-28-08 10:05	2 ft	316199-004
TP7 @ 5'	S	Oct-28-08 10:17	5 ft	316199-005
TP8 @ 2'	S	Oct-28-08 11:03	2 ft	316199-006
TP8 @ 5'	S	Oct-28-08 11:24	5 ft	316199-007
TP9 @ 2'	S	Oct-28-08 11:46	2 ft	316199-008
TP9 @ 5'	S	Oct-28-08 11:55	5 ft	316199-009
TP10 @ 2'	S	Oct-28-08 12:47	2 ft	316199-010
TP10 @ 5'	S	Oct-28-08 13:05	5 ft	316199-011
TP11 @ 2'	S	Oct-28-08 13:38	2 ft	316199-012
TP11 @ 5'	S	Oct-28-08 13:59	5 ft	316199-013
TP12 @ 2'	S	Oct-28-08 14:29	2 ft	316199-014
TP12 @ 5'	S	Oct-28-08 14:51	5 ft	316199-015
TP14 @ 2'	S	Oct-28-08 15:15	2 ft	316199-016
TP14 @ 5'	S	Oct-28-08 15:28	5 ft	316199-017
TP15 @ 2'	S	Oct-28-08 16:03	2 ft	316199-018
TP15 @ 5'	S ·	Oct-28-08 16:37	5 ft	316199-019
TP16 @ 5'	S	Oct-28-08 16:55	5 ft	316199-020
TP16 @ 10'	S	Oct-28-08 17:07	10 ft	316199-021
Wall 1 A @ 2'	S	Oct-28-08 17:31	2 ft	316199-022
Wall 1 A @ 5'	S	Oct-28-08 17:40	5 ft	316199-023
Wall 1 A @ 10'	S	Oct-28-08 17:47	10 ft	316199-024
Wall 1 A @ 14'	S	Oct-28-08 17:55	14 ft	316199-025
Wall 5 A @ 2'	S	Oct-29-08 07:37	2 ft	316199-026
Wall 5 A @ 5'	S	Oct-29-08 07:42	5 ft	316199-027
Wall 5 A @ 10'	S	Oct-29-08 07:47	10 ft	316199-028
Wall 5 A @ 14'	S	Oct-29-08 07:52	14 ft	316199-029
Wall 10 A @ 2'	S	Oct-29-08 11:51	2 ft	316199-030
Wall 10 A @ 5'	S	Oct-29-08 11:58	5 ft	316199-031
Wall 10 A @ 10'	S	Oct-29-08 12:01	10 ft	316199-032
Wall 10 A @ 14'	S	Oct-29-08 12:10	14 ft	316199-033
Wall 15 A @ 2'	S	Oct-29-08 14:17	2 ft	316199-034
Wall 15 A @ 5'	S	Oct-29-08 14:41	5 ft	316199-035
Wall 15 A @ 10'	S	Oct-29-08 14:52	10 ft	316199-036
Wall 15 A @ 14'	S	Oct-29-08 14:59	14 ft	316199-037
Wall 20 A @ 2'	S	Oct-29-08 17:01	2 ft	316199-038
Wall 20 A @ 5'	S	Oct-29-08 17:05	5 ft	316199-039
Wall 20 A @ 10'	S	Oct-29-08 17:16	10 ft	316199-040
Wall 20 A @ 14'	S	Oct-29-08 17:25	14 ft	316199-041
Wall 25 A @ 2'	S	Oct-30-08 07:38	2 ft	316199-042
Wall 25 A @ 5'	S	Oct-30-08 07:52	5 ft	316199-043

.

-

Sample Cross Reference 316199

Elke Environmental, Inc., Odessa, TX

and the short

Wall 25 A @ 10'	S	Oct-30-08 07:59	10 ft	316199-044
Wall 25 A @ 14'	S	Oct-30-08 08:23	14 ft	316199-045
TP1 @ 10'	S	Oct-30-08 09:15	10 ft	316199-046
TP2 @ 10'	S	Oct-30-08 10:11	10 ft	316199-047
TP13 @ 10'	S	Oct-30-08 11:24	10 ft	316199-048
TP17 @ 10'	S	Oct-30-08 12:35	10 ft	316199-049

Elke Environmental, Inc., Odessa, TX

Date Received in Lab: Thu Oct-30-08 04:27 pm

Project Name: Atlantic Richfield

Project Id:

Contact: Logan Anderson

roject Location: Farnsworth Main Battery								Report	Date:	10-NOV-08			
								Project Mar	ager:	Brent Barron,	II		
	Lab Id:	316199-0	01	316199-0	02	316199-0	03	316199-0	04	316199-0	005	316199-0	06
Analysis Pagyastad	Field Id:	TP5 @ 1	TP5 @ 14'		2'	TP6 @ :	5'	TP7 @ 2	2'	TP7 @	5'	TP8 @ 2	2'
Analysis Requested	Depth:	14 ft	14 ft		2 ft		5 ft		2 ft			2 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	ĺ	SOIL	
	Sampled:	Oct-28-08 (08:47	Oct-28-08 (09:01	Oct-28-08 0	9.14	Oct-28-08 1	0.02	Oct-28-08	10:17	Oct-28-08 1	1:03
Anions by EPA 300/300.1	Extracted:												
······································	Analyzed:	Oct-31-08	11.00	Oct-31-08	11:00	Oct-31-08 1	1.00	Oct-31-08	1.00	Oct-31-08	11:00	Oct-31-08 1	1.00
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	5.24	ND	5.15	ND	5.23	ND	5.25	ND	5.23	ND	5.15
Percent Moisture	Extracted:												
	Analyzed:	Oct-31-08	17:00	Oct-31-08	17.00	Oct-31-08 1	7.00	Oct-31-08	7.00	Oct-31-08	17.00	Oct-31-08 1	7.00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		4.56	1.00	2.99	1.00	4.32	1.00	4 82	1.00	4 35	1.00	2.85	1.00
TPH By SW8015 Mod	Extracted:	Oct-31-08	13:00	Oct-31-08	13.00	Oct-31-08 1	3.00	Oct-31-08	3:00	Oct-31-08	13 00	Oct-31-08 1	3.00
1111 Dy 500000 1104	Analyzed:	Nov-01-08	12:41	Nov-01-08	13:07	Nov-01-08	13:34	Nov-01-08	14.01	Nov-01-08	14:27	Nov-01-08 1	14:53
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15.7	ND	15 5	ND	15.7	ND	15.8	ND	15 7	ND	15.4
C12-C28 Diesel Range Hydrocarbons		85 4	157	ND	15 5	ND	15 7	139	158	106	15.7	87 6	15 4
C28-C35 Oil Range Hydrocarbons		ND	15.7	ND	15.5	ND	15.7	140	15.8	57.5	15.7	42.4	15.4
Total TPH		85.4		ND		ND		279		163 5		130	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Brent Barron

Odessa Laboratory Director

Elke Environmental, Inc., Odessa, TX

Date Received in Lab: Thu Oct-30-08 04:27 pm

Project Name: Atlantic Richfield

Project Id:

Contact: Logan Anderson

roject Location: Farnsworth Main Battery								Report Project Mar		10-NOV-08 Brent Barron,	п		
	Lab Id:	316199-0	07	316199-0	08	316199-0	09	316199-0		316199-0		316199-01	12
	Field Id:	TP8 @	5'	TP9 @	2'	TP9 @ :	5'	TP10@	2'	TP10 @	5'	TP11@2	2'
Analysis Requested	Depth:	5 ft		2 ft		5 ft		2 ft		5 ft		2 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-28-08	1:24	Oct-28-08	1:46	Oct-28-08 1	1:55	Oct-28-08 1	2.47	Oct-28-08	3.05	Oct-28-08 1	3:38
Anions by EPA 300/300.1	Extracted:												
	Analyzed:	Oct-31-08	11.00	Oct-31-08	1.00	Oct-31-08 1	1.00	Oct-31-08 1	1.00	Oct-31-08	5.09	Oct-31-08 1	5.09
	Units/RL:	mg/kg	RL	mg/kg	RL	-mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	5.14	ND	5 19	ND	5,15	ND	5.22	ND	5.25	ND	5.08
Percent Moisture	Extracted:				_							_	
	Analyzed:	Oct-31-08	17.00	Oct-31-08	7:00	Oct-31-08 1	7:00	Oct-31-08 1	7.00	Oct-31-08	17.00	Oct-31-08 1	7:00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		2.74	1.00	3.64	1.00	2.83	1.00	4.14	1.00	4 68	1.00	1.60	1 00
TPH By SW8015 Mod	Extracted:	Oct-31-08	13.00	Oct-31-08	3.00	Oct-31-08	3.00	Oct-31-08 1	3.00	Oct-31-08	13 00	Oct-31-08 1	3.00
	Analyzed:	Nov-01-08	15:19	Nov-01-08	15.44	Nov-01-08	16.10	Nov-01-08	16:35	Nov-01-08	17 24	Nov-01-08 1	17.48
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15.4	ND	156	ND	15 4	ND	15 6	ND	157	ND	15.2
C12-C28 Diesel Range Hydrocarbons		20 3	15 4	ND	156	ND	15 4	118	15.6	78 6	15.7	ND	15 2
C28-C35 Oil Range Hydrocarbons		ND	15.4	ND	156	ND	15.4	119	15.6	65.3	15.7	ND	15.2
Total TPH		20.3		ND		ND		237		143.9		ND	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work outer unless otherwise agreed to in writing

Brent Barron

Odessa Laboratory Director

Chloride

Percent Moisture

Total TPH

Certificate of Analysis Summary 316199

Elke Environmental, Inc., Odessa, TX

RL

15.4

15.4

15.4

Date Received in Lab: Thu Oct-30-08 04:27 pm

RL

154

15.4

154

mg/kg

ND

159

ND

15.9

Project Name: Atlantic Richfield

Contact: Logan Anderson

C6-C12 Gasoline Range Hydrocarbons

C12-C28 Diesel Range Hydrocarbons

C28-C35 Oil Range Hydrocarbons

Project Id:

Project Location: Farm

Contact: Logan Anderson								-	-				
Location: Farnsworth Main Battery								Report	Date:	10-NOV-08			
•								Project Ma	nager:	Brent Barron,	II		
	Lab Id:	316199-0	13	316199-0	14	316199-0	15	316199-0	016	316199-0	017	316199-01	18
Analysis Degreested	Field Id:	TP11 @	5'	TP12 @	2'	TP12@	5'	TP14 @	2'	TP14 @	5'	TP15@2	2'
Analysis Requested	Depth:	5 ft		2 ft		5 ft		2 ft		5 ft		2 ft	
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-28-08	3:59	Oct-28-08 1	4:29	Oct-28-08 1	4:51	Oct-28-08	15.15	Oct-28-08	15:28	Oct-28-08 1	6:03
Anions by EPA 300/300.1	Extracted:											-	
	Analyzed:	Oct-31-08	15.09	Oct-31-08 1	5.09	Oct-31-08 1	5 09	Oct-31-08	15.09	Oct-31-08	15.09	Oct-31-08 1	5.09
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
de		ND	5.04	ND	5.13	ND	5.15	ND	5.14	ND	5.26	ND	5.12
Percent Moisture	Extracted:												
	Analyzed:	Oct-31-08	17:00	Oct-31-08 I	7.00	Oct-31-08 1	7.00	Oct-31-08	17.00	Oct-31-08	17:00	Oct-31-08 1	7.00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
t Moisture	•	ND	1 00	2 48	1.00	3 00	1.00	2 78	1.00	4 88	1 00	2 39	1.00
TPH By SW8015 Mod	Extracted:	Oct-31-08	13.00	Oct-31-08 1	3.00	Oct-31-08 1	3.00	Oct-31-08	13.00	Oct-31-08	13.00	Oct-31-08 1	3:00
	Analyzed:	Nov-01-08	18:13	Nov-01-08	18.39	Nov-01-08 1	19 05	Nov-01-08	19:31	Nov-01-08	19.56	Nov-01-08 2	0.23

RL

154

15.4

15.4

mg/kg

ND

165

ND

165

RL

15 5

15 5

15.5

mg/kg

ND

92 6

87.0

179.6

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our hability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Units/RL:

RL

15.1

15.1

15 1

mg/kg

ND

ND

ND

ND

mg/kg

ND

ND

ND

ND

Brent Barron

Odessa Laboratory Director

RL

15.8

158

158

mg/kg

ND

ND

ND

ND

Elke Environmental, Inc., Odessa, TX

Date Received in Lab: Thu Oct-30-08 04:27 pm

Project Name: Atlantic Richfield

Project Id:

Contact: Logan Anderson

Project Location: Farnsworth Main Battery								Report Project Mai		10-NOV-08 Brent Barron,	II		
	Lab Id:	316199-0	19	316199-0	20	316199-0	21	316199-0	22	316199-0	023	316199-02	24
Analysis Requested	Field Id:	TP15 @	TP15 @ 5'		5'	TP16 @	10'	Wall 1 A (@_2'	Wall 1 A @ 5'		Wall 1 A @	10'
Anutysis Kequesteu	Depth:	a: 5 ft		5 ft		10 ft		2 ft		5 ft		10 ft	
	Matrix:	SOIL	SOIL		SOIL		SOIL		SOIL		SOIL		
	Sampled:	Oct-28-08 1	6:37	Oct-28-08	16.55	Oct-28-08 1	7:07	Oct-28-08 1	17:31	Oct-28-08	17.40	Oct-28-08 1	7·47
Anions by EPA 300/300.1	Extracted:												
	Analyzed:	Analyzed: Oct-31-08 15:09		Oct-31-08 15.09		Oct-31-08 15 09		Oct-31-08 15.09		Oct-31-08 15 09		Oct-31-08 1:	5.09
	Units/RL:	mg/kg	RL	mg/kg	RL.	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	5.15	ND	5.31	ND	5.35	ND	5.04	ND	5.46	ND	10 7
TPH By SW8015 Mod	Extracted:	Oct-31-08	13·00	Oct-31-08	13:00	Oct-31-08 1	4.00	Oct-31-08 1	14.00	Oct-31-08	14 00	Oct-31-08 1-	4.00
	Analyzed:	Nov-01-08	20:49	Nov-01-08	21.16	Nov-02-08	02.12	Nov-02-08	02.39	Nov-02-08	03:06	Nov-02-08 0	3,34
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15.4	ND	15.9	ND	16.0	30 1	15.1	ND	16 4	ND	16.0
C12-C28 Diesel Range Hydrocarbons		ND	15.4	183	15.9	124	16.0	ND	15.1	78.5	164	203	16.0
C28-C35 Oil Range Hydrocarbons		ND	15.4	189	15.9	63.3	16.0	ND	15.1	43.7	16.4	198	16.0
Total TPH		ND		372		187 3		30 1		122.2		401	

.

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

17

Elke Environmental, Inc., Odessa, TX

Project Name: Atlantic Richfield

Project Id:

Contact: Logan Anderson

Project Location: Farnsworth Main Battery

Date Received in Lab: Thu Oct-30-08 04:27 pm Report Date: 10-NOV-08

Diect Location: Farnsworth Main Battery													
Spece Docution, a sum worth triain buttery								Project Man	ager: 1	Brent Barron,	11		
	Lab Id:	316199-0	19	316199-0	20	316199-0	21	316199-0	22	316199-0	23	316199-02	24
Annahasin Danasatad	Field Id:	TP15@	5'	TP16 @ 5'		TP16 @ 10'		Wall 1 A @ 2'		Wall 1 A @ 5'		Wali 1 A @) 10'
Analysis Requested	Depth:	5 ft				10 ft		2 ft		5 ft		10 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-28-08 1	6:37	Oct-28-08 1	6:55	Oct-28-08 1	7:07	Oct-28-08 1	7:31	Oct-28-08 1	7.40	Oct-28-08 17	7:47
Percent Moisture	Extracted:												
	Analyzed:	Oct-31-08	7.00	Oct-31-08	7:00	Nov-01-08	11.06	Nov-01-08	11.06	Nov-01-08	1.06	Nov-01-08 1	1.06
	Units/RL:	%	RL	% :	RL	%	RL	%	RL	%	RL	%	R
ercent Moisture		2 82	1.00	5.84	1.00	6 51	1.00	ND	1.00	8.39	1.00	6.52	1.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the bert judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Brent Barron

Odessa Laboratory Director

ł ŧ.

Certificate of Analysis Summary 316199

Elke Environmental, Inc., Odessa, TX **Project Name: Atlantic Richfield**

L.

Date Received in Lab: Thu Oct-30-08 04:27 pm

Ľ

Project Id:

Contact: Logan Anderson

Contact: Logan Anderson								Report	Nate.	10-NOV-08			
oject Location: Farnsworth Main Battery								Project Mar		Brent Barron,	п		
	Lab Id:	316199-0	25	316199-0	26	316199-0	27	316199-0		316199-0		316199-03	30
	Field Id:	Wall 1 A @	Vall 1 A @ 14'		a, 2'	Wall 5 A (a), 5'	Wall 5 A @	2 10'	Wall 5 A @ 14'		Wall 10 A (@ 2'
Analysis Requested	Depth:	14 ft	0			5 ft	-	10 ft		14 ft		2 ft	0
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-28-08	Oct-28-08 17:55		07:37	Oct-29-08 0	07:42	Oct-29-08 0	7:47	Oct-29-08 (07:52	Oct-29-08 1	1:51
Anions by EPA 300/300.1	Extracted:												
Amons by ETA 500/500.1	Analyzed:	Oct-31-08	Dct-31-08 15.09		15.09	Oct-31-08 1	15.09	Oct-31-08 15 09		Oct-31-08 15.09		Oct-31-08 1	5:09
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	5.03	ND	5.15	ND	5.09	ND	5.26	ND	5.61	ND	5.07
Percent Moisture	Extracted:												
	Analyzed:	Nov-01-08	11:06	Nov-01-08	11.06	Nov-01-08	11.06	Nov-01-08	1.06	Nov-01-08	11:06	Nov-01-08 1	11:06
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		ND	1.00	2.99	1.00	1 75	1.00	4 97	1.00	10.91	1.00	1 34	1.00
TPH By SW8015 Mod	Extracted:	Oct-31-08	14,00	Oct-31-08	14:00	Oct-31-08 1	14·00	Oct-31-08 1	4·00	Oct-31-08	14:00	Oct-31-08 1	4.00
1111 Dy 500015 Midu	Analyzed:	Nov-02-08	04:01	Nov-02-08	04·28	Nov-02-08	04.55	Nov-02-08 ()5·22	Nov-02-08	05:49	Nov-02-08 (06:16
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15 1	ND	15.5	ND	15.3	ND	15 8	ND	168	ND	15.2
C12-C28 Diesel Range Hydrocarbons		19 4	15 1	122	15 5	ND	153	19 1	15 8	29.5	16.8	ND	15 2
C28-C35 Oil Range Hydrocarbons		ND	15 1	122	15.5	ND	15.3	ND	15.8	ND	168	ND	15.2
Total TPH		19.4		244		ND		191		29 5		ND	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Out liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Brent Barron

Odessa Laboratory Director

2

Certificate of Analysis Summary 316199

Elke Environmental, Inc., Odessa, TX

Project Name: Atlantic Richfield

Project Id:

Contact: Logan Anderson

Project Location: Farnsworth Main Battery

Date Received in Lab: Thu Oct-30-08 04:27 pm

Report Date: 10-NOV-08

ojet Deuton. Tunskoni ham Suier,								Project Mar	ager:	Brent Barron,	П		
	Lab Id:	316199-0	31	316199-0	316199-032		316199-033		34	316199-035		316199-03	36
Anglusia Degraphed	Field Id:	Wall 10 A	@ 5'	Wall 10 A (Wall 10 A @ 10'		Wall 10 A @ 14'		@ 2'	Wall 15 A @ 5'		Wall 15 A @	ā) 10'
Analysis Requested	Depth:	5 ft 10 ft			14 ft		2 ft		5 ft	10 ft			
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-29-08	1:58	Oct-29-08 1	2:01	Oct-29-08 1	2:10	Oct-29-08 1	4:17	Oct-29-08	14:41	Oct-29-08 1	4:52
Anions by EPA 300/300.1	Extracted:												
· · · · · · · · · · · · · · · · · · ·	Analyzed:	Oct-31-08	-31-08 23 42 Oct		23 42	Oct-31-08 2	23:42	Oct-31-08 2	3 42	Oct-31-08	23 42	Oct-31-08 2	23:42
•	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	5.29	ND	5.19	ND	5.12	ND	5.16	ND	5.38	ND	5.17
Percent Moisture	Extracted:												
	Analyzed:	Nov-01-08	11 06	Nov-01-08	11.06	Nov-01-08	11.06	Nov-01-08	11.06	Nov-01-08	11:06	Nov-01-08 1	11:06
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		5.40	1.00	3.57	1 00	2 31	1.00	3.19	1.00	6 98	1.00	3 35	1 00
TPH By SW8015 Mod	Extracted:	Oct-31-08	14:00	Oct-31-08 1	4·00	Oct-31-08 1	14.00	Oct-31-08 1	4·00	Oct-31-08	14.00	Oct-31-08 1	4.00
	Analyzed:	Nov-02-08	07:11	Nov-02-08 (07 38	Nov-02-08	08:05	Nov-02-08	08·33	Nov-02-08	08 [.] 58	Nov-02-08 0	09.25
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	_ mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15.9	ND	156	ND	154	ND	15.5	ND	16.1	ND	15.5
C12-C28 Diesel Range Hydrocarbons		ND	15.9	ND	15.6	ND	15 4	ND	15 5	ND	16 1	ND	15.5
C28-C35 Oil Range Hydrocarbons		ND	15.9	ND	15.6	ND	15.4	ND	15.5	ND	16.1	ND	15 5
Total TPH		ND		ND		ND		ND		ND		ND	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our lability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Brent Barron

Odessa Laboratory Director

Project Id:

Certificate of Analysis Summary 316199

Elke Environmental, Inc., Odessa, TX

Project Name: Atlantic Richfield

Lab Id:

316199-037

Contact: Logan Anderson

Project Location: Farnsworth Main Battery

	D	Date Received in Lab: Thu Oct-30-08 04:27 pm . Report Date: 10-NOV-08							
		Project Manager:	Brent Barron, II						
316199-038	316199-039	316199-040	316199-041	316199-042					
Wall 20 A @ 2'	Wall 20 A @ 5'	Wall 20 A @ 10'	Wall 20 A @ 14'	Wall 25 A @ 2					

Anglusic Pagnastad	Field Id:	Wall 15 A (a) 14'	Wall 20 A @ 2'		Wall 20 A @ 5'		Wall 20 A @ 10'		Wall 20 A @ 14'		Wall 25 A @ 2		
Analysis Requested	Depth:	14 ft		2 ft		5 ft		10 ft		14 ft		2 ft		
	Matrix:	SOIL		SOIL	SOIL		SOIL			SOIL		SOIL		
	Sampled:	Oct-29-08	-29-08 14:59 Oc		7:01	Oct-29-08 1	7.05	Oct-29-08 1	7:16	Oct-29-08 1	7:25	Oct-30-08 0'	7·38	
Anions by EPA 300/300.1	Extracted:													
	Analyzed:	Oct-31-08 2	23 42	Oct-31-08 2	3.42	Oct-31-08 2	3:42	Oct-31-08 2	3.42	Oct-31-08 2	3 42	Oct-31-08 2	3 42	
	Units/RL: mg/kg RL		RL.	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		ND	5.19	ND	5.13	ND	5,45	ND	5.20	ND	5.55	ND	5 35	
Percent Moisture	Extracted:													
i ei cent ivitolistur e	Analyzed:	Nov-01-08	Nov-01-08 11:06 N		-01-08 11:06 Nov-01-08 11.06		Nov-01-08 11:06		Nov-01-08	1:06	Oct-31-08 1	7:00	Oct-31-08 1	7.00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL	
Percent Moisture		3 68	1 00	2.46	1.00	8 28	1.00	3.79	1 00	9.83	1.00	6.57	1.00	
TPH By SW8015 Mod	Extracted:	Oct-31-08	14 00	Oct-31-08 1	4:00	Oct-31-08 1	4·00	Oct-31-08 1	4 00	Oct-31-08 1	7 00	Oct-31-08 1	7.00	
	Analyzed:	Nov-02-08	09:50	Nov-02-08	10:15	Nov-02-08	10 [.] 41	Nov-02-08	1:08	Nov-02-08	00.44	Nov-03-08 0	01-11	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
C6-C12 Gasoline Range Hydrocarbons		ND	15 6	ND	15.4	ND	164	ND	15.6	178	16.6	ND	16 1	
C12-C28 Diesel Range Hydrocarbons		ND	15.6	ND	15 4	ND	164	ND	15.6	18.7	166	626	16.1	
C28-C35 Oil Range Hydrocarbons		ND	15.6	ND	15.4	ND	16.4	ND	156	ND	16.6	590	16 1	
Total TPH .		ND		ND		ND		ND		36.5		1216		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Brent Barron

Odessa Laboratory Director

- F. S. H. L. S. S. P. J.
Laboratories

Elke Environmental, Inc., Odessa, TX Project Name: Atlantic Richfield

Project Id:

Contact: Logan Anderson

Project Location: Farnsworth Main Battery

Date Received in Lab: Thu Oct-30-08 04:27 pm Report Date: 10-NOV-08

					Project Manage	r: Bre	nt Barron,	II		
	Lab Id:	316199-043	316199-044	316199-045	316199-046		316199-0	47	316199-0	48
Analysis Descripted	Field Id:	Wall 25 A @ 5'	Wall 25 A @ 10'	Wall 25 A @ 14'	TP1 @ 10'		TP2 @ 10'		TP13 @ 1	10'
Analysis Requested	Depth:	5 ft	10 ft	14 ft	-10 ft		-10 ft		-10 ft	
	Matrix:	SOIL	SOIL	SOIL	SOIL SOIL		SOIL			
	Sampled:	Oct-30-08 07.52	Oct-30-08 07:59	Oct-30-08 08:23	Oct-30-08 09:15		Oct-30-08	0:11	Oct-30-08 1	1:24
SPLP TPH By SW8015 Mod	Extracted:				Nov-05-08 17:00	1	Nov-05-08	17:00	Nov-05-08	17.00
STEP TIT By SW0015 Midd	Analyzed:				Nov-06-08 14.56	1	Nov-06-08	12-21	Nov-06-08 1	15.20
	Units/RL:				mg/L H	L	mg/L	RL	mg/L	RL
C6-C12 Gasoline Range Hydrocarbons					8.06 1.	50	ND	1.50	7.09	1.50
C12-C28 Diesel Range Hydrocarbons					109 1.	50	1.72	1.50	115	1.50
C28-C35 Oil Range Hydrocarbons					19.0 1	50	ND	1 50	25 8	1 50
Total TPH					136 06		1 72		147.89	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our lability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

•

Elke Environmental, Inc., Odessa, TX

Project Name: Atlantic Richfield

Date Received in Lab: Thu Oct-30-08 04:27 pm Report Date: 10-NOV-08

Project Id:

Contact: Logan Anderson

Project Location: Farnsworth Main Battery

oject Location. Tanisworth Main Dattery								Project Mar	nager:	Brent Barron,	II		
	Lab Id:	316199-0	043	316199-0	44	316199-0	45	316199-0	46	316199-0	047	316199-0	48
Anglasia Descripted	Field Id:	Wall 25 A	@ 5'	Wall 25 A (@ 10'	Wall 25 A (@ 14'	TP1 @ 1	0'	TP2 @ 1	10'	TP13 @ 1	10'
Analysis Requested	Depth:	5 ft		10 ft		14 ft		10 ft		10 ft		10 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Oct-30-08	07.52	Oct-30-08 (07.59	Oct-30-08 (08:23	Oct-30-08 0	9.15	Oct-30-08	10:11	Oct-30-08 1	1.24
Anions by EPA 300/300.1	Extracted:												
	Analyzed:	Oct-31-08	23-42	Oct-31-08 2	23:42	Oct-31-08 2	23.42						
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL						
Chloride		ND	5.59	ND	5.26	ND	5.35						
Percent Moisture	Extracted:												
	Analyzed:	Oct-31-08	17:00	Oct-31-08	7:00	Oct-31-08	7.00	Oct-31-08 1	7.00	Oct-31-08	17:00	Oct-31-08 1	7.00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	R
Percent Moisture		10.56	1.00	4.97	1.00	6.48	1.00	8 80	1 00	10.87	1.00	9 66	1
TPH By SW8015 Mod	Extracted:	Oct-31-08	17.00	Oct-31-08	7:00	Oct-31-08	7 00	Oct-31-08 1	7 00	Oct-31-08	17.00	Oct-31-08 1	7.00
1111 Dy 500000 0000	Analyzed:	Nov-03-08	01-39	Nov-03-08	02.06	Nov-03-08	02·33	Nov-03-08 ()3·00	Nov-03-08	03:28	Nov-03-08 (03:55
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	R
C6-C12 Gasoline Range Hydrocarbons		381	168	225	158	353	160	657	164	ND	168	301	83
C12-C28 Diesel Range Hydrocarbons		4460	168	1950	158	3420	160	7440	164	302	168	2870	83
C28-C35 Oil Range Hydrocarbons		1170	168	242	158	710	160	1370	164	278	168	911	8.
Total TPH		6011		2417		4483		9467		580		4082	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our lability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

÷

Brent Barron

Odessa Laboratory Director

1000			
			1
	۲	-	
		- - -	• .
	_	_	
	_ 4° *		
	17.		
	E	EN	ENC

Elke Environmental, Inc., Odessa, TX

Project Name: Atlantic Richfield

Project Id:

Contact: Logan Anderson

Project Location: Farnsworth Main Battery

Date Received in Lab: Thu Oct-30-08 04:27 pm

Report Date: 10-NOV-08 Project Manager: Brent Barron, II

			Froject Wianager:	Dicht Ballon, II
	Lab Id:	316199-049		
Anglusia Degranted	Field Id:	TP17 @ 10'		
Analysis Requested	Depth:	-10 ft		
	Matrix:	SOIL		
	Sampled:	Oct-30-08 12.35		
SPLP TPH By SW8015 Mod	Extracted:	Nov-05-08 17:00		
Stell Thirdy Stroots Midd	Analyzed:	Nov-06-08 14.32		
	Units/RL:	mg/L RL		
C6-C12 Gasoline Range Hydrocarbons		ND 1.50		
C12-C28 Diesel Range Hydrocarbons		3.95 1.50		
C28-C35 Oil Range Hydrocarbons		ND 1 50		
Total TPH		3.95		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Brent Barron

Odessa Laboratory Director

	· ·	- 2,		· .	
		1	V	73	
	9				• 1
4.5	. 2		2 6		5 I.
				7 1 1	10.3
	÷.	~	-		

Elke Environmental, Inc., Odessa, TX

Project Name: Atlantic Richfield

Project Id:

Contact: Logan Anderson

Project Location: Farnsworth Main Battery

Date Received in Lab: Thu Oct-30-08 04:27 pm

Report Date: 10-NOV-08

Project Manager: Brent Barron, II

	Lab Id:	316199-049			
Anglusis Baguestad	Field Id:	TP17 @ 10'			
Analysis Requested	Depth:	10 ft			
	Matrix:	SOIL			
	Sampled:	Oct-30-08 12:35			
Percent Moisture	Extracted:				
	Analyzed:	Oct-31-08 17:00			
	Units/RL:	% RL			
Percent Moisture		5.57 1.00			
TPH By SW8015 Mod	Extracted:	Oct-31-08 17.00			
	Analyzed:	Nov-03-08 04:22			
	Units/RL:	mg/kg RL			
C6-C12 Gasoline Range Hydrocarbons		44 0 15 9			
C12-C28 Diesel Range Hydrocarbons		2080 15 9			
C28-C35 Oil Range Hydrocarbons		235 15.9			
Total TPH		2359			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our lability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Brent Barron

Odessa Laboratory Director

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

* Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477

•1

Form 2 - Surrogate Recoveries

Project Name: Atlantic Richfield

	Project II):		
1P Ba	tch: 1 Matri	x: Soil		•
SU	RROGATE RI	COVERY	STUDY	*
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
123	100	123	70-135	
60.8	50.0	122	70-135	
			STUDY	
	F			
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
118	100	118	70-135	
58.7	50.0	117	70-135	
SU	RROGATE RE	COVERY S	STUDY	
Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
118	100	118	70-135	
1		142	70-135	**
71.1	50.0	172	70-155	
1		x: Soil	70-135	
IP Bat		x: Soil	<u> </u>	-
IP Bat	tch: ¹ Matri	x: Soil	<u> </u>	Flags
IP Bai SU Amount Found	tch: ¹ Matri RROGATE RE True Amount	x: Soil COVERY S Recovery %R	STUDY Control Limits	Flags **
IP Bat SU Amount Found [A]	tch: 1 Matri RROGATE RF True Amount [B]	x: Soil ECOVERY S Recovery %R [D]	STUDY Control Limits %R	
IP Bat SU Amount Found [A] 68.4 41.9	tch: 1 Matri RROGATE RE True Amount [B] 100 50.0	x: Soit COVERY S Recovery %R [D] 68	Control Limits %R 70-135	
IP Bat SU Amount Found [A] 68.4 41.9 IP Bat	tch: 1 Matri RROGATE RE True Amount [B] 100 50.0	x: Soit COVERY S Recovery %R [D] 68 84 x: Soil	Control Limits %R 70-135 70-135	
IP Bat SU Amount Found [A] 68.4 41.9 IP Bat	tch: 1 Matri RROGATE RE Amount [B] 100 50.0 tch: 1 Matri	x: Soit COVERY S Recovery %R [D] 68 84 x: Soil	Control Limits %R 70-135 70-135	
IP Bat SU Amount Found [A] 68.4 41.9 IP Bat SU Amount Found	tch: 1 Matri RROGATE RE Amount [B] 100 50.0 tch: 1 Matri RROGATE RE True Amount	x: Soil COVERY S Recovery %R ID] 68 84 x: Soil COVERY S Recovery %R	STUDY Control Limits %R 70-135 70-135 STUDY Control Limits	**
	SU Amount Found [A] 123 60.8 1P Bai SU Amount Found [A] 118 58.7 1P Bai SU Amount Found [A] 118 SU Amount Found [A] 118 SU	AP Batch: 1 Matri SURROGATE RI Amount True Found Amount [A] [B] 123 100 60.8 50.0 AP Batch: 1 Matri SURROGATE RI Amount True Found Amount [A] [B] 118 100 58.7 50.0 AP Batch: 1 Matri [B] 118 100 118 100 118 100	SURROGATE RECOVERY SAmount Found [A]True Amount [B]Recovery %R [D]12310012360.850.0122APBatch:1Matrix: SoilSURROGATE RECOVERY SAmount Found [A]True Amount [B]Recovery %R [D]11810011858.750.0117APBatch:1Matrix: SoilSURROGATE RECOVERY SAmount [A]True [B]11810011858.750.0117APBatch:1Matrix: SoilSURROGATE RECOVERY SAmount Found [A]True [B]118100118118100118	APBatch:1Matrix:SoilSURROGATE RECOVERY STUDYAmount Found [A]True Amount [B]Recovery $%R$ [D]Control Limits $%R$ 12310012370-13560.850.012270-135APBatch:1Matrix:SoilSURROGATE RECOVERY STUDYAmount Found [A]True (B]Recovery $%R$ [D]Control Limits $%R$ 11810011870-135APBatch:1Matrix:SoilSURROGATE RECOVERY STUDYAmount Found [A]True (B]Recovery $%R$ (D]Control Limits $%R$ 11810011870-135Amount Found [A]True (B]Recovery $%R$ (D)Control Limits $%R$ 11810011870-135

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Work Orders: 316199,		Project II):		
Lab Batch #: 739074 Sample: 316199-046 / SM	P Bat	tch: 1 Matri	x: Soil		
Units: mg/kg	SU	RROGATE RE	COVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	119	100	119	70-135	
o-Terphenyl	70.9	50.0	142	70-135	**
Lab Batch #: 739074 Sample: 316199-047 / SM	P Ba	tch: ¹ Matri	x: Soil	L	
Units: mg/kg		RROGATE RE	COVERY	STUDY	·····
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	117	100	117	70-135	
o-Terphenyl	58.8	50.0	118	70-135	
Lab Batch #: 739074 Sample: 316199-048 / SM	P Bat	tch: 1 Matri	x: Soil	·	
Units: mg/kg	SU	RROGATE RE	COVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc	119	100	119	70-135	
o-Terphenyl	66.8	50.0	134	70-135	
Lab Batch #: 739074 Sample: 316199-049 / SM	P Ba	tch: 1 Matri	x: Soil		
Units: mg/kg		RROGATE RE		STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc	118	100	118	70-135	
o-Terphenyl	58.5	50.0	117	70-135	
Lab Batch #: 739074 Sample: 316212-008 S / M	IS Ba	tch: ¹ Matri	x: Soil		
Units: mg/kg	SU	RROGATE RE	COVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	129	100	129	70-135	
o-Terphenyl	61.4	50.0	123	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Form 2 - Surrogate Recoveries

Project Name: Atlantic Richfield

Work Orders : 316199,		Proje	ect ID:		
Lab Batch #: 739074 Sam	ple: 316212-008 SD / MSD	Batch: 1 N	Matrix: Soil		
Units: mg/kg		SURROGATI	E RECOVERY S	STUDY	
TPH By SW8015 Mo	od Amoun Found [A]		t Recovery %R [D]	Control Limits %R	Flags
Analytes					
1-Chlorooctane	124	100	124	70-135	
o-Terphenyl	62.8	50.0	126	70-135	
Lab Batch #: 739074 Sam	ple: 518572-1-BKS / BKS		Matrix: Solid		
Units: mg/kg		SURROGATE	E RECOVERY S	STUDY	
TPH By SW8015 Mo Analytes	od Amoun Found [A]		t Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	125	100	125	70-135	
o-Terphenyl	62.8	50.0	126	70-135	
Lab Batch #: 739074 Sam	ole: 518572-1-BLK / BLK	Batch: 1 M	Matrix: Solid		
Units: mg/kg		SURROGATI	E RECOVERY S	STUDY	
TPH By SW8015 Mo Analytes	od Amoun Found [A]		Recovery %R [D]	Control Limits %R	. Flags
1-Chlorooctane	121	100	121	70-135	
o-Terphenyl	61.8	50.0	124	70-135	<u> </u>
Lab Batch #: 739074 Sam	ple: 518572-1-BSD / BSD	Batch: 1 M	Matrix: Solid		
Units: mg/kg			E RECOVERY S	STUDY	
TPH By SW8015 Mo Analytes	d Amoun Found [A]		Recovery %R [D]	Contro l Limits %R	Flags
1-Chlorooctane	124	100	124	70-135	
o-Terphenyl	62.1	50.0	124	70-135	·
Lab Batch #: 739125 Sam	ple: 316199-021 / SMP	Batch: 1 N	Matrix: Soil		
Units: mg/kg			E RECOVERY S	STUDY	· · · · · · · · · · · · · · · · · · ·
TPH By SW8015 Mc Analytes	ed Amoun Found [A]		Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		I			·
1-Chlorooctane	121	100	121	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Work Orders : 316199,		Project II):			
Lab Batch #: 739125 Sample: 316199-022 /	SMP Bat	ch: 1 Matri	ix: Soil			
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctanc	113	100	113	70-135		
o-Terphenyl	55.5	50.0	111	70-135		
Lab Batch #: 739125 Sample: 316199-023 /	SMP Bat	ch: 1 Matri	ix: Soil			
Units: mg/kg	SU	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctanc	119	100	119	70-135		
o-Tcrphenyl	59.8	50.0	120	70-135		
Lab Batch #: 739125 Sample: 316199-024 /	SMP Bat	ch: 1 Matri	x: Soil			
Units: mg/kg	SUI	RROGATE RI	ECOVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	119	100	119	70-135		
o-Terphenyl	59.3	50.0	119	70-135		
Lab Batch #: 739125 Sample: 316199-025 /	SMP Bat	ch: 1 Matri	x: Soil	/		
Units: mg/kg		RROGATE RI		STUDY	· · · · -	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctanc	112	100	112	70-135		
o-Tcrphenyl	55.2	50.0	110	70-135		
Lab Batch #: 739125 Sample: 316199-025 S	/MS Bat	ch: ¹ Matri	x: Soil			
Units: mg/kg		RROGATE RI	COVERY	STUDY		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	127	100	127	70-135		
o-Terphenyl	59.2	50.0	118	70-135		

** Surrogates outside limits; data and surrogates confirmed by reanalysis

.

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Work Orders : 316199,		Project II);		
Lab Batch #: 739125 Sample: 31619	9-025 SD / MSD Bat	ch: 1 Matri	x: Soil		
Units: mg/kg	SUI	RROGATE RE	COVERY S	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	126	100	126	70-135	
o-Terphenyl	61.2	50.0	120	70-135	,
Lab Batch #: 739125 Sample: 31619		l	x: Soil	<u> </u>	
Units: mg/kg		RROGATE RE		STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	119	100	119	70-135	
o-Terphenyl	59.0	50.0	118	70-135	
Lab Batch #: 739125 Sample: 31619	9-027 / SMP Bat	ch: 1 Matri	x: Soil	<u>.</u>	
Units: mg/kg		RROGATE RE		STUDY	<u> </u>
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	114	100	114	70-135	
o-Terphenyl	57.4	50.0	115	70-135	
Lab Batch #: 739125 Sample: 31619	9-028 / SMP Bat	ch: 1 Matri	x: Soil	<u></u>	
Units: mg/kg		RROGATE RE		STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	121	100	121	70-135	<u></u>
o-Terphenyl	60.8	50.0	122	70-135	
Lab Batch #: 739125 Sample: 31619			x: Soil		
Units: mg/kg	SUI	RROGATE RE	COVERY S	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	118	100	118	70-135	
o-Terphenyl	59.9	50.0	120	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

/ork Orders : 316199,		Project II	D:				
Lab Batch #: 739125 Sample: 31619	9-030 / SMP Bat	tch: 1 Matr	ix: Soil				
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	117	100	117	70-135			
o-Terphenyl	58.6	50.0	117	70-135			
Lab Batch #: 739125 Sample: 31619	9-031 / SMP Bat	ch: 1 Matr	ix: Soil				
Units: mg/kg	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	114	100	114	70-135			
o-Terphenyl	58.2	50.0	116	70-135	- , , .		
Lab Batch #: 739125 Sample: 31619	9-032 / SMP Bat	ch: ¹ Matri	ix: Soil	· · · · · · · · · · · · ·			
Units: mg/kg	SUI	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	116	100	116	70-135	<u> </u>		
o-Terphenyl	58.6	50.0	117	70-135			
Lab Batch #: 739125 Sample: 31619	9-033 / SMP Bat	ch: ¹ Matri	x: Soil	<u> </u>			
Units: mg/kg	SUI	RROGATE RI	COVERY	STUDY			
TPH By SW8015 Mod	Amount	True	<u></u>	Control	Flags		
Analytes	Found [A]	Amount [B]	Recovery %R [D]	Limits %R	1 1160		
Analytes 1-Chlorooctane			%R				
•	[A]	[B]	%R [D]	%R			
1-Chlorooctane	[A] 113 56.6	(B) 100 50.0	%R [D] 113	%R 70-135			
I-Chlorooctane o-Terphenyl	[A] 113 56.6 9-034 / SMP Bat	(B) 100 50.0	%R [D] 113 113 x: Soil	%R 70-135 70-135			
1-Chlorooctane o-Terphenyl Lab Batch #: 739125 Sample: 316199 Units: mg/kg TPH By SW8015 Mod	[A] 113 56.6 9-034 / SMP Bat	(B) 100 50.0 ch: 1 Matri	%R [D] 113 113 x: Soil COVERY S Recovery %R	%R 70-135 70-135	Flags		
1-Chlorooctane o-Terphenyl Lab Batch #: 739125 Sample: 316199 Units: mg/kg	[A] 113 56.6 9-034 / SMP Bat SUI Amount Found	(B) 100 50.0 ch: 1 Matri RROGATE RH True Amount	%R [D] 113 113 x: Soil COVERY S Recovery	%R 70-135 70-135 57UDY Control Limits			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Work Orders : 316199,		Project II):					
Lab Batch #: 739125 Sample: 316199-035 / SM	IP Ba	tch: ¹ Matri	ix: Soil					
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY				
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	114	100	114	70-135				
o-Terphenyl	58.6	50 0	117	70-135				
Lab Batch #: 739125 Sample: 316199-036 / SM Units: mg/kg		tch: ¹ Matri RROGATE RF	x: Soil	oti in v				
· · · · ·								
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	118	100	118	70-135				
o-Tcrphcnyl	58.9	50.0	118	70-135				
Lab Batch #: 739125 Sample: 316199-037 / SMP Batch: 1 Matrix: Soil								
Units: mg/kg SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	117	100	117	70-135				
o-Terphenyl	58.8	50.0	118	70-135				
Lab Batch #: 739125 Sample: 316199-038 / SM								
Units: mg/kg	SU	RROGATE RE	COVERY	STUDY				
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	116	100	116	70-135				
o-Terphenyl	58.7	50.0	117	70-135				
Lab Batch #: 739125 Sample: 316199-039 / SM	P Bat	ch: ^{1'} Matri	x: Soil					
Units: mg/kg	SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	114	100	114	70-135				
o-Terphenyl	57.3	50.0	115	70-135				

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Work Orders :	316199,		Project II):				
Lab Batch #:	Lab Batch #: 739125 Sample: 316199-040 / SMP Batch: 1 Matrix: Soil							
Units:	mg/kg	SU	RROGATE RE	COVERY	STUDY			
	TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	·····	117	100	117	70-135			
o-Terphenyl	and an analysis and a second and a second and a second and a second a second a second a second a second a second	60.0	50.0	120	70-135			
Lab Batch #:	739125 Sample: 518611-1-BKS /	BKS Ba	tch: ¹ Matri	x: Solid	•	· · · · · · · · · · · · · · · · · · ·		
Units:	mg/kg	SU	RROGATE RE		STUDY			
	TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		129	100	129	70-135			
o-Terphenyl		63.7	50.0	127	70-135			
Lab Batch #:	739125 Sample: 518611-1-BLK /	BLK Bat	tch: 1 Matri	x: Solid				
Units:	its: mg/kg SURROGATE RECOVERY STUDY							
	TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		116	100	116	70-135			
o-Terphenyl	10, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	59.6	50.0	119	70-135			
Lab Batch #:	739125 Sample: 518611-1-BSD /	BSD Bat	tch: ¹ Matri	x: Solid	.	· · · · · ·		
Units:	•		RROGATE RE		STUDY			
	TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		124	100	124	70-135			
o-Terphenyl	and all a superior of the supe	62.6	50.0	125	70-135			
Lab Batch #:	739126 Sample: 316199-001 / SM	P Ba	tch: ¹ Matri	x: Soil	······································			
	mg/kg	SU	RROGATE RE	COVERY S	STUDY	<u> </u>		
	TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		109	100	109	70-135	· .		
o-Terphenyl	· · · · · · · · · · · · · · · · · · ·	55.5	50.0	111	70-135			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Work Orders: 316199,	Vork Orders : 316199, Project ID:						
Lab Batch #: 739126 Sample: 316199-002 / S	SMP Bat	tch: ¹ Matri	ix: Soil				
Units: mg/kg	SUI	RROGATE RE	COVERY	STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	119	100	119	70-135			
o-Terphenyl	59.2	50.0	118	70-135			
Lab Batch #: 739126 Sample: 316199-003 / S	SMP Bat	tch: 1 Matri	ix: Soil	<u> </u>			
Units: mg/kg		RROGATE RE		STUDY	······································		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	109	100	109	70-135			
o-Terphenyl	55.5	50.0	111	70-135			
Lab Batch #: 739126 Sample: 316199-004 / S	SMP Bat	tch: 1 Matri	ix: Soil	·			
Units: mg/kg		RROGATE RE	COVERY	STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	113	100	113	70-135			
o-Terphenyl	57.2	50.0	114	70-135	[
Lab Batch #: 739126 Sample: 316199-005 / S	SMP Bat	ch: 1 Matri	ix: Soil	<u></u>			
Units: mg/kg		RROGATE RE	COVERY	STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	107	100	107	70-135			
o-Terphenyl	54.4	50.0	109	70-135			
Lab Batch #: 739126 Sample: 316199-006 / S	SMP Bat	tch: ¹ Matri	i x: Soil	<u></u>			
Units: mg/kg	SUI	RROGATE RE	COVERY S	STUDY	·		
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	110	100	110	70-135			
o-Terphenyl	55.3	50.0	111	70-135			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Work Orders : 316199,	Vork Orders : 316199, Project ID:						
Lab Batch #: 739126 Sample: 316199-007 / SM	IP Bat	tch: ¹ Matri	ix: Soil				
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	110	100	110	70-135			
o-Terphenyl	55.5	50.0	111	70-135			
Lab Batch #: 739126 Sample: 316199-008 / SM	ſP Bat	tch: ¹ Matri	ix: Soil	•			
Units: mg/kg		RROGATE RI	COVERY	STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	111	100	111	70-135			
o-Terphenyl	56.3	50.0	113	70-135			
Lab Batch #: 739126 Sample: 316199-008 S / N	AS Bat	tch: 1 Matri	x: Soil	·	·		
Units: mg/kg SURROGATE RECOVERY STUDY							
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Analytes	129	100	129	70-135			
o-Terphenyl	62.3	50.0	129	70-133			
				10 155			
Lab Batch #: 739126 Sample: 316199-008 SD / Units: mg/kg	D/MSD Batch: 1 Matrix: Soil SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	125	100	125	70-135			
o-Terphenyl	60.7	50.0	123	70-135			
Lab Batch #: 739126 Sample: 316199-009 / SN	IP Rai	tch: ¹ Matri	x: Soil	1			
Units: mg/kg		RROGATE RE		STUDY			
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	114	100	114	70-135			
o-Terphenyl	57.5	50.0	115	70-135			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Vork Orders : 316199,			Project II):				
Lab Batch #: 739126	Sample: 316199-010 / SM	P Ba	tch: 1 Matri	ix: Soil				
Units: mg/kg		SU	RROGATE RI	ECOVERY	STUDY			
TPH By SV Anal		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
	yies					···-		
1-Chlorooctane		119	100	119	70-135			
		59.4	50.0	119	70-135			
Lab Batch #: 739126	Sample: 316199-011 / SM			x: Soil				
Units: mg/kg SURROGATE F					STUDY			
TPH By SV Anal		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		114	100	114	70-135			
o-Terphenyl		58.0	50.0	116	70-135			
Lab Batch #: 739126	Sample: 316199-012 / SM	2/SMP Batch: 1 Matrix: Soil						
Units: mg/kg		RROGATE RI	ECOVERY S	STUDY				
TPH By SV Anal	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane		113	100	113	70-135			
o-Terphenyl		56.0	50.0	112	70-135			
Lab Batch #: 739126	Sample: 316199-013 / SM	P Ba	tch: ¹ Matri	x: Soil	<u> </u>			
Units: mg/kg	Sample, Story, Side Shi		RROGATE RI		STUDY			
TPH By SV		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		109	100	109	70-135	, · ,		
o-Terphenyl		54.0	50.0	108	70-135			
Lab Batch #: 739126	Sample: 316199-014 / SM	P Ba	tch: 1 Matri	x: Soil	4			
Units: mg/kg		SU	RROGATE RE	COVERY S	STUDY			
TPH By SV Anal		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		116	100	116	70-135			
o-Terphenyl		57.9	50.0	116	70-135			

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

	rol ts Flags				
TPH By SW8015 ModAmount Found [A]True Amount 	rol ts Flags				
Found [A] Amount [B] Recovery %R [D] Lim % [D] 1-Chlorooctane 116 100 116 70-1 o-Terphenyl 59.1 50.0 118 70-1	ts Flags				
1-Chlorooctane 116 100 116 70-1 o-Terphenyl 59.1 50.0 118 70-1	l l				
o-Terphenyl 59.1 50.0 118 70-1	- 1				
Lab Batch #: 739126 Sample: 316199-016 / SMP Batch: 1 Matrix: Soil	<u> </u>				
	<u>.</u>				
Units: mg/kg SURROGATE RECOVERY STUD	[
Found Amount Recovery Lim	ts Flags				
1-Chlorooctane 115 100 115 70-1.	5				
o-Terphenyl 58.0 50.0 116 70-1	5				
Lab Batch #: 739126 Sample: 316199-017 / SMP Batch: 1 Matrix: Soil					
Units: mg/kg SURROGATE RECOVERY STUD	[
Found Amount Recovery Lim	ts Flags				
	5				
Lab Batch #: 739126 Sample: 316199-018 / SMP Batch: 1 Matrix: Soil	<u>l</u>				
Units: mg/kg SURROGATE RECOVERY STUD	Control Limits %R Flags 70-135 70-135 70-135 70-135 70-135 70-135 70-135				
TPH By SW8015 Mod Amount Found True Amount Cont Recovery	rol ts Flags				
	.5				
Lab Batch #: 739126 Sample: 316199-019 / SMP Batch: 1 Matrix: Soil					
Units: mg/kg SURROGATE RECOVERY STUD	Ţ				
TPH By SW8015 Mod Amount Found True Amount Cont Recovery Analytes [B] %R [D]	ol ts Flags				
	5				
1-Chlorooctane 113 100 113 70-1					

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.

י ו

Project Name: Atlantic Richfield

Work Orders : 316199,		Project II	D:		
Lab Batch #: 739126 Sample: 316199-020 /	SMP Ba	tch: 1 Matri	ix: Soil		
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	113	100	113	70-135	
o-Terphenyl	57.7	50.0	115	70-135	
Lab Batch #: 739126 Sample: 518612-1-BK	S/BKS Ba	tch: 1 Matri	ix: Solid		
Units: mg/kg		RROGATE RI		STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	129	100	129	70-135	
o-Terphenyl	60.6	50.0	121	70-135	
Lab Batch #: 739126 Sample: 518612-1-BL	K/BLK Ba	tch: 1 Matri	ix: Solid	*****	 .:
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctanc	114	100	114	70-135	
o-Terphenyl	58.9	50.0	118	70-135	
Lab Batch #: 739126 Sample: 518612-1-BS	D/BSD Ba	tch: 1 Matri	ix: Solid		
Units: mg/kg	SU	RROGATE RI	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	131 -	100	131	70-135	
o-Terphenyl	66.5	50.0	133	70-135	
Lab Batch #: 739585 Sample: 316199-046 /			ix: Soil	•••••••••••••••••••••••••••••••••••••••	·
Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	
SPLP TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
Analytes 1-Chlorooctane	11.0	10.0	[D] 110	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

. . .

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

-

е, с. С

Form 2 - Surrogate Recoveries

Project Name: Atlantic Richfield

Work Orders : 316199,		Project II):		
Lab Batch #: 739585 Sample: 3	16199-047 / SMP Ba	tch: 1 Matri	x: Soil		
Units: mg/L	SU	RROGATE RE	ECOVERY	STUDY	
SPLP TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	8.39	10.0	84	70-135	
o-Terphenyl	4.39	5.00	88	70-135	
Lab Batch #: 739585 Sample: 3	16199-048 / SMP Ba	tch: ¹ Matri	ix: Soil		
Units: mg/L	SU	RROGATE RI	ECOVERY	STUDY	. <u></u>
SPLP TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	8.86	10.0	89	70-135	
o-Terphenyl	4.75	5.00	95	70-135	
Lab Batch #: 739585 Sample: 3	16199-049 / SMP Ba	tch: 1 Matri	ix: Soil		
Units: mg/L		RROGATE RI		STUDY	
SPLP TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	9.59	10.0	96	70-135	
o-Terphenyl	4.97	5.00	99	70-135	
Lab Batch #: 739585 Sample: 5	18891-1-BKS / BKS Ba	tch: ¹ Matri	x: Water	L	
Units: mg/L		RROGATE RE		STUDY	
SPLP TPH By SW8015 Mod Analytes		True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	10.1	10.0	101	70-135	
o-Terphenyl	5.17	5.00	103	70-135	
Lab Batch #: 739585 Sample: 5	18891-1-BLK / BLK Ba	tch: ¹ Matri	x: Water	I	
Units: mg/L	SU	RROGATE RE	ECOVERY S	STUDY	
SPLP TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	8.76	10.0	88	70-135	
o-Terphenyl	4.53	5.00	91	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

ork Orders : 316199,		Project ID:							
Lab Batch #: 739585	Sample: 518891-1-BSD / E	SD Ba	tch: ¹ Matr	rix: Water					
Units: mg/L	RROGATE R	ECOVERY	STUDY						
SPLP TPH By SW8015 Mod		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Anal	lytes			[D]		1			
1-Chlorooctane		10.2	10.0	102	70-135				
o-Terphenyl		5.24	5.00	105	70-135				

** Surrogates outside limits; data and surrogates confirmed by reanalysis
*** Poor recoveries due to dilution
Surrogate Recovery [D] = 100 * A / B
All results are based on MDL and validated for QC purposes.

Project Name: Atlantic Richfield

Work Order #: 316199			P	roject ID:				
Lab Batch #: 738877	Sa	Sample: 738877-1-BKS			Matrix: Solid			
Date Analyzed: 10/31/2008	Date Pre	pared: 10/31/2	008	Analy	alyst: LATCOR			
Reporting Units: mg/kg	Ba	atch #: 1	BLANK /	BLANK SPI	KE REC	COVERY	STUDY	
Anions by EPA 300/300	.1	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Controi Limits %R	Flags	
Analytes		ĮAJ	[b]	[C]	[D]	701		
Chloride		ND	10.0	9.02	90	75-125		
Lab Batch #: 738881	Sa	ample: 738881-	8881-1-BKS Matrix: Solid					
Date Analyzed: 10/31/2008	Date Pre	Date Prepared: 10/31/2008			Analyst: LATCOR			
Reporting Units: mg/kg	Ba	atch #: 1	BLANK /	BLANK SPI	KE REC	COVERY S	STUDY	
Anions by EPA 300/300	.1	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags	
Analytes		[A]	[D]	[C]	[D]	70K		
Chloride		ND	10.0	9.65	97	75-125		
Lab Batch #: 738883	Sa	mple: 738883-	1-BKS	Matr	ix: Solid			
Date Analyzed: 10/31/2008	Date Pre	pared: 10/31/2)08 ·	Analy	st: LATC	OR		
Reporting Units: mg/kg	Ba	atch #: 1	BLANK /	BLANK SPI	KE REC	COVERY S	STUDY	
Anions by EPA 300/300	.1	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags	
Analytes		[A]	[B]	Result [C]	%R [D]	%R		
Chloride		ND	10.0	9.15	92	75-125		

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

ATT - OF BE SE, IN THE I WITH THE PARTANT TO BE WITH & PR. () & ST. CR. 1. 1997 1 10 & PR. 1997 1 10 & PR. 199

BS / BSD Recoveries

Project Name: Atlantic Richfield

Work Order #: 316199								ject ID:			
Analyst: ASA	Da	ate Prepar	ed: 10/31/200	18			Date Ar	nalyzed: 1	11/02/2008		
Lab Batch ID: 739074 Sample: 518572-	1-BKS	Batcl	h#:1.					Matrix: S	Solid		
Units: mg/kg		BLAN	K/BLANK S	SPIKE / E	BLANK S	PIKE DUPI	JICATE I	RECOVE	ERY STUD	Y	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	879	88	1000	866	87	1	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	934	93	1000	912	91	2	70-135	35	
Analyst: ASA	D	ate Prepar	ed: 10/31/200)8			Date Ar	nalyzed: 1	11/02/2008		
Lab Batch ID: 739125 Sample: 518611-	1-BKS	Batel	h #: 1					Matrix: S	Solid		
Units: mg/kg		BLAN	K /BLANK S	SPIKE / P	BLANK S	PIKE DUPI	LICATE I	RECOVE	ERY STUD	Y	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	872	87	1000	881	88	1	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	930	93	1000	935	94	1	70-135	35	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Atlantic Richfield

Work Order #: 316199 Analyst: ASA	D	ata Pranar	ed: 10/31/200	กร				ject ID: nalyzed: 1	1/01/2008		
		-		0				-			
Lab Batch ID: 739126 Sample: 518612-1-	BKS	Batch	-					Matrix: S			<u>.</u>
Units: mg/kg		BLAN	K/BLANK S	SPIKE / P	JLANK S	PIKE DUPI	JCATE I	RECOVE	RY STUD	Y	
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added {E}	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1000	857	86	1000	921	92	7	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1000	927	93	1000	952	95	3	70-135	35	
Analyst: ASA	Di	ate Prepar	ed: 11/05/200	J8			Date A	nalyzed: 1	1/06/2008		
Lab Batch ID: 739585 Sample: 518891-1-	·BKS	Batch	h#: 1 .					Matrix: V	Vater		
Units: mg/L		BLAN	K /BLANK S	SPIKE / F	JLANK S	PIKE DUPI	ICATE 1	RECOVE	RY STUD	Y	
SPLP TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Bik. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	100	83 7	84	100	83.8	84	0	70-135	25	
C12-C28 Diesel Range Hydrocarbons	ND	100	91.7	92	100	92.2	92		70-135	25	

Relative Percent Dıfference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Work Order #: 316199								
Lab Batch #: 738877				Pr	oject ID:			
Date Analyzed: 10/31/2008	Dat	e Prepared:	10/31/2008	(Analyst:	LATCOR		
QC- Sample ID: 316093-026 S		Batch #:	1		Matrix:	Soil		
Reporting Units: mg/kg		MATRIX / MATRIX SPIKE RECOVERY STUDY						
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag	
Chloride		1190	516	1810	120	75-125		
Lab Batch #: 738881		<u>l</u>	<u> </u>		l	L	ļi	
Date Analyzed: 10/31/2008	Dat	e Prepared:	10/31/2008		Analyst:	LATCOR		
QC- Sample ID: 316199-012 S		Batch #:	1		Matrix:	Soil		
Reporting Units: mg/kg	MATRIX / MATRIX SPIKE RECOVERY STUDY							
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag	
Chloride		ND	105	104	99	75-125		
Lab Batch #: 738883				·····				
Date Analyzed: 10/31/2008	Dat	e Prepared:	10/31/2008	I	Analyst:	LATCOR		
QC- Sample ID: 316199-033 S		Batch #:	1		Matrix:	Soil		
Reporting Units: mg/kg		MAT	RIX / MAT	TRIX SPIKE	RECOV	ERY STU	DY	
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag	
Chloride		ND		105	99	75-125		

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: Atlantic Richfield

Work Order #: 316199						Project I	D:				
Lab Batch ID: 739074 Date Analyzed: 11/03/2008	QC- Sample ID: Date Prepared:				tch #: alyst:	l Matri ASA	x: Soil				
Reporting Units: mg/kg		MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY									
TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1070	878	82	1070	901	84	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1070	937	88	1070	961	90	2	70-135	35	
Date Analyzed: 11/02/2008	QC- Sample ID: 316199-025 S Batch #: 1 Matrix: Soil Date Prepared: 10/31/2008 Analyst: ASA								,		
Reporting Units: mg/kg		M	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1010	818	81	1010	856	85	5	70-135	35	1
C12-C28 Diesel Range Hydrocarbons	19.4	1010	903	87	1010 -	961	93	7	70-135	35	1
Date Analyzed: 11/01/2008	QC- Sample ID: Date Prepared:	10/31/2	008	An	•	ASA	x: Soil				
Reporting Units: mg/kg			IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1040	858	83	1040	847	81	2	70-135	35	
C12-C28 Diesel Range Hydrocarbons	ND	1040	923	89	1040	915	88	1	70-135	35	

 $\begin{array}{l} \mbox{Matrix Spike Percent Recovery} \quad [D] = 100^{*}(C\text{-}A)/B \\ \mbox{Relative Percent Difference} \quad RPD = 200^{*}|(C\text{-}F)/(C\text{+}F)| \\ \end{array}$

ŧ

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Sample Duplicate Recovery

Project Name: Atlantic Richfield

Work Order #: 316199

Lab Batch #: 738877 Date Analyzed: 10/31/2008 QC- Sample ID: 316093-026 D Reporting Units: mg/kg	Date Pro B	atch #: 1	1/2008 ·	Matr	st: LATCO ix: Soil		
Anions by EPA 300/300.1 Analyte		Parent Sample Result [A]		RPD	Control Limits %RPD	Flag	
Chloride		1190	. 1110	7	20		
Lab Batch #: 738881 Date Analyzed: 10/31/2008 QC- Sample ID: 316199-012 D Reporting Units: mg/kg	Date Pro B	atch #: 1	51/2008	Matr	st: LATCOI		
Anions by EPA 300/300.1 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag	
Chloride		ND	ND	NC	20		
Lab Batch #: 738883 Date Analyzed: 10/31/2008 QC- Sample ID: 316199-033 D Reporting Units: mg/kg	Date Pro B	atch #: 1	1/2008 / SAMPLE	Matr	st: LATCO ix: Soil ATE REC		
Anions by EPA 300/300.1 Analyte	·	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPĐ	Flag	
Chloride		ND	ND	NC	20		
Lab Batch #: 738805 Date Analyzed: 10/31/2008 QC- Sample ID: 316199-001 D	Date Pre B	pared: 10/3 atch #: 1	1/2008	•	st: BEV ix: Soil	· · ·	
Reporting Units: %		SAMPLE / SAMPLE DUPLICATE RECOVER					
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag	
				l			

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

. -

Sample Duplicate Recovery

Project Name: Atlantic Richfield

Work Order #: 316199

Lab Batch #: 738806 Date Analyzed: 11/01/2008	F	01/2008	•	st: BEV			
QC- Sample ID: 316199-021 D	Batch #: 1 Matrix: Soil SAMPLE / SAMPLE DUPLICATE RECOVE						
Reporting Units: % Percent Moisture	Parent Sample Result [A]	1	RPD	Control Limits %RPD	Flag		
Analyte	6.51	[B] 6.64	2	20			
Lab Batch #: 738807 Date Analyzed: 10/31/2008	Date Prepared: 10/	31/2008	Analy	st: BEV			
QC- Sample ID: 316199-041 D Reporting Units: %		1 / SAMPLE		ix: Soil	OVERY		
Percent Moisture Analyte	Parent Sample Result [A]	e Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag		
Percent Moisture	9.83	10.3	5	20			

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

Page 1.45

24

Environment		exa	35					(CO West HSB3, Tex	1-20 1	East	cus	ססד	Y RE	cor	RD AN	ID A	Pho	YS/S ne: 4 r 4	32-56	3-18	00			
Project Manager	Logan Anderson												Proje	oct N	ame	-	<u> [[</u>	sal	ie	<u>R</u>	chf.	<u>e 10</u>		
Company Name	Elke Environment	al											1	Proje	ict #: _									
Company Address:	P O Box 14167												Pro	ject	Loc:	Fa		w.	, fl	1	Ani	Ba	41 e	
City/State/Zip	Odessa, TX 7976	8													- •o#-									7
Telephone No:	432-366-0043	-	>		Fax No.	4	32-3	66-088	4			Pa	ont F			P _S	andan	4	П	TRR		ŪN	nes	
Sampler Signature	A	Ĺ	-		e-mail.		_	eenv@		00.0				4 1714				•	-			μĸ	020	
(lab use only)								ount g		00.0			Ē			_		atyzę	For				Π	
ORDER #: 3101	<u>сч</u>							18601/18000				Matr	┢			TCLP							14 H	ļ
01 TP5C 14 C2 TP6 C 2 U3 TP6 C 5 U4 TP7 C 3 U, TP7 C 5 U4 TP8 C 2	•	Beginning Depth	A V V V V F Fading Depth	23 20 23 20 23 25 25 25 25 25 25 25 25 25 25	9:47A 9:01 A 9:14 A 10:05 A 10:17A 11:03A		x x x x x x x x x x x x x x x x x x x	PHR HCI	Nach	http://o	Other (Specify)	N M M W M ON CONTRACT WATER S-SUMO			Cattors (Ca. Mg. Ma.	SARIESPICED	Metalitik As Ag Ba Cd Cr Pa Hg Se	Vijažkes	BTEX 802(85030 or BTEX 8260	RCI				x x x x x x x Iandard TAT
		+		10.28.08	11:24A		X	++	\vdash		++	کے_	-4	4	1	-	┢╌┼	-+		-	+			Z
C5 TP9 C2'			2'	10 28:08	11:46A		X	-∔-┾-	+	\vdash	┼┨	<u>ح</u>	╀	4-	++;		\square	+	$\left \cdot \right $	-	+			귀
<u> </u>			Ť	1- 0 0-00	<u>, , , , , , , , , , , , , , , , , , , </u>	ť	Ĥ	++		┝╍┝	┼┨		ť	4	Ηŕ	+	┟╍╇	-+-	╀┦	+	++	+-	\vdash	-
Special Instructions: Reimquished by Reimchared by Reimchared by) Dete /0.30.03 Date Date	3:4 TI	те 5/ пе	Received by <u>FriC</u> . Received by Received by ELC)T	اعد	10	2		\downarrow	Dat	ی۔ رہ •		14 <u>54</u> ne	Samp VOCs Labels Custo Custo Semp by	le Co Free dy se dy se le Ha Sam Cour	ntaine of He ontain als on als	ner(s) n conta n coola slivera lient R UP	act7 scs? ciner(siner(s(s) d sp? s	s) DHL		TY YAND YAND I	N N N N N N N N N N N N N N N N N N N	u.

.

Page 40 of 45

.

. .

Page 2 of 5

	ironment	al Lab of T	exa	as							ost (-	4AIN 20 Eau 15 797	st	cus	100	Y RE	c0/	20,	4 <i>N C</i>		Pho Fax	nt# Ki	432 432	-663 -663	3-18(3-171	00 13				
	Project Manager	Logan Anderson						_								Proje	ct N	ama	·	Ł	łŧ	./a	<u>nt</u>	ic	K	ic k	4	<u>e/a</u>	d	
	Company Name	Elke Environmenta														ı	Proje	ict #												
	Company Address	P O Box 14167														Pro	Ject	Loc		Fa	<u> </u>	يري	or	4	/	Mai	<u>n 1</u>	ß.	He	'n
	City/State/Zip	Odessa, TX 7976	n	_													ŗ	°0#												
	Telephone No	432-366-0043	$\overline{\mathcal{V}}$	/		Fax No		43	2-36	8-0	0884	1			Re	oort F			Đ.	r _{s1}	andar				788	p		NPE	nes	
	Sampler Signature	H	$\overline{}$	1	~	e-mail			elke								•	•				•				•	-		-20	
			<u>~</u>			- 6-611811	-	<u>a</u>	GIND	C 1 1	<u>(</u>	ano		111		Ē						halyz	e Fo)r						(
(lab use d																\mathbf{F}				DTAL	┝╌┥	-	\dashv	\neg					E.	1
ORDER	#: <u>3141</u>	(19	T				· · · ·	_	Pre	F6/VI	Nion &	# of Co	ntanto	P	Mat			Γ		T	8	Π	Τ	8					1	
AB # (teb use cmly)	FIEL	D CODE	Beginning Depth	Ending Depth	Data Sampled	Time Sampled	leti Fitered	Tobel # of Conteiners	toe HINO,	Ŧ	H,SO ₄	NaCH Marso	None	Other (Specify)	OW-Dating Week, S. Skope 3W - Groundwater, S-SolfSold	HP-Man-Parado Sangi China	I X 1000 XI	The (Ca. Mg. Ma. 10	N.N	SAR I ESP I CEC	G Be Cd Cr Pb	Voluções	Germolaties	X 8021B/5030 or BTEX	RCI	NDAM				Standard TAT
10	TPIO C2		╞╨	2	10:28-08	12:47P	_	Ť		┢		Ηt	T	Н	Ŝ	Ť	r	f	Tr	Ĩ	Ħ	-	7	Ť	Ŧ	+	H	Ħ	_	뀌
11	TPIORS			5'	1	1:05P		ī	x	Τ			T		3	Ż	2	T	X		Π	1	1	1	T	T	Ħ	T	7	*
12	TRILED			2'		1:389		1	×						5)		Γ	X		\square	Τ		Τ	Τ	Τ				×
13	TPIL 05			5		1:51P		1	*				1		5	P	(X		\Box	Τ	Ι			Τ	\Box		T	A
14	T112 22	•		21		2:29P		1	X						5	, J	(J.		\Box	Τ	Ι		Т	Τ	Π		Ţ	4
13	TP12 05	``````````````````````````````````````		5.		2:51P		1	×						5		1		x										į	x
14	TP14C	2·		2'		3:150		9	×						5	<u> </u>		L	x					\bot			\square		_	×
17	TP14C S		L	5'		3:28P	_	1	<u>×</u>	4.					5	X	<u>+</u>	L	×			_	4	4	\perp					*
12	TPISC 2		ļ	2,		4:038		1	×	1			4		5	×		L	×			┛	_	_	\perp		Ц		_	2
19	TPISC 5	•		5		4:571		Ц	ĸ	L			1		3	X	1		K	\Box	Ц		Ţ		\bot	L	L	\bot		×
Relinquish	ng Ce) - Date - /0.30-59 Date	3'4	me 15A me	Received by Erick Received by	Sànc	he						10.	Dai 20	-08	Tir 3-4 Tir	<u> </u>	Sau VO Lat Cu Sau	mple Cs F stoch stoch mple by S	on D y set y set	r Con Internet of He ontain ats or ats or ats or ats or ats or ats or	ers i eads nerf: n cor n cor sive	ntaci spacie s) (ntain oler(i red Ren	t7 c • () ler(s) s)	, л)		Q ~ 4 4 4	N		
Relinquish		hee is suit		me 27	Received by ELC	ing fr			~	-			:0	Del K	بر: بر:	Ти 4	не 1	Ter	by C	atur	er? ∟9 aUpo	i I a pen on R	IPS 45 lecei	D ipt:	HL		JEx	Lone *(Star	

Page 41 of 45

Page 3 of S

Environment A Xenco Laboratories Compan		exa	15								C Fest J Texi	-20 E	last	* CUS	TOD	YR	ECC	DRD	AN		Pho Fac	ne: c	432-1 432-1	563- 563-	1800 1713		_		
Project Manager	Logan Anderson														-	Pro	ject	Nam	e:	A	4	lan	tie		Rö	ch.	f;e	<u> d</u>	_
Company Name	Elke Environment			•											-		Pro	ject	#:							<u></u>		44	_
Company Address	P O Box 14167															P	roje	ct Lo	c	Fa	rn:	100	<u>,r</u> f	4	M	2.1	e.	44	2
City/State/Zip	Odessa, TX 79768	3																РО	#:										
Telephone No	432-366-0043	2	>			Fax No		43	2-3	66-	088	4				-	Son	mat:	E	Ste	nda		1	7 76				PDES	
Sampler Signature		Ź	~			e-mail:					1v@		~			de cu s			•	1.049		°.		_				000	
				~~~~		-			014			yan	<u></u>	20111		-			_		A	alvz	e For					Л	
lab use only)																		,		TCLP OTAL	$\vdash$	-+	$\pm$					ž	
DRDER #: 3101	(1)	T		<del></del>		r			f	,unset	ation 4	1 a d	Conte	(1973) 	Ма	līx _	BOILSB	900	Τ		3		CANCER .					×	_
	D CODE	Beginning Depth	Ending Depth		Date Sampled	Time Sampled	Field Filtered	Total & of Contarrors	8	HNQ	HSO.	HORN	Na,S,D,	None Other ( Specify)	CVM-Christony Walks SL-Stud	NP-WARD-Pranting Specify Off	4181 (10154)		i j	SAR / ESP / CEC	Melats. As Ag Ba Cd Cr Pb Hg Se	Volaties	Serrectations RTFX ADVIDUATION or RTFY	RCI	NORM			RUSH TAT (Pre-Schedde)	Standard TAT
U TPILE	<u><u>S'</u></u>	ļ	51	10:	8-94			1	2	_	-	$\square$		_	2		X	_	1	-			$\perp$	-		4	$\perp$	Ļ	2
	10	ļ	10	ļ	ļ	5:07P	Н		쇠	+	+	╄╌┥	$\vdash$		5		X	+	-4	+	$\square$	+	-	╀	$\square$	┍╌╁	+		Ì
13 Wall 1	A C2' A C5'	+	21			5:31P 5:40P	Η	H	X	+	+-	$\vdash$	-+	-	12	-	1	╉	ť	+-+	Н	╉	+-	+-	+	+	+		2
24 Wall 2	A Clo'	+	10.	+		5:470	H	7	X	+	╋		-+	+	2		X	+	f	+	Н	+	+	+-	+	-+	+		× Y
	A C14'	1	14		•	5:55P	+	T	x	+	+	Ħ		+	5		×	-+				+	+	ϯ	++		+		<u>7</u>
24 Wall 51	A C2.		21	6.	4-18	7:37 A		Π	x						3		×	T	1			1	T	T	$\square$		T		ŕ
27 Wall SI	1 C.C.		5		1	7:42A		1	X								x		X				T	Γ	$\Box$			Ŀ	۲
is wall st			10			7:474		Ц	x	$\downarrow$	$\bot$			$ \rightarrow $			r		K										
21 Wall S/	1 614	L	19 '	4		7:52A		1	У						5		×		X	atory			T	L		1		Ľ	۲
	Date 10.31.08 Date	3!	me 450	Receive	rich	520	ردا	410	- 2				ļ	ي - ت کي - ت	0-28	13	fima S.Y	000 V 0	ampi OCa abela usto usto	e Con Free	of H onta als o als o	ers in eads iner(s n con n coc	ntact? (pace) s) { ntaine plar(s)	? • • • • •	,ŧ	1× (8 (9 × 13)	,		
reiniguisied by						un te								0.	10		110.00	ľ	by		xer/C	lient	Rep JPS	? DH		Q2	>	N NveStar	
																				ų.									

.

Page 4 of 5

.

.

	Project Name. Project #:	Atlantic Richfield
		•
	Project Loc.	Farnsworth Main Batter
	Report Format:	Standard TRRP NPDES
mail la_elkeenv@yahoo.com		
		Analyze For:
Preservation & # of Containers	Matrix 98	TOTAL F
	1 CH - CHARLES - Standard Arvince Address - Standard - TPH - 418.1 (801544) (8 TPH - TX 4005 TX 1000 C BRONK (CA. NG. NA, N)	Acons(C)(Cot Analatiny) Sector (CSP) And Sector (CSP) Ang Vacating Sectorements FILX and Cot Cot Physics Sectorements FILX and Cot Cot Cot Physics Recting Cot Cot Physics Recting Cot Cot Physics Recting Cot
<del>╶╍┍┍╡┙╡╵╋╩╅╸╡┈╡┈╪╸╞┈╡╴╞┈╋</del>	SX	×
		×
		*
	المطحمة فتشاسم سمك	×
		×
		<u><u></u><u></u><u></u></u>
	<b>───</b>	
	Lab	pretory Commente: ple Containers Intact? The N
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	mail la_elkeenv@yahoo.com la_elkeenv@yahoo.com Preservation & conteremant Preservation & conteremant Interest of conteremant Interest of the conteremant I

Page 43 of 45

.

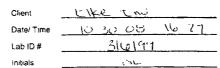
• .

+

Page Sof 5

	Environmental Lab of Texas A Xence Laboratories Company	CHAIN OF CUS 12600 West I-20 East Odessa, Texas 78766	STODY RECORD AND ANALYSIS REQUEST Phone: 432-563-1800 Fax: 432-563-1713
	Project Manager Logan Anderson		Project Name: Atlatic Richfield
	Company Name Elke Environmental		Project #:
	Company Address P O Box 14167		Project Loc: Farnsworth Main Bettery
	City/State/Zip Odessa, TX 79768		PO#:
	Telephone No 432-366-0043	Fax No 432-368-0884	Report Formet; XStandard TRRP NPDES
	- AR-		
	Sampler Signature	e-mail la_eikeenv@yahoo.com	Analyze For
	(lab use only)		TCLP E
Pgge 44 of 45	ORDER #: $21 \otimes 199$ Image: Second sec	S125P     1       7:38A     1       7:52A     1       7:51A     1       8:23A     1       7:15A     1       7:24A     1       1:24A     1	Concentration of the second s
	Refinquished by: Data Time Received by	Dai	VOCs Free of Headspoon?         y         (55)           1         Labels on container(s)         N         N           0-208         3 45.6'         Custody seals on container(s)         V         N           0-208         3 45.6'         Custody seals on container(s)         V         N           0         Sample Hand Delivered         //         N         N           0         Time         Sample Hand Delivered         //         N           0         Time         Sample Hand Delivered         //         N           0         Sample/Clent Rap 7         VS         N         N
· · · · ·		chea terre 110 340	

-


· · ·

Page 44 of 45

•

.

#### Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In



#### Sample Receipt Checklist

				Client Initia
#1	Temperature of container/ cooler?	Yes	No	5.5 °C
#2	Shipping container in good condition?	Yes	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	< Not Present >
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5 ·	Chain of Custody present?	Ves	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinguished/ received?	(es)	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid
#9	Container label(s) legible and intact?	Yes	No	< Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Fes.	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13	Samples properly preserved?	Yes	No	See Below
#14	Sample bottles intact?	(Yes)	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18	All samples received within sufficient hold time?	(es	No	See Below
#19	Subcontract of sample(s)?	Yes	No	< Not Applicable
#20	VOC samples have zero headspace?	Yes	No	(Not Applicable.)

j.

.

#### Variance Documentation

Date/ Time

.

Contact Regarding

Corrective Action Taken

Check all that Apply

See attached e-mail/ fax

.

Contacted by.

Client understands and would like to proceed with analysis Cooling process had begun shortly after sampling event

# Analytical Report 316620

for

Elke Environmental, Inc.

**Project Manager: Logan Anderson** 

**Atlantic Richfield** 

### 10-NOV-08





E84880

12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215 - Odessa/Midland, TX T104704215-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta

Page 1 of 20



10-NOV-08



Project Manager: **Logan Anderson Elke Environmental, Inc.** 4817 Andrews Hwy P.O. Box 14167 Odessa, tx 79768 Odessa, TX 79762

Reference: XENCO Report No: **316620** Atlantic Richfield Project Address: Farnsworth Main Battery

### Logan Anderson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 316620. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 316620 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



# Sample Cross Reference 316620



## Elke Environmental, Inc., Odessa, TX

Atlantic Richfield

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
TP1 @ 55'	S	Nov-03-08 11:07	55 ft	316620-001
TP1 @ 60'	S	Nov-03-08 11:23	60 ft	316620-002
TP2 @ 45'	S	Nov-03-08 13:39	45 ft	316620-003
TP2 @ 50'	S	Nov-03-08 13:52	50 ft	316620-004
TP3 @ 20'	S	Nov-03-08 14:57	20 ft	316620-005
TP3 @ 25'	S	Nov-03-08 15:10	25 ft	316620-006
TP4 @ 20'	S	Nov-03-08 15:54	20 ft	316620-007
TP4 @ 25'	S	Nov-03-08 16:09	25 ft	316620-008
TP5 @ 20'	S	Nov-04-08 09:30	20 ft	316620-009
TP5 @ 25'	S	Nov-04-08 09:47	25 ft	316620-010
TP13 @ 95'	S	Nov-04-08 12:20	95 ft	316620-011
TP13 @ 100'	S	Nov-04-08 12:41	100 ft	316620-012
TP17 @ 20'	S	Nov-04-08 13:41	20 ft	316620-013
TP17 @ 25'	S	Nov-04-08 13:58	25 ft	316620-014



## Certificate of Analysis Summary 316620

Elke Environmental, Inc., Odessa, TX **Project Name: Atlantic Richfield** 



Date Received in Lab: Tue Nov-04-08 03:40 pm

**Project Id:** 

Contact: Logan Anderson

Contact: Logan Anderson													
roject Location: Farnsworth Main Battery								Report	Date:	10-NOV-08			
•								Project Mar	ager:	Brent Barron,	<u>II</u>		
	Lab Id:	316620-0	001	316620-0	02	316620-0	03	316620-0	04	316620-0	05	316620-00	06
Analysis Requested	Field Id:	TP1 @ 5	55'	TP1 @ 6	0'	TP2 @ 4	5'	TP2 @ 5	0'	TP3 @ 2	0'	TP3 @ 2:	5'
Analysis Kequesteu	Depth:	55 ft		60 ft		45 ft		50 ft		20 ft		25 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-03-08	11:07	Nov-03-08	11:23	Nov-03-08	13:39	Nov-03-08 1	3:52	Nov-03-08	14.57	Nov-03-08 1	5:10
Inorganic Anions by EPA 300	Extracted:												
	Analyzed:	Nov-05-08	09:55	Nov-05-08	09.55	Nov-05-08 (	09.55	Nov-05-08 (	9 55	· Nov-05-08 (	09 55	Nov-05-08 0	)9·55
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	51.5	ND	51.1	ND	52.6	ND	52.2	ND	110	ND	112
Percent Moisture	Extracted:												
	Analyzed:	Nov-05-08	00.00	Nov-05-08	00.00	Nov-05-08 (	00.00	Nov-05-08 (	00.00	Nov-05-08	00:00	Nov-05-08 0	00:00
	Units/RL:	%	RL	%	RL.	%	RL	%	RL	%	RL	%	RL
Percent Moisture		2.89		2.16		4 96		4.24		9.06		11.0	
TPH by SW8015 Mod	Extracted:	Nov-06-08	17 00	Nov-06-08	17.00	· Nov-06-08	17 00	Nov-06-08	17.00	Nov-06-08	17:00	Nov-06-08 1	7.00
1111 xy 500010 hidu	Analyzed:	Nov-08-08	10 40	Nov-08-08	11.05	Nov-08-08	11:29	Nov-08-08	11:53	Nov-08-08	12:18	Nov-08-08 I	12:43
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	15 4	ND	15 3	ND	15 8	ND	15 7	ND	16 5	ND	16.8
C12-C28 Diesel Range Hydrocarbons		726	15.4	135	15.3	272	15.8	274	15.7	63 3	16.5	21 0	16 8
C28-C35 Oil Range Hydrocarbons		172	15 4	37.0	15 3	69 6	15 8	16.6	15 7	ND	16.5	ND	16 8
Total TPH		898		172		341 6		290 6		63.3		21	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical reprisent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Brent Barron

Odessa Laboratory Director



## Certificate of Analysis Summary 316620

Elke Environmental, Inc., Odessa, TX



Project Name: Atlantic Richfield

**Project Id:** Contact: Logan Anderson

Date Received in Lab: Tue Nov-04-08 03:40 pr
----------------------------------------------

roject Location: Farnsworth Main Battery								Report	Date:	10-NOV-08			
						•		Project Mar	nager:	Brent Barron,	II		
	Lab Id:	316620-0	07	316620-0	08	316620-0	09	316620-0	10	316620-0	11	316620-0	12
Anglusis Deguested	Field Id:	TP4 @ 2	.0'	TP4 @ 2	5'	TP5 @ 2	201	TP5 @ 2	5'	TP13 @ 9	95'	TP13 @ 10	00'
Analysis Requested	Depth:	20 ft		25 ft		20 ft		25 ft		· 95 ft		100 ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-03-08	15.54	Nov-03-08	16:09	Nov-04-08	09:30	Nov-04-08 (	09:47	Nov-04-08	2:20	Nov-04-08 1	12:41
Inorganic Anions by EPA 300	Extracted:												
	Analyzed:	Nov-05-08	09·55	Nov-05-08	09 55	Nov-05-08	09.55	Nov-05-08 (	9.55	Nov-05-08 6	09:55	Nov-05-08 1	18:27
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		ND	108	ND	111	ND	52.8	ND	113	ND	52.0	ND	52.3
Percent Moisture	Extracted:												
	Analyzed:	Nov-05-08	00:00	Nov-05-08	00 00	Nov-05-08	00.00	Nov-05-08 (	00.00	Nov-05-08	16.00	Nov-05-08 1	16:00
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		7.61		10 0		5 27		119		3.78	1.00	4.46	1.00
TPH by SW8015 Mod	Extracted:	Nov-06-08	17.00	Nov-06-08	17.00	Nov-06-08	17.00	Nov-06-08	17 00	Nov-07-08	18.00	Nov-07-08 1	18.00
1111 by 5 11 0010 11100	Analyzed:	Nov-08-08	13:09	Nov-08-08	13.35	Nov-08-08	13.59	Nov-08-08	14.23	Nov-08-08	19:18	Nov-08-08 1	19:45
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
C6-C12 Gasoline Range Hydrocarbons		ND	16.2	ND	167	ND	15 8	ND	17 0	15.7	15.6	18 0	·15 7
C12-C28 Diesel Range Hydrocarbons		88.3	162	48.7	16.7	17.3	15.8	29 0	17.0	491	156	354	15.7
C28-C35 Oil Range Hydrocarbons		ND	16.2	ND	16.7	ND	15.8	ND	17.0	93 7	156	64.1	15.7
Total TPH		88.3		48.7		17 3		29		600.4		436 1	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director



## **Certificate of Analysis Summary 316620**

Elke Environmental, Inc., Odessa, TX



**Project Name: Atlantic Richfield** 

**Project Id:** 

Contact: Logan Anderson

Project Location: Farnsworth Main Battery

Date Received in Lab:	Tue Nov-04-08 03:40 pm
-----------------------	------------------------

Report Date: 10-NOV-08

oject Location: Farnsworth Main Battery							<b>F</b>		
							Project Manager:	Brent Barron, II	
	Lab Id:	316620-0	13	316620-0	14				
Analysis Requested	Field Id:	TP17 @ 2	.0'	TP17 @ 2	25'				
Analysis Requested	Depth:	20 ft		25 ft		•			
	Matrix:	SOIL		SOIL					
	Sampled:	Nov-04-08 1	3·41	Nov-04-08	13:58				
Inorganic Anions by EPA 300	Extracted:								
g	Analyzed:	Nov-05-08	8.27	Nov-05-08	18-27				
	Units/RL:	mg/kg	RL	mg/kg	RL				
Chloride		ND	52.2	ND	53.6				
Percent Moisture	Extracted:								
	Analyzed:	Nov-05-08	6.00	Nov-05-08	16.00				
-	Units/RL:	%	RL	%	RL				
Percent Moisture		4.16	1.00	6.70	1.00				
TPH by SW8015 Mod	Extracted:	Nov-07-08	8.00	Nov-07-08	18.00				
	Analyzed:	Nov-08-08 2	20.12	Nov-08-08 2	20:39				
	Units/RL:	mg/kg	RL	mg/kg	RL				
C6-C12 Gasoline Range Hydrocarbons		ND	157	ND	161				
C12-C28 Diesel Range Hydrocarbons		ND	15.7	ND	16.1				
C28-C35 Oil Range Hydrocarbons		ND	15.7	ND	16.1	· · · · · · · · · · · · · · · · · · ·			
Total TPH		ND		ND					

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director

## **Flagging Criteria**



- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL(PQL) and above the SQL(MDL).
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.

K Sample analyzed outside of recommended hold time.

* Outside XENCO'S scope of NELAC Accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

	Phone	Fax
11381 Meadowglen Lane Suite L Houston, Tx 77082-2647	(281) 589-0692	(281) 589-0695
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, Suite 104, San Antonio, TX 78238	(210) 509-3334	(210) 509-3335
2505 N. Falkenburg Rd., Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
6017 Financial Dr., Norcross, GA 30071	(770) 449-8800	(770) 449-5477



# Form 2 - Surrogate Recoveries

### **Project Name: Atlantic Richfield**

Vork Orders : 316620,			Project II	D:					
Lab Batch #: 739664	Sample: 316620-001 / SM	P Ba	tch: ¹ Matri	ix: Soil					
Units: mg/kg		SU	<b>RROGATE RI</b>	ECOVERY S	STUDY				
TPH by SW8 Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	89.6	100	90	70-135				
o-Terphenyl		47.0	50.0	94	70-135				
Lab Batch #: 739664	Sample: 316620-002 / SM	P Ba	tch: 1 Matri	ix: Soil					
Units: mg/kg		SURROGATE RECOVERY STUDY							
TPH by SW8 Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane		86 8	100	87	70-135				
o-Terphenyl		44.9	50.0	90	70-135				
Lab Batch #: 739664	Sample: 316620-003 / SM	P Ba	tch: 1 Matri	ix: Soil	<u></u>				
Units: mg/kg		SURROGATE RECOVERY STUDY							
TPH by SW8 Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane		91.9	100	92	70-135				
o-Terphenyl		48.3	50.0	97	70-135				
Lab Batch #: 739664	Sample: 316620-004 / SM	P Ba	tch: 1 Matri	ix: Soil					
Units: mg/kg	-	SU	RROGATE RI	ECOVERY S	STUDY				
TPH by SW8 Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	[·] Flags			
1-Chlorooctane		90.4	100	90	70-135				
o-Terphenyl		47.3	50.0	95	70-135				
Lab Batch #: 739664	Sample: 316620-005 / SM	P Ba	tch: 1 Matri	ix: Soil					
Units: mg/kg	_	SURROGATE RECOVERY STUDY							
TPH by SW80 Analyte		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctanc		90.7	100	91	70-135				
o-Terphenyl		47.4	50.0	95	70-135				

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL' and validated for QC purposes.



# Form 2 - Surrogate Recoveries

### **Project Name: Atlantic Richfield**

Work Orders : 316620,	/ork Orders : 316620, Project ID:						
Lab Batch #: 739664 Sa	mple: 316620-006 / SM	P Bai	tch: 1 Matri	x: Soil			
Units: mg/kg	,	SU	RROGATE RE	COVERY S	STUDY		
TPH by SW8015 M Analytes	Лоd	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		90.2	100	90	70-135		
o-Terphenyl	·····	47.3	50.0	95	70-135		
Lab Batch #: 739664 Sa	mple: 316620-006 S / M	IS Ba	tch: ¹ Matri	x: Soil			
Units: mg/kg	. [	SU	RROGATE RE	COVERY S	STUDY		
TPH by SW8015 N Analytes	/Iod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		109	100	109	70-135		
o-Terphenyl		56.5	50.0	113	70-135		
Lab Batch #: 739664 Sa	mple: 316620-006 SD /	MSD Ba	tch: ¹ Matri	x: Soil	· · · · · · · · · · · · · · · · · · ·	<u></u>	
Units: mg/kg			RROGATE RE	COVERY S	STUDY		
TPH by SW8015 N Analytes	Aod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		106	100	106	70-135		
o-Terphenyl		52.7	50.0	105	70-135	·	
Lab Batch #: 739664 Sa	ample: 316620-007 / SM	P Ba	tch: ¹ Matri	x: Soil	L	<del>,,,,,,,</del> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Units: mg/kg	-		RROGATE RE	COVERY S	STUDY		
TPH by SW8015 M Analytes	Aod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		92.4	100	92	70-135	i	
o-Terphenyl		47.9	50.0	96	70-135		
Lab Batch #: 739664 Sa	ample: 316620-008 / SM	P Ba	tch: ¹ Matri	x: Soil	<u> </u>		
Units: mg/kg			RROGATE RE		STUDY	****	
TPH by SW8015 M Analytes	Лod	Amount . Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		93.4	100	93	70-135		
o-Terphenyl		48.9	50.0	98	70-135	i	

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.



# Form 2 - Surrogate Recoveries

### Project Name: Atlantic Richfield

Vork Orders : 316620,			Project II	):		
Lab Batch #: 739664	Sample: 316620-009 / SM	IP Bat	tch: ¹ Matri	x: Soil		
Units: mg/kg		SU:	RROGATE RE	COVERY	STUDY	
TPH by SV		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Anal	lytes					
1-Chlorooctane		93.7	100	94	70-135	
o-Terphenyl		48.8	50.0	98	70-135	
Lab Batch #: 739664	Sample: 316620-010 / SM	1P Bat	tch: ¹ Matri	x: Soil		
Units: mg/kg		SU	RROGATE RE	COVERY S	STUDY	
TPH by SV Anal		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	95.7	100	96	70-135	h
o-Terphenyl		49.5	50.0	99	70-135	
Lab Batch #: 739664	Sample: 518942-1-BKS /	BKS Bat	tch: ¹ Matri	x: Solid	<u>L</u>	
Units: mg/kg	<b>K</b>		RROGATE RE	COVERY	STUDY	
TPH by SV		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		106	100	106	70-135	
o-Terphenyl	· · · · · · · · · · · · · · · · · · ·	51.7	50.0	108	70-135	
					10-133	
Lab Batch #: 739664	Sample: 518942-1-BLK /			x: Solid		
Units: mg/kg		SU	RROGATE RE	COVERY S	STUDY	
TPH by SV		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	· · · · · · · · · · · · · · · · · · ·	88.0	100	88	70-135	
o-Terphenyl	· · · · · · · · · · · · · · · · · · ·	46.0	50.0	92	70-135	
Lab Batch #: 739664	Sample: 518942-1-BSD /	BSD Bat	tch: ¹ Matri	x: Solid	<u></u>	
Units: mg/kg	· · · ·		RROGATE RE		STUDY .	<u>.</u>
TPH by SV Anal		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane		105	100	105	70-135	
o-Terphenyl		51.7	50.0	103	70-135	

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.



# Form 2 - Surrogate Recoveries

## Project Name: Atlantic Richfield

Lab Batch #: 739676 Sa	ample: 316620-011 / SMP	Ba	tch: ¹ Matri	ix: Soil			
Units: mg/kg	<b>F</b>	SU	RROGATE RI	ECOVERY S	STUDY		
TPH by SW8015 M Analytes	Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		96.0	100	96	70-135		
o-Terphenyl		49.8	50.0	100	70-135	<u> </u>	
Lab Batch #: 739676 Sa	ample: 316620-012 / SMP	Bat	tch: 1 Matr	ix: Soil	<u>I</u>		
Units: mg/kg			RROGATE RI		STUDY		
TPH by SW8015 M Analytes	Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		95.8	100	96	70-135	·	
o-Terphenyl		49.4	50.0	99	70-135		
Lab Batch #: 739676 S:	ample: 316620-013 / SMP	Bat	tch: 1 Matr	ix: Soil	· · · · · · · · · · · · · · · · · · ·		
Units: mg/kg	SURROGATE RECOVERY STUDY						
TPH by SW8015 M Analytes	Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		95.8	100	96	[•] 70-135		
o-Terphenyl		49.1	50.0	98	70-135		
Lab Batch #: 739676 Sa	ample: 316620-013 S / MS	Bat	tch: 1 Matri	ix: Soil	<u> </u>		
Units: mg/kg			RROGATE RI		STUDY		
TPH by SW8015 M Analytes	Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		107	100	107	70-135		
o-Terphenyl		59.1	50.0	118	70-135		
Lab Batch #: 739676 Sa Units: mg/kg	ample: 316620-013 SD / MS			ix: Soil			
			RROGATE RI				
TPH by SW8015 M Analytes	Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flag	
	1		I		L		
1-Chlorooctane		108	100	108	70-135		

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

.



# Form 2 - Surrogate Recoveries

## Project Name: Atlantic Richfield

ork Orders : 316620,			Project II	):					
Lab Batch #: 739676 Sample:	316620-014 / SMP	Bate	ch: ¹ Matri	x: Soil					
Units: mg/kg		SURROGATE RECOVERY STUDY							
TPH by SW8015 Mod Analytes	Ama Fou [A	nd	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	96.		100	96	70-135				
o-Terphenyl	49.	t	50.0	99	70-135				
Lab Batch #: 739676 Sample:	518946-1-BKS / BKS	Bate	ch: ¹ Matri	x: Solid					
Units: mg/kg		SUF	RROGATE RE	ECOVERY S	STUDY				
TPH by SW8015 Mod Analytes	Amo Fou [A	nd	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	108		100	108	70-135				
o-Terphenyl	54.	l	50.0	108	70-135				
Lab Batch #: 739676 Sample:	518946-1-BLK / BLK	Bate	:h: 1 Matri	x: Solid					
Units: mg/kg		SUF	ROGATE RE	ECOVERY S	STUDY				
TPH by SW8015 Mod Analytes	Amo Fou [A	nd	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1-Chlorooctane	88.	5	100	89	70-135				
o-Terphenyl	46.	)	50.0	94	70-135				
•	518946-1-BSD / BSD	Bate		x: Solid	· · · · · · · · · · ·				
Units: mg/kg		SUF	RROGATE RE	ECOVERY S	STUDY	<u></u>			
TPH by SW8015 Mod Analytes	Amo Fou [A	nd	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
J-Chlorooctane	105		100	105	70-135				
o-Terphenyl	52.	1	50.0	104	70-135				

** Surrogates outside limits; data and surrogates confirmed by reanalysis *** Poor recoveries due to dilution Surrogate Recovery [D] = 100 * A / B All results are based on MDL and validated for QC purposes.



.

-



### **Project Name: Atlantic Richfield**

Work Order #: 316620			Project ID:					
Lab Batch #: 739286	Sa	mple: 739286-	1-BKS	Matri				
Date Analyzed: 11/05/2008	Date Prepared: 11/05/2008			Analys	st: LATC	OR		
Reporting Units: mg/kg	Batch #: 1 BLANK			BLANK SPI	KE REC	COVERY S	STUDY	
Inorganic Anions by EPA 300		Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags	
Analytes		[A]	[15]	[C]	[D]	///		
Chloride		ND	10.0	9.90	99	75-125		
Lab Batch #: 739303	Sa	mple: 739303-	1-BKS	Matri	x: Solid			
Date Analyzed: 11/05/2008	Date Prej	pared: 11/05/20	008	Analy	st: LATCO	OR	•	
Reporting Units: mg/kg	Ba	itch #: 1	BLANK /	BLANK SPI	KE REC	COVERY S	STUDY	
Inorganic Anions by EPA 300		Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags	
Analytes		[A]	[ <b>B</b> ]	Result [C]	%R [D]	%R		
Chloride		ND	10.0	10.4	104	75-125		

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.



ALTO SA THE PACE OF GRADE SHE AND

## **BS / BSD Recoveries**



### Project Name: Atlantic Richfield

BUT HAS THE TANK OF HER STORE TO BE WAS

Work Order #: 316620 Analyst: ASA		D:	ate Prenar	ed: 11/06/200	)8				ect ID:	1/08/2008		
Lab Batch ID: 739664	Sample: 518942-1-H		-	h #: 1					Matrix: S			
Units: mg/kg			BLAN	K/BLANK S	SPIKE / H	BLANK S	PIKE DUPI	JCATE 1	RECOVE	ERY STUD	Y	
TPH by SW80 Analytes	15 Mod	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydroc	arbons	ND	1000	840	84	1000	846	85	1	70-135	35	
C12-C28 Diesel Range Hydroca	rbons	ND	1000	933	93	1000	941	94	1	70-135	35	
Analyst: ASA		D	ate Prepar	ed: 11/07/200	)8			Date A	nalyzed: 1	1/08/2008		
Lab Batch ID: 739676	Sample: 518946-1-F	BKS	Bate	h#: 1					Matrix: S	Solid		
Units: mg/kg			BLAN	K /BLANK S	SPIKE / I	BLANK S	PIKE DUPI	LICATE 1	RECOVE	ERY STUD	Y	
TPH by SW80 Analytes	15 Mod	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydroc	arbons	ND	1000	857	86	1000	848	85	1	70-135	35	
C12-C28 Diesel Range Hydroca	rbons	ND	1000	945	95	1000	- 936	94	1	70-135	35.	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Page 14 of 20

Đđ	10
Labor	atorics

## Form 3 - MS Recoveries



### **Project Name: Atlantic Richfield**

Work Order #: 316620	,						
Lab Batch #: 739286				Pı	roject ID:	:	
Date Analyzed: 11/05/2008	Date	Prepared:	11/05/2008	5	Analyst:	LATCOR	
QC- Sample ID: 316614-004 S		Batch #:	1		Matrix:	Soil	
Reporting Units: mg/kg	ſ	MAT	RIX / MA	TRIX SPIKE	E RECO	VERY STU	DY
Inorganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	e %R [D]	Control Limits %R	Flag
Analytes		[A]	[B]		[2]		
Chloride		1530	1040	2890	131	75-125	X
Lab Batch #: 739303							
Date Analyzed: 11/05/2008	Date	Prepared:	11/05/2008	5	Analyst:	LATCOR	
QC- Sample ID: 316620-012 S		Batch #:	1		Matrix:	Soil	
Reporting Units: mg/kg	]	MAT	RIX / MA	TRIX SPIKE	E RECO	VERY STU	DY
Inorganic Anions by EPA 300		Parent Sample Result	Spike Added	Spiked Sample Result [C]	e %R [D]	Control Limits %R	Flag
Analytes		[A]	[B]				
Chloride		ND	105	124	118	75-125	

Chloride

Matrix Spike Percent Recovery  $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference  $[E] = 200^{\circ}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes



## Form 3 - MS / MSD Recoveries

### **Project Name: Atlantic Richfield**



Work Order #: 316620						Project II	D:				
Lab Batch ID: 739664 Date Analyzed: 11/08/2008	QC- Sample ID: Date Prepared:				tch #: alyst:	l <b>Matri</b> x ASA	<b>k:</b> Soil				
Reporting Units: mg/kg		M	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
C6-C12 Gasoline Range Hydrocarbons	ND	1120	955	85	1120	944	84	1	70-135	35	
C12-C28 Diesel Range Hydrocarbons	21.0	1120	1060	93	1120	1050	92	1	70-135	35	
Lab Batch ID: 739676	QC- Sample ID:	316620	-013 S	Ba	tch #:	1 Matri	x: Soil				
Date Analyzed: 11/09/2008	Date Prepared:	11/07/2	008	An	alyst:	ASA					
Reporting Units: mg/kg		M	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH by SW8015 Mod Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
C6-C12 Gasoline Range Hydrocarbons	ND	1040	881	85	1040	892	86	1	70-135	35	1
C12-C28 Diesel Range Hydrocarbons	ND	1040	986	95	1040	1010	97	2	70-135	35	

Matrix Spike Percent Recovery  $[D] = 100^{*}(C-A)/B$ Relative Percent Difference  $RPD = 200^{*}[(C-F)/(C+F)]$ 

71

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit



# Sample Duplicate Recovery

,



Project Name: Atlantic Richfield

Work Order #: 316620

Lab Batch #: 739286				Project I	D:		
Date Analyzed: 11/05/2008	Date Pro	epared: 11/0	)5/2008	•	st: LATCO	ર	
OC- Sample ID: 316614-004 D		atch #: 1		•	ix: Soil		
Reporting Units: mg/kg		SAMPLE	/ SAMPLE			OVERY	
Inorganic Anions by EPA 300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag	
Chloride		1530	31.7	192	20	F	
Lab Batch #: 739303							
Date Analyzed: 11/05/2008	Date Pro	epared: 11/0	)5/2008	Analy	st: LATCO	ર	
QC- Sample ID: 316620-012 D	B	atch #: 1	l	Matr	ix: Soil		
Reporting Units: mg/kg		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY	
Inorganic Anions by EPA 300 Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag	
Chloride		ND	ND	NC ·	20		
Lab Batch #: 739284 Date Analyzed: 11/05/2008 QC- Sample ID: 316550-001 D	Date Pro B	epared: 11/0 atch #: 1	05/2008	•	st: LATCOF	e	
Reporting Units: %		SAMPLE	/ SAMPLE	DUPLICATE RECOVERY			
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	' Flag	
Percent Moisture		13.9	16.0	14	20		
Lab Batch #: 739285		13.9	10.0				
Lab Batch #: 739263 Date Analyzed: 11/05/2008	Date Pro	epared: 11/0	)5/2008	Analy	st: LATCO	ł	
QC- Sample ID: 316620-011 D	В	atch #: 1		Matr	ix: Soil		
Reporting Units: %		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY	
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag	
			3.63	4			

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

Page 1.f2

	/ironment		Tex	as							C/ (est  - Texa	20 E	ast	cu:	STOD						Ph Fi	one IX	: 43 43	2-56 2-56	3-18 3-17	300 713	~			
	Project Manager:	Logan Anderso	<u>n</u>												_	Pro	ject i	Nan	10. <u>/</u>	4	1/0	5	hic	×	je.	46	<u>e</u> l	ld_		
	Company Name	Elke Environme	ental												•		Pro	ject	#:_											
	Company Address	P O Box 14167													_	P	rojec	at Lo	×:_	ŀ	a	~	i ne	÷	<u>H</u>	1	nai,	. 6	<u>;</u> #	ex.
	City/State/Zip.	Odessa, TX 79	768					_							~			PO	s:											
	Telephone No	432-366-0043	$\Delta$	_		Fax No.		43	2-36	6-	0884	<b>;</b>			Ra	eport	For	nat	J	<b>Ţ</b> s	tandi	ard		Ο	TRE	RP	I		POE	s
	Sampler Signature.	A	Ĺ			e-mail		la	eike	er	w@	/ah	00 00	om																_
(lab use	priy)					-														TCLI		<u>\nah</u>	ize F	ior T			T	Т	-	1
ORDER		0020						ł	P		ration &	Rof	Contain		Ma	ıtrix	-	-		TOTA		-	-	Ē					41 72 hr	
AB # (lab use only)		.D CODE	Beghnning Depth	Ending Depth	Date Sampled	Time Sampled	inki Fittered	Total & of Contamena	B				Na ₂ C, Mine	(Specify)	S. Suite	Speech, Direr	(NSID) 1814	TPH TX 1005 TX 1008	Catoma (Ca. Mg. Na. K)	SAB JESP / CEC	Cd Cr The Ha		Serrivolaties	BTEX 80218/6030 or 81EX 8280	RCI	NORM			RUSH TAT (Pre-Scheddel) 24.	
01	TPICSS			55	11-7-08	11:07 A	. 14	Ē	x	1		Π		$^{+}$	5		x	1		F	T	ľ		Ē				T	Ē	k
01	TPIC60'	,		60 :	1	11:23 A		1	x	Τ				Ι	S		x				Γ	Γ					Ι		L	4
03	TP2 C45	٠		451		1:390		1	x						5		x											_		r
04	TP2 e So	l		50		1:52P		1	X	1					5		시	_		d	1	1.	1	$\square$		_	$\downarrow$	+	1	Ľ
CS	TP3C20'			20'		2:57A	_	L	x	$\perp$			_		2		X	$\downarrow$	4			1	1	$\square$		_	4	_	┢	2
00	TP3C25'			25	<u> </u>	3:10 P	4	1	X	1	_	-		L	5		21	_	_	-	+	+	┢	$\square$			4	+	┢	Ľ
07	-7P4 C 20'			20'		3:548	_	Ц	×.	+	+	$\left  \right $		∔	S		서		-43		+-	╉	┢	$\vdash$			+	+-	┢	Ľ
03	TP4 C25'			25'		4:091	+	÷	۲	+	+	$\square$	+	╀	5		X	+		<	┿	╋	┝╍	$\vdash$	$\vdash$		+	┿	╋	Ŕ
প্র	TPSC20'			25	11-4-08	9:30A 9:47A	-+	$\frac{1}{1}$	X-	┿		$\vdash$	-+-	┿	Þ		$\frac{x}{x}$	+	+	¥-	+	╉	┝	H	Н		+	+	+	뜄
Special (	natructions			103	1-4-00	<u>[]])]]/</u> []	_1						_ I _	1	13		<u></u>		Labo Samp	la C	onta	iners	s Inte		Ĺ		\$	Ð	.⊥ B≊	ŕ
Refinquisi Refinquisi		- Date	·8 3.	lime 42 / lime	Received by								_		ale ste		Time Time		Custo Samp b	kdys kdys hie H (Sar	eals eals land mple	on c on c Dela /Cite	ionta ioote verei int Ri	di asp?			0. 30.	100		
Reinquist	ed by	Date		ime	Received by EL	ia La	~	_					-	- р 1 Ч	िर संग	5	ikme '{{	5		40	uneri ) (, 4 ura (	4 ler	UP 75's Rec				FedE 4 (	ix 1.0 ()	ne S' 'C	w

.

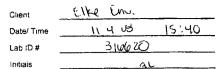
.

.

.

Page 2072

Environmental Lat	o of Te	xas					F CUSTODY RECORD AND ANALYSIS REQUEST Phone: 432-663-1600											
A Xenco Laboratories Company					12600 West I-20 Em Odesse, Texas 797(				432-553-1713									
Project Manager Logan An	nderson						Project N	ame. Atlant	10 Rich	field	_							
Company Name Elke Envi	ironmental						Proje	ict #:										
Company Address. P O Box			-					Loc: Farnswi	the Main	Better								
				· · · ·					<u>.,, , , , , , , , , , , , , , , , , , ,</u>		•							
· · · · ·	<u>TX 79768</u>	$\rightarrow$	n					స#:			•							
Telephone No: 432-366-	0043			Fax No	432-366-0884		Report Form	et: KStandard	TRRP	NPDES								
Sampler Signature	Z			e-mail:	la_elkeenv@yahoo	o com		Analy	- For									
(lab use only)								TCLP										
ORDER# 316020					Preservation & # of Co	nteiners A	Aatrix (F	TOTAL		4	_							
FIELD CODE 11 TP/3C 95' 12 TP/3C 95' 13 TP/7C 20' 14 TP/7C 25'		Boginning Depth		12:30 12:30 12:41 1:58 1:58 1	Pass Famor     T         ・ ・・・・・・・・・・・・・・・・・・・・・・	None (Specify) Other (Specify) Other Ware & Suchard		Image: Section 1 (Section 1 (Sec	Serviceses           Image: Service serviceses         Serviceses           Image: Serviceses         Services	RUSH TAT For schedule to 4								
			ļ		╶╁┫┼╁┊┼┼			<u>↓ ↓ ↓ ↓</u>	┥┥┥	╾┼╌╀╼╂╼	-							
Special Instructions,	0ats ]/ √ ε5' Date	Time 3 : 4 c p Time	Received by: Received by			Data	Time	Laboratory Comm Sample Containers VOCs Free of Head Labels on container Custody seals on ci Custody seals on ci Custody seals on ci Custody seals on ci Sample Hand Deliv by Sample //Clerk	Infact? (s) (s) miamer(s) poler(s) ered H Ren 2									
Relinquished by	Date	Time	Received by EL	ilor fer		Oste (1 ଏ-୦୪	Time 5 tù	by Sample/Cher by Courier? 4 0 2 7 ( Temperature Upon	tkepi? UPS DHL f ris⊃'s Receipt	FedEx Lone Star 식() *C								


Page 19 of 20

~

١

### Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In



#### Sample Receipt Checklist

	Sample Receipt	Olicekiist			
				Client in	itialı
#1	Temperature of container/ cooler?	1 Cor	No	40 °C	
#2	Shipping container in good condition?	6	No		
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	(Not Present)	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present	
#5	Chain of Custody present?	Yes	No		
#6	Sample instructions complete of Chain of Custody?	Yes	No		
#7	Chain of Custody signed when relinquished/ received?	(ês	No		
#8	Chain of Custody agrees with sample label(s)?	Yes	No	D written on Cont / Lid	
#9	Container label(s) legible and intact?	Yes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No		
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?	Ves>	No	See Below	
#13	Samples properly preserved?	X B6	No	See Below	
#14	Sample bottles intact?	Kes	No		
#15	Preservations documented on Chain of Custody?	Y(es)	No	1	
#16	Containers documented on Chain of Custody?	Yes	No		
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18	All samples received within sufficient hold time?	Ves	No	See Below	
#19	Subcontract of sample(s)?	Yes	No	Not Applicable	
#20	VOC samples have zero headspace?	Yes	No	Not Applicable	

#### Variance Documentation

Date/ Time

Contact

Regarding

Corrective Action Taken.

Check all that Apply

See attached e-mail/ fax

Contacted by

Client understands and would like to proceed with analysis

Cooling process had begun shortly after sampling event

# Analytical Report 323241

for

Elke Environmental, Inc.

**Project Manager: Logan Anderson** 

**Atlantic Richfield** 

### 27-JAN-09



12600 West I-20 East Odessa, Texas 79765

Texas certification numbers: Houston, TX T104704215-08B-TX - Odessa/Midland, TX T104704400-08-TX

Florida certification numbers: Houston, TX E871002 - Miami, FL E86678 - Tampa, FL E86675 Norcross(Atlanta), GA E87429

> South Carolina certification numbers: Norcross(Atlanta), GA 98015

> North Carolina certification numbers: Norcross(Atlanta), GA 483

Houston - Dallas - San Antonio - Tampa - Miami - Latin America Midland - Corpus Christi - Atlanta



27-JAN-09



Project Manager: Logan Anderson Elke Environmental, Inc. 4817 Andrews Hwy P.O. Box 14167 Odessa, tx 79768 Odessa, TX 79762

Reference: XENCO Report No: 323241 Atlantic Richfield Project Address: Farnsworth Main Battery

### Logan Anderson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 323241. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 323241 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Brent Barron, II Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America



. . . . . .

Sample Cross Reference 323241



Elke Environmental, Inc., Odessa, TX

Atlantic Richfield

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-1	W	Jan-23-09 11:54	111.5 - 122.8	323241-001

F	7	Ŧ	Ţ	7	0)
	ab	or	at		CS

**Project Id:** 

### Certificate of Analysis Summary 323241

Elke Environmental, Inc., Odessa, TX



**Project Name: Atlantic Richfield** 

Date Received in Lab: Fri Jan-23-09 02:15 pm

Contact: Logan Anderson Project Location: Farnsworth Main Battery

Report Date: 27-JAN-09 Project Manager: Brent Barron, II

			 	 Diene Builen, H	
	Lab Id:	323241-001			
Analysis Requested	Field Id:	MW-1			
Anuiysis Kequesieu	Depth:	111.5-122.8			
	Matrix:	WATER			
	Sampled:	Jan-23-09 11:54			
TDS by SM2540C	Extracted:				
	Analyzed:	Jan-26-09 16.23			
	Units/RL:	mg/L RL			
Total dissolved solids		1180 5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warramy to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron

Odessa Laboratory Director





- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lanc, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

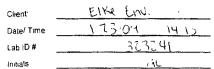


# Sample Duplicate Recovery



Project Name: Atlantic Richfield

Work Order #: 323241


Lab Batch #: 747615 Date Analyzed: 01/26/2009 QC- Sample ID: 323241-001 D	Project ID:           Date Prepared:         01/26/2009         Analyst:         WRU           Batch #:         1         Matrix:         Water
Reporting Units: mg/L	SAMPLE/SAMPLE DUPLICATE RECOVERY
TDS by SM2540C	Parent SampleSampleControlResultDuplicateRPDLimits[A]Result%RPD
Analyte	[B]
Total dissolved solids	1180 1180 0 30

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

	Laboratoriae Compa		o of T	өха	as			CHAIN OF CUS 12600 West I-20 East Odesta, Texas 79785								USTODY RECORD AND ANALYSIS REQUEST Phone: 432-563-1800 Fax: 432-563-1713												
	Project Manager:	Logan Ar	derson													P	ojec	t Na	me:	_/	94	10	<u>~</u> fi	ε.	Ric	64	<u> </u>	L
	Company Name	Elke Envi	ronment	al											_		Pi	roje	st#:_						M			
	Company Address	P O Box	14167												-		Рюр	ect i	.ee;	Ea		<u>w</u>	<u>c</u> #	4	M	in	<i>B</i> -	Ħ
	City/State/Zip.	Odessa,	TX 7976	8					<u>.</u>					,				P	0#:_									_
	Telephone No	432-366-	0043/	$\leq$	$\leq$		_ Fax No	<b>)</b> .	432-	366	3-08	84		_		Repo	rt Po	err tê	e ,	<b>X</b> 's	ianda	end	1	П т	RRP	1		DE
	Sampler Signature	~~	4	es.			_ e-mai	r	ia_e	ikee	envø	≩ya	hoo.	com	1													_
(Jap nee		<u></u>	7														E	-		TCL	P.		e Foi	-	TI		Т	5
ORDEF	* 32	3241					····	-	-F	Pres	ervedo	16 P s	Cont	iners	Ţ	Aetríx	2	Г	Π	ATOTA	8	Η						14 A
LAB # (tab use only)		D CODE		Beginning Depth	t Ending Depth	Date Sempled	Time Sampled	Field Filmind	- Total & of Containers	HMO	Ş	NaOt	Ne.S.D.	hina Other Samth	DW-Crimony	CW- Overheite S-CAR	TPH: 418.1 BOISM	TPH. TX 1006 TX	Centoria (Cia, Mp. Ma. 14)	SAD LESD LEC	Minth An Allen Color Phyly	Volutios	Sectoringes	RCI	NORM	9 TDS		RUSH TAT Pre-schedus
01	mw-1			/11.3	143	1-23-01	11:54A	+	μk	+	$\mathbb{H}$	+	+	+	۴	w	┢	$\vdash$	-+	╇	╋	$\left  \right $	-	╉	╄┦	4	┼┨	┝
					+			╋	┼╋	╋	┢┼	+	+	-	+		H	H	┝╋	┥	+-	+	╋	+	+	+	┾┥	┢
								L							L					T			T	T		T		Ĺ
				_		<b> -</b>	ļ	+				1	$\downarrow$	-	-				4	4	+	Ц	$\downarrow$	+	$\downarrow$	4	┾╂	-
			·····	<b>-</b>	┨───	<b> </b>	<u> </u>	╀	┝╋	╋	┢┼	+	+	+	╀		$\vdash$	$\mathbb{H}$		╉	+-	$\mathbb{H}$	╉	┿╸	++	╉	+	-
				+				┢		+-	H	╋	+1	+	+		H	$\vdash$		+	+-	H	+	1	+	╈	┼╂	
								T				T	Π	T						T								_
-	nstructions:							L										Ц			Ļ							
opecan							2	_	,										Labo Semp	ite Ci	ontali	ners i	mact			í¥.	۱ (	Ņ
Ralingus	ed by	1	Data		ine	Received by		$\neq$	0	)			-1		ale	1.	Time		VOC: Label		mate	10401	a1			ž		NN N
Rebau	The state		./-2300	<i> /∂;</i>	OP	Received by	n Y	30	7_				_		م م Nata	6	Time	4	Cust: Cust: Semp	dy s dy s	esis ( esis ( est l'	31 CO 31 CO 31 CO	nuene Dier(e red	H(8) )		¥ ¥}¥¥		N N N
ζ	Fra Jos	P	1-23-0	2	15pm		1		•				- 1	_	-			-	5	y San y Cou	npier/ nim?	Cilent	Rep UP8	OH	п. р	्रङ्ग	Lone	N
Reingelsi	red by		Date	T	ime	Received by EL	A Par								ate .	11	Tim		-	$\overline{\mathbf{t}}$	$\Sigma^{\gamma}$ .	<u></u> }	È.	Ч				r

#### Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In



#### Sample Receipt Checklist

.

.

Date/ Time

				Client Initials
#1	Temperature of container/ cooler?	Yes	No	35 0
#2	Shipping container in good condition?	¥es	No	
#3	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present
#5	Chain of Custody present?	Yes	No	
#6	Sample instructions complete of Chain of Custody?	Yes	No	
#7	Chain of Custody signed when relinquished/ received?	Yes	No	
#8	Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont / Ltd
#9	Container label(s) legible and intact?	Yes	No	Not Applicable
#10	Sample matrix/ properties agree with Chain of Custody?	Yes	No	
#11	Containers supplied by ELOT?	Yes	No	
#12	Samples in proper container/ bottle?	Yes	No	See Below
#13		Yes	No	See Below
#14	Sample bottles intact?	Yes	No	
#15	Preservations documented on Chain of Custody?	Yes	No	
#16	Containers documented on Chain of Custody?	Yes	No	
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below
#18	All samples received within sufficient hold time?	Yes	No	See Below
#19	Subcontract of sample(s)?	Yes	No	Not Applicable
#20	VOC samples have zero headspace?	Yes	No	Not Applicable

#### Variance Documentation

Contact

Regarding

Corrective Action Taken

Check all that Apply.

See attached e-mail/ fax

Contacted by

Client understands and would like to proceed with analysis

Cooling process had begun shortly after sampling event



6701 Aberdeen Avenue. Suite 9 200 East Sunset Road Suite E 5002 Basin Street, Suite A1 6015 Harris Parkway, Suite 110 Ft. Worth, Texas 76132

Lubbock Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443 Midland, Texas 79703 E-Mail: lab@traceanalysis com

806 • 794 • 1296 FAX 806 • 794 • 1298 915+585+3443 432•689•6301 817 • 201 • 5260

FAX 915+585+4944 FAX 432 • 689 • 6313

## Analytical and Quality Control Report

**Cliff Brunson BBC** International 1324 W. Marland Hobbs, NM, 88240

Report Date: July 26, 2007

Work Order: 7071719 

Project Location:	Jal, NM
Project Name:	Farnsworth Main Tank Battery
Project Number:	Farnsworth Main Tank Battery

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc.													
			Date	Time	Date								
Sample	Description	Matrix	Taken	$\mathbf{Taken}$	Received								
130163	MW-1 002-002A	water	2007-07-13	12:50	2007-07-17								
130164	Trip Blank	water	2007-07-13	00:00	2007-07-17								

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 16 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

### Standard Flags

 $\,B\,$  - The sample contains less than ten times the concentration found in the method blank.

# **Analytical Report**

### Sample: 130163 - MW-1 002-002A

Analysis: QC Batch: Prep Batch:	TPH DRO 39220 33942		Analytical Method: Date Analyzed: Sample Preparation:		Mod. 80 2007-07- 2007-07-	18	Prep Method: Analyzed By: Prepared By:		N/A TG TG
			RL						
Parameter	ameter Flag		Result	Units			Dilution		$\mathbf{RL}$
DRO			<5.00		mg/L		1		5.00
Surrogate	Flag	Result	Units	Diluti	ion	Spike Amount	Percent Recovery		overy mits
n-Triacontan	e	25.3	mg/L	1		15.0	169	40.7	- 174

### Sample: 130163 - MW-1 002-002A

Analysis: QC Batch: Prep Batch:	TPH GRO 39404 34113		Analytical Date Analy Sample Pre	zed:	S 8015B 2007-07-25 2007-07-25		Prep Meth Analyzed Prepared 1	By: MT
			$\mathbf{RL}$					
Parameter	Flag		$\mathbf{Result}$		$\mathbf{Units}$	]	Dilution	$\mathbf{RL}$
GRO	30		<0.100		$\rm mg/L$		1	
						Spike	Percent	Recovery
Surrogate		$\mathbf{Flag}$	Result	$\mathbf{Units}$	Dilution	$\mathbf{Amount}$	Recovery	Limits
Trifluorotoluene (TFT)			0.108	mg/L	1	0.100	108	63.3 - 132
4-Bromofluorobenzene (4-BFB)			0.0738	mg/L	1	0.100	74	61.8 - 117.5

### Sample: 130163 - MW-1 002-002A

Analysis: Vol QC Batch: 392 Prep Batch: 339			Analytical M Date Analyz Sample Prep	ed:	S 8260B 2007-07-18 2007-07-18		Prep Method: Analyzed By: Prepared By:	
			RL					
Parameter	Flag		Result		Units		Dilution	$\mathbf{RL}$
Benzene			<1.00	)	$\mu g/L$	,	1	1.00
Toluene			<1.00	)	$\mu { m g}/{ m L}$		1	1.00
Ethylbenzene			<1.00	1	$\mu { m g/L}$		1	1.00
m,p-Xylene			< 1.00		$\mu { m g}/{ m L}$		1	1.00
o-Xylene			<1.00		$\mu$ g/L		1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluorome	thane		47.8	$\mu g/L$	1	50.0	96	82.4 - 115
Toluene-d8			48.0	$\mu { m g/L}$	1	50.0	96	89.7 - 108
4-Bromofluorobenzene (4-BFB)		44.6	$\mu g/L$	1	50.0	89	84.6 - 114	

.

## Sample: 130164 - Trip Blank

Analysis: QC Batch: Prep Batch:	TPH GRO 39404 34113		Analytical Date Analy Sample Pre	zed:	S 8015B 2007-07-25 2007-07-25	Prep Metho Analyzed By Prepared By		By: MT
	Ŷ		$\mathbf{RL}$					
Parameter	Flag		Result		Units	I	Dilution	$\mathbf{RL}$
GRO			< 0.100		$\mathrm{mg/L}$		1	0.100
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotolu	ene (TFT)		0.106	mg/L	1	0.100	106	63.3 - 132
4-Bromofluor	robenzene (4-BFB)		0.0712	mg/L	1	0.100	71	61.8 - 117.5

`

## Sample: 130164 - Trip Blank

Analysis: Volatiles QC Batch: 39228 Prep Batch: 33949			Analytical M Date Analyze Sample Prep	ed:	S 8260B 2007-07-18 2007-07-18		Prep Metho Analyzed B Prepared B	y: JG
			$\mathbf{RL}$					
Parameter ·	Flag		Result		Units		Dilution	$\mathbf{RL}$
Benzene			<1.00		$\mu \mathrm{g/L}$		1	1.00
Toluene			< 1.00		$\mu { m g}/{ m L}$		1	1.00
Ethylbenzene	,		< 1.00		$\mu { m g}/{ m L}$		1	1.00
m,p-Xylene			<1.00		$\mu { m g}/{ m L}$		1	1.00
o-Xylene			<1.00		$\mu { m g}/{ m L}$	<b>P</b> 41-	1	1.00
						Spike	Percent	Recovery
Surrogate		Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane			48.4	$\mu { m g/L}$	1	50.0	97	82.4 - 115
Toluene-d8			48.2	$\mu { m g/L}$	1	50.0	96	89.7 - 108
4-Bromofluorobenzene (4-Bl	FB)		45.0	$\mu { m g/L}$	1	50.0	90	84.6 - 114

## Method Blank (1) QC Batch: 39220

QC Batch: Prep Batch:	39220 33942		Date Analyzed: QC Preparation			v	zed By: TG red By: TG
		,		MDL			
Parameter Flag		J	Result		$\mathbf{Units}$		
DRO		· · · · · · · · · · · · · · · · · · ·		<1.06		mg/L	5
					Spike	Percent	Recovery
Surrogate	Flag	$\mathbf{Result}$	Units	Dilution	Amount	Recovery	Limits
n-Triacontan	e	20.6	mg/L	1	15.0	137	40.7 - 174

JG JG

# Method Blank (1) QC Batch: 39228

QC Batch:	39228	Date Analyzed:	2007-07-18	Analyzed By:
Prep Batch:	33949	QC Preparation:	2007-07-18	Prepared By:

		MDL		
Parameter	Flag	Result	Units	$\mathbf{RL}$
Bromochloromethane		< 0.351	$\mu g/L$	1
Dichlorodifluoromethane		< 0.306	$\mu g/L$	1
Chloromethane (methyl chloride)		<0.240	$\mu g/L$	1
Vinyl Chloride		< 0.224	$\mu g/L$	1
Bromomethane (methyl bromide)		< 0.325	$\mu g/L$	$\overline{5}$
Chloroethane	,	< 0.303	$\mu g/L$	ĩ
Trichlorofluoromethane		< 0.255	$\mu g/L$	1
Acetone		<1.86	$\mu g/L$ .	10
Iodomethane (methyl iodide)		< 0.397	$\mu g/L$	5
Carbon Disulfide		< 0.354	$\mu g/L$	ĩ
Acrylonitrile	,	< 0.306	$\mu_{\rm g}/{\rm L}$	1
2-Butanone (MEK)		<0.670	$\mu_{\rm g}/{\rm L}$	$\hat{\overline{5}}$
4-Methyl-2-pentanone (MIBK)		<0.463	$\mu g/L$	5
2-Hexanone		< 0.303	$\mu_{\rm g}/{\rm L}$	5
trans 1,4-Dichloro-2-butene		<0.406	$\mu g/L$	10
1,1-Dichloroethene		<0.326	$\mu_{\rm g}/L$	10
Methylene chloride		1.57	$\mu g/L$ $\mu g/L$	$\frac{1}{5}$
MTBE		<0.352	$\mu_{ m g/L}$ $\mu_{ m g/L}$	1
trans-1,2-Dichloroethene		< 0.322		1
1,1-Dichloroethane		<0.322	$\mu g/L$	1
cis-1,2-Dichloroethene		< 0.324 < 0.331	$\mu g/L$	
2,2-Dichloropropane		< 0.331	$\mu g/L$	1 1
1,2-Dichloroethane (EDC)		<0.327	$\mu g/L$	
Chloroform			$\mu g/L$	1
1,1,1-Trichloroethane		<0.345	$\mu g/L$	1
		<0.303	$\mu g/L$	1
1,1-Dichloropropene Benzene		<0.356	$\mu g/L$	1
Carbon Tetrachloride		<0.356	$\mu g/L$	1
		< 0.342	$\mu g/L$	1
1,2-Dichloropropane		<0.366	$\mu g/L$	1
Trichloroethene (TCE)		<0.434	$\mu g/L$	1
Dibromomethane (methylene bromide)		< 0.406	$\mu g/L$	1
Bromodichloromethane		< 0.325	$\mu g/L$	1
2-Chloroethyl vinyl ether		< 0.366	$\mu g/L$	5
cis-1,3-Dichloropropene		< 0.387	$\mu \mathrm{g/L}$	1
trans-1,3-Dichloropropene		< 0.367	$\mu g/L$	1
Toluene	,	< 0.366	$\mu g/L$	1
1,1,2-Trichloroethane		<0.397	$\mu g/L$	1
1,3-Dichloropropane		< 0.355	$\mu g/L$	1
Dibromochloromethane		< 0.315	$\mu \mathrm{g/L}$	1
1,2-Dibromoethane (EDB)		< 0.340	$\mu { m g/L}$	1
Tetrachloroethene (PCE)		< 0.355	$\mu { m g}/{ m L}$	1
Chlorobenzene		< 0.363	$\mu { m g/L}$	1
1,1,1,2-Tetrachloroethane		< 0.338	$\mu g/L$	1
Ethylbenzene		< 0.350	$\mu { m g} / { m L}$	1
m,p-Xylene		<0.752	$\mu \mathrm{g/L}$	1
Bromoform		<0.275	$\mu { m g/L}$	1
Styrene		<0.395	$\mu g/L$	1

continued ...

.

method blank continued ...

meinou olumik communueu				
		$\operatorname{MDL}$		
Parameter	Flag	$\mathbf{Result}$	Units	RL
o-Xylene		< 0.375	$\mu g/L$	1
1,1,2,2-Tetrachloroethane		< 0.283	$\mu { m g}/{ m L}$	1
2-Chlorotoluene		$<\!0.445$	$\mu { m g}/{ m L}$	1
1,2,3-Trichloropropane		< 0.430	$\mu { m g/L}$	1
Isopropylbenzene		< 0.521	$\mu { m g/L}$	1
Bromobenzene		< 0.494	$\mu { m g} / { m L}$	1
n-Propylbenzene		$<\!0.483$	$\mu { m g} / { m L}$	1
1,3,5-Trimethylbenzene		< 0.487	$\mu { m g} / { m L}$	1
tert-Butylbenzene		< 0.496	$\mu { m g/L}$	1
1,2,4-Trimethylbenzene		< 0.532	$\mu { m g/L}$	1
1,4-Dichlorobenzene (para)		< 0.413	$\mu { m g} / { m L}$	1
sec-Butylbenzene		< 0.449	$\mu { m g}/{ m L}$	1
1,3-Dichlorobenzene (meta)		< 0.451	$\mu { m g}/{ m L}$	1
p-Isopropyltoluene		$<\!0.450$	$\mu { m g} / { m L}$	1
4-Chlorotoluene		< 0.489	$\mu { m g} / { m L}$	1
1,2-Dichlorobenzene (ortho)		< 0.438	$\mu { m g}/{ m L}$	1
n-Butylbenzene		< 0.461	$\mu { m g/L}$	1
1,2-Dibromo-3-chloropropane		< 0.532	$\mu { m g}/{ m L}$	5
1,2,3-Trichlorobenzene		< 0.288	$\mu { m g} / { m L}$	5
1,2,4-Trichlorobenzene		< 0.273	$\mu { m g}/{ m L}$	5
Naphthalene		< 0.299	$\mu g/L$	5
Hexachlorobutadiene		< 0.483	$\mu g/L$	5

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
Dibromofluoromethane		46.7	$\mu { m g/L}$	1	50.0	93	82.4 - 115
Toluene-d8		48.0	$\mu { m g}/{ m L}$	1	50.0	96	89.7 - 108
4-Bromofluorobenzene (4-BFB)		44.7	$\mu { m g}/{ m L}$	1	50.0	89	84.6 - 114

## Method Blank (1) QC Batch: 39404

QC Batch: 394 Prep Batch: 34			Date Analyzed: 2007-07-25 QC Preparation: 2007-07-25			Analyzed By: M Prepared By: M			
				M	DL				
Parameter	Flag		Result			Uni	Units		
GRO	·····			< 0.03	53	mg	/L	0.1	
Surrogate	F	lag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits	
Trifluorotoluene	TFT)		0.107	mg/L	1	0.100	107	77.9 - 126	
4-Bromofluorobe	nzene (4-BFB)		0.0693	mg/L	1	0.100	69	63.6 - 116	

## Laboratory Control Spike (LCS-1)

QC Batch:	39220	Date Analyzed:	2007-07-18	Analyzed By:	$\mathbf{TG}$
Prep Batch:	33942	QC Preparation:	2007-07-18	Prepared By:	TG

Param		LCS Resu		Units	Dil.	Spike Amount	Mat Resu			Rec. Limit
DRO		25.7		mg/L	1	25.0	<1.0		56	6.9 - 128
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.										
	•	LCSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO		25.4	mg/L	1	25.0	<1.06	$10\overline{2}$	56.9 - 128	1	20
Percent recovery is b	ased on the sp	ike result. I	RPD is l	based o	n the spike	and spike d	uplicate 1	result.		
	LCS	LCSD				Spike	LCS	LCSD		Rec.
Surrogate	Result	Result	U	Inits	Dil.	Amount	Rec.	Rec.		Limit
n-Triacontane	19.2	18.8	m	ng/L	1	15.0	128	125		).7 - 174

### Laboratory Control Spike (LCS-1)

QC Batch:	39228	Date Analyzed:	2007-07-18	Analyzed By:	$\mathbf{JG}$
Prep Batch:	33949	QC Preparation:	2007-07-18	Prepared By:	$\mathbf{JG}$

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
Bromochloromethane	51.7	$\mu { m g/L}$	1	50.0	< 0.351	103	85.7 - 113
Dichlorodifluoromethane	49.7	$\mu { m g/L}$	1	50.0	< 0.306	99	60.3 - 134
Chloromethane (methyl chloride)	42.0	$\mu { m g/L}$	1	50.0	< 0.240	84	72 - 120
Vinyl Chloride	45.1	$\mu { m g/L}$	1	50.0	< 0.224	90	64.4 - 132
Bromomethane (methyl bromide)	53.4	$\mu { m g}/{ m L}$	1	50.0	< 0.325	107	65.9 - 133
Chloroethane	43.9	$\mu { m g}/{ m L}$	1	50.0	< 0.303	88	65.3 - 132
Trichlorofluoromethane	48.9	$\mu { m g/L}$	1	50.0	< 0.255	98	52.7 - 159
Acetone	60.3	$\mu { m g}/{ m L}$	1	50.0	< 1.86	121	10 - 185
Iodomethane (methyl iodide) ¹	58.9 ·	$\mu { m g}/{ m L}$	1	50.0	< 0.397	118	80.9 - 112
Carbon Disulfide	50.3	$\mu { m g/L}$	1	50.0	< 0.354	101	73.7 - 120
Acrylonitrile	47.8	$\mu { m g/L}$	1	50.0	< 0.306	96	75.8 - 121
2-Butanone (MEK) ²	60.3	$\mu { m g}/{ m L}$	1	50.0	< 0.670	121	43.7 - 117
4-Methyl-2-pentanone (MIBK)	52.1	$\mu { m g/L}$	1	50.0	< 0.463	104	69.3 - 120
2-Hexanone	51.7	$\mu { m g}/{ m L}$	1	50.0	< 0.303	103	35.6 - 138
trans 1,4-Dichloro-2-butene	51.7	$\mu { m g/L}^{`}$	1	50.0	< 0.407	103	40 - 128
1,1-Dichloroethene	47.0	$\mu { m g}/{ m L}$	1	50.0	< 0.326	94	83.4 - 114
Methylene chloride	44.7	$\mu { m g}/{ m L}$	1	50.0	< 0.375	89	62.6 - 119
MTBE	47.0	$\mu { m g/L}$	1	50.0	< 0.352	94	70 - 132
trans-1,2-Dichloroethene	46.8	$\mu { m g}/{ m L}$	1	50.0	< 0.322	94	83.3 - 114
1,1-Dichloroethane	47.1	$\mu { m g}/{ m L}$	1	50.0	< 0.324	94	81 - 124
cis-1,2-Dichloroethene	47.6	$\mu { m g}/{ m L}$	1	50.0	< 0.331	95	83.8 - 115
2,2-Dichloropropane	49.9	$\mu { m g/L}$	1	50.0	< 0.440	100	37.9 - 136
1,2-Dichloroethane (EDC)	42.7	$\mu { m g/L}$	1	50.0	< 0.327	85	67.8 - 131
Chloroform	46.6	$\mu { m g/L}$	1.	50.0	$<\!0.345$	93	75.1 - 125
1,1,1-Trichloroethane	47.6	$\mu { m g/L}$	1	50.0	< 0.303	95	72.9 - 123
1,1-Dichloropropene	47.2	$\mu { m g/L}$	1	50.0	$<\!0.356$	94	85.9 - 119
Benzene	47.7	$\mu { m g/L}$	1	50.0	$<\!0.356$	95	83.5 - 115
Carbon Tetrachloride	51.8	$\mu g/L$	1	50.0	< 0.342	104	62.7 - 144

continued ...

 1Spike  recovery out of control limits. Concentration biased high.  $\bullet$   2Spike  recovery out of control limits. Concentration biased high.  $\bullet$ 

ť

control spikes continued ...

1

control spikes continued							
	LCS			Spike	Matrix	-	Rec.
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit
1,2-Dichloropropane	47.0	$\mu g/L$	1	50.0	<0.366	94	88.8 - 114
Trichloroethene (TCE)	51.5	$\mu \mathrm{g/L}$	1	50.0	< 0.434	103	91.3 - 111
Dibromomethane (methylene bromide)	50.5	$\mu \mathrm{g/L}$	1	50.0	< 0.406	101	84.2 - 118
Bromodichloromethane	48.1	$\mu \mathrm{g/L}$	1	50.0	$<\!0.325$	96	79.5 - 127
2-Chloroethyl vinyl ether	47.6	$\mu { m g}/{ m L}$	1	50.0	< 0.366	95	75.1 - 128
cis-1,3-Dichloropropene	52.0	$\mu { m g}/{ m L}$	1	50.0	< 0.387	104	83.2 - 119
trans-1,3-Dichloropropene	51.9	$\mu { m g/L}$	1	50.0	< 0.367	104	77.4 - 126
Toluene	46.1	$\mu { m g/L}$	1	50.0	< 0.366	92	82 - 110
1,1,2-Trichloroethane	45.8	$\mu { m g/L}$	1	50.0	< 0.397	92	77 - 123
1,3-Dichloropropane	45.6	$\mu { m g}/{ m L}$	1	50.0	$<\!0.355$	91	81.1 - 124
Dibromochloromethane	52.1	$\mu { m g/L}$	1	50.0	< 0.315	104	79 - 129
1,2-Dibromoethane (EDB)	50.2	$\mu { m g/L}$	1	50.0	< 0.340	100	78.6 - 126
Tetrachloroethene (PCE)	50.4	$\mu g/L$	1	50.0	< 0.355	101	36.7 - 173
Chlorobenzene	46.7	$\mu { m g/L}$	1	50.0	< 0.363	93	87.9 - 109
1,1,1,2-Tetrachloroethane	49.5	$\mu { m g}/{ m L}$	1	50.0	< 0.338	99	80.5 - 125
Ethylbenzene	46.1	$\mu { m g/L}$	· 1	50.0	< 0.350	92	82.4 - 116
m,p-Xylene	92.2	$\mu g/L$	1	100	< 0.752	92	80 - 119
Bromoform	59.6	$\mu g/L$	1	50.0	< 0.275	119	75.8 - 132
Styrene	54.2	$\mu g/L$	1	50.0	< 0.395	108	84.2 - 117
o-Xylene	47.1	$\mu { m g/L}$	1	50.0	< 0.375	94	82.1 - 119
1,1,2,2-Tetrachloroethane	46.0	$\mu g/L$	1	50.0	< 0.283	92	69.7 - 124
2-Chlorotoluene	44.7	$\mu g/L$	1	50.0	< 0.445	89	76.5 - 123
1,2,3-Trichloropropane	47.3	$\mu \mathrm{g/L}$	1	50.0	< 0.430	95	66.3 - 130
Isopropylbenzene	46.5	$\mu g/L$	1	50.0	< 0.521	93	78.3 - 123
Bromobenzene	44.7	$\mu g/L$	1	50.0	< 0.494	89	79.9 - 122
n-Propylbenzene	43.7	$\mu g/L$	1	50.0	< 0.483	87	72.6 - 122
1,3,5-Trimethylbenzene	46.0	$\mu g/L$	1	50.0	< 0.487	92	69.6 - 127
tert-Butylbenzene	46.7	$\mu g/L$	1	50.0	< 0.496	93	64 - 129
1,2,4-Trimethylbenzene	46.4	$\mu { m g}/{ m L}$	1	50.0	< 0.532	93	71 - 123
1,4-Dichlorobenzene (para)	45.7	$\mu g/L$	1	50.0	< 0.413	91	74 - 118
sec-Butylbenzene	44.7	$\mu g/L$	1	50.0	< 0.449	89	59.8 - 129
1,3-Dichlorobenzene (meta)	47.0	$\mu g/L$	1	50.0	< 0.451	94	80.2 - 119
p-Isopropyltoluene	46.2	$\mu g/L$	1	50.0	< 0.450	92	54.8 - 135
4-Chlorotoluene	45.4	$\mu g/L$	1	50.0	< 0.489	91	78.9 - 124
1,2-Dichlorobenzene (ortho)	48.6	$\mu g/L$	1	50.0	< 0.438	97	80 - 120
n-Butylbenzene	44.0	$\mu g/L$	1	50.0	< 0.461	88	51.1 - 136
1,2-Dibromo-3-chloropropane	51.4	$\mu g/L$	1	50.0	< 0.532	103	38.2 - 151
1,2,3-Trichlorobenzene	62.8	$\mu g/L$	1	50.0	<0.288	126	25.4 - 158
1,2,4-Trichlorobenzene	52.4	$\mu g/L$	1	50.0	<0.273	105	38.2 - 140
Naphthalene	64.8	$\mu_{\rm g}/{\rm L}$	1	50.0	<0.299	130	33.3 - 152
Hexachlorobutadiene	49.9	$\mu g/L$	1	50.0	<0.483	100	49.1 - 134
		<u></u>				100	

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Param	LCSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Rec. Limit	RPD	RPD Limit
Bromochloromethane	52.2	$\mu g/L$	1	50.0	< 0.351	104	85.7 - 113	1	20
Dichlorodifluoromethane	49.5	$\mu g/L$	1	50.0	< 0.306	99	60.3 - 134	0	20
Chloromethane (methyl chloride)	42.6	$\mu { m g/L}$	1	50.0	< 0.240	85	72 - 120	1	20
Vinyl Chloride	45.7	$\mu { m g}/{ m L}$	1	50.0	< 0.224	91	64.4 - 132	1	<b>20</b>
Bromomethane (methyl bromide)	53.8	$\mu g/L$	1	50.0	< 0.325	108	65.9 - 133	1	20
continued						,			

control spikes continued ....

Constron Spines constrained		LCSD			Spike	Matrix		Rec.		RPD
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloroethane		44.1	$\mu g/L$	1	50.0	< 0.303	88	65.3 - 132	0	20
Trichlorofluoromethane		49.9	$\mu g/L$	1	50.0	< 0.255	100	52.7 - 159	2	20
Acetone		57.1	$\mu g/L$	1	50.0	<1.86	114	10 - 185	5	20
Iodomethane (methyl iodide)	3	60.1	$\mu g/L$	1	50.0	< 0.397	120	80.9 - 112	2	20
Carbon Disulfide		51.2	$\mu g/L$	1	50.0	< 0.354	102	73.7 - 120	<b>2</b>	20
Acrylonitrile		49.1	$\mu g/L$	1	50.0	< 0.306	<b>98</b>	75.8 - 121	3	<b>20</b>
2-Butanone (MEK)	4	59.8	$\mu g/L$	1	50.0	<0.670	120	43.7 - 117	1	20
4-Methyl-2-pentanone (MIBK)		54.8	$\mu g/L$	1	50.0	< 0.463	110	69.3 - 120	5	20
2-Hexanone		50.8	$\mu g/L$	1	50.0	< 0.303	102	35.6 - 138	2	20
trans 1,4-Dichloro-2-butene		52.0	$\mu g/L$	1	50.0	< 0.407	104	40 - 128	1	20
1,1-Dichloroethene		47.4	$\mu g/L$	1	50.0	< 0.326	95	83.4 - 114	1	20
Methylene chloride		45.5	$\mu g/L$	1	50.0	< 0.375	91	62.6 - 119	2	20
MTBE		47.5	$\mu g/L$	1	50.0	< 0.352	95	70 - 132	1	20
trans-1,2-Dichloroethene		47.2	$\mu g/L$	1	50.0	< 0.322	94	83.3 - 114	1	20
1,1-Dichloroethane		47.8	$\mu g/L$	1	50.0	< 0.324	96	81 - 124	2	20
cis-1,2-Dichloroethene		48.4	$\mu g/L$	1	50.0	< 0.331	97	83.8 - 115	2	20
2,2-Dichloropropane		49.6	$\mu g/L$	1	50.0	< 0.440	99	37.9 - 136	1	20
1,2-Dichloroethane (EDC)		43.3	$\mu g/L$	1	50.0	< 0.327	87	67.8 - 131	1	20
Chloroform		46.9	$\mu g/L$	1	50.0	< 0.345	94	75.1 - 125	1	20
1,1,1-Trichloroethane		47.9	$\mu g/L$	1	50.0	< 0.303	96	72.9 - 123	1	20
1,1-Dichloropropene		48.1	$\mu g/L$	1	50.0	< 0.356	96	85.9 - 119	<b>2</b>	20
Benzene		48.2	$\mu g/L$	1	50.0	< 0.356	96	83.5 - 115	1	20
Carbon Tetrachloride		52.5	$\mu g/L$	1	50.0	< 0.342	105	62.7 - 144	1	20
1,2-Dichloropropane		47.3	$\mu g/L$	1	50.0	< 0.366	95	88.8 - 114	1	20
Trichloroethene (TCE)		52.0	$\mu g/L$	1	50.0	< 0.434	104	91.3 - 111	1	20
Dibromomethane (methylene bromide)		50.9	$\mu g/L$	1	50.0	< 0.406	102	84.2 - 118	1	20
Bromodichloromethane		48.8	$\mu g/L$	1	50.0	< 0.325	98	79.5 - 127	1	20
2-Chloroethyl vinyl ether		47.9	$\mu g/L$	1	50.0	< 0.366	96	75.1 - 128	1	20
cis-1,3-Dichloropropene		52.6	$\mu g/L$	1	50.0	< 0.387	105	83.2 - 119	1	20
trans-1,3-Dichloropropene		52.9	$\mu g/L$	1	50.0	< 0.367	106	77.4 - 126	2	20
Toluene		46.5	$\mu g/L$	1	50.0	< 0.366	93	82 - 110	1	20
1,1,2-Trichloroethane		46.4	$\mu g/L$	1	50.0	< 0.397	93	77 - 123	1	20
1,3-Dichloropropane		46.1	$\mu g/L$	1	50.0	< 0.355	92	81.1 - 124	1	20
Dibromochloromethane		52.6	$\mu g/L$	1	50.0	< 0.315	105	79 - 129	1	20
1,2-Dibromoethane (EDB)		51.0	$\mu g/L$	1	50.0	< 0.340	102	78.6 - 126	2	20
Tetrachloroethene (PCE)		51.2	$\mu g/L$	1	50.0	< 0.355	102	36.7 - 173	2	20
Chlorobenzene		47.3	$\mu g/L$	1	50.0	< 0.363	95	87.9 - 109	1	20
1,1,1,2-Tetrachloroethane		49.8	$\mu g/L$	1	50.0	< 0.338	100	80.5 - 125	1	20
Ethylbenzene		46.5	$\mu g/L$	1	50.0	< 0.350	93	82.4 - 116	1	20
m,p-Xylene		92.9	$\mu g/L$	1	100	< 0.752	93	80 - 119	1	20
Bromoform		60.7	$\mu g/L$	1	50.0	< 0.275	121	75.8 - 132	2	20
Styrene		54.4	$\mu g/L$	1	50.0	< 0.395	109	84.2 - 117	0	20
o-Xylene		47.2	$\mu g/L$	1	50.0	< 0.375	94	82.1 - 119	0	20
1,1,2,2-Tetrachloroethane		46.8	$\mu g/L$	1	50.0	< 0.283	94	69.7 - 124	2	20
2-Chlorotoluene		45.1	$\mu g/L$	1	50.0	< 0.445	90	76.5 - 123	1	20
1,2,3-Trichloropropane		47.4	$\mu g/L$	1	50.0	< 0.430	95	66.3 - 130	0	20
Isopropylbenzene		46.9	$\mu g/L$	1	50.0	< 0.521	94	78.3 - 123	1	<b>20</b>
Bromobenzene		44.9	$\mu g/L$	1	50.0	< 0.494	90	79.9 - 122	0	20
continued										

continued ...

³LCSD analyte out of range. LCS/LCSD has a RPD within limits. Therfore, LCS shows extraction occured properly. ⁴LCSD analyte out of range. LCS/LCSD has a RPD within limits. Therfore, LCS shows extraction occured properly.

Work Order: 7071719 Farnsworth Main Tank Battery

control spikes continued ....

control opinics containance	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	$\mathbf{Limit}$
n-Propylbenzene	44.0	$\mu g/L$	1	50.0	< 0.483	88	72.6 - 122	1	20
1,3,5-Trimethylbenzene	46.1	$\mu { m g}/{ m L}$	1	50.0	< 0.487	92	69.6 - 127	0	20
tert-Butylbenzene	47.1	$\mu g/L$	1	50.0	< 0.496	94	64 - 129	1	<b>20</b>
1,2,4-Trimethylbenzene	46.9	$\mu { m g/L}$	1	50.0	$<\!0.532$	94	71 - 123	1	20
1,4-Dichlorobenzene (para)	45.9	$\mu g/L$	1	50.0	< 0.413	92	74 - 118	0	20
sec-Butylbenzene	45.1	$\mu { m g/L}$	1	50.0	<0.449	90	59.8 - 129	1	20
1,3-Dichlorobenzene (meta)	47.5	$\mu { m g}/{ m L}$	1	50.0	< 0.451	95	80.2 - 119	1	20
p-Isopropyltoluene	46.6	$\mu { m g/L}$	1	50.0	< 0.450	93	54.8 - 135	1	<b>20</b>
4-Chlorotoluene	45.9	$\mu { m g}/{ m L}$	1	50.0	< 0.489	92	78.9 - 124	1	20
1,2-Dichlorobenzene (ortho)	49.1	$\mu { m g/L}$	1	50.0	< 0.438	98	80 - 120	1	<b>20</b>
n-Butylbenzene	44.1	$\mu \mathrm{g/L}$	1	50.0	< 0.461	88	51.1 - 136	0	20
1,2-Dibromo-3-chloropropane	52.0	$\mu g/L$	1	50.0	$<\!0.532$	104	38.2 - 151	1	<b>20</b>
1,2,3-Trichlorobenzene	64.3	$\mu { m g}/{ m L}$	1	50.0	< 0.288	129	25.4 - 158	2	20
1,2,4-Trichlorobenzene	53.9	$\mu { m g/L}$	1	50.0	< 0.273	108	38.2 - 140	3	20
Naphthalene	66.5	$\mu { m g}/{ m L}$	1	50.0	< 0.299	133	33.3 - 152	3	<b>20</b>
Hexachlorobutadiene	50.6	$\mu { m g}/{ m L}$	1	50.0	<0.483	101	49.1 - 134	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	$\mathbf{Result}$	Result	Units	Dil.	Amount	Rec.	Rec.	$\mathbf{Limit}$
Dibromofluoromethane	47.6	47.7	$\mu g/L$	1	50.0	95	95	82.4 - 115
Toluene-d8	46.9	46.7	$\mu { m g}/{ m L}$	1	50.0	94	93	89.7 - 108
4-Bromofluorobenzene (4-BFB)	48.3	48.3	$\mu { m g/L}$	1	50.0	97	97	84.6 - 114

### Laboratory Control Spike (LCS-1)

QC Batch:	39404	Date Analyzed:	2007-07-25	Analyzed By:	$\mathbf{MT}$
Prep Batch:	34113	QC Preparation:	2007-07-25	Prepared By:	$\mathbf{MT}$

	LCS			Spike	Matrix		Rec.
Param	Result	Units	Dil.	Amount	$\mathbf{Result}$	Rec.	$\mathbf{Limit}$
GRO	0.835	mg/L	1	1.00	< 0.0353	84	74.9 - 115

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	$\mathbf{Limit}$	RPD	Limit
GRO	0.909	$\mathrm{mg/L}$	1	1.00	< 0.0353	91	74.9 - 115	8	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	$\mathbf{Limit}$
Trifluorotoluene (TFT)	0.0829	0.0866	mg/L	1	0.100	83	87	78.8 - 118
4-Bromofluorobenzene (4-BFB)	0.0760	0.0787	mg/L	1	0.100	76	79	75.7 - 118

#### Matrix Spike (MS-1) Spiked Sample: 130278

QC Batch:	39220	Date Analyzed:	2007-07-18	Analyzed By:	$\mathbf{T}\mathbf{G}$
Prep Batch:	33942	QC Preparation:	2007-07-18	Prepared By:	$\mathbf{TG}$

Surrogate

n-Triacontane

Limit

40.7 - 174

Param		MS esult	Units	Dil.	Spike Amount	Mat Res			Rec. Limit
DRO		29.3	mg/L	1	25.0	<1.			9 - 112.2
Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.									
	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
DRO	25.1	mg/L	1	25.0	<1.06	100	61.9 - 112.2	15	20
Percent recovery is based on th	ne spike resu	lt. RPD i	s based	on the spike	and spike	duplicate	result.		
Μ	IS M	SD			Spike	Μ	IS MSD		Rec.

Dil.

1

Amount

15

Rec.

153

Rec.

153

#### Matrix Spike (MS-1) Spiked Sample: 130278

Result

22.9

Result

22.9

		•			
QC Batch:	39228	Date Analyzed:	2007-07-18	Analyzed By:	JG ·
Prep Batch:	33949	QC Preparation:	2007-07-18	Prepared By:	$\mathbf{J}\mathbf{G}$

Units

mg/L

,		MS			Spike	Matrix		Rec.
Param		Result	Units	Dil.	Amount	Result	Rec.	Limit
Bromochloromethane		55.7	$\mu { m g/L}$	1	50.0	< 0.0699	111	82.5 - 118
Dichlorodifluoromethane		57.0	$\mu { m g}/{ m L}$	1	50.0	< 0.0598	114	46.8 - 125
Chloromethane (methyl chloride)		51.2	$\mu { m g/L}$	1	50.0	< 0.230	102	67.1 - 127
Vinyl Chloride		54.7	$\mu { m g}/{ m L}$	1	50.0	< 0.0902	109	63.7 - 129
Bromomethane (methyl bromide)		61.5	$\mu { m g}/{ m L}$	1	50.0	< 0.740	123	65.7 - 127
Chloroethane		50.7	$\mu g/L$	1	50.0	< 0.195	101	69.9 - 131
Trichlorofluoromethane		54.4	$\mu g/L$	1	50.0	< 0.160	109	60.2 - 134
Acetone		46.3	$\mu g/L$	1	50.0	< 0.854	93	12.1 - 136
Iodomethane (methyl iodide)	6	61.9	$\mu g/L$	1	50.0	< 0.112	124	75.7 - 115
Carbon Disulfide		57.3	$\mu { m g}/{ m L}$	1	50.0	< 0.0764	115	67.6 - 131
Acrylonitrile		53.3	$\mu { m g}/{ m L}$	1	50.0	< 0.184	107	79.9 - 131
2-Butanone (MEK)		53.4	$\mu { m g}/{ m L}$	1	50.0	< 0.394	107	28.7 - 137
4-Methyl-2-pentanone (MIBK)		55.2	$\mu { m g}/{ m L}$	1	50.0	< 0.484	110	77.1 - 122
2-Hexanone		52.9	$\mu { m g}/{ m L}$	1	50.0	< 0.0975	106	42.3 - 145
trans 1,4-Dichloro-2-butene		52.3	$\mu \mathrm{g/L}$	1	50.0	< 0.421	105	38.5 - 122
1,1-Dichloroethene		52.1	$\mu g/L$	1	50.0	< 0.0736	104	78.7 - 119
Methylene chloride		49.2	$\mu g/L$	1	50.0	< 0.689	98	64.9 - 121
MTBE		51.7	$\mu { m g/L}$	1	50.0	< 0.0504	103	46.6 - 162
trans-1,2-Dichloroethene		52.1	$\mu { m g}/{ m L}$	1	50.0	< 0.0598	104	75.1 - 119
1,1-Dichloroethane		53.7	$\mu g/L$	1	50.0	< 0.0299	107	86.3 - 119
cis-1,2-Dichloroethene		52.8	$\mu g/L$	1	50.0	< 0.101	106	- 82.6 - 116
2,2-Dichloropropane		43.0	$\mu { m g}/{ m L}$	1	50.0	< 0.0665	86	7.8 - 109
1,2-Dichloroethane (EDC)		50.1	$\mu { m g}/{ m L}$	1	50.0	< 0.0557	100	82.7 - 130
Chloroform		52.9	$\mu { m g/L}$	1	50.0	$<\!0.0475$	106	83.6 - 119
1,1,1-Trichloroethane		52.3	$\mu { m g/L}$	1	50.0	< 0.0846	105	69.6 - 126
1,1-Dichloropropene		51.8	$\mu { m g}/{ m L}$	1	50.0	< 0.0423	104	79.2 - 121
Benzene		53.9	$\mu { m g/L}$	1	50.0	$<\!0.0495$	108	75.8 - 125
Carbon Tetrachloride		54.3	$\mu { m g}/{ m L}$	1	50.0	< 0.121	109	58.7 - 143
continued						·····		

continued ...

⁵Matrix spike recovery out of control limits due to peak interference. Use LCS/LCSD to demonstrate analysis is under control. ⁶Spike recovery out of control limits. Concentration biased high. • matrix spikes continued ....

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MS			Spike	Matrix		Rec.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Param		Units	Dil.			Rec.	Limit
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1,2-Dichloropropane	51.3	$\mu g/L$	1	50.0	< 0.0933	103	88.4 - 117
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		52.3		1	50.0	< 0.0495	105	83.6 - 112
$\begin{array}{llllllllllllllllllllllllllllllllllll$		54.0		1	50.0	< 0.0640	108	90.7 - 117
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromodichloromethane	51.6	$\mu \mathrm{g/L}$	1	50.0	< 0.0651	103	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Chloroethyl vinyl ether	52.0		1	50.0	< 0.0905	104	10 - 211
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	cis-1,3-Dichloropropene	53.0	$\mu { m g/L}$	1	50.0	< 0.0640	106	78.6 - 113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	trans-1,3-Dichloropropene		$\mu { m g}/{ m L}$	1			110	81.8 - 113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Toluene	55.0	$\mu { m g}/{ m L}$	1	50.0	< 0.0736		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,1,2-Trichloroethane	49.4	$\mu { m g}/{ m L}$	· 1	50.0	< 0.106	99	83.2 - 122
1,2-Dibromoethane (EDB)52.5 $\mu g/L$ 150.0<0.046010591.4 - 118Tetrachloroethene (PCE)50.3 $\mu g/L$ 150.0<0.0696	1,3-Dichloropropane	50.5	$\mu { m g}/{ m L}$	1	50.0	< 0.0625		87.3 - 123
1,2-Dibromoethane (EDB)52.5 $\mu g/L$ 150.0<0.046010591.4 - 118Tetrachloroethene (PCE)50.3 $\mu g/L$ 150.0<0.0696	Dibromochloromethane	53.0	$\mu { m g}/{ m L}$	1	50.0	< 0.0791	106	81.4 - 130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2-Dibromoethane (EDB)	52.5	$\mu { m g/L}$	1	50.0	< 0.0460	105	91.4 - 118
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tetrachloroethene (PCE)	50.3	$\mu { m g}/{ m L}$	1	50.0	< 0.0696	101	51.8 - 111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Chlorobenzene	49.0	$\mu { m g}/{ m L}$	1	50.0	< 0.0217	98	83.9 - 113
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,1,1,2-Tetrachloroethane	51.8		1	50.0	< 0.125	104	79.5 - 127
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ethylbenzene	50.3		1	50.0	< 0.0566	101	75.4 - 121
$\begin{array}{llllllllllllllllllllllllllllllllllll$	m,p-Xylene	101	$\mu { m g}/{ m L}$	1	100	< 0.0363	101	74 - 124
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bromoform	59.6	$\mu g/L$	1	50.0	< 0.0859	119	77.5 - 134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Styrene	57.5		1	50.0	< 0.0394	115	10 - 180
2-Chlorotoluene47.7 $\mu g/L$ 150.0<0.02839569.2 - 1281,2,3-Trichloropropane48.5 $\mu g/L$ 150.0<0.0679	o-Xylene	51.7	$\mu { m g}/{ m L}$	1	50.0	< 0.0504	103	75.4 - 126
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1,2,2-Tetrachloroethane	49.4	$\mu { m g}/{ m L}$	1	50.0	< 0.0672	99	86.4 - 122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Chlorotoluene	47.7	$\mu { m g}/{ m L}$	1	50.0	< 0.0283	95	69.2 - 128
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3-Trichloropropane	48.5	$\mu { m g}/{ m L}$	1	50.0	< 0.0679	97	75.8 - 121
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Isopropylbenzene	48.3	$\mu { m g}/{ m L}$	1	50.0	< 0.0406	97	69.6 - 127
1,3,5-Trimethylbenzene48.0 $\mu g/L$ 150.0<0.05579666.1 - 126tert-Butylbenzene48.3 $\mu g/L$ 150.0<0.0770	Bromobenzene	47.8	$\mu { m g/L}$	1	50.0	< 0.103	96	77.1 - 125
tert-Butylbenzene48.3 $\mu g/L$ 150.0<0.07709763.9 - 1261,2,4-Trimethylbenzene48.8 $\mu g/L$ 150.0<0.0336	n-Propylbenzene	46.6	$\mu { m g}/{ m L}$	1	50.0	< 0.0423	93	67.1 - 125
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3,5-Trimethylbenzene	48.0	$\mu { m g}/{ m L}$	1	50.0	< 0.0557	96	66.1 - 126
1,4-Dichlorobenzene (para)46.6 $\mu g/L$ 150.0<0.06729366.7 - 119sec-Butylbenzene46.7 $\mu g/L$ 150.0<0.0439	tert-Butylbenzene	48.3	$\mu { m g}/{ m L}$	1	50.0	< 0.0770	97	63.9 - 126
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1,2,4-Trimethylbenzene	48.8	$\mu { m g}/{ m L}$	1	50.0	< 0.0336	98	65 - 123
1,3-Dichlorobenzene (meta)48.4 $\mu g/L$ 150.0<0.06729778.8 - 118p-Isopropyltoluene47.6 $\mu g/L$ 150.0<0.0513	1,4-Dichlorobenzene (para)	46.6	$\mu { m g}/{ m L}$	1	50.0	< 0.0672	93	66.7 - 119
1,3-Dichlorobenzene (meta)48.4 $\mu g/L$ 150.0<0.06729778.8 - 118p-Isopropyltoluene47.6 $\mu g/L$ 150.0<0.0513	sec-Butylbenzene	46.7	$\mu g/L$	1	50.0	< 0.0439	93	57.6 - 127
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,3-Dichlorobenzene (meta)	48.4	$\mu { m g}/{ m L}$	1	50.0	< 0.0672	97	78.8 - 118
1,2-Dichlorobenzene (ortho) 49.6 $\mu$ g/L 1 50.0 <0.0629 99 81.2 - 119	p-Isopropyltoluene	47.6	$\mu { m g/L}$	1	50.0	< 0.0513	95	56.6 - 128
	4-Chlorotoluene	47.9	$\mu { m g}/{ m L}$	1	50.0	< 0.0460	96	74 - 127
n-Butylbenzene $46.0 \ \mu g/L \ 1 \ 50.0 \ <0.0400 \ 92 \ 50.4 \ -130$	1,2-Dichlorobenzene (ortho)	49.6		1	50.0	< 0.0629	99	81.2 - 119
	n-Butylbenzene	46.0		1	50.0	< 0.0400	92	50.4 - 130
1,2-Dibromo-3-chloropropane $48.4 \ \mu g/L \ 1 \ 50.0 \ <0.538 \ 97 \ 55.7 - 152$	1,2-Dibromo-3-chloropropane	48.4		1	50.0	< 0.538	97	55.7 - 152
1,2,3-Trichlorobenzene $49.7 \ \mu g/L$ 1 $50.0 < 0.504 \ 99 \ 32.6 - 149$	1,2,3-Trichlorobenzene	49.7	$\mu \mathrm{g/L}$	1	50.0	< 0.504	99	32.6 - 149
1,2,4-Trichlorobenzene $48.0 \ \mu g/L$ 1 50.0 <0.166 96 35.8 - 144	1,2,4-Trichlorobenzene	48.0	$\mu { m g}/{ m L}$		50.0		96	
Naphthalene $52.4 \ \mu g/L \ 1 \ 50.0 \ <0.417 \ 105 \ 36.7 \ -156$	Naphthalene	52.4		1	50.0	< 0.417	105	
$\frac{\text{Hexachlorobutadiene}}{2} \frac{46.1 \ \mu \text{g/L}}{1} \frac{1}{50.0} < 0.176 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 39.6 - 125 \ 92 \ 92 \ 92 \ 92 \ 92 \ 92 \ 92 \ $	Hexachlorobutadiene			1	50.0	< 0.176	92	39.6 - 125

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Bromochloromethane	54.5	$\mu g/L$	1	50.0	< 0.0699	109	82.5 - 118	2	20
Dichlorodifluoromethane	52.2	$\mu { m g}/{ m L}$	1	50.0	< 0.0598	104	46.8 - 125	9	20
Chloromethane (methyl chloride)	48.5	$\tilde{\mu}\mathrm{g}/\mathrm{L}$	1	50.0	< 0.230	97	67.1 - 127	5	20
Vinyl Chloride	51.6	$\mu { m g}/{ m L}$	1	50.0	< 0.0902	103	63.7 - 129	6	20
Bromomethane (methyl bromide)	59.0	$\mu { m g}/{ m L}$	1	50.0	< 0.740	118	65.7 - 127	4	<b>20</b>
continued					****				

•

Work Order: 7071719 Farnsworth Main Tank Battery

,

matrix spikes continued ....

maine spikes continuea	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloroethane	48.2	$\mu g/L$	1	50.0	< 0.195	96	69.9 - 131	5	20
Trichlorofluoromethane	52.7	$\mu g/L$	1	50.0	< 0.160	105	60.2 - 134	3	20
Acetone	45.6	$\mu g/L$	1	50.0	< 0.854	91	12.1 - 136	<b>2</b>	20
Iodomethane (methyl iodide)	60.5	$\mu g/L$	1	50.0	< 0.112	121	75.7 - 115	<b>2</b>	20
Carbon Disulfide	55.6	$\mu g/L$	1	50.0	< 0.0764	111	67.6 - 131	3	20
Acrylonitrile	52.6	$\mu g/L$	1	50.0	< 0.184	105	79.9 - 131	1	20
2-Butanone (MEK)	52.9	$\mu g/L$	1	50.0	< 0.394	106	28.7 - 137	1	<b>20</b>
4-Methyl-2-pentanone (MIBK)	55.6	$\mu g/L$	1	50.0	< 0.484	111	77.1 - 122	1	20
2-Hexanone	52.4	$\mu g/L$	1	50.0	< 0.0975	105	42.3 - 145	1	20
trans 1,4-Dichloro-2-butene	51.5	$\mu g/L$	1	50.0	< 0.421	103	38.5 - 122	2	20
1,1-Dichloroethene	50.5	$\mu g/L$	1	50.0	< 0.0736	101	78.7 - 119	3	$\overline{20}$
Methylene chloride	47.4	$\mu g/L$	1	50.0	< 0.689	95	64.9 - 121	4	20
MTBE	51.1	$\mu g/L$	1	50.0	< 0.0504	102	46.6 - 162	1	$\overline{20}$
trans-1,2-Dichloroethene	50.5	$\mu g/L$	1	50.0	< 0.0598	101	75.1 - 119	3	20
1,1-Dichloroethane	52.3	$\mu g/L$	1	50.0	< 0.0299	105	86.3 - 119	3	20
cis-1,2-Dichloroethene	51.7	$\mu g/L$	1	50.0	< 0.101	103	82.6 - 116	2	20
2,2-Dichloropropane	40.9	$\mu g/L$	1	50.0	< 0.0665	82	7.8 - 109	5	20
1,2-Dichloroethane (EDC)	48.8	$\mu_{\rm g}/L$	1	50.0 50.0	<0.0557	98	82.7 - 130	3	20
Chloroform	51.6	$\mu g/L$	1	50.0	< 0.0475	103	83.6 - 119	2	20
1,1,1-Trichloroethane	51.3	$\mu g/L$	1	50.0 50.0	< 0.0846	103	69.6 - 126	$\frac{2}{2}$	20
1,1-Dichloropropene	51.3 51.2	$\mu_{\rm g}/L$	1	50.0 50.0	< 0.0423	103	79.2 - 121	1	20
Benzene	51.2 51.6	$\mu g/L$	1	50.0 50.0	< 0.0425	102	75.8 - 125	4	20
Carbon Tetrachloride	54.0	$\mu g/L$ $\mu g/L$	1	50.0 50.0	<0.121	103	58.7 - 143	1	20
1,2-Dichloropropane	54.0 51.0	$\mu g/L$ $\mu g/L$	1	50.0 50.0	<0.0933	108	58.7 - 145 88.4 - 117	1	$\frac{20}{20}$
Trichloroethene (TCE)	51.0 52.4		1	50.0 50.0	< 0.0935	$102 \\ 105$	83.6 - 112	0	20 20
Dibromomethane (methylene bromide)	$\frac{52.4}{53.9}$	$\mu g/L$				105			20 20
Bromodichloromethane	55.9 51.7	$\mu g/L$	1	50.0 50.0	<0.0640		90.7 - 117	0	
2-Chloroethyl vinyl ether	51.7 51.7	$\mu g/L$	1	50.0	< 0.0651	103	83.4 - 127	0	20
		$\mu g/L$	1	50.0	<0.0905	103	10 - 211	1	20
cis-1,3-Dichloropropene	53.5	$\mu g/L$	1	50.0	< 0.0640	107	78.6 - 113	1	20
trans-1,3-Dichloropropene	53.6	$\mu g/L$	1	50.0	< 0.0504	107	81.8 - 113	2	20
Toluene	49.6	$\mu g/L$	1	50.0	< 0.0736	99 97	81.6 - 115	10	20
1,1,2-Trichloroethane	48.7	$\mu g/L$	1	50.0	< 0.106	97	83.2 - 122	1	20
1,3-Dichloropropane	49.6	$\mu g/L$	1	50.0	< 0.0625	99	87.3 - 123	2	20
Dibromochloromethane	53.2	$\mu g/L$	1	50.0	< 0.0791	106	81.4 - 130	0	20
1,2-Dibromoethane (EDB)	52.0	$\mu g/L$	1	50.0	< 0.0460	104	91.4 - 118	1	20
Tetrachloroethene (PCE)	50.1	$\mu g/L$	1	50.0	< 0.0696	100	51.8 - 111	0	20
Chlorobenzene	48.3	$\mu g/L$	1	50.0	< 0.0217	97	83.9 - 113	1	<b>20</b>
1,1,1,2-Tetrachloroethane	51.2	$\mu g/L$	1	50.0	< 0.125	102	79.5 - 127	1.	20
Ethylbenzene	48.9	$\mu g/L$	1	50.0	< 0.0566	98	75.4 - 121	3	20
m,p-Xylene	98.0	$\mu g/L$	1	100	< 0.0363	98	74 - 124	3	<b>20</b>
Bromoform	60.4	$\mu { m g/L}$	1	50.0	< 0.0859	121	77.5 - 134	1	20
Styrene	56.4	$\mu g/L$	1	50.0	< 0.0394	113	10 - 180	2	<b>20</b>
o-Xylene	50.0	$\mu g/L$	1	50.0	< 0.0504	100	75.4 - 126	3	20
1,1,2,2-Tetrachloroethane	49.0	$\mu g/L$	1	50.0	< 0.0672	98	86.4 - 122	1	20
2-Chlorotoluene	47.7	$\mu \mathrm{g/L}$	1	50.0	< 0.0283	95	69.2 - 128	0	<b>20</b>
1,2,3-Trichloropropane	49.1	$\mu g/L$	1	50.0	< 0.0679	98	75.8 - 121	1	20
Isopropylbenzene	48.4	$\mu \mathrm{g/L}$	1	50.0	< 0.0406	97	69.6 - 127	0	<b>20</b>
Bromobenzene	47.7	$\mu g/L$	1	50.0	< 0.103	95	77.1 - 125	0	20
n-Propylbenzene continued	46.5	$\mu g/L$	1	50.0	< 0.0423	93	67.1 - 125	0	20

⁷MSD analyte out of range. MS/MSD has a RPD within limits. Therfore, MS shows extraction occured properly. •

.

Work Order: 7071719 Farnsworth Main Tank Battery Page Number: 13 of 16 Jal, NM

matrix spikes continued ....

······································	MSD			Spike	Matrix		Rec.		RPD
Param	Result	Units	Dil.	Amount	$\mathbf{Result}$	Rec.	Limit	RPD	$\mathbf{Limit}$
1,3,5-Trimethylbenzene	47.9	$\mu { m g/L}$	1	50.0	< 0.0557	96	66.1 - 126	0	20
tert-Butylbenzene	48.2	$\mu g/L$	1	50.0	< 0.0770	96	63.9 - 126	0	20
1,2,4-Trimethylbenzene	48.4	$\mu { m g}/{ m L}$	1	50.0	< 0.0336	97	65 - 123	1	20
1,4-Dichlorobenzene (para)	47.1	$\mu { m g/L}$	1	50.0	< 0.0672	94	66.7 - 119	1	20
sec-Butylbenzene	46.7	$\mu g/L$	1	50.0	< 0.0439	93	57.6 - 127	0	20
1,3-Dichlorobenzene (meta)	48.3	$\mu { m g}/{ m L}$	1	50.0	< 0.0672	97	78.8 - 118	0	20
p-Isopropyltoluene	47.9	$\mu { m g/L}$	1	50.0	$<\!0.0513$	96	56.6 - 128	1	20
4-Chlorotoluene	48.1	$\mu { m g}/{ m L}$	1	50.0	< 0.0460	96	74 - 127	0	20
1,2-Dichlorobenzene (ortho)	49.9	$\mu { m g}/{ m L}$	1	50.0	< 0.0629	100	81.2 - 119	1	<b>20</b>
n-Butylbenzene	46.2	$\mu { m g}/{ m L}$	1	50.0	< 0.0400	92	50.4 - 130	0	20
1,2-Dibromo-3-chloropropane	<b>53</b> .0	$\mu { m g}/{ m L}$	1	50.0	< 0.538	106	55.7 - 152	9	20
1,2,3-Trichlorobenzene	60.5	$\mu { m g}/{ m L}$	1	50.0	< 0.504	121	32.6 - 149	20	20
1,2,4-Trichlorobenzene	51.9	$\mu { m g}/{ m L}$	1	50.0	< 0.166	104	35.8 - 144	8	20
Naphthalene	63.7	$\mu { m g}/{ m L}$	1	50.0	< 0.417	.127	36.7 - 156	20	<b>20</b>
Hexachlorobutadiene	48.3	$\mu { m g}/{ m L}$	1	50.0	< 0.176	97	39.6 - 125	5	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	MS Result	MSD Result	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec. Limit
Dibromofluoromethane	51.9	50.3	$\mu g/L$	1	50	104	101	86.6 - 114
Toluene-d8	49.8	48.1	$\mu { m g/L}$	1	50	100	96	91 - 109
4-Bromofluorobenzene (4-BFB)	51.1	49.5	$\mu g/L$	1	50	102	99	87.2 - 113

### Matrix Spike (MS-1) Spiked Sample: 130165

QC Batch:	39404	•	Date Analyzed:	2007-07-25		Analyzed By:	MT
Prep Batch:	34113		QC Preparation:	2007-07-25	,	Prepared By:	$\mathbf{MT}$

	MS			Spike	Matrix		Rec.
Param	$\mathbf{Result}$	Units	Dil.	Amount	Result	Rec.	$\mathbf{Limit}$
GRO	0.852	mg/L	1	1.00	< 0.0353	85	66.9 - 123

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MSD			Spike	Matrix		Rec.		RPD
Param	$\mathbf{Result}$	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
GRO	0.976	mg/L	1	1.00	< 0.0353	98	66.9 - 123	14	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	MS Result	MSD Result	Units	Dil.	Spike Amount	MS Rec.	MSD Rec.	Rec. Limit
Trifluorotoluene (TFT)	0.0921	0.101	mg/L	1	0.1	92	101	70.2 - 123
4-Bromofluorobenzene (4-BFB)	0.0798	0.0900	mg/L	1	0.1	80	90	65.1 - 130

### Standard (ICV-1)

QC Batch: 39220

Date Analyzed: 2007-07-18

Analyzed By: TG

Work Order: 7071719 Farnsworth Main Tank Battery Page Number: 14 of 16 Jal, NM

			ICVs	ICVs	ICVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/L	250	251	100	85 - 115	2007-07-18

# Standard (CCV-1)

QC Batch:	39220		Date An	alyzed: 2007-0	Anal	yzed By: TG	
,			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO		mg/L	250	244	98	85 - 115	2007-07-18

# Standard (CCV-1)

QC Batch: 39228	Date Analyzed: 2007-07-18					Analyzed By: JG	
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Bromochloromethane		$\mu g/L$	50.0	49.2	98	70 - 130	2007-07-18
Dichlorodifluoromethane		$\mu g/L$	50.0	48.4	97	70 - 130	2007-07-18
Chloromethane (methyl chloride)		$\mu g/L$	50.0	41.6	83	70 - 130	2007-07-18
Vinyl Chloride		$\mu g/L$	50.0	44.9	90	80 - 120	2007-07-18
Bromomethane (methyl bromide)		$\mu { m g}/{ m L}$	50.0	52.8	106	70 - 130	2007-07-18
Chloroethane		$\mu { m g}/{ m L}$	50.0	42.9	86	70 - 130	2007-07-18
Trichlorofluoromethane		$\mu { m g}/{ m L}$	50.0	48.2	96	70 - 130	2007-07-18
Acetone		$\mu g/L$	50.0	41.3	83	70 - 130	2007-07-18
Iodomethane (methyl iodide)		$\mu g/L$	50.0	57.1	114	70 - 130	2007-07-18
Carbon Disulfide		$\mu { m g}/{ m L}$	50.0	49.1	98	70 - 130	2007-07-18
Acrylonitrile		$\mu g/L$	50.0	44.8	90	70 - 130	2007-07-18
2-Butanone (MEK)		$\mu \mathrm{g/L}$	50.0	47.7	95	70 - 130	2007-07-18
4-Methyl-2-pentanone (MIBK)		$\mu { m g}/{ m L}$	50.0	50.1	100	70 - 130	2007 - 07 - 18
2-Hexanone		$\mu { m g}/{ m L}$	50.0	<b>43.4</b>	87	70 - 130	, 2007-07-18
trans 1,4-Dichloro-2-butene		$\mu g/L$	50.0	48.9	98	70 - 130	2007-07-18
1,1-Dichloroethene		$\mu { m g}/{ m L}$	50.0	45.7	91	80 - 120	2007-07-18
Methylene chloride		$\mu { m g/L}$	50.0	43.8	88	70 - 130	2007-07-18
MTBE		$\mu { m g}/{ m L}$	50.0	45.1	90	70 - 130	2007-07-18
trans-1,2-Dichloroethene		$\mu { m g/L}$	50.0	44.9	90	70 - 130	2007-07-18
1,1-Dichloroethane		$\mu { m g/L}$	50.0	45.4	91	70 - 130	2007-07-18
cis-1,2-Dichloroethene		$\mu { m g/L}$	50.0	46.1	92	70 - 130	2007-07-18
2,2-Dichloropropane		$\mu { m g/L}$	50.0	49.1	98	70 - 130	2007-07-18
1,2-Dichloroethane (EDC)		$\mu { m g}/{ m L}$	50.0	41.0	82	70 - 130	2007-07-18
Chloroform		$\mu { m g}/{ m L}$	50.0	44.8	<b>9</b> 0	80 - 120	2007-07-18
1,1,1-Trichloroethane		$\mu { m g/L}$	50.0	45.5	91	70 - 130	2007-07-18
1,1-Dichloropropene		$\mu { m g/L}$	50.0	46.1	92	70 - 130	2007-07-18
Benzene		$\mu { m g} / { m L}$	50.0	46.3	93	70 - 130	2007-07-18
Carbon Tetrachloride		$\mu { m g/L}$	50.0	50.0	100	70 - 130	2007-07-18
1,2-Dichloropropane		$\mu { m g/L}$	50.0	45.2	90	80 - 120	2007-07-18
Trichloroethene (TCE)		$\mu { m g}/{ m L}$	50.0	49.7	99	70 - 130	2007-07-18
Dibromomethane (methylene bromide)		$\mu g/L$	50.0	48.8	98	70 - 130	2007-07-18

continued ...

standard continued ...

·			$\mathbf{CCVs}$	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Bromodichloromethane		$\mu g/L$	50.0	46.7	93	70 - 130	2007-07-18
2-Chloroethyl vinyl ether		$\mu { m g}/{ m L}$	50.0	45.8	92	70 - 130	2007-07-18
cis-1,3-Dichloropropene		$\mu { m g}/{ m L}$	50.0	50.3	101	70 - 130	2007-07-18
trans-1,3-Dichloropropene		$\mu { m g}/{ m L}$	50.0	50.4	101	70 - 130	2007-07-18
Toluene		$\mu g/L$	50.0	44.8	90	80 - 120	2007-07-18
1,1,2-Trichloroethane		$\mu { m g}/{ m L}$	50.0	43.7	87	70 - 130	2007-07-18
1,3-Dichloropropane		$\mu { m g}/{ m L}$	50.0	44.1	88	70 - 130	2007-07-18
Dibromochloromethane		$\mu { m g}/{ m L}$	50.0	49.6	99	70 - 130	2007-07-18
1,2-Dibromoethane (EDB)		$\mu { m g}/{ m L}$	50.0	48.2	96	70 - 130	2007-07-18
Tetrachloroethene (PCE)		$\mu { m g/L}$	50.0	48.8	98	70 - 130	2007-07-18
Chlorobenzene		$\mu { m g/L}$	50.0	45.1	90	80 - 120	2007-07-18
1,1,1,2-Tetrachloroethane		$\mu { m g/L}$	50.0	47.6	95	70 - 130	2007-07-18
Ethylbenzene		$\mu { m g}/{ m L}$	50.0	45.0	90	80 - 120	2007-07-18
m,p-Xylene		$\mu g/L$	100	89.5	90	70 - 130	2007-07-18
Bromoform		$\mu { m g/L}$	50.0	56.1	112	70 - 130	2007-07-18
Styrene		$\mu { m g/L}$	50.0	52.2	104	70 - 130	2007-07-18
o-Xylene		$\mu { m g/L}$	50.0	<b>45.4</b>	91	70 - 130	2007-07-18
1, 1, 2, 2-Tetrachloroethane		$\mu { m g/L}$	50.0	43.7	87	70 - 130	2007-07-18
2-Chlorotoluene		$\mu { m g/L}$	50.0	43.4	87	70 - 130	2007-07-18
1,2,3-Trichloropropane		$\mu { m g/L}$	50.0	45.0	90	70 - 130	2007-07-18
Isopropylbenzene		$\mu { m g/L}$	50.0	44.9	90	70 - 130	2007-07-18
Bromobenzene		$\mu { m g/L}$	50.0	43.2	86	70 - 130	2007-07-18
n-Propylbenzene		$\mu { m g}/{ m L}$	50.0	42.4	85	70 - 130	2007-07-18
1,3,5-Trimethylbenzene		$\mu { m g/L}$	50.0	44.2	88	70 - 130	2007-07-18
tert-Butylbenzene		$\mu { m g/L}$	50.0	45.1	90	70 - 130	2007-07-18
1,2,4-Trimethylbenzene		$\mu { m g/L}$	50.0	44.8	90	70 - 130	2007-07-18
1,4-Dichlorobenzene (para)		$\mu { m g/L}$	50.0	43.8	88	70 - 130	2007-07-18
sec-Butylbenzene		$\mu { m g/L}$	50.0	43.3	87	70 - 130	2007-07-18
1,3-Dichlorobenzene (meta)		$\mu { m g/L}$	50.0	45.4	91	70 - 130	2007-07-18
p-Isopropyltoluene		$\mu { m g/L}$	50.0	45.1	90	70 - 130	2007-07-18
4-Chlorotoluene		$\mu { m g/L}$	50.0	43.7	87	70 - 130	2007-07-18
1,2-Dichlorobenzene (ortho)		$\mu { m g/L}$	50.0	46.4	93	70 - 130	2007-07-18
n-Butylbenzene		$\mu { m g/L}$	50.0	42.6	85	70 - 130	2007-07-18
1,2-Dibromo-3-chloropropane		$\mu { m g/L}$	50.0	45.9	92	70 - 130	2007-07-18
1,2,3-Trichlorobenzene		$\mu { m g/L}$	50.0	52.7	105	70 - 130	2007-07-18
1,2,4-Trichlorobenzene		$\mu { m g}/{ m L}$	50.0	48.1	96	70 - 130	2007-07-18
Naphthalene		$\mu { m g/L}$	50.0	51.9	104	70 - 130	2007-07-18
Hexachlorobutadiene		$\mu { m g/L}$	50.0	48.2	96	70 - 130	2007-07-18

# Standard (ICV-1)

QC Batch:	39404		Analyzed By: MT				
			ICVs True	ICVs Found	ICVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/L	1.00	0.916	92	85 - 115	2007-07-25

Report Date: July 26, 2007 Farnsworth Main Tank Battery			Farn	Work Order: 70 sworth Main Ta	Page Number: 16 of 16 Jal, NM		
Standard	(CCV-1)					•	
QC Batch: 39404			Date An	alyzed: 2007-0	Analyzed By: MT		
			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		mg/L	1.00	0.900	90	85 - 115	2007-07-25

,

		LAB Order ID #	7071719	Page of
TraceAnaly email: lab@tracea	,	6701 Aberdeen Avenue, Suite ( Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794 1298 fax (806) 794 1298 1 (800) 378 1296	5002 Basin Street, Suite A1 Midland, Texas 79703 Tel (432) 689-6301 Fax (432) 689-6313	200 East Sunset Rd., Suite E         6015 Harns Pkwy, Suite 1           El Paso, Texas 79922         Ft. Worth, Texas 76132           Tel (915) 585-3443         Tel (817) 201-5260           Fax (915) 585-3443         Tel (817) 201-5260
Company Name: BBC International J	Phone #	¥- [{		ANALYSIS REQUEST
Address: (Street, City, Zip) 1324 W. Marland Habbs NM	Fax#: 88260 505-3	97-6388 97-0397		or Specify Method No.)
Company Name: BBC International, J Address: (Street, City, Zip) 1324 W. Marland, Hobbs, NM. Contact Person: Chiff Brunson	E-mail:		24 (1(C35) 60108/200 Se Hg	ndard
Invoice to: (If different from above)			224 9 601 5 Se	n sta
Project #:	Project	Name: 1 2.11	B / 62 9 624 05 Ext HC Se Hg	625
Project Location (including state):	Farnsworth Cample	Name: Azin Tank Battery reignature:	/ 1 X10 8260B 0/ TV 0/ TV 0/ TV	524 70C / f 18
	matrix	PRESERVATIVE SAMPLIN	602 / 602 / 1602 / 1602 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005 / 1005	attles 60B / 62 60B / 62 1A / 608 1A / 608 nt mt
LÁB # FIELD CODE (LAB USE) ONLY	# CONTAINERS Volume / Amount WATER SCOIL AIR AIR AIR AIR AIR	HNO ₃ H ₂ SO ₄ H ₂ SO ₄ NONE DATE	MTBE 8021B / 602 / 3260B / 624 BTEX 8021B / 602 / 3260B / 624 TPH 418.1 / TX1005 / TX1005 Ext(C35) TPH 6015 GRO / DRO/ TVHC PAH 8270C / 625 Iotal Metals Ag As Ba Cd Cr Pb Se Hg 60106/2 Iotal Metals Ag As Ba Cd Cr Pb Se Hg TCLP Volatiles	TCLP Semi volatites TCLP Pesticides RCI GC/MS Vol. 8260B / 624 GC/MS Semi Vol 8270C / 625 PCB's 8082 / 608 Pesticides 8081A / 608 BOD, TSS, pH Moisture Content Moisture Content Turn Around Time if different from standard
		┟╍╍┟╍╍┟╍╍┟──┟┊╴╂┉╺┲╍┲╸┨┈┈┈	─── <del>╡</del> ── <del>┊╸╞╸</del> ┠ <del>╶┊╶┤</del> ┅╍┼╼┼╴╍╂╼	
JUIES MINI - 002		7/13/07 12		╶┼╾┼╌┥╍╄╌┼╍┡╍┼╍╄╍┼╸┠─┉┼─╴┠──╴
130163 MWI - 002 MWI - 002 A 164 Trip Blank		719/07/12		
Mip Dlank			X X GRO 0.	
a tanan fani yaga na gang na gang na gang na gang na yang na yang na gang na yang na yang na yang na yang na ka				
				╉╌┾╌╄╌╢╌┾╌╂╶┼╴┼╸┥
Relinquished by: Date: Time:	Received by:	Date: Time:	LAB USE ONLY	REMARKS:
Relinquished by: Date: Time:	Received by:	Date: Time:	Intact <u>Y</u> / N Headspece <u>Y</u> /(N)	Dry Weight Basis Required
Relinquished by: Date: Time:	Received at Laboratory by:	Date: Time:	TempLog_in-Review	Check If Special Reporting Limits Are Needed
Submitta of samples constitutes agreement to Terr	As and Conditions listed on reverse	side of C. O C.	Carrier #RMS	ULJ 36415-70655

-----

.

1

1