1RP - 400

1st QTR GW Report

YEAR(S): 2009

RECEIVED 2009 JUN 3 AM 11 3H

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 **303-595-3331** 303-605-2226 *FAX*

June 2, 2009

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 1st Quarter 2009 Groundwater Monitoring Results

DCP X-Line Pipeline Release (1RP-400-0)

Unit B, Section 7, T15S, R34E (Lat 33° 02' 11", Long 103° 32' 48")

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 1st Quarter 2009 Groundwater Monitoring Results for the DCP X-Line Pipeline Release located within the Etcheverry Ranch, Lea County, New Mexico.

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me swweathers@dcpmidstream.com.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG

Principal Environmental Specialist

cc: Mrs. Etcheverry, Landowner - Certified Mail 91 7108 2133 3932 9035 1321

Larry Johnson, OCD Hobbs District Office (Copy on CD)

Environmental Files

May 26, 2009

Mr. Stephen Weathers DCP Midstream, LP 370 Seventeenth Street, Suite 2500 Denver, Colorado 80202

Re: First Quarter 2009 Groundwater Monitoring Summary

X-Line Pipeline Release, Etcheverry Ranch, Lea County, New Mexico Unit B, Section 7, Township 15 South, Range 34 East (1RP-400-0)

Dear Mr. Weathers:

This letter summarizes the results of the first quarter 2009 groundwater monitoring activities completed March 11, 2009 for DCP Midstream, LP (DCP) at the X-Line Pipeline Release on the Etcheverry Ranch at 33.0364° north, 103.5467° west (Figure 1).

The eight monitoring well locations are shown on Figure 2. All wells were sampled. Well construction information is summarized in Table 1.

The depths to water were measured in each well prior to purging. This data was used to calculate well casing-volume storage. The wells were then purged and sampled using dedicated bailers. Well purging consisted of removing a minimum of three casing volumes of water and, as necessary, continuing bailing until the field parameters temperature, pH and conductivity stabilized. The field sampling forms are attached.

Unfiltered samples were collected from each well upon stabilization. Each sample was analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX). A field duplicate was collected from well MW-3. A matrix spike/matrix spike duplicate was analyzed from MW-7.

The samples were placed in an ice-filled chest immediately upon collection and documented using standard chain-of-custody protocol. The samples were delivered via Federal Express to AccuTest Laboratories in Houston, Texas. All affected purge water was stored on site for ultimate disposal.

The groundwater elevation measurements for all sampling episodes are summarized in Table 2. Well MW-8 is not included because its casing elevation has not been established. Hydrographs for wells MW-1 through MW-7 are shown on Figure 3. Figure 3 shows that the water-table elevations decreased uniformly from 0.05 to 0.10 feet across the site. The water-table elevations remain at the upper end of the fluctuation range measured over the duration of this project.

Mr. Stephen Weathers May 26, 2009 Page 2

A water-table contour map based upon the first quarter 2009 measurements was generated using the Surfer program with a kriging option (Figure 4). The water-table configuration reflects the historical conditions of general eastward flow.

The FPH thicknesses measured during the entire monitoring program is summarized in Table 3. No FPH was measured in MW-8. Vapor extraction system was discontinued based upon the absence of FPH, but it will be restarted if FPH is measured during future events.

Table 4 summarizes the first quarter 2009 sampling results. A copy of the laboratory report is attached. Examination of Table 4 indicates that:

- 1. No benzene was detected above the method reporting limit in wells MW-1 through MW-7.
- 2. Toluene, ethylbenzene and xylenes were not measured in MW-1 and MW-3 through MW-7.
- 3. MW-2 contained concentrations of toluene, ethylbenzene and xylenes at concentrations that were below their respective New Mexico Water Quality Control Commission (NMWQCC) groundwater standards.
- 4. The MW-8 benzene (0.219 mg/l) and xylenes (3.76) concentrations both exceed their NMWQCC groundwater standards.

The Quality Assurance data for the sampling event was reviewed. Important quality assurance/quality control evaluations include:

- 1. The BTEX constituents were not detected in either the primary or the duplicate sample so no relative percentage difference evaluation could be completed.
- 2. The matrix spike and the matrix spike duplicate results for MW-7 were all within their acceptable ranges.
- 3. The samples were all analyzed within the 14 day holding time
- 4. None of the surrogate spikes that were outside their control ranges were for constituents from samples with detectable concentrations so they need not be considered.
- 5. The laboratory blanks and blank spikes were within acceptable ranges.
- 6. The trip blank did not contain any BTEX.

The above results establish that the samples are suitable for routine groundwater monitoring evaluation.

The first quarter 2009 benzene distribution is shown on Figure 5. Combining the groundwater flow path shown in Figure 4 with this data establishes that the BTEX constituents in MW-8 and the toluene, ethylbenzene and xylenes in MW-2 attenuated to below their respective method reporting limits before migrating downgradient to MW-7.

Mr. Stephen Weathers May 26, 2009 Page 3

The BTEX concentrations in MW-8 are graphed over time in Figure 6. The toluene concentration continued to decline while the benzene, ethylbenzene and xylene concentrations remained within their respective historic limits.

All of the historical data for benzene, toluene, ethylbenzene and total xylenes are summarized in Tables 5, 6, 7, and 8 respectively. There have been no exceedances of the NMWQCC Groundwater Standards since October 2004 for MW-2 and March 2005 for MW-3. There have never been any exceedances in MW-1, MW-4, MW-5, MW-6 and MW-7.

The iSOC® (short for in-situ Submerged Oxygen Curtain) device that was installed in April 2007 in MW-8 to increase the dissolved oxygen in the groundwater continues to operate. The system is checked periodically to ensure that it is intact and still functioning. The oxygen bottle is changed out as necessary.

The next monitoring episode is scheduled for the second quarter of 2009. Do not hesitate to contact me if you have any questions or comments on this report.

Respectfully submitted,

AMERICAN ENVIRONMENTAL CONSULTING, LLC

Mechael H. Stewart, P.E.

Principal Engineer

MHS:tbm

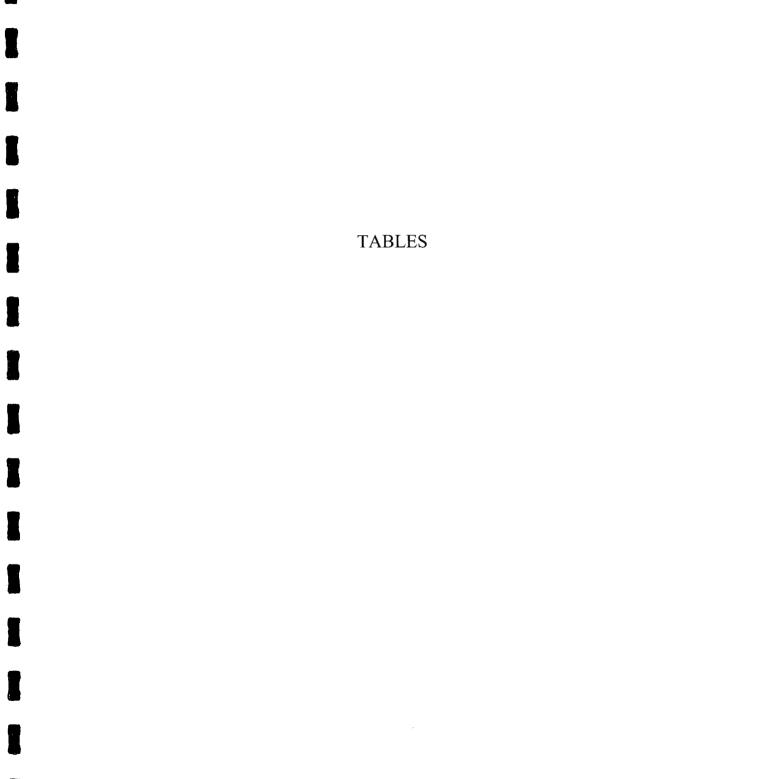


Table 1 – Monitoring Well Completions

	Date	Well	Completion	Top of
Well	Installed	Depth	Interval	Sand
MW-1	3/02	91	71-91	68
MW-2	3/02	88	68-88	62
MW-3	3/02	91	71-91	61
MW-4	4/02	91	71-91	68
MW-5	4/02	89	69-89	56
MW-6	4/02	90	70-90	68
MW-7	5/02	85	65-85	59

Notes: Units are Feet

Hydrocarbon extraction well (MW-8) completed between approximately 80 and 100 feet

Table 2 - Measured Water Table Elevations

Well	5/1/02	Well 5/1/02 9/6/02 4/28/03 6/19/	4/28/03	6/16/03	7/17/03	8/20/03	9/22/03	03 7/17/03 8/20/03 9/22/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 12/09/04 3/3/05	11/20/03	2/18/04	6/22/04	10/18/04	12/09/04	3/3/05
MW-1	4088.54	dW-1 4088.54 4088.53 4088.55 4088.	4088.55	4088.55	4088.52	4088.54	4088.53	.55 4088.52 4088.54 4088.53 4088.60 4088.59 4089.19 4089.12 4089.22 4089.18 4089.34	4088.59	4089.19	4089.12	4089.22	4089.18	4089.34
MW-2	4089.02	MW-2 4089.02 4089.03 4089.05 4089.	4089.05	4089.07	4089.04	4089.09	4089.06	.07 4089.04 4089.09 4089.06 4089.11 4089.13 4088.90 4089.03 4089.06 4089.03 4089.68	4089.13	4088.90	4089.03	4089.06	4089.03	4089.68
MW-3	4088.83	MW-3 4088.83 4088.86 4088.86 4088.	4088.86	4088.85	4088.82	4088.87	4088.84	.85 4088.82 4088.87 4088.84 4088.90 4088.95 4088.82 4088.81 4088.84 4088.82 4089.24	4088.95	4088.82	4088.81	4088.84	4088.82	4089.24
MW-4	4088.63	MW-4 4088.63 4088.73 4088.73 4088.	4088.73	4088.73	4088.70	4088.72	4088.71	.73 4088.70 4088.72 4088.71 4088.78 4088.78 4088.74 4088.70 4088.73 4088.71 4088.79	4088.78	4088.74	4088.70	4088.73	4088.71	4088.79
MW-5	4088.60	MW-5 4088.60 4088.68 4088.67 4088.	4088.67	4088.65	4088.63	4088.66	4088.65	.65 4088.63 4088.66 4088.65 4088.70 4088.70 4088.65 4088.60 4088.63 4088.62 4088.73	4088.70	4088.65	4088.60	4088.63	4088.62	4088.73
9-MM	4088.69	MW-6 4088.69 4088.71 4088.70 4088.	4088.70	4088.69	4088.66	4088.70	4088.68	.69 4088.66 4088.70 4088.68 4088.74 4088.69 4088.66 4088.71 4088.68 4088.83	4088.74	4088.69	4088.66	4088.71	4088.68	4088.83
MW-7				4088.04	4088.01	4088.04	4088.03	.04 4088.01 4088.04 4088.03 4088.08 4088.08 4087.66 4087.63 4087.68 4087.65 4087.78	4088.08	4087.66	4087.63	4087.68	4087.65	4087.78

Well	6/3/05	9/28/05	12/12/05	3/1/06	90/97/9	9/28/06	12/21/06	3/13/07	6/26/07	6/2/07	12/27/07	Well 6/3/05 9/28/05 12/12/05 3/1/06 6/26/06 9/28/06 12/21/06 3/13/07 6/26/07 9/5/07 12/27/07 3/20/08 6/27/08 9/15/08	5/27/08	9/12/08
MW-1	4089.26	4089.25	MW-1 4089.26 4089.25 4089.23 408	4089.23	4089.22	4089.16	4089.24	4089.20	4089.24	4089.26	4089.27	9.23 4089.22 4089.16 4089.24 4089.20 4089.24 4089.26 4089.27 4089.37 4089.36 4089.28	089.36	4089.28
MW-2	4089.10	4089.10	MW-2 4089.10 4089.10 4089.07 408	4089.08	4089.05	4089.00	4089.09	4089.05	4089.08	4089.10	4089.11	9.08 4089.05 4089.00 4089.09 4089.05 4089.08 4089.10 4089.11 4089.22 4089.21 4089.14	089.21	4089.14
MW-3	4088.91	4088.89	MW-3 4088.91 4088.89 4088.88 408	4088.88	4088.85	4088.84	4088.88	4088.85	4088.87	4088.89	4088.86	8.88 4088.85 4088.84 4088.88 4088.85 4088.87 4088.89 4088.86 4089.01 4089.00 4088.92	089.00	4088.92
MW-4	4088.79	4088.77	MW-4 4088.79 4088.77 4088.76 408	4088.75	4088.73	4088.73	4088.76	4088.72	4088.75	4088.77	4088.75	8.75 4088.73 4088.73 4088.76 4088.72 4088.75 4088.77 4088.75 4088.88 4088.84 4088.82	088.84	4088.82
MW-5	4088.68	4088.67	MW-5 4088.68 4088.67 4088.66 408	4088.66	4088.63	4088.62	4088.66	4088.62	4088.66	4088.68	4088.66	8.66 4088.63 4088.62 4088.66 4088.62 4088.66 4088.68 4088.66 4088.76 4088.76 4088.72	088.76	4088.72
9-MM	4088.75	4088.74	MW-6 4088.75 4088.74 4088.73 408	4088.72	4088.70	4088.66	4088.73	4088.70	4088.73	4088.74	4088.71	8.72 4088.70 4088.66 4088.73 4088.70 4088.73 4088.74 4088.71 4088.84 4088.89 4088.77	088.89	4088.77
MW-7	4087.71	4087.70	MW-7 4087.71 4087.70 4087.70 408	4087.70	4087.67	4087.62	4087.69	4087.66	4087.71	4087.71	4087.70	7.70 4087.67 4087.62 4087.69 4087.66 4087.71 4087.71 4087.70 4087.79 4087.81 4087.75	087.81	4087.75

3/11/09	4089.27	4089.13	4088.92	4088.79	4088.69	4088.77	4087.76	
12/1/08	4089.37	4089.19	4088.99	4088.84	4088.77	4088.84	4087.82	
Well	MW-1	MW-2	MW-3	MW-4	MW-5	9-MM	MW-7	

Units are feet Blank cells: Wells not installed

Table 3 – Summary of Product Thickness in MW-8

	Product
Measurement	
[· · · · · · · · · · · · · · · · · · ·
Date	(feet)
09/06/02	5.20
04/28/03	5.65
06/19/03	4.01
07/17/03	3.93
09/22/03	3.42
10/29/03	1.42
11/20/03	0.79
06/25/04	0.03
10/18/04	3.26
12/09/04	2.71
03/03/05	0.00
06/03/05	0.12
09/28/05	1.01
12/12/05	0.00
03/01/06	0.04
06/26/06	0.03
09/28/06	0.00
12/21/06	0.28
03/13/07	0.01
06/26/07	1.22
09/05/07	0.40
12/27/07	0.03
03/20/08	0.00
06/27/08	0.00
09/15/08	0.00
12/01/08	0.33
03/11/09	0.00

Units are feet

Table 4 – First Quarter 2009 Groundwater Monitoring Results

				Xylene
Well	Benzene	Toluene	Ethlbenzene	(total)
NMWQCC Standards	0.01	0.75	0.75	0.62
MW-1	< 0.002	< 0.002	< 0.002	< 0.006
MW-2	< 0.002	0.0123	0.0048	0.12
MW-3	< 0.002	< 0.002	< 0.002	< 0.006
MW-3 DUP	< 0.002	< 0.002	< 0.002	< 0.006
MW-4	< 0.002	< 0.002	< 0.002	< 0.006
MW-5	< 0.002	< 0.002	< 0.002	< 0.006
MW-6	< 0.002	< 0.002	< 0.002	< 0.006
MW-7	< 0.002	< 0.002	< 0.002	< 0.006
MW-8	0.219	0.257	0.133	3.76
TRIP BLANK	< 0.002	< 0.002	< 0.002	< 0.006

Units are mg/l
NMWQCC Standards: New Mexico Water Quality Control Commission

Groundwater Standards

Table 5 – Summary of Laboratory Data for Benzene

25				_				
12/12/(<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.561
9/28/05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
6/3/05	<0.001 <0.001 <0.001	<0.001	0.00332	<0.001 <0.001	<0.001	<0.001 <0.001	< 0.001	FPH
3/3/05	<0.001	<0.001 <0.001 <0.001	0.00167	<0.001	<0.001	<0.001	<0.001	SN
20/03 9/22/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 12/9/04 3/3/05 6/3/05 9/28/05 12/12/05	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.00342	0.048 0.0280 0.0173 .00584 0.006137 0.00167 0.00332 <0.001	<0.001 <0.001	<0.001	<0.001	<0.001	FPH
10/18/04	<0.001	0.0103	.00584	<0.001	<0.001		<0.001	FPH
6/25/04	<0.001	0.013 <0.001 0.00156 0.0103	0.0173	<0.001 <0.001 <0.001	<0.001	<0.001	<0.001	FPH
2/18/04	<0.001	<0.001	0.0280	<0.001	<0.001	<0.001	<0.001	FPH
11/20/03	<0.001	0.013	0.048	<0.001	<0.001 <0.001	<0.001 <0.001 <0.001	0.001 <0.001	FPH
10/29/03	<0.001	0.001	0.044	<0.001	<0.001	<0.001	0.001	FPH
9/22/03	0.001 <0.001	0.022	0.049	<0.001	<0.001	<0.001	<0.001	FPH
8/20/03	<0.001	0.024	0.017	<0.001	<0.001	<0.001	<0.001	FPH FPH
7/17/03	<0.001	0.155	0.063	<0.001	<0.001	<0.001	<0.001	FPH
6/19/03	<0.001	0.074	0.047	<0.001	<0.001	<0.001	<0.001	FPH FPH
4/28/03	<0.001	0.182	0.099	<0.001	0.005	0.003	<0.001 <0.001 <0.001 <0.001 <0.001	FPH
Well 4/24/02 5/21/02 4/28/03 6/19/03 7/17/03 8/	MW-1 <0.002 0.002 <0.001 <0.001 <0.001 <	MW-2 0.0255 0.145 0.182 0.074	MW-3 0.061 0.176 0.099 0.047 0.063	MW-4 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001	MW-5 <0.002 <0.002 0.005 <0.001 <0.001 <0.001 <0.001	0.002		
4/24/02	<0.002	0.0255	0.061	<0.002	<0.002	<0.002		-
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8

Well	3/1/06	90/97/9	9/28/06	12/21/06	3/1/06 6/26/06 9/28/06 12/21/06 3/13/07 6/26/07 9/5/07 12/27/07 3/20/08 6/27/08 9/15/08 12/1/08	6/26/07	2/2/02	12/27/07	3/20/08	80/12/9	9/15/08	12/1/08	3/11/09
MW-1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	0.00093	<0.002	<0.002	<0.002	<0.002	<0.002
MW-2	<0.001	9000'0	0.0007	<0.001	0.000674 < 0.001	<0.001	1 <0.002	0.00057		<0.002 0.00096 0.00096	0.00096	<0.002	<0.002
MW-3	<0.001	<0.001	< 0.001	<0.001		<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
MW-4			<0.001	<0.001		<0.001	<0.002	0.00053	<0.002	<0.002	<0.002	<0.002	<0.002
MW-5	<0.001		<0.001	<0.001		<0.001	<0.002	l	<0.002	<0.002	<0.002	<0.002	<0.002
9-MW		Ľ.	<0.001	<0.001	<0.001	<0.001	<0.001 <0.002			<0.002	<0.002	<0.002	<0.002
MW-7	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <0.002	<0.002		<0.002	<0.002	<0.002	<0.002	<0.002
8-WM	FPH	FPH	0.24	FPH	0.42	FPH	FPH	FPH	0.28	0.18	0.14	FPH	0.219

Units are mg/l.

Duplicate sample results were averaged together
Indicators for estimated (J) values not shown
FPH: Free phase hydrocarbons present, no sample collected

Table 6 – Summary of Laboratory Data for Toluene

5	 					,		
12/12/0	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	2.98
9/28/05	<0.001	<0.001	0.000482	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	<0.001 <0.001 <0.001 <0.001	<0.001	FPH
6/3/05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
3/3/05	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	FPH NS FPH
12/9/04	<0.001	0.00206	<0.001	<0.001	<0.001	<0.001	<0.001 <0.001 <0.001	FPH
Well 4/24/02 5/21/02 4/28/03 6/19/03 7/17/03 8/20/03 9/22/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 12/9/04 3/3/05 6/3/05 9/28/05 12/12/05	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.00652 0.00108 0.00648 0.00206 <0.001 <0.001 <0.001	<0.001 0.000158 <0.001 <0.001 <0.001 0.000482	<0.001	<0.001	< 0.001	<0.001	FPH
6/25/04	<0.001	0.00108	0.000158	<0.001	<0.001	<0.001	<0.001	FPH
2/18/04	<0.001	0.00652			<0.001	<0.001	<0.001	FPH
11/20/03	<0.001	0.017	0.003	<0.001	<0.001 <0.001	<0.001	<0.001	FPH
10/29/03	<0.001	0.004	< 0.001	<0.001	<0.001	<0.001	0.001	FPH
9/22/03	<0.001	0.051	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
8/20/03	<0.001	0.092	<0.001	<0.001	<0.001	<0.001	<0.001 <0.001 <0.001 <0.001 <0.001	FPH
7/17/03	<0.001	0.15	0.002	<0.001	<0.001	<0.001	<0.001	FPH
6/19/03	<0.001	990'0	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
4/28/03	<0.001	0.092	0.005	<0.001	<0.001	<0.001	<0.001	FPH
5/21/02	0.003	0.833	0.004	<0.002	<0.002	<0.002	-	
4/24/02	MW-1 <0.002 0.003 <0.001 <0.001 <0.001 <0.001 <0.001	MW-2 0.107 0.833 0.092 0.066 0.15 0.092	MW-3 <0.002 0.004 0.005 <0.001 0.002 <0.001	MW-4 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001	MW-5 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001	MW-6 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001	1	
Well	MW-1	MW-2	MW-3	MW-4	MW-5	9-MM	MW-7	MW-8

Well	3/1/06	Well 3/1/06 6/26/06 9/28/06 12/21/06 3/13/07 6/26/07 9/5/07 12/27/073/20/08 6/27/08 9/15/08 12/1/08 3/11/09	9/28/06	12/21/06	3/13/07	6/26/07	20/2/6	12/27/07	3/20/08	6/27/08	9/12/08	12/1/08	3/11/09
MW-1	<0.001	MW-1 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.001	<0.001	<0.001	<0.001	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
MW-2	<0.001	<0.001 0.00114 0.00137 < 0.001 0.00512 0.0102 0.0075 0.0039	0.00137	<0.001	0.00512	0.0102	0.0075	0.0039	0.03	0.0073	0.03	0.0135	0.0048
MW-3	<0.001	MW-3 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 0.002 <0.002 <0.002 <0.002 <0.002	<0.001	<0.001	<0.001	<0.001	<0.002	0.0012	<0.002	<0.002	<0.002	<0.002	< 0.002
MW-4	MW-4 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	0.001	<0.002	<0.001 <0.001 <0.002 0.001 <0.001 <0.002 <0.002 <0.002	<0.002	<0.002	< 0.002
MW-5	<0.001	MW-5 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 0.00098 <0.002 <0.002 <0.002 <0.002	<0.001	<0.001	<0.001	<0.001	<0.002	0.00098	<0.002	<0.002	<0.002	<0.002	< 0.002
9-MM	<0.001	MW-6 <0.001 <0.001	<0.001	<0.001	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 0.00131 <0.002 0.00098 <0.002 <0.002 <0.002	<0.001	<0.002	0.0013J	<0.002	0.00098	<0.002	< 0.002	<0.002
MW-7	<0.001	<0.001	<0.001	<0.001	<0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
8-WM	FPH	FPH	0.791	FPH	FPH 0.977 FPH FPH	FPH	FPH	FPH	0.35	FPH 0.35 0.388 0.25	0.25	FPH	0.257
		!											

Units are mg/l.

Duplicate sample results were averaged together
Indicators for estimated (J) values not shown
FPH: Free phase hydrocarbons present, no sample collected

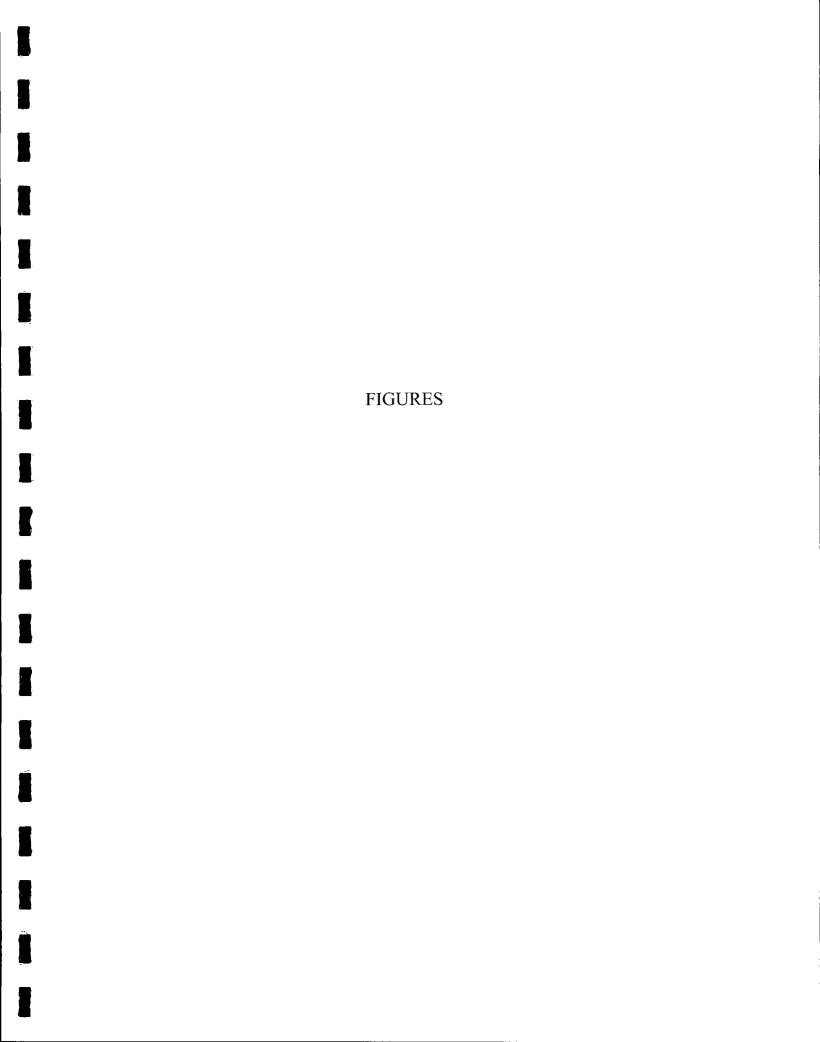
Table 7 - Summary of Laboratory Data for Ethylbenzene

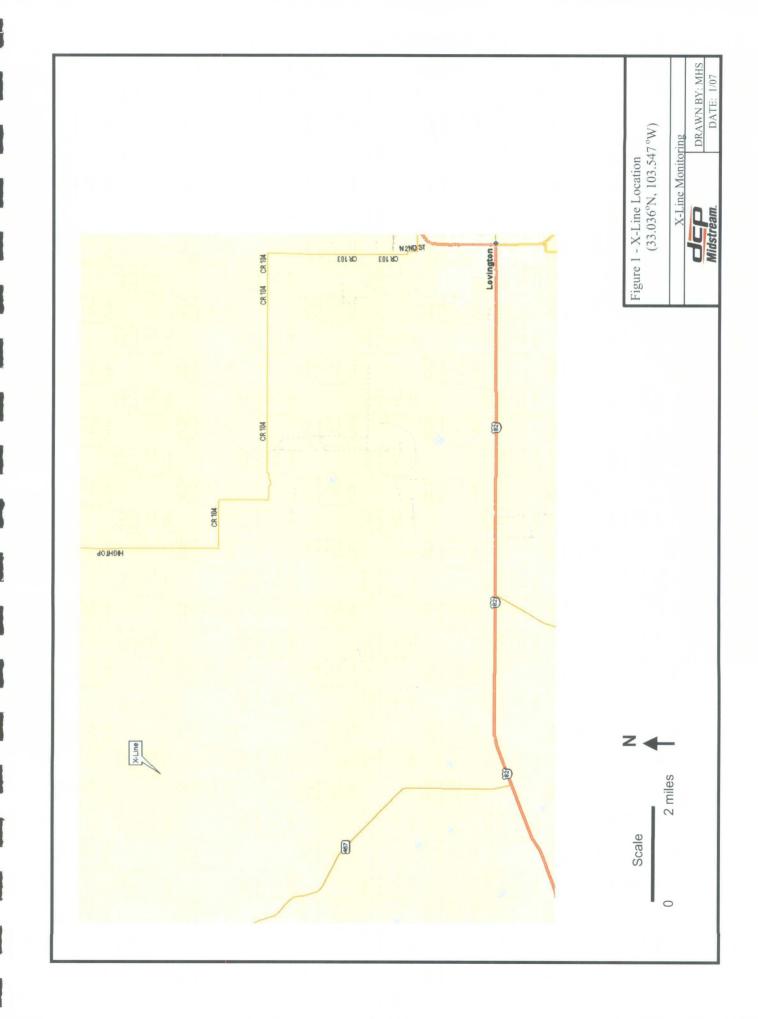
Well 4/24/02 5/21/02 4/28/03 6/19/03 7/17/03 8/20/0	5/21/02 4/28/03	4/28/03		6/19/03	7/17/03	8/20/03	9/22/03	10/29/03	11/20/03	2/18/04	6/25/04	3 9/22/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 12/9/04 3/3/05	12/9/04	3/3/05	6/3/05	6/3/05 9/28/05 12/12/05	12/12/05
														٠			
MW-1 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001							<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-2 0.013 0.062 0.121 0.069 0.112 0.012	0.121 0.069 0.112	0.121 0.069 0.112	0.112	0.112	0.012		0.012	0.002	0.005	0.00301	0.0005	0.00301 0.0005 0.00336 0.00122 <0.001	0.00122	< 0.001	<0.001	<0.001	<0.001
MW-3 0.023 0.023 0.03 0.02 0.023 0.006	0.023 0.03 0.02 0.023	0.03 0.02 0.023	0.023	-	900.0		0.02	0.018	0.017	0.0138	0.0136	0.0136 0.00692 0.00884 0.00167 0.00574 0.00101	0.00884	0.00167	0.00574	0.00101	<0.001
MW-4 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001						>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-5 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001						٠,	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-6 0.004 0.002 0.002 <0.001 0.004 <0.001 <	<0.001	<0.001	<0.001	<0.001	<0.001	V	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
<0.001 <0.001 <0.001 <0.001	1	1	1	1	1		<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
FPH FPH FPH	FPH FPH	FPH FPH	FPH FPH		FPH		FPH	FPH	FPH	FPH	FPH	FPH	FPH	SN	FPH	FPH	0.928

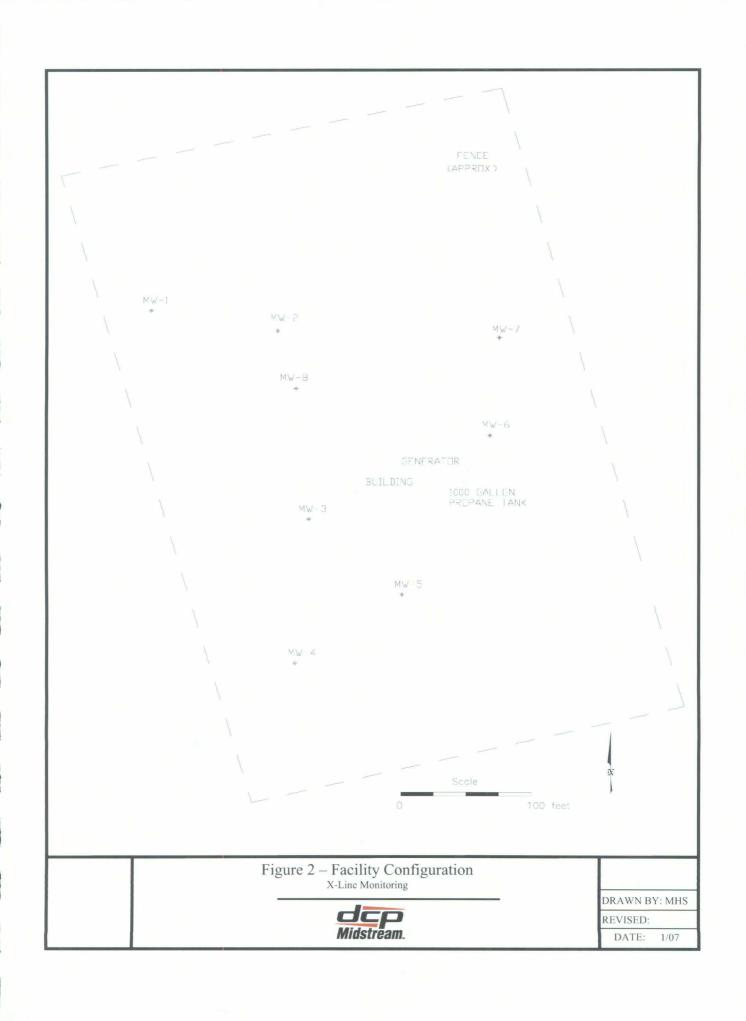
Well	Well 3/1/06 6	90/97/9	90/87/6	12/21/06	3/13/07	6/26/07	6/2/07	726/06 9/28/06 12/21/06 3/13/07 6/26/07 9/5/07 12/27/07 3/20/08 6/27/08 9/15/08 12/1/08 3/11/09	3/20/08	6/27/08	9/12/08	12/1/08	3/11/09
MW-1	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MW-2	<0.001	MW-2 <0.001 <0.001	0.0003	<0.001	.00120	0.0024	<0.002	0.00076J	0.01	0.0229	0.02	0.0147	0.0123
MW-3	<0.001	<0.001	<0.001	<0.001		<0.0011	<0.001 <0.0011 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
MW-4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002		< 0.002
MW-5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002
9-MM	<0.001	<0.001	0.001	<0.001	< 0.001	<0.001	<0.002	0.0033	<0.002	<0.002	0.0031	<0.002	
MW-7	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
8-WM	FPH	FPH	0.239	FPH	0.437	FPH	FPH	FPH	0.15	0.0971	0.17	FPH	0.133

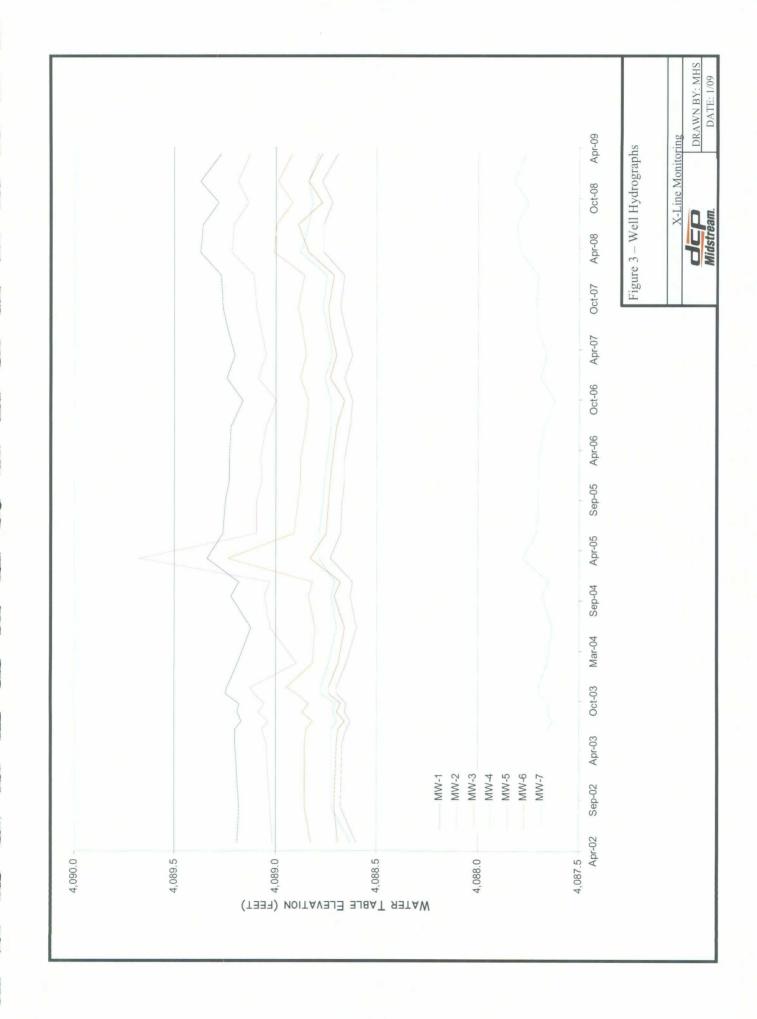
Units are mg/l.

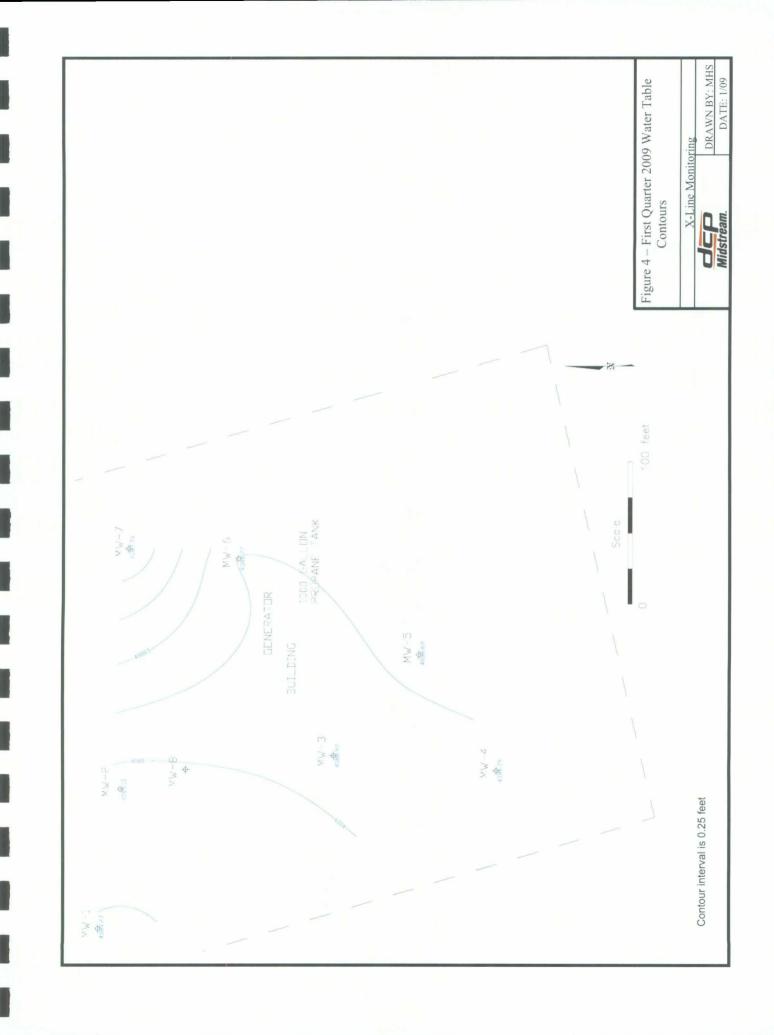
Duplicate sample results were averaged together
Indicators for estimated (J) values not shown
FPH: Free phase hydrocarbons present, no sample collected

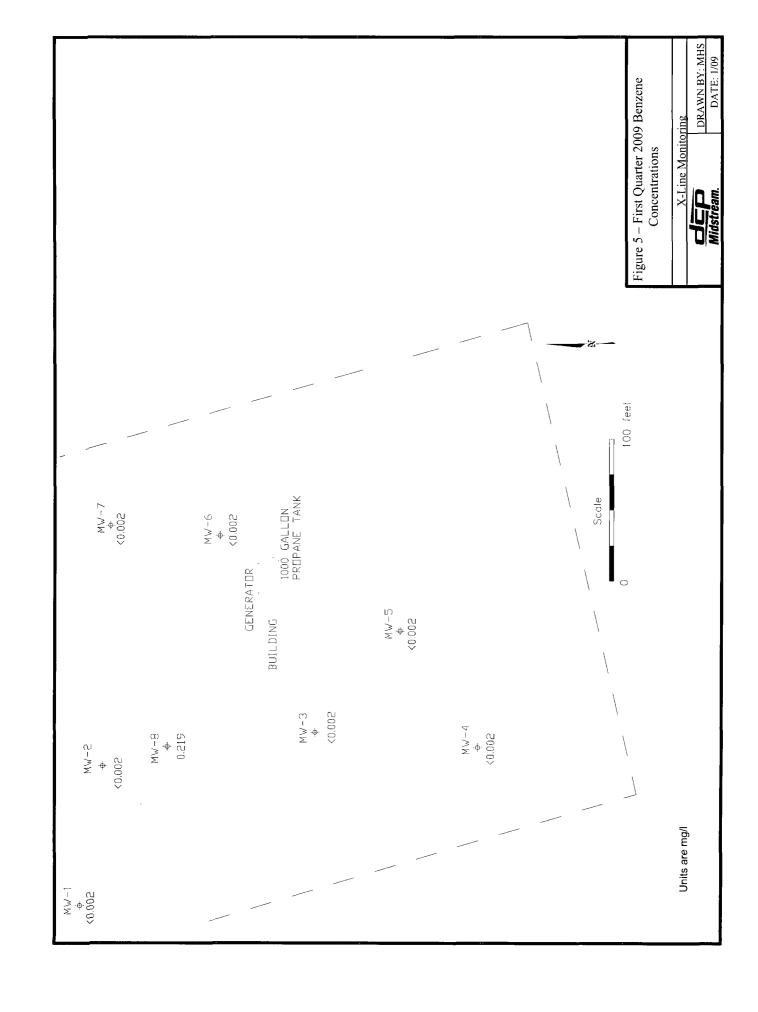

Table 8 – Summary of Laboratory Data for Xylenes

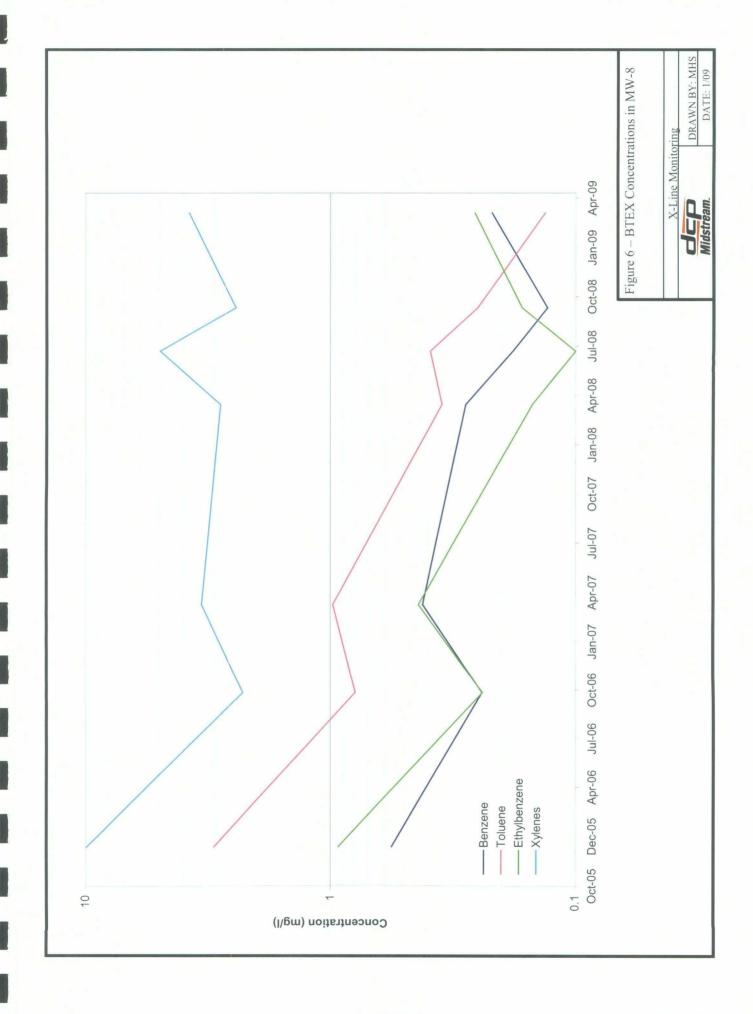

12/12/05	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	68.6
9/28/05	<0.001		0.000997			<0.001	<0.001	FPH
6/3/05	<0.001	<0.001	0.00173	<0.001	<0.001	<0.001	<0.001 <0.001 <0.001	FPH
3/3/05	<0.001	<0.001	0.00044	<0.001	<0.001	<0.001	<0.001	NS
12/9/04	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
10/18/04	< 0.001	0.0052	0.0015	<0.001	<0.001	<0.001	<0.001	FPH
Well 4/24/02 5/21/02 4/28/03 6/19/03 7/17/03 8/20/03 9/22/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 12/9/04 3/3/05 6/3/05 9/28/05 12/12/05	MW-1 <0.006 <0.006 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	0.00067 0.00106 0.0052 <0.001 <0.001 <0.001	0.000118	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.001	<0.001	<0.001	FPH
2/18/04	0.0514	0.00067	<0.001	<0.001	<0.001 <0.001	<0.001	<0.001	FPH
11/20/03	<0.001	0.034	0.004	<0.001	<0.001	<0.001	0.001	FPH
10/29/03	<0.001	0.017	0.001	<0.001	<0.001	0.003	900.0	FPH
9/22/03	<0.001	0.079	0.001	<0.001	<0.001 <0.001	<0.001 <0.001	<0.001	FPH
8/20/03	<0.001	0.179	0.001	<0.001	<0.001	<0.001	<0.001 <0.001	FPH
7/17/03	 <0.001	0.186	0.007	<0.001	0.002	0.004	<0.001	FPH
6/19/03	<0.001	0.103	900.0	<0.001	0.003	<0.001	<0.001 <0.001 <0.001	FPH FPH
4/28/03	<0.001	0.133	0.039	<0.001	0.003	0.01	<0.001	FPH
5/21/02	<0.006	1.27	0.451	<0.006	<0.006	0.047		-
4/24/02	<0.006	MW-2 0.38 1.27 0.133 0.103 0.186	MW-3 0.189 0.451 0.039 0.006 0.007	MW-4 <0.006 <0.006 <0.001 <0.001 <0.001	MW-5 0.011 <0.006 0.003 0.003 0.002	MW-6 0.123 0.047 0.01 <0.001 0.004	-	-
Well	MW-1	MW-2	MW-3	MW-4	MW-5	9-MM	MW-7	MW-8


Well	3/1/06	90/97/9	9/28/06	Well 3/1/06 6/26/06 9/28/06 12/21/06 3/13/07 6/26/07 9/5/07 12/27/07 3/20/08 6/27/08 9/15/08 12/1/08 3/11	3/13/07	6/26/07	2/2/02	12/27/07	3/20/08	6/27/08	9/12/08	12/1/08	3/11/09
MW-1	<0.001	<0.001 <0.001	<0.001	<0.001	<0.001	<0.002 <0.004 0.0028 <0.006 <0.002 <0.006 <0.006 <0.006	<0.004	0.0028	<0.006	<0.002	<0.006	<0.006	<0.006
MW-2	<0.001	0.00125	0.00125 0.0014	<0.001	0.00770	0.013	0.0078	0.0078 0.0051	0 90.0	0.0229	0.12	0.143	0.12
MW-3	<0.001	_	<0.001	<0.001	<0.001	<0.002	<0.004	<0.002 <0.004 <0.006 <0.006 <0.002 <0.006 <	>0.006	< 0.002	900.0>	00.0> 900.0>	<0.006
MW-4	MW-4 <0.001	<0.001	<0.001	<0.001	<0.001 <0.002 <0.004 0.0016 <0.006 <0.002 <0.006 <0.006	<0.002	<0.004	0.0016	>0.006	< 0.002	>0.006	<0.006	<0.006
MW-5	MW-5 <0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.004	<0.006	>0.006	<0.002	900.0>	<0.006	<0.006
MW-6	MW-6 <0.001	<0.001	<0.001	<0.001	<0.001	<0.002 <0.004 <0.006 <0.006 <0.002 <0.006 <0.006 <0.006	<0.004	<0.006	<0.006	<0.002	900'0>	<0.006	<0.006
MW-7	<0.001	<0.001	<0.001		<0.001	<0.002	<0.004	<0.002 <0.004 <0.006 <0.006 <0.002 <0.006 <0.006 <0.006	>0.006	<0.002	900'0>	<0.006	< 0.006
MW-8	MW-8 FPH	FPH	2.27	FPH	3.35	FPH	FPH	l	FPH 2.80	0.388	0.388 2.42	FPH	3.76
		4				П		п]	


Units are mg/l.


Duplicate sample results were averaged together Indicators for estimated (J) values not shown
FPH: Free phase hydrocarbons present, no sample collected



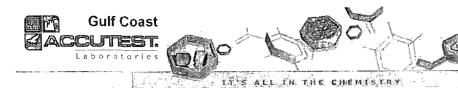


FIELD SAMPLING FORMS AND LABORATORY ANALYTICAL REPORT

	CLIENT:	DC	P Milastre	am		WELL ID:				
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	3/11/2009			
PRO	JECT NO.				. 8	SAMPLER:	M Stewart/A Taylor			
PURGING	METHOD:		☑ Hand Bai	led 🗆 Pu	mp If Pur	np, Type:	Dedicated Bailer			
SAMPLIN	G METHOD) :	☑ Dedicated	d Bailer 🏻	☐Direct fro	om Dischaı	ge Hose □Other:			
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFOI	RE SAMPL	ING THE WELL:			
☑ Glove:	s 🗆 Alcono	x 🛚 Distill	ed Water Rir	nse 🗆 C	other:					
DEPTH TO		COLUMN: 2.0	94.30 77.42 16.88 Inch	Feet		8.3	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)			
TIME	VOLUME PURGED	TEMP. °C	COND. m S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
	2.8	18.7	0.68	7.85						
	5.6	17.2	0.67	7.45						
755	8.4	16.7	0.68	7.47						
7.00 0.1 10.7 0.00 7.11										
				•						
		11								
	<u></u>									
SAMP		MW-1								
ANAL	YSES:	BTEX (826	0)							
COM	MENTS:									

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-2		
S	ITE NAME:	X Line (Etcheverry	Ranch)	_		3/11/2009		
PRO	DJECT NO.				- S		M Stewart/A Taylor		
	•		<u> </u>		-				
PURGING	METHOD:		☑ Hand Bai	led □ Pu	mp If Pur	np, Type:	Dedicated Bailer		
SAMPLIN	IG METHOD):	☑ Dedicated	d Bailer [☐ Direct fro	om Discha	rge Hose □Other:		
DESCRIB	E EQUIPME	ENT DECO	NTAMINATIO	ON METHO	DD BEFO	RE SAMPI	ING THE WELL:		
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Rir	nse 🗆 C	Other:				
DEPTH T HEIGHT (O WATER:	COLUMN:	89.90 77.39 12.51 Inch	Feet		6.1	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME		COND.	pН	DO	Turb	PHYSICAL APPEARANCE AND		
THVIE	PURGED	°C	<i>m</i> S/cm	μΠ	mg\L		REMARKS		
	2.0	17.1	0.87	7.48					
	4.0	17.3	0.86	7.24					
800	6.0	16.8	0.83	7.29	1				
0.0 0.0 10.0 0.00 7.20									
	<u> </u>								
		 							
				,					
<u> </u>									
SAMP	LE NO.:	MW-2							
ANAI	_YSES:	BTEX (826	0)			_			
COMI	MENTS:								

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-3		
s	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	3/11/2009		
PRO	DJECT NO.						M Stewart/A Taylor		
		-			_				
PURGING	METHOD:		☑ Hand Bai	led □ Pu	mp If Pur	mp, Type:	Dedicated Bailer		
SAMPLIN	IG METHOD):	☑ Dedicated	d Bailer 🏻 🖺	☐Direct fr	om Discha	rge Hose □Other:		
DESCRIB	BE EQUIPME	ENT DECO	NTAMINATI	OHTEM NC	DD BEFO	RE SAMPI	ING THE WELL:		
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Rir	nse 🗆 C	Other:				
DEPTH T HEIGHT (O WATER: OF WATER	COLUMN:	92.80 77.41 15.39	Feet		7.5	_		
WELL DIA	AMETER:	2.0	Inch				purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED	TEMP.	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	2.6	17.8	0.78	7.2					
	5.2	17.9	0.78	7.18					
1000	7.8	17.8	0.78	7.18					
1000 7.8 17.8 0.78 7.18									
			····						
<u> </u>				-					
Ĺ				_	<u> </u>				
SAMP	LE NO.:	MW-3			•				
ANAL	YSES:	BTEX (826	0)						
COM	MENTS:	·····				 -			


	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-4			
SI	ITE NAME:	X Line (Etcheverry	Ranch)	_		3/11/2009			
PRO	JECT NO.				-		M Stewart/A Taylor			
	•				-					
PURGING	METHOD:		☑ Hand Bai	led □ Pu	mp If Pur	mp, Type:	Dedicated Bailer			
SAMPLIN	G METHOD):	☑ Dedicate	d Bailer [☐ Direct fr	om Discha	rge Hose □Other:			
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:			
☑ Glove:	s 🗆 Alcono	x 🗆 Distill	ed Water Rii	nse 🗆 C	Other:					
DEPTH TO HEIGHT (O WATER: OF WATER		93.40 77.54 15.86 Inch	Feet		7.8	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)			
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
	2.6	16.9	0.63	7.42	HIGNE		TREMIT (NO			
<u> </u>	5.2	17.5	0.62	7.41	-					
920	7.8	17.5	0.61	7.44	-					
920 7.8 17.5 0.61 7.44										
		·		_						
					<u>.</u>					
					<u></u>					
SAMP	LE NO.:	MW-4								
ANAL	YSES:	BTEX (826	0)	_						
COM	MENTS:						The second secon			
							·			

	CLIENT:	DC	P Midstre	am	_	WELL ID:	:MW-5		
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE	:3/11/2009		
PRO	DJECT NO.				-		: M Stewart/A Taylor		
	•	<u> </u>			-				
PURGING	METHOD:		☑ Hand Bai	led □ Pu	mp If Pu	mp, Type:	Dedicated Bailer		
SAMPLIN	IG METHOD	D:	☑ Dedicated	d Bailer [☐Direct fr	om Discha	rge Hose □Other:		
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATI	ON METH	DD BEFO	RE SAMPI	LING THE WELL:		
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:				
DEPTH T HEIGHT (O WATER:	COLUMN:	91.10 77.21 13.89 Inch	Feet		6.8	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME	TEMP.	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	2.3	17.3	0.75	7.32	ingita				
	4.6	17.5	0.73	7.34					
925	6.9	17.2	0.72	7.41					
925 6.9 17.2 0.72 7.41									

		_							
	-								
	<u></u>								
SAMP	LE NO.:	MW-5							
ANAL	_YSES:	BTEX (826	0)						
COM	MENTS:								

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-6
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	3/11/2009
PRO	DJECT NO.				_	SAMPLER:	M Stewart/A Taylor
			-				
PURGINO	METHOD:		☑ Hand Bai	led □ Pu	mp If Pur	mp, Type:	Dedicated Bailer
SAMPLIN	G METHOD):	☑ Dedicated	d Bailer [☐ Direct fr	om Discha	rge Hose □Other:
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATIO	OH METHO	OD BEFO	RE SAMPI	ING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Rir	nse 🗆 C	Other:		
DEPTH T HEIGHT (O WATER:	COLUMN:	92.90 77.12 15.78 Inch	Feet		7.7	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	TOROLD		nn Groni		High.		
	2.7	17.0	0.60	7.23			
	5.4	17.6	0.58	7.32			
	8.1	17.3	0.57	7.45			
	ļ				<u> </u>		
					<u> </u>		
ļ	ļ				<u> </u>		
	<u> </u>	L				<u></u>	
SAMP	PLE NO.:	MW-6					
ANAI	_YSES:	BTEX (826	0)				
COM	MENTS:						

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-7
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	3/11/2009
PRO	DJECT NO.					SAMPLER:	M Stewart/A Taylor
	•				-		
PURGING	METHOD:	I	☑ Hand Bai	led □ Pu	mp If Pui	mp, Type:	Dedicated Bailer
SAMPLIN	G METHOE):	☑ Dedicated	d Bailer	☐Direct fr	om Dischai	rge Hose □Other:
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATIO	ON METHO	DD BEFO	RE SAMPL	ING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Rir	nse 🗆 C	Other:		
DEPTH TO HEIGHT (O WATER: OF WATER		87.40 76.67 10.73 Inch	Feet		5.3	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP.	COND. m S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.7	17.4	0.64	7.35	mgve		TICHII II II II
	5.4	17.3	0.63	7.33			
840	8.1	16.9	0.63	7.35			
SAMP	LE NO.:	MW-7					71.0
ANAL	LYSES:	BTEX (826	0)				
COMI	MENTS:	Collected N	/IS/MSD Sar	nples			

	CLIENT:	DC	P Midstrea	am	_	WELL ID:	MW-8
S	ITE NAME:	X Line (Etcheverry	Ranch)	_		3/11/2009
PRO	OJECT NO.		-				M Stewart/A Taylor
	·						
PURGING	G METHOD:		☑ Hand Bail	led □ Pu	mp If Pur	тр, Туре:	
SAMPLIN	IG METHOD) :	☑ Disposab	le Bailer	☐ Direct f	from Discha	arge Hose Other:
DESCRIE	BE EQUIPMI	ENT DECO	NTAMINATIO	ON METHO	DD BEFO	RE SAMPL	ING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗌 Distill	ed Water Rir	nse 🗆 C	ther:		
DEPTH T HEIGHT	O WATER: OF WATER	COLUMN:	85.10 79.75 5.35	Feet		10.5	Minimum Gallons to
WELL DI	AMETER:	4.0	Inch				purge 3 well volumes (Water Column Height x 1.96)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
955	ITOROLD		- TT GTONI		mgt		
				-			
				-			
	<u> </u>						
	<u> </u>						
SAMF	PLE NO.:	MW-8					
ANA	LYSES:	BTEX (826	0)				
COM	MENTS:						

04/10/09

Technical Report for

DCP Midstream, LLC

AECCOLI: X-Line

Accutest Job Number: T26001

Sampling Date: 03/11/09

Report to:

American Environmental Consulting

mstewart@aecdenver.com

ATTN: Mike Stewart

Total number of pages in report: 26

nelac

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Canevaro Laboratory Director

Paul K Carrevaro

Client Service contact: William Reeves 713-271-4700

Certifications: TX (T104704220-06-TX) AR (88-0756) FL (E87628) KS (E-10366) LA (85695/04004) OK (9103) UT(7132714700)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Gulf Coast • 10165 Harwin Drive • Suite 150 • Houston, TX 77036 • tel: 713-271-4700 • fax: 713-271-4770 • http://www.accutest.com

Sections:

Table of Contents

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: T26001-1: MW-1	5
2.2: T26001-2: MW-2	6
2.3: T26001-3: MW-3	7
2.4: T26001-4: MW-4	8
2.5: T26001-5: MW-5	9
2.6: T26001-6: MW-6	10
2.7: T26001-7: MW-7	11
2.8: T26001-8: MW-8	12
2.9: T26001-9: DUP	13
2.10: T26001-10: TRIP BLANK	14
Section 3: Misc. Forms	15
3.1: Chain of Custody	16
Section 4: GC/MS Volatiles - QC Data Summaries	20
4.1: Method Blank Summary	21
4.2: Blank Spike Summary	23
4.3. Matrix Snike/Matrix Snike Dunlicate Summary	25

Sample Summary

DCP Midstream, LLC

AECCOLI: X-Line

Job No:

T26001

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
T26001-1	03/11/09	07:55 MS	03/13/09	AQ	Ground Water	MW-1
T26001-2	03/11/09	08:00 MS	03/13/09	AQ	Ground Water	MW-2
T26001-3	03/11/09	10:00 MS	03/13/09	AQ	Ground Water	MW-3
T26001-4	03/11/09	09:20 MS	03/13/09	AQ	Ground Water	MW-4
T26001-5	03/11/09	09:25 MS	03/13/09	AQ	Ground Water	MW-5
T26001-6	03/11/09	08:45 MS	03/13/09	AQ	Ground Water	MW-6
T26001-7	03/11/09	08:40 MS	03/13/09	AQ	Ground Water	MW-7
T26001-7D	03/11/09	08:40 MS	03/13/09	AQ	Water Dup/MSD	MW-7 MSD
T26001-7S	03/11/09	08:40 MS	03/13/09	AQ	Water Matrix Spike	MW-7 MS
T26001-8	03/11/09	09:55 MS	03/13/09	AQ	Ground Water	MW-8
T26001-9	03/11/09	00:00 MS	03/13/09	AQ	Ground Water	DUP
T26001-10	03/11/09	00:00 MS	03/13/09	AQ	Trip Blank Water	TRIP BLANK

Sample Results		
Report of Analysis		
•		

Report of Analysis

MW-1 Client Sample ID:

Lab Sample ID: Matrix:

Method: Project:

T26001-1 AQ - Ground Water

SW846 8260B AECCOLI: X-Line Date Received:

03/11/09 Date Sampled: 03/13/09

Percent Solids: n/a

DF Ву Prep Date Prep Batch Analytical Batch File ID Analyzed RR VZ2435 Run #1 Z0048728.D 1 03/15/09 n/a n/a Run #2

Purge Volume

Run #1 $5.0 \, ml$

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	114% 113% 124% ^a 107%	79-122% 75-121% 87-119% 80-133%			

(a) Outside of control limits biased high. Only ND results are acceptable.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Ву

RR

Client Sample ID: MW-2 Lab Sample ID:

T26001-2

Date Sampled: 03/11/09 Date Received: 03/13/09

Matrix: Method: Project:

AQ - Ground Water SW846 8260B

DF

Percent Solids: n/a

AECCOLI: X-Line

Prep Batch Analytical Batch Prep Date n/a VF3325

Run #1 Run #2

Purge Volume

Run #1 Run #2 5.0 ml

File ID

F014913.D

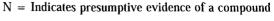
Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND 0.0048 0.0123 0.120	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	ın# 2 Limits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	106% 108% 107% 106%	79-122% 75-121% 87-119% 80-133%			

Analyzed

03/19/09

ND = Not detected


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

RR

Page 1 of 1

Client Sample ID: MW-3

Lab Sample ID: Matrix: T26001-3

AQ - Ground Water SW846 8260B Date Sampled: Date Received:

03/11/09 03/13/09

Prep Batch

n/a

Percent Solids: n/a

Method: Project:

AECCOLI: X-Line

DF

1

Prep Date

n/a

Analytical Batch VZ2435

Run #1 Run #2

Purge Volume

Z0048730.D

Run #1 Run #2 5.0 ml

File ID

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Ü	
1868-53-7	Dibromofluoromethane	113%		79-12	22%	
17060-07-0	1,2-Dichloroethane-D4	113%		75-12	21%	
2037-26-5	Toluene-D8	121% a	:	87-11	l 9 %	
460-00-4	4-Bromofluorobenzene	104%		80-13	33%	

Analyzed

03/15/09

(a) Outside of control limits biased high. Only ND results are acceptable.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-4

Lab Sample ID: Matrix: T26001-4

AQ - Ground Water SW846 8260B Date Sampled: 03/11/09 Date Received: 03/13/09

Percent Solids: n/a

Project: AECCOLI: X-Line

İ	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	Z0048731.D	1	03/15/09	RR	n/a	n/a	VZ2435
Dun #2							

Run #2

Method:

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	115% 113% 124% ^a 106%		79-12 75-12 87-11 80-13	21% 19%	

(a) Outside of control limits biased high. Only ND results are acceptable.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Analytical Batch

VZ2435

Client Sample ID: MW-5

Lab Sample ID: Matrix:

T26001-5

AQ - Ground Water SW846 8260B **AECCOLI: X-Line**

Date Sampled: Date Received:

n/a

03/11/09 03/13/09

Percent Solids: n/a

n/a

File ID DF Analyzed Ву Prep Date Prep Batch 03/15/09 Z0048733.D RR

Run #1 Run #2

Method:

Project:

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0020	0.00046	mg/l	
108-88-3	Toluene	ND	0.0020	0.00048	mg/l	
100-41-4	Ethylbenzene	· ND	0.0020	0.00045	mg/l	
1330-20-7	Xylene (total)	ND	0.0060	0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s	
1868-53-7	Dibromofluoromethane	112%		79-12	2%	
17060-07-0	1,2-Dichloroethane-D4	110%		75-12	1%	
2037-26-5	Toluene-D8	123% a	•	87-11	9%	
460-00-4	4-Bromofluorobenzene	101%		80-13	3%	

(a) Outside of control limits biased high. Only ND results are acceptable.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: MW-6

Lab Sample ID: Matrix:

T26001-6

AQ - Ground Water SW846 8260B

1

Date Sampled: 03/11/09 Date Received: 03/13/09

Percent Solids: n/a

AECCOLI: X-Line DF

5.0 ml

File ID Run #1 Z0048734.D

Analyzed 03/15/09

By RR Prep Date n/a

Prep Batch n/a

Analytical Batch

VZ2435

Run #2

Method:

Project:

Purge Volume

Run #1 Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0020	0.00046	mg/l	
108-88-3	Toluene	ND	0.0020	0.00048	mg/l	
100-41-4	Ethylbenzene	ND	0.0020	0.00045	mg/l	
1330-20-7	Xylene (total)	ND	0.0060	0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	115%		79-12	22%	
17060-07-0	1,2-Dichloroethane-D4	110%		75-12	21%	
2037-26-5	Toluene-D8	121% a		87-11	l 9 %	
460-00-4	4-Bromofluorobenzene	102%		80-13	33%	

(a) Outside of control limits biased high. Only ND results are acceptable.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID:

T26001-7

Matrix:

AQ - Ground Water

SW846 8260B

Date Sampled: 03/11/09 03/13/09 Date Received:

Percent Solids: n/a

Method: Project:

AECCOLI: X-Line

File ID DF Run #1

Z0048724.D

1

Analyzed Ву RR

03/15/09

Prep Date n/a

Prep Batch n/a

Analytical Batch VZ2435

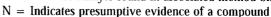
Run #2

Purge Volume

Run #1 Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0020	0.00046	mg/l	
108-88-3	Toluene	ND	0.0020	0.00048		
100-41-4	Ethylbenzene	ND	0.0020	0.00045		
1330-20-7	Xylene (total)	ND	0.0060	0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7	Dibromofluoromethane	115%		79-12	2%	
17060-07-0	1,2-Dichloroethane-D4	106%		75-12	1%	
2037-26-5	Toluene-D8	119%		87-11	9%	
460-00-4	4-Bromofluorobenzene	107%		80-13	3%	


MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-8

Lab Sample ID: Matrix:

T26001-8

AQ - Ground Water SW846 8260B

AECCOLI: X-Line

Date Sampled: Date Received:

80-133%

03/11/09 03/13/09

Percent Solids:

n/a

File ID Run #1 Z0048736.D

DF 10

Analyzed By 03/15/09 RR Prep Date n/a

Prep Batch n/a

Analytical Batch VZ2435

Run #2

Method:

Project:

Purge Volume

4-Bromofluorobenzene

Run #1 Run #2

460-00-4

5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	0.219	0.020	0.0046	mg/l	
108-88-3	Toluene	0.257	0.020	0.0048	mg/l	

Ethylbenzene 100-41-4 0.133 0.020 0.0045mg/l 1330-20-7 Xylene (total) 3.76 0.0600.014mg/l

CAS No. Surrogate Recoveries Run#1 Run#2 Limits 1868-53-7 Dibromofluoromethane 79-122% 115% 1,2-Dichloroethane-D4 17060-07-0 112% 75-121% 2037-26-5 Toluene-D8 119% 87-119%

92%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: DUP

Lab Sample ID: Matrix:

Method:

T26001-9

AQ - Ground Water

SW846 8260B

Date Sampled: Date Received:

03/11/09 03/13/09

Percent Solids: n/a

Project:

File ID

DF

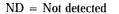
AECCOLI: X-Line

Analyzed Ву 03/15/09 RR Prep Date n/a

Prep Batch n/a

Analytical Batch VZ2435

Run #1 Z0048735.D Run #2


Purge Volume

Run #1 Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Ü	
1868-53-7	Dibromofluoromethane	117%		79-12	22%	
17060-07-0	1,2-Dichloroethane-D4	114%		75-12	21%	
2037-26-5	Toluene-D8	125% a		87-11	9%	
460-00-4	4-Bromofluorobenzene	102%	:	80-13	3%	

(a) Outside of control limits biased high. Only ND results are acceptable.

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 1

Client Sample ID: TRIP BLANK

Lab Sample ID: Matrix: T26001-10

AQ - Trip Blank Water

Date Sampled: Date Received:

03/11/09 03/13/09

SW846 8260B AECCOLI: X-Line Percent Solids: n/a

n/a

Q

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Z0048732.D 1 03/15/09 RR n/a n/a VZ2435

Run #2

Method: Project:

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL Units	(
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 mg/l 0.00048 mg/l 0.00045 mg/l 0.0014 mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	116% 113% 120% ^a 102%		79-122% 75-121% 87-119% 80-133%	

(a) Outside of control limits biased high. Only ND results are acceptable.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

W LE						
Ø AC	\subseteq	U	T	E	S	Τ,

CHAIN OF CUSTODY

	ACCUTEST.											ı	FED-EX	Fracking	, - -			Bott	le Order Co	ontrol #		Page of
	10165 Harwin, Suite 150 - Houste	on, TX 7	7036 -	713-27	1-470	00 fa	x: 7	13-	271	-47	70		Accutest	Quote #				Acce	net Job 8		T20	2001
												ı	11,143	MESTER	72972	3 (4)	reside.	11 7 1 10	E. 1975.	A.NY. 35		YUSONANIA YÜGGÖ
C*574.65		C v 4 (00) and			oject in	ormatic	я 🧷	75.	51%	200	20.1	10	20.75						Analyse	15	SECTION OF	Matrix Codes
Company Na			Project Na									ı										DW - Drinking Water
OCP Mids				istream X	line	_						_							- 1	1 1		GW - Ground Water
roject Con			Bill to				In	voice	Attn.			- 1							-1			WW - Westewater
	Weathers SWWeathers@dcpmids		Same									_					- 1		-1	1		80 - Soll
kddress			Address														- 1		- 1	1 1		St Sludge
	nteenth Street, Suite 2500											_					- 1		- 1			OI - OII
thy Denver	State CO	Zip 80202	City				State				Zip										1	LIQ - Liquid
Phone No.			Phone No.								x No.	\dashv		1	- 1				ı	'		SOL - Other Solid
		No.	rnone no.							ra	x NO.			- 1			- 1		- 1	'		
303-605- Samplers's			Dite at Day	hase Order								—		1			- 1		1			
M	Stewert/A. Taylor												8260B									
Accutest	Control (Daint of Collection		Collection	n							ed bott		×				- 1			'		
Sample #	Field ID / Point of Collection	Da	,	Time	Matrix	# of bottles	₽ 3	5 0	H2304	ENCOR	Net R	MONE	втех						1	1 /		LAB USE ONLY
	MW-1	3/11	1	755	GW	3		Ţ	Ĺ				×									
2	MW-2	1 1	' '	800	GW	3							х						İ		- 1	1
3	MW-3			1000	GW	3		╁	T	П			Х		寸	7	\top			\Box		<u> </u>
4	MW-4			926	GW	3	П		П	П		\neg	х									1
5	MW-5			925	GW	Ŋ		T		П			х		7		T		\top	\Box		
6	MW-6			845	ĢW	\sim	П			П			х							П		
7	MW-7			840	GW	3	П			П			Х				\neg			П		
8	MW-8			955	GW	3			T	ΓĪ	T		х				7		1	\Box		
9	Dup			000	GW	3	П				T		Х							\Box		
7	MW-7 MW-7MS/MSD	\neg		840	GW	3		╁	1		_	_	×			_			1-	1		
18 15	Tumeround Time (Business days)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	strijas:	5 1 2 de 1	Data [eliverabl	e Inform	nation	20.5	1.00	5 - P ;	200	2	.,	1			Comme	nts / Rema	arks	15.	41, 41, 5
	10 Day STANDARD Approved I	By:/ Date:		Comm	ercial "A		·	rrrp.	13													
X] 7 Day			Х Сопит	ercial "E	-	<u> </u>	EDD F	ormat													
	4 Day RUSH			Reduc	ed Tier 1			Other_														
	3 Day EMERGENCY			Full D	ata Pack	194																
	2 Day EMERGENCY																					
	1 Day EMERGENCY			Comme	ercial "A"	= Resul	ts Only															
	Other			Comme	rcial "B"	°= Resul	ts & St	endaro	d QC													
	time analytical data available via Lablink																					
		DOY MUST BE DO	CUMENT			E SAMP	LES CH	ANGE				LUDIA	NG COL					-1-			F	7. 1.
Relinquis	hed by Sempler:	Date Time:		Received By:					Relin	nquish	d By:				Date Tin	10:		Rece	ilved By:			
1				[1					2									- 2				
Relinquis	ned by:	Date Time:		Received By:					Rein	nquish	ed By:				Date Tin	10:		Rect	Ived By:			
3				3					4_			_						4				
Relinquis 5	FEDEX	3-13	s.05	Received By:	ip				Cust	ody Se	al #			Preserve	C]	a applica	ble			On lo	e Co	Her Temp. L · B
		14	·~	1																		· · ·

T26001: Chain of Custody

Page 1 of 4

t.	
.~	•
_	

١.	
ı	1.
l	S
1	60

CHAIN OF CUSTODY

MD EAC	c	:L	ر	T	E	==	3-	T.
		4.	-				1 4	_

10165 Harwin, Suite 150 - Houston, TX 77036 - 713-271-4700 fax: 713-271-4770 124001 Client / Reporting Information Matrix Codes Requested Analyses Project Name / No DCP Midstream Xline DCP Midstream GW - Ground Water SO - Soil Stephen Weathers SWWeathers@dcpmidstream.com Same SL - Sludge 370 Seventeenth Street, Suite 2500 OI - OI CO 80202 Denver SQL - Other Solid 303-605-1718 Samplere's Name M. Stewart / A. ÆC Number of preserved bottles Accutest Sample # Field ID / Point of Collection LAB USE ONLY Time Matrix bottles Trip Blank 10 Turnaround Time (Business days) 10 Day STANDARD Approved By:/ Date: TRRP-13

EDD Format
Other Commercial "A" X 7 Day X Commercial "B" 4 Day RUSH 3 Day EMERGENCY Full Data Package 2 Day EMERGENCY 1 Day EMERGENCY Commercial "A" = Results Only Commercial "B" = Results & Standard QC Roal time analytical data available via Lablink

SAMPLE CUSTODY MUST BE DOCUMENTED BELOW EACH TIME SAMPLES CHANGE POSSESSION, INCLUDING COURIER DELIVERY Relinquished by Sampler: Cooler Temp. Preserved where applicat On Ice FEDEX 3.1309

0906

T26001: Chain of Custody

Page 2 of 4

SAMPLE INSPECTION FORM

# of Coolers Received: Thermometer #: Lt > Temperature Adjustment Factor: 7 3 Cooler Temps: #1: #2: #3: #4: #5: #6: #7: #8: Method of Delivery: UPS	900
Method of Delivery: FEDEY UPS Accutest Courier Greyhound Delivery Other Airbill Numbers: 9,67047575167 COOLER INFORMATION SAMPLE INFORMATION Custody scal missing or not intact Temperature criteria not met WoC vials have headspace Wet (ce received in cooler Sample labels missing or illegible ID on COC does not match label(s) CHAIN OF CUSTODY Chain of Custody not received Sample/Bottles revd but no analysis on COC	
Method of Delivery: FEDEY UPS Accutest Courier Greyhound Delivery Other Airbill Numbers: 9,67047575167 COOLER INFORMATION SAMPLE INFORMATION Custody scal missing or not intact Temperature criteria not met WoC vials have headspace Wet (ce received in cooler Sample labels missing or illegible ID on COC does not match label(s) CHAIN OF CUSTODY Chain of Custody not received Sample/Bottles revd but no analysis on COC	
COOLER INFORMATION Custody seal missing or not intact Temperature criteria not met Wet ice received in cooler CHAIN OF CUSTODY Chain of Custody not received Chain of Custody not received Sample labels missing or illegible D/T on COC does not match label(s) D/T on COC does not match label(s) Received Soil TB Trip Blank not COC but not received Trip Blank received but not on COC Trip Blank not intact Received Water Trip Blank Received Soil TB Received Soil TB	
Custody seal missing or not intact Temperature criteria not met Wet ice received in cooler CHAIN OF CUSTODY Chain of Custody not received Sample containers received broken VOC vials have headspace Trip Blank not COC but not received Trip Blank received but not on COC Trip Blank not intact ID on COC does not match label(s) D/T on COC does not match label(s) Received Water Trip Blank Received Soil TB Received Soil TB	
Temperature enterta not met WCC vals have headspace Wet ice received in cooler Sample labels missing or illegible ID on COC does not match label(s) CHAIN OF CUSTODY Chain of Custody not received Trip Blank received but not on COC TION	
Analyses unclear or missing Analyses unclear or missing Bottles missing for requested analysis Number of Encores?	
TECHNICIAN SIGNATURE/DATE: 13.07 INFORMATION AND SAMPLE LABELING VERIFIED BY: 9 13-9 • • • • • • • • • • • • • • • • • • •	• •
Client Representative Notified: Date:	
By Accutest Representative: Via: Phone Email Client Instructions:	
iúnwalkertormisampiamanagement	

T26001: Chain of Custody

Page 3 of 4

<u>:</u>

SAMPLE RECEIPT LOG

OB#:		T26001		·	DATE/T	ME RECEIVED:		3.13.00	7 09	00		
LIENT:		DCP MIdstream		INITIALS:					<u>r</u>			
OOLER#	SAMPLE ID	FIELD ID	DATI	E	MATRI	K VOL	BOTTLE #	LOCATION	, PRESE		Р	H
1	ì	prw-1	3.11.09	755	ςw	conc	1-3	VK	1 (2) 5 ft		<2	> 12
	2	mw-2		800				1	1 0	3 4 7 8	<2	>1
	3	nic-3		1000					5 6		<2	>1
	4	mu-4	ļļ	920					5 6		<2	۰1
	5	MV-5		925	<u>.</u>	1			5 6		<2	>1
	. 6	Nun-6		845			1.0			7 8 3 4	<2	>1
	7	14w-7		840		1.	1-6		5 6	7 8	<2	>1
	E	Mw-8	₩	955			1-3		1 (2)	3 4 7 8	<2	>1
	. 9	Dop	3.11	.04	. 1		1		5 5		<2	>1
<u>.</u>	ιυ	Trip blank			DI		1-2	Ψ	5 6		<2	
									5 6	7 8	·2	1
		3.13.09 IT							5 6	7 8	<2 <2	1 م
	-					- 			5 6	7 8	<2 <2	>1 71
			 	-1		·		·	5 6 1 2	7 6	. <2	.>1
<u></u>							<u> </u>		5 6	7 8	<2 <2	۰۰. ۱<
									5 6	7 8	<2 <2	>1
									5 6 1 2	7 9	<2	
	,				^ ^				5 6 1 2	7 8		
						-				3 4	<2	>1
						1			1 2	7 8	<2	. >1
									5 6 1 2 5 6	3 . 4	-22	>1

T26001: Chain of Custody

Page 4 of 4

...

હ્હ

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: T26001

DUKE DCP Midstream, LLC Account:

Project: AECCOLI: X-Line

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VZ2435-MB	Z0048723.D	1	03/15/09	RR	n/a	n/a	VZ2435

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8260B

T26001-1, T26001-3, T26001-4, T26001-5, T26001-6, T26001-7, T26001-8, T26001-9, T26001-10

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	2.0 2.0 2.0 6.0	0.46 0.45 0.48 1.4	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries		Limits	;	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 106% 120%* ^a 104%	79-122 75-121 87-119 80-133	.%) %	

(a) Outside control limits biased high. Only ND results are acceptable.

Method Blank Summary Job Number: T26001 Account: DUKE DCP Midstream, LLC

Project: AECCOLI: X-Line

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VF3325-MB	F014902.D	1	03/19/09	RR	n/a	n/a	VF3325
l							

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8260B

T26001-2

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	2.0 2.0 2.0 6.0	0.46 0.45 0.48 1.4	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries		Limi	ts	
	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 118% 112% 118%	79-12 75-12 87-11 80-13	21% 1 9 %	

Blank Spike Summary Job Number: T26001

Page 1 of 1

DUKE DCP Midstream, LLC Account:

Project:

AECCOLI: X-Line

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VZ2435-BS	Z0048721.D	1	03/15/09	RR	n/a	n/a	VZ2435

The QC reported here applies to the following samples:

Method: SW846 8260B

 $T26001\text{--}1,\ T26001\text{--}3,\ T26001\text{--}4,\ T26001\text{--}5,\ T26001\text{--}6,\ T26001\text{--}7,\ T26001\text{--}8,\ T26001\text{--}9,\ T26001\text{--}10$

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	25.3	101	76-118
100-41-4	Ethylbenzene	25	24.4	98	75-112
108-88-3	Toluene	25	23.9	96	77-114
1330-20-7	Xylene (total)	7 5	69.6	93	75-111
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7	Dibromofluoromethane	116%	79-1	22%	
17060-07-0	1,2-Dichloroethane-D4	106%	75-1	21%	
2037-26-5	Toluene-D8	115%	87-1	19%	
460-00-4	4-Bromofluorobenzene	101%	80-1	33%	

Blank Spike Summary Job Number: T26001

Account: DUKE DCP Midstream, LLC

Project:

AECCOLI: X-Line

Sample File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch VF3325-BS F014900.D 1 03/19/09 RR VF3325 n/a n/a

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8260B

T26001-2

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	23.2	93	76-118
100-41-4	Ethylbenzene	25	22.3	89	75-112
108-88-3	Toluene	25	22.1	88	77-114
1330-20-7	Xylene (total)	75	67.4	90	75-111
CAS No.	Surrogate Recoveries	BSP	Liı	mits	
1868-53-7	Dibromofluoromethane	112%	79	-122%	
17060-07-0	1,2-Dichloroethane-D4	120%	75	-121%	
2037-26-5	Toluene-D8	110%	87	-119%	
460-00-4	4-Bromofluorobenzene	109%	80	-133%	

Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number: T26001

Account:

DUKE DCP Midstream, LLC

Project:

AECCOLI: X-Line

Sample T26001-7MS T26001-7MSD	File ID Z0048725.D Z0048726.D	1	Analyzed 03/15/09 03/15/09	By RR RR	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VZ2435 VZ2435
T26001-7	Z0048724.D	1	03/15/09	RR	n/a	n/a	VZ2435

The QC reported here applies to the following samples:

Method: SW846 8260B

T26001-1, T26001-3, T26001-4, T26001-5, T26001-6, T26001-7, T26001-8, T26001-9, T26001-10

CAS No.	Compound	T26001-7 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	25	24.9	100	25.0	100	0	76-118/16
100-41-4	Ethylbenzene	ND	25	24.4	98	24.8	99	2	75-112/12
108-88-3	Toluene	ND	25	23.5	94	24.5	98	4	77-114/12
1330-20-7	Xylene (total)	ND	75	68.6	91	69.3	92	1	75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T26001-7		Limits			
1868-53-7	Dibromofluoromethane	115%	116%	115	%	79-1229	6		
17060-07-0	1,2-Dichloroethane-D4	113%	109%	106	%	75-1219	6		
2037-26-5	Toluene-D8	119%	121%*	119	%	87-1199	6		
460-00-4	4-Bromofluorobenzene	98%	98%	107	%	80-1339	6		

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T26001

Page 1 of 1

Account:

DUKE DCP Midstream, LLC

Project:

AECCOLI: X-Line

Sample T25989-2MS T25989-2MSD T25989-2	File ID F014910.D F014911.D F014909.D	DF 1 1	Analyzed 03/19/09 03/19/09 03/19/09	By RR RR RR	Prep Date n/a n/a n/a	Prep Batch n/a n/a n/a	Analytical Batch VF3325 VF3325 VF3325

The QC reported here applies to the following samples:

Method: SW846 8260B

T26001-2

CAS No.	Compound	T25989-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	25 25 25 75	24.0 23.2 22.8 70.6	96 93 91 94	23.0 22.0 21.9 66.6	92 88 88 89	4 5 4 6	76-118/16 75-112/12 77-114/12 75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T25989-2		Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 121% 107% 103%	107% 115% 104% 102%	114 121 110 116	% %	79-1229 75-1219 87-1199 80-1339	% %		

