GW - 001

REPORTS

Investigation Report Group 2

May 2009

404 Camp Craft Rd., Austin, Texas 78746 Tel: (512) 347 7588 Fax: (512) 347 8243 Internet: www.rpsgroup.com/energy

INVESTIGATION REPORT

GROUP 2

(SWMU No. 2 Drum Storage Area North Bone Yard, SWMU No. 8 Inactive Landfill, SWMU No. 9 Landfill Pond, SWMU No. 11 Spray Irrigation Area, and SWMU No. 18 Warehouse Yard)

> Bloomfield Refinery Western Refining Southwest, Inc. #50 Rd 4990 Bloomfield, New Mexico 87413

> > May 2009

James R. Schmaltz Environmental Manager Western Refining Southwest, Inc., Bloomfield Refinery

Scott T. Crouch, P.G. Senior Consultant RPS JDC, Inc. 404 Camp Craft Rd. Austin, Texas 78746

United Kingdom Australia USA Canada Ireland Netherlands Malaysia

MFIELD REFINERY

May 12, 2009

James Bearzi, Bureau Chief New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303

Re: Giant Refining Company, Bloomfield Refinery (currently known as Western Refining Southwest, Inc. – Bloomfield Refinery) Order No. HWB 07-34 (CO) Solid Waste Management Unit (SWMU) Group No. 2 Investigation Report

Dear Mr. Bearzi:

Western Refining Southwest, Inc. – Bloomfield Refinery submits the referenced Investigation Report pursuant to Section IV.B.7 of the July 2007 HWB Order. The Investigation Report summarizes the site environmental investigation activities completed for SWMUs designated as Group 2. These include SWMU No. 2 Drum Storage Area North Bone Yard, SWMU No. 8 Inactive Landfill, SWMU No. 9 Landfill Pond, SWMU No. 11 Spray Irrigation Area, and SWMU No. 18 Warehouse Yard. The Investigation Report was developed and formatted to meet the requirements of Section X.C of the July 2007 HWB Order.

If you have any questions or would like to discuss the Investigation Report, please contact me at (505) 632-4171.

Sincerely

James R. Schmaltz Environmental Manager Western Refining Southwest, Inc. Bloomfield Refinery

cc: Hope Monzeglio – NMED HWB Carl Chavez – NMOCD (w/attachment) Brad Jones - NMOCD Dave Cobrain – NMED HWB Laurie King – EPA Region 6 (w/attachment) Todd Doyle – Bloomfield Refinery Allen Hains – Western Refining El Paso

Table of Contents

List of Sections

Executive Summaryiii		
Section 1	Introduction	1
Section 2 2.1 2.2 2.3 2.4 2.5	Background SWMU No. 2 Drum Storage Area North Bone Yard SWMU No. 8 Landfill SWMU No. 9 Landfill Pond SWMU No. 11 Spray Irrigation Area SWMU No. 18 Warehouse Yard	
Section 3 3.1 3.2 3.3 3.4	Scope of Activities. Soil Boring and Monitoring Well Installation Background Information Research Collection and Management of Investigation Derived Waste Surveys	8 8 8 9
Section 4 4.1 4.2 4.3 4.4 4.5 4.6	Field Investigation Results Surface Conditions Exploratory Drilling or Excavation Investigations Subsurface Conditions Monitoring Well Construction, Boring, or Excavation Abandonment Ground Water Conditions Surface Water Conditions	
Section 5	Regulatory Criteria	21
Section 6 6.1	Site ContaminationSoil and Sediment Sampling6.1.1SWMU No. 2 Drum Storage Area North Bone Yard6.1.2SWMU No. 8 Landfill6.1.3SWMU No. 9 Landfill Pond6.1.4SWMU No. 18 Warehouse Yard	22 23 26 27
6.2	 Soil Sample Field Screening Results 6.2.1 SWMU No. 2 Drum Storage Area North Bone Yard 6.2.2 SWMU No. 8 Landfill 6.2.3 SWMU No. 9 Landfill Pond 6.2.4 SWMU No. 18 Warehouse Yard Soil Sampling Chemical Analytical Results 	28 28 28 29 29
6.4	Ground Water Sampling	30
6.5	General Ground Water Chemistry	
6.6 6.7	Ground Water Chemical Analytical Results Air and Subsurface Vapor Sampling/Field Screening Results	
Section 7	Conclusions and Recommendations	
Section 8	References	-
		· T I

List of Tables

- Table 1
 Historical Volatile Organic Ground Water Analytical Results Summary
- Table 2
 Historical Total Metals Ground Water Analytical Results Summary
- Table 3Historical Dissolved Metals Ground Water Analytical Results Summary
- Table 4
 Historical General Chemistry Ground Water Analytical Results Summary
- Table 5
 Historical Volatile Organic Soil Analytical Results Summary
- Table 6 Soil Screening Levels
- Table 7 Ground Water Screening Levels
- Table 8
 SWMU No. 2 Soil Analytical Results Summary
- Table 9 SWMU No. 8 Soil Analytical Results Summary
- Table 10 SWMU No. 8 and 9 Soil Analytical Results Summary
- Table 11 Soil Sample Vapor Screening Results
- Table 12
 General Ground Water Chemistry Parameters
- Table 13 Water Level Measurements
- Table 14
 Ground Water Analytical Results Summary

List of Figures

- Figure 1 Site Location Map
- Figure 2 SWMU Group No. 2 SWMU Locations
- Figure 3 Cross Section A-A' West to East
- Figure 4 Cross Section B-B' North to South
- Figure 5 SWMU No. 2 Mercury Soils Map
- Figure 6 SWMUs No. 8 & 9 Naphthalene Soils Map
- Figure 7 SWMUs No. 8 & 9 1-Methylnahthalene Soils Map
- Figure 8 SWMUs Nos. 8 & 9 2-Methylnaphthalene Soils Map
- Figure 9 SWMUs No. 8 TPH MRO Soils Map
- Figure 10 Potentiometric Surface Map (August 2008)
- Figure 11 Jackson Lake Formation Saturated Thickness Map (August 2008)
- Figure 12 Groundwater Sampling Locations
- Figure 13 Manganese Map (August October 2008)
- Figure 14 Manganese vs. Dissolved Oxygen Concentrations
- Figure 15 Chloride Map (August October 2008)
- Figure 16 Sulfate Map (August October 2008)

List of Appendices

- Appendix A Field Methods
- Appendix B Boring Logs
- Appendix C Landfill (SWMU No. 8) and Landfill Pond (SWMU No. 9) Historical Documentation
- Appendix D Photographs
- Appendix E Correspondence
- Appendix F Quality Assurance/Quality Control
- Appendix G Analytical Data Reports

Executive Summary

The Bloomfield Refinery, which is located in the Four Corners Area of New Mexico, has been in operation since the late 1950s. Past inspections by State and federal environmental inspectors have identified locations where releases to the environment may have occurred. These locations are generally referred to as Solid Waste Management Units (SWMUs) or Areas of Concern (AOCs).

Pursuant to the terms and conditions of an Order issued on July 27, 2007 by the New Mexico Environment Department (NMED) to San Juan Refining Company and Giant Industries Arizona, Inc. for the Bloomfield Refinery, this environmental site investigation was completed for the SWMUs designated as Group 2. This includes SWMU No. 2 Drum Storage Area North Bone Yard, SWMU No. 8 Inactive Landfill, SWMU No. 9 Landfill Pond, SWMU No. 11 Spray Irrigation Area, and SWMU No. 18 Warehouse Yard. The New Mexico Oil Conservation Division (NMOCD) previously approved closure of SWMU No. 11 Spray Irrigation Area and no further action was proposed for this SWMU in the Group 2 Investigation Work Plan (RPS JDC, 2008). The NMED concurred with this recommendation on June 11, 2008 and did not require additional assessment for this SWMU.

The Order requires that San Juan Refining Company and Giant Industries Arizona, Inc. determine and evaluate the presence, nature, and extent of historical releases of contaminants at the aforementioned SWMUs. A Class I permit modification was approved on June 10, 2008 to reflect the change in ownership of the refinery to Western Refining Southwest, Inc. The operator is now Western Refining Southwest, Inc. – Bloomfield Refinery.

The investigation activities included collection and analysis of soil and ground water samples for potential site-related constituents starting on September 23, 2008 and continuing through January 8, 2009. This included the completion of 27 soil borings with eight borings completed as temporary monitoring wells and five completed as permanent monitoring wells.

At the SWMU No. 2 nine soil borings were completed with two installed as permanent wells and the other seven completed as temporary monitoring wells. There was only one constituent (mercury) that was present in soil at concentrations, which exceed the soil screening level for protection of ground water, but the maximum detected value of 11 mg/kg is significantly below the NMED residential soil screening level of 100,000 mg/kg and the more conservative

iii

construction worker screening level of 927 mg/kg. Ground water samples were collected from 7 temporary wells and 2 permanent wells located at SWMU No. 2. There are no detections of organic constituents in ground water samples collected from any of the permanent or temporary wells. Mercury was not detected in ground water at SWMU No. 2. Low concentrations of other metals were detected but may be attributable to entrained sediment in total metals analyses.

Thirteen soil borings were completed at SWMU No. 8, with two installed as permanent monitoring wells. None of the soil analyses indicate concentrations of constituents exceeding the applicable screening levels. All of the organic analyses of ground water samples from the two permanent monitoring wells are non-detect with the single exception of chloromethane, which was detected at a concentration below the screening level on the second sampling event conducted in January 2009. A few metals were detected in ground water samples at low concentrations that exceed their applicable screening levels but these may be the result of sample collection techniques.

One soil boring, which was completed as a temporary monitoring well, was located at SWMU No. 9. The analyses conducted on soil samples collected from beneath the location of the former "landfill pond" were non-detect for most constituents. There were low concentrations of naturally occurring metals, all of which are well below their applicable screening levels. There are a few organic constituents (1-methylnaphthalene, 2-methylnaphthalene, and naphthalene) that were detected at generally low concentrations but above the lowest screening level, which is based on protection of ground water. The ground water sample collected from the temporary well installed in soil boring SWMU 9-1 was non-detect for all of the organic analyses, including 1methylnaphthalene, 2-methylnaphthalene, and naphthalene. Several of the total metals analyses contained concentrations exceeding the screening levels; however, the ground water sample collected from the temporary well was turbid and the entrained sediment caused artificially high concentrations to be reported for metals.

Four soil borings were completed within SWMU No. 18 with one completed as a permanent monitoring well. All of the soil analytical results for individual organic constituents (e.g., benzene, xylene, etc.) are below the applicable screening levels but two samples have concentrations of motor oil range organics above the screening level. All of the analytical results for the metals are below the applicable screening levels. A ground water sample collected from the permanent monitoring well installed in SWMU No. 18 confirmed historical analyses from this area indicating the presence of petroleum hydrocarbons in shallow ground water.

iv

Section 1 Introduction

The Bloomfield Refinery is located immediately south of Bloomfield, New Mexico in San Juan County (Figure 1). The physical address is #50 Road 4990, Bloomfield, New Mexico 87413. The Bloomfield Refinery is located on approximately 263 acres. Bordering the facility is a combination of federal and private properties. Public property managed by the Bureau of Land Management lies to the south. The majority of undeveloped land in the vicinity of the facility is used extensively for oil and gas production and, in some instances, grazing. U.S. Highway 44 is located approximately one-half mile west of the facility. The topography of the main portion of the site is generally flat with steep bluffs to the north where the San Juan River intersects Tertiary terrace deposits.

The Bloomfield Refinery is a crude oil refinery currently owned by Western Refining Southwest, Inc., which is a wholly owned subsidiary of Western Refining Company, and it is operated by Western Refining Southwest, Inc. – Bloomfield Refinery. The Bloomfield Refinery has an approximate refining capacity of 18,000 barrels per day. Various process units are operated at the facility, including crude distillation, reforming, fluidized catalytic cracking, sulfur recovery, merox treater, catalytic polymerization, and diesel hydrotreating. Current and past operations have produced gasoline, diesel fuels, jet fuels, kerosene, propane, butane, naphtha, residual fuel, fuel oils, and LPG.

On July 27, 2007, the New Mexico Environment Department (NMED) issued an Order to San Juan Refining Company and Giant Industries Arizona, Inc. ("Western") requiring investigation and corrective action at the Bloomfield Refinery. This Investigation Report has been prepared for the Solid Waste Management Units (SWMUs) designated as Group 2 in the Order, with the exception of SWMU No. 11 Spray Irrigation Area. This includes:

- SWMU No. 2 Drum Storage Area North Bone Yard (North Bone Yard);
- SWMU No. 8 Inactive Landfill (Landfill);
- SWMU No. 9 Landfill Pond; and
- SWMU No. 18 Warehouse Yard.

The location of the individual SWMUs is shown on Figure 2 and all of the SWMUs except the Warehouse Yard are located at the far eastern end of the refinery property. The Warehouse Yard is located on the far western end of the property. Only two of the SWMUs (North Bone Yard and Warehouse Yard) are still actively used by Western. The Spray Irrigation Area was previously closed by the NMOCD in August 1996. The Landfill and associated pond area have been inactive since 1989.

The purpose of the site investigation is to determine and evaluate the presence, nature, and extent of releases of contaminants in accordance with 20.4.1.500 New Mexico Administrative Code (NMAC) incorporating 40 Code of Federal Regulations (CFR) Section 264.101. The investigation activities were conducted in accordance with Section IV of the Order and focused on soils and ground water as those are the environmental media in these areas that may potentially contain contaminants.

The samples of soil and ground water were analyzed for volatile and semi-volatile organic constituents, metals, and inorganic general chemistry constituents. The results of these analyses are compared to applicable State or federal cleanup and screening levels as specified in Section VII. of the Order.

Section 2 Background

This section presents background information for each of the SWMUs, including a review of historical waste management activities for each location to identity the following:

- type and characteristics of all waste and all contaminants handled in the subject SWMU;
- known and possible sources of contamination;
- history of releases; and
- known extent of contamination prior to the current investigation.

2.1 SWMU No. 2 Drum Storage Area North Bone Yard

The North Bone Yard (Drum Storage Area) is located to the north of the fresh water pond and south of the Hammond Ditch. It is enclosed by a fence with a single entry point at the southwest corner and is used to store various pieces of equipment, including some scrap metal that is routinely shipped off-site for recycling. In addition, some empty drums may be temporarily stored in this area (see photos in Appendix D). No waste materials are currently managed in this area.

During an inspection conducted by EPA in 1984, several drums containing solvents and oils used in the refining process were noted as being stored in this area. The drums were removed from the North Bone Yard in July 1987 and placed in a designated drum storage area in the warehouse yard located on the west side of the refinery. There has not been a report of any releases from the drums in the North Bone Yard; however, there is no record of historical soil samples from this area. Monitoring well MW-1 is located within the North Bone Yard and numerous ground water samples have been collected and analyzed. The analytical results are included in Tables 1 - 4. There was no indication of ground water impacts at SWMU No. 2 based on the historical ground water analyses at MW-1, which do not indicate concentrations of constituents above the screening levels.

2.2 SWMU No. 8 Landfill

The "landfill", which has been identified as SWMU No. 8, is a located to the east of the tank farm. In 1982, sludge was removed from the North and South Aeration Lagoons (known earlier as the North and South Oily Water Ponds) and disposed of in an off-site hazardous disposal

facility. The underlying potentially contaminated soils, which were removed from beneath the North and South Aeration Lagoons, were placed in the landfill. The potential contaminants placed in the landfill in 1982 were formed during the secondary treatment of the refinery wastewaters and as such the types of and characteristics of the waste are well known. This includes the more prevalent types of hydrocarbons (e.g., BTEX and semi-volatile organics) associated with crude oil and refined petroleum products and possibly inorganic contaminants (e.g., lead and chromium) that are utilized in or are byproducts of the refining process.

This area was investigated in 1985 to support preparation of a Closure Plan for the API Wastewater Ponds, Landfill and the Landfill Pond (related documentation in Appendix C). Eight soil samples were collected from across the area of the landfill and analyzed for benzene, toluene, ethylbenzene, and xylene (BTEX), phenolics, total chromium, and total lead. The results of these analyses are included in Table 5. As indicated, all analyses were non-detect with detection limits below the applicable action levels except for benzene, which was non-detect but had detection limits above the action level. There is no map of the actual sample locations but the area of the landfill was divided into quadrants and two samples from depths of 0-6" and 6-12" were collected from the center of each quadrant.

In 1989, approximately 2,000 yards of soil were excavated and stockpiled at one location within the landfill. This activity was taken to support closure of this area and in 1991 Bloomfield filed a petition for delisting of these stockpiled materials, which had earlier been classified as a listed hazardous waste (K051 – API separator sludge from the petroleum refining industry). The stockpiled soils were sampled to support the delisting petition and the results are summarized in Table 4 of the <u>Hazardous Waste Delisting Petition Petroleum Contaminated Soil</u> document prepared by ERM-Rocky Mountain, Inc. in April 1991. The Environmental Protection Agency (EPA) granted the delisting petition, with an effective date of September 3, 1996. On February 25, 1998, the NMOCD approved the on-site disposal of these soils as fill material near the naphtha loading rack with the placement of clean soil as a cap.

There is no record of any other waste materials being placed in the landfill with the possible exception of minor quantities of catalyst fines and sulfur. The area is currently inactive as shown in the pictures in Appendix D. There is a single wastewater pipeline at a depth of approximately six feet below ground surface that runs across the landfill, as depicted in Figure 6.

2.3 SWMU No. 9 Landfill Pond

The Landfill Pond is located to the northeast of SWMU No. 8 Landfill and immediately east of SWMU No. 10 Fire Training Area (Figure 2). The "pond" was created when a shallow arroyo was blocked by the construction of the Hammond Irrigation Ditch. This area was designated as a SWMU due to the fact that it is topographically lower than the landfill and EPA was concerned that stormwater flowing from the landfill could have transported contaminants to this location. Wastes have not historically been and are not today managed in this area. The potential contaminants that could have impacted this area are the same contaminants that were placed in the landfill (SWMU No. 8).

Seven soil samples were collected from the Landfill Pond in 1985. All of the samples were analyzed for BTEX, phenolics, total chromium, and total lead, and one of the samples was analyzed for the EPA Skinner List constituents. The results of these analyses are include on pages 7 – 16 of the <u>Report of Analytical Results for Engineering Science Bloomfield Refining</u> <u>Company</u>, which was prepared by Rocky Mountain Analytical Laboratory on May 28, 1986 (Appendix C). As indicated, all analyses were non-detect with the exception of chromium and lead, which had low concentrations below the action levels.

In 1986, a closure plan for the API Wastewater Ponds, Landfill, and Landfill Pond was completed. The closure plan documented that the existing conditions at the landfill pond were protective of human health and the environment and proposed no additional actions. The proposed closure plan was submitted for public comment from December 10, 1993 through January 9, 1994. One comment was received, which recommended that measures be taken to prevent water from ponding in the site for extended periods of time. NMED approved closure of the landfill pond on January 25, 1994 and noted that no changes were required to the proposed closure plan. The January 25, 1994 letter, a copy of which is included in Appendix C, stated the following, "No additional closure activities are required to demonstrate clean closure of the site." In correspondence dated June 11, 2008, NMED noted that their administrative record does not contain a report that describes implementation of a closure plan and that NMED did not have corrective action authority delegated from EPA until 1996, thus any prior approvals of no further action should have been approved and signed by EPA. Additional characterization was conducted for this area.

2.4 SWMU No. 11 Spray Irrigation Area

The Spray Irrigation Area is located across the road south of the landfill and east of Tank 45 (Figure 2). This area covered approximately 10 acres and was irrigated through stationary sprinkler heads with refinery wastewater pumped from the north evaporation pond. A dike was located around the area to prevent runoff. The irrigation activities were conducted from 1981 through 1994, primarily during the summer months (March to October). The irrigation activities stopped in 1995 when the Class 1 injection well was put into service. No other waste management activities were conducted in this location. The potential contaminants that may have impacted this area are the same petroleum refinery wastes discussed above for SWMUs No. 8 and 9.

A closure plan entitled, <u>Closure Plan for the Unlined Evaporation Lagoons and the Spray</u> <u>Evaporation Area</u>, was completed on August 13, 1996. A copy of the closure plan was included in Appendix C of the SWMU Group No. 2 Investigation Work Plan. The results of analytical testing on soil samples collected from the Spray Irrigation Area are summarized in a table in Attachment C to the closure plan. Giant proposed to use the Spray Irrigation Area as the site for Giant's new Pipeline and Transportation truck shop and office building. The activities associated with the construction included grading the area to eliminate the dikes. Otherwise, no additional activities were proposed. A monitoring well (MW-5) is located within the Spray Irrigation Area that is screened within the shallow aquifer but this well has been dry for at least the last six years. MW-3 is located immediately down-gradient of SWMU No. 11 and chemical analyses of ground water samples collected from MW-3 are summarized in Tables 1 - 3. These data do not indicate any impacts from the historical irrigation activities. Manganese was detected at low concentrations that are above the standard but it is likely these concentrations are representative of background concentrations. Similar manganese concentrations were detected in MW-8, which is also in an up-gradient location relative to site operations.

The New Mexico Oil Conservation Division (NMOCD) approved the <u>Closure Plan for the Unlined</u> <u>Evaporation Lagoons and the Spray Evaporation Area</u> on August 28, 1996 with the requirement to continue monitoring ground water at MW-1 and MW-5. Based on the limited potential for environmental impacts and the results of previous analyses of soils and ground water in this area, Western proposed no further action for SWMU No. 11 in the SWMU No. 2 Investigation Work Plan. The NMED stated on June 11, 2008, "At this time, NMED does not require further

investigation of this area." The NMED did direct Western to continue monitoring ground water at MW-3 but no other investigation activities were proposed for this SWMU.

2.5 SWMU No. 18 Warehouse Yard

The Warehouse Yard lies at the far western end of the refinery, west of the main office and warehouse buildings. It is enclosed on the east, south and west sides by a fence and is partially open to the refinery complex on the north side. During an inspection conducted in 1987, drums containing solvents and oils used in the refining process were noted as being stored within this area. Pictures of the former drum storage location are included in Appendix D. In 1988, the refinery changed its methods of storing bulk chemical products in drums to utilizing portafeed tanks and stainless-steel totes located within the process area. In addition, the drum storage area (drum storage rack) in the Warehouse Yard was upgraded by constructing a metal frame storage area with a concrete floor and curbing with a collection sump. After the upgrade, only drums containing primarily lube oils were stored in the original drum storage area. An above ground storage tank that contains gasoline is located within the yard and it has secondary containment. The warehouse yard has historically been used and is still primarily used today for shipping and receiving.

No previous investigations of soils have been conducted for the Warehouse Yard but there is one recovery well (RW-1) from which ground water samples are collected. Separate phase hydrocarbon (SPH) has historically been present in RW-1; however, this well is located downgradient of a larger area of ground water contamination that extends from the refinery tank farm to the processing units. There is a liquid petroleum gas (LPG) pipeline and water line that runs along the western end of the warehouse yard but they are not close to the former drum storage location. There is a septic drain field in the area where the drums were originally stored.

Section 3 Scope of Activities

3.1 Soil Boring and Monitoring Well Installation

Pursuant to Section IV of the Order, an investigation of soils and ground water was conducted to determine and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil borings and monitoring wells were installed at the North Bone yard (SWMUs No. 2), the Landfill (SWMU No. 8), the Landfill Pond (SWMU No. 9), and the Warehouse Yard (SWMU No. 18).

The soil borings were drilled using hollow-stem auguring (HSA) method or air rotary-ODEX method. All soil borings were drilled to a minimum depth of 10 feet with at least one boring at each of the individual potential source areas drilled to the top of saturation, with the exception of SWMU No. 2 where all soil borings were drilled to the water table. Soil samples were collected continuously and logged by a qualified geologist in accordance with USCS nomenclature. Soil samples were collected using split-spoon samplers.

3.2 Background Information Research

Documents containing the results of previous investigations and subsequent routine ground water monitoring data from monitoring wells were reviewed to facilitate development of the Investigation Work Plan. The previously collected data provides very good information on the overall subsurface conditions, including hydrogeology and contaminant distribution within ground water. The data collected under this scope of services supplements the historical ground water information and provide SWMU-specific information regarding contaminant occurrence and distribution within soils.

3.3 Collection and Management of Investigation Derived Waste

Drill cuttings, excess sample material and decontamination fluids, and all other investigation derived waste (IDW) associated with soil borings was contained and characterized using methods based on the boring location, boring depth, drilling method, and type of contaminants suspected or encountered. All purged ground water and decontamination water was disposed in the refinery wastewater treatment system upstream of the API Separator.

3.4 Surveys

The horizontal coordinates and elevation of each surface sampling location; the surface coordinates and elevation of each boring, the top of each monitoring well casing, and the ground surface at each monitoring well location; and the locations of all other pertinent structures was determined by a registered New Mexico professional land surveyor in accordance with the State Plane Coordinate System (NMSA 1978 47-1-49-56 (Repl. Pamp. 1993)). The surveys were conducted in accordance with Sections 500.1 through 500.12 of the Regulations and Rules of the Board of Registration for Professional Engineers and Surveyors Minimum Standards for Surveying in New Mexico. Horizontal positions were measured to the nearest 0.1-ft, and vertical elevations were measured to the nearest 0.01-ft.

Section 4 Field Investigation Results

This section provides a summary of the procedures used and the results of all field investigation activities conducted at the site including, the dates that investigation activities were conducted, the type and purpose of field investigation activities performed, field screening measurements, logging and sampling results, monitoring well construction details and conditions observed. Field observations or conditions that altered the planned work or may have influenced the results of sampling, testing and logging are reported in this section.

4.1 Surface Conditions

Regionally, the surface topography slopes toward the floodplain of the San Juan River, which runs along the northern boundary of the refinery complex. To the south of the refinery, the drainage is to the northwest. North of the refinery, surface water flows in a southeasterly direction toward the San Juan River. The active portion of the refinery property, where the process units and storage tanks are located, is generally of low relief with an overall northwest gradient of approximately 0.02 ft/ft. The refinery sits on an alluvial floodplain terrace deposit and there is a steep bluff (approx. drop of 90 feet) at the northern boundary of the refinery where the San Juan River intersects the floodplain terrace, which marks the southern boundary of the floodplain.

There are two locally significant arroyos, one immediately east and another immediately west of the refinery, which collect most of the surface water flows in the area, thus significantly reducing surface water flows across the refinery. A minor drainage feature is located on the eastern portion of the refinery, where the Landfill Pond (SWMU No. 9) is located and there are several steep arroyos along the northern refinery boundary that primarily capture only local surface water flows and minor ground water discharges.

The refinery complex is bisected by County Rd #4990 (Sullivan Road), which runs east-west. The process units, storage tanks (crude oil and liquid products), and wastewater treatment systems are located north of the county road. The crude oil and product loading racks, LPG storage tanks and loading racks, maintenance buildings/90-day storage area, pipeline offices, transportation truck shop, and the Class I injection well are located south of the county road. There is very little vegetation throughout these areas with most surfaces composed of concrete,

asphalt, or gravel. The area between the refinery and the San Juan River does have limited vegetation on slopes that are not too steep to support vegetation.

4.2 Exploratory Drilling or Excavation Investigations

The soil borings were drilled using hollow-stem auguring (HSA) method or air rotary-ODEX method. The drilling equipment was decontaminated between each borehole using a high pressure potable water wash. All soil borings were drilled to a minimum depth of 10 feet with at least one boring at each of the individual potential source areas drilled to the top of saturation, with the exception of SWMU No. 2 where all soil borings were drilled to the water table. If there was any indication of contamination based on field screening results at 10 feet or evidence of waste materials or other signs of contamination, then the boring was drilled deeper until no impacts (e.g., presence of waste materials in landfill areas) were observed or to the top of saturation, whichever was achieved first. If contamination was detected at the water table, then the boring was drilled five feet below the water table or to refusal, whichever occurred first.

Soil samples were collected continuously and logged by a qualified geologist. The soil sample descriptions were made in accordance with USCS nomenclature and recorded on the individual field boring logs. As seen on the boring logs the data recorded included the lithologic interval, symbol, percent recovery and a sample description of the cuttings and core samples.

Soil samples were collected using split-spoon samplers. The split-spoon samplers were decontaminated between each use using a potable water rinse, an Alconox wash and then a distilled water rinse. In the event that more than one SWMU was investigated during the day a new batch of wash water and rinse water was prepared prior to decontamination. The decontamination water was collected in buckets and placed in open top 55-gallon drums, which were sealed at the end of each work day. Each drum was labeled. Soil cuttings were also placed in open top 55-gallon drums and were sealed when not in use.

Soil borings completed as permanent monitoring wells were drilled to the top of bedrock (Nacimiento Formation). The completion depths range from 20 to 41.5 feet. Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 10 to 15 feet to ensure that the entire saturated zone is open to the well. Rigid PVC with threads was utilized for the well casing and no glues/solvents were utilized. A 10/20 sand filter pack was installed to a minimum of two feet over the top of the well screen. A six-inch sand bed was also installed at

the base of the monitor well. Pursuant to Section IX.C. of the Order, a minimum of two feet of bentonite seal was placed over the filter pack and hydrated. An annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours before surface pad and protective casing were installed.

The surface completion for each ground water monitoring well consisted of a protective aluminum enclosure with cap that was secured in a concrete pad measuring 4-feet by 4-feet wide by 6-inches thick. The concrete pad was wire reinforced and included a one-inch diameter bolt placed on the north side of the pad to serve as a point for surveying pad elevation. The aluminum protective casing extended 4 feet above the top surface of the concrete pad.

Four-inch diameter steel bollards were installed six-inches from each corner of the concrete pad. The bollards were installed two feet below grade and extended three feet above grade. The bollards were installed vertically level and extend the same height. The holes for the bollards were dug by hand with the diameter of the borehole measured a minimum of 6-inches. Each bollard was cemented into the ground with the cement extending from the bottom of the hole to the surface. The bollard was filled with cement. Each bollard was pretreated to remove rust, primed, and painted with two coats of safety-yellow paint.

4.3 Subsurface Conditions

Numerous soil borings and monitoring wells have been completed across the refinery property during previous site investigations and installation of the slurry wall, which runs along the northern and western refinery boundary. Twenty seven soil borings, five of which were completed as permanent monitoring wells, were completed under this scope of work for SWMU Group No. 2. Based on the available site-specific and regional subsurface information, the site is underlain by the Quaternary Jackson Lake terrace deposits, which unconformably overlie the Tertiary Nacimiento Formation. The Jackson Lake deposits consist of fine grained sand, silt and clay that grades to coarse sand, gravel and cobble size material closer to the contact with the Nacimiento Formation. The Jackson Lake Formation is over 40 feet near thick near the southeast portion of the site and generally thins to the northwest toward the San Juan River. The Nacimiento Formation is primarily composed of fine grained materials (e.g., carbonaceous mudstone/claystone with interbedded sandstones) with a reported local thickness of approximately 570 feet (Groundwater Technology, 1994).

Figures 3 and 4 present cross-sections of the shallow subsurface based on borings logs from on-site monitoring well completions.

One underground pipeline is present in the area included in the SWMU Group No. 2 investigation. This wastewater line runs beneath SWMU No. 8 (Inactive Landfill) as shown on Figure 6 and does not appear to have had any impacted on contaminant migration.

4.4 Monitoring Well Construction, Boring, or Excavation Abandonment

This section describes the methods and details of monitoring well construction and abandonment of exploratory borings. The description includes the dates of well construction and boring abandonment.

SWMU No. 2 Drum Storage Area North Bone Yard

As previously discussed in Section 3.1 all nine soil borings at SWMU No. 2 were initially drilled to a depth of 10 feet. There no were indications of contamination based on the field screening results at 10 feet nor was there any evidence of waste materials or other signs of contamination. Seven of the nine borings were then drilled to the water table. Temporary wells were installed in the seven borings and ground water samples and water quality data was collected.

Temporary wells were installed at locations SWMU 2-1, SWMU 2-2, and SWMU 2-3 on September 29, 2008 with the well screen extending from 15' to 20', 13' to 18', and 13 to 18' bgl, respectively. On September 30, 2008 temporary wells SWMU 2-4, SWMU 2-6, and SWMU 2-7 were completed with well screens set at 14' to 19', 13' to 18', and 13 to 18' bgl, respectively. A temporary well was installed at SWMU 2-8 on October 1, 2008, with the screen set from 13' to 18' bgl.

On October 1, 2008 the drilling rig was set up on location SWMU 2-9/MW-51 and drilling and sampling was continued to a depth of 20 feet bgl. There were no indications of contamination based on the field screening results nor were there any visual or olfactory evidence of contamination in 10 to 20 foot interval. Since saturation was encountered at 14 feet bgl a soil sample was collected from the interval 13.5 to 14 feet bgl. As seen on the well construction log the Nacimiento Formation was encountered at 18 feet bgl. A recommendation was made to the NMED and approved on October 1, 2008 to modify the screened interval to 8 to 18 feet bgl, using a screen length of 10 feet instead of 15 feet as provided for in the Investigation Work Plan. The shorter screen length allowed for adequate coverage of the vadose zone while

reducing the potential for surface infiltration into the wellbore, which could have been more likely if the screen extended to three feet bgl.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 10 feet (8 to 18 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. No glues or solvents were utilized. A six-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to two feet over the top of the well screen. As the sand was installed in the wellbore the hollow stem augers were removed. Pursuant to Section IX.C. of the Order, a minimum of two feet of bentonite seal was placed over the filter pack and hydrated. An annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours before surface pad and protective casing were installed. Soil cuttings were placed in open-top 55 gallon drums and were sealed when not in use.

On October 15, 2008 the drilling rig was set up on location SWMU 2-5/MW-50 and drilling and sampling was continued to a depth of 20 feet bgl using the air rotary/ODEX drilling method. There were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in 10 to 20 foot interval. Since saturation was encountered at 14 feet bgl a soil sample was collected from the interval 13 to 14 feet bgl. As seen on the well construction log the Nacimiento Formation was encountered at 18 feet below ground surface. A recommendation was made to the NMED and approved on October 1, 2008 to modify the screen to 8 to 18 feet bgl.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 10 feet (8 to 18 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. No glues or solvents were utilized. A six-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to 3.25 feet over the top of the well screen. As the sand was installed in the wellbore the hollow stem augers were removed. Pursuant to Section IX.C. of the Order, a minimum of two feet of bentonite seal was placed over the filter pack and hydrated. An annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours before surface pad and protective casing were installed. Soil cuttings were placed in open top 55-gallon drums and were sealed when not in use.

Copies of the well construction logs are located in Appendix B.

SWMU No. 8 Landfill

All soil borings were advanced to a minimum depth of 10 feet in accordance with the Site Investigation Work Plan (Figure 6). There no were indications of contamination based on the field screening results at 10 feet nor were there any evidence of waste materials or other signs of contamination. Ten of the 12 borings were terminated at the preplanned depth of 10 feet.

As directed by NMED, two soil borings (SWMU 8-6A and SWMU 8-12) were drilled to the water table and were subsequently converted to monitor wells (MW-52 and MW-53). Upon completing the sampling and logging of the top 10 feet in the 12 soil borings the drilling rig was mobilized to location SWMU 8-6 to continue sampling and logging beyond 10 feet in depth. A water line was nicked by the drilling augers. The drilling, sampling and logging was stopped for the day. The water line was isolated and repaired, and the monitor well location (SWMU 8-6A) was moved approximately 40 feet due west.

On September 24, 2008 the CME 75 drilling rig was mobilized to location SWMU 8-12. Using HSA drilling method the boring was sampled, screened and logged as described in Section 4.2. At a depth of 39 feet the drilling became difficult. The augers were tripped out of the borehole and were found to be missing cutting teeth. In addition, the blades on the flight augers were severely damaged due to the large cobbles in the formation. A new auger was installed and the drilling commenced. The borehole was drilled to a depth of 41.5 feet prior to ending the day. As seen on the well construction log the Nacimiento Formation was encountered at 38.5 feet bgl. A soil sample was collected from the depth of 37 to 38.5 feet. There were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in the interval from 10 to 41.5 feet below ground surface.

The driller recommended that the drilling method should be changed to air rotary-ODEX method. When drilling with the air rotary/ODEX equipment a bit is advanced below casing. The bit consists of "reamer wings" that expand outward during drilling to drill a hole that is larger than the casing outer diameter. When the desired drilling depth is acquired, the bit is rotated backwards and the wings retract allowing the reamer to swing into a retracting position. The drill bit can be retracted through the remaining casing leaving it intact within the borehole. Using this method allows for the collection soil samples as the casing is advanced.

On September 25, 2008 Western Refining requested from NMED a change in the planned location for SWMU 8-6 and also a change in drilling methodology. The changes were granted on September 25, 2008 and a copy of the related correspondence is included in Appendix E.

Since the ODEX drilling equipment would have to be transported to the site the decision was made to continue drilling and sampling at other SWMUs using the HSA method until the equipment arrived.

On September 28, 2008 the borehole for SWMU 8-12 was re-entered. During the drilling process the threads from the blow tube sheared off in the ODEX sub, twice. The parts were required to be transported off site to a machine shop to be repaired. Since the ODEX drilling equipment was inoperable the decision was made to continue drilling and sampling at other SWMUs using the HSA method until the equipment was repaired.

On October 13, 2008 the borehole for SWMU 8-12/MW-53 was re-entered. The borehole was drilled to a depth of 41 feet. Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (25 to 40 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. No glues or solvents were utilized. A six-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed to two feet over the top of the well screen. As the sand was installed in the wellbore the outer casing of the ODEX drilling system was removed. Pursuant to Section IX.C. of the Order, a minimum of two feet of bentonite seal was placed over the filter pack and hydrated. An annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours before surface pad and protective casing were installed. Soil cuttings were placed in open top 55-gallon drums and were sealed when not in use.

On October 13, 2008 the borehole for SWMU 8-6A/MW-52 was re-entered. The original location, SWMU 8-6, was abandoned after a water line was struck. With NMED approval the new location was moved 42 feet to the west. Using HSA drilling methods and split spoon samplers the borehole was drilled to a depth of 10 feet prior to shutting down for the end of the day.

On October 14, 2008 the drilling and sampling continued at SWMU 8-6A/MW-52 using HSA drilling methods and split spoon sampling. Saturation was encountered at 34 feet bgl. A soil

sample was collected from the interval 33 to 34 feet bgl. The augers were then tripped out of the borehole and the air rotary/ODEX drilling system was then tripped back into the borehole. Drilling and sampling continued with the air/rotary ODEX drilling system. The borehole was drilled to a depth of 39 feet bgl and sampled to a depth of 41 feet bgl. There were no indications of contamination based on the field screening results nor were there any visual or olfactory evidence of contamination in the interval from 0 to 41 feet bgl.

Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (23 to 38 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. No glues or solvents were utilized. A six-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was installed approximately three feet over the top of the well screen. As the sand was installed in the wellbore the outer casing of the ODEX drilling system was removed. Pursuant to Section IX.C. of the Order, a minimum of two feet of bentonite seal was placed over the filter pack and hydrated. An annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a minimum of 24 hours before surface pad and protective casing were installed. Soil cuttings were placed in open top 55-gallon drums and were sealed when not in use.

Copies of the well construction logs are located in Appendix B.

SWMU No. 9 landfill pond

On September 28, 2008 the drilling rig was mobilized to the SWMU No. 9 area (Figure 6). Using the HSA drilling method and split spoon samplers the borehole (SWMU 9-1) was advanced to a depth of 17 feet bgl, two feet below the top of Nacimiento Formation. The boring was converted to a temporary monitoring well with the screen set at 12 to 17 feet bgl. A ground water sample was collected and the boring was plugged with grout.

A copy of the field boring log is located in Appendix B.

SWMU No. 18 Warehouse Yard

On September 26, 2008, four soil borings were advanced to a depth of 10 feet (Figure 9). Since there no were indications of contamination based on the field screening results at 10 feet bgl, three of the four borings were terminated at the preplanned depth of 10 feet. The borings were

plugged using grout pumped under pressure through a tremie pipe with a concrete plug placed at the surface.

On October 15, 2008 the drilling and sampling continued at SWMU 18-2 using HSA drilling methods and split spoon sampling. Soil boring SWMU 18-2 was drilled to the water table and was subsequently converted to a monitor well (MW-54). Saturation was encountered at 30 feet bgl. A soil sample was collected from the interval immediately above saturation, 28 to 29 feet bgl. An additional soil sample was collected from the 18 to 20 foot interval due to the appearance of black discoloration and odor in the soil. Elevated PID readings were also observed from 18 to 30 feet bgl. A significant reading of 400 ppm was observed in the interval from 28 to 30 feet bgl, which corresponded to the occurrence of saturation. A component on the rig failed and the drilling ceased for the day.

The rig was repaired and the hole was re-entered on October 16, 2008. The sampling and drilling continued to a depth of 38 feet bgl. The Nacimiento Formation was encountered at 36 feet bgl. While the hollow stem augers were being tripped out of the borehole the lead auger became unattached and was lost in the borehole. Efforts to retrieve the lead auger were futile so the borehole was abandoned. A new location was chosen within five feet of the original boring and drilling resumed using the air rotary/ODEX drilling system. During the drilling of the borehole the bottom collar on the casing became dislodged and allowed large cobbles to become wedged between the drill stem and the casing. The cobbles were removed and drilling and sampling ceased for the day.

On October 17, 2008 drilling continued and total depth was reached at 38 feet bgl. Slotted (0.01 inch) rigid PVC well screen was placed at the bottom of the well and extended for 15 feet (22 to 37 feet) to ensure that the entire saturated zone was open to the well. Rigid Schedule 40 PVC with threads was utilized for the well casing. No glues or solvents were utilized. A six-inch sand bed was placed at the bottom of the well bore. The 10/20 sand filter pack was partially installed due to a shortage of filter pack sand. The casing was left in the well bore and the remaining filter pack sand was installed on October 20, 2008 with approximately 4.25 feet of sand installed over the top of the well screen. As the sand was installed in the wellbore the outer casing of the ODEX drilling system was removed. Pursuant to Section IX.C. of the Order, a minimum of two feet of bentonite seal was placed over the filter pack and hydrated. An annular grout was pumped by tremie method to within two feet of the ground surface and allowed to cure for a

minimum of 24 hours before surface pad and protective casing were installed. Soil cuttings were placed in open top 55-gallon drums and were sealed when not in use.

Copies of the well construction logs are located in Appendix B.

4.5 Ground Water Conditions

The uppermost aquifer is under water table conditions and occurs within the sand and gravel deposits of the Jackson Lake Formation. The Nacimiento Formation functions as an aquitard at the site and prevents site related contaminants from migrating to deeper aquifers. The potentiometric surface as measured in August 2008 is presented in Figure 10 and shows the ground water flowing to the northwest, toward the San Juan River. The potentiometric surface at the site is consistent with the regional gradient in that movement is toward to the San Juan River, which is a location of regional ground water discharge.

The depth to water in the area of the Group No. 2 SWMUs varies from approximately 35 feet near SWMU No. 8 (Inactive Landfill) to only 15 feet at SWMU No. 2 (Drum Storage Area North Bone Yard). No separate phase hydrocarbon (SPH) was measured in any of the new wells installed during this investigation and based on historical data only SWMU No. 18 (Warehouse yard) is located in an area that had SPH present in the past.

The saturated thickness in the water table aquifer varies from zero feet in the southern portion of the site to a maximum of approximately eight feet along the northern portion of the refinery (Figure 11). The areas with the greatest saturated thickness are found near and along the Hammond Ditch and on-site surface impoundments (i.e., the current and former Raw Water Ponds). The predominant source of recharge to the shallow aquifer beneath the refinery is recharge from man-made features (e.g., the Hammond Ditch and on-site surface impoundments).

4.6 Surface Water Conditions

The only local surface water body, excluding on-site surface impounds and the Hammond Irrigation Ditch, is the San Juan River, which flows along the northern most property boundary. There were no accumulations of surface water observed during the site investigation or conditions likely to result in the future accumulation of surface water. Regionally, the surface topography slopes toward the floodplain of the San Juan River, and across most of the refinery and to the south of the refinery, the drainage is to the northwest. The active portion of the refinery property, where the process units and storage tanks are located, is generally of low

relief with an overall northwest gradient of approximately 0.02 ft/ft. There is a steep bluff (approx. drop of 90 feet) at the northern boundary of the refinery where the San Juan River intersects the floodplain terrace, which marks the southern boundary of the floodplain.

There are two locally significant arroyos, one immediately east and another immediately west of the refinery, which collect most of the surface water flows in the area, thus significantly reducing surface water flows across the refinery. A minor drainage feature is located on the eastern portion of the refinery, where the Landfill Pond (SWMU No. 9) is located and there are several steep arroyos along the northern refinery boundary that primarily capture only local surface water flows.

The average annual rainfall is only approximately 7.5 inches, thus the threat of surface water transport of contaminants as suspended load or dissolved phase is low. Further, the refinery implements a Stormwater Pollution Prevention Plan to ensure that surface waters of the State are not impacted by refinery operations.

Section 5 Regulatory Criteria

The applicable screening and cleanup levels are specified in Section VII of the Order issued by NMED on July 2, 2007. The soil cleanup levels are based on a target excess cancer risk of 10^{-5} . for carcinogenic contaminants and a target hazard index of 1.0 for noncarcinogenic contaminants. The Order specifies a hierarchy of screening levels, with the screening levels based on NMED guidance taking precedence over EPA's Region VI Human Health Medium Specific Screening Levels. NMED guidance used to establish cleanup levels includes the Technical Background Document for Development of Soil Screening Levels and Total Petroleum Hydrocarbon (TPH) Screening Guidelines. For non-residential properties (e.g., the Bloomfield Refinery), the soil screening levels must be protective of commercial/industrial workers throughout the upper two feet of surface soils and construction workers throughout the upper ten feet. In addition, soils must be protective of the underlying ground water. Table 6 provides a list of the available NMED and EPA soil screening levels for commercial/industrial properties. The lowest applicable screening level is bolded. For some constituents, such as benzo(b)fluoranthene, there is more than one "lowest" applicable screening level. In this example, the screening level for industrial workers is the lowest NMED screening level but since it only applies to the upper two feet, the soil screening level for protection of ground water is also applicable and it applies to all soils below two feet. These soil screening levels are also listed in Tables 8 - 10 with their applicable depths and in addition, the residential soil screening level for direct contact is listed. Some of the constituents reported by the laboratory did not have screening levels but were all non-detect except 4-isopropyltoluene. This constituent is not classified as a carcinogen.

The ground water cleanup levels are based on New Mexico WQCC standards (20.6.2.7 WW NMAC, 20.6.2.3103, and 20.6.2.4103) unless there is a federal maximum contaminant level (MCL), in which case the lower of the two values is selected as the cleanup level. If neither a WCQQ standard nor an MCL is available, then the cleanup level is based on an EPA Region VI Human Health Medium Specific Screening Level. Table 7 presents the ground water cleanup levels, with the applicable cleanup level highlighted. In a few instances, there were no screening levels specified in any of the above sources but a "tap water" concentration, which was included in the NMED *Technical Background Document for Development of Soil Screening Levels*, was selected as the screening level.

Section 6 Site Contamination

This section provides a description of sampling intervals and methods for detection of surface and subsurface contamination in soils and ground water.

6.1 Soil and Sediment Sampling

The soil borings were drilled using hollow-stem auguring (HSA) method or air rotary-ODEX method. The drilling equipment was decontaminated between each borehole using a high pressure potable water wash. The decontamination water was collected on a mobile decon trailer and was subsequently placed in open top 55-gallon drums, which were sealed at the end of each work day.

Soil samples were collected using split-spoon samplers. The split-spoon samplers were decontaminated between each use using a potable water rinse, an Alconox wash and then a distilled water rinse. In the event that more than one SWMU was investigated during the day a new batch of wash water and rinse would be created prior to decontamination. The decontamination water was collected in buckets and placed in open top 55-gallon drums, which were sealed at the end of each work day. Each drum was labeled. Soil cuttings were also placed in open top 55-gallon drums and were sealed when not in use.

Soil samples were collected continuously and logged by a qualified geologist. The soil sample descriptions were made in accordance with USCS nomenclature and recorded on the individual field boring logs. As seen on the boring logs the data recorded included the lithologic interval, symbol, percent recovery, and a sample description of the cuttings and core samples.

Known site features and/or site survey grid markers were used as references to locate each boring prior to surveying the location. The boring locations were measured to the nearest foot, and locations were placed on a scaled map. In addition, a hand held GPS receiver was used to record the coordinates of each soil boring. These coordinates were recorded on the boring logs. The soil boring locations were subsequently surveyed by a registered surveyor.

Samples obtained from the borings were screened in the field on 2 foot intervals for evidence of contaminants. Field screening results were recorded on the soil boring logs. Field screening results were used to aid in the selection of soil samples for laboratory analysis. The primary

screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds.

Visual screening included examining the soil samples for evidence of staining caused by petroleum-related compounds or other substances that may have caused staining of natural soils such as elemental sulfur or cyanide compounds. Headspace vapor screening was conducted and involved placing a soil sample in a plastic sealable bag allowing space for ambient air. The bag was sealed, labeled and then shaken gently to expose the soil to the air trapped in the container. The sealed bag was allowed to rest for a minimum of 5 minutes while the vapors equilibrated. Vapors present within the sample bag's headspace were then measured by inserting the probe of a MiniRae 2000 in a small opening in the bag. The maximum value and the ambient air temperature were recorded on the field boring log for each sample. The screening results are presented in Table 11. The MiniRae 2000 was calibrated to 100 ppm isoButylene each day to the manufacturer's standard for instrument operation. Field screening results and any conditions that were considered to be capable of influencing the results of the field screening were recorded on the field logs.

6.1.1 SWMU No. 2 Drum Storage Area North Bone Yard

At SWMU No. 2 the following soil boring plan was completed during the field activities;

- Soil borings SWMU 2-1 and SWMU 2-2 were installed within an area used for storage of empty drums;
- Soil borings SWMU 2-3 through SWMU 2-5 were installed beneath the area where drums were formerly stored. Soil boring SWMU 2-5 was subsequently completed as monitor well MW-50;
- Soil borings SWMU 2-6 through SWMU 2-8 were installed at the area used for scrap metal storage; and
- At the direction of NMED, an additional soil boring was installed at the far western end of the North Bone Yard. This soil boring, SWMU 2-9, was completed as permanent monitor well, MW-51.

All soil borings at SWMU No. 2 were drilled to the water table (Figure 5). There were no visible indications of releases at the surface during the field activities. The soil borings were installed in the locations indicated in the work plan.

On September 25, 2008 discrete soil samples were collected from all nine soil boring locations at SWMU No. 2 for laboratory analyses from 0 to 0.5 feet below ground level (bgl) and 1.5 to 2 feet bgl. The samples were collected using HSA drilling methods and split spoon samplers. All borings were advanced to a depth of 10 feet bgl. There were no indications of contamination based on the field screening results nor were there any visual or olfactory evidence of contamination in 0 to 10 foot interval in any of the nine soil borings. Soil cuttings were placed in open top 55-gallon drums and were sealed when not in use.

On September 29, 2008 the drilling rig was mobilized back to the SWMU No. 2 area. The rig was set up on location SWMU 2-1 and continued drilling and sampling to a depth of 20 feet bgl. There were no indications of contamination based on the field screening results nor were there any visual or olfactory evidence of contamination in 10 to 20 foot interval. Since saturation was encountered at 15.5 feet bgl a soil sample was collected from the interval 15 to 15.5 feet bgl. Soil cuttings were placed in open top 55-gallon drums and labeled. Development water and decontamination water were placed in open top 55-gallon drums and labeled.

The drilling rig was moved to location SWMU 2-2 and continued drilling and sampling to a depth of 18 feet bgl. There were no indications of contamination based on the field screening results nor were there any visual or olfactory evidence of contamination in 10 to 18 foot interval. Since saturation was encountered at 15 feet bgl a soil sample was collected from the interval 14.5 to 15 feet bgl. Soil cuttings were placed in open top 55-gallon drums and labeled. Development water and decontamination water were placed in open top 55-gallon drums and labeled.

The drilling rig was moved to location SWMU 2-3 and continued drilling and sampling to a depth of 18 feet bgl. There were no indications of contamination based on the field screening results nor were there any visual or olfactory evidence of contamination in 10 to 18 foot interval. Since saturation was encountered at 14 feet bgl a soil sample was collected from the interval 13.5 to 14 feet bgl. Soil cuttings were placed in open top 55-gallon drums and labeled. Development water and decontamination water were placed in open top 55-gallon drums and labeled.

On September 30, 2008 the drilling rig was mobilized to the SWMU No. 2 area. The rig was set up on location SWMU 2-4 and drilling and sampling was continued to a depth of 19 feet bgl. There were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in 10 to 19 foot interval. Since saturation was

encountered at 14.5 feet bgl a soil sample was collected from the interval 14 to 14.5 feet bgl. A duplicate soil sample was also collected from this interval. Soil cuttings were placed in open top 55-gallon drums and labeled. Development water and decontamination water were placed in open top 55-gallon drums and labeled.

The drilling rig was set up on location SWMU 2-6 and drilling and sampling was conducted to a depth of 18 feet bgl. There were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in 10 to 18 foot interval. Since saturation was encountered at 14 feet bgl a soil sample was collected from the interval 13.5 to 14 feet bgl. Soil cuttings were placed in open top 55-gallon drums and labeled. Development water and decontamination water were placed in open top 55-gallon drums and labeled.

The drilling rig was set up on location SWMU 2-7 and drilling and sampling continued to a depth of 18 feet bgl. There were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in 10 to 18 foot interval. Since saturation was encountered at 14 feet bgl a soil sample was collected from the interval 13.5 to 14 feet bgl. Soil cuttings were placed in open top 55-gallon drums and labeled. Development water and decontamination water were placed in open top 55-gallon drums and labeled.

On October 1, 2008 the drilling rig was mobilized back to the SWMU No. 2 area. The drilling rig was set up on location SWMU 2-8 and drilling and sampling continued to a depth of 18 feet bgl. There were no indications of contamination based on the field screening results nor were there any visual or olfactory evidence of contamination in 10 to 18 foot interval. Since saturation was encountered at 13.5 feet bgl a soil sample was collected from the interval 13 to 13.5 feet bgl. Soil cuttings were placed in open top 55-gallon drums and labeled. Development water and decontamination water were placed in open top 55-gallon drums and labeled.

On October 1, 2008 the drilling rig was set up on location SWMU 2-9/MW-51 and drilling and sampling continued to a depth of 20 feet bgl. There were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in 10 to 20 foot interval. Since saturation was encountered at 14 feet bgl a soil sample was collected from the interval 13.5 to 14 feet bgl. Soil cuttings were placed in open-top 55 gallon drums and were sealed when not in use.

On October 15, 2008 the drilling rig was set up on location SWMU 2-5/MW-50 and drilling and sampling was completed to a depth of 20 feet bgl using the air rotary/ODEX drilling method. There were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in 10 to 20 foot interval. Since saturation was encountered at 14 feet bgl a soil sample was collected from the interval 13 to 14 feet bgl. Soil cuttings were placed in open top 55-gallon drums and were sealed when not in use.

Copies of the field boring logs are located in Appendix B.

6.1.2 SWMU No. 8 Landfill

At SWMU No. 8 the following 11 borings were advanced to a depth of 10 feet (Figure 6):

- SWMU 8-1;
- SWMU 8-2;
- SWMU 8-3
- SWMU 8-4;
- SWMU 8-5;
- SWMU 8-6;
- SWMU 8-7;
- SWMU 8-8;
- SWMU 8-9;
- SWMU 8-10; and
- SWMU 8-11;

As directed by NMED, two soil borings (SWMU 8-6A and SWMU 8-12) were drilled to the water table and were subsequently converted to monitor wells (MW-52 and MW-53). The discussion for the installation of these soil borings/wells can be found in Section 4.4.

On September 23, 2008 discrete soil samples were collected from all soil boring locations at SWMU 8 except SWMU 8-6A for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl. A portion of the sample interval was placed in pre-cleaned, laboratory-prepared sample containers for laboratory chemical analysis. The use of an Encore® Sampler or other similar device was used during collection of soil samples for VOC analysis. Since there were no indications of contamination based on the field screening results at 10 feet nor was there any evidence of waste materials or other signs of contamination, these borings were terminated at the preplanned depth of 10 feet.

On September 24, 2008 a soil sample was collected from the depth of 37 to 38.5 feet in SWMU 8-12. There were no indications of contamination based on the field screening results nor were

there any visual or olfactory evidence of contamination in the interval from 10 to 41.5 feet below ground surface.

On October 14, 2008 a soil sample was collected from the interval 33 to 34 feet bgl in SWMU 8-6A. There were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in the interval from 0 to 41 feet bgl.

Copies of the field boring logs and monitor well construction logs are located in Appendix B.

6.1.3 SWMU No. 9 Landfill Pond

On September 28, 2008 the drilling rig was mobilized to the SWMU No. 9 area (Figure 6). The drilling rig was set up on location SWMU 9-1. Using the HSA drilling method and split spoon samplers the borehole was advanced to a depth of 17 feet bgl. As seen on the soil boring log the Nacimiento Formation was encountered at 15 feet bgl. Soil samples were collected at 0 to 0.5 feet and 1.5 to 2 feet bgl. In the interval from 3.5 to 7 feet trace clumps of sulfur and a fine-grained red material were observed in the core. A soil sample was collected from the 5 to 7.5 foot interval. Since saturation was encountered at 15 feet bgl a soil sample was collected from the interval 14.5 to 15 feet bgl.

A copy of the field boring log is located in Appendix B.

6.1.4 SWMU No. 18 Warehouse Yard

On September 26, 2008 discrete soil samples were collected from the four soil boring locations at SWMU No. 18 for laboratory analyses from 0 to 0.5 feet bgl and 1.5 to 2 feet bgl (Figure 9). All borings were advanced to a depth of 10 feet bgl. At the locations for SWMU 18-1 and SWMU 18-4 there were no indications of contamination based on the field screening results nor was there any visual or olfactory evidence of contamination in 0 to 10 foot interval. At the location for SWMU 18-2 there were visual observations of black staining in the upper six inches of the core. At the location for SWMU18-3 there were visual observations of black staining/coating on gravel in the 2 to 4 foot interval. A lower soil sample was collected from 7.5 to 9 feet bgl in this boring. There were no significant odors associated with the black staining/coating nor were there any elevated PID readings observed in either SWMU 18-2 or SWMU 18-3. Soil cuttings were placed in open top 55-gallon drums and labeled.

As directed by NMED, one soil boring (SWMU 18-2) was drilled to the water table and was subsequently converted to a monitor well (MW-54). On October 15, 2008 the drilling and sampling continued at SWMU 18-2 using HSA drilling methods and split spoon sampling. Saturation was encountered at 29 feet bgl. A soil sample was collected from the interval immediately above saturation, 28 to 29 feet bgl. An additional soil sample was collected from the soil. Elevated PID readings were also observed from 18 to 30 feet bgl. A significant reading of 400 ppm was observed in the interval from 28 to 30 feet bgl, which corresponded to the occurrence of saturation.

Copies of the field boring logs and well construction logs are located in Appendix B.

6.2 Soil Sample Field Screening Results

Headspace vapor screening was conducted, which involved placing a soil sample in a plastic sealable bag allowing space for ambient air. The bag was sealed, labeled and then shaken gently to expose the soil to the air trapped in the container. The sealed bag was allowed to rest for a minimum of 5 minutes while the vapors equilibrated. Vapors present within the sample bag's headspace were then measured by inserting the probe of an organic vapor analyzer (OVA) (i.e., MiniRae 2000) in a small opening in the bag. The maximum value and the ambient air temperature were recorded on the field boring log for each sample. The MiniRae 2000 was calibrated to 100 ppm isoButylene each day to the manufacturer's standard for instrument operation. Field screening results and any conditions that were considered to be capable of influencing the results of the field screening were recorded on the field logs. A summary of the results is located in Table 11.

6.2.1 SWMU No. 2 Drum Storage Area North Bone Yard

No elevated PID readings were observed during the investigation of the SWMU No. 2. No conditions encountered during the field activities are considered to be capable of influencing the results of the field screening.

6.2.2 SWMU No. 8 Landfill

No elevated PID readings were observed during the investigation of the SWMU No. 8. No conditions observed during the field activities are considered to be capable of influencing the results of the field screening.

6.2.3 SWMU No. 9 Landfill Pond

No elevated PID readings were observed during the investigation of the SWMU No. 9. No conditions that occurred during the field activities are considered to be capable of influencing the results of the field screening.

6.2.4 SWMU No. 18 Warehouse Yard

At the location for boring SWMU 18-2 there were visual observations of black staining in the upper six inches of the core. There were no significant odors associated with the black staining/coating nor were there any elevated PID readings. Soil boring SWMU 18-2 was drilled to the water table and was subsequently converted to a monitor well (MW-54). Saturation was encountered at 29 feet bgl. A soil sample was collected from the interval immediately above saturation, 28 to 29 feet bgl. An additional soil sample was collected from the 18 to 20 foot interval due to the appearance of black discoloration and odor in the soil. Elevated PID readings were observed from 18 to 30 feet bgl. A significant reading of 400 ppm was observed in the interval from 28 to 30 feet bgl, which corresponded to the occurrence of saturation.

At the location for boring SWMU18-3 there were visual observations of black staining/coating on gravel in the 2 to 4 foot interval. A lower soil sample was collected from 7.5 to 9 feet bgl in this boring. There were no significant odors associated with the black staining/coating nor were there any elevated PID readings observed at SWMU 18-3.

6.3 Soil Sampling Chemical Analytical Results

Soil samples were analyzed by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico using the following methods for organic constituents:

- SW-846 Method 8260 volatile organic compounds;
- SW-846 Method 8270 semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline, diesel, and motor oil range petroleum hydrocarbons.

In addition, soil samples were analyzed for the following metals using the indicated analytical methods.

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020

Analyte	Analytical Method
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

The soil analytical results are presented in Table 8 (SWMU No. 2), Table 9 (SWMU No. 8) and Table 10 (SWMUs No. 9 and 18) for the individual SWMUs that were investigated during this field effort. There were no conditions observed during the sample collection efforts that are thought to have had any impact on the analytical results. The site cleanup levels, as described in Section 5 are included in each table to facilitate a comparison between the reported concentrations and the applicable cleanup levels. Concentrations that exceed the applicable cleanup levels are bolded.

There are five constituents (mercury, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, and motor oil range organics) with concentrations that exceed their cleanup levels and the maximum reported concentrations are generally not more than an order of magnitude above the cleanup level with the exception of 1-methylnaphthalene. Maps showing the distribution of detected concentrations are included as Figures 5 - 9 for each constituent that has reported concentrations exceeding the applicable cleanup level.

6.4 Ground Water Sampling

Ground water samples were collected from both temporary wells and permanent monitoring wells as described below. During the investigation of SWMU No. 2, all of the soil borings were drilled

through the shallow aquifer, to the top of the Nacimiento Formation. Temporary wells were installed and ground water samples collected at locations SWMU 2-1, SWMU 2-2, and SWMU 2-3 on September 29, 2008 with the well screens extending from 15' to 20', 13' to 18', and 13 to 18' bgl, respectively. On September 30, 2008 temporary wells SWMU 2-4, SWMU 2-6, and SWMU 2-7 were completed with well screens set at 14' to 19', 13' to 18', and 13 to 18' bgl, respectively and ground water samples were collected. A temporary well was installed and ground water samples collected at SWMU 2-8 on October 1, 2008, with the screen set from 13' to 18' bgl. A temporary well was also installed at location SWMU 9-1 on September 28, 2008 with the screen set from 2' to 17' bgl. A ground water sample was collected on the same date.

Two rounds of ground water samples were collected from the permanent monitoring wells. The permanent wells installed for the Group No. 2 SWMUs include MW-50 (SWMU 2-5), MW-51 (SWMU 2-9), MW-52 (SWMU 8-6A), MW-53 (SWMU 8-12), and MW-54 (SWMU 18-2). The first round of samples were collected at the end of the initial well installation field effort on October 28, 2008 and the second (confirmation) round of samples were collected on January 8, 2009. The water samples from the permanent wells were collected using a dedicated bailer. A map showing the ground water sampling locations is included as Figure 12.

6.5 General Ground Water Chemistry

The measurement of field purging parameters included measurement of ground water pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, and temperature. A minimum of three well volumes were removed from each permanent monitoring well prior to sample collection. There were no conditions encountered during sample collection that affected field screening results. The results of the measurements are included in Table 12 and fluid levels are presented in Table 13.

6.6 Ground Water Chemical Analytical Results

The ground water samples were analyzed for organic constituents by the following methods:

- SW-846 Method 8260 volatile organic compounds;
- SW-846 Method 8270 semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline, diesel, and motor oil range organics.

Ground water samples were analyzed for the following metals using the indicated analytical methods.

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.3/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020

In addition, ground water samples were analyzed for the following general chemistry parameters.

Analyte	Analytical Method
Bicarbonate	SW-846 method 310.1
Chloride	EPA method 300.0
Sulfate	EPA method 300.0
Calcium	SW-846 method 7140
Magnesium	SW-846 method 7450
Sodium	SW-846 method 7770
Potassium	SW-846 method 7610
Manganese	SW-846 method 6010/6020
Nitrate/nitrite	EPA method 300.0
Ferric/ferrous Iron	SW-846 method 6010/6020

The ground water analyses were completed as approved in the site investigation work plan with only a couple of exceptions. Separate analyses of nitrate and nitrite were completed for water samples collected from MW-51 and MW-52; however, a total result for nitrate plus nitrite was

reported for MW-50, MW-53 and MW-54. The work plan listed analyses for ferric/ferrous iron but the lab only reported total iron. Most of the total iron results are very low or non-detect with the exception of MW-54, which is located within the drainage field of the on-site septic system.

There were no field conditions observed during sample collection that should have affected the analytical results. The analytical results and the applicable cleanup levels are presented in Table 14. The individual results that exceed the applicable cleanup levels are bolded. The results for the associated QA/QC samples are provided in Appendix F. Based on a review of the analytical results, manganese is the only widespread constituent that has concentrations exceeding the cleanup level and an isoconcentration map has been included as Figure 13. 1,2,4-trimethlybenzene, 1-methylnaphthalene, benzene, methyl tert-butyl ether (MTBE), naphthalene, and diesel range organics were detected at concentrations above the screening level at MW-54 but were not detected in ground water at other SWMUs. Some metals (e.g., arsenic, barium and lead) were detected at generally low concentrations that exceed the screening levels.

6.7 Air and Subsurface Vapor Sampling/Field Screening Results

No subsurface vapor samples were collected other than field screening soil samples with an OVA for the purpose of identifying samples for laboratory analysis, which is discussed in Section 6.2.

Section 7 Conclusions and Recommendations

An investigation of soils and ground water was conducted at the Drum Storage Area North Bone Yard (SWMU No. 2), the Landfill (SWMU No. 8), the Landfill Pond (SWMU No. 9), and the Warehouse Yard (SWMU No. 18) to determine and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil borings and monitoring wells were installed at each of the aforementioned SWMUs.

All soil borings were drilled to a minimum depth of 10 feet with at least one boring at each of the individual potential source areas drilled to the top of saturation, with the exception of SWMU No. 2 where all soil borings were be drilled to the water table. One soil boring was completed as a temporary well at SWMU No. 9. Nine soil borings were installed at SWMU No. 2, with two of the borings completed as permanent wells and seven completed as temporary wells. One soil borings were completed at SWMU No. 18. Thirteen soil borings, two of which were completed as permanent wells, were installed at SWMU No. 8. Soil samples were collected continuously at all borings and logged by a qualified geologist in accordance with USCS nomenclature.

Drum Storage Area North Bone Yard (SWMU No. 2)

At the SWMU No. 2 there was only one constituent (mercury) that was present at concentrations that exceed the soil screening level of 2.09 mg/kg based on the soil-to-ground water pathway. At boring location SWMU 2-2, the mercury concentration as shown in Table 8 is 4.1 mg/kg at the land surface, 11 mg/kg in the 1.5 to 2' interval and decreasing to 2.2 mg/kg in the 13.5-14' sample interval. The boring was completed as a temporary monitoring well and the analysis of a ground water sample collected did not detect the presence of mercury at a detection limit of 0.2 ug/l vs. a screening level of 2.0 ug/l. In addition, there were no reported concentrations of mercury in ground water above the screening level in any of the other eight sampling locations within SWMU No. 2. Based on the limited occurrence of mercury above the soil-to-ground water screening level in only one soil boring location, the generally minor exceedences of the screening level (e.g., maximum concentration less than one order of magnitude above the screening level), and the fact that there are no exceedences of the ground water ingestion screening level in any of the closely spaced 9 ground water sample locations,

the concentrations of mercury at soil borings SWMU 2-2 are not considered to be a threat to ground water quality.

Further evaluation of the mercury concentrations present in soil at SWMU 2-2 indicates the maximum value of 11 mg/kg is significantly below the NMED residential soil screening level of 100,000 mg/kg and the more conservative construction worker screening level of 927 mg/kg. There are no concentrations of constituents in soil at SWMU No. 2 that pose an unacceptable risk to human health or the environment.

Ground water samples were collected from 7 temporary wells and 2 permanent wells located at SWMU No. 2. There are no detections of organic constituents, including Total Petroleum Hydrocarbons, in ground water samples collected from any of the permanent or temporary wells. Low concentrations of metals were detected, including three locations with arsenic with a maximum value of 0.012 mg/l vs. a screening level of 0.01 mg/l. Similarly, lead was detected at five locations at concentrations slightly over the screening level (i.e., max concentration of 0.034 vs. 0.015 mg/l). Because the wells were purged and sampled using a bailer it is most likely that the presence of arsenic and lead above their respective screening levels is due to suspended sediment in the samples collected for "totals" analyses. There are also single occurrences of barium, beryllium, and chromium at concentrations above their respective screening levels that are attributable to entrained sediment. All of the detections of low concentrations of arsenic, barium, beryllium, chromium, and lead are believed to be an artifact of sample collection and not related to site contamination. The absence of any petroleum constituents at these same locations is a strong indicator that the low concentrations of metals are not the result of on-site refinery operations.

Manganese was detected in ground water samples collected from the two permanent monitoring wells (MW-50 and MW-51) and all but one (SWMU 2-2) of the temporary wells at concentrations above the screening level of 0.2 mg/l. A review of the facility-wide ground water sampling information reveals that manganese is widespread across the refinery property (Figure 13). There is no direct evidence to associate manganese's presence in shallow ground water beneath SWMU No. 2 with site operation or waste management activities. However, there does appear to be a correlation between the dissolved oxygen concentrations in ground water and the dissolved manganese concentrations. Figure 14 shows a plot of the dissolved oxygen concentrations and manganese concentrations measured in the new permanent monitoring

wells and other existing monitoring wells located across the site. As shown in the plot, the dissolved manganese concentrations increase as the dissolved oxygen levels decrease. There are two locations (MW-54 and MW-27) that appear to be anomalous. MW-54 is located within the drainage field of a septic system, which is thought to have affected the manganese concentrations at this location. A more recent manganese analysis at MW-27 revealed a concentration of 4.6 mg/l vs. the earlier reading of 9.6; the more recent result plots within the general clustering of data shown on Figure 14 (Western Refining Southwest, Inc., 2009).

Lower dissolved oxygen concentrations may be explained by either natural degradation of petroleum hydrocarbons using oxygen as an electronic acceptor or the lower dissolved oxygen concentrations can occur under natural conditions in geologic units with reduced circulation (e.g., the Nacimiento Formation).

The sampling data for SWMU No. 2 does not indicate any threat to human health or the environment as the result of site operations. SWMU No. 2 should qualify for a Corrective Action Complete designation.

Inactive Landfill (SWMU No. 8)

Soil samples were collected from depths of 0-0.5 feet and 1.5-2 feet at 12 borings with additional deeper samples collected at 37 to 38.5 feet at SWMU 8-12 and 33 to 34 ft at SWMU 8-6A. None of the analyses resulting from soil samples collected at the borings completed at SWMU No. 8 indicate concentrations of constituents exceeding the applicable screening levels. The majority of the analyses are non-detect. The soil analytical results are summarized in Table 9.

Two soil borings were completed as permanent monitoring wells (MW-52 and MW-53). All of the organic analyses are non-detect with the single exception of chloromethane, which was detected at a concentration below the screening level on the second sampling event conducted in January 2009. Arsenic was detected in both wells at low concentrations but above the screening level and is most likely the result of entrained sediment in the ground water sample. Barium was detected at a concentration of 1.1 mg/l, which is slightly above the screening level of 1.0 mg/l in the sample collected from MW-52 on the first sampling event. All other samples, including the second sample collected from MW-52 in Jan. 2009, had concentrations of barium below the screening level. Manganese was detected at concentrations above the screening level in all samples but there is

no direct evidence to associate its presence with site operations or waste management activities. Chloride and sulfate are present in concentrations above the WQCC standards but both of these are primarily attributable to naturally occurring concentrations. Isoconcentration maps for chloride and sulfate were prepared using data from the most recent facility-wide sampling event and the analytical results from the new RFI wells. These maps are included as Figures 15 and 16. As shown on the maps, the concentrations of these naturally occurring constituents are highest in the up-gradient portions of facility, although there is an area of elevated sulfate concentrations near the Sulferox Unit. The distribution of the concentrations of these constituents is clear evidence of their natural occurrence and that the concentrations of chloride and sulfate beneath SWMU No. 8 are not the result of waste management activities.

SWMU No. 18 should quality for a Corrective Action Complete designation as there are no detections of constituents in soils above the residential screening levels and the detections of manganese in ground water are not associated with any waste management activities in SWMU No. 18. The Facility-Wide Ground Water Monitoring Program will include monitoring of ground water in this area.

Landfill Pond (SWMU No. 9)

The analyses conducted on soil samples collected from beneath the location of the former "landfill pond" (i.e., soil boring SWMU 9-1) were non-detect for most constituents. The samples were collected from depths of 0 - 0.5, 1.5 - 2, 5 - 7.5, and 14.5 - 15 feet. There were low concentrations of naturally occurring metals, all of which are well below their applicable screening levels as shown in Table 10. There are a few organic constituents (1-methylnaphthalene, 2-methylnaphthalene, and naphthalene) that were detected at generally low concentrations but still above the lowest default screening level, which is based on protection of ground water.

As shown in Table 10, the maximum concentration of 1-methylnaphthalene is 1.4 mg/kg vs. a screening level of 0.015 mg/kg for ground water protection. The maximum concentration of 1.4 mg/kg is below the residential screening level of 22 mg/kg. For 2-methylnaphthalene the maximum detected concentration of 4.2 mg/kg is above the ground water protection screening level of 0.9 mg/kg but is well below the residential screening level of 310 mg/kg. Naphthalene has a maximum detected concentration of 1.3 mg/kg vs. a ground water protection screening level of 0.394 mg/kg; however, the maximum is well below the residential screening level of 79.5 mg/kg. An evaluation of the vertical distribution of these constituents reveals that the maximum

concentrations appear to be in range from approximately 1.5 feet to 7.5 feet below ground surface. A deeper sample collected at 14.5 feet is non-detect for all three of these constituents indicating that they have not migrated vertically to ground water.

Re-grading of the land surface in the area of the former landfill pond has eliminated ponding of water, which lead to the original concern at this location. If the constituents detected in shallow subsurface soils did not migrate vertically to the deeper soil intervals under past conditions (e.g., ponded water), then there should be very limited potential for vertical migration under current and future conditions.

A ground water sample was collected from a temporary well installed in soil boring SWMU9-1. All of the organic analyses, including 1-methylnaphthalene, 2-methylnaphthalene, and naphthalene were non-detect. Several of the total metals analyses contained concentrations exceeding the screening levels (i.e., cadmium, cobalt, manganese, and nickel); however, the ground water sample collected from the temporary well was turbid and the entrained sediment caused artificially high concentrations to be reported for metals. The clearest example of this effect is the reported concentration of 6 mg/l for nickel, which in its elemental form is insoluble in water. The ground water sample contained concentrations of chloride, sulfate, and nitrogen (nitrate and nitrite) above screening levels but these constituents are all naturally occurring and based on all available information appear to be unrelated to site waste management activities (i.e., background concentrations).

The soils and ground water data indicate that the former landfill pond does not present an unacceptable risk to human health or the environment and should qualify for a Corrective Action Complete designation.

Spray Irrigation Area (SWMU No. 11)

Additional assessment of this area was not conducted because historical site investigation data did not indicate any unacceptable threat to human health or the environment. Based on the earlier assessment information, Western believes that the Spray Irrigation Area qualifies for a Corrective Action Complete designation.

Warehouse Yard (SWMU No. 18)

Four soil borings were completed within the Warehouse Yard at the former drum storage location. Three of the borings were completed to depths of 10 feet (SWMU18-1, SWMU18-3, and

SWMU18-4) and one boring (SWMU18-2) was completed to a depth of 38 feet. Soil samples were collected from depths 0 - 0.5 and 1.5 - 2 feet at all four borings, with additional samples at depths of 18 - 20 and 28 - 29 feet at SWMU 18-2 and 7.5 - 9 feet at SWMU 18-3.

All of the analytical results for individual organic constituents (e.g., benzene, xylene, etc.) are below the applicable screening levels. Two samples at the SWMU 18-2 location from depths of 0-0.5 and 1.5-2 feet have concentrations of motor oil range organics above the screening level. All of the analytical results for the metals are below the applicable screening levels.

A ground water sample was collected from MW-54 (soil boring SWMU 18-2), which is located within the previously known area of ground water contamination that extends down-gradient from the refinery process area. The analytical results confirm the presence of hydrocarbons in ground water with concentrations of 1,2,4-trimethylbenzene, 1-methylnaphthalene, benzene, methyl-tert-butyl ether, naphthalene, and diesel range organics above the screening levels. In addition, there are three metals (arsenic, barium, and manganese) with concentrations over the screening level. The arsenic concentration is barely over the screening level and may have been impacted by sample collection techniques introducing entrained sediment. Chloride concentrations also exceed the screening level and may be impacted by the fact that MW-54 is located within the drainage field of an on-site septic system.

Recommendations

A Corrective Action Complete designation is recommended for SWMUs No. 2, 8, 9, and 11. Additional assessment and delineation of hydrocarbon impacted soils at soil boring SWMU 18-2 may be warranted, although the concentrations of motor oil range organics are only marginally above the commercial soil screening levels.

Ground water impacts documented during the assessment of SWMUs No. 2, 8, and 9 are detailed above but the primary constituents exceeding the screening levels across these areas are chloride, sulfate and manganese. Chloride and sulfate are naturally occurring and the distribution within the shallow ground water does not indicate an on-site source within these SWMUs. Manganese is present within ground water at all three SWMUs (i.e., No. 2, 8, and 9); however, remediation of ground water only for manganese in these areas is not warranted. The elevated dissolved manganese concentrations are thought to be associated with reducing conditions, which are related to degradation of petroleum hydrocarbons or the result of natural

conditions in zones of low transmission. The manganese concentrations should reduce naturally in areas affected by degradation of organic constituents when the hydrocarbon source is exhausted.

Ground water contamination detected at SWMU No. 18 is currently being addressed by existing recovery wells (e.g., nearby RW-1).

Section 8 References

- Groundwater Technology Inc., 1994, RCRA Facility Investigation/Corrective Measures Study Report Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico, p.51.
- RPS JDC, 2008, Investigation Work Plan Group 2 Western Refining Southwest, Inc. Bloomfield Refinery Bloomfield New Mexico, p. 27.

Western Refining Southwest, Inc., 2009, Facility-Wide Groundwater Monitoring Report, Bloomfield Refinery Bloomfield New Mexico, p.37.

Tables

L:\Projects\Western Refining Company\GIANT\Bloomfield\NMED July 2007 Order\Group 2\Inv. Report\Gp 2 Site Inv Report.doc

Table 1Historical Volatile Organic Ground Water Analytical Results Summary
SWMU Group 2 Investigation
Bloomfield Refinery - Bloomfield, New Mexico

				Parameters		
		Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	MTBE (mg/L)
Screenir	ng Level (mg/L)	0.005	0.75	0.7	0.62	0.012
Well ID:	Date Sampled:		L		L	L
	4/1/2007	<0.001	<0.001	<0.001	<0.002	<0.0025
	8/15/2006	<0.001	<0.001	<0.001	<0.003	<0.0015
	4/5/2006	<0.001	<0.001	<0.001	<0.003	<0.0025
	8/5/2005	0.0011	<0.001	<0.001	<0.001	<0.001
MW #1	4/11/2005	0.0013	<0.0005	<0.0005	0.0011	<0.0025
	8/23/2004	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025
	3/3/2004	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025
	8/21/2003	<0.001	<0.001	<0.001	<0.001	<0.001
	3/3/2003	<0.0005	0.00063	0.00065	0.0043	<0.0025
	4/5/2006	<0.001	<0.001	<0.001	<0.003	<0.0025
MW #3	8/5/2005	<0.001	<0.001	<0.001	<0.001	<0.001
INIAA 422	4/11/2005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025
	8/21/2003	<0.001	<0.001	<0.001	<0.001	<0.001
	4/1/2007	<0.001	<0.001	<0.001	<0.002	<0.0025
	8/15/2006	<0.001	<0.001	<0.001	<0.003	<0.0015
	4/5/2006	<0.001	<0.001	<0.001	<0.003	<0.0025
MW #8	8/5/2005	<0.001	<0.001	<0.001	<0.001	<0.001
	4/11/2005	0.00053	<0.0005	<0.0005	0.0008	<0.0025
	8/23/2004	<0.0005	<0.0005	<0.0005	<0.0005	<0.0025
	8/21/2003	<0.001	<0.001	<0.001	<0.001	<0.001

Notes:

mg/L = milligram per liter MW = monitoring well RW = recovery well NA = not analyzed

NE = not established

MTBE = methyl tertiary butyl ether

Table 2Historical Total Metals Ground Water Analytical Results SummarySWMU Group 2 InvestigationBloomfield Refinery - Bloomfield, New Mexico

					Parame	ters			
		Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Silver	Mercury
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Screenii	ng Level (mg/L)	0.01	1.0	0.005	0.05	0.015	0.05	0.05	0.002
Well ID:	Date Sampled:								
	8/15/2006	<0.020	0.023	<0.0020	<0.0060	<0.0050	<0.050	<0.0050	<0.0002
MW #1	8/5/2005	NA	NA	NA	<0.006	<0.005	NA	NA	NA
	8/23/2004	<0.02	0.052	<0.002	<0.006	<0.005	<0.05	<0.005	<0.0002
MW #3	8/5/2005	NA	NA	NA	0.016	<0.005	NA	NA	NA
WIVY #3	8/21/2003	NA	NA	NA	0.029	0.022	NA	NA	<0.0002
	8/15/2006	<0.020	0.018	<0.002	<0.006	<0.005	<0.05	<0.005	<0.0002
MW #8	8/5/2005	NA	NA	NA	0.33	<0.005	NA	NA	NA
	8/23/2004	<0.02	0.071	<0.002	1.9	<0.005	<0.05	<0.005	<0.0002
	8/21/2003	NA	NA	NA	0.72	<0.005	NA	NA	<0.0002

Notes:

mg/L = milligram per liter MW = monitoring well RW = recovey well NA= not analyzed NE = not established

I:\Projects\Western Refining Company\GIANT\Bloomfield\NMED July 2007 Order\Group 2\Inv. Report\Gp #2 Inv Rpt tables

Table 3 Historical Dissolved Metals Ground Water Analytical Results Summary SWMU Group 2 Investigation Bloomfield Refinery- Bloomfield, New Mexico

										Parameters							
		Arsenic	Barium	0	0	Chromium	Copper	Iron	Lead	Magnesium	Manganese	Potassium	Selenium	Silver	Sodium	Uranium	Zinc
		(mg/L)	(mg/L)	(mg/L)	(J/Gm)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Screi	Screening Level (mg/L)	0.01	1.0	0.005	NE	0.05	1.0	1.0	0.015	NE	0.20	NE	0.05	0.05	NE	0.03	10.0
Well ID:	Date Sampled:																
	8/15/2006	<0.02	0.023	<0.002	74	<0.006	<0.006	<0.02	<0.005	18	0.09	2.4	<0.05	<0.005	120	<0.1	0.047
MW #1	8/5/2005	<0.02	0.022	<0.002	68	<0.006	<0.006	0.14	<0.005	18	0.14	2.7	<0.05	<0.005	140	<0.1	<0.005
	8/23/2004	<0.02	0.025	<0.002	67	<0.006	<0.006	0.27	<0.005	18	0.13	2.1	<0.05	<0.005	110	<0.1	0.021
	8/15/2006	<0.02	0.46	<0.002	61	<0.006	<0.006	<0.005	<0.005	16	0.08	2.6	0.043	<0.005	150	<0.1	0.12
MW #3	8/5/2005	<0.02	0.018	<0.002	480	<0.006	<0.006	0.047	<0.005	130	0.43	7.6	<0.05	<0.005	1300	<0.1	0.018
	8/21/2003	<0.02	0.3	<0.002	490	<0.006	<0.006	0.27	<0.005	140	0.58	10	0.024	<0.005	1100	<0.1	0.094
	8/15/2006	<0.02	0.018	<0.002	230	<0.006	<0.006	0.033	<0.005	35	0.42	3.2	<0.05	<0.005	380	<0.1	0.044
MW #8	8/5/2005	<0.02	0.021	<0.002	230	<0.006	<0.006	0.078	<0.005	37	0.65	3.1	<0.05	<0.005	360	<0.1	0.014
	8/23/2004	<0.02	0.021	<0.002	210	<0.006	<0.006	0.059	<0.005	35	0.57	e	<0.05	<0.005	360	<0.1	0.022
	8/21/2003	<0.02	0.36	<0.002	200	<0.006	<0.006	0.044	<0.005	38	0.68	4	0.09	<0.005	350	<0.1	0.13

Notes: mg/t_ = milligram per liter MW = monitoring well

ww = momoring wei RW = recovery weil NE = not established NA = Not Analyzed

Table 4

Historical General Chemistry Ground Water Analytical Results Summary SWMU Group 2 Investigation

Bloomfield Refinery - Bloomfield, New Mexico

							Parameters					
		Fluoride	Chloride	Bromide	Nitrite	Nitrogen	Phosphorus	Sulfate	TDS	Е.C.	co_2	Alk
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(umhos/cm)	(mg/L)	(mg/L)
Screenin	Screening Level (mg/L)	1.6	250	NE	-	10	NE	600	1000	NE	NE	NE
Weil ID:	Weil ID: Date Sampled:											
	8/15/2006	0.65	17	<0.50	1.2	NA	<0.50	190	640	940	240	270
M/M #1	8/5/2005	0.68	31	<0.50	<0.10	2.1	<0.50	190	650	980	300	300
	8/23/2004	0.63	29	0.14	<0.10	1.9	<0.50	220	650	870	220	240
	8/15/2006	0.58	33	0.32	<0.10	1.6	<0.50	200	610	820	240	262
	8/15/2006	0.67	300	1.5	26	AN	<0.50	980	2200	3200	200	210
MW #8	8/5/2005	0.79	260	<2.5	<0.50	27	<0.50	740	2000	2900	260	260
	8/23/2004	0.64	250	1.2	NA	AN	<0.50	920	2100	2600	210	230
	8/21/2003	0.66	260	5	<0.10	14	<0.50	950	2100	2900	220	208

Notes:

Alk = alkalinity, total

CO₂ = Carbon Dioxide E.C. = electrical conductivity TDS = total dissolved solids

umhos/cm = micro-mhos per centimeter mg/L = miligram per liter NE = not established NA = not analyzed MW = monitoring well

Table 5 Historical Volatile Organic Soil Analytical Results Summary SWMU No. 8 Historical Soil Data Bloomfield Refinery - Bloomfield, New Mexico

				Para	Parameters				
			Benzene	Toluene	Ethylbenzene	Xylene	Phenolics	Chromium III	Lead
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	Soil Screen	Soil Screening Levels (mg/kg):	0.02	21.7	20.2	2.06	47.4	100,000	14
Sample No.	Sample Location	Date Sampled							
51469-01	L1 & L2, 0-6" Quad. #1 - Landfill	10/16/1985	<0.5	<1.0	<1.0	<2.0	<0.1	11	10
51469-02	L3 & L4, 6-12" Quad. #1 - Landfill	10/16/1985	<0.5	<1.0	<1.0	<2.0	<0.1	8.9	9.8
51469-03	L5 & L6, 0-6" Quad. #2 - Landfill	10/16/1985	<0.5	<1.0	<1.0	<2.0	<0.1	6.6	6
51469-04	L7 & L8, 6-12" Quad. #2 -Landfill	10/16/1985	<0.5	<1.0	<1.0	<2.0	<0.1	7.6	6.7
51469-05	L9 & L10, 0-6" Quad #3 - Landfill	10/16/1985	<0.5	<1.0	<1.0	<2.0	<0.1	8.7	7.6
51469-06	L11 & L12, 6-12" Quad. #3 - Landfill	10/16/1985	<0.5	<1.0	<1.0	<2.0	<0.1	7.4	7
51469-07	L13 & L14, 0-6" Quad. #4 - Landfill	10/16/1985	<0.5	<1.0	<1.0	<2.0	<0.1	9.1	8.2
51469-08	L15 & L16, 6-12" Quad #4 - Landfill	10/16/1985	<0.5	<1.0	< 1.0	<2.0	<0.1	7	7.7

TABLE 6 Soil Screening Levels Bloomfield Refinery - Bloomfield, New Mexico
--

							Cross M	edia Soil-to-O	Cross Media Soil-to-Ground Water	
		NMED	D		EPA		NMED	Ш	EPA	
Analyte	IndOccSoil_ mgkg	IndOccSoil_ Endpoint	ConsWork Soil_mgkg	ConsWork Soil_Endp oint	Industrial Soil_mgkg	IndSoil _key	DAF20 mgkg	GW_Risk- based SSL_mgkg	GW_MCL- based SSL_mgkg	Constituent Detected
Applicable depth interval	0	0-2'	0-10'	10'	0-2'			All depths		
Acenaphthene	33500	nc	14100	рс	33000	c	54.9	27	1	7
Acenaphthylene	1		-			•	-	1	-	z
Acetone	100000	тах	98500	nc	610000	smn	19.1	4.4	1	≻
Aniline	-		1	•	300	*ບ		0.0034	t	≻
Anthracene	100000	max	86000	nc	170000	шu	1620	450	•	×
Antimony	454	ы	124	nc	410	c	13.2	0.66	0.27	≻
Arsenic	17.7	ca	85.2	рс	1.6	υ	0.29	0.0013	0.29	≻
Azobenzene		-	-	•	22	υ	-	0.00051	1	≻
Barium	100000	max	60200	рс	190000	ши	0209	300	82	7
Benz(a)anthracene	-	-	-		2.1	с С	-	0.014	1	۲
Benzene	25.8	ca	174	nc	5.6	c*	0.0201	0.00023	0.0028	۲
Benzo(a)pyrene	2.34	ca	21.2	ca	0.21	υ	2.78	0.0046	0.31	≻
Benzo(b)fluoranthene	23.4	са	212	са	2.1	с	33.5	0.047	1	Y
Benzo(g,h,i)perylene	-	-	•	•	-	-	-	-	1	z
Benzo(k)fluoranthene	234	ca	2120	ca	21	ပ	335	0.46	ı	Y
Benzoic acid	-	-	-	-	2500000	шп	-	33	1	۲
Benzyl alcohol	-	•	-		310000	ши	-	4.2	•	۲
Beryllium	2250	nc	56.2	nc	2000	u	1150	58	3.2	۲
Bis(2-chloroethoxy)methane	1	1	1	-	1800	u	P	0.023	1	٢
Bis(2-chloroethyl)ether	7.45	са	105	са	0.9	ပ	0.00056	2.70E-06	-	۲
Bis(2-chloroisopropyl)ether	119	ca	453	sat	I	1	0.0144	ı	-	Y
Bis(2-ethylhexyl)phthalate	1370	g	4660	nc	120	c*	21500	1.6	2	Y
Bromobenzene	137	рс	121	nc	410	L	0.214	0.015	-	Y
Bromodichloromethane	37.2	ca	717	са	46	c	0.0118	0.0003	•	۲
Bromoform		1	1	-	220	c*	-	0.0023	-	۲
Bromomethane	32.8	nc	28.2	nc	35	L	0.0374	0.0022	1	≻
4-Bromophenyl phenyl ether	-	-	-	-	1	1		1	1	z
2-Butanone	48700	sat	48700	sat	190000	nms	25.5	1.5	ı	7
Butyl benzyl phthalate	1	1	1	-	910	c	-	0.67	T	٢
Cadmium	564	р	154	рс	1		27.5	1.4	0.38	٢
Carbazole	•	ı	F	1	•	I	1	1	-	z
Carbon disulfide	460	sat	460	sat	3000	ns	7.89	0.27	I	≻

1 of 5

•

							Cross M	edia Soil-to-O	Sround Water	
		NMED	ED		EPA		NMED	Ш	NMED EPA	
Analyte	IndOccSoil_ mgkg	IndOccSoil_ Endpoint	ConsWork Soil_mgkg	ConsWork Soil_Endp oint	Industrial Soil_mgkg	IndSoil _key	DAF20 mgkg	GW_Risk- based SSL_mgkg	GW_MCL- based SSL_mgkg	Constituent Detected
Applicable depth interval	0	0-2'	-0	0-10'	0-2'			All depths	S	
Carbon tetrachloride	8.64	ca	180	ca	1.3	o	0.0195	7.90E-05	0.002	٢
Chlorobenzene	245	sat	245	sat	1500	ns	1.1	0.068	0.075	7
Chloroethane	154	са	1420	sat	•	•	0.188	ł	1	≻
Chloroform	9.59	ca	216	ca	1.5	υ	0.00825	5.50E-05	•	Y
Chloromethane	53.4	са	284	nc	8.4	°*	0.1	0.00046	t	≻
4-Chloro-3-methylphenol	-	-	-	-	-	-		-	•	z
4-Chloroaniline	1	•	1	•	1	-	-	-	•	N
4-Chlorophenyl phenyl ether		1	-	•	-	-	-	-	1	z
4-Chlorotoluene	1	-	-	-	•	•	-	-	1	z
2-Chloronaphthalene	•	-	-	-	82000	su	•	18	-	۲
2-Chlorophenol	885	DU	586	пс	5100	L	0.472	0.2	ı	٢
2-Chlorotoluene	-	•	•	1	-	-	1	-	•	۲
Chromium	100000	max	100000	max	1500000	nm	2E+09	00000066	1	≻
Chrysene	2310	ca	21200	ca	210	с	348	1.4	-	۲
cis-1,2-DCE	300	nc	254	nc	10000	ns	0.299	0.11	0.021	≻
cis-1,3-Dichloropropene	1	•	-		Ļ.	-	-	1	T	z
Cobalt	20500	nc	61	nc	300	L	661	0.49	1	≻
Cyanide	13700	DC	4760	nc	20000	L	147	7.4	2	≻
1,1-Dichloroethane	1420	sat	1420	sat	17	U	6.79	0.0007	I	≻
1,1-Dichloroethene	777	nc	678	nc	-	-	2.68	I	I	≻
1,1-Dichloropropene	-	-	•	1	-	'	-	-	I	z
1,2-Dibromo-3-chloropropane	9.68	nc	6.48	nc	0.073	υ	0.00298	1.50E-07	9.20E-05	≻
1,2-Dibromoethane (EDB)	1	1	•	1	0.17	U	-	1.90E-06	1.50E-05	≻
1,2-Dichlorobenzene	37.4	sat	37.4	sat	10000	ns	0.237	0.4	0.66	≻
3,3'-Dichlorobenzidine	42.6	са	363	ca	-		0.0371	-	-	۲
1,2-Dichloroethane (EDC)	-	-	-	•	2.2	c		4.40E-05	0.0015	۲
1,2-Dichloropropane	14.9	ca	33.3	nc	4.7	c*	0.00819	0.00013	0.0017	۲
1,3-Dichlorobenzene	37.4	sat	37.4	sat	-	-	0.0873	-	I	Y
1,3-Dichloropropane	-	ŀ	1	1	20000	ns	1	0.27	1	≻
1,4-Dichlorobenzene	103	ca	1960	ca	13	c	0.11	0.00046	0.081	۲
2,2-Dichloropropane	•	-	T	-	-	•	,	1	T	z
2,4-Dichlorophenol	2050	nc	669	лс	1800	u	0.863	0.18	1	≻

I: Projects/Western Refining Company/GIANT/Bloomfield/NMED July 2007 Order/Group 2/Inv. Report/Gp #2 Inv Rpt tables

						<u> </u>	Cross M	edia Soil-to-O	Cross Media Soil-to-Ground Water	
		NMED	G		EPA		NMED	ш	EPA	
Analyte	IndOccSoil_ mgkg	IndOccSoil_ Endpoint	ConsWork Soil_mgkg	ConsWork Soil_Endp oint	Industrial Soil_mgkg	IndSoil _key	DAF20 mgkg	GW_Risk- based SSL_mgkg	GW_MCL- based SSL_mgkg	Constituent Detected
Applicable depth interval	-0	0-2'	-0	0-10'	0-2'			All depths	s	
2,4-Dimethylphenol	13700	nc	4660	р	12000	L	7.11	1.2	ı	٢
4,6-Dinitro-2-methylphenol		-	1	,	1	-		,	1	z
2,4-Dinitrophenol	1370	рс	466	nc	1200	u	1.05	0.068	-	Y
2,4-Dinitrotoluene	1370	nc	466	nc	1200	Ľ	0.462	0.068	-	۲
2,6-Dinitrotoluene	-	-	-	1	620	c		0.034	1	٢
Dibenz(a,h)anthracene	2.34	ca	21.2	ca	0.21	v	10.4	0.015	-	Y
Dibenzofuran	1620	uc	552	nc	-	-	2.87	•	-	Y
Dibromochloromethane	39.5	са	716	ca	21	c	0.00716	0.00022	-	۲
Dibromomethane	1	-	1	•	10000	su	1	0.091	-	٢
Dichlorodifluoromethane	211	sat	211	sat	780	u	5.72	0.61	-	Y
Diethyl phthalate	100000	тах	100000	max	490000	ши	354	13	-	۲
Dimethyl phthalate	100000	тах	100000	max	-	-	1670		•	۲
Di-n-butyl phthalate	68400	DC	23300	nc	ı	-	3720		1	٢
Di-n-octyl phthalate	-	-	-	-	1	-	•	١	1	z
Ethylbenzene	128	sat	128	sat	29	U	20.2	0.0019	0.89	≻
Fluoranthene	24400	nc	8730	nc	22000	L	4690	210	1	≻
Fluorene	26500	nc	10200	nc	22000	c	58.5	33	1	≻
Hexachlorobenzene	12	ca	102	ca	1.1	υ	0.686	0.00029	0.007	۲
Hexachlorobutadiene	J	-	-	-	22	*J	1	0.0019		≻
Hexachlorocyclopentadiene	4100	nc	431	пс	3700	c	1320	0.8	0.18	≻
Hexachloroethane	684	nc	233	рс	120	**0	2.09	0.0032	ŝ	≻
2-Hexanone	1	I	-	1		1	1	,	١	z
Indeno(1,2,3-cd)pyrene	23.4	ca	212	ca	2.1	v	94.6	0.16	1	Y
Isophorone	20200	ca	46600	рс	1800	*o	3.4	0.022	1	≻
Isopropylbenzene (cumene)	389	sat	389	sat	-	1	82.1	,	1	z
4-Isopropyltoluene	1	-	-	-	I	-	1	1	1	٢
Lead	800	IEUBK	800	IEUBK	800	c	1	,	14	≻
Mercury	100000	max	927	nc	28	ns	2.09	0.033	0.1	۲
Methyl tert-butyl ether (MTBE)	1	1	-	1	190	υ	3	0.0027	I	≻
Methylene chloride	490	g	2630	sat	54	υ	0.17	0.0012	0.0013	≻
1-Methylnaphthalene	'	•	1	1	99	υ	•	0.015	-	≻
2-Methyinaphthalene	,		1	-	4100	SU	ı)	0.9	•	7

							Cross M	edia Soil-to-C	Cross Media Soil-to-Ground Water	
		NMED	ED		EPA		NMED	Ш	EPA	
Analyte	IndOccSoil_ mgkg	IndOccSoil_ Endpoint	ConsWork Soil_mgkg	ConsWork Soil_Endp oint	Industrial Soil_mgkg	IndSoil _key	DAF20 mgkg	GW_Risk- based SSL_mgkg	GW_MCL- based SSL_mgkg	Constituent Detected
Applicable depth interval	-0	0-2'	ò	0-10'	0-2'			All depths	s	
2-Methylphenol	-	-			31000	L	r	2	•	7
3+4-Methylphenol	-	-		•	3100	c		0.19	1	≻
4-Methyl-2-pentanone	-	-	•	r		•	,	1	1	z
2-Nitroaniline	1	1	•	1		,	,	1	1	z
3-Nitroaniline		-	1		82	c**	1	0.00097	1	≻
4-Nitroaniline	-	1		ı	1	ı		1		z
2-Nitrophenol	-	-	•	1			1	1	•	z
4-Nitrophenol	-	1		1		,	•	1	1	z
Naphthalene	300	nc	262	р	20	*o	0.394	0.00055	1	7
n-Butylbenzene	62.1	sat	62.1	sat	,	,	5.4	1	1	~
Nickel	22700	nc	6190	р	20000	c	953	48	1	7
Nitrobenzene	147	nc	82.8	nc	280	c	0.0184	0.002	1	≻
N-Nitrosodi-n-propylamine		-		1	0.25	υ	1	1.10E-05	1	≻
N-Nitrosodiphenylamine	3910	са	4660	่วน	350	o	5.71	0.17	t	≻
n-Propylbenzene	62.1	sat	62.1	sat	-	•	5.4	•	1	≻
Pentachlorophenol	100	са	1020	ca	6.	υ	0.117	0.0039	0.007	≻
Phenanthrene	20500	nc	0669	С			464	-	1	~
Phenol	100000	max	00669	nc	180000	nm	47.4	8.1	1	۲
Pyrene	30900	nc	9010	nc	17000	u	373	150	1	≻
Pyridine	1		-	-	1000	L	1	0.0097		7
sec-Butylbenzene	60.6	sat	60.6	sat	1	'	4.33	1	3	Y
Selenium	5680	nc	1550	nc	5100	c	19	0.95	0.26	۲
Silver	5680	nc	1550	nc	5100	с	31.3	1.6	-	۲
Styrene	100	sat	100	sat	38000	ns	10.5	2	0.12	۲
1,2,3-Trichlorobenzene	'	I	1	-	400	ns	-	0.013	0.11	۲
1,1,1,2-Tetrachloroethane	114	ca	2110	са	9.8	c	0.025	0.00021	-	7
1,1,1-Trichloroethane	563	sat	563	sat	39000	ns	26.5	3.3	0.072	7
1,1,2,2-Tetrachloroethane	14.6	ca	271	са	2.9	c	0.00321	_	-	۲
1,1,2-Trichloroethane	30.2	ca	194	nc	5.5	υ	0.00995	8.2	0.0017	۲
2,4,5-Trichlorophenol	68400	ы	23300	nc	62000	c	143		-	۲
2,4,6-Trichlorophenol	68.4	р	23.3	nc	160	c**	0.143	0.016	-	٢
1,2,3-Trichloropropane	0.209	ca	4.57	ca	0.41	υ	0.00041	4.40E-06		≻

							Cross M	edia Soil-to-C	Cross Media Soil-to-Ground Water	
		NMED	ED		EPA		NMED		EPA	
Analyte	IndOccSoil_ mgkg	IndOccSoil_ ConsWork Endpoint Soil_mgkg	ConsWork Soil_mgkg	ConsWork Soil_Endp oint	Industrial Soil_mgkg	IndSoil _key	DAF20 mgkg	GW_Risk- based SSL_mgkg	GW_MCL- based SSL_mgkg	Constituent Detected
Applicable depth interval	Ó	0-2'	0-10	10'	0-2'			All depths		
1,2,4-Trichlorobenzene	269	2	230	nc		1	0.408	1	1	7
1,2,4-Trimethylbenzene	213	ы	190	nc	280	su	1.42	0.024	I	7
1,3,5-Trimethylbenzene	69.2	sat	69.2	sat	200	c	0.355	0.02	•	Y
tert-Butylbenzene	106	sat	106	sat	-	•	4.3	ı	•	۲
Tetrachloroethene (PCE)	31.6	ca	134	sat	-		0.0574		r	۲
Toluene	252	sat	252	sat	46000	su	21.7	1.7	0.76	≻
trans-1,2-DCE	429	nc	370	nc	500	L	0.667	0.034	0.032	۲
trans-1,3-Dichloropropene	-	-	-	-	-	-		-	-	Z
Trichloroethene (TCE)	1.56	ß	33.6	са	14	υ	0.002	0.00061	0.0019	۲
Trichlorofluoromethane	983	sat	983	sat	3400	su	22.3	0.84	-	≻
Vanadium	1140	ы	310	nc	7200	c	730	260	-	≻
Vinyl chloride	14	ca	182	са	1.7	ပ	0.00545	5.60E-06	0.0007	≻
Xylenes, Total	82	sat	82	sat	2600	su	2.06	0.23	11	~
Zinc	100000	max	92900	nc	310000	um	13600	680	•	≻
Diesel Range Organics (DRO)	1120	-	-	-	-	•		•	-	٢
Gasoline Range Organics (GRO)	-	•	•	•	-	1	1	1	•	≻
Motor Oil Range Organics (MRO)	890	-	-	-	-	-		•	-	۲
NS - none specified										

No. - none specimed 310 - Bolded values are lowest applicable screening/cleanup levels

I: Projects Western Refining Company/GIANT/Bloomfield/WMED July 2007 Order/Group 21/nv. Report(Gp #2 Inv Rpt tables

	NMED		EPA			
Analyte	New Mexico WQCC Standards_ugL	EPA Screening Levels.Tap Water_ugL	TapW_key	MCL_ugL	Constituent Detected	NMED Tap Water ug/l
Acenaphthene	-	2200	n	-	Y	
Acenaphthylene	-	-	-	-	N	
Acetone		22000	n	-	Y	
Aniline		12	C*	-	Y	
Anthracene	-	11000	n	-	Y	
Antimony	-	15	n	6	Y	
Arsenic	100	0.045	С	10	Y	
Azobenzene	-	0.12	С	-	Y	
Barium	1000	7300	n	2000	Y	
Benz(a)anthracene	-	0.029	С	-	Y	
Benzene	10	0.41	С	5	Y	
Benzo(a)pyrene	0.7	0.0029	С	0.2	Y	
Benzo(b)fluoranthene		0.029	С	-	Y	
Benzo(g,h,i)perylene	-	-	-	-	N	
Benzo(k)fluoranthene	-	0.29	С	-	Y	
Benzoic acid	-	150000	n	-	Y	
Benzyl alcohol	-	18000	n	-	Y	
Beryllium	-	73	n	4	Y	
Bis(2-chloroethoxy)methane	-	110	n	-	Y	
Bis(2-chloroethyl)ether	-	0.012	с	-	Y	
Bis(2-chloroisopropyl)ether	-	-	-	-	N	
Bis(2-ethylhexyl)phthalate	-	4.8	с	6	Y	
Bromobenzene	-	20	n	_	Y	
Bromodichloromethane	-	1.1	c		Y	
Bromoform		8.5	c*		Y	
Bromomethane	-	8.7	n	-	Y	
4-Bromophenyl phenyl ether		-	_	-	N	
Butyl benzyl phthalate		35	c	_	Y	
2-Butanone	-	7100	n – – – – – – – – – – – – – – – – – – –		Y	
Cadmium	10	18	n	5	Y	
Carbazole	-		-	-	N	· · · · · · · · · · · · · · · · ·
Carbon disulfide	-	1000	n	-	Y	
Carbon tetrachloride	10	0.2	с	5	Y	
Chlorobenzene	-	91	n	100	Y	
Chloroethane	-	-	-	-	N	
Chloroform	100	0.19	с	-	Y	
Chloromethane	-	1.8	с	-	Y	
4-Chloro-3-methylphenol	-	-	-	-	N	· · ·
4-Chloroaniline	-	-	-	-	N	
4-Chlorophenyl phenyl ether	-	-	-		N	
4-Chlorotoluene	-		-	-	N	
2-Chloronaphthalene	-	2900	n	-	Y	
2-Chlorophenol	-	180	 	-	Ý	
2-Chlorotoluene	-	-	-	-	N	
Chromium	50	55000	n		Y	
Chrysene		2.9	c	-	Y	

	NMED		EPA			
Analyte	New Mexico WQCC Standards_ugL	EPA Screening Levels.Tap Water_ugL	TapW_key	MCL_ugL	Constituent Detected	NMED Tap Water ug/l
Cobalt	50	11	<u>n</u>		Y	
Cyanide	200	730	n	200	Y	
Dibenz(a,h)anthracene		0.0029	С		Y	
Dibenzofuran			<u> </u>		N	
Dibromochloromethane		0.8	С	-	Y	
cis-1,2-DCE		370	n	70	Y	
trans-1,2-DCE	-	110	n	100	Y	
cis-1,3-Dichloropropene	-	-	-	-	N	
trans-1,3-Dichloropropene	-	-	-	-	N	
Dibromomethane	-	370	n	-	Y	
1,2-Dibromo-3-chloropropane	-	0.00032	С	0.2	Y	
1,2-Dibromoethane (EDB)	0.1	0.0065	с	0.05	Y	
1,2-Dichlorobenzene	-	370	n	600	Y	
1,3-Dichlorobenzene	-	~	-	-	N	
1,4-Dichlorobenzene	-	0.43	С	75	Y	
3,3'-Dichlorobenzidine	-	-	-	-	N	·
Dichlorodifluoromethane	-	390	n	-	Y	
1,1-Dichloroethane	25	2.4	с	-	Y	
1,2-Dichloroethane (EDC)	10	0.15	с	5	Y	
1,1-Dichloroethene		-	-	-	N	
2,4-Dichlorophenol	-	110			Y	
1,2-Dichloropropane	-	0.39	c*	5	Y	
2,2-Dichloropropane	-	-	-	-	N	
1,3-Dichloropropane		730	n	5	Y	
1,1-Dichloropropene	-	-	-	-	N	
Diethyl phthalate		29000	n	_	Y	
Dimethyl phthalate	_	-	-		N	
2,4-Dimethylphenol		730	n	-	Y	
4,6-Dinitro-2-methylphenol		-		-	Y	
2,4-Dinitrophenol		73	n	-	Y	
2,4-Dinitrotoluene		73	n	-	Y	
2.6-Dinitrotoluene	-	37	n	-	Y	
Di-n-butyl phthalate	-	-	-	-	N	
Di-n-octyl phthalate	-	-	-	-	N	
Ethylbenzene	750	1.5	с	700	Y	
Fluoranthene		1500	 	-	Y	
Fluorene	-	1500	n	-	Y	
Hexachlorobenzene	-	0.042	С	1	Y	
Hexachlorobutadiene		0.86	C*	-	Y	·
Hexachlorocyclopentadiene	-	220	n	50	Y	
Hexachloroethane	-	4.8	C**		Y	· · · · · · · · · · · · · · · · · · ·
2-Hexanone		-	-		N	
Indeno(1,2,3-cd)pyrene	-	0.029	С		Y	
Isophorone		71	c	-	Y	· · · · · · · · · · · · · · · · · ·
Isopropylbenzene (Cumene)	-	680	1	_	Ý	
4-Isopropyltoluene	-	-		-	N	

	NMED		EPA		ן	
Analyte	New Mexico WQCC Standards_ugL	EPA Screening Levels.Tap Water_ugL	TapW_key	MCL_ugL	Constituent Detected	NMED Tap Water ug/l
Lead	50	-	-	15	Y	
Magnesium	-	-	-	-	Y	
Manganese	200	880	n		Y	
Mercury	2	0.63	n	2	Y	
Methyl tert-butyl ether (MTBE)	-	12	с	-	Y	
Methylene chloride	100	4.8	c	5	Y	-
1-Methylnaphthalene	-	2.3	c	-	Y	
2-Methylnaphthalene	-	150	n	-	Y	-
2-Methylphenol	-	1800	n	-	Y	-
3+4-Methylphenol	-	180	n	-	Y	
4-Methyl-2-pentanone	-	-	-	·-	N	
Naphthalene	-	0.14	c*	-	Y	
n-Butylbenzene	-	-	-	-	Y	68
Nickel	200	730	n	-	Y	
2-Nitroaniline		-	-	-	Y	
3-Nitroaniline	-	3.2	C**	_	Y	
4-Nitroaniline	-	-	-	-	N	
2-Nitrophenol	-	-	-	-	N	1
4-Nitrophenol	-	-	-		N	
Nitrobenzene		3.4		-	Y	
N-Nitrosodimethylamine		0.00042	c		Y	
N-Nitrosodi-n-propylamine	-	0.0096	c	-	Y	
N-Nitrosodiphenylamine	-	14	c	-	Y	
n-Propylbenzene	-	-	-	-	Y	60.8
Pentachlorophenol	-	0.56	с	1	Y	
Phenanthrene	-	-	-	-	N	
Phenol	5	11000	n	-	Y	
Pyrene	-	1100	n	-	Y	
Pyridine	-	37	n	-	Y	
sec-Butylbenzene	-		-	-	Y	68
Selenium	50	180	n	50	Y	
Silver	50	180	n	-	Y	
Styrene	-	1600	n	100	Y	
tert-Butylbenzene	-	-	-	-	N	
Tetrachloroethene (PCE)	20	-	-	-	Y	
1,1,1,2-Tetrachloroethane	-	0.52	с	-	Y	
Toluene	750	2300	n	1000	Y	
1,2,3-Trichlorobenzene	-	8.2	n	70	Y	
2,4,5-Trichlorophenol	-	3700	n	_	Y	
2,4,6-Trichlorophenol	-	6.1	C**	-	Y	
1,2,3-Trichloropropane		0.0096	с	-	Ý	
1,2,4-Trichlorobenzene	-	-	-	-	N	
1,2,4-Trimethylbenzene		15	n	-	Y	
1,1,1-Trichloroethane	60	9100	n	200	Ŷ	
1,1,2,2-Tetrachloroethane	10	0.067	c	-	Y	
1,1,2-Trichloroethane	10	0.24	c	5	Y	

	NMED		EPA			
Analyte	New Mexico WQCC Standards_ugL	EPA Screening Levels.Tap Water_ugL	TapW_key	MCL_ugL	Constituent Detected	NMED Tap Water ug/l
Trichloroethene (TCE)	100	1.7	С	5	Y	
Trichlorofluoromethane	-	1300	n	-	Y	
1,3,5-Trimethylbenzene	-	12	n	-	Y	
Vanadium	-	260	n	-	Y	
Vinyl chloride	1	0.016	с	2	Y	
Xylenes, Total	620	200	n	10000	Y	
Zinc	10000	11000	n	-	Y	
General Chemistry					Y	
Alkalinity	-	-	-	-	Y	
Bicarbonate	-	-	-	-	Y	
Carbonate	-	+	-	-	Y	
Calcium	-	-	-	-	Y	
Chloride	250000				Y	
Iron	1000	26000	n		Y	
Nitrite	-	3700	n i	1000	Y	
Nitrate (NO3 as N)	10000	58000	n	10000	Y	
Potassium	-	-	-	-	Υ	
Sodium	-	-	-	-	Y	
Sulfate	600	-	-	-	Ý	
Total Petroleum Hydrocarbons					Y	
Motor Oil Range Organics (MRO)	1340000	-	-	-	Y	
Diesel Range Organics (DRO)	1720000	-	-	-	Y	
Gasoline Range Organics (GRO)	-	-	-	-	Y	

TABLE 8	SWMU No. 2 Soil Analytical Results Summary	Bloomfield Refinery . Bloomfield, New Mexico
---------	--	--

0.41-8:61) 942 UMWS	<2.7	27	280	
(1,6-2,0)	<14	14	180	
(.9:0:0).6 ⁻ Z NWAS	<13	<13	240	1
S.E1-0.E1) 8-5 UMWS	<2.6	<2.6	190	
(0'2-9'1) 8-2 MWAS	<13	27	8	
(.s:0-0) 8-7 NWAS	<2.8	<2.8	240	
(141-9:51) 7-2 UMV8	<2.6	<2.6	240	
(0'Z-9'V).4tZ.NWMS	<27	<27	210	i
(s:0-0) 2-2 NWAS	<13	<13	200	
0.41-9:01 2-2 NWAS	<2.8	<2.8	310	
(0.5-8.1) 8-5 UMWS	<2.8	<2.8	310	
(9.0-0) 9-7 NWAS	<2.8	<2.8	310	
0.41-0.61) a.S.UMM8	<2.5	<2.5	290	
(0.2:9.1) 9-2.UMV2	<2.7	<2.7	140	
(.s.o.o) 5-5:UMM/S	<2.8	<2.8 <	180	
(9.91.441) A-S.UMMS	<2.9	<2.9	110	
(0.5-8.1) HS UMMS	<2.7	<2.7	17	
(<i>s</i> :0•0) ≻ 2 ∩WNS	<2.7	<2.7	140	
0.91-3.51) 6-2 UMAS	<2.6	<2.6	220	
(1:5-5-0) S-2-0))	<2.7	<2.7	96	
(90-0) 8-7 NWAS	<2.7	<2.7	89	
0:01-9:01) 2-2 NWAS	<2.8	<2.8	240	ŗ
(07-91) Z-2 NWAS	<2.6	<2.6	63	4
SMWN 3-5 (0-0'£)	<2.7	<2.7	110	0
(16-11-11) [1-2 UM/NS	<2.5	<2.5	58	
SWWN 5-1 (1 6-5 0.)	<2.7	<2.7	96	
(3.0-0) 1-5 UMNS	<2.7	<2.7	150	
NMED Residential Soil Screening Level	31.3	3.9	15,600	01.7
Ê.,	-			ŀ

~~~	280	0.21	<0.11	0	33	<0.25	0.0	<0.035	3.7	<2.7	<0.27	17	35		<0.000887	<0.000887	
4	180	<0.83	<0.55	G	4.3	<0.50	6	0.043	6.3	41.2	<14	20	37		<0.000939	<0.00039	
2012	240	<0.80	<0.53	6.5	45	<0.50	14	<0.035	69	<13 13	<13	6	37		<0.000988	<0.000988 <	
27.01	190	<0.15	0.64	8.5	3.1	<0.25	15.	0.22	32	<2.6	<0.26	16	23		<0.000899	< 0000899 <	
1.72	190	0.39	<0.11	5.7	3.4	\$20	4.7	0.31	6.2	<14	<0.27	14	27	   	<0.00092 <	<0 00092 <	
210	240	0.4	0.44	16	4	<0.50	6.8	0.61	14	412	<0.28	15	48		<0.00097	<0.00097	∔
22.0	240	<0.15	<0.10	ω	3.3	<0.25	8.1	<0.034	2.7	<2.6 2.6	<0.26	151	18		- 966000.0>	<0.000996	
177	210	20.05	<0.11	4.4	3.2	<0.50	4.7	<0.036	4,8	<2.7	<0.27	14	22		< 0.000999	< 0.000999 <	
22	200	<0.80	<0.53	6.3	4.8	<0.50	5.7	0.093	7.2	<13	<1.3	20	40		<0.000992 <	<0.000992 <	
	310	<0.17	<0.11	3.3	e	<0.25	1.3	<0.036	7	<2.8	<0.28	18	19		<0.00104 <	<0.00104 <	
0.22	310	0.39	<u>6</u> 11	5	4.3	<0.25	4.7	<0.037	5.8	<2.8	<0.28	18	25		<0.00106	<0.00106	
0.7	310	0.43	<0.11	5.4	3.9	<0.25	4.4	<0.037	5.7	< <2.8	<0.28	17	24		<0.000917	•0.000917	1100000
2.2	290	<0.15	<0.10	6.5	3.4	<0.25	1.8	<0.033	2.9	<2.5	<0.25	17	18		<0.051	<0.051 <	200
2.22	140	0.27	<0.11	4	3.1	<0.25	3.9	<0.035	4.1	<2.7	<0.27	12	19		<0.000958	<0.000958	0100000
D i	180	0.34	<0.11	4.5	3.3	<0.25	5.6	0.061	9	414	<0.28	14	21		00919 <0.000988 <0.000958	<0.000988	0000000
D I	110	<0.17	<0.11	5.8	2.2	<0.25	2.8	0.039	2.5	<2.9	<0.29	12	22		0.000919	<0.0011 < 0.00099 < 0.00102 < 0.000954 < 0.000998 < 0.00106 < 0.00104 < 0.000919 < 0.000988 < 0.000958 < 0.000958	0.00000
	77	0.27	<0.11	3.7	2.6	<0.25	4.1	0.57	4.2	<2.7	<0.27	9	20		<0.0011 <0.00099 <0.00102 <0.000954 <0.000998 <0.00106 <0.00104 <0.0	<0.00104 <	
1.22	140	0.29	<0.11	6.3	e	<0.25	7.8	0.13	æ	<2.7	<0.27	13	40		<0.00106	<0.00106	00.000
2.2	220	0.21	<0.10	30	5.9	<0.25	1.4	<0.034	4.1	<2.6	<0.26	15	16		<0.000998	<0.000998	000000
1.2	96	0.45	<0.11	5.9	3.7	<0.25	4.7	<0.036	7	<2.7	<0.27	15	26		<0.000954	<0.000954	- 0 0000 v
1.2	89	0.34	<0.11	4.5	3.2	<0.25	4.2	<0.036	1.9	<2.7	<0.27	12	23		<0.00102	<0.00102	00000
2.3	240	0.17	<0.11	5.7	2.7	<0.25	1.7	2.2	2.7	<2.8	<0.28	17	19		<0.00099	<0.00099	000000
12:4	63	0.2	<0.11	2.4	1.9	<0.25	2.7	11	3	<2.6	<0.26	8.3	13			<0.0011	* FOO U-
1.20	110	0.28	<0.11	3.7	2.9	<0.25	3.2	4.1	4	<2.7	<0.27	12	18		<0.00109	<0.00109	00,000,01
2.3	58	<0.15	<0.10	1.3	0.98	<0.25	1.6	<0.034	0.94	<13	<0.25	5.5	7		<0.051	<0.051	1000
1.7	96	0.25	<0.11	3	2.3	s <0.25	2.9	<0.036	3.3	r  <2.7	<0.27	11 11	15		<0.00114 <0.00099 <0.051 <0.00109	<0.00114 <0.00099 <0.051 <0.00109	
~ 2.1	150	0.29	<0.11	3.8	2.7	<0.25	3.7	<0.035	4.2	<2.7	<0.27	5	18		<0.00114	<0.00114	A P P O O C -
	600	56	39	0,000	520	220	8	0000	560	191	191	8.2	,500		3.2	ខ្ល	3

ſ							
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
<u>6</u>	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939.	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8	66000	<0.00097		<0.000899	<0.000988	<0.000939	<0.000887
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
66	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8		<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
ñ	RN	NR	NR	NR	NR	NR	ЯN
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
380	<0.00398	<0.00388	<0.00368	<0.0036	.<0.00395	<0.00375	<0.00355
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
88	<0.00398	<0.00388	<0.00368	<0.0036	<0.00395	<0.00375	<0.00355
۳	NR	NR	NR	RN	RN	RN	RN
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
999	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
399	<0:00398	<0.00388	<0.00368	<0.0036	<0.00395	<0.00375	<0.00355
484	<0.00398	<0.00388	<0.00368	<0.0036	<0.00395	<0.00375	0.00776
966	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000339	<0.000887
999	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000339	<0.000887
999	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000339	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
390	<0.00398	<0.00388	<0.00368	<0.0036	<0.00395	<0.00375	<0.00355
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000339	<0.000887
88	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
88	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000339	<0.000887
66	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
ളി		<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8		<0.00097				<0.000939	<0.000887
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
666		<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
ളി	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
gĪ	<0.00199	<0.00194	<0.00184	<0.0018	<0.00198	<0.00188	<0.00177
ളി	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
8	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
86	<0.000996	<0.00097	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887
256	<0.000996	<0.009/	<0.00092	<0.000899	<0.000988	<0.000939	<0.000887

900 CONTRACT - CON 917 - 0.00108 917 - 0.00108 - 172 - 0.00108 - 172 - 0.00108 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.000108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.00108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.0 - 0.000108 - 0.000108 - 0.0 - 0.000108 - 0.000108 - 0.0 - 0.000108 - 0.000108 - 0.000108 - 0.000108 - 0.000108 - 0.000008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.00008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 - 0.0008 -

000917 <0.0010 00367 <0.0042 00367 <0.0042 000917 <0.0010 9999999999999 88<u>44666666666666</u>666 
 <0.051</td>
 <0.061</td>

 <0.061</td>
 <0.061</td>

 <0.061</td>
 <0.061</td>

 <0.061</td>
 <0.010</td>

 <0.061</td>
 <0.010</td>

 <0.061</td>
 <0.010</td>

 <0.061</td>
 <0.010</td>

 <0.061</td>
 <0.061</td>

 NU
 NU
 NU
 NU
 NU

 1000588
 0.00104
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.000381
 0.0000381
 0.000381
 0.00038 
 IR
 IR
 IR

 17
 4000919
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 40009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009819
 400009919
 4000099819
 400009919
 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100

69.3

<0.21

<0.20

1 of 2

*
5
É
8
å
<u>.</u>
2
p 2Vr
a.
Lou
ö
ζ,
ğ
y 2007 Ord
2
ly 2007
N
ŝ
2
dNMED July
ž
Z
,b
Ę
3IANT/Bloomfield/
ğ
ø
5
₹
Ö
ž
<u>a</u>
멑
ō
õ
Refining
<u> </u>
e
ľ
E
Ste
Ves
2
S:
ĕ
2
<u>q</u> .

Screening Levels 0-2         Screening Levels 0-2         Screening Levels 0-2         Screening Levels 0-2           Levels 0-2         0.29         0.29         0.29           60.30         60.30         6.030         6.030           60.30         6.030         6.030         6.030           60.30         0.29         0.29         0.29           60.30         0.2015         0.201         0.0000           101         0.11         0.11         0.11           0.27         2.0015         0.027         0.27           101         0.11         0.011         0.11         0.11           0.201         0.00015         0.0015         0.027           0.201         0.00015         0.0015         0.0116           0.011         0.011         0.11         0.11           0.011         0.011         0.011         0.114           0.021         0.0023         0.023         0.023           0.0116         0.0116         0.0116         0.012           0.021         0.0201         0.00016         0.002           0.011         0.011         0.011         0.011           0.0116         0.012         0.02	Screening Levels 0.2         Screening Levels 0.2         Screening	Screening Levels >10'	13.2	0.29 6,030	1150	1,000,000	661	400	2.09	953	212	730	13.600	200121	0.025	26.5	0.00321	0.00995	6 79	2,68	00.7	SN S	0.11	0.00041	0.408	1.42	0.00298	1.50E-05	0 237	0.0015	0.000	0.00819	0.355	0.0873	20.0	11		0.015	NS	75.5	PIC PIC	24	2	0.9	NS	SN	UN N	100	1.00	1020.0	412.0	0.0118	0.0023	0.0374	68.7	0.0195		0.188	0.00825	0	0.299	SN	0.00716	0.091	5.72	20.2	0.0019	NS	0.0027	0.17	0.394	5.4	5.4	4.33	10.5	4.3	0.0574	- 40	0.657	00.0	SSS	0.002	22.3	0.00545	2000
Economic         Screening           Levels 0.2         13.2           13.2         0.29           6030         6030           6030         6030           147         147           147         147           155         100205           101         0.011           0.023         0.023           0.011         0.011           0.023         0.023           0.011         0.011           0.023         0.023           0.023         0.023           0.023         0.023           0.0345         0.023           0.0015         0.0023           0.0015         0.0023           0.0016         0.0023           0.0016         0.0023           0.0016         0.0023           0.0023         0.0023           0.0023         0.0023           0.0023         0.0023           0.0023         0.0023           0.0023         0.0023           0.0023         0.0023           0.0023         0.0023           0.0023         0.0023           0.0023         0.0023 <t< td=""><td>es         Screening           Iscreening         Screening           Iscreening         Iscreening           Iscreeni</td><td></td><td>13.2</td><td>0.29 6.030</td><td>56.2</td><td>2/.5</td><td>61</td><td>400</td><td>2.09</td><td>953</td><td>010</td><td>310</td><td>13,600</td><td>ma/ka</td><td>0.025</td><td>26.5</td><td>0.00321</td><td>0.00995</td><td>6.79</td><td>89.0</td><td>89</td><td>n Z</td><td>0.11</td><td>0.00041</td><td>0.408</td><td>1.42</td><td>0.00298</td><td>1.50E-05</td><td>0 237</td><td>0.0015</td><td>0.000</td><td>0.00819</td><td>0.355</td><td>0.0873</td><td>76.0</td><td>11</td><td>1.0</td><td>0.015</td><td>SN</td><td>JE E</td><td>2.27</td><td></td><td>2</td><td>0.9</td><td>SN</td><td>SN</td><td>UN N</td><td></td><td>0.0001</td><td>0.0201</td><td>0.214</td><td>0.0118</td><td>0.0023</td><td>0.0374</td><td>7.89</td><td>0.0195</td><td></td><td>0.188</td><td>0.00825</td><td>0.1</td><td>0.299</td><td>NS</td><td>0.00716</td><td>0.091</td><td>5.72</td><td>20.2</td><td>0.0019</td><td>NS</td><td>0.0027</td><td>0.17</td><td>0.394</td><td>5.4</td><td>5.4</td><td>4.33</td><td>10.5</td><td>4.3</td><td>0.0574</td><td>- FC</td><td>0.657</td><td>/08/0</td><td>SN</td><td>0.002</td><td>22.3</td><td>0.00545</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td></t<>	es         Screening           Iscreening         Screening           Iscreening         Iscreening           Iscreeni		13.2	0.29 6.030	56.2	2/.5	61	400	2.09	953	010	310	13,600	ma/ka	0.025	26.5	0.00321	0.00995	6.79	89.0	89	n Z	0.11	0.00041	0.408	1.42	0.00298	1.50E-05	0 237	0.0015	0.000	0.00819	0.355	0.0873	76.0	11	1.0	0.015	SN	JE E	2.27		2	0.9	SN	SN	UN N		0.0001	0.0201	0.214	0.0118	0.0023	0.0374	7.89	0.0195		0.188	0.00825	0.1	0.299	NS	0.00716	0.091	5.72	20.2	0.0019	NS	0.0027	0.17	0.394	5.4	5.4	4.33	10.5	4.3	0.0574	- FC	0.657	/08/0	SN	0.002	22.3	0.00545	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		svels			56.2	2//2	61	400	2.09	953	0 10	310	13,600	sthod 8260B)	0.025	26.5	0.00321	0.00995	6 79	2.1.0	8,9	2 Z	0.11	0.00041	0.408	1.42	0.00298	1.50E-05	0 237	0.015		0.0019	0.355	0.0873	200	110		0.015	SZ	75.5	2.24		2	0.9	NS	SZ	UZ		- 2000	0.020.0	0.214	0.0118	0.0023	0.0374	68./	0.0195	÷	0.188	0.00825	0.1	0.299	NS	0.00716	0.091	5.72	20.2	0.0019	NS	0.0027	0.17	0.394	5.4	5.4	4.33	10.5	4.3	0.0574	1 100.0	21.1 D.667	1.000/	SN	0.002	22.3	0 00545	2.202.2
	and the second sec													Ž																					L																																												1						





10,≽1-2,61) 9-5 UM			<0.21	202	102	202	5U 33	<0.02 <0.43	<0.53	<0.53	<0.27	<0.21	<0.27	<0.53	12.02	20.27	<0.21	<0.21	<0.53	<0.21	<0.53	<0.53	12.02	12.02	<0.21	<0.21	<0.21	<0.21	<0.21	12.02	20.21	<0.53	<0.21	<0.53	<0.21	<0.21	12.02	<0.53 <0.53	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21 20.21	<0.53	<0.21	<0.27	<0.21 <0.21	<0.21	<0.21	<0.21	<0.27	<0.53 20.53	<0.53	<0.21	<0.21	<0.43	<0.21 <0.21	<0.21	<0.53	<b>1</b> 17	60 60	, , ,
(0.5.8.1) 9.5 UM	MS											<0.22	<0.28	<0.55	20.22	20.28 20.28	<0.22	<0.22	<0.55	<0.22	<0.55	\$6.0×	20.27	07.02	<0.22	<0.22	<0.22	<0.22	<u>60.22</u>	CC 07	70.02	<0.57	<0.22	<0.55	<0.22	<0.22	20.27	<0.42 <0.65	<0.22	<0.22	<0.22	<0.22 CC 0.22	<0.22	<0.72	<0.55	<0.22	0.37	<0.22 <0.22	<0.22	<0.22	<0.22	<0.28	CC.02	<0.55	<0.22	<0.22	\$0.44 0.77	<0.72	0.27	<0.55	<11		<u>}</u>
(.9:0-0) 6-7:NW	MŚ	<0.21	<0.21	12.02	<0.21 <0.21	<070×	CE 02	<0.43	<0.53	<0.53	<0.27	<0.21	<0.27	<0.53	12.02	<0.21	<0.21	<0.21	<0.53	<0.21	0.53	60.03	12.02	10.01	<0.21	<0.21	<0.21	<0.21	<u>6021</u>	20.21	<0.211	<0.53	<0.21	<0.53	<0.21	<0.21	1202	<0.53	<0.21	<0.21	<0.21	12.02	20.21	<0.21	<0.53	<0.21	<0.27	<0.21	<0.21	<0.21	<0.21	<0.27	<0.53	<0.53	<0.21	<0.21	<0.43	<0.21 <0.21	<0.21	<0.53	<11	- - - - - - - - - - - - - - - - - - -	
SIE1:0:E1) 8-2 NW	ws	<0.21	<0.21	12.02	<021 2021	17 U>	<0.31	<0.41	<0.52	<0.52	<0.26	<0.21	<0.26	<0.52	12.02	<0.261	<0.21	<0.21	<0.52	<0.21	<u>&lt;0.52</u>	<0.52 AU.52	90.02	10,20	. <0.21	<0.21	<0.21	<0.21	40.21	1000	40.21	<0.52	<0.21	<0.52	<0.21	-0.21	10.02	<0.52	<0.21	<0.21	<u>6021</u>	12.02	17.0 21.21	<0.21	<0.52	<0.21	<0.26	<0.21	<0.21	<0.21	<0.21	<0.26	<0.02	<0.52	<0.21	<0.21	\$0.41	0.21	<0.21	<0.52	<101	\$272 \$2	
(0.5-8.1) 8-5 UM	ÚŽ.			20.02			ľ	\$0.44	<0.55	<0.55	<0.27	<0.22	<0.27	<0.55	22.02	<0.27	<0.22	<0.22	<0.55	<0.22	<0.55	00.00	20.02	<0.72	<0.22	<0.22	<0.22	<0.23	27.0×	<0.22	<0.22	<0.55	<0.22	<0.55	<0.22	0.22	<0.22	<0.55	<0.22	<0.22	<u>6022</u>	<0.22	<0.22	<0.22	<0.55	<0.22	<0.27	<u>&lt;0.22</u>	<0.22	<0.22	<0.22	<0.2/	<0.05 CC 05	<0.55	<0.22	<0.22	44.0×	<0.22	<0.22	<0.55	<11	< <u>555</u>	
(10-0) 8-2 NWV					1.1			1 <0.44	1 <0.55	1 <0.55	s <0.28	0 <0.22	<0.28	0.55	20.02	<0.28	<0.22	0.22	<0.55	0.22	<0.55	0.02 6.02	20.27 20.28	<020	0 22	0.22	0.22	0.22	20.22	0202	<0.22	<0.55	<0.22	<0.55	0.22 2.22	0.22 0.22	<0.22	<0.55	0.22	0 <0.22	0.22	N.22	<0.22	<0.22	<0.55	0.22	<0.28	0.22	<0.22	I <0.22	<0.22	<0.28	×0.22	<0.55	<0.22	<0.22	<ul> <li>&lt;0.44</li> <li>&lt;0.73</li> </ul>	<0.22		<0.55		<5.5	
(#1-9:61) 7-5 (NWV	ws								<0.51	<0.51	<0.26	<0.20	<0.26	0.51	20.20	<0.26	<0.20	<0.20	<0.51	\$0.20 \$	-0.51 		<0.05 0.05	20 JC U>	<0.20	<0.20	<0.20	<0.20		<0.20 <0.20	<0.20	<0.51	<0.20	<0.51	<0.20	0.20 20.20	20 20 V	<0.51	<0.20	<0.20	20.20	02.02 02.02	<0.20	. <0.20	<0.51	0.20	27.02 20.20	<0.20	<0.20	<0.20	<0.20	07.U20	<0.20	<0.51	<0.20	<0.20	<0.41	<0.20	<0.20	<0.51		<5.1 <51	ĺ
(0.5-2.1) 7-5 UMV				<0.22		ł			<0.54	<0.54	<0.27	<0.22	<0.27	2.0 2	<0.22	<0.27	<0.22	<0.22	<0.54	<0.22	2.0 2.0		22.0×	<0.22	<0.22	<0.22	<0.22	<0.22	20.02	<0.22	<0.22	<0.54	<0.22	<0.54	<0.22 6.22	<0.22 0.22	<0.23	<0.54	<0.22	<0.22	0.22	<0.22 <0.22	<0.22 <0.22	<0.22	<0.54	0.22	<0.54 <0.54	<0.22	<0.22	<0.22	<u>60.22</u>	17.02	<0.22 40.22	<0.54	<0.22	<0.22	<0.43	<0.22	<0.22	<0.54	<11	< <u>5.4</u> <54	
(9:0-0))2-2 NWV	ws	<0.21	120 0	<0.21	<0.21	<0.43	<0.32	<0.43	<0.53	<0.53	<0.27	<0.21	<0.27	CO 03	<0.21	<0.27	<0.21	<0.21	<0.53	<0.21	<0.03 10 F2	10.02	<0.27	<0.21	<0.21	<0.21	<0.21	<0.21	20.21	<021	<0.21	<0.53	<0.21	<0.53	<0.21	12.02	<0.21	<0.53	<0.21	<0.21	12.02	<0.21	<0.21	<0.21	<0.53	<0.21	<0.53	<0.21	<0.21	<0.21	<0.21	50.51	<0.21	<0.53	<0.21	<0.21	<0.21	<0.21	<0.21	<0.53	<11	<5.3	
0. <b>kr.ä.sr) a-s</b> .UMM	ws	<0.22	27.02 V 0.72	<0.22	<0.22	L	si <0.33		<0.55	<0.55	<0.28	<0.22	<0.28	00.02	<0.27	<0.28	<0.22	<0.22	<0.55	60Z2	0.30	50.02 C 0.20	<0.28	<0.22	<0.22	<0.22	<0.22	0.22	<0.22	<0.22	<0.22	<0.55	<0.22	<0.55	0.22	20.22	<0.22	<0.55	<0.22	<0.22 6.22	27.0×	<0.22	<0.22	<0.22	<0.55	<0.22	<0.55	<0.22	<0.22	<0.22	<0.22	<0.20 <0.55	<0.22	<0.55	<0.22	<0.22	<0.22		<0.22			<5.5	
(1,5 ² 2.0) 2-6 (1,5 ² 2.0)	vs		20.27	3 <0.22	3 <0.22			5 <0.45			8 <0.28	3 <0.22	8 <0.28		3 <0.22	9 <0.28	3 <0.22	3 <0.22	5 <0.56	3 40.22	00.00	2002 2020	3 <0.28	3 <0.22	3 <0.22	3 <0.22	3 <0.22	3 <0.22	20 ×0.22	3 <0.22	3 <0.22	5 <0.56	3 <0.22	6 <0.56	020	202 202	3 <0.22	3 <0.56	3 <0.22	3 40.22	20.27	2021 <021	3 <0.22	3 <0.22	5 <0.56	3 <0.22	20.56	3 <0.22	3 <0.22	3 <0.22	50.22 20.22	0702 V 2012	30.22	3 <0.56	3 <0.22	3 <0.22	3 <0.22		3 <0.22			5 <5.6 5 <56	
VWN 5-6 (0-0.5.)	ws	000		<0.23	<0.2	<0.4	<0.3	<0.4	<0.5(	<0.56	<0.20	40.2	20.20		<02	<0.26	<0.2;	<0.2:	<0.56	202			<0.26	<02	<0.2;	1 <0.2	02		×0.2	<0.2	<0.2	<0.56	<0.23	<0.56	2.02	20.02	40.25	<0.56	<0.2	0.2.0		<0.23	<0.23	<0.23	<0.56	0.20	0.56	<0.23	<0.23	<0.23	202	202	<0.23	<0.56	<0.23	<0.20	<0.23	<0.23	<0.23	<0.56		<5.6 <56	
WWN 5-2 (130-140) WWN 5-2 (130-140)			1	<0.22 <0.20	1.	<0.43 <0.40	<0.32 <0.30	<0.43 <0.40	<0.54 <0.50	<0.54 <0.50	<0.27 <0.25	<0.22 <0.20	27.0 21.20		<0.22 <0.20	<0.27 <0.25	<0.22 <0.20	<0.22 <0.20	<0.54 <0.50	20.22 <0.20	20.54 <0.50	000 00	<0.27 <0.25	<0.22 <0.20	<0.22 <0.20	<0.22 <0.20	<0.22 <0.20	20.22 00.27	<0.22 <0.24	<0.22 <0.20	<0.22 <0.20	<0.54 <0.50	<0.22 <0.20	<0.54 <0.50	70.02 22.02	<0.22 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21 <0.21	<0.22 <0.20	<0.54 <0.50	<0.22 <0.20	<0.22	20.22 20.24	<0.22 <0.20	<0.22 <0.20	<0.22 <0.20	<0.54 <0.50	<0.22 <0.20	<0.54 <0.50	<0.22 <0.20	<0.22 <0.20	<0.22 <0.20	<0.22	<0.54 <0.50	<0.22 <0.20	<0.54 <0.50	<0.22 <0.20	<0.22 <0.20 <0.43 <0.40	<0.22 <0.20	<0.22 <0.20	<0.22 <0.20	<0.54 <0.50		<5.4 <10 <54 <51	
(9.0-0) 8-2 NWV	٨S	<u>60.22</u>	100.02	<0.22	<0.22	<0.44	<0.33	<0.44	<0.55	<0.55	<0.28	<0.22	<0.28	66.02	<0.22	<0.28	<0.22	<0.22	<0.55	<0.22	0.30 A 75	<0.22	<0.28	<0.22	<0.22	<0.22	<0.22	0.22	40.22	<0.22	<0.22	<0.55	<0.22	<0.55	20.22	\$0.22	<0.22	<0.55	<0.22	22.02	20.22	<0.22	<0.22	<0.22	<0.55	<0.22	<0.55	<0.22	<0.22	<0.22	20.22	<0.55	<u>6022</u>	<0.55	<0.22	<0.22	<0.22	<0.22	<0.22	<0.55	<11	< <u>555</u>	
(14-14) 5-4 (14-14 8)	vis	<0.23	C 02	<0.23	<0.23	<0.46	<0.34	<0.46	<0.57	<0.57	<0.29	0.23	20.23	200	<0.23	<0.29	<0.23	<0.23	<0.57	\$0.23 10 F7	022	<0.23	<0.29	<0.23	<0.23	<0.23	<0.23	50.23	<0.23	<0.23	<0.23	<0.57	<0.23	\90°	27.72	<0.23	<0.23	<0.57	<0.23	<0.23	<0.23	<0.23	<0.23	<0.23	<0.57	<0.23	<0.57	<0.23	<0.23	<0.23	<0.70	<0.57	<0.23	<0.57	<0.23	<0.23	<0.23	<0.23	<0.23	<0.57	<11	<5.7	
(0:5-9:1) H-S UMM		<u>60.22</u>																							<0.22	<0.22	0.22	20.22	<0.22	<0.22	<0.22				27.02	<0.22	<0.22	<0.54	<0.22 6 22	27.0×	<0.22 <0.22	<0.22	<0.22	<0.22	<0.54	<0.22 60.27	<u>60.54</u>	<0.22	<0.22	<0.22	27.02	<0.54 <0.54	<0.22	<0.54	<0.22 0.22	<0.22 0.43	\$0.22 \$0.22	<0.22	<0.22	<0.54	19	<5.4 <54	
WW⊓ 5-4 (0-0:2.)		<0.22		1																					<0.22	<0.22	<0.22	20.02	<0.22	<0.22	<0.22		<0.22		1	<0.22			<0.22	27.US	Ì													<0.54								<55.4 55	
) 41-2:51) 6:2 UMW		<0.21 20.21																1																	10.02	<021	<0.21	<0.51	<0.21	17.02	<0.21	<0.21	<0.21	<0.21										<0.51					<0.21			<5.1 <51	
(.0:2-9:1) 5-2 NWM																																		1					40.22 0.22															<0.55							11	<55	
WWN 5-3 (0-0 E.)		<0.22																																														<0.22						<0.54								<5.4	
141-9 61) 2-2 (IMM		1 <0.22																											1				1 <0.22															<0.22						<0.56								s <5.6	
(4:5-2 (4:5-2 0)		t		11			l	ł						t							L				1			1				l				L		1		t			ll				LI					Ļ	ιι	4 <0.53				ļļ				4 <5.3	
(0-0:5.) S-S (0-0:5.)		20 <0.21																		1																									1	1								1 <0.54								1 <5.4	
(0.2-9.1) 1-2 OWM		<0.22 <0.20																											<0.22 <0.2		)		- I				l í	_ I				1 1				0.27 < 0.25	)	<0.22 <0.2	- I		1		:0.22 <0.20	<0.54 <0.5	0.22 <0.2				0.22 <0.20		11	<5.4 <5.1 <54 <5.1	
WWN S-1 (0-0'8.)		<0.22 <																									ſ		ľ									7	0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22     0.22															0.54								<514 554	
NMED Residential Soil Level	4	+	-		_		4	_	4	╞	+		╞			4	_	-	4	╞					-	4						_	$\downarrow$	+-					╞	+	-			_	-	-			4	1	-			22.8					4		8	440	
ening Resid			n Ki	9	نو س	-						- é	"  ²		2	7 				ľ	ľ	Ĺ	_	2	e,		+			0.1	Ö	-	ω ²			6	44 38	сі С		- ic	0.6	÷	48	Ş	0 ⁷		12,t		- 2 B	ή [ 		5	7	5	2   X	58	1.	18,	2	-	2	~ 4	

TABLE 8 SWMU No. 2 Soil Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

I: Projects/Western Refining Company/GIANT/Bloomfield/NMED July 2007 Order/Group 2/Inv. Report/Gp #2 Inv Rpt tables

2 of 2

	Screening	Screening	Screening	_ ~ ~
	Levels 0-2'	10'	>10	й
	0.237	0.237	0.237	
1.3-Dichlorobenzene	0.08/3	0.08/3	0.08/3	
2,4,5-Trichlorophenol	143	143	143	
2,4,6-Trichlorophenol	0.143	0.143	0.143	
2.4-Dichlorophenol	0.863	0.863	0.863	
2,4-Dinitrophenol	1.05	1.05	1.05	
2.4-Dinitrotoluene	0.462	0.462	0.462	
2.6-Dinitrotoluene	0.034	0.034	0.034	
2-Unioronaprinaiene 2-Chioronhenoi	0.472	0.472	0 472	
2-Methylnaphthalene	0.9	6.0	6.0	
2-Methylphenol	2	2	2	
2-Nitrophenol	SN	SN	s s	
3,3'-Dichlorobenzidine	0.0371	0.0371	0.0371	
3+4-Methylphenol 3. Nitrosmitre	0.19	0.19	0.19	
4.6-Dinitro-2-methylphenol	NSN	SN	SN	
4-Bromophenyl phenyl ether	SN	SN	SN	
4-Chloro-3-memyiphenol 4-Chloroaniline	SN	S V	S Y	
4-Chlorophenyl phenyl ether	SN	SN	SS	
4-Nitroaniline	NS	SN	SZ	
4-Nitrophenol Acenanhthene	NS FA 0	NS	NS	
Acenaphthylene	SN	SN	NS	
Aniline	0.0034	0.0034	0.0034	
Anthracene A zobenzene	1620 0 00051	0.00051	1620	
Benz(a)anthracene	0.014	0.014	0.014	
Benzo(a)pyrene	2.34	2.78	2.78	
Benzo(p)nuoranurene Benzo(a,h,i)perviene	23.4 NS	CSS SN	33.5 NS	
Benzo(k)fluoranthene	234	335	335	
Benzoic acid Benaut atrobal	33	33	33	
Bis(2-chloroethoxy)methane	0.023	0.023	0.023	
Bis(2-chloroethyl)ether	0.00056	0.00056	0.00056	
Bis(2-chioroisopropyi)ether	1370	0.0144	21500	
Butyl benzyl phthalate	0.67	0.67	0.67	
Carbazole	SN	SN	SN	
Dibenz(a,h)anthracene	2.34	10.4	348 10.4	
Dibenzofuran	2.87	2.87	2.87	
Diethyl phthalate Dimethyl phthalate	354 1670	354	354	1
Di-n-butyl phthalate	3720	3720	3720	-
Di-n-octyl phthalate	SN	SN	SN	
Fluorene	58.5	58.5	58.5	
Hexachlorobenzene	0.686	0.686	0.686	
Hexachlorocyclopentadiene	431	431	1320	
Hexachloroethane	2.09	2.09	2.09	
Indeno(1,2,3-cd)pyrene	23.4	94.6	94.6	
Naphthalene	0.394	0.394	0.394	
Nitrobenzene	0.0184	0.0184	0.0184	
N-Nitrosodi-n-propylamine N-Nitrosodiphenvlamine	0.000011	0.000011 5 71	0.000011	
되었	0.117	0.117	0.117	
Phenanthrene	464	464	464	
Preno	47.4	47.4	47.4	
	0.0097 0.0097	2600.0	0.0097	
- (EP)	ethod 8015E	1120	1120	
	SN	SN	SN	11
Motor Oil Range Organics (MRO) NR - not remoted	890	890	890	

NR- no screening level specified



# TABLE 9 SWMU No. 8 Soil Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

	3196-72) 21-8 UMWE	 27	7.1	200	0.54	<0 11	31	4.5	<0.25	64	<0.036	6 C
	(1;e-5;0) 21-8 (1;e-5;0)	<2.6	<2.6	280	0.47	0 11	6.1	2	<0.5	5	<0.035	7.2
	(9.0-0) \$1-8 UMWS	<13	<13 <13	300	<0.80 0.80	<u>6</u> .5	9.8	12	<0.5	62	<0.035	12
	(0:5-9:1) (1-8:0MWS	<2.7	<27	210	0.45	<0.11	5.6	44	<0.5	44	<0.034	6.2
	(9.0-0) 11-8 NWAS	<27	<27	250	<1.6	<1.1	4	9.6	<0.5	9.4	<0.035	15
	(0:2-91).01-8.NWMS	<2.6	<26	350	0.47	<0.10	6.4	5.4	<0.5	4.8	<0.035	7.1
	(9:0:0) 01-8 NWAS	<2.6	en	440	0.5	<0.11	6.1	4.8	<0.5	5.1	<0.035	7.2
	(0,5-9,1) 6-8 UMWS	<13	27	250	0.47	<0.11	6.9	9	<0.5	6.4	<0.035	8.4
	(\$'0-0) 8-8 NWAS	<2.7	<2.7	300	0.46	\$0.11	17	4.7	<0.5	4.7	<0.036	2
	(0,2-3 t) 8-8 UMVS	<2.6	<2.6	180	0.43	<0.11	100	4	<0.5		0.053	2
	(.s.0-0) 8-8 NWAS	<2.6	<2.6			<0.11	83				0	
	(0:5-3:1) 7-8 UMVS	<2.6	4	180	0.42	<0.10	86		ľ		Ó	
	(.9.0-0) 2+8 NWAS	<2.6	<2.6	180	0.42	<0.10	78	4.2	<0.5	6.7	Ö	8.3
	(46-66) 69-8 UM/VS	< 2.9	< 2.9	130	< 0.18	< 0.12	7.7	2.2	<0.5	3.8	< 0.039	2.2
	(0.5.611):9-8 UMVS	<2.7	0	200	0.44	V	5 8	4.5	<0.5	5.6	0.045	
	(3:0:0) 9-8 NWAS	<2.6	<2.6	210	0.43	Å	85	4.2	<0.5	6.1	0.046	8.5
	(.072-911) 9-8 NWAS	Q	V			å	220	4	0.50		5 0.14	9.9
	(\$:0-0) \$-8 NWAS	3 <2.7	3 4.2	230		31 0.14	7  380		5 <0.50		5 0.35	10
	(0.5-9 t) <del> -</del> 8:∩WAS	7 <13	7 <13	0 210	5 <0.80	1 <0.53	8 6.7	2 5.8	5 <0.5	8 6.4	5 <0.035	7 8.3
	(\$0-0) <b>F</b> 8 NWAS		2.7	370	0.45	<0.11	5.8	4.2	<0.5	4.8	Ş	6.7
İ	(0.5-5.1) 6-8 UMVS	<2.6	<2.6	200	0.36	<0.11	9.4	3.6	<0.5	12	0.25	8.4
Ì	(g:0:0) £-8 NWAS	<2.7	<2.7	230	0.33	<0.11	80	3.7	<0.5	7.8	0.14	9.1
ĺ	(0.5-5.1) 5-8 UMAS	<2.6	<2.6	230	0.45	<0.11	6.5	4.6	<0.5	4.8	Ş	6.8
	(90-0) 2-8 NWAS	3 <2.6	3 2.8	300	9 0.45	3 <0.11	9 6.51	1 4.5	5 <0.5	9 5.1	5 <0.035	9 6.9
	(.0 2-5 I) I-8 NWNS	3 <13	3 <13	0 260	9 <0.79	3 <0.53	1 7.5	1 6.1	5 <0.5	4 6.9	5 <0.035	1 9
	(.S.O-0) 1-8 NWAS	<13	<13	190	<0.79	<0.53	1	6.1	<0.5	9,4	0.035	-
	Residentia Soil	31.3	3.9	15,600	156	39	100,000	1,520	1,220	400	100,000	1,560
	Screening Levels >10'	13.2	0.29	6,030	1150	27.5	1,000,000	661	147	400	2.09	953
		 - 1	11		1	1	1	1	1	1	i 1	1

 
 1119
 0.00113
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00119
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 0.00113
 <th0.00113</th>
 <th0.00113</th>
 <th0.00 
 Di113
 40000

 00113
 40000

 00113
 40000

 00113
 40000

 000113
 40000

 000113
 40000

 000113
 40000

 000113
 40000

 000113
 40000

 000113
 40000

 000113
 40000

 13
 4000
 <26 <0.26 20 <27 <0.27 226 16 84 <0.26 939 -0.26 -0.26 <del>ତ୍</del> ତ ତ ତ ତ × 0.29 <0.27 <26 <0.26 <0.27 <u>6.27</u> <u>9</u>8 <13 <2.7
<0.27
20
29</pre> <2.6 <0.26 18 45 <2.7</li>
 <0.27</li>
 15
 14 2.6 2.6 2.6 <2.6 13 13 13

<13 <1.3 25 52

 
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 1
 0.00101
 0.00011
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 0.00111
 <th0.00111</th>
 <th0.00111</th>
 <th0.00111 
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.0011
 4.00016
 4.0011
 4.00016
 4.0011
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4.00016
 4. 
 0.00111
 0.00111
 0.00111

 0.00111
 0.00111
 0.00113
 0.0

 0.00111
 0.00111
 0.00113
 0.0

 0.00111
 0.00113
 0.0
 0.0

 0.00111
 0.00113
 0.0
 0.0

 0.0011
 0.00113
 0.0
 0.0

 0.0011
 0.00113
 0.0
 0.0

 0.0011
 0.00113
 0.0
 0.0

 0.0011
 0.00113
 0.0
 0.0

 0.0011
 0.00111
 0.00113
 0.0

 0.0011
 0.00111
 0.00113
 0.0

 0.00111
 0.00111
 0.0
 0.0

 0.00111
 0.0
 0.0
 0.0

 0.00111
 0.0
 0.0
 0.0

 0.00111
 0.0
 0.0
 0.0

 0.00111
 0.0
 0.0
 0.0

 0.00111
 0.0
 0.0
 0.0

 0.00111
 0.0
 0.0
 0.0

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 0.0011
 0.0011

 0.0011
 < 

 NR
 NR

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106

 -0.00106
 -0.00106
 </t

00111 -0.0011 00111 -0.0011 00111 -0.0011 00111 -0.00113 00111 -0.0013 00111 -0.0013 00111 -0.0013 00111 -0.0013 00111 -0.0013 00111 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 00113 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 0013 -0.0013 00013 -0.0013 00013 -0.0013 00013 -0.0013 00013 -0.0013 0013

 00113
 <0000</td>

 0013</td

. Report/Gp #2 inv Rpt tables
2007 Order/Graup 2Vinv
ThBloomfield/NMED July ;
Refining Company/GIAN
I:VProjects/Western

Screening Levels 2- 10'	13.2 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Screening Levels 0-2'	
Analytes	Metals (mg/kg)         13.2           Antimory         0.29           Barlum         0.29           Barlum         0.29           Barlum         0.29           Barlum         0.29           Barlum         0.29           Barlum         27.5           Chromium         27.5           Cable         0.000           Barlum         27.5           Cable         0.000           Desplay         1.1           Consult         1.3           Consult         0.000           Nuckel         2.00           Nuckel         3.13           Silvernium         3.13           Varadum         3.13           Varadum         0.0015           Silvernium         3.13           Varadum         0.0015           Silvernium         3.13           Varadum         0.0015           Silvernium         0.0015           Silvernium         0.0015           Silvernium         0.0015           Silvernium         0.0015           Silvernium         0.0015           Silvernium         0.0015           S









S 96-75) SI-9 UMV		50 50
	0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0	
	\$	705
(.90-0) I I -9 MWV		102
(.0'8'5'1) 01-8 NWV		
(.9.0-0) 01-8 MWV		
(0.5-5.1) 6-8 UMA		
(0.0.9.9.1) 8-8 (JWW	<u> 8888</u>	
( <i>s</i> :0-0) 8-e ∩wv	888 <mark>88</mark>	1002
(0 2-9 I) 2-9 NWV		
(.9'0-0) 2-8 NWV		
( <del>6</del> 5-66) 69-8 UMA	227 (0.02) (2.7) (0.02) (2	
WWN 8-9 (0-0-2.)		
(0 2-3 1) 8-8 UMM	<u> 8888</u>	1240
(.9.0-0) 9:8:NWV	<u>1989999655695565566666666666666666666666</u>	
(0,5-8,1) M-8,UMW		
		{
		ļ
(9'0'0) 8-8 (9'0'2)	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
		, , ,
(0.5-911) 1-8 UMM		'
(;s:0-0) I+8 MWM	\$	
NMED Residential Soil	183 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 12200 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 1220 12200 12200 12200 12200 12200 12200 12200 12200 1200 1200 120	-
g Screening - Levels >10'	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000	-
Screening Levels 2- 10'	0.0034         0.0142           7.11         7.11           7.11         1.0034           1.0034         0.0465           0.0145         0.0145           0.017         0.0137           0.017         0.0137           0.017         0.0137           0.017         0.0137           0.017         0.0137           0.017         0.0147           0.018         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.0117         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.00056         0.00056           0.000136         0.00056	1
Screening Levels 0-2'	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000000	
	2.4. Dichtorophenol 2.4. Dirictoriophenol 2.4. Dirictorophenol 2.4. Dirictorophenol 2.5. Entitrophenol 2.5. Entitrophenol 2.5. Entitrophenol 2.5. Entitrophenol 2.5. Entitrophenol 2.5. Entitrophenol 2.5. Entitrophenol 2.5. Entitrophenol 2.5. Entitrophenol 3.3. Dichtorophenol 3.3. Dictorophenol 4.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 2.5. Entitrophenol 4.5. Entitrophenol 4.5. Entitrophenol 2.5. Entitrophenol 4.5. Entitrophenol 2.5. Entitrophenol 4.5. Entitrophenol 2.5.	1

2 of 2

51.6



# TABLE 10 TABLE 10 SWMUs No. 9 and 18 Soil Analytical Results Summary Soil Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico 5:9:0) 5:4:0) 5:4:0) 5:4:0) 5:4:0) MIED 0:5:0)

(9:2-9) <b>1-6 NWAS</b>		$\begin{array}{c} 6 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
1-3 FL) 1-6 NWNS	<ul> <li>42.8</li> <li>43.2</li> <li>43.2</li> <li>43.2</li> <li>43.2</li> <li>43.2</li> <li>43.4</li> <li>44.4</li> <l< th=""><th>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</th></l<></ul>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
12-31) 1-6 NWNS	<ul> <li>22.8</li> <li>30</li> <li>33.6</li> <li>33.5</li> <li>41.1</li> <li></li></ul>	$\begin{array}{c} 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.067\\ 0.$
(.s.o-o) 1-6 NWMS	<ul> <li>256</li> /ul>	0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.002         0.002           0.002         0.002         0.
S-3.1) №81 UMMS	$\begin{array}{c} (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\ (11)\\$	<0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925           <0.000925 <td< th=""></td<>
e:0-0) ►-31 UMMS	Comparison of the second state of the	0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974         0000974 <t< th=""></t<>
3-9'2) 6:81 NWAS	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107         0.000107
2-9 L) 2-81 NWAS	<pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre>&lt;</pre></pre>	0001014 + 0001014 + 0001014 + 0001014 + 0001014 + 0001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 00001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000001014 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000104 + 0000000000
9:0-0) 8:81 MWAS	$\begin{array}{c} < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\ < 1 \\$	0.00000         0.000000         0.0000000         0.00000000000000000000000000000000000
2-82) 2-81 UMWS	<ul> <li>2.6</li> <li>2.6</li> <li>2.6</li> <li>2.6</li> <li>1.8</li> <li>1.9</li> <li>1.8</li> <li>1.8</li> <li>1.9</li> <li>1.9</li> <li>1.8</li> <li>1.9</li> /ul>	A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A         A
2-81) 2-81 UMWS	<ul> <li>237</li> <li>237</li> <li>233</li> <li>233</li> <li>28</li> <li>28</li> <li>28</li> <li>28</li> <li>28</li> <li>213</li> <li>28</li> <li>213</li> <li>28</li> <li>213</li> <li>213</li> <li>213</li> <li>214</li> <li< th=""><th>0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.00000         0.0000         0.0000</th></li<></ul>	0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.0000         0.00000         0.0000         0.0000
2-9-1):Z-81-AWMS	<ul> <li>23.7</li> <li>23.7</li> <li>23.8</li> <li>6.53</li> <li>5.3</li> <li>5.4</li> <li>5.5</li> <li>5.5<!--</th--><th>0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0</th></li></ul>	0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0
10-0) z-81 NWMS	266 210 213 213 213 213 213 213 213 213	2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 20000963 2000963 2000963 2000963 20000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 2000963 200000963 20000963 20000963 2000963 2000963 2000963 200096
-s I) [-8] NWVS	<pre>^27 2.7 2.7 2.7 2.8 3.8 3.8 3.6 3.5 3.5 3.5 4.1 11 11 11</pre>	0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105         0.00105 <t< th=""></t<>
0-0) 1-81 NWVS	227 227 227 227 227 227 227 227	40 000965         40 000965         40 000965           40 000965         40 000965         40 000965           40 000965         40 000965         40 000965           40 000965         40 000965         40 000965           40 000965         40 000965         40 000965           40 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000965           41 000965         40 000965         40 000166           40 000965
NMED Residential Soil Screening Level	31.3, 3.9, 3.9, 3.9, 3.9, 15,600 15,600 100,000 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,560 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,5000 1,5000 1,5000 1,5	4.3.2         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5         5.5.5 <th< th=""></th<>
Creening Res Levels >10' Sc	13.2         13.2           0.29         1           1150         1           27.6         0.30           1150         1           27.6         1           953         1           953         1           19         1           19         1           19         1           19         1           19         1           19         1           19         1           19         1           13.60         2	0.025         0.025           26.5         26.5           26.5         0.00321           0.00955         6.79           0.11         0.011           0.237         0.0373           0.11         0.011           0.011         0.0013           0.011         0.0013           0.011         0.0013           0.0115         0.0013           0.0116         0.0114           0.0214         0.0013           0.0115         0.0013           0.0116         0.0118           0.01176         0.0013           0.0118         0.0118           0.0119         0.0013           0.0116         0.0118           0.01176         0.0013           0.01176         0.0013           0.0118         0.0013           0.01176         0.0013           0.01176         0.0013           0.01176         0.0013           0.01176         0.0013           0.0117         0.0013           0.0117         0.0013           0.0117         0.0013           0.0013         0.0013           0.0013
Screening Scr Levels 2- L 10'	13.2         13.2           0.29         0.29           6.030         6           56.2         56.2           56.2         6           56.2         6           56.2         6           56.2         6           56.2         6           56.2         6           56.2         6           61         6           61         6           61         6           63         31.3           31.0         113,600           113,600         1	1000000000000000000000000000000000000
Screening Scr Levels 0-2' Lev	13.2         13.2           13.2         0.23           0.23         0.23           0.23         0.23           0.25         0.23           0.200         10           0.141         147           147         147           953         31.0           331.0         31.3           33.500         13.500	Interest         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03
Sci Levi		
ر م	(E)	
Ę		

Analytes letals (mg/kg) and mony and environ and environ and environ and environ and environ and environ hromium hromium hromium hromium hromium and and and the and t	l oluene trams-1.2-DCE Trans-1.3-Dichloroproper Trichloroethene (TCE) Trichloroethene (TCE) Xylenes, Total Xylenes, Total
Metals A A A Metals A A A Metals A A A A A A A A A A A A A A A A A A A	I oluene trans-1 Trichlon Vinyl ch







WED July 2007 Order/Group 2 Mrv. Report/Gp #2 trv Rpt tables

# TABLE 10 SWMUs No. 9 and 18 Soil Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

( <i>G</i> :2-5) 1-6 (1000)	15	<1.2	<1.2	<1.2	<1.2	<1.2	41.2	0.72	2.12	31	2 7 7	<1.6	<1.2	2.9	<3.1	<1.2	<1.2	<1.6	<1.2	<1.2	<b>3</b> 1	<1.2	<u>6</u> .1	₹3.1	<1.2	<1.6 1.6	<12 12	412	<1.2	1.2	<1.2	7.0		212	212	- C - C	21.5	2				1.1		2.12	<1.2 2	412	7.12	7.12	10.57	21.2	12	<16	<3.1	<1.2	<1.2	<1.2	<1.2	<1.6	<u>3</u> .1	1.7	3.1	4.2	<1.2	<2.5	<1.2	<1.2	<1.2	3.1		92	<12	280	
0:91:9:41) 1-6 NWAS	IS	<0.23	<0.23	<0.23	<0.23	€0.23	€0.23 •	<0.45 <0.24	<0.04 <0.45	<0.57	<0.57	<0.28	<0.23	<0.28	<0.57	<0.23	<0.23	<0.28	<0.23	<0.23	<0.57	<0.23	<0.571	<0.57	<0.23	<0.28	<0.23	<0.23	<0.23	<0.23	<0.23	-0.23 -0.23	0.23	0.23	510	/0.02	20.20	/0.02	20.23	20.23	50.23 0.23	20.20	10.02	\$0.23	<0.23	0.23	50.23	0.70	0.20	<0.57	<0.23	<0.28	<0.57	<0.23	<0.23	<0.23	<0.23	<0.28	<0.57	<0.23	<0.57	<0.23	<0.23	<0.45	<0.23	<0.23	<0.23	<0.57		Ê	<5.7	<57	
(1075-3-1) (1075-3-0)	١S	<1.1	<1.1	1.1			1.1	27.0	0.0	2 B	<2.8	<1.4	<1.1	4.2	<2.8	<1.1	<1.1	<1.4	4.1		<2.8	₹. V	<2.8	<2.8 <2.8	<b>₽</b>	41.4	1.1			4.1						7 10		0 ¥					- 10 V V							80	4.1	<1.4	<2.8	4.1	1.1	4.1	<u>1</u> .1	<1.4	<2.8	2.7	\$2.8	- - - -	v	<2.3	÷,	V	41.1	<b>2</b> .8		33	F.	821	
(. <u>\$</u> .0-0) 1-6 NWAS	S	Ŷ		Ŷ	ç,	Ş ¢		7 ⊽	? ₽ 	0	<b>⊽</b>	Ş	Â	9		ô	Ŷ	<0.26	Ŷ	<0.21		ç °		Ģ. ¦	<0.21		12.02	17.02	12.05	<0.21	17.02	17.02	10,01	12.02	20.2	10.02	20.50	10.02	10.01	10.01	10.0	0.50	10.07	2.2	17.02	12.02	12.02	<0.21	<0.21	<0.52	<0.21	<0.26		<0.21	<0.21	<0.21	<0.21	<0.26	<0.52	<0.21	<0.52	12.02	17.02	<0.42	17.0	12.05	<0.21	<0.52		10	<5.2	\$21	
('0.5-8.1) h-81 UMW8	S	{						<0.32		l		<0.27	<0.22	<0.27	<0.54	<0.22	<0.22	<0.27	<0.22	€0.22 5.1	\$0.54	<0.22	\$0.54 	<0.54	<0.22	12.02			ļ						(		l				ł	ł						ļ	ļ	<0.54	<0.22	<0.27	<0.54	<0.22	<0.22	<0.22	<0.22	<0.27	Å.05	<0.22	<0.54	27.05	2.0	\$0.43	27.02	77.02	\$0.22 \$	<0.54	;	÷	<5.4	28	••••
(.9:0-0) 1-81 NWAS	s	<0.21						ĺ	ĺ									<0.27		<0.21	50.03	17.02	<ul> <li>C.53</li> <li>C.53</li> </ul>	50.03	12.02	20.2/	12.05	17.05	17.0	12.05	12.0	10.05	10,02	10.07	10.20	10.02	<0.52 CO 52	0.0	12.02	10.01	10.01	202	100	10.21	12.02	12.02	12.02	<021 1202	<0.21	<0.53	<0.21	<0.27	<0.53	<0.21	<0.21	<0.21	<u>&lt;0.21</u>	< 0.27	<0.53	<0.21	<0.53	17.02	12.0	50.42	17.02	17.05	12.02	<0.53		170	\$5.31	1085	***
(.0'6-9'2) 5-81 NWAS	S	<0.22																		<0.22	Ş	Ş ¢	Ş	Ş	20.22	Ş	20.22	22.02	77.02		77.02	<0.22	<0.22	20.02	97.02	<0.00 <0.20	40 FR	<0.00 <0.00	50.02	20.02	20.02	<0.5A	<0.00 <0.00	20.02	0000	0.07	50.02 CO 02	<0.22	<0.22	<0.56	<0.22	<0.28	<0.56	<0.22	<0.22	<0.22	<0.22	<0.28	90.0v	<0.22 • • • •	0.56	20.22	27.0	0.40	20.72	20.22	20.27	<0.56	~~ <b> </b>	11	<5.6	62	***
(.0 2-5 1) E-81 NWAS	S	<0.22											ĺ								ĺ		ł																		ĺ	<0.55	<0.22	<0.22	CC U2	20.02	<0.22	<0.22	<0.22	<0.55	<0.22	<0.27	<0.55	€0.22	<0.22	<u>&lt;0.22</u>	27.0	12.0	\$0.33	<0.22	50.55	20.02	17.0	44.0V	22.02	20.02	<0.22	<0.55		46	10.02 0.71		
(isio-0) 5-81 UMWS	s	<0.22	<0.22	22.02	20.22	20.02	<0.22 <0.43	<0.32	<0.43	<0.54 4	<0.54	<0.27	<0.22	<0.27	<0.54	<0.22	<0.22	<0.27	0.22	\$0.22 V0 5 4	40.04	20.2Z	10.04	7.07	20.27	12.0	22.02	20.02	77.07	CC 07	20.02	<0.22	<0.22	<0.22 <0.22	27.0×	<0.22	<0.54	<0.22	<0.22	<0.25	<0.22	<0.54	<0.22	<0.22	<0.22	<0.22 <0.22	<0.22	<0.22	<0.22	<0.54	<0.22	<0.27	<u>60.54</u>	<0.22	<0.22	<0.22	27.02	17.02	8.0	27.02	40.54 0.54	20.02	27.07	0.43	20.02	20.02	20.22	<0.54		48	40.02 V		***
2100 1815 (38-53)	s	<0.20	<0.20	02.02	02.02	02.02	<0.41	<0.31	<0.41	<0.51	<0.51	<0.26		<0.26	<0.51	<0.20	<0.20	<0.26	07.02	<0.2U		20.20	10.02	10.02	30.07			02.02		07.07	00.02	<0.20	<0.20	02.02	<0.51	02.02	<0.51	<02 U>	0000	<02.0×	02 US	<0.51	<0>0>	00.05	02.02	02.02	<0.20	<0.20	<0.20	<0.51	<0.20	<0.26	<0.51	-0.20 -0.20	<0.20	<0.20	02.05	07.02	10.02	20.20	10.0	02.02	14 07		02.02	02.02	10.20	10.0>	U.U.	20	101.×	CO	
(.02-81) 2-81 NWAS	s	<0.21																	17.02	12.05	8.0	12.02	50.07	5.0	12.02	17.0	10.0	10.02	10,01	10.01	20.21	<0.21	<0.21	<021 2021	<0.54	<0.21	<0.54	<0.21	<0.21	<0.21	<0.21	0.54	<0.21	<0.21 <0.21	<0.21	<0.21 AD 21	<0.21	<0.21	<0.21	<0.54	<0.21	<0.27	<0.54	<0.21	<0.21	<0.21	12.02	20.27	40.04 0.04	17.02	0.07 20.07	- 10	27.07	27.0	10.02	17.02	17.02	4 <u>.</u> 0		ŧ		₹, 7	1000.2
(0.5-5.1) 5-61 UMMS	s	<0.21	<0.21	12.02	12.05	12.02	17.02	<0.32	<0.42	<0.53	<0.53	<0.27	<0.21	<0.27	<0.53	<0.21	<0.21	<0.27		<0.21 20.51	20.02	202	20.0	200	12.02	10.01	10.01	10.02	10.01	12.02	<0.21 <0.21	<0.21	<0.21	<0.21	<0.53	<0.21	<0.53	<0.21	<0.21	<0.21	<0.21	<0.53	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.53	<0.21	<0.27	<0.53	12.02	12.0>	12.02	12.02	22.0	20.0	12.02	10.02	<0.21	<0 42	<0.21	<0.21	<0.21	20.53	20.02		23			**
(.\$'0-0) 2-81 NWAS		<0.21				Ş	ç Q	<0.31	0 V	° V	Ô	Ş	Ş	<0.26	<0.52	<0.21	<0.21	<0.26	12.02	<0.21 <0.52	×0.02		10.7Z	10.07	90.05	10.20	10.02	<0.21 <0.21	20.21	<0.21 <0.21	<0.21	<0.21		<0.21	<0.52	<0.21	<0.52	<0.21	<0.21	<0.21	<0.21	<0.52	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.52	<0.21	<0.26	<0.52	12.0>			90.07			12.02	20.02	2.0.2	20 41	0.24	<0.21 <0.21	<0.21	0.2	76.02	AEA	450			
(.0.2-9 I) I-9I NWNS	6	<0.21													<0.54			12.0>	12.02	<0.21 <0.54	50.01 50.01	17.0×	0.50	10.02	20.02	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.54	<0.21	<0.54	<0.21	<0.21	<0.21	<0.21	<0.54	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21				<0.54				20.07								<0.21	? ⊽ 		7	111		76.7		
(\$'0-0) t-st NWAS	5	<0.21	<0.21	10.02	<0.21	<0.21	<0.43	<0.32	<0.43	<0.53	<0.53	<0.27	<0.21	<0.27	<0.53	<0.21	<0.21 0.27	12.05	10.02	<0.51 <0.53	50.02 10.02	<0.51 <0.53	50.52 CC:02	10.02	2.0	<0.21 <0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.53	<0.21	<0.53	<0.21	<0.21	<0.21	<0.21	<0.53	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.21	<0.53	<0.21	<0.27	40.53	12.05	12.0	12.02	20.02	10.53	20.0	10.4	20.07	<0.21 <0.21	<0 43	21.01	<0.21	<0.21	<0.21 <0.53	00.04	ABD	400	P.P.	200	
NMED Residential Soil Screening Level		69.3	3/.4	30.5	6 110	6.11	183	1,220	122	122	NS	NS	199	310	SN	n c	SN SN	8'n	C UN	2 VN	NN N	NN N	e v	e un	C V	N.N.	3 730	NS	S.N.N	22 000	SN	NS	0.621	6.21	NS	62.1	NS	NS	NS	2.44	38.7	347	NS	NS	615	0.621	142	48,900	100,000	6,110	NS	2,290	2,660	3.U4	SCC 2CC	200	6 21	5 120	70.5	0.01	NC NC	893	29.8	1 830	18.300	2,290	NS NS	2	520	NZC SN	0N1	Ì	
Screening Levels >10'		0.408	0.23/	0.000	143	0.143	0.863	7.11	1.05	0.462	0.034	18	0.472	<u>6.0</u>	2	2 C	SN C	0.03/1	0.0007	NSN SN	NN N	S N	2 v	e viz	NN N	NN N	549	SN	0 0034	1620	0.00051	0.014	2.78	33.5	SN	335	33	4.2	0.023	0.00056	0.0144	21500	0.67	NS	348	10.4	2.87	354	1670	3720	NS	4690	58.5	0.000	81000	320	5 P. P.	2.5	1000	10104	0.00011	5 71	0 117	464	47.4	373	0 0097	0.003/		NZ N		ſ	
Screening Levels 2- 10'		0.408	0.23/	0.110	143	0.143	0.863	7.11	1.05	0.462	0.034	18	0.472	6.0	2		SPO O	0.03/1	0,00047	N.N.N.	v z	N N	U V	o viz	N N	S N	675	SN	0 0034	1620	0.00051	0.014	2.78	33.5	NS	335	33	4.2	0.023	0.00056	0.0144	4660	0.67	SN	348	10.4	2.87	354	1670	3720	SN	4690	58.5	0.000	0.0018	200	67 F	2 m	NOC O	1000	0.0001	5.71	0 117	464	47.4	373	0 0097	58) mo/len	1120	NSN	NDR	750	~
Screening Levels 0-2'	8270) ma/k	0.408	0.0270	0.110	143	0.143	0.863	7.11	1.05	0.462	0.034	18	0.472	0.9	7	n a	2000	0.03/1	0,00007	N.N.	S.N.N	S.N.	UN N	NN	N.N.	N.N.	549	NSN	0 0034	1620	0.00051	0.014	2.34	23.4	SN	234	33	4.2	0.023	0.00056	0.0144	1370	0.67	NS	348	234	2.87	354	1670	3720	SN	4690	58.5	0.0040	0.0019	200	23.4		NOC U	1000	0,00011	571	0.117	464	47.4	373	0 0097	Method 801	1120	NSN SN	Geg	202	
	(EPA Method			1																Pool	ether		2	ather										Ī					thane		ether	late													diana						arine	e	.					rocarbons - (FPA	(DRO)	nics (GRO)	nine (MRO)	I'v liki v	l enerified

- ( [] 전이미미이에이미미미미리 한 한 아이란 한 번 한 만 한 한 만 한 만 한 만 이 이 이 이 이 이 이 이 이 이 한 것 같은 아이 이 한 것 한 것 같을 할 수 있는 것 같을 할 수 있는 것 한 것 이 이 이 가 가 된 것 이 이 이 있는 다 것 같을 할 수 있는 것 이 가 가 한 것 이 이 이 있는 다 것 같을 할 수 있는 것 이 가 가 하는 것 같을 할 수 있는 것 이 가 하는 것 같을 것 같을 할 수 있는 것 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	esel Range Organics (I ssoline Range Organic: stor Oil Range Organic A - not reported - no screening level sp	
HERE AND	NS NR	

AED July 2007 OrdenGroup 2'linv. Report/Gp #2 km Rpi tables

łesiem Refining Company/GMN

24.

SWMU	18-4	0.5/0.6	0.6	0.6/0.6	0.7/0.6	0.7/0.6	<u> </u>	Γ	T		<u> </u>	<u> </u>	<u> </u>	<u> </u>	Γ		-	<u> </u>				<u> </u>
<b> </b>		$\vdash$	╞	╞		<u> </u>			-				-						-	  -		
-2 SWMU		0.5		0.6	0.7/0.8	0.7/0.6										_		-				
SWMU 18-2	(MW-54)	0.4	4.0	0.3	0.4	0.5	0.3	0.3	0.3	0.3	15.5	8.5	12.9	16.1	58.5	400						
SWMU	18-1	0.1	0.1	0.1	0.1	0.1																
SWMU	9-1	0.3/0.3	0	0.5	0.3	0.2	0.3	0.4														
SWMU 8-12	(MW-53)	0.5	0.5	0.5	0.4	0.5	0.1	0	0	0.1	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
SWMU	8-11	0.5	0.5	0.4	0.5	0.5																
SWMU	8-10	0.5	0.5	0.5	0.5	0.6																
SWMU	6-8	0.6	0.6	0.6	0.5	0.5																
SWMU	8-8	0.3	0.5	0.5	0.5	0.3																
SWMU	8-7	0.6	0.6	0.7	0.7	0.6																
SWMU 8-6A	(MW-52)						0.3	0.4	0.5	0.4	0.5											
SWMU	8-6	0.7	0.6	0.3	0.5	0.5											-					
SWMU	8-5	0.6	0.6	0.7	0.6	0.5			-													
SWMU	8-4	0.7	0.8	0.7	0.7	0.7																
NMMS	8-3	0.6	0.7	0.6	0.7	0.7																
NWMS	8-2	0.6	0.5	0.7	0.6	0.7		-							_							
NMWS	8-1	0.3	0.3	0.5	0.6	0.6														_		
NMMS	2-9	0.1	0.2	0.2	0.3	0.3	0.3	0.3														
NMMS	2-8	0.1	0.1	0.1	0.2	0.3	0.3	0.3	_		_											
NMMS	2-7	0.1	0.2	0.1	0.1	0.2	0.3	0.3														
NMMS	2-6	0.3	0.2	0.2	0.3	0.3																
NWMS	2-5	0.4	0.3	0.4	0.3	0.5	0.8	0.8														
NWMS NWMS NWMS	24	0.4	0.5	0.5	0.5	0.5	0.4	0.3	0.3													
NMMS	2-3	0.3	0.3	0.3	0.4	0.4	0.1	0.1														
NWMS	2-2	0.1	0.1	0.3	0.3	0.3	0.1	0.1														
SWMU	2-1	0	0	0	0	0	0.2	0.3	0.3													
Sample	Depth	0 – 2'	2 – 4'	4 – 6'	6 – 8'	8 –10'	10 -12'	12 -14'	14 - 16'	16 – 18'	18 – 20'	20 – 22'	22 – 24'	24 – 26'	26 – 28'	28 – 30'	30 – 32'	32 – 34'	34 – 36'	36 – 38'	38 – 40'	40 - 42'

1 of 1

ŝ

Units - ppm



 TABLE 12

 General Ground Water Chemistry Parameters

 Bloomfield Refinery - Bloomfield, New Mexico

Well	Date	Well Volume	Temp (degrees C)	Specific Conductivity	Dissolved Oxygen	Dissolved Oxygen (%)	рН	ORP
					(mg/L)			
MW-50	10/28/2008	1	14.17	0.594	1.6	15.6	7.62	1115.5
		2	14.36	0.535	2.69	25.9	7.7	104.2
	1/8/2009	<u> </u>	14.52 13.24	0.516 0.634	2.03 0.46	20 4.5	7.67 7.78	94.9 -45.9
	1/6/2009	1	13.24	0.527	0.40	4.5 2.6	7.70	-45.9
		2	13.89	0.327	0.27	1.5	7.71	-40.4
-		3	13.94	0.498	0.16	1.5	7.75	-42.4
			10.01					
MW-51	10/28/2008	0	14.47	1.124	1.53	15	7.58	116.3
		1	13.87	1.091	1.87	18.2	7.6	99.6
		2	13.89	0.889	2.21	21.5	7.61	91.6
		3	14.52	0.77	2.62	26.2	7.54	. 99.3
	1/8/2009	0	13.66	0.74	3.56	25.4	7.44	44.5
		1	13.87	0.709	0.29	2.8	7.49	41.1
		2	13.72	0.695	0.3	2.9	7.5	40.3
		3	13.74	0.692	0.31	2.9	7.49	98.3
MW-52	10/28/2008	0	12.56	3.745	31.4	3.38	7.17	33.3
		1	13.49	3.384	2.21	20.8	7.27	-29.3
		2	14.13	3.408	1.86	17.3	7.41	-33.2
		3	13.75	3.395	2.01	16.8	7.39	-32.9
	1/8/2009	0	14.7	3.839	2	19.6	7.18	-107.4
		1	14.73	3.836	1.76	17.7	7.11	-81.8
		2	14.72	3.835	1.62	16.2	7.07	-66.2
		3	14.72	3.745	1.82	18.2	7.15	-72.8
NAVAL 52	10/28/2008		15.77	4 4 4 2 2	4.69	47.0	7 74	64.9
MW-53	10/26/2006	0 1	15.77	4.412 4.423	4.68 4.68	47.9 47.6	7.74 7.75	64.8 67
		2	15.17	4.449	4.00	44.9	7.72	69.5
		3	15.36	4.441	4.42	44.1	7.72	67.9
	1/8/2009	1	13.8	4.41	2.46	24.2	7.42	33.6
1		2	13.69	4.42	2.83	27.7	17.4	40
1		3	12.85	4.42	7.7	72.3	7.41	60.8
		4	13.55	4.44	4.75	47.1	7.51	59.3
MW-54	10/28/2008	0	17.02	11.17	0.9	. 9.7	7.04	-18.8
		1	16.86			9.1	7.15	-15.3
		2	16.56			12.9		-13.1
		3	16.69			13.3		-10.2
	1/8/2009	0	13.32	11.51	1	14.5		-26.9
		1	13.45					-37.7
		2	13.46			15.9		-35.2
		3	13.62	11.96	2.9	17.1	7.03	-36.4

### TABLE 13 Water Level Measurements

Well	Date	Top of Casing	Depth to Bottom (ft)	Depth to Water (ft)	Groundwater Elevation (ft/msl)
MW-50	10/28/2008	5518.794	22.14	16.65	5502.144
	1/8/2009	5518.794	22.13	17.17	5501.624
MW-51	10/28/2008	5515.583	22.18	14.58	5501.003
	1/8/2009	5515.583	22.19	14.93	5500.653
MW-52	10/28/2008	5538.626	41.73	36.03	5502.596
	1/8/2009	5538.626	41.71	36.32	5502.306
MW-53	10/28/2009	5541.322	43.58	38.67	5502.652
	1/8/2009	5541.322	43.6	38.88	5502.442
MW-54	12/28/2009	5530.077	41.34	32.49	5497.587
	1/8/2009	5530.077	41.35	32.37	5497.707

Bloomfield Refinery - Bloomfield, New Mexico

# TABLE 14 Ground Water Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

	Screening							Capita Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital Capital				SN	2-1	2-2	SWMU 2-3 SI	7	2-6	2-7	2-8	SWMU 9-1
Analytes	Levels	Units	M	3	MW-51	51	S.		MM	23	်လို			1.,	10124					GW
Metals (mg/L)			10/28/2008		10/28/2008	1/8/2009 1	/2008	1/8/2009 1		1/8/2009 10	1%	_	- L	9/29/2008 9/		9/30/2008 9	9/30/2008 9	9/30/2008 1	10/1/2008	9/28/2008
Antimony	0.006	, mg/l	<0.001		<0.001	< 0.0010		< 0.0010	<0.001	< 0.0010	0.003			<0.0010						<0.0010
Arsenic	0.01	", mg/l	0.012		0.012	0.0028	0.043	0.075		0.011	0.018	0.02		<0.0010	0.0028	0.005	0.0039	0.0091	0.0034	0.0086
Bandin	- 00 0	и <u>л</u>	0.0	17.0	1.0	0.040	0000	1660.0 V	-	970.0	8.8			0.22	0.24	0.2	0.53	C.U	0.29	0.18
Cadmium	0.005		00.02		<0.00 <0.001	< 0.0000	< 0.001	00000					0.0044	-0.00ZU	<0.00E0	<0.0050	10000	0.00.0	0.0050	-0.020
Calcium	-	ma/l	55		102	69	258	220		300	583			85	48	0000	65	20.000	53	550
Chromium	0.05	ma/l	0.02	< 0.0060	<0.01	< 0.0060	0.03	< 0.0060	0.02	< 0.0060		0.0060		<0.010	<0.010	<0.010	0.033	0.023	0.028	0.013
Cobalt	0.05	l/gm	0.01		<0.01	< 0.0060	0.05	0.028		0.013			0.032		<0.010	<0.010	0.017	0.058	0.019	0.47
Cyanide, Total	0.2	mg/L	<0.005		<0.005	< 0.0050	< 0.005	< 0.0050		< 0.0050	< 0.005 <		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.027
Iron	-	mg/L	<0.03		<0.03	< 0.020	0.54	4.7	0.05	0.02			<0.020		<0.020	<0.020	<0.020	0.036	0.2	0.39
Iron, Total		mg/L				0.12		41		0.068	1									
Lead	0.015	mg/l	0.02		<0.01	< 0.0050	0.02	< 0.0050	0.02	< 0.0050		0.0081	0.034	<0.0050	<0.0050	<0.0050	0.022	0.033	0.017	0.02
Magnesium		mg/L	14		20	14	69	56	49	41	264	210	17	17	12	16	15	14	14	140
Manganese	0.2	mg/L	1.72		1.89	1.6	4.86	6.1	1.94	1.6		12			1.4	1.6	1.1	0.51	0.33	1.9
Mercury	0.002	l/gm		ľ	<0.001	< 0.00020		< 0.00020		< 0.00020	V.	Ľ	<0.00020		<0.00020	<0.0020	0.00021	0.00052	<0.00020	<0.00020
	0.2	mg/l	{ }	< 0.010	0.01	< 0.010	0.12	0.074	0.06	0.036	0.03	0.011		<0.020	<0.020	<0.020	<0.020	0.046	0.025	9
sium		mg/L			e	2	9	4.2	9	4.4					2.7	4.6	3.1	2.5	3.7	18
ium	0.05	l/gm			<0.001	< 0.0010	0.038	0.0095	0.005	0.0031		0.0014	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0019	0.001	0.009
Silver	0.05	mg/l	<0.05		<0.05	< 0.0050	< 0.005	< 0.0050	< 0.005	< 0.0050			<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
ε	•	mg/L			53	43	577	490	785	630		1500	50	55	40	64	72	63	150	2200
Vanadium	0.26	ng/l			<0.1	< 0.050	< 0.1	< 0.050	< 0.1	< 0.050		< 0.050	0.044	<0.010	<0.010	<0.010	0.04	0.035	0.017	0.019
Zinc	10	l/gm	0.12	< 0.020	0.05	< 0.020	0.18	< 0.020	0.06	< 0.020	0.12	0.16	1.6	1.2	1.4	0.55	0.14	0.18	0.15	6.6
Volatile Organic Compounds - (El	PA Method 82	1/6r (W03:															******			
1,1,1,2-Tetrachloroethane	0.52	µg/L	*		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-1 richloroethane	60	ла/г			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	× 10	10	<1.0	<1.0	< <u>1.0</u>	10	V V	-1.0	<u>10</u>
1,1,2,2-1 etrachioroethane	10	hg/L			0.2 >	0.2 ×	0.2 ×	< 2.0	< 2.0	< 2.0	< 2.0	< 20	<2.0	<2.0	<2.0	<2:0	<2.0	<2.0	\$2.0	<2.0
1, 1, 2-1 Incritoroetnane	10	hg/L			0.1 0		0.1 4	0.1.0	< 1.0	< 1.0	<ul> <li>1.0</li> <li>1.0</li> </ul>	0 v	0.0	<1.0	0. V	0.0	0.0	V 1	10	V 10
	3	10/1 10/1						0.0	0.1	0.1 0	0.0		0.0		0.0		0.1	0.12		
		המיר	× 10		< 10	< 1.0	× 10	/ v		v 1 0	v - v		10.12	)     	0.1		0.1			
le	- 02	חמ/ך			< 1.0	< 1.0	< 1.0	< 1.0	< 10	< 1.0	< 1.0	<ul> <li>10</li> <li>10</li> </ul>	<10	<10	<10				0 7 7	10
1,2,3-Trichloropropane	0.0096	ng/L	< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 20	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	0
1,2,4-Trichlorobenzene		hg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	1.0	<1.0	410
1,2,4-Trimethylbenzene	15	hg/L	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	44	67	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane	0.2	µg/L	< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 20	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
1,2-Dibromoethane (EDB)	0.05	н9/Г	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	600	pg/L	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-UICNIOFORMARE (EUU)	<u>م</u>	1/0/L	0.1 ×		0.10	0.1 0	0.1 2		< 1.0	v 1.0	<ul> <li>1.0</li> <li>1.0</li> </ul>	<ul> <li>10</li> <li>10</li> </ul>	<1.0	< <u></u>	0.0	<1.0	<1.0	<1.0	₹ <u>1.0</u>	V.
1,2-Dictilotopioparile	0 <del>;</del>	hg/L	0.1 v			0.1 4	010	0.1 ×		0.1.0	0.L >		0.12	0.0	0.12		0.1	0. V		
1.3-Dichlorobenzene	2 ,	10/I	01 ×			× 10		× 10	v - v	0.1 0	0.0	v 10	1012		012	0. V	2 0			
1,3-Dichloropropane	5	hg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	1012	<1.0	<1.0		<1.0	10
1,4-Dichlorobenzene	75	hg/L	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1-Methylnaphthalene	2.3	hg/L	< 4.0		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	53	82	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2.2-UICIIIOTOPTOPANE	- 1100	hg/L	< 2.0		0.2.0	V 10	× 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 20	\$2.0	<2.0	<2.0	< <u>2.0</u>	< <u>2.0</u>	<2.0		<2.0
2-Chlorotoluene	-	המיר	<10		v 1 0	< 10 < 10	< 10	× 10 × 10	v 10	< 1 D	× 10	< 10 < 10								
2-Hexanone		na/L	< 10		< 10	< 10	< 10	< 10	< 10	< 10	<ul> <li>10</li> <li>10</li> </ul>	< 100	<10	×10	×10	<10		1012	1012	
2-Methylnaphthalene	150	hg/L	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	73	63	<4.0	<4.0	40	<4.0	<4.0	<4.0	<4.0	<4.0
4-Chlorotoluene		hg/L	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Isopropyltoluene	•	hg/L	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone	, 0000	1/6r	< 10		< 10	< 10 10	< 10	< 10	< 10	< 10	. < 10	< 100	<10	<10	<10	<10	<10	<10	<10	<10
Acetone	22000	л <u>а</u> , г	< 10		< 10 , 10	< 10 <	< 10	< 10	< 10 <	< 10	17	< 100	<del>9</del>	<10 <	¢10	<del>6</del>	<del>1</del> 0	10	<10	<10
Benzene	0	<u>нд/г</u>	< 1.0		< 1.0	< 1.0	<pre>&lt; 1.0</pre>	< 1.0	< 1.0	< 1.0	1600	1100	<1.0	v1.0	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	11	10/1 10/1	012		101 2	0.1 0	0.1.0	0.1 ×	0.1 4	0.1 ×	0.1 v		0.12		0.12	0.0		0.0	1.0	0.0
Bromoform	8.5	na/L	< 1.0		< 1.0	< 1.0 < 1.0	<pre></pre>	× 1.0	0.1 V		× 10		0.1×		- - - - - - - - - - - - - - - - - - 	0.0			0   V	
Bromomethane	8.7	hg/L	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	0.12	<10	<10
Carbon disulfide	1000	hg/L	< 10		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 100	<10	<10	<10	<10	<10	<10	<10	<10
		Í																		



# TABLE 14 Ground Water Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

																			-7 DIANAS	
Analytes	Screening	Units	S-WW-S	50	MW-51		MW-52		MW-53	2353 <u>2159 -</u> 	MW-54	GW	the state of the s	08369	(a)(*)(*)(*)					δ
Carbon Tetrachloride	2	hg/L			< 1.0		< 1.0	1	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	V
Chlorobenzene	100	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	Į₹
Chloroethane	-	hg/L	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 20	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	¢.
Chloroform	100	hg/L	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	V
Chloromethane	1.8	µg/L	<ul><li>1.0</li></ul>	< 1.0	< 1.0		< 1.0		< 1.0	1.7	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-DCE	70	hg/L	< 1.0	< 1.0	< 1.0	- 1	< 1.0	- 1	< 1.0	< 1.0	-	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene		hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	<ul> <li>1.0</li> <li>1</li> </ul>	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	₹
Dibromochloromethane	0.8	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	< <u>1.0</u>	<1.0	<1.0	<1.0	₹ V
Dibromomethane	370	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.0
Dichlorodifluoromethane	390	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	₹
Ethylbenzene	200	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	78	200	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	₽
Hexachlorobutadiene	0.86	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	7
Isopropylbenzene (Cumene)	680	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	18	34	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl tert-butyl ether (MTBE)	12	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	150	160	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	V
Methylene Chloride	5	hg/L	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 30	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Naphthalene	0.14	hg/L	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	240	160	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	8
n-Butylbenzene	68	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	1.3	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	V
n-Propylbenzene	60.8	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	15	39	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	V
sec-Butylbenzene	68	na/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	1.6	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	V
Styrene	100	ua/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<10	<10	10	10
tert-Butylbenzene		na/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	10	10	V
Tetrachloroethene (PCE)	20	na/l	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<10	<10	<10	×10	<10 1	10	10	
Toluene	750	na/l	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<10	v1 0	10	1012	10	v 10	
trans-1.2-DCE	100	na/l	< 10	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<10	<1.0	<1.0	0 V	1012	0 V	1012	V
trans-1.3-Dichloropropene		na/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	10	<10	V
Trichloroethene (TCE)	5	ng/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	v 10	V
Trichlorofluoromethane	1300	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	V
Vinyl chloride	-	hg/L	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<ul><li>10</li><li>1</li></ul>	⊽
Xylenes, Total	620	hg/L		< 1.5	< 1.5		< 1.5		< 1.5	< 1.5	17	24	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	V
A 1	A Method 8270W)	ug/L			_			· 1		_					, <b>1</b> 11 - 11					
1,2,4-Trichlorobenzene		р9/Г		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	<10	<10	<10	<10	v
1, 2-Dichlorobenzene	600	hg/L		< 10	< 10	10 0 1 0	< 10	v 10	< 10	< 10	< 10	< 10	<10	<10	410	<del>1</del> 0	<10	<10	5	V
1,3-Dichlorobenzene		"2".					01 v	01 0				v 10			012		012	×10		V
2.4.5_Trichloronhand		P3/L			10		10	0	10			10								
24 6-Trichloronhand		1/011		101 ×	101 >	× 10	< 10	< 10	< 10	< 10	< 10	10	10	10	101		011			1
2.4-Dichlorophenol		10/1		< 20	< 20	< 21	< 20	< 201	< 20	< 20	< 20	< 20	<20	2002	02>	2 UC>	000			× 00×
2.4-Dimethylphenol		na/L		49	< 10	<ul> <li>10</li> <li>10</li> </ul>	< 10	< 10 <	< 10	< 10	< 10	< 10	<10	<10	<10	1012	210 V	< <u>10</u>		7 ⊽
2,4-Dinitrophenol		ng/L		< 20	< 20	< 21	< 20	< 20	< 20	< 20	< 20	< 20	<20	<20	<20	<20	<20	<20	\$20	
2,4-Dinitrotoluene		hg/L		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	<10	<10	<10	<10	<10
2,6-Dinitrotoluene		hg/L		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	<10	<10	<10	<10	₽
2-Chloronaphthalene		hg/L		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	<10	<10	<10	<10	<10
2-Chlorophenol	180	µg/L		< 10 <	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	<10	<10	<10	<10	<10
2-Methylnaphthalene		hg/L		< 10	< 10	< 10	< 10	< 10	< 10	< 10	39	49	<10	<10	<10	9	95	<10	×10	V
2-Metnyiphenoi		hg/L	l	20	< 10	< 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	< 10	< 10	× 10	< 10	<ul> <li>10</li> <li>10</li> </ul>	< 10	<10	<10	<10	÷	<u>5</u>	<10	<del>7</del> 0	₽
2-Nitroahond		hg/L							0. v		010	01.0	012	012		012	<10	×10	10	v 10
2-Wittophenol 3-3' Dichlorohon-idino		hg/L										10					012	012		v  `
3,3 -Dictitol Ober Iziurie 3+4-Methylnhenol	180				101 1	0 1	101 ×	101				10		10						
3-Nitroaniline		10/1		10	× 10	× 10	< 10	< 10	× 10	< 10	< 10	10	<10	101	<10					
4.6-Dinitro-2-methylphenol		na/L		< 20	< 20	< 21	< 20	< 20	< 20	< 20	< 20	< 20	<20	<20	<20	000	200	2002	000	
4-Bromophenyl phenyl ether		ng/L		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	10	<10	<10	2 10	' ⊽ 
4-Chloro-3-methylphenol		hg/L		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	01>	<10	<10	<10	10
4-Chloroaniline		µg/L		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	<10	<10	<10	<10	V
4-Chlorophenyl phenyl ether		jīg/L		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	<10	<10	<10	<10	<10	<10	<10	₹ V
4-Nitroaniline		hg/L		< 10	< 10	< 10	< 10	4 4 4	< 10	< 10 <	< 10	< 10	90	<10	10	<del>1</del> 0	<10	<10	<10	<b>∑</b>
4-Nitrophenol	- 0000	h9/L	< 10		× 10	v 10	< 10	10	010	01 v	< 10	< 10	10	<10	10	v 10	v ₹	410	<del>2</del>	¥.
Accuaptionerie	0077	19/L							0											⊽ `
Aniline	12	10/1	10	10	10	2 V			2	2	2	0 /	2	21	2	210	101		01×	V
	-	<u> </u>	-12:	[]					< 101	< 10	< 10	< 10	<10	<10	<10	<10	<10	<10	410	V



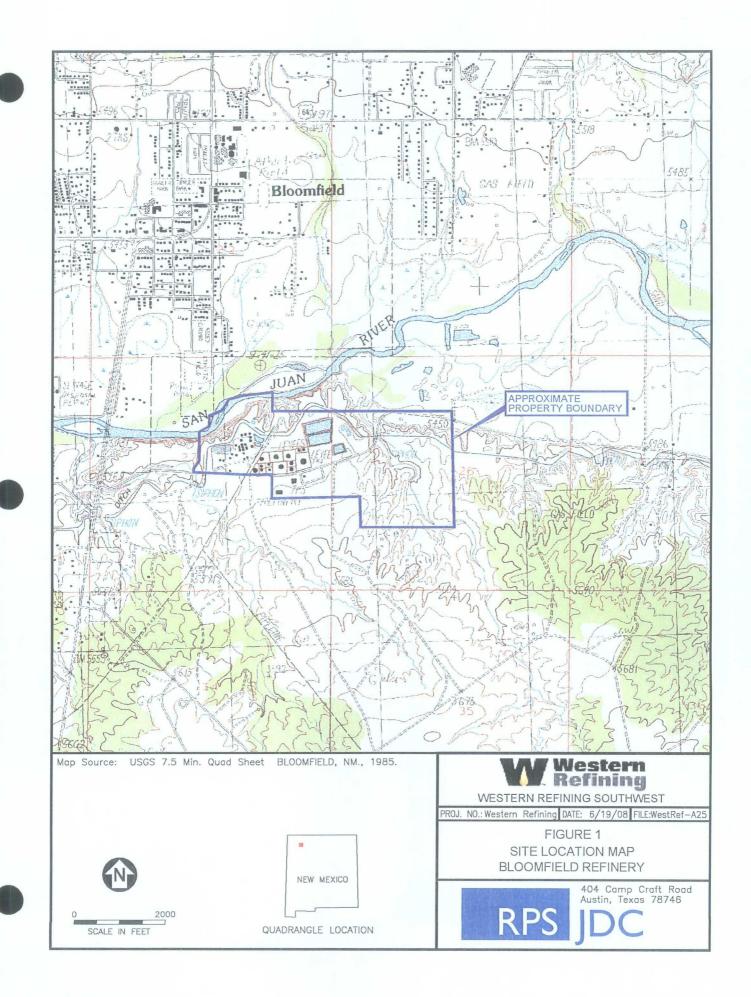
# TABLE 14 Ground Water Analytical Results Summary Bloomfield Refinery - Bloomfield, New Mexico

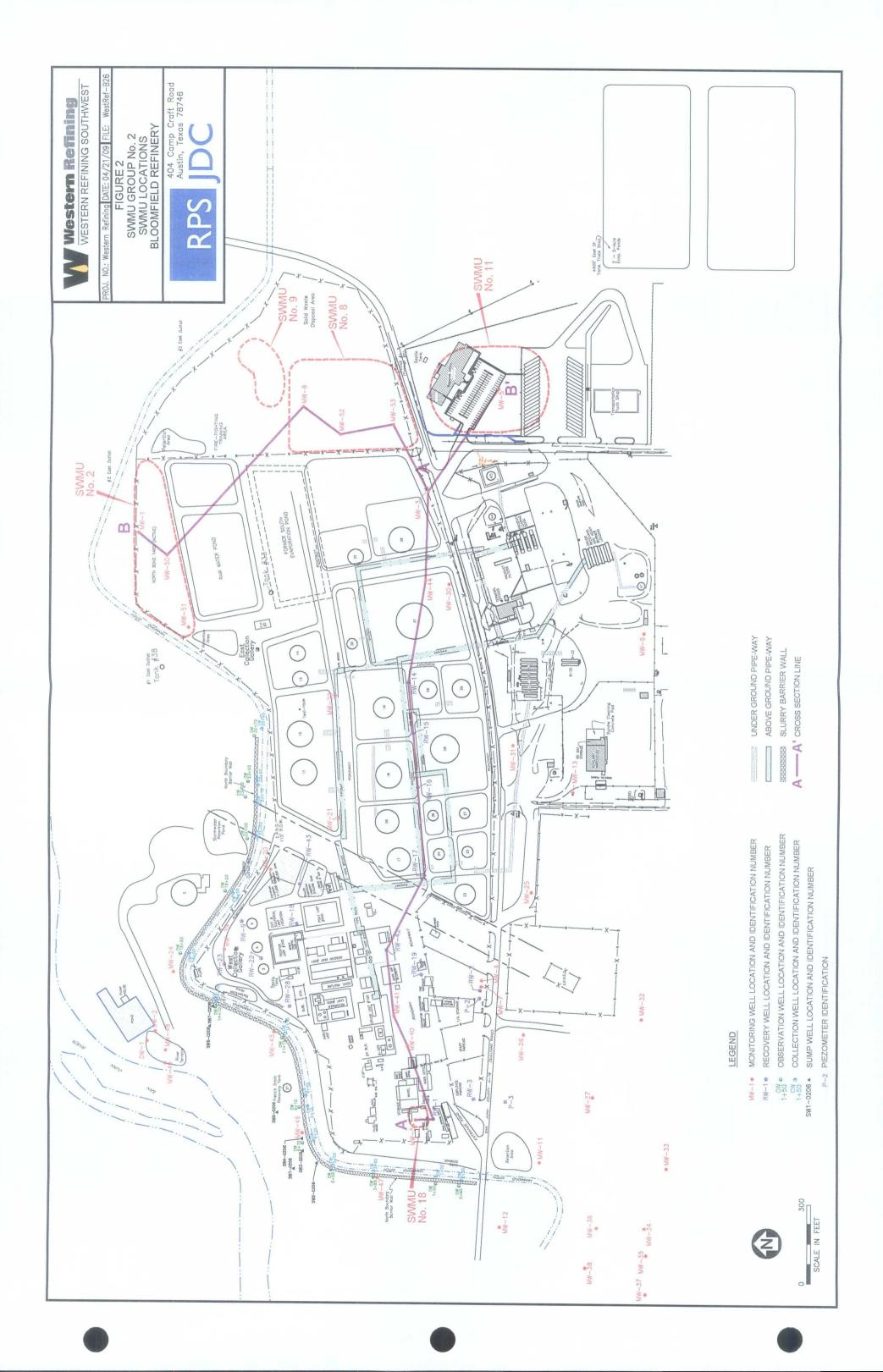
.

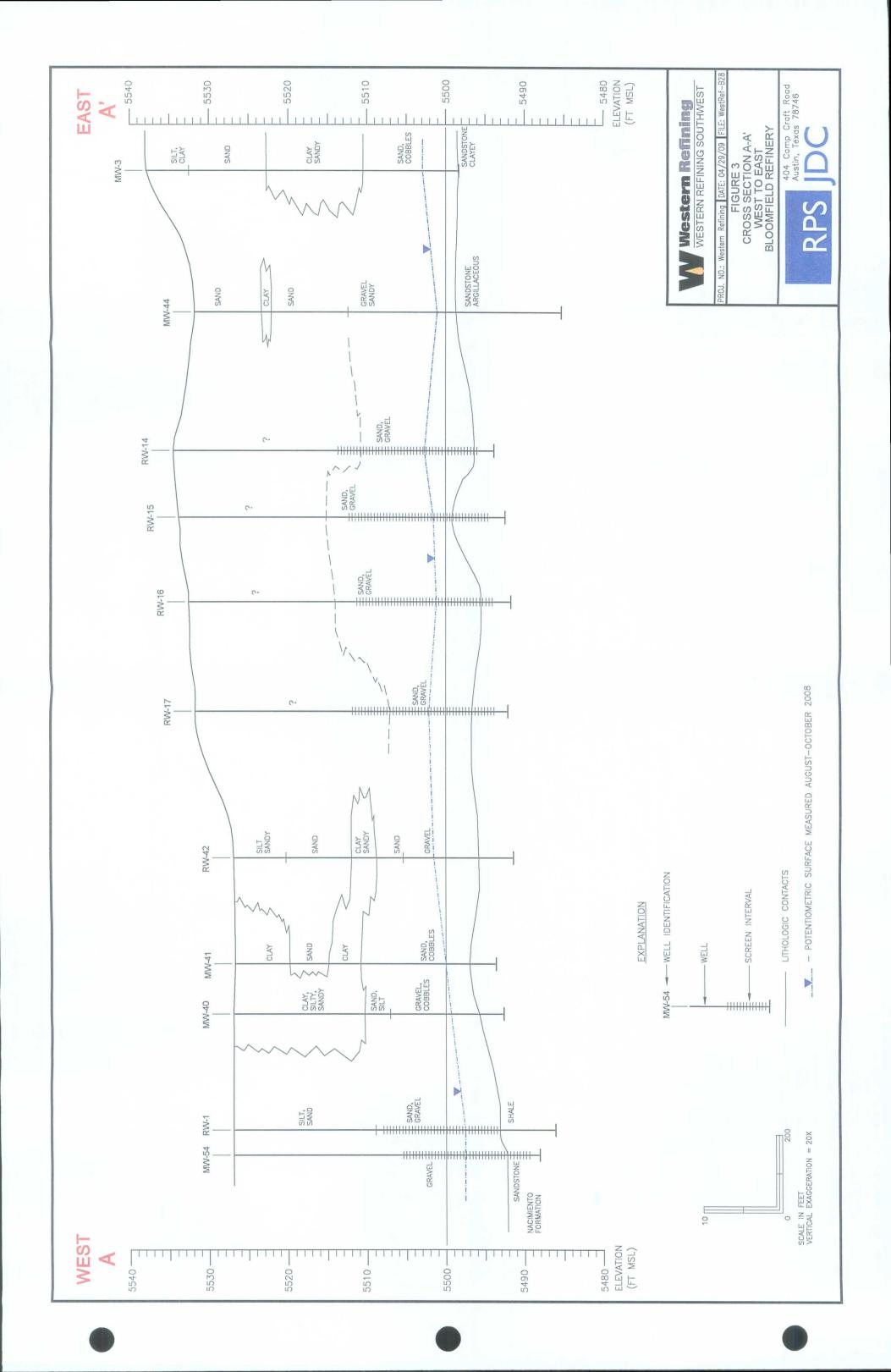
MW.SS MV	MW-51 < 101 <	MW-52			MM.FJ		GW C	GW	GW G		GW GW	<b>B</b>	ş
	< 10					A CONTRACT OF A DESCRIPTION OF A DESCRIP							
		Y	< 10			< 10	<10	<10	<10	<10	<10	<10 <10	<10
	< 10 <	< 10 < 10	< 10		: 10 < 10	< 10	<10	<10	<10	<10	<10	<10 <1	<10
		v	< 10	< 10		< 10	<10	<10	<10	<10	<10		
			< 10			< 10	<10	<10	<10	<10	<10		
	< 10		< 10	< 10		< 10	<10	<10	<10	<10	<10		
			< 10			< 10	<10	<10	<10	10			
			< 10			< 10	<10	<10	<10	<10			
	< 20	< 21 < 20	< 20	< 20	20 < 20	< 20	<20	<20	<20	²⁰	<20	<20 <20	<20
			< 10			< 10	<10	<10	<10	<10			
	< 10	< 10 < 10	< 10	< 10		< 10	<10	<10	<10	<10			
			< 10		< 10 < 10	< 10	<10	<10	<10	<10		<10 <10	
		< 10 < 10	< 10	< 10		< 10	<10	<10	<10	<10		<10 <1	
	< 10 <		< 10		: 10 < 10	< 10	<10	<10	<10	<10	<10	<10 <10	
		< 10 < 10	< 10			< 10	<10	<10	<10	<del>0</del>			
< 10 < 10			< 10			< 10	<10	<10	<10	v 10			
0 < 10	< 10	10 < 10	< 10	< 10	: 10 < 10	< 10	<10	<10	<10	<10	<10	<10 <10	<10
			< 10			< 10	<10	<10	<10	<10			
< 10 < 10		< 10 < 10	< 10			< 10	<10	<10	<10	<10			<10
	< 10		< 10		10 < 10	< 10	<10	<10	<10	<10	<10	<10 <10	
< 10 < 10			< 10			< 10	<10	<10	<10	<10			
			< 10		: 10 < 10	< 10	<10	<10	<10	<10			
			< 10			< 10	<10	<10	<10	<10			
	< 10	< 10 < 10	< 10	< 10	< 10 < 10	< 10	<10	<10	<10	<10			
0 < 10			< 10			< 10	<10	<10.	<10	<10			<10
			< 10			< 10	<10	<10	<10	<10			
< 10 < 10	< 10	10 < 10	< 10			< 10	<10	<10	<10	<10			
			< 10	< 10		< 10 <	<10	<10	<10	<del>1</del> 0	<10	<10 <10	
			< 10			< 10	<10	<10	<10	<10			
< 10	< 10 <	10 < 10	< 10	× 10	< 10 < 10	< 10	< <u>10</u>	10	<10	¥10			
			< 10			< 10	<10	<10	<10	<10			
		10 < 10	< 10			82	<10	<10	<10	10			
< 10 < 10		< 10 < 10	< 10		10 < 10	< 10	<10	<u>^10</u>	<10	<10	v10	<10 <10	
			10	<ul> <li>10</li> <li>10</li> </ul>		<ul> <li>10</li> <li>210</li> </ul>	<10	<10 <	<10	10			×10
										V 10			
			01 0			01 >	012	012	1012	0Lv			
< 10 < 20 < 20 <	107 1	< 10 < 20 < 20 < 20 < 20 < 20 < 20 < 20	107 2			07 V	220	200	220	107			220
< 10 < 10			10										
		< 10 < 10	< 10	2 10		v 10	10	10	10	v10			
< 10 < 10	< 10	10 < 10	< 10		< 10 < 10	< 10	<10	<10	<10	<10	<10	<10 <10	<10
9.9 9.7	12	9.1 450	580	820	920 4100	4200	10	10	12	16	13	11 25	400
						< 10	1	1.3	<1.0	3.8	6.3	<1.0	
0.17	0.68	0.82 2.1	2.2	_	10	-	1.5			-	-	-	380
< 0.10	Ň	0.10 2.2	< 5.0			-	<0.10	1 0	' '	, ,	-		2.8
			/90		100 31	2.8	31	90	<b>G</b> 7	130			
240 220			500	290		820	370	330	240	230	240	240 250	
			200			820	370	330	240	230			1300
			< 2.0		2.0 < 2.0	< 2.0	<2.0	<2.01	<2.0	<2.0			
< 1.0			< 1.0		0	7.2							
			< 5.0			< 5.0							
ľ	Y	v	< 0.050	ľ	0	3.4							<0.050
<ul> <li>&lt; 1.0</li> <li>&lt; 5.0</li> <li>&lt; 5.0</li> <li>&lt; 5.0</li> <li>&lt; 0.050</li> </ul>	000	<ul><li>&lt; 1.0</li><li>&lt; 5.0</li><li>&lt; 0.050</li></ul>		<ul> <li>&lt; 1.0</li> <li>&lt; 1.0</li> <li>&lt; 5.0</li> <li>&lt; 5.0</li> <li>&lt; 0.050</li> <li>&lt;</li> </ul>	< 1.0	<1.0	< 1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<1.0	< 1.0	<1.0	< 1.0

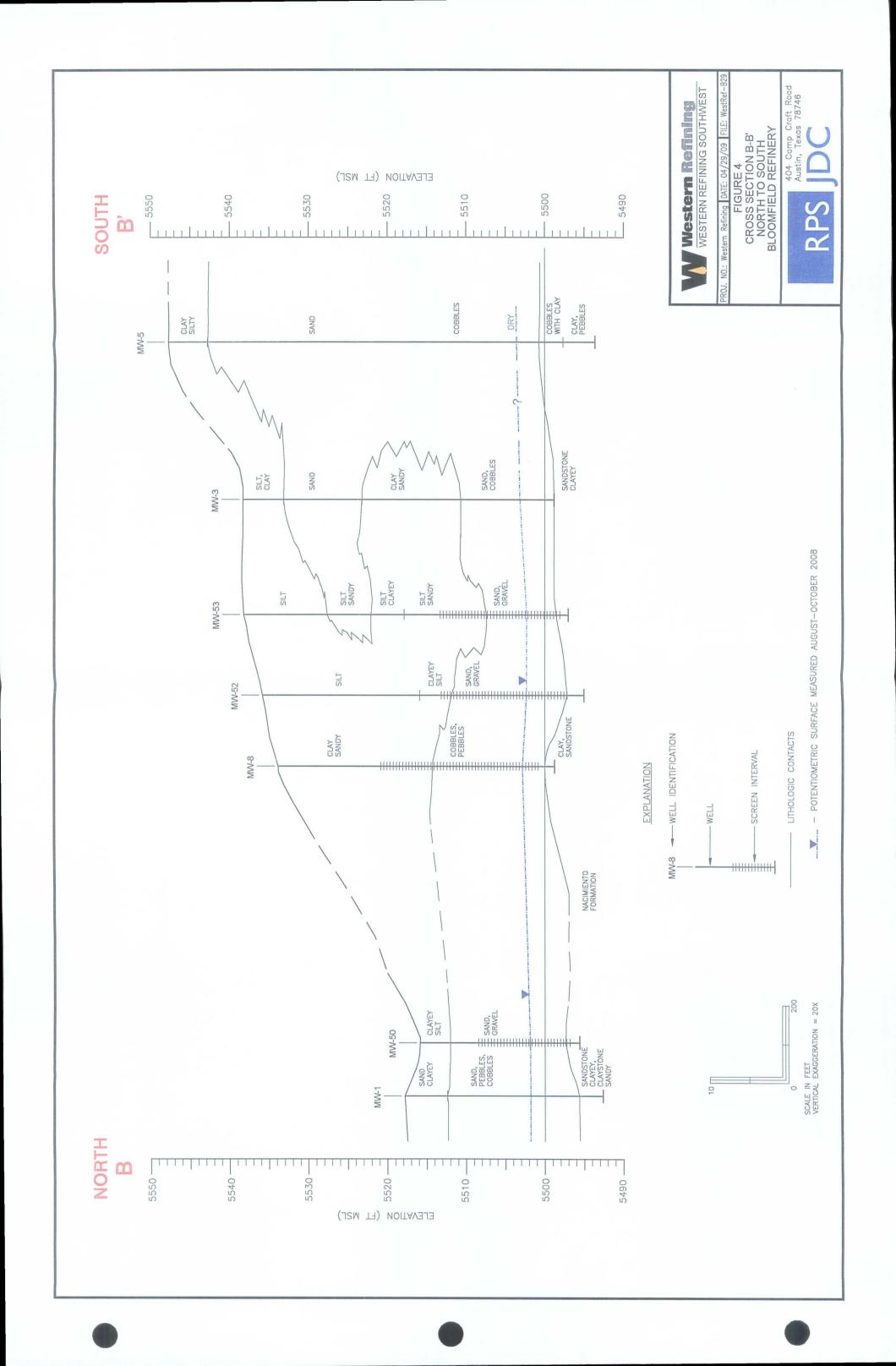
3 of 3

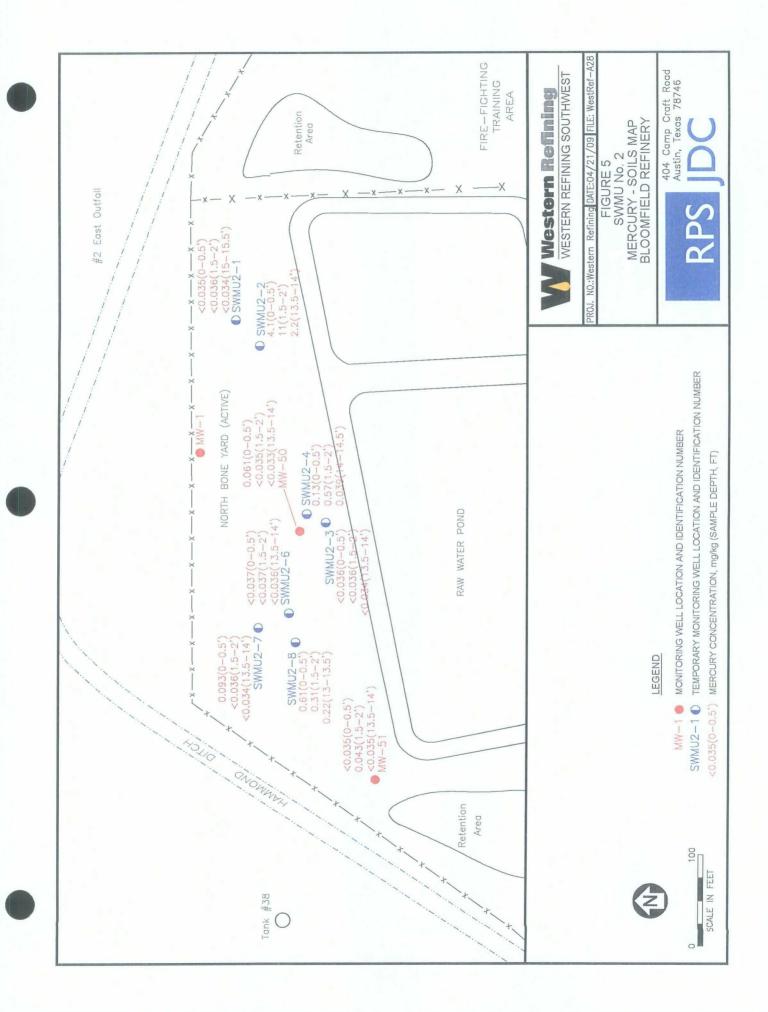
,


450 - bolded value exceeds screening level

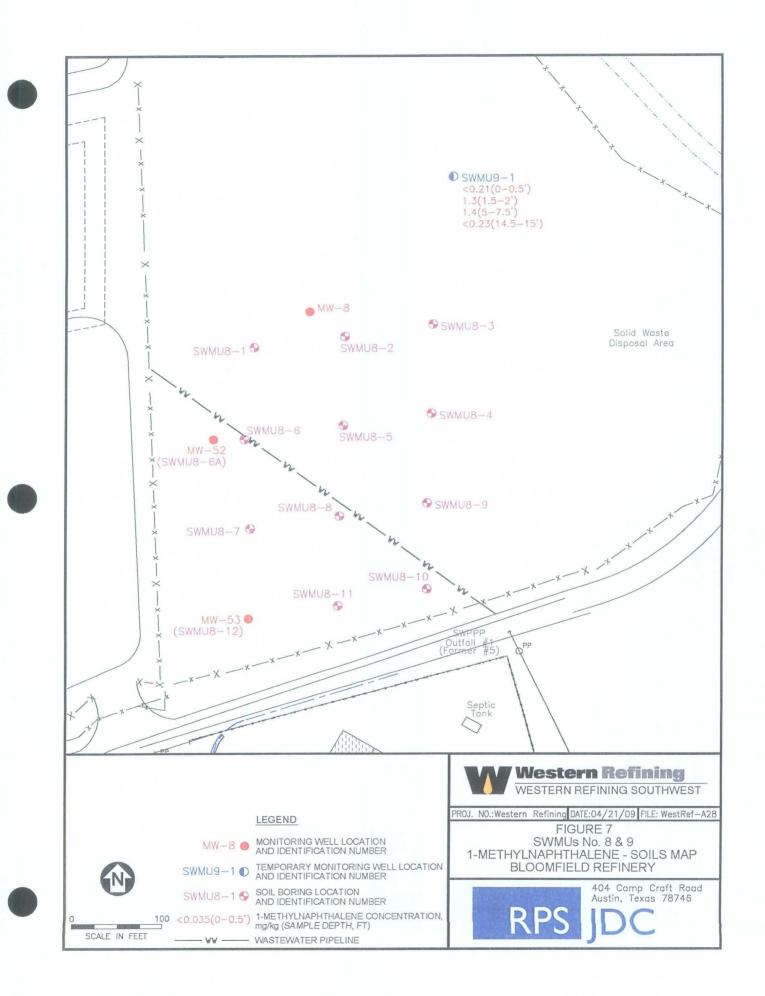

;

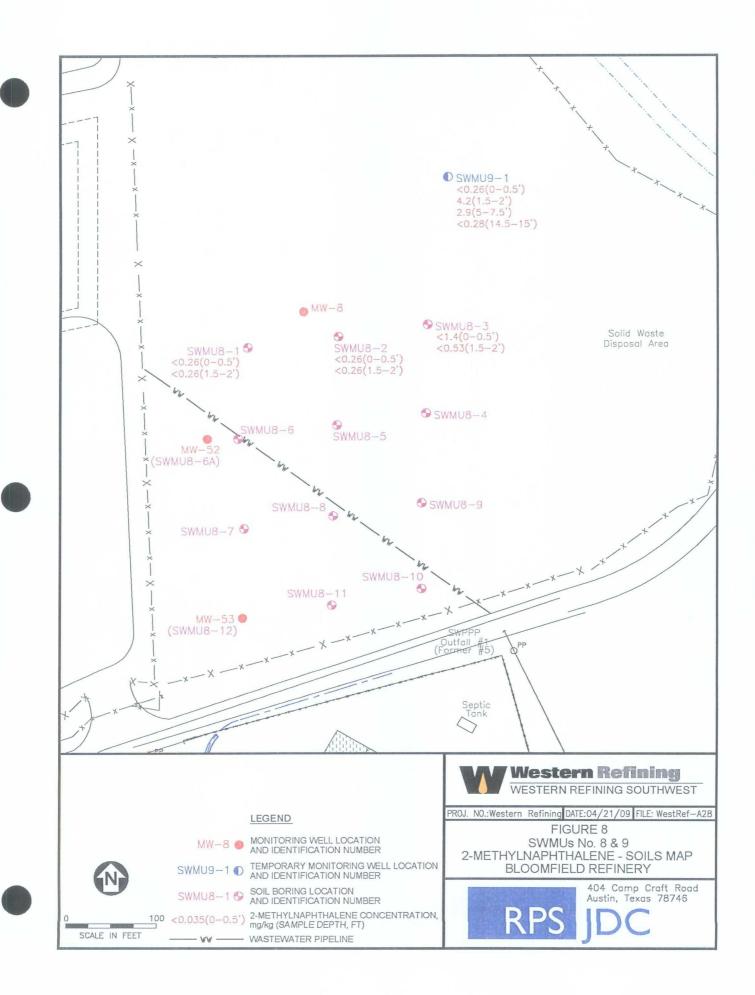


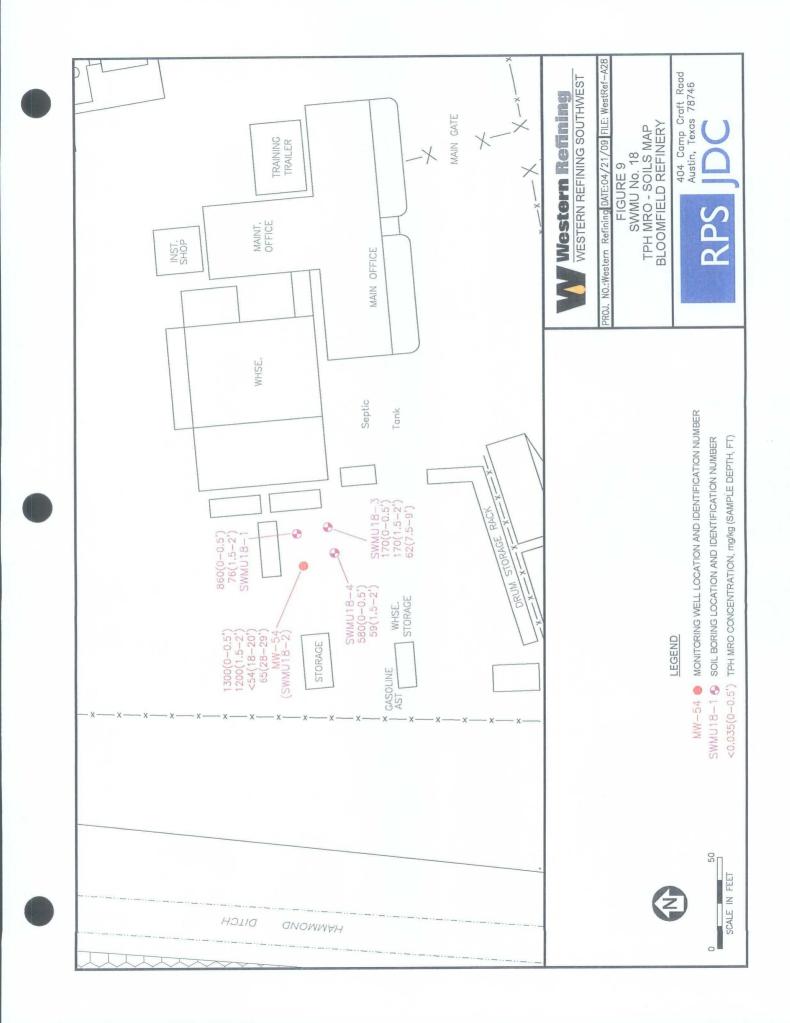



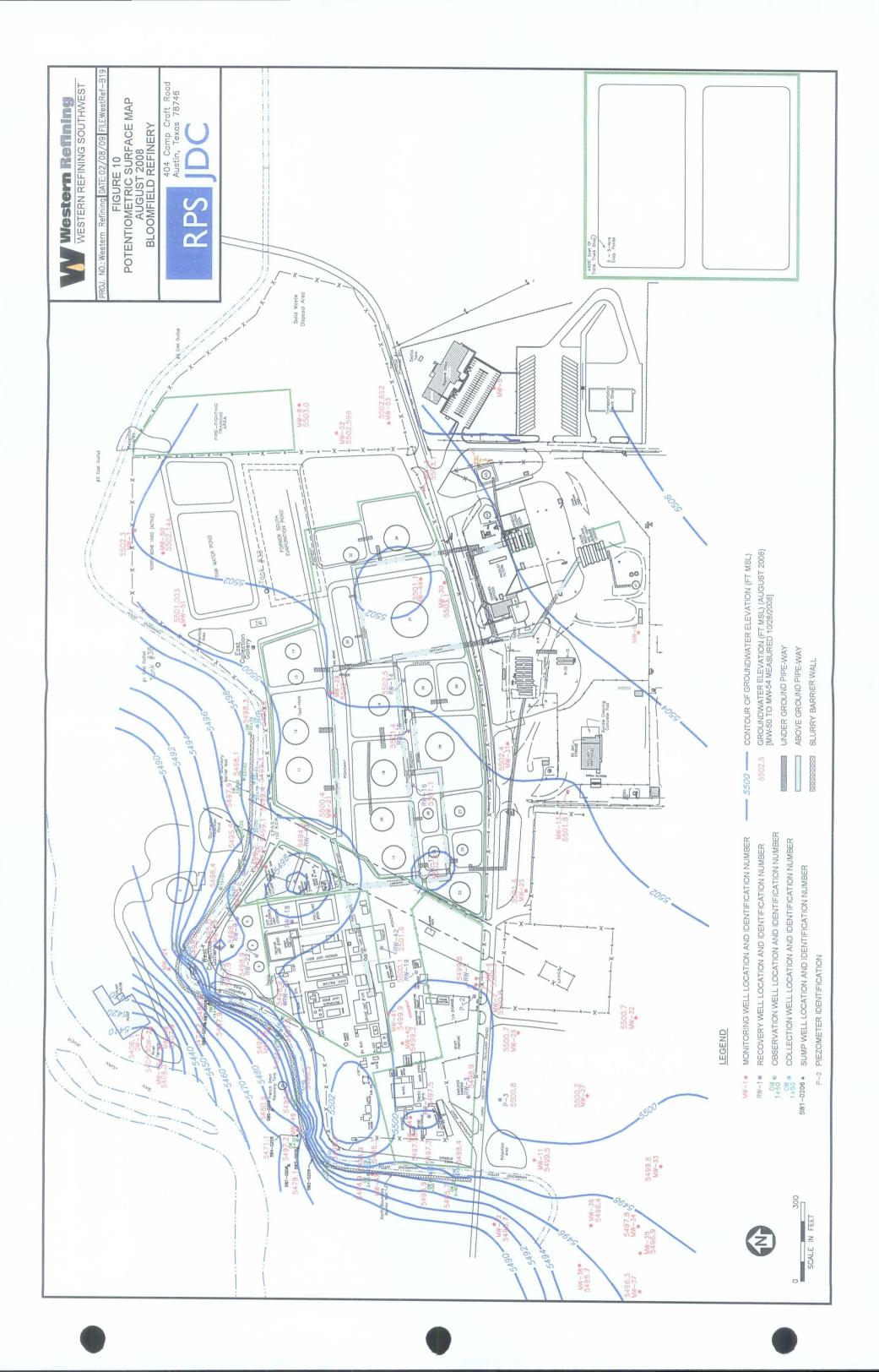


## Figures

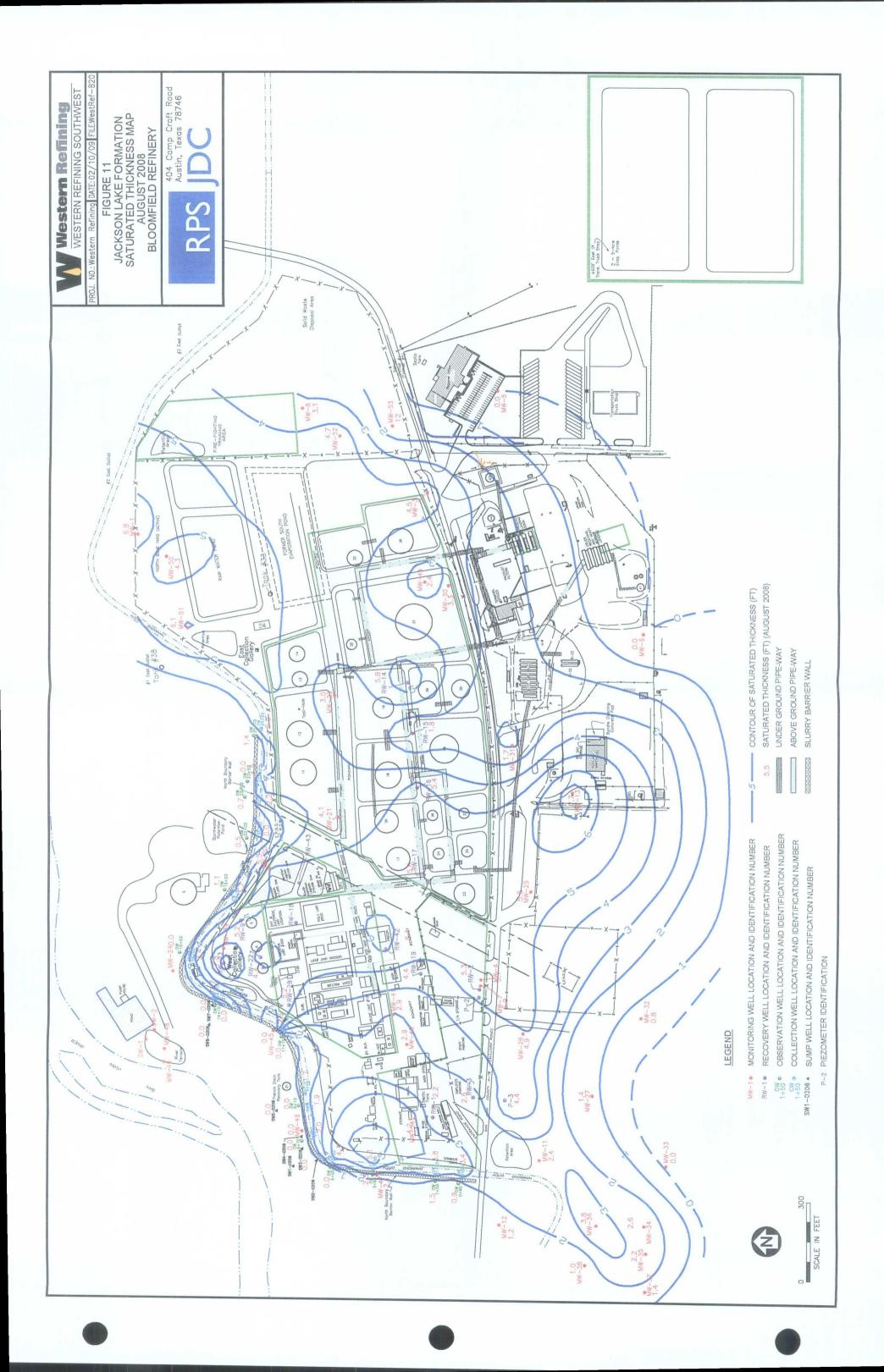


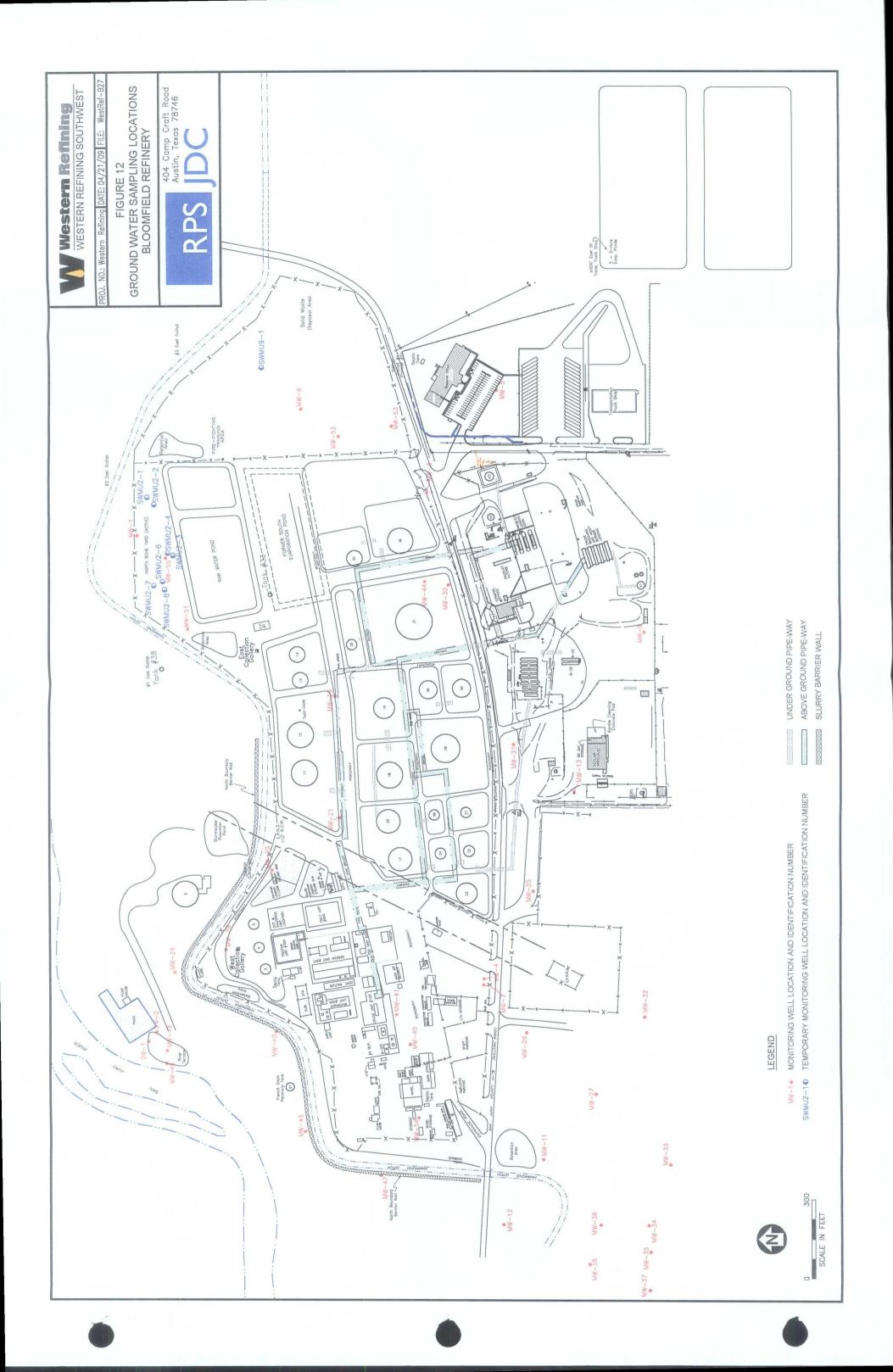


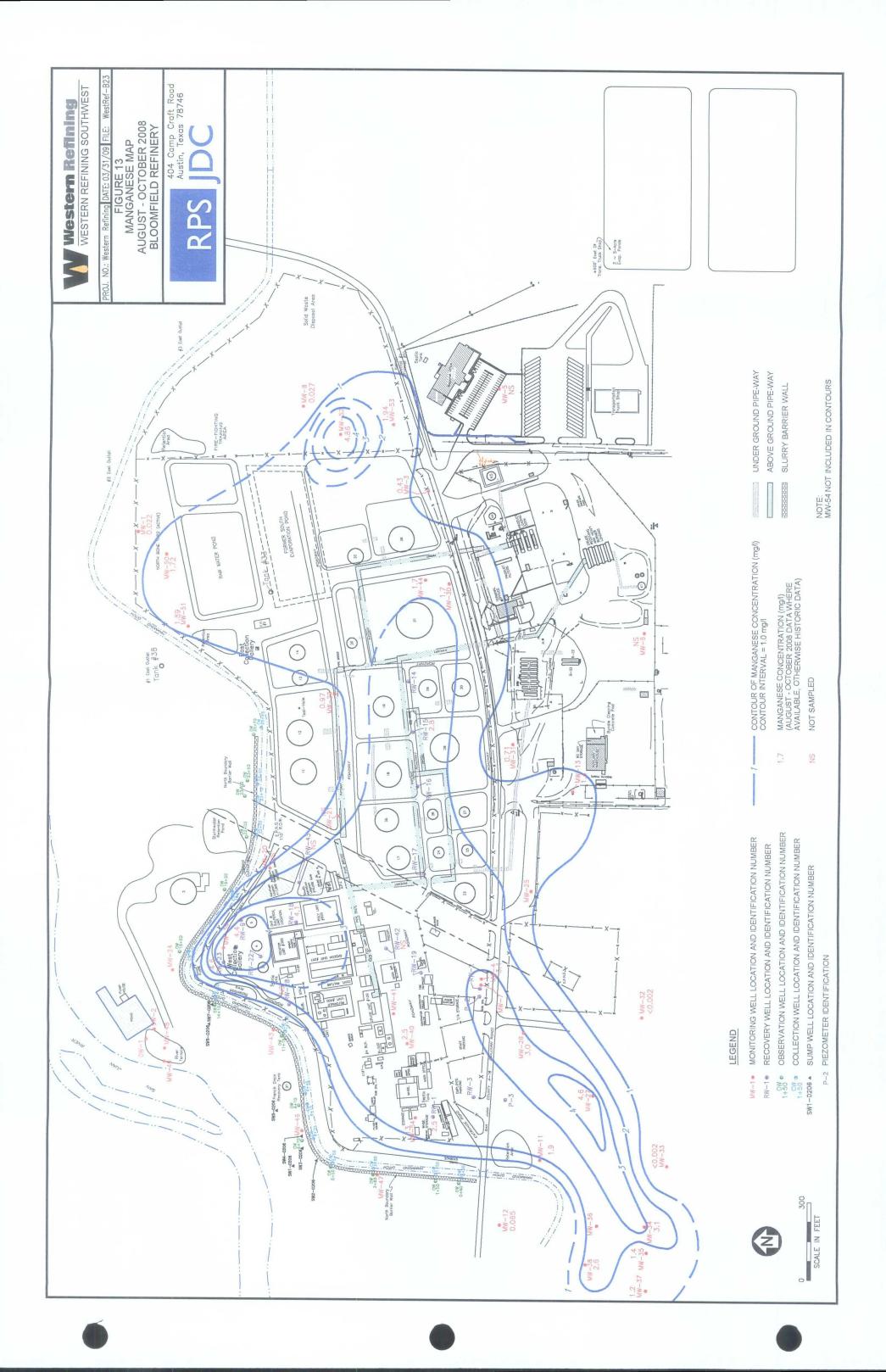



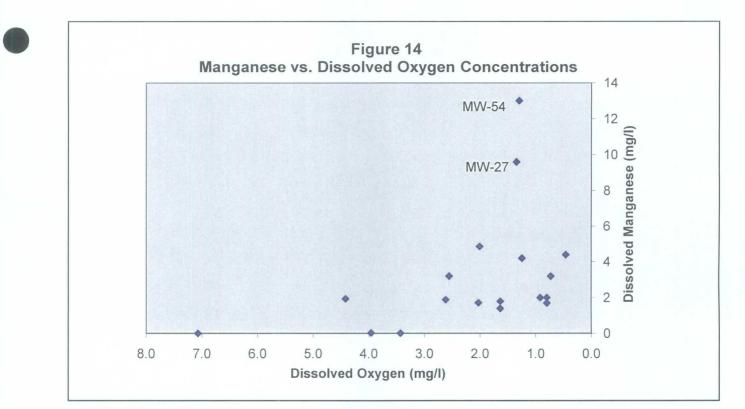



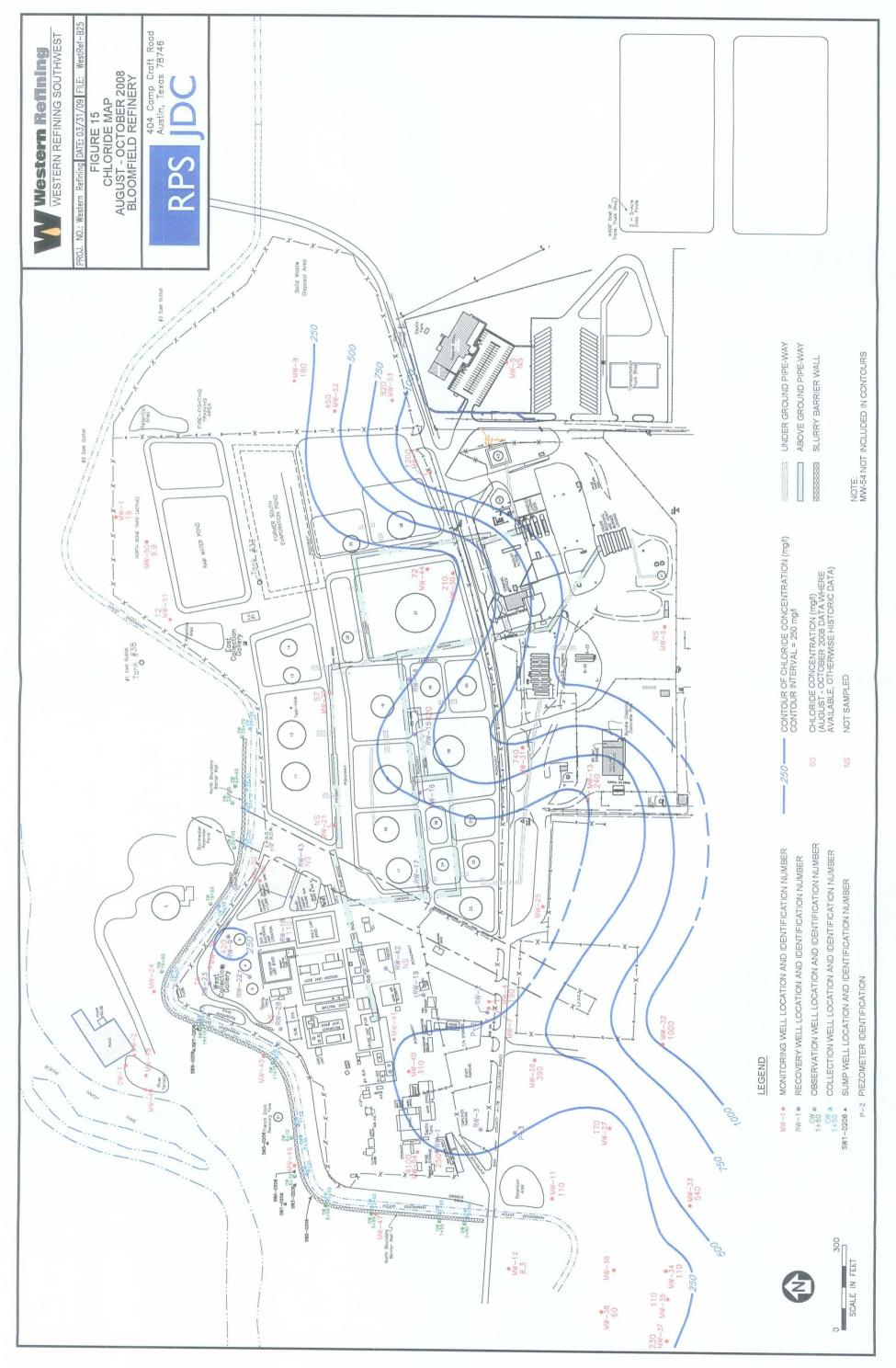



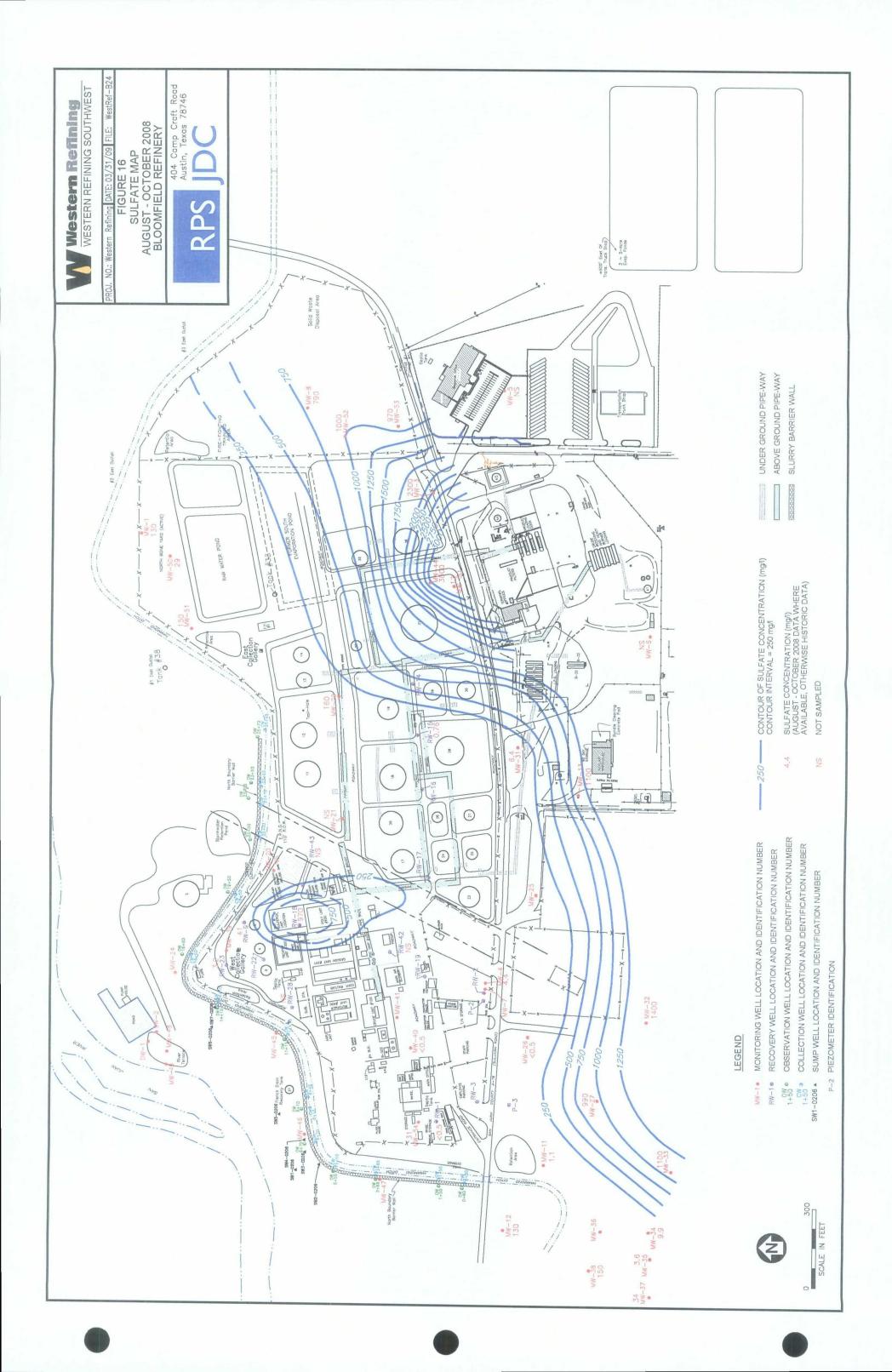










Sample Location	Date	D.O. (mg/L)	Mn (mg/l)
MW #1	Aug-07	4.0	0.027
MW #13	Aug-07	1.6	1.4
MW #26	Aug-07	2.6	3.2
MW #27	Aug-07	1.4	9.6
MW #30	Aug-07	1.6	1.8
MW #32	Aug-07	7.1	0.002
MW #33	Aug-07	3.4	0.009
MW #34	Aug-07	0.8	2
MW #35	Aug-07	0.8	1.7
MW #38	Aug-07	0.9	2
RW #1	Aug-07	1.3	4.2
RW #9	Aug-07	0.5	4.4
RW #15	Aug-07	0.7	3.2
MW-50	Oct-08	2.0	1.72
MW-51	Oct-08	2.6	1.89
MW-52	Oct-08	2.0	4.86
MW-53	Oct-08	4.4	1.94
MW-54	Oct-08	1.3	13







## **Appendix A**

### **Field Methods**



#### Appendix A Field Methods

Pursuant to Section IV of the Order, an investigation of soils and ground water was conducted to determine and evaluate the presence, nature, extent, fate, and transport of contaminants. To accomplish this objective, soil borings and monitoring wells were installed at the North Bone yard (SWMUs No. 2), the Landfill (SWMU No. 8), the Landfill Pond (SWMU No. 9), and the Warehouse Yard (SWMU No. 18).

The soil borings were drilled using hollow-stem auguring (HSA) method or air rotary-ODEX method. The drilling equipment was decontaminated between each borehole using a high pressure potable water wash. All soil borings were drilled to a minimum depth of 10 feet with at least one boring at each of the individual potential source areas drilled to the top of saturation, with the exception of SWMU No. 2 where all soil borings were drilled to the water table. Soil samples were collected continuously and logged by a qualified geologist in accordance with USCS nomenclature. As seen on the boring logs the data recorded included the lithologic interval, symbol, percent recovery and a sample description of the cuttings and core samples, and field screening results. Samples obtained from the borings were screened in the field on 2 foot intervals for evidence of contaminants. Field screening results were used to aid in the selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds. The headspace vapor screening was conducted using a MiniRae 2000 portable VOC monitor PGM-7600. The instrument was calibrated at the beginning of each work day to a concentration of 100 ppm isobutylene.

Soil samples were collected using split-spoon samplers. The split-spoon samplers were decontaminated between each use using a potable water rinse, an Alconox wash and then a distilled water rinse. In the event that more than one SWMU was investigated during the day a new batch of wash water and rinse water was prepared prior to decontamination. The decontamination water was collected in buckets and placed in open top 55-gallon drums, which were sealed at the end of each work day. Each drum was labeled. Soil cuttings were also placed in open top 55-gallon drums and were sealed when not in use.

Soil borings completed as permanent monitoring wells were drilled to the top of bedrock (Nacimiento Formation). The depth to separate phase hydrocarbon, if present, and ground water



was measured prior to purging the wells of potentially stagnant ground water. Monitoring wells were purged of a minimum of three well volumes prior to sample collection. Field measurements of ground water stabilization parameters included pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, and temperature. Ground water samples were collected with disposable bailers and immediately poured directly into clean laboratory supplied sample containers.

The instrument used to measured ground water stabilization parameters was a YSI 556 multimeter flow-through cell. The calibration solutions used at the beginning of each day are as follows:

- 4.0 pH solution
- 7.0 pH solution
- 10.0 pH solution
- 1.413 mS/cm conductivity solution
- 220 for ORP

There were no field conditions encountered during the sampling event that affected procedural or sample testing results.



### **Appendix B**

**Boring Logs** 

<b>RPS</b> JDC
----------------

#### LOG OF BORING

Boring No.: SWMU2-1 Start Date: 9/25 & 9/29/2008 Finish Date: 9/25 & 9/29/2008

Client: Western Refining Southwest, Inc.Total Depth: 20' bglSite: SWMU Group #2, Bloomfield RefineryGround Water: Saturated 16' bglJob No.: 354 - Bloomfield, NMElev., TOC (ft. msl): --Geologist: Tracy PayneElev., PAD (ft. msl): --Driller: Enviro-Drill, Inc.Elev., GL (ft. msl): 5517.312Drilling Rig: CME 75Site Coordinates: N 50554.408Drilling Method: Hollow-Stem AugerE 52608.080Sampling Method: Split SpoonSampling Method: Split Spoon

Comments: 0-10 Interval (9/25/08, 65°F); 10-20 Interval (9/29/08 78°F). Temporary well set from 15-20' bgl

Ueptn (rt.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	
0-	0- 0.5'	0815	G/2V/					Ground Surface Silt (ML)	_
ппп	1.5- 2'	0020	2E/2J		0.0		90	Very fine grain, compact, dry, brown	
2	<u> </u>	0630	G/2V/ 2E/2J		0.0		60	<b>Silty Sand (SM)</b> Very fine to fine grain, loose, damp, brown	
4111111					0.0		70	Silty Sand (SM) Similar to above, gravel present	
311111					0.0		80	Silty Sand (SM) Similar to above	
TITUT					0.0		80	Silty Sand (SM) Similar to above	
uhini					0.2	ال الله م 0 8 م م 0 8 م	90	<b>Gravelly Sand (SW)</b> Fine grain, loose, damp, brown, gravel throughout	-
1111111					0.3		60	Sand (SP) Fine grain, loose, damp, very light brown	
111111	<u></u> 15- 	1130	G/2V/ 2E/3J	16'	0.3		60	Sand (SP) Similar to above, damp to moist	
, , , , , , , , , , , , , , , , , , ,	GW San						60	Gravelly Sand (SW) Fine to medium grain, loose, moist to saturated, gravel present Gravelly Sand (SW) Similar to above, saturated	
	EBW092	1145 908 1230					80	Sand (SP) Fine to medium grain, loose, saturated, brown	
201111111	EB3092	908 1245						Total Depth = 20' BGL	
383	S JDC, In 33 S. Stap rpus Chris	les, S		1-229	) )	I		Sheet:         1 of 1         361/855-7335           361/855-7410         361/855-7410	

RPS JDC
---------

#### LOG OF BORING

Boring No.: SWMU2-2 Start Date: 9/25 & 9/29/2008 Finish Date: 9/25 & 9/29/2008

Client: Western Refining Southwest, Inc. Total Depth: 18' bgl Site: SWMU Group #2, Bloomfield Refinery Ground Water: Saturated 14' bgl Job No.: 354 - Bloomfield, NM Elev., TOC (ft. msl): --Geologist: Tracy Payne Elev., PAD (ft. msl): --Driller: Enviro-Drill, Inc. Elev., GL (ft. msl): 5517.726 Site Coordinates: N 50528.330 Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger E 52580.323 Sampling Method: Split Spoon

Comments: 0-10 Interval (9/25/08, 62°F); 10-20 Interval (9/29/08 80°F). Temporary well set from 13-18' bgl

Depth (ft.)	Sample Depth	Time	Sample Type/ turner/No.		Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
		ці.	ဖိပိ	လိ	0 e	- <del>S</del>	<u>Ř</u>	Ground Surface	ŏ
0	0- 0.5' 1.5- 2'		G/2V/ 2E/2J	ľ	0.1		90	Silty Sand/Silt (SM/ML) Very fine grain, compact to loose, damp, brown	
2	<u> </u>	0500	G/2V/ 2E/2	0)	0.1		90	Silty Sand (SM) Very fine grain, loose, damp, brown/gray	2
4 6					0.3		90	Silty Sand (SM) Similar to above, grayish brown, gravel present	
					0.3		60	Silty Sand (SM) Similar to above, gravel	
10					0.3		80	Silty Sand (SM) Similar to above, gravel	1
12					0.1	20°6,20 50°6,20	100	Silt (ML) Very fine grain, loose, brown, damp Gravelly Sand (SW)	
14				a∎ 14'	0.1	080 2080 2080 2080 2080	60	Fine to medium grain, loose, dry to damp, gravel present Gravelly Sand (SW) Similar to above, fine to coarse grain	1
16-	14.5- 15'	1415	G/2V/ 2E/3J			0 8 0 میں میں 0 8 0 0 8 0 0 0	30	Gravelly Sand (SW) Similar to above, saturated	
18						0 0 0 می 0 می 0 8 0 می	30	Gravelly Sand (SW) Similar to above	1
20	GW San SWMU2-:	hple 2GW 1445						Total Depth = 18' BGL	2
22									2
38	PS JDC, In 33 S. Stap prpus Chris	les, S	Suite I ( 7841	N-229   1	9			Sheet: <b>1 of 1</b> 361/855-73           361/855-74         361/855-74	

RPS JDC
---------

#### LOG OF BORING

Client: Western Refining Southwest, Inc. Site: SWMU Group #2, Bloomfield Refinery

Job No.: 354 - Bloomfield, NM

Geologist: Tracy Payne

Driller: Enviro-Drill, Inc.

Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger

Sampling Method: Split Spoon

Total Depth: 18' bgl Ground Water: Saturated 14' bgl Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5516.521 Site Coordinates: N 50455.987 E 52386.490 Boring No.: SWMU2-3 Start Date: 9/25 & 9/29/2008 Finish Date: 9/25 & 9/29/2008

Comments: 0-10 Interval (9/25/08, 65°F); 10-20 Interval (9/29/08 85°F). Temporary well set from 13-18' bgl

		Sa	amp	oling	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Denth (ft )
0-	0-							Ground Surface		10
	0- 0.5' &Dup 1.5-		G/2V/ 2E/2J		0.3		90	Silt (ML) Very fine grain, loose, damp, brown Silty Clay (CL)		
2	2'	0940	G/2V/ 2E/2J		0.3		80	Moderate plasticity, firm, damp, brown Sandy Silt (ML)	/	
4	İ				0.3	ه ۵°۵°۵ م ۵°۵°۹ م ۵°۶°۹۶	90	Similar to above, trace sand Gravelly Sand (SW) Fine to medium grain, loose, dry, brownish gray		
6					0.4	<del>ع د د د</del> د د د د د د د د د د د د د د د د	80	Gravelly Sand (SW) Similar to above		
2 11111110					0.4		90	Gravelly Sand (SW) Similar to above		- 
10-					0.1		60	Silt (ML) Very fine grain, compact, damp, brown		
12	13.5- 14'	1615	G/2V/ 2E/3J	14'	0.1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 60	Gravelly Sand (SW) Very fine to medium grain, loose, dry to damp, gravel present No Recovery Gravelly Sand (SW)		htter
14   11   14   16   1	14		2E/3J			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	Similar to above Gravelly Sand (SW) Saturated, trace reddish brown clay, medium to coarse, loose		
18							70	Gravelly Sand (SW) Similar to above		
	GW Sample	e1645			-			Total Depth = 18' BGL		
22										
- 38	PS JDC, In 33 S. Stap rpus Chris	oles, S	Suite N ( 7841	N-229	)			Shoot: 4 of 4	1/855-7335 1/855-7410	fax

RPS JDC
---------

#### Client: Western Refining Southwest, Inc. Site: SWMU Group #2, Bloomfield Refinery Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

#### LOG OF BORING

Boring No.: SWMU2-4 Start Date: 9/25 & 9/30/2008 Finish Date: 9/25 & 9/30/2008

Comments: 0-10 Interval (9/25/08, 75°F); 10-20 Interval (9/30/08 72°F). Temporary well set from 14-19' bgl

Total Depth: 19' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5516.492 Site Coordinates: N 50476.757

Ground Water: Saturated 14.5' bgl

E 52395.980

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0	····· 0-							Ground Surface	0
0 2	0- 0.5'		G/2V/ 2E/2J G/2V/ 2E/2J		0.4		90	Silt (ML) Very fine grain, loose to compact, damp, brown, trace clay	2
			2E/2J		0.5		90	Clayey Silt (CL) Similar to above with clay	
4 6 8					0.5		80	Sand (SP) Fine to medium grain, loose, dry, brownish gray, trace gravel	4
					0.5		80	Gravelly Sand (SW) Similar to above with gravel	6
8					0.5		80	Gravelly Sand (SW) Similar to above	10
					0.4		60	Gravelly Sand (SW) Medium to coarse grain, loose, damp, brown, gravel present	10 12 12
12-					0.3	, 0° 0, 0 5, 0° 0, 0	60	Gravelly Sand (SW) Similar to above	14
14	14- 14.5' &Dup	0900	G/2V/ 2E/3J	<b>14.5</b>	0.3		50	Gravelly Sand (SW) Similar to above, saturated at 14.5' bgl	14
16	αDup					0, 2, 0 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	70	Gravelly Silty Sand (SW) Similar to above, silty/clayey, saturated	16
18							60	Gravelly Sand (SW) Similar to above, saturated	16
20	GW Sample	€1000				M		Total Depth = 19' BGL	1_
22									20
38	PS JDC, In 33 S. Stap prpus Chris	les, S	Suite N 7841	N-229 1	)			Sheet: 1 of 1         361/855-7335           361/855-7410	

Clie Site Job Geo Drill Drill Drill Sam	: SWM No.: ³ logist: er: Env ing Ri ing Mo pling	stern U Gro 54 - I : Trac viro-E <b>g:</b> Cl <b>g:</b> Cl etho Metl	oup #2 Bloom cy Pay Drill, In ME 75 <b>d:</b> Hol <b>hod:</b> \$	2, Bloo field, rne c. llow-S Split S	omfield NM Stem A	est, Inc. d Refine wuger/O[ 08, 81ºF	DEX	WELL Total Depth: 20 bg! Ground Water: Saturated 14' bg! Elev., TOC (ft. msl): 5518.794 Elev., PAD (ft. msl): 5516.157 Elev., GL (ft. msl): 5515.872 Site Coordinates: N 50484.517 E 52377.344 82°F (6-10) ); 10-20 Interval (10/15/08 44°F).	CONSTRUCTION Well No.: MW-50 (SWMU2-5) Start Date: 9/25 & 10/15/2008 Finish Date: 9/25 & 10/15/2008
		S	Sam	plin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results
-3-									
-3 -1 1 1								Ground Surface	
111	0.5'		G/2V/ 2E/2J		0.4		90	Silty Clay/Clayey Silt (CL/ML) Low plasticity, firm, damp, brown	rotect
3111	<u> </u>	1045	G/2V/ 2E/2J		0.3		20	Clayey Silt (ML) Similar to above	
5					0.4	، دو م م م م م م م م م	60	<b>Gravelly Sand (SW)</b> Fine to medium grain, loose, dry, brownish gray, gravel present throughout	d Concr Joints e Pellets Threaded
7 7 911	:				0.3		80	<b>Gravelly Sand (SW)</b> Similar to above	en w/Threaded J en w/Threaded J ex Bentonite ch. 40 PVC w/Th ch. 40 PVC w/Th ggl B
9111 911	1				0.5	ی و و و و و و و	80	Gravelly Sand (SW) Similar to above	Steel Reinforce Screen w/Threaded Screen w/Threaded Pack Bentonit 4" Sch. 40 PVC w/T Cap Cemer
11					0.8	0,00,00 0,00,00 0,00,00 0,00,00 0,00,00 0,00,0	60	<b>Gravelly Sand (SW)</b> Fine to medium grain, loose, dry, brownish gray, gravel present throughout	Slotted 0.01" Streen re Sand Filter Pack 4" Sch Sch. 40 PVC Cap Saturated @ 14' bgl
13	<u></u> 13- 14'	1015	G/2V/	14'	0.8		80	Gravelly Sand (SW) Similar to above, damp to moist	40 PVC Slotted 0 10/20 Sieve Sand
15 I I I	·····14'	1015	G/2V/ 2E/3J				50	Gravelly Sand (SW) Similar to above, saturated, trace clay, medium to coarse grain sand	4" Flush Threaded Sch. 40 PVC Slotted 0.01" Scree
17						5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	90	Gravelly Sand (SW) Similar to above, saturated, dark brown	have been first in the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the sec
19	FB1015 EB1015	1115		<u></u>			60	Sand/Sandstone (SP/SS) Fine grain, compact, damp, light brown to tan	18'
							 	Total Depth = 20' BGL	

RPS JDC, Inc. 3833 S. Staples, Suite N-229 Corpus Christi, Texas 78411

361/855-7335 361/855-7410 fax

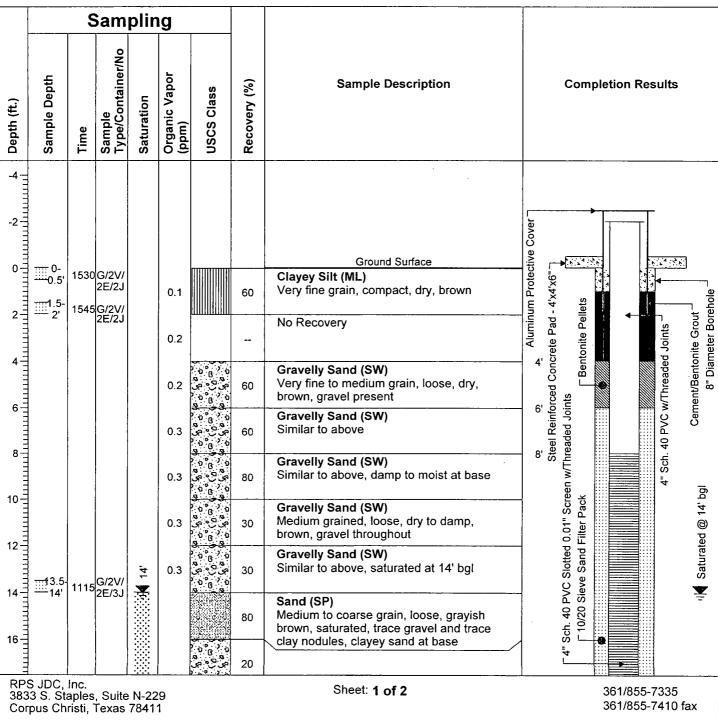
### LOG OF BORING

	Boring No.: SWMU2-6
Total Depth: 18' bgl	Start Date: 9/25 & 9/30/2008
Ground Water: Saturated @ 14' bgl	Finish Date: 9/25 & 9/30/2008
Elev., TOC (ft. msl):	
Elev., PAD (ft. msl):	
Elev., GL (ft. msl): 5514.622	
Site Coordinates: N 50495.442	
<b>E</b> 52287.081	
	Ground Water: Saturated @ 14' bgl Elev., TOC (ft. msl): Elev., PAD (ft. msl): Elev., GL (ft. msl): 5514.622 Site Coordinates: N 50495.442

Comments: 0-10 Interval (9/25/08, 84°F); 10-18 Interval (9/30/08, 83°F). Temporary well set from 13-18' bgl

		Sa	amp	lin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	
0								Ground Surface	
0	0- 0.5' 1.5- 2'		G/2V/ 2E/2J		0.3		90	Silty Clay (CL) Low plasticity, firm, damp, brown	
2	2'	1145	G/2V/ 2E/2J		0.2	۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	90	<b>Gravelly Sand (SW)</b> Fine to medium grain, loose, dry to damp, light brown	
2 4 6					0.2	<del>ع د ۵</del> ه ۵ م ۶ ه ۲ م ۶ ه ۲ م ۶	90	<b>Gravelly Sand (SW)</b> Similar to above	
6					0.3	<del>ع د م</del> ی م د می م د می م د م	90	<b>Gravelly Sand (SW)</b> Similar to above	
-	4				0.3	<del>ع ده</del> ه ده ه ده ه ده ه ده ه ده	90	Gravelly Sand (SW) Similar to above	
10-					0.0	<del>ع دی</del> ہ ک ک ک میں م ک	30	<b>Gravelly Sand (SW)</b> Fine to medium grain, loose, dry, brown, gravel present	
12-		1315	G/2V/ 2E/3J	14	0.0	<del>عن ع</del> ہی ہے ہی ہے ہی	40	<b>Gravelly Sand (SW)</b> Medium to coarse, loose to compact, damp to saturated at 14' bgl	
14-	······ 14'	1010	2E/3J			<del>ع دی</del> م د د م د د م د د	30	Gravelly Sand (SW) Similar to above, saturated, low plastic brown clay present	
16-	GW Sample	9				<del>ع ت ع د</del> ج ت ع د د م ر د می	40	Gravelly Sand (SW) Similar to above, clay not present, saturated	
18 20	EBW09300 FB093008 EBS09300	1515 1530		<u></u>			·	Total Depth = 18' BGL	
22		1545							101111
- 38	PS JDC, In 333 S. Stap prpus Chris	les, S	Suite N ( 7841	N-229				Sheet: 1 of 1         361/855-7           361/855-7         361/855-7	

Site Job Geo Dril Dril Dril Sar	RPP ent: West e: SWMU o No.: 354 ologist: 7 Iler: Envir Iling Rig: Iling Rig: Iling Met mpling M	ern R Grou 4 - Blo Fracy o-Dri ; CMB hod: hod:	p #2, I pomfie Payne II, Inc. E 75 Hollo <b>od:</b> Sp	g Sol Bloor eld, N e w-Ste	mfield IM em Au	Refinery		Boring Total Depth: ^{18' bgi} Start Da	OF BORIN No.: SWMU2-7 Ite: 9/25 & 9/30/2008 Date: 9/25 & 9/30/20	8
-		Sa	amp	lin						
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
0-	0-							Ground Surface		-0
0	0- 0.5'		G/2V/ 2E/2J G/2V/ 2E/2J		0.1		90	Silt (ML) Very fine grain, compact, dry, brown		2
2	2		2E/2J		0.2	۰ ۵ ۵ ۵ می ۵ م ۰ می ۵ م	90	<b>Gravelly Sand (SW)</b> Fine to medium grain, loose, dry, brown		
					0.1	<del>ຣີ ເຣ</del> ເຈີເຈີ ເຈີເຈີ ເຈີ ເຈີ	90	<b>Gravelly Sand (SW)</b> Similar to above		4
6111111					0.1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	90	Gravelly Sand (SW) Similar to above		6
8					0.2	<del>عن ع</del> میں م میں میں	90	Gravelly Sand (SW) Similar to above		8
1011111					0.3	<del>ع د د ع</del> ه د د م م د د م م	70	<b>Gravelly Sand (SW)</b> Fine to medium grain, loose, brown, gravel through	out	10
12	<b>13.5</b> -		G/2\//	14'	0.3	ع د د می می د می	70	Gravelly Sand (SW) Similar to above		12
14	13.5- 14'	1630	G/2V/ 2E/3J			<del>ع د ع</del> ه د ع د ه د د ه م	20	Gravelly Sand (SW) Coarse, loose, saturated, dark brown		14
16						<del>ع د ع</del> ه د م م د م	40	Gravelly Sand (SW) Similar to above		16
18				<u></u>		້ວີເງັວ		Total Depth = 18' BGL		E 18
2011	GW Sample SWMU2-70	W 1715								18 120
22										22
383	PS JDC, In 33 S. Stap orpus Chris	les, S	Suite N	1-229	; }	,		Sheet: 1 of 1	361/855-7335 361/855-7410	


: SWMU No.: 354 Jogist: 7 Jer: Envir ling Rig: ling Met Inpling M	Grou racy o-Dri CME hod: ethc 0-10	p #2, 1 pomfie Payne II, Inc. E 75 Hollo <b>od:</b> Sp	Bloor eld, N e w-Ste plit Sp val (9	IM em Au 5000n //25/08	Refinery ger		Total Depth: 18' bgl       Start Date: 9/25 & 10/1/2003         Ground Water: Saturated 13.5' bgl       Finish Date: 9/25 & 10/1/2003         Elev., TOC (ft. msl):       Elev., PAD (ft. msl):         Elev., GL (ft. msl): 5514.053       Site Coordinates: N 50488.340         E 52255.081       E 52255.081	
ء	Sa		ling			(		
Sample Dept	Time	Sample Type Containe/No.	Saturation	Organic Vap (ppm)	USCS Class	Recovery (%	Sample Description	Denth (ft )
							Ground Surface	
&Dup		2E/2J		0.1		90	Clayey Silt (ML) Very fine grained, compact, dry to damp, brown, trace discoloration - black/rusty brown, no odor	
2		2E/2J		0.1		70	Clayey Silt (ML) Similar to above	
				0.1	0°6°9°0 0°6°9°0 0°6°9°0	20	Gravelly Sand (SW) Fine to medium grain, loose, dry, brown, gravel throughout	
				0.2	0 6 6 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	70	Gravelly Sand (SW) Similar to above	
				0.3	, 0, 0, 0 , 0, 0, 0, 0 , 0, 0, 0, 0, 0 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	80	Gravelly Sand (SW) Similar to above, except brown to dark brown	
				0.3	່ວີ ເ ັ ວິ ເ ຈີ ເ ວິ ເ ເ ວິ ເ ວິ ເ ເ ວິ ເ ວິ ເ ວິ ເ	60	Gravelly Sand (SW) Fine to medium grained, loose, brown, damp, gravel throughout	
13- 13.5'	0815	G/2V/ 2E/3J	and 13.5'	0.3	0°0°0 2°0°0 0°0°0	30	Gravelly Sand (SW) Similar to above, saturated at 13.5' bgl	
					20°0'0 800 800'0 800'0 800'0	20	Gravelly Sand (SW) Similar to above, saturated, trace clay	<u>uuuuu</u>
					30 [°] G 30	100	Gravelly Sand (SW) Similar to above, saturated Sand/Weathered Sandstone (SP/SS)	إساسار
	W						Fine grained, compact/dense, damp, light grayish brown to greenish gray Total Depth = 18' BGL	պատեսություն
	Iogist: 7 er: Envir ing Rig: ing Met pling M ments: upda o o o o o o o o o o o o o o o o o o o	Iogist: Tracy er: Enviro-Dri ing Rig: CME ing Method: opling Metho	Iogist: Tracy Payne er: Enviro-Drill, Inc. ing Rig: CME 75 ing Method: Hollo pling Method: Sp ments: 0-10 Interv Samp up adues o adues o adv up adv up adv up adv up adv up adv adv adv adv adv adv adv adv adv adv	Iogist: Tracy Payne er: Enviro-Drill, Inc. ing Rig: CME 75 ing Method: Hollow-St ppling Method: Split Sp ments: 0-10 Interval (9 Sampling up adue of 0-5' &Dup 1.5- 2' 1445 G/2V// 2E/2J 1445 G/2V// 2E/2J	er: Enviro-Drill, Inc. ing Rig: CME 75 ing Method: Hollow-Stem Au pling Method: Split Spoon ments: 0-10 Interval (9/25/08 Sampling ftild and and by and and and and and and and and	logist: Tracy Payne er: Enviro-Drill, Inc. ing Rig: CME 75 ing Method: Hollow-Stem Auger appling Method: Split Spoon aments: 0-10 Interval (9/25/08, 85°F); Sampling ut appling Method: Split Spoon aments: 0-10 Interval (9/25/08, 85°F); Sampling appling Method: Split Spoon aments: 0-10 Interval (9/25/08, 85°F); dual of the split Spoon appling Method: Split Spoon and the split Spoon appling Method: Split Spoon and the split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Spoon appling Method: Split Split Spoon appling Method: Split Split Spoon appling Method: Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Sp	logist: Tracy Payne         er: Enviro-Drill, Inc.         ing Rig: CME 75         ing Method: Hollow-Stem Auger         upling Method: Split Spoon         ments: 0-10 Interval (9/25/08, 85°F); 10-20         Image: CME 75         upling Method: Split Spoon         upling Method: Split Split Spoon         upling Method: Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split Split S	logist: Tracy Payne       Elev., PAD (ft. msl): :-         er: Envix-Colli, Inc.       Elev., GL (ft. msl): :514.053         ing Rig: CME 75       Site Coordinates: N 50488.340         ing Method: Hollow-Stem Auger       E 52255.081         pring Method: Split Spoon       E 52255.081         imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F). Temporary well set from 13-18' bgl         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F). Temporary well set from 13-18' bgl         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F). Temporary well set from 13-18' bgl         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F).         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F).         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F).         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F).         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F).         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F).         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F).         Imments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 52°F).         Imments: 0-10 Interval (9/25/08, 90); 10.1         Imments: 0-10 Interval (9/25/08, 90); 10.1         Imments: 0-10 Interval (9/25/08, 90); 10.1         Imments: 0-10 Interval (9/25/08, 90); 10.1



#### WELL CONSTRUCTION

Client: Western Refining Southwest, Inc. Total Depth: 20 bgl Site: SWMU Group #2, Bloomfield Refinery Ground Water: Saturated 14' bgl Job No.: 354 - Bloomfield, NM Elev., TOC (ft. msl): 5515.583 Geologist: Tracy Payne Elev., PAD (ft. msl): 5513.098 Driller: Enviro-Drill, Inc. Elev., GL (ft. msl): 5512.877 Drilling Rig: CME 75 Site Coordinates: Drilling Method: Hollow-Stem Auger/ODEX N 50401.208 E 52102.539 Sampling Method: Split Spoon Comments: 0-10 Interval (9/25/08, 85°F); 10-20 Interval (10/1/08 80°F). Sampling Sample Description

Well No.: MW-51 (SWMU2-9) Start Date: 9/25 & 10/1/2008 Finish Date: 9/25 & 10/1/2008



Depth (ft.)	Depth	Sam ^{oN/Ja}	plin	g	1			1
	Sample [ Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Completion Results
19 21 23 25 27 29 31 33 35 37						90	Gravelly Sand (SW) Medium to coarse grain, compact, brownish gray, saturated, clayey from 16- 16.5' bgl Sand/Weathered Sandstone (SP/SS) Fine grained, compact to dense, damp, greenish gray to light brown Total Depth = 20' BGL	4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints ,91,81,92,120 and 10,01 "Screen w/Threaded Joints ,91,81 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120 and 10,120



Client: Western Refining Southwest, Inc. Site: SWMU Group #2, Bloomfield Refinery Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon Comments: 0-10 Interval (9/23/08, 60°F)

#### LOG OF BORING

Boring No.: SWMU8-1 Start Date: 9/23/2008 Finish Date: 9/23/2008

Co	mments	0-10	) Inter	val (9	9/23/08	8, 60⁰F)			
		Sa	amp	olin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0	0- 0.5'	0015	C/2)//	,				Ground Surface	0
0			G/2V/ 2E/2J G/2V/ 2E/2J	1	0.3		90	Silt (ML) Fine grain, loose to compact, dry, brown	2
	2		2E/2J	1	0.3		90	Silt (ML) Similar to above	
2 4 6 1			-		0.5		90	Silt (ML) Similar to above, damp	4
6					0.6		100	Silt (ML) Similar to above, damp	6
8					0.6		100	Clayey Silt (ML) Fine grain, compact, damp brown	8
10								Total Depth = 10' BGL	E 10
									12 12
12									10 12 14 14 16 18
									16
18									18
20									20
22									22
38	PS JDC, In 33 S. Stap orpus Chris	oles, S	Suite N 7841	N-229 1	)			Sheet: 1 of 1         361/855-7335           361/855-7410	

Total Depth: 10' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5534.094 Site Coordinates: N 49930.673

E 52884.130

Ground Water: Not Encountered



Client: Western Refining Southwest, Inc. Site: SWMU Group #2, Bloomfield Refinery Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon Comments: 0-10 Interval (9/23/08, 61°F)

### LOG OF BORING

Boring No.: SWMU8-2 Start Date: 9/23/2008 Finish Date: 9/23/2008

	mments		amp	·					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0	0- 0.5'	0915	G/2V/					Ground Surface Silt (ML)	0
2	<u></u> 1.5- 2'	0930	2E/2J G/2V/ 2E/2J		0.6		80	Fine grain, loose, dry, light brown	
	L		2E/2J		0.5		80	Silt (ML) Similar to above	0 2 4
4					0.7		90	Silt (ML) Similar to above	
4 6 8 8					0.6		90	Silt (ML) Similar to above, damp, trace fine grain sand	
E					0.7		90	Silt (ML) Similar to above	
10								Total Depth = 10' BGL	
12									
16									
18									16 11 18 18 12 20
20									-20
									- 22

Total Depth: 10' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5534.065

Ground Water: Not Encountered

3833 S. Staples, Suite N-229 Corpus Christi, TX 78411 361/855-7335 361/855-7410 fax

Clie Site Jot Gee Dril Dril Sar	RP ent: West : SWMU o No.: 354 ologist: Iller: Envir Iller: Envir Illing Rig Illing Met npling Met	ern F Grou 4 - Bl Tracy co-Dri cOMI hod: hod:	Refinin p #2, oomfie Payn III, Inc. E 75 Hollc od: Sp Interva	g So Blooi eld, N e ow-St olit Sp al (9/2	uthwes mfield IM em Au poon 23/08,	Refinen ger		Total Depth: 10' bgl Ground Water: Not Encountered Elev., TOC (ft. msl): Elev., PAD (ft. msl): Elev., GL (ft. msl): 5534.012 Site Coordinates: N 49956.262 E 53082.989 erval (9/23/08, 63°F)	LOG OF BORIN Boring No.: SWMU8-3 Start Date: 9/23/2008 Finish Date: 9/23/2008	G
Depth (ft.)	Sample Depth Time Sample Type/ Sample Type/ Containe/No. Saturation Organic Vapor (ppm) USCS Class							Sample Descri	ption	Depth (ft.)
0	0- 0.5'	0945	G/2V/ 2E/2J		0.6		70	Ground Surfac Fill Gravel, clay, sand/silt	ce	0
2	1.5- 2'	1000	G/2V/ 2E/2J		0.7		10	Fill Similar to above		2
4111111	:				0.6		60	Fill Sand/silt, very fine grain, loose, damp, o	rangish brown	
6					0.7		80	<b>Silt (ML)</b> Fine grain, compact, damp, brown		
8 					0.7		80	Clayey Silt (ML) Fine grain, compact, damp, brown		=8
12 12 12 12 12 12 12 12 12 12 12 12 12 1								Total Depth = 10'	BGL	10 112 112 114 114 116 118 118 118 118 112 110 112 112 112 112 112 112 112 112
383	S JDC, In 33 S. Stap rpus Chris	les, S	Suite N ( 7841	N-229 1	)			Sheet: 1 of 1	361/855-7335 361/855-7410	

e

Site Jol Ge Dri Dri Dri Sa	ent: West e: SWMU o No.: 354 ologist: ⁻ Iler: Envir Iling Rig Iling Met mpling N	ern F Grou 4 - Bl Tracy o-Dri cOlli CMI hod: hod	ip #2, oomfie Payn ill, Inc. E 75 : Hollc od: Sp	g So Bloor eld, N e w-St olit Sp	uthwes mfield IM em Au poon	Refiner ger		Total Depth: 10' bgl Ground Water: Not Encountered Elev., TOC (ft. msl): Elev., PAD (ft. msl): Elev., GL (ft. msl): 5536.192 Site Coordinates: N 49858.545 E 53079.734 erval (9/23/08, 73°F)	LOG OF BORIN Boring No.: SWMU8-4 Start Date: 9/23/2008 Finish Date: 9/23/2008	G
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.		Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Descri	iption	Depth (ft.)
0 2 4 6 10 12 14 16 11 18	0.5'		G/2V/ 2E/2J G/2V/ 2E/2J		0.7 0.8 0.7 0.7 0.7		90 90 90 80 80	Silt (ML) Fine grain, loose, dry, brown Silt (ML) Similar to above Silt (ML) Similar to above, damp Silt (ML) Similar to above, damp, trace clayey silt Total Depth = 10		
38	'S JDC, In 33 S. Stap rpus Chris	les, S	Guite N	J-229 1				Sheet: <b>1 of 1</b>		



# LOG OF BORING

Boring No.: SWMU8-5 Start Date: 9/23/2008 Finish Date: 9/23/2008

		Sa	amp	olin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0-								Ground Surface	
=	0.5	ļ	G/2V/ 2E/2J G/2V/		0.6		80	Silt (ML) Fine grain, loose, dry, brown, gravelly	
2111111	2		G/2V/ 2E/2J		0.6		90	Silt (ML) Similar to above, trace gravel	
					0.7		90	Silt (ML) Fine grain, compact, dry to damp, brown	
6					0.6		90	Silt (ML) Similar to above	
2 4 6 10					0.5		90	Silt (ML) Similar to above, trace clayey silt	 8
								Total Depth = 10' BGL	 [ <u></u> 10]
12									8 10 11 10 14 14
14									14
16									16
18									18
20-									20
22									E 22
RF 38	RPS JDC, Inc.         361/855-7335           3833 S. Staples, Suite N-229         Sheet: 1 of 1         361/855-7410 fax           Corpus Christi, TX 78411         361/855-7410 fax         361/855-7410 fax								

Total Depth: 10' bgl

Elev., TOC (ft. msl): --

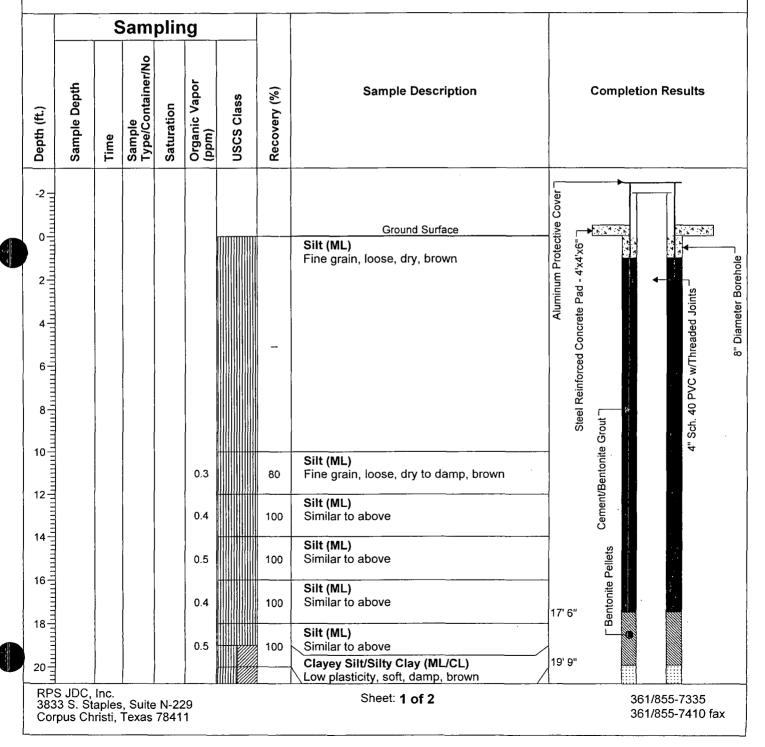
Elev., PAD (ft. msl): --

Ground Water: Not Encountered

Elev., GL (ft. msl): 5535.872 Site Coordinates: N 49843.523

E 52982.291

Sit Jol Ge Dri Dri Sa	ent: West e: SWMU b No.: 354 ologist: Iller: Envir Illing Rig Illing Met mpling M mments:	ern F Grou 4 - Bl Tracy ro-Dri : CM : hod	up #2, loomfid / Payn ill, Inc. E 75 : Hollc od: Sp	ng So Bloon eld, N e	uthwes mfield NM tem Au	Refine	-	LOG OF BORING Total Depth: 10' bgl Ground Water: Not Encountered Elev., TOC (ft. msl): Elev., PAD (ft. msl): 5535.908 Site Coordinates: N 49828.227 E 52839.886 U8-6A is 42' W 10° of SWMU 8-6	6
		Sa	amp	olin	g				
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
0	0- 0.5' &Dup 1.5- 2'		G/2V/ 2E/2J G/2V/ 2E/2J		0.7		90	Ground Surface Silt (ML) Fine grain, loose, dry, brown, trace gravel	0
2	2		2E/2J	i	0.6		60	Silt (ML) Similar to above	2
4					0.3		40	Silt (ML) Similar to above	4
6					0.5		80	Silt (ML) Similar to above	6
8					0.5		90	Silt (ML) Fine grain, compact, dry, brown	8
12 14 16 18 20								Total Depth = 10' BGL	10 10 12 12 14 14 16 16 16 18 20
22	S JDC, Inc	 C.							22


RPS JDC, Inc. 3833 S. Staples, Suite N-229 Corpus Christi, TX 78411 361/855-7335 361/855-7410 fax

# WELL CONSTRUCTION

Client: Western Refining Southwest, Inc. Site: SWMU Group #2, Bloomfield Refinery Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger/ODEX Sampling Method: Split Spoon

Total Depth: 41' bgl Ground Water: Saturated 34' bgl Elev., TOC (ft. msl): 5538.626 Elev., PAD (ft. msl): 5536.148 Elev., GL (ft. msl): 5535.908 Site Coordinates: N 49828.227 E 52839.886 Well No.: MW-52 (SWMU8-6A) Start Date: 10/13/2008 Finish Date: 10/14/2008

Comments: 0-10 Interval (10/13/08, 40°F); 10-41 Interval (10/14/08, 40°F-42°F). SWMU8-6A is 42'W 10°S of SWMU8-6.





# WELL CONSTRUCTION

Client: Western Refining Southwest, Inc.

Site: SWMU Group #2, Bloomfield Refinery

Geologist: Tracy Payne

Job No.: 354 - Bloomfield, NM

Driller: Enviro-Drill, Inc.

Drilling Rig: CME 75

Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Total Depth: 41' bgl Ground Water: Saturated 34' bgl Elev., TOC (ft. msl): 5538.626 Elev., PAD (ft. msl): 5536.148 Elev., GL (ft. msl): 5535.908 Site Coordinates: N 49828.227 E 52839.886 Well No.: MW-52 (SWMU8-6A) Start Date: 10/13/2008 Finish Date: 10/14/2008

Comments: 0-10 Interval (10/13/08, 40°F); 10-41 Interval (10/14/08, 40°F-42°F). SWMU8-6A is 42'W 10°S of SWMU8-6.

		S	Sam	plir	ng								
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Comp	bletion Res	sults	
					0.4		100	Clayey Silt/Silty Clay (ML) Similar to above			•		
22					0.5		100	Clayey Silt/Silt (ML) Similar to above, except decrease in clay content	23'	ided Joir		Filter Pa	
24					0.4	وري مېرې مې	60	Clayey Silt/Silt (ML) Similar to above Gravelly Sand (SW)		S w/Threa		0/20 Sieve Sand Filter Pack	
26					0.5		70	Fine grain, loose, damp, brown, gravel throughout Gravelly Sand (SW)		4" Sch. 40 PVC w/Threaded Joints Threaded Joints		10/20 Sie	
28					0.4		70	Similar to above Gravelly Sand (SW) Similar to above		4" Sc n w/Threa			g
30					0.5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70	Gravelly Sand (SW) Similar to above		1" Screer		C Cap	Saturated @ 34' bgl
32	33'- 34'	0915	G/2V/	34'	0.5	° 5° 5° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°	60	Gravelly Sand (SW) Similar to above, moist to saturated at base		4" Sch. 40 PVC 40 PVC Slotted 0.01" Screen w/Threaded Joints		5	
34	<u></u> 34		2E/3J			0 6 6 6 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	60	Gravelly Sand (SW) Fine to medium grain, loose to compact, saturated, brown		40 PVC 3		Ireaded Sc	Ţ
						<del>ع د ع</del> ه ی د ه م د م م	60	Gravelly Sand (SW) Similar to above, trace sandstone at base, very light reddish brown to tan		4" Sch.		' Flush Th	
38									38' 38' 6"			] 4	
40-11-11-11-11-11-11-11-11-11-11-11-11-11								Sand/Sandstone (SP/SS) Similar to above Total Depth = 41' BGL	41'				
383	Image: Second system         Sheet: 2 of 2         361/855-7335           3833 S. Staples, Suite N-229         Sheet: 2 of 2         361/855-7335           Corpus Christi, Texas 78411         361/855-7410 fax												



# LOG OF BORING

Boring No.: SWMU8-7 Start Date: 9/23/2008 Finish Date: 9/23/2008

Co	mments:	0-10	Inter	val (9	/23/08	s, 81⁰F)				
		Sa	amp	olin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
	0_							Ground Surface		-0
	0- 0.5' 1.5- 2'		G/2V/ 2E/2J		0.6		60	Silt (ML) Fine grain, loose, dry, brown		
0 2 4 6 8	2'	1000	G/2V/ 2E/2J		0.6		80	Silt (ML) Similar to above		2
4					0.7		80	Silt (ML) Similar to above, dry to damp		
6					0.7		80	Silt (ML) Similar to above		6 1 1 1 8
10					0.6		80	Silt (ML) Fine grain, loose, damp, brown, trace sand		
10								Total Depth = 10' BGL		Ē
										12
14										14
12										10 12 12 12 14 14 16
18										
20										20
22										-22
38	RPS JDC, Inc. 3833 S. Staples, Suite N-229 Corpus Christi, TX 78411					<u> </u>	<u> </u>	Sheet: 1 of 1	361/855-7335 361/855-7410	⊑ fax

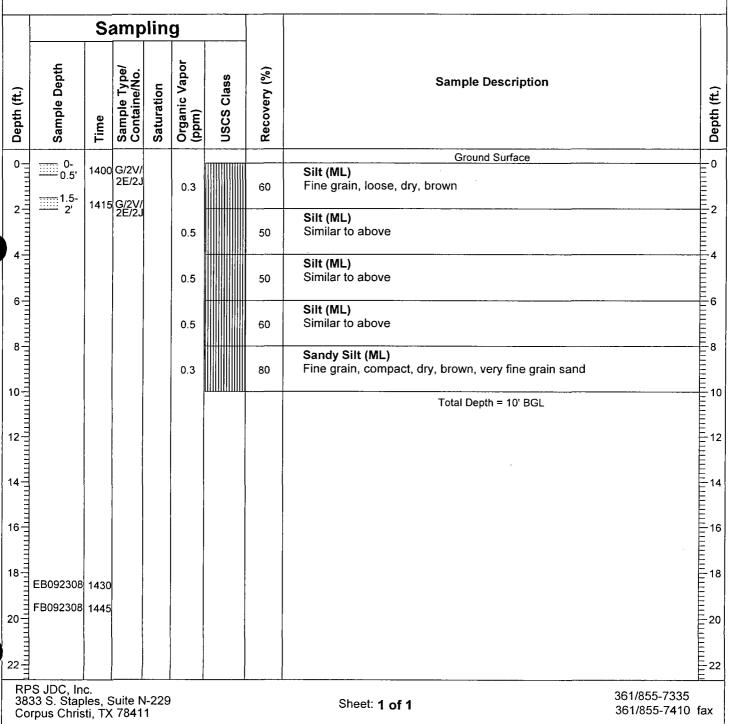
Total Depth: 10' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5536.338

Site Coordinates: N 49728.414


E 52880.733

Ground Water: Not Encountered



# LOG OF BORING

Boring No.: SWMU8-8 Start Date: 9/23/2008 Finish Date: 9/23/2008



Total Depth: 10' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5536.768

Ground Water: Not Encountered

Site Coordinates: N 49742.785

E 52978.830



# LOG OF BORING

Boring No.: SWMU8-9 Start Date: 9/23/2008 Finish Date: 9/23/2008

	Sampling									<u> </u>
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
0-	0- 0.5'		_					Ground Surface		-0
2	0.5' &Dup 1.5- 		G/2V/ 2E/2J G/2V/ 2E/2J		0.6		90	Silt (ML) Very fine grain, loose to compact, dry, brown		
	2		2E/2J		0.6		80	Silt (ML) Similar to above		
4					0.6		80	Silt (ML) Similar to above	<u> </u>	4
					0.5		80	Silt (ML) Similar to above		
8					0.5		80	<b>Clayey Silt (ML)</b> Very fine grain, compact, damp, brown		8
10								Total Depth = 10' BGL		2 2 2 4 6 10 10 10 10 10 10 10 10 10 10 10 10 10
14										14
16										16
18										18
20 22 22										20
RF 38	RPS JDC, Inc. 3833 S. Staples, Suite N-229 Corpus Christi, TX 78411							Sheet: 1 of 1	361/855-7335 361/855-7410 f	

Total Depth: 10' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5537.239

Site Coordinates: N 49756.679

E 53076.412

Ground Water: Not Encountered



# LOG OF BORING

Boring No.: SWMU8-10 Start Date: 9/23/2008 Finish Date: 9/23/2008

		Sa	amp	olin	g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
0_	0_							Ground Surface		
	0- 0.5' 		G/2V/ 2E/2J G/2V/ 2E/2J		0.5		90	Silt (ML) Very fine grain, compact, dry, brown		
	2		2E/2J		0.5		90	Silt (ML) Similar to above, trace fine grain sand at base		
0 2 4 6 8					0.5		90	Silt (ML) Similar to above		
8					0.5		90	Silt (ML) Similar to above, damp		8
10					0.6		90	Silt (ML) Similar to above, trace calcareous		
12								Total Depth = 10' BGL		0       10       10       11       12       13       14       14       16       18
14										14
16										
18-										18
20-										20
38	PS JDC, In 33 S. Stap prpus Chris	oles, S	Guite N 7841	V-229 1	) )	1	L	Sheet: 1 of 1	361/855-7335 361/855-7410	

Total Depth: 10' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5538.615

Ground Water: Not Encountered

Site Coordinates: N 49661.599

E 53076.420



# LOG OF BORING

Boring No.: SWMU8-11 Start Date: 9/23/2008 Finish Date: 9/23/2008

		6		lim	~		<u> </u>			1
		58	amp	biin						
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
								Ground Surface		
0	0.5'		G/2V/ 2E/2J G/2V/ 2E/2J		0.5		90	Silt (ML) Very fine grain, compact, dry, brown		
	Z		2E/2J		0.5		90	Silt (ML) Similar to above, quartz grains random throughout at bas	e	
6					0.4		90	Silt (ML) Similar to above		
8					0.5		90	Silt (ML) Similar to above		
10					0.5		90	Silt (ML) Similar to above		
2 4 6 10 12 14 18								Total Depth = 10' BGL		0 2 2 4 6 10 11 12 12 14 14 16 10 11 12
14-										14
16-										16
18										18
20										18 20 22
22										22
RF 38	PS JDC, In 33 S. Stap orpus Chris	oles, S	Suite N	└ V-229 1	⊥ €	1	1	Sheet: 1 of 1	361/855-7335 361/855-7410	<u>⊢</u> fax

Total Depth: 10' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --

Elev., GL (ft. msl): 5538.954

Site Coordinates: N 49642.993

E 52977.706

Ground Water: Not Encountered



# WELL CONSTRUCTION

Client: Western Refining Southwest, Inc. Site: SWMU Group #2, Bloomfield Refinery Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger/ODEX Sampling Method: Split Spoon

Total Depth: 41.5' bgl Ground Water: Not Encountered Elev., TOC (ft. msl): 5541.322 Elev., PAD (ft. msl): 5538.7 Elev., GL (ft. msl): 5538.46 Site Coordinates: N 49628.129 E 52879.301 Well No.: MW-53 (SWMU8-12) Start Date: 9/23/2008 Finish Date: 9/24/2008

Comments: 0-10 Interval (9/23/08, 80°F); 10-41.5 Interval (9/24/08, (10-28) 60°F, (28-30) 66°F, (30-39) 70°F).

	Sampling				g					
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Cor	npletion Results
-2 0		1630	G/2V/ 2E/2J					Ground Surface Silt (ML)	Aluminum Protective Cover	
2	0.5 1.5- 2'		2E/2J G/2V/ 2E/2J		0.5		70	Very fine grain, compact, dry, brown Silt (ML)	um Prote d - 4'x4'x6	
4					0.5		70	Similar to above Silt (ML)	Alumin Alumin ncrete Pa	eaded Joints
4 4 6					0.5		70 90	Similar to above Silt (ML) Similar to above, damp, trace quartz sand	forced Col	C w/Threa
8					0.5		90	Silt (ML) Similar to above	Aluminum Protec Steel Reinforced Concrete Pad - 4'x4'x6' 3rout 7	4" Sch. 40 PVC w/Threaded Joints 8" Diameter Bo
					0.1		90	Sandy Silt (ML) Very fine grain, compact, dry, brown, with fine grain sand	Steel Cement/Bentonite Grout	4" S
12 T					0.0		90	Sandy Silt (ML) Similar to above	Cement/B	
16					0.0		90	Sandy Silt (ML) Similar to above		
					0.1		90	Clayey Silt (ML) Very fine grain, compact, dry, brown, calcareous	-	Pellets
20					0.0		90	Clayey Silt (ML) Similar to above	20'	Bentonite
					0.1		100	Sandy Silt (ML) Very fine grain, compact to loose, dry, brown, with fine grain sand	22'	
383	S JDC, 3 S. Sta pus Ch	aples	, Suite Fexas	N-22 7841	:9 1			Sheet: 1 of 2		361/855-7335 361/855-7410 fax

	RPS JDC	WE
	Client: Western Refining Southwest, Inc.	Total Depth: 41.5' bgl
<i>.</i>	Site: SWMU Group #2, Bloomfield Refinery	Ground Water: Not Encountered
	Job No.: 354 - Bloomfield, NM	Elev., TOC (ft. msl): 5541.322
	Geologist: Tracy Payne	Elev., PAD (ft. msl): 5538.7
	Driller: Enviro-Drill, Inc.	Elev., GL (ft. msl): 5538.46
	Drilling Rig: CME 75	Site Coordinates:
	Drilling Method: Hollow-Stem Auger/ODEX	N 49628.129 E 52879.301
	Sampling Method: Split Spoon	
	1	

WELL CONSTRUCTION

Well No.: MW-53 (SWMU8-12) Start Date: 9/23/2008 Finish Date: 9/24/2008

**Comments:** 0-10 Interval (9/23/08, 80°F); 10-41.5 Interval (9/24/08, (10-28) 60°F, (28-30) 66°F, (30-39) 70°F).

	Sampling									
Depth (ft.)	Sample Depth	Time	Sample Type/Container/No	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Completion Results
23-					0.1		100	Sandy Silt (ML) Similar to above	22'	₩ • ·
25-					0.1		100	Sandy Silt (ML) Similar to above, damp, calcareous	25'	Filter Pa
27-					0.1		70	Silty Sand/Gravelly Sand (SM/SW) Fine grain, loose, dry, light brown to brown, gravelly at base		Ided Joints
29-					0.1	ەرىمە مەنىمە مەنىمە	60	Gravelly Sand (SW) Similar to above		aded Jo
31~					0.1	о°с, с, с, с, с, с,  50	Gravelly Sand/Sandy Gravel (SW) Similar to above, cobble size		ap w/Three	
33-					0.1	0 6 8 8 0 0 0 8 0 0 0 9 0 0 8 0 0	60	Gravelly Sand/Sandy Gravel (SW) Similar to above		11" Scree
35-					0.1	0°، 0°، 0°، 0°، 0°، 0°، 0°، 0°، 0°، 0°،	10	Gravelly Sand/Sandy Gravel (SW) Similar to above		Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints
37-		1430	G/2V/		0.1	°°°°°°	20	Gravelly Sand (SW) Similar to above		Thread
39-	38.5	1100	G/2V/ 2E/2J		0.1		90 90	Clayey Sand (SC) Fine to medium grain, compact, moist to very moist, yellowish brown		
41-							90	Sand/Sandstone (SP/SS) Fine grain, very dense, dry, light brown to reddish brown	40' 40' 6" 41.5'	** 
43-								Clayey Sand (SC) Fine grained, very dense, damp, greenish gray	11.0	
45-								Total Depth = 41.5' BGL		
38	RPS JDC, Inc.         Sheet: 2 of 2         361/855-7335           3833 S. Staples, Suite N-229         Sheet: 2 of 2         361/855-7410 fax           Corpus Christi, Texas 78411         361/855-7410 fax         361/855-7410 fax									

# LOG OF BORING



Client: Western Refining Southwest, Inc. Site: SWMU Group #2, Bloomfield Refinery Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger Sampling Method: Split Spoon

Total Depth: 17' bgl Ground Water: Saturated @ 15' bgl Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --Elev., GL (ft. msl): 5516.780 Site Coordinates: N 50121.100 E 53104.268

Boring No.: SWMU9-1 Start Date: 9/28/2008 Finish Date: 9/28/2008

Comments: 0-17 Interval (9/28/08, 83°F). Temporary well set from 12' to 17' bgl.

		Sampling											
	Depth (ft.)	Sample Depth Time Sample Type/ Containe/No. Saturation Organic Vapor (ppm) USCS Class		Recovery (%)	Sample Description	Depth (ft.)							
ŀ	0-	0-								Ground Surface			
	1111	0- 0.5'	1545	G/2V/ 2E/2J		0.3			100	Silt (ML) Very fine grain, compact to loose, dry, brown	F		
Ì		1.5- 2'	1600	G/2V/		0.3			100	Silt (ML)			
	2	2'	1000	G/2V/ 2E/2J						Similar to above			
						ч.			100	Silt (ML)			
D	4-					0.5			60	Similar to above, damp, trace clumps of sulphur, odor			
	Ē					0.5			00	Silt (ML) Similar to above, trace clumps of sulphur and fine grain red material,	6		
	_ =									odor	Æ.		
	61	5- 7.5'	1645	G/2V/ 2E/2J		0.3			60	Silt (ML)	E ⁶		
	E									Very fine grain, loose to compact, sulphur clumps present, damp, odor	E		
	8-					0.2				Silt (ML)	<b>E</b> 8		
	- I					0.2			60	Very fine grain, compact, damp, brown, no odor	E		
	. 1										10		
	10-1							İШ		Silt (ML)			
	E					0.3			70	Similar to above	E		
	12-										E 12		
	E									Silt (ML)			
	Ē					0.4			70	Similar to above, trace fine grain sand, damp to moist			
	14-3	14.5-	1700	G/2V/	15'	0.4			10		E 14		
		14.5- 15'		2E/2J				Ш		Sandstone (SS)	12 		
ĺ	16								90	Friable, damp to moist, no odor, greenish gray, trace sand and gravel	E-16		
										at the top	<b>-</b>		
										Total Depth = 17' BGL			
	18-										E ¹⁸		
											18		
	20-										E 20		
											20		
	E										Ę		
	22										E 22		
Γ	RP	S JDC, Inc	ç.							361/855-7335			
	- 383 - Cor	33 S. Stapl pus Chris	les, S ti TX	uite N	I-229 1	l				Sheet: <b>1 of 1</b> 361/855-7410			
L	501		a, 17		•								



# LOG OF BORING

Boring No.: SWMU18-1 Start Date: 9/26/2008 Finish Date: 9/26/2008

			,			,,				
	Sampling				g					
Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description		Depth (ft.)
0-								Ground Surface		-0
	0.5		G/2V/ 2E/2J G/2V/ 2E/2J	ļ	0.1		80	Clayey Silt/Gravel (ML) Very fine grain, compact, dry, brown		
2-	2		2E/2J		0.1		50	Silt (ML) Very fine grain, compact, damp, brown		
4					0.1		60	Silt (ML) Similar to above		-4
0					0.1		80	Silt (ML) Similar to above, except trace of very fine grain sand		-6
6 8 10-					0.1		90	Sandy Silt (ML) Very fine grain, compact, damp, brown		-8
10-								Total Depth = 10' BGL		- 8 - 10 - 12 - 12 - 14 - 16 - 18
14										14
16										16
18										1
20										20
22										22
38	PS JDC, In 33 S. Stap orpus Chris	les, S	Suite N 7841	N-229 1	I			Sheet: 1 of 1	361/855-7335 361/855-7410 fa:	×

Total Depth: 10' bgl

Elev., TOC (ft. msl): --

Elev., PAD (ft. msl): --

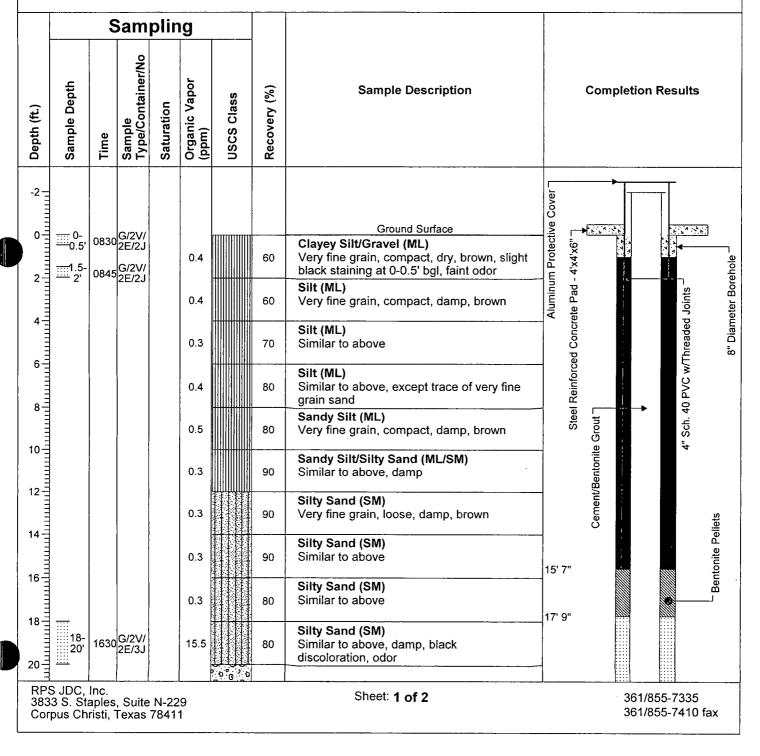
Elev., GL (ft. msl): 5527.534

Site Coordinates: N 49534.029

E 50237.472

Ground Water: Not Encountered




# WELL CONSTRUCTION

Client: Western Refining Southwest, Inc. Site: SWMU Group #2, Bloomfield Refinery Job No.: 354 - Bloomfield, NM Geologist: Tracy Payne Driller: Enviro-Drill, Inc. Drilling Rig: CME 75 Drilling Method: Hollow-Stem Auger/ODEX

Sampling Method: Split Spoon

Total Depth: 38' bgl Ground Water: Saturated @ 30' bgl Elev., TOC (ft. msl): 5530.077 Elev., PAD (ft. msl): 5527.564 Elev., GL (ft. msl): 5527.346 Site Coordinates: N 49528.406 E 50218.954 Well No.: MW-54 (SWMU18-2) Start Date: 9/26 & 10/15/2008 Finish Date: 9/26 & 10/17/2008

Comments: 0-10 Interval (9/26/08, 62°F); 10-38 Interval (10/15/08, (10-22) 65°F, (22-38) 62°F).



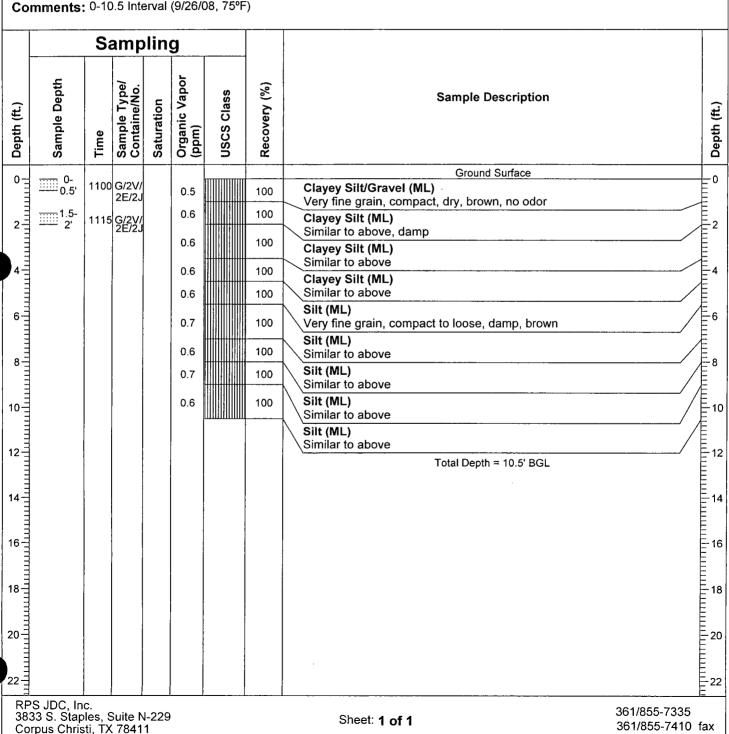
	RPS JDC	WEL
A	Client: Western Refining Southwest, Inc.	Total Depth: 38' bgl
	Site: SWMU Group #2, Bloomfield Refinery	Ground Water: Saturated @ 30' bgl
	Job No.: 354 - Bloomfield, NM	Elev., TOC (ft. msl): 5530.077
	Geologist: Tracy Payne	Elev., PAD (ft. msl): 5527.564
	Driller: Enviro-Drill, Inc.	Elev., GL (ft. msl): 5527.346
	Drilling Rig: CME 75	Site Coordinates:
	Drilling Method: Hollow-Stem Auger/ODEX	N 49528.406 E 50218.954

Sampling Method: Split Spoon

**ELL CONSTRUCTION** 

Well No.: MW-54 (SWMU18-2) Start Date: 9/26 & 10/15/2008 Finish Date: 9/26 & 10/17/2008

Comments: 0-10 Interval (9/26/08, 62°F); 10-38 Interval (10/15/08, (10-22) 65°F, (22-38) 62°F).


		S	Sam	plin	ıg								
Depth (ft.)	Sample Depth Time Sample Type/Container/No Saturation Organic Vapor (ppm)		USCS Class	Recovery (%)	Sample Description			Comp	bletion Res	sults			
22 24 26 28 30 32 34 36 38 40	28- 29'	1645	G/2V/ 2E/3J	[	<ul><li>8.5</li><li>12.9</li><li>16.1</li><li>58.5</li><li>400</li></ul>		60 20  40 40 50 40 50 60 40	Gravelly Sand (SW) Fine to medium grain, loose, damp, gray, faint odor, gravel present throughout Gravelly Sand (SW) Similar to above Gravelly Sand (SW) Similar to above Gravelly Sand (SW) Similar to above Gravelly Sand (SW) Similar to above, moist to very moist at 29' bgl, hydrocarbon odor Gravelly Sand (SW) Medium to coarse grain, loose, saturated, hydrocarbon odor, black Gravelly Sand (SW) Similar to above, saturated, black, hydrocarbon odor Sand/Sandstone (SP/SS) Fine grain, compact, dense, moist to saturated, hydrocarbon odor, dark gray to black Sand/Sandstone (SP/SS) Similar to above, becomes very dense, damp Total Depth = 38' BGL	37'	22' 22' 38'	4" Sch. 40 PVC Slotted 0.01" Screen w/Threaded Joints		- 4" Flush Threaded Sch. 40 PVC Cap ^{10/20} Sieve Sand Filter Pack - ··I▲ Saturated @ 30' bgl
383	RPS JDC, Inc.         Sheet: 2 of 2         361/855-7335           3833 S. Staples, Suite N-229         Sheet: 2 of 2         361/855-7410 fax           Corpus Christi, Texas 78411         361/855-7410 fax         361/855-7410 fax												

·	Site Jot Gee Dri Dri Dri Sar	ent: West e: SWMU o No.: 35 ologist: Iler: Envir Iling Rig Iling Met mpling N	ern F Grou 4 - Bl Tracy ro-Dri : CM hod: hod	ip #2, oomfie Payn ill, Inc. E 75 Hollo od: Sp	g So Bloon eld, N e w-St plit Sp	uthwes mfield IM em Au poon	Refiner		Total Depth: 10' bgl Ground Water: Not Encountered Elev., TOC (ft. msl): Elev., PAD (ft. msl): Elev., GL (ft. msl): 5527.678 Site Coordinates: N 49515.333 E 50239.867 erval (9/26/08, 66°F)	NG
	Depth (ft.)	Sample Depth	Time	Sample Type/ Containe/No.	Saturation	Organic Vapor (ppm)	USCS Class	Recovery (%)	Sample Description	Depth (ft.)
	0 2 2 4 4 10 12 14 14 16 110 112 110 112 110 110 110 110 110 110	0- 0.5' 1.5- 2'	0900	G/2V/ 2E/2J G/2V/ 2E/2J		0.5 0.6 0.7 0.8		60 80 100 100 100	Ground Surface Clayey Silt/Gravel (ML) Very fine grain, compact, brown to dark brown, faint odor Clayey Silt/Gravel (ML) Similar to above, gray, trace sand, faint odor, gravelly, black coating on gravel Clayey Silt (ML) Similar to above, gray grading to brown, no odor Clayey Silt (ML) Very fine grain, compact, brown, damp, no odor Silt (ML) Similar to above, no odor Silt (ML) Similar to above, no odor Silt (ML) Similar to above, no odor Silt (ML) Similar to above, no odor Total Depth = 10' BGL	0 2 4 6 10 12 14 10 12 14 16 18 10 12 14 16 18 10 12 14 16 18 10 12 12 14 16 18 10 12 12 14 16 16 17 16 16 16 16 16 16 16 16 16 16
-	383	S JDC, Ing 33 S. Stap rpus Chris	les, S			I			Sheet: 1 of 1         361/855-733           361/855-741	5 5



# LOG OF BORING

Boring No.: SWMU18-4 Start Date: 9/26/2008 Finish Date: 9/26/2008

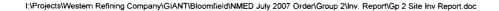


Total Depth: 10.5' bgi

Elev., TOC (ft. msl): --Elev., PAD (ft. msl): --

Ground Water: Not Encountered

Elev., GL (ft. msl): 5527.457


Site Coordinates: N 49511.634

E 50225.886



# **Appendix C**

Landfill (SWMU No. 8) and Landfill Pond (SWMU No. 9) Historical Documentation



## GARDERE & WYNNE ATTORNEYS AND COUNSELORS

1500 DIAMOND SHAMROCK TOWER DALLAS, TEXAS 75201

214-979-4500

WRITER'S DIRECT DIAL NUMBER

(214) 979-4569

TELECOPIER 214 979 4667 CABLE: GARWYN TELEX 73-0197

1997 V

## June 4, 1986

Jame's L. Turner, Esq. Assistant Regional Counsel U.S. Environmental Protection Agency Region VI InterFirst Two Building 1201 Elm Street Dallas, Texas 75270

> Re: Bloomfield Refining Company RCRA Docket No. VI-501-H; Consent Agreement and Final Order

Dear Jim:

On May 20, 1986, I received your letter dated May 19, 1986 which requested certain information on sampling results submitted to you and the New Mexico Environmental Improvement Division (NMEID) on February 13, 1986. You also requested a status report on performance items in paragraphs 1 through 3 (including subparagraphs) of the above-referenced order. The purpose of this letter is to respond to both requests.

In connection with your questions about the sampling results, I am submitting the attached letter from Mr. James E. Rumbo of Engineering-Science, the Company's technical consultant. This letter responds to all five items listed in your information request.

I now turn to the requested status report, based on information provided to me by the Company. Our response focuses on those items which contemplate affirmative performance on the part of the Respondent.

Paragraph 1

The civil penalty of \$5,700 has been paid.

James L. Turner, Esq. June 4, 1986 Page 2

## Paragraph 2C

The API separator was thoroughly cleaned in November 1985. The material removed was handled and manifested as a hazardous waste. It was transported to U.S. Pollution Control, Inc.'s Grassy Mountain facility near Clive, Utah. On May 23, 1986, the sludge level was 0.5 feet.

### Paragraph 2D

The prescribed documentation is available at the facility.

### Paragraph 2E

Spent caustic is removed from the existing spent caustic tank in less than 90 days, and the standards established under 40 C.F.R. 262.34, and its New Mexico equivalent are being observed. However, an entirely new spent caustic tank system has been installed to further comply with the repair and maintenance obligations of this paragraph. It includes a substantial concrete slab, containment dike, and new piping to insure that no discharge of caustic can occur. This system is scheduled to be operational by June 13, 1986. The existing system will then be closed in accordance with 40 C.F.R. § 265.197 and its New Mexico equivalent.

## Paragraph 2F

All of the material removed from the SOWP and NOWP in October 1985 was properly handled as a hazardous waste. The required engineering certification of removal will be submitted in conjunction with the final closure plan.

### Paragraph 3

The activities specified in "A Sampling and Closure Proposal for the API Wastewater Ponds, Landfill, and Landfill Pond at the Bloomfield Refinery," attached to the abovereferenced order as Exhibit B, have been completed. In accordance with the order, the Company submitted a closure plan and proof of financial responsibility on November 22, 1985. On February 13, 1986, the Company provided to EPA and NMEID copies of analytical results and analysis, as contemplated in Exhibit B and to supplement the November 22, 1985 closure plan. Following consultation with NMEID on the plan now before that agency, the Company expects to finalize the closure plan and move forward, as appropriate, on implementation. James L. Turner, Esq. June 4, 1986 Page 3

If you have any questions or would like additional information, please contact me at your convenience.

Sincerely, Joseph F. Guida

JFG:ta 8711S

Enclosures

cc: Ms. Denise Fort Mr. Jack Ellvinger James L. Turner, Esq. June 4, 1986 Page 5

bcc: Mr. Harry F. Mason Mr. Chris Hawley ENGINEERING-SCIENCE

2901 NORTH INTERREGIONAL • AUSTIN. TEXAS 78722 • 512/477-9901

CABLE ADDRESS: ENGINSCI TELEX: 77-6442

June 2, 1986

Mr. James L. Turner Assistant Regional Counsel U.S. EPA, Region VI Interfirst Two Building 1201 Elm Street Dallas, TX 75270

Re: Bloomfield Refining Company, Inc. Gary Refining Corp. RCRA Docket No. VI-501-H; Consent Agreement and Final Order

Dear Mr. Turner:

Submitted herewith is a response to your letter dated 19 May 1986 to Joe Guida. The subject of your letter was the results obtained from a sampling effort performed by ES personnel at the Bloomfield Refinery pursuant to meeting mutually agreed on stipulations of the consent agreement. You noted concerns expressed by the NMEID director about the validity of sampling results and submitted a list of five requests for additional data which has been reproduced here for convenience:

- A list of the detection limits set for samples 51469-01 through 29, "Inorganic Parameters for Phenolics."
- (2) A description of the protocol used to conduct sample analysis in all samples.
- (3) A comprehensive description of the QA/QC for obtaining all samples and conducting the laboratory analysis of them.
- (4) An explanation of how the detection limits were established for the "Skinner Base/Neutral Organics" and why these fluctuate from 400 to 4,000 ug/kg in some cases.
- (5) A facility map detail of the landfill, landfill pond, and north and south API pond areas, showing all sample locations.

The field sampling effort was designed, planned, and executed carefully to provide representative samples from the areas of interest. The laboratory employed on the project performed state-of-the-art analyses of the samples and reported results in report form. Any "absence of compounds that would normally be present at a refinery" is likely to represent a lack Mr. James L. Turner Page Two June 2, 1986

of compounds in the material that was sampled rather than deficient sampling or laboratory technique.

A revised report submitted by the contract laboratory is included in this submittal and should adequately address the first two requests for information. Pages 7 and 8 of the report should satisfy request number 1. The analytical methodology section (pages 18-20) should satisfy request number 2.

QA/QC procedures for the sampling effort were followed for both the local sampling sites and sampling equipment. Transport of samples to the laboratory was made in a timely and secure manner. In the case of the API ponds, the sampling locations within each pond were first cleaned with a series of washes consisting of (in chronological order) alconox soap solution, deionized water, methanol, and deionized water. Clean sampling equipment was utilized to extract and store samples. After each sample collection in all sampling areas, equipment was washed thoroughly using the same series of washes mentioned above. Samples were placed in the appropriate containers and individually enclosed in Zip-loc bags and stored in ice in a cooler. The cooler was sent to the contract laboratory via Federal Express utilizing standard chain-of-custody procedures.

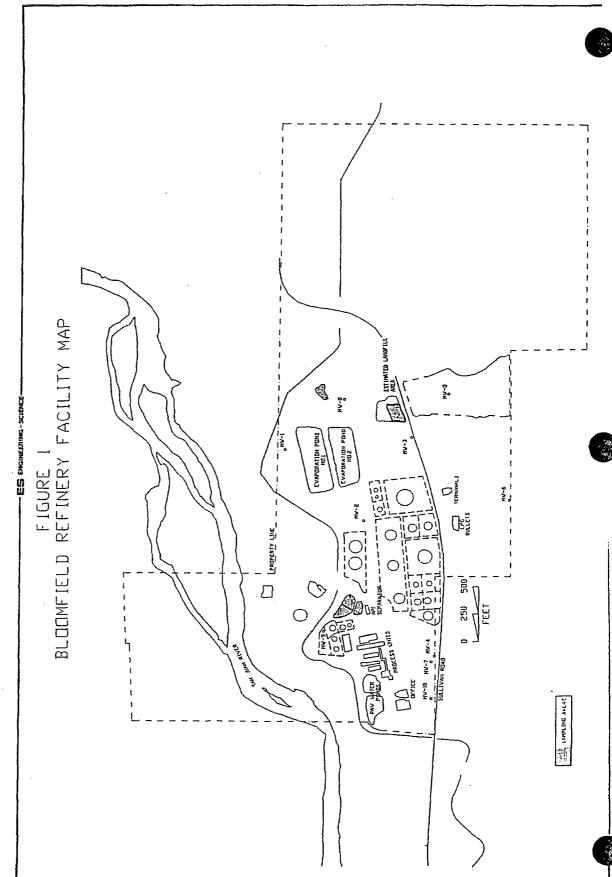
Quality control measures utilized by the laboratory have been enumerated in previously submitted information but have been reiterated here for completeness:

"A method blank was analyzed daily to determine any interferences in the system. Four samples were spiked with known amounts of the targeted compounds to determine the percent recovery. One of the samples was run in duplicate. All the results of the above were satisfactory.

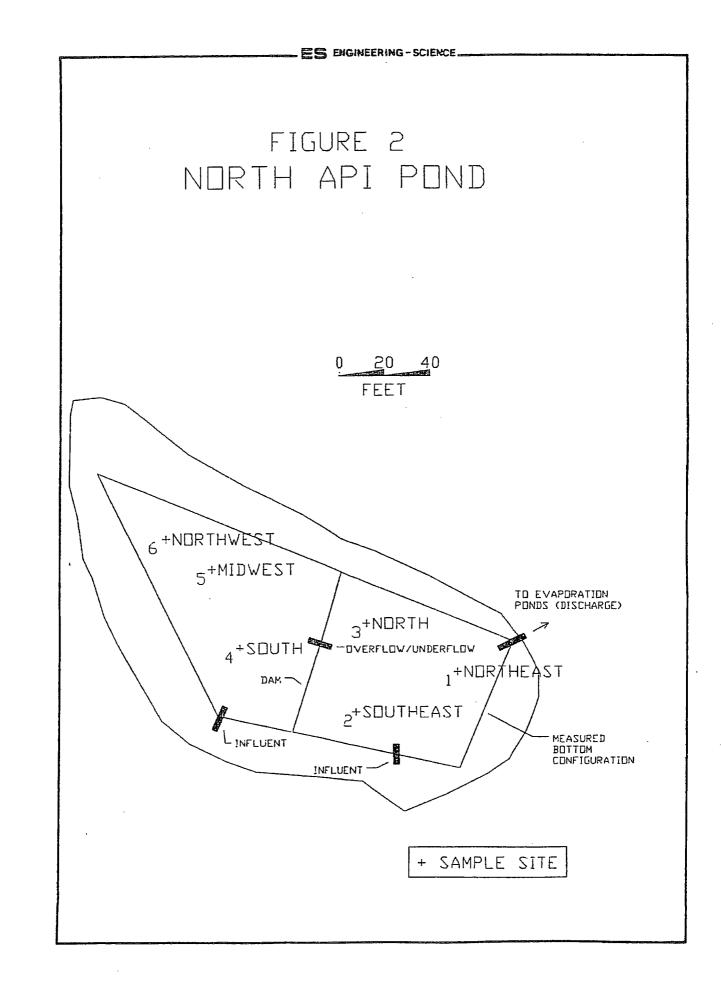
In addition to the above controls, all standards, samples, and blanks were analyzed with an internal standard present to ensure consistency in the system."

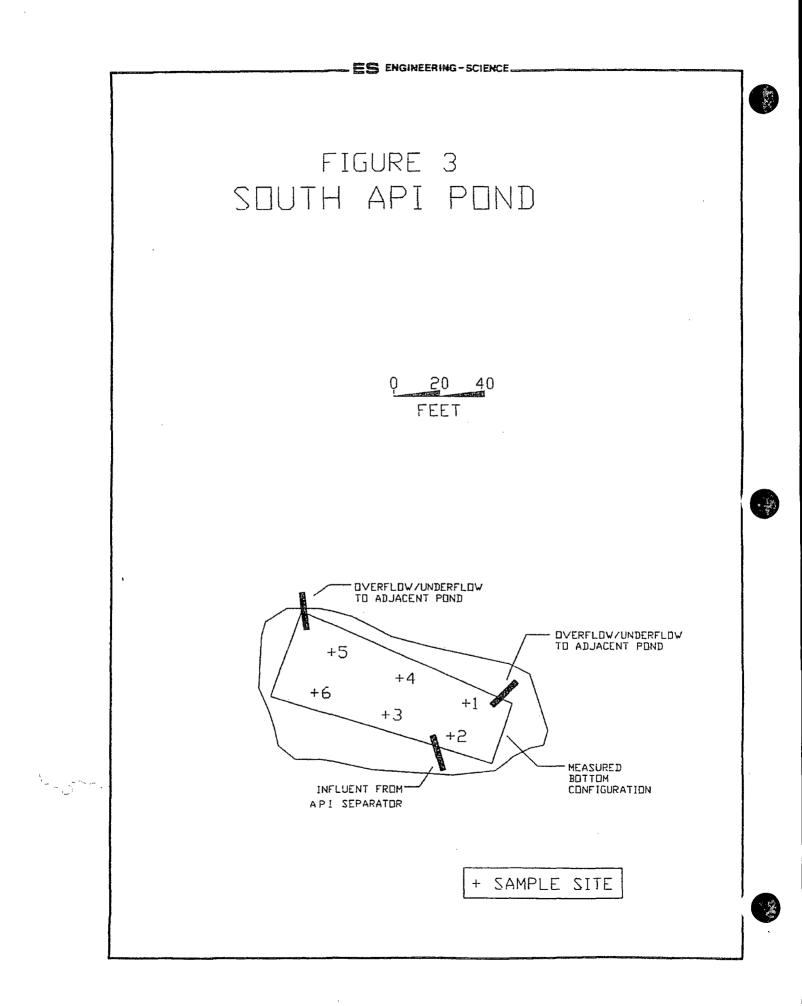
With regard to request number 4, detection limits are obviously based on a laboratory's ability to detect concentrations of a substance of interest using a selected laboratory technique. Some compounds are harder to detect than others due to the compound's inherent characteristics (e.g., molecular weight, polarity) and the relative degree to which other compounds interfere with interpretation of results (in the case of GC/MS). For example, in the laboratory report submitted for BRC, the detection limit for benzidine is listed to be 4,000 ug/kg compared with anthracene having a detection limit of 400 ug/kg. In this example, benzidine is harder to detect than anthracene, and the detection limit for benzidine is therefore higher than the detection limit for anthracene. It should also be noted that the detection limits utilized for analysis are typical of the analytical methods specified and are comparable to the analytical detection Mr. James L. Turner Page Three June 2, 1986

limits for the same and similar compounds in soils analyzed under EPA's Contract Laboratory Program.


Figures 1 through 4 depict a facility map with details of sampling areas as solicited in request number 5. The specific sampling sites within the landfill area were not defined, however, due to the lack of a specific area with which to reference the sample locations. During the sampling effort, the area of the landfill observed to be contaminated was irregularly shaped and inconsistent in areal extent with the land area depicted on earlier facility plans. For this reason, that portion of the landfill area appearing to have some contamination was selected for sampling and divided into quadrants. The midpoint of each quadrant (selected by eye) was then sampled. Distances between sampling sites were measured with a tape and ranged from 25 to 65 feet. An approximation of the sampling area within the landfill has been shown on Figure 1.

I trust that the above information is sufficient to answer any questions you may have. If you have any additional questions, please do not hesitate to call.


//James E. Rumbo, P.E. Project Engineer


Enclosures


dg



!







# REPORT OF ANALYTICAL RESULTS

F

## FOR

# ENGINEERING SCIENCE BLOOMFIELD REFINING COMPANY

Prepared By:

Rocky Mountain Analytical Laboratory 5530 Marshall Street Arvada, CO 80004

May 28, 1986

## I. INTRODUCTION

On October 19, 1985 Rocky Mountain Analytical Laboratory received 29 soil samples from Bloomfield Refining Company, collected by Engineering Science. The analyses performed on these samples have been categorized as follows:

- o Analyses for Appendix VIII organic constituents, and
- o Analyses for selected constituents and phenolics.

## Appendix VIII Constituents

The analytical parameters selected were based on recent communication with EPA concerning RCRA monitoring requirements for petroleum companies. The parameters selected were based on a subset of Appendix VIII hazardous constituents commonly referred to as the "Skinner" list. Communications from EPA in late 1984 contained various versions of During this time RMAL, under contract to the American this list. Petroleum Institute, performed several studies evaluating analytical methods proposed for measuring the constituents in these various lists. Due in part to efforts by RMAL and others, the EPA in early 1985 revised this list. The documents which were used by RMAL in defining the analytical parameters are listed in a bibliography at the end of this This list, as revised, contains 46 organic compounds and is report. presented in Table 1. The organic compounds are further subdivided into volatile and semivolatile (extractable) compounds.

### **Additional Tests**

İ

.

In addition to the tests for the full "Skinner" list, some samples were analyzed only for a specific subset of this list. The subset was benzene, toluene, xylene, lead, chromium and total phenolics.

All samples were shipped by air freight to RMAL's Denver, Colorado laboratory. Each sample was assigned a unique RMAL sample number as shown in the enclosed Sample Description Information sheet. These sample numbers were used throughout the project to track and control the analytical work and are used in this document for reporting the results from each analyses.

1

## SAMPLE DESCRIPTION INFORMATION

## for

# Engineering Science - Bloomfield Refining Company

5

<u>RMA Sample No.</u>	Sample Description	Sample Type	Date Sampled	Date Received
51469-01	L1 & L2, 0-6" Quadrant #1 - Landfill	Soil	10/16/85	10/19/85
51469-02	L3 & L4, 6-12" Quadrant #1 - Landfill	Soil	10/16/85	10/19/85
51469-03	L5 & L6, 0-6" Quadrant #2 - Landfill	Soil	10/16/85	10/19/85
51469-04	L7 & L8, 6-12" Quadrant #2 - Landfill	Soil	10/16/85	10/19/85
51469-05	L9 & L10, 0-6" Quadrant #3 - Landfill	Soil	10/16/85	10/19/85
51469-06	L11 & L12, 6-12" Quadrant #3 - Landfill	Soil	10/16/85	10/19/85
51469-07	L13 & L14, 0-6" Quadrant #4 - Landfill	Soil	10/16/85	10/19/85
51469-08	L15 & L16, 6-12" Quadrant #4 - Landfill	Soil	10/16/85	10/19/85
51469-09	LP1 & LP2, 0-6" Points 1 & 2 @ Landfill Pond	Soil	10/16/85	10/19/85
51469-10	LP3 & LP4, 6-12" Points 1 & 2 @ Landfill Pond	Soil	10/16/85	10/19/85
51469-11	LP5 & LP6, 0-6" Points 3 & 4 @ Landfill Pond	Soil	10/16/85	10/19/85
51469-12	LP7 & LP8, 6-12" Points 3 & 4 @ Landfill Pond	Soil	10/16/85	10/19/85
51469-13	LP9 & LP10, 0-6" Points 5 & 6 @ Landfill Pond	Soil	10/16/85	10/19/85
51469-14	LP11 & LP12, 6~12" Points 5 & 6 @ Landfill Pond	Soil	10/16/85	10/19/85
51469-15	LP13 & LP14, 0-6" vaporation Pond - Landfill Por	Soil nd	10/16/85	10/19/85
	MS1 & MS2, Mystery Sample	Soil	10/16/85	10/19/85
51469-17	APS1 & APS2, 0-6" NE & SE of South API Pond	Soil	10/15/85	10/19/85
51469-18	APS3 & APS4, 6-12" NE & SE of South API Pond	Soil	10/15/85	10/19/85
51469-19	APS5 & APS6, 0-6" N & S of South API Pond	Soil	10/15/85	10/19/85
51469-20	APS7 & APS8, 6-12" N & S of South API Pond	Soil	10/15/85	10/19/85

## SAMPLE DESCRIPTION INFORMATION

## for

# Engineering Science - Bloomfield Refining Company

# (Continued)

RMA Sample No.	Sample Description	Sample Type	Date Sampled	Date Received
51469-21	APS9 & APS10, 0-6"	Soil	10/15/85	10/19/85
51469-22	NW & SW of South API Pond APS11 & APS12, 6-12"	Soil	10/15/85	10/19/85
51469-23	NW & SW of South API Pond APS13, 0-6"	Soil	10/15/85	10/19/85
51469-24	SE near influent S. API Pond APN1 & APN2, 0-6"	Soil	10/15/85	10/19/85
51469-25	NE & SE of North API Pond APN3 & APN4, 6-12"	Soil	10/15/85	10/19/85
51469-26	NE & SE of North API Pond APN5 & APN6, 0-6"	Soil	10/15/85	10/19/85
51469-27	N & S of North API Pond APN7 & APN8, 6-12"	Soil	10/15/85	
	N & S of North API Pond			10/19/85
	APN9 & APN10, 0-6" NW & SW of North API Pond	Soil	10/15/85	10/19/85
51469-29	APN11 & APN12, 6-12" NW & SW of North API Pond	Soil	10/15/85	10/19/85

3

May 28, 1986

٩

:

i

## TABLE 1. APPENDIX VIII HAZARDOUS CONSTITUENT SUBSET FOR PETROLEUM REFINERY STUDIES[≠]

## **Volatile Organics**

Benzene Carbon Disulfide Chlorobenzene Chloroform 1,2-Dibromoethane 1,2-Dichloroethane 1,4-Dioxane Methyl ethyl ketone Styrene Ethyl Benzene Toluene Xylenes Xylenes, m Xylenes, o & p

## Base/Neutral Organics

Anthracene Benz(a)anthracene Benzo(b)fluoranthene Benzo(j)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Chrysene Dibenz(a,h)acridine

Di-n-butyl phthalate

*"Petitions to Delist Hazardous Wastes, A Guidance Manual," EPA/530-SW-85-003, April, 1985.

Dichlorobenzenes o-Dichlorobenzene m-Dichlorobenzene p-Dichlorobenzene Diethyl phthalate 7,12-Dimethylbenz(a)anthracene Dimethyl phthalate Di-n-octyl phthalate Fluoranthene

Methyl chrysene

1-Methylnaphthalene

Naphthalene

Indene

Phenanthrene

Pyrene Pyridine

Quinoline

## Acid Organics

Benzenethiol Cresols o-Cresol p&m-Cresol 2,4-Dimethylphenol 2,4-Dinitrophenol 4-Nitrophenol Phenol

# Base/Neutral Organics (Cont.)

## **II. RESULTS**

The analytical results are presented in the data tables in this section. The data are organized into the tables described below:

o Phenolics,

o Total Chromium and Lead,

o Skinner Volatile Organics,

o Skinner Base/Neutral Organics,

o Skinner Acid Organics, and

o Volatile Aromatics.

For each of the parameters in the phenolics and the metals tables, the result and detection limit is present for each sample. The term ND is used to indicate the parameter was not detected at the detection limit shown.

The term BDL (Below Detection Limit) is used in the skinner organic results tables to indicate that the compound is not present at the detection limit shown. The detection limits for the Appendix VIII organic compounds were obtained from a study of the analytical methods performed by RMAL under contract to the American Petroleum Institute  $(API)^1$ . Analytical standards are not available for three compounds. These compounds cannot be measured; they have been listed in the results tables and have been footnoted to show that standards were not available.

As explained in more detail in the analytical methodology section, the samples were screened prior to analysis in order to optimize the detection limit for each sample and minimize instrumental problems associated with analyzing samples containing

¹"Recovery and Detection Limits of Organic Compounds in Petroleum Refinery Wastes", January 25, 1985.

5

relatively high concentrations. This process resulted in high dilutions for several samples containing high concentrations of the target compounds. For these samples, the detection limits for compounds not detected are proportionately high. Also, the compounds which were reported close to (less than two times) the detection limits may be suspect.

		Inginee	<u> </u>	omfield l	Refining Company				
PHENOLICS									
Parameter	Units	21	51469-01	216	51469-02		51469-03	اص	51469-04
Phenolics	mg/kg	QN	(0.1)	QN	(0.1)	QN	(0.1)	QN	(0.1)
<u>Parameter</u>	Units	21	51469-05	21	51469-06		51469-07	ία. ·	51469-08
Phenolics	mg/kg	ND	(0.1)	ΠD	(0.1)	ND	(0.1)	UN	(0.1)
Parameter	Units	51	51469-09	21	51469-10		51469-11	<u>ای</u> -	51469-12
Phenolics	mg/kg	UN	(0.1)	QN	(0.1)	UN	(0.1)	UN	(0.1)
Parameter	Units	51	51469-13	21	51469-14		51469-15	<u>ا</u> عہ	51469-16
Phenolics	mg/kg	QN	(0.1)	QN	(0.1)	QN	(0.1)	UN	(0.1)
Parameter	Units	11	51469-17	21	51469-18		51469-19	្រា	51469-20
Phenolics	mg/kg	UN	(0.1)	ΠN	(0.1)	UN	(0.1)	ND	(0.1)
Parameter	Units	21	51469-21	51	51469-22		51469-23	ائ ا	51469-24
Phenolics	mg/kg	ΠD	(0.1)	QN	(0.1)	ΠD	(0.1)	ΩN	(0.1)

ND = Not detected.

ANALYTICAL RESULTS

for

Rocky Mountain Analytical Laboratory

, . . ;

: :

ı

:

**.**...

5

·

!

, 1

:

.

.....

•

:

.

* • • • • •

## ANALYTICAL RESULTS

## for

# **Engineering.Science - Bloomfield Refining Company**

## **PHENOLICS** (Continued)

Parameter	Units	210	51469-25	516	51469-26	ieu	51469-27		514	51469-28
Phenolics	mg/kg	<b>UN</b>	(0.1)	QN	(0.1)	ŊŊ	(0.1)	Ν.	QN	(0.1)
Parameter	Units	51	51469-29							
Phenolics	mg/kg	ND	(0*1)							

ND = Not detected.

1.8°



. ,

f i i

F F F L

> r i 1.-

> > - -

• •

-

## ANALYTICAL RESULTS

for

# Engineering Science - Bloomfield Refining Company

## CHROMIUN AND LEAD

$\frac{51469-04}{7.6}$	6.7 (2.5) 51469-08	7.0 (0.5) 7.7 (2.5)	51469-12	10 (0.5) 12 (2.5)	51469-16	2.4 (0.5) 4 (2.5)	51469-20	14 (0.5) 4 (2.5)
<u>51469-03</u> 9.9 (0.5)	9.0 (2.5) <u>51469-07</u>	9.1 (0.5) 8.2 (2.5)	51469-11	7.8 (0.5) 8.9 (2.5)	<u>51469-15</u>	2.3 (0.5) 4 (2.5)	51469-19	5.5 (0.5) 5 (2.5)
$\frac{51469-02}{(0.5)}$	9.8 (2.5) <u>51469-06</u>	7.4 (0.5) 7.0 (2.5)	51469-10	8.1 (0.5) 8.5 (2.5)	51469-14	7.8 (0.5) 13 (2.5)	51469-18	5.3 (0.5) 5 (2.5)
Units 51469-01 mg/kg 11 (0.5)	10 5140	mg/kg 7.8 (0.5) mg/kg 7.6 (2.5)	<u>Units</u> 51469-09	mg/kg 6.2 (0.5) mg/kg 9.0 (2.5)	<u>Units</u> 51469-13	mg/kg 8.0 (0.5) mg/kg 12 (2.5)	Units 51469-17	mg/kg 4.4 (0.5) mg/kg 5 (2.5)
Parameter Ur Chromium mg		Chromium mg Lead mg	<u>Parameter</u>	Chromium mg Lead mg	Parameter Ur	Chromium mg Lead mg	Parameter Ur	Chromium Lead mg

Detection limits in parentheses.

• --

.

*.*...

{` |

r

;

1 :: ;

.

*******

....

-

## ANALYTICAL RESULTS

## for

# <u>Engineering Science - Bloomfield Refining Company</u>

## CHROMIUM AND LEAD (Cont.)

51469-24           7.8         (0.5)           4         (2.5)	$   \begin{array}{r}     51469-28 \\     2.9 & (0.5) \\     3 & (2.5)   \end{array} $	
<u>51469-23</u> 4.9 (0.5) 6.0 (2.5)	$   \begin{array}{r}     \overline{51469-27} \\     2.3 \\     3 \\     3 \\     2.5   \end{array} $	
$   \begin{array}{r}        \frac{51469-22}{(0.5)} \\         27 \\         5.9 \\         (2.5)   \end{array} $	$   \begin{array}{r}     \underline{51469-26} \\     3.6 \\     6.5 \\     6.5 \\   \end{array} $	
51469-21           6.8         (0.5)           5.1         (2.5)	51469-25           3.2         (0.5)           3         (2.5)	51469-29           12         (0.5)           4         (2.5)
<u>Units</u> mg/kg mg/kg	<u>Units</u> mg/kg mg/kg	<u>Units</u> mg/kg mg/kg
<u>Parameter</u> Chromium Lead	<u>Parameter</u> Chromium Lead	<u>Parameter</u> Chromium Lead

Detection limits in parentheses.



.

. !

-----

!

. 1

; ; t_

.. .

---

## ANALYTICAL RESULTS

## for

# **Engineering Science - Bloomfield Refining Company**

## VOLATILE AROMATICS - GC/PID

51469-04	ND (0.5)			_	51469-08					ND (2.0)	51469-12		(0.1) UN			VD (2.0)	51469-16	ND (0.5)			
	Z Z	5 2	. 4			4	4	4	4	4		44	4	4	~~	Ą		<i>~</i> , <i>~</i>	- <i>«</i>		4
51469-03	(0.5)		(1.0)	(2.0)	51469-07	(0*2)	(1.0)	(1.0)	(1.0)	(2.0)	51469-11	(0.2)	(1.0)	(1.0)	(1,0)	(2.0)	51469-15	(0.5)	(0.T)	(1.0)	(2.0)
	<b>UN</b>		nD	UN	·	ΠŊ	UN	ΠD	DN	ND	-	DN	UN	DN	DN	UN		<b>UN</b>		ND	ND
21		2		ŝ	<u>ا</u> ت	()	(	<u> </u>		(	0	(9	(	()		<u> </u>	4	6	50		(
51469-02	(0.5)		(1.0	(2.0	51469-06	(0.5	(1.(	(1.(	(1.(	(2.0)	51469-10	(0,	(1.(	(1.(	(1.(	(2.0)	51469-14	(0.5)		1.(	(2.(
	<b>UN</b>		QN	UN		DN	<b>UN</b>	<b>UN</b>	DN	ΠŊ		ΠN	UN	QN	DN	ND		UN UN		QN	DN
10	(1) (1)	6	(1.0)	(0	05	.5)	(0,	(0.	.0)	.0)	00	.5)	.0)	(0.	.0)	(0.	13	.5) 0)	) (		(0)
51469-0			_	_	51469-0	_	(1.0)	_	_	_	51469-09		(1.0)				51469-1	.3 (0.5)			
	UN CIN		QN	UN		UN	DN	ΠN	DN	ΠN		DN	DN	UN .	DN	DN		1.3 ND		QN	DN
Units	ug/kg	ug/kg	ng/kg	ug/kg	Units	ng/kg	ug/kg	ug/kg	ng/kg	ug/kg	Units	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	Units	ug/kg 110/ko	ug/kg	ug/kg	ug/kg
eter	Benzene Ethvlbenzene	e	3, m	Xylenes, o & p	eter	пе	Ethylbenzene	le I	э, ш	Xylenes, о & р	eter	Je	Ethylbenzene	le	3, m	Xylenes, o & p	eter	Benzene Ethvlhenzene	e	, m	Xylenes, o čc p
Parameter	Benzene Ethvlben	Toluene	Xylene, m	Xylenc	Parameter	Benzene	Ethylb	Toluene	Xylene, m	Xylent	Parameter	Benzene	Ethylb	Toluene	Xylene, m	Xylene	Parameter	Benzene Ethvlhen	Toluene	Xylene, m	Xylene

ND = Not detected. Detection limits in parentheses.

.

ר 1 | |

r

ſ

[

•

,

!

. .

•

## ANALYTICAL RESULTS

## for

# <u>Engineering Science - Bloomfield Refining Company</u>

(Continued)

## VOLATILE AROMATICS - GC/PID

51469-20	(0.5) (1.0)	(1.0)	(2.0)	(4•0)	51469-24	(1.0)	(1.0)	() () () () () () () () () () () () () (	(2.0)	51469-28	(0.5)	(1.0)	(1.0)	(2.0)				
6	an an	DN	QN A		ری ا	QN	QN QN			jen	UN			QN				
			•															
51469-19	(0.5) (1.0)	(1.0)	(4.0)	(0.2)	51469-23	(1.0)	(1.0)	(0.2)	(2.0)	51469-27	(0.5)	(1.0)	(1.0)	(2.0)				
21	UN DN	UN	QN N		<u>1</u>	ΠD	UN CN		ND ND	[5]	UN	QN QN	ND ND	QN				
51469-18	(0.5) (1.0)	(1.0)	(3.0)	(0.6)	51469-22	(1.0)	(4.0)	(11.0)	(25)	51469-26	(0.5)	( <b>1.</b> 0)	(1.0)	(2.0)				
2	ON UN	ND			5	ND	ON CIN		Q	2	QN		ND	UN				
51469-17	(0.5) (1.0)	(1.0)	(1.0) (0.1)	10.47	51469-21	(0.5)		(0.1)	(4.0)	51469-25	(0.5)	(1.0)	(1.0)	(2.0)	51469-29	(0.5)	(1.0)	(1.0) (2.0)
<u>51</u>	QN QN	UN 1	5.3	4		QN ND		QN	ND	21	QN		DN	ΠD	21	QN CN	ND	UN UN
Units	ug/kg ug/kg	ug/kg	ug/kg ur/ko		OUICS	ug/kg	ug/ko 110/ko	ug/kg	ng/kg	Units	ng/kg	ug/kg ug/kg	ng/kg	ug/kg	Units	ug/kg 110/ka	ug/kg	ug/kg bg/kg
	zene		o År D	ی :	÷1		allas	Ľ	οάρ	5	2	ana	_	ក្ ស្ត្	51	tene		1 0 Å p
Parameter	Benzene Ethylbenzene	Toluene Xvlene m	Xylenes, o & D	Daramatar	מ מווברו	Benzene	Toluene	Xylene, m	Xylenes, o & p	Parameter	Benzene	Toluene	Xylene, m	Xylenes, o & p	Parameter	Benzene Ethvlhenzene	Toluene	Xylene, m Xylenes, o & p
, man			1 64	1	-, i			F.4	~ 1	( )		~ [-4	FNI		1111		- Card	nn

*Analyses incomplete. Detection limits in parentheses. ND = Not detected.







## ANALYTICAL RESULTS

## for

## Engineering Science - Bloomfield Refining Company

## PERCENT MOISTURE

Sample Number	Percent Moisture	Sample Number	Percent Moisture
51469-01	4%	51469-16	496
51469-02	5%	51469-17	9%
51469-03	4%	51469-18	10%
51469-04	3%	51469-19	10%
51469-05	3%	51469-20	8%
51469-06	3%	51469-21	6%
51469-07	6%	51469-22	6%
51469-08	4%	51469-23	8%
51469-09	23%	51469-24	5%
51469-10	14%	51469-25	5%
51469-11	18%	51469-26	7%
51469-12	13%	51469-27	5%
51469-13	22%	51469-28	4%
51469-14	14%	51469-29	4%
51469-15	28%		

1

- --

i

:

i

1

•

| | |

[

!

• 1

.....

. .

. .

## ANALYTICAL RESULTS

## for

# <u> Engineering Science - Bloomfleid Refining Company</u>

## SKINNER VOLATILE ORGANICS, SOIL

51469-23	ଭଭଭଭଭଭଭିଲିଭଭଭଭିଲିଭିନିନିଭଭଭଭ , କି	
1469-16	(22)	
ja:	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	
9-15	<b>88888888</b>	
51469-15		
Units	48 48 48 48 48 48 48 48 48 48	
	lane /lene	
	Acrolein Acrylonitrile* Benzene Carbon disulfide Carbon tetrachloride Carbon tetrachloride Chlorobenzene Chloromethane 1,2 Dibromoethane 1,2 Dibromoethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Tetrachloroethane Dichloropropane Methyl ethyl ketone Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	
Parameter	Acrolein Acrylonitrile* Benzene Carbon tetrachloride Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene 1,2 Dibromoethane 1,2 Dibromoethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 2,2-Tetrachloroethane 2,1,1,2,2-Tetrachloroethane 2,2-trans-Dichloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane	

BDL = Below detection limit. Detection limits in parentheses. *Not consistantly recovered using Method 8240.



• • •

[]____

:

:

## ANALYTICAL RESULTS

r

••

۰.

!

-----

1

..

## for

# **Engineering Science - Bloomfield Refining Company**

## SKINNER BASE/NEUTRAL ORGANICS, SOILS

*Measured as azobenzene. BDL = Below detection limit. Detection limits in parentheses. *Measured as az **Not consistantly recovered using Method 8270, or no analytical standard available.

ļ

ŧ

•

## ANALYTICAL RESULTS

٠.

::

ľ

## for

# <u>**Engineering Science - Bloomfield Refining Company</u>**</u>

SKINNER BASE/NEUTRAL ORGANICS. SOIL (Col

SKINNER BASE/NEUTRAL ORGANICS, SOIL (Cont.)	ANICS, SOIL	.(Cont.)					
Parameter	Units	2.	51469-15	51	51469-16	51	51469-23
Indene Indene(1 9 2 adheemene	ng/kg	BDL	(400)	BDL	(400)	BDL	(400)
Methyl Benz(c)bhenanthrene	ug/kg	BDL	(400) (400)	BUL RDI.	(400) (400)	BDL RDI.	(400) (400)
ane	ng/kg	BDL	(400)	BDL	(400)	BDL	(400)
Methyl Chrysene**	ug/kg	ı	• 1	1	- 1	1	- 1
Naphthalene	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
Nitrobenzene	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
n-Nitrosodiethylamine	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
5-Nitroacenapthene	ng/kg	BDL	(400)	BDL	(400)	BDL	(400)
Quinoline	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
Phenanthrene	ng/kg	BDL	(400)	BDL	(400)	BDL	(400)
Pyrene	ng/kg	BDL	(400)	BDL	(400)	BDL	(400)
1,2,4-Trichlorobenzene	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
Trimethyl Benz(a)anthracene	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
SKINNER ACID ORGANICS							
Parameter	Units	اع ا	51469-15	1	51469-16		51469-23
2-Chlorophenol	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
o-Cresol	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
m/p-Cresol	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
2,4-Dimethylphenol	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
4,6-Dinitro-o-phenol	ug/kg	BDL	(2000)	BDL	(2000)	BDL	(2000)
2,4-Dinitrophenol	ug/kg	BDL	(4000)	BDL	(4000)	BDL	(4000)
2-Nitrophenol	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
4-Nitrophenol	ug/kg	BDL	(800)	BDL	(800)	BDL	(800)
p-Chloro-m-cresol	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
Pentachlorophenol Phonol	ug/kg	BDL	(400)	BDL	(400)	BDL	(400)
r Hellul o 4 o mui-sklanachanal	ug/kg	יומי	(100)	עע זמה	(400)	זמה	(400)
z, 4, o-1 rienioropnenoi	ng/kg	BUL	(400)	BUL	(400)	ากล	(101)

BDL = Below detection limit. Detection limits in parentheses. **Not consistantly recovered using Method 8270, or no analytical standard available.





## III. ANALYTICAL METHODOLOGY

ſ

1

The methods for the metals and organic compounds were derived from three sources of EPA methods, 1) the methods promulgated in 40 CFR 136 for priority pollutants, 2) the methods published in SW-846 and 3) methods developed by the EPA-EMSL/LV for Superfund investigations, as well as several documents published by the EPA and RMAL in 1984 and 1985. These methods all use the same generic technology as summarized below:

- Metals, acid digestion followed by analysis by ICP supported by graphite furnace AA,
- o Volatile Organics, purge and trap GC/MS, and
- o Semivolatile (base/neutral and acid) organics, solvent extraction followed by capillary column GC/MS.

The EPA (40 CFR 136, SW-846 and Superfund) methods were, to a large degree, developed and validated to determine the priority pollutants in a broad spectrum of environmental samples. Between October 1983 and July 1985 the EPA released three methods manuals and a "Guidance Manual" which were compendiums of modified SW-846 methods specifically adapted for the analysis of Appendix VIII constituents in petroleum refining wastes (not water samples). The most useful of these documents was an October, 1984 draft methods manual which unfortunately was never formally distributed by EPA, apparently in order to avoid a conflict with a proposed rule in the October 1, 1984 Federal Register. However, even this document (as discussed by an RMAL review for API in December, 1984) lacked many important details that are critical to the successful analysis of environmental samples impacted by petroleum refineries.

Thus, although the methods used by RMAL were based on these various EPA documents, the actual details of each method were implemented by RMAL as explained in more detail below. The various documents which were used to establish RMAL's approach are listed in a bibliography. The discussion below references method numbers in SW-846. However, it should be noted that several different versions of these methods are cited in the various EPA documents. In addition to the documents listed in the bibliography, RMAL has continued a dialogue through phone conversations and meetings with EPA/OSW to ensure that this approach is in line with the Agency's expectations. Much of RMAL's approach is being incorporated in pending Agency promulgations.

17

## **Total Metals**

Metals were determined using inductively coupled plasma-atomic emission spectroscopy (ICP). Prior to analysis, the samples were prepared using Method 3050. The ICP was preprogrammed to perform off peak background correction on both the high and low wavelength sides of the analytical peaks of interest as appropriate. One hundred interelemental corrections were also automatically applied to the analysis. A matrix spike is analyzed as a quality control check for the ICP analyses.

## Skinner Volatile Organics

Volatile organic compounds were determined by purge and trap gas chromatography/mass spectrometry (GC/MS) using Method 8240 with the appropriate sample introduction procedure. The appropriate procedure was determined using a screening procedure consisting of a liquid-liquid extraction with hexadecane followed by direct injection of an aliquot of the extract into a gas chromatograph with flame ionization detection (GC/FID). All volatile samples were screened in this way before GC/MS analysis. The GC/FID screening results were evaluated to determine the amount of sample to use that provides the lowest detection limits possible without overloading the GC/MS system.

## Skinner Semivolatile Organics

Semivolatile organics were determined by capillary column GC/MS using SW-846 Method 8270. Soil samples were extracted using SW-846 Sonication Method 3550. After extraction, the samples were subjected to Method 3530 to separate the extract into acidic and basic fractions. The basic fraction was then cleaned up using Method 3570 to generate aliphatic and aromatic fractions. GC/MS analyses were then performed on the acidic and aromatic fractions.

Identification and quantitation of the target compounds determined by GC/MS were performed according to the process described in Methods 8240 and 8270. In summary, this process has the following features:

o Multipoint calibration for each compound to establish instrument response using multiple internal standards,

- Identification of compounds using a computerized reverse search with selected key fragment ions, and
- o Quantitation using the previously determined response factors.

## Volatile Aromatics

The samples were analyzed for benzene, ethyl benzene, toluene, and xylenes using purge and trap methodology to extract and concentrate the volatile compounds. The samples were desorbed into a gas chromatograph equipped with a photoionization detector (P.I.D.). Identification and quantitation were determined using internal and external standards.

## Phenolics

. . .

ŗ

Phenolics were determined colorimetrically using SW-846 Method 9065.

## V. BIBLIOGRAPHY

....

- A. Documents Pertaining to Appendix VIII Constituents
  - 1) January, 1984 letter form Myles Morse pertaining to delisting petitions as well as land treatment demonstrations, including sampling procedures and data requirements.
  - 2) March, 1984 letter to delisting petitioners from Barbara Bush revising target parameters.
  - 3) April, 1984 memo from John Skinner to Permit Branch Chiefs concerning land treatment containing target parameters and analytical methods.
  - 4) May, 1984 memo from John Skinner clarifying previous memo.
  - 5) September, 1984 letter to Petitioners from Barbara Bush distributing Refinery Handbook.
  - 6) November, 1984 letter from Eileen Claussen to all delisting petitioners describing new RCRA requirements.
  - 7) May 3, 1985 RMAL Memo.
  - 8) January 8, 1985 RMAL letter to Eileen Claussen, EPA-OSW.
- B. Documents Pertaining to Analytical Methods
  - "Handbook for the Analysis of Petroleum Refinery Residuals and Waste", October, 1984 - prepared by Radian Corporation for EPA/OSW.
  - "Evaluation of the Applicability of the SW-846 Manual To Support All RCRA Subtitle C Testing", December 20, 1984 - prepared by Rocky Mountain Analytical Laboratory for API.
  - "Comments on the 'Handbook for the Analysis of Petroleum Refinery Residuals and Waste, October, 1984", December 12, 1984 - prepared by Rocky Mountain Analytical Laboratory for API.
  - "Comments on the 'Handbook for the Analysis of Petroleum Refinery Residuals and Waste, April 2, 1984", August 15, 1984 - prepared by Rocky Mountain Analytical Laboratory for API.
  - 5) "Handbook for the Analysis of Petroleum Refinery Residuals and Waste", April 2, 1984 prepared by S-Cubed for EPA/OSW.
  - 6) EPA document "Guidance for the Analysis of Refinery Wastes", July 5, 1985.
  - 7) "Recovery and Detection Limits of Organic Compounds in Petroleum Refinery Wastes", January 25, 1985.
  - 8) SW-846 "Test Methods for Evaluating Solid Waste, Physical Chemical Methods" USEPA, 2nd Edition, 1982.
  - 9) 40CFR136 "Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act."



BRUCE KING GOVERNOR

State of New Mexico ENVIRONMENT DEPARTMENT Harold Runnels Building 1190 St. Francis Drive, P.O. Box 26110 Santa Fe, New Mexico 87502 (505) 827-2850

JUDITH M., ESPINOSA SECRETARY

RON CURRY DEPUTY SECRETARY

## CERTIFIED MAIL RETURN RECEIPT REQUESTED

January 25, 1994

Mr. David Roderick, Refinery Manager Bloomfield Refining Company P.O. Box 159 Bloomfield, New Mexico 87413

Dear Mr. Roderick:

## RE: Bloomfield Refining Company Landfill Pond Closure Plan Approval (EPA I.D. No. NMD089416416)

The New Mexico Environment Department (NMED) hereby approves the closure plan for the Bloomfield Refining Company (BRC) landfill pond located near Bloomfield, New Mexico. The approved plan for the landfill pond is contained in the document entitled, "Final Closure Plan for the API Wastewater Ponds, Landfill, and Landfill Pond at the Bloomfield Refinery" dated July 1986. The effective date of the closure plan approval is the date you receive this letter.

The Hazardous and Radioactive Materials Bureau (HRMB) of the NMED released the proposed closure plan and associated documents for a thirty (30) day public comment period which ran from December 10, 1993, through January 9, 1994. The HRMB received one written comment during the public notice period. A copy of the comment is enclosed for your information. The recommendation stated in the comment that BRC take measures to prevent water from ponding in this site for extended periods of time does not require a change in the final approved closure plan. Thus, no changes were made to the proposed closure plan in finalizing our approval. No additional closure activities are required to demonstrate clean closure of the site.





Mr. David Roderick Page 2 January 25, 1994

Please contact Marc Sides of my staff at (505) 827-4308 if you have any questions

Sincerely,

نے as Rathleen M. Sisneros, Director

Water and Waste Management Division

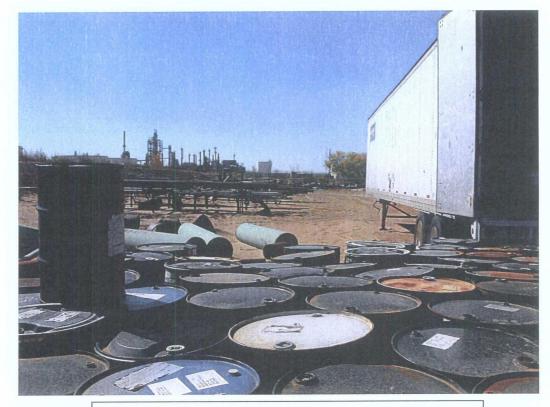
Enclosure

cc: David Neleigh, EPA Permits
Greg Lyssy, EPA Enforcement
Mark Wilson, US Fish and Wildlife
Benito Garcia, HRMB
Barbara Hoditschek, HRMB
Marc Sides, HRMB
File - Red

۰.



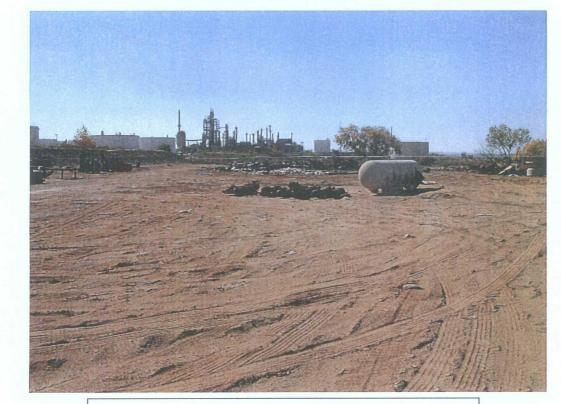
## **Appendix D**


## Photographs



North Bone Yard (SWMU No. 2) Looking West at staging area for empty drums.

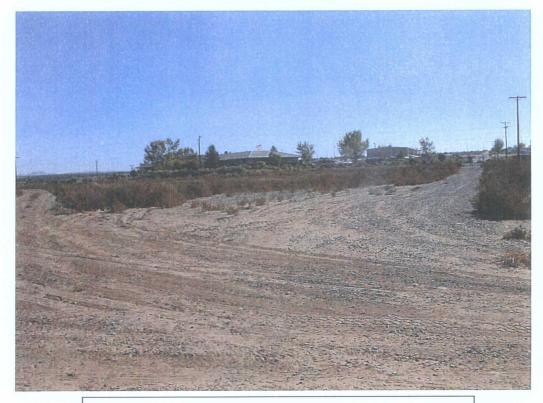



North Bone Yard Looking northwest from center



North Bone Yard (SWMU No. 2) Empty drums being loaded for transport.




North Bone Yard MW-1

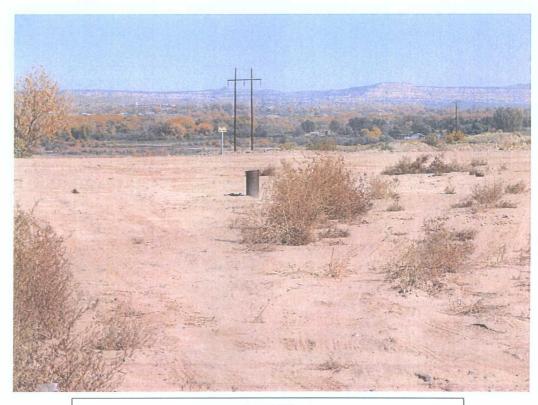


North Bone yard Scrap metal storage area.



Landfill (SWMU No. 8) Looking to southeast across landfill




Landfill Looking south from Northwest corner.



Landfill Looking southeast across landfill area.



Landfill Looking east across landfill, MW-8 off to left.



Landfill Closeup of MW-8.



Spray Irrigation Area (SWMU No. 11) Looking to southeast across former irrigation area.



Warehouse Yard (SWMU No. 18) Looking to north across former drum storage area.



Warehouse Yard Looking north across western portion of former drum storage area.



Appendix E

## Correspondence

\ljdc-aus-fp1\Data\Projects\Western Refining Company\GIANT\Bloomfield\NMED July 2007 Order\Group 2\lnv. Report\Gp 2 Site Inv Report.doc

## Scott Crouch

From: Monzeglio, Hope, NMENV [hope.monzeglio@state.nm.us]

Sent: Thursday, September 25, 2008 9:10 AM

To: Scott Crouch; Randy Schmaltz

Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Robinson, Kelly; Tracy Payne

Subject: RE: Western Refining GP 2 Investigation

Scott

You may continue with your proposed location and the ODEX method.

Hope

From: Scott Crouch [mailto:scrouch@jdconsult.com]
Sent: Thursday, September 25, 2008 7:25 AM
To: Monzeglio, Hope, NMENV; Randy Schmaltz
Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Robinson, Kelly; Tracy Payne
Subject: RE: Western Refining GP 2 Investigation

Hope:



I am providing notice pursuant to Section VIII.A.3.a Drilling, that we have encountered problems, which require a change in the planned location for one of the monitoring wells and also a change in drilling methodology. The request to change the well location pertains to SWMU No. 8 Landfill. We have successfully collected the soil samples at the originally approved locations as shown on the attached map for SWMU No. 8. However, when we drilled deeper at the northern most of the two proposed monitoring well locations we encountered a water line. The water line has been isolated but I would like to move the monitoring well location approx. 40 feet due west to get beyond the impact of the water leak so that we can better determine when we hit the "true" top of saturation. I have marked the new location on the attached map.

We drilled the second monitoring well location (southwest corner) in SWMU No. 8 and encountered very difficult conditions, which resulted in breaking all of the teeth off the lead auger and the auger flights actually began to peel off from the auger. I have attached a few photos. Photo # 964 shows the lead auger and you can see a nub on the left end where the teeth used to be. The driller has recommended that we utilize the ODEX method, which is discussed on page 93 of the Order (attached). I have discussed the options with the driller and they believe the ODEX method will allow us the best opportunity to collect soil samples as we advance the casing.

Please contact me with any questions. We await your response so that we can move forward.

Scott T. Crouch, P.G.

 RPS JDC

 404 Camp Craft Rd., Austin, TX 78746

 ⁽²⁾ Office (512) 347-7588
 ⁽²⁾ Direct (512) 879-6697
 ⁽²⁾ Cell (512) 297-3743
 ⁽²⁾ Fax (512) 347-8243
 ⁽²⁾ Crouchs@rpsgroup.com
 ⁽²⁾ Before printing, think about the environment



This e-mail message and any attached file is the property of the sender and is sent in confidence to the addressee only. The contents are not to be disclosed to anyone other than the addressee. Unauthorised recipients are requested to preserve this confidentiality and to advise the sender immediately of any error in transmission. If you experience difficulty with opening any attachments to this message, or with sending a reply by email, please telephone on + 44-(0)1235 438151 or fax on + 44-(0)1235 438188.

Any advice contained in this e-mail or any accompanying file attached hereto is for information purposes only. RPS do not take any responsibility for differences between the original and the transmission copy or any amendments made thereafter. If the addressee requires RPS to be responsible for the contents of this e-mail, RPS will be pleased to issue a signed hard copy of the document upon request. RPS Group Plc, company number: 208 7786 (England). Registered office: Centurion Court, 85 Milton Park Abingdon Oxfordshire OX14 4RY.

RPS Group Plc web link: http://www.rpsgroup.com

From: Monzeglio, Hope, NMENV [mailto:hope.monzeglio@state.nm.us]
Sent: Friday, June 13, 2008 10:15 AM
To: Randy Schmaltz; Scott Crouch
Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV
Subject: Group 2

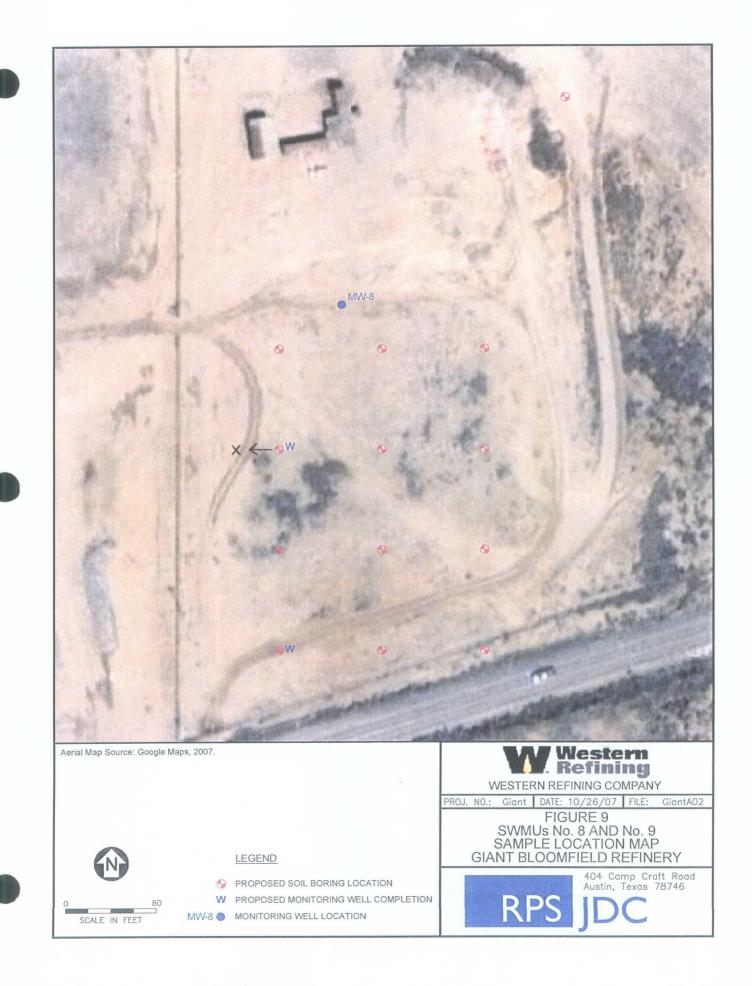
Randy and Scott

For general chemistry, do major cation/anions in addition to what is already listed in the work plan. Thanks

Let me know if you have any questions.

Hope




Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505 Phone: (505) 476-6045; Main No.: (505)-476-6000 Fax: (505)-476-6060 hope.monzeglio@state.nm.us

Websites: <u>New Mexico Environment Department</u> <u>Hazardous Waste Bureau</u>

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.



## **Scott Crouch**

From: Monzeglio, Hope, NMENV [hope.monzeglio@state.nm.us]

Sent: Wednesday, October 01, 2008 2:46 PM

To: Scott Crouch; Randy Schmaltz

Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Robinson, Kelly; Tracy Payne

Subject: RE: Western Refining GP 2 Investigation

## Scott

That is fine. Just make sure the screen length is long enough that is crosses the water table and for the well to produce water for the collection of samples.

Hope

From: Scott Crouch [mailto:scrouch@jdconsult.com]
Sent: Wednesday, October 01, 2008 1:34 PM
To: Monzeglio, Hope, NMENV; Randy Schmaltz
Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Robinson, Kelly; Tracy Payne
Subject: RE: Western Refining GP 2 Investigation

Hope:

In SWMU #2 (Bone Yard), we have encountered saturation at 14' below the land surface and the top of the Nacimiento Formation at 18'. We plan to drill another half foot allow for placement of 6" of filter pack sand beneath the screen. We originally specified 15' of screen to make sure we could cover the entire saturated thickness and any fluctuations in the water table. In this area, I would prefer to set only 10' of screen (8' to 18') instead of extending the screen to within 3' of the land surface, which is what would occur if we set 15' of screen. The water table would have to rise more than 6' to rise above the top of the screen interval, which seems very unlikely in this location. I think a greater problem could potentially be from vertical infiltration from the surface if there were to be any surface spills.

We have two new wells planned in this area and I assume there will be similar conditions at both locations unless the top of the Nacimiento is eroded significantly at the other well location. Please let us know if you are OK with the 10' screen length in this area instead of 15'.

Thanks,

## Scott T. Crouch, P.G.

## **RPS JDC**

404	Camp Craft Rd., Austin,	TX 78	746
8	Office (512) 347-7588	R	Direct (512) 879-6697
T	Cell (512) 297-3743		Fax (512) 347-8243
$\bowtie$	crouchs@rpsgroup.com		

Before printing, think about the environment

For more information on our services - visit www.rpsgroup.com

This e-mail message and any attached file is the property of the sender and is sent in confidence to the addressee only. The contents are not to be disclosed to anyone other than the addressee. Unauthorised recipients are requested to preserve this confidentiality and to advise the sender immediately of any error in transmission. If you experience difficulty with opening any attachments to this message, or with sending a reply by email, please telephone on + 44-(0)1235 438151 or fax on + 44-(0)1235 438188.

Any advice contained in this e-mail or any accompanying file attached hereto is for information purposes only. RPS do not take any responsibility for differences between the original and the transmission copy or any amendments made thereafter. If the addressee requires RPS to be responsible for the contents of this e-mail, RPS will be pleased to issue a signed hard copy of the document upon request. RPS Group Plc, company number: 208 7786 (England). Registered office: Centurion Court, 85 Milton Park Abingdon Oxfordshire OX14 4RY.

RPS Group Plc web link: http://www.rpsgroup.com

From: Scott Crouch Sent: Thursday, September 25, 2008 9:15 AM To: 'Monzeglio, Hope, NMENV'; Randy Schmaltz Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Robinson, Kelly; Tracy Payne Subject: RE: Western Refining GP 2 Investigation

Thanks for the quick reply. We will keep you informed if there are any problems.

Scott T. Crouch, P.G.

**RPS JDC** 

404 Camp Craft Rd., Austin, TX 78746

R Office (512) 347-7588 Direct (512) 879-6697 Fax (512) 347-8243

Cell (512) 297-3743

crouchs@rpsgroup.com

Before printing, think about the environment

For more information on our services - visit www.rpsgroup.com

This e-mail message and any attached file is the property of the sender and is sent in confidence to the addressee only. The contents are not to be disclosed to anyone other than the addressee. Unauthorised recipients are requested to preserve this confidentiality and to advise the sender immediately of any error in transmission. If you experience difficulty with opening any attachments to this message, or with sending a reply by email, please telephone on + 44-(0)1235 438151 or fax on + 44-(0)1235 438188.

Any advice contained in this e-mail or any accompanying file attached hereto is for information purposes only. RPS do not take any responsibility for differences between the original and the transmission copy or any amendments made thereafter. If the addressee requires RPS to be responsible for the contents of this e-mail, RPS will be pleased to issue a signed hard copy of the document upon request. RPS Group Plc, company number: 208 7786 (England). Registered office: Centurion Court, 85 Milton Park Abingdon Oxfordshire OX14 4RY.

RPS Group Plc web link: http://www.rpsgroup.com

From: Monzeglio, Hope, NMENV [mailto:hope.monzeglio@state.nm.us] Sent: Thursday, September 25, 2008 9:10 AM To: Scott Crouch; Randy Schmaltz Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Robinson, Kelly; Tracy Payne Subject: RE: Western Refining GP 2 Investigation

Scott

You may continue with your proposed location and the ODEX method.

Hope

From: Scott Crouch [mailto:scrouch@jdconsult.com] Sent: Thursday, September 25, 2008 7:25 AM To: Monzeglio, Hope, NMENV; Randy Schmaltz Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV; Robinson, Kelly; Tracy Payne Subject: RE: Western Refining GP 2 Investigation

## Hope:

I am providing notice pursuant to Section VIII.A.3.a Drilling, that we have encountered problems, which

require a change in the planned location for one of the monitoring wells and also a change in drilling methodology. The request to change the well location pertains to SWMU No. 8 Landfill. We have successfully collected the soil samples at the originally approved locations as shown on the attached map for SWMU No. 8. However, when we drilled deeper at the northern most of the two proposed monitoring well locations we encountered a water line. The water line has been isolated but I would like to move the monitoring well location approx. 40 feet due west to get beyond the impact of the water leak so that we can better determine when we hit the "true" top of saturation. I have marked the new location on the attached map.

We drilled the second monitoring well location (southwest corner) in SWMU No. 8 and encountered very difficult conditions, which resulted in breaking all of the teeth off the lead auger and the auger flights actually began to peel off from the auger. I have attached a few photos. Photo # 964 shows the lead auger and you can see a nub on the left end where the teeth used to be. The driller has recommended that we utilize the ODEX method, which is discussed on page 93 of the Order (attached). I have discussed the options with the driller and they believe the ODEX method will allow us the best opportunity to collect soil samples as we advance the casing.

Please contact me with any questions. We await your response so that we can move forward.

## Scott T. Crouch, P.G.

## **RPS JDC**

404 Camp Craft Rd., Austin, TX 78746

Office (512) 347-7588
Direct (512) 879-6697

- 🕿 Cell (512) 297-3743
- Fax (512) 347-8243
- ⊠ crouchs@rpsgroup.com

Before printing, think about the environment

For more information on our services - visit www.rpsgroup.com

This e-mail message and any attached file is the property of the sender and is sent in confidence to the addressee only. The contents are not to be disclosed to anyone other than the addressee. Unauthorised recipients are requested to preserve this confidentiality and to advise the sender immediately of any error in transmission. If you experience difficulty with opening any attachments to this message, or with sending a reply by email, please telephone on + 44-(0)1235 438151 or fax on + 44-(0)1235 438188.

Any advice contained in this e-mail or any accompanying file attached hereto is for information purposes only. RPS do not take any responsibility for differences between the original and the transmission copy or any amendments made thereafter. If the addressee requires RPS to be responsible for the contents of this e-mail, RPS will be pleased to issue a signed hard copy of the document upon request. RPS Group Plc, company number: 208 7786 (England). Registered office: Centurion Court, 85 Milton Park Abingdon Oxfordshire OX14 4RY.

RPS Group Plc web link: http://www.rpsgroup.com

From: Monzeglio, Hope, NMENV [mailto:hope.monzeglio@state.nm.us]
Sent: Friday, June 13, 2008 10:15 AM
To: Randy Schmaltz; Scott Crouch
Cc: Cobrain, Dave, NMENV; Frischkorn, Cheryl, NMENV
Subject: Group 2

Randy and Scott

For general chemistry, do major cation/anions in addition to what is already listed in the work plan. Thanks

Let me know if you have any questions.

Hope

Hope Monzeglio Environmental Specialist



New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505 Phone: (505) 476-6045; Main No.: (505)-476-6000 Fax: (505)-476-6060 hope.monzeglio@state.nm.us

Websites: <u>New Mexico Environment Department</u> <u>Hazardous Waste Bureau</u>

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

## Scott Crouch

From: Monzeglio, Hope, NMENV [hope.monzeglio@state.nm.us]

Sent: Wednesday, March 18, 2009 10:51 AM

To: Schmaltz, Randy

Cc: Robinson, Kelly; Scott Crouch; Hains, Allen; Cobrain, Dave, NMENV

Subject: RE: Reporting Request

## Randy

From the table that was attached to this email, it appears that all constituents highlighted in yellow that have no available screening/cleanup level are all non detect. Western does not need to create a screening level for these. If it is non detect, Western does not need to worry about it. If there was a detection of a constituent that does not have a screening/cleanup level, you can look up the constituent on IRIS

(<u>http://cfpub.epa.gov/ncea/iris/index.cfm</u>) (or other source that identifies toxilogical effects) to see if it it a carcinogen or not. If it is not a carcinogen, it should not be a problem. For these cases, you can contact NMED to discuss whether we need to create a screening level or not, these will be determined on a case by case basis. Hope this clarifies your questions, let me know if you have additional questions.

Hope

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com]
Sent: Monday, March 16, 2009 9:43 AM
To: Monzeglio, Hope, NMENV
Cc: Robinson, Kelly; scrouch@jdconsult.com; Hains, Allen
Subject: Reporting Request

## Hope

We are preparing the Site Investigation Report for SWMU Group N. 2 and have noted that the laboratory reported results for a number of constituents for which there is no screening/cleanup level provided by either NMED or EPA region VI. We had the laboratory analyze the samples using SW-846 methods 8260 (volatiles) and 8270 (semi-volatiles) and did not specify a specific list of analytes (e.g., the EPA Region V Skinner List) that would potentially be associated with a petroleum refinery so the laboratory reported all constituents they can identify and quantify under the particular method.

I have attached an Excel table that list all of the constituents reported by the laboratory for SW-846 methods 8260, 8270, and 8015B, and the metals analyses. The constituents for which there is no available screening/cleanup level are highlighted in yellow and to the right are columns indicating if there were any detections of the constituent in the samples collected for the SWMU Group No. 2 samples. As you will note, most of these constituents were not detected in either soils or ground water.

To address this situation, I propose to include all analytical results in the summary tables to be included in the Site Investigation Report. For constituents that do not have available screening/cleanup levels and were not detected in either soil or ground water we would "screen" these constituents from development of screening/cleanup levels. For constituents that were detected in either soil or ground water, we will develop cleanup levels for both soil and ground water. The cleanup levels for soils will be developed utilizing the equations (Equation numbers 6, 7, 8 and 9) for commercial/industrial and construction workers as provided in the NMED *Technical Background Document for Development of Soil Screening Levels*, Revision 4.0 June 2006. The cleanup levels for ground water will be developed utilizing the applicable equations (Equation numbers 10 and 11) as provided in the NMED *Technical* 

Background Document for Development of Soil Screening Levels, Revision 4.0 June 2006 with appropriate modifications in the exposure factors for commercial/industrial workers pursuant to EPA guidance. The development of these cleanup levels will be documented in a separate appendix to the Site Investigation Report pursuant to Section X.C.8 of the Order.

Thanks for you consideration of our request.

Randy Schmaltz Western Refining Southwest, Inc. Bloomfield Refinery

Main (505) 632-8013 Direct (505) 632-4171 email: <u>randy.schmaltz@wnr.com</u>

This inbound email has been scanned by the MessageLabs Email Security System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient (s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.



#### Scott Crouch

From:Schmaltz, Randy [Randy.Schmaltz@wnr.com]Sent:Wednesday, May 06, 2009 3:54 PMTo:Scott Crouch; Robinson, KellySubject:FW: Phone call follow up

FYI

From: Monzeglio, Hope, NMENV [mailto:hope.monzeglio@state.nm.us]
Sent: Wednesday, May 06, 2009 2:25 PM
To: Schmaltz, Randy
Cc: Cobrain, Dave, NMENV
Subject: Phone call follow up

Randy

You may submit the laboratory data electronically and include a hard (paper) copy of the chain of custodies within the report as you stated on the phone. Make sure each document sent to us contains the electronic copy as well as the hard copies (sometimes the data only makes it into one of the documents)

As far for the excess soil from the investigation (drill cuttings etc), you may dispose of it onsite as long as you are able to demonstrate that it is not hazardous and meets NMED's soil screening standards, residential scenario. Include all documentation for this in investigation report for where the soil was disposed or will be disposed. Let me know if you have questions.

#### Норе

Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505 Phone: (505) 476-6045; Main No.: (505)-476-6000 Fax: (505)-476-6060 hope.monzeglio@state.nm.us

Websites: <u>New Mexico Environment Department</u> <u>Hazardous Waste Bureau</u>



Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.



#### **Appendix F**

#### **Quality Assurance/Quality Control**

#### 1.0 DATA VALIDATION INTRODUCTION

This summary presents data verification results for soil and groundwater samples collected from soil boring and monitoring wells installed at the Bloomfield Refinery in accordance with the approved Investigation Work Plan - Group 2. The data review was performed in accordance with the procedures specified in the Order issued by NMED (NMED, 2007), USEPA Functional Guidelines for Organic and Inorganic Data Review, and quality assurance and control parameters set by the project laboratory Hall Environmental Analysis Laboratory, Inc.

A total of 68 soil samples and 18 groundwater samples were collected between September 2008 and January 2009 in accordance with the Group 2 Investigation Work Plan. Soil and groundwater samples were submitted to Hall Environmental Analysis Laboratory for the following parameters:

- volatile organic compounds (VOCs) by USEPA Method 8260B;
- semi-volatile organic compounds (SVOCs) by USEPA Method 8270;
- Gasoline and diesel range organics by SW-846 Method 8015B;
- Total recoverable metals (Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, nickel, selenium, silver, vanadium, and zinc) by SW846 Method 6010/6020;
- Cyanide by SW-846 method 9012;
- Mercury by EPA Method 7470.

Groundwater samples submitted to Hall Environmental Analysis Laboratory were analyzed for the following additional analytes:

- Anions (chloride, Nitrate+Nitrite, and sulfate) by USEPA Method 300.0;
- Alkalinity (total alkalinity, carbonate, and bicarbonate) by SM 2320B;
- Dissolved metals (iron, calcium, magnesium, manganese, potassium, and sodium) by USEPA Method 6010B;

Additionally, 74 quality assurance samples consisting of trip blanks, field blanks, equipment rinsate blanks, and field duplicates were collected and analyzed as part of the investigation activities. Table A-1 presents a summary of the sample identifications, laboratory sample identifications, and requested analytical parameters.

#### 2.0 QUALITY CONTROL PARAMETERS REVIEWED

Sample results were subject to a Level II data review that includes an evaluation of the following quality control (QC) parameters:

- Chain-of-Custody;
- Sample Preservation and Temperature Upon Laboratory Receipt
- Holding Times;
- Blank Contamination (method blanks, trip blanks, field blanks, and equipment rinsate blanks);
- Surrogate Recovery (for organic parameters);
- Laboratory Control Sample (LCS) Recovery and Relative Percent Difference (RPD);
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recovery and RPD;
- Duplicates (field duplicate, laboratory duplicate); and
- Other Applicable QC Parameters.

The data qualifiers used to qualify the analytical results associated with QC parameters outside of the established data quality objectives are defined below:

- J The analyte was positively identified; however, the result should be considered an estimated value.
- UJ The reporting limit is considered an estimated value.
- R Quality control indicates that the data is not usable.

Results qualified as "J" or UJ" are of acceptable data quality and may be used quantitatively to fulfill the objectives of the analytical program, per EPA guidelines.

Results for the performance monitoring events that required qualification based on the data verification are summarized in Table A-2.

#### 2.1 CHAIN-OF-CUSTODY

The chain-of-custody documentation associated with project samples was found to be complete. Chain-of-custodies included sample identifications, date and time of collection, requested parameters, and relinquished/received signatures.

#### 2.2 SAMPLE PRESERVATION AND TEMPERATURE UPON LABORATORY RECEIPT

Samples collected were received preserved and intact at the respective project laboratories. The samples were received by the laboratory at the correct temperature ( $4 \pm 2^{\circ}$  Celsius) with the following exceptions:

• Samples collected on October 15, 2008 were received at 1.0 degrees Celsius. The temperature outlier did not significantly impact the sample results; therefore, data qualification was not required.

#### 2.3 HOLDING TIMES

All samples were extracted and analyzed within method-specified holding time limits.

#### 2.4 BLANK CONTAMINATION

#### 2.4.1 Method Blank

Method blanks were analyzed at the appropriate frequency.

 Acetone was detected in the method blank for analytical batch 17176 at a concentration of 5.7 ug/kg-dry. Acetone was detected above the laboratory reporting limit in associated soil sample SWMU 8-1 (1.5-2.0') at 5.38 ug/kg-dry. Data qualification "UJ" with the detection limit raised to 5.7 ug/kg-dry was required for the associated sample to account for potential bias due to potential laboratory contamination.

#### 2.4.2 Trip Blank

Trip blanks were analyzed at the appropriate frequency as specified in the Order. Target compounds were not detected in the trip blanks.

#### 2.4.3 Field Blanks/Equipment Rinsate Blank

Equipment rinsate blanks were performed at the appropriate frequency as specified in the Group 2 Investigation Work Plan. Target compounds were not detected in the field blanks and equipment rinsate blank except for the following:

- Acetone was detected in an equipment rinsate blank for water samples collected on October 1, 2008. Data qualification was not required because the associated samples were non-detect for this analyte.
- Bromodichloromethane was frequently detected in field and equipment rinsate blanks for samples collected during Group 2 sampling activities. Data qualification was not required because the associated samples were non-detect for this analyte.
- Chloroform was frequently detected in field and equipment rinsate blanks for samples collected during Group 2 sampling activities. Data qualification was not required because the associated samples were non-detect for this analyte.
- Dibromochloromethane was frequently detected in field and equipment rinsate blanks for samples collected during Group 2 sampling activities. Data qualification was not required because the associated samples were non-detect.

- Barium was detected in field and equipment rinsate blanks collected on October 15, 2008. Data qualification was not required because the detected concentration in associated field samples were greater than five times the detected blank concentration.
- Chloride was frequently detected in field and equipment rinsate blanks for samples collected during Group 2 sampling activities. Data qualification was not required because detected concentrations in associated samples were greater than five times the blank concentration results.
- Iron was detected in the field blank collected on October 1, 2008. Associated sample
  results for groundwater sample SWMU 2-8 GW were qualified "UJ" and the detection
  limit was raised to equal the detected concentration in the associated field blank to
  account for potential bias.
- Lead was detected in a field blank collected on September 30, 2008. Associated nondetect field sample results for sample SWMU 2-7 GW and SWMU 2-6 GW were qualified "UJ" with a detection limit equal to the highest detected field blank concentration to account for a potential bias.
- Magnesium was detected in the field blank collected on October 1, 2008. No data qualification was required because detected concentrations of magnesium in associated samples were greater than five times the field blank detected concentration.
- Manganese was detected in a field blank and equipment rinsate blanks collected on October 1, 2008 and January 8, 2009, respectively. Data qualification was not required because detected concentrations of manganese in associated samples were greater than five times the respective blank concentrations.
- Nitrate/Nitrite was detected in field and equipment rinsate blanks collected on September 30, 2008. Groundwater samples SWMU 2-4 GW and SWMU 2-6 GW were qualified "UJ" and the detect limit raised to the equal highest detected blank concentration to account for potential low bias.
- Sulfate was detected in a water equipment rinsate blank collected on September 30, 2008. Data qualification was not required since the detected concentration in the associated samples were greater than five times the equipment blank detected concentration.
- Zinc was detected in field and equipment rinsate blanks collected on September 24, 2008, October 28, 2008, and January 8, 2009. Data validation was not required because associated field samples had detected concentrations greater than five times the field blank concentration.

#### 2.4.4 Common Laboratory Contaminants

Per USEPA guidelines, common laboratory contaminants for VOC analysis are acetone, 2butanone (MEK), cyclohexane, and methylene chloride. Common laboratory contaminants for SVOC analysis include phthalates. Analytical results are qualified if the detected sample concentration is less than 10 times the method reporting limit.

• VOC analyte 2-butanone (MEK) was detected in soil sample SWMU 18-1 (0-0.5'), SWMU 18-3 (1.5-2.0'), and SWMU 18-4 (1.5-2.0') at concentrations less than 10 times the method reporting limit; therefore the data was qualified "J" due to common laboratory contaminant potential low bias.

• SVOC analyte Di-n-butyl phthalate as detected in soil sample SWMU 2-2 (13.5-14.0') at a concentration less than 10 times the method reporting limit; therefore the data was qualified "J" due to common laboratory contaminant potential low bias.

#### 2.5 SURROGATE RECOVERY

Surrogate recoveries for the organic and inorganic analyses were performed at the required frequency and were within laboratory acceptance limits, with the following exceptions:

- Surrogate recovery for 2,4,6-Tribromophenol (34.2%) and 4-Terphenyl-d14 (30.2%) were below the lower acceptance limits of 35.5% and 34.6%, respectively, for soil sample SWMU 2-4 (0-0.5'). Data qualification was not required because two other acid and base/neutral fractions were within acceptance limits.
- Surrogate recoveries for 2,4,6-Tribromophenol (23.1%), 2-Fluorophenol (16.7%), 4-Terphenyl-d14 (22.3%), and Phenol-d5 (16.6%) were below the respective acceptance limits (35.5%, 28.2%, 34.6%, and 37.6% respectively) for sample SWMU 9-1 (5-7.5'). The associated field sample data was qualified "UJ" for non-detects and "J" for detects due to the potential bias.
- Surrogate recoveries for 2,4,6-Tribromophenol (0%) and 2-Fluorophenol (6.64%) were below the lower acceptance limit of 16.6% and 9.54%, respectively, for groundwater sample MW-53 due to high emulsion during extraction. Data was qualified "UJ" due to potential low bias.
- Surrogate recoveries for 2,4,6-Tribromophenol (13.3%) were below the acceptance limit of 16.6% for sample MW-52. Data was not qualified since the other surrogates were recovered within acceptance limits.
- Surrogate recovery for 4-Terphenyl-d14 (32.8%) was below the acceptance limits of 34.6% for sample SWMU 18-2 (0-0.5') included on analytical report 0809578. Data qualification was not required because the other two base/neutral and three acid fractions were within acceptance limits.
- Surrogate recovery for Phenol-d5 (3.86%) was below the lower acceptance limit (10.7%) for sample SWMU 2-3 GW. The sample was re-extracted at three days past holding time, and reanalyzed within the 14-day holding time. All surrogate results from the reanalysis were within acceptance levels and the sample results confirmed the initial sample results. The associated sample results were non-detect; therefore the associated data was qualified "UJ" for potential low bias.
- Surrogate recovery for BFB (127%) was above the upper acceptance limit of 123% for soil sample SWMU 18-2 (1.5-2.0'). The associated gasoline range organics (GRO) sample result was qualified "J" for sample SWMU 18-2 (1.5-2.0') due to potential bias.

#### 2.6 LCS RECOVERY AND RPD

LCS/LCS duplicates were performed at the required frequency and were evaluated based on the following criteria:

- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate, but the analyte was not detected in the associated batch, then data qualification was not required.
- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate and the analyte was detected in the associated batch, then the analyte results were qualified "J".
- If the analyte recovery was below acceptance limits for LCS or LCS duplicate then the analyte results in the associated analytical batch were qualified ("UJ" for non-detects and "J" for detected results).
- If the analyte recovery was less than 10 percent, the analyte results in the associated analytical batch were rejected and qualified "R".

LCS/LCSD percent recoveries and RPDs were within acceptance limits except for the following:

- The LCS recovery for 4-Nitrophenol (132%) was above the upper acceptance limit of 123% for analytical batch 17154. Data qualification was not required because all associated samples were non-detect.
- The LCS duplicate relative percent difference for 2,4-Dinitrotoluene (17.3 %) was above the upper acceptance limit of 14.7% for analytical batch 17208. Data qualification was not required because all associated samples were non-detect.
- The LCS duplicate relative percent difference for Trichloroethene (26.8 %) was above the upper acceptance limit of 23% for analytical batch 17176. Data qualification was not required because the percent recovered for the LCS and LCS duplicates were within acceptance limits.
- The LCS duplicate relative percent difference for 2,4-Dinitrotoluene (17.3%) was above the upper acceptance limit of 14.7% for analytical batch 17208. Data qualification was not required because the LCS/LCS duplicate percent recoveries were within acceptance limits.
- The LCS recovery for Benzene (118%) and Trichloroethene (116%) was above the acceptance limit of 116% and 112%, respectively, for analytical batch R30775. Data qualification was not required because all associated samples were non-detect.
- The LCS recovery for benzene (117%) and trichloroethene (115%) were above the upper acceptance limits of 116% and 112%, respectively, for analytical batch R30936. Data qualification was not required since all sample results were non-detect.

#### 2.7 MS/MSD RECOVERY AND RPD

MS/MSD samples were performed at the required frequency and were evaluated by the following criteria:

- If the MS or MSD recovery for an analyte was above acceptance limits but the analyte was not detected in the associated analytical batch, then data qualification was not required.
- If the MS or MSD recovery for an analyte was above acceptance limits and the analyte was detected in the associated analytical batch, then analyte results were qualified "J".
- Low MS/MSD recoveries for inorganic parameters result in sample qualification of the associated analytical batch.
- Low MS/MSD recoveries for organic parameters result in the data qualification of the unspiked sample rather than the analytical batch.
- Results were not qualified based on non-project specific MS/MSD (i.e., batch QC) recoveries.

MS/MSD percent recoveries and RPDs were within acceptance limits except for the following:

- The MS/MS duplicate recoveries for Benzene (84.4% / 81.9%) were below the lower acceptance limits for analytical batch R30780. Associated non-detect sample results were qualified "UJ" to account for potential bias.
- The MS duplicate percent recovery (86%) for 1,1-Dichloroethene was below the lower acceptance limit of 88% for analytical batch R30731. Data qualification was not required since the MS/MS duplicate relative percent difference was within acceptance limits.
- The MS recovery for benzene (127%) was above the acceptance limit of 122% for analytical batch R30775. Data qualification was not required because the MS/MS duplicate relative percent difference was within acceptance limits.
- The MS/MSD recoveries for Antimony (28.4% / 17.8%) and Selenium (64.2% / 72.6%) were both below the lower acceptance limit of 75% for analytical batch 17264. Associated field sample results for Antimony and Selenium were non-detect. Data qualification "UJ" was required to indicate a potential bias for the associated samples.
- The MS/MSD recoveries for Antimony (10.7% / 7.58%, and 12.8% / 13.3%) for analytical batch 17405 and 17406, respectively, were below the lower acceptance limit of 75%. Associated field sample results were non-detect. Associated data was qualified "UJ" for all non-detected sample results due to potential bias.
- The MS recovery for Selenium (63.8%) was below the lower acceptance limit of 75% for analytical batch 17406. Associated data results for samples SWMU 18-1 (0-0.5') and SWMU 18-2 (1.5-2.0') were qualified "UJ" to account for potential low bias.
- The MS/MS duplicate recoveries for Antimony (23.7% /15.7%) were below the acceptance limit of 75% for analytical batch 17417. Associated sample results were non-detect; therefore associated sample results were qualified "UJ" for potential low bias.
- The MS duplicate recoveries for Barium (137%) were above acceptance limits of 125% for analytical batch 17417. Data qualification was not required because MS/MS duplicate relative percent difference was within acceptance limits.

- The MS duplicate relative percent difference for Selenium (32.7%) was above the acceptance limit of 30% for analytical batch 17417. Data qualification was not required because MS/MS duplicate recoveries were within acceptance limits.
- The MS (112% and 111%) and MS duplicate (113% and 117%) recoveries for Cyanide were above the acceptance limit of 110% for analytical batch B_R119632. Data qualification was not required because associated analytical sample results were non-detect.
- The MS/MS duplicate percent recoveries for Antimony (11.7% /11.9%) were below the acceptance limit of 75% for analytical batch 17329. Analytical samples were qualified "UJ" since all associated samples were non-detects to account for potential low bias.
- The MS percent recovery for benzene (127%) was above the acceptance limit of 116% for analytical batch R30775. Data qualification was not required since all sample results were non-detect.
- The MS/MS duplicate percent recoveries for trichloroethene (125%/120%) in batch ID R30775 of analytical report 0810370 were above the acceptance limit of 114%. Data qualification was not required since all sample results were non-detect.
- The MS/MS duplicate percent recoveries for toluene (116%), benzene (131%), and trichloroethene (116%) were above the acceptance limits for analytical batch R30936. Data qualification was not required because all associated samples were non-detect.
- The MS/MS duplicate recoveries for trichloroethene (125% /120%) were above the acceptance limit of 114% for analytical batch R30775. Data qualification was not required since all associated sample results were non-detect.
- The MS duplicate recoveries for benzene (131%) and trichloroethene (116%) were above the acceptance limits of 122% and 114%, respectively, for analytical batch R30936. The MS/MS duplicate relative percent difference for benzene was within acceptance limits, and all associated samples were non-detect for trichloroethene; therefore data qualification was not necessary.
- The MS duplicate relative percent difference for gasoline range organics (GRO) (15.1%) was above the acceptance limit of 11.6% in analytical batch R30911 of analytical report 0810326. Data qualification was not required because MS/MSD percent recovery were within acceptance limits.
- The MS/MS duplicate recoveries for cyanide for analytical batch B08101650 (111/117%) and batch B08101781 (112/113%) were above the upper acceptance limit of 110%. Data qualification was not required because all associated field samples were nondetect.
- The MS recovery for silver was below acceptance limits for batch L367749-11. The associated non-detect sample results were qualified "UJ" for potential low bias.
- The MS/MS duplicate percent recoveries for Nitrate+Nitrite (11,100% / 11,100%) were above the acceptance limit of 118% for analytical batch R32070. Data qualification was not required since all sample results were non-detect.

#### 2.8 DUPLICATES

#### 2.8.1 Field Duplicates

Field duplicates were collected at a rate of 10 percent and submitted for analysis. The RPDs between the field duplicate and its associated sample were calculated and are presented in Table A-3. The field duplicates were evaluated by the following criteria:

- If an analyte was detected at a concentration greater than five times the method reporting limit, the RPD should be less than 35percent for soil and 25 percent for groundwater samples.
- If an analyte was detected at a concentration that is less than five times the method reporting limit, then the difference between the sample and the field duplicate should not exceed the method reporting limit.
- Duplicate RPDs are calculated by dividing the difference of the concentrations by the average of the concentrations.

Field duplicate RPDs were within acceptance limits except for the following:

- The concentration difference between sample SWMU 8-6 (0-0.5') and SWMU 8-6 (0-0.5') DUP for Acetone was above the acceptance limit. Data qualification "J" was required to indicate a potential bias.
- The concentration difference between SWMU 8-9(0-0.5') and SWMU 8-9 (0-0.5') DUP for acetone was above the acceptance limit. Data qualification "UJ" was required to indicate a potential bias.
- The RPD difference between SWMU 8-9(0-0.5') and SWMU 8-9 (0-0.5') DUP for trichlorofluoromethane was above the acceptance limit. Data qualification "J" was required to indicate a potential bias.
- The RPD difference between SWMU 2-3 (0-0.5') and SWMU 2-3 (0-0.5') DUP for barium was above the acceptance limit. Data qualification "J" was required to indicate a potential bias.
- The concentration difference between SWMU 18-3 (7.5-9') and SWMU 18.3 (7.5-9') DUP for acetone was above the acceptance limit. Data qualification "UJ" was required to indicate a potential bias.
- The RPD difference between SWMU 2-4 (14-14.5') and SWMU 2-4 (14-14.5') DUP for barium and chromium was above the acceptance limits. Data qualification "J" was required to indicate a potential bias.

#### 2.9 OTHER APPLICABLE QC PARAMETERS

#### 2.9.1 Calibration

The Method 8260B continuing calibration verification (CCV) standards were within acceptance limits, except for the following:

- The 30 ppm and 40 ppm continuing standard had a high recovery for benzoic acid at 140.2% and 141.3%, respectively. Data qualification was not required because the analyte was not detected in the associated samples.
- The opening CCV recovery associated with analytical batch 17218 had a recovery below the lower acceptance limit for chloroethane. Associated sample results were qualified "UJ" for potential low bias.
- Acetone concentration results for soil samples SWMU 18-1 (0-0.5'). SWMU 18-3 (0-0.5'), SWMU 18-3 (1.5-2.0'), and SWMU 18-4 (1.5-2.0') were above the upper calibration limit. Associated sample results were qualified "J" to account for estimated reporting results.
- Cyanide result for sample SWMU 2-5 (13-14') was qualified "UJ" due to matrix interference to account for a potential low bias.

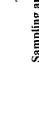
#### 3.0 COMPLETENESS SUMMARY

Two types of completeness were calculated for this project: contract and technical. The following equations were used to calculate the two types of completeness:

% Contract Completeness =  $\left(\frac{\text{Number of contract compliant results}}{\text{Number of reported results}}\right) \times 100$ 

% Technical Completeness =  $\left(\frac{\text{Number of usable results}}{\text{Number of reported results}}\right) \times 100$ 

The overall contract completeness, which includes the evaluation of protocol and contract deviations, which includes the evaluation of the QC parameters listed in Section 2.0, was 98 percent for soil analysis (182 out of a total 11,100 results required qualification). The technical completeness attained for Group 2 RCRA Investigation activities was 100 percent. The completeness results are provided in Table A-4. The results for the performance monitoring events were considered usable for the intended purposes and the project DQOs have been met.


#### TABLE A-1 Sampling and Analysis Schedule

Western Refining Southwest, Inc. Bloomfield Refinery



# Sampling and Analysis Schedule Group 2 RCRA Investigation Summary Report Western Refining Southwest, Inc. - Bloomfield Refinery L

		,		
Sample ID	Lab ID	Date Collected	Sample Type	Parameters
SWMU 2-6 (0-0.5')	0809553-18	9/25/2008	V	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 2-6 (1.5-2.0')	0809553-19	9/25/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
	0809578-01	9/25/2008	z	VOCs, SVOCs, Metals, Mercury, TPHs,
	0809578-02	9/25/2008	z	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 2-8 (0-0.5')	0809578-03	9/25/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 2-8 (1.5-2.0')	0809578-04	9/25/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 2-9 (0-0.5')	0809578-06	9/25/2008	z	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 2-9 (1.5-2.0')	0809578-07	9/25/2008	V	VOCs, SVOCs, Metals, Mercury, TPHs,
EB 092608	0809578-26	9/26/2008	EB-Soil	VOCs, SVOCs, Metals, Mercury, TPHs,
FB 092608	0809578-14	9/26/2008	FB-Soil	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-3 (7.5-9') DUP	0809578-16	9/26/2008	FD	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-1 (0-0.5)	0809578-11	9/26/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-1 (1.5-2.0)	0809578-12	9/26/2008	V	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-2 (0-0.5)	0809578-13	9/26/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-2 (1.5-2.0')	0809578-19	9/26/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-3 (0-0.5)	0809578-20	9/26/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-3 (1.5-2.0')	0809578-21	9/26/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-3 (7.5-9')	0809578-15	9/26/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-4 (0-0.5')	0809578-22	9/26/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 18-4 (1.5-2.0')	0809578-23	9/26/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
EB 092808	0809636-15	9/28/2008	EB-Groundwater	Dissolved Metals, and Nitrate/Nitrite
		-		VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
	0809636-03	9/28/2008	FB-Groundwater	Dissolved Metals, and Nitrate/Nitrite
SWMU 9-1 (5-7.5')	0809636-08	9/28/2008	MB	VOCs, SVOCs, Metals, Mercury, TPHs,
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
	0809636-02	8/28/2008	Z,	Dissolved Metals, and Nitrate/Nitrite
SWMU 9-1 (0-0.6')	0809636-04	9/28/2008	Z	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 9-1 (1.5'-2.0')	0809636-07	9/28/2008	Z	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 9-1 (14.5-15.0')	0809636-01	9/28/2008	Z	VOCs, SVOCs, Metals, Mercury, TPHs,
TB(092808)	0809636-05	9/28/2008	TB	VOCs
EDW/ (1) 002008	0800535 10	8000000	ED Groundwater	VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
ERS (1)-002008	0809636-11	9/2/2/2008	FB-Soil	VOCs SVOCs Metals Mercury TPHs
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
FB-092908	0810002-02	9/29/2008	FB-Groundwater	Dissolved Metals, and Nitrate/Nitrite
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
SWMU 2-2GW	0810002-05	9/29/2008	V	Dissolved Metals, and Nitrate/Nitrite
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
SWMU 2-3GW	0810002-01	9/29/2008	z	Dissolved Metals, and Nitrate/Nitrite
			:	VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
SWMU2-1 GW	0809636-14	9/29/2008	Z	Dissolved Metals, and Nitrate/Nitrite
SWMU 2-1 (15-15.5')	0809636-12	9/29/2008	Z	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 2-2 (13.5-14.0')	0810002-04	9/29/2008	N	VOCs, SVOCs, Metals, Mercury, TPHs,
SWMU 2-3 (13.5-14.0')	0810002-06	9/29/2008	z	VOCs, SVOCs, Metals, Mercury, TPHs,
TB(2) 092908	0809636-09	9/29/2008	EL I	VOCs



# Sampling and Analysis Schedule Group 2 RCRA Investigation Summary Report Western Refining Southwest, Inc. - Bloomfield Refinery H

Comula ID		Data Collected	Comale Tune	Deremotore
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
MW-51	0810580-02	10/28/2008	z	Dissolved Metals, and Nitrate/Nitrite
MW-52	0810606-02	10/28/2008	z	VOCs, SVOCs, TPHs, General Chemistry, Total Metals, Dissolved Metals. and Nitrate/Nitrite
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
MW-53	0810606-06	10/28/2008	z	Dissolved Metals, and Nitrate/Nitrite
MW-54	0810606-05	10/28/2008	z	VOCs, SVOCs, TPHs, General Chemistry, Total Metals, Dissolved Metals, and Nitrate/Nitrite
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
EB-010809	0-01110-02	1/8/2009	EB-Groundwater	Dissolved Metals, and Nitrate/Nitrite
FB-010809	0001110-06	1/8/2009	FB-Groundwater	VOUS, 2 VOUS, 17 HS, UGRETAL CHEMISLY, 101al INTELAIS, Dissolved Metals, and Nitrate/Nitrite
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
MW-54 DUP	0901132-02	1/8/2009	FD	Dissolved Metals, and Nitrate/Nitrite
MW-50	0-01110-01	1/8/2009	Z	VOCs, SVOCs, TPH5, General Chemistry, Total Metals, Dissolved Metals and Nitrate/Nitrite
				VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
IC-WW	C0-6111060	1/8/2009	z	UISSOIVED METALS, and NITTATE/NITTITE
MW-52	0901119-02	1/8/2009	Z	Dissolved Metals, and Nitrate/Nitrite
C3 ANM	000111000	0000	7	VOCs, SVOCs, TPHs, General Chemistry, Total Metals,
CC- 14 141	C0-6111060	11012002	2	VOCs. SVOCs. TPHs. General Chemistry. Total Metals
MW-54	0901132-01	1/8/2009	N	Dissolved Metals, and Nitrate/Nitrite
MeOH BLANK	0809453-10	N/A	MB	VOCs
MeOH BLANK	0809553-13	N/A	MB	VOCs
Meoh Blank	0809578-18	N/A	MB	VOCs
MeOH Blank	0809448-21	N/A	MB	VOCs
MeOH Blank	0809448-22	N/A	MB	VOCs
MeOH Blank	0809448-27	N/A	MB	VOCs
Meoh Blank(2)-092808	0809636-13	N/A	MB	VOCs
Meon Blank-092808 Meoh Blank-10/14/08	0809636-06	N/A N/A	MB	VOCS
Mech Blank-10/15/08	0810326-02	N/A	MB	VOCe
MeOH Blank2-0925	0809553-20	N/A	MB	VOCs
MeOH Blank3 092508	0809578-10	N/A	MB	VOCs
TB	0901119-04	N/A	TB	VOCs
TB (3) 092908	.0810002-03	N/A	Æ	VOCs
TB(1) 093008	0810002-10	N/A	TB	VOCs
TB-092508	0809553-12	N/A	TB	VOCs
TB-102808	0810580-04	N/A	TB	VOCs
TB-102808-2	0810606-04	N/A	TB	VOCs
TB102808-3	0810606-07	N/A	TB	VOCs
TB2 092608	0809578-17	N/A	TB	VOCs
TB3 082508	0809578-09	N/A	TB	VOCs
TB3 092608	0809578-24	N/A	Ê	VOCs
172-092308	0809553-21	N/A	TB	VOCs

#### TABLE A-2 Qualified Data



Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 2-3 GW	9/29/2008	1.2.4-Trichlorobenzene	< 10	ng/L	Aqueous	ſŊ	Oualified due to low surrogate recovery
MW-53	10/28/2008	1,2,4-Trichlorobenzene	< 10	µg/L	Aqueous	B	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	1,2,4-Trichlorobenzene	< 1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	I,2-Dichlorobenzene	< 10	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	1,2-Dichlorobenzene	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	1,2-Dichlorobenzene	< 1.2	mg/Kg-dry	Soil	В	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	1,3-Dichlorobenzene	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
MW-53	10/28/2008	1,3-Dichlorobenzene	< 10	µg/L	Aqueous	B	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	1,3-Dichlorobenzene	< 1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	1,4-Dichlorobenzene	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	1,4-Dichlorobenzene	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	1,4-Dichlorobenzene	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2,4,5-Trichlorophenol	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	2,4,5-Trichlorophenol	< 10	μg/L	Aqueous	n	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	2,4,5-Trichlorophenol	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2,4,6-Trichlorophenol	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	2,4,6-Trichlorophenol	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	2,4,6-Trichlorophenol	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2,4-Dichlorophenol	< 20	μg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	2,4-Dichlorophenol	< 20	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	2,4-Dichlorophenol	< 2.5	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2,4-Dimethylphenol	< 10	μg/L	Aqueous	Б	Qualified due to low surrogate recovery
MW-53	10/28/2008	2,4-Dimethylphenol	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	2,4-Dimethylphenol	<1.9	mg/Kg-dry	Soil	Б	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2,4-Dinitrophenol	< 20	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	2,4-Dinitrophenol	< 20	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-I (5-7.5')	9/28/2008	2,4-Dinitrophenol	< 2.5	mg/Kg-dry	Soil	Б	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2,4-Dinitrotoluene	< 10	μg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	2,4-Dinitrotoluene	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	2,4-Dinitrotoluene	< 3.1	mg/Kg-dry	Soil	в	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2,6-Dinitrotoluene	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	2,6-Dinitrotoluene	< 10	µg/L	Aqueous	n	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	2,6-Dinitrotoluene	< 3.1	mg/Kg-dry	Soil	M	Qualified due to low surrogate recovery
SWMU 18-1 (0-0.5)	9/26/2008	2-Butanone	6.63	µg/Kg-dry	Soil	J	Qualified due to potential laboratory contamination
SWMU 18-3 (1.5-2.0')	9/26/2008	2-Butanone	7.54	µg/Kg-dry	Soil	-	Qualified due to potential laboratory contamination
SWMU 18-4 (1.5-2.0)	9/26/2008	2-Butanone	4.18	μg/Kg-dry	Soil	-	Qualified due to potential laboratory contamination
5WMU 2-3 GW	8007/67/6	2-Chloronaphthalene	< 10	µg/L	Aqueous	В	Qualified due to low surrogate recovery
2010110175-751	8007/87/01	2-Chloronaphthalene	<pre>&gt; 10</pre>	μ <u>g/</u> L	Aqueous	D ::	Qualified due to low surrogate recovery
C.1-C 1-C DWINS	8000/00/0		0.1.0	mg/Ng-ary	2011	5	Qualified due to low surrogate recovery
5 WIN 2-2 UW	8/07/67/6	2-Chlorophenol	< 10	<u>1/8/L</u>	Aqueous	٦.	Qualified due to low surrogate recovery
MW-33	10/28/2008	2-Chlorophenol	< 10	µg/L	Aqueous	Б	Qualified due to low surrogate recovery
(.c./-c) 1-6 NMNS	9/28/2008	2-Chlorophenol	< 1.2	mg/Kg-dry	Soil	n	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2-Methylnaphthalene	< 10	µg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	2-Methylnaphthalene	< 10	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5)	9/28/2008	2-Methylnaphthalene	2.9	mg/Kg-dry	Soil	J	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2-Methylphenol	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
MW-53	10/28/2008	2-Methylphenol	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5)	9/28/2008	2-Methylphenol	< 3.1	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2-Nitroaniline	< 10	μg/L	Aqueous	n	Qualified due to low surrogate recovery



Samula ID	Data Collected	Andlyta	Docult	linite	Matrix	Ouclifice	Commonte
MW-53	10/72/2008	2. Mitrosviline	10 ×		VIIIBIN	Vuanner 111	Outlified due to low surrouts received
CUMALLO L VE 7 EN	0/02/02/00			HE/ P	U-11	3	Qualified due to 10% suitogate recovery
(.c./ c) 1-6 (	9/28/2008	2-Nitroaniline	712	mg/Kg-dry	201	5	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	2-Nitrophenol	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
MW-53	10/28/2008	2-Nitrophenol	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	2-Nitrophenol	< 1.2	mg/Kg-dry	Soil	ſŊ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	3,3'-Dichlorobenzidine	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	3,3'-Dichlorobenzidine	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	3,3'-Dichlorobenzidine	< 1.6	mg/Kg-dry	Soil	ſŊ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	3+4-Methylphenol	< 10	μ <u>g</u> /L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	3+4-Methylphenol	< 10	µg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	3+4-Methylphenol	<1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	3-Nitroaniline	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
MW-53	10/28/2008	3-Nitroaniline	< 10	ηg/L	Aqueous	ß	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	3-Nitroaniline	< 1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	4,6-Dinitro-2-methylphenol	< 20	µg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	4,6-Dinitro-2-methylphenol	< 20	µg/L	Aqueous	ß	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	4,6-Dinitro-2-methylphenol	< 3.1	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	4-Bromophenyl phenyl ether	< 10	μg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	4-Bromophenyl phenyl ether	< 10	μg/L	Aqueous	Б	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	4-Bromophenyl phenyl ether	< 1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	4-Chloro-3-methylphenol	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	4-Chloro-3-methylphenol	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	4-Chloro-3-methylphenol	< 3.1	mg/Kg-dry	Soil	Б	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	4-Chloroaniline	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
MW-53	10/28/2008	4-Chloroaniline	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	4-Chloroaniline	< 3.1	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	4-Chlorophenyl phenyl ether	< 10	μ <u>g</u> /L	Agueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	4-Chlorophenyl phenyl ether	< 10	μg/L	Aqueous	ß	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	4-Chlorophenyl phenyl ether	< 1.2	mg/Kg-dry	Soil	· IU	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	4-Nitroaniline	< 10	µg/L	Aqueous	M	Qualified due to low surrogate recovery
MW-53	10/28/2008	4-Nitroaniline	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	4-Nitroaniline	< 1.6	mg/Kg-dry	Soil	Б	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	4-Nitrophenol	. < 10	μg/L	Aqueous	Б	Qualified due to low surrogate recovery
MW-53	10/28/2008	4-Nitrophenol	< 10	µg/L	Aqueous	ß	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	4-Nitrophenol	< 1.2	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Acenaphthene	< 10	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Acenaphthene	< 10 <	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Acenaphthene	< 1.2	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Acenaphthylene	< 10	μg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	Acenaphthylene	< 10	μg/L	Aqueous	ß	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5)	9/28/2008	Acenaphthylene	< 1.2	mg/Kg-dry	Soil	UJ	Qualified due to low surrogate recovery
SWMU 8-6 (0-0.5')	9/23/2008	Acetone	66.9	up/Kp-drv	Soil	1	Qualified due to detection in associated method blank and hish RPD in dunlicate samule
SWMU 8-1 (1.5-2.0')	9/23/2008	Acetone	<5.7	ug/Kg-dry	Soil	ß	Oualified due to detection in associated method blank
SWMU 18-1 (0-0.5)	9/26/2008	Acetone	46.6	µg/Kg-dry	Soil	- -	Qualified due to detected concentration outside calibration limits
SWMU 18-3 (0-0.5)	9/26/2008	Acetone	46.8	µg/Kg-dry	Soil	-	Qualified due to detected concentration outside calibration limits
SWMU 18-3 (1.5-2.0')	9/26/2008	Acetone	71	µg/Kg-dry	Soil	<b>ب</b>	Qualified due to detected concentration outside calibration limits
SWMU 18-4 (1.5-2.0')	9/26/2008	Acetone	37.3	µg/Kg-dry	Soil	J	Qualified due to detected concentration outside calibration limits
SWMU 8-9 (0-0.5')	9/23/2008	Acetone	<4.24	mg/kg-dry	soil	n	Qualified due to high field duplicate RPD



, **1** 

## Qualified Data Group 2 RCRA Investigation Summary Western Refining Southwest, Inc. - Bloomfield Refinery

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 18-3 (7.5-9')	9/26/2008	Acetone	<4.26	mg/Kg-dry	soil	ß	Qualified due to high field duplicate difference.
SWMU 2-3 GW	9/29/2008	Aniline	< 10	μg/L	Aqueous	E	Qualified due to low surrogate recovery
MW-53	10/28/2008	Aniline	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
(SWMU 9-1 (5-7.5')	9/28/2008	Aniline	< 1.2	mg/Kg-dry	Soil	ſŊ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Anthracene	< 10	µg/L	Aqueous	UJ .	Qualified due to low surrogate recovery
MW-53	10/28/2008	Anthracene	< 10	μg/L	Aqueous	B	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Anthracene	< 1.2	mg/Kg-dry	Soil	ſŊ	Qualified due to low surrogate recovery
SWMU 8-5 (0-0.5')	9/23/2008	Antimony	< 2.7	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-5 (1.5-2.0')	9/23/2008	Antimony	< 2.7	mg/Kg-dry	Soil	Б	Qualified due to low MS/MSD recovery
SWMU 8-6 (0-0.5')	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-7 (1.5-2.0')	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	m	Qualified due to low MS/MSD recovery
SWMU 8-8 (0-0.5')	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	Б	Qualified due to low MS/MSD recovery
SWMU 8-8 (1.5-2.0')	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-6 (0-0.5') Dup	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-7 (0-0.5')	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-6 (1.5-2.0')	9/23/2008	Antimony	< 2.7	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-9 (0-0.5')	9/23/2008	Antimony	< 2.7	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-9 (0-0.5') DUP	9/23/2008	Antimony	< 2.7	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-9 (1.5-2.0')	9/23/2008	Antimony	< 13	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-10 (0-0.5')	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-10 (1.5-2.0')	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-11 (0-0.5')	9/23/2008	Antimony	< 27	mg/Kg-dry	Soil	Б	Qualified due to low MS/MSD recovery
SWMU 8-11 (1.5-2.0')	9/23/2008	Antimony	< 2.7	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-12 (0-0.5')	9/23/2008	Antimony	< 13	mg/Kg-dry	Soil	'n	Qualified due to low MS/MSD recovery
SWMU 8-12 (1.5-2.0')	9/23/2008	Antimony	< 2.6	mg/Kg-dry	Soil	Ĩ	Qualified due to low MS/MSD recovery
SWMU 2-2 (1.5-2.0')	9/25/2008	Antimony	< 2.6	mg/Kg-dry	Soil	Б	Qualified due to low MS/MSD recovery
SWMU 2-3 (0-0.5')	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	B	Qualified due to low MS/MSD recovery
SWMU 2-3 (0-0.5') DUP	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 2-1 (0-0.5')	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	ŋ	Qualified due to low MS/MSD recovery
SWMU 2-1 (1.5-2.0')	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	ß	Qualified due to low MS/MSD recovery
SWMU 2-2 (0-0.5')	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	B	Qualified due to low MS/MSD recovery
SWMU 2-4 (1.5-2.0')	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	ß	Qualified due to low MS/MSD recovery
SWMU 2-5 (0-0.5')	9/25/2008	Antimony	< 2.8	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 2-5 (1.5-2.0')	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 2-3 (1.5-2.0')	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	B	Qualified due to low MS/MSD recovery
SWMU 2-4 (0-0.5')	9/25/2008	Antimony	< 2.7	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 2-7 (0-0.5')	9/26/2008	Antimony	< 13	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 2-7 (1.5-2.0')	9/26/2008	Antimony	< 2.7	mg/Kg-dry	Soil	Б	Qualified due to low MS/MSD recovery
SWMU 2-8 (0-0.5')	9/26/2008	Antimony	< 2.8	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 2-8 (1.5-2.0')	9/26/2008	Antimony	< 2.7	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 2-8 (0-0.5') DUP	9/26/2008	Antimony	< 2.8	mg/Kg-dry	Soil	Б	Qualified due to low MS/MSD recovery
SWMU 2-9 (0-0.5')	9/26/2008	Antimony	< 13	mg/Kg-dry	Soil	m	Qualified due to low MS/MSD recovery
SWMU 2-9 (1.5-2.0')	9/26/2008	Antimony	< 14	mg/Kg-dry	Soil	B	Qualified due to low MS/MSD recovery
SWMU 18-1 (0-0.5)	9/26/2008	Antimony	< 2.7	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 18-1 (1.5-2.0)	9/26/2008	Antimony	< 2.7	mg/Kg-dry	Soil	Б	Qualified due to low MS/MSD recovery
SWMU 18-2 (0-0.5)	9/26/2008	Antimony	< 2.6	mg/Kg-dry	Soil	5	Qualified due to low MS/MSD recovery
SWMU 18-3 (7.5-9')	9/26/2008	Antimony	< 14	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 18-3 (7.5-9') DUP	9/26/2008	Antimony	< 14	mg/Kg-dry	Soil	B	Qualified due to low MS/MSD recovery
SWMU 18-2 (1.5-2.0')	9/26/2008	Antimony	< 2.7	mg/Kg-dry	Soil	в	Qualified due to low MS/MSD recovery

.



4		Amolecto	Decult	11	Matuly	Ouolifiar	Commente
Sample ID	D/26/2008	Analyce Antimony	xcsult < 13	me/Ke-dry	Soil		Qualified due to Iow MS/MSD recovery
SWMIT 18-3 (1 5-2 0')	0/2//2//0	Antimony	< 14	mp/Kp-drv	Soil	5	Oualified due to low MS/MSD recovery
SWMIT 18-4 (0-0 5')	9/26/2008	Antimony	< 13	mg/Kg-dry	Soil	Б	Qualified due to low MS/MSD recovery
SWMU 18-4 (1.5-2.0')	9/26/2008	Antimony	< 13	mg/Kg-dry	Soil	n	Qualified due to low MS/MSD recovery
SWMU 2-2 (13.5-14.0')	9/29/2008	Antimony	< 2.8	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 2-3 (13.5-14.0')	9/29/2008	Antimony	< 2.6	mg/Kg-dry	Soil	m	Qualified due to low MS/MSD recovery
SWMU 2-4 (14-14.5')	9/29/2008	Antimony	< 2.9	mg/Kg-dry	Soil	M	Qualified due to low MS/MSD recovery
SWMU 2-4 (14-14.5') DUP	9/29/2008	Antimony	< 2.9	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 2-3 GW	9/29/2008	Azobenzene	< 10	µg/L	Aqueous	Б	Qualified due to low surrogate recovery
MW-53	10/28/2008	Azobenzene	< 10	µg/L	Aqueous	ß	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Azobenzene	< 1.2	mg/Kg-dry	Soil	Ũ	Qualified due to low surrogate recovery
SWMU 2-4 (14-14.5')	9/29/2008	Barium	110	mg/Kg-dry	Soil	г	Qualified due to high field sample RPD
SWMU 2-3 (0-0.5')	9/25/2008	Barium	89	mg/Kg-dry	soil	F.	Qualified due to high field duplicate RPD
SWMU 2-3 GW	9/29/2008	Benz(a)anthracene	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	Benz(a)anthracene	< 10	μg/L .	Aqueous	UJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Benz(a)anthracene	< 1.2	mg/Kg-dry	Soil	Б	Qualified due to low surrogate recovery
SWMU 8-6a (33-34')	10/1/2008	Benzene	< 0.050	mg/Kg	Soil	m	Qualified due to low MS/MSD recovery
Meoh Blank-10/14/08	10/1/2008	Benzene	< 0.050	mg/Kg	MeOH Blank	m	Qualified due to low MS/MSD recovery
SWMU 2-3 GW	9/29/2008	Benzo(a)pyrene	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Benzo(a)pyrene	< 10	μg/L	Aqueous	n	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Benzo(a)pyrene	< 1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Benzo(b)fluoranthene	< 10	μg/L	Aqueous	n	Qualified due to low surrogate recovery
MW-53	10/28/2008	Benzo(b)fluoranthene	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Benzo(b)fluoranthene	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Benzo(g,h,i)perylene	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Benzo(g,h,i)perylene	< 10	J/grl	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Benzo(g,h,i)perylene	< 3.1	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Benzo(k)fluoranthene	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Benzo(k)fluoranthene	< 10	μg/L	Aqueous	M	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Benzo(k)fluoranthene	< 1.2	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Benzoic acid	< 20	μg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	Benzoic acid	< 20	μg/L	Aqueous	Б	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Benzoic acid	< 3.1	mg/Kg-dry	Soil	M	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Benzyl alcohol	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Benzyl alcohol	< 10	μg/L	Agueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Benzyl alcohol	< 1.2	mg/Kg-dry	Soil	M	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Bis(2-chloroethoxy)methane	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Bis(2-chloroethoxy)methane	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Bis(2-chloroethoxy)methane	< 1.2	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Bis(2-chloroethyl)ether	< 10	µg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	Bis(2-chloroethyl)ether	< 10	µg/L	Aqueous	ß	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Bis(2-chloroethyl)ether	< 1.2	mg/Kg-dry	Soil	ſſ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Bis(2-chloroisopropyl)ether	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Bis(2-chloroisopropyl)ether	< 10	μg/L	Aqueous	Б	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Bis(2-chloroisopropyl)ether	< 1.2	mg/Kg-dry	Soil	ſŊ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Bis(2-ethylhexyl)phthalate	<ul><li>10</li></ul>	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Bis(2-ethylhexyl)phthalate	< 10	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Bis(2-ethylhexyl)phthalate	< 3.1	mg/Kg-dry	Soil	M	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Butyl benzyl phthalate	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery



Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
MW-53	10/28/2008	Butyl benzyl phthalate	< 10	με/L	Aqueous	Б	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Butyl benzyl phthalate	< 1.2	mg/Kg-dry	Soil	Ŋ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Carbazole	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	Carbazole	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Carbazole	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-7 (0-0.5')	9/26/2008	Chloroethane	< 0.992	µg/Kg-dry	Soil	IJ	Qualified due to low CCV recoveries
SWMU 2-7 (1.5-2.0')	9/26/2008	Chloroethane	< 0.999	µg/Kg-dry	Soil	m	Qualified due to low CCV recoveries
SWMU 2-8 (0-0.5')	9/26/2008	Chloroethane	< 0.970	µg/Kg-dry	Soil	M	Qualified due to low CCV recoveries
SWMU 2-8 (1.5-2.0')	9/26/2008	Chloroethane	< 0.920	µg/Kg-dry	Soil	ſŊ	Qualified due to low CCV recoveries
SWMU 2-8 (0-0.5') DUP	9/26/2008	Chloroethane	< 1.02	µg/Kg-dry	Soil	Ŋ	Qualified due to low CCV recoveries
SWMU 2-9 (0-0.5')	9/26/2008	Chloroethane	< 0.988	µg/Kg-dry	Soil	IJ	Qualified due to low CCV recoveries
SWMU 2-9 (1.5-2.0')	9/26/2008	Chloroethane	< 0.939	µg/Kg-dry	Soil	IJ	Qualified due to low CCV recoveries
SWMU 18-1 (0-0.5)	9/26/2008	Chloroethane	< 0.965	µg/Kg-dry	Soil	m	Qualified due to low CCV recoveries
SWMU 18-1 (1.5-2.0)	9/26/2008	Chloroethanc	< 1.05	µg/Kg-dry	Soil	IJ	Qualified due to low CCV recoveries
SWMU 18-2 (0-0.5)	9/26/2008	Chloroethane	< 0.963	µg/Kg-dry	Soil	<u>UI</u>	Qualified due to low CCV recoveries
SWMU 18-3 (7.5-9')	9/26/2008	Chloroethane	< 1.07	µg/Kg-dry	Soil	IJ	Qualified due to low CCV recoveries
SWMU 18-3 (7.5-9') DUP	9/26/2008	Chloroethane	< 1.07	µg/Kg-dry	Soil	IJ	Qualified due to low CCV recoveries
SWMU 18-2 (1.5-2.0')	9/26/2008	Chloroethane	< 1.08	µg/Kg-dry	Soil	m	Qualified due to low CCV recoveries
SWMU 18-3 (0-0.5)	9/26/2008	Chloroethane	< 1.03	µg/Kg-dry	Soil	m	Qualified due to low CCV recoveries
SWMU 18-3 (1.5-2.0')	9/26/2008	Chloroethane	< 1.04	µg/Kg-dry	Soil	IJ	Qualified due to low CCV recoveries
SWMU 18-4 (0-0.5')	9/26/2008	Chloroethane	< 0.974	µg/Kg-dry	Soil	IJ	Qualified due to low CCV recoveries
SWMU 18-4 (1.5-2.0')	9/26/2008	Chloroethane	< 0.925	µg/Kg-dry	Soil	m	Qualified due to low CCV recoveries
SWMU 2-4 (14-14.5')	9/29/2008	Chromium	5.8	mg/Kg-dry	Soil	ŗ	Qualified due to high field sample RPD
SWMU 2-3 GW	9/29/2008	Chrysene	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	Chrysene	< 10	μg/L	Aqueous	UI	Qualified due to low surrogate recovery
<u>SWMU 9-1 (5-7.5')</u>	9/28/2008	Chrysene	< 1.2	mg/Kg-dry	Soil	ſŊ	Qualified due to low surrogate recovery
SWMU 2-5 (13-14')	10/15/2008	Cyanide	<0.25	mg/kg	Soil	ſŊ	Qualified due to matrix interference
<u>SWMU 2-5 (13-14')</u>	9/30/2008	Cyanide	<0.25	mg/kg	Soil	IJ	Qualified due to detection in assoicated field blank
SWMU 2-3 GW	9/29/2008	Dibenz(a,h)anthracene	< 10	μg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	Dibenz(a,h)anthracene	< 10	µg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Dibenz(a,h)anthracene	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Dibenzofuran	< 10	μ <u>g/L</u>	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Dibenzofuran	< 10	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Dibenzofuran	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Diethyl phthalate	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	Diethyl phthalate	< 10	μg/L	Aqueous	n	Qualified due to low surrogate recovery
(c./-c) 1-6 NMMS	9/28/2008	Dicthyl phthalate	<1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Dimethyl phthalate	< 10	μ <u>g/</u> Γ	Aqueous	6	Qualified due to low surrogate recovery
MW-53	10/28/2008	Dimethyl phthalate	×10	μ <u>g/L</u>	Aqueous	ſŊ	Qualified due to low surrogate recovery
(.c./-c) 1-6 NMWS	9/28/2008	Dimethyl phthalate	<1.2	mg/Kg-dry	Soil	ſŊ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Di-n-butyl phthalate	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	Di-n-butyl phthalate	< 10	μ <u>g/</u> L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Di-n-butyl phthalate	< 3.1	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-2 (13.5-14.0')	9/29/2008	Di-n-butyl phthalate	0.79	mg/Kg-dry	Soil	J	Qualified due to potential laboratory contamination
SWMU 2-3 GW	9/29/2008	Di-n-octyl phthalate	< 10	μ <u>g/</u> L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Di-n-octyl phthalate	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Di-n-octyl phthalate	< 1.2	mg/Kg-dry	Soil	ſŊ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Fluoranthene	< 10	μg/L	Aqueous	Ŋ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Fluoranthene	< 10	µg/L	Aqueous	n	Qualified due to low surrogate recovery



			4	11-14-	Matric	Ouclificat	Comments
Sample ID	Date Collected	Analyte	Result		Mairix Coli	Vualitier 111	Condified due to four currowsta recovery
(C.1-C) 1-6 DIMMC	8/128/2008	Fluoranurene	0.1	IIIB/NE-UIY	1100	515	
SWMU 2-3 GW	9/29/2008	Fluorene	× 10	μ <u>g/L</u>	Aqueous	3	Qualified due to low surrogate recovery
MW-53	10/28/2008	Fluorene	< 10	μg/L	Aqueous	Б	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Fluorene	< 3.1	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 18-2 (1.5-2.0')	9/26/2008	Gasoline Range Organics (GRO)	23	mg/Kg-dry	Meoh (Soil)	5	Qualified due to high surrogate recovery
SWMU 2-3 GW	9/29/2008	Hexachlorobenzene	< 10	μg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	Hexachlorobenzene	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Hexachtorobenzene	< 1.2	mg/Kg-dry	Soil	M	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Hexachlorobutadiene	< 10	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Hexachlorobutadiene	< 10	μg/L	Aqueous	D	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Hexachlorobutadiene	< 1.2	mg/Kg-dry	Soil	n	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Hexachlorocyclopentadiene	< 10	μg/L	Aqueous	II	Qualified due to low surrogate recovery
MW-53	10/28/2008	Hexachlorocyclopentadiene	< 10	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Hexachlorocyclopentadiene	< 1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Hexachloroethane	< 10	μg/L	Aqueous	n	Qualified due to low surrogate recovery
MW-53	10/28/2008	Hexachloroethane	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Hexachloroethane	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Indeno(1,2,3-cd)pyrene	< 10	μg/L	Aqueous	5	Qualified due to low surrogate recovery
MW-53	10/28/2008	Indeno(1,2,3-cd)pyrene	< 10	μg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Indeno(1,2,3-cd)pyrene	< 1.6	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-8 GW	10/1/2008	Iron	<0.24	mg/L	Aqueous	Б	Qualified due to detection in associated field blank
SWMU 2-3 GW	9/29/2008	Isophorone	< 10	μg/L	Aqueous	n	Qualified due to low surrogate recovery
MW-53	10/28/2008	Isophorone	< 10	μg/L	Aqueous	n	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Isophorone	< 3.1	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
SWMU 2-6 GW	9/30/2008	Lead	<0.0079	mg/L	Aqueous	IJ	Qualified due to detection in associated field blank
SWMU 2-6 GW	9/29/2008	Lead	0.022	mg/L	Aqueous	ſ	Qualified due to detection in associated field blank
SWMU 2-7 GW	9/30/2008	Lead	<0.0079	mg/L	Aqueous	ſŊ	Qualified due to detection in associated field blank
SWMU 2-3 GW	9/29/2008	Naphthalene	< 10	µg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	Naphthalene	< 10	μg/L	Aqueous	Ũ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Naphthalene	1.7	mg/Kg-dry	Soil	ſ	Qualified due to low surrogate recovery
SWMU 2-4 GW	9/30/2008	Nitrate (As N)+Nitrite (As N)	<6.5	mg/L	Aqueous	В	Qualified due to detection in assoicated field and equipment blanks
SWMU 2-6 GW	9/30/2008	Nitrate (As N)+Nitrite (As N)	<6.5	mg/L	Aqueous	IJ	Qualified due to detection in assciated field and equipment blanks
SWMU 2-3 GW	9/29/2008	Nitrobenzene	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Nitrobenzene	< 10	µg/L	Aqueous	6	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Nitrobenzene	< 3.1	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
MW-51	10/28/2008	Nitrogen, Nitrate (as N)	0.68	mg/L	Aqueous	5	Qualified due to high field duplicate RPD
SWMU 2-3 GW	9/29/2008	N-Nitrosodimethylamine	< 10	µg/L	Aqueous	B	Qualified due to low surrogate recovery
MW-53	10/28/2008	N-Nitrosodimethylamine	< 10	μg/L	Aqueous	5	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	N-Nitrosodi-n-propylamine	< 10	µg/L	Aqueous	Б	Qualified due to low surrogate recovery
MW-53	10/28/2008	N-Nitrosodi-n-propylamine	< 10	μg/L	Aqueous	Б	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	N-Nitrosodi-n-propylamine	< 1.2	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	N-Nitrosodiphenylamine	< 10	µg/L	Aqueous	ß	Qualified due to low surrogate recovery
MW-53	10/28/2008	N-Nitrosodiphenylamine	< 10	μg/L	Aqueous	ß	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	N-Nitrosodiphenylamine	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Pentachlorophenol	< 20	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Pentachlorophenol	< 20	μg/L	Aqueous	n	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Pentachlorophenol	< 2.5	mg/Kg-dry	Soil	ß	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Phenanthrene	< 10	μg/L	Aqueous	5	Qualified due to low surrogate recovery
MW-53	10/28/2008	Phenanthrene	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery

÷.,

....



Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 9-1 (5-7.5')	9/28/2008	Phenanthrene	< 1.2	mg/Kg-dry	Soil	U)	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Phenol	< 10	μg/L	Aqueous	IJ	Qualified due to low surrogate recovery
MW-53	10/28/2008	Phenol	< 10	μg/L	Aqueous	ſŊ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Phenol	< 1.2	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Pyrene	< 10	μg/L	Aqueous	01	Qualified due to low surrogate recovery
MW-53	10/28/2008	Pyrene	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Pyrene	< 1.2	mg/Kg-dry	Soil	IJ	Qualified due to low surrogate recovery
SWMU 2-3 GW	9/29/2008	Pyridine	< 10	µg/L	Aqueous	m	Qualified due to low surrogate recovery
MW-53	10/28/2008	Pyridine	< 10	µg/L	Aqueous	IJ	Qualified due to low surrogate recovery
SWMU 9-1 (5-7.5')	9/28/2008	Pyridine	< 3.1	mg/Kg-dry	Soil	m	Qualified due to low surrogate recovery
SWMU 8-5 (0-0.5')	9/23/2008	Selenium	< 27	mg/Kg-dry	Soil	Ŋ	Qualified due to low MS/MSD recovery
SWMU 8-5 (1.5-2.0')	9/23/2008	Selenium	< 27	mg/Kg-dry	Soil	n)	Qualified due to low MS/MSD recovery
SWMU 8-6 (0-0.5')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-7 (1.5-2.0')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	m	Qualified due to low MS/MSD recovery
SWMU 8-8 (0-0.5')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	m	Qualified due to low MS/MSD recovery
SWMU 8-8 (1.5-2.0')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-6 (0-0.5') Dup	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	UJ .	Qualified due to low MS/MSD recovery
SWMU 8-7 (0-0.5')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	Ŋ	Qualified due to low MS/MSD recovery
SWMU 8-6 (1.5-2.0')	9/23/2008	Selenium	< 27	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-9 (0-0.5')	9/23/2008	Selenium	< 27	mg/Kg-dry	Soil	m	Qualified due to low MS/MSD recovery
SWMU 8-9 (0-0.5') DUP	9/23/2008	Selenium	< 27	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-9 (1.5-2.0')	9/23/2008	Selenium	< 13	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-10 (0-0.5')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	IJ	Qualified due to low MS/MSD recovery
SWMU 8-10 (1.5-2.0')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-11 (0-0.5')	9/23/2008	Selenium	< 27	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-11 (1.5-2.0')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-12 (0-0.5')	9/23/2008	Selenium	< 13	mg/Kg-dry	Soil	ſŊ	Qualified due to low MS/MSD recovery
SWMU 8-12 (1.5-2.0')	9/23/2008	Selenium	< 26	mg/Kg-dry	Soil	m	Qualified due to low MS/MSD recovery
SWMU 18-1 (0-0.5)	9/26/2008	Selenium	< 13	mg/Kg-dry	Soil	IJ	Qualified due to low MS recoveries
SWMU 18-1 (1.5-2.0)	9/26/2008	Selenium	< 2.7	mg/Kg-dry	Soil	IJ	Qualified due to low MS recoveries
EBS (1)-092908	9/28/2008	Silver	<0.010	mg/L	Aqueous	ſſ	Qualified due to low MS/MSD recovery
SWMU 8-9 (0-0.5')	9/23/2008	Trichlorofluoromethane	2.05	mg/kg-dry	soil	ſ	Qualified due to high field duplicate RPD

Notes: mg/L - milligrams per liter ug/L - microgram per liter UJ - Estimated reporting limit J - potential bias

RPD - Relative Percent Difference MS/MSD - Matrix spike/matrix spike duplicate

#### TABLE A-3 Field Duplicate Summary

Western Refining Southwest, Inc. Bloomfield Refinery

	D	SWMU 8-6 (0-0.5')	SWMU 8-6 (0-0.5') Dup Field Duplicate	RPD
PH (mg/kg-dry);	Diesel Range Organics (DRO)	Sample Result 93	Field Duplicate 81	<u>(%)</u> 13.8
PFI (mg/kg-ury):	Motor Oil Range Organics (MRO)	300	260	14.3
	Gasoline Range Organics (GRO)	< 5.0	< 5.0	NC
OCs (ug/kg-dry)	Benzene	< 1.17	< 1.11	NC
0 00 (0 K - K - ( ) )	Toluene	<1.17	< 1.11	NC
	Ethylbenzene	< 1.17	< 1.11	NC
	Xylenes, Total	< 1.17	< 1.11	NC
	Methyl tert-butyl ether (MTBE)	< 1.17	< 1.11	NC
	1,2,4-Trimethylbenzene	< 1.17	< 1.11	NC
	1,3,5-Trimethylbenzene	< 1.17	< 1.11	NC
	1,2-Dichloroethane (EDC)	< 1.17	< 1.11	NC
	1,2-Dibromoethane (EDB)	< 1.17	< 1.11	NC
	Naphthalene	< 1.17	< 1.11	NC
	Acetone	66.9 *	< 4.44	NC
	Bromobenzene	< 1.17	< 1.11	NC
	Bromodichloromethane	< 1.17	< 1.11	NC
	Bromoform	< 1.17	< 1.11	NC
	Bromomethane	< 1.17	< 1.11	NC
	2-Butanone	< 4.67	< 4.44 < 1.11	NC NC
	Carbon tetrachloride	< 1.17	<1.11 <1.11	NC NC
	Chlorobenzene Chloroethane	<1.17	<1.11	NC NC
	Chloroform	<1.17	< 1.11	NC
	Chloromethane	<1.17	<1.11	NC
	2-Chlorotoluene	<1.17	<1.11	NC
	Carbon disulfide	< 4.67	< 4.44	NC
	4-Chlorotoluene	< 1.17	< 1.11	NC
	cis-1,2-DCE	< 1.17	< 1.11	NC
	cis-1,3-Dichloropropene	< 1.17	< 1.11	NC
	1,2-Dibromo-3-chloropropane	< 1.17	< 1.11	NC
	Dibromochloromethane	< 1.17	< 1.11	NC
	Dibromomethane	< 1.17	< 1.11	NC
	1,2-Dichlorobenzene	< 1.17	< 1.11	NC
	1,3-Dichlorobenzene	< 1.17	< 1.11	NC
	1,4-Dichlorobenzene	< 1.17	< 1.11	NC
	Dichlorodifluoromethane	< 1.17	< 1.11	NC
	1,1-Dichloroethane	< 1.17	< 1.11	NC
	1,1-Dichloroethene	< 1.17	< 1.11	NC
	1,2-Dichloropropane	< 1.17	< 1.11	NC
	1,3-Dichloropropane	< 1.17	< 1.11	NC
	2,2-Dichloropropane	< 1.17	< 1.11	NC
	1,1-Dichloropropene Hexachlorobutadiene	< 1.17	<1.11 <1.11	NC NC
	Isopropylbenzene	<1.17	<1.11	NC NC
	4-Isopropyltoluene	<1.17	<1.11	NC
	Methylene chloride	< 2.34	< 2.22	NC
	n-Butylbenzene	<1.17	< 1.11	NC
	2-Hexanone	< 4.67	< 4.44	NC
	n-Propylbenzene	< 1.17	< 1.11	NC
	sec-Butylbenzene	< 1.17	< 1.11	NC
	Styrene	< 1.17	< 1.11	NC
	tert-Butylbenzene	< 1.17	< 4.44	NC
	4-Methyl-2-pentanone	< 4.67	< 1.11	NC
	1,1,1,2-Tetrachloroethane	< 1.17	<1.11	NC
	1,1,2,2-Tetrachloroethane	< 1.17	< 1.11 < 1.11	NC
	Tetrachloroethene (PCE)	< 1.17	<1.11	NC NC
	trans-1,2-DCE trans-1,3-Dichloropropene	< 1.17	< 1.11	NC NC
	1,2,3-Trichlorobenzene	< 1.17	<1.11	NC NC
	1,2,3-1 richlorobenzene	<1.17	< 1.11	NC NC
	1,2,4-1 Henlorobenzene 1,1,1-Trichloroethane	< 1.17	< 1.11	NC
	1,1,2-Trichloroethane	< 1.17	< 1.11	NC NC
	Trichloroethene (TCE)	< 1.17	< 1.11	NC NC
	Trichlorofluoromethane	2.14	< 1.11	NC
	1,2,3-Trichloropropane	< 1.17	< 1.11	NC
	Vinyl chloride	< 1.17	< 1.11	NC

	Parameter	SWMU 8-6 (0-0.5') Sample Result	SWMU 8-6 (0-0.5') Dup Field Duplicate	RPD (%)
VOCs (mg/kg-dry):	Acenaphthene	< 1.1	< 1.1	NC
	Acenaphthylene	< 1.1	< 1.1	NC
	Aniline	< 1.1	< 1.1	NC
	Anthracene	< 1.1	< 1.1	NC
	Azobenzene	< 1.1	< 1.1	NC
	Benz(a)anthracene	< 1.1	< 1.1	NC
	Benzo(a)pyrene	< 1.1	< 1.1	NC
	Benzo(b)fluoranthene	< 1.1	< 1.1	NC
	Benzo(g,h,i)pervlene	< 2.6	< 2.6	NC
	Benzo(k)fluoranthene	<1.1	< 1.1	NC
	Benzoic acid	< 2.6	< 2.6	NC
		<1.1	< 1.1	NC
	Benzyl alcohol	<1.1	< 1.1	NC
	Bis(2-chloroethoxy)methane			
	Bis(2-chloroethyl)ether	< 1.1	< 1.1	NC
	Bis(2-chloroisopropyl)ether	< 1.1	< 1.1	NC
	Bis(2-ethylhexyl)phthalate	< 2.6	< 2.6	NC
	4-Bromophenyl phenyl ether	< 1.1	< 1.1	NC
	Butyl benzyl phthalate	< 1.1	< 1.1	NC
	Carbazole	< 1.1	< 1.1	NC
	4-Chloro-3-methylphenol	< 2.6	< 2.6	NC
· ·	4-Chloroaniline	< 2.6	< 2.6	NC
	2-Chloronaphthalene	<1.3	< 1.3	NC
	2-Chlorophenol	<1.1	< 1.1	NC
	4-Chlorophenyl phenyl ether	<1.1	<1.1	NC
		<1.1	< 1.1	NC
	Chrysene			
	Di-n-butyl phthalate	< 2.6	< 2.6	NC
	Di-n-octyl phthalate	< 1.1	< 1.1	NC
	Dibenz(a,h)anthracene	< 1.1	< 1.1	NC
	Dibenzofuran	< 1.1	< 1.1	NC
	1,2-Dichlorobenzene	< 1.1	< 1.1	NC
	1,3-Dichlorobenzene	< 1.1	< 1.1	NC
	1,4-Dichlorobenzene	< 1.1	< 1.1	NC
	3,3'-Dichlorobenzidine	< 1.3	< 1.3	NC
	Diethyl phthalate	<1.1	< 1.1	NC
	Dimethyl phthalate	< 1.1	< 1.1	NC
		< 2.1	< 2.1	NC
	2,4-Dichlorophenol			
	2,4-Dimethylphenol	< 1.6	< 1.6	NC
	4,6-Dinitro-2-methylphenol	< 2.6	< 2.6	NC
	2,4-Dinitrophenol	< 2.1	< 2.1	NC
	2,4-Dinitrotoluene	< 2.6	< 2.6	NC
	2,6-Dinitrotoluene	< 2.6	< 2.6	NC
	Fluoranthene	< 1.3	< 1.3	NC
	Fluorene	< 2.6	< 2.6	NC
	Hexachlorobenzene	< 1.1	< 1.1	NC
	Hexachlorobutadiene	< 1.1	< 1.1	NC
	Hexachlorocyclopentadiene	<1.1	< 1.1	NC
	Hexachloroethane	<1.1	< 1.1	NC
	Indeno(1,2,3-cd)pyrene	< 1.3	< 1.3	NC NC
	Isophorone	< 2.6	< 2.6	NC
	2-Methylnaphthalene	< 1.3	< 1.3	NC
	2-Methylphenol	< 2.6	< 2.6	NC
	3+4-Methylphenol	< 1.1	< 1.1	NC
	N-Nitrosodi-n-propylamine	< 1.1	< 1.1	NC
	N-Nitrosodiphenylamine	< 1.1	< 1.1	NC
	Naphthalene	< 1.1	< 1.1	NC
	2-Nitroaniline	< 1.1	< 1.1	NC
	3-Nitroaniline	< 1.1	< 1.1	NC
	4-Nitroaniline	< 1.3	< 1.3	NC
	Nitrobenzene	< 2.6	< 2.6	NC
	2-Nitrophenol	< 1.1	< 1.1	NC
	4-Nitrophenol	< 1.1	< 1.1	NC
	Pentachlorophenol	< 2.1	< 2.1	NC
	Phenanthrene	< 1.1	< 1.1	NC
	Phenol	< 1.1	< 1.1	NC
	Pyrene	< 1.1	< 1.1	NC
	Pyridine	< 2.6	< 2.6	NC
	1,2,4-Trichlorobenzene	< 1.1	< 1.1	NC
	2,4,5-Trichlorophenol	< 1.1	< 1.1	NC

	Parameter	SWMU 8-6 (0-0.5') Sample Result	SWMU 8-6 (0-0.5') Dup Field Duplicate	RPD (%)
Metals (mg/kg-dry):	Mercury	0.046	0.049	6.3
	Antimony	< 2.6	< 2.6	NC
	Arsenic	< 2.6	2.9	NC
	Barium	210	200	4.9
	Beryllium	0.43	0.44	2.3
	Cadmium	< 0.11	< 0.11	NC
	Chromium	85	87	2.3
	Cobalt	4.2	4.4	4.7
	Lead	6.1	6.4	4.8
	Nickel	8.5	11	29.4
	Selenium	< 26	< 26	NC
	Silver	< 0.26	< 0.26	NC
	Vanadium	18	21	15.4
	Zinc	89	92	3.3

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100 NC = Not calculated; RPD values were not calculated for non-detects

ug/L = micrograms per liter mg/L = milligrams per liter mg/kg = milligrams per kilogram * = Field Duplicate RPD Outlier

	Parameter	SWMU 8-9 (0-0.5) Sample Result	SWMU 8-9 (0-0.5') DUP Field Duplicate	RPD (%)
PH (mg/kg-dry):	Diesel Range Organics (DRO)	<11	<11	0.0
(111 (mg/ng (11y).	Motor Oil Range Organics (MRO)	< 55	< 55	0.0
	Gasoline Range Organics (GRO)	< 5.0	< 5.0	NC
OCs (ug/kg-dry)	Benzene	< 1.06	< 0.993	NC
	Toluene	1.61	1.09	NC
	Ethylbenzene	< 1.06	< 0.993	NC
	Xylenes, Total	< 1.06	< 0.993	NC
	Methyl tert-butyl ether (MTBE)	< 1.06	< 0.993	NC
	1,2,4-Trimethylbenzene	< 1.06	< 0.993	NC
	1,3,5-Trimethylbenzene	< 1.06	< 0.993	NC
	1,2-Dichloroethane (EDC)	< 1.06	< 0.993	NC
	1,2-Dibromoethane (EDB)	< 1.06	< 0.993	NC
	Naphthalene	< 1.06	< 0.993	NC
	Acetone	< 4.24 *	9.58	NC
	Bromobenzene	< 1.06	< 0.993	NC
	Bromodichloromethane	< 1.06	< 0.993	NC
	Bromoform	< 1.06	< 0.993	NC
	Bromomethane	< 1.06	< 0.993	NC
	2-Butanone	< 4.24	< 3.97	NC
	Carbon tetrachloride	< 1.06	< 0.993	NC
	Chlorobenzene	< 1.06	< 0.993	NC
	Chloroethane	< 1.06	< 0.993	NC
	Chloroform	< 1.06	< 0.993	NC
	Chloromethane	< 1.06	< 0.993	NC
	2-Chlorotoluene	< 4.24	< 0.993	NC
	Carbon disulfide	< 1.06	< 3.97	NC
	4-Chlorotoluene	< 1.06	< 0.993	NC
	cis-1,2-DCE	< 1.06	< 0.993	NC
	cis-1,3-Dichloropropene	< 1.06	< 0.993	NC
	1,2-Dibromo-3-chloropropane	< 1.06	< 0.993	NC
	Dibromochloromethane	< 1.06	< 0.993	NC
	Dibromomethane	< 1.06	< 0.993	NC
	1,2-Dichlorobenzene	< 1.06	< 0.993	NC
	1,3-Dichlorobenzene	< 1.06	< 0.993	NC
	1,4-Dichlorobenzene	< 1.06	< 0.993	NC NC
	Dichlorodifluoromethane	< 1.06	< 0.993	NC
	1,1-Dichloroethane	< 1.06	< 0.993	NC NC
	1,1-Dichloroethene 1,2-Dichloropropane	< 1.06	< 0.993	NC
	1,2-Dichloropropane	< 1.06	< 0.993	NC
	2,2-Dichloropropane	< 1.06	< 0.993	NC
	1,1-Dichloropropene	< 1.06	< 0.993	NC
	Hexachlorobutadiene	< 1.06	< 0.993	NC NC
	Isopropylbenzene	< 1.06	< 0.993	NC NC
	4-Isopropyltoluene	< 1.06	< 0.993	NC NC
	Methylene chloride	< 2.12	< 1.99	NC
	n-Butylbenzene	< 1.06	< 0.993	NC
	2-Hexanone	< 4.24	< 3.97	NC
	n-Propylbenzene	< 1.06	< 0.993	NC
	sec-Butylbenzene	< 1.06	< 0.993	NC
	Styrene	< 1.06	< 0.993	NC
	tert-Butylbenzene	< 4.24	< 0.993	NC
	4-Methyl-2-pentanone	< 1.06	< 3.97	NC
	1,1,1,2-Tetrachloroethane	< 1.06	< 0.993	NC
	1,1,2,2-Tetrachloroethane	< 1.06	< 0.993	NC
	Tetrachloroethene (PCE)	< 1.06	< 0.993	NC
	trans-1,2-DCE	< 1.06	< 0.993	NC
	trans-1,3-Dichloropropene	< 1.06	< 0.993	NC
	1,2,3-Trichlorobenzene	< 1.06	< 0.993	NC
	1,2,4-Trichlorobenzene	< 1.06	< 0.993	NC
	1,1,1-Trichloroethane	< 1.06	< 0.993	NC
	1,1,2-Trichloroethane	< 1.06	< 0.993	NC
	Trichloroethene (TCE)	< 1.06	< 0.993	NC
	Trichlorofluoromethane	2.05	4.19	68.6 *
	1,2,3-Trichloropropane	< 1.06	< 0.993	NC
	Vinyl chloride	< 1.06	< 0.993	NC

	D	SWMU 8-9 (0-0.5)	SWMU 8-9 (0-0.5') DUP Field Duplicate	RPD
VOCs (mg/kg-dry):	Parameter Acenaphthene	Sample Result < 0.22	Field Duplicate < 0.22	(%) NC
woes (mg/kg-ury).	Acenaphthylene	< 0.22	< 0.22	NC
	Aniline	< 0.22	< 0.22	NC
	Anthracene	< 0.22	< 0.22	NC
	Azobenzene	< 0.22	< 0.22	NC
	Benz(a)anthracene	< 0.22	< 0.22	NC
	Benzo(a)pyrene	< 0.22	< 0.22	NC
	Benzo(b)fluoranthene	< 0.22	< 0.22	NC
	Benzo(g,h,i)perylene	< 0.55	< 0.55	NC
	Benzo(k)fluoranthene	< 0.22	< 0.22	NC
	Benzoic acid	< 0.55	< 0.55	NC
	Benzyl alcohol	< 0.22	< 0.22	NC
	Bis(2-chloroethoxy)methane	< 0.22	< 0.22	NC
	Bis(2-chloroethyl)ether	< 0.22	< 0.22	NC
	Bis(2-chloroisopropyl)ether	< 0.22	< 0.22	NC
	Bis(2-ethylhexyl)phthalate	< 0.55	< 0.55	NC
	4-Bromophenyl phenyl ether	< 0.22	< 0.22	NC
	Butyl benzyl phthalate	< 0.22	< 0.22	NC
	Carbazole	< 0.22	< 0.22	NC
	4-Chloro-3-methylphenol	< 0.55	< 0.55	NC
	4-Chloroaniline	< 0.55	< 0.55	NC
	2-Chloronaphthalene	< 0.27	< 0.27	NC
	2-Chlorophenol	< 0.22	< 0.22	NC
	4-Chlorophenyl phenyl ether	< 0.22	< 0.22	NC
	Chrysene	< 0.22	< 0.22	NC
	Di-n-butyl phthalate	< 0.55	< 0.55	NC
	Di-n-octyl phthalate	< 0.22	< 0.22	NC
	Dibenz(a,h)anthracene	< 0.22	< 0.22	NC NC
	Dibenzofuran	< 0.22	< 0.22	
	1,2-Dichlorobenzene	< 0.22	< 0.22 < 0.22	NC NC
	1,3-Dichlorobenzene	< 0.22	< 0.22	NC
	1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	< 0.22	< 0.22	NC
	Diethyl phthalate	< 0.22	< 0.22	NC
	Dimethyl phthalate	< 0.22	< 0.22	NC NC
	2,4-Dichlorophenol	< 0.44	< 0.44	NC
	2,4-Dimethylphenol	< 0.33	< 0.33	NC
	4,6-Dinitro-2-methylphenol	< 0.55	< 0.55	NC
	2,4-Dinitrophenol	< 0.44	< 0.44	NC
	2,4-Dinitrotoluene	< 0.55	< 0.55	NC
	2,6-Dinitrotoluene	< 0.55	< 0.55	NC
	Fluoranthene	< 0.27	< 0.27	NC
	Fluorene	< 0.55	< 0.55	NC
	Hexachlorobenzene	< 0.22	< 0.22	NC
	Hexachlorobutadiene	< 0.22	< 0.22	NC
	Hexachlorocyclopentadiene	< 0.22	< 0.22	NC
	Hexachloroethane	< 0.22	< 0.22	NC
	Indeno(1,2,3-cd)pyrene	< 0.27	< 0.27	NC
	Isophorone	< 0.55	< 0.55	NC
	2-Methylnaphthalene	< 0.27	< 0.27	NC
	2-Methylphenol	< 0.55	< 0.55	NC
	3+4-Methylphenol	< 0.22	< 0.22	NC
	N-Nitrosodi-n-propylamine	< 0.22	< 0.22	NC
	N-Nitrosodiphenylamine	< 0.22	< 0.22	NC
	Naphthalene	< 0.22	< 0.22	NC
	2-Nitroaniline	< 0.22	< 0.22	NC
	3-Nitroaniline	< 0.22	< 0.22	NC
	4-Nitroaniline	< 0.27	< 0.27	NC
	Nitrobenzene	< 0.55	< 0.55	NC
	2-Nitrophenol	< 0.22	< 0.22	NC
	4-Nitrophenol	< 0.22	< 0.22	NC
	Pentachlorophenol	< 0.44	< 0.44	NC
	Phenanthrene	< 0.22	< 0.22	NC
	Phenol	< 0.22	< 0.22	NC
	Pyrene	< 0.22	< 0.22	NC
	Pyridine	< 0.55	< 0.55	NC
	1,2,4-Trichlorobenzene	< 0.22	< 0.22	NC
	2,4,5-Trichlorophenol	< 0.22	< 0.22	NC
	2,4,6-Trichlorophenol	< 0.22	< 0.22	NC

	Parameter	SWMU 8-9 (0-0.5)	SWMU 8-9 (0-0.5') DUP Field Duplicate	RPD (%)
		Sample Result		
Metals (mg/kg-dry):	Mercury	< 0.036	< 0.036	NC
	Antimony	< 2.7	< 2.7	NC
	Arsenic	< 2.7	< 2.7	NC
	Barium	300	300	0.0
	Beryllium	0.46	0.47	2.2
	Cadmium	< 0.11	< 0.11	NC
	Chromium	17	13	26.7
	Cobalt	4.7	4.8	2.1
	Lead	4.7	4.7	0.0
	Nickel	7.0	7.0	0.0
	Selenium	< 27	< 27	NC
	Silver	< 0.27	< 0.27	NC
	Vanadium	20	20	0.0
	Zinc	34	33	3.0

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/L = micrograms per liter mg/L = milligrams per liter mg/kg = milligrams per kilogram * = Field Duplicate RPD Outlier

	Duranta	SWMU 2-3 (0-0.5')	SWMU 2-3 (0-0.5') DUP Field Duplicate	RPD (%)
PH (mg/kg-dry):	Diesel Range Organics (DRO)	Sample Result < 11	<11	NC
r ri (ilig/kg-ury).	Motor Oil Range Organics (MRO)	< 54	< 54	NC
	Gasoline Range Organics (GRO)	< 5.4	< 5.4	NC
OCs (ug/kg-dry)	Benzene	< 1.02	< 0.974	NC
	Toluene	1.29	< 0.974	NC
	Ethylbenzene	< 1.02	< 0.974	NC
	Xylenes, Total	< 1.02	< 0.974	NC
	Methyl tert-butyl ether (MTBE)	< 1.02	< 0.974	NC
	1,2,4-Trimethylbenzene	< 1.02	< 0.974	NC
	1,3,5-Trimethylbenzene	< 1.02	< 0.974	NC
	1,2-Dichloroethane (EDC)	< 1.02	< 0.974	NC
	1,2-Dibromoethane (EDB)	< 1.02	< 0.974	NC
	Naphthalene	< 1.02	< 0.974 < 3.90	NC NC
	Acetone	< 1.02	< 0.974	NC
	Bromobenzene Bromodichloromethane	< 1.02	< 0.974	NC
	Bromoform	< 1.02	< 0.974	NC
	Bromomethane	< 1.02	< 0.974	NC
	2-Butanone	< 4.07	< 3.90	NC
	Carbon tetrachloride	< 1.02	< 0.974	NC
	Chlorobenzene	< 1.02	< 0.974	NC
	Chloroethane	< 1.02	< 0.974	NC
	Chloroform	< 1.02	< 0.974	NC
	Chloromethane	< 1.02	< 0.974	NC
	2-Chlorotoluene	< 1.02	< 0.974	NC
	Carbon disulfide	< 4.07	< 3.90	NC
	4-Chlorotoluene	< 1.02	< 0.974	NC
	cis-1,2-DCE	< 1.02	< 0.974	NC
	cis-1,3-Dichloropropene	< 1.02	< 0.974	NC
	1,2-Dibromo-3-chloropropane	< 1.02	< 0.974	NC
	Dibromochloromethane	< 1.02	< 0.974	NC
	Dibromomethane	< 1.02	< 0.974	NC
	1,2-Dichlorobenzene	< 1.02	< 0.974 < 0.974	NC NC
	1,3-Dichlorobenzene	<1.02	< 0.974	NC
	Dichlorodifluoromethane	< 1.02	< 0.974	NC
	1,1-Dichloroethane	< 1.02	< 0.974	NC
	1,1-Dichloroethene	< 1.02	< 0.974	NC
	1,2-Dichloropropane	< 1.02	< 0.974	NC
	1,3-Dichloropropane	< 1.02	< 0.974	NC
	2,2-Dichloropropane	< 1.02	< 0.974	NC
	1,1-Dichloropropene	< 1.02	< 0.974	NC
	Hexachlorobutadiene	< 1.02	< 0.974	NC
	Isopropylbenzene	< 1.02	< 0.974	NC
	4-Isopropyltoluene	< 1.02	< 0.974	NC
	Methylene chloride	< 2.03	< 1.95	NC
	n-Butylbenzene	< 1.02	< 0.974	NC
	2-Hexanone	< 4.07	< 0.974	NC
	n-Propylbenzene	< 1.02	< 3.90 < 0.974	NC NC
	sec-Butylbenzene Styrene	< 1.02	< 0.974	NC NC
	tert-Butylbenzene	< 1.02	< 0.974	NC NC
	4-Methyl-2-pentanone	< 1.02	< 3.90	NC
	1,1,1,2-Tetrachloroethane	< 1.02	< 0.974	NC
	1,1,2,2-Tetrachloroethane	< 1.02	< 0.974	NC
	Tetrachloroethene (PCE)	< 1.02	< 0.974	NC
	trans-1,2-DCE	< 1.02	< 0.974	NC
	trans-1,3-Dichloropropene	< 1.02	< 0.974	NC
	1,2,3-Trichlorobenzene	< 1.02	< 0.974	NC
	1,2,4-Trichlorobenzene	< 1.02	< 0.974	NC
	1,1,1-Trichloroethane	< 1.02	< 0.974	NC
	1,1,2-Trichloroethane	< 1.02	< 0.974	NC
	Trichloroethene (TCE)	< 1.02	< 0.974	NC
	Trichlorofluoromethane	< 1.02	< 0.974	NC
	1,2,3-Trichloropropane	< 1.02	< 0.974	NC

		SWMU 2-3 (0-0.5')	SWMU 2-3 (0-0.5') DUP	RPD
	Parameter Acenaphthene	Sample Result < 0.22	Field Duplicate < 0.22	<u>(%)</u> NC
/OCs (mg/kg-dry):	Acenaphthylene	< 0.22	< 0.22	NC
	Aniline	< 0.22	< 0.22	NC
	Anthracene	< 0.22	< 0.22	NC
	Azobenzene	< 0.22	< 0.22	NC
	Benz(a)anthracene	< 0.22	< 0.22	NC
	Benzo(a)pyrene	< 0.22	< 0.22	NC
	Benzo(b)fluoranthene	< 0.22	< 0.22	NC
	Benzo(g,h,i)perylene	< 0.54	< 0.54	NC
	Benzo(k)fluoranthene	< 0.22	< 0.22	NC
	Benzoic acid	< 0.54	< 0.54	NC
	Benzyl alcohol	< 0.22	< 0.22	NC
	Bis(2-chloroethoxy)methane	< 0.22	< 0.22	NC
	Bis(2-chloroethyl)ether	< 0.22	< 0.22	NC
	Bis(2-chloroisopropyl)ether	< 0.22	< 0.22	NC
	Bis(2-ethylhexyl)phthalate	< 0.54	< 0.54	NC
	4-Bromophenyl phenyl ether	< 0.22	< 0.22	NC
	Butyl benzyl phthalate	< 0.22	< 0.22	NC
	Carbazole 4-Chloro-3-methylphenol	< 0.22	< 0.22	NC NC
	4-Chloro-3-methylphenol 4-Chloroaniline	<0.54	< 0.54	NC NC
	2-Chloronaphthalene	< 0.54	< 0.54	NC
	2-Chlorophenol	< 0.27	< 0.27	NC
	4-Chlorophenyl phenyl ether	< 0.22	< 0.22	NC
	Chrysene	< 0.22	< 0.22	NC
	Di-n-butyl phthalate	< 0.54	< 0.54	NC
	Di-n-octyl phthalate	< 0.22	< 0.22	NC
	Dibenz(a,h)anthracene	< 0.22	< 0.22	NC
	Dibenzofuran	< 0.22	< 0.22	NC
	1,2-Dichlorobenzene	< 0.22	< 0.22	NC
	1,3-Dichlorobenzene	< 0.22	< 0.22	NC
	1,4-Dichlorobenzene	< 0.22	< 0.22	NC
	3,3'-Dichlorobenzidine	< 0.27	< 0.27	NC
	Diethyl phthalate	< 0.22	< 0.22	NC
	Dimethyl phthalate	< 0.22	< 0.22	NC
	2,4-Dichlorophenol	< 0.43	< 0.43	NC
	2,4-Dimethylphenol	< 0.32	< 0.32	NC
	4,6-Dinitro-2-methylphenol	< 0.54	< 0.54	NC
	2,4-Dinitrophenol	< 0.43	< 0.43	NC
	2,4-Dinitrotoluene	< 0.54	< 0.54	NC
	2,6-Dinitrotoluene	< 0.54	< 0.54	NC NC
	Fluoranthene Fluorene	< 0.27	< 0.27	NC
	Hexachlorobenzene	< 0.34	< 0.34	NC
	Hexachlorobutadiene	< 0.22	< 0.22	NC
	Hexachlorocyclopentadiene	< 0.22	< 0.22	NC
	Hexachloroethane	< 0.22	< 0.22	NC
	Indeno(1,2,3-cd)pyrene	< 0.27	< 0.27	NC
	Isophorone	< 0.54	< 0.54	NC
	2-Methylnaphthalene	< 0.27	< 0.27	NC
	2-Methylphenol	< 0.54	< 0.54	NČ
	3+4-Methylphenol	< 0.22	< 0.22	NC
	N-Nitrosodi-n-propylamine	< 0.22	< 0.22	NC
	N-Nitrosodiphenylamine	< 0.22	< 0.22	NC
	Naphthalene	< 0.22	< 0.22	NC
	2-Nitroaniline	< 0.22	< 0.22	NC
	3-Nitroaniline	< 0.22	< 0.22	NC
	4-Nitroaniline	< 0.27	< 0.27	NC
	Nitrobenzene	< 0.54	< 0.54	NC
	2-Nitrophenol	< 0.22 < 0.22	< 0.22	NC NC
	4-Nitrophenol		< 0.22	NC
	Pentachlorophenol Phononthrono	< 0.43	< 0.43	NC
	Phenanthrene Phenol	< 0.22	< 0.22	NC NC
	Prene	< 0.22	< 0.22	NC
	Pyridine	< 0.54	< 0.22	NC NC
	1,2,4-Trichlorobenzene	< 0.22	< 0.22	NC
	2,4,5-Trichlorophenol	< 0.22	< 0.22	NC
	2,4,6-Trichlorophenol	< 0.22	< 0.22	NC

	Parameter	SWMU 2-3 (0-0.5') Sample Result	SWMU 2-3 (0-0.5') DUP Field Duplicate	RPD
				(%)
Metals (mg/kg-dry):	Mercury	< 0.036	< 0.036	NC
	Antimony	< 2.7	< 2.7	NC
	Arsenic	< 2.7	< 2.7	NC
	Barium	89	140	44.5 *
	Beryllium	0.34	0.34	0.0
	Cadmium	< 0.11	< 0.11	NC
	Chromium	4.5	4.7	4.3
	Cobalt	3.2	3.3	3.1
	Lead	4.2	4.3	2.4
	Nickel	7.9	7.1	10.7
	Selenium	< 2.7	< 2.7	NC
	Silver	< 0.27	< 0.27	NC
	Vanadium	12	12	0.0
	Zinc	23	23	0.0

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/L = micrograms per liter mg/L = milligrams per liter mg/kg = milligrams per kilogram * = Field Duplicate RPD Outlier

_	SWMU 18-3 (7.5-9)	SWMU 18-3 (7.5-9) DUP	RPD
Parameter			<u>(%)</u>
			NC NC
			NC NC
			NC
			NC
		< 1.07	NC
	< 1.07	< 1.07	NC
Methyl tert-butyl ether (MTBE)	< 1.07	< 1.07	NC
1,2,4-Trimethylbenzene	< 1.07	< 1.07	NC
1,3,5-Trimethylbenzene	< 1.07	< 1.07	NC
			NC
· · · · · · · · · · · · · · · · · · ·			NC
			NC
			NC
			NC NC
			NC
			NC_
			NC NC
			NC NC
			NC NC
			NC NC
Chloroform	< 1.07	< 1.07	NC
Chloromethane	< 1.07	< 1.07	NC
2-Chlorotoluene	< 1.07	< 4.28	NC
Carbon disulfide	< 4.26	< 1.07	NC
4-Chlorotoluene	< 1.07	< 1.07	NC
cis-1,2-DCE	< 1.07	< 1.07	NC_
cis-1,3-Dichloropropene	< 1.07	< 1.07	NC
1,2-Dibromo-3-chloropropane			NC_
			NC
			NC NC
			NC NC
			NC
			NC
			NC
	< 1.07		NC
1,1-Dichloropropene	< 1.07	< 1.07	NC
Hexachlorobutadiene	< 1.07	< 1.07	NC
Isopropylbenzene	< 1.07	< 1.07	NC
4-Isopropyltoluene	< 1.07	< 1.07	NC
Methylene chloride	< 2.13	< 2.14	NC
			NC
			NC
			NC NC
			NC NC
			NC
			NC
1,1,1,2-Tetrachloroethane	< 1.07	< 1.07	NC
1,1,2,2-Tetrachloroethane	< 1.07	< 1.07	NC
Tetrachloroethene (PCE)	< 1.07	< 1.07	NC
trans-1,2-DCE	< 1.07	< 1.07	NC
trans-1,3-Dichloropropene	< 1.07	< 1.07	NC
1,2,3-Trichlorobenzene	< 1.07	< 1.07	NC
1,2,4-Trichlorobenzene	< 1.07	< 1.07	NC
1,1,1-Trichloroethane	< 1.07	< 1.07	NC
1,1,2-Trichloroethane	< 1.07	< 1.07	NC
Trichloroethene (TCE)	< 1.07	< 1.07	NC
	<1.07 <1.07 <1.07	< 1.07 < 1.07 < 1.07 < 1.07	NC NC NC
	Diesel Range Organics (DRO) Motor Oil Range Organics (MRO) Gasoline Range Organics (MRO) Benzene Toluene Ethylbenzene Xylenes, Total Methyl tert-butyl ether (MTBE) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2-Dichloroethane (EDC) 1,2-Dibromoethane (EDB) Naphthalene Acetone Bromobenzene Bromodichloromethane Bromodichloromethane 2-Butanone Carbon tetrachloride Chlorobenzene Chlorotoluene Carbon disulfide 4-Chlorotoluene Carbon disulfide 4-Chlorotoluene cis-1,2-DCE cis-1,3-Dichloropropene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 2,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 2,2-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,3-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 4-Isopropylbenzene Styrene tert-Butylbenzene Styrene tert-Butylbenzene 1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropenzene 1,2,3-Trichloropenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene	ParameterSample ResultDiesel Range Organics (DRO)<11	Parameter         Sample Result         Field Duplicate           Diesel Range Organics (DRO)         <11

	Parameter	SWMU 18-3 (7.5-9) Sample Result	SWMU 18-3 (7.5-9) DUP Field Duplicate	RPD (%)
VOCs (mg/kg-dry);	Acenaphthene	< 0.22	< 0.23	NC
vocs (ing/kg-ury).	Acenaphthylene	< 0.22	< 0.23	NC
	Aniline	< 0.22	< 0.23	NC
	Anthracene	< 0.22	< 0.23	NC
	Azobenzene	< 0.22	< 0.23	NC
	Benz(a)anthracene	< 0.22	< 0.23	NC
	Benzo(a)pyrene	< 0.22	< 0.23	NC
	Benzo(b)fluoranthene	< 0.22	< 0.23	NC
	Benzo(g,h,i)perylene	< 0.56	< 0.56	NC
	Benzo(k)fluoranthene	< 0.22	< 0.23	NC
	Benzoic acid	< 0.56	< 0.56	NC
	Benzyl alcohol	< 0.22	< 0.23	NC
	Bis(2-chloroethoxy)methane	< 0.22	< 0.23	NC
	Bis(2-chloroethyl)ether	< 0.22	< 0.23	NC
	Bis(2-chloroisopropyl)ether	< 0.22	< 0.23	NC
	Bis(2-ethylhexyl)phthalate	< 0.56	< 0.56	NC
	4-Bromophenyl phenyl ether	< 0.22	< 0.23	NC
	Butyl benzyl phthalate	< 0.22	< 0.23	NC
	Carbazole	< 0.22	< 0.23	NC
	4-Chloro-3-methylphenol	< 0.56	< 0.56	NC
	4-Chloroaniline	< 0.56	< 0.56	NC
	2-Chloronaphthalene	< 0.28	< 0.28	NC
	2-Chlorophenol	< 0.22	< 0.23	NC
	4-Chlorophenyl phenyl ether	< 0.22	< 0.23	NC
	Chrysene	< 0.22	< 0.23	NC
	Di-n-butyl phthalate	< 0.56	< 0.56	NC
	Di-n-octyl phthalate	< 0.22	< 0.23	NC
	Dibenz(a,h)anthracene	< 0.22	< 0.23	NC
	Dibenzofuran	< 0.22	< 0.23	NC
	1,2-Dichlorobenzene	< 0.22	< 0.23	NC
	1,3-Dichlorobenzene	< 0.22	< 0.23	NC
	1,4-Dichlorobenzene	< 0.22	< 0.23	NC
	3,3'-Dichlorobenzidine	< 0.28	< 0.28	NC
	Diethyl phthalate	< 0.22	< 0.23	NC
,	Dimethyl phthalate	< 0.22	< 0.23	NC
	2,4-Dichlorophenol	< 0.45	< 0.45	NC
	2,4-Dimethylphenol	< 0.34	< 0.34	NC
	4,6-Dinitro-2-methylphenol	< 0.56	< 0.56	NC
	2,4-Dinitrophenol	< 0.45	< 0.45	NC
	2,4-Dinitrotoluene	< 0.56	< 0.56	NC
	2,6-Dinitrotoluene	< 0.56	< 0.56	NC NC
	Fluoranthene	< 0.28	< 0.28	
	Fluorene Hexachlorobenzene	< 0.56	<0.56 <0.23	NC NC
	Hexachlorobutadiene	< 0.22	< 0.23	NC
		< 0.22	< 0.23	NC
	Hexachlorocyclopentadiene Hexachloroethane	< 0.22	< 0.23	NC
	Indeno(1,2,3-cd)pyrene	< 0.22	< 0.23	NC
	Isophorone	< 0.28	< 0.28	NC
	2-Methylnaphthalene	< 0.28	< 0.28	NC
	2-Methylphenol	< 0.56	< 0.56	NC
	3+4-Methylphenol	< 0.22	< 0.23	NC
	N-Nitrosodi-n-propylamine	< 0.22	< 0.23	NC
	N-Nitrosodiphenylamine	< 0.22	< 0.23	NC
	Naphthalene	< 0.22	< 0.23	NC
	2-Nitroaniline	< 0.22	< 0.23	NC
	3-Nitroaniline	< 0.22	< 0.23	NC
	4-Nitroaniline	< 0.28	< 0.28	NC ·
	Nitrobenzene	< 0.56	< 0.56	NC
	2-Nitrophenol	< 0.22	< 0.23	NC
	4-Nitrophenol	< 0.22	< 0.23	NC
	Pentachlorophenol	< 0.45	< 0.45	NC
	Phenanthrene	< 0.22	< 0.23	NC
	Phenol	< 0.22	< 0.23	NC
	Pyrene	< 0.22	< 0.23	NC
	Pyridine	< 0.56	< 0.56	NC
	1,2,4-Trichlorobenzene	< 0.22	< 0.23	NC
	2,4,5-Trichlorophenol	< 0.22	< 0.23	NC
	2,4,6-Trichlorophenol	< 0.22	< 0.23	NC

		SWMU 18-3 (7.5-9)	SWMU 18-3 (7.5-9) DUP	RPD
	Parameter	Sample Result	Field Duplicate	(%)
Metals (mg/kg-dry):	Mercury	< 0.037	< 0.037	NC
	Antimony	< 14	< 14	NC
	Arsenic	< 14	< 14	NC
	Barium	210	170	21.1
	Beryllium	< 0.84	< 0.84	NC
	Cadmium	< 0.56	< 0.56	NC
	Chromium	6.6	4.7	33.6
	Cobalt	4.6	3.4	30.0
	Lead	7	5	33.3
	Nickel	6.8	5.1	28.6
	Selenium	< 14	< 14	NC
	Silver	< 1.4	< 1.4	NC
	Vanadium	18	< 14	25.0
	Zinc	34	26	26.7

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100 NC = Not calculated; RPD values were not calculated for non-detects

ug/L = micrograms per liter mg/L = milligrams per liter mg/kg = milligrams per kilogram * = Field Duplicate RPD Outlier

		SWMU 2-8 (0-0.5)	SWMU 2-8 (0-0.5) DUP	RPD
	Parameter	Sample Result	Field Duplicate	<u>(%)</u>
PH (mg/kg-dry):	Diesel Range Organics (DRO)	<11	18	NC NC
	Motor Oil Range Organics (MRO)	< 55	<u> </u>	NC NC
	Gasoline Range Organics (GRO)	< 0.970		NC
OCs (ug/kg-dry)	Benzene	< 0.970	< 1.02	NC
	Toluene Ethylbenzene	< 0.970	< 1.02	NC NC
		< 0.970	< 1.02	NC
	Xylenes, Total Methyl tert-butyl ether (MTBE)	< 0.970	< 1.02	NC
	1.2.4-Trimethylbenzene	< 0.970	< 1.02	NC NC
	1,2,4-1 rimethylbenzene	< 0.970	< 1.02	NC
	1,2-Dichloroethane (EDC)	< 0.970	< 1.02	NC
	1,2-Dibromoethane (EDB)	< 0.970	< 1.02	NC NC
	Naphthalene	< 0.970	< 1.02	NC
	Acetone	< 3.88	4.67	NC
	Bromobenzene	< 0.970	< 1.02	NC
	Bromodichloromethane	< 0.970	< 1.02	NC
	Bromoform	< 0.970	< 1.02	NC
	Bromomethane	< 0.970	< 1.02	NC
	2-Butanone	< 3.88	< 4.09	NC
	Carbon tetrachloride	< 0.970	< 1.02	NC
	Chlorobenzene	< 0.970	< 1.02	NC
	Chloroethane	< 0.970	< 1.02	NC NC
	Chloroform	< 0.970	< 1.02	NC
	Chloromethane	< 0.970	< 1.02	NC
	2-Chlorotoluene	< 3.88	< 4.09	NC
	Carbon disulfide	< 0.970	< 1.02	NC
	4-Chlorotoluene	< 0.970	< 1.02	NC
	cis-1,2-DCE	< 0.970	< 1.02	NC
	cis-1,3-Dichloropropene	< 0.970	< 1.02	NC
	1,2-Dibromo-3-chloropropane	< 0.970	< 1.02	NC
	Dibromochloromethane	< 0.970	< 1.02	NC
	Dibromomethane	< 0.970	< 1.02	NC
	1,2-Dichlorobenzene	< 0.970	< 1.02	NC
	1,3-Dichlorobenzene	< 0.970	< 1.02	NC
	1,4-Dichlorobenzene	< 0.970	< 1.02	NC
	Dichlorodifluoromethane	< 0.970	< 1.02	NC
	1,1-Dichloroethane	< 0.970	< 1.02	NC
	1,1-Dichloroethene	< 0.970	< 1.02	NC
	1,2-Dichloropropane	< 0.970	< 1.02	NC
	1,3-Dichloropropane	< 0.970	< 1.02	NC
	2,2-Dichloropropane	< 0.970	< 1.02	NC
	1,1-Dichloropropene	< 0.970	< 1.02	NC
	Hexachlorobutadiene	< 0.970	< 1.02	NC
	Isopropylbenzene	< 0.970	< 1.02	NC
	4-Isopropyltoluene	< 0.970	< 1.02	NC
	Methylene chloride	< 1.94	< 2.05	NC
	n-Butylbenzene	< 0.970	< 1.02	NC
	2-Hexanone	< 0.970	< 1.02	NC
	n-Propylbenzene	< 3.88	< 4.09	NC
	sec-Butylbenzene	< 0.970	< 1.02	NC
	Styrene	< 0.970	< 1.02	NC
	tert-Butylbenzene	< 3.88	< 1.02	NC
	4-Methyl-2-pentanone	< 0.970	< 4.09	NC
	1,1,1,2-Tetrachloroethane	< 0.970	< 1.02	NC
	1,1,2,2-Tetrachloroethane	< 0.970	< 1.02	NC
	Tetrachloroethene (PCE)	< 0.970	< 1.02	NC
	trans-1,2-DCE	< 0.970	< 1.02	NC
	trans-1,3-Dichloropropene	< 0.970	< 1.02	NC
	1,2,3-Trichlorobenzene	< 0.970	< 1.02	NC
	1,2,4-Trichlorobenzene	< 0.970	< 1.02	NC
		- 0 070	< 1.02	NC
	1,1,1-Trichloroethane	< 0.970		
	1,1,2-Trichloroethane	< 0.970	< 1.02	NC
	1,1,2-Trichloroethane Trichloroethene (TCE)	< 0.970 < 0.970	< 1.02 < 1.02	NC
	1,1,2-Trichloroethane	< 0.970	< 1.02	

	P	SWMU 2-8 (0-0.5)	SWMU 2-8 (0-0.5) DUP	RPD
VOCs (mailes day)	Parameter	Sample Result < 0.22	Field Duplicate < 0.23	<u>(%)</u> NC
VOCs (mg/kg-dry):	Acenaphthene	< 0.22	< 0.23	NC
	Aniline	< 0.22	< 0.23	NC NC
	Anthracene	< 0.22	< 0.23	NC
	Azobenzene	< 0.22	< 0.23	NC
	Benz(a)anthracene	< 0.22	< 0.23	NC
	Benzo(a)pyrene	< 0.22	< 0.23	NC
	Benzo(b)fluoranthene	< 0.22	< 0.23	NC
	Benzo(g,h,i)perylene	< 0.55	< 0.57	NC
	Benzo(k)fluoranthene	< 0.22	< 0.23	NC
	Benzoic acid	< 0.55	< 0.57	NC
	Benzyl alcohol	< 0.22	< 0.23	NC
	Bis(2-chloroethoxy)methane	< 0.22	< 0.23	NC
	Bis(2-chloroethyl)ether	< 0.22	< 0.23	NC
	Bis(2-chloroisopropyl)ether	< 0.22	< 0.23	NC
	Bis(2-ethylhexyl)phthalate	< 0.55	< 0.57	NC
	4-Bromophenyl phenyl ether	< 0.22	< 0.23	NC
	Butyl benzyl phthalate	< 0.22	< 0.23	<u>NC</u>
	Carbazole	< 0.22	< 0.23	NC NC
	4-Chloro-3-methylphenol	< 0.55	< 0.57	NC NC
	4-Chloroaniline 2-Chloronaphthalene	< 0.55	< 0.28	NC NC
	2-Chlorophenol	< 0.28	< 0.28	NC NC
	4-Chlorophenyl phenyl ether	< 0.22	< 0.23	NC NC
	Chrysene	< 0.22	< 0.23	NC
	Di-n-butyl phthalate	< 0.55	< 0.57	NC
	Di-n-octyl phthalate	< 0.22	< 0.23	NC
	Dibenz(a,h)anthracene	< 0.22	< 0.23	NC
	Dibenzofuran	< 0.22	< 0.23	NC
	1,2-Dichlorobenzene	< 0.22	< 0.23	NC
	1,3-Dichlorobenzene	< 0.22	< 0.23	NC
	1,4-Dichlorobenzene	< 0.22	< 0.23	NC
	3,3'-Dichlorobenzidine	< 0.28	< 0.28	NC
	Diethyl phthalate	< 0.22	< 0.23	NC
	Dimethyl phthalate	. < 0.22	< 0.23	NC
	2,4-Dichlorophenol	< 0.44	< 0.45	NC
	2,4-Dimethylphenol	< 0.33	< 0.34	NC
	4,6-Dinitro-2-methylphenol	< 0.55	< 0.57	NC
	2,4-Dinitrophenol	<0.44 < 0.55	< 0.45	NC NC
	2,4-Dinitrotoluene	< 0.55	< 0.57	NC NC
	Fluoranthene	< 0.28	< 0.28	NC NC
	Fluorene	< 0.55	< 0.57	NC
	Hexachlorobenzene	< 0.22	< 0.23	NC
	Hexachlorobutadiene	< 0.22	< 0.23	NC
	Hexachlorocyclopentadiene	< 0.22	< 0.23	NC
	Hexachloroethane	< 0.22	< 0.23	NC
•	Indeno(1,2,3-cd)pyrene	< 0.28	< 0.28	NC
	Isophorone	< 0.55	< 0.57	NC
	2-Methylnaphthalene	< 0.28	< 0.28	NC
	2-Methylphenol	< 0.55	< 0.57	NC
	3+4-Methylphenol	< 0.22	< 0.23	NC
	N-Nitrosodi-n-propylamine	< 0.22	< 0.23	NC
	N-Nitrosodiphenylamine	< 0.22	< 0.23	NC NC
	Naphthalene 2-Nitroaniline	< 0.22	< 0.23	NC NC
	3-Nitroaniline	< 0.22	< 0.23	NC NC
	4-Nitroaniline	< 0.22	< 0.28	NC
	Nitrobenzene	< 0.28	< 0.28	NC
	2-Nitrophenol	< 0.22	< 0.23	NC
	4-Nitrophenol	< 0.22	< 0.23	NC
	Pentachlorophenol	< 0.44	< 0.45	NC
,	Phenanthrene	< 0.22	< 0.23	NC
	Phenol	< 0.22	< 0.23	NC
	Pyrene	< 0.22	< 0.23	NC
	Pyridine	< 0.55	< 0.57	NC
	1,2,4-Trichlorobenzene	< 0.22	< 0.23	NC
	2,4,5-Trichlorophenol	< 0.22	< 0.23	NC
	2,4,6-Trichlorophenol	< 0.22	< 0.23	NC

		SWMU 2-8 (0-0.5)	SWMU 2-8 (0-0.5) DUP	RPD
	Parameter	Sample Result	Field Duplicate	(%)
Metals (mg/kg-dry):	Mercury	0.61	0.9	38.4**
	Antimony	< 2.8	< 2.8	NC
	Arsenic	< 2.8	< 2.8	NC
	Barium	240	180	28.6
	Beryllium	0.40	0.40	0.0
	Cadmium	0.44	0.63	35.5
	Chromium	16	9.4	52.0
	Cobalt	4	4.4	9.5
	Lead	6.8	5.8	15.9
	Nickel	14	14	0.0
	Selenium	< 14	< 2.8	NC
	Silver	< 0.28	< 0.28	NC
	Vanadium	15	16	6.5
	Zinc	48	40	18.2

#### Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects ug/L = micrograms per liter mg/kg = milligrams per liter mg/kg = milligrams per kilogram * = Field Duplicate RPD Outlier

** = No data qualification required; detection is less than 5 times the reporting limit.

	[	SWMU 2-4 (14-14.5')	SWMU 2-4 (14-14.5') DUP	RPD
	Parameter	Sample Result	Field Duplicate	(%)
PH (mg/kg-dry):	Diesel Range Organics (DRO)	< 11	< 12	NC
	Motor Oil Range Organics (MRO)	< 57	< 59	NC
	Gasoline Range Organics (GRO)	< 5.7	< 5.9	NC
OCs (ug/kg-dry)	Benzene	< 0.919	< 0.926	NC
	Toluene	< 0.919	< 0.926	NC
	Ethylbenzene	< 0.919	< 0.926	NC
	Xylenes, Total	< 0.919	< 0.926	NC
	Methyl tert-butyl ether (MTBE)	< 0.919	< 0.926	NC
	1,2,4-Trimethylbenzene	< 0.919	< 0.926	NC
	1,3,5-Trimethylbenzene	< 0.919	< 0.926	NC
	1,2-Dichloroethane (EDC)	< 0.919	< 0.926	NC
	1,2-Dibromoethane (EDB)	< 0.919	< 0.926	NC
	Naphthalene	< 0.919	< 0.926	NC
	Acetone	< 3.68	< 3.70	NC
	Bromobenzene	< 0.919	< 0.926	NC
	Bromodichloromethane	< 0.919	< 0.926	NC
	Bromoform	< 0.919	< 0.926	NC
	Bromomethane	< 0.919	< 0.926	NC
	2-Butanone	< 3.68	< 3.70	NC
	Carbon tetrachloride	< 0.919	< 0.926	NC
	Chlorobenzene	< 0.919	< 0.926	NC
	Chloroethane	< 0.919	< 0.926	NC
	Chloroform	< 0.919	< 0.926	NC
	Chloromethane	< 0.919	< 0.926	NC
	2-Chlorotoluene	< 0.919	< 3.70	NC
	Carbon disulfide	< 3.68	< 0.926	NC
	4-Chlorotoluene	< 0.919	< 0.926	NC
	cis-1,2-DCE	< 0.919	< 0.926	NC
	cis-1,3-Dichloropropene	< 0.919	< 0.926	NC
	1,2-Dibromo-3-chloropropane	< 0.919	< 0.926	NC
	Dibromochloromethane	< 0.919	< 0.926	NC
	Dibromomethane	< 0.919	< 0.926	NC
	1,2-Dichlorobenzene	< 0.919	< 0.926	NC
	1,3-Dichlorobenzene	< 0.919	< 0.926	NC
	1,4-Dichlorobenzene	< 0.919	< 0.926	NC
	Dichlorodifluoromethane	< 0.919	< 0.926	NC
	1,1-Dichloroethane	< 0.919	< 0.926	NC
	1,1-Dichloroethene	< 0.919	< 0.926	NC
	1,2-Dichloropropane	< 0.919	< 0.926	NC
	1,3-Dichloropropane	< 0.919	< 0.926	NC
	2,2-Dichloropropane	< 0.919	< 0.926	NC
	1,1-Dichloropropene	< 0.919	< 0.926	NC
	Hexachlorobutadiene	< 0.919	< 0.926	NC
	Isopropylbenzene	< 0.919	< 0.926	NC
	4-Isopropyltoluene	< 0.919	< 0.926	NC
	Methylene chloride	< 1.84	< 1.85	NC
	n-Butylbenzene	< 0.919	< 0.926	NC
	2-Hexanone	< 0.919	< 0.926	NC
	n-Propylbenzene	< 3.68	< 3.70	NC
	sec-Butylbenzene	< 0.919	< 0.926	NC
	Styrene	< 0.919	< 0.926	NC
	tert-Butylbenzene	< 0.919	< 0.926	NC
	4-Methyl-2-pentanone	< 3.68	< 3.70	NC
	1,1,1,2-Tetrachloroethane	< 0.919	< 0.926	NC
	1,1,2,2-Tetrachloroethane	< 0.919	< 0.926	NC
	Tetrachloroethene (PCE)	< 0.919	< 0.926	NC
	trans-1,2-DCE	< 0.919	< 0.926	NC
	trans-1,3-Dichloropropene	< 0.919	< 0.926	NC
	1,2,3-Trichlorobenzene	< 0.919	< 0.926	NC
	1,2,4-Trichlorobenzene	< 0.919	< 0.926	NC
	1,1,1-Trichloroethane	< 0.919	< 0.926	NC
	1,1,2-Trichloroethane	< 0.919	< 0.926	NC
	Trichloroethene (TCE)	< 0.919	< 0.926	NC
	Trichlorofluoromethane	< 0.919	< 0.926	NC
	Inchioronuoromethane			
	1,2,3-Trichloropropane	< 0.919	< 0.926	NC

# Table A-3 Field Duplicate Summary Group 2 RCRA Investigation Summary Western Refining Southwest, Inc. - Bloomfield Refinery

	Parameter	SWMU 2-4 (14-14.5') Sample Result	SWMU 2-4 (14-14.5') DU Field Duplicate	P   RPD   (%)
VOCs (mg/kg-dry):	Acenaphthene	< 0.23	< 0.24	NC
······································	Acenaphthylene	< 0.23	< 0.24	NC
	Aniline	< 0.23	< 0.24	NC
	Anthracene	< 0.23	< 0.24	NC
	Azobenzene	< 0.23	< 0.24	NC
	Benz(a)anthracene	< 0.23	< 0.24	NC
	Benzo(a)pyrene	< 0.23	< 0.24	NC
	Benzo(b)fluoranthene	< 0.23	< 0.24	NC
	Benzo(g,h,i)pervlene	< 0.57	< 0.59	NC
	Benzo(k)fluoranthene	< 0.23	< 0.24	NC
	Benzoic acid	< 0.57	< 0.59	NC
	Benzyl alcohol	< 0.23	< 0.24	NC
	Bis(2-chloroethoxy)methane	< 0.23	< 0.24	NC
	Bis(2-chloroethyl)ether	< 0.23	< 0.24	NC
	Bis(2-chloroisopropyl)ether	< 0.23	< 0.24	NC
	Bis(2-ethylhexyl)phthalate	< 0.57	< 0.59	NC
	4-Bromophenyl phenyl ether	< 0.23	< 0.24	NC
	Butyl benzyl phthalate	< 0.23	< 0.24	NC
	Carbazole	< 0.23	< 0.24	NC
	4-Chloro-3-methylphenol	< 0.57	< 0.59	NC
	4-Chloroaniline	< 0.57	< 0.59	NC
	2-Chloronaphthalene	< 0.29	< 0.29	NC
	2-Chlorophenol	< 0.23	< 0.24	NC
	4-Chlorophenyl phenyl ether	< 0.23	< 0.24	NC
	Chrysene	< 0.23	< 0.24	NC
	Di-n-butyl phthalate	< 0.57	< 0.59	NC
	Di-n-octyl phthalate	< 0.23	< 0.24	NC
	Dibenz(a,h)anthracene	< 0.23	< 0.24	NC
	Dibenzofuran	< 0.23	< 0.24	NC
	1,2-Dichlorobenzene	< 0.23	< 0.24	NC
	1.3-Dichlorobenzene	< 0.23	< 0.24	NC
	1.4-Dichlorobenzene	< 0.23	< 0.24	NC
	3,3'-Dichlorobenzidine	< 0.29	< 0.29	NC
	Diethyl phthalate	< 0.23	< 0.24	NC
	Dimethyl phthalate	< 0.23	< 0.24	NC
	2,4-Dichlorophenol	< 0.46	< 0.47	NC
	2,4-Dimethylphenol	< 0.34	< 0.35	NC
	4.6-Dinitro-2-methylphenol	< 0.57	< 0.59	NC
	2,4-Dinitrophenol	< 0.46	< 0.47	NC
	2,4-Dinitrotoluene	< 0.57	< 0.59	NC
	2.6-Dinitrotoluene	< 0.57	< 0.59	NC
	Fluoranthene	< 0.29	< 0.29	NC
	Fluorene	< 0.57	< 0.59	NC
	Hexachlorobenzene	< 0.23	< 0.24	NC
	Hexachlorobutadiene	< 0.23	< 0.24	NC
	Hexachlorocyclopentadiene	< 0.23	< 0.24	NC
	Hexachloroethane	< 0.23	< 0.24	NC
	Indeno(1,2,3-cd)pyrene	< 0.29	< 0.29	NC
	Isophorone	< 0.57	< 0.59	NC
	2-Methylnaphthalene	< 0.29	< 0.29	NC
	2-Methylphenol	< 0.57	< 0.29	- NC
	3+4-Methylphenol	< 0.23	< 0.24	NC
	N-Nitrosodi-n-propylamine	< 0.23	< 0.24	NC
	N-Nitrosodiphenylamine	< 0.23	< 0.24	NC
	Naphthalene	< 0.23	< 0.24	NC
	2-Nitroaniline	< 0.23	< 0.24	NC
	3-Nitroaniline	< 0.23	< 0.24	NC
	4-Nitroaniline	< 0.29	< 0.29	NC
	Nitrobenzene	< 0.57	< 0.59	NC
	2-Nitrophenol	< 0.23	< 0.24	NC
	4-Nitrophenol	< 0.23	< 0.24	NC
	Pentachlorophenol	< 0.46	< 0.24	- NC
	Phenanthrene	< 0.23	< 0.47	NC
	Phenol	< 0.23	< 0.24	NC NC
		< 0.23	< 0.24	_
	Pyrene Pyridine	< 0.23		NC
	Pyridine 1,2,4-Trichlorobenzene	< 0.23	< 0.59	NC NC
			< 0.24	NC NC
	2,4,5-Trichlorophenol	< 0.23	< 0.24	

1. 1. 1.

į,

		SWMU 2-4 (14-14.5')	SWMU 2-4 (14-14.5') DUP	RPD
	Parameter	Sample Result	Field Duplicate	(%)
Metals (mg/kg-dry):	Mercury	0.039	< 0.039	NC
	Antimony	< 2.9	< 2.9	NC
	Arsenic	< 2.9	< 2.9	NC
	Barium	110	73	40.4 *
	Beryllium	< 0.17	< 0.18	NC
	Cadmium	< 0.11	< 0.12	NC
	Chromium	5.8	14	82.8 *
	Cobalt	2.2	1.7	25.6
	Lead	2.8	1.7	48.9
	Nickel	2.5	2.6	3.9
	Selenium	< 2.9	< 2.9	NC
	Silver	< 0.29	< 0.29	NC
	Vanadium	12	8.6	33.0
	Zinc	22	13	51.4

#### Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/L = micrograms per liter mg/L = milligrams per liter

mg/kg = milligrams per kilogram * = Field Duplicate RPD Outlier

	_	1 1 1	SWMU 2-4 (14-14.5') DUP	RPD
	Parameter	Sample Result	Field Duplicate	_ (%)
`PH (mg/kg-dry):	Diesel Range Organics (DRO)	< 11	< 12	NC
	Motor Oil Range Organics (MRO)	< 57	< 59	NC
	Gasoline Range Organics (GRO)	< 5.7	< 5.9	NC
OCs (ug/kg-dry)	Benzene	< 0.919	< 0.926	NC
	Toluene	< 0.919	< 0.926	NC
	Ethylbenzene	< 0.919	< 0.926	NC
	Xylenes, Total	< 0.919	< 0.926	NC
	Methyl tert-butyl ether (MTBE)	< 0.919	< 0.926	NC
	1,2,4-Trimethylbenzene	< 0.919	< 0.926	NC
	1,3,5-Trimethylbenzene	< 0.919	< 0.926	NC
	1,2-Dichloroethane (EDC)	< 0.919	< 0.926	NC
	1,2-Dibromoethane (EDB)	< 0.919	< 0.926	NC
	Naphthalene	< 0.919	< 0.926	NC
	Acetone	< 3.68	< 3.70	NC
	Bromobenzene	< 0.919	< 0.926	NC
	Bromodichloromethane	< 0.919	< 0.926	NC
	Bromoform	< 0.919	< 0.926	NC
	Bromomethane	< 0.919	< 0.926	NC
	2-Butanone	< 3.68	< 3.70	NC
	Carbon tetrachloride	< 0.919	< 0.926	NC
	Chlorobenzene	< 0.919	< 0.926	NC
	Chloroethane	< 0.919	< 0.926	NC
	Chloroform	< 0.919	< 0.926	NC
	Chloromethane	< 0.919	< 0.926	NC
	2-Chlorotoluene	< 0.919	< 3.70	NC
	Carbon disulfide	< 3.68	< 0.926	NC
	4-Chlorotoiuene	< 0.919	< 0.926	NC
	cis-1,2-DCE	< 0.919	< 0.926	NC
	cis-1,3-Dichloropropene	< 0.919	< 0.926	NC
	1,2-Dibromo-3-chloropropane	< 0.919	< 0.926	NC
	Dibromochloromethane	< 0.919	< 0.926	NC
	Dibromomethane	< 0.919	< 0.926	NC
	1,2-Dichlorobenzene	< 0.919	< 0.926	NC
	1,3-Dichlorobenzene	< 0.919	< 0.926	NC
	1,4-Dichlorobenzene	< 0.919	< 0.926	NC
	Dichlorodifluoromethane	< 0.919	< 0.926	NC
	1,1-Dichloroethane	< 0.919	< 0.926	NC
	1,1-Dichloroethene	< 0.919	< 0.926	NC
	1,2-Dichloropropane	< 0.919	< 0.926	NC
	1,3-Dichloropropane	< 0.919	< 0.926	NC
	2,2-Dichloropropane	< 0.919	< 0.926	NC
	1,1-Dichloropropene	< 0.919	< 0.926	NC
	Hexachlorobutadiene	< 0.919	< 0.926	NC
	Isopropylbenzene	< 0.919	< 0.926	
	4-Isopropyltoluene	< 0.919		NC
		< 1.84	< 0.926	NC
	Methylene chloride	< 1.84	< 1.85	NC
	2-Hexanone	< 0.919		NC
	n-Propylbenzene	< 3.68	< 0.926	NC
	sec-Butylbenzene	< 0.919	< 3.70	NC
	Styrene	< 0.919		NC
	tert-Butylbenzene	< 0.919	< 0.926	NC NC
	4-Methyl-2-pentanone	< 3.68	< 3.70	NC
	1,1,1,2-Tetrachloroethane	< 0.919	< 0.926	NC
	1,1,2,2-Tetrachloroethane	< 0.919	< 0.926	NC
	Tetrachloroethene (PCE)	< 0.919	< 0.926	NC
	trans-1,2-DCE	< 0.919		
	trans-1,3-Dichloropropene	< 0.919	< 0.926	NC
			< 0.926	NC
	1,2,3-Trichlorobenzene	< 0.919	< 0.926	NC
	1,2,4-Trichlorobenzene	< 0.919	< 0.926	NC
	1,1,1-Trichloroethane	< 0.919	< 0.926	NC
	1,1,2-Trichloroethane	< 0.919	< 0.926	NC
	Trichloroethene (TCE)	< 0.919	< 0.926	NC
	Trichlorofluoromethane	< 0.919	< 0.926	NC
	1,2,3-Trichloropropane	< 0.919	< 0.926	NC
	Vinyl chloride	< 0.919	< 0.926	NC

	Parameter	SWMU 2-4 (14-14.5') Sample Result	SWMU 2-4 (14-14.5') DU Field Duplicate	P RPI (%)
VOCs (mg/kg-dry):	Acenaphthene	< 0.23	< 0.24	NC
i ocs (ing/ng ui y).	Acenaphthylene	< 0.23	< 0.24	NC
	Aniline	< 0.23	< 0.24	NC
	Anthracene	< 0.23	< 0.24	NC
	Azobenzene	< 0.23	< 0.24	NC
	Benz(a)anthracene	< 0.23	< 0.24	NC
	Benzo(a)pyrene	< 0.23	< 0.24	NĊ
	Benzo(b)fluoranthene	< 0.23	< 0.24	NC
	Benzo(g,h,i)perylene	< 0.57	< 0.59	NC
	Benzo(k)fluoranthene	< 0.23	< 0.24	NC
	Benzoic acid	< 0.57	< 0.59	NC
	Benzyl alcohol	< 0.23	< 0.24	NC
	Bis(2-chloroethoxy)methane	< 0.23	< 0.24	NC
	Bis(2-chloroethyl)ether	< 0.23	< 0.24	NC
	Bis(2-chloroisopropyl)ether	< 0.23	< 0.24	NC
	Bis(2-ethylhexyl)phthalate	< 0.57	< 0.59	NC
	4-Bromophenyl phenyl ether	< 0.23	< 0.24	NC
	Butyl benzyl phthalate	< 0.23	< 0.24	NC
	Carbazole	< 0.23	< 0.24	NC
	4-Chloro-3-methylphenol	< 0.57	< 0.59	NC
	4-Chloroaniline	< 0.57	< 0.59	NC
	2-Chloronaphthalene	< 0.29	< 0.29	NC
	2-Chlorophenol	< 0.23	< 0.24	NC
	4-Chlorophenyl phenyl ether	< 0.23	< 0.24	NC
	Chrysene	< 0.23	< 0.24	NC
	Di-n-butyl phthalate	< 0.57	< 0.59	NC
	Di-n-octyl phthalate	< 0.23	< 0.24 < 0.24	NC NC
	Dibenz(a,h)anthracene Dibenzofuran	< 0.23	< 0.24	NC
	1,2-Dichlorobenzene	< 0.23	< 0.24	- NC
	1,3-Dichlorobenzene	< 0.23	< 0.24	NC
	1,4-Dichlorobenzene	< 0.23	< 0.24	NC
	3,3'-Dichlorobenzidine	< 0.29	< 0.24	NC
	Diethyl phthalate	< 0.23	< 0.23	NC
	Dimethyl phthalate	< 0.23	< 0.24	NC
	2,4-Dichlorophenol	< 0.46	< 0.24	NC
	2,4-Dimethylphenol	< 0.34	< 0.35	NC
	4,6-Dinitro-2-methylphenol	< 0.57	< 0.59	NC
	2,4-Dinitrophenol	< 0.46	< 0.47	NC
	2.4-Dinitrotoluene	< 0.57	< 0.59	NC
	2,6-Dinitrotoluene	< 0.57	< 0.59	NC
	Fluoranthene	< 0.29	< 0.29	NC
	Fluorene	< 0.57	< 0.59	NC
	Hexachlorobenzene	< 0.23	< 0.24	NC
	Hexachlorobutadiene	< 0.23	< 0.24	NC
	Hexachlorocyclopentadiene	< 0.23	< 0.24	NC
	Hexachloroethane	< 0.23	< 0.24	NC
	Indeno(1,2,3-cd)pyrene	< 0.29	< 0.29	NC
	Isophorone	< 0.57	< 0.59	NC
	2-Methylnaphthalene	< 0.29	< 0.29	NC
	2-Methylphenol	< 0.57	< 0.59	NC
	3+4-Methylphenol	< 0.23	< 0.24	NC
	N-Nitrosodi-n-propylamine	< 0.23	< 0.24	NC
	N-Nitrosodiphenylamine	< 0.23	< 0.24	NC
	Naphthalene	< 0.23	< 0.24	NC
	2-Nitroaniline	< 0.23	< 0.24	
	3-Nitroaniline	< 0.23	< 0.24	
	4-Nitroaniline	< 0.29	< 0.29	
	Nitrobenzene	< 0.57	< 0.59	NC NC
	2-Nitrophenol	< 0.23	< 0.24	NC
	4-Nitrophenol	< 0.23	< 0.24	NC
	Pentachlorophenol	< 0.46	< 0.47	NC
	Phenanthrene	< 0.23	< 0.24	NC NC
	Phenol	< 0.23	< 0.24	_ NC
	Pyrene	< 0.23	< 0.24	NC
	Damiding	~ ^ 6 7 1	~ ^ * ^	1 110
	Pyridine	< 0.57	< 0.59	NC
	Pyridine 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol	<0.57 <0.23 <0.23	<0.59 <0.24 <0.24	NC NC

		SWMU 2-4 (14-14.5')	SWMU 2-4 (14-14.5') DUP	RPD
	Parameter	Sample Result	Field Duplicate	(%)
Metals (mg/kg-dry):	Mercury	0.039	< 0.039	NC
	Antimony	< 2.9	< 2.9	NC
	Arsenic	< 2.9	< 2.9	NC
	Barium	110	73	40.4 *
	Beryllium	< 0.17	< 0.18	NC
	Cadmium	< 0.11	< 0.12	NC
	Chromium	5.8	14	82.8 *
	Cobalt	2.2	1.7	25.6
	Lead	2.8	1.7	48.9
	Nickel	2.5	2.6	3.9
	Selenium	< 2.9	< 2.9	NC
	Silver	< 0.29	< 0.29	NC
	Vanadium	12	8.6	33.0
	Zinc	22	13	51.4

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/L = micrograms per liter mg/L = milligrams per liter mg/kg = milligrams per kilogram * = Field Duplicate RPD Outlier

		MW-54	MW-54 DUP	RPD
	Parameter	Field Sample	Field Duplicate	(%)
TPH (mg/L):	Diesel Range Organics (DRO)	7.2	7.1	1.4
	Motor Oil Range Organics (MRO)	< 5.0	< 5.0	NC
	Gasoline Range Organics (GRO)	3.4	3.4	0
VOCs (ug/L):	1,1,1,2-Tetrachloroethane	< 10	< 10	NC
	1,1,1-Trichloroethane	< 10	<10 < 20	NC NC
	1,1,2,2-Tetrachloroethane	< 10	< 10	NC NC
	1,1,2-Thenfoldenane	< 10	< 10	NC NC
	1,1-Dichloroethene	< 10	< 10	NC
	1,1-Dichloropropene	< 10	< 10	NC
	1,2,3-Trichlorobenzene	< 10	< 10	NC
	1,2,3-Trichloropropane	< 20	< 20	NC
	1,2,4-Trichlorobenzene	< 10	< 10	NC
	1,2,4-Trimethylbenzene	67	63	6.2
	1,2-Dibromo-3-chloropropane	< 20	< 20	NC
	1,2-Dibromoethane (EDB)	< 10	< 10	NC
	1,2-Dichlorobenzene	< 10	< 10	NC
	1,2-Dichloroethane (EDC)	< 10	< 10	NC
	1,2-Dichloropropane	< 10	< 10	NC
	1,3,5-Trimethylbenzene	< 10	< 10	NC
	1,3-Dichlorobenzene	< 10	< 10	NC
	1,3-Dichloropropane	< 10	< 10	NC
	1,4-Dichlorobenzene	< 10	< 10	NC
	1-Methylnaphthalene	82	65	23.1
	2,2-Dichloropropane	< 20	< 20 < 100	NC NC
	2-Butanone	< 100	< 100	NC NC
	2-Chlorotoluene	< 100	< 100	NC NC
	2-Hexanone 2-Methylnaphthalene	93	74	22.8
	4-Chlorotoluene	< 10	< 10	NC
	4-Isopropyltoluene	< 10	< 10	NC
	4-Methyl-2-pentanone	< 100	< 100	NC
	Acetone	< 100	< 100	NC
	Benzene	1100	1000	9.5
	Bromobenzene	< 10	< 10	NC
	Bromodichloromethane	< 10	< 10	NC
	Bromoform	< 10	< 10	NC
	Bromomethane	< 10	< 10	NC
	Carbon disulfide	< 100	< 100	NC
	Carbon Tetrachloride	< 10	< 10	NC
	Chlorobenzene	< 10	< 10	NC
	Chloroethane	< 20	< 20	NC
	Chloroform	< 10	< 10	NC
	Chloromethane	< 10	< 10	NC
	cis-1,2-DCE	< 10	< 10	NC NC
	cis-1,3-Dichloropropene	< 10	< 10 < 10	NC NC
	Dibromochloromethane Dibromomethane	< 10	< 10	NC NC
	Dichlorodifluoromethane	< 10	< 10	NC NC
	Ethylbenzene	200	200	0
	Hexachlorobutadiene	< 10	< 10	NC NC
	Isopropylbenzene	34	36	5.7
	Methyl tert-butyl ether (MTBE)	160	160	0.0
	Methylene Chloride	< 30	< 30	NC
	Naphthalene	160	150	6.5
	n-Butylbenzene	< 10	< 10	NC
	n-Propylbenzene	39	36	8.0
	sec-Butylbenzene	< 10	< 10	NC
	Styrene	< 10	< 10	NC
	tert-Butylbenzene	< 10	< 10	NC
	Tetrachloroethene (PCE)	< 10	< 10	NC
	Toluene	< 10	< 10	NC
	trans-1,2-DCE	< 10	< 10	NC
	trans-1,3-Dichloropropene	< 10	< 10	NC
	Trichloroethene (TCE)	< 10	< 10	NC NC
	Trichlorofluoromethane	< 10	< 10	NC
	Vinyl chloride	< 10	< 10	NC
	Xylenes, Total	24	24	0.0

	Parameter	MW-54 Field Sample	MW-54 DUP Field Duplicate	RPD (%)
SVOCs (ug/L):	1,2,4-Trichlorobenzene	< 10	< 10	NC
	1,2-Dichlorobenzene	< 10	< 10	NC
	1,3-Dichlorobenzene	< 10	< 10	NC
	1,4-Dichlorobenzene	< 10	< 10	NC
	2,4,5-Trichlorophenol	< 10	< 10	NC
	2,4,6-Trichlorophenol	< 10	< 10	NC
	2,4-Dichlorophenol	< 20	< 20	NC
	2,4-Dimethylphenol	< 10	< 10	NC
	2,4-Dinitrophenol	< 20	< 20	NC
	2,4-Dinitrotoluene	< 10	< 10	
	· · · · · · · · · · · · · · · · · · ·			NC
	2,6-Dinitrotoluene	< 10	< 10	NC
	2-Chloronaphthalene	< 10	< 10	NC
	2-Chlorophenol	< 10	< 10	NC
	2-Methylnaphthalene	49	51	4.0
	2-Methylphenol	< 10	< 10	NC
	2-Nitroaniline	< 10	< 10	NC
	2-Nitrophenol	< 10	< 10	NC
	3,3'-Dichlorobenzidine	< 10	< 10	NC
	3+4-Methylphenol	< 10	< 10	NC
	3-Nitroaniline	< 10	< 10	NC
	4,6-Dinitro-2-methylphenol	< 20	< 20	NC
	4-Bromophenyl phenyl ether	< 10	< 10	NC NC
	4-Chloro-3-methylphenol	< 10	< 10	NC NC
	4-Chloroaniline	< 10	< 10	NC
	4-Chlorophenyl phenyl ether	< 10	< 10	NC
	4-Nitroaniline	< 10	< 10	NC
	4-Nitrophenol	< 10	< 10	NC
	Acenaphthene	< 10	< 10	NC
	Acenaphthylene	< 10	< 10	NC
	Aniline	< 10	< 10	NC
	Anthracene	< 10	< 10	NC
	Azobenzene	< 10	< 10	NC
	Benz(a)anthracene	< 10	< 10	NC
	Benzo(a)pyrene	< 10	< 10	NC
	Benzo(b)fluoranthene	< 10	< 10	NC NC
			************	
	Benzo(g,h,i)perylene	< 10	< 10	NC
	Benzo(k)fluoranthene	< 10	< 10	NC
	Benzoic acid	< 20	< 20	NC
	Benzyl alcohol	< 10	< 10	<u>NC</u>
	Bis(2-chloroethoxy)methane	< 10	< 10	NC
	Bis(2-chloroethyl)ether	< 10	< 10	NC
	Bis(2-chloroisopropyl)ether	< 10	< 10	NC
	Bis(2-ethylhexyl)phthalate	< 10	< 10	NC
	Butyl benzyl phthalate	< 10	< 10	NC
	Carbazole	< 10	< 10	NC NC
	Chrysene	< 10	< 10	NC NC
	Dibenz(a,h)anthracene	< 10	< 10	NC NC
	Dibenzofuran	< 10	< 10	NC NC
		< 10	< 10	NC NC
	Diethyl phthalate			
	Dimethyl phthalate	< 10	< 10	NC
	Di-n-butyl phthalate	< 10	< 10	NC
	Di-n-octyl phthalate	< 10	< 10	NC
	Fluoranthene	< 10	< 10	NC
	Fluorene	< 10	< 10	NC
	Hexachlorobenzene	< 10	< 10	NC
	Hexachlorobutadiene	< 10	< 10	NC
	Hexachlorocyclopentadiene	< 10	< 10	NC
	Hexachloroethane	< 10	< 10	NC
	Indeno(1,2,3-cd)pyrene	< 10	< 10	NC
	Isophorone	< 10	< 10	ŃĊ
	Naphthalene	82	83	1.2
	Nitrobenzene	< 10	< 10	
		< 10	<10	NC NC
	N-Nitrosodimethylamine			
	N-Nitrosodi-n-propylamine	< 10	< 10	NC
	N-Nitrosodiphenylamine	< 10	< 10	NC
	Pentachlorophenol	< 20	< 20	NC
	Phenanthrene	< 10	< 10	NC
/	Phenol	< 10	< 10	NC
				NC

	MW-54	MW-54 DUP	RPD
Parameter	Field Sample	Field Duplicate	(%)
Pyridine	< 10	< 10	NC

		MW-54	MW-54 DUP	RPD
	Parameter	Field Sample	Field Duplicate	(%)
Anions (mg/L):	Chloride	4200	3900	7.4
	Nitrogen, Nitrate (As N)			NC
	Nitrogen, Nitrite (As N)			NC
	Nitrate (As N)+Nitrite (As N)	< 10	< 10	NC
	Sulfate	2.8	2.2	24.0
Alkalinity (mg/L as CaCO3):	Alkalinity, Total (As CaCO3)	820	810	1.2
	Bicarbonate	820	810	1.2
	Carbonate	< 2.0	< 4.0	NC
Total Metals (mg/L):	Antimony	0.0011	0.0011	0.0
	Arsenic	0.02	0.02	0.0
	Barium	. 13	11	16.7
	Beryllium	< 0.0030	< 0.0030	NC
	Cadmium	< 0.0020	< 0.0020	NC
	Chromium	< 0.0060	< 0.0060	NC
	Cobalt	< 0.0060	< 0.0060	NC
	Lead	0.0081	0.008	1.2
	Mercury	< 0.00020	< 0.00020	NC
	Nickel	0.011	< 0.010	NC
	Selenium	0.0014	0.0015	6.9
	Silver	< 0.0050	< 0.0050	NC
	Vanadium	< 0.050	< 0.050	NC
Dissolved Metals (mg/L):	Zinc	0.16	< 0.020	NC
	Calcium	530	540	1.9
	Iron	36	34	5.7
	Magnesium	210	220	4.7
	Manganese	12	13	8.0
	Potassium	12	12	0.0
Inorganics (mg/L):	Sodium	1500	1600	6.5
	Cyanide, Total	< 0.0050	< 0.0050	NC



RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

 $L \approx \text{milligrams per liter}$ mg/L  $\approx \text{milligrams per liter}$ mg/kg  $\approx \text{milligrams per kilogram}$ * = Field Duplicate RPD Outlier





### TABLE A-4 Completeness Summaries

# Table A-4Completeness Summary - SoilGroup 2 RCRA Investigation SummaryWestern Refining Southwest, Inc. - Bloomfield Refinery

	Parameter	Total Number of Results	Number of Contractual Compliance	Percent Contractural Compliance	Number of Usable Results	Percent Technical Complianc
TPH (mg/kg-dry):	Diesel Range Organics (DRO)	74	74	100	74	100
	Motor Oil Range Organics (MRO)	74	74	100	74	100
	Gasoline Range Organics (GRO)	74	<u>7</u> 3 a	99	74	100
VOCs (ug/kg-dry)	Benzene	74	73 b	99	74	100
	Acetone	74	66 c, d, e	89	74	100
	2-Butanone	74	71 f	96	74	100
	Chloroethane	74	57 g	77	74	100
	Trichlorofluoromethane	74	73 c	99	74	100
	All remaining VOC analytes	4292	4292	100	4292	100
SVOCs (mg/kg-dry):	Di-n-butyl phthalate	74	72 f	97	74	100
Svocs (ing/kg-ury).	All remaining SVOC analytes	5032	4958 a	99	5032	100
Metals (mg/kg-dry):	Mercury	74	74	100	74	100
	Antimony	74	24 b	32	74	100
	Arsenic	74	74	100	74	100
	Barium	74	72 c	97	74	100
	Beryllium	74	74	100	74	100
	Cadmium	74	74	100	74	100
	Chromium	74	73 c	99	74	100
	Cobalt	74	74	100	74	100
	Cyanide	74	72 d	97	74	100
	Lead	74	74	100	74	100
	Nickel	74	74	100	74	100
	Selenium	74	54 b	73	74	100
	Silver	74	74	100	74	100
	Vanadium	74	74	100	74	100
	Zinc	. 74	74	100	74	100

#### Notes:

Number of samples used in completeness calculations includes field duplicates but does not include equipment rinsate, field, or trip blanks. Percent Contractural Compliance = (number of contract compliant results / Number of reported results)*100

Percent Technial Compliance = (Number of usable results / Number of reported results) * 100

a = Qualified due to low surrogate recoveries

b = Qualified due to low matrix spike/matrix spike duplicate recoveries

c = Qualified due to high field duplicate relative percent difference.

d = Qualified due to associated blank detection.

e = Qualified due to detection outside calibration limits.

f = Qualified due to potential laboratory contamination.

g= Qualified due to low CCV recoveries

#### Table A-4 Completeness Summary - Groundwater Samples Group 2 RCRA Investigation Summary Western Refining Southwest, Inc. - Bloomfield Refinery

	Parameter	Total Number of Samples	Number of Contractual Compliance	Percent Contractural Compliance	Number of Usable Results	Percent Technical Complianc
TPH (mg/L):	Diesel Range Organics (DRO)	20	20	100	20	100
	Motor Oil Range Organics (MRO)	20	20	100	20	100
	Gasoline Range Organics (GRO)	20	20	100	20	100
VOCs (ug/L):	All analytes	1300	1300	100	1300	100
SVOCs (ug/L):	All analytes	1400	1260 a	90	1400	100
Land and the second second second second second second second second second second second second second second	the second second second second second second second second second second second second second second second s					
Anions (mg/L):	Chloride	20	20	100	20	100
	Nitrogen, Nitrate (As N)	9	8 c	89	9	100
	Nitrogen, Nitrite (As N)	9	99	100	9	100
	Nitrate (As N)+Nitrite (As N)	11	9 d	82	11	100
	Sulfate	20	20	20	20	100
Alkalinity (mg/L as CaCO3):	Alkalinity, Total (As CaCO3)	20	20	100	20	100
, ( <b>g</b> 2	Bicarbonate	20	20	100	20	100
	Carbonate	20	20	100	20	100
Total Metals (mg/L):	Antimony	20	20	100	20	100
Total Metals (ing/L).	Arsenic	20	20	100	20	100
	Barium	20	20	100	20	100
	Bervilium	20	20	100	20	100
	Cadmium	20	20	100	20	100
	Chromium	20	20	100	20	100
	Cobalt	20	20	100	20	100
	Lead	20	17d	85	20	100
	Mercury	20	20	100	20	100
	Nickel	20	20	100	20	100
	Selenium	20	20	100	20	100
	Silver	20	20	100	20	100
	Vanadium	20	20	100	20	100
Dissolved Metals (mg/L):	Zinc	20	20	100	20	100
	Calcium	20	20	100	20	100
	Iron	20	19 d	95	20	100
	Magnesium	20	20	100	20	100
	Manganese	20	20	100	20	100
	Potassium	20	20	100	20	100
Inorganics (mg/L):	Sodium	20	20	100	20	100
	Cyanide, Total	20	20	100	20	100

Notes:

Number of samples used in completeness calculations includes field duplicates but does not include equipment rinsate, field, or trip blanks. Percent Contractural Compliance = (number of contract compliant results / Number of reported results)*100

Percent Technial Compliance = (Number of usable results / Number of reported results) * 100

a = Qualified due to low surrogate recoveries

b = Qualified due to low matrix spike/matrix spike duplicate recoveries

c = Qualified due to high field duplicate relative percent difference.

d = Qualified due to associated blank detection.

e = Qualified due to detection outside calibration limits.

f = Qualified due to potential laboratory contamination.

g= Qualified due to low CCV recoveries



### **Appendix G**

### **Analytical Data Results**

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com	4901 Hawkins NE - Albuquerque Tel. 505-345-3975 Fax 505-3 Analysis Requ	الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الجالي       الحالي       الحالي							Time List , Recoll ruguid DLS per	e of this possibility. Any sub-contracted data will be clearly notated on the
y Record Turn-Around Time:	Phone #: (SDS) 632 - 41106	or Fax#: Kelly .rol rectange: the the the the the the the the the the	- Ady	I UNHMERINDINE I (1) Polis NONE I	1 (2)Pold HND3 1 1 (1)Pold H. 50u 1	Na04 HCI	HND, H-C3,	Times Bolinnikhod hv AU Naith Z	Reinquished by: Received by Co Date	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited aboratories. This serves as notic

HALL ENVIRONMENTAL         HALL ENVIRONMENTAL         ANALYSIS LABORATORY         www.hallenvironmental.com         4901 Hawkins NE - Albuquerque, NM 87109         Tel. 505-345-3975        Fax 505-345-4107         Analysis.Request	BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel) TPH (Method 8015B (Gas/Diesel) EDB (Method 504.1) B210 (PUA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8310 (PUA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8250 (PUA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8250 (PUA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8250 (PUA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8250 (PUA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8250 (PUA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8250 (PUA or PAH) 8250 (PUA or PA				Date Time Remarks: Date Time Remarks: Date Time Remarks: PLOFEN to Work Pleur for Auchuk Pleur to Convuct Order for My Suborationes. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Chai F-Custody Record Turn-Around Time: Client: Weyleru Refine Sulfuret IK Standard Rush Bloomfred Refine Project Name: Mailing Address: 50 Recd ULPAGA Rough Bloomfred NM Project #: Phone #: (50) 632-4164	Matrix Sa	(8/9/1055-Gu) MW-5-3 8		P P P P P P P P P P P P P P P P P P P	Date:     Time:     Relinquished by/     Received by:     Date     Time     Remarks       B/9     1700     Xell     Cell     Celd     Celd     Yell       Date:     Time:     Relinquished by:     Date     Time     Remarks       Date:     Time:     Relinquished by:     Date     Time     Yell       Infine:     Relinquished by:     Cell     Vell     Vell     Yell       Infine:     Relinquished by:     Cell     Vell     Vell     Yell       Infine:     Relinquished by:     Date     Time     Mission

<ul> <li>HALL ENV</li> <li>ANALYSIS</li> <li>ANALYSIS</li> <li>ANALUSIS</li> <li>ANAUSIS</li> </ul>	Analysis Request	لم المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين المركزين الم	TM + XЭТ8 TPH Methoo TPH (Methoo BDB (Methoo BDB (Меthoo BDB (PUA Rentoo CPUA CFOA CPUA CPUA CPUA CPUA CPUA CPUA CPUA CPU							X				* Refer to Work Plauto	10/09/1035 Anolyte Cist; Recall regulted the laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly nofated on the analytical report.
Chai f-Custody Record Turn-Around Time: Client: Western Refinitu Southwest huest est huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest huest hues	Phone #: (SDS) b32 - 4/6 b	email or Fax#:       Kelly, robinson Ount.com       Project Manager.         QAQC Package:       X       Kelly, robinson Ount.com         In Standard       X       X         In Other       Sampler:       Onloc         AFDD (Type)       Onloc       Sampler:	Time Matrix Sample Request ID	Hyly IHUO GW MW-5-1 (E)VOAS HCI S	IIIII COMPANIE NOVE S	() Bhy Name S	BW HNOZ	H, 50 J	+ + 1 U Poly Na OH S	12H HON(9) ST.	() Himber Nove	WH MORE AND A H SM	The Birding (UP) (UP) NarOH	150 Hellycluur	Date: Time: Relinquished by! Received by: Date Time $A = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$

Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel) TPH (Method 8015B (Gas/Diesel) B310 (PNA or PAH) RCRA 8 Metals Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8082 PCB's B081 Pesticides / 8082 PCB's Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's B081 Pesticides / 8082 PCB's Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's 8081 PESticides / 80						X		×				Remarks: * Refer to Work Place for Analyt	Lote
Charlent Custody Record Turn-Around Time:	Time Mat	12/03/09/1250 Gu FB-010809 (6)VOA>	Nob/09 1 [ Wheel U) Aurber (0)	$\frac{1}{1}$ [ ] $\frac{1}{6}$	y [1] [ [1] [1] [1] [1] [1] [1]		1400 EB-010809 (b) 10th 7	7 (1) Amber 7	C Mar 7	(3) Poly	V 1 1 0 BUJ 7	V V (1) Palij 7	d CK Date	Date: Time: Relinquished by: Received by: Date Time

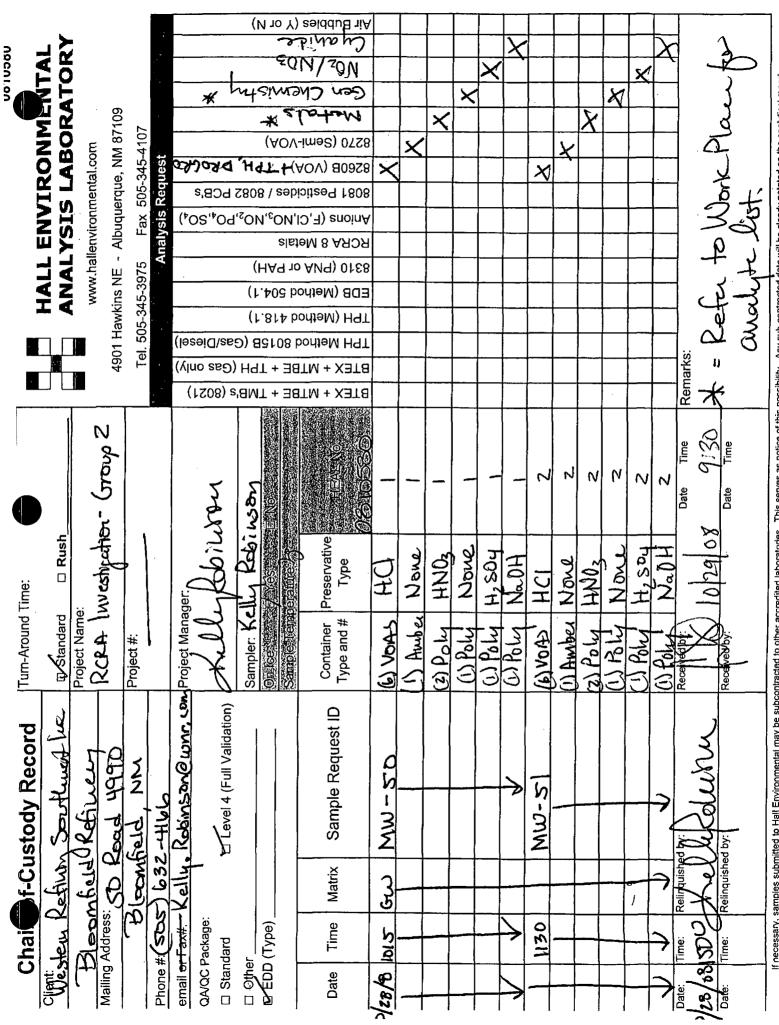
If necessary, samples submitted to Hall Environmental may be subcontracted of the accredible taboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall ENVIRONANTAL         HALL ENVIRONANTAL         ANALYSIS LABORATORY         www.hallenvironmental.com         4901 Hawkins NE - Albuquerque, NM 87109         Tel. 505-345-3975        Fax 505-345-4107         Analysis Request	TEX + MTBE + TMB's (8021) TEX + MTBE + TMB's (8021) TEX + MTBE + TPH (Gas only) PH Method 8015B (Gas/Diesel) PH (Method 504.1) DB (Method 504.1) DB (Method 504.1) DB (Method 504.1) DB (Method 504.1) DB (Method 504.1) DB (PA or PAH) DB (PA or PAH) DB (PA or PAH) DC (Semi-VOA) + TPH-GEO, TCO DC (VOA) + TPH-GEO, TCO DC (Semi-VOA) * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * COA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMis * CAA, CH-EMIS * CAA, CH-EMIS * CAA, CH-EMIS * CAA, CH-EMIS * CAA, CH-EMIS * CAA, CH-EMIS * CAA	Н Н Н Н Н Н Н Н Н Н Н Н Н Н		×						× ×			Remarks: * Ce Ger to Work Plauti	Audyle List; Note lew DLs requied
Charlet Custody Record Lurn-Around Lime. Client: Uestern Refining Suthwayt Lie Wistandard Refineer Project Name: Blornfield Refineer Roca Invertration - Grap 2 Mailing Address: SD Rocal 499() Roca Invertration - Grap 2 Phone #: (SOC) 163 2 - 411 L	email or Fax#:     Kellu, -robiwSox @ war.co     Project Manager.       0A/QC Package:     Date     Defended     Defended       1     Standard     Defended     Defended       1     Other     Defended     Defended       1     Date     Time     Matrix       Date     Time     Matrix     Sampler Hope and #	1/09/09/10/20 PWU-54 (6) VOAS HC1 1	() Almber		I BUNY HNOS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 V V (1) Poly No. DH 1	Giv MW-SY (Dup) (6) VOA3 HCI 2	Mulber Noke	(1) Poly Norl 2 (3) Poly HND, 7	H.Sou	Cu The Verman (1) PW NaDH 2	COULD Received by Date Time	Date Time

		www haltenvironmental com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	(les	PO4,56'e	B (G	8015 804.8 814 I 1.604. 31.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	HM + X3T8         bodfam (Method         TPH Method         TPH (Method         BDB (Method         BDB (Method         BDB (Method         BDB (Method         BDB (Method         BDB (Method         BDB (Method         BDB (Method         BDB (Method         BDB (Particid         X X									rks:		
Turn-Around Time:	D Standard inkush 1-Week if	Project Name: 2053: 0.0	ROPA luncity compaisure	Project #: 0		(1				Type	(g) - न•ट	() - 407 2	- 402	2)-462			$\widehat{}$	· · ·		And 21260	Received by: Date Time
Chai f-Custody Record		<u> </u>	Mailing Address: So Rock 4990	1	Phone #: (SDS) b32 - 4166	ricout	QA/QC Package:		Green (Type)	Date Time Matrix Sample Request ID	2/24/29 1010 Soil Sam No.2-10W @	1000 Servis No.18 - 100/8)	1030 Swin No. 8 - 1 dub (2)	V 1000 V Swin No. 9-104(2)					Trans. Dalizan dabad ki 🔪	1 HW Kellebeur	Date: Time: Reinquished by:

serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. ICS. 1111S Intracted to other accredited laborato indu de subcol ō Ē recessery, samples submined to hall Envir

		www.hallenvironment	り 🩏 🛛 4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	D 66 0 ⁴ )	910/ses 910/ses 920/ses	н	2100 2100 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 103,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 10,1 149 100,1 100 100,1 100 100,1 100 100,1 100 100	BE 000 000 000 000 000 000 000 000 000 00	BTEX + MT BTEX + MT BTEX + MT TPH Metho TPH (Meth B310 (PUA 8310 (PUA 83310 (PUA 8081 Pestid 8081 Pestid 8081 Pestid 8081 Pestid 8270 (Sem CY au CY au													#= Remarks: #= Rep. 1, Work Row Mr	allalife
	r' T	ant:	due,	05-34	edue													X						À	Ļ
			Jauer		sis R																			Ż	Cist
	L S	lenvi	Albu	ш	naly:		i		S	lete	M 8 AADA													2	, ,,
	╏┛	v.hal	ЧЧ	975	A			(	IAЧ	or	AN9) 0168													Ŧ	与
-		M	¢ins ♪	45-3																				~	jer 1
_			Hawl	505-3		(10.0)																		10	3
			1901	Tel. {																				т Ч	-
9			7																					sema ₩	- ]
			_/		•													,:							
	ų		patrie - Oarp J	•			Jul	20th incord			e TEANO	. 1		1	1	1		2	2	2	2	2	2	Date Time	Date Time
Time:	🗆 Rush		WCSN	כ			whole	5		perature	Preservative Type	HC	Nove	NaOH	HNOZ	Nave	H,SU	HCI -	Nove	Nath	HN0-	Nove	H. SQ,	SI:01	
Turn-Around Time:		Project Name:	L	Project #:		Project Mana	XU	Sampler: K	Ondce 12	Cample Ten	Container Type and #	erov(এ)	(1) Andron	N Blu	male	(i) Poly	(1) Polu	( ) VOIL	(1) Amber	() Poly	2 Poly	[1) folut	(1) Polly	Reopiverby	Received by:
Def-Custody Record	Refinin Sathurt Inc		50 Read 4990	Bloomfeld NM	632-4/66	Ily, Robins on white when why Project Manager	ELLEVEL 4 (Full Validation)				Matrix Sample Request ID	GW EB 102808					$\rightarrow$	GW MW-SA					d d	Relinguished by: A.J. U.C. (LUUW	Time: Relinquished by Received by:
Ā	Se	JE C		g	5	2	ä			┝								_					-		Lee Re
Chaf	X	100	Addre	42		闔	ackag: lard		(Type		Time	2191						1730	_				7	15 Time:	Time:
ប	Client		Mailing Address:		Phone #:	email erfett:	QA/QC Package:	□ Other	DEDD (Type)		Date	0/28 8	-				$\rightarrow$	0/87/0					->	Date: DB/BA	Date:


		, S	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	()4) (1)4)	PCB's PO4,5C 50 22 23 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	** -H- 1085 9085 9085 9085 9085 9085 10 1)	T + 1810 1810 1.60 8 & 1.60 8 & 1.60 8 & 1.60 1.60 1.60 1.60 1.60 1.60 1.60 1.60	18E 004 4 01,11,110 01,11,110 01,11,110 01,11,110 01,11,110 01,11,110 01,11,110 01,11,110 01,11,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 01,110 00000000	ВТЕХ + М       ВТЕХ + М       ВТЕХ + М       ТРН Мейно       ТРН (Мейно       ТРН (Мейно       ТРН (Мейно       ВТЕХ + М       ТРН (Мейно       ТРН (Мейно       ВОВ (Мейно       80310 (РИА       80310 (РИА       80310 (РИА       8081 Резид       8081 Резид       8081 Резид       8081 Резид       82500 (VO       82500 (VO       82500 (VO       82500 (VO	X								Remarks: * = Refer to Work Plan for	audit le Cist. U	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Tum-Around Time:	□ Standard □ Rush	Project Name:		Project #:		Project Manager:		Sampler:			Container Preservative Type and # Type	(b) vonts HCl 3	3) Poly, HNO, 3	Nave	 1 Poly H, Soy 3	Na.OH .	HER HCI H		 	Ped by Date T DAD 10:15 - 1030 01	Received by: Date ' Time	cted to other accredited laboratories. This serves as not
Chai		Refineur	Pee d	field NN	Phone # ( 505) [232-4166	PUNTION	QA/QC Package:		G/EDD (Type)		Matrix Sample Request ID	12/28 060 GW FB 102808 (U					6W TB 102808-2 7			68 1500 Hulle Column	Date: Time: Relinquished by: Re	If necessary, samples submitted to Hall Environmental may be subcontra

Anal For Society Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And Control And C	Analysis Request	103 4 204.1) 103, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO3, NO2, PO4, SO4) 1, NO2, NO2, PO4, SO4) 1, NO2, NO2, PO4, SO4) 1, NO2, NO2, PO4, SO4) 1, NO2, NO2, PO4, SO4) 1, NO2, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2, PO4, SO4) 1, NO2,	TM + XЭТ8 TPH Methoo TPH (Methoo BOB (Methoo BOB (PUA BOB1 (PUA BOB1 Pestic C, T BOB1 Pestic												Remarks: W - P a C - Ho I Ahr Ha. Hr.		
Project #: Broject #: Capa Project *: Project #:		Project/Manager:)	Container Preservative Type and # Type	WORDS HCI S	() Amber None S	(1) Pdy None 5	 in Poly H, SOY 5	U) Poly NaOH 5	(b) 10 A H CI (0)	(1) Amber Nove	2 de le	\$ Poly HNO3 6	) Poly H, Say 10	Pold Na OH 0	Received by: Date Time Date Time	-	
Chan Distant Custody Record Client: Luestern Refinent Juc Elconfield Refinent Juc Mailing Address: 50 Read 4990 P	-411pl	email <del>or Eax#: Ke Jly . Kebin Son ( Whr. Com</del> Project ₁ Manage QA/QC Package: Standard	Date Time Matrix Sample Request ID	10/23/08/1442 (2m) WM-ZH (1				$\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$	ISTIGU MW-SZ (					× - ×	0/29/08 WTCU The Manual March March R	Relinquished by:	K necessary samples submitted to Hall Environmental may be subcort

atories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. 6 D, È IT necessary, samples sup

	Air Bubbles				<u> </u>				1			
HALL ENVIRONMATAL ANALYSIS LABORATORY www.hallenvironmental.com www.hallenvironmental.com www.hallenvironmental.com www.hallenvironmental.com www.hallenvironmental.com www.hallenvironmental.com atals 245-3975 Fax 505-345-4107 Analysis Request Analysis Request A												
Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Privals Pri				_								
YSIS LABOR YSIS LABOR Albuquerque, NM 87109 Fax 505-345-4107 (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)												
	OV) 80928 im92) 0728				-			_				
A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A COAD A		X	<u> </u>									
Albuquerque, N Albuquerque, ue, N Albuquerquerque, N Albuquerque, N Albuqu												
Alb visite	M 8 ARDA											
ANAL YSIS LABC ANAL YSIS LABC www.hallenvironmental.com www.hallenvironmental.com www.hallenvironmental.com od 504.1) Analysis Fax 505-345-41 atals Analysis Request Analysis Request Analysis Request Analysis Request	AN9) 0158											
AL 18 (1986) BC 108 C 19 C 19 C 19 C 19 C 19 C 19 C 19 C 1	TPH (Methodian) H9T (Methodian)											
ANAL ANAL ANAL ANAL ANAL ANAL ANAL ANAL				+								
											Remarks:	
	BTEX + MT										Rei	
Conce J												0 0
Ŝ ZZ	EAL NG	5									Time	1 L
Rush Robinson											Date	0 C Date
● Line	<u>ە</u>								/			
Lege Contract	servativ Type	_									v l v l	2
	Preservative Type	J L		/	$\Lambda$			a				
ecord Turn-Around Tim <u>ab</u> <u>u</u> t <u>E</u> standard <u>ab</u> <u>E</u> standard <u>ab</u> <u>E</u> <u>Standard</u> <u>ab</u> <u>E</u> <u>E</u> <u>Standard</u> <u>ab</u> <u>E</u> <u>E</u> <u>E</u> <u>E</u> <u>E</u> <u>E</u> <u>ab</u> <u>E</u> <u>E</u> <u>E</u> <u>E</u> <u>E</u> <u>E</u> <u>ab</u> <u>E</u>		G		1						1	X	
Turn-Around E Standard Project Name Project Mana Project Mana Sampler: A	Container Type and #	(2)16A		X							La contraction of the second	Received by
	то То	<u>r</u> ej		Д—							Rec	Rec
stody Record Southwest-luc Rectificent and 4990 41 kb 41 kb Cob inson Cunricon	st ID	2				$\setminus$						
K K C L L C L	anba	60										
Rec. Rec. A A A A A A A A A A A A A A A A A A A	le Re	9-60				$\cdot$					N or MI	ξ I
Southwest Southwest Southwest Diversion MM - Heb 41 eb Mevel 4 (Full Val	Sample Request ID	TB 102808				V						
		F										
Je for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for the for	Matrix	S									Relinduishey by:	Time: Belinquished by Received by:
	Time	$\overrightarrow{1}$		+		-	+	$\parallel$				
Chai Clark leve Mailing Address: Mailing Address: Mailing Address: Phone #: (Susting the standard Clark Landard Clark Landard Clark Landard Clark Landard Clark Landard								4-			Date: Time:	Time:
Chai Clark Land Clark Land Mailing Address Mailing Address Mailing Address Mailing Address Mailing Address Mailing Address Phone #: (Sub Phone #: (Sub email on Faw#: V Cavac Package: Cavac	Date		ŀ								Date	Datte:

rucal report. 5



If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Air Bubbles (Y or N) ANALYSIS LABORATORY U0CUL0U HALL ENVIRONMENTAL = Refer to Work Mars 0 X Medals 4901 Hawkins NE - Albuquerque, NM 87109 to avallate list. Fax 505-345-4107 X (AOV-ime2) 0728 www.hallenvironmental.com 17H- PROCRD Analysis Request +(AOV) 80928 Pesticides / 8082 PCB's 1808 (E'CI'NO3'NO5'EO4'204) snoinA **RCRA 8 Metals** Tel. 505-345-3975 (HA9 to AN9) 0168 (1.405 bodteM) 803 (1.814 bodieM) H91 (ləsəiQ\ssÐ) 86108 bortəM H9T Remarks: MTBE + TPH (Gas only) + X3T6 * (1208) s'BMT + 38TM + X3T8 RCRIA Investigation "Convod Time Time 9:20 10 29 no 2 3 3  $\mathbb{C}$ ŝ  $\infty$ 3 7 Kobius on Date Preservative C Rush HLD. 2051 42804 TPo2 2002 JH Type Sample Lemberance Se Mer Ĩ I urn-Around Time: Project Manager: Project Name Client: Western Refinity Southway Jule Standard 1) Amber Container (1) VOP3 Type and # (401/Z Sampler: 4 (z) Poly (1) Polis Project #: 1) Poly Received by (1)(2)(3)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)<l Recei anac Package: Kelly, Robinson C. Wr.con Level 4 (Full Validation) Sample Request ID Chai Custody Record MW-SI(DUP X-LX-LLUDA TB102808 「ちちちろう 9914-2801 ∑ 2 **UAH**^r email of Fax#: Krabitas tas nquished by Relinquished I 550 Matrix (Jac) Bleantield Bloomtie Mailing Addrespood Phone #: (Sos Aboqsi 128/9/1130 Time Deros (Type) Time: Time: Standard □ Other Date 8%22 Date: Date: l

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

	HALL ENVIRONMENTAL ANALYSTS LABORATORY	imental com	Jergue, NM 87109	505-345-4107			PCB's	-119	(40 (40	(AO) Mini-Vo Tulia	999 1808 982 1808 982 10 19 19 19 19 19 19 19 19 19 19 19 19 19		×	XX	X	X				Dr. /	- Phil		rdy notated on the analytical report.
		www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax		(ləs	o ssÐ eiŪ\ss	1) 1) B (G bH (	= + T 8015 504. ₽AH	Jarw Jack Jod Jod Jodr Jodr Jodr Jodr Jodr Jodr J	втех + I ВТЕХ + I ВТЕХ + I ВТРН Меt ТРН Меt В 210 (PN 8 210 (PN 8 210 (PN 8 210 (PN 8 210 (PN 8 210 (PN									Remarks:	Tetu To Worl w	CAN JANAMA	his serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
Turn-Around Time:	ter Standard 🗆 Rush		RCRA Investigation - Grage 2	Project #:		Project Manager:	Kellerkobiuson	Sampler Thac Pure	Dirice a NORE CENTROL		Container Preservative Type and # Type <b>70</b>	(2) VIALS MEDH 1	 		>vorths -	a mia medil y				Received by: Date Time To UPS	fe	E	DTes. 1
Chair - Custody Record	Client Schem Refinition Scothwast Inc	Refinen	24 4990	MN	Phone # ( Sos) 632-4166	email or Ferth: Kelly, Robinson Lung Con Project Manager.	QAVQC Package:		C EDD (Type)		Date Time Matrix Sample Request ID	0/15/pg/104/18/5071 (SWMU 18-2/28-29)	(1430 Soil Swaw 18-2 (18-20)		Wate TT3-10 508(2)	V Wath NeDH Blank-Hassel				B ISBO Chelled by:	Time: Relinquished by:	If accessor complete submitted to Hall Environmental way, he subm	

		www.hallenvironment	2 4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	( əs	PCB's PO4, S PO4,  (h (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2108 2108 2108 2108 2108 2108 2108 2108	111 112 112 112 112 112 112 112 112 112	ВТЕХ + М ВТЕХ + М ВТЕХ + М ВТЕХ + М ВТЕХ + М ВЗТО (РИ В3310 (РИ В081 Рез В270 (Ser No./ Сс. СС СС. СС СС. СС СС. СС													Remarks: Refr. to Wort Paus	to analyt lit	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	
Tum-Around Time:	the Rush	ne:	Imathytitien Croup	Project #:		Project Manager:	Kullobiusur	Sampler: Traces Parse	Onitester starves and marked to the	Sampleulenperatures and the second second	Container Preservative Type and # Type	(b) vons Hcl 1	(1) IL None 1	1) 100m H, Say 1	1) 25 auc No 0H 1	2) Sourd HND, 1	ULL Non 1	GUOND HCI Z	(1) IL Nove 2	Checourt 14.50; 2	-7	ML HNO.	Nau	<u> </u>	Received by Date Time	
of-Custody Record	Client Nestern Lohn	Fill & Repress	10490	Ma	Phone # (505) 122-4166	elly Pobi	QA/QC Package:     Image: Contract Contraction       Image: Contraction Contraction     Image: Contraction		CVEDD (Type)		Date Time Matrix Sample Request ID	10-01-081330 Wate EBW - 100108						10/1/8 1445 Welly FB-100108	_					yCours	Date: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laborate

									OL N	<u>ر ۲</u>	Air Bubbles	[]											1			<u> </u>	1
» ۲5	לי								A S	75	+ W					$\boldsymbol{\lambda}$								1			
0810075	ANALYSIS LABORATORY	l L			· · ·				70	m	Cya				X									]			E
8	Ē	l I						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00	1/	NOT		.,	$\times$													al repo
	김 군		109	~			*	oh	4.95								X							1			alytic
		E	M 87	4107					(AC	)∧-!	mə2) 0728		×											1		d	the ar
9		al.co	Ž	345-	Request	al i	079-1	Ho	44-4	(Ą	OV) <b>8</b> 0928	X	_							_				1		- <del>F</del>	ted on
ļ	Z	www.hallenvironmental.com	anbre	505-345-4107	Req	. !	s'809 g	280	8 / se	əbic	bitea9 1808													1	ć	3	y nota
		ironr	nbn	Fax	sis					N'IC	D, 7) enoinA														0	-	clear
i	Ξ×	lenv	٩I	ш	Analysis	77	P 09	'Z{	<b>3</b> s	1 <del>61</del> 6	<del>M 8 Aମ</del> 9ମ							$\times$						]	*	士	will be
		v.hal	щ	975	A			(	НАЧ	or	AN9) 0168														4		d data
			ins N	45-3		_		()	.408	ро	EDB (Meth													]	4	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	tracted
-		l	lawk	505-345-3975	3			()	.814	ро	hiem) H9T			4										]	-	- And	If necessary, samples submitted to Hall Environmental may be subcontracted to puter accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
			4901 Hawkins NE - Albuquerque, NM 87109	Tel. 50	19 2 1 1		_				TPH Metho														<u>د</u>	oundryth list	Any st
			49	Ť							rm + Xəta													Remarks	$\overline{\wedge}$		oitit√
			_~~		1. 	()	r208) e	'am	L + 3	38.	TM + XƏT8													Rer			possi
	l		Ч,																								of this
			Muchrather-6Roups				i				n o b													Time		Time	notice
÷			<b>.</b>								EEAL 100												ļ			5	es as
			لح ا				کر	Ż			開発	$ \gamma\rangle$	$\sim$	$\mathbb{N}$	$\mathbb{N}$	m	M	7						Date		Date	is ser
			t's				oburgu	d'une															1			$\sim$	ss. Th
	Rush		Ĩ	0	)		Je l				Preservative Type		रे	Ĉ	μ	S.	い	4		Λ						C/	oratorie
			B			$ \langle$	$\mathcal{S}$	3	es	e E	servat Type	HC	Nove	HSOU	Nuch	HNO3	202	뇌		/						10/2/01	ed labo
Time						ger:	ly	ß	0	e a	Pre.	4	2	1	2	Ŧ	2	-1							2		credite
Turn-Around Time:	dard	Project Name:	RUDY			dana	$\rightarrow$	$\nabla$		Sample Tempe	ler d #	Ð		2	المل	٦٣٢		A5							UP	×	their ac
-Aro	Destandard	SCT N	a	# 30		N N	$\sim$	pler:	8	blea	Container Type and #	20	۲	8	کحک	ß	1	Volgs						d bev		and beau	d o bt
Turn	Ľ	Proje	Å	Project #:	1		T	Sampler:	On los	Sam	Typ Co	SHON(A)	3	(I) LOON	Classe	(z) soon	11 (D	3						Received by:	f	Received	Itracte
<u> </u>						obinson Cunr. Conject Manage	 2	L	1.971.914	20141											<b>1</b>	┨		7			subcoi
ġ	Salling	-	So Lead 4940	5		3	Level 4 (Full Validation)		1 1		Sample Request ID	ഗ						စ		Í				1	>		ay be
- IS	H.	J	Ğ	Σ 2	2	5	Valic				due	0						0							2	I	intal m
Re	Š	G.		-0	71160	5	Full				Re	8		_			ン	8						-	3		- Longe
<u>&gt;</u>		Å,	م	6	1	ه	1 4 (				nple	7						2						-	ng		all Envi
Ő	L'IL	2	2	Ű	632	പ്					San	EBS -100108						T12122 10010 8			N			N.	V	7	1 to Ha
ust	ي بن	دا	0	angel	ف	۲ ۲	- 3			ŀ									-		$ \rightarrow $	<b>\</b>	<b> </b>	Relinguisher	Z	Relinquished b	mitted
Q	Ž	Ŷ	5	BI	r	5					Matrix	Wall					1	Wate					A	in the	3	Iquist	es sut
Chai Custody Record	ş	Bloomfield		ι I	3	Y					Σ	3					7	3				$\mathcal{T}$	1	Reli	Ň	Reli	sampl
	15	0	lress	J	5	剩	(age: J		rpe)_		Time	8					<u>ب</u>	)				/		2،	2	ö	ssary,
Зĥ	K	M	) Adc		#:	¥	Pac ^l Idar(	er	Ē			Ţ	-										₩-	Time:	<u></u> <u></u>	Time:	lf nece
0	client. Wesken ReGiniu	ł	Mailing Address:		Phone #:	email of Fax#	QA/QC Package:	□ Other	Type)		Date	11/2 Ha					ト			$\left  \right $			ľ	ie.	Q		[
	0	i	Ϋ́,		<b>a</b>	e	0 6		Þ			10	ļ					'		•				Date:	5	Daté	

Hall Environmental       BCRA & Metals       V0.4 (1)       Model	
ADD BODD W KNOLD W	
A Webally A	
₹ 2 § ku (musi) ku ×	
$\mathbf{S} = \begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{S} & \mathbf{z} \end{bmatrix} $	5
X     8260B (VOA) + TPH-CAD X       X     8260B (VOA) + TPH-CAD X	6
K       RCRA&Metals       N02/No1         SIS       Laboration       Briticon         Sission       Sission       Sission         ssion         Sission       Sission       Sission       Sission       Sission         Sission       Sission       Sission       Sission       Sission         Sission       Sission       Sission       Sission       Sission       Sission         Sission       Sission       Sission       Sission       Sission       Sission       Sission         Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission       Sission <th< td=""><td>2</td></th<>	2
All L       EDB (Method 504.1)       Mall SIS       Hallenvironmental         NALYSIS       B346 (PNA or PAH)       Method 504.1)       Mall SIS       Mall SIS         NALYSIS       B3676       B3676       B305       B305       B454         Nalysis       B6681 Pesticides / 8082 PCB's       B65.345 45       Malysis       B6681         Nalysis       B6681 Pesticides / 8082 PCB's       B6698       Malysis       B6685       B6698	n Wort Man
JA E H S A Poto W (HAA 10 ANG) 01 CB	× €
<b>HAR</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b>	
₩ Hother (N.814 bother) H9T	F
A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A       A	Z
	er Fe
	12
Turn-Around Time: Turn-Around Time: Project Name: Project Name Project Manager: Project Manager:	9.35 Time
	Date
OLE CLETER Partie	6
Time: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline: Iline:	9
HILDH DH RECT HERE STREET IN THE INTERNET	
Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Project Name: Project Name: Project Manage Register Transmission of the Standard Multiple Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission of the Sample: Transmission	
Turn-Around Turn-Around Project Nam Project	Received by
	Rec
Listody Record Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Turn-Around Tur	
stody Record with Surfuent Inc De thuest Inc De thuest Inc Scard L1990 Labor Lunc, 1 Med H Slaut - 1014 Med H Slaut - 1014 T13 - 101409 F13 - 101409	$\leq  $
	KUNUN
dy Re files and A fruit North Re files	7
	<b>S</b>
ustody Recording Recording Record La Dullaned Record La PUNA Recard La PUNA Recard La Palla Revel 4 (Full Valide Meo H Blouk - TB-101408	
	XX
DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cust DF-Cus	Relinquished by
Inantific Custody Record       Icestern Refinit     Substrated       Bloomfield     Red Hured       Address: SD     Read       Bloomfield     NMA       Bloomfield     NMA       Bloomfield     NMA       Package:     Efficient	
Cha Lime Time Time Time Time Time Time	
Client Uesteur Leftwir Client Uesteur Leftwir Aailing Address SD Ro Phone #: [Stachteld Phone #: [Stachteld P	8
Client Uest Client Uest Mailing Addres Phone #: C Standard Date Time Date Time	Date: Time:

other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. 2 eressaly, s

HALL ENVIRONMENTAL	. 1	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109		Analysis	(†() (†() () () () () () () () () () () () () (	248.00 269i 260 261 260 261 260 261 260 261 261 261 261 261 261 261 261 261 261	н (( (Ga ))) )) )) )) )) )) )) )) )) )) )) )) )	11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 11 11 + 1		TTM - - - - - - - - - - - - - -	н н н н н н н н н н н н н н						×			Remarks: Refer to 112 to 102		serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
	the standard Cush		KCCM MUCTIFATAL-UCUP 2	Project #:		A Project Manager.	delle forman		Oaripter. Oarice AixOxes Cherryno	Sample temperature S		Type and # Type <b>Type</b>	(c) was HCI 5	(1) IL Nous 5		HNOS	H, 507	HORN March			Received by: Date Time	Date	edited laboratories. This
Charter Di-Custody Record	Western Kething Dorthurst-luc	bloonfield Refinent	Mailing Address: SO Roud 490	5	Phone #: (50) (234166	email or Farth. Kelly, Kobiwan Cwur, Can	QA/QC Package: I Covel 4 (Full Validation)		U EDD (Type)			Date Time Matrix Sample Request ID	10/14/08/14/5-10/2401 EB-101409					^ ^ ^ ~			 0/14/08/1500 A eller Aleunu	Date: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accr

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tei. 505-345-3975 Fax 505-345-4107	Analysis Request a second second second second second second second second second second second second second s	(†0 *** (†0 *** (†0 **	208) s 10 250) 20/1 10 250) 10 250) 10 250 10 br>10 250 10 10 10 10 10 10 10 10 10 10 10 10 10	э с 3085 1) С 1) С 2 1) С 2 1) С 2 1) С 2 1) С 2 1) С 2 5 1 1) С 2 5 1 1) С 2 5 1 1) С 2 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	1 + :: 1 + :: 1 + : 1 + :		Алекски ВТЕХ + МТ ВТЕХ + МТ ВТЕХ + МТ ВТЕХ + М ПРН (Мећћ ТРН (Мећћ ВОВ1 Резці ВОВ1 Резці ВОВ1 Резці ВОВ1 Резці С ЧОМ С ЧОМ С ЧОМ	×		x = 2					X	X				Time Remarks:	ACH WELTS	100 analyte list
		al.com	s, NM 8	345-410	Jest .	<u>o</u> X	1089-	Ha				<u> </u>	X			X	$\mathbf{X}$								<	}
		nenta	erque	505-3	Requ	5	PCB's	2808	3 / Se	eide	itead 1808			ł										1	(I	*
		ironr	nbne		/sis	(*0	S.404	10 ⁵ '	1 ^{,6} 01	N'IC	), <del>1</del> ) enoinA														د	Εí
	Ξ×	llenv		ц	\nal}	<u>کر</u>	JN/7	705	<b>∕</b> s	<del>lo}</del> ə	<del>M 8 Aମିଚ</del> ମ											X			4	; 古
-	<b>Z</b>	v.ha	Щ	975	-	Y T	mm	<del>بر</del>	ľøđ	-10-	<del>VNU) 0158</del>					• • • • • • • • • • • • • • • • • • • •					$\times$				-	ど
		Ŵ	cins l	45-3																		]			4	<u>)</u> .)
-			ławk	05-3	 																				,	いや
		Ŀ	01 F																	_				S:	0	5-3
			46	F																$\square$				mark	A	ΪŹ
		<b></b>				()	.208) s	.8M	上 + : [a.set]8	18E	BTEX + MT												$ \square $	Rei	• 	
	Rush		pation Group 3		1		Dinson	Parne			ive 世纪 必必		1	- 1 1	1			- 1	-5	H - 4	}	4 - 4		Date Time		10/16/08/1020
Time:		ä	cati	7		ger:	Y	Tracy	Xrest	perature 9	Preservative Type	Meoth		HCI		JH	Nove	HNOZ	HNO,		Nore	HISO	,		L L	nn U
Tum-Around Time:		Project Name:	1 RCRA INV	Project #:		Project Mana	Å	Sampler:	On Ice 🚬 🗙	Samplestem	Container Type and #	LEDVIN.	(rz)402	(U) VDA	שועקש	(C) VOQS	U) IL	Let I	[m052 ()]	11722011		mon		Received by:	10/61	Recorded
Chain Custody Record	Clight estern Refinity Southurst In	J		Bloonfield, NM	Phone #: (505) 1032-4166	email or Fax#: 1/elly. Robinson Cunrfor Roject Manager	QA/QC Package:		Type)		Date Time Matrix Sample Request ID	/15/18 1015 Soil SUMU 2-6(13-14	$\rightarrow$	1 Water TBLOISDB	V - MEDH NeDH IJauk-104708	Pleagene Water FB-101508								Time: Relinquished by:	8 1500	Date: Time: Relinquished by: U

					5						Air Bubbles	7						T	[		r		Γ-		
9	.≻						1			Ñ	120N							$\mathbf{x}$						-	
0810326	R A						*h	ÞS.	m	ion	n mos						X						1		741
18	ĒĔ	, 1					<u></u>		0	P	mohy	···.				X							1	1	$\square$
			109		*.					.)	SLOT-SM	<b> </b>		X	X									1	8_
		ε	187	1107					(40	0/-	ima2) 0728		$\mathbf{x}$					[		1	[		1	1	$\langle \rangle$
į		al.co	NZ Z	345-4	lest	Ø	र पम्	দিন		- (\	9260B (VO	X												1	5-6
	× _	nenta	anba	505-345-4107	Request		PCB's	280	8 / s	səbi	oite∋¶ r808														r is
	HALL ENVIKONMENTAL ANALYSIS LABORATORY	www.hallenvironmental.com	ndne	Fax	lysis I	(*C	− S(₄Oq	10 ⁵ '	V ^{'°} C	)Nʻl	O,∃) snoinA	′													
	ヨア	lenvi	dIb	ш	naly				ę	slet	9M 8 AADF													1	5 E
	ANAL	v.hal	ч Ц	975	A.			(	H∀c	l 10	AN9) 0168	2													32
	₹ Z	- MM	ins N	t5-3(	8			()	.40	g po	EDB (Metho														aual
•		•	lawk	505-345-3975				()	.81	<b>4</b> bo	TPH (Methc													The Plan	ୁ ନି
		-	4901 Hawkins NE - Albuquerque, NM 87109	i. 50		( əs	səi <b>O</b> \26	ອ) ຄ	1910	)8 F	rpH Metho													] ij 🕺	
			49(	Tel.		(մյս	၊၀ ဧ၅)	) Ha	IT +	BE	TM + XƏTE													Remarks:	2
				<u> </u>		(	s (802۱	9.8M	L +	BE	TM + XƏTE													Re Re	
	ł		പ							NAMES OF TAXABLE															
			Court	Ļ								$\langle V \rangle$		N	Y	N	m	5						Time	Time 102
			Ľ				۲						,	,	•	3	1	)							6
4			1				く	1											$\wedge$					Date	Date
			à		1		R	X											$\square$						10
	Rush	-	à	>			Shido	þ		$\sim$	Preservative Type			~	<u>ل</u>	$\mathbf{r}$	ລ		7	$\setminus$					
			る			$\langle$	J.	3	e S	ulte	servat Type	HC	Nove	H ND2	2	NaOF	Pue	H, SQ							$\left  \cdot \right $
i urn-Arouna Time:			IMA			ger:	5		X	etat	Pres	H	Ž	Η	H	Ž	2							d d	T
nna	lard	Project Name:				Project Manage	-		Texa	ion i	ler d#	Ś		۲	7			250ml						1 -	× ×
-Aro	D Standard	ect N	<b>子</b>	∍ct #		sct ⊾	X	pler:	Ð	ple	Container Type and #	>VOAS	1	<b>A</b>	50	Ë	7	2S						1	Ved by
i urn	a a	Proje	KURH	Project #:		Proje	$\mathcal{T}$	Sampler:	<u>on to</u>	Sam	Typ. Coi	3	F	(2) some	(I) zsom	mase()		$\overline{(}$						ALK.	Received by
									2246	+7.2.	0			_		<u> </u>									
ġ	U					Cobind BARUNII Can	Crevel 4 (Full Validation)				Sample Request ID														
ğ	H H					ンちく	Valid				ane	80												ر ا	
Sec.	5	OR fuer	90	•	.0	QU	Full				Re	EB-101508		-			_	$ \rightarrow $						3	
ž	Hun	fu	뒤	M	lal	Ø	14 (I				ple	01						-						NN	
0q	J S	S		NM	5	<b>N</b>					Sar	6												Æ	<u> </u>
lst		Ċ,	Å	-0	dolth-650	Ì	7																	No Participation	ed by
ភ្	1 1	7	S A	Geld,		ż					Matrix	Water													Relinquished by:
Chain Custody Record	Meeten Refinie Softwart lic	Bloonfield (	Mailing Address: SO Rad 4990	Blamf	J	email or Fath: Kelly					Ě	<i>V</i> ^{<i>u</i>}						7						Relinquis	Time: Relinquished by: Received by: To Date Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time " Time "
line		À	ress	8	SOS)	メー	age:		pe)_		Time								$\square$					" A	
,ha	N N	B	Pdd	a)	₹ #	ſĒ	Pack dard	μ	T I		Ē	13						7						Time:	Time
S	enti	5	iling	-	Phone #:	ail o	QA/QC Package:		CALEDD (Type)		Date	15/08 1130						>						Date: Time:	ω
	J.		Ma		Ĕ	en	8 🗆		Ð		<u> </u>	5	•					7	7			N		Date: USTo	

HALL ENVIRONMENTAL	www.hallenvironme	UP 2 4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	(ləsi	(Gaş o PCB' <u>s</u> رلدوس	HgT (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	100 100 100 100 100 100 100 100	ВТЕХ + МТ         ВТЕХ + МТ         ТРН Мећлос         ТРН Мећлос         ТРН Мећлос         ВТЕХ + МТ         ТРН (Мећлос         ВЗ10 (РИА с         ВЗ260В (VO)         ВЗ260В (VO)	×							×			X	Remarks:	Time NC/U JU WORI WW JUCHWART	N List. V
		۲ א	Te																	 	2	8
Turn-Around Time:	-	ruly investigation - Coup.		pject Manager:	Lellebium	Sampler: Traud Rayne	Sample temperature <b>at a</b>	Container Preservative Type and # Type	VIALS	(2) ENLONC 1	2)4.2	(b) why 2	(J).IL Z	2) spart HNO, 2	(1) 250ml H1204 2	-	With Na OH Z	Z)VOAN HCI 3	CIVINIC MEDH 4	 To UD Date Time	Received by Date Time	10,28 10,2
Chair F-Custody Record Tu			Phone #: 1575 1032 -111.10	Kelly, Robins	QA/QC Package:	D Other Sa		Matrix Sample Request ID	130/08 1336 5016 SWMU 2-10/13.5-14/2)VIALS			1 1430 Watchwww 2-6Gw (6)		(κ) 				1/31/8 Waden TB (2) 69200 5 (2)	V MeOH MeOH Blank (3)-09306B	10/1/08 ISTON THE RELIGUED REG	Date: Time: Relinquished by: //	

	F 🔍	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	, 2Ο ⁴ ) (ləsə (lasə)	PCB PO4,5 PO4,5	2 н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1418 1504 1504 1504 1504 1504 1504 1504 161 1504 161 161 161 161 161 161 161 161 161 16	BTEX + MTE BTEX + MTE BTEX + MTE TPH Method TPH (Method B310 (PUA o 8310 (PUA o 8310 (PUA o 8310 (PUA o 8250 (YOA 8081 Pesticid 8081 Pesticid AOV (Semi-) Cycuid Cycuid Cycuid Mod Au													Remarks: * Refer to Work Planton	Andryce	
Turn-Around Time:	🗹 Standard 🗆 Rush		INVESTIGATION COROLS	Project #: 0		Project Manager:	Kelly Kobinon	Sampler: Tracy Edyn		Type and #	(6) 1045 HU 5	(1) IL Nove 5	1) though Nove 5	(i) ZSom NaOH 5	HNDZ	-	E)VOAS HEL 6	(1) IL Nove 0	() soul Nove (	) ZSOW NADH U	-	1 H, Su	Leon Leon	Received by: Date Time	the monotopic This manage
hait f-Custody Record	Inc	annhuld Refinen !!	4990 '	M	Phone #: ( SDS-) (032-4166)	Kelly, Robinson@wnr.com	QA/QC Package: • • • • • • • • • • • • • • • • • • •		🗹 EDD (Type)	Date Time Matrix Sample Request ID	1/30/08/15/5 Water EBW -093008 (6						7/20/08 (520 Water Fiz - 09300 8 (6)						Kounpur	Date: Trime: Relinquished by. Re	If nercestry camples submitted to Hall Environmental may be subcontraded to

deany notated on the analytical report. g 3 יווא יויר יווי end ein 5 101169 ובווושו ווושל הב אתהתיווושרובה וה הווובו שהרובחיובה ושחה ū La brothing southing " Andra

Pall ENVIRONMENTAL         Pall ENVIRONMENTAL         ANALYSIS LABORATORY         Www.hallenvironmental.com         PZ         PZ         PZ         P2         P2         P2         P301 Hawkins NE - Albuquerque, NM 87109         Tel. 505-345-3975         Fax 505-345-4107         Analysis Request	BTEX + MTBE + TMB's (8021)         BTEX + MTBE + TMB's (8021)         BTEX + MTBE + TPH (Gas only)         TPH Method 8015B (Gas/Diesel)         TPH (Method 404.1)         EDB (Method 504.1)         B310 (PNA or PAH)         B310 (PNA or PAH)         B8310 (PNA or PAH)         B9310 (PNA or PAH)							Time Remarks: & Work Place by
Turn-Around Time:	Project Manager: KULDbiu JOU Sampler: Tracy Payne Sample: Teamperative Type and # Type ONNO	(6) VOAD HCI 7	) Stoul	U) Sourt Nove 7		Nale	Me0H HCI	Received by: To UPS Received by: Received
Chai F-Custody Record Tu Client Western Rohmert In B Bleen Rohmert Refinent Pri Maling Address: Pered UPPOD Stopm field NM Pri	Package:     Package:       Package:     Churchon       Package:     Churchon       Idard     Churchon       Package:     Churchon       Idard     Churchon       Package:     Churchon       Idard     Churchon       Package:     Churchon       Idard     Churchon       Package:     Churchon       Image:     Churchon       Time     Matrix       Sample Request ID	130/08 1545 Warter EBS-093008 (6)			22/08/1620 Soil Swm1 2-7(13,5-14,12) VIAN		10/01/08 MedH Blank (1)-100/08 (1) VIA	Date: Time: Relinduisped by Bac

HALL ENVIRONM	ALYSIS LABORA	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	به (۲ ₀ (Jəs (آباu	o 285) 9i0\26 2:809 2:809 2:00 2:00 2:00 2:00	ч С 2 8082 8082 8082 8082 10 10 10 10 10 10 10 10 10 10 10 10 10	• • • • • • • • • • • • • • • • • • •	11 10 10 10 10 10 10 10 10 10	BTEX + N BTEX + N BTEX + N BTEX + N TPH (Met BS10 (PU, 8210 (Ser 8260B (V 8281 Pesi 8270 (Ser M CU CU CU CU CU CU CU CU CU CU CU CU CU							×	×				Remarks:	- Keta to Work May Pa	Phallyfe Uist. "	notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
Turn-Around Time:	🗹 Standard 🗆 Rush	Project Name:	KURA Investigation - Woup C	Project #: O		<b>Braje</b> ct Manager:	Helly Robinson	Sampler: Tracy Payne	Outloo surviva da Vederar Envortantes Services da services da ser		Container Preservative Type	(b) VOB> HCL x 11	(1) 11 Nov- 11	(c)soul HNO3 11	(1) court NaOH 11	(1) 2004 Hyjoy 11	_	EDVIALS Meat X 12	Blue Nord 12	el , zohoz	BVIBLS MEDI- 13	2) Energe Nore 13	Received by: Date Time	IOUL Date Time	10:25 10/2	
	Client Western Refining Sathwat In				Phone #: [ 505) (632,-4166	emailer Farth - Kelly, Kolanson Clunr & Baged Manage	QA/QC Package:				Date Time Matrix Sample Request ID	1/2/02/13-15/Wata SWMU2-7GW					+ +	1011/00 0055 Soil Swm2-8 (13-13.51) 2) VIALS		~ ~	10/1/08 1115 Spil Sumuz-9 /13.5-14		Relinquished by	Date: Time: Relinuished by:		If necessary, samples submitted to Hall Environmental may be subcontracted to other correctiend laboratories. This serves as

		4901 Hawki	Tel. 505-345-3975 Fax 505-345-4107	Analysis	(ləs (ləs	€ 00 2850)	к - Л - D - D - 10 ⁵ - 10 ⁵ - 10 - 1 - 10 - 1 - 10 - 1 - 10 - 1 - 10 - 1 - 10 - 10	T + : 3310 .814 .814 .403 .814 .403 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .814 .8144 .814 .814 .814 .814 .814 .814 .814 .814 .814	2004 2000 2000 2000 2000 2000 2000 2000	RTEX + MT       RTEX + M       RTEX + M       TPH Method       TPH (Method       RS10 (PUA       RS10 (PUA       RS10 (PUA       RS10 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       RA310 (PUA       <								Remarks: P.C. J. White Place tor analytic	$\bigcirc$
Client: M. Custody Record Turn-Around Time:	Project Name:	lapph	Project #:	Phone #: (SOS) 632-4166	email or Fax#: Nellin, Robins Project Manager:	QA/QC Package:		EDD (Type)     Ordice     EDD (Type)		Date Time Matrix Sample Request ID Container Preservative Type Type and # Type	16/1/8 09/5 Water Swmv 2-BGW (b) VOAS HCI HCI			F				R	Date: Time: Relinquished by: Received by: Date Time 10705 4-6/2/03

		www.hallenvironmental.com	て 4901 Hawki	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	( ₽SG ( 1)	o seĐ)	1085 1085 1085 1075 1075 1075 1075 1075 1075 1075 107	1 + 1 .810 .403 .814 .403 .814 .601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .81.601 .8	8 b 2 b 0 4 8 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Market Construction Market Co									Time Remarks: Ref. H. (1) L. D.	108 For cucleye list.	is hotice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
			1109	07		X	(m)	1	7	)/	Oller and		$\times$	 							) •	analytic
		com	NM 8	5-41	st				(AC					 	 	 			 	Ċ	$\frac{1}{2}$	on the
Ì	žS	intal.	lue, l	5-34	anba			700						 						a	- X	otated
	<u>&gt;</u> ເນ	nme	tnerc	x 50										 	 	 			 	د		early no
	L S S	nvird	Albuc	Fa	alys		3 00								 				 		の子	ll be c
		halle.	і ш	75	An			(						 	 	 			 	~	2 J	data wi
	ŻŻ	MMM	ns N	5-39				()	·Þ09	; po	EDB (Weth					 			 	4	) <u>र</u> ्	racted
-		-	awki	5-34	••			(1	.814	, pc	TPH (Metho							٨		-+	- 0	b-conti
			01 H	el. 50																	P	Par si
			49	Ē										 	 	 	_/			A mark	· -+-	
					• •	()	208) s	.8W	上 + : [225]	38. 77	TM + X3T8			 $\wedge$	 	 		-+	 			is poss
me:	C Rush		RCRIA Inneshiption - Grap Z	0		er:	Zdurr	4 Run	vies de montes de la	rameter -	Preservative Type	Nove 14	Nord N								10.25 1N/s	edited laboratories. This serves as hotice of th
Tum-Around Time:	Standard	Project Name:	RCRIA (IN	Project #:		Eugect Manage	Lelly	Sampler: Tro	On tee Tage	Sample Tempe	Container P Type and #	(ד) ור	(1) soure							Received by UP S	Received by	ntracted to other accre
/ Record	Client: Client Coline Collynsh Vstandard	freed	and 4990	Bromfield NM	(202)	email ar Forth, Kob in Don Cun Project Manag	:eD		Cutopb (Type)		Time Matrix Sample Request ID	- Weter Swin' 2-8640								Isou Relinquished by: ISOU Okelly Jawww	Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as hotice of this possibility.
0	Client:		Mailing		Phone #:	email o	QA/QC Packa		L KDE		Date	516 80-1-0	$\rightarrow$							ø	Date:	=

Hall ENVIRONMETAL         Hall ENVIRONMETAL         AnalySIS LABORATORY         www.hallenvironmental.com         4901 Hawkins NE - Albuquerque, NM 87109         Tel. 505-345-3975        Fax 505-345-4107         Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel) TPH (Method 504.1) EDB (Method 504.1) 8310 (PNA or PAH) RCRA 8 Metals 8310 (PNA or PAH) 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8081 PCB's 8081 Pesticides / 8081 PCB's 8081 Pesticides / 8081 PCB's 8081 Pesticides / 8081 PCB's 8081 Pesticides / 8081 PCB's 8081 PC												Remarks:	Actu to vor 1
Chai     F-Custody Record     Ium-Around Ime:       Client:     Weskey Repuir     Repuir       Client:     Weskey Repuir     Repainded       Bloom     Project Name:     Reprint       Mailing Address:     Deal     Upper       Phone #:     Soot Ja2-41bb     Project #:	email of Fax#. Kelly, Kobindor Eum.c.project Manager: OA/OC Package: Date Time Matrix Sample Request ID Type and # Type Open Sample Freservative Trace Regioned from the Preservative Trace Regioned from the Preservative Type and # Type Open Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Sampl	129/20/1645 Water Juma-3.Gw (b) vac HC/ 1	(I) IC Nove 1	(a) (2 stant (4) NO2 1	I WILL I	(1) (am (~ Na 0 H 1	1 1 1 1 (1) (1) (1) 1	1700 Water FB-092903 (6) 104, HCJ' 2	11 Nore	(G) 125ml HNC3 2	Nove	/ J J L IDUNI H. SDU	Time: Relinduished by: Received by: To UPS Date Time 8 1500 Wully Kaluison To UPS	Date: Time: Relinquished by: Received by: Date Time Actua TO WOL TO MOL

ADDATE AND A CONTRONM TAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH (Method 8015B (Gas/Diesel) TPH (Method 504.1) B210 (PUA or PAH) RCRA 8 Metals B310 (PUA or PAH) B310 (Semi-VOA) B320 (Semi-VOA) Cen Cucuristic MD, / V is Anions (F, CI, NO ₂ , PO ₄ , SO ₄ ) B320 (Semi-VOA) B320 (Semi-V	т							Remarks: Refer to Work Plan to availing List.	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Chair F-Custody Record Turn-Around Time: Client Western Reprint Control of Machine Project Name: Phone #: (505) (032-4104 Phone #: (505) (032-4104	reax#:	With TB (3) -092908 (2) VOAD HCI	1/2-1/66/415 Soil SUMUZ-2(13.5-14.0') (2) VIALS MEON 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H CI Nore	(1)28ml Nove S	V V V V V (i)lower H2 Soy 5 1 165 Soil Swmu 2-3(12514) (2)VIR MEDH U	V (2)407 Nour	Date: Time: Relinquished by: 30/08 / 500 Xulleconu To UP3 Date: Time: Relinquished by Received by: Date Time	If necessary, samples submitted to Hall Environmental may be subcontracted to wher accredited laborationes. This serves as notice of t

	AALL ENVIKONMUTIAL ANAI YSTS LABORATORY		E - Albuquerque, NM 87109	75 Fax 505-345-4107	Analysis Request			Ч.280 Ч.280	; N, _E C 8 \ 8 (A(	oV.,I: oV.,I: A)	AP(4) 0168 P(4) 0168 P(4) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7) 2000 P(7)	$\chi$								a to Work Plan Jo cuery & hat	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
			4901 Hawkins NE	Tel. 505-345-3975		(ʎju	o seé	) (Ga H (C	77 + 821( 1.81	98 q 9 8 q	BTEX + MT BTEX + MT TPH (Metho TPH (Metho GEDB (Metho					 				Refer to 1	possibility. Any sub-contract
	🗆 Rush	-	vertigetion - Croop ~	2		ger. 🔿	lekobiner	he Dougo	ter ter	erate as a 2 second second	Preservative Type					1		Data Time	2	Date Time 10107 1000	
I UIT-Arouna I	Le Standard		KCKA INM	Project #:	1	Project Manager	D'X	Sampler: 10	Onlice a	Sample liemper	Container Type and #	TUINI						Baceived hv:	200 gr		intracted to other ac
Chai T-Custody Record	Western Refinite Daythwest In	Boon field Refinen	1 (Joph P	NM	-)632-4166	PUNCON		Ma Level 4 (Full valuation)				Wath Me0 H(3) 092908						Relincuitshed hv. A	Lelenn	Relinquished by: }	If necessary, samples submitted to Hall Environmental may be subcontracted to other Accredited laboratories.
Chai	nt: Weste	19	Mailing Address:	ക	Phone #: (SDS	email <del>or Fax#:-</del> k	ige:	Dither	Z EDD (Type)		Time	1		 				Time.	1 200	Time:	lf necessary, sa
	Client:		Mail		Pho	ema			, m		Date	7/29/08						Date	30/08	Date:	

HALL ENVIRONMETAL	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Requ	PCB's PO4,5O4) PO4,5O4) PO4,5O4) Postoniy (Gas only)	2 Hot 2 Hot 2 Hot 2 R082 2 Hot 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 ) 1 )	2 2 2 2 2 2 2 2 2 2 2 2 2 2	ВТЕХ + МТІ ВТЕХ + МТІ ВТЕХ + МТІ ТРН Меthod ТРН (Меthod ВЗ10 (РИА d 8310 (РИА d 8310 (РИА d 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250 d 8260B (VOA 8250 d 8260 d 826 d 82 d 82 d 82 d 82 d 82 d 82 d 82 d 82	×						×		X			Remarks: * Odion the White Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Photo Pho	i allow the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the seco		this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Client: Western Certinity Sathwest he Standard Rush	Yetheny 4990	Bloomfuld NM Project #:	Phone #: (SOS) 632-41106	email o <del>r Fax# Kelly - robin Son &amp; won . cou</del> Project Manager: QA/QC Package: Standard		Val EDD (Type)     Onloce     Value       Sample lemberature     Sample lemberature	Date     Time     Matrix     Sample Request ID     Container     Preservative       Type and #     Type     Type     Oxf000000000000000000000000000000000000	MeDH	[1] (2) Euch Nove S	 1 OGO Soil SUMNZ-4 (4-14,5-) DUP(2) VIALS ME OH 9	Nore	V V V V2 V G	120/08 - Water TB W-09300 B (2) WAS HCI 10	(10/08 - Mr. DH MEOH Blank (1) - 03:08 (2) VIAL 11	1000 Water Swmuz-4 Gus (6) VOA, HCL 12	Ξ	1, (2)500L HN0, 12	VV FUL NOW 12	9450/6 1540 X, MUMAA To UPC Date Time	Time: Received by: Received by:	101 Ca/1/01 X	If necessary, samples submitted to Hall Environmental may be subcontracted toothen accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

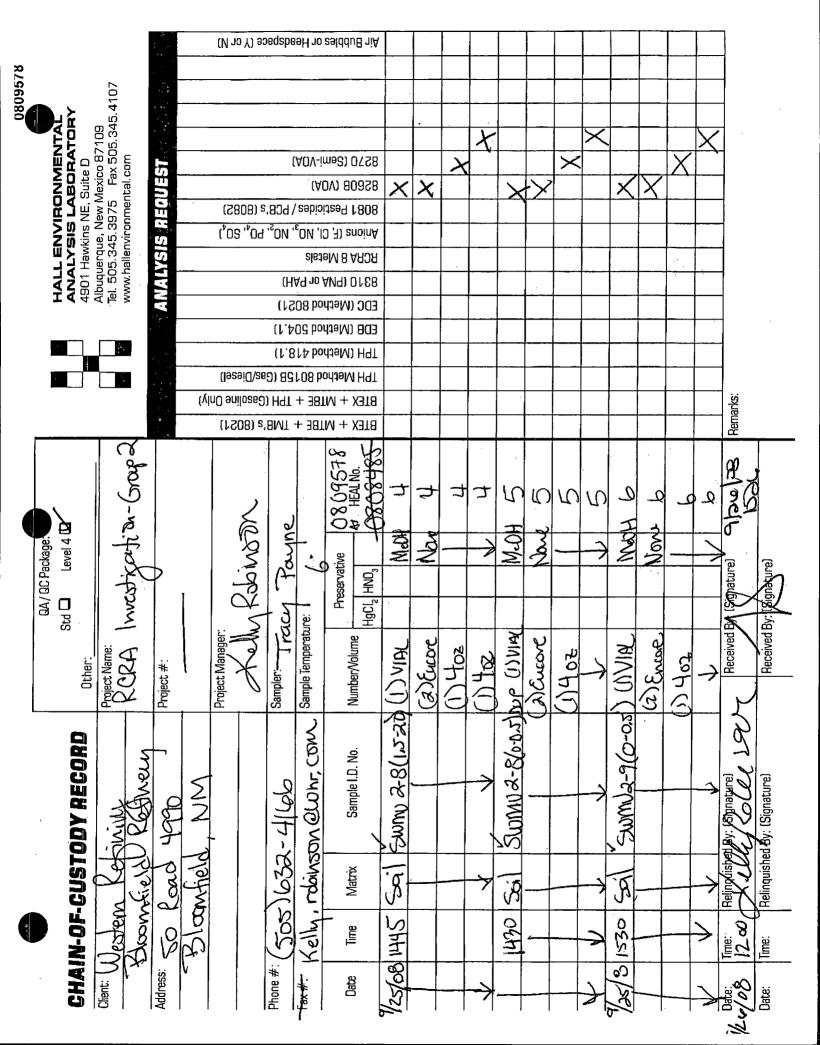
) 2

		4901 Hawkins NE - Albuquerque, NM 87109	10		(γlno ɛɕá (l∋ɛ∋iū∖ɛ (⊧O2,⊧O	о) Н (Ga ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) )	HT + H38f( F.8f F.40i HAG N ₁₆ C S N ₁₆ C		Aric Bubbles								Remarks: D.J. H. W. D.C.		A rough of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Chai Custody Record Lum-Around Lime.	J'IN'M Sochward IL	old Refinery RCRA Invertigation - Group	Bloowfie	Phone #: (505) (23-4160	# Kelly	1 Pari	Type)	Sample temperature Structure to the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	Date     Time     Matrix     Sample Request ID     Container     Preservative     And to the container       Type and #     Type and #     Type     Type     Type     Type	130/08 11060 Water SUMU 2-40-40 [1)125ml H, 20,1 12	U 1. J W (1)250mU Na DH 12						Bate: Time: Relinquished by: 34/6 & ISM HULDULU TO UPS	Date: Time: Refinquished by: V Received by Date Time	If necessary, samples submitted to Hall Environmental may be subcontracted by other accredited laboratories. This serves as notic

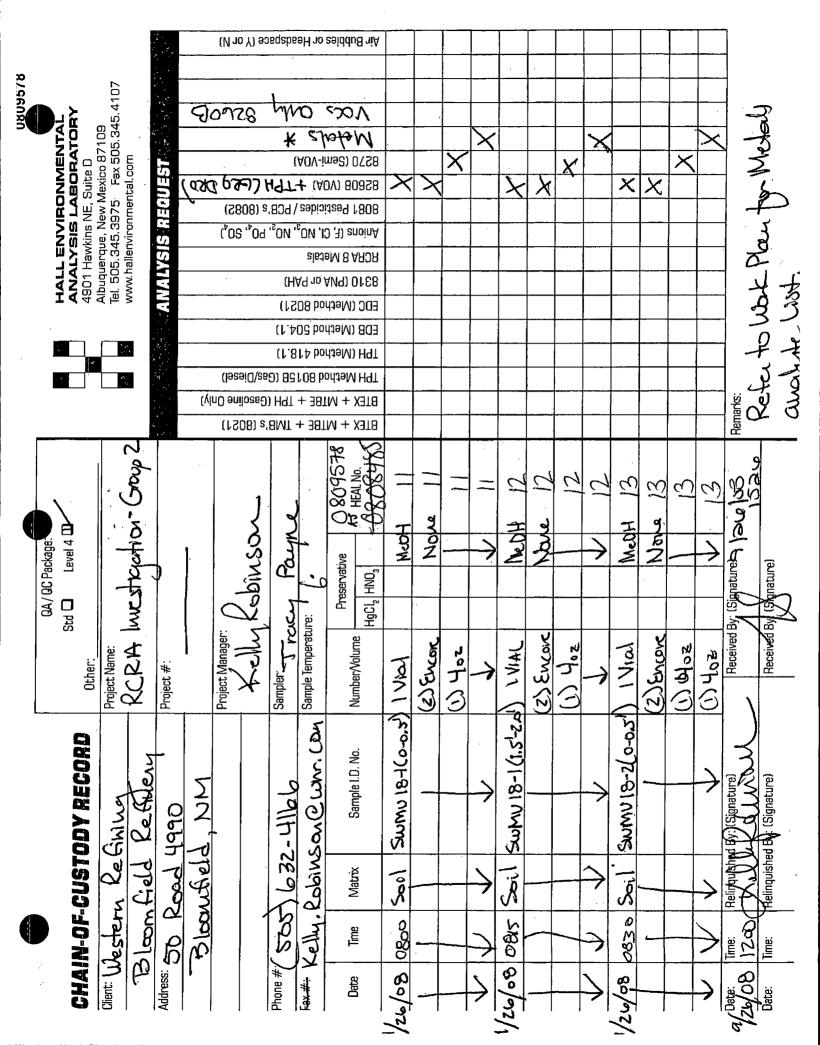
	www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109	10		(Gas only) غهs/Diesel) رئیمیادی رئیمیادی (۵۵٫٫۵O4)	НЧТ + ТРН (1.8015В (0 4 504.1) 4 504.1) 4 504.1) 4 8015В (0 4 8260) 4 8260) 4 8260) 4 8260) 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ТЕХ + МТІ ТЕХ + МТІ ТЕН Метлос ТЕН Метлос ТЕН Метлос ТЕН Метлос ТЕН Метлос ТЕН Метлос ТЕН Метлос ТЕЛС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС (Метлос ТЕПС) (ТЕПС) (ТЕПС) ТЕПС (Метлос ТЕПС) (ТЕПС) (ТЕПС) ТЕПС (Метлос ТЕПС) (ТЕПС) (ТЕПС) ТЕПС (ПС) (ТЕПС) (ТЕПС) ТЕПС (ПС) (ТЕПС) (ТЕПС) (ТЕПС) ТЕПС (ПС) (ТЕПС) (ТЕПС) (ТЕПС) (ТЕПС) ТЕПС (ПС) (ТЕПС)		*	X		X &								Poll to 11 by Dr. Low M. April	5	as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	Project Name: RCLA- Iwrightightin - Graup 2	Project #: O		Project Manager.	Sampler: Tracy Payul Ontoe - Lixes - No Sample Temperature - T	Type and # Type	Med H	Stercoal Nore 1	x)402 J 1	(c) vorts HCl 2	())250ml Nove 2	(2)250ml HNO3 Z	(i) which 2	(1) toom H2SO4 2	CI) IL Nove Z		-	HND.		Respired by In 25 9 20 00	lited laboratories. This serves
Charle bf-Custody Record Client: We Deve Leptung Son Murch In	Address: 50 Reby 4990	. 4.4.1	- (29 ( XO	email or +ax#- IくをJU- とのらいんり ひ入 QA/QC Package: ト D Standard DLevel 4 (Full Validation)	□ Other ±r EDD (Type)	Date Time Sample Request ID	2/28/08 1700 Swmv 9-1 (14.5-15.01) (2) VIIAL		7	1715 ZUMU 9-1 GW					-+	130 FB- 092808		$\rightarrow$	08 1500 Hellerson	Date: Itme: Cheinquished by:	If necessary, samples submitted to Hail Environmental may be subcontracted to other accrec

(N	Air Bubbles (Y or											[			
										-			<u> </u>		
EC SAVE	N/474INI		X				- ⁻ -				- 20-5				
H NO ₂₀ PO4 S1S LABORATOR Albuquerque, NM 87109 Fax 505-345-4107 nalysis Request MA Albuquerquest	Cyanide	X	$\Delta$	. • •			<u>.</u>								to anothe lot.
	(AOV-ime2) 0728			$\mathbf{X}$							   .			3	R
	(AOV) 80828							: •						A	$\prec$
<b>JIRONN</b> <b>5 LABOI</b> erque, NM 87 505-345-4107 Flequest	vseticides /					1	;	•		<i></i>					J.
ALL ENVIRONME NAL YSIS LABORA www.hallenvironmental.com ns NE - Albuquerque, NM 87109 5-3975 Fax 505-345-4107 5-3975 Fax 505-345-4107 60280 100280 8082 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100080 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 100280 1002800 100280 1002800 1002800 1002800 1002800 1002800 1002800 1002800 1002800 1002800 100280000000000	Anions (F,Cl,NO ₃										3.			ද්	2
	A9 10 AN9) 01:58	11			<u>.</u>				 		:				g
<b>HALL</b> <b>ANAL</b> (kins NE 345-3975	EDC (Method 826						A			<u> </u>				P	3
	TPH (Method 418 EDB (Method 504						$\mathbb{A}$					_			
22 a	108 bonteM H9T						+							(ب	Pol-
6 Hat (Qas only)	+ 38TM + X3T8						+					╟─		τ S S S S S S S S S S S S S S S S S S S	
	BTEX + MTBE +													Remarks	É
1 CC	9														
														•	30
	HEAL No.	m	3	m											0
	β Ξ Υ			1	Ì		• .							۵	3
														F S	16:22 d
	Type	Ŧ	5	300											5
	<del>dare 2</del> sservat Type	NaOH	H, 204	2										Received by	
La la la la la la la la la la la la la la		2	_					- 1						а С	Rec
	d e b	)it i	(I) low												
Turn-Arou Ty Stands Project Na Project Ma Sampler:	Sample Ter Sample Ter Container Type and #	() I Sini	Vla						. I					Ĵ	
		J	9												
ody Record With Souldwert Rechreed Lynn doinson	, <u>Q</u>						ĺ	i						$\gamma$	
Custody Record A left in Soula eld Rechuery seed 4990 brevel 4 (Full Validation)	Sample Request ID	20			of									Z	
V Rec Hyper VM VM Valide	gedn	FB-092808			0,0971								. {	Ŷ	
		60	<u> </u>	-7	Б									K G	by: ()
	amb	i.			H			:		-				Relinquished by	Relinquished by: submitted to Hall Er
The second second	S S S S S S S S S S S S S S S S S S S	L-			圳							м			elinqu
of-Custody Re drain Certinity So Read URA Have Read 4997 Kelly-Robiuson Drevel 4 (Full Vali		0	:	-	丗	╶┼┼					╞┊╽		-	=	
Hat Di-Custod Westerun Letin Blocurfield R Blocurfield R Blocurfield Blocurfield ackage: ackage: ackage: Devel 4	Time	0211		$\rightarrow$	Ħ									ime: 1500	6. 201
Charle Custody Record nt: Westernin Lepining South Blocurfield Rechreey ress: SO Read 4990 Blocurfield NM ne #: NM ne #: District Advison Standard Drevel 4 (Full Validation) Dither					4					$\neg$	-	<u></u>		<u> </u>	Time: Relinquished by: V Relinquished by: V Relinquished by: V Relinquished by: V Relinquished by: V Relinquished by the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
Client: (U)eSH Client: (U)eSH Address: SC Address: SC Phone #: emaikor Fax#: OA/OC Package: D Standard	Date Ti	12-908		$\rightarrow$		·				Ì	$\triangleleft$	-		i Q	
		2	1			Ì				]			]	1/29/08	Date:

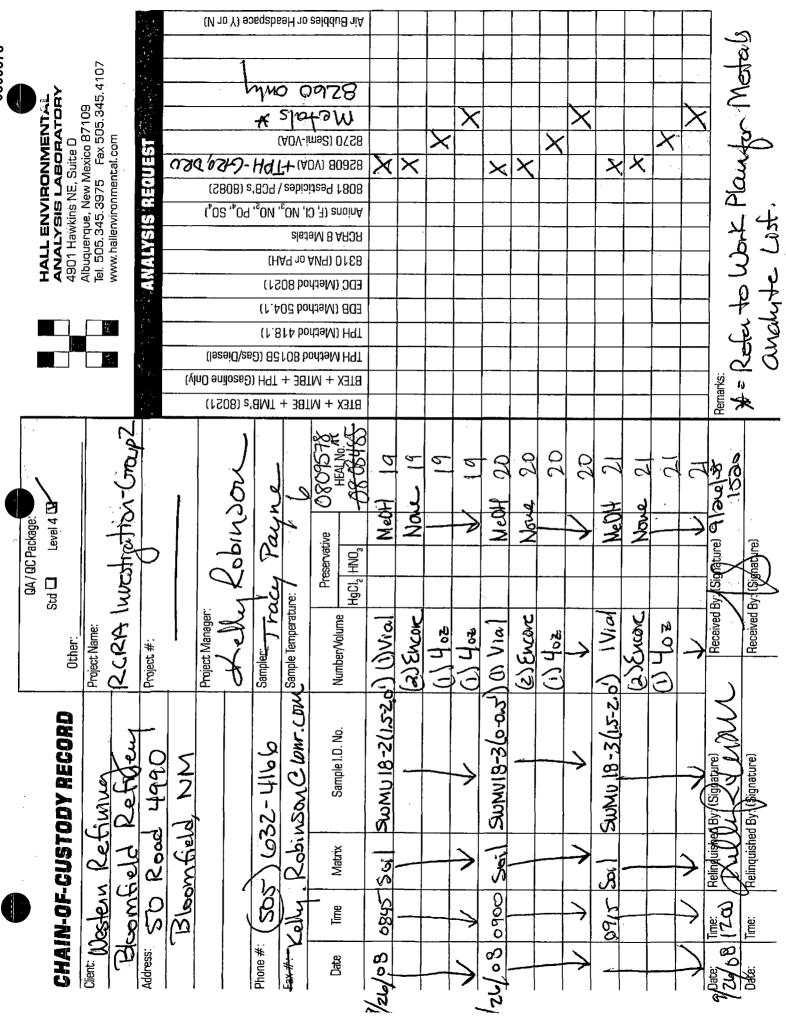
Analysis Banacy A5-345-3975 Fax 505-345-4107	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel) TPH (Method 504.1) EDB (Method 504.1) EDB (Method 8260)				Bemarks: Remarks: Refer to Wark Rau for curelly fc 20 08 20 00 20
Ine: Bush - Grap -	per: Rollingtrun Baug Rupu Bautine Breservative Type Type MEAL No. Type		HCJ H	Nove 7 Nove 7 Nove 8 Nove 8	This serves
Charles: Client: Western Rehining Buddhurch warstandard Client: Western Rehining Buddhurch warstandard Robert Name: Project Name: Bloom field NM Project Name: Bhona # 50, 1, 23 - 4 11.	Tank     Kellur, Rob MScorewin, Braject Manage:       ard     ard       ard     arbum, Raject Manage:       Type)     Sampler:       Type)     Sampler:       Time     Sample Request ID	MN 9-1 (0-0.6') (2) VIAIS	TP ( 092 808 (2) 402 Mc DH BIK-092809 (1) VIAL	(15-20) (2) VIAL (2) 4 02 (2) (1) VIAL (2) (2) VIAL	Date:     Time:     Relinquished by:       7/29/08     1.520     N       Date:     1.520     N       Date:     1.520     N       Date:     1.520       Mathematical by:     N       Date:     1.520       Mathematical by:     N       Date:     1.520       Mathematical by:     N       Date:     1.500       Mathematical by:     N       Mathematical by:     N       Mathematical by:     N       Mathematical may be subcontracted to other accredited laboratories.

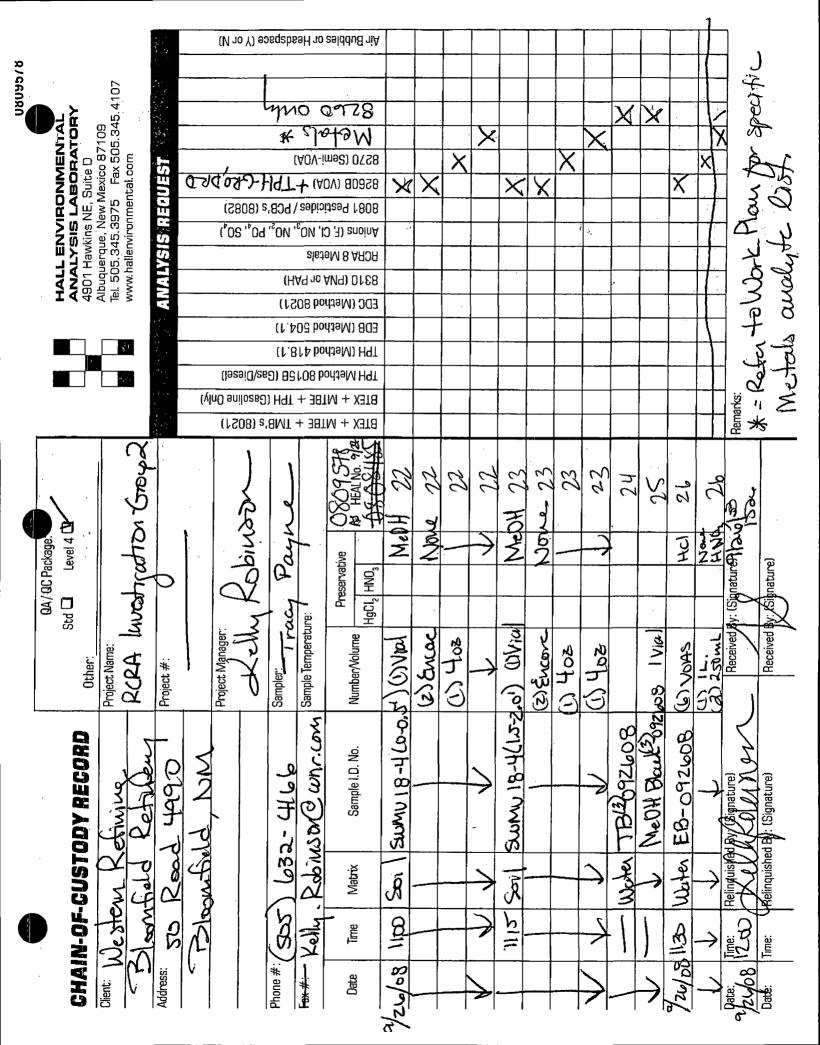

0202020	HALL ENVIRONMENTAL ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	505-345-3975 Fax 505-345-4107	and the Analysis Request in the second second				(1,1) (H) 808 808	49 1 202 1 200 200 200 200 200 200 200 200 200 20	hoc A ol (Cl, ilclc ilclc A (A C A)	HPH (Meth EDB (Meth 8310 (PN/ 8310 (PN/ 8081 Pest 8081 Pest 8081 V( 8260B (V( 8250 (Sen 8270 (Sen										o-contracted data will be clearly notated on the analytical report.
			4901	Tel. 5		(גור	10 28	9) ⊦	ΙdΤ	+ 3	атı	BTEX + M BTEX + M BTEX + M						 	 	Remarks:		ssibility. Any s
	E Standard C Rush	Project Name:	5	Project #:		Project Manager	Kuller Kobinne		r: I ray Payne	Unice and Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se		Container Preservative Type and # Type	BY NOAN HCL -HO-9	131						Received by: Date Time R	Received by Date Time	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as rictice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Charter T-Custody Record	fee	P Refinent	SD ROAD 4470	F	Phone #: ( Jar) (232-4166	the Kelly, Robinson Cuncon	l	LU Level 4 (Full Validation)				Date Time Matrix Sample Request ID	7/12/08 - Wate TB(2) -092908							129/08 [JDD A Und U MUX	Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcor

ANALYSI ANALYSI www.hallenviron 4901 Hawkins NE - Albuqu	Iei:         500-540-59/0         Fax         500-540-59/0           Iei:         00-40-540-59/0         Analysis Requirements           Imily:         0         0         0	9 (Gas o 2,PO4,5 2,PO4,5 8 2 PCB'5	ЧТ + Э Вагов вагов на 1.814 L 1.814	ВТЕХ + МТЕ ВТЕХ + МТЕ ВТЕХ + МТЕ ТРН Меthod ТРН (Method EDB (Method 8310 (PUA o 8310 (PUA o 8310 (PUA o 8250 (PUA o 8250 (PUA o 620 - CU CUCU CUCU CUCU CUCU CUCU CUCU CUCU							×				Remarks: Policy the line Plane theor	Ducult for Light Districted data will be clearly mitated on the anelytical remot
Client: Weyer Refut Softwat / W. Brandard Rush Client: Weyer Refut Softwat / W. Brandard Rush TSI countield Refined Project Name: Mailing Address: So Read 4990 / RCBA Invertigation - Group 2 Rhom field N.M. Project #:	Kelly. Robinsa	E Level 4 (Full Validation)	ErEDD (Type) Sampler: 1 Sampler: 1 Sampler: 1 Sampler: 1	Time Matrix Sample Request ID	¹ /29/00/1230 Woder EBW (i) - 092900 (c) V6A, HCI in	Glæbs 1 (j) 1 Noue 10	(I) icom/ NaDH 10	() i L Nove 10	01 (2) 250ml HN03 10	1 1245 Water ENS(1) - 072908 (6) VOD HC1 11	L L	(i) 1L Nore 11	(z) asour HNO2 11	I = V = V $I = V$ $I = V$	1 1500 Killed by Kille Charter	Date: Time: Relinquished by: If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laborationes. This serves as notice of this possibility. Any sub-contracted data will be clearly instand on the analytical fance


DB09636         HALL ENVIRONMATAL         HALL ENVIRONMATAL         ANALYSIS LABORATORY         www.hallenvironmental.com         4901 Hawkins NE - Albuquerque, NM 87109         Tel. 505-345-3975        Fax 505-345-4107         Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas/Diesel) TPH (Method 504.1) EDB (Method 504.1) 8310 (PUA or PAH) 8310 (PUA or PAH) RCRA 8 Metals 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8082 PCB's 8270 (Semi-VOA) B260B (VOA)-TPH - 640 DC 8270 (Semi-VOA) Metals NO2/ND Metals Comi-VOA) Comi-VOA) Metals Metals RCC (Yor N) Metals RCC (Yor N) Metals RCC (Yor N) Metals RCC (Yor N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR N) RCC (YOR (YOR N) RCC (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR N) RCC (YOR (YOR N) RCC (YOR (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR N) RCC (YOR								rine Remarks: Fine See Work Plangar analyte list.
Client: Ubestein Refinition Schurch International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International Internationa International International International Internati	email or Fax#:     Kelly - RobinS On Cullyr, LM     Project Manager:       avac Package:     avac Package:     Multiple town of the full validation)       contard     avac Package:     Multiple town of the full validation)       contard     avac Package:     Multiple town of the full validation)       contard     avac Package:     Multiple town of the full validation)       contard     avac Package:     Multiple town of the full validation)       contard     avac Package:     Multiple town of the full validation)       contare     filter     Matrix     Sample:       Date     Time     Matrix     Sample Request ID       filtiple     Type and #     Type       filtiple     Matrix     Sample Request ID	1/29/68/1130 501 SWMU 2-1(15-15.5)(Z) VIA4 MEOH 12	Merth Meoh Bruk (2)-692606 (NIA M. DH	113 Watch Swim 215W (1) 12 Nove 14	1 (2) HUO3 HUO3 IV	4 1 1 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1	U V V (i) result	1/29/08 1 BW 1 Watri = 36 780 8 (1) 120ml Na 04 15	UP Date UP Date

ANALYSIS LABORATORY ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	31EX + МТВЕ + ТМВ's (8021) 31EX + МТВЕ + ТРН (Gas only) PH Method 8015B (Gas/Diesel) PH (Method 504.1) EDB (Method 504.1) 1310 (PUA or PAH) 1310 (PUA or PAH) 1310 (PUA or PAH) 1310 (PUA or PAH) 1320 (Semi-VOA) 1320 (	0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0 <th>S allerias X X X</th> <th>X X 12 12</th> <th></th> <th></th> <th>Time Remarks: FRAEfu to Work Plau Reported the bull and the learly notated on the analytical most</th>	S allerias X X X	X X 12 12			Time Remarks: FRAEfu to Work Plau Reported the bull and the learly notated on the analytical most
Clienty Lestern Refinity Southwest Inc Enstandard Rush Eleomfield Refinery Project Name: Mailing Address: So Road 4990 RCEA Investigation - Group Z Phone #: (Sos) 632 - 4164	email or Fax#:     Kelly     RebitSen C LM r. cd Project Manager:       0A/0C Package:     0A/0C Package:     Date       1     Standard     1       1     Standard     1       1     Other     Sampler:       1     Other     Sampler:       1     Other     Sampler:       1     Other     Sampler:       1     Date     Image:       1     Time     Matrix       1     Time     Type and #	2/28/28 1800 Wata EB-092808 (6) VOA3 HC/ 9	INUUC HING	A HODI Mark Noir A A	V V V V V Derreson C) round H2204 A		Date:     Time:     Relinquished by:     Date     Time       29100     1.300     Thue:     Relinquished by:     Date     Time       Date:     Time:     Relinquished by:     Date     Time       If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice     Date


aTORY	ir Bubbles (Y or N)	∀											otal	
37100 07	270 (Semi-VOA) (Clanar) See (Ennarb)	1.10		X	X			X	X		X	X	M	
ALL ENVIRON NALYSIS LABC www.hallenvironmental.com ns NE - Albuquerque, NM 8 15-3975 Fax 505-345-41 Analysis Request	081 Pesticides / 8082 PCB's 2608 (VOA) + TPH (AOV) 8082		X			$\boldsymbol{X}$	X	_	^>	$\langle X$			¥.	
NVI SIS ironme uquert ysis R	vnions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ )					<b>`</b>							017	-fa
<b>ENV</b> <b>YSIS</b> <b>YSIS</b> Ilenvironm Ilenvironm Albuque Fax 5 Fax 5	(HA9 to AN9) 015	8				:			1.					List.
HALL ANAL www.hall wis NE - 345-3975	DC (Method 8260)				:	-							2	
HALL ANAL www.ha Hawkins NE 505-345-3975	PH (Method 404.1) PB (Method 504.1)			•				·			·	. 	3	Je.
	(leseiO/scB) 83108 bother Hg												Her to I Dark PI	inchrais
Tel. 190	STEX + MTBE + TPH (Gas only)	а						$\dashv$		+			Remarks:	Ω Ω
	3TEX + MTBE + TMB's (8021)	<b>J</b>											ц В В С И С И С И	
sh Betton - Croup 2	Deland Payne 0 809578 MEAL NO. 912	101010101				4 2	2	2	(10	201	К	3	almelb d	
ime: Rush WVeship	UL Rol	Me OH	Nove		->	MeOH	Nore	<u> </u>	A L	オレク	-	)	Received	Heceived by:
Turn-Around Time Project Name RCRA W	Reroject Manager: Sampler: Tr-a Sampler: Tr-a Container Pre		Breach	(j) 4 02	() toz	UN VIAL			(1) 4 02	(2) Ewar	(j)46z	() 4 ar	)	<u></u>
Charlet Custody Record " Weben Refinit Sultwork Blownfield Verneur ess. 50 Pood 4990 "Elownfield, NM	Lyon Control     Container       The Control     Container       The Container     Container       Sample Request ID     Container	SWNU 2-7 (0-0.5)			$\rightarrow$	Sumva-7(1.5-20)			V -0.2		· · · · · · · · · · · · · · · · · · ·	X	Kille Kerner	Time: Relinquished by: GWGMy STS Rist U
	Ta <del>out: Kel</del> adra ackage: ard Type) Time	BUS			>	HQU		-	14zo	1 1		$\geq$	1200 1200	Time:
Client:	email <del>Dr Fao#-</del> QA/OC Package: Candard Cother Date Tir	8/22/8				80/52/h			9/2508				9/24/08	Date:




	0/CENON
CHAIN-OF-CUSTODY RECORD Std C Level 4 E	HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE. Suite D
Finius Sarturat 1 Pro	Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com
Scontield lefinery run www.	
Address: SD Read 4990' Project #:	ANALYSIS REQUEST STATES ANALYSIS AND ANALYSIS AND ANALYSIS AND ANALYSIS AND ANALYSIS AND ANALYSIS AND ANALYSIS
Bleowfield NM	(031
Project Manager:	ປ ຊາ 35) 20 ⁵ 5 20 ¹ ) 20 ¹ )
Kulkshinder	eaoliie: eaiDie: ورهم الالالا الالالالا الالالالا الالالالا الالالالالا الالالالالالا الالالالالالالالا الالالالالالالالا الالالالالالالالا الالالالالالالالالالالالالالالالالالالال
Phone # (SDS) 1032-4/106 Sampler. Trach Paure	сс к к к к к к к к к к к к к к к к к к
-Far#: Kelly, Robin Dave Whr. Con Sample Temperature: 1 /.1	+ 387 64 801 64 801 704 80 704 r>70 70 70 70 70 70 70 70 70 70 70 70
Date Time Matrix Sample I.D. No. Number/Volume HgCl ₃ HNO ₃ OSOSTS	M + X318 BTEX + M BTEX + M BTEX + M BTEX + M BTEX + M BTEN Meth BTEN Meth BTEN Meth BTEN Meth BTEN Meth BTEN Meth BTEN Meth BTEN Meth BTEN Meth BTEN Meth BTEN BTEN METH BTEN BTEN BTEN BTEN BTEN BTEN BTEN BTEN
726/08 1545 201 Swmva-9(1.5-2.0) (1) VIA Medy 7	
(a) Energy Nove 7	
() 40z	
t A A A	
425 lies When FBB-092508 (E) Was (HC) 8	
(D 1L Nove 8	
X W V W Black V Black	
Weeter 173 (3) - 09208( 2) Ve	
725/08 MeOH Blaik(3)-02508 CIVE, MeOH OY 10	
1 Law Reinquisreading Usignature	Refu to Werk Plan har meters
Date:   lime:   Relinquished By: (Signature)	



			ta Tri	- 		(N Ji	o Y) ec	edspe	eH 70	ir Bubbles	1													
	E, Suite D	Abudder que, new inizita of 103 Tel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com			770		シト	11	t (A AOV-i 2)J	9768 247W 247W 2560B (VO 3260B (VO		×	X	X	X	X	X	×	X	X	X	×	Placka	- Rist
HALL ENVIRONMENT ANALYSIS LABORAT	4901 Hawkins NE, Suite D	Tel. 505.345.3975 Fax 50 Www.hallenvironmental.com	Ē					"ON "	rels	AN9) 01:68 9M 8 AR3P Anions (F, C													ry work	cucely
I		₹ ₩ ≥	a the second and a second second second second second second second second second second second second second s				an /se	۲'۱) ۱۱'8	14 bo 02 bo	EDC (Weth FDB (Meth TPH (Meth TPH (Meth													2 fer t	refels (
, <b>1</b>			کا - بند کی تعدیک م	4	ıl)	nD ən	ilossə	) Hqt	+ 38	BTEX + MI BTEX + MI													Remarks:	
QA/ QC Package:	Other:	the atter	ISCHA TANGO ( 01/04 ( 00/04)	Project #:		Project Manager:	Kelly Kobiwar	Samples Tracer Party o	Sample Temperature:	Number/Volume Preservative 0809538 Number/Volume Preservative 0809538	고 고 고	2) 250ml X 14	(1) IL. Noufe 14	(x) VIA. [5	(b) bucare 15	W 402 15	(L) 402 15	P (2)VIAL 16	(2) Eucore 1 b	1) the 16	) 4 GP	UVGA M	Received By: (Signature) 9124 1034	Received By: (Signabure)
		Ξ.	Ploonfield (dethery	1 4990 J	Bloonfield NM			Phone # (505) (522 - 4166	Fart: Kelly, Robiwon CLUNTCON Sample Temperature.	Date Time Matrix Sample I.D. No.	26/08 1000 Wake FB-072108			1/24/08 1015 SOIL SUMU18-3(7.5-9)				1/26/08 1015 SOLL SUMU18-3(75-9)04 (2)VIA				- Med H Ne	18 1200 Hundlinguisped By	Date: Time: Relinquished By: (Signature)





RCRA 8 Metals       RCRA 8 Metals         First Signature       River Law         Sissenation       Resticides / 8082 PCB's         XX       XX       XX         XX       XX       XX         XX       XX       XX       XX         XX       XX       XX       XX         XX       XX       XX       XX         XX       XX       XX       XX         XX       XX       XX       XX         XX       XX       XX       XX         XX       XX       XX       XX         XX       XX       XX       XX       XX	to Work Rau by Molal
	Ve V
ENVIRONME         ENVIRONME         ENVIRONME         Albuquerque, NM 87109         Albuquerquerquerquerquerquerquerquerquerque	ar lar
HAL         HAL           ANAL         45           600         604504           700         604504           700         604504           700         604504	- 705
	- 3a
HAT 10 C C C C C C C C C C C C C C C C C C	
	Remarks
BTEX + MTBE + TMB's (8021)	C C C
	A this
MWWWWWWWWW	Time
3 JUNNMMM	M
	Date Date
Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Rush I Ru	
	E 4
Type Type Preservative Ber Lawsh	
I'um-Around Time: I'um-Around Time: Project Name: RLQLA INUCH Project Manager: Project #: Project #: Project #: Project #: Project *: Project	f
I'um-Around Project Name Project Nama Project Mana Project Mana Project Mana Project H: Diffect H: Type and # Type and # () VIAL () VIAL	Received by
I'um-Around Project Name Project Name Project Name Project Mana Project Mana Project Mana Project Mana Project Mana (I) UNIAL I De Container Type and # (I) UOL (I) UOL (I) UOL (I) UOL (I) UOL	Recei
	e subcc
Stody Record Aiver Schum Lum Luc A Refinent luc A Lefinent luc Dinson Elum cou dinson Elum cou dinson Elum cou dinson Elum cou dinson Elum cou dinson Lum cou dinson Elum cou dinson Lum cou dinson Lum cou dinson Elum cou dinson Lum cou dinson elum n dinson el cou dinson	
le company la la la la la la la la la la la la la	LUNT.
dy R Nu 22 Nu	
Istody Re inviver Scylu 4990 A NM Ba- 416 Abiusou El Bunu 2-2 Sumu 2-2 Sumu 2-3	
R R R R R R R R R R R R R R R R R R R	and by
Dr-Custody Record Mr. Perinium Schlum L Cond 4990 Mr. Feld NM Mr. Feld NM Matrix Sample Request Matrix Sample Request Soil Sumu 2-2(1.5-2, Soil Sumu 2-3 (0-0.5 Soil 20Mu 2-3 (0-0.5	Relinquished by Relinquished by
A DI-CLUSTOCY RECON Stern Particues Schurch Dicomfield NM Hownfield NM Hown 2-2 (1.5- How 2-3 (0-0 How 2-3 (0-0) How 2-3 (0-0)	sampke
Client: Western Paining Address Inc. Dicomfield Resiliner Landon Kelly and Schurch Inc. Dicomfield NM Phone #: (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) 632 - 4110 (5 and a concertaints) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SCDS) (SC	Time: Relinquished by: 1500 PAC ACUMAN Received by: Time: Relinquished by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received by: Received
Client: Weyk Client: Weyk Mailing Addres and Client: Weyk email o <del>r Fexk</del> and Client: Client Date Time Date Time	
Client: (Client: (Cli	Log bate: Date:

anaiviicai redori. nacteo ŝ in sec. 5 í,



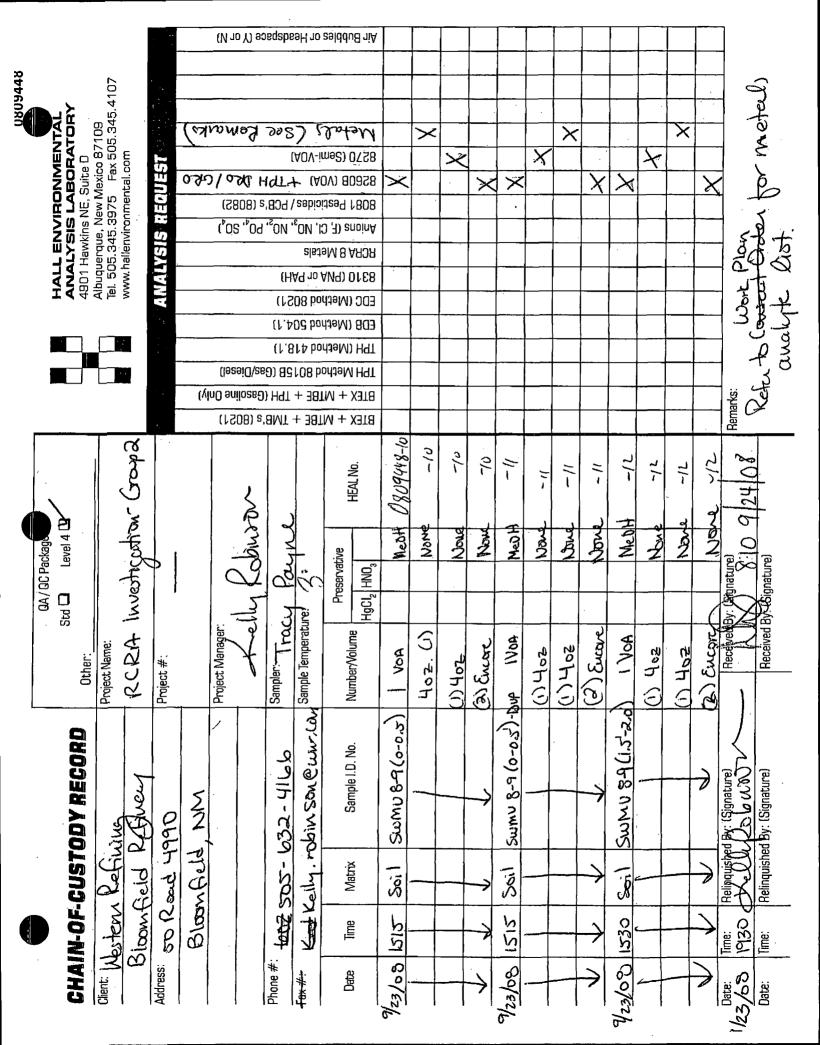
	HALL ENVIRONMENTA: ANALYSIS LABORATORY 4901 Hawkins NE, Suite D.	Albuquerque, New Mexico 87109 Tel: 505.345.3975 Fax 505.345.4107	www.hallenvironmental.com	ANALYSIS REQUEST	23	e 0n) 22, 1 22) 22, 1 22) 24, 2 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,	29-17 2808) s 29-17 2808) s 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29-17 29	с	+ 381 08 bo 07 bo 108 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 100 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 bo 107 b	11EX + M 11EX + M 11EX + M 11EX + M 11EX + M 11EX + M 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX 12EX	I       I       I       I       I       I											· ·	Refer to Work Mare for Metals	avalyte list. U
QA / QC Parkane	Std D Level 4 D	Project Name:	RCRA luwstration - Grapa	Project #: O		Project Manager:	delly Kobinson	Sampler: Tracy Paryne		Number/Volume HaCI Hunn	1	Nane	(i) 40Z Norle 4	(1) the Now H	(1) VIAL MEDH 5	(2) Eucone None S	(1) 402 Norue S	(I) VIAL MEDH LO	C) Evare Nore 10	(1) 402 Nore U		ed Bv. (Sjonature) + 0	Received by: (Signature)	· · · · · · · · · · · · · · · · · · ·
	CHAIN-OF-CUSTODY RECORD	Western Requires Sathwat his	leon field	4990				ماما ۲۱ - ۲۵۵	Far# Kelly. Robinson CWR. COM	Date Matrix Sample I.D. No.	1/22/8 0815 Soil SWMU 2-1 (0021) (1) VIAL				/25/08 0830 Sail Swwy 2-1(1.5-20) (1) VIAL			25/68 0845 Soil Swin 2-2 (0-02) (1) VIAL			<u>\</u>	a Date Time: Relinguished By By By By By A	Date: Time: Relinquished Ed: (Signature)	

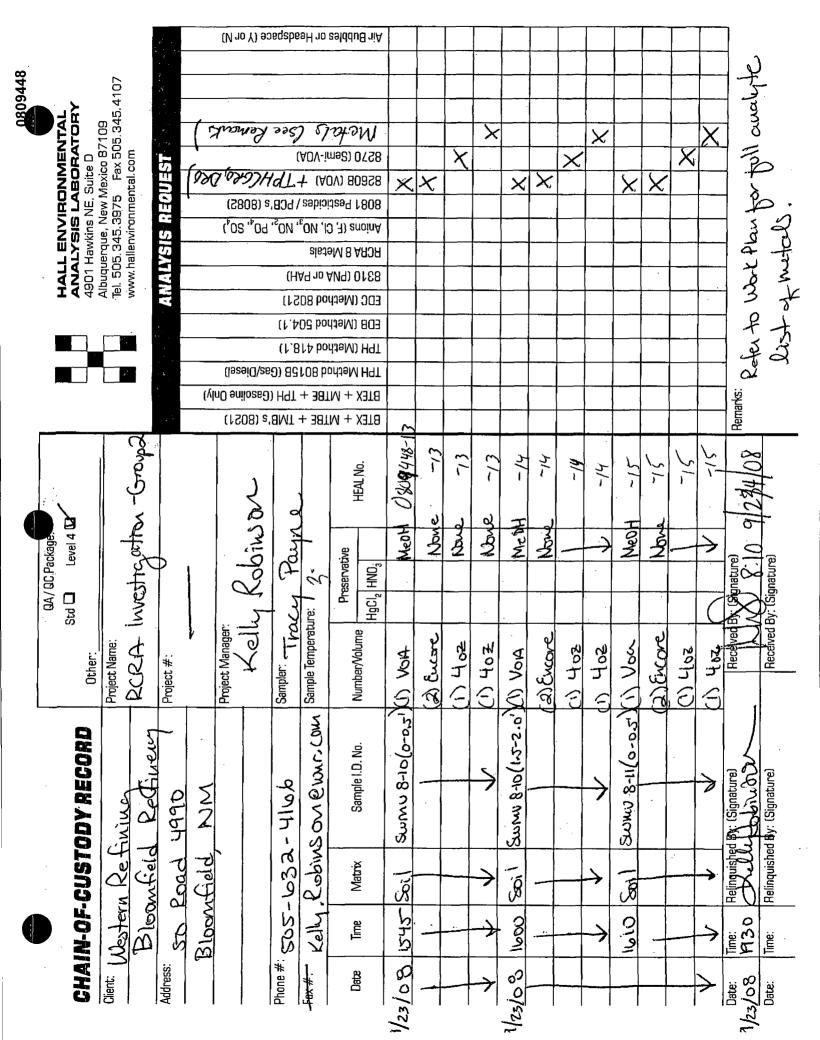
<b>553</b>	(N no Y) өэвдараан no ceiddu8 niA							
HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com	Metals ( see Romants)		·	X	· · ·	X	,	K Kebel
HALL ENVIRONME ANALYSIS LABOR 4901 Hawkins NE, Suite D Albuquerque, New Mexico 8 Tel. 505.345.3975 Fax 50 Www.hallenvironmental.com	8260B (VOA) + 774 - 640 020		$\frac{1}{1}$			X		X
HALL ENVIRONME ANALYSIS LABOR 4901 Hawkins NE, Suite D Albuquerque, New Mexico 8 Tel. 505.345.3975 Fax 5 www.hallenvironmental.con	8081 Pesticides / PCB's (8082)		$\times$	+	$\times \times$		X X	X X
SIS VIIIS N 5.30 Vironi	Anions (F, Cl, NO ₃ , NO ₂ , FO ₄ , SO ₄ )						<del>}</del>	Vok Pau
<b>Hawf</b> Hawf Jacqu J5.34 MSI	sletaly 8 AADA							
HAL ANDUG Albug Www.l	(HA9 no AN9) O1:68							200
	EDC (Method 8021)	<b>├</b> ──					<u> </u>	
	TPH (Method 418.1) TDB (Method 504.1)							
	(leceiO/cas) 80158 (GasyDiece)							Refe
	BTEX + MTBE + TPH (Gasoline Only)							1423
	BTEX + MTBE + TMB's (8021)							
Duther: Project Name: Project #: Project #:	Project Manager: Kelly Robius an Sampler: Thaug Rougher Sample Temperature: Number/Volume Preservative Mumber/Volume HgCl ₂ HN0 ₃ CDCG555		(2) Eucore Nove 7	L 1 1	o-ast)(1) v (19-L Meblf 8 (3) Eucare Nove 8	(1) 402 S	A Monu	(1) 4.02 (1) 4.02 Received By: (Signature) Received By: (Signature)
CHAIN-OF-CUSTODY RECORD Client: Western Refinitu/Saythuest In Bloon field & Perfruent	Blooufiel Sas) 632 Kelly Robi	9/23/08 10/2 Soil SUMUZ-4 (1.520) VIAL			1/25/08 1030 Soit SWW 2-5/0-05		× 1045 Soil Swuwa-5/15-	Mate:     Time:     Relinquished By: USignature)       Mate:     Ime:     Relinquished By: (Signature)

	4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	PCB's PCB's PCB's PCB's PCB's PCB's PCB's PCB's PCB's	HT + 1EH ((23 8015B (23 14,18,1) 14,204) 1,103,102,1 1,103,102,1 1,104) 1,104) 1,104) 1,104) 1,104) 1,104) 1,104) 1,104) 1,104) 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,104 1,1	日本の 日本の 日本の 日本の 日本の 日本の 日本の 日本の		X		×		×	×	×	2	Remarks:	2	ves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Client: Western Refinition Sufficient la Standard Ine:	1, NM 2, NM 032-4166	email Or Fax#: Kelly, Robius on ELUN LOBroject Manager: QAQC Package: D Standard Defevel 4 (Full Validation) Kelly Robust	De)	Date     Time     Matrix     Sample Request ID     Container     Preservative       Type and #     Type     Type     OROTON	125/08 0945 Soil Sumu 2-3 (15-2.01) (1) VIAL Me OH 10		0/	> 10.00 Soil Swurt (0-0.5") (1) VIAL MEOH 11	(2) Eucoe Nove 11	(i) 405 1/		1B-092506 100	- Wate MeOH Blown VIAL (1) - 13	Abate: Time: Relinquighed by: Asyog 1500 How Hencined by Date Time	Date: Time: Relinquished by: Received by: Date Time Date Time N3A 972 K1	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of thi

i Au .

												<u> </u>	<b>T</b>	<u> </u>	<u> </u>	<b>r</b>	r	r					_			-
						L		(	N 10	<u></u>	r Bubbles	∀	ļ	<u> </u>												
	J.	2			E c	_						_	<b>_</b>			ļ										
0809553	L P	ō									·	<u> </u>				[								•		
2	Ż	F	2 1 		5			r	JV		୦୩୧େ	3							2			X		0	) .	report
8	ĽШ	2	60	2		( 9	mme	d.	rg	T	Netal				X			X	:		X					rtical
	2	ō	n 87	107		<u>k</u>			(∀(	/ 2/\-!	wəs) o∠a	8		X		X		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\mathbf{\mathbf{x}}$		- X			1 3	• •	analy
	0	0	, cor	15-4	est.	070	1/07D	Ha	41.1	F-(A	OV) 8092			1		- <b>`</b>			$\sim$	~				5		n the
	ENVIRONM	<b>ANALYSIS LABOR</b>	www.hallenvironmental.com ps NF - Alburnieren e NM 87109	505-345-4107	Analysis Request		·			·	bitseq 180		5	· ·						시	_					ated o
	Ľ	S	nme	50	S Re										<u> </u>	No 1.					•			5	$\overline{\mathbf{O}}$	V not
	ź	HS HS	virol	Fax	lysi		<u></u>				),F) enoin		ļ	<b>_</b>	<b>_</b>	· · ·								g	R	clear
	Ш	×	ullen - Al		Ana		· · ·		۰.		AN9) 018				Ĺ									a,	X	vill be
		A	v.ha	975 975						<u>.</u>	DC (Weip													Y	<u>_</u>	Jata v
	HAI	Ž		2 3				()	.,405	po	dî9M) 80	Э												n N	5	cted
	Ţ	4	jywe	505-345-3975		·		()	'8ľt	7 po	PH (Meth	1										Ì		0	al a	contra
			4001 Hawkins NF	20		(ləs	as/Die:	อ) ย	1910	8 p	PH Metho	1												tr fr	B	serves as hotice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
	·		490	Tel.		<b>(</b> λ _μ	io seĐ	) На	<u>1+</u>	LBE	TEX + M	8												Remarks: Refu	$\bigcirc$	Any
											TEX + M				-				-	-+	-+			Rel		ibility.
Г				1		<u> </u>		T														_		ă.	~~~	ssod
			R		:						Ŋ						· ·			ŀ				;	108	of this
		•			• •	·						γ γ													26	otice
	· ·		Say				).				HEAL No.	<u>]</u> ]	7	4	4	5	ち	6	9	9	9	5	. 1		6	s as n
		·	5	ľ			Ă					5			~		_	4	-	1	~			· ·	R	serves
Ę		.	C	·			Z.	ו	X		ζ	ک آ										; .		٥Ŵ	0.0	This :
			Law?			:	ZDiu ST	17		默			1					_		: .			_	FQ		ries.
	: .	Rush	B	ŀ	l [.]		R	pri			Preservative Type	Meoth				2	_	3	9	)				ل ل		orato
			-K	P			(V)	12	- Se	e e	servat Type	0				None	H CI	2000	2	J				aceived by		edited lab
			54			jer.	_5	13		C 3	ЪГ					Z	T	2	2	1				Baco	lece	
7		ard	Project Name: RLRA IN		ļ	White Project Manag	3	Sampler: Troc		Fember	۲ *	Nip.	Z				0	L					1			ther acci
		and	ž ₹	;; #;		Ж	$\boldsymbol{\mathcal{X}}$	l La		E H	taine anc	2	YC	402			8	5		¥	ß	र्द्र				to oth
		the Standard		Project #:		ojec	0			Sample	Container Type and #		Denar	ć	1	أسح	دمعلال)	Roml		ET VOPS	morer	X				ntracted to c
Ŀ	=			<u> </u>	T	3	<u> </u>	လိ	Ø	<i>й</i> Г		132		こ			6	0		শ্ৰ	9	CHUN (8) 8000	44	ر ال		Sontra
						14	1				~	SWMU 8-12 (37-38,34										8		wer		e sub
-	2		7				(uo	`			Sample Request ID	37							æ			35		J		nay b
	8		Mer	5	10	robiusado	t thevel 4 (Full Validation)				sen	12(				904ebo-			8 anelo			á		J		ențal r
	2			3	1911	ĨĽ.	Val	•			leq	Ī				F			<u>7</u>		1			$\frown^{0}$		- Internet
		J		K	[	3	Full				<u>e</u>	3			)	3		$\boldsymbol{\gamma}$	ď,		$\mathbf{i}$				<u>S</u>	Envi
		3	20	-7	1d	2	14 (				ldm	M				ď			1						ed b	o Hall
	šk	2			032	2	<u>≁ ∕ §</u>			:	Sai	R						· .	60 64	•		<b> </b> : .			quish	, tted to
(		P,	Deld	Hel	Ц	ell	2					N				64	1							Relinquishe	Relinquished by	imdu
4	DT-Custody Record	× T	Aele	: X		$\boldsymbol{\lambda}$				F			• .											-9	<u> </u>	pless
	2	3	2 a	ġ	8	1.					Time	30				120C		: `\	1530		~	<b> </b> ,†	"	R		, sam
		る	48	1	Ø		kagi rd		ype		<b>–</b>	H30			1	2		1	<u>N</u>		7			1500	Time:	ssary
	Chain tri 1	Western		M	¥	email or Fax#	QA/QC Package:	er	EDD (Type)	F	a`.	124/08						·	-+			††				If necessary, samples submitted to Hall Environmental may be subcontracted to other acc
Ľ			Address:		Phone #1	Jail 1	VQC Stai		ED		Date	j/h	<u> </u>		<b>ا</b> لا				+		$\mathbf{F}$	Ц		/25/08	ġ	
	12	5	¥	ł	<del>[</del>	en	δ□				—	the			-			1			<b>1</b>	দ্যি ৯		25/08	Date:	
												4									0	3-		2		


			WWW.Nalle	+2011 IQUINE NE - Windo	Tel. 505-345-3975 Fax 505-345-4107	Analysis Requ	(\frac{1}{2})	s,80 >S'*( ====================================	5 b( 932)	-H- 280 200 200 200 200 200 200 200 200 200		20 1 1 1 1 1 1 1 1 1 1 1 1 1	HMT Hethod Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Method Metho	втех прн 1 8310 8250 8281 8081 8081 8081 8081 82605 8250 8250 8250 8250 8250 8250 8250 82												Remarks: Refer to Worls Row hus	metals analyte last	This serves as hotice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Chai f-Custody Record Turn-Around Time:	Softweet Inc	5		C 1 V V Project #	tield WM	المع 25 - 41 إلى المع المع المع المع المع المع المع المع	Kelly . RobitSonecon Project Manager.		Intevel 4 (Full Validation)	Sampler: Tracy Pay N	On the market of the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the second and the	Sample Tempetature			Water EB1-092508 (WOAS HC) 17	[] [] [] [] [] []	1 12 ZEML HNOR 17	Sail SUDMU 2-6 (0-0.5)(1) VIR MEDH 18	 	~	Sal Swmu 2-6(15-26)(1) VIAL MCOH 13	(3) Eucor Noru 13	<u> </u>	V V V	7	Juled nun Received by The Date	Relinquished by: Date Time Received by 10,30 0106 M	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as horice of the
Chai	Client: Westery Refinitu	(Pá	Mailing Address			Phone #:   500	email <del>or Fax#.</del>	QA/QC Package:	□ Standard	□ Other	🗆 EDD (Type)		Date Time		00/1 80/57/1		イイ、	25/08 1130	 	VV	/25/08/14S	~		$\rightarrow$	112/08 -	1/23/28 [1500]	Date: Time:	If necessa


Anall ENVIRONMENTAL         Anall ENVIRONMENTAL         Analysis Request         Analysis Request	d 504.1) als MO ₃ , NO ₂ , PO ₄ , SO ₄ ) +TPH (DRU, GRS ) +TPH (DRU, GRS) (See Leiman D)	8TEX + XT8 TPH Method EDB (Method 8310 (PNA d 8310 (PNA d RCRA 8 Met Anions (F,Cl 8081 Pestici									Remarks: Repu to Consent Order for	" Arahte List U	s possibility. Any sub-contracted data will be clearly notated on the analytical report
Client: User Refining Sorthwort, Inc. Client: User Refining Sorthwort, Inc. Client: User Refining Sorthwort, Inc. Client: User Bloom field Refinery Project Name: Bloom field Refinery RCRA Investignment - Group 2 Bloom field NM Project #: Sos-4166	email or Fax#:       Kelly-Robins an Euvr.ta.       Project Manager:         QA/QC Package:       Dava       Project Manager:         Dava       Dava       Project Manager:	Time Matrix Sample Request ID	9/2/03 1100 501 SWNU 8-5 10-0.5/(1)VOA MEDH (18/04/48-1	(i) 4°2	0 4 (1) HOE	123/08/115 501 Swm B-5 (1.5-20)(1) VOA Me OH -2	Nor	9/23/06 1145 SOIL Stomu 8-6/0-05) (1) VOR MOH - 3	(j) 402	V J V U 402 Nare	924 Date		If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical revort

HALL ENVIRONMATAL HALL ENVIRONMATAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107	TPH Method 8015B (Gas/Diesel) TPH (Method 418.1) EDB (Method 504.1) 8310 (PUA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8082 PCB's 8250 (YOA) 8250 (Semi-VOA) 700 (Semi-VOA) 700 (Semi-VOA)		×			Nave - A - A - A - A - A - A - A - A - A -
Tel.	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only)		,			Remarks: Remarks: Lost
M-Gaup 2		۶- ۲-8445080	<b>ト</b> ー			$\frac{-6}{-6}$ Date Time $\frac{9}{24}03$ Date Time s. This serves as notice of this
1 Ime: 1 Rush inucohipethar	per Robius 21	Nove	Nor	Nedi Nedi Newe	Nove Nove	Reve Reve S:10 Predited laboratorie
I urn-Around I tme: Standard I Project Name: RCRA I uve Project #:	Project Manage Kelly Sampler: Tro Onlice Sample remper	NOA	(1) 4 °2	Von Von Elleve	(1) 402 VOA 2) Euror	Received by: Received by:
Client: Western Rehning Sauthwat Im. Bloom theld Refinent Mailing Addressing 4990 Phone #: SOS-632-41166	Kelly . Rebinson E war . Low Project Manage Ed Level 4 (Full Validation) Kelly Sampler: Tro Onder Matrix Sample Request ID Type and #	Nov (02-5-1) F-8 Unus	;	SWNUB-8(6-0.5)	SWMU8-BUS-2") (	by decusion by the subc
Chai f-Custo Client Western Refining Bloorn faeld Mailing Adression 4990 Phone #: SOS-632-4		Soll		1.	Sen /	Relinquished b Relinquished b Relinquished b
R SC R	email or Fax#: QA/QC Package: Candard Cother Date Date Time	1330		14/20	1 22-	Time:
Client W Mailing &	email or Fax#: QA/QC Package Candard Dther Date Date Time	9/13/28		1/23/08	1308	1/23/08 1930 Date: Time: Date: Time:

	د ب	~						(	N 10	) (	Air Bubbles															
U8U9448	ATA 201	Ď																								
IRN .		TSIS LABORAI	109		1.1. 1	[ ₆ 5	mm	7	ng	2	Netals		[		X				X				$ \chi $		, ,	
	ź	õ	m 4 87	4107				<u>×</u>	(A	QΛ	-im92) 0728	[		$\succ$				X				X		J.	~	
	<u>o</u>	Å	al.co	345-	uest	02	DODCH	2H	·11-	+ (1	40V) 80828	X	X			X	X			X	X			-	$\sim$	
	HI.	ראי אי	nent eroue	505-345-4107	Req		PCB's	280	8/5	səp	olteeg 1808													b		
	ENVIRONM	1 2	environmental.com Albuquerque, NM 87109	Fax	ysis	(*(	S€,6C	1 ^{'2} 01	۷ ^{°£} С	DN'I	O,∃) anoinA													0		
			www.nallenvironmental.com ns NE - Albuquerque, NM (		∆nal						PCRA 8 Me													courses ander		
		ANAI	N.NS N.NS N.NS	3975							AN9) 0168													_ ^^	-+	
	HAI	Z	kins w	345-3						_	EDB (Metho													Q	3	
_			4901 Hawkins NE	505-345-3975		(100					TPH (Metho						_							-P	Z	.
			901	Tel.	i, i						BTEX + MT													ks:	- a	.
l		·	7		et.						BTEX + MT															
		1		Τ		<u>`</u>																		<u>r</u> ,		-
·.			2 dr						ALC: NO CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACT		2	5-7	5	1-	5	8	8-	8	29	6-	6	- 9	5	Time	Time	
			de la				2	.			EAUE	0809448							,					B		
A			Ý s		١		50	2	No	Contraction of the local distribution of the	E E E	3	ł									ĺ			Date	
Y			Ŗ				أبلأ	2			e	$\sum$												0	F	
	Rush		lite	7			rocuidos	Par			vativ pe	H	Nare	Nore	Nare	HO	2	Z	3	T	ð	3	3	0		
lime:	·. C	1	RCRA Invictification GROUP		ŀ	e:	2	+ 3	<b>D</b> Ke	Tatur	Preservative Type	MeOH	ź	Ž	Ž	MedH	None	Nave	ADAL	NeOH	20re	Nove	Nal	8-10	r	dite of 10
nd Ti		me	1			anage	E	1 P	On Ice 🛫 🐴	editie							-	-+		_				$\frown$	6	2000
Arou	Standard	UN N	RA	ct #:		ct W	Ľ	ler:	е. *	DIG TA	Container Type and #	<b>POA</b>	<u>کر</u>	102	107	4	E.	toz	227	0M	20 T	162	Her.		ed by	to of
Turn-Around T	S al	Project Name:	8	Project #:		Proje		Sampler:	Obile	Samp	Con		(2) Encor	U) yor	(1) yoz	Von	a) Euroe	(i) toz	5445	L) VOM	2) Eucoc	(1) 46Z	5	Receive	Received by	tracted
		_				र्ड	 		10-5			and-(15.0-0)2)-8		$\neg$		$ \rightarrow $		7	Ţ	ই	4			<u> </u>	<u>ц</u>	w he submotracted to
ζ	2 - <del>.</del>					J. S	datio		ļ		Sample Request ID	ريم				8-7 (0-0.5'				(.0.2-5.1)						ed ye
						2	l Vali				enbe	- oj				70				8-6 ()				à		antal m
a A				5	2	ଚ	(Ful				e R	8-10			2	6					$ \downarrow$		$\Rightarrow$	Na.		vironm
ž				22	291H-	ß	vel 4				Idmi	Ş			1	2			7	E				Zolewor		
sto			呼	-0		-B	Level 4 (Full Validation)				တိ	NWUS				Swmu				nuns				رک الد≊	py4	ted to J
Ū	یک ا		5-16	hel	5.0	9	-			Ī	ž	I					-†		て					uisned by:	uished	submit
L.		14		Bloowfield	SOS- 632	Keily. Robinson Q Whit on Project Manag					Matrix	Soll			7	Soll			7	R			→	Kelinquished by	Relinquished by	samoles
Chaint-Clistody Record	Client: Western Potining Southwest Inc.	Ster.	Mailing Address: Road 4990	BI			ige:		C EDD (Type)		Time	14S	· 		$\rightarrow$	1315			7	1215			≯	1930 1930	Time:	If necessary samples submitted to Hall Environmentel
Ù			ling A		Phone #:	email or Fax#:	QA/QC Packa	□ Other		ŀ						8						$\neg$				
	Clie	ļ	Mai		PHC	em	o ₽ □				ñ	4/123/08			$\rightarrow$	1/23	-		2	1/22/08	-+			1/23/08	Date:	

laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. בת וה הנובו פרתובחונה --------5





Adult Environmentat Analysis Laboratory 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 fel. 505.345.3975 Fax 505.345.4107 www.hallenvironmental.com	(Drivers 2002 Conto				ded
HALL ENVIRONMENTAL ANALYSIS LABORATOR 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 fel. 505.345.3975 Fax 505.345 www.hallenvironmental.com	8270 (Semi-VOR) Mertals (See Remarks)				list euclided
HALL ENVIRONMER ANALYSIS LABORA 4901 Hawkins NE, Suite D Albuquerque, New Mexico 8: Tel. 505.345.3975 Fax 50 www.hallenvironmental.com	(200 (VOA) + TTPH (DRO, 626)	$\times \times$	XX	XX	
New F S NE, S NE,	8081 Pesticides / PCB's (8082)	<u> </u>			12
<b>EEN</b> Swkins S45. Benvir Ienvir	RCRA 8 Metals Anions (F, Cl, NO ₃ , NO ₂ , PO ₄ , SO ₄ )				- 4 -
ALL 001 H& 505. w.hall	(HA9 no AN9) 01:88	<u> </u>			Plour
AB Hei AB Ww	EDC (Werhod 8021)				Da
	EDB (Method 504.1)				
	TPH (Method 418,1)				Foll metals and in Wark Plan
	BTEX + Method 8015B (Gas/Diesel) TPH Method 8015B (Gas/Diesel)	<u>↓</u>			
	BTEX + MTBE + TMB's (8021)				Remarks:
Dther: Project Name: Project Marme: Project #: Project #:	Project Manager: Sampler: Tock Rul Man Sample Temperature: 3- Number/Volume Preservative HEAL No.		ReoH Nove	(i) 4 02 V -17 Y 1) VOA NeoH -18 (z) Encore Nove -18 i) 402 V -18 (i) 402 V -18	
CHAIN-OF-CUSTODY RECORD CHAIN-OF-CUSTODY RECORD Client: Westhern Refinitue Bicontreld Refinient	עעערי בפיער Sample I.D. No.	Maril Sumu B-11 (1.5-2.0)(1) Vora Maril 80/2000 (1) Vora Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Val	9/28/03 1230 Soi 1 Swww B-R (0-021)(1) Var (1) 402 (1) 402 (1) 402	Ibels Soil SWAU B-RC(1.5-2,1	7/23/08 1930 Cellinguished By: (Signature) Date: Time: Relinquished by: (Signature)

	(N no Y) sosqabsəH no səldduð niA				
48	/				
IMENTAL IMENTAL IMENTAL ORATORY ite D xice 87109 Fax 505.345.4107 al.com	440 0468		XX		etre to where Plan for metals avuel Rist.
HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.345. www.hallenvironmental.com	Metals (see lenands)	X			3
	(AOV-im92) 07S8	X			
NUN Suite Mexic Fa	8260B (VON) + TPH CORO, C-R.D)	X	× I		· É
NE, NE, NE, NE, NE, NE, NE, NE, NE, NE,	8081 Pescicides / PCB's (8082)				
SIS Vkins 345.3 Briving	Anions (F, Cl, NO ₃ , NO ₂ , PO4, SO4)			_	S
HALL ENVIRONMENTA ANALYSIS LABORATO 4901 Hawkins NE, Suite D Albuquerque, New Mexico 87109 Tel. 505.345.3975 Fax 505.32 www.hallenvironmental.com	READ B ARABIN				- D
ABDU Tel. 5 WWW	EDC (Method 8021) 8310 (PNA or PAH)				<u>y</u>
	EDB (Method 504.1)			+ $+$ $+$ $+$	- 3
	TPH (Method 418.1)				- + +
	(leseiO\cs6) 80158 (Gas/Diesel)				55
	BTEX + MTBE + TPH (Gasoline Only)				
	8tex + Mtbe + TMB's (8021)				Remarks:
۲ ۲		-19 -19	07-77		
BA/ BC Package. Std D Level 4 Ed Inucstingertran-Group 3	HEAL No.	1-19 1-19 1-19	12 - 21		108
C C		380,	0801		24
		HUD H	P1		- 0
10 Level 4 K	Debud	ŦŹŦ	II I		
Jec.	Preservative Preservative				y: (Signature)
Std D					
ie d	Project Manager: K.e.L.u. Sampler: Trace Sample Temperature Number/Volume		1		Received By
Other: Project Name: RCLA	Project Manager Sampler: Troc Sample Temperat	2 COL	3) Voc.		Rec Rec
Other: Project Nam Rroject #:	Project Manager: Kelu Sampler: Trace Sample Temperature: Number/Volume	(6) VOH5 (1) 1 L. (2) 2,50mL	(3) Vaus		
					}
	- 632-4166 Robuson Ewurcon Matrix Sample I.D. No.	80			
<b>.</b>	JN 166 Sample I.D. No.	923	Blo		
	Sample Sample	EB2-092308	Trip Blauk NeOH Blauk		Signature)
0 20 0	J J J J		F X		
			╂━┉╌┟╴╴┤╴┨╶╢━┉┉		Relinquished Bry Signature Relinquished By: (Signature)
	burit Matrix	W.c.ler	MeOH		
	Bicourfield SOS-632- elly. Robusion Ime Matrix			+	
CHAIN-OF-CUSTODY RECORD Client: Western Refuire Bloomfield Refuerd	Phone #: SOS- 632-4166	5			Time: Time:
			631		
CHA Ditent: U	Phone #:	to/ez/L	helos g/relos		<mark>기/2월/o</mark> S Date:
	· · · · · ·	1/22	34/26	, ,	SE C

						r—					<del></del>	<del></del>	·	-T	<u>.</u>	1			i			<u> </u>		<u>ہ</u>	
	.>	-			r			<u>(</u> N	Y or I	Air Bubbles (				·				ļ						ی۔ - -	
φ, i	E à				•••		<u> </u>								<u> </u>										
1809448	AT OF	-								<u></u>			-					+							
	<u>i</u> 2	5	60						<u>    .                                </u>	· · · · · · · · · · · · · · · · · · ·					-						+	_	•		
l	I ARORATOR	Ę	1871	107					(40/	/-im92) 0728															
1		Į.S.	NN NN	45-4	lest	· ·		<u> </u>	(	(AOV) 80928	V	$\mathbf{\hat{x}}$				-						-			
		nenta	rque	505-345-4107	Request		PCB's	2808	/ səp	oloitzeg 1808	17														- of the c
	ENVIRONM VSIS LABOR	Lon	Albuquerque, NM 87109	Fax 5	4.0	(*(		' ⁷ ON	" ^e ON	,ID, A) enoinA											· . †	7			-looth
		www.hallenvironmental.com			naly				sle	New 8 ARCRA 8 Met			<u> </u>									_		•	94 H)
1	HALL	v.hal	4901 Hawkins NE -	975	A			(۲	IA9 1	o ANG) 01£8												·			Lafa /
i	4 Z	Ň	ins ¹	505-345-3975	•					EDB (Methoo															
1			lawk	05-3						TPH (Methoo															4
, <u>1</u>			901 F	Tel. 5(	1					TPH Method													S:		Anv ci
41 2 ¹⁵			46	H						BTEX + MTB													Remarks:		Aller 1
				<b></b>		(	 1208) s	LMB.	. + ∃। ज्याह्य	BTEX + MTB		<u> </u>								_		!			
		(	Z								~	5													it ju
			2 doub								7X109445-22	ה י										i	E C	Hime	- Lotic
		~	D				5	2		E Alt	444												57	Ø	0.0010
			3				dotusor	L L			280											Č	Date	Date	This se
	्र मू	4	Ê				ž	00	Z	<u>e</u>				-	<u> </u>					+		_			, and
	C Rush		ţ~	}			B S			servativ Type	FO	5			$\left  \right\rangle$								<u>8-1</u> C		horate
ime:						ີ (	V	V 0		( <b>O</b>	Medy	HC												,	dited [
nd Tii	5		5			Project Manager	5	N	On Ice Samole Temole					∦—	$\left  + \right $					$\left[ - \right]$	+	€	A	<b>)</b> ·	acce
Vrour	anda	t Nai	\$	t#:		t Ma	Kelly	е:		ainer and	VoA	£-							1			1		:Ya	o other
Turn-Around Ti	IL Standard	Project Name:	#JJJ	Project #:		ojec		Sampler:	n Ice amol	Container Type and #	V I	3 Volys										Daccin Marine	Celve	Keceived by	acted to
Ĩ	<u> </u>	1		đ				ڻ ا	ଭାଉଁ		÷	3				+			_				2 0	e Y	hcontra
	<u>د</u>	7	-			Ţ	Drevel 4 (Full Validation)		_	t D		Ł													be suf
o Lo	ucst-	3				Ś	alida			Sample Request ID	NEOH Blauk	The Blauk													al may
ec.	Han	Ĩ		5	90	NY N	ull V			Req	ð	310											ろ		nment
<u>к</u>	8	2	Q	×2	JIL	( Ģ	4 (F			ple	Ŧ	90											Murrido		Enviro
od	٦	2	99	5	) -	Sov				Sam	log V	F										<			thall
lst		let	7	Jef	-632	٨	3				Z	Y						$\mathbf{n}$					्व	ika pa	nitted
ပုံ	2	J Y	P	J.	و	י ד ר	-			Matrix	GW	2										dei	All a	Kelinquisnea D	s subr
Charter Custody Record	Ę	₿.	Ž	Bloomfield NM	Ś	Kell				Ψ	চ	Gw										Oalin		Liiay	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this noscitation for sub-contracted data will be cloudy on the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contracted and the contra
	to 1	3	Jess	Ble	B	Ť	age:		pe)_	Time		1							T	Л		1.	<u>o</u>		sary, s
3hê	3		Ϋ́ς			уг Fa	Pack Idarc	٩ ا	VI) O	F	1	1										Time			fneces
U	ient:	Bloomfield Refinen	Mailing Address Could 4990		Phone #:	email or Fax#: Kelly. robinson Ciuinr. con	QA/QC Package:	□ Other	a EDD (Type)	Date	5/00	₹ V o8	)										1/23/08		
	រប		Σ		친	e	δ□				9 h 2/	A2/15										Dato	131 v	Uate:	

•

	ANALYSIS LABORATORY		4901 Hawkins NE - Albuquerque, NM 87109	505-345-3975 Fax 505-345-4107	Analysis				(H 308 ON'	۸03 b Aq ٦ د اد Sls V ( Seb ( AOV ( AOV	athod Met aticid AOA MOA Met	TPH (Mé EDB (Mé 8310 (Pr 8310 (Pr 8081 Pe 8260B (/ 8250 (Sé 52 > 52 > 52 > 52 > 5	×	X	×	X			×	X			e Site INUESTIGATION	ed 1054
			4901	Tel. 5		(Kļu	10 58	5) I	ЧЧТ	+ 38	atm	BTEX + TPH Me	X			X					 		Remarks:	G Hee
	Standard 🛛 Rush	Project Name: RCPA Invertigation -	Group 2	Project #:		Project Manager:	Kelly Rebinsen		Sampler: Track Payne	ongestas <b>poesa at</b> no Sample Temperattre		Container Preservative Treatment of Type and # Type	VOA(6) HCL DYNAUVY 24	4 liter (2) None -24			1/der (1) None -15	250m1 (2) /fro3 -25	3)	Vial(1) - 27			Ved W: Varia Time	Received by:
	Client: Western Retining Southwest, Inc V	<u> </u>	1 4990		32-4166	on Cunricon		Luclevel 4 (Full Validation)	Sar			Sample Request ID	EB 092308	1/1	1 250	FB 092308 10,	[ []	4 250	- Trip blank WOAL	- Meolt blank Via			Relinguished by: Ally Coluce D.	Relinquished by: Rece
Una Dr-L	Client: Western Ren	Bloom Field Refinery	Mailing Address: 50 Roco		Phone #: 505-632-4	email or Fax#: Kelly.	QA/QC Package:	L standard	Other			Date Time Matrix	09/2300g 14.30 Water		TTT	Sh, h/ BOKE160		マイト	12/08	Bo/cz/2	 		Date: Time: Relingui	Date: Time: Relinqui

Ι

HALL ENVIRONMENTAL		4901 Hawkins NE - Albuquerque, NM 87109	10	Analysis		cB's	ν <b>ςογ</b>	(1, 1, 1) (H7 (H7 (H7))	3) () () () () () () () () () (	TPH (Metho EDB (Metho 3310 (PUA d 3310 (PUA d 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	× ×		×			x		X			×		Court	Anertyte Lists. U	Yelly chiest wants grad dre analytic	his serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report 75, 1, 1
		4901 H	Tel. 50		(Հի	IO SB	ө) н	ЧТ·	+ 36	BTEX + MTI													Remarks: Refer to	Specific Auch	Ir Yel	bility. Any sut
	11	y drap			(	_ ر		NT -	BE +	TIM + X3T8		l l		Ļ	2	, -	4	2	m	S	3	$\infty$	Date Time	Date Time		-
 d 🗆 Rush		KCRA INVESTICATION	>		ager:	Kobinson	-	APICANCE PERMIT	iperature 5	Preservative Type	Methaual	None	Nove	Nohe	Methodus	Nove	2016	Nouc	Methano /	Nove	Nove	Nou e	م ک ا	-	heb	
C Standard	Project Name:	KCRA IN	Project #:		Project Manag	Helly	Complex	Onlice 7	Sample Tempe	Container Type and #	Homr NoA	2) Encore	ی ا م	() 40Z	Your VOA	(2) Eucore	(1) yoz	(1) H 02	40m 1 NOAS	3) Encore	() yeter	20 H (1)	Received by:	Received by:	Contraction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	
Client: Western Refigure Satury ruc.	Refilien		Σ	Phone #: 505- 632-4166	email or Fax#: Kelly, Robinson C whr.com	ige:		Type)		Date Time Matrix Sample Request ID	9/23/8 8932 SOIL SUMU 8-2 (1.5-2.01) 40ml VOA			$\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$	7/23/8 0945 Soil SWNU 8-3 (0-0.51) 40mL VOA			$\rightarrow$ $\rightarrow$ $\rightarrow$	9/23/8 100 Soil Sumu 8-3/1.5'-2.0'				3 1500 Kullufolu sur	Time: Relinquished by:	If necessary samiles submitted to Hall Environmental may be extraorded to other	יייטטטעייי אי פמויואנים פחמווואפע ער זימון דיואומוווואנו או זווא אייין אייט אייטעיי

<ul> <li>HALL ENVIRONMENTAL</li> <li>HALL ENVIRONMENTAL</li> <li>HALL ENVIRONMENTAL</li> <li>ANALYSIS LABORATORY</li> <li>ANALYSIS LABORATORY</li> <li>Www.hallenvironmental.com</li> <li>Hawkins NE - Albuquerque, NM 87109</li> <li>Tel. 505-345-3975 Fax 505-345-4107</li> <li>Tel. 505-345-3975 Fax 505-345-4107</li> </ul>	TPH Method 8015B (Gas/Diesel) TPH (Method 504.1) EDB (Method 504.1) B310 (PUA or PAH) RCRA 8 Metals Anions (F,CI,UO ₃ ,VO ₂ ,PO ₄ ,SO ₄ ) 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8082 PCB's 8270 (Semi-VOA) 8270 (Semi-VOA) Metols (YoN) 2VOC 5 (8270)						emarks: Refer to Consect Order for Speerful away the Rists or Kelling and hists and dro to be amarked for sibility. Any sub-pontracted data will be dearly notabed on the analytical report. The
Chai F-Custody Record Iurn-Around Time: Client: Western Refining Sayluart, In Standard Rush Bloom field Refinent Project Name: Mailing Address: J 4990 Mailing Address: J 4990 Phone #: 505 - 632 - 4166 Phone #: 505 - 632 - 4166	email or Fax#:       Kelly, robius cu @ Lour.cu       Project Manager:         QAVQC Package:       Date       Inferiored (Full Validation)         Image:       Inferiored (Full Validation)       Melly       Poblety Wold         Image:       Inferiored (Type)       Sampler:       Melly       Matrix         Image:       Image:       Image:       Image:       Matrix         Image:       Image:       Image:       Image:       Image:         Image:       Image:       Image:       Image:       Image:       Image:         Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:         Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image:       Image: <t< td=""><td>9/23/8 6815 Soil SWMU 8-1 (0-0.5') HOWL VON Methanol LI Encore None H</td><td>402 (I) None</td><td>4/23/8 0830 Soil SWMU 8-1 (1.5-2.0) 40mL VOB Methauol 5 6/23/8 0830 Soil SWMU 8-1 (1.5-2.0) 40mL VOB Methauol 5 60000 Elicore (2) Nowe 6</td><td>423/00915 Soil SWMU 8-2 (0-cr.51) 40ml VOA Methanol 10</td><td>V V (1) 4 62 Nove 10 V V (1) 4 62 Nove 10</td><td>CX Date Time Re Date Time Re Date Time</td></t<>	9/23/8 6815 Soil SWMU 8-1 (0-0.5') HOWL VON Methanol LI Encore None H	402 (I) None	4/23/8 0830 Soil SWMU 8-1 (1.5-2.0) 40mL VOB Methauol 5 6/23/8 0830 Soil SWMU 8-1 (1.5-2.0) 40mL VOB Methauol 5 60000 Elicore (2) Nowe 6	423/00915 Soil SWMU 8-2 (0-cr.51) 40ml VOA Methanol 10	V V (1) 4 62 Nove 10 V V (1) 4 62 Nove 10	CX Date Time Re Date Time Re Date Time

	HALL ENVIRONMENTAL ANALYSTS LARORATORY		VE - Albuquerque, NM 87109		Analysis Request		bCB. ²	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 \ ε (∀( ) )	255 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0	AVP) (PVA و APN 8 APD APN 8 APD C, F) anoina ADV) 808 8260B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA 8250B (VOA			×	×		×	X					nsut Orden for	Inter List "	t and on the most of the	-contracted data will be clearly totated on the analytical report.
			4901 Hawkins NE	Tel. 505-345-3975		(մյւ	୦ ୧୫୦)	1) B (G BH	+ T 151( 18.	9E 1 8(	ВТЕХ + МТ ВТЕХ + Мт ТРН Мейлос ТРН (Мейлос ВТЕХ + МТ												Remarks: 40 Co	Metals Mudult	Pu Villin Mi	-
	□ Rush	me: Investration - (2,201,0 2					obius and				Preservative Type	Medy 7	Nove 7	ر اعر	Nove 7	Me OH 8	None x		None 8		Acot R		Date Time	Date Time	glauter inna	dited laboratories. This serves as notice of this possibility. Any si
Turn-Around Time:	A Standard	Project Name: PC RA Invert		Project #:		Project Manager:	Kelly Rob	Sampler:	On lice 3 2 2 20 20	Sample Temperatu	Container Prese Type and # T	Home voa Me	(2) Ericore Ni		() Hor N	40mr NON 1	(2) Encore N				-	V	to Fed Ex	Received by:		ontracted to other accredited
Chairer-Custody Record	Client Nestern Cefining Sathwart. Inc.	Bloomfield Refinent	Mailing Address port 4990		Phone #: \$ 505-632-4166	email or Fax#: Kelly, Robinson Cwnr. com	QA/QC Package:	□ Other	EDD (Type)		Date Time Matrix Sample Request ID	1/23/08 1015 SOIL SWMU 8-4 (0-0.5')				9/23/08 1030 Soir Swmv B-4(1.5-20)			1 1 1 1	- 6W . TB	7/23/08 - Gw Me OH Blant		20% 1500 Kellerder	Date: Time: Relinquished by:		If necessary, samples submitted to Hall Environmental may be subcontracted to other accre