GW - 001

C-141s

OIL CONS. DIV DIST. 3

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico
Energy Minerals and Natural Resources

JUN 29 2015

Form C-141 Revised August 8, 2011

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

				Sa	шіа г	e, INIVI 8/3	103					
			Rele	ase Notific	ation	and Co	orrective A	ction				
						OPERA'	ГOR			al Report	\boxtimes	Final Repor
Name of Co	ompany: W	estern Refir	ing South	west, Inc.			atthew Krakow					
Address: 5						Telephone l	No.: 505-632-4	169				
Facility Na			nal				e: Products Te					
Surface Ow		ern Refining		st, Mineral C)wner				API No),		
Inc.												
				LOCA	TIOI	N OF RE	LEASE					
Unit Letter	Section	Township	Range	Feet from the	North	South Line	Feet from the	East/W	Vest Line	County		
	27	29N	11W									
		Latitud	e_36 ⁰ _41 ³	55"N		Longitude	107° 58' 2	6" W_				
				NAT	URE	OF REL	EASE					
Type of Rele	ase: Water					Volume of	Release: 45 barr	els		Recovered:		
Source of Re	lease: Sum	p overflow					Hour of Occurrence 10:15 am MT	e:		Hour of Dis t 10:15 am l		:
Was Immedi	ate Notice C		Yes 🔲	No 🛛 Not Re	equired	If YES, To	Whom? Cory Smith NMO	CD				
By Whom?:	Matthew K	Crakow				Date and H	Hour: 5/11/2015 at 8:30	om MT				
Was a Water	course Reac	hed?					olume Impacting t		rcourse.			
			Yes 🛚	No								
If a Watercou	ırse was Im	pacted, Descr	ibe Fully.*			a a		¥	COPY			
Describe Cau Storm water around the su	runoff from	a severe rain	event over		ninal's p	products rack	sump and it over			collected in	a cont	ainment area
This spill too	at collected k place in a	in the contain n area previou	nment area usly investi	was removed wit gated under an ac	ctive Co	nsent Order i	d disposed of thro ssued through Ne andition of the Co	w Mexic	co Hazardo	vastewater to ous Waste B	eatmer ureau.	nt system. Western is
regulations a public health should their	Il operators or the envir operations h nment. In a	are required to ronment. The ave failed to a ddition, NMC	o report and acceptance adequately OCD accept	d/or file certain re c of a C-141 repo investigate and re	elease nort by the emediat	otifications a e NMOCD m e contaminati	knowledge and und perform correct larked as "Final R ton that pose a three the operator of	ctive acti eport" de eat to gr	ons for rel oes not rel ound wate	eases which ieve the ope r, surface w	may entator of ater, hu	ndanger f liability man health
Signature:	(Val)	Tull	M	_			OIL CON	SERV	ATION	DIVISIO	<u>N</u>	
Printed Name	: Mat	thew Ki	-a Kou)		Approved by	Environmental S	pecialist	:			
Title: Envl	•					Approval Da	te:	H	Expiration	Date:		
E-mail Addre						Conditions of	f Approval:			Attached	. 🗆	
Date: 6/2	4/15		Phone:	505-632-41	69							

Date: 6/24/15

* Attach Additional Sheets If Necessary

Chavez, Carl J, EMNRD

From: Martinez, Cynthia, NMENV

Sent: Tuesday, May 17, 2016 2:07 PM

To: Randy.Schmaltz@wnr.com

Cc: Kieling, John, NMENV; Cobrain, Dave, NMENV; Dhawan, Neelam, NMENV; VanHorn,

Kristen, NMENV; Tsinnajinnie, Leona, NMENV; Chavez, Carl J, EMNRD; Smith, Cory,

EMNRD; Allen.Hains@wnr.com; Kelly.Robinson@wnr.com

Subject: Letter to Mr. Schmaltz

Attachments: Western Refining Bloomfield-Response to Corrective Action Rpt.pdf

Good Afternoon All, The attached letter will be mailed today.

Cynthía Martínez New Mexíco Envíronment Department Hazardous Waste Bureau 2905 Rodeo Park Dríve East, Bldg.1 Santa Fe, New Mexíco 87505 Phone 505-476-6000

SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.env.nm.gov

RYAN FLYNN Cabinet Secretary BUTCH TONGATE Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

May 17, 2016

Mr. Randy Schmaltz
Health, Safety, Environmental, and
Regulatory Director
Western Refining, Southwest, Inc.
Bloomfield Terminal
P.O. Box 159
Bloomfield, New Mexico 87413

RE: RESPONSE TO CORRECTIVE ACTION REPORT

WESTERN REFINING SOUTHWEST INC., BLOOMFIELD REFINERY

EPA ID# NMD089416416

HWB-WRB-MISC

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has received Western Refining Southwest, Inc., Bloomfield Refinery's (Western) *Corrective Action Report* (Report) received April 8, 2016. NMED has reviewed the Report and hereby issues the following comments.

Comment 1

In the section titled *Corrective Actions*, Western states "5-point composite samples were collected to characterize the North, South, East, West excavation walls. In addition, two 5-point composite samples were collected from the excavation base, one sample collected at the bottom of the deepest excavation base." Composite samples are not appropriate for confirmation sampling. Discrete samples must be collected for all future soil confirmation sampling. In addition, it is not clear where the samples were collected and at what depths because a figure was not provided and the sample locations were not described in the Report. Provide a figure with the sample locations and indicate the depths where the samples were collected in the response

R. Schmaltz May 17, 2016 Page 2 of 4

letter. For all future Reports, soil sample locations and depths, where appropriate, must be clearly defined and a figure must be provided depicting the sample locations.

Comment 2

In the section titled *Waste Characterization*, Western provides the analytical methods used to characterize the excavated soils for disposal. However, Western did not provide copies of the waste manifest(s) with the Report. In addition, it is helpful to include the waste characterization analytical results in a table comparing them to the appropriate screening levels. Provide copies of the waste manifest(s) and generate a table (Analytical Summary of Waste Characterization Sample Results) that summarizes the waste characterization analytical results and compare them to the appropriate screening levels. Include the waste manifest(s) and additional table with the response letter.

Comment 3

In the section titled *Recommendations*, Western states that the New Mexico Oil Conservation Division's (OCD) *Guidelines for Remediation of Leaks, Spills, and Releases* (dated August 13, 1993) cleanup levels were utilized to evaluate the soil confirmation and waste characterization samples analytical results. NMED requires the use of the most recent construction worker soil screening levels (SSLs) from NMED's *Risk Assessment Guidance for Site Investigations and Remediation* because NMED's SSLs are more current than the screening levels in OCD's guidance document. In addition, utilizing NMED's SSLs will better characterize the contaminants detected in the soil confirmation and waste characterization samples because the cleanup levels provided in OCD's guidance document did not provide screening levels for a majority of the constituents analyzed by Western. It is expected that construction and excavation activities at the terminal will expose the workers to impacted soil; therefore, future soil confirmation samples that result from a leak, spill or release must be compared to NMED's construction worker SSLs because the terminal is still active and the tanks are still in use.

Comment 4

In the section titled *Recommendations*, Western requested "permission to backfill the excavation area to match [the] existing grade." Western states that "this is an active investigation area under the NMED-HWB Consent Order dated July 27, 2007, and therefore Western is requesting the remaining corrective actions for this area be covered under the direction of the 2007 Consent Order." NMED concurs with Western and sent an e-mail response on May 2, 2016 to Ms. Kelly Robinson to allow Western to backfill the excavation. In addition, NMED also concurs that corrective action activities at this site may be deferred until this area is no longer in use or otherwise accessible.

Comment 5

Diagram #2 is an aerial photo depicting the approximate location and excavation boundary at the site near Tanks 41, 42a, 42b, and 43. Diagrams 3 and 4 are field note diagrams depicting the

R. Schmaltz May 17, 2016 Page 3 of 4

excavation boundary and photoionization detector (PID) readings at the corresponding excavation depths for the March 14 and 16, 2016 excavation events. Below are comments regarding Diagrams #2, 3, and 4:

- a. It appears that the excavation boundary in Diagram #2 may be a different shape than the boundary depicted in Diagrams 3 and 4. Provide an explanation or clearer Diagrams 3 and 4 to show that all three diagrams have the same excavation boundary.
- b. Diagrams 3 and 4 depict PID readings with the corresponding depths at several locations on the excavation boundary. However, Western circled 4 locations on each of the diagrams and did not explain why. In addition, there is a location with an "X" with a circle around it that is not explained. Explain why certain PID readings were circled in the response letter. For all future submittals, all figures with symbols must have a key to define the symbols.

Comment 6

In Table 1 (Analytical Summary of Confirmation Sample Results), Western summarizes the analytical results for the soil confirmation samples and compares them to OCD Clean up Levels. As stated in Comment 3, NMED requires comparing the soil confirmation analytical results to the construction worker SSLs for all future leaks, spills or releases. Provide a revised Table 1 comparing the soil confirmation analytical results to the construction worker SSLs. In addition, there appears to be analytical results reported as detections in bold face print while others are not highlighted. Provide a footnote to explain the bold print analytical results in the revised table submitted with the response letter.

R. Schmaltz May 17, 2016 Page 4 of 4

Western must address the comments from this response and provide the information required, along with a response letter to NMED by August 5, 2016.

If you have any questions regarding this letter, please contact Leona Tsinnajinnie of my staff at (505) 476-6057.

Sincerely,

John E. Kieling

Chief

Hazardous Waste Bureau

cc:

- D. Cobrain, NMED HWB
- N. Dhawan, NMED HWB
- K. Van Horn, NMED HWB
- L. Tsinnajinnie, NMED HWB
- C. Chavez, NMENRD OCD (Santa Fe)
- C. Smith, NMENRD OCD (Aztec)
- A. Hains, Western Refining Company, El Paso, Texas
- K. Robinson, Western Refining Company, Bloomfield, New Mexico

File: HWB-WRB-MISC and Reading 2016

Chavez, Carl J, EMNRD

From: Robinson, Kelly <Kelly.Robinson@wnr.com>

Sent: Thursday, April 07, 2016 6:23 AM **To:** Tsinnajinnie, Leona, NMENV

Cc: Dhawan, Neelam, NMENV; Cobrain, Dave, NMENV; Chavez, Carl J, EMNRD; Schmaltz,

Randy; Krakow, Matt; Powell, Brandon, EMNRD

Subject:Corrective Action ReportAttachments:Corrective Action Report.pdf

Good Afternoon Ma'am,

In response to an oil leak originally reported to NMED-HWB and NMOCD on Saturday, March 5th, 2016, Western is submitting this Corrective Action Report summarizing the activities completed to-date. This Report is being submitted as an attachment to a revised C-141 Initial Report NMOCD has requested previously. The Report documents the excavation activities completed to-date, results from confirmation samples collected within the excavation area, and diagrams/photos showing the physical extent of the excavation.

As you will see in the Report, the excavation efforts were completed to the extent possible at this time. Due to the proximity of existing facility equipment and process piping, Western is no longer able to remove any additional soils safety. Western is requesting permission to suspend any further corrective actions until such time that the active process piping/equipment are removed to provide safe access to the area. This is an active investigation area under the NMED-HWB Consent Order dated July 27, 2007, and therefore Western is requesting that the remaining corrective actions for this area be covered under the direction of the 2007 Consent Order. In addition, Western is requesting permission to backfill the excavation area to match existing grade. This area serves as a secondary containment for active facility process equipment, and exposed active piping is being temporarily supported. Western believes the immediate threat this release had to the area has been removed by the excavation activities completed to-date. The remaining corrective actions would be best complete at a later date when the area is more accessible in a safe manner.

We would be more than happy to discuss this matter with you via a conference call to help facilitate NMED's review of the event, if so desired. Please let us know if you have any questions, or if you need any additional information not otherwise provided in this report. A hardcopy of this report is being sent to you, as well as to the OCD District Office and OCD Santa Fe Office.

Thank you for your time!

Sincerely,

Kelly R. Robinson I Environmental

Western Refining I 111 County Road 4990 I Bloomfield, NM87413 (o) 505-632-4166 I (c) 505-801-5616 I (e) <u>kelly.robinson@wnr.com</u>

811 S. First St., Artesia, NM 88210 District III

1000 Rio Brazos Road, Aztec, NM 87410

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rele	ase Notific	catio	n and Co	orrective A	ction			·			
				C	PER	ATOR	\boxtimes	Initia	ıl Report	(Revised)	☐ Fin	al Repor		
		Vestern Refir	ning South	west, Inc.		Contact: Kelly Robinson								
Address: 50			1				No.: 505-632-4							
Facility Nar	ne: Bloor	nfield Termi	naı			Распиу гур	e: Products Te	rminai	<u> </u>					
Surface Ow Inc.	ner: West	tern Refining	g Southwe	st, Mineral ()wner				API No),				
				LOCA	ATIO	N OF RE	LEASE							
Unit Letter	Section	Township	Range	Feet from the		/South Line	Feet from the	East/W	est Line	County				
	27	29N	11W											
		Latitud	e 36° 41°	45"N		Longitude	107° 58' 12	2" W						
					TIRE	OF REL	•			ASTO-444				
Type of Rele	ase: Crude	Oil		11/2	CICL		Release: Unknow	wn	Volume I	Recovered: 8 h	arrels			
		de Line Releas	se Undergre	ound			lour of Occurrenc	e:		Hour of Disco	very:			
Was Immedia	te Notice (Given?				unknown If YES, To	Whom?		3/05/2010	o at Zam				
11 45 23211041	1 (01100)		Yes 🔲	No 🛛 Not R	equired	.	Cory Smith (NMC							
							Carl Chavez (NMI Leona Tsinnajinni							
							Dave Cobrain (NA							
]	Neelam Dhawan (
By Whom?:	Kelly Rob	inson				Date and I	lour :)3/05/2016 at 2:56	om o						
Was a Water	course Read						olume Impacting t		rcourse.					
			Yes 🛚	No										
If a Watercou	rse was Im	pacted, Descr	ibe Fully.*											
Describe Cau	se of Probl	em and Reme	dial Action	Taken.*										
At approxima	itely 2am o	n Saturđay, M	farch 5 th , 20	16, Western Op	eration:	s identified a s	mall 3-gallon acc	umulatic	n of crude	oil on ground	surface v	vithin		
							release was initial							
							ne day, Maintena to be a breach in							
							temporary repair				то ріропі	10 15		
Describe Are	Describe Area Affected and Cleanup Action Taken.*													
Eveese liquid	s were coll	ected using an	on-site va	num truck The	recove	ered oil was se	nt through the on-	eite was	tewater tre	atment system	for oil re	ecovery		
Excess liquids were collected using an on-site vacuum truck. The recovered oil was sent through the on-site wastewater treatment system for oil recovery. The oil release came from an underground pipeline that is located within the secondary containment of Tanks 41. As of 12:15pm this afternoon, temporary														
	repairs have been completed on the pipeline. Surface soil impacts are localized to an area within the secondary containment of Tank 41. This crude oil release took place in an area previously investigated under an active Consent Order issued through New Mexico Hazardous Waste Bureau (NMED-HWB).													
							ned through New . Is pursuant to the				. (NMED	-HWB).		
				-	-		-					_		
							the corrective acti litional soils safel							
							itainment for activ							
active investig	gation area	under the NM	ED-HWB	Consent Order d	lated Ju		nd therefore West							
for this area b	e covered i	under the direc	ction of the	2007 Consent C	raer.									

or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	does not relieve the operator of respon	sibility for compliance with any other
Signature Kelle Column	OIL CONSER	VATION DIVISION
Signature New York Out		
Printed Name: Kelly Robiusou	Approved by Environmental Special	st:
Title: Environmental Manager-Logistics	Approval Date:	Expiration Date:
E-mail Address: Kelly. Robins on Ewnr. Com	Conditions of Approval:	Attached
Date: 4-6-2016 Phone 505 632-4166		ADDICAGO

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health

^{*} Attach Additional Sheets If Necessary

CORRECTIVE ACTION REPORT Western Refining – Bloomfield Terminal

Cause of the Release

On Saturday, March 5th, 2016 at approximately 2am, the Operator on-duty at the Western Refining Bloomfield Terminal noticed a small stain of crude oil adjacent (east) of the Tank 42a/42b secondary containment pad. This area is located within the southern portion of the facility, south of highway 4990. The operator used absorbent material to soak-up the oil, and notified the Terminal Operations Manager. By 8am that same day, Maintenance personnel arrived on-scene to investigate the source of the stain. Using a backhoe, Western was able to identify a small leak in a 3-inch insulated crude oil pipeline used to convey crude oil from the Wet Oil System (Tank 41) to the facility Tank Farm area. The location of where the repair was made on the pipeline is approximately 10 to 15 feet east of where the crude oil surfaced. The pipeline was insulated with a fiberglass wrap, which likely was the reason why the oil released to surface slightly adjacent to the leak source location. Maintenance was able to isolate the line and repair the leak with a temporary clamp. The pipeline was returned to service by 12 noon on Saturday, March 5th, 2016. An initial notification of the release event was submitted to the New Mexico Oil Conservation Division (NMOCD) and New Mexico Environment Department - Hazardous Waste Bureau (NMED-HWB) on March 5th, 2016. The approximate location of where the release occurred within the facility boundary and the footprint of the excavation to-date is shown in Diagram 1 and Diagram 2, respectively.

Corrective Actions

Western contracted with Adobe Construction ("Adobe") to perform the excavation effort, and with LT Environmental to provide environmental over-site of the excavation efforts. Excavation activities commenced on Wednesday, March 9th, 2016 following clearance to dig through the New Mexico One Call System. The initial effort involved hand-digging to expose any existing pipelines within the area. Three additional pipelines were located within the excavation area. These additional lines have been confirmed by Operations to be out-of-service. Once the pipelines were exposed, a backhoe was used to progress the excavation effort. Field monitoring was conducted using a Photo Ionization Detector (PID) meter. The PID readings assisted in identifying the areas for which additional excavation was needed.

The excavation area was limited by the existing in-service aboveground pipelines to the north and east, existing concrete containment for in-service tanks to the west, and an existing tank to the south. Photo 1 and Photo 2 shows the adjacent facility equipment around the perimeter of the excavated area. Due to the restrictions from the existing structures, the lateral extent of the excavation was approximately 26 feet East – West and 12 feet North-South. The benching on the south side of the excavation was done to allow for means of egress for additional hand-digging around the pipelines.

The PID readings showing the surface concentrations as of March 14, 2016 are shown on Diagram #3. The diagram shows the relative depth below original grade in feet, and the corresponding PID reading in parts per million (ppm). The excavation had reached approximately 7.5 ft within eastern portion of the

excavation. This was accomplished utilizing a combination of excavation by backhoe and hand-digging. The west side was benched down approximately 2.5 feet, providing the backhoe an area to reach between the pipelines. PID readings were collected periodically as the excavation activities progressed. Along the north western portion of the excavation, there was an area of sandy soils exhibiting higher organic concentrations as observed using the PID. The excavation extended down deeper in this location, creating a hole approximately 3 feet by 2 feet by 13 feet deep (the maximum reach of the equipment used for excavation).

Between March 14th and March 16th, 2016, additional soils were removed, targeting areas higher than 300 pppm. Sidewall field readings indicated that the deeper hole needed to be extended laterally to the extent possible with the equipment used while taking into consideration the adjacent pipelines. Updated PID readings of the excavated area as of March 16th, 2016 are shown on Diagram #4. Due to adjacent facility equipment and concerns of being able to safely support the active pipeline that crosses the excavation, no additional soils were able to be removed at this time.

Between March 14th and March 16, 2016, 5-point composite samples were collected to characterize the North, South, East, West excavation walls. In addition, two 5-point composite samples were collected from the excavation base, with one sample collected at the bottom of the deepest excavation base. The samples were analyzed for the following:

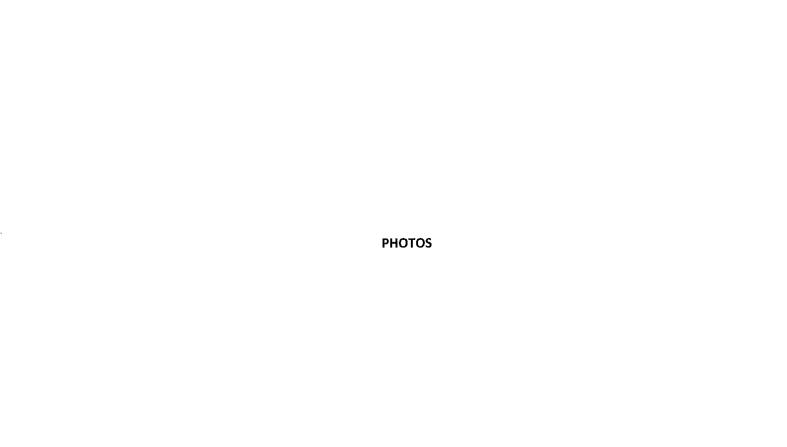
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) by EPA Method 8015
- TPH Diesel Range Organics (DRO) by EPA Method 8015
- TPH- Motor Oil Range Organics (MRO) by EPA Method 8015
- Total Metals by EPA Method 6010B
- Volatile Organic Compounds (VOCs) by EPA Method 8260B
- Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270C

A summary of the analytical results are provided in Table 1, and a copy of the analytical results are provided as an Appendix to this Report.

Waste Characterization

Excavated soils were temporarily stock-piled on-site during excavation activities. Approximately 80 yards of impacts soils were removed from the excavation. A composite sample was collected and analyzed for the following:

- TCLP VOCs by EPA Method 8260B
- TCLP SVOCs by EPA Method 8270C
- TCLP RCRA 8 Metals by EPA Method 6010B
- TPH-GRO by EPA Method 8015
- TPH-DRO by EPA Method 8015
- TPH-MRO by EPA Method 8015

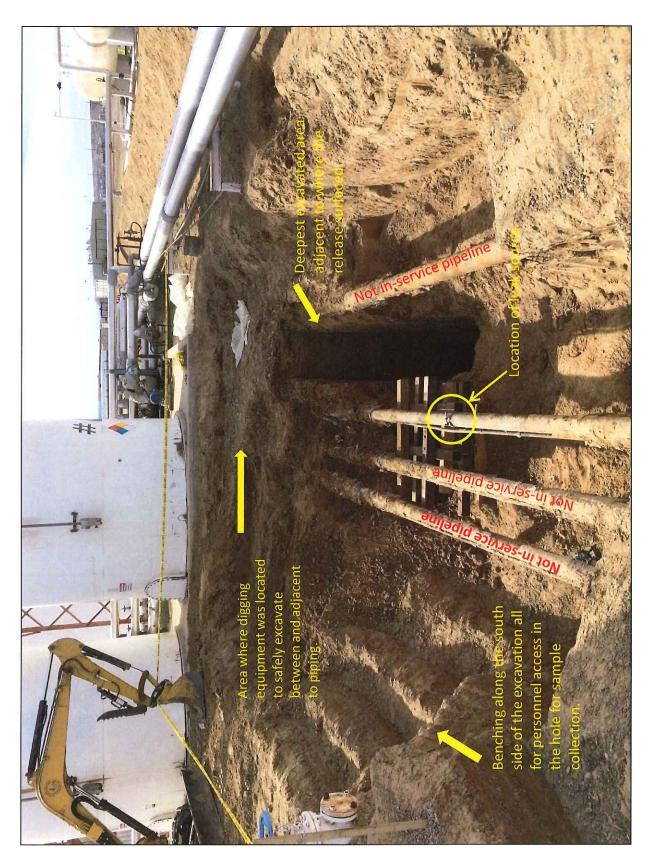
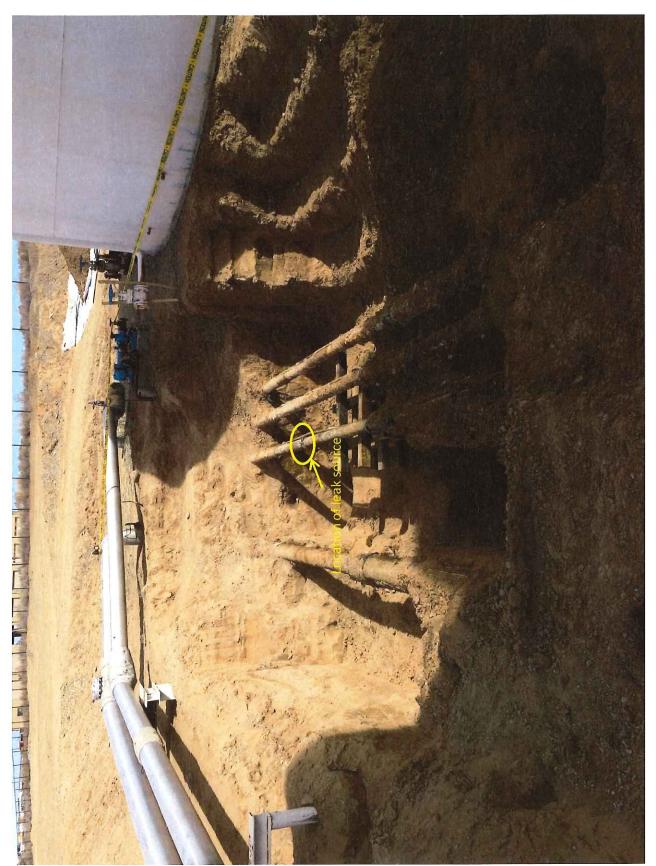
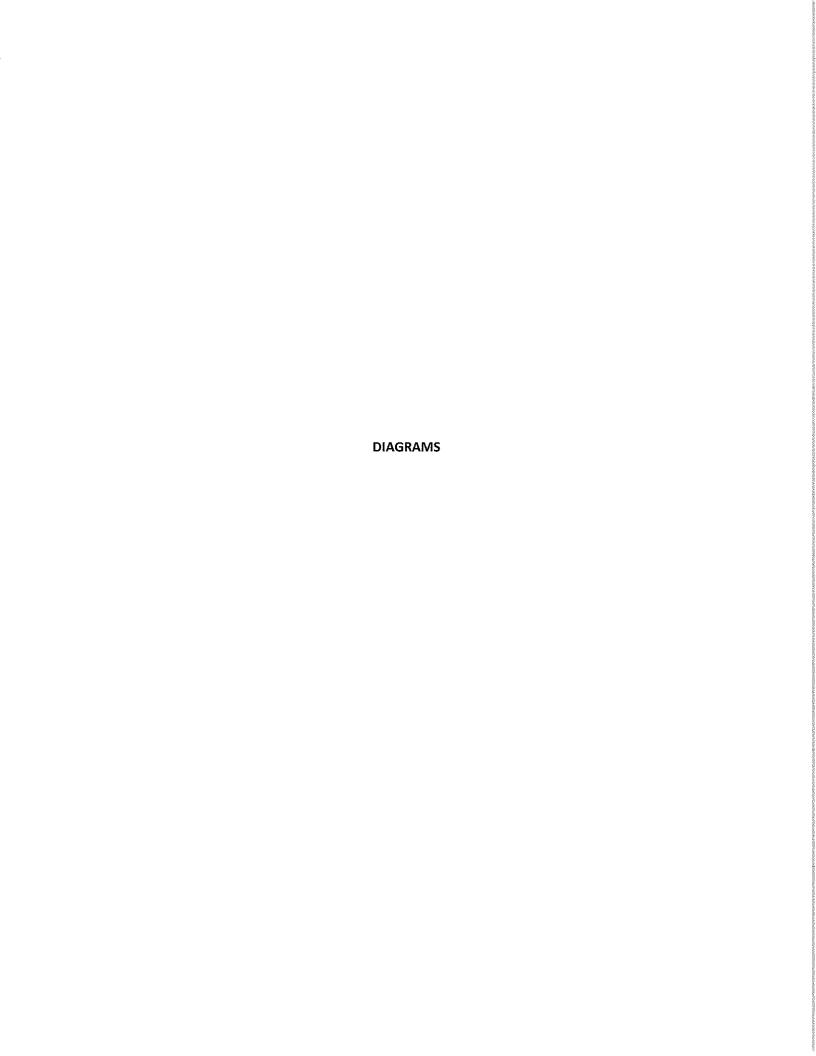
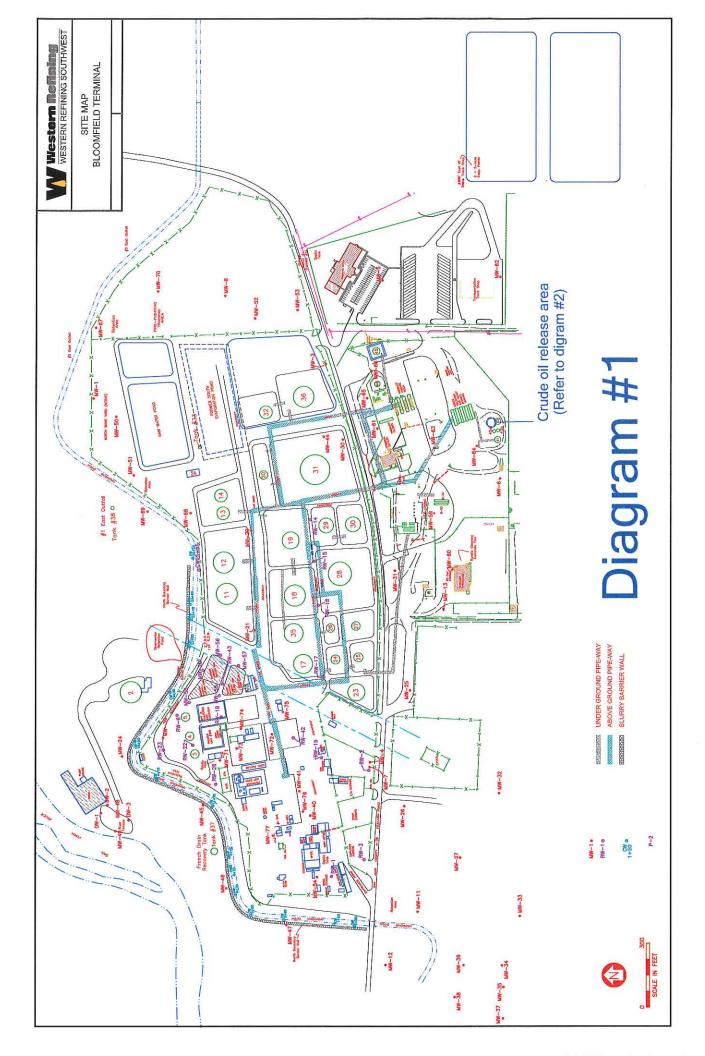

The analytical results show that the material is classified as non-hazardous non-exempt waste. The waste was sent to the Envirotech landfarm for treatment and disposal. A copy of the waste characterization analytical report is provided in Appendix A.

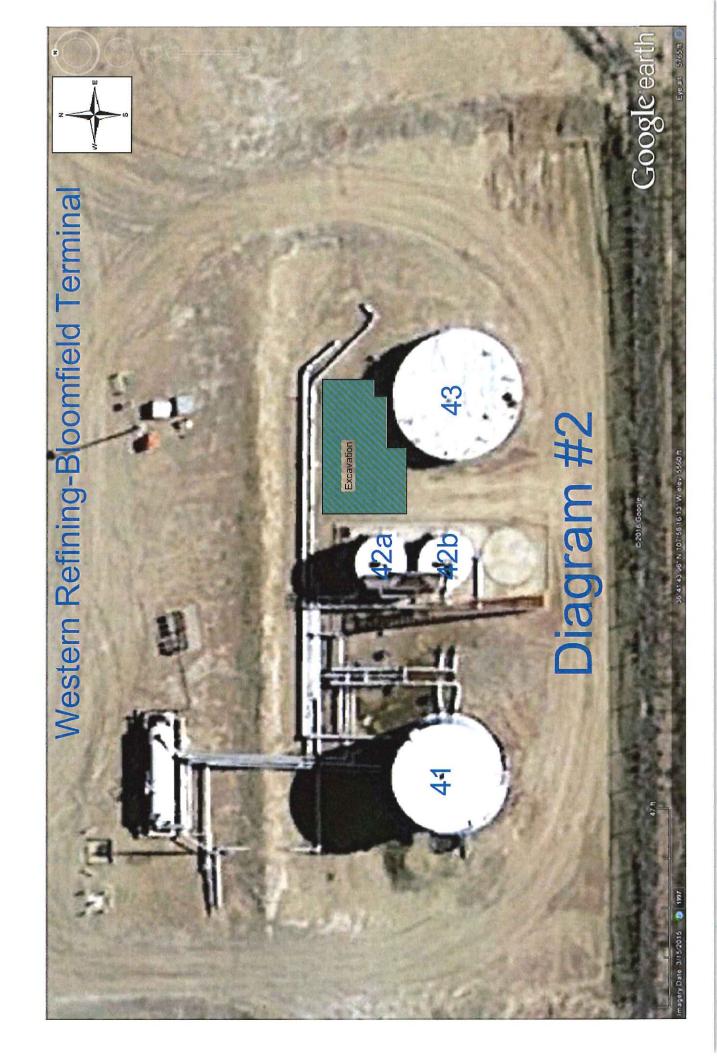
Recommendations

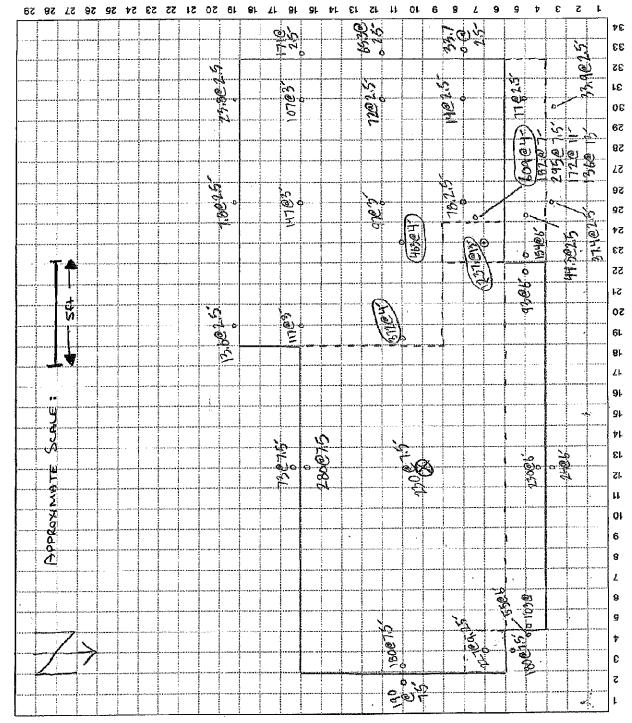
The analytical results show that the north and south lateral extent of the impacted area has been defined. The remaining soils along the north and south boundary of the excavation area exhibit concentrations below the most conservative clean-up levels pursuant to the New Mexico Oil Conservation Division *Guidelines for Remediation of Leaks, Spill and Releases* dated August 13, 1993.

Confirmation samples collected from the west, east, and excavation base show that the residual soil concentrations are above the OCD clean-up levels for closure. However, the remaining soils no longer exhibit visual saturation staining. Due to the proximity of existing equipment within the excavation area, Western is no longer able to remove additional soils safely.

With this said, Western is requesting permission to backfill the excavation area to match existing grade. This area serves as secondary containment for active in-service equipment. In addition, this is an active investigation area under the NMED-HWB Consent Order dated July 27, 2007, and therefore Western is requesting the remaining corrective actions for this area be covered under the direction of the 2007 Consent Order.


Photo 1: View of excavation as of March 14, 2016 looking west.



Photos 2: View of excavation as of March 14, 2016 looking east.

Diagram 3: Extent of excavation as of March 14, 2016. The diagram shows the PID reading in parts per million (ppm) with the corresponding depth below original grade surface in feet.

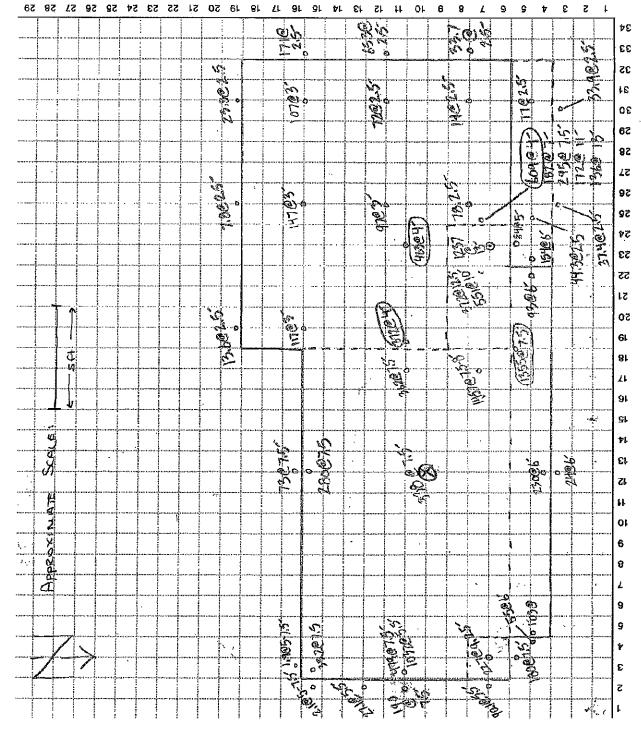
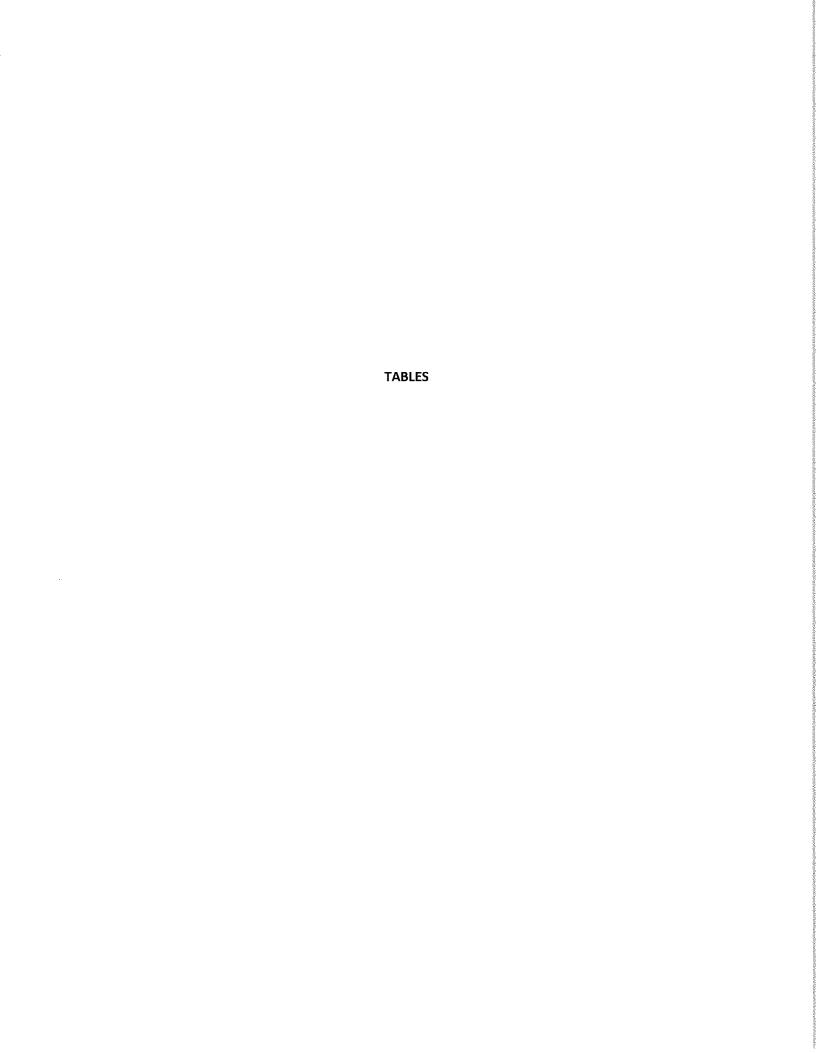
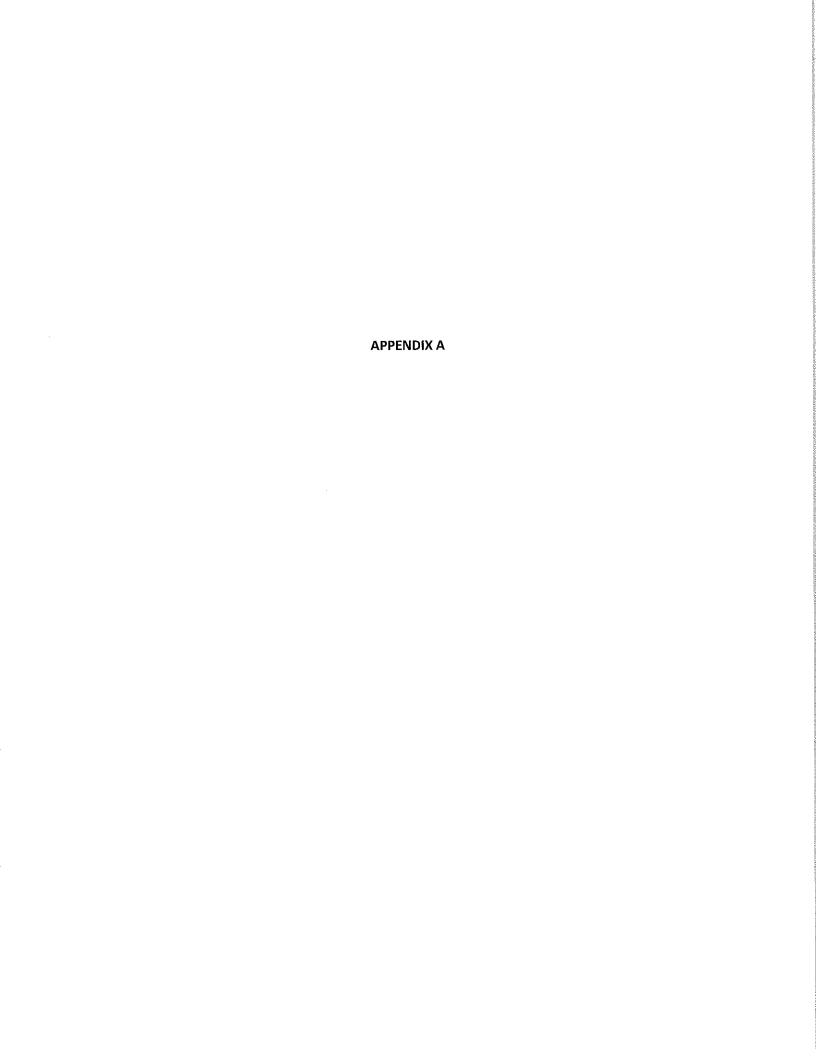



Diagram 4: Extent of excavation as of March 16, 2016. The diagram shows the PID reading in parts per million (ppm) with the corresponding depth below original grade surface in feet.

TABLE 1 Analytical Summary of Confirmation Sample Results

					Sa	mple IDs		
	Analytical Method	OCD Clean- up Levels	E Wall	Floor	N Wall	NW Pothole @	s Wall	W Wali
Diesel Range Organics (DRO)	SW8015		760	3500	< 11	17	27	4600
Gasoline Range Organics (GRO)	SW8015	100	2300	5600	< 5.2	12	< 4.9	4000
Motor Oil Range Organics (MRO)	SW8015		280	1300	< 54	< 54	68	1800
Total TPH		100	3340	10400	ND	29	95	10400
Benzene	SW8021	10	6.2	14	< 0.026	< 0,018	< 0.025	15
Ethylbenzene	SW8021		11	26	< 0.052	0.065	< 0.049	18
Toluene	SW8021		64	150	< 0.052	0.11	< 0.049	100
Xylenes, Total	SW8021		100	240	< 0.10	0.71	< 0.099	160
BTEX	Total	50	181.2	430	ND	ND	ND :	293
Arsenic	SW6010B		< 2.6	< 2.7	3.1	< 2.6	< 2.7	< 2.7
Barlum	SW6010B		82	150	230	30	130	160
Cadmium	SW6010B		< 0.11	< 0.11	< 0.11	< 0.10	< 0.11	< 0.11
Chromium	SW6010B		4.3	4,5	6.3	2.5	4.8	5.3
Lead	SW6010B		3.8	4.2	5.0	2.4 < 2.6	4.0	3.8 < 2.7
Selenîum Silver	SW6010B SW6010B		< 2.6 < 0.26	< 2.7 < 0.27	< 2.9 < 0.29	< 0.26	< 2.7 < 0.27	< 0.27
Mercury	SW7471		< 0.035	< 0.035	< 0.037	< 0.034	< 0.035	< 0.036
		1						
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	SW8260B SW8260B	-	< 0.51 < 0.51	< 1.0 < 1.0	< 0.056 < 0.056	< 0.050	< 0.052	< 1.0 < 1.0
1,1,2,2-Tetrachloroethane	SW8260B	1	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	<1.0
1,1,2-Trichloroethane	SW8260B	1	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1,1-Dichloroethane	SW8260B]	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1,1-Dichloroethene	SW8260B		< 0.51	< 1.0	< 0,056	< 0.050	< 0.052	< 1.0
1,1-Dichloropropene	SW8260B		< 1.0	< 2.0	< 0.11	< 0.10	< 0.10	< 2.1
1,2,3-Trichlorobenzene	SW8260B		< 1.0	< 2.0	< 0.11	< 0.10	< 0,10	< 2.1
1,2,3-Trichloropropane	SW8260B	-	< 1.0	< 2.0	< 0.11	< 0.10	< 0.10	< 2.1
1,2,4-Trichlorobenzene	SW8260B SW8260B		< 0,51 14	< 1,0 56	< 0.056 < 0.056	< 0.050 < 0.050	< 0.052 < 0.052	< 1.0 28
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	SW8260B		< 1.0	< 2.0	< 0.11	< 0.10	< 0.10	< 2.1
1,2-Dibromoethane (EDB)	SW8260B		< 0.51	< 1,0	< 0,056	< 0.050	< 0.052	< 1.0
1,2-Dichiorobenzene	SW8260B]	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1,2-Dichloroethane (EDC)	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1,2-Dichloropropane	SW8260B		< 0.51	< 1,0	< 0,056	< 0.050	< 0.052	< 1.0
1,3,5-Trimethylbenzene	SW8260B		6.7	27	< 0.056	< 0.050	< 0.052	13
1,3-Dichlorobenzene 1,3-Dichloropropane	SW8260B SW8260B	1	< 0.51 < 0.51	< 1.0	< 0.056 < 0.056	< 0.050 < 0.050	< 0.052 < 0.052	< 1.0 < 1.0
1,4-Dichlorobenzene	SW8260B	1 1	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1-Methylnaphthalene	SW8260B		2.4	8.9	< 0.23	< 0.20	< 0,21	6.3
2,2-Dichloropropane	SW8260B]	< 1.0	< 2.0	< 0.11	< 0.10	< 0.10	< 2.1
2-Butanone	SW8260B		< 5.1	< 10	< 0.56	< 0.50	< 0.52	< 10
2-Chlorotoluene	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
2-Hexanone 2-Methylnaphthalene	SW8260B SW8260B	-	< 5.1 3.7	< 10 14	< 0.56	< 0.50 < 0.20	< 0.52 < 0.21	< 10 9.5
4-Chlorotoluene	SW8260B	1	< 0.51	<1.0	< 0.056	< 0.050	< 0.052	< 1.0
4-isopropyltoluene	SW8260B	1	0.80	3.3	< 0.056	< 0,050	< 0.052	1.7
4-Methyl-2-pentanone	SW8260B		< 5.1	< 10	< 0.56	< 0.50	< 0.52	< 10
Acetone	SW8260B		< 7.7	< 15	< 0.84	< 0.75	< 0.79	< 16
Benzene	SW8260B		1.6	13	< 0.028	< 0.025	< 0.026	7.2
Bromobenzene	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050 < 0.050	< 0.052 < 0.052	< 1.0
Bromodichloromethane Bromoform	SW8260B SW8260B	1	< 0.51 < 0.51	< 1.0 < 1.0	< 0.056 < 0.056	< 0.050	< 0.052	< 1.0
Bromomethane	SW8260B		< 1.5	< 3.0	< 0.17	< 0.15	< 0.16	< 3.1
Carbon disulfide	SW8260B		< 5.1	< 10	< 0.56	< 0.50	< 0.52	< 10
Carbon tetrachloride	SW8260B]	< 0.51	< 1.0	< 0.056	< 0.050	< 0,052	< 1.0
Chlorobenzene	SW8260B		< 0.51	< 1.0	< 0.056	< 0,050	< 0.052	< 1.0
Chloroethane	SW8260B		< 1.0	< 2,0	< 0.11	< 0.10	< 0.10	< 2.1
Chloroform	SW8260B	-	< 0,51	<1.0	< 0.056 < 0.17	< 0.050 < 0.15	< 0.052	< 1,0 < 3.1
Chloromethane cis-1,2-DCE	SW8260B SW8260B		< 1.5 < 0.51	< 3.0 < 1.0	< 0.17	< 0.050	< 0.052	< 1.0
cis-1,3-Dichloropropene	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Dibromochloromethane	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Dîbromomethane	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Dichlorodifluoromethane	SW8260B		< 0,51	< 1,0	< 0.056	< 0.050	< 0.052	< 1,0
Ethylbenzene	SW8260B		5.8	27	< 0.056	< 0.050	< 0.052	9.3
Hexachlorobutadiene Isopropylbenzene	SW8260B SW8260B		< 1.0 1.4	< 2.0 6.2	< 0.11 < 0.056	< 0.10 < 0.050	< 0.10 < 0.052	< 2.1 2.6
Methyl tert-butyl ether (MTBE)	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1,0
Methylene chloride	SW8260B		< 1.5	< 3.0	< 0.17	< 0,15	< 0.16	< 3.1
Naphthalene	SW8260B]	1.9	7.2	< 0.11	< 0.10	< 0.10	4.4
n-Butylbenzene	SW8260B	.	< 1.5	3.5	< 0.17	< 0.15	< 0.16	< 3,1
n-Propylbenzene	SW8260B	.	2.2	9.6	< 0.056	< 0.050	< 0.052	4.3
sec-Butylbenzene	SW8260B	.	0.72	3.0	< 0.056	< 0.050	< 0.052	1.5
Styrene tert-Butylbenzene	SW8260B SW8260B	- I	< 0.51	< 1.0 < 1.0	< 0.056 < 0.056	< 0.050 < 0.050	< 0.052 < 0.052	< 1.0 < 1.0
Tetrachioroethene (PCE)	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Toluene	SW8260B	1	29	180	< 0.056	< 0,050	< 0.052	52
trans-1,2-DCE	SW8260B]	< 0,51	< 1,0	< 0.056	< 0.050	< 0.052	< 1.0
trans-1,3-Dichloropropene	SW8260B	.	< 0,51	< 1.0	< 0.056	< 0.050	< 0.052	< 1,0
Trichloroethene (TCE)	CWIGGEOR	,	40.54	440	1 40 000	< 0,050	-0.000	< 1.0
Trichlorofluoromethane	SW8260B SW8260B	Į I	< 0.51 < 0.51	< 1.0 < 1.0	< 0.056	< 0.050	< 0.052 < 0.052	< 1.0


TABLE 1 Analytical Summary of Confirmation Sample Results

					Sa	mple IDs		
	Analytical Method	OCD Clean- up Levels 2.	E Wall	Floor	N Wali	NW Pothole @	S Wall	W Wall
Vinyl chloride	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Xylenes, Total	SW8260B		57	270	< 0.11	< 0,10	< 0.10	88
1,2,4-Trichlorobenzene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
1,2-Dichlorobenzene	SW8270C		< 2.2	< 2.2	< 2,3	< 0,21	< 2.2	< 2.2
1,3-Dichlorobenzene	SW8270C		< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
1,4-Dichlorobenzene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
1-Methylnaphthalene	SW8270C		< 2.2	5.4	< 2,3	< 0.21	< 2.2	3.0 < 2.2
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	SW8270C SW8270C		< 2,2	< 2.2 < 2.2	< 2.3 < 2.3	< 0.21 < 0.21	< 2.2	< 2,2
2,4-Dichlorophenol	SW8270C		< 4.3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
2,4-Dimethylphenol	SW8270C		< 3.2	< 3,3	< 3.4	< 0.32	< 3.3	< 3.3
2,4-Dinitrophenol	SW8270C		< 5.4	< 5.4	< 5.7	< 0.53	< 5,5	< 5,5
2,4-Dinitrotoluene	SW8270C		< 5.4	< 5.4	< 5.7	< 0,53	< 5.5	< 5.5
2,6-Dinitrotoluene	SW8270C		< 5,4	< 5,4	< 5.7	< 0,53	< 5.5	< 5.5
2-Chloronaphthalene	SW8270C		< 2.7	< 2.7	< 2.8	< 0.26	< 2.7	< 2.7
2-Chlorophenol	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2,2	< 2.2
2-Methylnaphthalene	SW8270C		2.9	9.5	< 2.3	< 0,21 < 0.42	< 2.2 < 4.4	4.6 < 4.4
2-Methylphenol 2-Nitroaniline	SW8270C SW8270C		< 4.3 < 2.2	< 4.3 < 2.2	< 4.5 < 2.3	< 0.42	< 2.2	< 4.4
2-Nitroannine 2-Nitrophenol	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
3,3'-Dichlorobenzidine	SW8270C		< 2.7	< 2.7	< 2.8	< 0.26	< 2.7	< 2.7
3+4-Methylphenol	SW8270C	 	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
3-Nitroanlline	SW8270C		< 2.2	< 2.2	< 2,3	< 0,21	< 2.2	< 2.2
4,6-Dinitro-2-methylphenol	SW8270C		< 4,3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
4-Bromophenyl phenyl ether	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
4-Chloro-3-methylphenol	SW8270C		< 5.4	< 5,4	< 5.7	< 0,53	< 5.5	< 5.5
4-Chloroaniline	SW8270C		< 5,4	< 5,4	< 5.7	< 0.53	< 5.5	< 5.5
4-Chlorophenyl phenyl ether	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
4-Nitroaniline	SW8270C SW8270C		< 4.3 < 2.7	< 4.3 < 2.7	< 4,5 < 2.8	< 0.42 < 0.26	< 4.4 < 2.7	< 4.4 < 2.7
4-Nitrophenol Acenaphthene	SW8270C	i	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Acenaphthylene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
Aniline	SW8270C		< 2.2	< 2.2	< 2,3	< 0,21	< 2.2	< 2.2
Anthracene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Azobenzene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
Benz(a)anthracene	SW8270C		< 2.2	< 2.2	< 2,3	< 0,21	< 2.2	< 2.2
Benzo(a)pyrene	SW8270C	ļ	< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Benzo(b)fluoranthene	SW8270C	 	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Benzo(g,h,i)perylene	SW8270C SW8270C		< 2.2 < 2.2	< 2.2	< 2.3 < 2.3	< 0.21 < 0.21	< 2.2 < 2.2	< 2.2 < 2.2
Benzo(k)fluoranthene Benzoic acid	SW8270C		< 5.4	< 5.4	< 5.7	< 0.53	< 5,5	< 5,5
Benzyl alcohol	SW8270C	····	< 2.2	< 2.2	< 2.3	< 0.21	< 2,2	< 2.2
Bis(2-chloroethoxy)methane	SW8270C		< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
8is(2-chloroethyl)ether	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Bis(2-chloroisopropyl)ether	SW8270C	***************************************	< 2.2	< 2.2	< 2.3	< 0.21	< 2,2	< 2,2
Bis(2-ethylhexyl)phthalate	SW8270C		< 5,4	< 5,4	< 5.7	< 0.53	< 5.5	< 5.5
Butyl benzyl phthalate	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Carbazole	5W8270C	ļ	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
Chrysene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2,2	< 2.2
Dibenz(a,h)anthracene Dibenzofuran	SW8270C SW8270C		< 2,2	< 2.2	< 2.3	< 0.21 < 0.21	< 2.2	< 2.2
Diethyl phthalate	SW8270C SW8270C		< 2.2 < 2.2	< 2.2 < 2.2	< 2.3 < 2.3	< 0.21	< 2.2	< 2.2
Dimethyl phthalate	SW8270C		< 2,2	< 2,2	< 2.3	< 0.21	< 2.2	< 2.2
Dî-n-butyi phthalate	SW8270C		< 4.3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
Di-n-octyl phthalate	SW8270C	******************	< 4.3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
Fluoranthene	SW8270C		< 2.2	< 2,2	< 2,3	< 0.21	< 2.2	< 2.2
Fluorene	5W8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Hexachlorobenzene	SW8270C]	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
Hexachlorobutadlene	SW8270C		< 2.2	< 2.2	< 2,3	< 0.21	< 2.2	< 2.2
Hexachlorocyclopentadiene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Hexachloroethane	SW8270C	,	< 2.2	< 2.2	< 2.3	< 0.21 < 0.21	< 2.2	< 2.2
Indeno(1,2,3-cd)pyrene Isophorone	SW8270C SW8270C		< 2.2	< 2.2 < 4.3	< 2,3 < 4.5	< 0.21	< 2.2 < 4.4	< 2.2 < 4.4
Naphthalene	SW8270C		< 2.2	3.5	< 2.3	< 0.21	< 2.2	< 2.2
Nitrobenzene	SW8270C		< 4,3	< 4.3	< 4.5	< 0.42	< 4.4	< 4,4
N-Nitrosodi-n-propylamine	SW8270C		< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
N-Nitrosodiphenylamine	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Pentachlorophenol	SW8270C		< 4.3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
Phenanthrene	SW8270C		< 2.2	< 2,2	< 2,3	< 0,21	< 2.2	< 2.2
Phenol	SW8270C	ļl	< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Pyrene	SW8270C	 	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Pyridine	SW8270C	<u> </u>	< 4.3	< 4.3	< 4,5	< 0.42	< 4,4	< 4.4

- Notes:

 1. All analytical results are reporting in units of milligrams per kilograms (mg/kg)

 2. Clean-up standards are pursuant to the NMOCD Guidelines for Remediation of Leaks, Spills, and Releases dated August 13, 1993.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1603878

March 25, 2016

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Bloomfield Terminal

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 6 sample(s) on 3/17/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: NW Pothole @ 14'

Project: Bloomfield Terminal

Collection Date: 3/14/2016 1:20:00 PM

Lab ID: 1603878-001

Matrix: SOIL

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATIL	.ES				Analyst	: DAM
Di-n-octyl phthalate	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Dibenz(a,h)anthracene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Dibenzofuran	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
3,3'-Dichlorobenzidine	ND	0.26	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,4-Dichlorophenol	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,4-Dimethylphenol	ND	0.32	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
4,6-Dinitro-2-methylphenol	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,4-Dinitrophenol	ND	0.53	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,4-Dinitrotoluene	ND	0.53	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,6-Dinitrotoluene	ND	0.53	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Fluoranthene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Fluorene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Hexachloroethane	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Indeno(1,2,3-cd)pyrene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Isophorone	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
1-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2-Methylphenol	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
3+4-Methylphenol	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
N-Nitrosodi-n-propylamine	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Naphthalene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
4-Nitroaniline	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Nitrobenzene	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
4-Nitrophenol	ND	0.26	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Pentachlorophenol	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Phenanthrene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Phenol	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30;21 PM	24350

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603878-001

Project:

Client Sample ID: NW Pothole @ 14'

Collection Date: 3/14/2016 1:20:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES			10.500 100.		Analyst	DJF
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Dibromochloromethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Dibromomethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2-Dichlorobenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,3-Dichlorobenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,4-Dichlorobenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Dichlorodifluoromethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1-Dichloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1-Dichloroethene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2-Dichloropropane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,3-Dichloropropane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
2,2-Dichloropropane	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1-Dichloropropene	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Hexachlorobutadiene	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
2-Hexanone	ND	0.50	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Isopropylbenzene	NĐ	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
4-Isopropyltoluene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
4-Methyl-2-pentanone	ND	0.50	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Methylene chloride	ND	0.15	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
n-Butylbenzene	ND	0.15	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
n-Propylbenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
sec-Butylbenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Styrene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
tert-Butylbenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Tetrachloroethene (PCE)	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
trans-1,2-DCE	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
trans-1,3-Dichloropropene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1,1-Trichloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1,2-Trichloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Trichloroethene (TCE)	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Trichlorofluoromethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2,3-Trichloropropane	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Vinyi chloride	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Xylenes, Total	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Surr: Dibromofluoromethane	103	70-130	%Rec	1	3/18/2016 5:30:34 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603878-002

Project:

Client Sample ID: N Wall

Collection Date: 3/14/2016 1:40:00 PM Received Date: 3/17/2016 7:33:00 AM

Result **POL Qual Units DF** Date Analyzed Batch Analyses Analyst: AG PERCENT MOISTURE 3/21/2016 12:00:00 PM R32972 Percent Moisture 12 1.0 wt% **EPA METHOD 7471: MERCURY** Analyst: pmf Mercury ND 0.037 mg/Kg-dry 1 3/22/2016 5:44:27 PM 24354 **EPA METHOD 6010B: SOIL METALS** Analyst: MED 2.9 3/22/2016 9:00:50 AM 24353 Arsenic 3.1 mg/Kg-dry 1 3/22/2016 9:00:50 AM 24353 Barium 230 0.11 mg/Kg-dry 1 Cadmium ND 0.11 mg/Kg-dry 1 3/22/2016 9:00:50 AM 24353 Chromium 6.3 0.34 mg/Kg-dry 1 3/22/2016 9:00:50 AM 24353 24353 Lead 5.0 0.29 mg/Kg-dry 1 3/22/2016 9:00:50 AM Selenium ND 2.9 mg/Kg-dry 1 3/24/2016 6:07:45 AM 24353 mg/Kg-dry Silver ND 0.29 3/22/2016 9:00:50 AM 24353 1 **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM mg/Kg-dry Acenaphthene ND 2.3 D 10 3/23/2016 8:58:51 PM 24350 ND 2.3 D 3/23/2016 8:58:51 PM 24350 Acenaphthylene mg/Kg-dry 10 D 3/23/2016 8:58:51 PM 24350 Aniline ND 2.3 mg/Kg-dry 10 ND D 24350 Anthracene 23 mg/Kg-dry 10 3/23/2016 8:58:51 PM Azobenzene ND 2.3 D mg/Kg-dry 3/23/2016 8:58:51 PM 24350 Benz(a)anthracene ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 3/23/2016 8:58:51 PM 24350 Benzo(a)pyrene ND 2.3 D mg/Kg-dry 10 mg/Kg-dry Benzo(b)fluoranthene ND 2.3 D 3/23/2016 8:58:51 PM 24350 ND D 3/23/2016 8:58:51 PM 24350 Benzo(g,h,i)perylene 23 mg/Kg-dry D 3/23/2016 8:58:51 PM 24350 Benzo(k)fluoranthene ND 2.3 mg/Kg-dry 10 D 3/23/2016 8:58:51 PM 24350 Benzoic acid ND 5.7 mg/Kg-dry 24350 Benzyl alcohol ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM Bis(2-chloroethoxy)methane ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 Bis(2-chloroethyl)ether ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 24350 ND 2.3 D 10 3/23/2016 8:58:51 PM Bis(2-chloroisopropyl)ether mg/Kg-dry ND 5.7 D 3/23/2016 8:58:51 PM 24350 Bis(2-ethylhexyl)phthalate mg/Kg-dry 3/23/2016 8:58:51 PM 24350 4-Bromophenyl phenyl ether ND 2.3 D mg/Kg-dry 10 Butyl benzyl phthalate ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 24350 Carbazole ND 2.3 ח mg/Kg-dry 3/23/2016 8:58:51 PM ND D 3/23/2016 8:58:51 PM 24350 4-Chloro-3-methylphenol 5.7 mg/Kg-dry 4-Chloroaniline ND 5.7 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 2-Chloronaphthalene ND 2.8 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 24350 2-Chlorophenol ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 4-Chlorophenyl phenyl ether ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 Chrysene ND 2.3 D mg/Kg-dry 3/23/2016 8:58:51 PM 24350 3/23/2016 8:58:51 PM 24350 Di-n-butyl phthalate ND 4.5 D mg/Kg-dry 10

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: N Wall

Project: Bloomfield Terminal

Collection Date: 3/14/2016 1:40:00 PM

Lab ID: 1603878-002

Matrix: SOIL

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILE	S					Analyst	DAM
Pyrene	ND	2.3	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
Pyridine	ND	4.5	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
1,2,4-Trichlorobenzene	ND	2.3	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
2,4,5-Trichlorophenol	ND	2.3	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
2,4,6-Trichlorophenol	ND	2.3	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
Surr: 2-Fluorophenol	0	28.3-102	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: Phenol-d5	0	35.7-103	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: 2,4,6-Tribromophenol	0	35.2-108	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: Nitrobenzene-d5	0	24-118	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: 2-Fluorobiphenyl	0	35.4-111	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: 4-Terphenyl-d14	0	15-91.7	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	ND	0.028		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Toluene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Ethylbenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Methyl tert-butyl ether (MTBE)	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1,2,4-Trimethylbenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1,3,5-Trimethylbenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1,2-Dichloroethane (EDC)	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1,2-Dibromoethane (EDB)	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Naphthalene	ND	0.11		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1-Methylnaphthalene	ND	0.23		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
2-Methylnaphthalene	ND	0.23		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Acetone	ND	0.84		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Bromobenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Bromodichloromethane	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Bromoform	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Bromomethane	ND	0.17		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
2-Butanone	ND	0.56		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Carbon disulfide	ND	0.56		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Carbon tetrachloride	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Chlorobenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Chloroethane	ND	0.11		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Chloroform	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Chloromethane	ND	0.17		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
2-Chlorotoluene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
4-Chlorotoluene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
cis-1,2-DCE	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
cis-1,3-Dichloropropene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: N Wall

Project: Bloomfield Terminal

Collection Date: 3/14/2016 1:40:00 PM

Sample container temperature is out of limit as specified

Lab ID: 1603878-002

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	yst: DJF
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	3/21/2016 1:43:35 P	M 24321
Surr: Toluene-d8	101	70-130	%Rec	1	3/21/2016 1:43:35 P	M 24321
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	1	3/21/2016 1:43:35 P	M 24321

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. В Analyte detected in the associated Method Blank Ε Value above quantitation range D Sample Diluted Due to Matrix Analyte detected below quantitation limit Page 10 of 40 Holding times for preparation or analysis exceeded Η J P Sample pH Not In Range ND Not Detected at the Reporting Limit Reporting Detection Limit R RPD outside accepted recovery limits RL

% Recovery outside of range due to dilution or matrix

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603878-003

Project:

Client Sample ID: E Wall

Collection Date: 3/15/2016 2:20:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Q)ual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES	5					Analyst	: DAM
Di-n-octyl phthalate	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Dibenz(a,h)anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Dibenzofuran	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
1,2-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
1,3-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
1,4-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
3,3'-Dichlorobenzidine	ND	2.7	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Diethyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Dimethyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,4-Dichlorophenol	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,4-Dimethylphenol	ND	3.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
4,6-Dinitro-2-methylphenol	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,4-Dinitrophenol	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,4-Dinitrotoluene	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,6-Dinitrotoluene	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Fluorene	ND	2,2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Hexachlorobenzene	ND	2,2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Hexachlorobutadiene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Hexachlorocyclopentadiene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Hexachloroethane	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Indeno(1,2,3-cd)pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Isophorone	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
1-Methylnaphthalene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2-Methylnaphthalene	2.9	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2-Methylphenol	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
3+4-Methylphenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
N-Nitrosodi-n-propylamine	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
N-Nitrosodiphenylamine	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Naphthalene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2-Nitroaniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
3-Nitroaniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
4-Nitroaniline	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Nitrobenzene	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2-Nitrophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
4-Nitrophenol	ND	2.7	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Pentachlorophenol	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Phenanthrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Phenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 12 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Project: Bloomfield Terminal

Lab ID: 1603878-003

Client Sample ID: E Wall

Collection Date: 3/15/2016 2:20:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES		_			Analyst	DJF
1,2-Dibromo-3-chloropropane	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Dibromochloromethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Dibromomethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2-Dichlorobenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,3-Dichlorobenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,4-Dichlorobenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Dichlorodifluoromethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1-Dichloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1-Dichloroethene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2-Dichloropropane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,3-Dichloropropane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
2,2-Dichloropropane	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1-Dichloropropene	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Hexachlorobutadiene	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
2-Hexanone	ND	5.1	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Isopropylbenzene	1.4	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
4-Isopropyltoluene	0.80	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
4-Methyl-2-pentanone	ND	5.1	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Methylene chloride	ND	1.5	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
n-Butylbenzene	ND	1.5	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
n-Propylbenzene	2,2	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
sec-Butylbenzene	0.72	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Styrene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
tert-Butylbenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1,1,2-Tetrachloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1,2,2-Tetrachloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Tetrachloroethene (PCE)	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
trans-1,2-DCE	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
trans-1,3-Dichloropropene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2,3-Trichlorobenzene	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2,4-Trichlorobenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1,1-Trichloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1,2-Trichloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Trichloroethene (TCE)	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Trichlorofluoromethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2,3-Trichloropropane	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Vinyl chloride	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Xylenes, Total	57	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Surr: Dibromofluoromethane	99.3	70-130	%Rec	10	3/21/2016 2:11:56 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 14 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603878-004

Project:

Client Sample ID: Floor

Collection Date: 3/16/2016 1:40:00 PM Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
PERCENT MOISTURE						Analyst	: AG
Percent Moisture	7.7	1.0		wt%	1	3/21/2016 12:00:00 PM	R32972
EPA METHOD 7471: MERCURY						Analyst	: pmf
Mercury	ND	0.035		mg/Kg-dry	1	3/22/2016 5:48:00 PM	24354
EPA METHOD 6010B: SOIL METALS				///g//-1917	·	Analyst	
						•	
Arsenic	ND	2.7		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Barium	150	0.11		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Cadmium	ND	0.11		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Chromium	4.5	0.32		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Lead	4.2	0.27		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Selenium	ИD	2.7		mg/Kg-dry	1	3/24/2016 6:12:32 AM	24353
Silver	ND	0.27		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
EPA METHOD 8270C: SEMIVOLATILES						Analyst	DAM
Acenaphthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Acenaphthylene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Aniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Azobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benz(a)anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzo(a)pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzo(b)fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzo(g,h,i)perylene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzo(k)fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzoic acid	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzyl alcohol	ND	2,2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Bis(2-chloroethoxy)methane	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Bis(2-chloroethyl)ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Bis(2-chloroisopropyl)ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Bis(2-ethylhexyl)phthalate	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
4-Bromophenyl phenyl ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Butyl benzyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Carbazole	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
4-Chloro-3-methylphenol	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
4-Chloroaniline	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
2-Chloronaphthalene	ND	2.7	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
2-Chlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
4-Chlorophenyl phenyl ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Chrysene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Di-n-butyl phthalate	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
of it buty philialate	ND	4.0		mgmg ary	10	OF TOURS OF THE PROPERTY OF THE	2-1000

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 16 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603

Project:

1603878-004

Client Sample ID: Floor

Collection Date: 3/16/2016 1:40:00 PM

Received Date: 3/17/2016 7:33:00 AM

Pyrene	Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
Pyridine	EPA METHOD 8270C: SEMIVOLATILES	3					Analyst	DAM
1,2,4-Trichlorobenzene ND 2.2 D mg/Kg-dry 10 3/23/2016 9:57:34 PM 24350 2,4,5-Trichlorophenol ND 2.2 D mg/Kg-dry 10 3/23/2016 9:57:34 PM 24350 2,4,6-Trichlorophenol ND 2.2 D mg/Kg-dry 10 3/23/2016 9:57:34 PM 24350 Surr: Z-Fluorophenol 0 28.3-102 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: Z-Huorophenol 0 35.7-103 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: Z-Huorobjhenyl 0 35.4-111 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: A-Terphenyl-d14 0 15-91.7 SD %Rec 10 3/23/2016 9:57:34 PM 24350 EPA METHOD 8260B: VOLATILES ***** Fluorobjhenyl 0 35.4-111 SD %Rec 10 3/23/2016 9:57:34 PM 24350 EPA METHOD 8260B: VOLATILES **** Fluorobjhenyl 0 30.50 mg/Kg-dry 20	Pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
2.4,5-Trichlorophenol	Pyridine	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
2.4,6-Trichlorophenol ND 2.2 D mg/Kg-dry 10 3/23/2016 9.57:34 PM 24350 Surr: 2-Fluorophenol 0 28.3-102 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 2.4,6-Tribromophenol 0 35.7-108 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 2.4,6-Tribromophenol 0 35.2-108 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 2.4,6-Tribromophenol 0 35.4-111 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 2-Fluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 2-Fluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 0 16-91.7 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 0 16-91.7 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 0 16-91.7 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 0 16-91.7 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 0 16-91.7 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 0 16-91.7 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 0 16-91.7 SD %Rec 0 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 0 16-91.7 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 SD 3/21/2016 9.57:34 PM 24350 Surr: 4-Terphenyl-d14 SD 3/21/2016 9.57:34 PM 24350 SD 3/21/2016 9.40:24 PM 24321	1,2,4-Trichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Surr: 2-Fluorophenol 0 28.3-102 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: Phenol-d5 0 35.7-103 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: L4,6-Tribromophenol 0 35.2-108 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: L7-Eluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 2-Fluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 2-Fluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Surr: 2-Fluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2016 9.57:34 PM 24350 Bursene 0 16 16 16 16 16 16 16 16 17 17 10 10 10 23/21/2016 2.40:24 PM 24321 14 14 14 14	2,4,5-Trichlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Surr: Phenol-d5 0 35.7:103 SD %Rec 10 323/2016 9:57:34 PM 24350 Surr: 2.4,6-Tribromophenol 0 35.2:108 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: Z-Fluorobiphenyl 0 35.4:111 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: Z-Fluorobiphenyl 0 35.4:111 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: Z-Fluorobiphenyl 0 35.4:111 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: 4-Terphenyl-d14 0 15-91.7 SD %Rec 10 3/21/2016 9:57:34 PM 24350 Benzene 13 0.50 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Toluene 180 5.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Toluene 180 5.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Toluene 180 5.0 mg/Kg-dry	2,4,6-Trichlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Surr: 2.4,6-Tribromophenol 0 35.2-108 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: Nitrobenzene-ds 0 24-118 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: 2-Fluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: 4-Terphenyl-d144 0 16-91.7 SD %Rec 10 3/23/2016 9:57:34 PM 24350 EPA METHOD 8260B: VOLATILES **** Triphenyl-d144 0 16-91.7 SD %Rec 10 3/23/2016 9:57:34 PM 24350 EPA METHOD 8260B: VOLATILES **** Triphenyl-d144 0 16-91.7 SD %Rec 10 3/23/2016 9:57:34 PM 24350 EPA METHOD 8260B: VOLATILES **** Triphenyl-d144 0 10 mg/Kg-dry 0 3/21/2016 EPA METHOD 8260B: VOLATILES ***** Triphenyl-d14 10	Surr: 2-Fluorophenol	0	28.3-102	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Surr: Nitrobenzene-d5 0 24-118 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr: 2-Fluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2018 9:57:34 PM 24350 Surr: 4-Terphenyl-d14 0 15-91.7 SD %Rec 10 3/23/2018 9:57:34 PM 24350 EPA METHOD 8260B: VOLATILES *** Analyst** Dyf** Benzene 13 0.50 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Toluene 180 5.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Ethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2,4-Trimethylbenzene 56 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dichloroethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibro	Surr: Phenol-d5	0	35.7-103	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Surr. 2-Fluorobiphenyl 0 35.4-111 SD %Rec 10 3/23/2016 9:57:34 PM 24350 Surr. 4-Terphenyl-d14 0 15-91.7 SD %Rec 10 3/23/2016 9:57:34 PM 24350 EPA METHOD 8260B: VOLATILES Benzene 13 0.50 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Toluene 180 5.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Ethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Methyl tert-butyl ether (MTBE) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2,4-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,3,5-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Diblorocethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Diblorocethane (EDB) ND 1.0 mg/Kg-	Surr: 2,4,6-Tribromophenol	0	35.2-108	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Surr. 4-Terphenyl-d144 0 15-91.7 SD Rene 10 3/23/2016 9:57:34 PM 24350 EPA METHOD 8260B: VOLATILES Benzene 13 0.50 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Toluene 180 5.0 mg/Kg-dry 100 3/21/2016 2:40:24 PM 24321 Ethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Methyl tert-butyl ether (MTBE) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2.4-Trimethylbenzene 56 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2Dichloroethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Naphthalene 7.2 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry <td< td=""><td>Surr: Nitrobenzene-d5</td><td>0</td><td>24-118</td><td>SD</td><td>%Rec</td><td>10</td><td>3/23/2016 9:57:34 PM</td><td>24350</td></td<>	Surr: Nitrobenzene-d5	0	24-118	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Benzene	Surr: 2-Fluorobiphenyl	0	35.4-111	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Benzene 13 0.50 rmg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Toluene 180 5.0 mg/Kg-dry 100 3/22/2016 7:09:36 AM 24321 Ethylbenzene 27 1.0 rmg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Methyl tert-butyl ether (MTBE) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2,4-Trimethylbenzene 56 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,3,5-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Diblroroethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 </td <td>Surr: 4-Terphenyl-d14</td> <td>0</td> <td>15-91.7</td> <td>SD</td> <td>%Rec</td> <td>10</td> <td>3/23/2016 9:57:34 PM</td> <td>24350</td>	Surr: 4-Terphenyl-d14	0	15-91.7	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Toluene 180 5.0 mg/Kg-dry 100 3/22/2016 7:09:36 AM 24321 Ethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Methyl tetr- butyl ether (MTBE) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2,4-Trimethylbenzene 56 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,3,5-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,3,5-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibloroethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibloroethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane 8.9 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane ND 1.0 mg/Kg-dry 20 3/21/2016 2	EPA METHOD 8260B: VOLATILES						Analyst	DJF
Toluene 180 5.0 mg/Kg-dry 100 3/22/2016 7:09:36 AM 24321 Ethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Methyl tert-butyl ether (MTBE) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2,4-Trimethylbenzene 56 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,3,5-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Naphthalene 7.2 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1-Methylnaphthalene 8.9 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Methylnaphthalene 14 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Benzene	13	0.50		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Ethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Methyl tert-butyl ether (MTBE) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2,4-Trimethylbenzene 56 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,3,5-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dichloroethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Naphthalene 7.2 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1-Methylnaphthalene 8.9 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Metotylnaphthalene 14 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Acetone ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321		180	5.0			100	3/22/2016 7:09:36 AM	24321
Methyl tert-butyl ether (MTBE) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2,4-Trimethylbenzene 56 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,3,5-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dichloroethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Naphthalene 7.2 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1-Methylnaphthalene 8.9 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Methylnaphthalene 14 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Acetone ND 15 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Ethvlbenzene	27	1.0			20	3/21/2016 2:40:24 PM	24321
1,2,4-Trimethylbenzene 56 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,3,5-Trimethylbenzene 27 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dichloroethane (EDC) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Naphthalene 7.2 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1-Methylnaphthalene 8.9 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Methylnaphthalene 14 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Acetone ND 15 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoeform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321		ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1,2-Dichloroethane (EDC) ND 1.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 1,2-Dibromoethane (EDB) ND 1.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 Naphthalene 7.2 2.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 1-Methylnaphthalene 8.9 4.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Methylnaphthalene 14 4.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 Acetone ND 15 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromobenzene ND 1.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromodichloromethane ND 1.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoethane ND 1.0 mg/kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon	, ,	56	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Naphthalene 7.2 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1-Methylnaphthalene 8.9 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Methylnaphthalene 14 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Acetone ND 15 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	1,3,5-Trimethylbenzene	27	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1,2-Dibromoethane (EDB) ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Naphthalene 7.2 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 1-Methylnaphthalene 8.9 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Methylnaphthalene 14 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Acetone ND 15 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromodichloromethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromodichloromethane ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disu	1,2-Dichloroethane (EDC)	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1-Methylnaphthalene 8.9 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Methylnaphthalene 14 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Acetone ND 15 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Butanone ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND	• •	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
2-Methylnaphthalene 14 4.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Acetone ND 15 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromodichloromethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene <	Naphthalene	7.2	2.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Acetone ND 15 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromodichloromethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Butanone ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotoluene ND <td>1-Methylnaphthalene</td> <td>8.9</td> <td>4.0</td> <td></td> <td>mg/Kg-dry</td> <td>20</td> <td>3/21/2016 2:40:24 PM</td> <td>24321</td>	1-Methylnaphthalene	8.9	4.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Bromobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromodichloromethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Butanone ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloromethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotoluene <td< td=""><td>2-Methylnaphthalene</td><td>14</td><td>4.0</td><td></td><td>mg/Kg-dry</td><td>20</td><td>3/21/2016 2:40:24 PM</td><td>24321</td></td<>	2-Methylnaphthalene	14	4.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Bromodichloromethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Butanone ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotethane ND 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotethane ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotoluene	Acetone	ND	15		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Bromoform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Bromomethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Butanone ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotethane ND 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotoluene ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene N	Bromobenzene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Bromomethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Butanone ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotethane ND 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotoluene ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene <	Bromodichloromethane	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
2-Butanone ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotethane ND 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorotofuene ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotofuene	Bromoform	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Carbon disulfide ND 10 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroethane ND 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloromethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Bromomethane	ND	3.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Carbon tetrachloride ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroethane ND 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloromethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	2-Butanone	ND	10		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Chlorobenzene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroethane ND 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloromethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Carbon disulfide	ND	10		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Chloroethane ND 2.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloromethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Carbon tetrachloride	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Chloroform ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 Chloromethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Chlorobenzene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Chloromethane ND 3.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 2-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Chloroethane	ND	2.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
2-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Chloroform	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
4-Chlorotoluene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321 cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	Chloromethane	ND	3.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
cis-1,2-DCE ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	2-Chlorotoluene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
	4-Chlorotoluene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
cis-1,3-Dichloropropene ND 1.0 mg/Kg-dry 20 3/21/2016 2:40:24 PM 24321	cis-1,2-DCE	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
	cis-1,3-Dichloropropene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 18 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1603878**

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Floor

Project: Bloomfield Terminal

Collection Date: 3/16/2016 1:40:00 PM

Lab ID: 1603878-004

Matrix: SOIL Receive

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: DJF
Surr: 1,2-Dichloroethane-d4	97.9	70-130	%Rec	20	3/21/2016 2:40:24 PM	1 24321
Surr: Toluene-d8	107	70-130	%Rec	20	3/21/2016 2:40:24 PM	1 24321
Surr: 4-Bromofluorobenzene	120	70-130	%Rec	20	3/21/2016 2:40:24 PM	1 24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank Qualifiers: Sample Diluted Due to Matrix Е Value above quantitation range D Analyte detected below quantitation limits Page 20 of 40 Holding times for preparation or analysis exceeded J H Sample pH Not In Range ND Not Detected at the Reporting Limit P Reporting Detection Limit RPD outside accepted recovery limits RLR Sample container temperature is out of limit as specified W % Recovery outside of range due to dilution or matrix

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Project: Bloomfield Terminal

Lab ID: 1603878-005

Client Sample ID: S Wall

Collection Date: 3/16/2016 1:50:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES	5					Analyst:	DAM
Di-n-octyl phthalate	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Dibenz(a,h)anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Dibenzofuran	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
1,2-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
1,3-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
1,4-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
3,3'-Dichlorobenzidine	ND	2.7	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Diethyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Dimethyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,4-Dichlorophenol	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,4-Dimethylphenol	ND	3,3	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
4,6-Dinitro-2-methylphenol	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,4-Dinitrophenol	ND	5.5	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,4-Dinitrotoluene	ND	5.5	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,6-Dinitrotoluene	ND	5.5	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Fluorene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Hexachlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Hexachlorobutadiene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Hexachlorocyclopentadiene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Hexachloroethane	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Indeno(1,2,3-cd)pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Isophorone	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
1-Methylnaphthalene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2-Methylnaphthalene	ND ·	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2-Methylphenol	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
3+4-Methylphenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
N-Nitrosodi-n-propylamine	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
N-Nitrosodiphenylamine	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Naphthalene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2-Nitroaniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
3-Nitroaniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
4-Nitroaniline	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Nitrobenzene	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2-Nitrophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
4-Nitrophenol	ND	2.7	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Pentachlorophenol	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Phenanthrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Phenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits page 22 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: S Wall

Project: Bloomfield Terminal

Collection Date: 3/16/2016 1:50:00 PM

Lab ID: 1603878-005

Matrix: SOIL

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Dibromochloromethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Dibromomethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2-Dichlorobenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,3-Dichlorobenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,4-Dichlorobenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Dichlorodifluoromethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1-Dichloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1-Dichloroethene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2-Dichloropropane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,3-Dichloropropane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
2,2-Dichloropropane	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1-Dichloropropene	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Hexachlorobutadiene	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
2-Hexanone	ND	0.52	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Isopropylbenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
4-Isopropyltoluene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
4-Methyl-2-pentanone	ND	0.52	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Methylene chloride	ND	0.16	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
n-Butylbenzene	ND	0.16	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
n-Propylbenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
sec-Butylbenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Styrene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
tert-Butylbenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1,1,2-Tetrachloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1,2,2-Tetrachloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Tetrachloroethene (PCE)	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
trans-1,2-DCE	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
trans-1,3-Dichloropropene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2,4-Trichlorobenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1,1-Trichloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1,2-Trichloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Trichloroethene (TCE)	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Trichlorofluoromethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2,3-Trichloropropane	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Vinyl chloride	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Xylenes, Total	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Surr: Dibromofluoromethane	105	70-130	%Rec	1	3/21/2016 12:46:58 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 24 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

ng Southwest, Inc. Client Sample ID: W Wall

Project: Bloomfield Terminal

Collection Date: 3/16/2016 2:10:00 PM

Lab ID: 1603878-006 Mat

Matrix: SOIL Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
PERCENT MOISTURE						Analyst:	AG
Percent Moisture	9.1	1.0		wt%	1	3/21/2016 12:00:00 PM	R32972
EPA METHOD 7471: MERCURY						Analyst:	pmf
Mercury	ND	0.036		mg/Kg-dry	1	3/22/2016 5:51:36 PM	24354
EPA METHOD 6010B: SOIL METALS				3 3 ,		Analyst:	MED
	N.C.	2,7		malka da.	1	3/22/2016 9:15:56 AM	24353
Arsenic	ND 160	∠. <i>r</i> 0.11		mg/Kg-dry	1	3/22/2016 9:15:56 AM	24353
Barium	160			mg/Kg-dry			24353
Cadmium	ND	0.11		mg/Kg-dry	1	3/22/2016 9:15:56 AM	24353 24353
Chromium	5.3	0.33		mg/Kg-dry	1	3/22/2016 9:15:56 AM	
Lead	3.8	0.27		mg/Kg-dry	1	3/22/2016 9:15:56 AM	24353
Selenium	ND	2.7		mg/Kg-dry	1	3/24/2016 6:14:59 AM	24353
Silver	ND	0.27		mg/Kg-dry	1	3/22/2016 9:15:56 AM	24353
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Acenaphthylene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Aniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Azobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benz(a)anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzo(a)pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzo(b)fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzo(g,h,i)perylene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzo(k)fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzoic acid	ND	5.5	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzyl alcohol	ND	2,2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Bis(2-chloroethoxy)methane	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Bis(2-chloroethyl)ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Bis(2-chloroisopropyl)ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Bis(2-ethylhexyl)phthalate	ND	5.5		mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
4-Bromophenyl phenyl ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Butyl benzyl phthalate	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
Carbazole	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
4-Chloro-3-methylphenol	ND	5.5		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
4-Chloroaniline	ND	5.5		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
2-Chloronaphthalene	ND	2.7		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
2-Chlorophenol	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
4-Chlorophenyl phenyl ether	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
Chrysene	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
·	ND	4.4		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
Di-n-butyl phthalate	כועו	4.4	U	mg/ng-ury	10	3/20/2010 10/30/0/ FWI	47000

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limitspage 26 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: W Wall

Project:

Bloomfield Terminal

Collection Date: 3/16/2016 2:10:00 PM

Lab ID: 160387

1603878-006

Matrix: SOIL

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES	3					Analyst	DAM
Pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Pyridine	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
1,2,4-Trichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
2,4,5-Trichlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
2,4,6-Trichlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Surr: 2-Fluorophenol	0	28.3-102	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: Phenol-d5	0	35.7-103	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: 2,4,6-Tribromophenol	0	35.2-108	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: Nitrobenzene-d5	0	24-118	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: 2-Fluorobiphenyl	0	35.4-111	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: 4-Terphenyl-d14	0	15-91.7	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	7.2	0.52		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Toluene	52	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Ethylbenzene	9.3	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Methyl tert-butyl ether (MTBE)	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1,2,4-Trimethylbenzene	28	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1,3,5-Trimethylbenzene	13	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1,2-Dichloroethane (EDC)	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1,2-Dibromoethane (EDB)	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Naphthalene	4.4	2.1		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1-Methylnaphthalene	6.3	4.2		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
2-Methylnaphthalene	9.5	4.2		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Acetone	ND	16		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Bromobenzene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Bromodichloromethane	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Bromoform	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Bromomethane	ND	3.1		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
2-Butanone	ND	10		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Carbon disulfide	ND	10		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Carbon tetrachloride	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Chlorobenzene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Chloroethane	ND	2.1		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Chloroform	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Chloromethane	ND	3.1		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
2-Chlorotoluene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
4-Chlorotoluene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
cis-1,2-DCE	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
cis-1,3-Dichloropropene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 28 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: W Wall

Project: Bloomfield Terminal

Collection Date: 3/16/2016 2:10:00 PM

Lab ID: 1603878-006

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: DJF
Surr: 1,2-Dichloroethane-d4	96.4	70-130	%Rec	20	3/21/2016 1:15:14 PM	vi 24321
Surr: Toluene-d8	98.0	70-130	%Rec	20	3/21/2016 1:15:14 PM	/I 24321
Surr: 4-Bromofluorobenzene	116	70-130	%Rec	20	3/21/2016 1:15:14 PM	/l 24321

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 30 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603878

25-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Sample ID mb-24321	SampT	ype: MBLK	Tes	lCode: EF	A Method	8260B: Vola	tiles		
Client ID: PBS	Batcl	1D: 24321	R	RunNo: 32	918				
Prep Date: 3/17/2016	Analysis E	Pate: 3/18/2016	S	SeqNo: 10	09413	Units: mg/k	(g		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10							
Hexachlorobutadiene	ND	0.10							
2-Hexanone	ND	0.50							
Isopropylbenzene	ND	0.050							
4-Isopropyltoluene	ND	0.050							
4-Methyl-2-pentanone	ND	0.50							
Methylene chloride	ND	0.15							
n-Butylbenzene	ND	0.15							
n-Propylbenzene	ND	0.050							
sec-Butylbenzene	ND	0.050							
Styrene	ND	0.050							
tert-Butylbenzene	ND	0.050							
1,1,1,2-Tetrachloroethane	ND	0.050							
1,1,2,2-Tetrachloroethane	ND	0.050							
Tetrachloroethene (PCE)	ND	0.050							
trans-1,2-DCE	ND	0.050							
trans-1,3-Dichloropropene	ND	0.050							
1,2,3-Trichlorobenzene	ND	0.10							
1,2,4-Trichlorobenzene	ND	0.050							
1,1,1-Trichloroethane	ND	0.050							
1,1,2-Trichloroethane	ND	0.050							
Trichloroethene (TCE)	ND	0.050							
Trichlorofluoromethane	ND	0.050							
1,2,3-Trichloropropane	ND	0.10							
Vinyl chloride	ND	0.050							
Xylenes, Total	ND	0.10							
Surr: Dibromofluoromethane	0.50	0.5000		101	70	130			
Surr: 1,2-Dichloroethane-d4	0.50	0.5000		100	70	130			
Surr: Toluene-d8	0.51	0.5000		101	70	130			
Surr: 4-Bromofluorobenzene	0.53	0.5000		106	70	130			

Sample ID Ics-24321	SampT	S	Tes	tCode: El	PA Method	tiles				
Client ID: LCSS	Client ID: LGSS Batch ID: 24321					24321 RunNo: 32918				
Prep Date: 3/17/2016	Analysis D	ate: 3/	18/2016	8	SeqNo: 1	009414	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.98	0.025	1.000	0	97.8	70	130		•	
Toluene	1.0	0.050	1.000	0	99.6	70	130			
Chlorobenzene	0.99	0.050	1.000	0	98.8	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 32 of 40

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603878

25-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Sample ID mb-24350	SampT	ype: MBLK	Tes	TestCode: EPA Method 8270C: Semivolatiles					
Client ID: PBS	Batch	n ID: 24350	i	RunNo: 32	2992				
Prep Date: 3/21/2016	Analysis D	ate: 3/23/2016	;	SeqNo: 10	13032	Units: mg/K	(g		
Analyte	Result	PQL SPK valu	e SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20							
Acenaphthylene	ND	0.20							
Aniline	ND	0.20							
Anthracene	ND	0.20							
Azobenzene	ND	0.20							
Benz(a)anthracene	ND	0.20							
Benzo(a)pyrene	ND	0.20							
Benzo(b)fluoranthene	ND	0.20							
Benzo(g,h,i)perylene	ND	0.20							
Benzo(k)fluoranthene	ND	0.20							
Benzoic acid	ND	0.50							
Benzyl alcohol	ND	0.20							
Bis(2-chloroethoxy)methane	ND	0.20							
Bis(2-chloroethyl)ether	ND	0.20							
Bis(2-chloroisopropyl)ether	ND	0.20							
Bis(2-ethylhexyl)phthalate	ND	0.50							
4-Bromophenyl phenyl ether	ND	0.20							
Butyl benzyl phthalate	ND	0.20							
Carbazole	ND	0.20							
4-Chloro-3-methylphenol	ND	0.50							
4-Chioroaniline	ND	0.50							
2-Chloronaphthalene	ND	0.25							•
2-Chlorophenol	ND	0.20							
4-Chlorophenyl phenyl ether	ND	0.20							
Chrysene	ND	0.20							
Di-n-butyl phthalate	ND	0.40							
Di-n-octyl phthalate	NĐ	0.40							
Dibenz(a,h)anthracene	ND	0.20							
Dibenzofuran	ND	0.20							
1,2-Dichlorobenzene	ND	0.20							
1,3-Dichlorobenzene	ND	0.20							
1,4-Dichlorobenzene	ND	0.20							
3,3'-Dichlorobenzidine	ND	0.25							
Diethyl phthalate	ND	0.20							
Dimethyl phthalate	ND	0.20							
2,4-Dichlorophenol	ND	0.40							
2,4-Dimethylphenol	ND	0.30							
4,6-Dinitro-2-methylphenol	ND	0.40							
2,4-Dinitrophenol	ND	0.50							
. ,									

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

Page 34 of 40

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603878

25-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Sample ID Ics-24350	SampType: LCS TestCode: EP				PA Method	8270C: Semi	ivolatiles			
Client ID: LCSS	Batch	n ID: 24 3	350	F	tunNo: 3	2992				
Prep Date: 3/21/2016	Analysis D	ate: 3/	23/2016	8	SeqNo: 1	013033	Units: mg/k	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.3	0.20	1.670	0	75.1	45.8	99.8			
4-Chloro-3-methylphenol	2.4	0.50	3.330	0	73.1	51.5	103			
2-Chlorophenol	2.4	0.20	3.330	0	71.4	46.5	105			
1,4-Dichlorobenzene	1.2	0.20	1.670	0	72.2	45.5	103			
2,4-Dinitrotoluene	1.2	0.50	1.670	0	70.8	36	87.2			
N-Nitrosodi-n-propylamine	1.0	0.20	1.670	0	60.4	47.3	104			
4-Nitrophenol	2.7	0.25	3.330	0	80.8	47.3	95.3			
Pentachlorophenol	2.1	0.40	3.330	0	63.9	38.7	89.3			
Phenol	2.4	0.20	3.330	0	72.6	47.8	106			
Pyrene	1.1	0.20	1.670	0	68.7	33.4	105			
1,2,4-Trichlorobenzene	1.4	0.20	1.670	0	85.9	50.4	115			
Surr: 2-Fluorophenol	2,2		3.330		65.3	28.3	102			
Surr: Phenol-d5	2.5		3.330		74.2	35.7	103			
Surr: 2,4,6-Tribromophenol	2.3		3.330		70.4	35.2	108			
Surr: Nitrobenzene-d5	1.3		1.670		79.3	24	118			
Surr: 2-Fluorobiphenyl	1.3		1.670		77.5	35.4	111			
Surr: 4-Terphenyl-d14	1.2		1.670		71.6	15	91.7			

Sample ID 1603878-001ams	SampType: MS TestCode: EPA Method 8270C: Semivolatiles							ivolatiles		
Ciient ID: NW Pothole @ 14	' Batch	ID: 24	350	F	RunNo: 3:	2992				
Prep Date: 3/21/2016	Analysis D	ate: 3/	23/2016	S	SeqNo: 10	013040	Units: mg/k	(g-dry		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.3	0.21	1.768	0	72.1	27.5	117			
4-Chioro-3-methylphenol	2.8	0.53	3.526	0	78.2	26.3	116			
2-Chlorophenol	2.2	0.21	3.526	0	61.4	21.4	113			
1,4-Dichlorobenzene	0.92	0.21	1.768	0	52.2	25	105			
2,4-Dinitrotoluene	1.4	0.53	1.768	0	76.9	21.1	119			
N-Nitrosodi-n-propylamine	1.0	0.21	1.768	0	58.7	21.3	126			
4-Nitrophenol	2.9	0.26	3.526	0	82.0	21.3	120			
Pentachlorophenol	2.6	0.42	3.526	0	74.6	11.5	115			
Phenol	2.2	0.21	3.526	0	62.7	23	118			
Pyrene	1.4	0.21	1.768	0	76.4	25.7	110			
1,2,4-Trichlorobenzene	1.2	0.21	1.768	0	67.4	31.1	107			
Surr: 2-Fluorophenol	1.7		3.526		49.0	28.3	102			
Surr: Phenol-d5	2.2		3.526		61.9	35.7	103			
Surr: 2,4,6-Tribromophenol	2.5		3.526		71.8	35.2	108			
Surr: Nitrobenzene-d5	1.1		1.768		60.0	24	118			
Surr: 2-Fluorobiphenyl	1.1		1.768		64.3	35.4	111			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 36 of 40

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603878

25-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Sample ID MB-24354

SampType: mblk

TestCode: EPA Method 7471: Mercury

Client ID:

PBS

Batch ID: 24354

RunNo: 32987

Prep Date: 3/21/2016

Sample ID LCS-24354

Analysis Date: 3/22/2016

SeqNo: 1011747

Units: mg/Kg HighLimit

Analyte

%REC LowLimit

Qual

Mercury

PQL SPK value SPK Ref Val ND 0.033

SampType: Ics

TestCode: EPA Method 7471: Mercury

%RPD

RunNo: 32987

Client ID: LCSS Prep Date: 3/21/2016

Batch ID: 24354 Analysis Date: 3/22/2016

0.033

SeqNo: 1011748

Units: mg/Kg

RPDLimit

RPDLimit

Analyte

Result

Result

0.19

Result

SPK value SPK Ref Val **PQL**

%REC

LowLimit

%RPD HighLimit

Qual

Mercury

0.18

0.1667

107

80

120

Sample ID 1603878-001AMS

SampType: ms

TestCode: EPA Method 7471: Mercury

RunNo: 32987

Client ID: Prep Date:

NW Pothole @ 14' Batch ID: 24354 3/21/2016 Analysis Date: 3/22/2016

SeqNo: 1011750

Units: mg/Kg-dry

125

RPDLimit

Analyte

PQL 0.035 SPK value SPK Ref Val %REC 0.003482

0

LowLimit 105 75 %RPD

Qual

Мегсигу

Client ID:

Prep Date:

Sample ID 1603878-001AMSD

NW Pothole @ 14'

SampType: msd

TestCode: EPA Method 7471: Mercury RunNo: 32987

HighLimit

Analyte

3/21/2016

Batch ID: 24354 Analysis Date: 3/22/2016

POL

SeqNo: 1011751

Units: mg/Kg-dry

%RPD

Mercury

Result 0.19

SPK value SPK Ref Val 0.034 0.1734 0.003482

0.1779

%REC LowLimit 106

HighLimit 75

125 1.14 **RPDLimit**

Qual 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded H

R RPD outside accepted recovery limits В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Page 38 of 40

P Sample pH Not In Range

RL Reporting Detection Limit Sample container temperature is out of limit as specified

ND Not Detected at the Reporting Limit

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

WO#: **1603878**

25-Mar-16

Client:

Western Refining Southwest, Inc.

Batch ID: 24353

Analysis Date: 3/24/2016

PQL

2.6

Result

23

Project:

Bloomfield Terminal

Sample ID	1603878-001AMSD) SampT	уре: М \$	SD.	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID:	NW Pothole @ 14'	' Batch	ID: 24	353	R	tunNo: 3	2957				
Prep Date:	3/21/2016	Analysis D	ate: 3/	22/2016	S	eqNo: 10	010814	Units: mg/K	(g-dry		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead		24	0.26	26.04	2.427	83.0	75	125	4.66	20	
Silver		4.5	0.26	5.209	0	86.5	75	125	2.46	20	
Sample ID	MB-24353	SampT	уре: М І	BLK	Test	Code: El	PA Method	6010B: Soil	Metals		
Client ID:	PBS	Batch	ID: 24	353	R	tunNo: 3	3016				
Prep Date:	3/21/2016	Analysis D	ate: 3/	24/2016	S	SeqNo: 1	012884	Units: mg/H	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Selenium		ND	2.5								
Sample ID	LCS-24353 SampType: LCS TestCode: EPA Method 6010B: Soil Metals										
Client ID:											
CHEIL ID.	LCSS	Batch	ID: 24	353	R	tunNo: 3	3016				
Prep Date:		Batch Analysis D				tunNo: 3:		Units: mg/k	(g		
Prep Date:				24/2016		eqNo: 10		Units: mg/k HighLimit	(g %RPD	RPDLimit	Qual
Prep Date: Analyte		Analysis D	ate: 3/	24/2016	S	eqNo: 10	012885	J	J	RPDLimit	Qual
Prep Date: Analyte Selenium		Analysis D Result 26	ate: 3/	24/2016 SPK value 25.00	SPK Ref Val 0	eqNo: 10 %REC 103	012885 LowLimit 80	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte Selenium Sample ID	3/21/2016	Analysis D Result 26 SampT	ate: 3 / PQL 2.5	SPK value 25.00	SPK Ref Val 0	eqNo: 10 %REC 103	LowLimit 80	HighLimit 120	%RPD	RPDLimit	Qual
Prep Date: Analyte Selenium Sample ID Client ID:	3/21/2016 1603878-001AMS NW Pothole @ 14'	Analysis D Result 26 SampT	PQL 2.5 ype: M\$	24/2016 SPK value 25.00 353	SPK Ref Val 0 Test	%REC 103 Code: EF	LowLimit 80 PA Method	HighLimit 120	%RPD Metals	RPDLimit	Qual
Prep Date: Analyte Gelenium Sample ID Client ID:	3/21/2016 1603878-001AMS NW Pothole @ 14'	Analysis D Result 26 SampT Batch	PQL 2.5 ype: M\$	SPK value 25.00 353 24/2016	SPK Ref Val 0 Test	REC 103 Code: EF tunNo: 33	LowLimit 80 PA Method	HighLimit 120 6010B: Soil I	%RPD Metals	RPDLimit RPDLimit	Qual
Prep Date: Analyte Gelenium Sample ID Client ID: Prep Date:	3/21/2016 1603878-001AMS NW Pothole @ 14'	Analysis D Result 26 SampT Batch Analysis D	PQL 2.5 ype: MS ID: 24 ate: 3/	SPK value 25.00 353 24/2016	SPK Ref Val 0 Test	REC 103 Code: EF tunNo: 3:	2012885 LowLimit 80 PA Method 3016 012889	HighLimit 120 6010B: Soil I	%RPD Metals		

Qual	ifi	e	r	

Client ID:

Prep Date:

Analyte

Selenium

Value exceeds Maximum Contaminant Level.

NW Pothole @ 14'

3/21/2016

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

RunNo: 33016

88.8

SPK value SPK Ref Val %REC

0

26.04

SeqNo: 1012890

LowLimit

75

Units: mg/Kg-dry

125

%RPD

0.0715

RPDLimit

20

Qual

HighLimit

J Analyte detected below quantitation limits

Page 40 of 40

P Sample pH Not In Range

RL Reporting Detection Limit

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com	4	Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	ю†) Ко)	S BCB.	(A)	-AQ + POQ +	BTEX + MT BTEX + MT TPH 8015B TPH (Methore) BDB (Methore) BCRA 8 Methore (F,C 8081 Pestic						-> ->->->->->->->->->->->->->->->->->->		Remarks: Please CC MWICKEV@LTENNION	Time: Retirquished by (
Turn-Around Time: Note that the second Time: Rush ASAP	Bloomheld Terrinnal	Project #.	Project Manager:	Kelly Robinson	Sampler: Michael Wicker On Ice: Times In No	Sample Temperature: 2,2	Container Preservative HEAL No. Type And # Type	2-302 Cool -COI	ar manana ta	-003	1-802 2-402 - COL	4-42	<i>200-</i> ↑ →			Recovered by: (33)74/10 (755) outlacted to other according abbraichtes. This serves as notice of this
Chain-of-Custody Record	11 CR	Bloomfield NM 87413	ax#:	NGC Package: Standard □ Level 4 (Full Validation)	screditation Dother	EDD (Type) Drod	Sate Time Matrix Sample Request ID	-16 1320 Soil NW Poshok @14"	-	11	1340 74	1350	1410 V Wall		ate: Time. Relinquished by:	ite: Time: Refirquished by, 1/2 1965 Might Mall Environmental may be subd

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

OrderNo.: 1603876

March 21, 2016

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Bloomfield Terminal

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 6 sample(s) on 3/17/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1603876

Date Reported: 3/21/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: N Wall

Project: Bloomfield Terminal

Collection Date: 3/14/2016 1:40:00 PM

Lab ID: 1603876-002

Matrix: MEOH (SOIL) Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
PERCENT MOISTURE					Analyst	: AG
Percent Moisture	11	1.0	wt%	1	3/17/2016 4:00:00 PM	R32877
EPA METHOD 8015M/D: DIESEL RANG	E ORGANIC	s			Analyst	JME
Diesel Range Organics (DRO)	ND	11	mg/Kg-dry	1	3/17/2016 2:14:55 PM	24297
Motor Oil Range Organics (MRO)	ND	54	mg/Kg-dry	1	3/17/2016 2:14:55 PM	24297
Surr: DNOP	87.0	70-130	%Rec	1	3/17/2016 2:14:55 PM	24297
EPA METHOD 8015D: GASOLINE RANG	GE.				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.2	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Surr: BFB	111	66.2-112	%Rec	1	3/17/2016 11:40:31 AM	24284
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.026	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Toluene	ND	0.052	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Ethylbenzene	ND	0.052	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Xylenes, Total	ND	0.10	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Surr: 4-Bromofluorobenzene	117	80-120	%Rec	1	3/17/2016 11:40:31 AM	24284

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603876

Date Reported: 3/21/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Floor

Project: Bloomfield Terminal

Collection Date: 3/16/2016 1:40:00 PM

Lab ID: 1603876-004

Matrix: MEOH (SOIL) Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
PERCENT MOISTURE						Analyst:	AG
Percent Moisture	7.6	1.0		wt%	1	3/17/2016 4:00:00 PM	R32877
EPA METHOD 8015M/D: DIESEL RANGE	ORGANIC	s				Analyst:	JME
Diesel Range Organics (DRO)	3500	100		mg/Kg-dry	10	3/17/2016 4:04:11 PM	24297
Motor Oil Range Organics (MRO)	1300	510		mg/Kg-dry	10	3/17/2016 4:04:11 PM	24297
Surr: DNOP	0	70-130	s	%Rec	10	3/17/2016 4:04:11 PM	24297
EPA METHOD 8015D: GASOLINE RANG	E					Analyst:	NSB
Gasoline Range Organics (GRO)	5600	280		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Surr: BFB	310	66.2-112	s	%Rec	50	3/17/2016 12:27:44 PM	24284
EPA METHOD 8021B: VOLATILES						Analyst:	NSB
Benzene	14	1.4		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Toluene	150	2.8		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Ethylbenzene	26	2.8		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Xylenes, Total	240	5.5		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Surr: 4-Bromofluorobenzene	135	80-120	S	%Rec	50	3/17/2016 12:27:44 PM	24284

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603876

Date Reported: 3/21/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: W Wall

Project: Bloomfield Terminal

Collection Date: 3/16/2016 2:10:00 PM

Lab ID: 1603876-006

Matrix: MEOH (SOIL) Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
PERCENT MOISTURE						Analyst	: AG
Percent Moisture	11	1.0		wt%	1	3/17/2016 4:00:00 PM	R32877
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANIC	S				Analyst	: JME
Diesel Range Organics (DRO)	4600	110		mg/Kg-dry	10	3/17/2016 5:30:55 PM	24297
Motor Oil Range Organics (MRO)	1800	550		mg/Kg-dry	10	3/17/2016 5:30:55 PM	24297
Surr: DNOP	0	70-130	S	%Rec	10	3/17/2016 5:30:55 PM	24297
EPA METHOD 8015D: GASOLINE RAN	IGE					Analyst	: NSB
Gasoline Range Organics (GRO)	4000	280		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Surr: BFB	255	66.2-112	S	%Rec	50	3/17/2016 5:56:51 PM	24284
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	15	1.4		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Toluene	100	2.8		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Ethylbenzene	18	2.8		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Xylenes, Total	160	5.6		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Surr: 4-Bromofluorobenzene	134	80-120	S	%Rec	50	3/17/2016 5:56:51 PM	24284

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603876

21-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Project: Bloom:	ieid Terminai							121 11 11 11 11 11 11 11 11 11 11 11 11	
Sample ID MB-24284	SampType:	MBLK	Tes	tCode: EP	A Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batch ID:	24284	F	RunNo: 32	868				
Prep Date: 3/16/2016	Analysis Date:	3/17/2016	8	SeqNo: 10	07393	Units: mg/K	(g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND (5.0							
Surr: BFB	1100	1000		109	66.2	112			
Sample ID LCS-24284	SampType:	LCS	Tes	tCode: EP	A Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch ID:	24284	F	RunNo: 32	868				
Prep Date: 3/16/2016	Analysis Date:	3/17/2016	S	SeqNo: 10	07394	Units: mg/k	(g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	23 (5.0 25.00	0	91.1	80	120			
Surr: BFB	1100	1000		115	66.2	112			S

Sample ID 1603876-001AMS	SampT	уре: М3	6	TestCode: EPA Method 8015D: Gasoline Range							
Client ID: NW Pothole @ 14	l' Batch	n ID: 24	284	R	tunNo: 3	2868					
Prep Date:	Analysis D)ate: 3/	17/2016	SeqNo: 1007411 Units: mg/Kg-dry							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	29	3.5	17.66	11.65	95.6	59.3	143				
Surr: BFB	1400		706.4		198	66.2	112			S	

	· · · · · · · · · · · · · · · · · · ·										
Sample ID 1603876-001AMS	D SampT	уре: М	SD.	TestCode: EPA Method 8015D: Gasoline Range							
Client ID: NW Pothole @ 14	4' Batch	1D: 24	284	F	tunNo: 3	2868					
Prep Date:	SeqNo: 1007412 Units: mg/Kg-dry										
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	31	3.5	17.66	11.65	111	59.3	143	9.30	20		
Surr BER	1400		706.4		201	66.2	112	n	0	S	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

 $R \quad \ RPD \ outside \ accepted \ recovery \ limits$

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 8 of 9

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory 4901 Huwkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refini	ing Southw Work Order	Number: 1603	876		RcptNo:	1
Received by/date:	NA PI	(o				#19 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Character 1	-	•	Simber Allegood		
Logged By: Lindsay Many				71110		
Completed By: Lindsay Mang	-	3:58 AM /		July Hagy D		:
Reviewed By:	03/17/	16				j
Chain of Custody			J\$	м. П	Mar Daniel M	
1. Custody seals intact on samp		Yes		No □ No □	Not Present ☑ Not Present □	
2. Is Chain of Custody complete				NO L.J	Not Present ()	
3. How was the sample delivered	ed?	<u>Cou</u>	<u>irier</u>			
<u>Log In</u>						
4. Was an attempt made to con	ol the samples?	Yes	· 🗹	No 🗆	NA 🗆	
5. Were all samples received a	t a temperature of >0° C to 6.0)°C Yes	$ \mathbf{V} $	No 🗌	NA □	
6. Sample(s) in proper contains	er(s)?	Yes	; 	No 🗆		
7. Sufficient sample volume for	indicated test(s)?	Yes	y	No 🗆		
8. Are samples (except VOA an	id ONG) properly preserved?	Yes	V	No 🗆		
9. Was preservative added to b	ottles?	Yes		No 🗹	NA 🗆	
10.VOA vials have zero headspa	ara?	Yes	П	No 🗆	No VOA Vials 🗹	
11. Were any sample containers		Yes	[]	No ☑		
11, trose any example contained	, roserrou atonom.		,		# of preserved bottles checked	
12. Does paperwork match bottle		Yes	✓	No 🗆	for pH:	or >12 unless noted)
(Note discrepancies on chain 13. Are matrices correctly identifi	• •	Voo	V	No 🗆	Adjusted?	or >12 unless noted)
14. Is it clear what analyses were	•	Yes	_	No 🗆		
15. Were all holding times able to		Yes		No 🗆	Checked by:	
(If no, notify customer for aut				Ĺ		
Special Handling (if applic						
16. Was client notified of all disc	repancies with this order?	Yes	<u> </u>	No 📙	NA 🗹	··-
Person Notified:	TOTAL PROPERTY AND ADDRESS OF THE PROPERTY ADD	Date		(7
By Whom:		Via: ☐ eM	lail 🗌 Pl	none 🗌 Fax	In Person	
Regarding:				mari di		
Client Instructions:						
17. Additional remarks:						
	Condition Seal Intact Sea Good Yes	ıl No Seal D	ate	Signed By		

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1603350

March 16, 2016

Matt Krakow Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Crude Unloading Line

Dear Matt Krakow:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/7/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1603350

Date Reported: 3/16/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Western Remaining Sedditteet,

Project: (Lab ID:

1603350-001

Crude Unloading Line

Matrix: SOIL

Client Sample ID: Waste Characterization

Collection Date: 3/7/2016 1:00:00 PM

Received Date: 3/7/2016 4:52:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
VOLATILES BY 8260B/1311					Analys	t: DJF
Benzene	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
2-Butanone	ND	200	mg/L	1	3/9/2016 5:51:30 PM	24135
Carbon Tetrachloride	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
Chlorobenzene	ND	100	mg/L	1	3/9/2016 5:51:30 PM	24135
Chloroform	ND	6.0	mg/L	1	3/9/2016 5:51:30 PM	24135
1,4-Dichlorobenzene	ND	7.5	mg/L	1	3/9/2016 5:51:30 PM	24135
1,2-Dichloroethane (EDC)	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
1,1-Dichloroethene	ND	0.70	mg/L	1	3/9/2016 5:51:30 PM	24135
Hexachlorobutadiene	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
Tetrachloroethene (PCE)	ND	0.70	mg/L	1	3/9/2016 5:51:30 PM	24135
Trichloroethene (TCE)	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
Vinyl chloride	ND	0.20	mg/L	1	3/9/2016 5:51:30 PM	24135
Surr: 1,2-Dichloroethane-d4	94.9	70-130	%Rec	1	3/9/2016 5:51:30 PM	24135
Surr: 4-Bromofluorobenzene	112	70-130	%Rec	1	3/9/2016 5:51:30 PM	24135
Surr: Dibromofluoromethane	91.6	70-130	%Rec	1	3/9/2016 5:51:30 PM	24135
Surr: Toluene-d8	100	70-130	%Rec	1	3/9/2016 5:51:30 PM	24135

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603350

16-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Crude Unloading Line

Sample ID MB-24219	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batch	1D: 24	219	F	RunNo: 3	2770				
Prep Date: 3/11/2016	Analysis D	ate: 3/	14/2016	S	SeqNo: 10	004230	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0					·			
Surr: BFB	1100		1000		106	66.2	112			
Sample ID LCS-24219	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: LCSS	Batch	ı ID: 24	219	F	RunNo: 3	2770				
Prep Date: 3/11/2016	Analysis D	ate: 3/	14/2016	\$	SeqNo: 1	004231	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24	5.0	25.00	0	97.3	80	120			
Sum: BFB	1100		1000		114	66.2	112			S

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 4 of 11

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603350

16-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Crude Unloading Line

Sample ID 1603350-001ams	s SampT	уре: М	3	Tes	tCode: V	olatiles by	8260B/1311			
Client ID: Waste Characte	rizat Batch	ı ID: 24	135	F	RunNo: 3	2688				
Prep Date: 3/8/2016	Analysis D	ate: 3	9/2016	9	SeqNo: 1	000436	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.19		0.2000		92.9	70	130			
Surr: 4-Bromofluorobenzene	0.23		0.2000		115	70	130			
Surr: Dibromofluoromethane	0.19		0.2000		95.0	70	130			
Surr: Toluene-d8	0.19		0.2000		96.5	70	130			

Sample ID 1603350-001ams	sd SampT	ype: MS	SD	Tes	tCode: V	olatiles by	8260B/1311			
Client ID: Waste Characte	rizat Batch	n ID: 24	135	F	RunNo: 3	2688				
Prep Date: 3/8/2016	Analysis D	ate: 3/	9/2016	SeqNo: 1000450 Units: mg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.38	0.30	0.4000	0	94.2	70	130	5.98	20	
Chlorobenzene	0.40	0.30	0.4000	0	99.4	70	130	5.41	20	
1,1-Dichloroethene	0.35	0.30	0.4000	0	88.6	70	130	11.0	20	
Trichloroethene (TCE)	0.35	0.30	0.4000	0	86.7	70	130	9.13	20	
Surr: 1,2-Dichloroethane-d4	0.19		0.2000		94.8	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.22		0.2000		111	70	130	0	0	
Surr: Dibromofluoromethane	0.18		0.2000		91.2	70	130	0	0	
Surr: Toluene-d8	0.19		0.2000		95.5	70	130	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 6 of 11

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

SampType: MS

WO#: 1603350

16-Mar-16

Client: Western Refining Southwest, Inc.

Project: Crude Unloading Line

Sample ID 1603350-001ams

Sample ID ics-24177	SampType: LCS		Tes	PA Method						
Client ID: LCSS	Batch	h ID: 24	177	F	RunNo: 3	2755				
Prep Date: 3/10/2016	Analysis D	ate: 3/	12/2016	9	SeqNo: 1	004052	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol	0.18		0.2000		89.8	31.3	139			
Surr: Nitrobenzene-d5	0.075		0.1000		74.7	48.2	128			
Surr: 2-Fluorobiphenyl	0.076		0.1000		75.7	58.4	114			
Surr: 4-Temhenvl-d14	0.078		0.1000		78.1	17.4	141			

TestCode: EPA Method 8270C TCLP

Client ID: Waste Characterizat Batch ID: 24177 RunNo: 32755 Prep Date: 3/10/2016 Analysis Date: 3/12/2016 SeqNo: 1004054 Units: mg/L %RPD **RPDLimit** %REC Analyte Result PQL SPK value SPK Ref Val LowLimit HighLimit Qual 2-Methylphenol 0.10 0.010 0.1000 0 101 43.1 114 37.8 3+4-Methylphenol 0.21 0.010 0.2000 0 107 128 76.3 125 2,4-Dinitrotoluene 0.076 0.010 0.1000 0 36.5 0.1000 108 S Hexachlorobenzene 0.11 0.010 0 112 41.4 0.1000 0 30.4 101 Hexachlorobutadiene 0.085 0.010 84.8 Hexachloroethane 0.087 0.010 0.1000 0 87.3 37.3 115 0.1000 Nitrobenzene 0.10 0.010 0 102 40.2 132 103 0.010 0.1000 0 43.0 8.72 Pentachlorophenoi 0.043 0.010 0.1000 0 73.9 9.36 106 Pyridine 0.074 0 105 123 0.010 0.1000 16.5 2,4,5-Trichlorophenol 0.11 2,4,6-Trichlorophenol 0.082 0.010 0.1000 0 81.6 11.3 117 23.2 151 Cresols, Total 0.32 0.010 0.3000 105 0.13 0.2000 63.8 19 121 Surr: 2-Fluorophenol Surr: Phenol-d5 0.11 0.2000 53.1 31.8 117 102 31.3 139 Surr: 2,4,6-Tribromophenol 0.20 0.2000 Surr: Nitrobenzene-d5 0.10 0.1000 101 48.2 128 Surr: 2-Fluorobiphenyl 0.096 0.1000 95.5 58.4 114 141 Surr: 4-Terphenyl-d14 0.076 0.1000 76.1 17.4

Sample ID 1603350-001amsd SampType: MSD TestCode: EPA Method 8270C TCLP										
Client ID: Waste Characteri	izat Batch l	D: 24 1	177	R	2755					
Prep Date: 3/10/2016 Analysis Date: 3/12/2016				SeqNo: 1004056			Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.069	0.010	0.1000	0	69.2	43.1	114	37.2	28.4	R
3+4-Methylphenol	0.14	0.010	0.2000	0	70.8	37.8	128	40.7	29.4	R
2,4-Dinitrotoluene	0.055	0.010	0.1000	0	55.5	36.5	125	31.6	24.7	R
Hexachlorobenzene	0.079	0.010	0.1000	0	78.8	41.4	108	34.7	20	R
Hexachlorobutadiene	0.063	0.010	0.1000	0	63.2	30.4	101	29.1	29	R
Hexachloroethane	0.060	0.010	0.1000	0	60.3	37.3	115	36.6	25.2	R

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 8 of 11

P Sample pH Not In Range

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603350

16-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Crude Unloading Line

Sample ID MB-24168

SampType: MBLK

TestCode: MERCURY, TCLP

LowLimit

Client ID:

PBW

Batch ID: 24168

RunNo: 32705

Units: mg/L

Analyte

Prep Date: 3/9/2016

3/9/2016

Analysis Date: 3/10/2016

SeqNo: 1001072 %REC

HighLimit

RPDLimit

Qual

Mercury

Result **PQL** ND 0.020

SPK value SPK Ref Val

TestCode: MERCURY, TCLP

Client ID: LCSW

Sample ID LCS-24168

SampType: LCS Batch ID: 24168 Analysis Date: 3/10/2016

RunNo: 32705 SeqNo: 1001074

Units: mg/L

Analyte

Prep Date:

Result

SPK value SPK Ref Val %REC PQL.

98.3

LowLimit HighLimit

Qual

0.005000

Mercury

ND 0.020

80

120

%RPD

%RPD

RPDLimit

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded H

Not Detected at the Reporting Limit ND

R RPD outside accepted recovery limits

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Page 10 of 11

P Sample pH Not In Range RL Reporting Detection Limit

Hall Environmental Analysis Laboratory

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

ReptNo: 1 Work Order Number: 1693350 Western Refining Southw Client Name: Received by/date: 3/7/2016 4:52:00 PM Logged By: Ashley Gallegos Ashley Gallegos 3/8/2016 9:08:31 AM Completed By: Reviewed By: Chain of Custody Yes No 🗍 Not Present V 1. Custody seals intact on sample bottles? No 🗌 Yes 🗸 Not Present 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? Log In NA 🗌 No 🗌 Yes V 4. Was an attempt made to cool the samples? NA L No | Were all samples received at a temperature of >0°C to 6.0°C No. Yes 🗸 Sample(s) in proper container(s)? No 🗌 Yes 🗸 7. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 8. Are samples (except VOA and ONG) properly preserved? NA 🗌 No V Yes 9. Was preservative added to bottles? No 🗌 No VOA Vials 🗸 Yes 10, VOA vials have zero headspace? Yes No V 11. Were any sample containers received broken? # of preserved bottles checked No 🗌 for pH: Yes 🗸 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗌 Yes V 13. Are matrices correctly identified on Chain of Custody? No 🗌 Yes V 14, is it clear what analyses were requested? Checked by: No 🗌 Yes V 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) No 🗌 NA V Yes 16. Was client notified of all discrepancies with this order? Person Notified: Date eMail Phone Fax In Person Via: By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By Good

Chavez, Carl J, EMNRD

From: Robinson, Kelly <Kelly.Robinson@wnr.com>

Sent: Thursday, April 07, 2016 6:23 AM **To:** Tsinnajinnie, Leona, NMENV

Cc: Dhawan, Neelam, NMENV; Cobrain, Dave, NMENV; Chavez, Carl J, EMNRD; Schmaltz,

Randy; Krakow, Matt; Powell, Brandon, EMNRD

Subject:Corrective Action ReportAttachments:Corrective Action Report.pdf

Good Afternoon Ma'am,

In response to an oil leak originally reported to NMED-HWB and NMOCD on Saturday, March 5th, 2016, Western is submitting this Corrective Action Report summarizing the activities completed to-date. This Report is being submitted as an attachment to a revised C-141 Initial Report NMOCD has requested previously. The Report documents the excavation activities completed to-date, results from confirmation samples collected within the excavation area, and diagrams/photos showing the physical extent of the excavation.

As you will see in the Report, the excavation efforts were completed to the extent possible at this time. Due to the proximity of existing facility equipment and process piping, Western is no longer able to remove any additional soils safety. Western is requesting permission to suspend any further corrective actions until such time that the active process piping/equipment are removed to provide safe access to the area. This is an active investigation area under the NMED-HWB Consent Order dated July 27, 2007, and therefore Western is requesting that the remaining corrective actions for this area be covered under the direction of the 2007 Consent Order. In addition, Western is requesting permission to backfill the excavation area to match existing grade. This area serves as a secondary containment for active facility process equipment, and exposed active piping is being temporarily supported. Western believes the immediate threat this release had to the area has been removed by the excavation activities completed to-date. The remaining corrective actions would be best complete at a later date when the area is more accessible in a safe manner.

We would be more than happy to discuss this matter with you via a conference call to help facilitate NMED's review of the event, if so desired. Please let us know if you have any questions, or if you need any additional information not otherwise provided in this report. A hardcopy of this report is being sent to you, as well as to the OCD District Office and OCD Santa Fe Office.

Thank you for your time!

Sincerely,

Kelly R. Robinson I Environmental

Western Refining I 111 County Road 4990 I Bloomfield, NM87413 (o) 505-632-4166 I (c) 505-801-5616 I (e) <u>kelly.robinson@wnr.com</u>

811 S. First St., Artesia, NM 88210 District III

1000 Rio Brazos Road, Aztec, NM 87410

District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rele	ase Notific	catio	n and Co	orrective A	ction			·		
OPERATOR Initial Report (Revised) Final Report													
							Contact: Kelly Robinson						
							No.: 505-632-4						
Facility Name: Bloomfield Terminal							e: Products Te	rminai					
Surface Owner: Western Refining Southwest, Mineral Owner Inc.									API No),			
LOCATION OF RELEASE													
Unit Letter	Section	Township							West Line County				
	27	29N	11W										
		Latitud	e 36° 41°	45"N		Longitude	107° 58' 12	2" W					
					TIRE	OF REL	•			ACTION AND ACTION AND ACTION AND ACTION AND ACTION AND ACTION ACTION AND ACTION AND ACTION ACTION AND ACTION ACTIO			
Type of Rele	ase: Crude	Oil		11/23	Cita		Volume of Release: Unknown Volume Recovered: 8 barrels						
		de Line Releas	se Undergre	ound			Date and Hour of Occurrence: Date and Ho				Your of Discovery:		
Was Immedia	te Notice (Given?				unknown If YES, To	Whom?		3/05/2010	o at Zam			
11 45 23211041	1 (01100)		Yes 🗌	No 🛛 Not R	equired	.	Cory Smith (NMC						
							Carl Chavez (NMI						
							Leona Tsinnajinnie (NMED-HWB) Dave Cobrain (NMED-HWB)						
Neelam Dhawan (NMED-HWB)													
By Whom?: Kelly Robinson							Hour : 03/05/2016 at 2:56	om o					
Was a Watercourse Reached?							olume Impacting t		rcourse.				
☐ Yes ⊠ No													
If a Watercourse was Impacted, Describe Fully.*													
Describe Cause of Problem and Remedial Action Taken.*													
At approximately 2am on Saturday, March 5 th , 2016, Western Operations identified a small 3-gallon accumulation of crude oil on ground surface within										vithin			
the secondary containment of Tank 41. Based on the location of the surface stain, the release was initially thought to be associated with the wet oil system.													
Operations took immediate action in shutting down the wet oil system. By 7am the same day, Maintenance arrived on-site and worked to expose the source of the oil release. By 11am, Maintenance identified the source of the oil release to be a breach in the crude unloading pipeline. The pipeline is													
located approximately 3 ft below grade surface. The line was able to be isolated and a temporary repair was installed by 12:15pm.													
Describe Are	a Affected	and Cleanup A	Action Take	n.*			· · ·			0.45000			
Eveese liquid	s were coll	ected using an	on-site va	num truck The	recove	ered oil was se	nt through the on-	eite was	tewater tre	atment system	for oil re	covery	
Excess liquids were collected using an on-site vacuum truck. The recovered oil was sent through the on-site wastewater treatment system for oil recovery. The oil release came from an underground pipeline that is located within the secondary containment of Tanks 41. As of 12:15pm this afternoon, temporary													
repairs have been completed on the pipeline. Surface soil impacts are localized to an area within the secondary containment of Tank 41. This crude oil													
release took place in an area previously investigated under an active Consent Order issued through New Mexico Hazardous Waste Bureau (NMED-HWB). Western will be coordinating with the NMED-HWB on implementing corrective actions pursuant to the condition of the Consent Order.													
Updated April 6, 2016: Attached is a Corrective Action Report documenting in-detail the corrective action completed to-date. Due to the proximity of existing equipment within the excavation area, Western is no longer able to remove additional soils safely. Therefore, Western is requesting permission to													
backfill the excavation area to match existing grade. This area serves as secondary containment for active in-service equipment. In addition, this is an													
active investigation area under the NMED-HWB Consent Order dated July 27, 2007, and therefore Western is requesting the remaining corrective actions													
for this area be covered under the direction of the 2007 Consent Order.													

or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	does not relieve the operator of respon	sibility for compliance with any other			
Signature Kelle Column	OIL CONSER	VATION DIVISION			
Signature New York Out					
Printed Name: Kelly Robiusou	Approved by Environmental Specialist:				
Title: Environmental Manager-Logistics	Approval Date:	Expiration Date:			
E-mail Address: Kelly. Robins on Ewnr. Com	Conditions of Approval:	Attached			
Date: 4-6-2016 Phone 505 632-4166		ADDICAGO			

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health

^{*} Attach Additional Sheets If Necessary

CORRECTIVE ACTION REPORT Western Refining – Bloomfield Terminal

Cause of the Release

On Saturday, March 5th, 2016 at approximately 2am, the Operator on-duty at the Western Refining Bloomfield Terminal noticed a small stain of crude oil adjacent (east) of the Tank 42a/42b secondary containment pad. This area is located within the southern portion of the facility, south of highway 4990. The operator used absorbent material to soak-up the oil, and notified the Terminal Operations Manager. By 8am that same day, Maintenance personnel arrived on-scene to investigate the source of the stain. Using a backhoe, Western was able to identify a small leak in a 3-inch insulated crude oil pipeline used to convey crude oil from the Wet Oil System (Tank 41) to the facility Tank Farm area. The location of where the repair was made on the pipeline is approximately 10 to 15 feet east of where the crude oil surfaced. The pipeline was insulated with a fiberglass wrap, which likely was the reason why the oil released to surface slightly adjacent to the leak source location. Maintenance was able to isolate the line and repair the leak with a temporary clamp. The pipeline was returned to service by 12 noon on Saturday, March 5th, 2016. An initial notification of the release event was submitted to the New Mexico Oil Conservation Division (NMOCD) and New Mexico Environment Department - Hazardous Waste Bureau (NMED-HWB) on March 5th, 2016. The approximate location of where the release occurred within the facility boundary and the footprint of the excavation to-date is shown in Diagram 1 and Diagram 2, respectively.

Corrective Actions

Western contracted with Adobe Construction ("Adobe") to perform the excavation effort, and with LT Environmental to provide environmental over-site of the excavation efforts. Excavation activities commenced on Wednesday, March 9th, 2016 following clearance to dig through the New Mexico One Call System. The initial effort involved hand-digging to expose any existing pipelines within the area. Three additional pipelines were located within the excavation area. These additional lines have been confirmed by Operations to be out-of-service. Once the pipelines were exposed, a backhoe was used to progress the excavation effort. Field monitoring was conducted using a Photo Ionization Detector (PID) meter. The PID readings assisted in identifying the areas for which additional excavation was needed.

The excavation area was limited by the existing in-service aboveground pipelines to the north and east, existing concrete containment for in-service tanks to the west, and an existing tank to the south. Photo 1 and Photo 2 shows the adjacent facility equipment around the perimeter of the excavated area. Due to the restrictions from the existing structures, the lateral extent of the excavation was approximately 26 feet East – West and 12 feet North-South. The benching on the south side of the excavation was done to allow for means of egress for additional hand-digging around the pipelines.

The PID readings showing the surface concentrations as of March 14, 2016 are shown on Diagram #3. The diagram shows the relative depth below original grade in feet, and the corresponding PID reading in parts per million (ppm). The excavation had reached approximately 7.5 ft within eastern portion of the

excavation. This was accomplished utilizing a combination of excavation by backhoe and hand-digging. The west side was benched down approximately 2.5 feet, providing the backhoe an area to reach between the pipelines. PID readings were collected periodically as the excavation activities progressed. Along the north western portion of the excavation, there was an area of sandy soils exhibiting higher organic concentrations as observed using the PID. The excavation extended down deeper in this location, creating a hole approximately 3 feet by 2 feet by 13 feet deep (the maximum reach of the equipment used for excavation).

Between March 14th and March 16th, 2016, additional soils were removed, targeting areas higher than 300 pppm. Sidewall field readings indicated that the deeper hole needed to be extended laterally to the extent possible with the equipment used while taking into consideration the adjacent pipelines. Updated PID readings of the excavated area as of March 16th, 2016 are shown on Diagram #4. Due to adjacent facility equipment and concerns of being able to safely support the active pipeline that crosses the excavation, no additional soils were able to be removed at this time.

Between March 14th and March 16, 2016, 5-point composite samples were collected to characterize the North, South, East, West excavation walls. In addition, two 5-point composite samples were collected from the excavation base, with one sample collected at the bottom of the deepest excavation base. The samples were analyzed for the following:

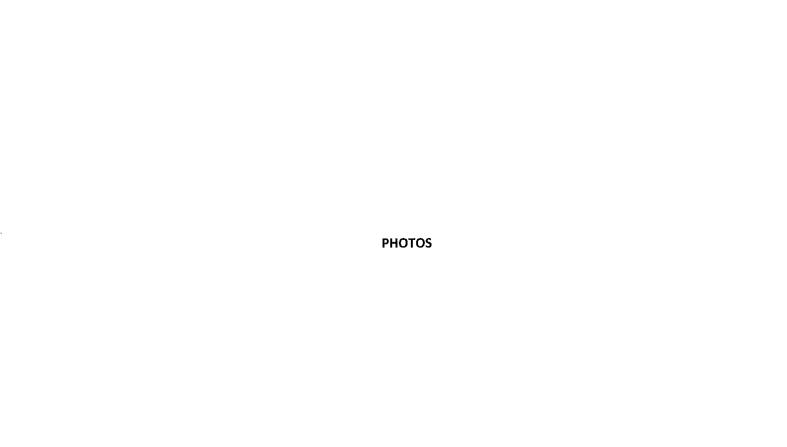
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) by EPA Method 8015
- TPH Diesel Range Organics (DRO) by EPA Method 8015
- TPH- Motor Oil Range Organics (MRO) by EPA Method 8015
- Total Metals by EPA Method 6010B
- Volatile Organic Compounds (VOCs) by EPA Method 8260B
- Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270C

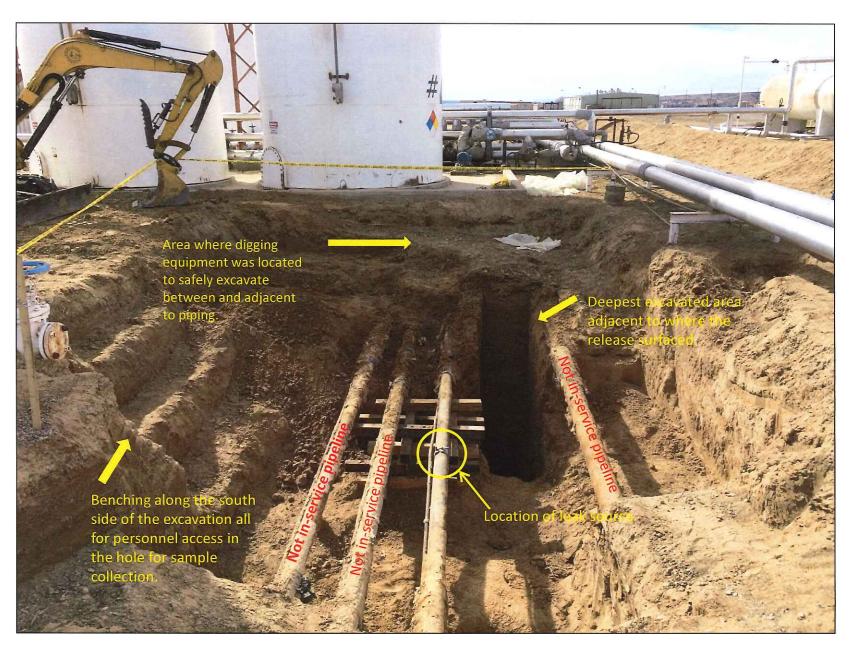
A summary of the analytical results are provided in Table 1, and a copy of the analytical results are provided as an Appendix to this Report.

Waste Characterization

Excavated soils were temporarily stock-piled on-site during excavation activities. Approximately 80 yards of impacts soils were removed from the excavation. A composite sample was collected and analyzed for the following:

- TCLP VOCs by EPA Method 8260B
- TCLP SVOCs by EPA Method 8270C
- TCLP RCRA 8 Metals by EPA Method 6010B
- TPH-GRO by EPA Method 8015
- TPH-DRO by EPA Method 8015
- TPH-MRO by EPA Method 8015

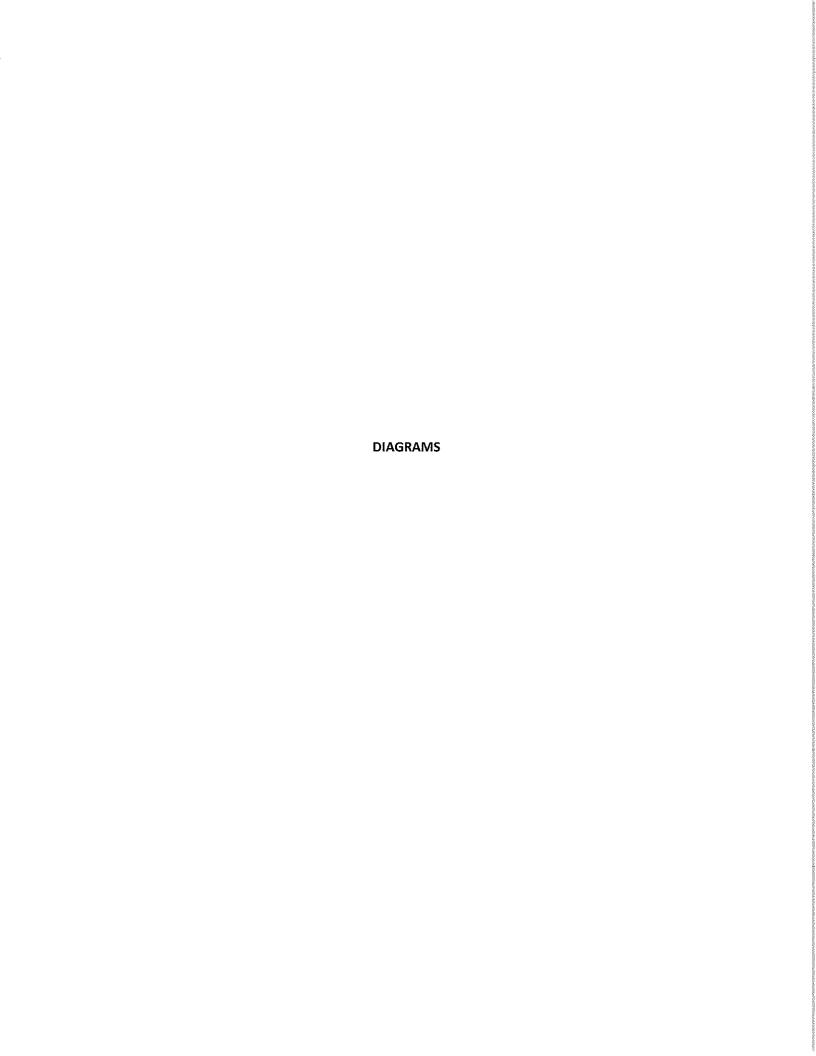

The analytical results show that the material is classified as non-hazardous non-exempt waste. The waste was sent to the Envirotech landfarm for treatment and disposal. A copy of the waste characterization analytical report is provided in Appendix A.

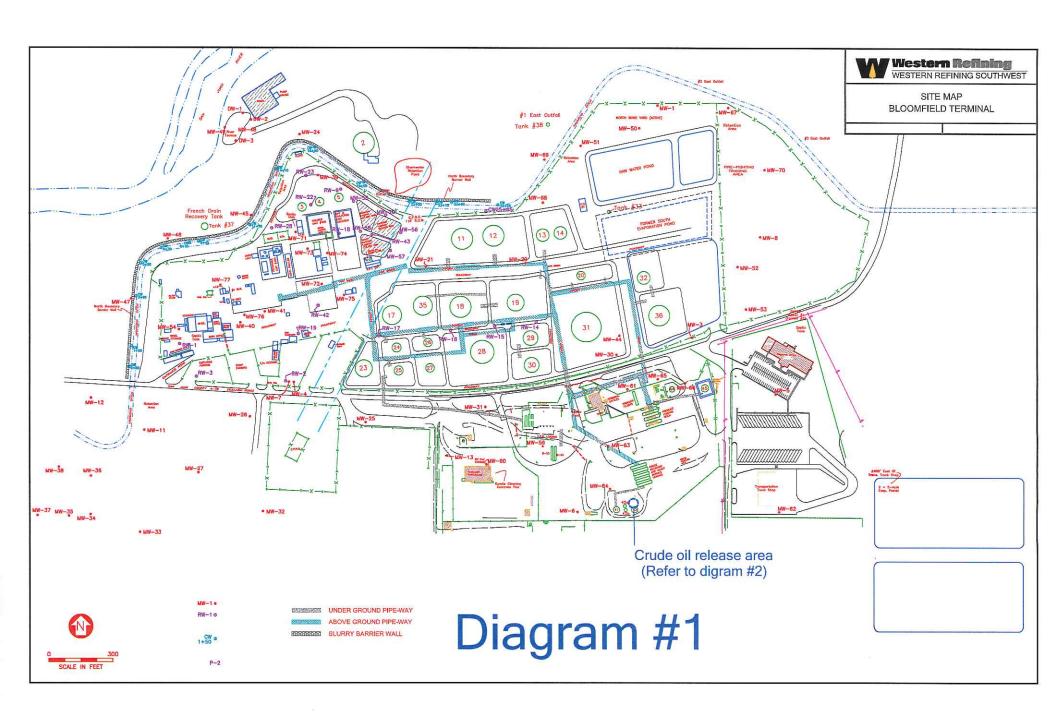

Recommendations

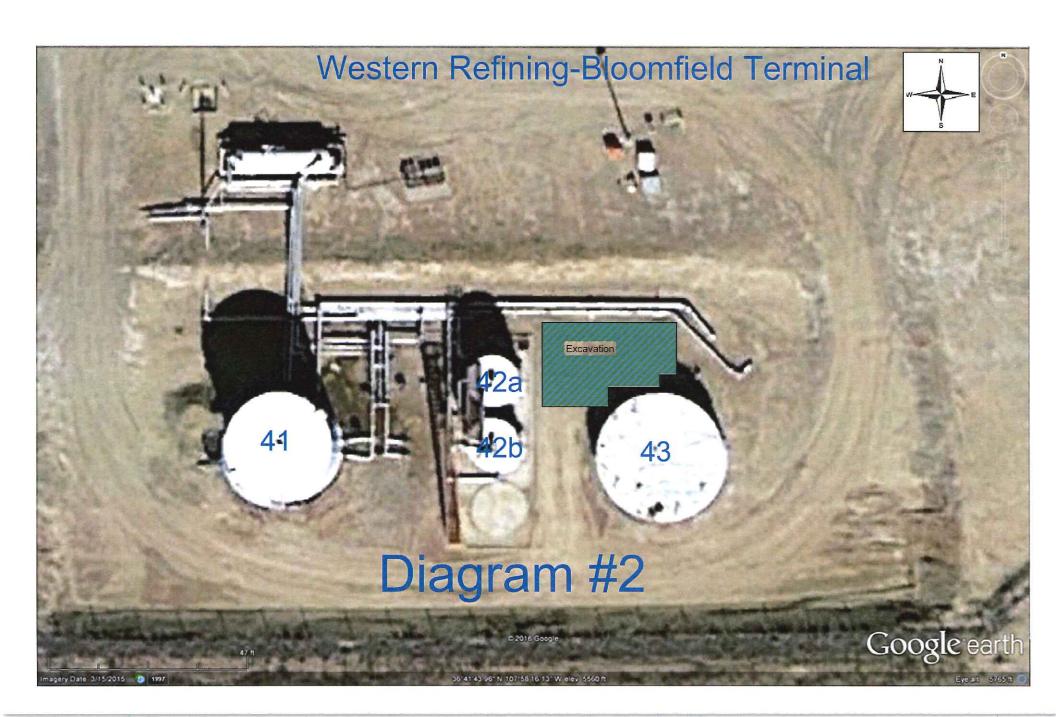
The analytical results show that the north and south lateral extent of the impacted area has been defined. The remaining soils along the north and south boundary of the excavation area exhibit concentrations below the most conservative clean-up levels pursuant to the New Mexico Oil Conservation Division *Guidelines for Remediation of Leaks, Spill and Releases* dated August 13, 1993.

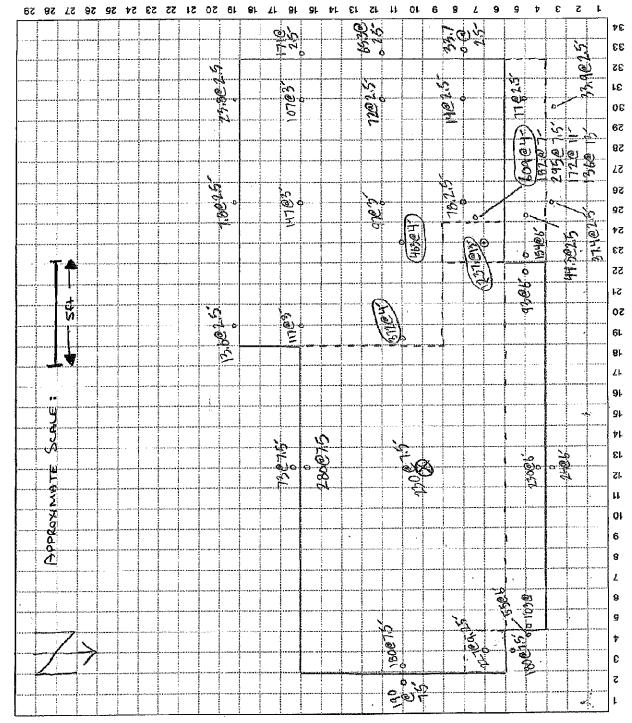
Confirmation samples collected from the west, east, and excavation base show that the residual soil concentrations are above the OCD clean-up levels for closure. However, the remaining soils no longer exhibit visual saturation staining. Due to the proximity of existing equipment within the excavation area, Western is no longer able to remove additional soils safely.

With this said, Western is requesting permission to backfill the excavation area to match existing grade. This area serves as secondary containment for active in-service equipment. In addition, this is an active investigation area under the NMED-HWB Consent Order dated July 27, 2007, and therefore Western is requesting the remaining corrective actions for this area be covered under the direction of the 2007 Consent Order.

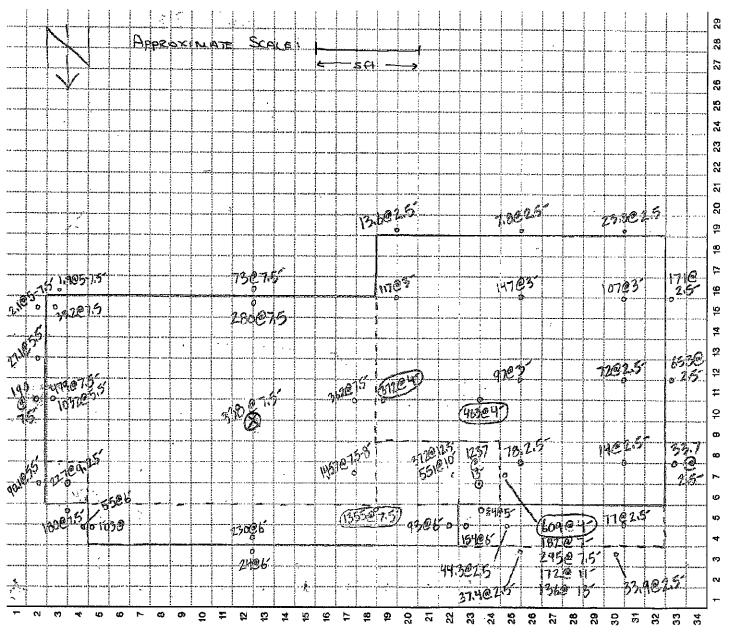





Photo 1: View of excavation as of March 14, 2016 looking west.



Photos 2: View of excavation as of March 14, 2016 looking east.



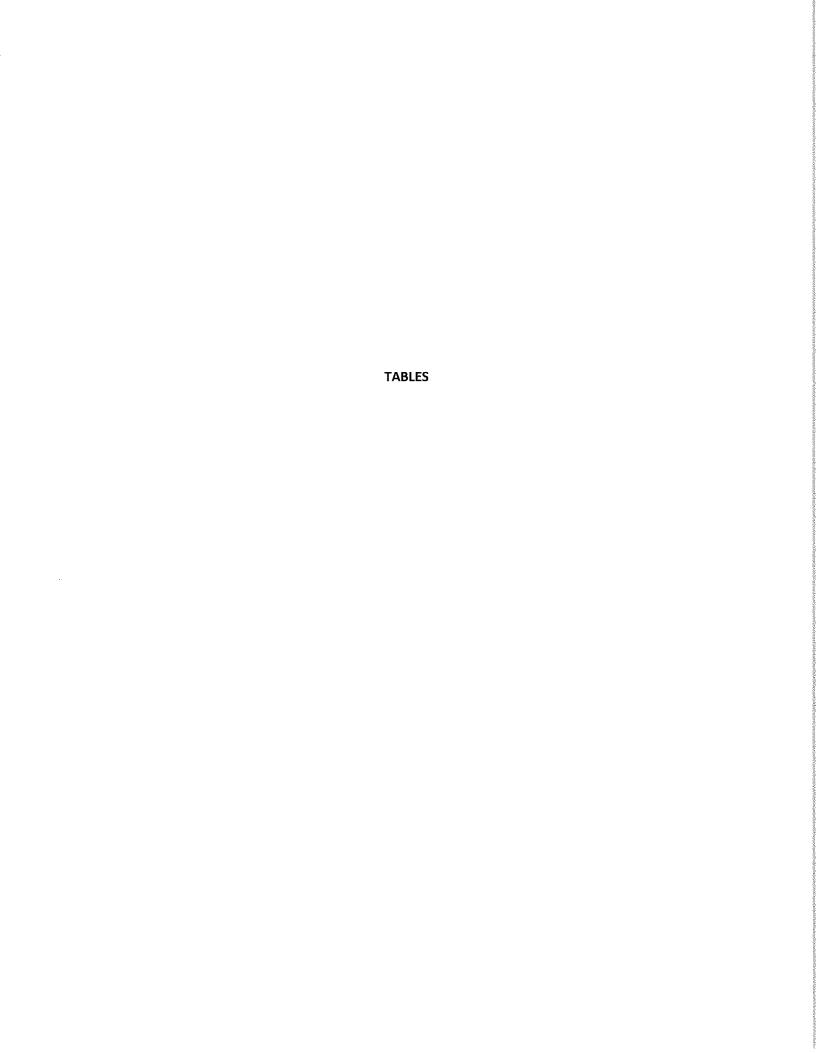
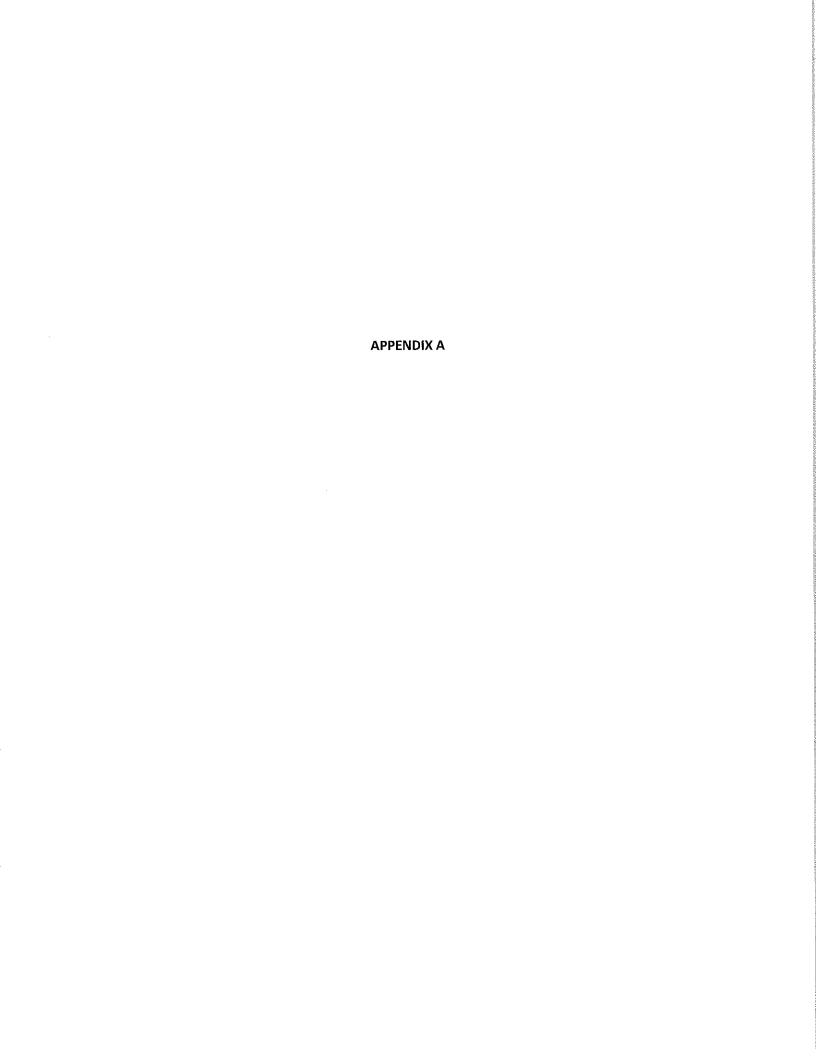


Diagram 3: Extent of excavation as of March 14, 2016. The diagram shows the PID reading in parts per million (ppm) with the corresponding depth below original grade surface in feet.

Diagram 4: Extent of excavation as of March 16, 2016. The diagram shows the PID reading in parts per million (ppm) with the corresponding depth below original grade surface in feet.

TABLE 1 Analytical Summary of Confirmation Sample Results

					Sa	mple IDs		
	Analytical Method	OCD Clean- up Levels	E Wall	Floor	N Wall	NW Pothole @	s Wall	W Wali
Diesel Range Organics (DRO)	SW8015		760	3500	< 11	17	27	4600
Gasoline Range Organics (GRO)	SW8015	100	2300	5600	< 5.2	12	< 4.9	4000
Motor Oil Range Organics (MRO)	SW8015		280	1300	< 54	< 54	68	1800
Total TPH		100	3340	10400	ND	29	95	10400
Benzene	SW8021	10	6.2	14	< 0.026	< 0,018	< 0.025	15
Ethylbenzene	SW8021		11	26	< 0.052	0.065	< 0.049	18
Toluene	SW8021		64	150	< 0.052	0.11	< 0.049	100
Xylenes, Total	SW8021		100	240	< 0.10	0.71	< 0.099	160
BTEX	Total	50	181.2	430	ND	ND	ND :	293
Arsenic	SW6010B		< 2.6	< 2.7	3.1	< 2.6	< 2.7	< 2.7
Barlum	SW6010B		82	150	230	30	130	160
Cadmium	SW6010B		< 0.11	< 0.11	< 0.11	< 0.10	< 0.11	< 0.11
Chromium	SW6010B		4.3	4,5	6.3	2.5	4.8	5.3
Lead	SW6010B		3.8	4.2	5.0	2.4 < 2.6	4.0	3.8 < 2.7
Selenîum Silver	SW6010B SW6010B		< 2.6 < 0.26	< 2.7 < 0.27	< 2.9 < 0.29	< 0.26	< 2.7 < 0.27	< 0.27
Mercury	SW7471		< 0.035	< 0.035	< 0.037	< 0.034	< 0.035	< 0.036
		1						
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	SW8260B SW8260B	-	< 0.51 < 0.51	< 1.0 < 1.0	< 0.056 < 0.056	< 0.050	< 0.052	< 1.0 < 1.0
1,1,2,2-Tetrachloroethane	SW8260B	1	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	<1.0
1,1,2-Trichloroethane	SW8260B	1	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1,1-Dichloroethane	SW8260B]	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1,1-Dichloroethene	SW8260B		< 0.51	< 1.0	< 0,056	< 0.050	< 0.052	< 1.0
1,1-Dichloropropene	SW8260B		< 1.0	< 2.0	< 0.11	< 0.10	< 0.10	< 2.1
1,2,3-Trichlorobenzene	SW8260B		< 1.0	< 2.0	< 0.11	< 0.10	< 0,10	< 2.1
1,2,3-Trichloropropane	SW8260B	-	< 1.0	< 2.0	< 0.11	< 0.10	< 0.10	< 2.1
1,2,4-Trichlorobenzene	SW8260B SW8260B		< 0,51 14	< 1,0 56	< 0.056 < 0.056	< 0.050 < 0.050	< 0.052 < 0.052	< 1.0 28
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	SW8260B		< 1.0	< 2.0	< 0.11	< 0.10	< 0.10	< 2.1
1,2-Dibromoethane (EDB)	SW8260B		< 0.51	< 1,0	< 0,056	< 0.050	< 0.052	< 1.0
1,2-Dichiorobenzene	SW8260B]	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1,2-Dichloroethane (EDC)	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1,2-Dichloropropane	SW8260B		< 0.51	< 1,0	< 0,056	< 0.050	< 0.052	< 1.0
1,3,5-Trimethylbenzene	SW8260B		6.7	27	< 0.056	< 0.050	< 0.052	13
1,3-Dichlorobenzene 1,3-Dichloropropane	SW8260B SW8260B	1	< 0.51 < 0.51	< 1.0	< 0.056 < 0.056	< 0.050 < 0.050	< 0.052 < 0.052	< 1.0 < 1.0
1,4-Dichlorobenzene	SW8260B	1 1	< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
1-Methylnaphthalene	SW8260B		2.4	8.9	< 0.23	< 0.20	< 0,21	6.3
2,2-Dichloropropane	SW8260B]	< 1.0	< 2.0	< 0.11	< 0.10	< 0.10	< 2.1
2-Butanone	SW8260B		< 5.1	< 10	< 0.56	< 0.50	< 0.52	< 10
2-Chlorotoluene	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
2-Hexanone 2-Methylnaphthalene	SW8260B SW8260B	-	< 5.1 3.7	< 10 14	< 0.56	< 0.50 < 0.20	< 0.52 < 0.21	< 10 9.5
4-Chlorotoluene	SW8260B	1	< 0.51	<1.0	< 0.056	< 0.050	< 0.052	< 1.0
4-isopropyltoluene	SW8260B	1	0.80	3.3	< 0.056	< 0,050	< 0.052	1.7
4-Methyl-2-pentanone	SW8260B		< 5.1	< 10	< 0.56	< 0.50	< 0.52	< 10
Acetone	SW8260B		< 7.7	< 15	< 0.84	< 0.75	< 0.79	< 16
Benzene	SW8260B		1.6	13	< 0.028	< 0.025	< 0.026	7.2
Bromobenzene	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050 < 0.050	< 0.052 < 0.052	< 1.0
Bromodichloromethane Bromoform	SW8260B SW8260B	1	< 0.51 < 0.51	< 1.0 < 1.0	< 0.056 < 0.056	< 0.050	< 0.052	< 1.0
Bromomethane	SW8260B		< 1.5	< 3.0	< 0.17	< 0.15	< 0.16	< 3.1
Carbon disulfide	SW8260B		< 5.1	< 10	< 0.56	< 0.50	< 0.52	< 10
Carbon tetrachloride	SW8260B]	< 0.51	< 1.0	< 0.056	< 0.050	< 0,052	< 1.0
Chlorobenzene	SW8260B		< 0.51	< 1.0	< 0.056	< 0,050	< 0.052	< 1.0
Chloroethane	SW8260B		< 1.0	< 2,0	< 0.11	< 0.10	< 0.10	< 2.1
Chloroform	SW8260B		< 0,51	<1.0	< 0.056 < 0.17	< 0.050 < 0.15	< 0.052	< 1,0 < 3.1
Chloromethane cis-1,2-DCE	SW8260B SW8260B		< 1.5 < 0.51	< 3.0 < 1.0	< 0.17	< 0.050	< 0.052	< 1.0
cis-1,3-Dichloropropene	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Dibromochloromethane	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Dîbromomethane	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Dichlorodifluoromethane	SW8260B		< 0.51	< 1,0	< 0.056	< 0.050	< 0.052	< 1,0
Ethylbenzene	SW8260B		5.8	27	< 0.056	< 0.050	< 0.052	9.3
Hexachlorobutadiene Isopropylbenzene	SW8260B SW8260B		< 1.0 1.4	< 2.0 6.2	< 0.11 < 0.056	< 0.10 < 0.050	< 0.10 < 0.052	< 2.1 2.6
Methyl tert-butyl ether (MTBE)	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1,0
Methylene chloride	SW8260B		< 1.5	< 3.0	< 0.17	< 0,15	< 0.16	< 3.1
Naphthalene	SW8260B]	1.9	7.2	< 0.11	< 0.10	< 0.10	4.4
n-Butylbenzene	SW8260B	.	< 1.5	3.5	< 0.17	< 0.15	< 0.16	< 3,1
n-Propylbenzene	SW8260B	.	2.2	9.6	< 0.056	< 0.050	< 0.052	4.3
sec-Butylbenzene	SW8260B	.	0.72	3.0	< 0.056	< 0.050	< 0.052	1.5
Styrene tert-Butylbenzene	SW8260B SW8260B	- I	< 0.51	< 1.0 < 1.0	< 0.056 < 0.056	< 0.050 < 0.050	< 0.052 < 0.052	< 1.0 < 1.0
Tetrachioroethene (PCE)	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Toluene	SW8260B	1	29	180	< 0.056	< 0,050	< 0.052	52
trans-1,2-DCE	SW8260B]	< 0,51	< 1,0	< 0.056	< 0.050	< 0.052	< 1.0
trans-1,3-Dichloropropene	SW8260B	.	< 0,51	< 1.0	< 0.056	< 0.050	< 0.052	< 1,0
Trichloroethene (TCE)	CWIGGEOR	,	40.54	440	1 40 000	< 0,050	-0.000	< 1.0
Trichlorofluoromethane	SW8260B SW8260B	Į I	< 0.51 < 0.51	< 1.0 < 1.0	< 0.056	< 0.050	< 0.052 < 0.052	< 1.0


TABLE 1 Analytical Summary of Confirmation Sample Results

					Sa	mple IDs		
	Analytical Method	OCD Clean- up Levels 2.	E Wall	Floor	N Wali	NW Pothole @	S Wall	W Wall
Vinyl chloride	SW8260B		< 0.51	< 1.0	< 0.056	< 0.050	< 0.052	< 1.0
Xylenes, Total	SW8260B		57	270	< 0.11	< 0,10	< 0.10	88
1,2,4-Trichlorobenzene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
1,2-Dichlorobenzene	SW8270C		< 2.2	< 2.2	< 2,3	< 0,21	< 2.2	< 2.2
1,3-Dichlorobenzene	SW8270C		< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
1,4-Dichlorobenzene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
1-Methylnaphthalene	SW8270C		< 2.2	5.4	< 2,3	< 0.21	< 2.2	3.0 < 2.2
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	SW8270C SW8270C		< 2,2	< 2.2 < 2.2	< 2.3 < 2.3	< 0.21 < 0.21	< 2.2	< 2,2
2,4-Dichlorophenol	SW8270C		< 4.3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
2,4-Dimethylphenol	SW8270C		< 3.2	< 3,3	< 3.4	< 0.32	< 3.3	< 3.3
2,4-Dinitrophenol	SW8270C		< 5.4	< 5.4	< 5.7	< 0.53	< 5,5	< 5,5
2,4-Dinitrotoluene	SW8270C		< 5.4	< 5.4	< 5.7	< 0,53	< 5.5	< 5.5
2,6-Dinitrotoluene	SW8270C		< 5,4	< 5,4	< 5.7	< 0,53	< 5.5	< 5.5
2-Chloronaphthalene	SW8270C		< 2.7	< 2.7	< 2.8	< 0.26	< 2.7	< 2.7
2-Chlorophenol	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2,2	< 2.2
2-Methylnaphthalene	SW8270C		2.9	9.5	< 2.3	< 0,21 < 0.42	< 2.2 < 4.4	4.6 < 4.4
2-Methylphenol 2-Nitroaniline	SW8270C SW8270C		< 4.3 < 2.2	< 4.3 < 2.2	< 4.5 < 2.3	< 0.42	< 2.2	< 4.4
2-Nitroannine 2-Nitrophenol	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
3,3'-Dichlorobenzidine	SW8270C		< 2.7	< 2.7	< 2.8	< 0.26	< 2.7	< 2.7
3+4-Methylphenol	SW8270C	 	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
3-Nitroanlline	SW8270C		< 2.2	< 2.2	< 2,3	< 0,21	< 2.2	< 2.2
4,6-Dinitro-2-methylphenol	SW8270C		< 4,3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
4-Bromophenyl phenyl ether	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
4-Chloro-3-methylphenol	SW8270C		< 5.4	< 5,4	< 5.7	< 0,53	< 5.5	< 5.5
4-Chloroaniline	SW8270C		< 5,4	< 5,4	< 5.7	< 0.53	< 5.5	< 5.5
4-Chlorophenyl phenyl ether	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
4-Nitroaniline	SW8270C SW8270C		< 4.3 < 2.7	< 4.3 < 2.7	< 4,5 < 2.8	< 0.42 < 0.26	< 4.4 < 2.7	< 4.4 < 2.7
4-Nitrophenol Acenaphthene	SW8270C	i	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Acenaphthylene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
Aniline	SW8270C		< 2.2	< 2.2	< 2,3	< 0,21	< 2.2	< 2.2
Anthracene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Azobenzene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
Benz(a)anthracene	SW8270C		< 2.2	< 2.2	< 2,3	< 0,21	< 2.2	< 2.2
Benzo(a)pyrene	SW8270C	ļ	< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Benzo(b)fluoranthene	SW8270C	 	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Benzo(g,h,i)perylene	SW8270C SW8270C		< 2.2 < 2.2	< 2.2	< 2.3 < 2.3	< 0.21 < 0.21	< 2.2 < 2.2	< 2.2 < 2.2
Benzo(k)fluoranthene Benzoic acid	SW8270C		< 5.4	< 5.4	< 5.7	< 0.53	< 5,5	< 5,5
Benzyl alcohol	SW8270C	····	< 2.2	< 2.2	< 2.3	< 0.21	< 2,2	< 2.2
Bis(2-chloroethoxy)methane	SW8270C		< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
8is(2-chloroethyl)ether	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Bis(2-chloroisopropyl)ether	SW8270C	***************************************	< 2.2	< 2.2	< 2.3	< 0.21	< 2,2	< 2,2
Bis(2-ethylhexyl)phthalate	SW8270C		< 5,4	< 5,4	< 5.7	< 0.53	< 5.5	< 5.5
Butyl benzyl phthalate	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Carbazole	5W8270C	ļl	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
Chrysene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2,2	< 2.2
Dibenz(a,h)anthracene Dibenzofuran	SW8270C SW8270C		< 2,2	< 2.2	< 2.3	< 0.21 < 0.21	< 2.2	< 2.2
Diethyl phthalate	SW8270C SW8270C		< 2.2 < 2.2	< 2.2 < 2.2	< 2.3 < 2.3	< 0.21	< 2.2	< 2.2
Dimethyl phthalate	SW8270C		< 2,2	< 2,2	< 2.3	< 0.21	< 2.2	< 2.2
Dî-n-butyi phthalate	SW8270C		< 4.3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
Di-n-octyl phthalate	SW8270C	******************	< 4.3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
Fluoranthene	SW8270C		< 2.2	< 2,2	< 2,3	< 0.21	< 2.2	< 2.2
Fluorene	5W8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Hexachlorobenzene	SW8270C]	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2,2
Hexachlorobutadlene	SW8270C		< 2.2	< 2.2	< 2,3	< 0.21	< 2.2	< 2.2
Hexachlorocyclopentadiene	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Hexachloroethane	SW8270C	,	< 2.2	< 2.2	< 2.3	< 0.21 < 0.21	< 2.2	< 2.2
Indeno(1,2,3-cd)pyrene Isophorone	SW8270C SW8270C		< 2.2	< 2.2 < 4.3	< 2,3 < 4.5	< 0.21	< 2.2 < 4.4	< 2.2 < 4.4
Naphthalene	SW8270C		< 2.2	3.5	< 2.3	< 0.21	< 2.2	< 2.2
Nitrobenzene	SW8270C		< 4,3	< 4.3	< 4.5	< 0.42	< 4.4	< 4,4
N-Nitrosodi-n-propylamine	SW8270C		< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
N-Nitrosodiphenylamine	SW8270C		< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Pentachlorophenol	SW8270C		< 4.3	< 4.3	< 4.5	< 0.42	< 4.4	< 4.4
Phenanthrene	SW8270C		< 2.2	< 2,2	< 2,3	< 0,21	< 2.2	< 2.2
Phenol	SW8270C	ļl	< 2,2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Pyrene	SW8270C	 	< 2.2	< 2.2	< 2.3	< 0.21	< 2.2	< 2.2
Pyridine	SW8270C	<u> </u>	< 4.3	< 4.3	< 4,5	< 0.42	< 4,4	< 4.4

- Notes:

 1. All analytical results are reporting in units of milligrams per kilograms (mg/kg)

 2. Clean-up standards are pursuant to the NMOCD Guidelines for Remediation of Leaks, Spills, and Releases dated August 13, 1993.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 25, 2016

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Bloomfield Terminal

OrderNo.: 1603878

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 6 sample(s) on 3/17/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: NW Pothole @ 14'

Project: Bloomfield Terminal

Collection Date: 3/14/2016 1:20:00 PM

Lab ID: 1603878-001

Matrix: SOIL

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATIL	.ES				Analyst	: DAM
Di-n-octyl phthalate	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Dibenz(a,h)anthracene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Dibenzofuran	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
1,2-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
1,3-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
1,4-Dichlorobenzene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
3,3'-Dichlorobenzidine	ND	0.26	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Diethyl phthalate	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Dimethyl phthalate	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,4-Dichlorophenol	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,4-Dimethylphenol	ND	0.32	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
4,6-Dinitro-2-methylphenol	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,4-Dinitrophenol	ND	0.53	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,4-Dinitrotoluene	ND	0.53	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2,6-Dinitrotoluene	ND	0.53	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Fluoranthene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Fluorene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Hexachlorobenzene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Hexachlorobutadiene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Hexachlorocyclopentadiene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Hexachloroethane	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Indeno(1,2,3-cd)pyrene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Isophorone	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
1-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2-Methylnaphthalene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2-Methylphenol	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
3+4-Methylphenol	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
N-Nitrosodi-n-propylamine	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
N-Nitrosodiphenylamine	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Naphthalene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2-Nitroaniline	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
3-Nitroaniline	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
4-Nitroaniline	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Nitrobenzene	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
2-Nitrophenol	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
4-Nitrophenol	ND	0.26	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Pentachlorophenol	ND	0.42	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Phenanthrene	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30:21 PM	24350
Phenol	ND	0.21	mg/Kg-dry	1	3/23/2016 7:30;21 PM	24350

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603878-001

Project:

Client Sample ID: NW Pothole @ 14'

Collection Date: 3/14/2016 1:20:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES			10.500 100.		Analyst	DJF
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Dibromochloromethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Dibromomethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2-Dichlorobenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,3-Dichlorobenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,4-Dichlorobenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Dichlorodifluoromethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1-Dichloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1-Dichloroethene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2-Dichloropropane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,3-Dichloropropane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
2,2-Dichloropropane	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1-Dichloropropene	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Hexachlorobutadiene	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
2-Hexanone	ND	0.50	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Isopropylbenzene	NĐ	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
4-Isopropyltoluene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
4-Methyl-2-pentanone	ND	0.50	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Methylene chloride	ND	0.15	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
n-Butylbenzene	ND	0.15	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
n-Propylbenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
sec-Butylbenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Styrene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
tert-Butylbenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1,2,2-Tetrachloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Tetrachloroethene (PCE)	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
trans-1,2-DCE	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
trans-1,3-Dichloropropene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1,1-Trichloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,1,2-Trichloroethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Trichloroethene (TCE)	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Trichlorofluoromethane	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
1,2,3-Trichloropropane	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Vinyi chloride	ND	0.050	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Xylenes, Total	ND	0.10	mg/Kg-dry	1	3/18/2016 5:30:34 PM	24321
Surr: Dibromofluoromethane	103	70-130	%Rec	1	3/18/2016 5:30:34 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603878-002

Project:

Client Sample ID: N Wall

Collection Date: 3/14/2016 1:40:00 PM Received Date: 3/17/2016 7:33:00 AM

Result **POL Qual Units DF** Date Analyzed Batch Analyses Analyst: AG PERCENT MOISTURE 3/21/2016 12:00:00 PM R32972 Percent Moisture 12 1.0 wt% **EPA METHOD 7471: MERCURY** Analyst: pmf Mercury ND 0.037 mg/Kg-dry 1 3/22/2016 5:44:27 PM 24354 **EPA METHOD 6010B: SOIL METALS** Analyst: MED 2.9 3/22/2016 9:00:50 AM 24353 Arsenic 3.1 mg/Kg-dry 1 3/22/2016 9:00:50 AM 24353 Barium 230 0.11 mg/Kg-dry 1 Cadmium ND 0.11 mg/Kg-dry 1 3/22/2016 9:00:50 AM 24353 Chromium 6.3 0.34 mg/Kg-dry 1 3/22/2016 9:00:50 AM 24353 24353 Lead 5.0 0.29 mg/Kg-dry 1 3/22/2016 9:00:50 AM Selenium ND 2.9 mg/Kg-dry 1 3/24/2016 6:07:45 AM 24353 mg/Kg-dry Silver ND 0.29 3/22/2016 9:00:50 AM 24353 1 **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM mg/Kg-dry Acenaphthene ND 2.3 D 10 3/23/2016 8:58:51 PM 24350 ND 2.3 D 3/23/2016 8:58:51 PM 24350 Acenaphthylene mg/Kg-dry 10 D 3/23/2016 8:58:51 PM 24350 Aniline ND 2.3 mg/Kg-dry 10 ND D 24350 Anthracene 23 mg/Kg-dry 10 3/23/2016 8:58:51 PM Azobenzene ND 2.3 D mg/Kg-dry 3/23/2016 8:58:51 PM 24350 Benz(a)anthracene ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 3/23/2016 8:58:51 PM 24350 Benzo(a)pyrene ND 2.3 D mg/Kg-dry 10 mg/Kg-dry Benzo(b)fluoranthene ND 2.3 D 3/23/2016 8:58:51 PM 24350 ND D 3/23/2016 8:58:51 PM 24350 Benzo(g,h,i)perylene 23 mg/Kg-dry D 3/23/2016 8:58:51 PM 24350 Benzo(k)fluoranthene ND 2.3 mg/Kg-dry 10 D 3/23/2016 8:58:51 PM 24350 Benzoic acid ND 5.7 mg/Kg-dry 24350 Benzyl alcohol ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM Bis(2-chloroethoxy)methane ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 Bis(2-chloroethyl)ether ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 24350 ND 2.3 D 10 3/23/2016 8:58:51 PM Bis(2-chloroisopropyl)ether mg/Kg-dry ND 5.7 D 3/23/2016 8:58:51 PM 24350 Bis(2-ethylhexyl)phthalate mg/Kg-dry 3/23/2016 8:58:51 PM 24350 4-Bromophenyl phenyl ether ND 2.3 D mg/Kg-dry 10 Butyl benzyl phthalate ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 24350 Carbazole ND 2.3 ח mg/Kg-dry 3/23/2016 8:58:51 PM ND D 3/23/2016 8:58:51 PM 24350 4-Chloro-3-methylphenol 5.7 mg/Kg-dry 4-Chloroaniline ND 5.7 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 2-Chloronaphthalene ND 2.8 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 24350 2-Chlorophenol ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 4-Chlorophenyl phenyl ether ND 2.3 D mg/Kg-dry 10 3/23/2016 8:58:51 PM 24350 Chrysene ND 2.3 D mg/Kg-dry 3/23/2016 8:58:51 PM 24350 3/23/2016 8:58:51 PM 24350 Di-n-butyl phthalate ND 4.5 D mg/Kg-dry 10

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: N Wall

Project: Bloomfield Terminal

Collection Date: 3/14/2016 1:40:00 PM

Lab ID: 1603878-002

Matrix: SOIL

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILE	S					Analyst	DAM
Pyrene	ND	2.3	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
Pyridine	ND	4.5	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
1,2,4-Trichlorobenzene	ND	2.3	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
2,4,5-Trichlorophenol	ND	2.3	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
2,4,6-Trichlorophenol	ND	2.3	D	mg/Kg-dry	10	3/23/2016 8:58:51 PM	24350
Surr: 2-Fluorophenol	0	28.3-102	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: Phenol-d5	0	35.7-103	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: 2,4,6-Tribromophenol	0	35.2-108	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: Nitrobenzene-d5	0	24-118	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: 2-Fluorobiphenyl	0	35.4-111	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
Surr: 4-Terphenyl-d14	0	15-91.7	SD	%Rec	10	3/23/2016 8:58:51 PM	24350
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	ND	0.028		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Toluene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Ethylbenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Methyl tert-butyl ether (MTBE)	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1,2,4-Trimethylbenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1,3,5-Trimethylbenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1,2-Dichloroethane (EDC)	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1,2-Dibromoethane (EDB)	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Naphthalene	ND	0.11		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
1-Methylnaphthalene	ND	0.23		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
2-Methylnaphthalene	ND	0.23		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Acetone	ND	0.84		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Bromobenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Bromodichloromethane	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Bromoform	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Bromomethane	ND	0.17		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
2-Butanone	ND	0.56		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Carbon disulfide	ND	0.56		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Carbon tetrachloride	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Chlorobenzene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Chloroethane	ND	0.11		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Chloroform	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
Chloromethane	ND	0.17		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
2-Chlorotoluene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
4-Chlorotoluene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
cis-1,2-DCE	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321
cis-1,3-Dichloropropene	ND	0.056		mg/Kg-dry	1	3/21/2016 1:43:35 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 8 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: N Wall

Project: Bloomfield Terminal

Collection Date: 3/14/2016 1:40:00 PM

Sample container temperature is out of limit as specified

Lab ID: 1603878-002

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	yst: DJF
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	3/21/2016 1:43:35 P	M 24321
Surr: Toluene-d8	101	70-130	%Rec	1	3/21/2016 1:43:35 P	M 24321
Surr: 4-Bromofluorobenzene	106	70-130	%Rec	1	3/21/2016 1:43:35 P	M 24321

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. В Analyte detected in the associated Method Blank Ε Value above quantitation range D Sample Diluted Due to Matrix Analyte detected below quantitation limit Page 10 of 40 Holding times for preparation or analysis exceeded Η J P Sample pH Not In Range ND Not Detected at the Reporting Limit Reporting Detection Limit R RPD outside accepted recovery limits RL

% Recovery outside of range due to dilution or matrix

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603878-003

Project:

Client Sample ID: E Wall

Collection Date: 3/15/2016 2:20:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Q)ual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES	5					Analyst	: DAM
Di-n-octyl phthalate	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Dibenz(a,h)anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Dibenzofuran	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
1,2-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
1,3-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
1,4-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
3,3'-Dichlorobenzidine	ND	2.7	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Diethyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Dimethyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,4-Dichlorophenol	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,4-Dimethylphenol	ND	3.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
4,6-Dinitro-2-methylphenol	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,4-Dinitrophenol	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,4-Dinitrotoluene	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2,6-Dinitrotoluene	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Fluorene	ND	2,2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Hexachlorobenzene	ND	2,2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Hexachlorobutadiene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Hexachlorocyclopentadiene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Hexachloroethane	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Indeno(1,2,3-cd)pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Isophorone	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
1-Methylnaphthalene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2-Methylnaphthalene	2.9	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2-Methylphenol	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
3+4-Methylphenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
N-Nitrosodi-n-propylamine	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
N-Nitrosodiphenylamine	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Naphthalene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2-Nitroaniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
3-Nitroaniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
4-Nitroaniline	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Nitrobenzene	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
2-Nitrophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
4-Nitrophenol	ND	2.7	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Pentachlorophenol	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Phenanthrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350
Phenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:28:14 PM	24350

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 12 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Project: Bloomfield Terminal

Lab ID: 1603878-003

Client Sample ID: E Wall

Collection Date: 3/15/2016 2:20:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES		_			Analyst	DJF
1,2-Dibromo-3-chloropropane	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Dibromochloromethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Dibromomethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2-Dichlorobenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,3-Dichlorobenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,4-Dichlorobenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Dichlorodifluoromethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1-Dichloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1-Dichloroethene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2-Dichloropropane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,3-Dichloropropane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
2,2-Dichloropropane	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1-Dichloropropene	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Hexachlorobutadiene	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
2-Hexanone	ND	5.1	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Isopropylbenzene	1.4	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
4-Isopropyltoluene	0.80	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
4-Methyl-2-pentanone	ND	5.1	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Methylene chloride	ND	1.5	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
n-Butylbenzene	ND	1.5	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
n-Propylbenzene	2,2	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
sec-Butylbenzene	0.72	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Styrene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
tert-Butylbenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1,1,2-Tetrachloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1,2,2-Tetrachloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Tetrachloroethene (PCE)	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
trans-1,2-DCE	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
trans-1,3-Dichloropropene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2,3-Trichlorobenzene	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2,4-Trichlorobenzene	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1,1-Trichloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,1,2-Trichloroethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Trichloroethene (TCE)	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Trichlorofluoromethane	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
1,2,3-Trichloropropane	ND	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Vinyl chloride	ND	0.51	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Xylenes, Total	57	1.0	mg/Kg-dry	10	3/21/2016 2:11:56 PM	24321
Surr: Dibromofluoromethane	99.3	70-130	%Rec	10	3/21/2016 2:11:56 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 14 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603878-004

Project:

Client Sample ID: Floor

Collection Date: 3/16/2016 1:40:00 PM Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
PERCENT MOISTURE						Analyst	: AG
Percent Moisture	7.7	1.0		wt%	1	3/21/2016 12:00:00 PM	R32972
EPA METHOD 7471: MERCURY						Analyst	: pmf
Mercury	ND	0.035		mg/Kg-dry	1	3/22/2016 5:48:00 PM	24354
EPA METHOD 6010B: SOIL METALS				///g//-1917	·	Analyst	
						•	
Arsenic	ND	2.7		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Barium	150	0.11		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Cadmium	ND	0.11		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Chromium	4.5	0.32		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Lead	4.2	0.27		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
Selenium	ИD	2.7		mg/Kg-dry	1	3/24/2016 6:12:32 AM	24353
Silver	ND	0.27		mg/Kg-dry	1	3/22/2016 9:10:30 AM	24353
EPA METHOD 8270C: SEMIVOLATILES						Analyst	DAM
Acenaphthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Acenaphthylene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Aniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Azobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benz(a)anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzo(a)pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzo(b)fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzo(g,h,i)perylene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzo(k)fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzoic acid	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Benzyl alcohol	ND	2,2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Bis(2-chloroethoxy)methane	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Bis(2-chloroethyl)ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Bis(2-chloroisopropyl)ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Bis(2-ethylhexyl)phthalate	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
4-Bromophenyl phenyl ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Butyl benzyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Carbazole	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
4-Chloro-3-methylphenol	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
4-Chloroaniline	ND	5.4	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
2-Chloronaphthalene	ND	2.7	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
2-Chlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
4-Chlorophenyl phenyl ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Chrysene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Di-n-butyl phthalate	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
of it buty philialate	ND	4.0		mgmg ary	10	OF TOURS OF THE PROPERTY OF THE	2-1000

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 16 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Bloomfield Terminal

Lab ID: 1603

Project:

1603878-004

Client Sample ID: Floor

Collection Date: 3/16/2016 1:40:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES	3					Analyst	: DAM
Pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Pyridine	ND	4.3	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
1,2,4-Trichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
2,4,5-Trichlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
2,4,6-Trichlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 9:57:34 PM	24350
Surr: 2-Fluorophenol	0	28.3-102	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Surr: Phenol-d5	0	35.7-103	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Surr: 2,4,6-Tribromophenol	0	35.2-108	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Surr: Nitrobenzene-d5	0	24-118	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Surr: 2-Fluorobiphenyl	0	35.4-111	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
Surr: 4-Terphenyl-d14	0	15-91.7	SD	%Rec	10	3/23/2016 9:57:34 PM	24350
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	13	0.50		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Toluene	180	5.0		mg/Kg-dry	100	3/22/2016 7:09:36 AM	24321
Ethylbenzene	27	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Methyl tert-butyl ether (MTBE)	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1,2,4-Trimethylbenzene	56	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1,3,5-Trimethylbenzene	27	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1,2-Dichloroethane (EDC)	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1,2-Dibromoethane (EDB)	ND	1.0		mg/Kg-đry	20	3/21/2016 2:40:24 PM	24321
Naphthalene	7.2	2.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
1-Methylnaphthalene	8.9	4.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
2-Methylnaphthalene	14	4.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Acetone	ND	15		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Bromobenzene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Bromodichloromethane	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Bromoform	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Bromomethane	ND	3.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
2-Butanone	ND	10		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Carbon disulfide	ND	10		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Carbon tetrachloride	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Chlorobenzene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Chloroethane	ND	2.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Chloroform	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
Chloromethane	ND	3.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
2-Chlorotoluene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
4-Chlorotoluene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
cis-1,2-DCE	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321
cis-1,3-Dichloropropene	ND	1.0		mg/Kg-dry	20	3/21/2016 2:40:24 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 18 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order **1603878**

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Floor

Project: Bloomfield Terminal

Collection Date: 3/16/2016 1:40:00 PM

Lab ID: 1603878-004

Matrix: SOIL Receive

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: DJF
Surr: 1,2-Dichloroethane-d4	97.9	70-130	%Rec	20	3/21/2016 2:40:24 PM	24321
Surr: Toluene-d8	107	70-130	%Rec	20	3/21/2016 2:40:24 PM	1 24321
Surr: 4-Bromofluorobenzene	120	70-130	%Rec	20	3/21/2016 2:40:24 PM	1 24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank Qualifiers: Sample Diluted Due to Matrix Е Value above quantitation range D Analyte detected below quantitation limits Page 20 of 40 Holding times for preparation or analysis exceeded J H Sample pH Not In Range ND Not Detected at the Reporting Limit P Reporting Detection Limit RPD outside accepted recovery limits RLR Sample container temperature is out of limit as specified W % Recovery outside of range due to dilution or matrix

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

Matrix: SOIL

CLIENT: Western Refining Southwest, Inc.

Project: Bloomfield Terminal

Lab ID: 1603878-005

Client Sample ID: S Wall

Collection Date: 3/16/2016 1:50:00 PM

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Di-n-octyl phthalate	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Dibenz(a,h)anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Dibenzofuran	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
1,2-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
1,3-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
1,4-Dichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
3,3'-Dichlorobenzidine	ND	2.7	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Diethyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Dimethyl phthalate	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,4-Dichlorophenol	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,4-Dimethylphenol	ND	3.3	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
4,6-Dinitro-2-methylphenol	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,4-Dinitrophenol	ND	5.5	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,4-Dinitrotoluene	ND	5.5	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2,6-Dinitrotoluene	ND	5.5	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Fluorene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Hexachlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Hexachlorobutadiene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Hexachlorocyclopentadiene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Hexachloroethane	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Indeno(1,2,3-cd)pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Isophorone	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
1-Methylnaphthalene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2-Methylnaphthalene	ND ·	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2-Methylphenol	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
3+4-Methylphenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
N-Nitrosodi-n-propylamine	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
N-Nitrosodiphenylamine	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Naphthalene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2-Nitroaniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
3-Nitroaniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
4-Nitroaniline	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Nitrobenzene	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
2-Nitrophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
4-Nitrophenol	ND	2.7	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Pentachlorophenol	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Phenanthrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350
Phenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:26:49 PM	24350

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits page 22 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: S Wall

Project: Bloomfield Terminal

Collection Date: 3/16/2016 1:50:00 PM

Lab ID: 1603878-005

Matrix: SOIL

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,2-Dibromo-3-chloropropane	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Dibromochloromethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Dibromomethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2-Dichlorobenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,3-Dichlorobenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,4-Dichlorobenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Dichlorodifluoromethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1-Dichloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1-Dichloroethene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2-Dichloropropane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,3-Dichloropropane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
2,2-Dichloropropane	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1-Dichloropropene	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Hexachlorobutadiene	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
2-Hexanone	ND	0.52	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Isopropylbenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
4-Isopropyltoluene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
4-Methyl-2-pentanone	ND	0.52	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Methylene chloride	ND	0.16	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
n-Butylbenzene	ND	0.16	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
n-Propylbenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
sec-Butylbenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Styrene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
tert-Butylbenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1,1,2-Tetrachloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1,2,2-Tetrachloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Tetrachloroethene (PCE)	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
trans-1,2-DCE	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
trans-1,3-Dichloropropene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2,3-Trichlorobenzene	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2,4-Trichlorobenzene	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1,1-Trichloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,1,2-Trichloroethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Trichloroethene (TCE)	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Trichlorofluoromethane	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
1,2,3-Trichloropropane	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Vinyl chloride	ND	0.052	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Xylenes, Total	ND	0.10	mg/Kg-dry	1	3/21/2016 12:46:58 PM	24321
Surr: Dibromofluoromethane	105	70-130	%Rec	1	3/21/2016 12:46:58 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 24 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

ng Southwest, Inc. Client Sample ID: W Wall

Project: Bloomfield Terminal

Collection Date: 3/16/2016 2:10:00 PM

Lab ID: 1603878-006 Mat

Matrix: SOIL Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
PERCENT MOISTURE						Analyst:	AG
Percent Moisture	9.1	1.0		wt%	1	3/21/2016 12:00:00 PM	R32972
EPA METHOD 7471: MERCURY						Analyst:	pmf
Mercury	ND	0.036		mg/Kg-dry	1	3/22/2016 5:51:36 PM	24354
EPA METHOD 6010B: SOIL METALS				3 3 ,		Analyst:	MED
	N.C.	2,7		malka da.	1	3/22/2016 9:15:56 AM	24353
Arsenic	ND 160	∠. <i>r</i> 0.11		mg/Kg-dry	1	3/22/2016 9:15:56 AM	24353
Barium	160			mg/Kg-dry			24353
Cadmium	ND	0.11		mg/Kg-dry	1	3/22/2016 9:15:56 AM	24353 24353
Chromium	5.3	0.33		mg/Kg-dry	1	3/22/2016 9:15:56 AM	
Lead	3.8	0.27		mg/Kg-dry	1	3/22/2016 9:15:56 AM	24353
Selenium	ND	2.7		mg/Kg-dry	1	3/24/2016 6:14:59 AM	24353
Silver	ND	0.27		mg/Kg-dry	1	3/22/2016 9:15:56 AM	24353
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Acenaphthylene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Aniline	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Azobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benz(a)anthracene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzo(a)pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzo(b)fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzo(g,h,i)perylene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzo(k)fluoranthene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzoic acid	ND	5.5	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Benzyl alcohol	ND	2,2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Bis(2-chloroethoxy)methane	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Bis(2-chloroethyl)ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Bis(2-chloroisopropyl)ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Bis(2-ethylhexyl)phthalate	ND	5.5		mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
4-Bromophenyl phenyl ether	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Butyl benzyl phthalate	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
Carbazole	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
4-Chloro-3-methylphenol	ND	5.5		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
4-Chloroaniline	ND	5.5		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
2-Chloronaphthalene	ND	2.7		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
2-Chlorophenol	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
4-Chlorophenyl phenyl ether	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
Chrysene	ND	2.2		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
·	ND	4.4		mg/Kg-dry	10	3/23/2016 10:56:07 PM	
Di-n-butyl phthalate	כועו	4.4	U	mg/ng-ury	10	3/20/2010 10/30/0/ FWI	47000

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limitspage 26 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: W Wall

Project:

Bloomfield Terminal

Collection Date: 3/16/2016 2:10:00 PM

Lab ID: 160387

1603878-006

Matrix: SOIL

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES	3					Analyst	DAM
Pyrene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Pyridine	ND	4.4	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
1,2,4-Trichlorobenzene	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
2,4,5-Trichlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
2,4,6-Trichlorophenol	ND	2.2	D	mg/Kg-dry	10	3/23/2016 10:56:07 PM	24350
Surr: 2-Fluorophenol	0	28.3-102	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: Phenol-d5	0	35.7-103	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: 2,4,6-Tribromophenol	0	35.2-108	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: Nitrobenzene-d5	0	24-118	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: 2-Fluorobiphenyl	0	35.4-111	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
Surr: 4-Terphenyl-d14	0	15-91.7	SD	%Rec	10	3/23/2016 10:56:07 PM	24350
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Benzene	7.2	0.52		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Toluene	52	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Ethylbenzene	9.3	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Methyl tert-butyl ether (MTBE)	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1,2,4-Trimethylbenzene	28	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1,3,5-Trimethylbenzene	13	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1,2-Dichloroethane (EDC)	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1,2-Dibromoethane (EDB)	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Naphthalene	4.4	2.1		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
1-Methylnaphthalene	6.3	4.2		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
2-Methylnaphthalene	9.5	4.2		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Acetone	ND	16		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Bromobenzene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Bromodichloromethane	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Bromoform	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Bromomethane	ND	3.1		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
2-Butanone	ND	10		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Carbon disulfide	ND	10		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Carbon tetrachloride	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Chlorobenzene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Chloroethane	ND	2.1		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Chloroform	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
Chloromethane	ND	3.1		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
2-Chlorotoluene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
4-Chlorotoluene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
cis-1,2-DCE	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321
cis-1,3-Dichloropropene	ND	1.0		mg/Kg-dry	20	3/21/2016 1:15:14 PM	24321

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 28 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603878

Date Reported: 3/25/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: W Wall

Project: Bloomfield Terminal

Collection Date: 3/16/2016 2:10:00 PM

Lab ID: 1603878-006

Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: DJF
Surr: 1,2-Dichloroethane-d4	96.4	70-130	%Rec	20	3/21/2016 1:15:14 PM	vi 24321
Surr: Toluene-d8	98.0	70-130	%Rec	20	3/21/2016 1:15:14 PM	/I 24321
Surr: 4-Bromofluorobenzene	116	70-130	%Rec	20	3/21/2016 1:15:14 PM	/l 24321

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 30 of 40
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603878

25-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Sample ID mb-24321	SampT	ype: MBLK	Tes	lCode: EF	A Method	8260B: Vola	tiles		
Client ID: PBS	Batcl	1D: 24321	R	RunNo: 32	918				
Prep Date: 3/17/2016	Analysis E	Pate: 3/18/2016	S	SeqNo: 10	09413	Units: mg/k	(g		
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10							
Hexachlorobutadiene	ND	0.10							
2-Hexanone	ND	0.50							
Isopropylbenzene	ND	0.050							
4-Isopropyltoluene	ND	0.050							
4-Methyl-2-pentanone	ND	0.50							
Methylene chloride	ND	0.15							
n-Butylbenzene	ND	0.15							
n-Propylbenzene	ND	0.050							
sec-Butylbenzene	ND	0.050							
Styrene	ND	0.050							
tert-Butylbenzene	ND	0.050							
1,1,1,2-Tetrachloroethane	ND	0.050							
1,1,2,2-Tetrachloroethane	ND	0.050							
Tetrachloroethene (PCE)	ND	0.050							
trans-1,2-DCE	ND	0.050							
trans-1,3-Dichloropropene	ND	0.050							
1,2,3-Trichlorobenzene	ND	0.10							
1,2,4-Trichlorobenzene	ND	0.050							
1,1,1-Trichloroethane	ND	0.050							
1,1,2-Trichloroethane	ND	0.050							
Trichloroethene (TCE)	ND	0.050							
Trichlorofluoromethane	ND	0.050							
1,2,3-Trichloropropane	ND	0.10							
Vinyl chloride	ND	0.050							
Xylenes, Total	ND	0.10							
Surr: Dibromofluoromethane	0.50	0.5000		101	70	130			
Surr: 1,2-Dichloroethane-d4	0.50	0.5000		100	70	130			
Surr: Toluene-d8	0.51	0.5000		101	70	130			
Surr: 4-Bromofluorobenzene	0.53	0.5000		106	70	130			

Sample ID Ics-24321	SampT	ype: LC	S	Tes	tCode: El	PA Method	tiles			
Client ID: LCSS	Batcl	1 ID: 24 :	321	F	RunNo: 3	2918				
Prep Date: 3/17/2016	Analysis D	ate: 3/	18/2016	8	SeqNo: 1	009414	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.98	0.025	1.000	0	97.8	70	130		•	
Toluene	1.0	0.050	1.000	0 99.6 70			130			
Chlorobenzene	0.99	0.050	1.000	0	98.8	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 32 of 40

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603878

25-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Sample ID mb-24350	SampT	ype: MBLK	Tes	tCode: EF	A Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 24350	i	RunNo: 32	2992				
Prep Date: 3/21/2016	Analysis D	ate: 3/23/2016	;	SeqNo: 10	13032	Units: mg/K	(g		
Analyte	Result	PQL SPK valu	e SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20							
Acenaphthylene	ND	0.20							
Aniline	ND	0.20							
Anthracene	ND	0.20							
Azobenzene	ND	0.20							
Benz(a)anthracene	ND	0.20							
Benzo(a)pyrene	ND	0.20							
Benzo(b)fluoranthene	ND	0.20							
Benzo(g,h,i)perylene	ND	0.20							
Benzo(k)fluoranthene	ND	0.20							
Benzoic acid	ND	0.50							
Benzyl alcohol	ND	0.20							
Bis(2-chloroethoxy)methane	ND	0.20							
Bis(2-chloroethyl)ether	ND	0.20							
Bis(2-chloroisopropyl)ether	ND	0.20							
Bis(2-ethylhexyl)phthalate	ND	0.50							
4-Bromophenyl phenyl ether	ND	0.20							
Butyl benzyl phthalate	ND	0.20							
Carbazole	ND	0.20							
4-Chloro-3-methylphenol	ND	0.50							
4-Chioroaniline	ND	0.50							
2-Chloronaphthalene	ND	0.25							•
2-Chlorophenol	ND	0.20							
4-Chlorophenyl phenyl ether	ND	0.20							
Chrysene	ND	0.20							
Di-n-butyl phthalate	ND	0.40							
Di-n-octyl phthalate	NĐ	0.40							
Dibenz(a,h)anthracene	ND	0.20							
Dibenzofuran	ND	0.20							
1,2-Dichlorobenzene	ND	0.20							
1,3-Dichlorobenzene	ND	0.20							
1,4-Dichlorobenzene	ND	0.20							
3,3'-Dichlorobenzidine	ND	0.25							
Diethyl phthalate	ND	0.20							
Dimethyl phthalate	ND	0.20							
2,4-Dichlorophenol	ND	0.40							
2,4-Dimethylphenol	ND	0.30							
4,6-Dinitro-2-methylphenol	ND	0.40							
2,4-Dinitrophenol	ND	0.50							
. ,									

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

Page 34 of 40

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603878

25-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Sample ID Ics-24350	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	ivolatiles		
Client ID: LCSS	Batch	n ID: 24 3	350	F	tunNo: 3	2992				
Prep Date: 3/21/2016	Analysis D	ate: 3/	23/2016	8	SeqNo: 1	013033	Units: mg/k	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.3	0.20	1.670	0	75.1	45.8	99.8			
4-Chloro-3-methylphenol	2.4	0.50	3.330	0	73.1	51.5	103			
2-Chlorophenol	2.4	0.20	3.330	0	71.4	46.5	105			
1,4-Dichlorobenzene	1.2	0.20	1.670	0	72.2	45.5	103			
2,4-Dinitrotoluene	1.2	0.50	1.670	0	70.8	36	87.2			
N-Nitrosodi-n-propylamine	1.0	0.20	1.670	0	60.4	47.3	104			
4-Nitrophenol	2.7	0.25	3.330	0	80.8	47.3	95.3			
Pentachlorophenol	2.1	0.40	3.330	0	63.9	38.7	89.3			
Phenol	2.4	0.20	3.330	0	72.6	47.8	106			
Pyrene	1.1	0.20	1.670	0	68.7	33.4	105			
1,2,4-Trichlorobenzene	1.4	0.20	1.670	0	85.9	50.4	115			
Surr: 2-Fluorophenol	2,2		3.330		65.3	28.3	102			
Surr: Phenol-d5	2.5		3.330		74.2	35.7	103			
Surr: 2,4,6-Tribromophenol	2.3		3.330		70.4	35.2	108			
Surr: Nitrobenzene-d5	1.3		1.670		79.3	24	118			
Surr: 2-Fluorobiphenyl	1.3		1.670		77.5	35.4	111			
Surr: 4-Terphenyl-d14	1.2		1.670		71.6	15	91.7			

Sample ID 1603878-001ams	SampType: MS TestCode: EPA Method 8270C: Semivolatiles											
Ciient ID: NW Pothole @ 14	' Batch	ID: 24	350	F	RunNo: 3:	2992						
Prep Date: 3/21/2016	Analysis D	ate: 3/	23/2016	S	SeqNo: 10	013040	Units: mg/k	(g-dry				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Acenaphthene	1.3	0.21	1.768	0	72.1	27.5	117					
4-Chioro-3-methylphenol	2.8	0.53	3.526	0	78.2	26.3	116					
2-Chlorophenol	2.2	0.21	3.526	0	61.4	21.4	113					
1,4-Dichlorobenzene	0.92	0.21	1.768	0	52.2	25	105					
2,4-Dinitrotoluene	1.4	0.53	1.768	0	76.9	21.1	119					
N-Nitrosodi-n-propylamine	1.0	0.21	1.768	0	58.7	21.3	126					
4-Nitrophenol	2.9	0.26	3.526	0	82.0	21.3	120					
Pentachlorophenol	2.6	0.42	3.526	0	74.6	11.5	115					
Phenol	2.2	0.21	3.526	0	62.7	23	118					
Pyrene	1.4	0.21	1.768	0	76.4	25.7	110					
1,2,4-Trichlorobenzene	1.2	0.21	1.768	0	67.4	31.1	107					
Surr: 2-Fluorophenol	1.7		3.526		49.0	28.3	102					
Surr: Phenol-d5	2.2		3.526		61.9	35.7	103					
Surr: 2,4,6-Tribromophenol	2.5		3.526		71.8	35.2	108					
Surr: Nitrobenzene-d5	1.1		1.768		60.0	24	118					
Surr: 2-Fluorobiphenyl	1.1		1.768		64.3	35.4	111					

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 36 of 40

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603878

25-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Sample ID MB-24354

SampType: mblk

TestCode: EPA Method 7471: Mercury

Client ID:

PBS

Batch ID: 24354

RunNo: 32987

Prep Date: 3/21/2016

Sample ID LCS-24354

Analysis Date: 3/22/2016

SeqNo: 1011747

Units: mg/Kg HighLimit

Analyte

%REC LowLimit

Qual

Mercury

PQL SPK value SPK Ref Val ND 0.033

SampType: Ics

TestCode: EPA Method 7471: Mercury

%RPD

RunNo: 32987

Client ID: LCSS Prep Date: 3/21/2016

Batch ID: 24354 Analysis Date: 3/22/2016

0.033

Batch ID: 24354

PQL

SeqNo: 1011748

Units: mg/Kg

RPDLimit

RPDLimit

Analyte

Client ID:

Prep Date:

Result

Result

SPK value SPK Ref Val **PQL**

%REC

LowLimit

%RPD HighLimit

Qual

Mercury

0.18

0.1667

107

80

120

Sample ID 1603878-001AMS

NW Pothole @ 14'

SampType: ms

TestCode: EPA Method 7471: Mercury

RunNo: 32987

SeqNo: 1011750

Units: mg/Kg-dry

Qual

Analyte

3/21/2016

Analysis Date: 3/22/2016

SPK value SPK Ref Val %REC

LowLimit

HighLimit

Result 0.19 0.035 0.1779

0.1734

0.003482

0

105 75

%RPD 125

Qual

RPDLimit

Мегсигу

Sample ID 1603878-001AMSD

SampType: msd

TestCode: EPA Method 7471: Mercury RunNo: 32987

75

Client ID: Prep Date: NW Pothole @ 14' 3/21/2016

Batch ID: 24354 Analysis Date: 3/22/2016

SeqNo: 1011751

Units: mg/Kg-dry

Analyte Mercury

Result 0.19 POL 0.034

SPK value SPK Ref Val

0.003482

%REC

LowLimit 106

HighLimit 125 %RPD 1.14 **RPDLimit** 20

Value exceeds Maximum Contaminant Level.

D

Holding times for preparation or analysis exceeded H

R RPD outside accepted recovery limits В Analyte detected in the associated Method Blank

Е Value above quantitation range

Reporting Detection Limit

J Analyte detected below quantitation limits Page 38 of 40

P Sample pH Not In Range

RL

Sample container temperature is out of limit as specified

Qualifiers:

Sample Diluted Due to Matrix

ND Not Detected at the Reporting Limit

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

WO#: **1603878**

25-Mar-16

Client:

Western Refining Southwest, Inc.

Batch ID: 24353

Analysis Date: 3/24/2016

PQL

2.6

Result

23

Project:

Bloomfield Terminal

Sample ID	1603878-001AMSD) SampT	уре: М \$	SD.	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID:	NW Pothole @ 14'	' Batch	ID: 24	353	R	tunNo: 3	2957				
Prep Date:	3/21/2016	Analysis D	ate: 3/	22/2016	S	eqNo: 10	010814	Units: mg/K	(g-dry		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Lead		24	0.26	26.04	2.427	83.0	75	125	4.66	20	
Silver		4.5	0.26	5.209	0	86.5	75	125	2.46	20	
Sample ID	MB-24353	SampT	уре: М І	BLK	Test	Code: El	PA Method	6010B: Soil	Metals		
Client ID:	PBS	Batch	ID: 24	353	R	tunNo: 3	3016				
Prep Date:	3/21/2016	Analysis D	ate: 3/	24/2016	S	SeqNo: 1	012884	Units: mg/F	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Selenium		ND	2.5								
Sample ID	LCS-24353	SampT	ype: LC	s	Test	Code: EF	A Method	6010B: Soil	Metals	·	
Client ID:											
CHEIL ID.	LCSS	Batch	ID: 24	353	R	tunNo: 3	3016				
Prep Date:		Batch Analysis D				tunNo: 3:		Units: mg/k	(g		
Prep Date:				24/2016		eqNo: 10		Units: mg/k HighLimit	(g %RPD	RPDLimit	Qual
Prep Date: Analyte		Analysis D	ate: 3/	24/2016	S	eqNo: 10	012885	J	J	RPDLimit	Qual
Prep Date: Analyte Selenium		Analysis D Result 26	ate: 3/	24/2016 SPK value 25.00	SPK Ref Val 0	eqNo: 10 %REC 103	012885 LowLimit 80	HighLimit	%RPD	RPDLimit	Qual
Prep Date: Analyte Selenium Sample ID	3/21/2016	Analysis D Result 26 SampT	ate: 3 / PQL 2.5	SPK value 25.00	SPK Ref Val 0	eqNo: 10 %REC 103	LowLimit 80	HighLimit 120	%RPD	RPDLimit	Qual
Prep Date: Analyte Selenium Sample ID Client ID:	3/21/2016 1603878-001AMS NW Pothole @ 14'	Analysis D Result 26 SampT	PQL 2.5 ype: M\$	24/2016 SPK value 25.00 353	SPK Ref Val 0 Test	%REC 103 Code: EF	LowLimit 80 PA Method	HighLimit 120	%RPD Metals	RPDLimit	Qual
Prep Date: Analyte Gelenium Sample ID Client ID:	3/21/2016 1603878-001AMS NW Pothole @ 14'	Analysis D Result 26 SampT Batch	PQL 2.5 ype: M\$	SPK value 25.00 353 24/2016	SPK Ref Val 0 Test	REC 103 Code: EF tunNo: 33	LowLimit 80 PA Method	HighLimit 120 6010B: Soil I	%RPD Metals	RPDLimit RPDLimit	Qual
Prep Date: Analyte Gelenium Sample ID Client ID: Prep Date:	3/21/2016 1603878-001AMS NW Pothole @ 14'	Analysis D Result 26 SampT Batch Analysis D	PQL 2.5 ype: MS ID: 24 ate: 3/	SPK value 25.00 353 24/2016	SPK Ref Val 0 Test	REC 103 Code: EF tunNo: 3:	2012885 LowLimit 80 PA Method 3016 012889	HighLimit 120 6010B: Soil I	%RPD Metals		

Qual	ifi	e	r	

Client ID:

Prep Date:

Analyte

Selenium

Value exceeds Maximum Contaminant Level.

NW Pothole @ 14'

3/21/2016

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

RunNo: 33016

88.8

SPK value SPK Ref Val %REC

0

26.04

SeqNo: 1012890

LowLimit

75

Units: mg/Kg-dry

125

%RPD

0.0715

RPDLimit

20

Qual

HighLimit

J Analyte detected below quantitation limits

Page 40 of 40

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com	4	Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	ю†) Ко)	S BCB.	(A)	-AQ + POQ +	BTEX + MT BTEX + MT TPH 8015B TPH (Methore) BDB (Methore) BCRA 8 Methore (F,C 8081 Pestic						-> ->->->->->->->->->->->->->->->->->->		Remarks: Please CC MWICKEV@LTENNION	Time: Retirquished by (
Turn-Around Time: Note that the second Time: Rush ASAP	Bloomheld Terrinnal	Project #.	Project Manager:	Kelly Robinson	Sampler: Michael Wicker On Ice: Times In No	Sample Temperature: 2,2	Container Preservative HEAL No. Type And # Type	2-302 Cool -COI	ar manana ta	-003	1-802 2-402 - COL	4-42	<i>200-</i> ↑ →			Recovered by: (33)74/10 (755) outlacted to other according abbraichtes. This serves as notice of this
Chain-of-Custody Record	11 CR	Bloomfield NM 87413	ax#:	NGC Package: Standard □ Level 4 (Full Validation)	screditation Dother	EDD (Type) Drod	Sate Time Matrix Sample Request ID	-16 1320 Soil NW Posthole @14"	-	11	1340 74	1350	1410 V Wall		ate: Time. Relinquished by:	ite: Time: Refirquished by, 1/2 1965 Might Mall Environmental may be subd

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

OrderNo.: 1603876

March 21, 2016

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Bloomfield Terminal

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 6 sample(s) on 3/17/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1603876

Date Reported: 3/21/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: N Wall

Project: Bloomfield Terminal

Collection Date: 3/14/2016 1:40:00 PM

Lab ID: 1603876-002

Matrix: MEOH (SOIL) Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
PERCENT MOISTURE					Analyst	: AG
Percent Moisture	11	1.0	wt%	1	3/17/2016 4:00:00 PM	R32877
EPA METHOD 8015M/D: DIESEL RANG	E ORGANIC	s			Analyst	JME
Diesel Range Organics (DRO)	ND	11	mg/Kg-dry	1	3/17/2016 2:14:55 PM	24297
Motor Oil Range Organics (MRO)	ND	54	mg/Kg-dry	1	3/17/2016 2:14:55 PM	24297
Surr: DNOP	87.0	70-130	%Rec	1	3/17/2016 2:14:55 PM	24297
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.2	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Surr: BFB	111	66.2-112	%Rec	1	3/17/2016 11:40:31 AM	24284
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.026	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Toluene	ND	0.052	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Ethylbenzene	ND	0.052	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Xylenes, Total	ND	0.10	mg/Kg-dry	1	3/17/2016 11:40:31 AM	24284
Surr: 4-Bromofluorobenzene	117	80-120	%Rec	1	3/17/2016 11:40:31 AM	24284

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603876

Date Reported: 3/21/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Floor

Project: Bloomfield Terminal

Collection Date: 3/16/2016 1:40:00 PM

Lab ID: 1603876-004

Matrix: MEOH (SOIL) Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
PERCENT MOISTURE						Analyst:	AG
Percent Moisture	7.6	1,0		wt%	1	3/17/2016 4:00:00 PM	R32877
EPA METHOD 8015M/D: DIESEL RANGE	ORGANIC	s				Analyst:	JME
Diesel Range Organics (DRO)	3500	100		mg/Kg-dry	10	3/17/2016 4:04:11 PM	24297
Motor Oil Range Organics (MRO)	1300	510		mg/Kg-dry	10	3/17/2016 4:04:11 PM	24297
Surr: DNOP	0	70-130	S	%Rec	10	3/17/2016 4:04:11 PM	24297
EPA METHOD 8015D: GASOLINE RANG	E					Analyst:	NSB
Gasoline Range Organics (GRO)	5600	280		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Surr: BFB	310	66.2-112	s	%Rec	50	3/17/2016 12:27:44 PM	24284
EPA METHOD 8021B: VOLATILES						Analyst:	NSB
Benzene	14	1.4		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Toluene	150	2.8		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Ethylbenzene	26	2.8		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Xylenes, Total	240	5.5		mg/Kg-dry	50	3/17/2016 12:27:44 PM	24284
Surr: 4-Bromofluorobenzene	135	80-120	S	%Rec	50	3/17/2016 12:27:44 PM	24284

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab Order 1603876

Date Reported: 3/21/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: W Wall

Project: Bloomfield Terminal

Collection Date: 3/16/2016 2:10:00 PM

Lab ID: 1603876-006

Matrix: MEOH (SOIL) Received Date: 3/17/2016 7:33:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed	Batch
PERCENT MOISTURE						Analyst	: AG
Percent Moisture	11	1.0		wt%	1	3/17/2016 4:00:00 PM	R32877
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS	3				Analyst	: JME
Diesel Range Organics (DRO)	4600	110		mg/Kg-dry	10	3/17/2016 5:30:55 PM	24297
Motor Oil Range Organics (MRO)	1800	550		mg/Kg-dry	10	3/17/2016 5:30:55 PM	24297
Surr: DNOP	0	70-130	S	%Rec	10	3/17/2016 5:30:55 PM	24297
EPA METHOD 8015D: GASOLINE RAI	NGE					Analyst	: NSB
Gasoline Range Organics (GRO)	4000	280		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Surr: BFB	255	66.2-112	S	%Rec	50	3/17/2016 5:56:51 PM	24284
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	15	1.4		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Toluene	100	2.8		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Ethylbenzene	18	2.8		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Xylenes, Total	160	5.6		mg/Kg-dry	50	3/17/2016 5:56:51 PM	24284
Surr: 4-Bromofluorobenzene	134	80-120	S	%Rec	50	3/17/2016 5:56:51 PM	24284

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 9
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603876

21-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Bloomfield Terminal

Project: Bloom:	ieid Terminai							121 11 11 11 11 11 11 11 11 11 11 11 11	
Sample ID MB-24284	SampType: MBLK TestCode: EPA Method 8				8015D: Gaso	line Rang	е		
Client ID: PBS	Batch ID:	24284	RunNo: 32868						
Prep Date: 3/16/2016	Analysis Date:	3/17/2016	8	SeqNo: 10	07393	Units: mg/k	(g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND (5.0							
Surr: BFB	1100	1000		109	66.2	112			
Sample ID LCS-24284	SampType:	LCS	Tes	tCode: EP	A Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch ID:	24284	F	RunNo: 32	868				
Prep Date: 3/16/2016	Analysis Date:	3/17/2016	S	SeqNo: 10	07394	Units: mg/k	(g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	23 (5.0 25.00	0	91.1	80	120			
Surr: BFB	1100	1000		115	66.2	112			S

Sample ID 1603876-001AMS	SampT	SampType: MS TestCode: EPA Method 8015D: Gasoline Range						е		
Client ID: NW Pothole @ 14	I' Batcl	Batch ID: 24284 RunNo: 32868								
Prep Date:	SeqNo: 1007411			Units: mg/Kg-dry						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	29	3.5	17.66	11.65	95.6	59.3	143			
Surr: BFB	1400		706.4		198	66.2	112			S

	· · · · · · · · · · · · · · · · · · ·									
Sample ID 1603876-001AMS	D SampT	SD.	TestCode: EPA Method 8015D: Gasoline Range							
Client ID: NW Pothole @ 14	4' Batch	1D: 24	284	F	tunNo: 3	2868				
Prep Date:	Analysis D	ate: 3/	17/2016	SeqNo: 1007412 Units: mg/Kg-dry						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	31	3.5	17.66	11.65	111	59.3	143	9.30	20	
Surr BER	1400		706.4		201	66.2	112	n	0	S

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

 $R \quad \ RPD \ outside \ accepted \ recovery \ limits$

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 8 of 9

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory 4901 Huwkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Re	fining Southw	Work Order Numbe	r: 1603	376	,	ReptNo	o; 1
Received by/date:	<u></u>	AZ 17/110					
	adain	3/17/2016 7:33:00 AN			Simber Allega		
Logged By: Lindsay M	_						
Completed By: Lindsay M	angin 7	3/17/2016 8:33:58 AM	7		Juny Hogy 5		;
Reviewed By:	J	03/17/16					j
Chain of Custody				h#	 . \Box	Not Describe	ı
1. Custody seals intact on sa			Yes		No ∐ No □	Not Present ✓ Not Present ☐	
2. Is Chain of Custody comp			Yes		INO L.I	Not Plesent	
3. How was the sample deliv	/ered'?		Cou	<u>ier</u>			
<u>Log In</u>							
4. Was an attempt made to	cool the samples?		Yes	✓	No 🗆	NA 🗆]
5. Were all samples received	d at a temperature	of >0° C to 6.0°C	Yes	abla	No 🗌	NA 🗆	
6. Sample(s) in proper conta	ainer(s)?		Yes	V	No 🗆		
7. Sufficient sample volume	for indicated test(s)	?	Yes	V	No 🗆		
8. Are samples (except VOA	and ONG) properly	y preserved?	Yes	V	No 🗌		
9. Was preservative added t	o bottles?		Yes		No 🗹	NA 🗆	
10.VOA vials have zero head	lenaco?		Yes		No 🗆	No VOA Vials ✓	l
11. Were any sample contain		n?	Yes		No ☑	110 40/1 4/10/10	
1 1, Trose dily sample contains	icia received broker		103			# of preserved bottles checked	
12. Does paperwork match bo	ottle labels?		Yes	✓	No 🗆	for pH:	
(Note discrepancies on ch					No 🗆	(<; Adjusted?	2 or >12 unless noted)
13. Are matrices correctly idea 14. Is it clear what analyses w		Justody?	Yes Yes		No 🗆		
15. Were all holding times abi			Yes	\mathbf{Z}	No 🗆	Checked by	:
(If no, notify customer for			7 4.2		Ĺ		
Special Handling (if app	olicable)				_	_	,
16. Was client notified of all d	iscrepancies with the	nis order?	Yes	<u> </u>	No L	NA 🗹	<u> </u>
Person Notified:		Date			<u> </u>		
By Whom:		Via:	☐ eM	ail 🔲 l	Phone 🗌 Fax	In Person	
Regarding:							
Client Instructions:	-, -, -, -, -, -, -, -, -, -, -, -, -, -				····		
17. Additional remarks:							
18. Cooler Information Cooler No Temp °C 1 2.2	Condition Se Good Yes	al Intact Seal No	Seal D	ate	Signed By		

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1603350

March 16, 2016

Matt Krakow Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Crude Unloading Line

Dear Matt Krakow:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/7/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1603350

Date Reported: 3/16/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Western Remaining Sedditteet,

Project: (Lab ID:

1603350-001

Crude Unloading Line

Matrix: SOIL

Client Sample ID: Waste Characterization

Collection Date: 3/7/2016 1:00:00 PM

Received Date: 3/7/2016 4:52:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
VOLATILES BY 8260B/1311					Analys	t: DJF
Benzene	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
2-Butanone	ND	200	mg/L	1	3/9/2016 5:51:30 PM	24135
Carbon Tetrachloride	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
Chlorobenzene	ND	100	mg/L	1	3/9/2016 5:51:30 PM	24135
Chloroform	ND	6.0	mg/L	1	3/9/2016 5:51:30 PM	24135
1,4-Dichlorobenzene	ND	7.5	mg/L	1	3/9/2016 5:51:30 PM	24135
1,2-Dichloroethane (EDC)	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
1,1-Dichloroethene	ND	0.70	mg/L	1	3/9/2016 5:51:30 PM	24135
Hexachlorobutadiene	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
Tetrachloroethene (PCE)	ND	0.70	mg/L	1	3/9/2016 5:51:30 PM	24135
Trichloroethene (TCE)	ND	0.50	mg/L	1	3/9/2016 5:51:30 PM	24135
Vinyl chloride	ND	0.20	mg/L	1	3/9/2016 5:51:30 PM	24135
Surr: 1,2-Dichloroethane-d4	94.9	70-130	%Rec	1	3/9/2016 5:51:30 PM	24135
Surr: 4-Bromofluorobenzene	112	70-130	%Rec	1	3/9/2016 5:51:30 PM	24135
Surr: Dibromofluoromethane	91.6	70-130	%Rec	1	3/9/2016 5:51:30 PM	24135
Surr: Toluene-d8	100	70-130	%Rec	1	3/9/2016 5:51:30 PM	24135

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 11
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603350

16-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Crude Unloading Line

Sample ID MB-24219	SampT	ype: ME	BLK	Tes	Code: El	PA Method	8015D: Gasol	ine Rang	e	
Client ID: PBS	Batch	1D: 24	219	F	lunNo: 3	2770				
Prep Date: 3/11/2016	Analysis D	ate: 3 /	14/2016	S	SeqNo: 1	004230	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	1100		1000		106	66.2	112			
Sample ID LCS-24219	Sampl	ype: LC	s	Tes	tCode: E	PA Method	8015D: Gaso	line Rang	le	
Client ID: LCSS	Batcl	1 ID: 24	219	F	RunNo: 3	2770				
Prep Date: 3/11/2016	Analysis [)ate: 3/	14/2016	5	SeqNo: 1	004231	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24	5.0	25.00	0	97.3	80	120			
Surr: BFB	1100		1000		114	66.2	112			S

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Page 4 of 11

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603350

16-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Crude Unloading Line

Sample ID 1603350-001ams SampType: MS TestCode: Volatiles by 8260B/1311											
Client ID: Waste Characterizat Batch ID: 24135 RunNo: 32688											
Prep Date: 3/8/2016 Analysis Date: 3/9/2016 SeqNo: 1000436 Units: mg/L											
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: 1,2-Dichloroethane-d4	0.19		0.2000		92.9	70	130				
Surr: 4-Bromofluorobenzene	0.23		0.2000		115	70	130				
Surr: Dibromofluoromethane	0.19		0.2000		95.0	70	130				
Surr: Toluene-d8	0.19		0.2000		96.5	70	130				

Sample ID 1603350-001ams	d SampT	ype: M/S	SD.	TestCode: Volatiles by 8260B/1311							
Client ID: Waste Characteri	zat Batch	ID: 24	135	RunNo: 32688							
Prep Date: 3/8/2016 Analysis Date: 3/9/2016 SeqNo: 1000450 Units: mg/L											
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.38	0.30	0.4000	0	94.2	70	130	5.98	20		
Chlorobenzene	0.40	0.30	0.4000	0	99.4	70	130	5.41	20		
1,1-Dichloroethene	0.35	0.30	0.4000	0	88.6	70	130	11.0	20		
Trichloroethene (TCE)	0.35	0.30	0.4000	0	86.7	70	130	9.13	20		
Surr: 1,2-Dichloroethane-d4	0.19		0.2000		94.8	70	130	0	0		
Surr: 4-Bromofluorobenzene	0.22		0.2000		111	70	130	0	0		
Surr: Dibromofluoromethane	0.18		0.2000		91.2	70	130	0	0		
Surr: Toluene-d8	0.19		0.2000		95.5	70	130	0	0		

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 6 of 11

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

SampType: MS

WO#: 1603350

16-Mar-16

Client: Western Refining Southwest, Inc.

Project: Crude Unloading Line

Sample ID 1603350-001ams

Sample ID ics-24177	Camat	Type: LC		TestCode: EPA Method 8270C TCLP								
Sample ID ICS-24177	Sampi	ype: LC	·3	162	todde. Ei	PA IMELIIOU						
Client ID: LCSS	Batch ID: 24177			F	RunNo: 3	2755						
Prep Date: 3/10/2016	Analysis D	ate: 3/	12/201 6	9	SeqNo: 1	004052	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Surr: 2,4,6-Tribromophenol	0.18		0.2000		89.8	31.3	139					
Surr: Nitrobenzene-d5	0.075		0.1000		74.7	48.2	128					
Surr: 2-Fluorobiphenyl	0.076		0.1000		75.7	58.4	114					
Surr: 4-Terohenyl-d14	0.078		0.1000		78.1	17.4	141					

TestCode: EPA Method 8270C TCLP

Client ID: Waste Character	Client ID: Waste Characterizat Batch ID: 24177 RunNo: 32755											
Prep Date: 3/10/2016	Analysis D)ate: 3/	12/2016	S	SeqNo: 1	004054	Units: mg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
2-Methylphenol	0.10	0.010	0.1000	0	101	43.1	114					
3+4-Methylphenol	0.21	0.010	0.2000	0	107	37.8	128					
2,4-Dinitrotoluene	0.076	0.010	0.1000	0	76.3	36.5	125					
Hexachlorobenzene	0.11	0.010	0.1000	0	112	41.4	108			S		
Hexachlorobutadiene	0.085	0.010	0.1000	0	84.8	30.4	101					
Hexachloroethane	0.087	0.010	0.1000	0	87.3	37.3	115					
Nitrobenzene	0.10	0.010	0.1000	0	102	40.2	132					
Pentachlorophenol	0.043	0.010	0.1000	0	43.0	8.72	103					
Pyridine	0.074	0.010	0.1000	0	73.9	9.36	106					
2,4,5-Trichlorophenol	0.11	0.010	0.1000	0	105	16.5	123					
2,4,6-Trichlorophenol	0.082	0.010	0.1000	0	81.6	11.3	117					
Cresols, Total	0.32	0.010	0.3000	0	105	23.2	151					
Surr: 2-Fluorophenol	0.13		0.2000		63.8	19	121					
Surr: Phenol-d5	0.11		0.2000		53.1	31.8	117					
Surr: 2,4,6-Tribromophenol	0.20		0.2000		102	31.3	139					
Surr: Nitrobenzene-d5	0.10		0.1000		101	48.2	128					
Surr: 2-Fluorobiphenyl	0.096		0.1000		95.5	58.4	114					
Surr: 4-Terphenyl-d14	0.076		0.1000		76.1	17.4	141					

Sample ID 1603350-001ams	Sample ID 1603350-001amsd SampType: MSD TestCode: EPA Method 8270C TCLP											
Client ID: Waste Character	Client ID: Waste Characterizat Batch ID: 24177 RunNo: 32755											
Prep Date: 3/10/2016 Analysis Date: 3/12/2016 SeqNo: 1004056 Units: mg/L												
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
2-Methylphenol	0.069	0.010	0.1000	0	69.2	43.1	114	37.2	28.4	R		
3+4-Methylphenol	0.14	0.010	0.2000	0	70.8	37.8	128	40.7	29.4	R		
2,4-Dinitrotoluene	0.055	0.010	0.1000	0	55.5	36.5	125	31.6	24.7	R		
Hexachlorobenzene	0.079	0.010	0.1000	0	78.8	41.4	108	34.7	20	R		
Hexachlorobutadiene	0.063	0.010	0.1000	0	63.2	30.4	101	29.1	29	R		
Hexachloroethane	0.060	0.010	0.1000	0	60.3	37.3	115	36.6	25.2	R		

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 8 of 11

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1603350

16-Mar-16

Client:

Western Refining Southwest, Inc.

Project:

Client ID:

Crude Unloading Line

Sample ID MB-24168

SampType: MBLK

Batch ID: 24168

TestCode: MERCURY, TCLP

RunNo: 32705

%REC

Prep Date: 3/9/2016

PBW

SeqNo: 1001072

Units: mg/L

Analyte

Analysis Date: 3/10/2016

HighLimit %RPD

RPDLimit

Qual

Mercury

Result **PQL** ND 0.020

TestCode: MERCURY, TCLP

Sample ID LCS-24168

SampType: LCS

Client ID: LCSW

Batch ID: 24168 Analysis Date: 3/10/2016 RunNo: 32705

Units: mg/L

Analyte

Result

SPK value SPK Ref Val %REC

SeqNo: 1001074

HighLimit

Qual

Mercury

Prep Date:

PQL. 0.020

120

0.005000

LowLimit

LowLimit

%RPD

ND

SPK value SPK Ref Val

98.3

3/9/2016

80

RPDLimit

Qualifiers:

ND

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded H

Not Detected at the Reporting Limit R RPD outside accepted recovery limits

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits P Sample pH Not In Range

RL Reporting Detection Limit

Sample container temperature is out of limit as specified

Page 10 of 11

Hall Environmental Analysis Laboratory

(001 Hawking NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com ReptNo: 1 Work Order Number: 1693350 Western Refining Southw Client Name: Received by/date: 3/7/2016 4:52:00 PM Logged By: Ashley Gallegos Ashley Gallegos 3/8/2016 9:08:31 AM Completed By: Reviewed By: Chain of Custody Yes No 🗍 Not Present V 1. Custody seals intact on sample bottles? No 🗌 Yes 🗸 Not Present 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? Log In NA 🗌 No 🗌 Yes V 4. Was an attempt made to cool the samples? NA L No | Were all samples received at a temperature of >0°C to 6.0°C No. Yes 🗸 Sample(s) in proper container(s)? No 🗌 Yes 🗸 7. Sufficient sample volume for indicated test(s)? Yes 🗸 No 🗌 8. Are samples (except VOA and ONG) properly preserved? NA 🗌 No V Yes 9. Was preservative added to bottles? No 🗌 No VOA Vials 🗸 Yes 10, VOA vials have zero headspace? Yes No V 11. Were any sample containers received broken? # of preserved bottles checked No 🗌 for pH: Yes 🗸 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗌 Yes V 13. Are matrices correctly identified on Chain of Custody? No 🗌 Yes V 14, is it clear what analyses were requested? Checked by: No 🗌 Yes V 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) No 🗌 NA V Yes 16. Was client notified of all discrepancies with this order? Person Notified: Date eMail Phone Fax In Person Via: By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By Good

Bloomfield Refinery River Terrace Annual Report

Submitted: March 2015

For Duration Jan – Dec. 2014

Bloomfield Refinery

River Terrace Voluntary Corrective Measures Bioventing System Annual Report

January - December 2014
Submitted March 2015

RIVER TERRACE ANNUAL REPORT Voluntary Bioventing System

January - December 2014

Bloomfield Refinery
Western Refining Southwest, Inc.
#50 Rd 4990
Bloomfield, New Mexico 87413

Submitted: March 2015

Table of Contents

List of Sections

List of Acr	onyms	·	iv
Executive	Summa	ary	vi
Section 1	Introd	luction	1
1.1	Site Lo	ocation and Description	1
Section 2	Backg	ground	4
Section 3	Perfor	rmance Monitoring	8
3.1	Groun	dwater Monitoring	8
	3.1.1	Groundwater Measurements	8
	3.1.2	Groundwater Field Parameters	8
	3.1.3	Groundwater Sampling	9
3.2	Soil Va	apor Monitoring	9
	3.2.1	Pressure Readings	9
	3.2.2	Soil Gas Field Parameters	9
	3.2.3	Soil Gas Sampling	9
3.3	Bioven	nting System Performance Monitoring	10
	3.3.1	GAC Sampling	10
	3.3.2	In-Situ Respiration Test	11
Section 4	Concl	usions and Recommendations	12
4.1	Conclu	usions	12
	4.1.1	Groundwater Monitoring	12
	4.1.2	Soil Vapor Monitoring	12
	4.1.3	Optimized Biovent System Monitoring	13
4.2	Recom	nmendations	14
Section 5	Refere	ancas	15

List of Tables

Table 1	2014 Soil Gas Monitoring Data Summary
Table 2	2014 Groundwater Monitoring Data Summary
Table 3	2014 Bioventing Wells Field Pressure Readings Summary
Table 4	2014 GAC Filter Analytical Summary

List of Figures

Figure 1	Site Location Map
Figure 2	Facility Site Plan
Figure 3	River Terrace Well Location Map
Figure 4	Bioventing System Layout
Figure 5	Groundwater BTEX Concentration Map – Low Flow 2014
Figure 6	Soil Vapor BTEX Concentration Map – Low Flow 2014

List of Appendices

Appendix A	Regulatory Criteria / Groundwater Clean-up Standards
Appendix B	Field Methods
Appendix C	Laboratory Quality Assurance Plan
Appendix D	Analytical Reports

List of Acronyms

```
benzene, toluene, ethylbenzene, and total xylene (BTEX)
below grade surface (bgs)
biovent well (BV)
central federal register (CFR)
dewatering well (DW)
diesel range organics (DRO)
dissolved oxygen (D.O.)
feet (ft)
degrees Fahrenheit (°F)
gasoline range organics (GRO)
granulated activated carbon (GAC)
investigation derived waste (IDW)
liters (L)
liquid petroleum gas (LPG)
maximum contaminant level (MCL)
methyl tert-butyl ether (MTBE)
micrograms per liter (ug/L)
micro mhos per centimeter (umhos/cm)
milligrams per liter (mg/L)
millivolts (mV)
monitoring well (MW)
New Mexico Administrative Code (NMAC)
New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB)
Oxidation reduction potential (ORP)
parts per million (ppm)
```

photoionization detector (PID)

polyvinyl chloride (PVC)

pounds per square inch (psi)

Resource Conservation and Recovery Act (RCRA)

separate phase hydrocarbon (SPH)

Solid Waste Management Units (SWMUs)

Standard cubic feet per minute (scfm)

Temperature (TEMP)

Temporary piezometer (TP)

top of casing (TOC)

total petroleum hydrocarbon (TPH)

United States Environmental Protection Agency (USEPA)

volatile organic constituent (VOC)

Water Quality Control Commission (WQCC)

Executive Summary

This report is a summary of monitoring activities conducted in 2014 at the River Terrace Bioventing System located at the Bloomfield Refinery. The following is a synopsis of activities performed at the River Terrace in 2014.

Dewatering System

The Dewatering System consists of two dewatering wells (DW-1 and DW-3), and a collection gallery, each is equipped with a dedicated submersible pump. The addition of DW-3 allowed for enhanced dewatering capability within the southwest corner of the River Terrace area, the area with the highest dissolved phase concentrations. The well extends approximately six feet below the water table, and is constructed to allow for higher groundwater recovery efficiency.

Groundwater pumped by the dewatering system is pumped through two GAC filters positioned in series before discharging into the facility raw water ponds. A total of 219,715 gallons of impacted groundwater was removed and treated through the GAC filters in 2014. The number of gallons removed was substantially lower in 2014 in comparison to 2013. This is due in part to the continued below average San Juan River flow rates and the absence of a spring run-off in 2014. Also, in response to the lower water table at the river terrace the dewatering system has been adjusted to operate at a slower rate in order to help protect the pumping equipment.

Aeration System

The optimized aeration system ran throughout 2014, except during times when regular maintenance was performed on the mechanical equipment. The aeration system includes an air sparging component, which allows for air to be injected both within the subsurface and below the groundwater surface. The air pressure readings collected at each of the biovent well, air sparging line, and at the main air blower were consistent, affirming an even distribution of air throughout the biovent area.

Soil gas field measurements were collected at selective TP wells. The field readings show that there exists sufficient oxygen levels in the biovent area subsurface to sustain bioremedial activity.

Western has conducted three separate in-situ respiration tests at the River Terrace area in May 2006, September 2007, and October 2009. In a response letter from the New Mexico

Environment Department – Hazardous Waste Bureau (NMED) dated November 23, 2010 (NMED, 2010), NMED granted approval to discontinue conducting the in-situ respiration tests. Therefore to-date, no additional in-situ respiration testing has been conducted.

Groundwater Monitoring

On-going groundwater monitoring activities were conducted in 2014. Groundwater samples were collected from selected TP and monitoring wells during low flow operating conditions of the San Juan River. No high flows samples were collected because of lack of a San Juan River high flow event.

Conclusions

Soil gas field measurements indicate that the aeration system has been successful in maintaining sufficient oxygen within the subsurface to help sustain bioremedial activity. Groundwater samples indicate that the impacted groundwater in the River Terrace area remains within the influence area of the aeration system. GAC filter monitoring results indicate that the GAC filter system is successful at treating the extracted groundwater.

The groundwater sample results show that the slurry wall is continuing to perform as designed, preventing impacted ground water from reaching the river. Elevated groundwater concentrations are localized to the area around DW-3. The analytical for samples collected at monitoring well MW-49, located on the river side of the river terrace slurry wall, show that the San Juan River continues to not be impacted by the groundwater impacts within the biovent area.

Section 1 Introduction

1.1 Site Location and Description

Owner: San Juan Refining Company, a New Mexico Corporation

1250 Washington Street Tempe, Arizona 85281

Operator: Western Refining Southwest, Inc.

(Formerly Giant Industries Arizona, Inc.), an Arizona Corporation

1250 Washington Street Tempe, Arizona 85281

Facility: Bloomfield Terminal (physical address)

50 Road 4990

Bloomfield, New Mexico 87413

Western Refining Southwest, Inc. (postal address)

P.O. Box 159

Bloomfield, New Mexico 87413

US EPA ID: NMD089416416

SIC Code: 5171 (Previously Operated under 2911)

The former Bloomfield Refinery Facility is currently owned by San Juan Refining Company, a New Mexico corporation, and operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc., an Arizona corporation. The former Bloomfield Refinery had an approximate refining capacity of 18,000 barrels per day. Various process units operated at the facility, including crude distillation, reforming, fluidized catalytic cracking, sulfur recovery, merox treater, catalytic polymerization, and diesel hydrotreating. Products produced at the refinery included gasoline, diesel fuels, jet fuels, kerosene, propane, butane, naphtha, residual fuel, fuel oils, and LPG.

The Facility is located on approximately 263 acres south of Bloomfield, New Mexico in San Juan County (Figure 1). The Facility complex is bisected by County Road 4990 (Sullivan Road), which runs east-west. The process units, tank farm, wastewater treatment system, raw water ponds, and fire training area are located north of the county road. The crude oil and product unloading areas, loading racks, maintenance buildings/90-day storage area, pipeline offices, transportation truck shop, and Class I injection well are located south of the country road (Figure 2).

The former Refinery is located on a bluff 120 feet above the south side of the San Juan River. The top of the bluff is relatively flat and is at an elevation of 5,540 feet above sea level. Based on the available site-specific and regional subsurface information, the site is underlain by the Quaternary Jackson Lake terrace deposits, which unconformably overlie the tertiary Nacimiento Formation. The Jackson Lake deposits consist of fine grained sand, silt, and clay that grades to course sand, gravel and cobble size material closer to the contact with the Nacimiento Formation. The Jackson Lake Formation is over 40 feet thick near the southeast portion of the site and generally thins to the northwest toward the San Juan River. The Nacimiento Formation is primarily composed of fine grained materials (e.g., carbonaceous mudstone/claystone with interbedded sandstones) with a reported local thickness of approximately 570 feet (Groundwater Technology, 1994).

The River Terrace Area is located north of the Hammond Ditch, approximately 120 feet lower in elevation than the Former Refinery process and Tank Farm areas. Since 2006, Western has operated a bioventing system for the purpose of providing oxygen to the subsurface and support aerobic biodegradation of petroleum hydrocarbons that were identified in soil along the western portion of the River Terrace to a depth of approximately 8 feet below existing grade surface (bgs).

In 2013, optimization activities to the biovent system were completed which included removal of impacted soil, installation of an air sparging system, and installation of an additional dewatering well. These enhancements allowed for the system to continue to target the subsurface soils, as well as enhance the groundwater remediation efforts through additional pumping and air sparging.

The River Terrace System currently consists of the following:

- Five biovent wells (BV-1, BV-3, BV-4, BV-5, and BV-6):
- Ten temporary piezometers (TP-3, TP-5, TP-6, TP-7 thru TP-13);
- Three dewatering wells (DW-1, DW-2, and DW-3);
- Two monitoring wells (MW-48, and MW-49);
- Two air sparging lines (Air Sparging Line A, and Air Sparging Line B); and
- One collection gallery.

The active dewatering system consists of two dewatering wells (DW-1 and DW-3) and a collection gallery, each equipped with variable-speed submersible pumps. The collection gallery, consisting of a 4-inch perforated pipe with an 8-inch diameter vertical riser pipe and submersible pump, was installed and placed into operation by early October 2009. Dewatering

well DW-3 was installed as part of the most recent optimization activities, and is constructed with a 4-inch machine slotted PVC well casing that is placed inside a 5.5-inch diameter steel pipe. The steel pipe is packed with larger diameter cobbles, allowing for better groundwater pumping efficiency. The dewater system pumps water through two GAC filters before discharging to the facility raw water ponds. The purpose of the dewatering system is used to enhance the effectiveness of the bioventing system by dewatering the influenced area, and also remove impacted groundwater for treatment.

Installation of the air sparging component of the biovent system was completed in late 2012, and consists of two air sparging lines (Air Sparging Line A and Air Sparging Line B). Each air sparging line consists of air sparging tubes that extend down into the groundwater (Western Refining, 2013). Air from the biovent main air blower is pushed into each sparging tube, causing a bubbling effect in the groundwater while also oxygenating the surrounding subsurface.

The biovent portion of the system continues to remain active, although the majority of the impacted soils within the subsurface were removed as part of the completed optimization activities. The main air blower injects air into the subsurface through the BV wells. The air supply promotes biodegradation within the subsurface.

Section 2 Background

This section presents a summary of the events and activities conducted at the River Terrace Area since 1999.

1999

• Installation of a bentonite slurry and sheet pile barrier wall adjacent to the San Juan River was completed. The barrier extends approximately 35 feet below the ground surface, and extends around the perimeter of the riverbank from the bluff opposite the west end of the process area to the river inlet station. The bentonite slurry and sheet pile barrier wall was installed to prevent hydrocarbons from migrating into the San Juan River.

2004

Two groundwater monitoring wells were installed (MW-48 and MW-49) to replace two
piezometers (P-4 and P-5). In addition, eight temporary piezometers were installed (TP1 through TP-8). The purpose of installing the monitoring wells and piezometers was to
determine the extent of hydrocarbon impacts in soil on the refinery side of the bentinite
slurry wall and sheet pile barrier.

2005

- Bloomfield Refinery initiated construction of the River Terrace Bioventing Project to provide oxygen to the subsurface and support aerobic biodegradation of petroleum hydrocarbons existing in the soil at the River Terrace. Construction activities included the following:
 - Installation of five additional piezometers (TP-9 through TP-13) within the eastern portion of the River Terrace area.
 - Construction of an aeration system designed to increase bioremedial activity in the subsurface. The aeration system included installation of 13 bioventing wells (BV-1 through BV-13), all located within the western portion of the River Terrace area. The bioventing wells were installed in August 2005.
 - Construction of a dewatering system designed to expand the bioremedial vadose zone. The dewatering system included installation of two dewatering wells (DW-1 and DW-2). The dewatering wells were installed in August 2005.

2006

 Operation of the Bioventing System commenced in January 2006. System monitoring activities were conducted in compliance with the approved River Terrace Voluntary Corrective Measures Monitoring Plan (Revised) dated October 28, 2005 (Malcolm Pirnie, 2005).

- An In-Situ Respiration Test was conducted in May 2006. The results of the In-Situ Test were used to evaluate progress of the bioremedial activity.
- Quarterly performance monitoring was conducted in March, June, September, and December of 2006.

2007

- Quarterly performance monitoring of the Bioventing System was conducted in February, June, August, and October.
- An In-Situ Respiration Test was conducted in September. The results of the In-Situ Test were used to evaluate progress of the bioremedial activity.
- The dewatering pumps were replaced in February 2007.
- Breakthrough in the lead GAC (V-612) was detected in April 2007. Upon confirmation of breakthrough, GAC filter V-611 became the lead GAC filter. V-612 was replaced and placed back in service in June as the lag filter.

2008

- Quarterly performance monitoring activities for the Bioventing System were conducted in March, May, July, and November.
- The aeration system blower bearings were replaced in February 2008.
- The dewatering pump equipped in monitoring well MW-48 was replaced in August 2008.
- Blower piping was upgraded in October 2008.

2009

- Quarterly performance monitoring for the Bioventing System was conducted in March, April, September, and October 2009.
- An In-Situ Respiration Test was conducted during the week of October 26, 2009.
- In order to improve and optimize the dewatering system, a collection gallery, pump, and piping system were installed in the southwest portion of the River Terrace and put in service October 13, 2009.

2010

- Quarterly performance monitoring for the Bioventing System was conducted in March, April, July, and October of 2010.
- Following suspension of refining operations on November 23, 2009, operation of the River Pump station decreased, thus impacting the frequency of the River Terrace dewatering system. Although the aeration system continued to operate consistently, operation of the dewatering system has become infrequent due to the decreased demand for fresh water to support current facility operations.

2011

- In March 2011, Western received approval from NMED-HWB to modify the piping of the River Terrace dewatering system. Piping modifications included installation of a 3,000gallon surge tank and booster pump which allows the treated water from the River Terrace dewatering system to discharge directly into the Refinery's fresh water ponds. Piping modifications were completed in April 2011.
- Approved modifications to on-going monitoring at the River Terrace (NMED, 2011) were implemented as part of the 2011 sampling program for the River Terrace. High and low flow monitoring events were conducted in June 2011 and July 2011, respectively.
- Quarterly performance monitoring of the Biovent System GAC filters inlet and outlet occurred in March, May, July, and October of 2011.
- Monthly samples were collected at the discharge of the lead GAC filter on a monthly basis, with the exception that a sample was not collected in April 2011 due to the dewatering system being off-line.

2012

- In June 2012, the lead GAC filter was exchanged for a new filter. The biovent dewatering system consists of two GAC filters that operate in series. The new filter was placed in the lag position, and the previous lag filter was placed in the lead position.
- In October 2012, Western submitted a Work Plan that summarized proposed activities to optimize the remediation progress at the River Terrace. Approval of the Work Plan was issued by NMED-HWB on October 12, 2012. Field activities commenced on October 20, 2012 and included the following activities:
 - Removal of impacted clay soil at the River Terrace;
 - Installation of a sparging piping to target areas of the river terrace where groundwater is impacted;
 - Decommissioning of TP-1, TP-2, BV-2, and BV-7 through BV-13 were all decommissioned during excavation activities.

Air Sparging Line A and Air Sparging Line B were added to system.

2013

- Western completed and put into service dewatering well DW-3 located within the southwest corner of the River Terrace. This new dewatering well adds additional value to the current dewatering system at the river terrace as historical analysis have shown this area to contain higher concentrations of impacted groundwater.
- The High Flow Monitoring Event did not take place in 2013. The one week spring peak release (5,000 cfs) did not take place because of the threat of a water shortage in the San Juan River Basin. San Juan County is experiencing a severe drought.

2014

- Quarterly performance monitoring of the GAC filters for the Bioventing System was conducted in March, April, July, and October of 2014.
- The High Flow Monitoring Event did not take place in 2014. The one week spring peak release (5,000 cfs) did not take place because of the threat of a water shortage in the San Juan River Basin. San Juan County is experiencing a severe drought.

Section 3 Performance Monitoring

Performance monitoring at the River Terrace area includes collecting groundwater and soil gas samples for laboratory analysis, collecting field measurement and system readings, and evaluating system treatment performance by the GAC filter system. The location of the river terrace wells and aeration system is shown in Figure 3 and Figure 4. A summary of the field methods used to conduct performance monitoring at the River Terrace is provided in Appendix B. The following is a summary of monitoring activities conducted at the River Terrace area in 2014.

3.1 Groundwater Monitoring

Groundwater samples were collected in 2014 only during low flow operation of the San Juan River (i.e. with a river flow rate of approximately 500 scfm). The San Juan River did not experience a high flow operating period in 2014 due to extreme drought conditions in the area, and thus a High Flow Sampling Event did not occur in 2014. Groundwater sampling activities during low flow conditions of the San Juan River were conducted during the week of April 21, 2014. The following is a summary of activities performed during the groundwater monitoring event conducted in 2014.

3.1.1 Groundwater Measurements

Depth-to-groundwater and depth-to-product measurements were collected from each of the TP-5, TP-6, TP-9, DW-3, and MW-49 prior to the collection of groundwater samples during the San Juan River low flow sampling events. A summary of the groundwater measurements is provided in Table 2.

3.1.2 Groundwater Field Parameters

Groundwater field parameters (temperature, pH, conductivity, D.O., and ORP) were collected prior to collecting groundwater samples. Groundwater field parameters were collected from TP-5, TP-6, TP-9, DW-3, and MW-49. A summary of the groundwater field parameters collected during the sampling event are included in Table 2.

3.1.3 Groundwater Sampling

In 2014, groundwater samples were collected from TP-5, TP-6, TP-8, TP-9, DW-3, and MW-49. Groundwater samples were submitted to Hall Environmental Analytical Laboratory and analyzed for the following constituents:

- Volatile Organic Compounds BTEX and MTBE by EPA Method 8021B;
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO) by EPA Modified Method 8015B;
- Total Petroleum Hydrocarbons (TPH) Diesel Range Organics (DRO) by EPA Modified Method 8015B; and
- Total Recoverable Metals Total lead by EPA Method 6010C.

3.2 Soil Vapor Monitoring

3.2.1 Pressure Readings

During the sampling event, field pressure readings were collected from TP-5, TP-6, TP-8, TP-9, and MW-49 using a hand-held magnahelic gauge connected to the sample port at the top of each well. Refer to Table 1 for a summary of the pressure readings collected at the TP wells and MW-49 in 2013.

Injection pressure readings were collected from the bioventing wells, the air sparging lines, and at the discharge of the main air blower as part of the Low Flow Sampling Event activities. Table 3 provides a summary of the field readings collected in 2014.

3.2.2 Soil Gas Field Parameters

Field measurements of soil gas hydrocarbons (using a PID), oxygen, and carbon dioxide concentrations (using a multi-gas meter) were collected from TP-5, TP-6, TP-8, TP-9, MW-49, and DW-3 during the Low Flow Sampling Event. A summary of the soil gas field parameters is provided in Table 1.

3.2.3 Soil Gas Sampling

Soil gas samples were collected from TP-5, TP-6, TP-8, TP-9, DW-3, and MW-49 during low flow operation of the San Juan River. All soil gas samples were collected in tedlar bags, and submitted to Hall Environmental Analytical Laboratory to be analyzed for the following parameters:

Volatile Organic Compounds – BTEX by EPA Method 8021B

Total Petroleum Hydrocarbons – GRO by EPA Method 8015B

A summary of the soil gas analytical results is provided in Table 1.

3.3 Bioventing System Performance Monitoring

3.3.1 GAC Sampling

Extracted groundwater from the active dewatering wells is treated prior to discharging to the raw water ponds, located within the east portion of the refinery. Extracted groundwater is pumped through two granular activated carbon (GAC) filters positioned in series for removal of dissolved-phase hydrocarbons.

GAC influent (GAC-Inlet) samples, GAC effluent samples (GAC-Lag), and lead GAC filter effluent samples (GAC-Lead) were collected quarterly. Samples were submitted to Hall Environmental Analytical Laboratory and analyzed for the following parameters: (Reference Table 4).

- Volatile Organic Compounds BTEX and MTBE by EPA Method 8021B
- Total Petroleum Hydrocarbons Gasoline Range Organics by EPA Method 8015B
- Total Petroleum Hydrocarbons Diesel Range Organics by EPA Method 8015B

Additional samples were collected at the outlet of the lead GAC (GAC-LEAD) monthly during 2014. On April 7th, 2014, samples were collected at the GAC-LAG and GAC-LEAD sample locations. The sample results indicated detected concentrations of TPH-GRO at both sample locations, with the highest concentration detected at the GAC-LAG. Without making any adjustments to the system operations, a second set of confirmation sample were collected on May 8th, 2014. The May 8th analytical report and all subsequent samples collected in 2014 show no detectable concentrations of TPH-GRO at both the GAC-LAG and GAC-LEAD. Western believes that the analytical results for the April 7th sample were due to sampling error.

As part of the baseline monitoring of the groundwater recovery system, additional GAC-INLET samples were collected periodically in 2014 to closely monitor the inlet concentration of groundwater as DW-3 continued to operate. The samples were analyzed for BTEX, TPH-DRO, and TPH-GRO. A summary of the analytical results for samples collected at the GAC filters is provided in Table 4.

3.3.2 In-Situ Respiration Test

Western has conducted three separate in-situ respiration tests at the River Terrace area in May 2006, September 2007, and October 2009. The suspension of refining operations causes the dewatering system to operate intermittently which in turn affects exposure of the vadose zone thus affecting the accuracy of the in-situ respiration test. In a response letter from NMED dated November 23, 2010 (NMED, 2010), NMED-HWB granted approval to discontinue conducting the in-situ respiration tests. Therefore an in-situ respiration was not performed in 2014.

Section 4 Conclusions and Recommendations

This section summarizes and provides an evaluation of the results shown in field monitoring data and analytical data. The analytical reports for groundwater and soil gas samples are provided in Appendix D. The regulatory criteria and groundwater clean-up standards used to compare the river terrace sample results are provided in Appendix A.

4.1 Conclusions

4.1.1 Groundwater Monitoring

Groundwater samples were collected at specific wells and analyzed for volatile organic compounds (benzene, toluene, ethylbenzene, xylenes, and MTBE), TPH-DRO, TPH-GRO, and total metals (lead). The analytical results for samples collected in 2014 during San Juan River low flow conditions were below their respective screening levels with the following exceptions:

- Benzene was detected at concentrations above the respective MCL (0.005 mg/L) at one location (DW-3). The concentration of benzene detected was 0.067 mg/L.
- Ethylbenzene was detected at concentrations above the respective MCL (0.7 mg/L) at one location (DW-3). The concentration of ethylbenzene detected was 0.720 mg/L.
- Xylenes were detected at concentrations above the respective WQCC screening level of 0.62 mg/L at one location (DW-3). The concentration of xylene detected was 1.300 mg/L.
- TPH-DRO was detected at concentrations above the respective NMED screening level of 0.2 mg/L at four locations (DW-3, TP-5, TP-6, and TP-8). The highest concentration of TPH-DRO was detected at TP-8 (2.3 mg/L).

Table 2 provides a summary of the analytical groundwater results. A concentration map showing the benzene, toluene, ethylbenzene, and xylenes concentrations for the River Terrace wells during low flow conditions is provided in Figure 5.

4.1.2 Soil Vapor Monitoring

Soil gas field readings were collected to measure organics, oxygen, and carbon dioxide in the subsurface. The PID meter detected low level concentrations of organics, ranging from 0.8 ppm to 25.8 ppm. The highest concentration was detected at DW-3, located within the active area of the bioventing system. The measured oxygen levels ranged from 19.0 % to 20.9 % throughout the River Terrace.

Soil gas samples were collected at specific wells and analyzed for volatile organic compounds (benzene, toluene, ethylbenzene, and xylenes), and TPH-GRO. A summary of the results is provided in Table 1. Figure 6 is a concentration map showing the benzene, toluene, ethylbenzene, and xylenes concentrations for the River Terrace wells during low flow conditions. The analytical results for samples collected in 2014 were not detected above the respective laboratory screening level, with the exception of the following:

- Benzene was detected in a sample collected at DW-3, with a concentration detected of 0.74 ug/L. during low flow stages of the San Juan River.
- Ethylbenzene was detected in samples collected at DW-3, with a concentration detected of 12.0 ug/L during low flow stages of the San Juan River.
- Xylene was detected in samples collected at DW-3, with a concentration detected of 20.0 ug/L during low flow states of the San Juan River.
- TPH-GRO was detected in samples collected at DW-3 with a concentration detected of (150.0 ug/L) during low flow states of the San Juan River.

Soil gas field measurements indicate that the aeration system has been successful in maintaining sufficient oxygen within the subsurface to help sustain bioremedial activity. The elevated PID field readings correlate with the respective soil gas analytical results. Well location DW-3 shows the highest soil gas concentrations, which also correlates to the groundwater results in this location.

4.1.3 Optimized Biovent System Monitoring

A total of 219,715 gallons of impacted groundwater was removed and treated through the GAC filters. The number of gallons removed was substantially lower in 2014 in comparison to 2013. The lower number of gallons removed from the system is due to the fact that the one week spring peak release (5000 cfs) did not take place, and also due in-part to the lower than normal operation of the San Juan River flows for 2014. Also, in response to the lower water table at the river terrace the dewatering system has been adjusted to operate at a slower rate in order to help protect the pumping equipment.

Pressure readings were collected at the biovent wells, air sparging lines, and the main air blower in 2014. The air injection system ran consistently throughout 2014 and required no changes to the air distribution. The pressure readings at each BV well was consistent and at a sufficient level to provide aeration to the vadose zone.

4.2 Recommendations

Groundwater monitoring data collected in 2014 continues to shows that groundwater impacts are localized to within the southwest portion of the River Terrace, with the highest concentrations within the vicinity of DW-3. Western believes that it is no longer necessary to monitor the eastside of the River Terrace because no contamination has been found there as demonstrated by the data.

Western believes that soil gas monitoring in the River Terrace System no longer provides any value. Western believes this because air samples do not show any additional information outside of the groundwater results. Western has removed the impacted soil from the River Terrace System and believes the groundwater is our main focus for remediation.

Section 5 References

- Groundwater Technology Inc., 1994, RCRA Facility Investigation/Corrective Measures Study Report Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico, p.51.
- Malcolm Pirnie, 2005, Giant Refining Company, Bloomfield Refinery, River Terrace Voluntary Corrective Measures Revised Monitoring Plan, October 28, 2005.
- NMED, 2007, River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2006 through December 2006, Bloomfield Refinery, Bloomfield, New Mexico, April 18, 2007.
- NMED, 2009, Approval with Direction River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2008 through December 2008, Bloomfield Refinery, Bloomfield, New Mexico, June 16, 2009.
- NMED, 2010, Request to Suspend In-Situ Respiration Testing at the River Terrace Area, Western Refining Company Southwest, Inc., November 23, 2010.
- NMED, 2011, Proposals to Modify Monitoring at the River Terrace Area, Western Refining Company Southwest, Inc., Bloomfield Refinery, March 15, 2011.
- NMED, 2012, Approval Group 7 SWMU No. 17 River Terrace Area Remediation System Optimization Work Plan, Western Refining Company Southwest, Inc., Bloomfield Refinery, October 12, 2012.
- Western Refining, 2012, Group 7 SWMU No. 17 River Terrace Area Remediation System Optimization Work Plan.
- Western Refining, 2013 Group 7 SWMU No. 17 River Terrace Area Remediation System Optimization Report, May 3, 2013.

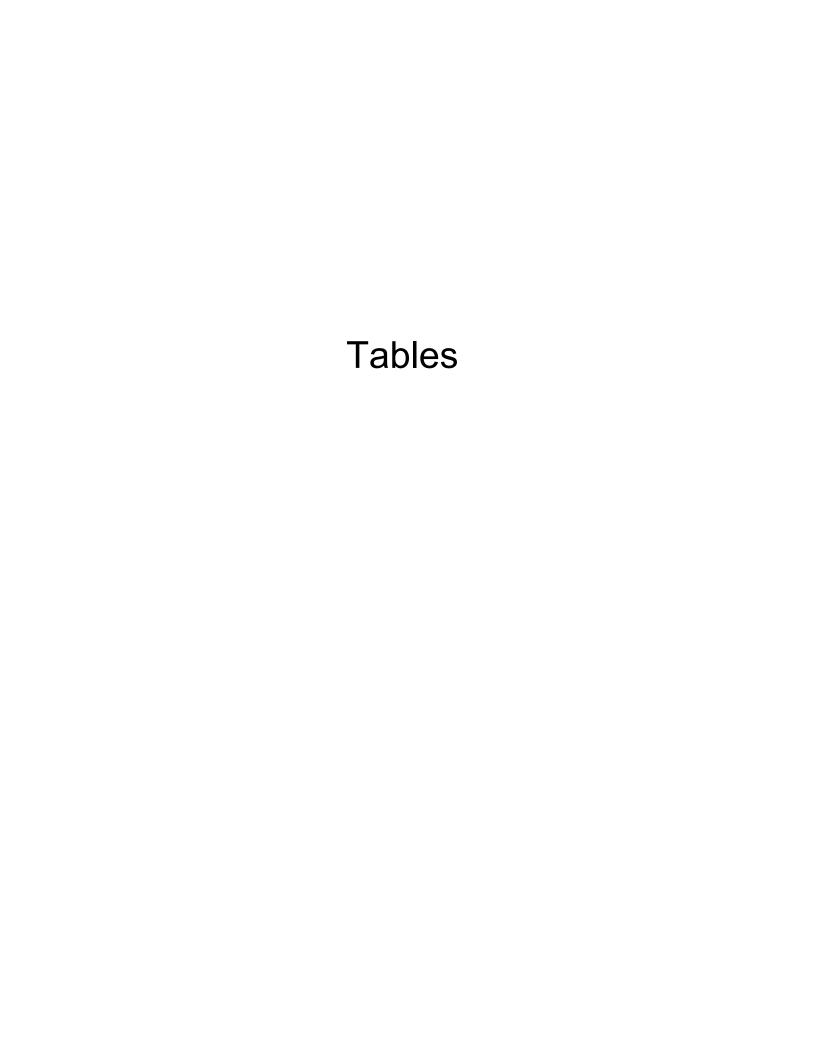


Table 1
2014 Soil Gas Monitoring Data Summary

Sample Location	Sampling Activities	Date	Purge Volume (L)	Depth to Water (ft below TOC)	Pressure (Inches of Water)	PID (ppm)	Oxygen (%)	Carbon Dioxide (%)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TPH-GRO (ug/L)
TP-1	***Decommissioned November 2012	November 2012	***	***	***	***	***	***	***	***	***	***	***
TP-2	***Decommissioned November 2012	November 2012	***	***	***	***	***	***	***	***	***	***	***
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
ual)	Low Flow 2013	Week of 07-09-13	20*	7.11	0.00	2.2	19.4	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
TP-3 (Bi-Annual)	High Flow 2012	Week of 05-31-12	NR ²	5.32	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
-3 (B	Low Flow 2012	Week of 04-09-12	NR ²	7.37	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
Ë	High Flow 2011	Week of 06-13-11	NR ²	5.80	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	Low Flow 2011	Week of 07-26-11 No High	12.9	7.71	0.00	0.1	20.3	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2014 **	Flow Week of	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	04/21/14 No High	9.5	5.19	0.00	5.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	Flow Week of	**	**	**	**	**	**	**	**	**	**	**
TP-5	Low Flow 2013	07/09/13 Week of	20*	4.95	0.00	1.1	19.4	0.0	<0.10	<0.10	<0.10	<0.30	6.9
	High Flow 2012 Low Flow 2012	05-31-12 Week of	6.3	3.42	0.00	8.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	Low Flow 2012	04-19-12 Week of	9.4	5.09	0.50	0.6	20.8	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2011	07-26-11 Week of	10.3	5.69	0.40	2.2	20.3	0.0	<0.10	<0.10	<0.10	<0.30	12.0
	High Flow 2014 **	06-13-11 No High	9.0	4.95 **	0.00	0.9	19.4 **	0.1	<0.10	<0.10	<0.10	<0.30	<5.0 **
	Low Flow 2014	Flow Week of 04/21/14	11.2	6.11	0.00	2.8	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
φ	Low Flow 2013	Week of 07/9/13	20*	5.79	0.00	0.1	19.1	0.1	<0.10	<0.10	<0.10	<0.30	<5.0
TP-6	High Flow 2012	Week of 05-31-12	7.5	4.06	0.00	0.2	20.9	0.0	<0.10	<0.10	<0.10	<0.30	7.9
	Low Flow 2012	Week of 04-19-12	11.0	6.01	0.00	0.0	20.8	0.0	<0.10	<0.10	<0.10	<0.30	6.8
	Low Flow 2011	Week of 07-26-11	11.9	6.58	0.50	0.5	20.3	0.0	<0.10	<0.10	<0.10	<0.30	10
	High Flow 2011	Week of 06-13-11	9.7	5.36	0.00	0.9	19.8	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**

Table 1
2014 Soil Gas Monitoring Data Summary

	Burge Carbon												
Sample Location	Sampling Activities	Date	Purge Volume (L)	Depth to Water (ft below TOC)	Pressure (Inches of Water)	PID (ppm)	Oxygen (%)	Carbon Dioxide (%)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TPH-GRO (ug/L)
- E	Low Flow 2013	Week of		E E0	0.00	0.0	17.0		-0.10	-0.10	-0.10	-0.20	-E O
(Bi-Annual)	5	07/09/13 Week of	20*	5.59	0.00	0.0	17.8	2.7	<0.10	<0.10	<0.10	<0.30	<5.0
i-An	High Flow 2012	05-31-12	NM	2.73	NR ²	NR^2	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	Low Flow 2012	Week of 07-01-12	NM	5.79	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-7	Low Flow 2011	Week of 07-26-11	10.6	6.15	0.00	0.1	19.8	0.4	<0.10	<0.10	<0.10	<0.30	5.8
	High Flow 2011	Week of 06-13-11	11.0	2.95	0.00	0.1	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	Week of 04/21/14	11.4	6.22	0.00	1.2	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
TP-8	Low Flow 2013	Week of 07/09/13	20*	6.29	0.00	11.8	18.5	0.7	<0.10	<0.10	0.12	<0.30	17.0
	High Flow 2012	Week of 05-31-12	9.2	5.02	0.00	0.6	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	Low Flow 2012	Week of 04-19-12	11.9	6.50	2.00	0.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	Low Flow 2011	Week of 07-26-11	12.5	7.46	3.90	0.5	20.3	0.0	<0.10	<0.10	<0.10	<0.30	8.7
	High Flow 2011	Week of 06-13-11	11.3	6.26	0.00	0.1	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	Week of 04/21/14	12.8	6.98	0.00	2.1	19.0	1.7	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
TP-9	Low Flow 2013	Week of 07/09/13	20*	5.23	0.00	0.6	19.4	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
₽	High Flow 2012	Week of 05-31-12	4.0	2.18	0.00	0.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	Low Flow 2012	Week of 04-19-12	10.6	5.75	0.00	0.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	Low Flow 2011	Week of 07-26-11	9.7	5.93	0.00	0.5	20.8	0.0	<0.10	<0.10	<0.10	<0.30	8.2
	High Flow 2011	Week of 06-13-11	4.9	2.13	0.00	0.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
ual)	Low Flow 2013	Week of 07/09/13	20*	4.99	0.00	0.5	19.4	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
-Ann	High Flow 2012	Week of 05-31-12	NR ²	2.82	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-10 (Bi-Annual)	Low Flow 2012	Week of 04-19-12	NR ²	5.33	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
₫	Low Flow 2011	Week of 07-26-11	9.1	5.57	0.00	0.1	20.5	0.0	<0.10	<0.10	<0.10	<0.30	<5.0

Table 1
2014 Soil Gas Monitoring Data Summary

Sample Location	Sampling Activities	Date	Purge Volume (L)	Depth to Water (ft below TOC)	Pressure (Inches of Water)	PID (ppm)	Oxygen (%)	Carbon Dioxide (%)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TPH-GRO (ug/L)
	High Flow 2011	Week of 06-13-11	NR ²	3.08	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
nual)	Low Flow 2013	Week of 07/09/13	20*	5.45	0.00	0.3	19.4	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
TP-11 (Bi-Annual)	High Flow 2012	Week of 05-31-12	NR ²	3.48	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
11 (E	Low Flow 2012	Week of 04-19-12	NR ²	5.75	NR ²	NR^2	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
Ţ	High Flow 2011	Week of 06-13-11	NR ²	3.81	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	Low Flow 2011	Week of 07-26-11	9.8	6.03	0.00	0.0	20.4	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
nual)	Low Flow 2013	Week of 07/09/13	20*	7.10	0.00	0.1	19.4	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
i-Anr	High Flow 2012	Week of 05-31-12	NR ²	5.00	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-12 (Bi-Annual)	Low Flow 2012	Week of 04-19-12	NR ²	7.45	NR ²	NR^2	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP.	High Flow 2011	Week of 06-13-11	NR ²	5.24	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	Low Flow 2011	Week of 07-26-11	12.9	7.67	0.00	0.2	20.5	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
nual)	Low Flow 2013	Week of 07/09/13	20*	5.88	0.00	0.1	19.3	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
Bi-Annual)	High Flow 2012	Week of 05-31-12	NR ²	3.78	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-13 (E	Low Flow 2012	Week of 04-19-12	NR ²	6.29	NR ²	NR^2	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
Ė	High Flow 2011	Week of 06-13-11	NR ²	3.82	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	Low Flow 2011	Week of 07-26-11	10.8	6.46	0.00	0.2	20.4	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
nual)	Low Flow 2013	Week of 07/09/13	80*	9.64	0.00	0.0	19.0	0.4	<0.10	<0.10	<0.10	<0.30	<5.0
(Bi-Annual)	High Flow 2012	Week of 05-31-12	NM	3.99	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	Low Flow 2012	Week of 04-19-12	NM	6.41	NR ²	NR^2	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
DW-1	High Flow 2011	Week of 06-13-11	75.1	4.54	0.00	0.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	Low Flow 2011	Week of 07-26-11	101.0	6.68	0.00	0.5	20.3	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**

Table 1
2014 Soil Gas Monitoring Data Summary

Sample Location	Sampling Activities	Date	Purge Volume (L)	Depth to Water (ft below TOC)	Pressure (Inches of Water)	PID (ppm)	Oxygen (%)	Carbon Dioxide (%)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)	TPH-GRO (ug/L)
DW-3	Low Flow 2014	Week of 04/21/14	50.7	6.92	0.00	25.8	20.3	0.6	0.74	<0.10	12.0	20.0	150.0
MO	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2013	Week of 07/09/13	20*	6.64	0.00	9.7	18.7	0.6	0.25	<0.10	1.30	11.0	61.0
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	Week of 04/21/14	73.9	10.08	0.00	0.8	19.9	0.8	<0.10	<0.10	<0.10	<0.30	<5.0
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**
64	Low Flow 2013	Week of 07/09/13	50*	9.17	0.00	0.1	17.0	2.9	<0.10	<0.10	<0.10	<0.30	<5.0
MW-49	HighFlow 2012	Week of 05-31-12	42.3	5.76	0.00	0.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	Low Flow 2012	Week of 04-19-12	70.1	9.56	0.00	0.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0
	Low Flow 2011	Week of 07-26-11	67.0	9.76	0.00	0.2	19.7	0.3	<0.10	<0.10	<0.10	<0.30	5.4
	High Flow 2011	Week of 06-13-11	45.3	5.74	0.00	0.0	20.9	0.0	<0.10	<0.10	<0.10	<0.30	<5.0

Notes:

NR¹ = Not Required (NMED, 2009)

NR² = Not Required (NMED, 2011) NM = Not Measured

NA = Inadvertently not Analyzed

^{*} Purge volumes based on calculation of approximately 10 L/min pumping rate. 2-inch diameter wells pumped for approximately 2 minutes; 4-inch wells were pumped for 5 minutes; and 6-inch wells were pumped for 8 minutes.

^{**} Due to drought, river conditions never met high flow requirements.

^{***} Well Decommissioned November 2012 as part of biovent system enhancements.

TABLE 2 2014 Groundwater Monitoring Data Summary

												MCL WQCC 20NMAC 6.2.3103		WQCC 20NMAC 6.2.3103	USEPA Regional Screening Levels	*TPH Screening Guidelines Table 2a		WQCC 20NMAC 6.2.3103		40 CFR 141.	.62 (MCL)
											0.005	0.75	0.700	0.620	0.012	0.2		1.00	0.05	0.0150	0.002
Sample Location	Sampling Event	DATE	Depth to Water (ft below TOC)	Depth to Product (ft below TOC)	Total Well Depth (ft below TOC)	Conductivity (umhos/cm)	D.O. (mg/L)	ORP (mV)	рН	TEMP (°F)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	MTBE (mg/L)	TPH-DRO (mg/L)	TPH-GRO (mg/L)	Barium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Mercury (mg/L)
TP-1	***Decommissioned November 2012	November 2012	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***
TP-2	***Decommissioned November 2012	November 2012	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***
<u>(</u>	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
TP-3 (Bi-Annual)	Low Flow 2013	07/11/13	7.11	NPP	12.35	421	2.06	62	7.47	66.4	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.05	NR ²	NR ²	0.0051	NR ²
i-Ar	High Flow 2012	Week of 05/29/12 Week of	5.32	NPP	12.35	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
3 (E	Low Flow 2012	04/09/12 Week of	7.37	NPP	12.35	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
T.	Low Flow 2011	07/25/11 Week of	7.71	NPP	12.35	434	3.76	256	6.30	66.2	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.005	NR ²
	High Flow 2011	06/13/11 No High	5.80	NPP **	12.35	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	High Flow 2014 **	Flow Week of																			
	Low Flow 2014 High Flow 2013 **	04/22/14 No High	5.19	NPP **	8.84	526	0.34	-251	7.30	53.7	<0.005	<0.005	0.027	0.450	<0.005	2.2	4.0	NR ²	NR ²	0.012	NR ²
10	Low Flow 2013	Flow Week of	4.95	NPP	8.84	431	2.55	-210	7.56	68.1	<0.010	<0.010	0.022	0.590	<0.010	0.69	4.6	NR ²	NR ²	0.013	NR ²
TP-5	High Flow 2012	07/11/13 Week of	3.42	NPP	8.84	470	1.48	-33	6.30	61.1	<0.005	<0.005	0.017	0.450	<0.005	1.10	4.20	NR ²	NR ²	0.0260	NR ²
	Low Flow 2012	05/29/12 Week of	5.09	NPP	8.84	363	0.93	-266	6.80	50.9	<0.005	<0.005	0.020	0.410	<0.005	0.60	1.80	NR ²	NR ²	0.3600	NR ²
	Low Flow 2011	04/09/12 Week of 07/26/11	5.69	NPP	8.84	932	1.78	192	6.70	68.5	<0.010	<0.01	0.051	1.200	<0.025	0.24	4.9	NR ²	NR ²	0.0550	NR ²
	High Flow 2011	Week of 06/13/11	4.95	NPP	8.84	561	0.72	273	6.95	62.2	<0.010	<0.01	0.350	4.200	<0.025	3.20	20	NR ²	NR ²	0.0580	NR ²
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	Week of 04/22/14	6.11	NPP	9.94	552	4.25	-83	7.11	53.5	<0.001	<0.001	0.028	0.093	<0.001	1.7	3.5	NR ²	NR ²	0.0084	NR ²
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
9-dL	Low Flow 2013	Week of 07/11/13	5.79	NPP	9.94	457	6.84	-7	7.71	70.2	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	0.0100	NR ²
	High Flow 2012	Week of 05/29/12	4.06	NPP	9.94	450	1.67	-6	7.10	61.9	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	0.360	NR ²	NR ²	0.0240	NR ²
	Low Flow 2012	Week of 04/09/12	6.01	NPP	9.94	612	6.00	-64	7.53	51.0	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	0.0230	NR ²
	Low Flow 2011	Week of 07/26/11	6.58	NPP	9.94	706	3.90	182	6.70	68.1	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.0050	NR ²
	High Flow 2011	Week of 06/13/11	5.36	NPP	9.94	699	1.08	153	6.89	62.0	<0.001	<0.001	0.002	0.002	<0.0025	<0.20	0.2	NR ²	NR ²	0.0520	NR ²

TABLE 2 2014 Groundwater Monitoring Data Summary

											MCL	WQCC 20NMAC 6.2.3103	MCL	WQCC 20NMAC 6.2.3103	USEPA Regional Screening Levels		H Screening Guidelines Table 2a		20NMAC 2.3103	40 CFR 141	.62 (MCL)
											0.005	0.75	0.700	0.620	0.012	0.2		1.00	0.05	0.0150	0.002
Sample Location	Sampling Event	DATE	Depth to Water (ft below TOC)	Depth to Product (ft below TOC)	Total Well Depth (ft below TOC)	Conductivity (umhos/cm)	D.O. (mg/L)	ORP (mV)	pН	TEMP (°F)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	MTBE (mg/L)	TPH-DRO (mg/L)	TPH-GRO (mg/L)	Barium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Mercury (mg/L)
<u> </u>	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
ınal	Low Flow 2013	Week of 07/11/13	5.59	NPP	9.72	704	5.67	-56	7.40	64.9	<0.010	<0.010	<0.010	<0.020	<0.010	<0.20	<0.50	NR ²	NR ²	0.0014	NR ²
(Bi-Annual)	High Flow 2012	Week of 05/29/12	2.73	NPP	9.72	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
i <u>ė</u>	Low Flow 2012	Week of 04/09/12	5.79	NPP	9.72	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-7	Low Flow 2011	Week of 07/26/11	6.15	NPP	9.72	1081	1.82	219	6.80	69.2	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	0.0061	NR ²
	High Flow 2011	Week of 06/13/11	2.95	NPP	9.72	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	Week of 04/22/14	6.22	NPP	9.72	957	2.33	-226	7.56	53.6	<0.005	<0.005	0.019	0.083	<0.005	2.3	4.0	NR ²	NR ²	0.0080	NR ²
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
TP-8	Low Flow 2013	Week of 07/11/13	6.29	NPP	9.72	995	1.71	-179	7.40	68.0	<0.005	<0.005	0.014	0.091	<0.005	1.60	4.00	NR ²	NR ²	0.0110	NR ²
=	High Flow 2012	Week of 05/29/12	5.02	NPP	9.72	789	1.92	79	7.00	60.9	<0.005	<0.005	0.019	0.110	<0.005	1.30	3.00	NR ²	NR ²	0.0550	NR ²
	Low Flow 2012	Week of 04/09/12	6.50	NPP	9.72	883	1.65	-209	7.55	50.2	<0.005	<0.005	0.022	0.069	<0.005	0.83	0.41	NR ²	NR ²	0.0190	NR ²
	Low Flow 2011	Week of 07/26/11	7.46	NPP	9.72	825	2.09	119	6.70	67.2	<0.005	<0.005	0.029	0.130	<0.013	0.62	2.1	NR ²	NR ²	0.0054	NR ²
	High Flow 2011	Week of 06/13/11	6.26	NPP	9.72	886	0.88	204	6.68	59.9	<0.005	<0.005	0.026	0.140	<0.013	1.0	1.9	NR ²	NR ²	0.0600	NR ²
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	Week of 04/22/14	6.98	NPP	10.97	1410	5.09	-54	7.05	50.8	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	<0.0050	NR ²
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
TP-9	Low Flow 2013	Week of 07/11/13	5.23	NPP	10.97	1330	4.80	65	7.00	65.5	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	0.0091	NR ²
F	High Flow 2012	Week of 05/29/12	2.18	NPP	10.97	1113	1.82	148	6.90	58.3	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	<0.0025	NR ²
	Low Flow 2012	Week of 04/09/12	5.75	NPP	10.97	1290	2.08	-125	7.18	47.8	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.05	NR	NR	<0.0050	NR
	Low Flow 2011	Week of 07/26/11	5.93	NPP	10.97	1690	2.38	237	6.70	66.5	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	<0.0050	NR ²
	High Flow 2011	Week of 06/13/11	2.13	NPP	10.97	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
al)	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
nuu	Low Flow 2013	07/11/13	4.99	NPP	9.95	340	2.01	60	7.50	63.1	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	0.0013	NR ²
i-A	High Flow 2012	05/29/12	2.82	NPP	9.95	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-10 (Bi-Annual)	Low Flow 2012	Week of 04/09/12	5.33	NPP	9.95	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
<u>-</u>	Low Flow 2011	Week of 07/26/11	5.57	NPP	9.95	406	2.24	257	6.60	66.1	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.0050	NR ²
	High Flow 2011	Week of 06/13/11	3.08	NPP	9.95	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²

TABLE 2 2014 Groundwater Monitoring Data Summary

											MCL	WQCC 20NMAC 6.2.3103	MCL	WQCC 20NMAC 6.2.3103	USEPA Regional Screening Levels	*TPH Screenii Tabl			C 20NMAC 2.3103	40 CFR 141.	62 (MCL)
											0.005	0.75	0.700	0.620	0.012	0.2		1.00	0.05	0.0150	0.002
Sample Location	Sampling Event	DATE	Depth to Water (ft below TOC)	Depth to Product (ft below TOC)	Total Well Depth (ft below TOC)	Conductivity (umhos/cm)	D.O. (mg/L)	ORP (mV)	рН	TEMP (°F)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	MTBE (mg/L)	TPH-DRO (mg/L)	TPH-GRO (mg/L)	Barium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Mercury (mg/L)
=	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
(Bi-Annual)	Low Flow 2013	Week of 07/11/13	5.45	NPP	9.98	500	1.92	-28	7.40	62.4	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	0.0130	NR ¹
i-Ar	High Flow 2012	Week of 05/29/12	3.48	NPP	9.98	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
1 (B	Low Flow 2012	Week of 04/09/12	5.75	NPP	9.98	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-11	Low Flow 2011	Week of 07/26/11	6.03	NPP	9.98	476	2.24	264	6.70	65.0	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.0050	NR ²
	High Flow 2011	Week of 06/13/11	3.81	NPP	9.98	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
e e	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
nuc	Low Flow 2013	Week of 07/11/13	7.10	NPP	11.79	561	2.61	-32	7.60	56.6	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	0.0058	NR ²
i-A	High Flow 2012	Week of 05/29/12	5.00	NPP	11.79	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-12 (Bi-Annual)	Low Flow 2012	Week of 04/09/12	7.45	NPP	11.79	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
<u>-</u> -	Low Flow 2011	Week of 07/26/11	7.67	NPP	11.79	903	2.13	268	6.70	58.6	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.0050	NR ²
	High Flow 2011	Week of 06/13/11	5.24	NPP	11.79	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
(Bi-Annual)	Low Flow 2013	Week of 07/11/13	5.88	NPP	16.09	365	3.23	-54	7.50	60.7	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	0.0068	NR ²
Ann	High Flow 2012	Week of 05/29/12	3.78	NPP	16.09	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
·Bj-	Low Flow 2012	Week of 04/09/12	6.29	NPP	16.09	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
TP-13	Low Flow 2011	04/19/10	6.46	NPP	16.09	406	1.86	262	6.60	63.7	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.0050	NR ²
₽	High Flow 2011	Week of 04/19/10 Week of	3.82	NPP	16.09	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
	Baseline	08/15/05	6.27	NPP	16.09	1226	NR	NR	6.97	58.4	<0.0005	<0.0005	<0.0005	0.004	<0.0025	*<1.00	<0.05	NR	NR	NR	NR
a)	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
וות	Low Flow 2013	07/11/13	9.64	NPP	15.62	1936	2.43	-93	7.00	68.8	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR ²	NR ²	0.0014	<0.0002
(Bi-Annual)	High Flow 2012	Week of 05/29/12	3.99	NPP	15.62	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
1 (B	Low Flow 2012	Week of 04/09/12	6.41	NPP	15.62	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²
DW-1	Low Flow 2011	07/26/11	6.68	NPP	15.62	3116	2.67	156	6.70	68.1	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.0050	<0.0002
_	High Flow 2011	Week of 06/13/11	4.54	NPP	15.62	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²	NR ²

TABLE 2 2014 Groundwater Monitoring Data Summary

											MCL	WQCC 20NMAC 6.2.3103	MCL	WQCC 20NMAC 6.2.3103	USEPA Regional Screening Levels	*TPH Screeni Tabl	ng Guidelines le 2a		20NMAC 2.3103	40 CFR 141.	.62 (MCL)
											0.005	0.75	0.700	0.620	0.012	0.2		1.00	0.05	0.0150	0.002
Sample Location	Sampling Event	DATE	Depth to Water (ft below TOC)	Depth to Product (ft below TOC)	Total Well Depth (ft below TOC)	Conductivity (umhos/cm)	D.O. (mg/L)	ORP (mV)	рН	TEMP (°F)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	MTBE (mg/L)	TPH-DRO (mg/L)	TPH-GRO (mg/L)	Barium (mg/L)	Chromium (mg/L)	Lead (mg/L)	Mercury (mg/L)
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	Week of 04/22/14	6.92	NPP	14.64	1048	0.68	-266	7.36	54.6	0.067	<0.010	0.720	1.300	<0.010	1.7	8.8	NR ²	NR ²	<0.0050	NR ²
₆	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
DW-3	Low Flow 2013	Week of 07/11/13	10.86	NPP	14.64	945	1.15	-265	7.55	67.1	0.098	<0.010	1.700	4.100	<0.010	3.30	23	NR ²	NR ²	0.0055	NR ²
	Baseline	Week of 05/14/13	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	4.80	31.00	NS	NS	NS	NS
	Baseline	Week of 02/14/13	NS	NS	NS	NS	NS	NS	NS	NS	0.082	<0.010	0.055	0.140	NS	NS	2.2	NS	NS	NS	NS
	Baseline	Week of 11/19/12	NS	NS	NS	NS	NS	NS	NS	NS	1.400	0.0029	1.800	8.500	NS	5.20	27.0	NS	NS	NS	NS
	High Flow 2014 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
	Low Flow 2014	Week of 04/22/14	10.08	NPP	16.48	1255	4.84	-111.2	7.45	51.08	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR	NR	0.0064	NR
	High Flow 2013 **	No High Flow	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**	**
-49	Low Flow 2013	Week of 07/11/13	9.17	NPP	16.48	749	1.67	-105	7.35	63.4	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.050	NR	NR	0.0013	NR
×	High Flow 2012	Week of 05/29/12	5.76	NPP	16.48	653	2.07	77	7.1	61.2	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.05	NR	NR	<0.0025	NR
	Low Flow 2012	Week of 04/09/12	9.56	NPP	16.48	570	1.61	-113.5	7.71	49.2	<0.001	<0.001	<0.001	<0.002	<0.001	<0.20	<0.05	NR	NR	<0.0050	NR
	Low Flow 2011	Week of 07/26/11	9.76	NPP	16.48	641	2.15	169	7.00	61.5	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.0050	NR
	High Flow 2011	Week of 06/13/11	5.74	NPP	16.48	738	0.96	232	6.88	63.4	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05	NR ²	NR ²	<0.005	NR

Notes:

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

NR¹= Not Required (Approval With Direction - June 2009)

NR²= Not Required (Approval With Direction - May 2011)

NS = Not Sampled

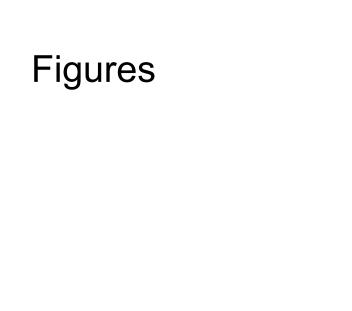
(Bi-Annual) = Samples taken every other year starting in 2011.

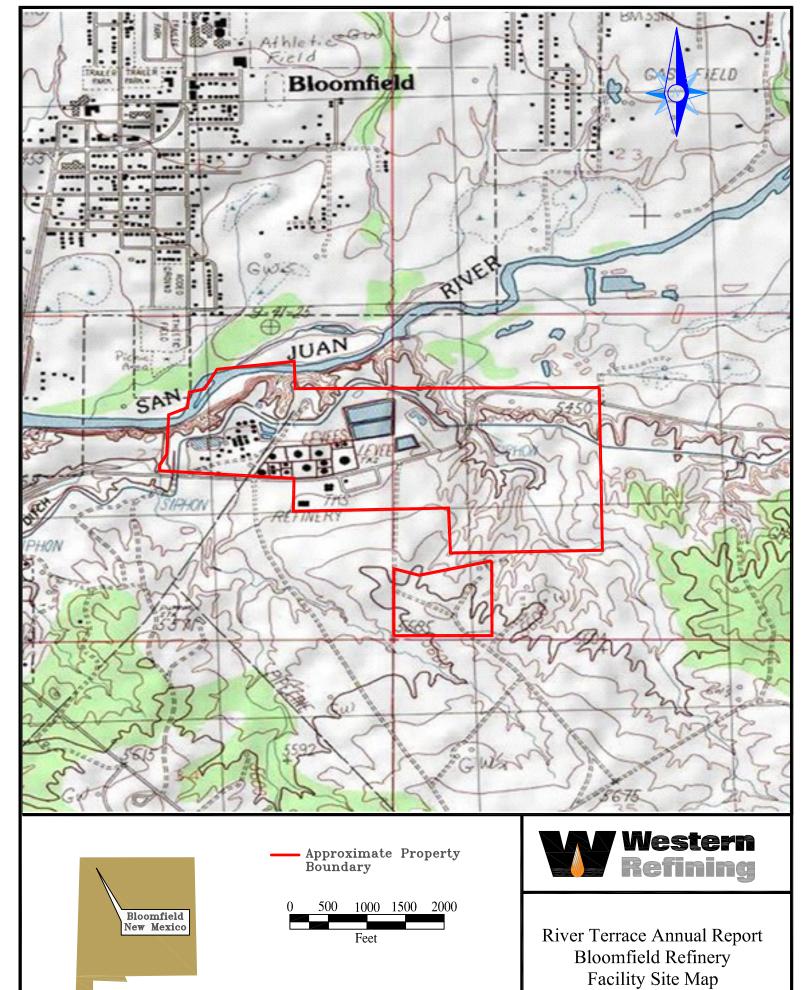
^{*} Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

 $^{^{\}star\star}$ Due to drought, river conditions never met high flow requirements.

^{***} Well Decommissioned November 2012 as part of biovent system enhancements.

Table 3 2014 Biovent Wells Field Reading Summary

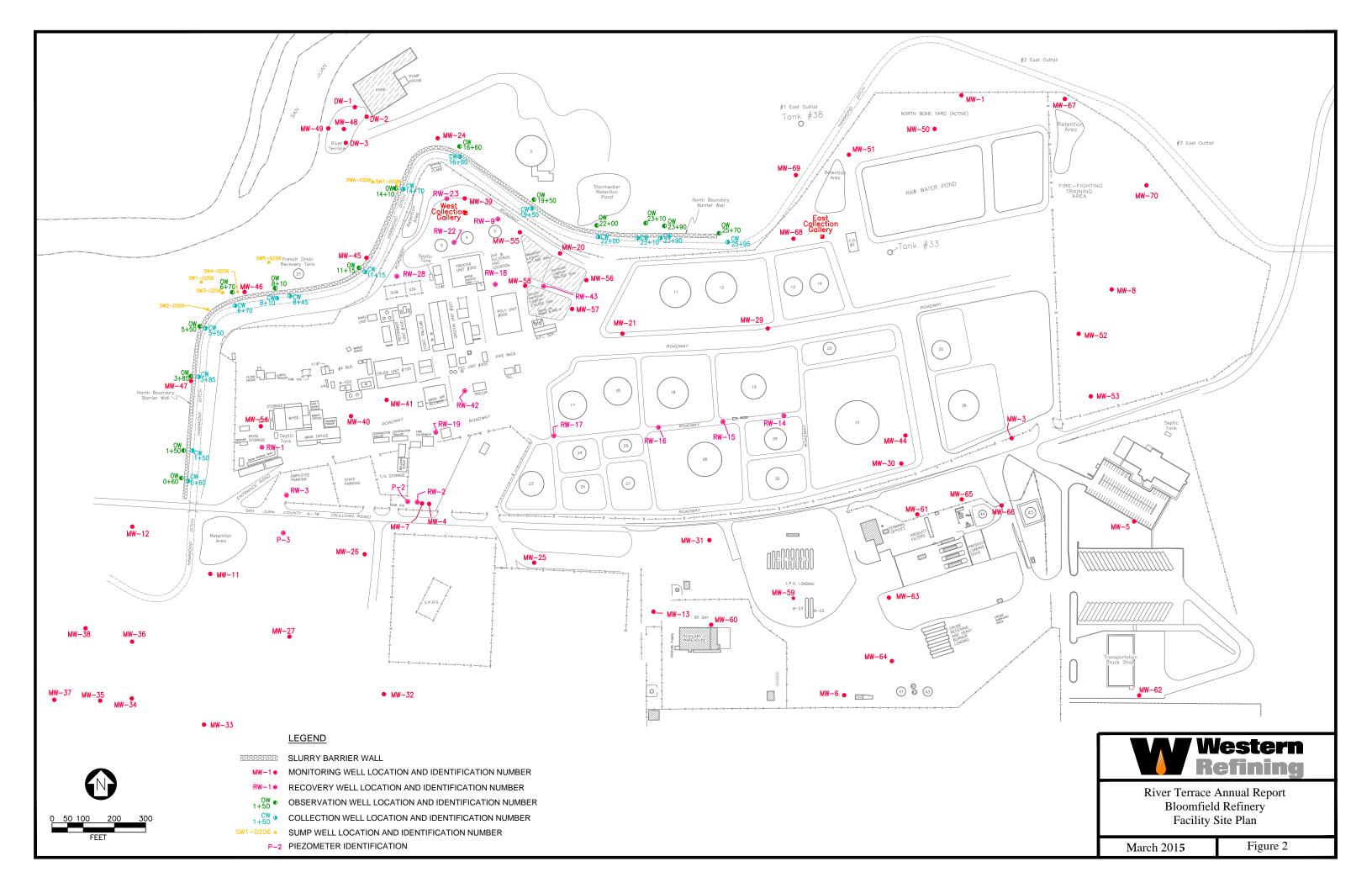

Sample Location	Sampling Event	Sample Date	Pressure (psi)
BV - 1	Low Flow	04/21/14	2.0
BV - 3	Low Flow	04/21/14	2.0
BV - 4	Low Flow	04/21/14	2.0
BV - 5	Low Flow	04/21/14	2.0
BV - 6	Low Flow	04/21/14	2.0
Air Sparging Line A	Low Flow	04/21/14	2.0
Air Sparging Line B	Low Flow	04/21/14	2.0
Main Blower	Low Flow	04/21/14	2.5

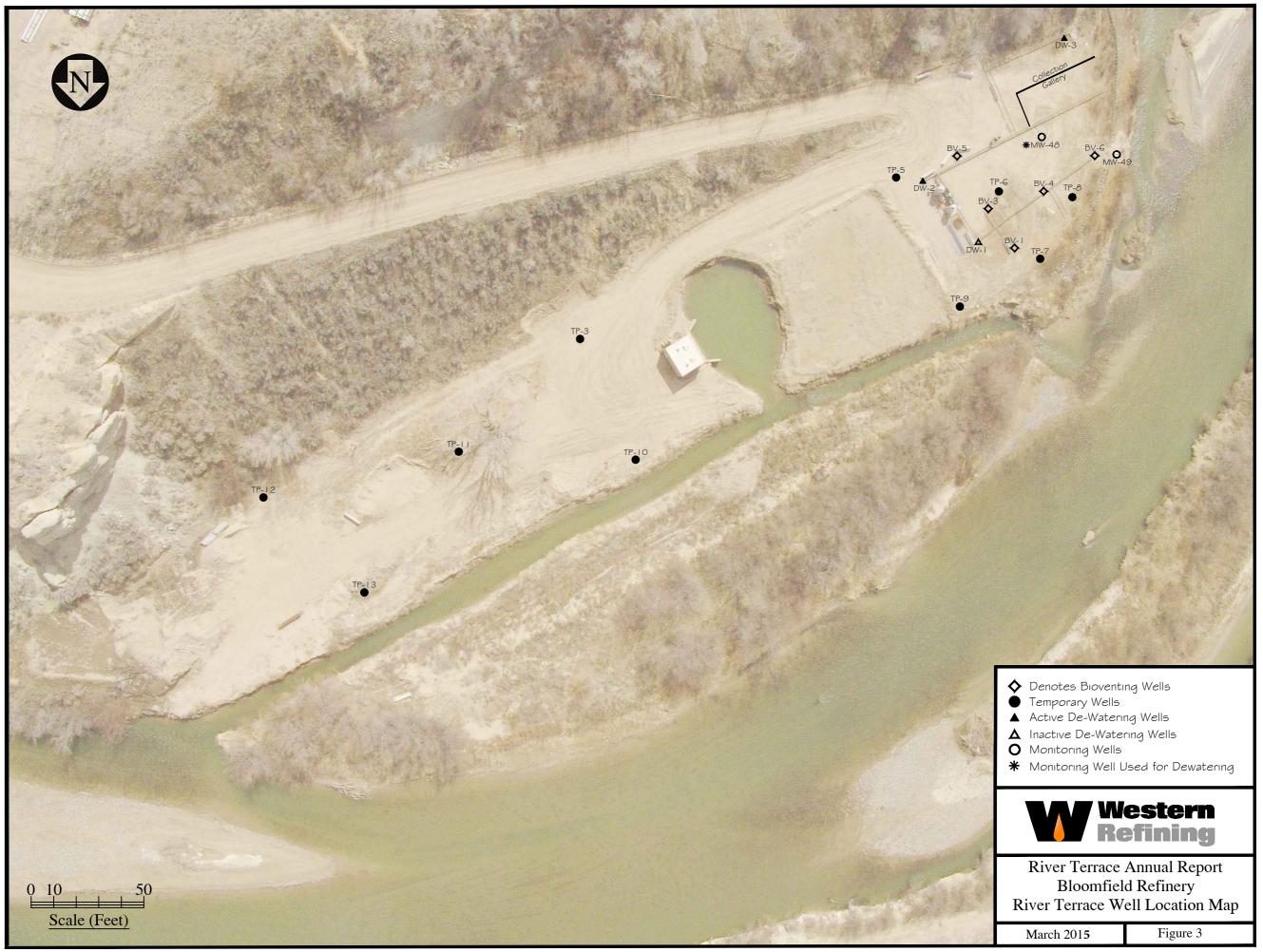

Table 4
2014 GAC Filter Analytical Summary

		MCL	WQCC 20NMAC 6.2.3103	MCL	WQCC 20NMAC 6.2.3103	TPH Sc Guidelines	•	
Sample Location	Sampling Event	DATE	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)	TPH-DRO (mg/L)	TPH-GRO (mg/L)
			0.005	0.750	0.700	0.620	0.2	
		12/01/14	0.078	<0.010	0.610	0.590	2.9	5.5
	4th Quarter	11/04/14	0.087	<0.010	0.670	0.620	1.8	6.6
		10/01/14	0.054	<0.010	0.560	0.760	3.0	6.0
		09/03/14	0.071	<0.010	0.550	0.580	2.4	5.0
Η̈́	3rd Quarter	08/04/14	0.120	<0.010	0.750	1.200	2.4	14
Z		07/01/14	0.099	<0.010	0.710	0.890	2.0	7.0
GAC-INLET		06/05/14	0.170	<0.020	0.760	1.500	3.1	9.5
9	2nd Quarter	05/08/14	0.023	<0.020	0.700	1.000	1.7	7.1
		04/07/14	0.110	<0.010	1.000	2.700	2.9	17.0
		03/03/14	0.150	<0.010	0.750	0.830	2.7	7.9
	1st Quarter	02/03/14	0.140	<0.010	0.870	0.980	3.7	8.3
		01/07/14	0.110	<0.001	0.760	0.750	0.35	8.8
		12/01/14	<0.001	<0.001	<0.001	<0.0015	<0.20	<0.050
	4th Quarter	11/04/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
		10/01/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
		09/03/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
Q	3rd Quarter	08/04/14	<0.001	<0.001	<0.001	<0.0015	<0.20	<0.050
GAC-LEAD		07/01/14	<0.001	<0.001	<0.001	<0.0015	<0.20	<0.050
ڼ		60/05/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
Ď	2nd Quarter	05/08/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
		04/07/14	<0.001	<0.001	<0.001	<0.002	<0.20	0.088
		03/03/14	<0.001	<0.001	<0.001	<0.002	<0.20	< 0.050
	1st Quarter	02/03/14	<0.001	<0.001	<0.001	<0.002	0.21	<0.050
		01/07/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
	4th Quarter	10/01/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
	3rd Quarter	07/01/14	<0.001	<0.001	<0.001	<0.0015	<0.20	<0.050
GAC-LAG		06/05/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
궁	2nd Quarter	05/08/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
Ğ.	_	04/07/14	<0.001	<0.001	<0.001	<0.002	<0.20	0.140
	1et Ouerter	03/03/14	<0.001	<0.001	<0.001	<0.002	<0.20	<0.050
	1st Quarter 01/07/14		<0.001	<0.001	<0.001	<0.002	<0.20	<0.050

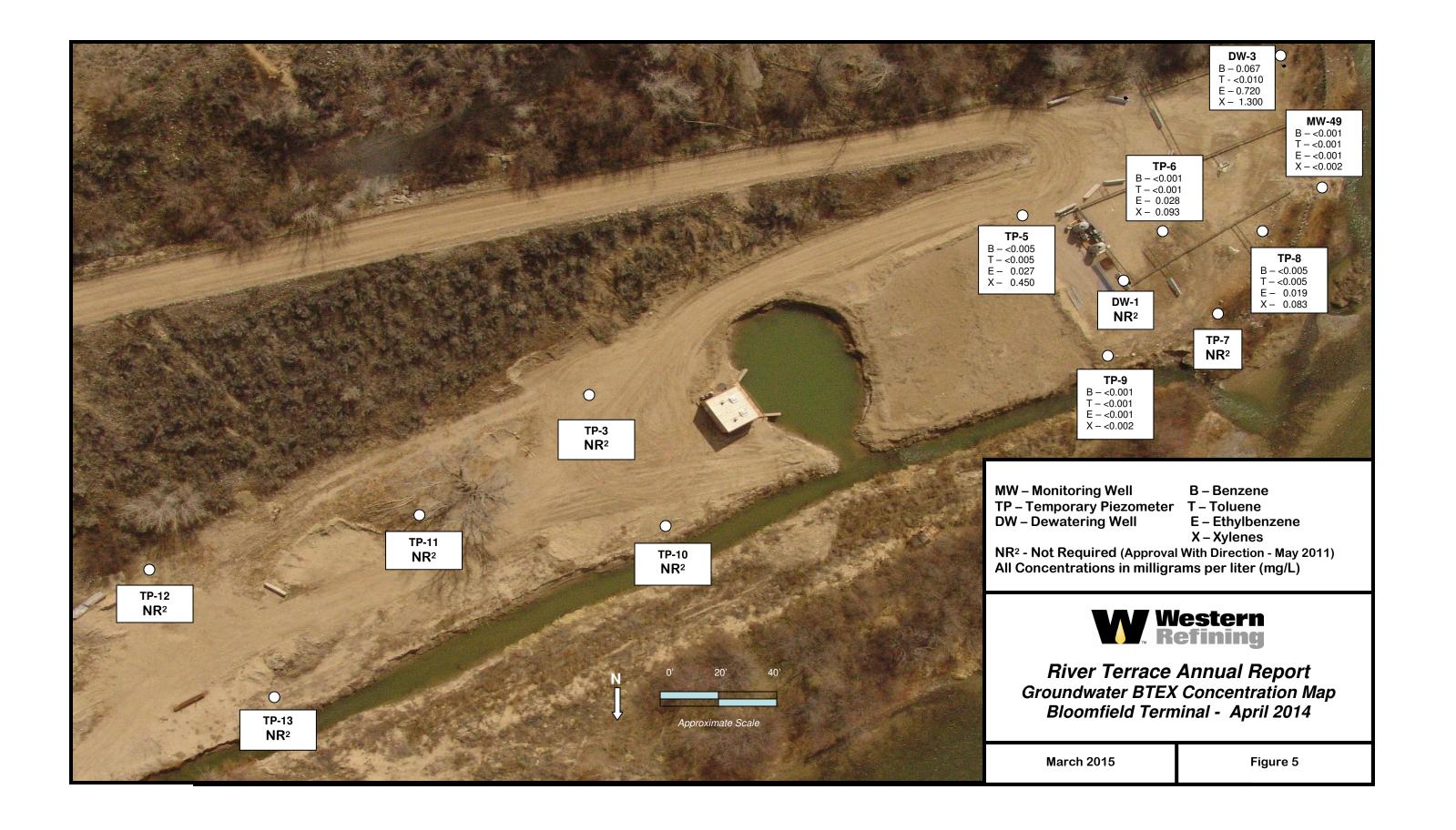
Notes:

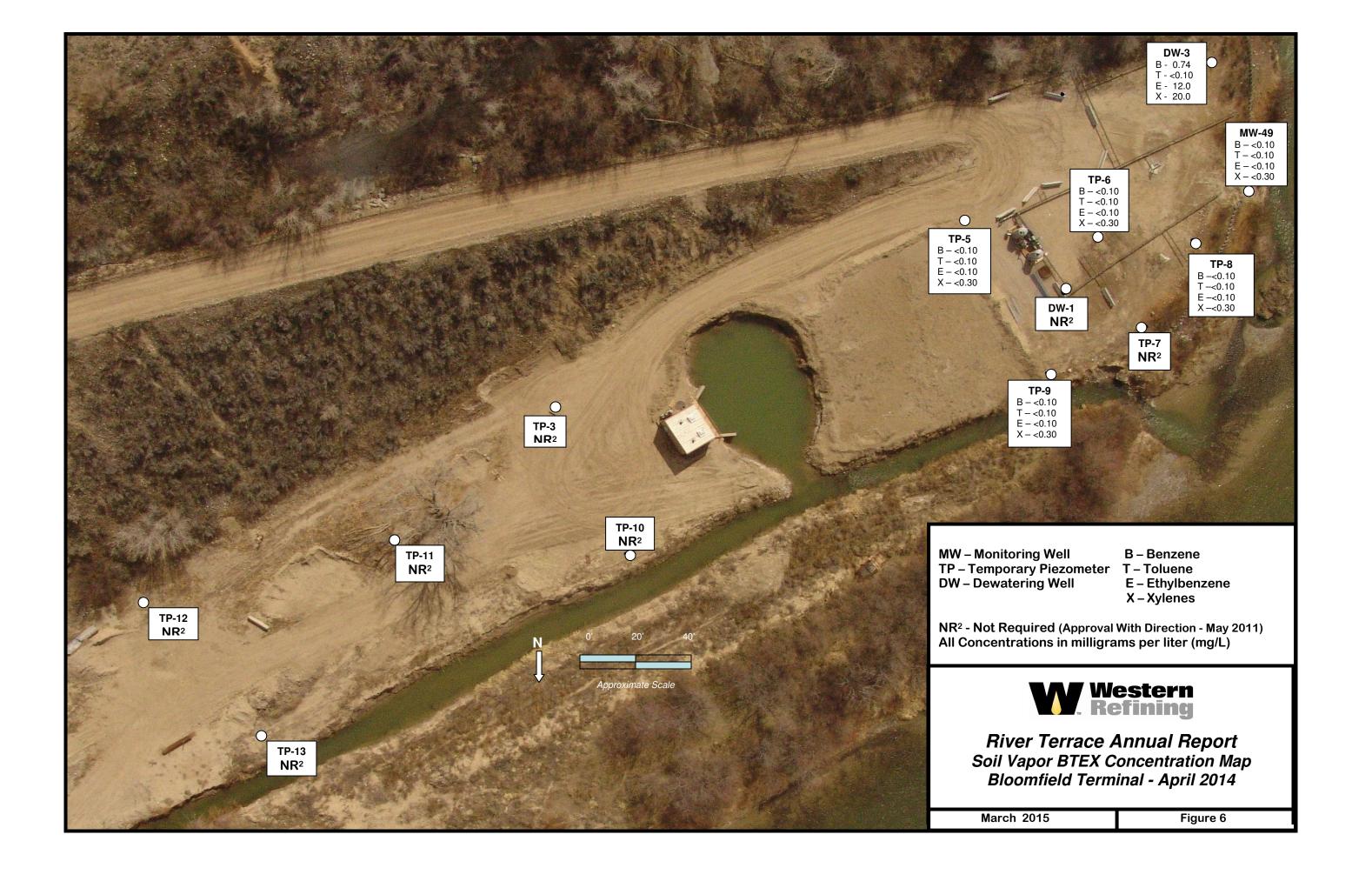
1. Lead GAC changed-out June 2012.





Drawn By: TAG


March 2015


Figure 1

- 20.6.2.3103 STANDARDS FOR GROUND WATER OF 10,000 mg/l TDS CONCENTRATION OR LESS: The following standards are the allowable pH range and the maximum allowable concentration in ground water for the contaminants specified unless the existing condition exceeds the standard or unless otherwise provided in Subsection D of Section 20.6.2.3109 NMAC. Regardless of whether there is one contaminant or more than one contaminant present in ground water, when an existing pH or concentration of any water contaminant exceeds the standard specified in Subsection A, B, or C of this section, the existing pH or concentration shall be the allowable limit, provided that the discharge at such concentrations will not result in concentrations at any place of withdrawal for present or reasonably foreseeable future use in excess of the standards of this section. These standards shall apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the publication "methods for chemical analysis of water and waste of the U.S. environmental protection agency," with the exception that standards for mercury, organic compounds and non-aqueous phase liquids shall apply to the total unfiltered concentrations of the contaminants.
- Human Health Standards-Ground water shall meet the standards of Subsection A and B of this section unless otherwise provided. If more than one water contaminant affecting human health is present, the toxic pollutant criteria as set forth in the definition of toxic pollutant in Section 20.6.2.1101 NMAC for the combination of contaminants, or the Human Health Standard of Subsection A of Section 20.6.2.3103 NMAC for each contaminant shall apply, whichever is more stringent. Non-aqueous phase liquid shall not be present floating atop of or immersed within ground water, as can be reasonably measured

ıbly mea	sured.	4
(1)	Arsenic (As)	
(2)	Barium (Ba)	1.0 mg/l
(3)	Cadmium (Cd)	0.01 mg/l
(4)	Chromium (Cr)	0.05 mg/l
(5)	Cyanide (CN)	0.2 mg/l
(6)	Fluoride (F)	1.6 mg/l
(7)	Lead (Pb)	
(8)	Total Mercury (Hg)	0.002 mg/l
(9)	Nitrate (NO ₃ as N)	10.0 mg/l
(10)		
(11)		0.05 mg/l
(12)		0.03 mg/l
(13)		
(14)		0.01 mg/l
(15)		
(16)	Toluene	0.75 mg/l
(17)		0.01 mg/l
(18)		0.01 mg/l
(19)	1,1-dichloroethylene (1,1-DCE)	0.005 mg/l
(20)		0.02 mg/l
(21)	1,1,2-trichloroethylene (TCE)	0.1 mg/l
(22)	ethylbenzene	0.75 mg/l
(23)		0.62 mg/l
(24)		0.1 mg/l
(25)		0.1 mg/l
(26)	1,1-dichloroethane	0.025 mg/l
(27)	ethylene dibromide (EDB)	0.0001 mg/l
(28)	1,1,1-trichloroethane	0.06 mg/l
(29)	1,1,2-trichloroethane	0.01 mg/l
(30)	1,1,2,2-tetrachloroethane	0.01 mg/l
(31)	vinyl chloride	0.001 mg/l
(32)	PAHs: total naphthalene plus monomethylnaphthalenes	0.03 mg/l
(33)	benzo-a-pyrene	0.0007 mg/l
В.	Other Standards for Domestic Water Supply	
(1)	Chloride (Cl)	250.0 mg/l
(2)	Copper (Cu)	1.0 mg/l
(3)	Iron (Fe)	1.0 mg/I
(4)	Manganese (Mn)	0.2 mg/l
(6)	Phenols	0.005 mg/l
(7)	Sulfate (SO ₄)	600.0 mg/i
(8)	Total Dissolved Solids (TDS)	1000.0 mg/l
(9)	Zinc (Zn)	10.0 mg/l
(10)	pH	
C.	Standards for Irrigation Use - Ground water shall me	et the standards of Subsection

- 200 20 01 2

this section unle	ss otherwise provided.	D.A. 19
(1)	Aluminum (Al)	5.0 mg/l
(1)	Boron (B)	0.75 mg/i
(2)	O-1-1-(O-)	0.05 mg/l
(3)	Cobalt (Co)	1.0 mg/l
(4)	Molybdenum (Mo)	

Metals	(mg/l)
Antimony	0.006 ²
Arsenic	0.01 ²
Barium	1.0
Beryllium	0.004 ²
Cadmium	0.005 ²
Chromium	0.05
Cobalt	0.05
Соррег	1.0
Cyanide	0.2
Lead	0.015²
Mercury	0.002
Nickel	0.200
Selenium	0.05
Silver	0.05
Uranium	0.03
Vanadium	0.26³
Zinc	10.0

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

- 2 Federal Maximum Contaminant Level
- 3 USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)
1,2,4-Trichlorobenzene	70 ²
1,2-Dichlorobenzene	600²
1,3-Dichlorobenzene	Ne
1,4-Dichlorobenzene	75²
2,4,5-Trichlorophenol	3,700 ³
2,4,6-Trichlorophenol	6.1 ³
2,4-Dichlorophenol	110 ³
2,4-Dimethylphenol	730 ³
2,4-Dinitrophenol	73 ³
2,4-Dinitrotoluene	0.22³
2,6-Dinitrotoluene	37 ³
2-Chloronaphthalene	2900³
2-Chlorophenol	180°
2-Methylnaphthalene	150°
2-Methylphenol	1,800 ³
2-Nitroaniline	110 ³
2-Nitrophenol	Ne
3,3'-Dichlorobenzidine	0.15³
3+4-Methylphenoi	180 ³
3-Nitroaniline	Ne
4,6-Dinitro-2-methylphenol	Ne
4-Bromophenyl phenyl ether	Ne
4-Chloro-3-methylphenol	Ne
4-Chloroaniline	0.343
4-Chlorophenyl phenyl ether	Ne
4-Nitroaniline	3.4³
4-Nitrophenol	Ne
Acenaphthene	2200³
Acenaphthylene	Ne

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)
Aniline	12 ³
Anthracene	1100 ^s
Azobenzene	0.12*
Benz(a)anthracene	0.029 ³
Benzo(a)pyrene	0.2 ²
Benzo(b)fluoranthene	0.029 ³
Benzo(g,h,i)perylene	Ne
Benzo(k)fluoranthene	0.29 ³
Benzoic acid	150,000 ³
Benzyl alcohol	1800³
Bis(2-chloroethoxy)methane	110³
Bis(2-chloroethyl)ether	0.012³
Bis(2-chloroisopropyl)ether	Ne
Bis(2-ethylhexyl)phthalate	6²
Butyl benzyl phthalate	35³
Carbazole	Ne
Chrysene	2.9 ³
Dibenz(a,h)anthracene	0.0029 ³
Dibenzofuran	Ne
Diethyl phthalate	29,000 ³
Dimethyl phthalate	Ne
Di-n-butyl phthalate	Ne
Di-n-octyl phthalate	Ne
Fluoranthene	1,500 ³
Fluorene	1500³
Hexachlorobenzene	1.0 ²
Hexachlorobutadiene	0.86 ³
Hexachlorocyclopentadiene	50 ²
Hexachloroethane	4.8 ³

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

- 2 Federal Maximum Contaminant Level
- 3 USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)
Indeno(1,2,3-cd)pyrene	0.029 ³
Isophorone	713
Naphthalene	0.143
Nitrobenzene	0.123
N-Nitrosodimethylamine	0.00042 ³
N-Nitrosodi-n-propylamine	0.0096 ³
N-Nitrosodiphenylamine	14 ³
Pentachlorophenol	1 ²
Phenanthrene	Ne
Phenol	5³
Pyrene	1100³
Pyridine	37 ³

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

- 2 Federal Maximum Contaminant Level
- 3 USEPA Regional Screening Levels (April 2009)

Volatiles	(ug/l)
1,1,1,2-Tetrachloroethane	0.52 ^s
1,1,1-Trichloroethane	60
1,1,2,2-Tetrachloroethane	10
1,1,2-Trichloroethane	5²
1,1-Dichloroethane	25
1,1-Dichloroethene	5
1,1-Dichloropropene	Ne
1,2,3-Trichlorobenzene	Ne
1,2,3-Trichloropropane	0.0096³
1,2,4-Trichlorobenzene	70.0° .
1,2,4-Trimethylbenzene	15.0 ³
1,2-Dibromo-3-chloropropane	0.2 ²
1,2-Dibromoethane (EDB)	0.05 ²
1,2-Dichlorobenzene	600.0 ²
1,2-Dichloroethane (EDC)	5²
1,2-Dichloropropane	5.0 ²
1,3,5-Trimethylbenzene	12³
1,3-Dichlorobenzene	Ne
1,3-Dichloropropane	730 ³
1,4-Dichlorobenzene	75.0 ²
1-Methylnaphthalene	2.3³
2,2-Dichloropropane	Ne
2-Butanone	710.0 ³
2-Chlorotoluene	730.0 ³
2-Hexanone	Ne
2-Methylnaphthalene	150³
4-Chlorotoluene	2600³
4-Isopropyltoluene	· Ne
4-Methyl-2-pentanone	Ne

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Volatiles	(ug/l)
Acetone	22000 ^s
Benzene	5 ²
Bromobenzene	20³
Bromodichloromethane	0.12 ³
Bromoform	8.5 ³
Bromomethane	8.7 ³
Carbon disulfide	1,000 ³
Carbon Tetrachloride	5²
Chlorobenzene	100.0 ²
Chloroethane	Ne
Chloroform	100
Chioromethane	190 ³
cis-1,2-DCE	70 ²
cis-1,3-Dichloropropene	0.4 3
Dibromochloromethane	0.15³
Dibromomethane	370°
Dichlorodifluoromethane	390 ³
Ethylbenzene	700 ²
Hexachlorobutadiene	0.86 ³
Isopropylbenzene	680³
Methyl tert-butyl ether (MTBE)	12³
Methylene Chioride	5²
Naphthalene	0.14³
n-Butylbenzene	Ne
n-Propylbenzene	Ne
sec-Butylbenzene	Ne
, Styrene	100²
tert-Butylbenzene	Ne
Tetrachloroethene (PCE)	5 ²

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

- 2 Federal Maximum Contaminant Level
- 3 USEPA Regional Screening Levels (April 2009)

Volatiles	(ug/l)
Toluene	750
trans-1,2-DCE	100 ²
trans-1,3-Dichloropropene	0.4 3
Trichloroethene (TCE)	5 ²
Trichlorofluoromethane	1,300 ³
Vinyl chloride	1
Xylenes, Total	620

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

- 2 Federal Maximum Contaminant Level
- 3 USEPA Regional Screening Levels (April 2009)

General Chemistry	(mg/l)
Alkalinity, Total (As CaCO3)	Ne
Bicarbonate	Ne
Calcium	Ne
Carbonate	Ne
Chloride	250
Fluoride	1.6
Iron	1
Magnesium	Ne
Manganese	0.2
Nitrogen, Nitrate (As N)	10
Nitrogen, Nitrite (As N)	1 ²
Nitrate (As N)+Nitrite (As N)	10
Potassium	Ne
Sodium	Ne
Sulfate	600

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

- 2 Federal Maximum Contaminant Level
- 3 USEPA Regional Screening Levels (April 2009)

NEW MEXICO ENVIRONMENT DEPARTMENT

Risk Assessment Guidance for Site Investigations and Remediation

February 2012

INTRODUCTION

This guidance document is being developed in coordination with the New Mexico Environment Department's (NMED) Hazardous Waste Bureau (HWB) and the Ground Water Quality Bureau's Voluntary Remediation Program.

This guidance document sets forth recommended approaches based on current State and Federal practices and intended for used as guidance for employees of NMED and for facilities within the State of New Mexico.

In the past, the material contained within this document existed in three separate guidance and/or position papers. In order to streamline the risk assessment process and ensure consistency between guidance/position papers, these documents have been combined into one document: *Risk Assessment Guidance for Site Investigations and Remediation*.

The *Risk Assessment Guidance for Site Investigations and Remediation* replaces and supersedes the following documents:

- Technical Background Document for Development of Soil Screening Levels, Revision 5.0, 2009,
- New Mexico Environment Department TPH Screening Guidelines, October 2006, and
- Risk-Based Remediation of Polychlorinated Biphenyls at RCRA Corrective Action Sites, NMED Position Paper, March 2000.

Risk Assessment Guidance for Site Investigations and Remediation is organized into two volumes. Volume I contains information related to conducting screening level human health risk assessments. Previously, the soil screening levels (SSLs) were available in the Technical Background Document for Development of Soil Screening Levels while the screening levels for total petroleum hydrocarbons (TPH) were found in the New Mexico Environment Department TPH Screening Guidelines. Now both are contained in Volume I. Volume I also summarizes SSLs for select Aroclors and congeners of polychlorinated biphenyls (PCBs). Additional details for derivation of more site-specific SSLs for PCBs are contained within Appendix D.

Volume II provides guidance for conducting a scoping assessment for ecological risk as previously contained within the *Technical Background Document for Development of Soil Screening Levels*.

VOLUME I

TIER 1: SOIL SCREENING GUIDANCE TECHNICAL BACKGROUND DOCUMENT

Hazardous Waste Bureau and Ground Water Quality Bureau Voluntary Remediation Program

TABLE OF CONTENTS VOLUME I

Contents		Page
List of Acro	onymns	iii
1.0 Intr	oduction	1
1.1 Or	ganization of the Document	1
1.2 Sco	ope of the Soil Screening Guidance	2
1.2.1	Exposure Pathways	3
1.2.2	Exposure Assumptions	4
1.2.3	Target Risk and Hazard	4
1.2.4	SSL Model Assumptions	
2.0 Deve	elopment of Pathway Specific Soil Screening Levels	5
	ıman Health Basis	
2.1.1	Additive Risk	7
2.1.2	Acute Exposures	7
2.1.3	Early Life Exposure to Carcinogens	8
2.1.4	Direct Ingestion	8
2.1.5	Dermal Absorption	8
2.1.6	Inhalation	9
2.2 Re	sidential land uses	10
2.2.1	Residential Receptors	10
2.3 No	on-residential land uses	18
2.3.1	Commercial/Industrial Worker	19
2.3.2	Construction Worker	22
2.3.3	Alternative Evaluation for Lead	25
2.4 Ta	p Water Screening Levels	25
2.5 Sit	e Assessment and Characterization	30
2.5.1	Development of Data Quality Objectives	31
2.5.2	Identification of COPCs	31

V	911	ите	1
Februar	ry	201	2

2.	.5.3 Development of a Preliminary Conceptual Site Model	32
2.	5.5.4 Compare COPC Maximum Concentrations with SSLs	
3.0	Chemical-Specific and Physical-Chemical Parameters	
3.1	Volatilization Factor for Soil	34
3.2	Soil Saturation Limit	37
3.3	Particulate Emission Factor	38
3.4	Physical-Chemical Parameters	39
	.4.1 Solubility, Henry's Law Constant, and K _{ow}	40
3.	.4.2 Soil Organic Carbon/Water Partition Coefficients (K _{oc})	
3.	.4.3 Soil/Water Partition Coefficients (K _d)	
4.0	Migration of Contaminants to Groundwater	
4.1	Overview of the SSL Model Approach	
4.2	Model Assumptions	
4.3	Soil Water Partition Equation	
4.4	Dilution Attenuation Factor	
4.5	Limitations on the Use of the Dilution Attenuation Factor	
4.6	Generic SSLs for Protection of Groundwater	
4.7	Development of Site Specific SSLs for Protection of Groundwater	
4.8	Detailed Model Analysis for SSL Development	
4.9	Summary of the Migration to Groundwater Pathway SSLs	
5.0	Use of the SSLs	
6.0	Total Petroleum Hydrocarbons (TPH)	56
7.0	References	
Tables		_
	1-1. Exposure Pathways Evaluated in Soil Screening Guidance	
	2-1. Dioxin and Furan Toxicity Equivalency Factors	
	2-2. PCB TEFs	
	2-3. Summary of the Residential Land Use Receptors	
	2-4. Summary of Non-Residential Land Use Receptors	
	2-5. Soil Exposure Intervals	
	4-1. Input Parameters and Resulting SSLs for the Sensitivity Analysis of the Soil	
	Partition Equation - Migration to Groundwater Pathway Model	
Table 4	4-2. Input Parameters and Resulting DAFs for the Sensitivity Analysis of the Dil	
	Attenuation Factor-Migration to Groundwater Pathway Model	
	6-1. TPH Compositional Assumptions in Soil	
	6-2. TPH Screening Guidelines for Potable Groundwater (GW-1)	
Table	6-3. TPH Screening Guidelines – Vapor Migration and Inhalation of Groundwat	
	2)	55
Figure 2		, .
2-1 M	Iean Value - Fraction of Organic Carbon (foc), All Counties in New Mexico	41

Appendix A: NMED Soil Screening Levels (SSLs)

Appendices

February 2012

Appendix B: Chemical and Physical Properties

Appendix C: Toxicity Data

Appendix D: Guidance for Risk-Based Remediation of Polychlorinated Biphenyls

LIST OF ACRONYMS

ASTDR Agency for Toxic Substances and Disease Registry
CalEPA California Environmental Protection Agency

CMTP Composite Model for Leachate Migration with Transformation Products

COPC Contaminants of Potential Concern

CSM Conceptual Site Model
DAF Dilution Attenuation Factor
DQO Data Quality Objectives

EPA/ORD Environmental Protection Agency Office of Research and Development

GWQB Groundwater Quality Bureau

HEAST Health Effects Assessment Summary Tables

HWB Hazardous Waste Bureau

IEUBK Integrated Exposure Uptake Biokinetic IRIS Integrated Risk Information System

IUR Inhalation Unit RiskMRL Minimum Risk LevelNAPL Non-aqueous Phase Liquid

NMAC
 New Mexico Administrative Code
 NMED
 New Mexico Environment Department
 NRCS
 National Resource Conservation Service
 PAH
 Polycyclic Aromatic Hydrocarbon

PCB Polychlorinated Biphenyl PEF Particulate Emission Factor

PPRTV Provisional Peer-reviewed Toxicity Value RAGS Risk Assessment Guidance for Superfund RCRA Resource Conservation and Recovery Act

RfC Reference Concentration

RfD Reference Dose

SCEM Site Conceptual Exposure Model

SSG Soil Screening Guidance SSL Soil Screening Level

TEF Toxicity Equivalency Factor UCL Upper Confidence Limit

US EPA United States Environmental Protection Agency

VFs- Volatilization Factor

VOC Volatile Organic Compound

WQCC Water Quality Control Commission

1.0 INTRODUCTION

The New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) and the Ground Water Quality Bureau (GWQB) have developed this soil screening guidance (SSG) for internal department use within corrective action programs. The SSG discusses the methodology used to derive chemical-specific soil screening levels (SSLs). In addition, guidance is provided to assist in identifying and evaluating appropriate exposure pathways and receptors. Finally, this document provides generic SSLs for chemicals commonly found at contaminated sites based on default exposure parameters under residential and non-residential land-use scenarios.

The SSG provides site managers with a framework for developing and applying the SSLs, and is likely to be most useful for determining whether areas or entire sites are contaminated to an extent that warrants further investigation. It is intended to assist and streamline the site investigation and corrective action process by focusing resources on those sites or areas that pose the greatest risk to human health and the environment. Implementation of the methodologies outlined within this SSG may significantly reduce the time necessary to complete site investigations and cleanup actions at certain sites, as well as improve the consistency of these investigations.

Between various sites there can exist a wide spectrum of contaminant types and concentrations. The level of concern associated with those concentrations depends on several factors, including the likelihood of exposure to levels of potential concern to human health or to ecological receptors. At one end of the spectrum are levels that clearly warrant a response action; at the other end are levels that are below regulatory concern. Appropriate cleanup goals for a site may fall anywhere within this range depending on site-specific conditions. It is important to note that SSLs do not in themselves represent cleanup standards, and the SSLs alone do not trigger the need for a response action or define "unacceptable" levels of contamination in soil. Screening levels such as SSLs identify the lower end of this spectrum – levels below which there is generally no need for further concern—provided the conditions associated with the development of the SSLs are consistent with the site being evaluated.

1.1 Organization of the Document

The NMED SSG is organized into five major sections with supporting appendices. The remainder of Section 1 addresses the purpose of the NMED SSLs and outlines the scope of the document. Section 2 outlines the receptors, exposure pathways, and exposure assumptions used in calculating the NMED SSLs. It also discusses the risk levels on which the SSLs are predicated and presents the SSL model assumptions. Finally, Section 2 discusses site assessment/characterization activities that should be completed prior to comparing site contaminant concentrations with SSLs. These activities include development of data quality objectives, conducting site sampling, preparation of a preliminary conceptual site model (CSM), and identification of contaminants of potential concern (COPCs). Section 3 provides a detailed description of the process used to develop pathway-specific SSLs. Included in this section is a discussion of the human health basis for the SSLs, additive risk, and acute exposures. Additional topics discussed in Section 3 include chemical specific parameters used to develop the SSLs and

calculating volatilization factors, particulate emission factors and soil saturation limits. Section 4 presents methodologies for assessing the potential for migration of contaminants to groundwater from contaminated soil in concert with generic and site-specific leaching models. Finally, Section 5 addresses special use considerations for addressing contaminant concentrations in soil and notes specific problems that can arise when applying the SSLs to specific sites. Generic SSLs for contaminants are presented in Table A-1 of Appendix A. Table A-2 of Appendix A presents the default exposure factor values used in the generation of the NMED SSLs. Physical-chemical values in the calculation of the SSLs are presented in Tables B-1 and B-2 of Appendix B. Toxicity criteria are presented in Table C-1 of Appendix C. Additional discussion of polychlorinated biphenyls (PCBs) is provided in Appendix D.

1.2 Scope of the Soil Screening Guidance

The SSG incorporates readily obtainable site data and utilizes methods from various United States Environmental Protection Agency (US EPA) risk assessment guidance and derives site-specific screening levels for selected contaminants and exposure pathways. Key attributes of the SSG include default values for generic SSLs where site-specific information is unavailable, and the identification of parameters for which site-specific information is needed for the development of site-specific SSLs. The goal of the SSG is to provide a consistent approach for developing site-specific SSLs for evaluating facilities under the auspices of the corrective action process within NMED.

The NMED SSLs are based on a 1E-05 target risk for carcinogens, or a hazard quotient of 1 for noncarcinogens. In instances where an individual contaminant has the capacity to elicit both types of responses, the SSLs preferentially report the screening value representative of the lowest (most stringent) contaminant concentration in environmental media. SSLs for migration to groundwater are based on NMED-specific tap water SSLs. As such, the NMED SSLs serve as a generic benchmark for screening level comparisons of contaminant concentrations in soil. NMED anticipates that the SSLs will be used as a tool to facilitate prompt identification of those contaminants and areas that represent the greatest risks to human health and the environment. While concentrations above the NMED SSLs presented in this document do not automatically designate a site as "contaminated" or trigger the need for a response action, detected concentrations in site soils exceeding screening levels suggest that further evaluation is appropriate. Further evaluation may include additional sampling to further characterize the nature and extent of contamination, consideration of background levels, reevaluation of COPCs or associated risk and hazard using site-specific parameters, and/or a reassessment of the assumptions associated with the generic SSLs (e.g., appropriateness of route-to-route extrapolations, use of chronic toxicity values to evaluate childhood and construction-worker exposures).

Prior to calculating site-specific SSLs, each relevant chemical specific parameter value and toxicological datum should be checked against the most recent version of its source to determine if updated data are available.

In the event that a NMED SSL is not listed for a given chemical, other sources of screening levels should be consulted, such as the US EPA Regional Screening Levels (RSLs) (US EPA, 2011) or a review of toxicological data should be conducted and if available a screening level

calculated for that given chemical. Care should be used when other sources of screening levels are used to ensure that target risk/levels used in development of the levels are consistent with those applied by NMED. For example, the US EPA carcinogenic RSLs are based on a 1E-06 risk level and must be adjusted to a 1E-05 risk level for use.

1.2.1 Exposure Pathways

A complete exposure pathway consists of (1) a source, (2) a mechanism of contaminant release, (3) a receiving or contact medium, (4) a potential receptor population, and (5) an exposure route. All five elements must be present for the exposure pathway to be considered complete.

SSLs have been developed for use in evaluating three discrete exposure scenarios representing a variety of potential land uses: residential, commercial/industrial, and construction. The SSG presents lists of potential pathways for each scenario, though these lists are not intended to be exhaustive. Instead, each list represents a set of typical exposure pathways likely to account for the majority of exposure to contaminants in soil at a given site. These include:

- Direct (or incidental) ingestion of soil,
- Dermal contact with soil,
- Inhalation of volatiles and fugitive dusts from contaminated soil, and
- Migration of chemicals through soil to an underlying potable aquifer or waterbearing unit.

Under some site-specific situations, additional complete exposure pathways may be identified. In these cases, a site-specific evaluation of risk is warranted under which additional exposure pathways can be considered. If other land uses and exposure scenarios are determined to be more appropriate for a site (e.g., vapor intrusion pathway, home gardening/farming, recreational land use, and/or Native American land use), the exposure pathways addressed in this document should be modified or augmented accordingly or a site-specific risk assessment should be conducted. Early identification of the need for additional information is important because it facilitates development of a defensible sampling and analysis strategy.

The exposure pathways evaluated addressed in this guidance are presented by land-use scenario in Table 1-1.

Table 1-1	Exposure	Pathways	Evaluated in	n Soil Sci	reening Guidance
Table 1-1.	LADUSUIC	1 aurways	Lvaiuaicu i	11 17011 1701	cennie (iuiuance

Potential Exposure Pathway	Residential	Commercial	Construction
		/Industrial	
Direct ingestion of soil	✓	✓	✓
Dermal contact with soil	✓	✓	✓
Inhalation of dust and volatiles from soil	✓	✓	✓
Inhalation of VOCs from vapor intrusion ^a			

^a the inhalation of dust and volatiles from contaminated soil does not account for exposure via vapor intrusion. If volatile organic compounds are present, then the vapor intrusion pathway must be evaluated in addition to the comparison of dust and volatile concentrations against the SSLs.

1.2.2 Exposure Assumptions

SSLs represent risk-based concentrations in soil derived from equations combining exposure assumptions with toxicity criteria following the US EPA's preferred tiered hierarchy of toxicological data (US EPA 2009a, 2006, 2003, and 1997a). The models and assumptions used were developed to be consistent with the Superfund concept of "reasonable maximum exposure" (US EPA 1989 and 2009a). This is intended to provide an upper-bound estimate of chronic exposure by combining both average and conservative (i.e., 90th to 95th percentile) values in the calculations. The default intake and duration assumptions presented here are intended to be protective of all potentially exposed populations for each land use consideration. Exposure point concentrations in soil should reflect either directly measured or estimated values using fate and transport models. When assessing chronic, long-term exposures, the maximum detected site concentration should be used for an initial screen against the SSLs. A more refined assessment may include use of an estimate of the average [95 percent upper confidence level (UCL) of the mean] concentration if sufficient site data to allow for an accurate estimation of the UCL. Where the potential for acute toxicity may be of concern, estimates based on the maximum exposure may be more appropriate.

The resulting estimate of exposure is then compared with chemical-specific toxicity criteria. To calculate the SSLs, the exposure equations and pathway models are rearranged to back calculate an "acceptable level" of a contaminant in soil corresponding to a specific level of target risk or hazard.

1.2.3 Target Risk and Hazard

Target risk and hazard levels for human health are risk management-based criteria for carcinogenic and non-carcinogenic responses, respectively, to determine: (1) whether site-related contamination poses an unacceptable risk to human health and requires corrective action or (2) whether implemented corrective action(s) sufficiently protects human health. If an estimated risk or hazard falls within the target range, the risk manager must decide whether or not the site poses an unacceptable risk. This decision should take into account the degree of inherent conservatism or level of uncertainty associated with the site-specific estimates of risk and hazard. An estimated risk that exceeds these targets, however, does not necessarily indicate that the current conditions are not safe or that they present an unacceptable risk. Rather, a site risk calculation that exceeds a target value may simply indicate the need for further evaluation or refinement of the exposure model.

For cumulative exposure via the ingestion, inhalation, and dermal pathways, toxicity criteria are used to calculate an acceptable level of contamination in soil. SSLs are based on a carcinogenic risk level of one-in-one-hundred thousand (1E-05) and a non-carcinogenic hazard quotient of 1. A carcinogenic risk level is defined as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to a potential carcinogen. The non-carcinogenic hazard quotient assumes that there is a level of exposure below which it is unlikely for even sensitive populations to experience adverse health effects.

1.2.4 SSL Model Assumptions

The models used to calculate inhalation exposure and protection of groundwater based on potential migration of contaminants in soil are intended to be utilized at an early stage in the site investigation process when information regarding the site may be limited. For this reason, the models incorporate a number of simplifying assumptions. For instance, the models assume an infinite contaminant source, i.e. a constant concentration is maintained for the duration of the exposure period. Although this is a highly conservative assumption, finite source models require accurate data regarding source size and volume. Such data are unlikely to be available from limited sampling efforts. The models also assume that contamination is homogeneous throughout the source and that no biological or chemical degradation occurs. Where sufficient site-specific data are available, more detailed finite-source models may be used in place of the default model assumptions presented in this SSG.

2.0 <u>DEVELOPMENT OF PATHWAY SPECIFIC SOIL SCREENING LEVELS</u>

The following sections present the technical basis and limitations used to calculate SSLs for residential, commercial/industrial, and construction land use scenarios. The equations used to evaluate inhalation and migration to groundwater include a number of easily obtainable site-specific input parameters. Where site-specific data are not available, conservative default values are presented. The equations used are presented in Sections 2.2, 2.3, and 2.4. Generic SSLs calculated for 220 chemicals, using these default values, are presented in Table A-1 of Appendix A.

2.1 Human Health Basis

The toxicity criteria used for calculating the SSLs are presented in Table C-1 of Appendix C. The primary sources for the human health benchmarks follow the US EPA Superfund programs tiered hierarchy of human health toxicity values (US EPA 2011, 2003):

- 1) Integrated Risk Information System (IRIS) (US EPA 2011) (www.epa.gov/iris),
- 2) Provisional peer reviewed toxicity values (PPRTVs) (now available on-line at http://hhpprtv.ornl.gov/),
- 3) Agency for Toxic Substances and Disease Registry (ATSDR) (http://www.atsdr.cdc.gov/) and minimal risk levels (MRLs) (http://www.atsdr.cdc.gov/mrls/index.asp),
- 4) California EPA's Office of Environmental and Health Hazard Assessment values (CalEPA) (http://www.oehha.ca.gov/air/allrels.html and http://www.oehha.ca.gov/risk/pdf/tcdb072109alpha.pdf), and
- 5) Health Effects Assessment Summary Tables (HEAST) (US EPA 1997a).

Special assumptions were also applied in determining appropriate toxicological data for certain chemicals.

<u>Dioxins/Furans</u>. Toxicity data for the congeners for the dioxin and furan congeners were assessed using the 2005 World Health Organization's (WHO) toxicity equivalency factors (TEF) (Van den berg, et al 2006) and are summarized in Table 2-1. The TEFs were applied to available toxicity data for 2,3,7,8-TCDD.

Table 2-1. Dioxin and Furan Toxicity Equivalency Factors

Dioxin and Furan Congeners	TEF
Chlorinated dibenzo-p-dioxins	
2,3,7,8-TCDD	1
1,2,3,7,8-PeCDD	1
1,2,3,4,7,8-HxCDD	0.1
1,2,3,6,7,8-HxCDD	0.1
1,2,3,7,8,9-HxCDD	0.1
1,2,3,4,6,7,8-HpCDD	0.01
OCDD	0.0003
Chlorinated dibenzofurans	
2,3,7,8-TCDF	0.1
1,2,3,7,8-PeCDF	0.03
2,3,4,7,8-PeCDF	0.3
1,2,3,4,7,8-HxCDF	0.1
1,2,3,6,7,8-HxCDF	0.1
1,2,3,7,8,9-HxCDF	0.1
2,3,4,6,7,8-HxCDF	0.1
1,2,3,4,6,7,8-HpCDF	0.01
1,2,3,4,7,8,9-HpCDF	0.01
OCDF	0.0003

PCBs. Toxicity for the non-ortho [International Union of Pure and Applied Chemistry (IUPAC) numbers 77, 81, 126, and 169)] and mono-ortho congeners (IUPAC numbers 105, 114, 118, 123, 156, 157, 167, and 189) for the PCB congeners were assessed using the 2005 WHO TEFs (Van den berg, et al 2006) while TEFs for di-ortho congeners (IUPAC numbers 170 and 180) are taken from Ahlborg, et al, 1993 (see Table 2-2).

Table 2-2. PCB TEFs

IUPAC No.	Structure	TEF
77	3,3',4,4'-TetraCB	0.0001
81	3,4,4',5-TetraCB	0.0003
105	2,3,3',4,4'-PeCB	0.00003
114	2,3,4,4',5-PeCB	0.00003
118	2,3',4,4',5-PeCB	0.00003
123	2',3,4,4',5-PeCB	0.00003
126	3,3',4,4',5-PeCB	0.1
156	2,3,3',4,4',5-HxCB	0.00003
157	2,3,3',4,4',5'-HxCB	0.00003
167	2,3',4,4',5,5'-HxCB	0.00003
169	3,3',4,4',5,5'-HxCB	0.03
189	2,3,3',4,4',5,5'-HpCB	0.00003
170	2,2',3,3',4,4',5-HpCB	0.0001
180	2,2',3,4,4',5,5'-HpCB	0.00001

<u>Cadmium</u>. IRIS provides an oral reference dose (RfD) for both water and food. For deriving the tap water SSL, the RfD for water was applied and for the soil-based SSL, the RfD for food was applied.

<u>Vanadium</u>. The oral RfD from IRIS was modified to be based on the molecular weight of vanadium versus vanadium sulfate.

<u>Lead</u>. The US EPA recommended levels for lead, based on blood-lead modeling (Integrated Exposure Uptake Biokinetic Model, IEUBK) were applied.

<u>Total Chromium</u>. The IUR for total chromium is based on a ratio of 1:6 (Cr VI:CrIII) as noted in IRIS. If there is reason to believe that this ratio for total chromium is not representative of site conditions, then valence-specific site concentrations and SSLs for chromium III and chromium VI should be applied.

<u>Chromium VI</u>. The IUR for chromium VI was derived by multiplying the total chromium IUR by 7. This is because the total chromium IUR from IRIS is based on a ratio of 1:6 (Cr VI:CrIII).

2.1.1 Additive Risk

It is important to note that no consideration is provided in the calculation of individual NMED SSLs for additive risk when exposures to multiple chemicals occur. The SSG addresses this issue in Section 5. Because the NMED SSLs for carcinogenic effects correspond to a 1E-05 risk level individually, exposure to multiple contaminants may result in a cumulative site risk that is above the anticipated risk management range. While carcinogenic risks of multiple chemicals are simply added together, the issue of additive hazard is more complex for noncarcinogens because of the theory that a threshold exists for noncarcinogenic effects. This threshold is defined as the level below which adverse effects are not expected to occur, and represents the basis for the RfD and reference concentration (RfC). Since adverse effects are not expected to occur at the RfD or RfC and the SSLs are derived by setting the potential exposure dose to the RfD or RfC, the SSLs do not address the risk of exposure to multiple chemicals at levels where the individual chemicals alone would not be expected to cause any adverse effects. In such cases, the SSLs may not provide an accurate indicator for the likelihood of harmful effects. As a first-tier screening approach, noncarcinogenic effects should be considered additive. In the event that the hazard index results in a value above the target level of 1, noncarcinogenic effects may be evaluated for those chemicals with the same toxic endpoint and/or mechanism of action. The sources provided in Section 2.1 should be consulted to determine the endpoint and/or target organ system prior to attempting to evaluate the additive health effects resulting from simultaneous exposure to multiple contaminants.

2.1.2 Acute Exposures

The exposure assumptions used to develop the SSLs are based on a chronic exposure scenario and do not account for situations where high-level exposures may result in acute toxic effects. Such situations may arise when contaminant concentrations are very high, or may result from

specific site-related conditions and/or behavioral patterns (i.e., pica behavior in children). Such exposures may be of concern for those contaminants that primarily exhibit acute health effects. Toxicological information regarding cyanide and phenol indicate that acute effects may be of concern for children exhibiting pica behavior. Pica is typically described as a compulsive craving to ingest non-food items (such as clay or paint). Although it can be exhibited by adults as well, it is typically of greatest concern in children because they often exhibit behavior (e.g., outdoor play activities and greater hand-to-mouth contact) that results in greater exposure to soil than for a typical adult. In addition, children also have a lower overall body weight relative to the predicted intake.

2.1.3 Early-Life Exposures to Carcinogens

US EPA's (2005) Supplemental Guidance states that early life exposures (i.e., neonatal and early life) to carcinogens can result in an increase in cancer risk later in life from exposures to certain carcinogens. US EPA's (2005) suggestion is to apply age-specific factors to the estimated cancer risks. The life stages that were considered were: 1) children under 2 years of age; and 2) children aged 2 to 6 years; 3) children 6 years to 16 years of age; and 4) after 16 years of age. Effects of mutagenicity have been incorporated into the SSLs for those contaminants which are considered carcinogenic by a mutagenic mode of action.

2.1.4 Direct Ingestion

Exposure to contaminants through incidental ingestion of soil can result from the inadvertent consumption of soils adhering to the hands, food items, or objects that are placed into the mouth. It can also result from swallowing dust particles that have been inhaled and deposited in the mouth and subsequently swallowed. Commercial/industrial, construction workers, and residential receptors may inadvertently ingest soil that adheres to their hands while involved in work- or recreation-related activities. Calculation of SSLs for direct ingestion are based on the methodology presented in US EPA's *Risk Assessment Guidance for Superfund (RAGS): Volume I - Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals), Interim* (US EPA 1991 2001), *Soil Screening Guidance: Technical Background Document* (US EPA 1996a), and *Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites* (US EPA 2002a).

2.1.5 Dermal Absorption

Exposure to soil contaminants may result from dermal contact with contaminated soil and the subsequent absorption of contaminants through the skin. Contact with soil is most likely to occur as a result of digging, gardening, landscaping, or outdoor recreation activities. Excavation activities may also be a potential source of exposure to contaminants, particularly for construction workers. Calculation of the screening levels for ingestion of soil under the residential exposure scenario is based on the methodology presented in US EPA's *Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals), Interim* (1991), and *Soil Screening Guidance: Technical Background Document* (US EPA 1996a). The suggested default input values used to develop the NMED SSLs are consistent with US EPA's interim *RAGS, Part E,*

Supplemental Guidance for Dermal Risk Assessment (US EPA 2004).

2.1.6 Inhalation

US EPA toxicity data indicate that risks from exposure to some chemicals via the inhalation pathway far outweigh the risk via ingestion or dermal contact; therefore, the NMED SSLs have been designed to address inhalation of volatiles and fugitive dusts. To address the soil/sediment-to-air pathways, the SSL calculations incorporate a volatilization factor (VF) for volatile contaminants (See Section 3.1) and a particulate emission factor (PEF) (See Section 3.3) for nonvolatile and volatile contaminants. The SSLs follow the procedures for evaluating inhalation soil, volatile organic compounds (VOCs), and fugitive dust particles presented in US EPA's *Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part F, Supplemental Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals), Interim (US EPA 1991), Soil Screening Guidance: Technical Background Document (US EPA 1996a), Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities (US EPA 1998a), and Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (US EPA 2002a).*

VOCs may adhere to soil particles or be present in interstitial air spaces in soil, and may volatilize into ambient air. This pathway may be particularly significant if the VOC emissions are concentrated in indoor spaces of onsite buildings, or buildings that may be built in the future. The NMED SSLs do not account for vapor intrusion and inhalation of volatile organics volatilized into indoor air. If vapor intrusion into indoor air is a concern, additional analysis of this pathway may be necessary and the latest guidance on evaluating the vapor intrusion pathway should be consulted: for example, the US EPA's 2002 *Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Soil Vapor Intrusion Guidance.* For the purpose of calculating the NMED SSLs, VOCs are considered those chemicals having a Henry's Law constant greater than 1E-05 atm-m³/mole and a molecular weight less than 200 g/mole.

Inhalation of contaminants via inhalation of fugitive dusts is assessed using a PEF that relates the contaminant concentration in soil/sediment with the concentration of respirable particles in the air due to fugitive dust emissions. It is important to note that the PEF used to address residential and commercial/industrial exposures evaluates only windborne dust emissions and does not consider emissions from traffic or other forms of mechanical disturbance which could lead to a greater level of exposure. The PEF used to address construction worker exposures evaluates windborne dust emissions and emissions from vehicle traffic associated with construction activities. Therefore, the fugitive dust pathway should be considered carefully when developing the CSM at sites where receptors may be exposed to fugitive dusts by other mechanisms. The development of the PEF for both residential and non-residential land uses is discussed further in Section 3.3.

2.2 Residential land uses

Residential exposures are assessed based on child and adult receptors. As discussed below, the child forms the basis for evaluation of noncarcinogenic effects incurred under residential exposures, while carcinogenic responses are modeled based upon age-adjusted values to account for exposures averaged over a lifetime. Under most circumstances, onsite residential receptors are expected to be the most conservative receptor basis for risk assessment purposes due to the assumption that exposure occurs 24 hours a day, 350 days per year, extending over a 30-year exposure duration. Table 2-3 provides a summary of the exposure characteristics and parameters associated with a residential land use receptor.

Table 2-3. Summary of the Residential Land Use Receptors

Exposure Characteristics Default Exposure Parameters	 Substantial soil exposure (esp. children) High soil ingestion rate (esp. children) Significant time spent indoors Long-term exposure Surface and subsurface soil exposure (0-10 feet below ground surface, bgs)
Exposure frequency (days/yr)	350
Exposure duration (yr)	6 (child)
	24 (adult)
Soil ingestion rate (mg/day)	200 (child)
	100 (adult)
Body Weight (kg)	15 (child)
	70 (adult)
Skin surface area exposed (cm ²)	2,800 (child)
	5,700 (adult)
Skin-soil adherence factor	0.2 (child)
(mg/cm ²)	0.07 (adult)

2.2.1 Residential Receptors

A residential receptor is assumed to be a long-term receptor occupying a dwelling within the site boundaries and thus is exposed to contaminants 24 hours per day, and is assumed to live at the site for 30 years (representing the 90th percentile of the length of time someone lives in a single location), remaining onsite for 350 days per year. Exposure to soil (to depths of zero to 10 feet below ground surface) is expected to occur during home maintenance activities, yard work and landscaping, and outdoor play activities. The SSLs do not take into consideration ingestion of homegrown produce/meat/dairy or inhalation of volatiles migrating indoors via vapor intrusion.

If these pathways are complete, analysis of risks resulting from these additional exposure pathways must be determined and added to the risks determined using the SSL screen.

Contaminant intake is assumed to occur via three exposure pathways – direct ingestion, dermal absorption, and inhalation of volatiles and fugitive dusts. For the residential scenario, both adult and child receptors were evaluated because children often exhibit behavior (e.g., greater hand-to-mouth contact) that can result in greater exposure to soils than those associated with a typical adult. In addition, children also have a lower overall body weight relative to the predicted intake.

Equations 1 and 2 are used to calculate cumulative SSLs for a residential receptor exposed to non-carcinogenic and carcinogenic contaminants via all three exposure pathways (ingestion of soil, inhalation of soil, and dermal contact with soil). Default exposure parameters are provided for use when site-specific data are not available.

Equation 1 Combined Exposures to Noncarcinogenic Contaminants in Soil, Residential Scenario

$$C_{oral} = \frac{THQ \times AT_r \times BW_c}{EF_r \times ED_c \times (1/RfD_o) \times IRS_c \times (10^{-6})}$$

$$C_{inh} = \frac{THQ \times AT_{r}}{EF_{r} \times ED_{c} \times ET_{rs} \times (1 / RfC) \times [(1 / VF_{s}) + (1 / PEF_{w})]}$$

$$C_{dermal} = \frac{THQ \times AT_r \times BW_c}{EF_r \times ED_c \times \left[1/\left(RfD_o \times GIABS\right)\right] \times SA_c \times AF_c \times ABS_d \times 10^{-6}}$$

$$SSL_{res} = \frac{1}{\frac{1}{C_{oral}} + \frac{1}{C_{inh}} + \frac{1}{C_{demnal}}}$$

Parameter	Definition (units)	Default
C_{oral}	Contaminant concentration via oral ingestion (mg/kg)	Chemical-specific
C_{dermal}	Contaminant concentration via dermal adsorption (mg/kg)	Chemical-specific
C_{inh}	Contaminant concentration via inhalation (mg/kg)	Chemical-specific
SSL_{res}	Soil screening level, all pathways (mg/kg)	Chemical-specific
THQ	Target hazard quotient	1
BW_c	Body weight, child (kg)	15

AT_r	Averaging time, noncarcinogens (days)	ED _c x 365
EF_r	Exposure frequency, resident (day/yr)	350
ED_c	Exposure duration, child (years)	6
$\mathrm{ET}_{\mathrm{rs}}$	Exposure time, resident (hour/day x day/hour)	1
IRS_c	Soil ingestion rate, child (mg/day)	200
RfD_o	Oral reference dose (mg/kg-day)	Chemical-specific
SA_c	Dermal surface area, child (cm ² /day)	2,800
AF_c	Soil adherence factor, child (mg/cm ²)	0.2
GIABS	Fraction absorbed in gastrointestinal tract (unitless)	Chemical-specific
ABS_d	Skin absorption factor (unitless)	Chemical-specific
RfC	Inhalation reference concentration (mg/m ³)	Chemical-specific
10^{-6}	Unit conversion factor (kg)/mg	10^{-6}
VF _s	Volatilization factor for soil (m ³ /kg)	See Equation 22
PEF_{w}	Particulate emission factor (m ³ /kg)	See Equation 24

Equation 2 Combined Exposures to Carcinogenic Contaminants in Soil, Residential Scenario

$$C_{oral} = \frac{TR \times AT_r}{CFS_o \times EF_r \times IFS_{adj} \times 10^{-6}}$$

$$C_{inh} = \frac{TR \times AT_{r}}{IUR \times 1000 \times EF_{r} \times \left(\frac{1}{VF_{s}} + \frac{1}{PEF_{w}}\right) \times ED_{r} \times ET_{rs}}$$

$$C_{dermal} = \frac{TR \times AT_r}{EF_r \times SFS_{adj} \times \frac{CFS_o}{GIABS} \times ABS_d \times 10^{-6}}$$

$$SSL_{res} = \frac{1}{\frac{1}{C_{oral}} + \frac{1}{C_{inh}} + \frac{1}{C_{dermal}}}$$

Parameter	Definition (units)	Default
C_{oral}	Contaminant concentration via oral ingestion (mg/kg)	Chemical-specific
C_{dermal}	Contaminant concentration via dermal adsorption (mg/kg)	Chemical-specific
C_{inh}	Contaminant concentration via inhalation (mg/kg)	Chemical-specific
$\mathrm{SSL}_{\mathrm{res}}$	Soil screening level, all pathways (mg/kg)	Chemical-specific
TR	Target cancer risk	1E-05
AT_r	Averaging time, carcinogens (days)	25,550
EF_r	Exposure frequency, resident (day/yr)	350

IFS_{adj}	Age-adjusted soil ingestion factor ([mg-yr]/[kg-day])	114
	(See Equation 3)	
CSF_o	Oral cancer slope factor (mg/kg-day)-1	Chemical-specific
SFS_{adj}	Age-adjusted dermal factor ([mg-yr]/[kg-day])	361
	(See Equation 4)	
ABS_d	Skin absorption factor (unitless)	Chemical-specific
1000	Unit conversion factor (µg/mg)	1000
IUR	Inhalation unit risk (µg/m ³) ⁻¹	Chemical-specific
ED_r	Exposure duration, resident (years)	30
ET_{rs}	Exposure time, resident (hour/day x day/hour)	1
10 ⁻⁶	Unit conversion factor (kg/mg)	10^{-6}
GIABS	Fraction absorbed in gastrointestinal tract (unitless)	Chemical-specific
VF_s	Volatilization factor for soil (m³/kg)	See Equation 22
PEF_{w}	Particulate emission factor (m³/kg)	See Equation 24

Noncarcinogenic contaminants are evaluated based solely on childhood exposures using Equation 1. By combining the higher contaminant intake rates with the lower relative body weight, "childhood only" exposures lead to a lower, or more conservative, risk-based concentration compared to an adult-only exposure. In addition, this approach is considered conservative because it combines the higher 6-year exposure for children with chronic toxicity criteria.

Unlike non-carcinogens, the duration of exposure to carcinogens is averaged over the lifetime of the receptor because of the assumption that cancer may develop even after actual exposure has ceased. As a result, the total dose received is averaged over a lifetime of 70 years. In addition, to be protective of exposures in a residential setting, the carcinogenic exposure parameter values are age-adjusted to account for exposures incurred in children (1-6 years of age) and adults (7-31 years of age). Carcinogenic exposures are age-adjusted to account for the physiological differences between children and adults as well as behavioral differences that result in markedly different relative rates of exposure. Equations 3 and 4 are used to calculate age-adjusted ingestion, dermal and inhalation factors which account for the differences in soil ingestion rate, skin surface area, soil adherence factors, inhalation rate, and body weight for children versus adults. The age-adjusted factors calculated using these equations are applied in Equation 2 to develop generic NMED SSLs for carcinogenic effects.

Equation 3 Calculation of Age-Adjusted Soil Ingestion Factor		
	$IFS_{adj} = \frac{ED_{c} \times IRS_{c}}{BW_{c}} + \frac{\left(ED_{r} - ED_{c}\right) \times IRS_{a}}{BW_{a}}$	
Parameter	Definition (units)	Default
IFS_{adj}	Age-adjusted soil ingestion factor for carcinogens [(mg-yr)/(kg-day)]	114
ED_{c}	Exposure duration, child (years)	6
IRS_c	Soil ingestion rate, child (mg/day)	200

BW_c	Body weight, child (kg)	15
ED_{r}	Exposure duration, resident (years)	30
IRS_a	Soil ingestion rate, adult (mg/day)	100
\mathbf{BW}_{a}	Body weight, adult (kg)	70

Equation 4 Calculation of Age-Adjusted Soil Dermal Factor		
	$SFS_{adj} = \frac{ED_c \times AF_c \times SA_c}{BW_c} + \frac{\left(ED_r - ED_c\right) \times AF_a \times SA_a}{BW_a}$	
Parameter	Definition (units)	Default
SFS_{adj}	Age-adjusted dermal factor for carcinogens [(mg-yr)/(kg-	361
	day)]	
ED_c	Exposure duration, child (years)	6
AF_c	Soil adherence factor, child (mg/cm ²)	0.2
SA_c	Dermal surface area, child (cm ² /day)	2,800
BW_c	Body weight, child (kg)	15
ED_r	Exposure duration, resident (years)	30
AF_a	Soil adherence factor, adult (mg/cm ²)	0.07
SA_a	Dermal surface area, adult (cm ² /day)	5,700
BW_a	Body weight, adult (kg)	70

Equations 1 and 2 are appropriate for all chemcials with the exception of vinyl chloride and those carcinogens exhibiting mutegenic toxicity. For vinyl chloride, the US EPA IRIS database provides cancer slope factors for both a child and an adult. The child-based cancer slope factor takes into consideration potential risks during the developmental stages of childhood and thus is more protective than the adult cancer slope factor. The equations used to derive the SSLs for vinyl chloride incorporate age adjustments for exposure and are presented in Equation 5. As vinyl chloride does not have an adsorption factor, dermal risks are not assessed.

Equation 5 Combined SSL for Vinyl Chloride Residential Scenario

$$C_{vc-oral} = \frac{TR}{\left(\frac{CFS_o \times EF_r \times IFS_{adj} \times 10^{-6}}{AT}\right) + \left(\frac{CFS_o \times IRS_c \times 10^{-6}}{BW_c}\right)}$$
Equation 5

$$C_{vc-inh} = \frac{TR}{\left(\frac{IUR \times EF_r \times ED \times ET_{rs} \times 1000}{AT \times VF} + \left(\frac{IUR}{VF} \times 1000\right)\right)}$$
 Equation 6

Combined Exposures:

$$SSL_{res-vc} = \frac{1}{\frac{1}{C_{vc-onal}} + \frac{1}{C_{vc-inh}}}$$

Parameter	Definition (units)	Default
$C_{\text{vc-oral}}$	Contaminant concentration (mg/kg)	Chemical-specific
$C_{\text{vc-inh}}$	Contaminant concentration (mg/kg)	Chemical-specific
C_{res-vc}	Combined SSL for vinyl chloride (mg/kg)	Chemical-specific
TR	Target cancer risk	1E-05
BW_c	Body weight, child (kg)	15
AT	Averaging time, carcinogens (days)	25,550
EF_r	Exposure frequency, resident (day/yr)	350
IFS_{adj}	Age-adjusted soil ingestion factor ([mg-yr]/[kg-day])	114
	(See Equation 3)	
CSF_o	Oral cancer slope factor (mg/kg-day) ⁻¹	Chemical-specific
IRS_c	Child soil ingestion factor (mg/day)	200
10^{-6}	Unit conversion factor (kg/mg)	10^{-6}
IUR	Inhalation unit risk (μg/m ³) ⁻¹	Chemical-specific
EF_r	Exposure frequency, resident (day/yr)	350
ED	Exposure duration (yr)	30
$\mathrm{ET}_{\mathrm{rs}}$	Exposure time (hour/day x day/hour)	1
1000	Conversion factor (µg/mg)	1000
VF	Volatilization factor for soil (m³/kg)	See Equation 22

Equations 6 through 11 show the derivation of the SSLs for carcinogenic chemicals exhibiting mutagenic properties. Mutagenicity is only assessed for the residential scenario.

Equation 6 SSL for Ingestion of Soil- Mutagens

$$C_{mu-oral} = \frac{TR \times AT_r}{CFS_o \times EF_r \times IFSM_{adj} \times 10^{-6}}$$

Parameter	Definition (units)	Default
$C_{ ext{mu-oral}}$	Contaminant concentration (mg/kg)	Chemical-specific
TR	Target cancer risk	1E-05
AT_r	Averaging time, carcinogens (days)	25,550
CSF_o	Oral cancer slope factor (mg/kg-day)-1	Chemical-specific
EF_r	Exposure frequency, resident (day/yr)	350
$IFSM_{adj}$	Age-adjusted soil ingestion rate (mg-yr/kg-day) (See	489.5
	Equation 7)	
10^{-6}	Conversion factor (kg/mg)	10^{-6}

Equation 7 Calculation of Age-Adjusted Soil Ingestion Factor, Mutagens

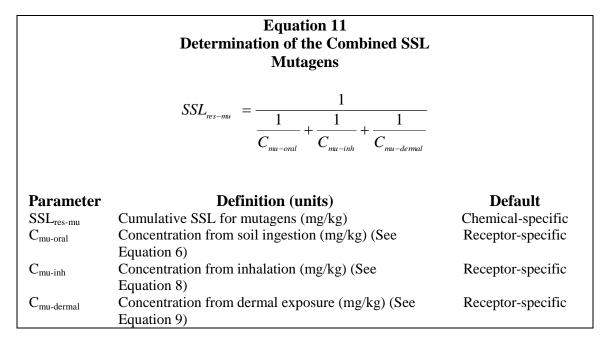
$$\mathit{IFSM}_{\mathit{adj}} = \frac{\mathit{ED}_{0-2} \times \mathit{IRS}_{\mathit{c}} \times 10}{\mathit{BW}_{\mathit{c}}} + \frac{\mathit{ED}_{2-6} \times \mathit{IRS}_{\mathit{c}} \times 3}{\mathit{BW}_{\mathit{c}}} + \frac{\mathit{ED}_{6-16} \times \mathit{IRS}_{\mathit{a}} \times 3}{\mathit{BW}_{\mathit{a}}} + \frac{\mathit{ED}_{16-30} \times \mathit{IRS}_{\mathit{a}} \times 1}{\mathit{BW}_{\mathit{a}}}$$

Parameter	Definition (units)	Default
$IFSM_{adj}$	Age-adjusted soil ingestion factor for mutagens [(mg-	489.5
	yr)/(kg-day)]	
ED_{0-2}	Exposure duration, child (years)	2
ED_{2-6}	Exposure duration, child (years)	4
ED_{6-16}	Exposure duration, adult (years)	10
ED_{16-30}	Exposure duration, adult (years)	24
IRS_c	Soil ingestion rate, child (mg/day)	200
IRS_a	Soil ingestion rate, adult (mg/day)	100
BW_c	Body weight, child (kg)	15
BW_a	Body weight, adult (kg)	70
\mathbf{BW}_{a}	Body weight, adult (kg)	70

Equation 8 SSL for Inhalation of Soil- Mutagens

$$C_{mu-inh} = \frac{TR \times AT_{r}}{\left(EF_{r} \times ET_{rs} \times 1000\right) \times \left[\left(ED_{0-2} \times IUR \times 10\right) + \left(ED_{2-6} \times IUR \times 3\right) + \left(ED_{6-16} \times IUR \times 3\right) + \left(ED_{16-30} \times IUR \times 1\right)\right] \times \left(\frac{1}{VF_{s}} + \frac{1}{PEF_{w}}\right)}$$

Parameter	Definition (units)	Default
$C_{\text{mu-inh}}$	Contaminant concentration (mg/kg)	Chemical-specific
TR	Target cancer risk	1E-05
AT_r	Averaging time, carcinogens (days)	25,550
IUR	Inhalation Unit Risk (µg/m ³) ⁻¹	Chemical-specific
EF_r	Exposure frequency, resident (day/yr)	350
ED	Exposure duration (yr)	
	$\mathrm{ED}_{0 ext{-}2}$	2
	$\mathrm{ED}_{2 ext{-}6}$	4
	ED_{6-16}	10
	ED_{16-30}	14
$\mathrm{ET}_{\mathrm{rs}}$	Exposure time (hour/day x day/hour)	1
1000	Conversion factor (µg/mg)	1000
VF_s	Volatilization factor for soil (m³/kg)	See Equation 22
PEF_{w}	Particulate emission factor (m ³ /kg)	See Equation 24


Equation 9 SSL for Dermal Contract with Soil- Mutagens

$$C_{mu-dermal} = \frac{TR \times AT_{r}}{\frac{CFS_{o}}{GIABS} \times EF_{r} \times DFSM_{adj} \times ABS_{d} \times 10^{-6}}$$

Parameter	Definition (units)	Default
C _{mu-dermal}	Contaminant concentration (mg/kg)	Chemical-specific
TR	Target cancer risk	1E-05
AT_r	Averaging time, carcinogens (days)	25,550
CFS_o	Oral cancer slope factor (mg/kg-day)-1	Chemical-specific
GIABS	Fraction absorbed in gastrointestinal tract (unitless)	Chemical-specific
EF_r	Exposure frequency, resident (day/yr)	350
$DFSM_{adj}$	Age-adjusted soil contact factor (mg-yr/kg-day)	1445
	(See Equation 10)	
ABS_d	Skin absorption factor (unitless)	Chemical-specific
10^{-6}	Conversion factor (kg/mg)	10^{-6}

		1 cornary .	
Equation 10			
(Calculation of Age-Adjusted Soil Contact Factor, Mutag	ens	
	, ,	,	
EL	$O_{C} \times AF \times SA \times 10$ $ED_{C} \times AF \times SA \times 3$ $ED_{C} \times AF \times 3$	$\times AF \times SA \times 1$	
$DFSM_{adj} = \overline{}$	$\frac{D_{0-2} \times AF_c \times SA_c \times 10}{BW_c} + \frac{ED_{2-6} \times AF_c \times SA_c \times 3}{BW_c} + \frac{ED_{6-16} \times AF_a \times SA_a \times 3}{BW_c} + \frac{ED_{16}}{BW_c}$	RW	
		DW_a	
Danamatan	Definition (units)	Dofoul4	
Parameter	Definition (units)	Default	
$\mathrm{DFSM}_{\mathrm{adj}}$	Age-adjusted soil contact factor for mutagens [(mg-yr)/(kg-	1445	
	day)]		
ED_{0-2}	Exposure duration, child (years)	2	
ED_{2-6}	Exposure duration, child (years)	4	
ED_{6-16}	Exposure duration, adult (years)	10	
ED_{16-30}	Exposure duration, adult (years)	14	
AF_c	Soil adherence factor, child (mg/cm ²)	0.02	
AF_a	Soil adherence factor, adult (mg/cm ²)	0.07	
SA_c	Exposed skin area, child, (cm ² /day)	2800	
SA_a	Exposed skin area, adult, (cm ² /day)	5700	
BW_c	Body weight, child (kg)	15	
BW_a	Body weight, adult (kg)	70	

The overall SSL for the residential scenario for mutagens is determined following Equation 11.

2.3 Non-residential land uses

Non-residential land uses encompass all commercial and industrial land uses and focus on two very different receptors – a commercial/industrial worker and a construction worker. Unlike those calculated for residential land-uses, NMED SSLs for non-residential land uses are based solely on exposures to adults. Consequently, exposures to carcinogens are not age-adjusted. Due to the wide range of activities and exposure levels a non-residential receptor may be

exposed to during various work-related activities, it is important to ensure that the default exposure parameters are representative of site-specific conditions. Table 2-4 provides a summary of the exposure characteristics and parameters for non-residential land use receptors.

Table 2-4. Summary of Non-Residential Land Use Receptors

Receptor	Commercial/Industria	Construction Worker
Exposure Characteristics	 Norker Substantial soil exposures High soil ingestion rate Long-term exposure Exposure to surface and shallow subsurface soils (0-1 foot bgs) Adult-only exposure 	 Exposed during construction activities only Short-term exposure Very high soil ingestion and dust inhalation rates Exposure to surface and subsurface soils (0-10 feet bgs)
Default Exposure Parameters	, , , , , , , , , , , , , , , , , , ,	, 0 /
Exposure frequency (days/yr)	225	250
Exposure duration (yr)	25	1
Soil ingestion rate (mg/day)	100	330
Body Weight (kg)	70	70
Skin surface area exposed (cm ²)	3,300	3,300
Skin-soil adherence factor (mg/ cm ²)	0.2	0.3

2.3.1 Commercial/Industrial Worker

The commercial/industrial scenario is considered representative of on-site workers who spend all or most of their workday outdoors. A commercial/industrial worker is assumed to be a long-term receptor exposed during the course of a work day as either (1) a full time employee of a company operating on-site who spends most of the work day conducting maintenance or manual labor activities outdoors or (2) a worker who is assumed to regularly perform grounds-keeping activities as part of his/her daily responsibilities. Exposure to surface and shallow subsurface soils (i.e., at depths of zero to 1 ft below ground surface) is expected to occur during moderate digging associated with routine maintenance and grounds-keeping activities. A commercial/industrial receptor is expected to be the most highly exposed receptor in the outdoor environment under generic or day-to-day commercial/industrial conditions. Thus, the screening levels for this receptor are expected to be protective of other reasonably anticipated indoor and outdoor workers at a commercial/industrial facility. However, screening levels developed for the commercial/industrial worker may not be protective of a construction worker due to the latter's increased soil contact rate during construction activities. In addition, the SSLs for the commercial/industrial worker do not account for inhalation of volatiles indoors via vapor intrusion.

Equations 12 and 13 were used to develop generic SSLs for cumulative exposure to carcinogenic and non-carcinogenic contaminants by all exposure pathways. Default exposure parameters (US EPA 2002a) are provided and were used in calculating the NMED SSLs.

Equation 12 Combined Exposures to Carcinogenic Contaminants in Soil Commercial/Industrial Scenario

$$C_{CI-oral} = \frac{TR \times AT_{CI} \times BW_{CI}}{CFS_o \times EF_{CI} \times ED_{CI} \times IR_{CI} \times 10^{-6}}$$

$$C_{\scriptscriptstyle CI-inh} = \frac{TR \times AT_{\scriptscriptstyle CI}}{IUR \times 1000 \times EF_{\scriptscriptstyle CI} \times \left(\frac{1}{VF_{\scriptscriptstyle S}} + \frac{1}{PEF_{\scriptscriptstyle W}}\right) \times ED_{\scriptscriptstyle CI} \times ET_{\scriptscriptstyle CI}}$$

$$C_{\scriptscriptstyle CI-demal} = \frac{TR \times AT_{\scriptscriptstyle CI} \times BW_{\scriptscriptstyle CI}}{EF_{\scriptscriptstyle CI} \times ED_{\scriptscriptstyle CI} \times \frac{CFS_{\scriptscriptstyle o}}{GIABS} \times SA_{\scriptscriptstyle CI} \times AF_{\scriptscriptstyle CI} \times ABS_{\scriptscriptstyle d} \times 10^{-6}}$$

$$SSL_{CI} = \frac{1}{\frac{1}{C_{CI-oral}} + \frac{1}{C_{CI-inh}} + \frac{1}{C_{CI-demail}}}$$

Parameter	Definition (units)	Default
$C_{ ext{CI-oral}}$	Contaminant concentration via oral ingestion (mg/kg)	Chemical-specific
$C_{\text{CI-dermal}}$	Contaminant concentration via dermal adsorption (mg/kg)	Chemical-specific
$C_{ ext{CI-inh}}$	Contaminant concentration via inhalation (mg/kg)	Chemical-specific
$\mathrm{SSL}_{\mathrm{CI}}$	Contaminant concentration, all pathways (mg/kg)	Chemical-specific
TR	Target Risk	1E-05
$\mathrm{BW}_{\mathrm{CI}}$	Body weight, adult (kg)	70
$\mathrm{AT}_{\mathrm{CI}}$	Averaging time, carcinogens (days)	25,550
EF_{CI}	Exposure frequency, commercial/industrial (day/yr)	225
$\mathrm{ED}_{\mathrm{CI}}$	Exposure duration, commercial/industrial (years)	25
IR_{CI}	Soil ingestion rate, commercial/industrial (mg/day)	100
CSF_{o}	Oral cancer slope factor (mg/kg-day) ⁻¹	Chemical-specific
SA_{CI}	Dermal surface area, commercial/industrial (cm ² /day)	3,300
$\mathrm{AF}_{\mathrm{CI}}$	Soil adherence factor, commercial/industrial (mg/cm ²)	0.2
ABS_d	Skin absorption factor (unitless)	Chemical-specific

ET_{CI}	Exposure time, commercial/industrial (8 hours/per 24	0.33
	hours)	
IUR	Inhalation unit risk (µg/m³) ⁻¹	Chemical-specific
1000	Unit conversion (µg/mg)	1000
VF_s	Volatilization factor for soil (m ³ /kg)	See Equation 22
PEF_{w}	Particulate emission factor (m ³ /kg)	See Equation 24

Equation 13 Combined Exposures to Noncarcinogenic Contaminants in Soil Commercial/Industrial Scenario

$$C_{\scriptscriptstyle CI-oral} = \frac{THQ \times AT_{\scriptscriptstyle CI} \times BW_{\scriptscriptstyle a}}{EF_{\scriptscriptstyle CI} \times ED_{\scriptscriptstyle CI} \times \left(1/RfD_{\scriptscriptstyle o}\right) \times IR_{\scriptscriptstyle CI} \times (10^{-6})}$$

$$C_{\scriptscriptstyle CI-inh} = \frac{THQ \times AT_{\scriptscriptstyle CI}}{EF_{\scriptscriptstyle CI} \times ED_{\scriptscriptstyle CI} \times ET_{\scriptscriptstyle CI} \times \left(1/\,RfC\right) \times \left[\left(1/\,VF_{\scriptscriptstyle s}\right) + \left(1/\,PEF_{\scriptscriptstyle W}\right)\right]}$$

$$C_{\scriptscriptstyle CI-dermal} = \frac{THQ \times AT_{\scriptscriptstyle CI} \times BW_{\scriptscriptstyle a}}{EF_{\scriptscriptstyle CI} \times ED_{\scriptscriptstyle CI} \times \left[1/\left(RfD_{\scriptscriptstyle o} \times GIABS\right)\right] \times SA_{\scriptscriptstyle CI} \times AF_{\scriptscriptstyle CI} \times ABS_{\scriptscriptstyle d} \times 10^{-6}}$$

$$SSL_{CI} = \frac{1}{\frac{1}{C_{CI-oral}} + \frac{1}{C_{CI-inh}} + \frac{1}{C_{CI-demnal}}}$$

Parameter	Definition (units)	Default
$C_{CI-oral}$	Contaminant concentration via oral ingestion (mg/kg)	Chemical-specific
$C_{CI\text{-}dermal}$	Contaminant concentration via dermal adsorption (mg/kg)	Chemical-specific
$C_{ ext{CI-inh}}$	Contaminant concentration via inhalation (mg/kg)	Chemical-specific
$\mathrm{SSL}_{\mathrm{CI}}$	Soil screening level, all pathways (mg/kg)	Chemical-specific
THQ	Target hazard quotient	1
BW_a	Body weight, adult (kg)	70
$\mathrm{AT}_{\mathrm{CI}}$	Averaging time, noncarcinogens (days)	ED x 365
EF_{CI}	Exposure frequency, commercial/industrial (day/yr)	225
ED_{CI}	Exposure duration, commercial/industrial (years)	25
IR_{CI}	Soil ingestion rate, commercial/industrial (mg/day)	100
10^{-6}	Unit conversion factor (kg/mg)	10^{-6}

RfD_o	Oral reference dose (mg/kg-day)	Chemical-specific
SA_{CI}	Dermal surface area, commercial/industrial (cm ² /day)	3,300
AF_{CI}	Soil adherence factor, commercial/industrial (mg/cm ²)	0.2
GIABS	Fraction absorbed in gastrointestinal tract (unitless)	Chemical-specific
ABS_d	Skin absorption factor (unitless)	Chemical-specific
$\mathrm{ET}_{\mathrm{CI}}$	Exposure time(8 hours/day per 1 day/24 hour)	0.33
RfC	Reference concentration (mg/m ³)	Chemical-specific
VF_s	Volatilization factor for soil (m ³ /kg)	See Equation 22
PEF_{w}	Particulate emission factor (m ³ /kg)	See Equation 24

2.3.2 Construction Worker

A construction worker is assumed to be a receptor that is exposed to contaminated soil during the work day for the duration of a single on-site construction project. If multiple construction projects are anticipated, it is assumed that different workers will be employed for each project. The activities for this receptor typically involve substantial exposures to surface and subsurface soils (i.e., at depths of zero to 10 feet below ground surface) during excavation, maintenance and building construction projects (intrusive operations). A construction worker is assumed to be exposed to contaminants via the following pathways: incidental soil ingestion, dermal contact with soil, and inhalation of contaminated outdoor air (volatile and particulate emissions). While a construction worker receptor is assumed to have a higher soil ingestion rate than a commercial/industrial worker due to the type of activities performed during construction projects, the exposure frequency and duration are assumed to be significantly shorter due to the short-term nature of construction projects. However, chronic toxicity information was used when developing screening levels for a construction worker receptor. This approach is significantly more conservative than using sub-chronic toxicity data because it combines the higher soil exposures for construction workers with chronic toxicity criteria. Equations 14 and 15 were used to develop generic SSLs for cumulative exposure to carcinogenic and noncarcinogenic contaminants by all exposure pathways for a construction worker. Default exposure parameters (US EPA 2002a) are provided and were used in calculating the NMED SSLs.

Equation 14 Combined Exposures to Carcinogenic Contaminants in Soil Construction Worker Scenarios

$$C_{\scriptscriptstyle CW-oral} = \frac{TR \times AT_{\scriptscriptstyle CW} \times BW_{\scriptscriptstyle CW}}{CFS_{\scriptscriptstyle o} \times EF_{\scriptscriptstyle CW} \times ED_{\scriptscriptstyle CW} \times IR_{\scriptscriptstyle CW} \times 10^{-6}}$$

$$C_{\scriptscriptstyle CW-inh} = \frac{TR \times AT_{\scriptscriptstyle CW}}{IUR \times 1000 \times EF_{\scriptscriptstyle CW} \times \left(\frac{1}{VF_{\scriptscriptstyle cw}} + \frac{1}{PEF_{\scriptscriptstyle cw}}\right) \times ED_{\scriptscriptstyle CW} \times ET_{\scriptscriptstyle CW}}$$

$$C_{\scriptscriptstyle CW-dermal} = \frac{TR \times AT_{\scriptscriptstyle CW} \times BW_{\scriptscriptstyle CW}}{EF_{\scriptscriptstyle CW} \times ED_{\scriptscriptstyle CW} \times \frac{CFS_{\scriptscriptstyle o}}{GIABS} \times SA_{\scriptscriptstyle CW} \times AF_{\scriptscriptstyle CW} \times ABS_{\scriptscriptstyle d} \times 10^{-6}}$$

$$SSL_{cw} = \frac{1}{\frac{1}{C_{cw-oral}} + \frac{1}{C_{cw-inh}} + \frac{1}{C_{cw-demail}}}$$

Parameter	Definition (units)	Default
$C_{CW-oral}$	Contaminant concentration via oral ingestion (mg/kg)	Chemical-specific
C _{CW-dermal}	Contaminant concentration via dermal adsorption (mg/kg)	Chemical-specific
C_{CW-inh}	Contaminant concentration via inhalation (mg/kg)	Chemical-specific
SSL_{CW}	Contaminant concentration, all pathways (mg/kg)	Chemical-specific
TR	Target Risk	1E-05
$\mathrm{BW}_{\mathrm{CW}}$	Body weight, adult (kg)	70
AT_{CW}	Averaging time, carcinogens (days)	365
EF_{CW}	Exposure frequency, construction worker (day/yr)	250
ED_{CW}	Exposure duration, construction worker (years)	1
IR_{CW}	Soil ingestion rate, construction worker (mg/day)	330
CSF_o	Oral cancer slope factor (mg/kg-day) ⁻¹	Chemical-specific
SA_{CW}	Dermal surface area, construction worker (cm ² /day)	3,300
AF_{CW}	Soil adherence factor, construction worker (mg/cm ²)	0.3
ABS_d	Skin absorption factor (unitless)	Chemical-specific
ET_{CW}	Exposure time, construction worker (8 hours/day per 1	0.33
	day/24 hours)	
IUR	Inhalation unit risk (µg/m³) ⁻¹	Chemical-specific
1000	Unit conversion (µg/mg)	1000
VF_{cw}	Volatilization factor for soil (m³/kg)	See Equation 22
PEF_{cw}	Particulate emission factor (m ³ /kg)	See Equation 25

Equation 15 Combined Exposures to Noncarcinogenic Contaminants in Soil Construction Worker Scenario

$$C_{\scriptscriptstyle CW-oral} = \frac{THQ \times AT_{\scriptscriptstyle CW} \times BW_{\scriptscriptstyle CW}}{EF_{\scriptscriptstyle CW} \times ED_{\scriptscriptstyle CW} \times (1/RfD_{\scriptscriptstyle o}) \times IR_{\scriptscriptstyle CW} \times (10^{-6})}$$

$$C_{\scriptscriptstyle CW-inh} = \frac{THQ \times AT_{\scriptscriptstyle CI}}{EF_{\scriptscriptstyle CW} \times ED_{\scriptscriptstyle CW} \times ET_{\scriptscriptstyle CW} \times \left(1/\,RfC\right) \times \left[\left(1/\,VF_{\scriptscriptstyle CW}\right) + \left(1/\,PEF_{\scriptscriptstyle CW}\right)\right]}$$

$$C_{\scriptscriptstyle CW-dermal} = \frac{THQ \times AT_{\scriptscriptstyle CW} \times BW_{\scriptscriptstyle cw}}{EF_{\scriptscriptstyle CW} \times ED_{\scriptscriptstyle CW} \times \left[1/\left(RfD_{\scriptscriptstyle o} \times GIABS\right)\right] \times SA_{\scriptscriptstyle CW} \times AF_{\scriptscriptstyle CW} \times ABS_{\scriptscriptstyle d} \times 10^{-6}}$$

$$SSL_{cw} = \frac{1}{\frac{1}{C_{cw-oral}} + \frac{1}{C_{cw-inh}} + \frac{1}{C_{cw-demnal}}}$$

Parameter	Definition (units)	Default
$C_{\text{CW-oral}}$	Contaminant concentration via oral ingestion (mg/kg)	Chemical-specific
$C_{CW ext{-}dermal}$	Contaminant concentration via dermal adsorption (mg/kg)	Chemical-specific
$C_{\text{CW-inh}}$	Contaminant concentration via inhalation (mg/kg)	Chemical-specific
$\mathrm{SSL}_{\mathrm{CW}}$	Soil screening level, all pathways (mg/kg)	Chemical-specific
THQ	Target hazard quotient	1
$\mathrm{BW}_{\mathrm{cw}}$	Body weight, adult (kg)	70
AT_{CW}	Averaging time, noncarcinogens (days)	ED x 365
EF_{CW}	Exposure frequency, construction worker (day/yr)	250
$\mathrm{ED}_{\mathrm{CW}}$	Exposure duration, construction worker (years)	1
IR_{CW}	Soil ingestion rate, construction worker (mg/day)	330
10^{-6}	Unit conversion factor (kg/mg)	10 ⁻⁶
RfD_{o}	Oral reference dose (mg/kg-day)	Chemical-specific
SA_{CW}	Dermal surface area, construction worker (cm ² /day)	3,300
AF_{CW}	Soil adherence factor, construction worker (mg/cm ²)	0.3
GIABS	Fraction absorbed in gastrointestinal tract (unitless)	Chemical-specific
ABS_d	Skin absorption factor (unitless)	Chemical-specific
ET_{CW}	Exposure time(8 hours/day per 1 day/24 hour)	0.33
RfC	Reference concentration (mg/m ³)	Chemical-specific
VF_{cw}	Volatilization factor for soil (m³/kg)	See Equation 22
PEF_{cw}	Particulate emission factor (m³/kg)	See Equation 25

2.3.3 Alternative Evaluation for Lead

Exposure to lead can result in neurotoxic and developmental effects. The primary receptors of concern are children, whose nervous systems are still undergoing development and who also exhibit behavioral tendencies that increase their likelihood of exposure (e.g., pica). These effects may occur at exposures so low that they may be considered to have no threshold, and are evaluated based on a blood lead level (rather than the external dose as reflected the RfD/RfC methodology). Therefore, US EPA views it to be inappropriate to develop noncarcinogenic "safe" exposure levels (i.e., RfDs) for lead. Instead, US EPA's lead assessment workgroup has recommended the use of the IEUBK model that relates measured lead concentrations in environmental media with an estimated blood-lead level (US EPA 1994 and 1998b). The model is used to calculate a blood lead level in children when evaluating residential land use and in adults (based on a pregnant mother's capacity to contribute to fetal blood lead levels), or when evaluating occupational scenarios at sites where access by children is reliably restricted. The NMED SSLs presented in Appendix A include values for lead that were calculated by using the IEUBK to back-calculate a soil concentration for each receptor that would not result in an estimated blood-lead concentration of 10 micrograms per deciliter (µg/dL) or greater (residential adult of 400 mg/kg and industrial and construction worker of 800 mg/kg).

2.4 Tap Water Screening Levels

Exposure to contaminants can occur through the ingestion of domestic/household water and inhalation of volatiles in domestic/household water. The calculations of the NMED tap water screening levels for domestic water are based upon the methodology presented in RAGS, part B (US EPA 1991). The screening levels are based upon ingestion and inhalation of contaminants in water. Although exposure to contaminants could occur through dermal contact with domestic/household water, exposure to contaminants in water is primarily due to ingestion and inhalation. Therefore, dermal contact with water was not included in the calculation of the tap water screening levels (SLs). If it is determined that dermal exposure to water at the site being evaluated is a significant exposure pathway, then dermal contact with water should be evaluated further using methods outlined in RAGS, Part E (US EPA, 2004). While ingestion is for all chemicals, inhalation of volatiles from water was considered for those chemicals with a minimum Henry's Law constant of 1E-05 atm-m³/mole and with a maximum molecular weight of 200 g/mole. To address the groundwater-to-air pathways, the tap water screening levels incorporate a volatilization factor (K) of 0.5 L/m³ for volatile contaminants (US EPA, 1991); this derived value defines the relationship between the concentration of a contaminant in household water and the average concentration of the volatilized contaminant in air as a result of all uses of household water (i.e., showering, laundering, dish washing).

As ingestion and inhalation rates may be different for children and adults, carcinogenic risks were calculated using age-adjusted factors, which were obtained from RAGS, Part B (US EPA 1991). Equations 16 through 18 show how SLs for carcinogenic and non-carcinogenic contaminants were developed. Similar to soil, separate equations are used for vinyl chloride (Equation 19) and carcinogens exhibiting mutagenic toxicity (Equation 20).

Equation 16 Ingestion and Inhalation Exposures to Carcinogenic Contaminants in Tap Water Residential Scenario

$$C_{oral} = \frac{TR \times AT_r \times 1000}{EF_r \times CSF_o \times IFW_{adj}}$$

$$C_{inh} = \frac{TR \times AT_{r}}{EF_{r} \times ED_{r} \times ET_{rw} \times IUR \times K}$$

$$SSL_{tap} = \frac{1}{\frac{1}{C_{oral}} + \frac{1}{C_{inh}}}$$

Parameter	Definition (units)	Default
C_{oral}	Contaminant concentration, ingestion (µg/L)	Chemical-specific
C_{ihal}	Contaminant concentration, inhalation (µg/L)	Chemical-specific
SSL_{tap}	Tap water screening level (μg/L)	Chemical-specific
TR	Target risk	1E-05
AT_r	Averaging time, carcinogens (days)	25,550
EF_r	Exposure frequency, resident (day/yr)	350
1000	Unit conversion (µg/mg)	1000
IFW_{adj}	Age-adjusted water ingestion rate, resident (L-yr/kg-day)	1.086
	(See Equation 17)	
CSF_o	Oral cancer slope factor (mg/kg-day) ⁻¹	Chemical-specific
ED_{r}	Exposure duration (years)	30
$\mathrm{ET}_{\mathrm{rw}}$	Exposure time (24 hours/day per 1day/24 hours)	1
IUR	Inhalation unit risk (µg/m ³) ⁻¹	Chemical-specific
K	Andelman volatilization factor (L/m ³)	0.5

Equation 17 Calculation of Age-Adjusted Tap Water Ingestion Factor

$$IFW_{adj} = \frac{ED_c \times IRW_c}{BW_c} + \frac{ED_{r-c} \times IRW_a}{BW_a}$$

Parameter	Definition (units)	Default
$\mathbf{IFW}_{\mathrm{adj}}$	Age-adjusted water ingestion factor for carcinogens [(L-	1.086
	yr)/(kg-day)]	
ED_{c}	Exposure duration, child (years)	6
IRW_c	Water ingestion rate, child (L/day)	1
BW_c	Body weight, child (kg)	15
$\mathrm{ED}_{\mathrm{r-c}}$	Exposure duration, resident minus child (years)	24
IRW_a	Water ingestion rate, adult (L/day)	2
\mathbf{BW}_{a}	Body weight, adult (kg)	70

Equation 18

Ingestion and Inhalation Exposures to Noncarcinogenic Contaminants in Tap Water Residential Scenario

$$C_{oral} = \frac{THQ \times BW_a \times 1000 \times AT_r}{EF_r \times ED_r \times \left(\frac{1}{RfD_o}\right) \times IRW_a}$$

$$C_{inh} = \frac{THQ \times AT_r \times 1000}{EF_r \times ED_r \times ET_{rw} \times \left(\frac{1}{RfC}\right) \times K}$$

$$SSL_{tap} = \frac{1}{\frac{1}{C_{oral}} + \frac{1}{C_{inh}}}$$

Parameter	Definition (units)	Default
C_{oral}	Contaminant concentration, ingestion (µg/L)	Chemical-specific
C_{inl}	Contaminant concentration, inhalation (µg/L)	Chemical-specific
SSL_{tap}	Tap water screening level (μg/L)	Chemical-specific
THQ	Target hazard quotient	1
BW_a	Body weight, adult (kg)	70
AT_r	Averaging time, noncarcinogens (days)	$ED_r \times 365$
1000	Unit conversion (µg/mg)	1000
EF_r	Exposure frequency, resident (day/yr)	350
ED_r	Exposure duration, resident (years)	30

February 2012

IRW _a	Water ingestion rate, resident (L/day)	2
RfD_o	Oral reference dose(mg/kg-day)	Chemical-specific
$\mathrm{ET}_{\mathrm{rw}}$	Exposure time (24 hours/day per 1day/24 hours)	1
RfC	Reference concentration ((mg/m ³)	Chemical-specific
K	Andelman volatilization factor (L/m ³)	0.5

Equation 19 Ingestion and Inhalation Exposures to Vinyl Chloride in Tap Water Residential Scenario

$$C_{oral} = \frac{TR}{\left(\frac{CSF_o \times EF_r \times IFW_{adj} \times 0.001}{AT} + \frac{CSF_o \times IRW_c \times 0.001}{BW_c}\right)}$$

$$C_{inh} = \frac{TR}{\left(\frac{IUR \times EF_r \times ED_r \times ET_{rw} \times K}{AT} + \left(IUR \times K\right)\right)}$$

$$SSL_{tap} = \frac{1}{\frac{1}{C_{oral}} + \frac{1}{C_{inh}}}$$

Parameter	Definition (units)	Default
C_{oral}	Contaminant concentration, ingestion (µg/L)	Chemical-specific
C_{ihal}	Contaminant concentration, inhalation (µg/L)	Chemical-specific
SSL_{tap}	Tap water screening level (μg/L)	Chemical-specific
TR	Target risk	1E-05
AT	Averaging time, carcinogens (days)	25,550
EF_r	Exposure frequency, resident (day/yr)	350
0.001	Unit conversion (mg/µg)	0.001
$\mathrm{IFW}_{\mathrm{adj}}$	Age-adjusted water ingestion rate, resident (L-yr/kg-day) (See Equation 17)	1.086
IRW_c	Child water ingestion rate, resident (L/day)	1
CSF_o	Oral cancer slope factor (mg/kg-day) ⁻¹	Chemical-specific
ED_r	Exposure duration (years)	30
$\mathrm{ET}_{\mathrm{rw}}$	Exposure time (24 hours/day per 1day/24 hours)	1
IUR	Inhalation unit risk (µg/m³) ⁻¹	Chemical-specific
K	Andelman volatilization factor (L/m³)	0.5

Equation 20 SL for Tap Water, Residential Exposure – Mutagens

$$C_{mu-oral} = \frac{TR \times AT_{r} \times 1000}{CFS_{o} \times EF_{r} \times IFWM_{adj}}$$

$$C_{\textit{mu-inh}} = \frac{\textit{TR} \times \textit{AT}_{r}}{\left(\textit{EF}_{r} \times \textit{ET}_{rs} \times \textit{K}\right) \times \left[\left(\textit{ED}_{0-2} \times \textit{IUR} \times 10\right) + \left(\textit{ED}_{2-6} \times \textit{IUR} \times 3\right) + \left(\textit{ED}_{6-16} \times \textit{IUR} \times 3\right) + \left(\textit{ED}_{16-30} \times \textit{IUR} \times 1\right)\right]}$$

$$SSL_{tap-mu} = \frac{1}{\frac{1}{C_{mu-oral}} + \frac{1}{C_{mu-inh}}}$$

Parameter	Definition (units)	Default
$C_{\text{mu-oral}}$	Contaminant concentration, ingestion (µg/kg)	Chemical-specific
$C_{\text{mu-inh}}$	Contaminant concentration, inhalation (µg/kg)	Chemical-specific
SSL_{tap-mu}	Tap water screening level (μg/L)	Chemical-specific
TR	Target cancer risk	1E-05
AT_r	Averaging time, carcinogens (days)	25,550
CSF_o	Oral cancer slope factor (mg/kg-day)-1	Chemical-specific
EF_r	Exposure frequency, resident (day/yr)	350
$\mathrm{ET}_{\mathrm{rw}}$	Exposure time (24 hours/day per 1day/24 hours)	1
K	Andelman volatilization factor (L/m ³)	0.5
IFWM _{adj}	Age-adjusted water ingestion rate (L-yr/kg-day) (See	3.39
,	Equation 21)	
1000	Conversion factor (μg/mg)	1000
ED_{0-2}	Exposure duration, child (years)	2
ED_{2-6}	Exposure duration, child (years)	4
ED_{6-16}	Exposure duration, adult (years)	10
ED_{16-30}	Exposure duration, adult (years)	14
IUR	Inhalation unit risk (μg/m ³) ⁻¹	Chemical-specific

Equation 21
Calculation of Age-Adjusted Tap Water Ingestion Factor, Mutagens

$$IFWM_{adj} = \frac{ED_{0-2} \times IRW_c \times 10}{BW_c} + \frac{ED_{2-6} \times IRW_c \times 3}{BW_c} + \frac{ED_{6-16} \times IRW_a \times 3}{BW_a} + \frac{ED_{16-30} \times IRW_a \times 1}{BW_a}$$

Parameter	Definition (units)	Default
$IFWM_{adj}$	Age-adjusted water ingestion factor for mutagens [(L-yr)/(kg-day)]	3.39
ED_{0-2}	Exposure duration, child (years)	2
ED_{2-6}	Exposure duration, child (years)	4
ED_{6-16}	Exposure duration, adult (years)	10
ED_{16-30}	Exposure duration, adult (years)	14
IRW_c	Water ingestion rate, child (L/day)	1
IRW_a	Water ingestion rate, adult (L/day)	2
BW_c	Body weight, child (kg)	15
BW_a	Body weight, adult (kg)	70

2.5 <u>Site Assessment and Characterization</u>

The Site Assessment/Site Characterization phase is intended to provide additional spatial and contextual information about the site, which may be used to determine if there is any reason to believe that receptors and/or complete exposure pathways may exist at or in the locality of the site where a release of hazardous waste/constituents has occurred. In addition, the site assessment phase serves as the initial information gathering phase to determine whether potential exposures are sufficiently similar to those upon which the NMED SSLs are predicated to support comparison. Finally, this phase can help to identify sites in need of a more detailed assessment of potential risk. A CSM providing a list of the potentially exposed receptors and potentially complete exposure pathways in the scoping report is used to determine whether further assessment (i.e., a screening level assessment) and/or interim measures are required or whether the site poses minimal threat to human and ecological receptors at or near the site.

The ultimate purpose of the site assessment phase is to address the question: Are exposure pathways complete with regard to contaminant contact by receptors? A complete site assessment will consists of several steps:

- Develop data quality objectives and conduct site sampling;
- Identify preliminary COPCs;
- Develop a preliminary site conceptual exposure model (SCEM);
- Determine Exposure Intervals;
- Compare maximum COPC concentrations for consideration of complete exposure pathways with SSLs;
- Assess concentrations of essential nutrients; and
- If the site maximums are above the SSLs, a Tier 2 approach may be deemed appropriate by NMED using the 95% upper confidence limit (UCL) value) for contaminant concentrations (or detection/quantitation limits for non-detect results).

2.5.1 Development of Data Quality Objectives

Before any additional environmental samples are collected, data quality objectives (DQOs) should be developed. The DQOs should address the qualitative and quantitative nature of the sampling data, in terms of relative quality and intent for use, to ensure that any data collected will be appropriate for the intended objective. Development of the DQOs should consider not only precision, accuracy, representativeness, completeness, and comparability of the data, but also the sampling locations, types of laboratory analyses used, sensitivity of detection limits of the analytical techniques, the resulting data quality, and the employment of adequate quality assurance/quality control measures.

2.5.2 Identification of COPCs

COPCs are those substances (including transformation or breakdown compounds and companion products) likely to be present in environmental media affected by a release. Identification of COPCs should begin with existing knowledge of the process, product, or waste from which the release originated. For example, if facility operations deal primarily with pesticide manufacturing then pesticides should be considered COPCs. Contaminants identified during current or previous site investigation activities should also be evaluated as COPCs. A site-specific COPC list for soil may be generated based on maximum detected (or, if deemed appropriate by NMED, the 95% UCL value) concentrations (US EPA 2002b) and a comparison of detection/quantitation limits for non-detect results to the NMED SSLs. This list may be refined through a site-specific risk assessment. Per US EPA guidance (US EPA 1989), if there is site history to indicate a chemical was potentially used/present at a site, and the chemical was detected in at least one sample, this chemical must be included as a COPC and evaluated in the screening assessment.

For inorganics, a comparison of site concentrations to appropriate background concentrations may be conducted prior to evaluation against SSLs. Those inorganics that are present at levels indicative of natural background may be eliminated as a COPC. Comparison to background must be conducted following current US Guidance and outlined in this guidance. The general process is a tiered approach.

- Step 1. Compare the maximum detected site concentration to the site-specific background reference values (upper tolerance limit) determined for that site. If the site maximum is less than the background reference value, it is assumed that the site concentrations are representative of background and the metal/inorganic is not retained as a COPC. If there is no background value for a constituent, then it will be retained as a COPC.
- Step 2: If the maximum site concentration is greater than the background reference value, then a two-sample hypothesis test should be used to compare the distributions of the site data to the distributions of background data to determine if site concentrations are elevated compared with background. The most recent version of US EPA's ProUCL statistical software will be used for hypothesis testing. ProUCL will also be used to determine the most appropriate test (parametric or nonparametric) based on distribution of the data. Appropriate methods in ProUCL will also be used to

compute site-to-background comparisons based on censored data sets containing non-detect values.

Note that the above two-sample test can only be used for site data-sets that have sufficient number of samples (i.e., $n \ge 8$) and number of detections (i.e, ≥ 5 detected observations). Site-to-background point-by-point comparisons will be conducted for site data sets containing fewer than eight samples and fewer than five detected observations. As stated in the current version of ProUCL User's Guide (US EPA, 2010), hypothesis testing is only considered to be reliable with sufficient sample size $(n \ge 8)$ and frequency of detection (≥ 5 detected observations). If there are not at least eight samples in the site data set and at least five detections, then the site maximum detected concentrations will be compared to the corresponding background value (i.e., 95% upper tolerance limit) as noted in Step 1 or additional data must be collected to conduct a two-tailed test.

<u>Step 3:</u> Additional lines of evidence may be used to justify exclusion of an inorganic as being site related, such as site history, number of non-detects, etc. Comparison of site data to regional data (such as US Geological Survey (USGS) databases not specific to the site) is not an acceptable line of evidence.

2.5.3 Development of a Preliminary Conceptual Site Model

A CSM is a graphical representation of three-dimensional site conditions that conveys what is known or suspected, at a discrete point in time, about the site-specific sources, releases, release mechanisms, contaminant fate and transport, exposure routes, and potential receptors. The CSM is generally documented by written descriptions and supported by maps, geological cross-sections, tables, diagrams and other illustrations to communicate site conditions. When preparing a CSM, the facility should decide the scope, quantity, and relevance of information to be included, balancing the need to present as complete a picture as possible to document current site conditions and justify risk management actions, with the need to keep the information focused and exclude extraneous data.

As a final check, the CSM should answer the following questions:

- Are there potential land uses present (now or in the foreseeable future) other than those covered by the SSLs? (refer to US EPA 1989).
- Are there other likely human exposure pathways that were not considered in development of the SSLs (e.g. vapor intrusion, direct exposure to groundwater, local fish consumption, raising homegrown produce, beef, dairy, or other livestock)? (refer to US EPA 1989)
- Are there potential ecological concerns? (Guidance for Assessing Ecological Risks Posed by Chemicals: Screening Level Ecological Risk Assessment; NMED 2000)

If any conditions such as these exist, the SSLs may need to be adjusted to reflect this new information.

2.5.4 Determine Exposure Intervals

Based on current and potential land-use scenarios, receptors for completed exposure pathways can be exposed to varying depths of soil, or soil exposure intervals. Per US EPA (US EPA 1989), depth of samples should be considered and surface soils should be evaluated separately from subsurface soils due to possible differences in exposure levels that would be encountered by different receptors. Exposure intervals for each receptor are based on the types of activities in which each receptor is likely to be involved. Default exposure intervals are summarized in Table 2-5.

It is assumed that commercial/industrial workers would only be exposed to surface soils (0-1 ft below ground surface). As stated in Section 2.3.1, this receptor may be involved in moderate digging associated with routine maintenance and grounds keeping activities. Therefore, COPC concentrations in soil in the surface soil interval (0-1 ft bgs) should be considered when evaluating exposure by a commercial/industrial worker receptor.

As stated in Section 2.3.2, a construction worker is assumed to be exposed to surface and subsurface soils up to depths of 0-10 ft below ground surface. Construction workers are involved in digging, excavation, maintenance and building construction projects and could be exposed to surface as well as subsurface soil. Therefore, a soil exposure interval of 0-10 feet below ground surface should be considered when evaluating exposure to soil by a construction worker.

Residents could be exposed to surface and subsurface soils during home maintenance activities, yard work, landscaping, and outdoor play activities. Therefore, an exposure soil interval of 0-10 ft below ground surface should be assumed when evaluating soil exposure by a residential receptor.

Exposure to COPCs in soil by ecological receptors should be addressed separately in a tiered approach as outlined by NMED (NMED 2000). However, a discussion of soil exposure intervals for ecological receptors is warranted here because ecological receptors are considered in the CSM and depending on the types of ecological receptors, there can be a differential in exposure levels due to soil exposure intervals. Burrowing animals would be exposed to deeper soils, whereas all other animals would only be exposed to surface and shallow subsurface soils. Therefore, maximum concentrations of COPCs in soil 0-10 ft below ground surface should be assessed for burrowing animals. Maximum COPC concentrations in soil 0-5 ft below ground surface should be assessed for all other animals.

Table 2-5. Soil Exposure Intervals

Receptor	Exposure Intervals (Soil)
Resident (adult and child)	0-10 ft bgs
Commercial/Industrial Worker	0-1 ft bgs
Construction Worker	0-10 ft bgs
Vapor Intrusion	Depth of maximum detection
Ecological Receptors (non-burrowing)	0-5 ft bgs
Ecological Receptors (burrowing)	0-10 ft bgs

2.5.5 Compare COPC Maximum Concentrations with SSLs

The final step in the site assessment phase is to compare maximum detected COPC concentrations in soil with SSLs based on the complete exposure pathways identified by the preliminary CSM and assessing total risk/hazard from all constituents (Refer to Section 5). These concentrations should also be compared against the SSL leaching values to determine which contaminants present in soil have the capacity to leach to underlying groundwater and impact these resources adversely. As stated earlier, those contaminants exhibiting concentrations in excess of the SSLs represent the initial soil COPC list for a given site. Refinement of this list may be necessary based on a host of factors, including elevated detection or quantitation limits.

3.0 CHEMICAL-SPECIFIC AND PHYSICAL-CHEMICAL PARAMETERS

Chemical-specific parameters required for calculating SSLs include the organic carbon normalized soil-water partition coefficient for organic compounds (K_{oc}), the soil-water partition coefficient (K_{d}), water solubility (S), octanol-water partition coefficient (K_{ow}), Henry's Law constant (H), diffusivity in air (D_a), and diffusivity in water (D_w). The following sections describe these values and present methodologies for calculating additional values necessary for calculating the NMED SSLs.

3.1 Volatilization Factor for Soil

Volatile chemicals, defined as those chemicals having a Henry's Law constant greater than 1E-05 atm-m³/mole and a molecular weight less than 200 g/mole, were screened for inhalation exposures using a volatilization factor (VF_s) for soils. The soil-to-air VF_s is used to define the relationship between the concentration of the contaminant in soil and the flux of the volatilized contaminant to ambient air. The emission terms used in the VF_s are chemical-specific and were calculated from physical-chemical information obtained from several sources including: US EPA's *Soil Screening Guidance: Technical Background Document* (US EPA, 1996a and 2001a), *Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites* (US EPA 2002a), US EPA Master Physical and Chemical Parameter table for development US EPA Regional Screening Levels (US EPA 2011), US EPA's *Basics of Pump and Treat Groundwater Remediation Technology* (US EPA 1990), US EPA's *Dermal Exposure Assessment* (US EPA 1992a), *Superfund Public Health Evaluation Manual* (US EPA 1986), US EPA's *Additional Environmental Fate Constants* (US EPA 1995), Hazardous Substance Release/Health Effects Database (ATSDR 2003), the RAIS database (DOE 2005), and the CHEMFACTS database (US

EPA 2000c). The VF_s for the residential and commercial/industrial scenarios is calculated using Equation 22 while the VF_{s-cw} for the construction worker is calculated using Equation 23.

Equation 22 Derivation of the Volatilization Factor for Residential and Commercial/Industrial Scenarios

$$VF_{s} = \frac{Q / C_{vol} \times \left(3.14 \times D_{A} \times T\right)^{0.5} \times 10^{-4}}{\left(2 \times \rho_{b} \times D_{A}\right)}$$

Where:

$$D_{A} = \frac{\left[\frac{\left(\theta_{a}^{10/3}D_{a}H' + \theta_{w}^{10/3}D_{w}\right)}{n^{2}}\right]}{\rho_{b}K_{d} + \theta_{w} + \theta_{a}H'}$$

Parameter	Definition (units)	Default
VF _s	Volatilization factor for soil (m³/kg)	Chemical-specific
D_A	Apparent diffusivity (cm ² /s)	Chemical-specific
Q/C_{vol}	Inverse of the mean concentration at the center of a	68.18
	0.5- acre-square source (g/m ² -s per kg/m ³)	
T	Exposure interval (s)	9.5E+08
ρ_{b}	Dry soil bulk density (g/cm ³)	1.5
n	Total soil porosity 1 - (ρ_b/ρ_s)	0.43
θ_{a}	Air-filled soil porosity (n - $\theta_{\rm w}$)	0.17
$\theta_{ m w}$	Water-filled soil porosity	0.26
$\rho_{\rm s}$	Soil particle density (g/cm ³)	2.65
D_a	Diffusivity in air (cm ² /s)	Chemical-specific
H'	Dimensionless Henry's Law constant	Chemical-specific
$\mathrm{D_{w}}$	Diffusivity in water (cm ² /s)	Chemical-specific
K_d	Soil-water partition coefficient (cm ³ /g) = $K_{oc} x f_{oc}$	Chemical-specific
	(organics)	
K_{oc}	Soil organic carbon partition coefficient (cm ³ /g)	Chemical-specific
f_{oc}	Fraction organic carbon in soil (g/g)	0.0015

Equation 23 Derivation of the Volatilization Factor for Construction Worker Scenario

$$VF_{s-cw} = \left(\frac{\left(3.14 \times D_A \times T\right)^{0.5}}{2 \times \rho_b \times D_A}\right) \times 10^{-4} \times Q / C \times (1/F_D)$$

Where:

$$D_{A} = \frac{\left[\frac{\left(\theta_{a}^{10/3}D_{a}H' + \theta_{w}^{10/3}D_{w}\right)}{n^{2}}\right]}{\rho_{b}K_{d} + \theta_{w} + \theta_{a}H'}$$

Parameter	Definition (units)	Default
VF_{s-cw}	Volatilization factor for soil (m ³ /kg)	Chemical-specific
D_{A}	Apparent diffusivity (cm ² /s)	Chemical-specific
Q/C	Inverse of the mean concentration at the center of a	14.31
	0.5- acre-square source (g/m ² -s per kg/m ³)	
T	Exposure interval (s)	3.15E+07
10^{-4}	Conversion factor (m ² /cm ²)	1E-04
F_{D}	Dispersion correction factor (unitless)	0.185
$ ho_{ m b}$	Dry soil bulk density (g/cm ³)	1.5
n	Total soil porosity 1 - (ρ_b/ρ_s)	0.43
Θ_{a}	Air-filled soil porosity (n - $\theta_{\rm w}$)	0.17
$ heta_{ m w}$	Water-filled soil porosity	0.26
$ ho_{ m s}$	Soil particle density (g/cm ³)	2.65
\mathbf{D}_{a}	Diffusivity in air (cm ² /s)	Chemical-specific
H'	Dimensionless Henry's Law constant	Chemical-specific
$\mathrm{D_{w}}$	Diffusivity in water (cm ² /s)	Chemical-specific
K_d	Soil-water partition coefficient (cm $^3/g$) = K_{oc} x f_{oc}	Chemical-specific
	(organics)	
K_{oc}	Soil organic carbon partition coefficient (cm ³ /g)	Chemical-specific
f_{oc}	Fraction organic carbon in soil (g/g)	0.0015

While most of the parameters used to calculate apparent diffusivity (D_A) are either chemical-specific or default values, several state-specific values were used which are more representative of soil conditions found in New Mexico. The default values for θ_w , θ_a , and ρ_b in Equations 22 and 23 are 0.26, 0.17 and 1.5 g/cm³, respectively. These values represent the mean value from a National Resources Conservation Service (NRCS) soil survey database for New Mexico that includes over 1200 sample points (U.S. Department of Agriculture 2000). US EPA guidance (US EPA 2001a) provides additional methodologies for estimating site-specific air-filled soil porosities and water-filled soil porosities.

It should be noted that the basic principle of the VF model (Henry's Law) is applicable only if the soil contaminant concentration is at or below soil saturation, C_{sat} . Above the soil saturation limit, the model cannot predict an accurate VF-based SSL.

3.2 Soil Saturation Limit

C_{sat} describes a chemical-physical soil condition that integrates certain chemical-specific properties with physical attributes of the soil to estimate the contaminant concentration at which the soil pore water, pore air, and surface sorption sites are saturated with contaminants. Above this concentration, the contaminants may be present in free phase within the soil matrix – as nonaqueous phase liquids (NAPLs) for substances that are liquid at ambient soil temperatures, and pure solid phases for compounds that are solids at ambient soil temperatures (US EPA 1996a). Generic C_{sat} concentrations should not be interpreted as confirmation of a saturated soil condition, but as estimates of when this condition may occur. It should be noted that C_{sat} concentrations are not risk-based values. Instead, they correspond to a theoretical threshold above which free phase contaminant may exist. C_{sat} concentrations, therefore, serve to identify an upper limit to the applicability of generic risk-based soil criteria, because certain default assumptions and models used in the generic algorithms are not applicable when free phase contaminant is present in soil. The basic principle of the volatilization model is not applicable when free-phase contaminants are present. How these cases are handled depends on whether the contaminant is liquid or solid at ambient temperatures. Liquid contaminants that have volatilization factor- (VF_s) based screening levels that exceed the "sat" concentration are set equal to "sat" whereas for solids (e.g., polycyclic aromatic hydrocarbons, PAHs), soil screening decisions are based on appropriate other pathways of concern at the site (e.g., ingestion and dermal contact). Equation 24, given below is used to calculate C_{sat} for each volatile contaminant considered within the SSLs.

	Equation 24 Derivation of the Soil Saturation Limit	
	$C_{sat} = \frac{S}{\rho_b} \left(K_d \rho_b + \theta_w + H' \theta_a \right)$	
Parameter	Definition (units)	Default
C_{sat}	Soil saturation concentration (mg/kg)	Chemical-specific
S	Solubility in water (mg/L-water)	Chemical-specific
$ ho_{ m b}$	Dry soil bulk density (kg/L)	1.5
K_d	Soil-water partition coefficient (L/kg; $K_{oc} \times f_{oc}$)	Chemical-specific
K_{oc}	Soil organic carbon/water partition coefficient (L/kg)	Chemical-specific
f_{oc}	Fraction organic carbon in soil (g/g)	0.0015
$\theta_{ m w}$	Water-filled soil porosity (L_{water}/L_{soil})	0.26
H ["]	Dimensionless Henry's Law constant	Chemical-specific
θ_{a}	Air-filled soil porosity (n- θ_w),(L_{air}/L_{soil})	0.17
n	Total soil porosity $(1 - (\rho_b/\rho_s))$, (L_{pore}/L_{soil})	0.43
$\rho_{\rm s}$	Soil particle density (kg/L)	2.65

Chemical-specific parameters used in Equation 24 were obtained from physical-chemical information obtained from several sources including: US EPA's *Soil Screening Guidance: Technical Background Document* (US EPA 1996a and US EPA 2002a), the US EPA Regional

Screening Levels (US EPA 2011), US EPA's *Basics of Pump and Treat Groundwater remediation Technology* (US EPA 1990), US EPA's *Dermal Exposure Assessment* (US EPA 1992a), *Superfund Public Health Evaluation Manual* (US EPA 1986), US EPA's *Additional Environmental Fate Constants* (US EPA 1995), Hazardous Substance Release/Health Effects Database (ATSDR 2003), the RAIS, CHEMFACTS, WATER9, and PHYSPROP databases, and EPISUITE.

3.3 Particulate Emission Factor

Inhalation of chemicals adsorbed to suspended respirable particles is assessed using a chemical-specific PEF, which relates the contaminant concentration in soil to the concentration of respirable particles in the air due to fugitive dust emissions from contaminated soils. This guidance addresses dust generated from open sources, which is termed "fugitive" because it is not discharged into the atmosphere in a confined flow stream. For further details on the methodology associated with the PEF model, the reader is referred to US EPA's *Soil Screening Guidance: Technical Background Document* (US EPA 1996a), *Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites* (US EPA 2002a) and *Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities* (US EPA 1998a).

It is important to note that the PEF for use in evaluating exposures of the residential and commercial/industrial receptors addresses only windborne dust emissions and does not consider emissions from traffic or other forms of mechanical disturbance, which could lead to a greater level of exposure. The PEF for use in evaluating the construction worker exposures considers windborne dust emissions and emissions from vehicle traffic associated with construction activities. Therefore, the fugitive dust pathway should be considered carefully when developing the CSM at sites where receptors may be exposed to fugitive dusts by other mechanisms. Equation 25 is used to calculate a New-Mexico region-specific PEF value, used for both the residential and commercial/industrial exposure scenarios. A scenario-specific PEF value was calculated for a construction worker receptor (PEF_{cw}) using Equation 26.

Equation 25 Derivation of the Particulate Emission Factor Residential and Commercial/Industrial Scenarios

PEF = Q / C_{wind} ×
$$\frac{3,600 \text{ sec / hr}}{0.036 \times (1 - \text{V}) \times \left(\frac{\text{U}_{\text{m}}}{\text{U}_{\text{t}}}\right)^3 \times \text{F(x)}}$$

Parameter	Definition (units)	Default
PEF	Particulate emission factor (m ³ /kg)	6.61E+09
Q/C _{wind}	Inverse of a mean concentration at center of a 0.5-acresquare source $(g/m^2$ -s per $kg/m^3)$	81.85
V	Fraction of vegetative cover (unitless)	0.5
U_{m}	Mean annual windspeed (m/s)	4.02
U_t	Equivalent threshold value of windspeed at 7 m (m/s)	11.32
F(x)	Function dependent on U_m/U_t derived using Cowherd et al. (1985) (unitless)	0.0553

Equation 26 Derivation of the Particulate Emission Factor Construction Worker Scenario

$$PEF_{CW} = Q/C_{CW} \times \frac{1}{F_{D}} \left[\frac{T \times A_{R}}{556 \times \left(\frac{W}{3}\right)^{0.4} \times \frac{\left(365 \text{ days/yr} - P\right)}{365 \text{ days/yr}} \times \sum VKT} \right]$$

Parameter	Definition (units)	Default
PEF_{CW}	Particulate emission factor for a construction worker (m ³ /kg)	2.1E+06
Q/C _{CW}	Inverse of a mean concentration at center of a 0.5-acresquare source (g/m²-s per kg/m³)	23.02
F_{D}	Dispersion correction factor (unitless)	0.185
T	Total time over which construction occurs (s)	7.2E + 06
A_R	Surface area of road segment (m ²)	274.2
W	Mean vehicle weight (tons)	8
P	Number of days with at least 0.01 inches of precipitation (days/yr)	60
ΣVΚΤ	sum of fleet vehicle kilometers traveled during the exposure duration (km)	168.75

3.4 Physical-Chemical Parameters

Several chemical-specific parameters are required for calculating SSLs including the organic carbon normalized soil-organic carbon/water partition coefficients for organic compounds (K_{oc}), the soil-water partition coefficient for organic and inorganic constituents (K_d), the solubility of a compound in water (S), Henry's Law constant (H), air diffusivity (D_a), water diffusivity (D_w),

and the octanol-water partition coefficient (K_{ow}). Prior to calculating site-specific SSLs, each relevant chemical specific parameter value presented in Appendix B should be checked against the most recent version of its source to determine if updated data are available. Tables B-1 and B-2 in Appendix B provides the chemical-specific parameters used in calculating the NMED SSLs.

Chemical-specific values were obtained from US EPA's Soil Screening Guidance: Technical Background Document (US EPA 1996a and US EPA 2002a, the US EPA Regional Screening Levels (US EPA 2011), US EPA's Basics of Pump and Treat Groundwater remediation Technology (US EPA 1990), US EPA's Dermal Exposure Assessment (US EPA 1992a), Superfund Public Health Evaluation Manual (US EPA 1986), US EPA's Additional Environmental Fate Constants (US EPA 1995), Hazardous Substance Release/Health Effects Database (ATSDR 2003), the RAIS, CHEMFACTS, WATER9, and PHYSPROP databases, and EPISUITE.

3.4.1 Solubility, Henry's Law Constant, and K_{ow}

The solubility of a contaminant refers to the maximum amount that can be dissolved in a fixed volume of solvent, usually pure water, at a specific temperature and pH. A chemical with a high solubility readily dissolves in water, while a low solubility indicates an inability to dissolve. Water solubility is generally predicted based on correlations with the octanol-water partition coefficient (K_{ow}) . Solubility is used to calculate soil saturation limits for the NMED SSLs.

The octanol-water partition coefficient (K_{ow}) of a chemical is the ratio of a chemical's solubility in octanol versus its solubility in water at equilibrium. Essentially, this chemical-specific property is used as an indication of a contaminant's propensity to migrate from soil to water. It is an important parameter and is used in the assessment of environmental fate and transport for organic chemicals.

The Henry's Law constant (H) is used when evaluating air exposure pathways. For all chemicals that are capable of exchanging across the air-water interface, there is a point at which the rate of volatilization into the air and dissolution to the water or soil will be equal. The ratio of gas- and liquid-phase concentrations of the chemical at this equilibrium point is represented by H, which is used to determine the rate at which a contaminant will volatilize from soil to air. Values for H may be calculated using the following equation and the values for solubility (S), vapor pressure (VP), and molecular weight (MW).

$$H = \frac{VP \times MW}{S}$$
 Equation 27

The dimensionless form of Henry's Law constant (H') used in calculating soil saturation limits and volatilization factors for the NMED SSLs was calculated by multiplying H by a factor of 41 to convert the Henry's Law constant to a unitless value.

3.4.2 Soil Organic Carbon/Water Partition Coefficients (K_{oc})

The soil organic carbon-water partition coefficient (K_{oc}) is a measure of a chemical's tendency to

adsorb to organic carbon present in soil. High K_{oc} values indicate a tendency for the chemical to adsorb to soil particles rather than remain dissolved in the soil solution. Strongly adsorbed molecules will not unless the soil particle to which they are adsorbed moves (as in erosion). K_{oc} values of less than 500 indicate weak adsorption and a potential for leaching. K_{oc} is calculated using the following equation:

$$K_{oc} = \frac{\text{conc. adsorbed/conc. dissolved}}{\text{% organic carbon in soil}}$$
 Equation 28

 K_{oc} can also be calculated by dividing the K_d value by the fraction of organic carbon (f_{oc}) present in the soil or sediment. It should be noted that a strong linear relationship exists between K_{oc} and K_{ow} and that this relationship can be used to predict K_{oc} .

3.4.3 Soil/Water Partition Coefficients (K_d)

Soil-water partition coefficient (K_d) for organic chemicals is the ratio of a contaminant's distribution between soil and water particles. The soil-water partitioning behavior of nonionizing and ionizing organic compounds differs because the partitioning of ionizing organics can be influenced by soil pH. K_d values were used in calculating soil saturation limits and volatilization factors used in developing the NMED SSLs.

For organic compounds, K_d represents the tendency of a chemical to adsorb to the organic carbon fraction in soils, and is represented by:

$$K_d = K_{oc} \times f_{oc}$$
 Equation 29

where

 K_{oc} = organic carbon partition coefficient (L/kg or cm³/g); and f_{oc} = fraction of organic carbon in soil (mg/mg).

This relationship is generally valid for volatile halogenated hydrocarbons as long as the fraction of organic carbon in soil is above approximately 0.001 (0.1 percent) (Piwoni and Banaerjee, 1989 Schwarzenbach and Westall 1981). For low organic carbon soils ($f_{oc} < 0.001$), Piwoni and Banerjee (1989) developed the following empirical correlation for organic chemicals:

$$\log K_d = 1.01 \log K_{ow} - 0.36$$
 Equation 30

The use of a fixed K_{oc} value in the soil-water partition equation for the migration to groundwater pathway is only valid for hydrophobic non-ionizing organic chemicals. For organic chemicals that ionize in the soil environment, existing in both neutral and ionized forms within the normal soil pH range, K_{oc} values must consider the relative proportions and differences in sorptive properties of these forms. For the equations and applications of developing K_{oc} values for ionizing organic acids as a function of pH, the reader is referred to US EPA 1996. The default

value used for f_{oc} in development of NMED SSLs is 0.0015 (0.15%). This value represents the median value of 212 data points included in the NRCS soil survey database for New Mexico (U.S. Department of Agriculture 2000). Only samples collected from a depth of greater than 5 feet were included in the calculation of the mean f_{oc} value. Shallow soil samples tend to have higher f_{oc} values as shown in Figure 2-1. There is a steady decline in f_{oc} value with depth until approximately 5 feet bgs. Below 5 feet, there is little variability in the f_{oc} value. Because a lower f_{oc} value provides a more conservative calculation of SSL, a value representative of deeper soil conditions is used as the default value.

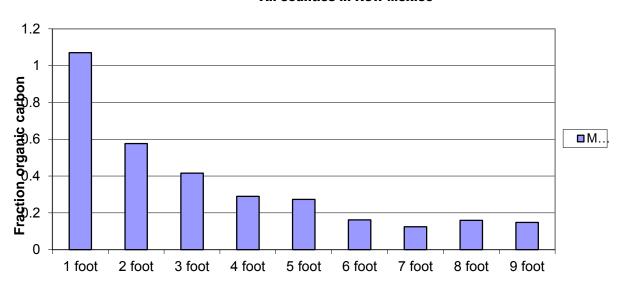


Figure 2-1 Mean Value - Fraction Organic Carbon (f_{oc})All counties in New Mexico

As with organic chemicals, development of the NMED SSLs for inorganic constituents (i.e., metals) requires a soil-water partition coefficient (K_d) for each contaminant. K_d values for metals are affected by a variety of soil conditions, most notably pH, oxidation-reduction conditions, iron oxide content, soil organic matter content, cation exchange capacity and major ion chemistry. US EPA developed default K_d values for metals using either an equilibrium geochemical speciation model (MINTEQ2) or from empirical pH-dependent adsorption relationships developed by Environmental Protection Agency's Office of Research and Development (EPA/ORD) (US EPA 1996a).

4.0 MIGRATION OF CONTAMINANTS TO GROUNDWATER

Generic SSLs were developed that address the potential for migration of contaminants from soil to groundwater. The methodology used to calculate generic SSLs addresses the potential leaching of contaminants from the vadose zone to groundwater. This method does not take into account any additional attenuation associated with contaminant transport in groundwater. The SSLs developed from this analysis are risk-based values incorporating NMED-specific tap water SSLs. This methodology is modeled after US EPA's *Soil Screening Guidance: Technical*

Background Document (US EPA 1996a) and the Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (US EPA 2002a).

4.1 Overview of the SSL Model Approach

Two approaches to developing soil leachate-based SSLs are presented, the generic model and the site-specific model. Both models use the same set of equations to calculate SSLs and are based on leaching to groundwater scenarios that NMED believes are protective of groundwater. The generic model calculates SSLs using default parameter values generally representative of conditions in New Mexico. These values are presented in Tables B-1 and B-2 of Appendix B. The site-specific model provides the flexibility of using site-specific meteorological, soil and hydrological data to calculate SSLs, while retaining the simplicity and ease of use associated with the generic model.

The development of soil leachate SSLs is based upon a two step process. The first step is the development of a Dilution Attenuation Factor (DAF). The DAF accounts for leachate mixing in the aquifer. A leachate concentration that is protective of ground water is back calculated by multiplying the ground water standard for a given constituent by the DAF. That leachate concentration is then used to back calculate an SSL that is protective of groundwater using a simple linear equilibrium soil/water partition equation. For the generic SSL approach, default parameter values are used for all non-chemical specific parameters. At sites that are not adequately represented by the default values and where more site-specific data are available, it may be more appropriate to use the site-specific SSL model. The site-specific model uses the same spreadsheet equations to calculate SSLs as those in the generic look-up table; however, site-specific data are used in the site-specific model.

The following sections of this document provide a general description of the leaching to groundwater pathway SSL model (generic and site-specific) including the assumptions, equations, and input parameters. Justification for the default parameters used in the generic model is also provided. Additionally, a sensitivity analysis was performed on each of the input parameters to provide guidance on when use of the site-specific model may be warranted. Applicability and limitations of the generic and site-specific models are also presented.

4.2 Model Assumptions

Assumptions regarding the release and distribution of contaminants in the subsurface that are incorporated into the SSL methodology include the following.

- The source is infinite (a constant concentration is maintained for the duration of the exposure period).
- Contamination is uniformly distributed from the surface to the water table.
- Soil/water partitioning is instantaneous and follows a linear equilibrium isotherm.
- There is no attenuation of the contaminant in soil or the aquifer (i.e., irreversible adsorption, chemical transformation or biological degradation).
- The potentially impacted aquifer is unconfined and unconsolidated with

homogenous and isotropic hydrologic properties.

- The receptor well (point of exposure) is at the downgradient edge of the source and is screened within the potentially impacted aquifer.
- NAPLs are not present.

4.3 Soil Water Partition Equation

US EPA's Supplemental Soil Screening Guidance: Technical Background Document (US EPA 1996a) and Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (US EPA 2002a) developed an equation to estimate contaminant release in soil leachate based on the Freundlich adsorption isotherm. The Freundlich equation was modified to relate the sorbed concentration to the total concentration measured in a soil sample (which includes contaminants associated with solid soil, soil-water and soil-air components) (Feenstra 1991). Equation 31, given below, is used to calculate SSLs corresponding to target soil leachate concentrations (C_w).

Equation 31 Soil Screening Level For Leaching To Groundwater Pathway		
	$SSL = C_w x \left[K_d + \left(\frac{\theta_w + \theta_a H'}{\rho_b} \right) \right]$	
Parameter	Definition (units)	Default
SSL	Soil Screening Level for migration to groundwater pathway (mg/kg)	Chemical-Specific
C_{w}	Target soil leachate concentration (mg/L)	Chemical-Specific
K_d	Soil /water partition coefficient (L/kg)	Chemical-Specific
$\theta_{ m w}$	Water-filled soil porosity (L _{water} /L _{soil})	0.26
θ_{a}	Air-filled soil porosity (L_{air}/L_{soil}), n - θ_w	0.17
n	Total soil porosity (L_{pore}/L_{soil}), 1 - (ρ_b/ρ_s)	0.43
$ ho_{ m s}$	Soil particle density (kg/L)	2.65
$ ho_{ m b}$	Dry soil bulk density (kg/L)	1.5
Η΄	Dimensionless Henry's Law constant	Chemical-Specific

Target soil leachate concentrations (C_w) are equivalent to the NMED-specific tap water screening levels multiplied by a DAF.

$$C_w = \text{Tap Water SSL x DAF}$$
 Equation 32

The derivation of the DAF is discussed in subsequent sections of this document.

4.4 Dilution Attenuation Factor

Contaminants transported as a leachate through soil to groundwater are affected by physical, chemical, and biological processes that can significantly reduce their concentration. These processes include adsorption, biological degradation, chemical transformation, and dilution from mixing of the leachate with groundwater. The total reduction in concentration between the source of the contaminant (vadose zone soil) and the point of ground water withdrawal is defined as the ratio of contaminant concentration in soil leachate to the concentration in groundwater at the point of withdrawal. This ratio is termed a dilution/attenuation factor (DAF; US EPA 1996a and 1996b). The higher the DAF value, the greater the degree of dilution and attenuation of contaminants along the migration flowpath. A DAF of 1 implies no reduction in contaminant concentration occurs.

Development of New Mexico SSLs considers only the dilution of contaminant concentration through mixing with groundwater in the aquifer directly beneath the source. This is consistent with the conservative assumptions used in the SSL methodology including an infinite source, soil contamination extending from surface to groundwater and the point of exposure occurring at the downgradient edge of the source. The ratio of contaminant concentration in soil leachate to the concentration in groundwater at the point of withdrawal that considers only dilution processes is calculated from a simple water balance equation (Equation 33), described below.

	Equation 33 Dilution/Attenuation Factor (DAF)	
	$DAF = 1 + \left(\frac{K \times i \times D}{I \times L}\right)$	
Where:	$D = (0.0112 \times L^{2})^{0.5} + D_{a} \left(1 - \exp \left[\frac{-L \times I}{K \times i \times D_{a}} \right] \right)$	
Parameter	Definition (units)	Default
DAF	Dilution/attenuation factor (unitless)	Site-Specific
K	Aquifer hydraulic conductivity (m/yr)	Site-Specific
i	Hydraulic gradient (m/m)	Site-Specific
D	Mixing zone depth (m)	Site-Specific
I	Infiltration rate (m/yr)	Site-Specific
L	Source length parallel to groundwater flow (m)	Site-Specific
D_a	Aquifer thickness (m)	Site-Specific

Most of these parameters are available from routine environmental site investigations. The mixing zone depth incorporates one additional parameter, the aquifer thickness (D_a) .

For the calculation of SSLs, the DAF is used to back calculate the target soil leachate concentration (C_w in Equation 32) from an appropriate groundwater concentration, such as the tap water SL, a Water Quality Control Commission (WQCC) standard, or a Federal Maximum Contaminant Level (MCL). For example, if the WQCC standard for a constituent is 0.1 mg/L and the DAF is 20, the target soil leachate concentration would be 2 mg/L.

The US EPA conducted an extensive evaluation of the range and distribution of DAFs to select a default value to be used for developing generic SSLs that would be reasonably protective of groundwater quality (US EPA 1996a, 1996b, and 2002a). The evaluation included a probabilistic modeling exercise using US EPA's Composite Model for Leachate Migration with Transformation Products (CMTP). A cumulative frequency distribution of DAF values was developed from the model output. Results of the Monte Carlo modeling analysis indicate that for a 0.5 acre source area a DAF of approximately 170 is protective of groundwater at 90 percent of the sites. Groundwater is protected at 95 percent of the sites with a DAF of 7.

US EPA applied the simple SSL water balance dilution model (Equation 31) to 300 sites included in surveys of hydrogeologic investigations to further evaluate the range and distribution of DAF values. Results of this analysis indicated that a DAF of 10 was protective of groundwater for a 30-acre source and that a DAF of 20 was protective of groundwater for a 0.5 acre-source (US EPA 1996a, 1996b, and 2001).

An assessment was performed of US EPA's methodology to determine whether a default DAF value of 20 for a 0.5 acre source, and a DAF of 10 for a 30 acre source, would be appropriate for use as default values for sites in New Mexico. Typical New Mexico conditions may be notably different than conditions represented by areas included in the US EPA analysis of DAFs. For example, infiltration rates across much of New Mexico are substantially less than the average range of 0.15 to 0.24 m/yr reported for many of the hydrogeologic regions used in the US EPA analysis. In addition, effective porosity was assumed to be 0.35, presumably because this value is representative of the most prevalent aquifer type in the databases used (US EPA 1996a). However, the regions included in the US EPA analysis also contain extensive glacial, regolith, lacustrine, swamp and marsh deposits which have high percentages of fine-grained sediments and thus are not representative of typical New Mexico sandy soils. Sandy soils typically have higher hydraulic conductivities than more fine-grained soils and subsequently higher Darcian velocities, under equal hydraulic gradient. According to the DAF equation (Equation 33), soils with relatively greater hydraulic conductivities will tend to result in a higher calculated DAF.

An assessment was made of input parameters to the DAF equation. In order to support a DAF that is protective of the most vulnerable groundwater environments in New Mexico (i.e. areas close to perennial streams or where ground water is very shallow), environmental parameters typical of those areas in New Mexico were used to assess the DAF. This assessment indicated that the DAF is most sensitive to variations in hydraulic conductivity. This is because this value shows such large variations in the natural environment. If a hydraulic conductivity value representative of a fine-grained sand is used in the DAF equation, along with an infiltration rate representative of New Mexico's arid to semi-arid environments, then the result is a DAF of approximately 20. NMED believes that a DAF of 20 for a 0.5 acre source area is protective of groundwater in New Mexico. If the default DAF is not representative of conditions at a specific site, then it is appropriate to calculate a site-specific DAF based upon available site data.

4.5 Limitations on the Use of the Dilution Attenuation Factor

Because of assumptions used in SSL model approach, use of the DAF model may be inappropriate for certain conditions, including sites where:

- Adsorption or degradation processes are expected to significantly attenuate contaminant concentrations in the soil or aquifer media;
- Saturated thickness is significantly less than 12 meters thick;
- Fractured rock or karst aquifer types exist (violates the unconfined, unconsolidated, homogeneous, isotropic assumptions);
- Facilitated transport is significant (colloidal transport, transport via dissolved organic matter, or transport via solvents other than water; and/or
- NAPLs are present.

For sites that have these types of conditions, consideration should be given to application of a more detailed site-specific analysis than either the generic or site-specific models described herein.

4.6 Generic SSLs for Protection of Groundwater

The migration to groundwater pathway model, incorporating the assumptions, soil-water partition equation, and the DAF, was used to develop NMED SSLs. Default values based on conditions predominant in New Mexico were used for the input parameters in the soil-water partition equation. The NMED SSLs are presented for both default DAF values of 1 and 20.

Target soil leachate concentrations (C_w) are equivalent to the appropriate groundwater standards multiplied by a DAF. To maintain an approach that is protective of groundwater quality in the development of generic SSLs, a DAF of 20 is selected as reasonably protective. However SSLs are provided for two DAFs in Appendix A. The use of the SSL listed for a DAF of 20 is advised unless site-specific data on hydrologic conditions are available, and these indicate that the generic DAF is not representative of site conditions. As will be demonstrated in the sensitivity analysis section of this document, calculation of an SSL using the migration to groundwater pathway model is most sensitive to the DAF. The inclusion of the SSL for a DAF of 1 is provided for convenience to the user. If data on hydrologic conditions are readily available, a site specific DAF can be calculated and multiplied by the generic SSL for a DAF of 1 to provide a site-specific SSL.

The generic approach may be inappropriate for use at sites where conditions are substantially different from the default values used to develop the generic soil leachate SSLs.

4.7 <u>Development of Site Specific SSLs for Protection of Groundwater</u>

New Mexico, as with any other state, offers a variety of geologic and hydrologic conditions that may not be readily represented by a single default parameter value.

Site specific conditions may differ considerably from the typical or average conditions represented by the default values used to calculate generic SSLs. The site-specific model can be used to address the variability inherent in environmental conditions across and within the state.

Application of the site-specific model to develop soil leachate SSLs is the same as the generic approach except that site-specific values are used. Use of the site-specific model approach may incorporate replacement of all default values used for the generic SSLs with site-specific values, or may only include substitution of a single key parameter, such as hydraulic conductivity. The decision to use the site-specific model approach instead of the generic approach should be based on consideration of the sensitivity of the calculated SSL to specific parameters and the availability of those parameters as site-specific data. Sufficient site-specific data may be available such that each of the default values used for developing generic SSLs can be readily substituted with a more representative site-derived value. Conversely, limited site-specific data may restrict the number of default values to be replaced.

The NMED SSLs are generally more sensitive to the dilution factor than to other parameters in the soil-water partition equation. Fortunately, information needed to derive the DAF is usually available for sites that have undergone even the most basic levels of environmental investigation. Apart from the dilution factor, SSLs are most sensitive to the soil-water partition coefficient (K_d) as the values for this parameter can range over several orders of magnitude, particularly for metals. Although the K_d term may be critical in developing protective SSLs, information required to evaluate this parameter is more difficult to obtain and less likely to be available. Porosity and bulk density are not particularly sensitive because of the relatively small range of values encountered in subsurface conditions.

Using benzene as a representative contaminant, a sensitivity analysis was performed to compare a generic soil leachate SSL to site-specific model results simulating a range of model input parameters that might be representative of different conditions in New Mexico. The generic soil leachate SSL calculated using the New Mexico default values and a DAF of 1 is 2.8 μ g/kg. These results are summarized in Table 4-1. As shown, the resulting SSLs for benzene range from 1.3 to 6.1 μ g/kg for the various sensitivity simulations compared to the generic SSL of 2.8 μ g/kg. These results indicate that the calculation of SSLs using the site-specific approach is not overly sensitive to the reasonable range of porosity (air and water filled), bulk density and fraction of organic carbon expected for New Mexico or even for a range of values for chemical-specific properties. The generic SSL for benzene of 2.8 μ g/kg is representative of values that could be calculated using a spectrum of input parameters, exclusive of the DAF term. Unless there are sufficient data to calculate a site-specific DAF, there is little benefit derived from using the site-specific model approach instead of the generic SSL.

Table 4-1. Input Parameters and Resulting SSLs for the Sensitivity Analysis of the Soil-Water Partition Equation - Migration to Groundwater Pathway Model

Input parameter	Sensitivity	Resulting SSLs
(NMED default value)	Analysis Values	
Bulk density	Lower Limit =	3.4
(default value = 1.55 gm/cm)	1.20	2.5
	Upper Limit =	
	1.90	
Air filled porosity	Lower Limit =	1.3
(default value = 0.18)	0.04^{a}	3.5
	Upper Limit =	
	0.25^{b}	
Fraction organic carbon	Lower Limit =	2.2
$(default\ value = 0.0015)$	0.000	6.1
	5	
	Upper Limit =	
	0.007	
Volume water content	Lower Limit =	1.8
$(default\ value = 0.26)$	0.05^{c}	3.5
	Upper Limit =	
	0.40^{c}	
K _{oc}	Lower Limit =	2.4
(default value = 58.9 ml/g)	30	3.7
	Upper Limit =	
	120	
Dimensionless Henry's Law constant	Lower Limit =	2.7
(default value = 0.228)	0.1	3.0
	Upper Limit =	
	0.4	

^a total porosity was reduced from 0.44 to 0.10 for this simulation

As previously stated, calculation of SSLs is most sensitive to the DAF term. The input parameter values and resulting DAFs for the sensitivity analysis are included in Table 4-2. Effects on the DAFs are, from greatest to least, the Darcian velocity (hydraulic conductivity multiplied by the hydraulic gradient), infiltration rates, size of the contaminated area, and the aquifer thickness. Corresponding effects on DAFs for each of these parameters and discussion of the relevance of the use of default values versus site-specific conditions are summarized below:

b total porosity was increased from 0.44 to 0.6 for this simulation

^c total porosity remained at 0.44 for this simulation.

Table 4-2. Input Parameters and Resulting DAFs for the Sensitivity Analysis of the Dilution Attenuation Factor-Migration to Groundwater Pathway Model

Parameter	Groundwat er Velocity (m/yr)	Infiltration Rate (m/yr)	Source Length (m)	Aquifer thickness (m)	Mixing Zone Depth (m)	Dilution Attenuation Factor (DAF)
Groundwater						
velocity	2.2	0.13	45	12	7.15	3.7
Groundwater	22	0.13	45	12	5.03	19.9
velocity	22	0.13	43	12	3.03	19.9
Groundwater velocity	220	0.13	45	12	4.79	181.1
Infiltration Rate	22	0.065	45	12	4.89	37.8
Infiltration Rate	22	0.13	45	12	5.03	19.9
Infiltration Rate	22	0.26	45	12	5.28	10.9
	T			T		T
Source Length	22	0.13	22.5	12	2.51	19.9
Source Length	22	0.13	45	12	5.03	19.9
Source Length	22	0.13	348.4	12	38.76*	6.8
	T			I		T
Aquifer						
Thickness	22	0.13	45	3	5.02*	12.3
Aquifer						
Thickness	22	0.13	45	12	5.03	19.9
Aquifer						
Thickness	22	0.13	45	48	5.03	19.9

Note: If mixing zone depth calculation is greater than aquifer thickness, then aquifer thickness is used to calculate the DAF.

Higher Darcian velocity results in higher DAFs. Slower mixing of groundwater with soil leachate occurs at lower groundwater velocity. Thus, using a lower velocity will be a more conservative approach. Sandy soils typically have higher hydraulic conductivities than more fine-grained soils and subsequently higher Darcian velocity (under equal hydraulic gradient). Use of a sandy soil type will generally be less conservative (result in higher DAFs) with respect to protection of groundwater quality.

Lower infiltration rates result in higher DAFs. Therefore, using a higher infiltration rate is a more conservative approach (results in a lower DAF).

Larger source sizes result in lower DAFs. The default DAF used to develop SSLs for a 0.5 acre source may not be protective of groundwater at sites larger than 0.5 acre. However, the selection of a second source size is arbitrary. If generic SSLs are developed for a 30 acre source, then those values are considered overly conservative for a 12 acre source. Conversely, SSLs developed for a 30 acre source will be less protective of a 40 acre source. Rather than develop a

separate set of generic SSLs for a second (or third or fourth) source size, the following two approaches are proposed.

- As the size of the source area increases, the assumptions underlying the generic model are less applicable. One of the conservative assumptions in the generic SSL approach is the uniform distribution of contaminants throughout the vadose zone. There are few sites that have relatively uniform soil contamination (both laterally and vertically) of a single constituent in an area of greater than 0.5 acres (22,000 ft²). Soil contamination at large facilities (such as federal facilities) are usually concentrated in discrete portions of the site. Contamination at large sites is commonly the result of multiple sources. It is advisable to attempt to subdivide the facility by source and contaminant type and then apply generic SSLs to those smaller source areas.
- If this approach is not practical, calculation of site specific DAFs is recommended. Most of the parameters required for these calculations are available from routine environmental site investigations or can be reasonably estimated from general geologic and hydrologic studies.

Thin aquifers will result in lower DAFs. The nominal aquifer thickness used in the sensitivity analysis was 12 meters (m). Reducing the aquifer thickness to 3 m results in a 40 percent reduction in the DAF. Increasing the aquifer thickness beyond the nominal value has very little impact.

The significant effects of the DAF on the calculation of SSLs, coupled with the common availability of site-specific data used to calculate the DAF, suggest that use of the site specific modeling approach should at least incorporate recalculation of the DAF term. If data are available that indicate soil properties significantly different than the default values (such as high or low f_{oc} for organic contaminants, or highly acidic or basic conditions for metal contaminants) the K_d term should also be evaluated and recalculated.

4.8 Detailed Model Analysis for SSL Development

Sites that have complex or heterogeneous subsurface conditions may require more detailed evaluation for development of SSLs that are reasonably, but not overly, protective of groundwater and surface water resources. These types of sites may require more complex models that can address a wide range of variability in environmental site conditions including soil properties, contaminant mass concentration and distribution, contaminant degradation and transformation, recharge rates and recharge concentration, and depth to the water table. Model codes suitable for these types of more detailed analysis range from simple one-dimensional analytical models to complex three-dimensional numerical models. Resource requirements (data, time and cost) increase for the more complex codes. The selection of an appropriate code needs to balance the required accuracy of the output with the level of effort necessary to develop the model.

4.9 Summary of the Migration to Groundwater Pathway SSLs

SSLs for New Mexico have been developed for the migration to groundwater pathway, and are provided in Table A-1 of Appendix A. The NMED SSLs were developed using default parameter values representative of environmental conditions in New Mexico and utilize a DAF of 20. This approach maintains the conservative approach of the SSL methodology and is protective of groundwater quality under a wide range of site conditions. Soil contaminant concentrations can be compared directly to the generic SSLs to determine if additional investigation is necessary to evaluate potential leaching and migration of contaminants from the vadose zone to groundwater in excess of NMED-specific tap water SSLs.

Site-specific SSLs can be developed by substituting site-related data for the default values in the leaching to groundwater pathway model. SSLs developed from this model are most sensitive to the DAF. SSLs are also provided in the lookup table for a DAF of 1. If data on hydrologic conditions are readily available, a site specific DAF can be calculated.

5.0 USE OF THE SSLS

For screening sites with multiple contaminants, the following procedure should be followed: take the site-specific concentration (first step screening assessments should use the maximum reported concentration) and divide by the SSL concentration for each analyte. For multiple contaminants, simply add the ratio for each chemical.

Site Risk =
$$\left(\frac{\text{conc}_x}{\text{SSL}_x} + \frac{\text{conc}_y}{\text{SSL}_y} + \frac{\text{conc}_z}{\text{SSL}_z} + ... + \frac{\text{conc}_i}{\text{SSL}_i}\right) \times 10^{-5}$$
 Equation 34

Site Hazard Index (HI) =
$$\left(\frac{\text{conc}_{x}}{\text{SSL}_{x}} + \frac{\text{conc}_{y}}{\text{SSL}_{y}} + \frac{\text{conc}_{z}}{\text{SSL}_{z}} + ... + \frac{\text{conc}_{i}}{\text{SSL}_{i}} \right) \times 1$$
 Equation 35

If the total cancer risk is greater than the target risk level of 1E-05 or if the hazard index is greater than one, concentrations at the site warrant further, site-specific evaluation. Site risk and hazard indices less than the target levels indicate that the concentrations at the site are unlikely to result in adverse health impacts.

As with any risk-based tool, the potential exists for misapplication. In most cases the root cause will be a lack of understanding of the intended use of NMED SSLs. In order to prevent misuse of SSLs, the following should be avoided:

- Applying SSLs to a site without adequately developing a conceptual site model that identifies relevant exposure pathways and exposure scenarios,
- Use of SSLs as cleanup levels without verifying numbers with a toxicologist or risk assessor, and

• Not considering the effects of additivity when screening multiple chemicals.

It is important to note that the generic NMED SSLs were developed assuming distinct soil horizons for each receptor. The soils of interest differ according to the exposure pathway being addressed. For direct ingestion, dermal, and fugitive dust exposure pathways, the primary soil horizon of concern are surface soils. For inhalation of volatiles and migration to groundwater, subsurface soils are of primary concern. Both a residential receptor and a commercial/industrial worker are typically exposed only to surface soil, which may be defined as extending to a depth of approximately two feet below ground surface, depending on site-specific conditions and the amount of intrusive activity that may occur. Construction workers will typically have much greater exposures to subsurface soils. Therefore, when generic SSLs are used for screening level evaluations at a facility, site-specific conditions must be evaluated for each receptor to determine if the assumptions associated with the generic SSLs are appropriate for comparison with the available site data.

6.0 TOTAL PETROLEUM HYDROCABONS (TPH)

In some instances, it may be practical to assess areas of soil contamination that are the result of releases of petroleum products such as jet fuel and diesel, using total petroleum hydrocarbon (TPH) analyses. TPH results may be used to delineate the extent of petroleum-related contamination at these sites and ascertain if the residual level of petroleum products in soil represents an unacceptable risk to future users of the site. Petroleum hydrocarbons represent complex mixtures of compounds, some of which are regulated constituents and some compounds that are not regulated. In addition, the amount and types of the constituent compounds in a petroleum hydrocarbon release differ widely depending on what type of product was spilled and how the spill has weathered. This variability makes it difficult to determine the toxicity of weathered petroleum products in soil solely from TPH results; however, these results can be used to approximate risk in some cases, depending upon the nature of the petroleum product, the release scenario, how well the site has been characterized, and anticipated potential future land uses. In some cases, site cleanup cannot be based solely on the results of TPH sampling. NMED will make these determinations on a case by case basis. If NMED determines that additional data are necessary, these TPH guidelines must be used in conjunction with the SSLs for individual petroleum-related contaminants in Table A-1 and other contaminants, as applicable.

The screening levels for each petroleum carbon range from the Massachusetts Department of Environmental Protection (MADEP) Volatile Petroleum Hydrocarbons/Extractable Petroleum Hydrocarbons (VPH/EPH) approach and the percent composition table below were used to generate screening levels corresponding to total TPH. Except for waste oil, the information in the compositional assumptions table was obtained from the Massachusetts Department of Environmental Protection guidance document *Implementation of the MADEP VPH/EPH Approach* (October 31, 2002). TPH toxicity (MADEP, 2009) was based only on the weighted sum of the toxicity of the hydrocarbon fractions listed in Table 6-1.

Table 6-1. TPH Compositional Assumptions in Soil

Petroleum Product	C11-C22 Aromatics	C9-C18 Aliphatics	C19-C36 Aliphatics		
Diesel #2/ new crankcase oil	60%	40%	0%		
#3 and #6 Fuel Oil	70%	30%	0%		
Kerosene and jet fuel	30%	70%	0%		
Mineral oil dielectric fluid	20%	40%	40%		
Unknown oil ^a	100%	0%	0%		
Waste Oil ^b	0%	0%	100%		

Sites with oil from unknown sources must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Tables 6-2 and 6-3 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED SSLs summarized in Table A-1.

A TPH screening guideline was calculated for each of the types of petroleum product based on the assumed composition from Table 6-1 for petroleum products and the direct soil standards incorporating ceiling concentrations given in the MADEP VPH/EPH (December 2009) Excel spreadsheet for each of the carbon fractions (MADEP, 2009). Groundwater concentrations are based on the weighted sum of the noncarcinogenic toxicity of the petroleum fractions.

Method 1 from the MADEP VPH/EPH document and spreadsheet (MADEP, 2009) was applied, which represents generic cleanup standards for soil and groundwater. Method 1 applies if contamination exists in only soil and groundwater. The MADEP VPH/EPH further divides groundwater into standards. Standard GW-1 applies when groundwater may be used for drinking water purposes. GW-1 standards are based upon ingestion and use of groundwater as a potable water supply. The TPH screening guidelines for sites with potable groundwater are presented in Table 6-2. It is noted that the below guidelines are not necessarily risk-based values but may reflect a ceiling level.

Table 6-2. TPH Screening Guidelines for Potable Groundwater (GW-1)

	ТРН		
Petroleum Product	Residential Direct Exposure (mg/kg)	Industrial Direct Exposure (mg/kg)	Concentration in Groundwater (mg/L)
Diesel #2/crankcase oil	1000	1800	0.4
#3 and #6 Fuel Oil	1000	1600	0.35
Kerosene and jet fuel	1000	2400	0.55
Mineral oil dielectric	1800	3400	5.92

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Tables 6-2 and 6-3 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED SSLs summarized in Table A-1.

fluid			
Unknown oil a	1000	1000	0.02
Waste Oil	3000	5000	See individual contaminants in Appendix A
Gasoline	Not applicable	Not applicable	See individual contaminants in
			Appendix A

Sites with oil from unknown sources must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 6-2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

The second standard is GW-2 (MADEP, 2009), which is applicable for sites where the depth to groundwater is less than 15 feet from the ground surface <u>and</u> within 30 feet of an occupied structure. The structure may be either residential or industrial. GW-2 standards are based upon "inhalation exposures that could occur to occupants of the building impacted by volatile compounds, which partition from the groundwater" (MADEP, 2001). The GW-2 screening guidelines ONLY apply for the evaluation of inhalation exposures. If potential ingestion or contact with contaminated soil and/or groundwater could occur, then the screening guidelines provided in Table 6-2 should be applied. Table 6-3 lists the TPH screening guidelines for the inhalation scenario (MADEP, 2009). It is noted that the below guidelines are not necessarily risk-based values but may reflect a ceiling level.

Table 6-3. TPH Screening Guidelines – Vapor Migration and Inhalation of Groundwater (GW-2)

	ТРН		
Petroleum Product Residential Direct Exposure (mg/kg)		Industrial Direct Exposure (mg/kg)	Concentration in Groundwater (mg/L)
Diesel #2/crankcase oil	1000	3000	32
#3 and #6 Fuel Oil	1000	3000	36.5
Kerosene and jet fuel	1000	3000	18.5
Mineral oil dielectric fluid	1800	3800	12
Unknown oil a	1000	3000	50
Waste Oil	3000	5000	See individual contaminants in Appendix A
Gasoline	Not applicable	Not applicable	See individual contaminants in Appendix A

Sites with oil from unknown sources must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 6-3 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED SSLs summarized in Table A-1.

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 6-2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste

oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 6-3 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED SSLs summarized in Table A-1.

Mineral oil based hydraulic fluids can be evaluated for petroleum fraction toxicity using the screening guidelines from Tables 6-2 and 6-3 specified for waste oil, because this type of hydraulic fluid is composed of approximately the same range of carbon fractions as waste oil. However, these hydraulic fluids often contain proprietary additives that may be significantly more toxic than the oil itself; these additives must be considered on a site- and product-specific basis (see ATSDR hydraulic fluids profile reference). **Use of alternate screening guideline values requires prior written approval from the NMED.** The TPH screening guidelines in Tables 6-2 and 6-3 must be used in conjunction with the screening levels for petroleum-related contaminants given in Table A-1 because the TPH screening levels are NOT designed to be protective of exposure to these individual petroleum-related contaminants.

The list of petroleum-related contaminants does not include PAHs with individual screening levels that would exceed the total TPH screening levels (e.g., acenaphthene, anthracene, fluoranthene, fluorine, and pyrene). In addition, these TPH screening guidelines are based solely on human health, not ecological risk considerations, protection of surface water, or potential indoor air impacts from soil vapors. Potential soil vapor impacts to structures or utilities are not addressed by these guidelines. Site-specific investigations for potential soil vapor impacts to structures or utilities must be done to assure that screenings are consistently protective of human health, welfare or use of the property. NMED believes that use of these screening guidelines will allow more efficient screenings of petroleum release sites at sites while protecting human health and the environment. Copies of the references cited below are available on the MADEP website at http://www.mass.gov/dep/cleanup/laws/standard.htm.

7.0 REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR). 1997. Toxicological Profile for Hydraulic fluids.

Ahlborg UG, Becking GC, Birnbaum LS, Brouwer A, Derks HJGM, Feeley M, Color G, Hanberg A, Larsen JC, Liem AKD, Safe SH, Schlatter C, Wvern F, Younes M, Yrjinheikki E. 1993. *Toxic Equivalency Factors for Dioxin-Like PCBs Report on a WHO-ECEH and IPCS Consultation*. December 1993 http://epaprgs.ornl.gov/chemicals/help/documents/TEF_PCB170_PCB180.pdf

Center for Disease Control, Agency for Toxic Substances and Disease Registry. 2003. *Hazardous Substances Database*. http://www.atsdr.cdc.gov/hazdat.html

Enfield, C. G., R.F. Carsel, S.E. Cohen, T. Phan, and D.M. Walters. 1982. *Approximating Pollutant Transport to Ground Water*. Groundwater, vol. 20, no. 6, pp. 711-722.

Feenstra, S., D.M. Mackay and J.D. Cherry, 1991. *A method for assessing residual NAPL based on organic chemical concentrations in soil samples*. Groundwater Monitoring Review, vol. 11, no. 2, pp 128-136.

Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup and Office of Research and Standards (MADEP). 1994. "Background Documentation for the Development of the MCP Numerical Standards."

MADEP, 2002. "Characterizing Risks Posed by Petroleum Contaminated Sites: Implementation of the MADEP VPH/EPH Approach," Policy, October 31, 2002.

MADEP, 2003. "Updated Petroleum Hydrocarbon Fraction Toxicity Values for the VPH/EPH/APH Methodology." November 2003.

MADEP, 2009. Spreadsheets for the Development of the MCP Numerical Standards. December.

New Mexico Environment Department, Hazardous and Radioactive Materials Bureau (NMED). 2000. Assessing Human Health Risks Posed by Chemicals: Screening-level risk Assessment. Santa Fe, New Mexico. R

New Mexico Administrative Code (NMAC) 20.6.2, New Mexico Water Quality Control Commission Regulations, September 15, 2002.

Piwoni, M.D., and P. Banaerjee. 1989. *Sorption of organic solvents from aqueous solution onto subsurface solids*. Journal of Contaminant Hydrology, vol. 4, no. 2, pp 163-179.

Scharwzenbach, R.P. and J.C. Westall. 1981. *Transport of non-polar organic compounds from surface water to groundwater*. Environmental Science Technology, vol. 15, no.1, pp. 1360-1367.

United States Department of Agriculture, 2000. National Resources Conservation Service, Soil Survey Laboratory Database-New Mexico-All counties.

United States Department of Energy, 2004. RAIS, Risk Assessment Information System. http://risk.lsd.ornl.gov/index.shtml

United States Environmental Protection Agency (US EPA). 1986. *Superfund Public Health Evaluation Manual*. Office of Emergency and Remedial Response and Office of Solid Waste and Emergency Response. Washington, D.C.

US EPA. 1988. *Superfund Exposure Assessment Manual* (EPA/540/1-88/001). Office of Emergency and Remedial Response, Washington, D.C.

US EPA. 1989. *Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual, Interim Final* (EPA/540/1-89/002). Office of Emergency and Remedial Response, Washington, D.C.

US EPA. 1990. *Basics of Pump and Treat Groundwater remediation Technology* (EPA/600/8-90/003) Office of Research and Development. March.

US EPA. 1991. Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals), Interim Final (EPA 9285.6-03). Office of Emergency and Remedial Response, Washington, D.C.

US EPA. 1992a. *Dermal Exposure Assessment: Principles and Applications* (EPA600/8-91/011B). Office of Health and Environmental Assessment, Washington, D.C.

US EPA. 1992b. Supplemental Guidance to RAGS: Calculating the Concentration Term (9285.7-081). Office of Solid Waste and Emergency Response, Washington, D.C.

US EPA. 1994. Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities (EPA/540/F-94/043). Office of Solid Waste and Emergency Response. Washington, D.C.

US EPA. 1995. *Additional Environmental Fate Constants*. Office of Emergency and Remedial Response, Washington D.C.

US EPA. 1996a. *Soil Screening Guidance. Technical Background Document* (EPA/540/R95/128). Office of Emergency and Remedial Response, Washington D.C.

US EPA. 1996b. *Soil Screening Guidance. Users Guide, Second Edition* (EPA 9355.4-23). Office of Emergency and Remedial Response, Washington D.C.

US EPA. 1996c. Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Associated with Adult to Lead in Soil. December.

US EPA. 1997a. *Health Effects Assessment Summary Tables: FY 1997 Update* (HEAST). National Center for Environmental Assessment, Office of Research and Development and Office of Emergency and Remedial Response, Washington, D.C.

US EPA. 1997b. *Exposure Factors Handbook*, (EPA/600/P-95/002Fa). Office of Research and Development, Washington, D.C.

US EPA. 1998a. *Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities, Peer Review Draft* (EPA/530/D-98/001a). Office of Solid Waste and Emergency Response, Washington, D.C.

US EPA. 1998b. Clarification to the 1994 Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities. OWSER Directive 9200.4-27, EPA/540/F-98/030. August.

US EPA. 2000. *CHEMFACT Database*. http://www.epa.gov/chemfact/. Office of Pollution Prevention and Toxics. Washington, D.C.

US EPA. 2002a. Supplemental Guidance for Developing Soil Screening Levels for Superfund

Sites. Office of Emergency and Remedial Response, Washington, D.C. OSWER 9355.4-24. December. http://www.epa.gov/superfund/health/conmedia/soil/pdfs/ssg_main.pdf

US EPA. 2002b. Calculating Upper Confidence Limits for Exposure Point Concentrations at Hazardous Waste Sites. Office of Solid Waste and Emergency Response, OSWER 9285.6-10. December 2002.

US EPA. 2002c. Current Drinking Water Standards. http://www.epa.gov/safewater/mcl.html.

US EPA. 2003. Memorandum: Human Health Toxicity Values in Superfund Risk Assessments, OSWER Directive 9285.7-53. December 3.

http://www.epa.gov/oswer/riskassessment/pdf/hhmemo.pdf

US EPA. 2004. Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Interim Guidance. Office of Solid Waste and Emergency Response, Washington, D.C. http://www.epa.gov/oswer/riskassessment/ragse/index.htm

US EPA. 2005. Supplemental Guidance for Assessing Susceptibility from Early-life Exposure to Carcinogens. EPA/630/R-03/003F. Washington, D.C.

US EPA. 2009a. *Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment), Final.* Office of Solid Waste and Emergency Response, Washington, D.C. http://www.epa.gov/oswer/riskassessment/ragsf/pdf/partf 200901 final.pdf

US EPA. 2011. Integrated Risk Information System (IRIS). http://www.epa.gov/iris.

US EPA. 2011. Regional Screening Levels for Chemical Contaminants at Superfund Sites. June. http://www.epa.gov/region9/superfund//prg/index.html

Van den Berg, et. al, 2006. The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency factors for Dioxin and Dioxin-like Compounds. ToxiSci Advance Access, July 7, 2006.

APPENDIX A

NMED SOIL SCREENING LEVELS (SSLs)

Appendix A

State of New Mexico Soil Screening Levels

Table A-1 provides State of New Mexico Soil Screening Levels (SSLs), as developed by the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) and the Ground Water Quality Bureau Voluntary Remediation Program for 220 chemicals most commonly associated with environmental releases within the state. These NMED SSLs are derived using default exposure parameter values (refer to Equations in Volume I) and chemical-and State of New Mexico-specific physical parameters (as presented in Tables B-1 and B-2 of Appendix B). These default values are assumed to be appropriately conservative in the face of uncertainty and are likely to be protective for the majority of site conditions relevant to soil exposures within New Mexico.

However, the NMED SSLs are not necessarily protective of all known human exposure pathways, reasonable land uses or ecological threats. Thus, before applying NMED SSLs at a site, it is extremely important to compare the conceptual site model (CSM) with the assumptions upon which the NMED SSLs are predicated to ensure that the site conditions and exposure pathways match those used to develop the NMED SSLs. If this comparison indicates that the site at issue is more complex than the corresponding SSL scenarios, or that there are significant exposure pathways not accounted for by the NMED SSLs, then the NMED SSLs are insufficient for use in a defensible assessment of the site. A more detailed site-specific approach will be necessary to evaluate the additional pathways or site conditions.

TABLE A-1

Column 1: The first column in Table A-1 presents the names of the chemicals for which

NMED has developed SSLs.

Column 2: The second column presents NMED SSLs predicated on residential soil

exposures.

Column 3, 5, 7, and 9:

These columns present indicator categories for the NMED SSL residential, industrial, construction, and tap water basis, whether predicated on

carcinogenic (c) and noncarcinogenic (n) effects. In some cases, the risk-based SSL is greater than the soil saturation limit, and in these cases, the SSL is denoted as either "cs" or "ns" depending on carcinogenicity or non-carcinogenicity, respectively. In the case where a noncarcinogenic SSL is greater than the ceiling limit (1E+05), the SSL is denoted as "nl" and in a few cases, "nls" is used to indicate the SSL is both above the saturation level and the ceiling limit. NMED SSLs predicated on a carcinogenic endpoint reflect age-adjusted child-to-adult exposures. NMED SSLs predicated on a noncarcinogenic endpoint reflect child-only exposures. Detected

concentrations above a saturation value ("cs", "ns", or "nsl") may indicate

the presence of nonaqueous phase liquid (NAPL).

Columns 4 and 6: The fourth and sixth columns present NMED SSLs analogous to Column 1,

with the exception that these values correspond to Industrial/Occupational

and Construction worker (adult-only) exposures, respectively.

Column 8: Presents the tap water SL for the residential scenario.

Columns 10 and 11: The tenth column presents NMED SSLs for the migration to groundwater pathway developed using a default dilution attenuation factor (DAF) of 1, which assume no effective dilution or attenuation. These values can be considered at sites where little or no dilution or attenuation of soil leachate concentrations is expected (e.g., shallow water tables, karst topography). Column 11 presents NMED SSLs for the migration to groundwater pathway developed using a DAF of 20 to account for natural processes that reduce contaminant concentrations in the subsurface. The SSLs based on a DAF of 20 are default SSLs that should be applicable at most sites.

As noted above, separate NMED SSLs are presented for use in evaluating three discrete potential receptor populations: Residential, Industrial/Occupational, and Construction. Each NMED SSL considers incidental ingestion of soil, inhalation of volatiles from soil (limited to those chemicals noted as volatile organic compounds [VOCs] within Table B-2) and/or particulate emissions from impacted soil, and dermal contact with soil.

Generally, if a contaminant is detected at a level in soil exceeding the most relevant NMED SSL, and the site-specific CSM is in general agreement with the underlying assumptions upon which the NMED SSLs are predicated, this result indicates the potential for adverse human health effects to occur. Conversely, if no contaminants are detected above the most relevant NMED SSL, this tends to indicate to the user that environmental conditions may not necessitate remedial action of the surface soil or the vadose zone.

A detection above a NMED SSL does not indicate that unacceptable exposures are, in fact, occurring. The NMED SSLs are predicated on relatively conservative exposure assumptions and an exceedance only tends to indicate the potential for adverse effects. The NMED SSLs do not account for additive exposures, whether for carcinogenic or noncarcinogenic endpoints. Section 5 of Volume I addresses a methodology by which an environmental manager may determine whether further site-evaluation is warranted, however, this methodology does not replace the need for defensible risk assessment where indicated. The SSLs also do not account for ingestion of homegrown produce/animals or the vapor intrusion pathway. If these or other exposure pathways are complete, additional analyses may be warranted.

The NMED SSLs address a basic subset of exposures fundamental to the widest array of environmentally-impacted sites within the State of New Mexico. The NMED SSLs cannot address all relevant exposure pathways associated with all sites. The utility of the NMED SSLs depends heavily upon the understanding of site conditions as accurately reflected in the CSM and nature and extent of contamination determinations. Consideration of the NMED SSLs does not preclude the need for site-specific risk assessment in all instances.

Table A-1: NMED Soil Screening Levels

Chemical	Residential Soil (mg/kg)	End- point	Industrial/ Occupational Soil (mg/kg)	End- point	Construction Worker Soil (mg/kg)	End- point	Tap Water (µg/L)	End- point	Risk-based SSL for a DAF of 1 (mg/kg)	Risk-based SSL for a DAF of 20 (mg/kg)
Acenaphthene	3.44E+03	n	3.67E+04	n	1.86E+04	n	2.19E+03	n	1.71E+01	3.43E+02
Acetaldehyde	2.45E+02	n	1.16E+03	n	2.14E+02	n	1.88E+01	n	3.77E-03	7.54E-02
Acetone	6.66E+04	n	8.68E+05	nls	2.21E+05	nls	2.18E+04	n	3.85E+00	7.71E+01
Acrylonitrile	4.55E+00	c	2.43E+01	c	3.76E+01	n	4.54E-01	С	8.46E-05	1.69E-03
Acetophenone	7.82E+03	ns	1.14E+05	nls	3.10E+04	ns	3.65E+03	n	9.17E-01	1.83E+01
Acrolein	4.04E-01	n	1.92E+00	n	3.56E-01	n	4.16E-02	n	7.28E-06	1.46E-04
Aldrin	2.84E-01	c	1.12E+00	c	7.15E+00	n	3.92E-02	c	4.83E-03	9.66E-02
Aluminum	7.80E+04	n	1.13E+06	nl	4.07E+04	n	3.65E+04	n	5.48E+04	1.10E+06
Anthracene	1.72E+04	n	1.83E+05	nl	6.68E+04	n	1.10E+04	n	2.71E+02	5.41E+03
Antimony	3.13E+01	n	4.54E+02	n	1.24E+02	n	1.46E+01	n	6.60E-01	1.32E+01
Arsenic	3.90E+00	c	1.77E+01	c	5.30E+01	n	4.48E-01	c	1.31E-02	2.61E-01
Barium	1.56E+04	n	2.23E+05	nl	4.35E+03	n	7.30E+03	n	3.01E+02	6.01E+03
Benzene	1.54E+01	c	8.47E+01	c	1.38E+02	n	4.13E+00	c	1.62E-03	3.24E-02
Benzidine	5.01E-03	c	8.33E-02	c	7.20E-01	c	9.36E-04	c	1.83E-06	3.67E-05
Benzo(a)anthracene	1.48E+00	c	2.34E+01	c	2.13E+02	С	2.95E-01	С	7.83E-02	1.57E+00
Benzo(a)pyrene	1.48E-01	c	2.34E+00	c	2.13E+01	c	2.95E-02	c	2.60E-02	5.20E-01
Benzo(b)fluoranthene	1.48E+00	c	2.34E+01	c	2.13E+02	c	2.95E-01	С	2.65E-01	5.31E+00
Benzo(k)fluoranthene	1.48E+01	c	2.34E+02	c	2.06E+03	c	2.95E+00	c	2.60E+00	5.20E+01
Beryllium	1.56E+02	n	2.26E+03	n	1.44E+02	n	7.30E+01	n	5.77E+01	1.15E+03
a-BHC (a-Hexachlorocyclohexane, a-HCH)	7.72E-01	c	3.04E+00	c	2.63E+01	c	1.07E-01	c	5.04E-04	1.01E-02
b-BHC (b-Hexachlorocyclohexane, b-HCH)	2.70E+00	c	1.06E+01	c	9.19E+01	c	3.73E-01	С	1.64E-03	3.27E-02
g-BHC (Lindane)	5.17E+00	c	2.29E+01	c	8.30E+01	n	6.11E-01	С	2.68E-03	5.36E-02
1,1-Biphenyl	5.71E+01	ns	2.72E+02	ns	1.55E+04	ns	8.34E-01	n	6.65E-03	1.33E-01
Bis(2-chloroethyl) ether	2.68E+00	c	1.42E+01	c	7.78E+01	c	1.19E-01	c	3.41E-05	6.81E-04
Bis(2-chloroisopropyl) ether	9.15E+01	c	4.54E+02	cs	3.10E+03	cs	9.60E+00	С	3.53E-03	7.06E-02
Bis(2-ethylhexyl) phthalate	3.47E+02	cs	1.37E+03	cs	4.76E+03	n	4.80E+01	С	8.62E+00	1.72E+02
Bis(chloromethyl) ether	6.48E-03	С	3.53E-02	С	1.78E-01	С	6.24E-04	С	1.17E-07	2.35E-06
Boron	1.56E+04	n	2.27E+05	nl	4.65E+04	n	7.30E+03	n	2.51E+01	5.01E+02
Bromodichloromethane	5.41E+00	c	3.01E+01	С	1.43E+02	c	1.17E+00	С	5.81E-04	1.16E-02

				,		,			•	
Chemical	Residential Soil (mg/kg)	End-	Industrial/ Occupational Soil (mg/kg)	End- point	Construction Worker Soil (mg/kg)	End-	Tap Water (µg/L)	End- point	Risk-based SSL for a DAF of 1 (mg/kg)	Risk-based SSL for a DAF of 20 (mg/kg)
Bromomethane	1.65E+01	n	8.65E+01	n	1.64E+01	n	8.66E+00	n	1.80E-03	3.60E-02
1,3-Butadiene	8.08E-01	С	4.29E+00	С	3.19E+00	n	1.76E-01	С	5.49E-05	1.10E-03
2-Butanone (Methyl ethyl ketone, MEK)	3.71E+04	n	3.75E+05	nls	8.43E+04	nls	7.06E+03	n	2.61E+00	5.21E+01
tert-Butyl methyl ether (MTBE)	9.01E+02	С	4.89E+03	С	2.49E+04	cs	1.25E+02	С	2.59E-02	5.18E-01
Cadmium	7.03E+01	n	8.97E+02	n	2.77E+02	n	1.83E+01	n	1.37E+00	2.75E+01
Carbon disulfide	1.53E+03	ns	8.33E+03	ns	1.58E+03	ns	1.04E+03	n	2.16E-01	4.33E+00
Carbon tetrachloride	1.08E+01	С	5.98E+01	С	2.26E+02	ns	4.40E+00	С	1.05E-03	2.10E-02
Chlordane	1.62E+01	С	7.19E+01	С	1.35E+02	n	1.35E+00	n	6.87E-02	1.37E+00
2-Chloroacetophenone	1.72E+05	nl	8.12E+05	nl	2.81E+02	n				
2-Chloro-1,3-butadiene	1.69E-01	С	2.03E+02	n	4.39E+00	С	1.62E-01	С	4.29E-05	1.70E-03
1-Chloro-1,1-difluoroethane	1.07E+05	nls	5.05E+05	nls	9.38E+04	nls	1.04E+05	n	2.67E+01	1.07E+03
Chlorobenzene	3.76E+02	ns	2.12E+03	ns	4.06E+02	ns	9.13E+01	n	5.82E-02	9.84E-01
1-Chlorobutane	3.13E+03	ns	4.54E+04	ns	1.24E+04	ns	1.46E+03	n	5.77E-01	1.05E+01
Chlorodifluoromethane	1.03E+05	nls	4.86E+05	nls	9.04E+04	nls	1.04E+05	n	2.31E+01	8.55E+02
Chloroform	5.86E+00	c	3.27E+01	c	1.54E+02	С	1.93E+00	С	6.45E-04	9.18E-03
Chloromethane	2.75E+02	n	1.29E+03	cs	2.41E+02	n	1.88E+02	n	3.63E-02	8.79E-01
b-Chloronaphthalene	6.26E+03	ns	9.08E+04	ns	2.48E+04	ns	2.92E+03	n	1.15E+01	2.27E+02
o-Chloronitrobenzene	1.62E+01	c	1.06E+02	n	8.51E+01	n	2.24E+00	c	1.63E-03	3.27E-02
p-Chloronitrobenzene	6.11E+01	n	1.49E+02	n	2.94E+02	n	1.21E+00	n	8.99E-04	1.74E-02
2-Chlorophenol	3.91E+02	n	5.68E+03	n	1.55E+03	n	1.83E+02	n	1.36E-01	2.31E+00
2-Chloropropane	6.63E+03	ns	3.13E+04	ns	5.78E+03	ns	2.09E+02	n	4.80E-02	9.22E-01
o-Chlorotoluene	1.56E+03	ns	2.27E+04	ns	6.19E+03	ns	7.30E+02	n	5.46E-01	1.12E+01
Chromium III	1.17E+05	nl	1.70E+06	nl	4.65E+05	nl	5.48E+04	n	9.86E+07	1.97E+09
Chromium VI	2.97E+00	c	6.31E+01	n	6.56E+01	c	4.31E-01	c	8.26E-03	1.66E-01
Chrysene	1.48E+02	с	2.34E+03	С	2.06E+04	c	2.95E+01	c	7.99E+00	1.60E+02
Copper	3.13E+03	n	4.54E+04	n	1.24E+04	n	1.46E+03	n	5.14E+01	1.03E+03
Crotonaldehyde	3.37E+00	С	1.14E+03	С	1.14E+02	c	3.54E-01	С	6.35E-05	1.25E-03
Cumene (isopropylbenzene)	2.43E+03	ns	1.45E+04	ns	2.81E+03	ns	6.79E+02	n	8.31E-01	1.73E+01
Cyanide	4.69E+01	n	6.81E+02	n	1.86E+02	n	2.19E+01	n	2.21E-01	4.41E+00
Cyanogen	3.13E+03	ns	4.54E+04	n	1.24E+04	n	1.46E+03	n	2.66E-01	5.79E+00
Cyanogen bromide	7.04E+03	n	1.02E+05	nl	2.79E+04	n	3.29E+03	n	6.06E-01	1.88E+01

Chemical	Residential Soil (mg/kg)	End-	Industrial/ Occupational Soil (mg/kg)	End- point	Construction Worker Soil (mg/kg)	End-	Tap Water (μg/L)	End- point	Risk-based SSL for a DAF of 1 (mg/kg)	Risk-based SSL for a DAF of 20 (mg/kg)
Cyanogen chloride	3.91E+03	n	5.68E+04	n	1.55E+04	n	1.83E+03	n	3.16E-01	6.66E+00
DDD	2.03E+01	С	7.98E+01	С	6.90E+02	С	2.80E+00	С	4.98E-01	9.88E+00
DDE	1.43E+01	С	5.63E+01	c	4.87E+02	С	1.98E+00	c	3.49E-01	6.97E+00
DDT	1.72E+01	С	7.81E+01	c	1.42E+02	n	1.98E+00	С	5.00E-01	1.00E+01
Dibenz(a,h)anthracene	1.48E-01	С	2.34E+00	c	2.13E+01	С	2.95E-02	С	8.46E-02	1.69E+00
1,2-Dibromo-3-chloropropane	1.86E+00	c	1.08E+00	c	5.07E+00	С	3.16E-03	С	1.16E-06	2.20E-05
Dibromochloromethane	1.21E+01	С	6.24E+01	c	3.32E+02	cs	1.47E+00	С	5.04E-04	6.61E-03
1,2-Dibromoethane	5.88E-01	С	3.22E+00	С	1.60E+01	С	6.53E-02	С	1.52E-05	3.08E-04
1,4-Dichloro-2-butene	9.73E-02	С	5.45E-01	С	2.53E+00	С	1.16E-02	С	4.45E-06	8.66E-05
1,2-Dichlorobenzene	2.31E+03	ns	1.40E+04	ns	2.71E+03	ns	3.70E+02	n	2.78E-01	5.60E+00
1,4-Dichlorobenzene	3.17E+01	С	1.77E+02	С	8.31E+02	cs	4.27E+00	С	4.39E-03	6.39E-02
3,3-Dichlorobenzidine	1.08E+01	С	4.26E+01	С	3.64E+02	С	1.49E+00	С	7.40E-03	1.48E-01
Dichlorodifluoromethane	1.68E+02	n	7.98E+02	ns	1.49E+02	ns	2.03E+02	n	4.85E-02	7.43E+00
1,1-Dichloroethane	6.45E+01	С	3.59E+02	С	1.70E+03	cs	2.42E+01	С	5.34E-03	1.20E-01
1,2-Dichloroethane	7.89E+00	С	4.35E+01	С	5.87E+01	n	1.49E+00	С	3.48E-04	7.11E-03
cis-1,2-Dichloroethene	1.56E+02	n	2.27E+03	ns	6.19E+02	С	7.30E+01	n	1.70E-02	3.67E-01
trans-1,2-Dichloroethene	2.70E+02	n	1.44E+03	ns	2.73E+02	ns	1.07E+02	n	2.49E-02	5.38E-01
1,1-Dichloroethene	4.49E+02	n	2.29E+03	ns	4.32E+02	ns	3.40E+02	n	7.51E-02	2.32E+00
2,4-Dichlorophenol	1.83E+02	n	2.05E+03	n	7.15E+02	n	1.10E+02	n	9.98E-02	2.00E+00
1,2-Dichloropropane	1.52E+01	c	8.44E+01	c	2.50E+01	n	3.86E+00	c	1.02E-03	2.14E-02
1,3-Dichloropropene	3.37E+01	c	1.77E+02	c	2.09E+02	ns	4.33E+00	c	1.22E-03	2.48E-02
Dicyclopentadiene	3.33E+01	n	1.63E+02	ns	3.04E+01	n	1.39E+01	n	3.40E-02	7.60E-01
Dieldrin	3.04E-01	c	1.20E+00	c	1.03E+01	c	4.20E-02	c	1.27E-03	2.55E-02
Diethyl phthalate	4.89E+04	n	5.47E+05	nl	1.91E+05	nl	2.92E+04	n	9.66E+00	1.93E+02
Dimethyl phthalate	6.11E+05	nl	6.84E+06	nl	2.38E+06	nl	3.65E+05	n	8.06E+01	1.61E+03
Di-n-butyl phthalate (Dibutyl phthalate)	6.11E+03	n	6.84E+04	n	2.38E+04	n	3.65E+03	n	6.97E+00	1.39E+02
2,4-Dimethylphenol	1.22E+03	n	1.37E+04	n	4.76E+03	n	7.30E+02	n	6.66E-01	1.33E+01
4,6-Dinitro-o-cresol	4.89E+00	n	5.47E+01	n	1.91E+01	n	2.92E+00	n	3.82E-03	7.62E-02
2,4-Dinitrophenol	1.22E+02	n	1.37E+03	n	4.76E+02	n	7.30E+01	n	6.69E-02	1.26E+00
2,4-Dinitrotoluene	1.57E+01	С	6.18E+01	С	4.76E+02	n	2.17E+00	С	2.26E-03	4.49E-02
2,6-Dintitrotoluene	6.11E+01	n	6.84E+02	n	2.38E+02	n	3.65E+01	n	3.85E-02	7.70E-01

Chemical	Residential Soil (mg/kg)	End-	Industrial/ Occupational Soil (mg/kg)	End- point	Construction Worker Soil (mg/kg)	End- point	Tap Water (μg/L)	End-	Risk-based SSL for a DAF of 1 (mg/kg)	Risk-based SSL for a DAF of 20 (mg/kg)
2,4/2,6-Dintrotoluene Mixture	7.15E+00		2.82E+01		2.45E+02		(μg/L) 9.88E-01	-	1.08E-03	2.08E-02
1,4-Dioxane	4.86E+01	С	1.92E+02	c	2.43E+02 1.66E+03	С	6.72E+00	c c	1.08E-03 1.20E-03	2.08E-02 2.38E-02
1,2-Dioxane 1,2-Diphenylhydrazine	6.08E+00	c	2.39E+02	С	2.07E+02	С	8.40E-01	-	2.04E-03	4.08E-02
Endosulfan	3.67E+02	С	4.10E+03	С	1.43E+03	С	2.19E+02	С	2.04E-03 2.26E+00	4.08E-02 4.52E+01
Endosuman Endrin	1.83E+01	n	2.05E+02	n	7.15E+01	n	2.19E+02 1.10E+01	n	3.33E-01	4.52E+01 6.64E+00
Endriii Epichlorohydrin	4.10E+01	n	2.03E+02 2.06E+02	n	3.84E+01	n	2.07E+00	n	4.41E-04	7.78E-03
1 2		n		n		n		n		
Ethyl acetate	7.04E+04	ns	1.02E+06	nls	2.79E+05	nls	3.29E+04	n	6.01E+00	1.20E+02
Ethyl acrylate	1.33E+02	С	6.62E+02	С	4.52E+03	CS	1.40E+01	С	2.76E-03	5.34E-02
Ethyl chloride	2.98E+04	ns	1.41E+05	nls	2.61E+04	nls	2.09E+04	n	5.29E+00	1.07E+02
Ethyl ether	1.56E+04	ns	2.27E+05	nls	6.19E+04	ns	7.30E+03	n	2.29E+00	2.83E+01
Ethyl methacrylate	4.55E+03	ns	3.80E+04	ns	2.79E+04	ns	5.26E+02	n	1.14E-01	2.09E+00
Ethylbenzene	6.84E+01	С	3.78E+02	cs	1.83E+03	cs	1.48E+01	С	1.36E-01	2.60E-01
Ethylene oxide	4.06E+00	С	2.22E+01	С	1.11E+02	С	4.41E-01	С	7.85E-05	1.58E-03
Fluoranthene	2.29E+03	n	2.44E+04	n	8.91E+03	n	1.46E+03	n	1.22E+02	2.43E+03
Fluorene	2.29E+03	n	2.44E+04	ns	8.91E+03	ns	1.46E+03	n	2.03E+01	4.06E+02
Fluoride	3.13E+03	n	4.54E+04	n	1.24E+04	n	1.46E+03	n	2.53E-01	8.37E+00
Furan	7.82E+01	n	1.14E+03	n	3.10E+02	n	3.65E+01	n	1.48E-02	2.32E-01
Heptachlor	1.08E+00	c	4.26E+00	c	3.68E+01	c	1.49E-01	c	9.27E-03	1.85E-01
Hexachlorobenzene	3.04E+00	c	1.20E+01	c	1.03E+02	c	4.20E-01	c	3.98E-03	7.96E-02
Hexachloro-1,3-butadiene	6.11E+01	n	2.46E+02	c	2.38E+02	n	8.62E+00	С	1.24E-02	2.57E-01
Hexachlorocyclopentadiene	3.67E+02	n	4.10E+03	n	8.11E+02	n	2.19E+02	n	1.08E+00	1.05E+01
Hexachloroethane	4.28E+01	n	4.79E+02	n	1.67E+02	n	1.68E+01	С	7.87E-03	1.64E-01
n-Hexane	9.38E+02	ns	5.11E+03	ns	9.73E+02	ns	8.76E+02	n	4.24E-01	1.53E+02
HMX	3.91E+03	n	5.68E+04	n	1.55E+04	n	1.83E+03	n	1.87E+00	3.54E+01
Hydrazine anhydride	2.13E+00	С	1.06E+01	С	6.85E+01	С	2.24E-01	С	5.08E-04	1.02E-02
Hydrogen cyanide	1.07E+01	n	5.98E+01	n	1.14E+01	n	1.55E+00	n	4.44E-04	5.39E-03
Indeno(1,2,3-c,d)pyrene	1.48E+00	С	2.34E+01	С	2.13E+02	С	2.95E-01	С	8.63E-01	1.73E+01
Iron	5.48E+04	n	7.95E+05	nl	2.17E+05	nl	2.56E+04	n	6.43E+02	1.29E+04
Isobutanol (Isobutyl alcohol)	2.35E+04	ns	3.41E+05	nls	9.29E+04	ns	1.10E+04	n	1.95E+00	3.89E+01
Isophorone	5.12E+03	С	1.37E+05	cs	4.75E+04	n	7.07E+02	С	1.92E-01	3.84E+00
Lead	4.00E+02	IEUB	8.00E+02	IEUB	8.00E+02	IEU				

									D' L L	D: 1 1
Chemical	Residential Soil (mg/kg)	End-	Industrial/ Occupational Soil (mg/kg)	End- point	Construction Worker Soil (mg/kg)	End- point	Tap Water (µg/L)	End- point	Risk-based SSL for a DAF of 1 (mg/kg)	Risk-based SSL for a DAF of 20 (mg/kg)
Onemical	(1115/115)	K	Son (mg/ng)	K	(111g/11g)	BK	(µg / 2)	point	(1115/115)	(mg/ng)
Lead (tetraethyl-)	6.11E-03	n	6.84E-02	n	2.38E-02	n	3.65E-03	n	4.19E-06	2.76E-04
Maleic hydrazide	3.06E+04	n	3.42E+05	nl	1.19E+05	nl	1.83E+04	n	3.45E+00	6.51E+01
Manganese	1.86E+03	n	2.67E+04	nl	4.40E+02	n	8.76E+02	n	5.71E+01	1.14E+03
Mercury (elemental)	1.56E+01	ns	7.36E+01	ns	1.36E+01	ns	6.26E-01	n	3.39E-02	6.54E-01
Mercury (methyl)	7.82E+00	n	1.14E+02	n	3.10E+01	n	3.65E+00	n	6.47E-04	2.09E-02
Mercury (salts)	2.35E+01	n	3.41E+02	ns	9.29E+01	n	1.10E+01	n	5.71E-01	1.15E+01
Methacrylonitrile	4.84E+00	n	3.92E+01	n	8.18E+00	n	1.04E+00	n	3.19E-04	4.05E-03
Methomyl	1.53E+03	n	1.71E+04	n	5.96E+03	n	9.13E+02	n	1.74E-01	3.44E+00
Methyl acetate	7.82E+04	ns	1.14E+06	nls	3.10E+05	nls	3.65E+04	n	1.06E+01	1.30E+02
Methyl acrylate	2.35E+03	n	3.41E+04	ns	9.29E+03	ns	1.10E+03	n	3.23E-01	4.01E+00
Methyl isobutyl ketone	5.82E+03	ns	7.38E+04	ns	1.85E+04	ns	1.99E+03	n	6.08E-01	7.68E+00
Methyl methacrylate	1.12E+04	ns	5.69E+04	ns	1.07E+04	ns	1.42E+03	n	2.66E-01	5.35E+00
Methyl styrene (alpha)	5.48E+03	ns	7.95E+04	ns	2.17E+04	ns	2.56E+03	n	3.12E+00	6.29E+01
Methyl styrene (mixture)	2.72E+02	ns	2.11E+03	ns	4.34E+02	ns	6.04E+01	n	7.53E-02	1.52E+00
Methylcyclohexane	5.63E+03	ns	2.65E+04	ns	4.93E+03	ns	6.26E+03	n	3.28E+00	3.21E+02
Methylene bromide (Dibromomethane)	5.16E+01	n	2.54E+02	n	3.10E+03	ns	8.16E+00	n	1.68E-03	3.42E-02
Methylene chloride	4.09E+02	n	4.70E+03	c	1.12E+03	ns	1.86E+02	n	3.84E-02	8.24E-01
Molybdenum	3.91E+02	n	5.68E+03	n	1.55E+03	n	1.83E+02	n	3.68E+00	7.40E+01
Naphthalene	4.30E+01	С	2.41E+02	С	1.58E+02	n	1.43E+00	С	3.56E-03	7.13E-02
Nickel	1.56E+03	n	2.25E+04	n	6.19E+03	n	7.30E+02	n	4.76E+01	9.53E+02
Nitrate	1.25E+05	nl	1.82E+06	nl	4.96E+05	nl	5.84E+04	n	1.01E+01	3.35E+02
Nitrite	7.82E+03	n	1.14E+05	nl	3.10E+04	n	3.65E+03	n	6.45E-01	2.09E+01
Nitrobenzene	5.35E+01	С	3.00E+02	С	3.32E+02	n	1.22E+00	С	6.24E-04	1.25E-02
Nitroglycerin	6.11E+00	n	6.84E+01	n	2.38E+01	n	3.65E+00	n	1.68E-03	2.53E-02
N-Nitrosodiethylamine	7.68E-03	c	1.28E-01	С	1.10E+00	c	1.44E-03	С	1.68E-06	8.55E-06
N-Nitrosodimethylamine	2.26E-02	С	3.76E-01	С	1.91E+00	n	4.22E-03	С	8.76E-07	1.75E-05
N-Nitrosodi- <i>n</i> -butylamine	6.89E-01	С	2.92E+00	С	2.19E+01	С	2.44E-02	С	3.78E-05	7.55E-04
N-Nitrosodiphenylamine	9.93E+02	С	3.91E+03	С	3.36E+04	С	1.37E+02	С	5.65E-01	1.13E+01
N-Nitrosopyrrolidine	2.32E+00	С	9.12E+00	С	7.88E+01	С	3.20E-01	С	1.01E-04	1.99E-03
m-Nitrotoluene	7.82E+00	n	1.14E+02	n	3.10E+01	n	3.65E+00	n	2.63E-03	5.24E-02

	Residential		Industrial/		Construction		Тар		Risk-based SSL for a	Risk-based SSL for a
	Soil	End-	Occupational	End-	Worker Soil	End-	Water	End-	DAF of 1	DAF of 20
Chemical	(mg/kg)	point	Soil (mg/kg)	point	(mg/kg)	point	(μg/L)	point	(mg/kg)	(mg/kg)
o-Nitrotoluene	2.91E+01	c	1.02E+03	cs	2.79E+02	n	3.05E+00	С	2.23E-03	4.46E-02
p-Nitrotoluene	2.44E+02	n	2.74E+03	c	9.53E+02	n	4.20E+01	С	3.02E-02	6.03E-01
Pentachlorobenzene	4.89E+01	n	5.47E+02	n	1.91E+02	n	2.92E+01	n	1.68E-01	3.35E+00
Pentachlorophenol	8.94E+00	c	3.00E+01	С	3.10E+02	c	1.68E+00	С	1.28E-02	2.56E-01
Perchlorate	5.48E+01	n	7.95E+02	ns	2.17E+02	n	2.56E+01	n	4.43E-03	1.46E-01
Phenanthrene	1.83E+03	ns	2.05E+04	n	7.15E+03	n	1.10E+03	n	2.76E+01	5.71E+02
Phenol	1.83E+04	n	2.05E+05	nl	6.88E+04	n	1.10E+04	n	4.98E+00	9.95E+01
Polychlorinatedbiphenyls (PCBs)										
Aroclor 1016	3.93E+00	n	4.13E+01	n	1.53E+01	n	2.56E+00	n	1.83E-01	3.67E+00
Aroclor 1221	1.49E+00	c	6.24E+00	c	4.63E+01	cs	6.81E-02	c	8.69E-04	1.74E-02
Aroclor 1232	1.49E+00	c	6.24E+00	c	4.63E+01	cs	6.81E-02	c	8.69E-04	1.74E-02
Aroclor 1242	2.22E+00	c	8.26E+00	c	7.58E+01	c	3.36E-01	c	3.94E-02	7.88E-01
Aroclor 1248	2.22E+00	c	8.26E+00	c	7.58E+01	c	3.36E-01	С	3.86E-02	7.73E-01
Aroclor 1254	1.12E+00	n	8.26E+00	c	4.36E+00	n	3.36E-01	c	6.58E-02	1.32E+00
Aroclor 1260	2.22E+00	c	8.26E+00	c	7.58E+01	c	3.36E-01	С	1.76E-01	3.53E+00
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB 170)	3.41E-01	c	1.27E+00	c	1.17E+01	c	5.17E-02	С	2.77E-02	5.53E-01
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB 180)	3.41E+00	c	1.27E+01	c	1.17E+02	c	5.17E-01	С	2.71E-01	5.42E+00
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB 189)	1.14E+00	c	4.24E+00	c	3.89E+01	c	1.72E-01	С	9.04E-02	1.81E+00
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB 167)	1.14E+00	c	4.24E+00	С	3.89E+01	С	1.72E-01	С	5.41E-02	1.08E+00
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB 157)	1.14E+00	c	4.24E+00	С	3.89E+01	С	1.72E-01	С	5.52E-02	1.10E+00
2,3,3',4,4',5-Hexachlorobiphenyl (PCB 156)	1.14E+00	c	4.24E+00	c	3.89E+01	c	1.72E-01	С	5.52E-02	1.10E+00
3,3',4,4',5,5'-Hexachlorobiphenyl (PCB 169)	1.14E-03	c	4.24E-03	С	3.89E-02	С	1.72E-04	С	5.41E-05	1.08E-03
2',3,4,4',5-Pentachlorobiphenyl (PCB 123)	1.14E+00	c	4.24E+00	С	3.89E+01	С	1.72E-01	С	3.38E-02	6.75E-01
2',3',4,4',5-Pentachlorobiphenyl (PCB 118)	1.14E+00	с	4.24E+00	С	3.89E+01	С	1.72E-01	С	3.31E-02	6.62E-01
2',3,3',4,4'-Pentachlorobiphenyl (PCB 105)	1.14E+00	с	4.24E+00	С	3.89E+01	С	1.72E-01	С	3.38E-02	6.75E-01
2,3,4,4',5-Pentachlorobiphenyl (PCB 114)	1.14E+00	с	4.24E+00	С	3.89E+01	С	1.72E-01	С	3.38E-02	6.75E-01
3,3',4,4',5-Pentachlorobiphenyl (PCB 126)	3.41E-04	c	1.27E-03	С	1.17E-02	С	5.17E-05	С	9.93E-06	1.99E-04
3,3',4,4'-Tetrachlorobiphenyl (PCB 77)	3.41E-01	c	1.27E+00	С	1.17E+01	С	5.17E-02	С	6.06E-03	1.21E-01
3,4,4',5-Tetrachlorobiphenyl (PCB 81)	1.14E-01	c	4.24E-01	С	3.89E+00	С	1.72E-02	С	2.02E-03	4.04E-02
Propylene oxide	2.31E+01	С	1.16E+02	c	7.06E+02	n	2.31E+00	С	4.19E-04	8.38E-03
Pyrene	1.72E+03	n	1.83E+04	n	6.68E+03	n	1.10E+03	n	8.94E+01	1.79E+03

										1
Chemical	Residential Soil (mg/kg)	End-	Industrial/ Occupational Soil (mg/kg)	End- point	Construction Worker Soil (mg/kg)	End-	Tap Water (µg/L)	End- point	Risk-based SSL for a DAF of 1 (mg/kg)	Risk-based SSL for a DAF of 20 (mg/kg)
RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine	5.82E+01	С	3.41E+03	С	9.29E+02	n	6.11E+00	С	1.88E-03	3.75E-02
Selenium	3.91E+02	n	5.68E+03	n	1.55E+03	n	1.83E+02	n	9.65E-01	1.93E+01
Silver	3.91E+02	n	5.68E+03	n	1.55E+03	n	1.83E+02	n	1.57E+00	3.13E+01
Strontium	4.69E+04	n	6.81E+05	nl	1.86E+05	nl	2.19E+04	n	7.73E+02	1.55E+04
Styrene	7.28E+03	ns	5.00E+04	ns	9.99E+03	ns	1.62E+03	n	1.39E+00	2.77E+01
2,3,7,8-TCDD	4.50E-05	С	2.04E-04	С	2.84E-04	n	5.17E-06	С	1.93E-06	3.86E-05
2,3,7,8-TCDF	4.50E-04	с	2.04E-03	С	1.52E-02	С	5.17E-05	С	1.08E-05	2.17E-04
1,2,4,5-Tetrachlorobenzene	1.83E+01	n	2.05E+02	n	7.15E+01	n	1.10E+01	n	3.84E-02	7.68E-01
1,1,1,2-Tetrachloroethane	2.91E+01	С	1.61E+02	С	7.79E+02	cs	5.24E+00	С	1.65E-03	3.29E-02
1,1,2,2-Tetrachloroethane	8.02E+00	С	4.35E+01	С	2.21E+02	c	6.71E-01	С	2.13E-04	4.26E-03
Tetrachloroethene	7.02E+00	c	3.66E+01	c	2.12E+02	cs	1.08E+00	c	4.30E-04	8.61E-03
Tetryl (Trinitrophenylmethylnitramine)	2.44E+02	n	2.74E+03	n	9.53E+02	n	1.46E+02	n	1.03E+00	2.07E+01
Thallium	7.82E-01	n	1.14E+01	n	3.10E+00	n	3.65E-01	n	2.60E-02	5.20E-01
Toluene	5.27E+03	ns	5.77E+04	ns	1.34E+04	ns	2.28E+03	n	1.27E+00	2.53E+01
Toxaphene	4.42E+00	c	1.74E+01	c	1.50E+02	c	6.11E-01	c	7.08E-02	1.42E+00
Tribromomethane (Bromoform)	6.16E+02	c	2.42E+03	c	4.76E+03	n	8.51E+01	c	6.04E-01	1.21E+01
1,1,2-Trichloro-1,2,2-trifluoroethane	7.21E+04	nls	3.47E+05	nls	6.47E+04	nls	5.92E+04	n	1.72E+02	3.45E+03
1,2,4-Trichlorobenzene	7.30E+01	n	3.67E+02	ns	6.87E+01	ns	4.12E+00	n	9.13E-03	1.83E-01
1,1,1-Trichloroethane	1.56E+04	ns	7.89E+04	ns	1.48E+04	ns	9.13E+03	n	2.91E+00	5.82E+01
1,1,2-Trichloroethane	2.81E+00	n	1.33E+01	c	4.72E+02	ns	4.16E-01	n	1.12E-04	2.23E-03
Trichloroethylene	8.77E+00	n	4.13E+01	c	7.68E+00	cs	3.40E+00	n	1.05E-03	2.11E-02
Trichlorofluoromethane	1.41E+03	ns	6.94E+03	ns	1.30E+03	ns	1.29E+03	n	8.89E-01	1.78E+01
2,4,5-Trichlorophenol	6.11E+03	n	6.84E+04	n	2.38E+04	n	3.65E+03	n	1.04E+01	2.07E+02
2,4,6-Trichlorophenol	6.11E+01	n	6.84E+02	n	2.38E+02	n	3.65E+01	n	1.04E-01	2.07E+00
1,1,2-Trichloropropane	3.91E+02	n	5.68E+03	ns	1.55E+03	ns	1.83E+02	n	5.79E-02	1.16E+00
1,2,3-Trichloropropane	4.97E-02	С	3.76E+01	С	7.23E+00	c	7.18E-03	С	2.50E-06	5.00E-05
Triethylamine	2.21E+02	n	1.04E+03	n	1.93E+02	n	1.46E+01	n	3.65E-03	7.31E-02
2,4,6-Trinitrotoluene	3.91E+01	n	5.68E+02	n	1.55E+02	n	1.83E+01	n	8.01E-02	1.60E+00
Uranium (soluable salts)	2.35E+02	n	3.41E+03	n	9.29E+02	ns	1.10E+02	n	4.93E+01	9.86E+02
Vanadium	3.91E+02	n	5.68E+03	n	1.55E+03	n	1.83E+02	n	1.83E+02	3.65E+03
Vinyl acetate	2.56E+03	n	1.23E+04	ns	2.30E+03	ns	4.12E+02	n	7.59E-02	1.52E+00

Chemical	Residential Soil (mg/kg)	End- point	Industrial/ Occupational Soil (mg/kg)	End- point	Construction Worker Soil (mg/kg)	End- point	Tap Water (µg/L)	End- point	Risk-based SSL for a DAF of 1 (mg/kg)	Risk-based SSL for a DAF of 20 (mg/kg)
Vinyl bromide	2.36E+00	c	1.32E+01	n	8.51E+00	n	1.52E+00	c	4.00E-04	8.00E-03
Vinyl chloride	7.28E-01	c	2.61E+01	c	1.49E+02	c	1.62E-01	c	5.42E-05	1.08E-03
m-Xylene	7.74E+02	ns	3.78E+03	ns	7.05E+02	ns	2.03E+02	n	1.56E-01	3.12E+00
o-Xylene	8.98E+02	ns	4.41E+03	ns	8.23E+02	ns	2.03E+02	n	1.56E-01	3.13E+00
Xylenes	8.14E+02	ns	3.98E+03	ns	7.43E+02	ns	2.03E+02	n	1.56E-01	3.13E+00
Zinc	2.35E+04	n	3.41E+05	nl	9.29E+04	n	1.10E+04	n	6.82E+02	1.36E+04

c – carcinogen cs - carcinogenic, SSL may exceed saturation n – noncarcinogenic

nl - noncarcinogen, SSL may exceed ceiling limit

ns - noncarcinogen, SSL may exceed saturation

nls - noncarcinogen, SSL may exceed both saturation and ceiling limit

APPENDIX B

CHEMICAL AND PHYSICAL PROPERTIES

Table B-1: Chemical CAS and Molecular Weight

	Chemical Abstract	
	Service	Molecular
	(CAS)	Weight
Chemical	Number	(g/mole)
Acenaphthene	83-32-9	154.21
Acetaldehyde	75-07-0	44.05
Acetone	67-64-1	58.08
Acrylonitrile	107-13-1	41.05
Acetophenone	98-86-2	120.15
Acrolein	107-02-8	56.06
Aldrin	309-00-2	364.92
Aluminum	7429-90-5	26.98
Anthracene	120-12-7	178.24
Antimony	7440-36-0	121.75
Arsenic	7440-38-2	74.92
Barium	7440-39-3	137.33
Benzene	71-43-2	78.1
Benzidine	92-87-5	184.23
Benzo(a)anthracene	56-55-3	228
Benzo(a)pyrene	50-32-8	250
Benzo(b)fluoranthene	205-99-2	252.3
Benzo(k)fluoranthene	207-08-9	252.3
Beryllium	7440-41-7	9.01
a-BHC (HCH)	319-84-6	290.85
b-BHC (HCH)	319-85-7	290.85
g-BHC	58-89-9	290.85
1,1-Biphenyl	92-52-4	150
Bis(2-chloroethyl) ether	111-44-4	140
Bis(2-chloroisopropyl) ether	39638-32-9	170
Bis(2-ethylhexyl) phthalate	117-81-7	390.54
Bis(chloromethyl) ether	542-88-1	120
Boron	7440-42-8	10.81
Bromodichloromethane	75-27-4	164
Bromomethane	74-83-9	94.95
1,3-Butadiene	106-99-0	54
2-Butanone (Methyl ethyl ketone, MEK)	78-93-3	72
tert-Butyl methyl ether (MTBE)	1634-04-4	88.2
Cadmium	7440-43-9	112.41
Carbon disulfide	75-15-0	76
Carbon tetrachloride	56-23-5	154
Chlordane	12789-03-6	409.8
2-Chloroacetophenone	532-27-4	154.59
2-Chloro-1,3-butadiene	126-99-8	88
1-Chloro-1,1-difluoroethane	75-68-3	100.5
Chlorobenzene	108-90-7	113
1-Chlorobutane	109-69-3	92.57
Chlorodifluoromethane	75-45-6	86.47

	Chemical Abstract	
	Service	Molecular
	(CAS)	Weight
Chemical	Number	(g/mole)
Chloroform	67-66-3	120
Chloromethane	74-87-3	51
b-Chloronaphthalene	91-58-7	160
o-Chloronitrobenzene	88-73-3	153.33
<i>p</i> -Chloronitrobenzene	100-00-5	153.33
2-Chlorophenol	95-57-8	130
2-Chloropropane	75-29-6	78.54
o-Chlorotoluene	95-49-8	172.57
Chromium III	16065-83-1	52
Chromium VI	18540-29-9	52
Chrysene	218-01-9	228.28
Copper	7440-50-8	63.55
Crotonaldehyde	123-73-9	70.09
Cumene (isopropylbenzene)	98-82-8	120
Cyanide	57-12-5	27.03
Cyanogen	460-19-5	52
Cyanogen bromide	506-68-3	52
Cyanogen chloride	506-77-4	52
DDD	72-54-8	320
DDE	72-55-9	318
DDT	50-29-3	354.5
Dibenz(a,h)anthracene	53-70-3	278.3
1,2-Dibromo-3-chloropropane	96-12-8	240
Dibromochloromethane	124-48-1	210
1,2-Dibromoethane	106-93-4	188
1,4-Dichloro-2-butene	764-41-0	130
1,2-Dichlorobenzene	95-50-1	147
1,4-Dichlorobenzene	106-46-7	147
3,3-Dichlorobenzidine	91-94-1	253.13
Dichlorodifluoromethane	75-71-8	120
1,1-Dichloroethane	75-34-3	99
1,2-Dichloroethane	107-06-2	99
cis-1,2-Dichloroethene	156-59-2	97
trans-1,2-Dichloroethene	156-60-5	97
1,1-Dichloroethene	75-35-4	97
2,4-Dichlorophenol	120-83-2	163
1,2-Dichloropropane	78-87-5	110
1,3-Dichloropropene	542-75-6	111
Dicyclopentadiene	77-73-6	130
Dieldrin	60-57-1	381
Diethyl phthalate	84-66-2	222.2
Dimethyl phthalate	131-11-3	194.19
Di-n-butyl phthalate (Dibutyl phthalate)	84-74-2	278.34
2,4-Dimethylphenol	105-67-9	122.16
4,6-Dinitro-o-cresol	534-52-1	198.14

	Chemical	
	Abstract	
	Service	Molecular
Chemical	(CAS) Number	Weight (g/mole)
2,4-Dinitrophenol	51-28-5	184.11
2,4-Dinitrophenoi 2,4-Dinitrotoluene	121-14-2	182.14
2,6-Dintitrotoluene	606-20-2	182.14
2,4/2,6-Dintrotoluene Mixture	25321-14-6	182.14
1,4-Dioxane	123-91-1	88.11
1,2-Diphenylhydrazine	122-66-7	184.24
Endosulfan	115-29-7	406.95
Endrin	72-20-8	381
Epichlorohydrin	106-89-8	93
Ethyl acetate	141-78-6	88
Ethyl acrylate	140-88-5	100.1
Ethyl chloride	75-00-3	65
Ethyl ether	60-29-7	74.12
Ethyl methacrylate	97-63-2	114.12
Ethyl methacrylate Ethylbenzene	100-41-4	106.2
Ethylene oxide	75-21-8	44
Fluoranthene	206-44-0	202.3
Fluorene	86-73-7	166.21
Fluoride	7782-41-4	38
Furan	110-00-9	68
Heptachlor	76-44-8	373.5
Hexachlorobenzene	118-74-1	284.8
Hexachloro-1,3-butadiene	87-68-3	260.76
Hexachlorocyclopentadiene Hexachlorocyclopentadiene	77-47-4	272.75
Hexachloroethane	67-72-1	236.74
n-Hexane	110-54-3	86
HMX	2691-41-0	296.2
Hydrazine anhydride	302-01-2	32.05
Hydrogen cyanide	74-90-8	27
Indeno(1,2,3-c,d)pyrene	193-39-5	276.3
Iron	7439-89-6	55.84
Isobutanol (Isobutyl alcohol)	78-83-1	74
Isophorone	78-59-1	138.21
Lead	7439-92-1	207.2
Lead (tetraethyl-)	78-00-2	64.52
Maleic hydrazide	123-33-1	110
Manganese Manganese	7439-96-5	54.94
Mercury (elemental)	7439-90-3	200
Mercury (methyl)	22967-92-6	215.62
Mercury Chloride (Mercury Salts)	7487-94-7	271.5
Methacrylonitrile	126-98-7	67.09
Methomyl	16752-77-5	160
Methyl acetate	79-20-9	74.08
Methyl acrylate Methyl acrylate	96-33-3	86.09
Methyl isobutyl ketone	108-10-1	100
iviculyi isobutyi ketone	108-10-1	100

	Chemical Abstract	
	Service	Molecular
	(CAS)	Weight
Chemical	Number	(g/mole)
Methyl methacrylate	80-62-6	100
Methyl styrene (alpha)	98-83-9	118.18
Methyl styrene (mixture)	25013-15-4	118.18
Methylcyclohexane	108-87-2	98
Methylene bromide (Dibromomethane)	74-95-3	170
Methylene chloride	75-09-2	85
Molybdenum	7439-98-7	95.94
Naphthalene	91-20-3	128.16
Nickel	7440-02-0	58.71
Nitrate	14797-55-8	101.1
Nitrite	14797-65-0	46
Nitrobenzene	98-95-3	120
Nitroglycerin	55-63-0	227.08
<i>N</i> -Nitrosodiethylamine	55-18-5	102.14
<i>N</i> -Nitrosodimethylamine	62-75-9	74.08
N-Nitrosodi-n-butylamine	924-16-3	158.2
N-Nitrosodiphenylamine	86-30-6	198.23
<i>N</i> -Nitrosopyrrolidine	930-55-2	100.2
<i>m</i> -Nitrotoluene	99-08-1	137.1
o-Nitrotoluene	88-72-2	137.13
<i>p</i> -Nitrotoluene	99-99-0	137.1
Pentachlorobenzene	608-93-5	250.32
Pentachlorophenol	87-86-5	266.34
Perchlorate	14797-73-0	117.49
Phenanthrene	85-01-8	178.2
Phenol	108-95-2	94
Polychlorinatedbiphenyls		
Aroclor 1016	12674-11-2	257.55
Aroclor 1221	11104-28-2	262
Aroclor 1232	11141-16-5	262
Aroclor 1242	53469-21-9	291.99
Aroclor 1248	12672-29-6	291.99
Aroclor 1254	11097-69-1	326.44
Aroclor 1260	11096-82-5	395.33
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB 170)	35065-30-6	395.33
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB 180)	35065-29-3	395.33
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB 189)	39635-31-9	395.33
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB 167)	52663-72-6	360.88
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB 157)	69782-90-7	360.88
2,3,3',4,4',5-Hexachlorobiphenyl (PCB 156)	38380-08-4	360.88
3,3',4,4',5,5'-Hexachlorobiphenyl (PCB 169)	32774-16-6	360.88
2',3,4,4',5-Pentachlorobiphenyl (PCB 123)	65510-44-3	326.44
2',3',4,4',5-Pentachlorobiphenyl (PCB 118)	31508-00-6	326.44
2',3,3',4,4'-Pentachlorobiphenyl (PCB 105)	32598-14-4	326.44
2,3,4,4',5-Pentachlorobiphenyl (PCB 114)	74472-37-0	326.44

	Chemical Abstract	
	Service	Molecular
Chemical	(CAS) Number	Weight (g/mole)
3,3',4,4',5-Pentachlorobiphenyl (PCB 126)	57465-28-8	326.44
3,3',4,4'-Tetrachlorobiphenyl (PCB 77)	32598-13-3	291.99
3,4,4',5-Tetrachlorobiphenyl (PCB 81)	70362-50-4	291.99
Propylene oxide	75-56-9	58
Pyrene	129-00-0	200
RDX	121-82-4	222.12
Selenium	7782-49-2	78.96
Silver	7440-22-4	107.87
Strontium	7440-24-6	87.62
Styrene	100-42-5	100
2,3,7,8-TCDD	1746-01-6	321.98
2,3,7,8-TCDF	51207-31-9	305.98
1,2,4,5-Tetrachlorobenzene	95-94-3	215.89
1,1,1,2-Tetrachloroethane	630-20-6	167.85
1,1,2,2-Tetrachloroethane	79-34-5	169.86
Tetrachloroethene	127-18-4	170
Tetryl (Trinitrophenylmethylnitramine)	479-45-8	287.15
Thallium	7440-28-0	204.37
Toluene	108-88-3	92
Toxaphene	8001-35-2	414
Tribromomethane (Bromoform)	75-25-2	252.73
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	187.38
1,2,4-Trichlorobenzene	120-82-1	181
1,1,1-Trichloroethane	71-55-6	130
1,1,2-Trichloroethane	79-00-5	133
Trichloroethylene	79-01-6	131
Trichlorofluoromethane	75-69-4	140
2,4,5-Trichlorophenol	95-95-4	197.46
2,4,6-Trichlorophenol	88-06-2	197.46
1,1,2-Trichloropropane	598-77-6	147.43
1,2,3-Trichloropropane	96-18-4	147.43
Triethylamine	121-44-8	101.19
2,4,6-Trinitrotoluene	118-96-7	227.13
Uranium (soluble salts)		227.13
Vanadium	7440-62-2	50.94
Vinyl acetate	108-05-4	86
Vinyl bromide	593-60-2	106.95
Vinyl chloride Vinyl chloride	75-01-4	63
m-Xylene	108-38-3	106
o-Xylene	95-47-6	106
Xylenes	1330-20-7	106
Zinc	7440-66-6	65.38
	, 110 00 0	33.30

Table B-2: Physical and Chemical Properties

	Н	Н'		_		**	S	_	Res./Indus	Comm	G 4 FF	
Chemical	(atm- m³/mole)	(dimensio n-less)	D _a (cm ² /s)	$D_{\rm w}$ $({ m cm}^2/{ m s})$	K _{oc} (cm ³ /g)	K _d (cm ³ /g)	(mg/L- water)	D _A (cm ² /s)	VF (m³/kg)	VF (mg³/kg)	SAT (mg/kg)	VOC?
Acenaphthene	1.8E-04	7.54E-03	5.06E-02	8.30E-06	5.03E+03	7.54E+00	3.90E+00	5.22E-07	1.72E+05	3.55E+04		✓
Acetaldehyde	6.7E-05	2.73E-03	1.28E-01	1.40E-05	1.00E+00	1.50E-03	1.00E+06	2.25E-05	2.61E+04	5.40E+03	1.75E+05	✓
Acetone	3.5E-05	1.44E-03	1.06E-01	1.10E-05	2.36E+00	3.55E-03	1.00E+06	1.08E-05	3.78E+04	7.80E+03	1.77E+05	✓
Acrylonitrile	1.4E-04	5.66E-03	1.14E-01	1.23E-05	8.51E+00	1.28E-02	7.54E+04	3.61E-05	2.07E+04	4.27E+03	1.41E+04	✓
Acetophenone	1.0E-05	4.26E-04	6.50E-02	8.70E-06	5.19E+01	7.78E-02	6.13E+03	2.45E-06	7.94E+04	1.64E+04	1.54E+03	√
Acrolein	1.2E-04	5.00E-03	1.34E-01	1.41E-05	1.00E+00	1.50E-03	1.00E+06	4.02E-05	1.96E+04	4.04E+03	1.75E+05	✓
Aldrin	4.4E-05	1.80E-03	3.72E-02	4.35E-06	8.20E+04	1.23E+02	1.70E-02	6.68E-09				
Aluminum						1.50E+03						
Anthracene	5.6E-05	2.30E-03	3.90E-02	7.90E-06	1.64E+04	2.45E+01	4.34E-02	4.78E-08	5.68E+05	1.17E+05		✓
Antimony						4.50E+01						
Arsenic						2.90E+01						
Barium						4.10E+01						
Benzene	5.6E-03	2.30E-01	8.95E-02	1.03E-05	1.46E+02	2.19E-01	1.79E+03	4.77E-04	5.68E+03	1.17E+03	7.51E+02	✓
Benzidine	7.0E-11	2.87E-09	5.87E-02	6.86E-06	1.19E+03	1.79E+00	3.22E+02	1.39E-07				
Benzo(a)anthracene	1.2E-05	4.92E-04	5.09E-02	5.94E-06	1.77E+05	2.65E+02	9.40E-03	1.80E-09				
Benzo(a)pyrene	4.6E-07	1.89E-05	4.76E-02	5.56E-06	5.87E+05	8.81E+02	1.62E-03	2.61E-10				
Benzo(b)fluoranthene	6.6E-07	2.71E-05	4.76E-02	5.56E-06	5.99E+05	8.99E+02	1.50E-03	2.60E-10				
Benzo(k)fluoranthene	5.9E-07	2.42E-05	4.76E-02	5.56E-06	5.87E+05	8.81E+02	8.00E-04	2.63E-10				
Beryllium						7.90E+02						
α-ВНС (НСН)	1.2E-05	4.92E-04	4.33E-02	5.06E-06	2.81E+03	4.21E+00	8.00E+00	9.29E-08				
β-ВНС (НСН)	4.4E-07	1.80E-05	2.77E-02	7.40E-06	2.81E+03	4.21E+00	8.00E+00	6.81E-08				
у-ВНС	5.1E-06	2.09E-04	4.33E-02	5.06E-06	2.81E+03	4.21E+00	8.00E+00	6.58E-08				
1,1-Biphenyl	3.2E-04	1.31E-02	4.70E-02	7.60E-06	5.13E+03	7.69E+00	6.94E+00	7.98E-07	1.39E+05	2.87E+04	5.46E+01	√
Bis(2-chloroethyl) ether	1.8E-05	7.38E-04	5.70E-02	8.70E-06	3.22E+01	4.83E-02	1.72E+04	3.40E-06	6.73E+04	1.39E+04	3.81E+03	√
Bis(2-chloroisopropyl) ether	1.1E-04	4.51E-03	6.30E-02	6.40E-06	4.58E+01	6.87E-02	1.70E+03	1.24E-05	3.52E+04	7.28E+03	4.12E+02	√
Bis(2-ethylhexyl) phthalate	2.7E-07	1.11E-05	1.73E-02	4.18E-06	1.20E+05	1.79E+02	2.70E-01	9.35E-10				
Bis(chloromethyl) ether	2.0E-04	8.20E-03	7.60E-02	1.00E-05	9.70E+00	1.45E-02	2.20E+04	3.41E-05	2.13E+04	4.39E+03	4.16E+03	✓
Boron						3.00E+00						
Bromodichloromethane	2.1E-03	8.61E-02	5.60E-02	1.10E-05	3.18E+01	4.77E-02	3.03E+03	2.04E-04	8.68E+03	1.79E+03	7.01E+02	✓
Bromomethane	6.2E-03	2.54E-01	1.00E-01	1.30E-05	1.32E+01	1.98E-02	1.52E+04	1.11E-03	3.72E+03	7.69E+02	3.40E+03	√
1,3-Butadiene	7.3E-02	2.99E+00	1.00E-01	1.10E-05	3.96E+01	5.94E-02	7.35E+02	5.07E-03	1.74E+03	3.60E+02	4.35E+02	✓
2-Butanone (Methyl ethyl ketone, MEK)	5.6E-05	2.30E-03	9.10E-02	1.00E-05	4.51E+00	6.77E-03	2.23E+05	1.34E-05	3.39E+04	7.00E+03	4.02E+04	✓
tert-Butyl methyl ether (MTBE)	5.9E-04	2.42E-02	7.50E-02	8.60E-06	1.16E+01	1.73E-02	5.10E+04	9.27E-05	1.29E+04	2.66E+03	9.87E+03	✓
Cadmium						7.50E+01		_				

											100	ruary 20.
Chemical	H (atm- m³/mole)	H' (dimensio n-less)	D _a (cm ² /s)	D _w (cm ² /s)	K _{oc} (cm³/g)	K_d (cm^3/g)	S (mg/L- water)	D _A (cm ² /s)	Res./Indus VF (m³/kg)	Comm VF (mg³/kg)	SAT (mg/kg)	voc?
Carbon disulfide	1.4E-02	5.74E-01	1.10E-01	1.30E-05	2.17E+01	3.26E-02	1.18E+03	2.26E-03	2.61E+03	5.39E+02	3.24E+02	✓
Carbon tetrachloride	2.7E-02	1.11E+00	5.70E-02	9.80E-06	4.39E+01	6.58E-02	7.93E+02	1.68E-03	3.03E+03	6.26E+02	2.95E+02	√
Chlordane	4.9E-05	2.01E-03	3.44E-02	4.02E-06	3.38E+04	5.07E+01	5.60E-02	1.63E-08				
2-Chloroacetophenone	3.2E-06	1.31E-04	5.20E-02	8.70E-06	9.89E+01	1.48E-01	1.64E+03	1.28E-06				
2-Chloro-1,3-butadiene	5.6E-02	2.30E+00	8.40E-02	1.10E-05	6.07E+01	9.11E-02	8.75E+02	3.56E-03	2.08E+03	4.30E+02	4.72E+02	✓
1-Chloro-1,1-difluoroethane	5.9E-02	2.42E+00	8.00E-02	1.00E-05	4.39E+01	6.58E-02	1.40E+03	3.65E-03	2.05E+03	4.24E+02	7.41E+02	√
Chlorobenzene	3.2E-03	1.31E-01	7.20E-02	9.50E-06	2.34E+02	3.51E-01	4.98E+02	1.71E-04	9.50E+03	1.96E+03	2.69E+02	✓
1-Chlorobutane	1.7E-02	6.97E-01	7.80E-02	9.30E-06	7.22E+01	1.08E-01	1.10E+03	1.46E-03	3.25E+03	6.71E+02	4.02E+02	✓
Chlorodifluoromethane	4.1E-02	1.66E+00	1.00E-01	1.30E-05	3.18E+01	4.77E-02	2.77E+03	3.94E-03	1.98E+03	4.09E+02	1.17E+03	✓
Chloroform	3.7E-03	1.50E-01	7.70E-02	1.10E-05	3.18E+01	4.77E-02	7.95E+03	4.73E-04	5.70E+03	1.18E+03	1.90E+03	✓
Chloromethane	8.8E-03	3.62E-01	1.20E-01	1.40E-05	1.32E+01	1.98E-02	5.32E+03	1.80E-03	2.93E+03	6.05E+02	1.26E+03	✓
□-Chloronaphthalene	3.2E-04	1.31E-02	4.50E-02	7.70E-06	2.48E+03	3.72E+00	1.17E+01	1.55E-06	9.97E+04	2.06E+04	4.55E+01	✓
o-Chloronitrobenzene	9.3E-06	3.81E-04	5.10E-02	8.80E-06	3.71E+02	5.56E-01	4.41E+02	7.38E-07				
p-Chloronitrobenzene	4.9E-06	2.00E-04	5.00E-02	8.50E-06	3.63E+02	5.45E-01	2.25E+02	6.06E-07				
2-Chlorophenol	1.1E-05	4.59E-04	6.60E-02	9.50E-06	3.07E+02	4.60E-01	2.85E+04	1.06E-06	1.21E+05	2.49E+04	1.80E+04	✓
2-Chloropropane	1.4E-05	5.74E-04	8.00E-02	1.00E-05	3.18E+01	4.77E-02	2.70E+03	3.81E-06	6.36E+04	1.31E+04	5.97E+02	✓
o-Chlorotoluene	3.6E-03	1.46E-01	6.30E-02	8.70E-06	3.83E+02	5.74E-01	3.74E+02	1.17E-04	1.15E+04	2.37E+03	2.86E+02	✓
Chromium III						1.80E+06						
Chromium VI						1.90E+01	1.69E+06					
Chrysene	5.2E-06	2.14E-04	2.61E-02	6.75E-06	1.81E+05	2.71E+02	2.00E-03	1.19E-09				
Copper						3.50E+01						
Crotonaldehyde	1.9E-05	7.95E-04	9.60E-02	1.10E-05	1.79E+00	2.69E-03	1.81E+05	6.68E-06	4.80E+04	9.92E+03	3.19E+04	✓
Cumene (isopropylbenzene)	1.2E-02	4.72E-01	6.00E-02	7.90E-06	6.98E+02	1.05E+00	6.13E+01	2.16E-04	8.45E+03	1.75E+03	7.83E+01	✓
Cyanide	1.3E-04	5.45E-03	1.24E-01	1.38E-05		9.90E+00	1.00E+06	7.05E-07	1.48E+05	3.05E+04	1.01E+07	✓
Cyanogen	5.4E-03	2.21E-01	1.20E-01	1.40E-05			1.05E+04	1.30E-03	3.44E+03	7.11E+02		✓
Cyanogen bromide			9.80E-02	1.40E-05				3.21E-06	6.93E+04	1.43E+04		✓
Cyanogen chloride	1.9E-03	7.96E-02	1.20E-01	1.40E-05			2.50E+07	5.11E-04	5.49E+03	1.13E+03		✓
DDD	6.6E-06	2.71E-04	4.06E-02	4.74E-06	1.18E+05	1.76E+02	9.00E-02	1.67E-09				
DDE	4.2E-05	1.71E-03	4.08E-02	4.76E-06	1.18E+05	1.76E+02	4.00E-02	4.89E-09				
DDT	8.3E-06	3.41E-04	3.79E-02	4.43E-06	1.69E+05	2.53E+02	5.50E-03	1.19E-09				
Dibenz(a,h)anthracene	1.4E-07	5.78E-06	4.71E-02	5.50E-06	1.91E+06	2.87E+03	1.03E-03	7.71E-11				
1,2-Dibromo-3-chloropropane	1.5E-04	6.03E-03	3.20E-02	8.90E-06	1.16E+02	1.74E-01	1.23E+03	6.39E-06	4.91E+04	1.01E+04	4.28E+02	√
Dibromochloromethane	7.8E-04	3.21E-02	3.70E-02	1.10E-05	3.18E+01	4.77E-02	2.70E+03	5.32E-05	1.70E+04	3.52E+03	6.07E+02	√
1,2-Dibromoethane	6.5E-04	2.67E-02	4.30E-02	1.00E-05	3.96E+01	5.94E-02	3.91E+03	4.88E-05	1.78E+04	3.67E+03	9.22E+02	√
1,4-Dichloro-2-butene	6.6E-04	2.72E-02	7.60E-02	8.90E-06	1.32E+02	1.97E-01	5.80E+02	5.46E-05	1.68E+04	3.47E+03	2.17E+02	√
1,2-Dichlorobenzene	1.9E-03	7.87E-02	5.60E-02	8.90E-06	3.83E+02	5.74E-01	8.00E+01	5.69E-05	1.65E+04	3.40E+03	6.06E+01	√

	,		,						1		1 00	ruary 20.
Chemical	H (atm- m³/mole)	H' (dimensio n-less)	D _a (cm ² /s)	D _w (cm ² /s)	K _{oc} (cm³/g)	K_d (cm^3/g)	S (mg/L- water)	D _A (cm ² /s)	Res./Indus VF (m³/kg)	Comm VF (mg³/kg)	SAT (mg/kg)	VOC?
1,4-Dichlorobenzene	2.4E-03	9.88E-02	5.50E-02	8.70E-06	3.75E+02	5.63E-01	8.13E+01	7.09E-05	1.47E+04	3.04E+03	, O G	✓
3,3-Dichlorobenzidine	4.0E-09	1.64E-07	4.75E-02	5.55E-06	3.19E+03	4.79E+00	3.10E+00	4.45E-08				
Dichlorodifluoromethane	3.4E-01	1.41E+01	7.80E-02	9.10E-06	4.39E+01	6.58E-02	2.80E+02	5.80E-03	1.63E+03	3.37E+02	5.39E+02	√
1,1-Dichloroethane	5.6E-03	2.30E-01	8.40E-02	1.10E-05	3.18E+01	4.77E-02	5.04E+03	7.61E-04	4.50E+03	9.30E+02	1.25E+03	√
1,2-Dichloroethane	1.2E-03	4.84E-02	8.60E-02	1.10E-05	3.96E+01	5.94E-02	5.10E+03	1.71E-04	9.49E+03	1.96E+03	1.22E+03	√
cis-1,2-Dichloroethene	4.1E-03	1.67E-01	8.80E-02	1.10E-05	3.96E+01	5.94E-02	3.50E+03	5.69E-04	5.21E+03	1.08E+03	8.85E+02	√
trans-1,2-Dichloroethene	4.1E-03	1.67E-01	8.80E-02	1.10E-05	3.96E+01	5.94E-02	3.50E+03	5.69E-04	5.21E+03	1.08E+03	8.85E+02	√
1,1-Dichloroethene	2.6E-02	1.07E+00	8.60E-02	1.10E-05	3.18E+01	4.77E-02	2.42E+03	2.61E-03	2.43E+03	5.02E+02	8.46E+02	✓
2,4-Dichlorophenol	4.3E-06	1.76E-04	6.40E-02	7.40E-06	4.92E+02	7.38E-01	4.50E+03	4.42E-07				
1,2-Dichloropropane	2.8E-03	1.16E-01	8.10E-02	9.50E-06	6.07E+01	9.11E-02	2.80E+03	3.28E-04	6.85E+03	1.41E+03	7.79E+02	✓
1,3-Dichloropropene	9.8E-04	4.00E-02	8.20E-02	9.60E-06	7.22E+01	1.08E-01	2.80E+03	1.12E-04	1.17E+04	2.42E+03	8.02E+02	✓
Dicyclopentadiene	6.3E-02	2.56E+00	7.30E-02	8.60E-06	1.51E+03	2.27E+00	5.19E+01	6.63E-04	4.82E+03	9.95E+02	1.43E+02	√
Dieldrin	1.0E-05	4.10E-04	2.33E-02	6.01E-06	2.01E+04	3.01E+01	2.50E-01	1.09E-08				
Diethyl phthalate	6.1E-07	2.50E-05	2.61E-02	6.72E-06	1.05E+02	1.57E-01	1.08E+03	8.27E-07				
Dimethyl phthalate	4.1E-07	1.68E-05	5.68E-02	6.29E-06	3.16E+01	4.74E-02	4.00E+03	1.17E-06				
Di-n-butyl phthalate (Dibutyl phthalate)	1.8E-06	7.38E-05	2.14E-02	5.33E-06	1.16E+03	1.74E+00	1.12E+01	1.19E-07				
2,4-Dimethylphenol	9.5E-07	3.90E-05	6.20E-02	8.30E-06	4.92E+02	7.38E-01	7.87E+03	3.88E-07				
4,6-Dinitro-o-cresol	1.4E-06	5.74E-05	5.60E-02	6.50E-06	7.54E+02	1.13E+00	1.98E+02	2.22E-07				
2,4-Dinitrophenol	8.6E-08	3.53E-06	4.07E-02	9.08E-06	4.61E+02	6.91E-01	2.79E+03	4.19E-07				
2,4-Dinitrotoluene	5.4E-08	2.21E-06	3.75E-02	7.90E-06	5.76E+02	8.63E-01	2.70E+02	3.03E-07				
2,6-Dintitrotoluene	7.5E-07	3.06E-05	3.70E-02	7.80E-08	5.87E+02	8.81E-01	3.52E+02	1.34E-08				
2,4/2,6-Dintrotoluene Mixture	4.0E-07	1.63E-05	5.90E-02	6.90E-06	5.87E+02	8.81E-01	2.70E+02	2.69E-07				
1,4-Dioxane	4.8E-06	1.97E-04	8.70E-02	1.10E-05	2.63E+00	3.95E-03	1.00E+06	3.40E-06				
1,2-Diphenylhydrazine	4.8E-07	1.96E-05	3.43E-02	7.25E-06	1.51E+03	2.26E+00	2.21E+02	1.21E-07				
Endosulfan	6.5E-05	2.67E-03	2.25E-02	5.76E-06	6.76E+03	1.01E+01	4.50E-01	7.85E-08				
Endrin	1.0E-05	4.10E-04	3.62E-02	4.22E-06	2.01E+04	3.01E+01	2.50E-01	1.03E-08				
Epichlorohydrin	3.0E-05	1.25E-03	9.30E-02	1.10E-05	9.91E+00	1.49E-02	6.59E+04	8.29E-06	4.31E+04	8.91E+03	1.24E+04	✓
Ethyl acetate	1.3E-04	5.49E-03	8.20E-02	9.70E-06	5.58E+00	8.37E-03	8.00E+04	2.61E-05	2.43E+04	5.02E+03	1.46E+04	✓
Ethyl acrylate	3.4E-04	1.39E-02	7.50E-02	9.10E-06	1.07E+01	1.60E-02	1.50E+04	5.48E-05	1.68E+04	3.46E+03	2.86E+03	✓
Ethyl chloride	1.1E-02	4.55E-01	1.10E-01	1.20E-05	2.17E+01	3.26E-02	6.71E+03	1.89E-03	2.86E+03	5.90E+02	1.75E+03	✓
Ethyl ether	1.2E-03	5.04E-02	8.50E-02	9.40E-06	9.70E+00	1.45E-02	6.04E+04	2.17E-04	8.44E+03	1.74E+03	1.17E+04	✓
Ethyl methacrylate	5.7E-05	2.35E-03	6.50E-02	8.40E-06	1.67E+01	2.50E-02	5.40E+03	9.13E-06	4.11E+04	8.48E+03	1.07E+03	√
Ethylbenzene	7.9E-03	3.23E-01	6.80E-02	8.50E-06	4.46E+02	6.69E-01	1.69E+02	2.43E-04	7.97E+03	1.65E+03	1.49E+02	✓
Ethylene oxide	1.5E-04	6.07E-03	1.30E-01	1.50E-05	3.24E+00	4.86E-03	1.00E+06	4.61E-05	1.83E+04	3.78E+03	1.79E+05	✓
Fluoranthene	8.9E-06	3.63E-04	2.76E-02	7.18E-06	5.55E+04	8.32E+01	2.60E-01	4.59E-09				
Fluorene	9.6E-05	3.94E-03	4.40E-02	7.88E-06	9.16E+03	1.37E+01	1.89E+00	1.43E-07	3.28E+05	6.77E+04		✓

			1	1	1	1			1	1	1 00	ruary 20.
Chemical	H (atm- m³/mole)	H' (dimensio n-less)	D _a (cm ² /s)	D _w (cm ² /s)	K _{oc} (cm ³ /g)	K _d (cm ³ /g)	S (mg/L- water)	D _A (cm ² /s)	Res./Indus VF (m³/kg)	Comm VF (mg³/kg)	SAT (mg/kg)	VOC?
Fluoride							4.13E+04					
Furan	5.4E-03	2.21E-01	1.00E-01	1.20E-05	8.00E+01	1.20E-01	1.00E+04	6.75E-04	4.78E+03	9.87E+02	3.20E+03	✓
Heptachlor	2.9E-04	1.21E-02	2.23E-02	5.70E-06	4.13E+04	6.19E+01	1.80E-01	4.57E-08				
Hexachlorobenzene	1.7E-03	6.97E-02	2.90E-02	7.85E-06	6.20E+03	9.29E+00	6.20E-03	2.10E-06				
Hexachloro-1,3-butadiene	1.0E-02	4.22E-01	2.67E-02	7.03E-06	8.45E+02	1.27E+00	3.23E+00	7.37E-05				
Hexachlorocyclopentadiene	2.7E-02	1.11E+00	2.72E-02	7.22E-06	1.40E+03	2.11E+00	1.80E+00	1.22E-04				
Hexachloroethane	3.9E-03	1.59E-01	3.21E-02	8.89E-06	1.97E+02	2.95E-01	5.00E+01	1.03E-04				
n-Hexane	1.8E+00	7.38E+01	7.30E-02	8.20E-06	1.32E+02	1.97E-01	9.50E+00	5.98E-03	1.61E+03	3.32E+02	8.77E+01	✓
HMX	8.7E-10	3.55E-08	4.28E-02	5.00E-06	5.32E+02	7.97E-01	9.44E+03	2.05E-07				
Hydrazine anhydride					1.32E+03	1.98E+00	1.00E+06					
Hydrogen cyanide	1.3E-04	5.45E-03	1.70E-01	1.70E-05			1.00E+06	5.55E-05	1.67E+04	3.44E+03		1
Indeno(1,2,3-c,d)pyrene	3.5E-07	1.43E-05	4.48E-02	5.23E-06	1.95E+06	2.93E+03	1.90E-04	7.31E-11				
Iron						2.50E+01						
Isobutanol (Isobutyl alcohol)	9.8E-06	4.01E-04	9.00E-02	1.00E-05	2.92E+00	4.38E-03	8.50E+04	4.20E-06	6.05E+04	1.25E+04	1.51E+04	✓
Isophorone	6.6E-06	2.72E-04	5.30E-02	7.50E-06	6.52E+01	9.77E-02	1.20E+04	1.61E-06				
Lead						9.00E+02						
Lead (tetraethyl-)	5.7E-01	2.33E+01	2.45E-02	6.40E-06	6.48E+02	9.72E-01	2.90E-01	1.46E-03				
Maleic hydrazide	2.7E-11	1.09E-09	8.20E-02	9.50E-06	3.30E+00	4.95E-03	4.51E+03	2.12E-06				
Manganese						6.50E+01						
Mercury (elemental)	1.1E-02	4.67E-01	7.10E-02	3.00E-05		5.20E+01	6.00E-02	6.18E-06	4.99E+04	1.03E+04	3.13E+00	✓
Mercury (methyl)												
Mercury Chloride (Mercury Salts)						5.20E+01	6.90E+04					
Methacrylonitrile	2.5E-04	1.01E-02	9.60E-02	1.10E-05	1.31E+01	1.96E-02	2.54E+04	5.08E-05	1.74E+04	3.60E+03	4.93E+03	✓
Methomyl	2.0E-11	8.08E-10	4.80E-02	8.40E-06	1.00E+01	1.50E-02	5.80E+04	1.77E-06				
Methyl acetate	1.2E-04	4.72E-03	9.60E-02	1.10E-05	3.06E+00	4.60E-03	2.43E+05	2.70E-05	2.39E+04	4.93E+03	4.34E+04	✓
Methyl acrylate	2.0E-04	8.16E-03	8.60E-02	1.00E-05	5.84E+00	8.77E-03	4.94E+04	3.93E-05	1.98E+04	4.09E+03	9.04E+03	✓
Methyl isobutyl ketone	1.4E-04	5.66E-03	7.00E-02	8.30E-06	1.26E+01	1.89E-02	1.90E+04	2.16E-05	2.67E+04	5.52E+03	3.67E+03	✓
Methyl methacrylate	3.2E-04	1.31E-02	7.50E-02	9.20E-06	9.14E+00	1.37E-02	1.50E+04	5.24E-05	1.72E+04	3.54E+03	2.83E+03	✓
Methyl styrene (alpha)	2.3E-03	9.43E-02	7.10E-02	8.00E-06	6.98E+02	1.05E+00	3.00E+02	5.30E-05	1.71E+04	3.52E+03	3.69E+02	✓
Methyl styrene (mixture)	2.6E-03	1.05E-01	7.90E-02	9.20E-06	7.16E+02	1.07E+00	8.90E+01	6.39E-05	1.55E+04	3.21E+03	1.12E+02	✓
Methylcyclohexane	4.4E-01	1.80E+01	7.00E-02	9.00E-06	2.34E+02	3.51E-01	1.40E+01	4.76E-03	1.80E+03	3.71E+02	3.76E+01	✓
Methylene bromide (Dibromomethane)	8.2E-04	3.37E-02	5.50E-02	1.20E-05	2.17E+01	3.26E-02	1.19E+04	8.79E-05	1.32E+04	2.73E+03	2.50E+03	√
Methylene chloride	3.3E-03	1.33E-01	1.00E-01	1.30E-05	2.17E+01	3.26E-02	1.30E+04	5.87E-04	5.12E+03	1.06E+03	2.88E+03	✓
Molybdenum						2.00E+01						
Naphthalene	4.4E-04	1.80E-02	5.90E-02	8.40E-06	1.54E+03	2.32E+00	3.10E+01	4.27E-06	6.00E+04	1.24E+04		✓
Nickel						6.50E+01						

	1	1	1	ı	1			1	ı		ret	oruary 20.
Chemical	H (atm- m³/mole)	H' (dimensio n-less)	D _a (cm ² /s)	D _w (cm ² /s)	K _{oc} (cm³/g)	K _d (cm ³ /g)	S (mg/L- water)	D _A (cm ² /s)	Res./Indus VF (m³/kg)	Comm VF (mg³/kg)	SAT (mg/kg)	VOC?
Nitrate												
Nitrite												
Nitrobenzene	2.4E-05	9.84E-04	6.80E-02	9.40E-06	2.26E+02	3.40E-01	2.09E+03	1.99E-06	8.79E+04	1.82E+04	1.07E+03	✓
Nitroglycerin	8.7E-08	3.55E-06	2.90E-02	7.74E-06	1.16E+02	1.74E-01	1.38E+03	8.89E-07				
N-Nitrosodiethylamine	3.6E-06	1.49E-04	7.40E-02	9.13E-06	8.29E+01	1.24E-01	1.06E+05	1.58E-06				
N-Nitrosodimethylamine	1.8E-06	7.46E-05	9.90E-02	1.20E-05	2.28E+01	3.42E-02	1.00E+06	2.64E-06				
N-Nitrosodi-n-butylamine	1.3E-05	5.41E-04	6.50E-02	7.60E-06	9.15E+02	1.37E+00	1.27E+03	4.16E-07	1.92E+05	3.98E+04	1.96E+03	✓
N-Nitrosodiphenylamine	5.0E-06	2.05E-04	5.60E-02	6.50E-06	2.63E+03	3.95E+00	3.50E+01	8.97E-08				
N-Nitrosopyrrolidine	4.9E-08	2.00E-06	8.00E-01	1.01E-05	9.19E+01	1.38E-01	1.00E+06	1.34E-06				
m-Nitrotoluene	9.3E-06	3.81E-04	5.90E-02	8.70E-06	3.63E+02	5.45E-01	5.00E+02	7.85E-07				
o-Nitrotoluene	1.3E-05	5.13E-04	5.90E-02	8.70E-06	3.71E+02	5.56E-01	6.50E+02	8.76E-07	1.33E+05	2.74E+04	4.74E+02	✓
p-Nitrotoluene	5.6E-06	2.31E-04	5.70E-02	8.40E-06	3.63E+02	5.45E-01	4.42E+02	6.42E-07				
Pentachlorobenzene	7.0E-04	2.88E-02	2.94E-02	7.97E-06	3.71E+03	5.56E+00	8.31E-01	1.49E-06				
Pentachlorophenol	2.5E-08	1.00E-06	2.95E-02	8.01E-06	4.96E+03	7.44E+00	1.40E+01	4.19E-08				
Perchlorate							2.45E+05					
Phenanthrene	1.9E-01	7.71E+00	3.33E-02	7.47E-06	1.67E+04	2.50E+01	1.15E+00	9.54E-05	1.27E+04	2.63E+03		✓
Phenol	3.3E-07	1.37E-05	8.30E-02	1.00E-05	1.87E+02	2.81E-01	8.28E+04	8.99E-07				
Polychlorinatedbiphenyls												
Aroclor 1016	2.0E-04	8.20E-03	4.69E-02	5.48E-06	4.77E+04	7.16E+01	2.77E-01	5.50E-08				
Aroclor 1221	7.4E-04	3.02E-02	5.80E-02	6.70E-06	8.40E+03	1.26E+01	4.83E+00	1.35E-06	1.07E+05	2.21E+04	6.17E+01	✓
Aroclor 1232	7.4E-04	3.02E-02	5.80E-02	6.70E-06	8.40E+03	1.26E+01	4.83E+00	1.35E-06	1.07E+05	2.21E+04	6.17E+01	✓
Aroclor 1242	1.9E-04	7.79E-03	4.32E-02	5.01E-02	7.81E+04	1.17E+02	2.77E-01	1.70E-05				
Aroclor 1248	4.4E-04	1.80E-02	4.32E-02	5.01E-02	7.65E+04	1.15E+02	5.32E-02	1.74E-05				
Aroclor 1254	2.8E-04	1.16E-02	4.01E-02	4.68E-06	1.31E+05	1.96E+02	3.40E-03	2.40E-08				
Aroclor 1260	3.4E-04	1.38E-02	3.53E-02	4.14E-06	3.50E+05	5.25E+02	2.84E-04	9.29E-09				
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB 170)	3.0E-06	1.23E-04			3.57E+05	5.35E+02	3.47E-03					
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB 180)	2.4E-07	9.84E-06			3.50E+05	5.25E+02	3.85E-03					
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB 189)	1.4E-04	5.66E-03	3.53E-02	4.12E-06	3.50E+05	5.25E+02	7.53E-04	4.00E-09				
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB 167)	1.6E-04	6.64E-03	3.75E-02	4.38E-06	2.09E+05	3.14E+02	2.23E-03	8.24E-09				
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB 157)	1.6E-04	6.64E-03	3.75E-02	4.38E-06	2.14E+05	3.20E+02	1.64E-03	8.07E-09				
2,3,3',4,4',5-Hexachlorobiphenyl (PCB 156)	1.4E-04	5.86E-03	3.75E-02	4.38E-06	2.14E+05	3.20E+02	5.33E-03	7.19E-09				
3,3',4,4',5,5'-Hexachlorobiphenyl (PCB 169)	1.6E-04	6.64E-03	3.75E-02	4.38E-06	2.09E+05	3.14E+02	5.10E-04	8.24E-09				
2',3,4,4',5-Pentachlorobiphenyl (PCB 123)	1.9E-04	7.79E-03	4.01E-02	4.68E-06	1.31E+05	1.96E+02	1.60E-02	1.64E-08				
2',3',4,4',5-Pentachlorobiphenyl (PCB 118)	2.9E-04	1.18E-02	4.01E-02	4.68E-06	1.28E+05	1.92E+02	1.34E-02	2.49E-08				
2',3,3',4,4'-Pentachlorobiphenyl (PCB 105)	2.8E-04	1.16E-02	4.01E-02	4.68E-06	1.31E+05	1.96E+02	3.40E-03	2.40E-08				
2,3,4,4',5-Pentachlorobiphenyl (PCB 114)	1.9E-04	7.79E-03	4.01E-02	4.68E-06	1.31E+05	1.96E+02	1.60E-02	1.64E-08				

												ruary 20.
Chemical	H (atm- m³/mole)	H' (dimensio n-less)	D _a (cm ² /s)	D _w (cm ² /s)	K _{oc} (cm³/g)	K _d (cm ³ /g)	S (mg/L- water)	D _A (cm ² /s)	Res./Indus VF (m³/kg)	Comm VF (mg³/kg)	SAT (mg/kg)	VOC?
3,3',4,4',5-Pentachlorobiphenyl (PCB 126)	1.9E-04	7.79E-03	4.01E-02	4.68E-06	1.28E+05	1.92E+02	9.39E-03	1.67E-08				
3,3',4,4'-Tetrachlorobiphenyl (PCB 77)	9.4E-06	3.85E-04	4.32E-02	5.04E-06	7.81E+04	1.17E+02	5.69E-04	3.08E-09				
3,4,4',5-Tetrachlorobiphenyl (PCB 81)	2.2E-04	9.14E-03	4.32E-02	5.04E-06	7.81E+04	1.17E+02	5.32E-02	3.43E-08				
Propylene oxide	7.0E-05	2.85E-03	1.30E-01	1.50E-05	5.19E+00	7.79E-03	5.90E+05	2.31E-05	2.58E+04	5.34E+03	1.07E+05	√
Pyrene	1.2E-05	4.88E-04	2.72E-02	7.24E-06	5.43E+04	8.15E+01	1.35E-01	5.10E-09	1.74E+06	3.59E+05		√
RDX	2.0E-11	8.20E-10	3.12E-02	8.50E-06	8.91E+01	1.34E-01	5.97E+01	1.10E-06				
Selenium						5.00E+00						
Silver						8.30E+00						
Strontium						3.50E+01						
Styrene	2.7E-03	1.12E-01	7.10E-02	8.80E-06	4.46E+02	6.69E-01	3.10E+02	9.05E-05	1.30E+04	2.70E+03	2.65E+02	✓
2,3,7,8-TCDD	5.0E-05	2.05E-03	4.70E-02	4.73E-06	2.49E+05	3.74E+02	2.00E-04	3.00E-09				
2,3,7,8-TCDF	1.5E-05	6.15E-04			1.40E+05	2.09E+02	6.92E-04					
1,2,4,5-Tetrachlorobenzene	1.0E-03	4.10E-02	3.19E-02	8.75E-06	2.22E+03	3.33E+00	5.95E-01	3.71E-06				
1,1,1,2-Tetrachloroethane	2.5E-03	1.03E-01	4.80E-02	9.10E-06	8.60E+01	1.29E-01	1.07E+03	1.53E-04	1.00E+04	2.07E+03	3.37E+02	√
1,1,2,2-Tetrachloroethane	3.7E-04	1.50E-02	4.90E-02	9.30E-06	9.49E+01	1.42E-01	2.87E+03	2.37E-05	2.55E+04	5.27E+03	9.11E+02	✓
Tetrachloroethene	1.8E-02	7.26E-01	5.00E-02	9.50E-06	9.49E+01	1.42E-01	2.06E+02	8.85E-04	4.17E+03	8.62E+02	8.30E+01	✓
Tetryl (Trinitrophenylmethylnitramine)	2.7E-09	1.11E-07	2.56E-02	6.67E-06	4.61E+03	6.91E+00	7.40E+01	3.74E-08				
Thallium						7.10E+01						
Toluene	6.6E-03	2.72E-01	7.80E-02	9.20E-06	2.34E+02	3.51E-01	5.26E+02	3.71E-04	6.44E+03	1.33E+03	2.93E+02	✓
Toxaphene	6.0E-06	2.46E-04	3.42E-02	4.00E-06	7.72E+04	1.16E+02	5.50E-01	2.07E-09				
Tribromomethane (Bromoform)	5.4E-04	2.19E-02	3.57E-02	1.04E-05	3.18E+01	6.92E+00	3.10E+03	1.13E-06				
1,1,2-Trichloro-1,2,2-trifluoroethane	5.3E-01	2.16E+01	3.80E-02	8.60E-06	1.97E+02	2.95E-01	1.70E+02	2.73E-03	2.38E+03	4.91E+02	5.20E+02	√
1,2,4-Trichlorobenzene	1.4E-03	5.82E-02	4.00E-02	8.40E-06	1.36E+03	2.03E+00	4.90E+01	1.03E-05	3.86E+04	7.97E+03	1.09E+02	√
1,1,1-Trichloroethane	1.7E-02	7.05E-01	6.50E-02	9.60E-06	4.39E+01	6.58E-02	1.29E+03	1.39E-03	3.33E+03	6.87E+02	4.18E+02	√
1,1,2-Trichloroethane	8.2E-04	3.38E-02	6.70E-02	1.00E-05	6.07E+01	9.11E-02	1.10E+03	8.33E-05	1.36E+04	2.81E+03	2.95E+02	✓
Trichloroethylene	9.9E-03	4.04E-01	6.90E-02	1.00E-05	6.07E+01	9.11E-02	1.28E+03	8.72E-04	4.20E+03	8.68E+02	4.00E+02	✓
Trichlorofluoromethane	9.7E-02	3.98E+00	6.50E-02	1.00E-05	4.39E+01	6.58E-02	1.10E+03	3.63E-03	2.06E+03	4.25E+02	7.88E+02	✓
2,4,5-Trichlorophenol	1.6E-06	6.64E-05	5.60E-02	6.50E-06	1.78E+03	2.67E+00	1.20E+03	1.04E-07				
2,4,6-Trichlorophenol	2.6E-06	1.07E-04	3.10E-02	8.10E-06	1.78E+03	2.67E+00	8.00E+02	1.25E-07				
1,1,2-Trichloropropane	3.2E-04	1.30E-02	5.70E-02	9.30E-06	9.49E+01	1.42E-01	1.90E+03	2.38E-05	2.54E+04	5.26E+03	6.03E+02	√
1,2,3-Trichloropropane	3.4E-04	1.41E-02	5.70E-02	9.20E-06	1.16E+02	1.74E-01	1.75E+03	2.33E-05	2.57E+04	5.31E+03	6.10E+02	✓
Triethylamine	1.5E-04	6.11E-03	6.60E-02	7.90E-06	5.08E+01	7.62E-02	7.37E+04	1.69E-05	3.02E+04	6.24E+03	1.84E+04	√
2,4,6-Trinitrotoluene	2.1E-08	8.53E-07	2.95E-02	7.92E-06	2.81E+03	4.22E+00	1.30E+02	7.17E-08				
Uranium (soluble salts)						4.50E+02						
Vanadium						1.00E+03						
Vinyl acetate	5.1E-04	2.10E-02	8.50E-02	1.00E-05	5.58E+00	8.37E-03	2.00E+04	9.59E-05	1.27E+04	2.62E+03	3.68E+03	√
,	1 2.12 01		3.002 02	1.002 00	3.00E.00	3.072 00	3.002.01	2.072 00	1.2,2.01	3.022.00	3.002.03	

Chemical	H (atm- m³/mole)	H' (dimensio n-less)	D _a (cm²/s)	D _w (cm ² /s)	K _{oc} (cm³/g)	K _d (cm³/g)	S (mg/L- water)	D _A (cm²/s)	Res./Indus VF (m³/kg)	Comm VF (mg³/kg)	SAT (mg/kg)	VOC?
Vinyl bromide	1.2E-02	5.04E-01	8.60E-02	1.20E-05	2.17E+01	3.26E-02	5.08E+03	1.60E-03	3.10E+03	6.41E+02	1.35E+03	✓
Vinyl chloride	2.8E-02	1.14E+00	1.10E-01	1.20E-05	2.17E+01	3.26E-02	8.80E+03	3.63E-03	2.06E+03	4.26E+02	3.02E+03	✓
m-Xylene	7.2E-03	2.94E-01	6.80E-02	8.40E-06	3.75E+02	5.63E-01	1.61E+02	2.53E-04	7.81E+03	1.61E+03	1.24E+02	✓
o-Xylene	5.2E-03	2.12E-01	6.90E-02	8.50E-06	3.83E+02	5.74E-01	1.06E+02	1.84E-04	9.14E+03	1.89E+03	8.20E+01	√
Xylenes	5.2E-03	2.12E-01	8.50E-02	9.90E-06	3.83E+02	5.74E-01	1.06E+02	2.27E-04	8.23E+03	1.70E+03	8.20E+01	✓
Zinc						6.20E+01				3.55E+04		

Notes:

Notes:

MW – Molecular weight
H' – Dimensionless Henry's Law Constant
D_w – Diffusivity in water
K_d – Soil-water partition coefficient
D_A – Apparent diffusivity (calculated for VOCs only)
SAT – Soil saturation limit (calculated for VOCs only)

H- Henry's Law Constant D_a- Diffusivity in air $K_{\rm oc}-$ Soil organic carbon partition coefficient S - Solubility in water VF- Volatilization factor (calculated for VOCs only) VOC- Volatile organic compound

APPENDIX C

TOXICITY DATA

Table C-1: Human Health Benchmarks Used for Calculating SSLs

Chemical	CSF _o (mg/kg-day) ⁻¹	Reference	IUR (μg/m³) ⁻¹	Reference	RfD _o (mg/kg- day)	Reference	RfC (mg/m³)	Reference	Mutagen	GIABS	ABS
Acenaphthene	, g g,/		4.8		6.00E-02	IRIS				1	0.13
Acetaldehyde			2.20E-06	IRIS			9.00E-03	IRIS		1	
Acetone					9.00E-01	IRIS	3.10E+01	ATSDR		1	
Acrylonitrile	5.40E-01	IRIS	6.80E-05	IRIS	4.00E-02	ATSDR	2.00E-03	IRIS		1	
Acetophenone					1.00E-01	IRIS				1	
Acrolein					5.00E-04	IRIS	2.00E-05	IRIS		1	
Aldrin	1.72E+01	IRIS	4.90E-03	IRIS	3.00E-05	IRIS				1	0.1
Aluminum					1.00E+00	PPTRV	5.00E-03	PPTRV		1	
Anthracene					3.00E-01	IRIS				1	0.13
Antimony					4.00E-04	IRIS				0.15	
Arsenic	1.50E+00	IRIS	4.30E-03	IRIS	3.00E-04	IRIS	1.50E-05	CalEPA		1	0.03
Barium					2.00E-01	IRIS	5.00E-04	HEAST		0.07	
Benzene	5.50E-02	IRIS	7.80E-06	IRIS	4.00E-03	IRIS	3.00E-02	IRIS		1	
Benzidine	2.30E+02	IRIS	6.70E-02	IRIS	3.00E-03	IRIS			M	1	0.1
Benzo(a)anthracene	7.30E-01	NCEA	1.10E-04	CalEPA					M	1	0.13
Benzo(a)pyrene	7.30E+00	IRIS	1.10E-03	CalEPA					M	1	0.13
Benzo(b)fluoranthene	7.30E-01	NCEA	1.10E-04	CalEPA					M	1	0.13
Benzo(k)fluoranthene	7.30E-02	NCEA	1.10E-04	CalEPA					M	1	0.13
Beryllium			2.40E-03	IRIS	2.00E-03	IRIS	2.00E-05	IRIS		0.007	
a-BHC (HCH)	6.30E+00	IRIS	1.80E-03	IRIS	8.00E-03	ATSDR				1	0.1
b-BHC (HCH)	1.80E+00	IRIS	5.30E-04	IRIS						1	0.1
g-BHC	1.10E+00	CalEPA	3.10E-04	CalEPA	3.00E-04	IRIS				1	0.04
1,1-Biphenyl	8.00E-03	PPTRV			5.00E-02	IRIS	4.00E-04	PPTRV		1	
Bis(2-chloroethyl) ether	1.10E+00	IRIS	3.30E-04	IRIS						1	
Bis(2-chloroisopropyl) ether	7.00E-02	HEAST									
Bis(2-ethylhexyl) phthalate	1.40E-02	IRIS	2.40E-06	CalEPA	2.00E-02	IRIS				1	0.1
Bis(chloromethyl) ether	2.20E+02	IRIS	6.20E-02	IRIS						1	
Boron					2.00E-01	IRIS	2.00E-02	HEAST		1	
Bromodichloromethane	6.20E-02	IRIS	3.70E-05	CalEPA	2.00E-02	IRIS				1	
Bromomethane					1.40E-03	IRIS	5.00E-03	IRIS		1	
1,3-Butadiene	3.40E+00	CalEPA	3.00E-05	IRIS			2.00E-03	IRIS		1	
2-Butanone (Methyl ethyl ketone, MEK)					6.00E-01	IRIS	5.00E+00	IRIS		1	
tert-Butyl methyl ether (MTBE)	1.80E-03	CalEPA	2.60E-07	CalEPA			3.00E+00	IRIS		1	

					RfD _o					GIABS	ABS
Chemical	CSF _o	D -6	IUR (μg/m ³) ⁻¹	D-f	(mg/kg- day)	D-f	RfC (mg/m ³)	D -6	M4		
Cadmium	(mg/kg-day) ⁻¹	Reference	(μg/m ⁻) 1.80E-03	Reference IRIS	1.00E-03	Reference IRIS	2.00E-05	Reference CalEPA	Mutagen	0.025	0.001
Carbon disulfide			1.80E-03	IKIS	1.00E-03 1.00E-01	IRIS	7.00E-01	IRIS		1	0.001
Carbon tetrachloride	7.00E-02	IRIS	6.00E-06	IRIS	4.00E-01	IRIS	1.00E-01	IRIS		1	
Chlordane	3.50E-01	IRIS	1.00E-04	IRIS	5.00E-04	IRIS	7.00E-01 7.00E-04	IRIS		1	0.04
2-Chloroacetophenone	3.30E-01	IKIS	1.00E-04	IKIS	3.00E-04	IKIS	3.00E-05	IRIS		1	0.04
2-Chloro-1,3-butadiene			3.00E-04	IRIS	2.00E-02	HEAST	2.00E-02	IRIS		1	0.1
1-Chloro-1,1-difluoroethane			3.00E-04	IKIS	2.00E-02	HEAST	5.00E+01	IRIS		1	
Chlorobenzene					2.00E-02	IRIS	5.00E+01 5.00E-02	PPTRV		1	
1-Chlorobutane					4.00E-02	PPTRV	3.00E-02	TTTKV		1	
					4.00E-02	FFIKV	5.00E+01	IRIS		1	
Chlorodifluoromethane Chloroform	3.10E-02	CalEPA	2.30E-05	IRIS	1.00E-02	IRIS	9.80E-02	ATSDR		1	
Chloromethane	3.10E-02	CalEFA	2.30E-03	IKIS	1.00E-02	IKIS	9.00E-02 9.00E-02	IRIS		1	
b-Chloronaphthalene					8.00E-02	IRIS	9.00E-02	IKIS		1	
o-Chloronitrobenzene	3.00E-01	PPTRV			3.00E-02	PPTRV	1.00E-05	PPTRV		1	0.1
	6.30E-03	PPTRV			1.00E-03	PPTRV	6.00E-03	PPTRV		1	0.1
p-Chloronitrobenzene	0.30E-03	FFIKV			5.00E-03	IRIS	0.00E-04	FFIKV		1	0.1
2-Chlorophenol					3.00E-03	IKIS	1.00E-01	HEAST			
2-Chloropropane o-Chlorotoluene					2.00E-02	IRIS	1.00E-01	пеазт			
Chromium III					2.00E-02 1.50E+00	IRIS				0.013	
Chromium VI	5.00E-01	NJ	8.40E-02	IRIS	3.00E+00	IRIS	1.00E-04	IRIS	M	0.013	
Chrysene	7.30E-03	NCEA	1.10E-05	CalEPA	3.00E-03	IKIS	1.00E-04	IKIS	M	1	0.13
•	7.30E-03	NCEA	1.10E-03	CalEFA	4.00E-02	HEAST			IVI	1	0.13
Copper Crotonaldehyde	1.90E+00	HEAST			1.00E-02	PPTRV				1	
Cumene (isopropylbenzene)	1.90E+00	пеазт			1.00E-03 1.00E-01	IRIS	4.00E-01	IRIS		1	
Cyanide					6.00E-01	IRIS	4.00E-01	IKIS		1	
Cyanogen					4.00E-02	IRIS				1	
Cyanogen bromide					9.00E-02	IRIS				1	
Cyanogen chloride					5.00E-02	IRIS				1	
DDD	2.40E-01	IRIS	6.90E-05	CalEPA	J.00E-02	IKIS				1	0.1
DDE	3.40E-01	IRIS	9.70E-05	CalEPA						1	0.1
DDT	3.40E-01	IRIS	9.70E-05	IRIS	5.00E-04	IRIS				1	0.03
Dibenz(a,h)anthracene	7.30E+00	NCEA	1.20E-03	CalEPA	3.00E-04	11(15)			M	1	0.03
1,2-Dibromo-3-chloropropane	8.00E-01	PPTRV	6.00E-03	PPTRV	2.00E-04	PPTRV	2.00E-04	IRIS	M	1	0.13
Dibromochloromethane	8.40E-02	IRIS	2.70E-05	CalEPA	2.00E-04 2.00E-02	IRIS	2.00E-04	IMD	141	1	0.1
1,2-Dibromoethane	2.00E+00	IRIS	6.00E-04	IRIS	9.00E-02	IRIS	9.00E-03	IRIS		1	0.1
1,4-Dichloro-2-butene	2.00E+00	IKIS	4.20E-03	PPTRV	7.00E-03	IND	7.00E-03	IKIS		1	
1,4-Dichloro-2-butene 1,2-Dichlorobenzene			+.20E-03	TITKV	9.00E-02	IRIS	2.00E-01	HEAST		1	
1,2-Dichiorobenzene					9.00E-02	IVIO	2.00E-01	UEASI		1	4

					RfD _o					GIABS	ABS
Chemical	CSF _o (mg/kg-day) ⁻¹	Reference	IUR (μg/m ³) ⁻¹	Reference	(mg/kg- day)	Reference	RfC (mg/m ³)	Reference	Mutagen		
1,4-Dichlorobenzene	5.40E-03	CalEPA	1.10E-05	CalEPA	7.00E-02	ATSDR	8.00E-01	IRIS	Mutagen	1	
3.3-Dichlorobenzidine	4.50E-01	IRIS	3.40E-04	CalEPA	7.00L-02	MISDR	0.00L-01	IKIS		1	0.1
Dichlorodifluoromethane	4.50L-01	IKIS	3.40L-04	CaiLi ii	2.00E-01	IRIS	1.00E-01	PPTRV		1	0.1
1.1-Dichloroethane	5.70E-03	CalEPA	1.60E-06	CalEPA	2.00E-01	PPTRV	1.002 01	11110		1	
1,2-Dichloroethane	9.10E-02	IRIS	2.60E-05	IRIS	6.00E-03	PPTRV	7.00E-03	PPTRV		1	
cis-1,2-Dichloroethene	7.10E 02	nus	2.002 03	IIII	2.00E-03	IRIS	7.002 03	11111		1	
trans-1,2-Dichloroethene					2.00E-02	IRIS	6.00E-02	PPTRV		1	
1,1-Dichloroethene					5.00E-02	IRIS	2.00E-01	IRIS		1	
2,4-Dichlorophenol					3.00E-03	IRIS	2.002 01	Hus		1	0.1
1,2-Dichloropropane	3.60E-02	CalEPA	1.00E-05	CalEPA	9.00E-02	ATSDR	4.00E-03	IRIS		1	0.1
1,3-Dichloropropene	1.00E-01	IRIS	4.00E-06	IRIS	3.00E-02	IRIS	2.00E-02	IRIS		1	
Dicyclopentadiene Dicyclopentadiene					8.00E-03	PPTRV	7.00E-03	PPTRV		1	
Dieldrin	1.60E+01	IRIS	4.60E-03	IRIS	5.00E-05	IRIS	71000			1	0.1
Diethyl phthalate					8.00E-01	IRIS				1	0.1
Dimethyl phthalate					1.00E+01	HEAST				1	0.1
Di-n-butyl phthalate (Dibutyl phthalate)					1.00E-01	IRIS				1	0.1
2,4-Dimethylphenol					2.00E-02	IRIS				1	0.1
4,6-Dinitro-o-cresol					8.00E-05	PPTRV				1	0.1
2,4-Dinitrophenol					2.00E-03	IRIS				1	0.1
2,4-Dinitrotoluene	3.10E-01	CalEPA	8.90E-05	CalEPA	2.00E-03	IRIS				1	0.1
2,6-Dintitrotoluene					1.00E-03	PPTRV				1	0.1
2,4/2,6-Dintrotoluene Mixture	6.80E-01	IRIS								1	0.1
1,4-Dioxane	1.00E-01	IRIS	7.70E-06	CalEPA	3.00E-02	IRIS	3.00E+00	CalEPA		1	0.1
1,2-Diphenylhydrazine	8.00E-01	IRIS	2.20E-04	IRIS						1	0.1
Endosulfan					6.00E-03	IRIS				1	0.1
Endrin					3.00E-04	IRIS				1	0.1
Epichlorohydrin	9.90E-03	IRIS	1.20E-06	IRIS	6.00E-03	PPTRV	1.00E-03	IRIS		1	
Ethyl acetate					9.00E-01	IRIS				1	
Ethyl acrylate	4.80E-02	HEAST								1	
Ethyl chloride							1.00E+01	IRIS		1	
Ethyl ether					2.00E-01	IRIS				1	
Ethyl methacrylate					9.00E-02	HEAST	3.00E-01	PPTRV		1	
Ethylbenzene	1.10E-02	CalEPA	2.50E-06	CalEPA	1.00E-01	IRIS	1.00E+00	IRIS		1	
Ethylene oxide	3.10E-01	CalEPA	8.80E-05	CalEPA			3.00E-02	CalEPA		1	
Fluoranthene					4.00E-02	IRIS				1	0.13
Fluorene					4.00E-02	IRIS				1	0.13
Fluoride					4.00E-02	CalEPA	1.30E-02	CalEPA		1	

					RfD _o					GIABS	ABS
Chemical	CSF _o	D.C.	IUR (μg/m ³) ⁻¹	D. C.	(mg/kg-	D.C.	RfC	D. C.	M 4		
	(mg/kg-day) ⁻¹	Reference	(μg/m²) ²	Reference	day) 1.00E-03	Reference IRIS	(mg/m³)	Reference	Mutagen	1	
Furan	4.50E+00	IRIS	1.30E-03	IRIS	5.00E-04	IRIS				1	0.1
Heptachlor	4.50E+00 1.60E+00	IRIS	4.60E-04	IRIS	8.00E-04 8.00E-04	IRIS				1	0.1
Hexachlorobenzene Hexachloro-1,3-butadiene	7.80E-02	IRIS	2.20E-05	IRIS	1.00E-03	PPTRV				1	0.1
,	7.00E-02	IKIS	2.20E-03	IKIS	6.00E-03	IRIS	2.00E-04	IRIS		1	0.1
Hexachlorocyclopentadiene	4.00E.02	IRIS	4.00E.06	IDIC		IRIS	2.00E-04	IKIS		1	0.1
Hexachloroethane	4.00E-02	IRIS	4.00E-06	IRIS	7.00E-04 6.00E-02	HEAST	7.00E-01	IRIS		1	0.1
n-Hexane					5.00E-02	IRIS	7.00E-01	IKIS		1	
HMX	2.005 .00	IDIG	4.00E.02	IDIG	5.00E-02	IKIS	2.005.05	DDEDI		1	
Hydrazine anhydride	3.00E+00	IRIS	4.90E-03	IRIS	6 00E 04	IDIG	3.00E-05	PPTRV		1	
Hydrogen cyanide	7.205.01	Maria	1.105.04	G IED (6.00E-04	IRIS	8.00E-04	IRIS	3.6	1	0.10
Indeno(1,2,3-c,d)pyrene	7.30E-01	NCEA	1.10E-04	CalEPA	7.00F.01	DDED II			M	1	0.13
Iron					7.00E-01	PPTRV				1	
Isobutanol (Isobutyl alcohol)					3.00E-01	IRIS				1	
Isophorone	9.50E-04	IRIS			2.00E-01	IRIS	2.00E+00	CalEPA		1	0.1
Lead											
Lead (tetraethyl-)					1.00E-07	IRIS				1	0.1
Maleic hydrazide					5.00E-01	IRIS				1	0.1
Manganese					2.40E-02	IRIS	5.00E-05	IRIS		0.04	
Mercury (elemental)							3.00E-04	IRIS		1	
Mercury (methyl)					1.00E-04	IRIS				1	
Mercuric Chloride (Mercury Salts)					3.00E-04	IRIS	3.00E-05	CalEPA		0.07	
Methacrylonitrile					1.00E-04	IRIS	7.00E-04	HEAST		1	
Methomyl					2.50E-02	IRIS				1	0.1
Methyl acetate					1.00E+00	PPTRV				1	
Methyl acrylate					3.00E-02	HEAST				1	
Methyl isobutyl ketone					8.00E-02	HEAST	3.00E+00	IRIS		1	
Methyl methacrylate					1.40E+00	IRIS	7.00E-01	IRIS		1	
Methyl styrene (alpha)					7.00E-02	HEAST				1	
Methyl styrene (mixture)					6.00E-03	HEAST	4.00E-02	HEAST		1	
Methylcyclohexane							3.00E+00	HEAST			
Methylene bromide (Dibromomethane)					1.00E-02	HEAST	4.00E-03	PPTRV		1	
Methylene chloride	2.00E-03	IRIS	1.00E-08	IRIS	6.00E-03	IRIS	6.00E-01	IRIS		1	
Molybdenum					5.00E-03	IRIS				1	
Naphthalene			3.40E-05	CalEPA	2.00E-02	IRIS	3.00E-03	IRIS		1	0.13
Nickel (soluble salts)			2.60E-04	CalEPA	2.00E-02	IRIS	9.00E-05	ATSDR		0.04	
Nitrate					1.60E+00	IRIS				1	
Nitrite					1.00E-01	IRIS				1	

					RfD _o					GIABS	ABS
Chemical	CSF ₀ (mg/kg-day) ⁻¹	Reference	IUR (μg/m³) ⁻¹	Reference	(mg/kg- day)	Reference	RfC (mg/m ³)	Reference	Mutagen		
Nitrobenzene	(mg/kg-uay)	Reference	4.00E-05	IRIS	2.00E-03	IRIS	9.00E-03	IRIS	Mutagen	1	
Nitroglycerin	1.70E-02	PPTRV	4.00E-03	IKIS	1.00E-04	PPTRV	9.00E-03	IKIS		1	0.1
N-Nitrosodiethylamine	1.50E+02	IRIS	4.30E-02	IRIS	1.00E-04	FFIKV			M	1	0.1
N-Nitrosodimethylamine N-Nitrosodimethylamine	5.10E+01	IRIS	1.40E-02	IRIS	8.00E-06	PPTRV	4.00E-05	PPTRV	M	1	0.1
N-Nitrosodi-n-butylamine	5.40E+00	IRIS	1.40E-02 1.60E-03	IRIS	8.00E-00	TTTKV	4.00E-03	TTTKV	IVI	1	0.1
N-Nitrosodiphenylamine N-Nitrosodiphenylamine	4.90E-03	IRIS	2.60E-06	CalEPA						1	0.1
N-Nitrosopyrrolidine	2.10E+00	IRIS	6.10E-04	IRIS						1	0.1
<i>m</i> -Nitrotoluene	2.10E+00	IKIS	0.10E-04	IKIS	1.00E-04	PPTRV				1	0.1
o-Nitrotoluene	2.20E-01	PPTRV			9.00E-04	PPTRV				1	
p-Nitrotoluene	1.60E-02	PPTRV			4.00E-03	PPTRV				1	0.1
Pentachlorobenzene	1.00E-02	TTTKV			8.00E-03	IRIS				1	0.1
Pentachlorophenol	4.00E-01	IRIS	5.10E-06	CalEPA	5.00E-04 5.00E-03	IRIS				1	0.1
•	4.00E-01	IKIS	3.10E-00	Calera	7.00E-04	IRIS				1	0.23
Perchlorate					3.00E-04 3.00E-02	IRIS				1	0.1
Phenanthrene					3.00E-02 3.00E-01	IRIS	2.00E-01	CalEPA		1	0.1
Phenol Phenol				1	3.00E-01	IKIS	2.00E-01	Calera		1	0.1
Polychlorinatedbiphenyls	7.00E.02	IRIS	2.005.05	IRIS	7.00E.05	IRIS				1	0.14
Aroclor 1016	7.00E-02 2.00E+00	IRIS	2.00E-05 5.70E-04	IRIS	7.00E-05	IKIS				1	0.14
Aroclor 1221	2.00E+00 2.00E+00	IRIS	5.70E-04 5.70E-04	IRIS						1	
Aroclor 1232		IRIS		IRIS						1	0.14
Aroclor 1242	2.00E+00		5.70E-04							1	0.14
Aroclor 1248	2.00E+00	IRIS	5.70E-04	IRIS	2.005.05	IDIC				1	0.14
Aroclor 1254	2.00E+00	IRIS	5.70E-04	IRIS	2.00E-05	IRIS				1	0.14
Aroclor 1260	2.00E+00	IRIS WHO TEF	5.70E-04	IRIS WHO TEF						1	0.14
2,2',3,3',4,4',5-Heptachlorobiphenyl (PCB 170)	1.30E+01	WHO TEF	3.80E-03	WHO TEF						1	0.14
2,2',3,4,4',5,5'-Heptachlorobiphenyl (PCB 180)	1.30E+00		3.80E-04							1	0.14
2,3,3',4,4',5,5'-Heptachlorobiphenyl (PCB 189)	3.90E+00	WHO TEF	1.14E-03	WHO TEF						1	0.14
2,3',4,4',5,5'-Hexachlorobiphenyl (PCB 167)	3.90E+00	WHO TEF	1.14E-03	WHO TEF						1	0.14
2,3,3',4,4',5'-Hexachlorobiphenyl (PCB 157)	3.90E+00	WHO TEF	1.14E-03	WHO TEF						1	0.14
2,3,3',4,4',5-Hexachlorobiphenyl (PCB 156)	3.90E+00	WHO TEF	1.14E-03	WHO TEF						1	0.14
3,3',4,4',5,5'-Hexachlorobiphenyl (PCB 169)	3.90E+03	WHO TEF	1.14E+00	WHO TEF						1	0.14
2',3,4,4',5-Pentachlorobiphenyl (PCB 123)	3.90E+00	WHO TEF	1.14E-03	WHO TEF						1	0.14
2',3',4,4',5-Pentachlorobiphenyl (PCB 118)	3.90E+00	WHO TEF	1.14E-03	WHO TEF						1	0.14
2',3,3',4,4'-Pentachlorobiphenyl (PCB 105)	3.90E+00	WHO TEF	1.14E-03	WHO TEF						1	0.14
2,3,4,4',5-Pentachlorobiphenyl (PCB 114)	3.90E+00	WHO TEF	1.14E-03	WHO TEF						1	0.14
3,3',4,4',5-Pentachlorobiphenyl (PCB 126)	1.30E+04	WHO TEF	3.80E+00	WHO TEF						1	0.14
3,3',4,4'-Tetrachlorobiphenyl (PCB 77)	1.30E+01	WHO TEF	3.80E-03	WHO TEF						1	0.14
3,4,4',5-Tetrachlorobiphenyl (PCB 81)	3.90E+01	WHO TEF	1.14E-02	WHO TEF						1	0.14

					RfD _o					GIABS	ABS
	CSF _o		IUR		(mg/kg-		RfC				
Chemical	(mg/kg-day) ⁻¹	Reference	$(\mu g/m^3)^{-1}$	Reference	day)	Reference	(mg/m ³)	Reference	Mutagen		
Propylene oxide	2.40E-01	IRIS	3.70E-06	IRIS			3.00E-02	IRIS		1	
Pyrene					3.00E-02	IRIS				1	0.13
RDX	1.10E-01	IRIS			3.00E-03	IRIS				1	
Selenium					5.00E-03	IRIS	2.00E-02	CalEPA		1	
Silver					5.00E-03	IRIS				0.04	
Strontium					6.00E-01	IRIS				1	
Styrene					2.00E-01	IRIS	1.00E+00	IRIS		1	
2,3,7,8-TCDD	1.30E+05	CalEPA	3.80E+01	CalEPA	1.00E-09	ATSDR	4.00E-08	CalEPA		1	0.03
2,3,7,8-TCDF	1.30E+04	WHO TEF	3.80E+00	WHO TEF						1	0.03
1,2,4,5-Tetrachlorobenzene					3.00E-04	IRIS				1	0.1
1,1,1,2-Tetrachloroethane	2.60E-02	IRIS	7.40E-06	IRIS	3.00E-02	IRIS				1	
1,1,2,2-Tetrachloroethane	2.00E-01	IRIS	5.80E-05	IRIS	2.00E-02	IRIS				1	
Tetrachloroethene	5.40E-01	CalEPA	5.90E-06	CalEPA	1.00E-02	IRIS	2.70E-01	ATSDR		1	
Tetryl (Trinitrophenylmethylnitramine)					4.00E-03	PPTRV				1	0.1
Thallium					1.00E-05	PPTRV				1	
Toluene					8.00E-02	IRIS	5.00E+00	IRIS		1	
Toxaphene	1.10E+00	IRIS	3.20E-04	IRIS						1	0.1
Tribromomethane (Bromoform)	7.90E-03	IRIS	1.10E-06	IRIS	2.00E-02	IRIS				1	0.1
1,1,2-Trichloro-1,2,2-trifluoroethane					3.00E+01	IRIS	3.00E+01	HEAST		1	
1,2,4-Trichlorobenzene	2.90E-02	PPTRV			1.00E-02	IRIS	2.00E-03	PPTRV		1	
1,1,1-Trichloroethane					2.00E+00	IRIS	5.00E+00	IRIS		1	
1,1,2-Trichloroethane	5.70E-02	IRIS	1.60E-05	IRIS	4.00E-03	IRIS	2.00E-04	PPTRV		1	
Trichloroethylene	4.6E-02	IRIS	4.10E-06	IRIS	5.00E-04	IRIS	2.00E-03	IRIS		1	
Trichlorofluoromethane					3.00E-01	IRIS	7.00E-01	HEAST		1	
2,4,5-Trichlorophenol					1.00E-01	IRIS				1	0.1
2,4,6-Trichlorophenol	1.10E-02	IRIS	3.10E-06	IRIS	1.00E-03	PPTRV				1	0.1
1,1,2-Trichloropropane					5.00E-03	IRIS				1	
1,2,3-Trichloropropane	3.00E+01	IRIS			4.00E-03	IRIS	3.00E-04	IRIS	M	1	
Triethylamine							7.00E-03	IRIS		1	
2,4,6-Trinitrotoluene	3.00E-02	IRIS			5.00E-04	IRIS				1	
Uranium (soluble salts)					3.00E-03	IRIS	3.00E-04	ATSDR		1	
Vanadium					5.00E-03	IRIS				1	
Vinyl acetate					1.00E+00	HEAST	2.00E-01	IRIS		1	
Vinyl bromide			3.20E-05	HEAST			3.00E-03	IRIS		1	
Vinyl chloride	7.20E-01	IRIS	4.40E-06	IRIS	3.00E-03	IRIS	1.00E-01	IRIS	M	1	
m-Xylene					2.00E-01	IRIS	1.00E-01	IRIS		1	
o-Xylene					2.00E-01	IRIS	1.00E-01	IRIS		1	

	CSF _o		IUR		RfD _o		RfC			GIABS	ABS
Chemical	(mg/kg-day) ⁻¹	Reference	$(\mu g/m^3)^{-1}$	Reference	(mg/kg- day)	Reference	(mg/m^3)	Reference	Mutagen		
Xylenes					2.00E-01	IRIS	1.00E-01	IRIS		1	
Zinc					3.00E-01	IRIS				1	

Notes:

CSF_o – Oral Cancer Slope Factor IUR– Inhalation Unit Risk

RfD_o – Oral Reference Dose

RfC – Inhalation Reference Concentration

ABS - Dermal absorption coefficient

ATSDR – Agency for Toxic Substances and Disease Registry
Cal EPA – California Environmental Protection Agency
HEAST – Health Effects Assessment Summary Tables
IRIS – Integrated Risk Information System
PPTRV – Provisional Peer Reviewed Toxicity Value
WHO TEF – World Health Organization Toxicity Equivalency Factor

APPENDIX D New Mexico Environment Department Hazardous Waste Bureau

Guidance for Risk-based Remediation of Polychlorinated Biphenyls (PCBs) at RCRA Corrective Action Sites

New Mexico Environment Department Hazardous Waste Bureau

Guidance for Risk-based Remediation of Polychlorinated Biphenyls (PCBs) at RCRA Corrective Action Sites¹

February 2012

¹This document is intended as guidance for employees of the New Mexico Environment Department's (NMED) Hazardous Waste Bureau (HWB) and Resource Conservation and Recovery Act (RCRA)-regulated facilities within the State of New Mexico. This guidance does not constitute rule-making and may not be relied upon to create a right or benefit, substantive or procedural, enforceable at law or in equity, by any person. HWB may take action at variance to this guidance and reserves the right to modify this guidance at any time without public

Guidance for Risk-based Remediation of Polychlorinated Biphenyls (PCBs) at RCRA Corrective Action Sites

Table of Contents

Acronymns and Abbreviations	D-iii
1. Scope	
2. Background Information	
3. Environmental Processes	
4. PCB Cleanup Levels	
5. Analytical Methods	
6. Storm Water Runoff Monitoring Recommendations	
7. Risk Evaluation	
7.1 Human Health	
7.1.1 Carcinogenic Effects	
7.1.2 Non-Carcinogenic Effects	
7.2 Ecological Health	
7.2.1 Dioxin-like PCBs	
7.2.2 Other PCB Congeners	
8. Conclusion	
9. References	
List of Tables	
Table D-1. PCB Cleanup Options In Soil/Sediment and Data Quality Recommer	ndations5
Table D-2. Potential PCB Target Analytes	6
Table D-3. Analytical Methods for PCBs	7
Table D-4. PCB Cancer Slope Factor Values By Level of Risk and Persistence	12
Table D-5. Cancer Slope Factors and Fate & Transport Properties For PCBs	14
Table D-6. Toxicological and Fate & Transport Properties For PCBs With Hum	
Carcinogenic Effects and Ecological Health Non-Dioxin-Like Effec	ts16
Table D-7. Fish Toxicity Equivalency Factor Values For Dioxin-Like PCBs	18

ACRONYMNS AND ABBREVIATIONS

μg/g microgram per gram
 μg/L microgram per liter
 AOC Area of Concern
 AT Averaging Time

BMP Best Management Practices

BW Body Weight

CSF Cancer Slope Factor CWA Clean Water Act

DD Daily Dose

ECD Electron Capture Detector

ED Exposure Duration EF Exposure Frequency

ELCD Electrolytic Conductivity Detector

GC/MS Gas Chromatography/Mass Spectral Detector

HR High Resolution

HRGC High Resolution Gas Chromatography
HRMS High Resolution Mass Spectral Detector

HWB Hazardous Waste Bureau

IR Ingestion Rate

IRIS Integrated Risk Information System

LADD Lifetime Average Daily Dose mg/m³ milligram per cubic meter mg/kg milligram per kilogram mg/L milligram per liter nanogram per liter

NMED New Mexico Environment Department

PCB Polychlorinated Biphenyl

PCDD Polychlorinated Dibenzo-dioxins PCDF Polychlorinated Dibenzo-furans

pg/L picogram per liter ppb parts per billion ppm parts per million

RCRA Resource Conservation and Recovery Act

RfD Reference Dose

SWMU Solid Waste Management Unit
TCDD 2,3,7,8-tetrachloro-dibenzo-dioxin
TCDF 2,3,7,8-tetrachloro-dibenzo-furan
TEF Toxicity Equivalency Factor
TEQ Toxicity Equivalency Quotient

Risk Assessment Guidance for Investigations and Remediation Volume I February 2012

TRV Toxicity Reference Value TSS Total Suspended Solids

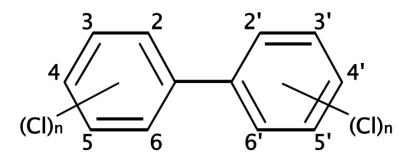
US EPA United States Environmental Protection Agency

Guidance for Risk-based Remediation of Polychlorinated Biphenyls at RCRA Corrective Action Sites

1.0 SCOPE

This document focuses on remedial activities at sites where polychlorinated biphenyls (**PCBs**) have been identified or are suspected of being present as one of the contaminants of potential concern. The intent of this document is to expedite the remedial action process and provide a cost-effective and consistent method for the evaluation and reduction of the risk posed to human health and the environment by PCBs.

This document **does not** discuss the complex regulations governing PCBs or the sampling methodologies for PCBs or other associated contaminants. This document **does** assume that the nature and extent of PCB contamination have been defined using a site conceptual model and **does** discuss and recommend analytical methods applicable to evaluating the risk to human and ecological health for PCBs in environmental media.


This paper **does not** discuss the risk posed to ground water quality by PCB contamination; state ground water standards and federal drinking water standards² exist for the protection of ground water. No state or federal soil/sediment standards exist to protect ground water from the transport of PCBs from contaminated soil/sediments; however, the risk associated with the transport of PCBs from contaminated soil/sediments to ground water should be evaluated to ensure that state and federal standards for ground water are not exceeded. Methods for the evaluation of this threat to ground water are **not**, at this time, specifically addressed in this document.

2.0 BACKGROUND INFORMATION

PCBs are a class of chlorinated organic compounds which found widespread application since their introduction into commerce in 1923. Their properties include thermal stability; resistance to acids, bases and oxidation; and resistance to direct electrical current. They were commonly used in transformers and capacitors, hydraulic and heat transfer equipment, compressors and vacuum pumps, plasticizers (surface coatings and sealants), and some paints and inks. Domestic production of commercial PCBs ceased in 1977; however, PCBs in existence at that time are still in use today.

The general chemical structure of chlorinated biphenyls is as follows:

²PCBs in ground water may not exceed the Safe Drinking Water Act's maximum contaminant level of 0.5 micrograms per liter (μg/L) in drinking water (Title 40 Code of Federal Regulations Parts 141-147 and 149) or the State of New Mexico's Water Quality Control Commission Regulations' standard of 1 μg/L in ground water with 10,000 milligrams per liter (mg/L) or less total dissolved solids (Title 20 New Mexico Annotated Code Chapter 6.2).

The number and position of chlorines in the biphenyl molecule determine the physical and chemical properties of the PCB molecule. There are a total of 209 possible *congeners*³ of PCBs, each one resulting from the chlorination of different substitution positions and varying degrees of chlorination. In general, PCB molecules with higher degrees of chlorination are more resistant to biodegradation and are more persistent in the environment.

PCB congeners may be found in commercial preparations or complex mixtures known by the names Askarel, Aroclor, Clophen, Phenoclor, Kanechlor, and Pyralène. In the United States, PCB mixtures were marketed under the trade name of Aroclor. Each Aroclor has a four-digit numeric designation: the first two digits are "12" (indicating the biphenyl parent molecule) followed by two more digits indicating the percent chlorine content by weight in the mixture. For example, Aroclor 1254 has 54% chlorine by weight. Aroclor 1016 is the exception: it contains 41% chlorine by weight (ATSDR, 1995).

PCBs are a group of environmentally persistent organic chemicals that possess the inherent properties of compounds that bioaccumulate (i.e., high octanol/water partition coefficient and low water solubility). PCBs also have the following properties of environmental relevance: low vapor pressure and low flammability.

PCBs are toxic to humans and other animals (Eisler, 1986; ATSDR, 1995; and US EPA, 1996 and 1997a). PCBs adversely impact reproduction in wildlife and in experimental animals. Other common toxic effects in mammals and birds include thymic atrophy (a wasting syndrome), microsomal enzyme induction, porphyria (manifestations include intermittent nervous system dysfunction and/or sensitivity of skin to sunlight) and related liver damage, chloracne, estrogenic activity, immunosuppression, and tumor promotion. PCBs can be transferred to young mammals (including humans) transplacentally and in breast milk.

The United States Environmental Protection Agency (**US EPA**) and International Agency for Research on Cancer classified PCBs as Group B2; probable human carcinogens, based on sufficient evidence of carcinogenicity (manifested as hepatocellular carcinomas) in experimental animals and inadequate (due to confounding exposures to other potential carcinogens or lack of exposure quantification), yet suggestive evidence of excess risk of liver cancer in humans (US EPA, 2010). Recent studies have indicated that all PCB mixtures can cause cancer; however,

³Congener means any single, unique, well-defined chemical compound in the PCB category.

different mixtures exhibit different carcinogenic potencies (Cogliano, 1998). In addition, environmental processes may alter the PCB mixtures affecting its carcinogenic potency (see *Environmental Processes*).

The stability and lipophilicity of PCBs promote their biomagnification (i.e., the uptake of a chemical through ingestion resulting in the concentration of the chemical in tissue being greater than that of its food) once they enter the aquatic and terrestrial food chains. Through the food chain, living organisms selectively bioaccumulate persistent congeners of PCBs. Environmentally-aged PCB mixtures appear to be more toxic and persistent in the organism than commercial PCB mixtures. Biomagnification through trophic transfer governs PCB levels in animals, especially those occupying the top of the food web. Therefore, PCBs in food sources represent the most important exposure source to humans and wildlife.

In certain situations, PCBs can become contaminated with the far more toxic polychlorinated dibenzofurans (**PCDFs**) and chlorinated dibenzo-dioxins (**PCDDs**). Therefore, the presence of PCDFs and PCDDs should always be investigated if any of the following processes existed or are suspected of existing:

- combustion or incineration of PCB-contaminated waste or waste oils, or highly variable waste streams (such as municipal and commercial waste for which PCB contamination is suspected);
- manufacture of PCBs⁴;
- pyrolysis of PCBs;
- photolysis of PCBs;
- incidental fire of transformers and capacitors containing PCBs; or
- treatment with chlorinating compounds (e.g., hydrochloric acid, chlorine, etc.).

3.0 ENVIRONMENTAL PROCESSES

PCBs occur as mixtures of congeners in the environment. *Partitioning*⁵, chemical and biological transformation, and preferential bioaccumulation may change the composition of the PCB mixture over time: the environmentally-aged PCB mixture may vary considerably from the original congener composition (US EPA, 1996b and ATSDR, 1995). Altered PCB mixtures have been known to persist in the environment for many years.

PCBs adsorb to organic matter, sediments, and soil. Their affinity to adsorb increases with the chlorine content of the PCBs and the amount of organic matter present. PCBs can volatilize or disperse as aerosols providing an effective means of transport in the environment. Congeners with low chlorine content tend to be more volatile and more water soluble.

⁴The concentration of PCDFs in commercial PCB samples ranged from 0.2 mircrograms per gram (μg/g) to 13.6 μg/g (ATSDR, 1993). Eisler (1986) reported PCDFs impurities ranging from 0.8 to 33 milligrams per kilogram (mg/kg) in some domestic and foreign PCB mixtures.

⁵Partitioning includes environmental processes by which different fractions of a mixture separate into air, water, sediment, and soil.

The highly chlorinated Aroclors (Aroclor 1248, 1254, and 1260) resist both chemical and biological transformation (i.e., degradation) in the environment. Biological degradation of highly chlorinated Aroclors to lower chlorinated PCBs can occur under anaerobic conditions⁶. The extent of this dechlorination⁷ is limited by the PCB chlorine content and soil/sediment PCB concentrations. Anaerobic bacteria in soil/sediments remove chlorines from low chlorinated PCBs (1 to 4 chlorines) and open the carbon rings through oxidation. PCBs with higher chlorine content are extremely resistant to oxidation and hydrolysis. Photolysis can also slowly break down highly chlorinated PCB congeners.

PCBs bioaccumulate and biomagnify through the food chain because they are highly lipid-soluble. The mixture of congeners found in biotic tissue will differ dramatically from the mixture of congeners originally released to the environment because bioaccumulation and biomagnification concentrate PCB congeners of higher chlorine content up through the food chain. This is because different congeners can exhibit different rates of metabolism and elimination in living organisms (Van den Berg, et al., 1998 and Cogliano, 1998).

By altering the congener composition of PCB mixtures, these environmental processes can substantially increase or decrease the toxicity of environmental PCBs mixture (Cogliano, 1998). Therefore, information on these environmental processes along with the results of congener-specific analyses of environmental and biota samples should be used to substantiate modeling of exposure to and health risks resulting from environmental PCBs.

4.0 PCB CLEANUP LEVELS

PCB-contaminated soil/sediments should be remediated to either 1) a default concentration of 1 mg/kg or part per million (**ppm**) *total PCBs* (defined as the sum of congeners, Aroclors or *homologues*⁸), 2) a risk-based generic screening level (see media-specific screening levels in Appendix A of Volume 1) or 3) a *site-specific risk-based PCB concentration level*⁹ established through performing a health risk evaluation. Site-specific risk-based PCB concentrations may be calculated from equations presented in *Risk Evaluation*. Once the calculations have been completed for all receptors, the lowest computed risk-based PCB concentration in a medium would represent the PCB remediation goal for that medium. These PCB remediation goals may be refined, if necessary, in the higher-level, site-specific risk assessment.

Table D-1 presents the corrective action cleanup options for the remediation of PCB-contaminated soil/sediments and data quality recommendations regarding the PCB analyses of environmental media samples.

⁶However, certain fungi have been demonstrated to degrade PCBs under aerobic conditions.

⁷Note that dechlorination is not synonymous with detoxification because it may result in the formation of carcinogenic congeners.

⁸A *homologue* is a subcategory of PCBs having an equal number of chlorine substituents. *Substituent* means an atom or group that replaces another atom or group in a molecule. PCB homologues can be quantified using EPA Method 680 or estimated using regression equations such as those found in NOAA, 1993.

⁹A *risk-based PCB concentration level* means the PCB concentration above which some adverse health effects may be produced in human and/or ecological receptors, and below which adverse health effects are unlikely to occur.

Table D-1. PCB Cleanup Options In Soil/Sediment and Data Quality Recommendations¹⁰

Cleanup Option	Corrective Action Steps	Data Quality Recommendations
Default Option 1	Delineate the nature and horizontal and vertical extent of contamination Remediate to 1 ppm Conduct post-remediation monitoring, as necessary	Estimate total PCBs as the sum of Aroclors or homologues (using a quantitation limit of 50 parts per billion [ppb] or 1 ppb, respectively) in environmental media
Default Option 2	Delineate the nature and horizontal and vertical extent of contamination Remediate to generic risk-based screening level (See Appendix A of Volume 1)) Conduct post-remediation monitoring, as necessary	Estimate total PCBs as the sum of Aroclors or homologues (using a quantitation limit of 50 parts per billion [ppb] or 1 ppb, respectively) in environmental media
Site-Specific, Risk-Based	Delineate the nature and horizontal and vertical extent of contamination Perform health risk evaluation Establish risk-based concentrations for all human and environmental receptors Remediate to the lowest risk-based concentration Conduct post-remediation monitoring, as necessary	Estimate total PCBs as the sum of Aroclors or homologues (using a quantitation limit of 50 ppb or 1 ppb, respectively) and/or congener-specific environmental and biota concentrations (using a quantitation limit in the low parts per trillion)

The following is a listing of potential PCB target analytes¹¹. The 12 PCB congeners indicated in boldface italics are those which are recommended for quantitation as potential target analytes when performing a risk-based cleanup. The 16 additional congeners listed in plain text may provide valuable information, but are not required for the evaluation of risk. The analyses of all 209 congeners would greatly improve the estimate of total PCB concentrations.

¹⁰Modified from Valoppi, et al., 1999.

¹¹The number in parentheses refers to the identification system used to specify a particular congener.

Table D-2. Potential PCB Target Analytes

2,4'-Dichlorobiphenyl (8)	2,2',3,4,4',5'-Hexachlorobiphenyl (138)
2,2',5-Trichlorobiphenyl (18)	2,2',4,4',5,5'-Hexachlorobiphenyl (153)
2,4,4'-Trichlorobiphenyl (28)	2,3,3',4,4',5-Hexachlorobiphenyl (156)
2,2',3,5'-Tetrachlorobiphenyl (44)	2,3,3',4,4',5'-Hexachlorobiphenyl (157)
2,2',5,5'-Tetrachlorobiphenyl (52)	2,3',4,4',5,5'-Hexachlorobiphenyl (167)
2,3',4,4'-Tetrachlorobiphenyl (66)	3,3',4,4',5,5'-Hexachlorobiphenyl (169)
3,3',4,4'-Tetrachlorobiphenyl (77)	2,2',3,3',4,4',5-Heptachlorobiphenyl (170)
3,4,4',5-Tetrachlorobiphenyl (81)	2,2',3,4,4',5,5'-Heptachlorobiphenyl (180)
2,2'4,5,5'-Pentachlorobiphenyl (101)	2,2',3,4',5,5',6-Heptachlorobiphenyl (187)
2,3,3',4,4'-Pentachlorobiphenyl (105)	2,3,3',4,4',5,5'-Heptachlorobiphenyl (189)
2,3,4,4',5-Pentachlorobiphenyl (114)	2,2',3,3',4,4',5,6-Octachlorobiphenyl (195)
2,3',4,4',5-Pentachlorobiphenyl (118)	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl (206)
2',3,4,4',5'-Pentachlorobiphenyl (123)	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl (209)
3,3',4,4',5-Pentachlorobiphenyl(126) 2,2',3,3',4,4'-	
Hexachlorobiphenyl (128)	

The 16 PCB congeners in plain text have been indicated as target analytes by the National Oceanic and Atmospheric Administration based on their toxicity, ubiquitousness in the marine environment, presence in commercial Aroclor mixtures, etc. (NOAA, 1993).

5.0 ANALYTICAL METHODS

Aroclors are often used to characterize PCB exposures; however, the use of Aroclors in estimating the human health or ecological risk can be both imprecise and inappropriate because the PCB mixtures to which humans and other biota may be exposed may be considerably different from the original Aroclor mixtures released to the environment. In addition, traditional analytical methods for Aroclor analyses produce estimates that are prone to errors. Both qualitative and quantitative errors may arise from interpreting gas chromatography (GC) data.

GCs configured with electron capture detectors (**ECD**) or electrolytic conductivity detectors (**ELCD**) are particularly prone to error. The GC/ECD and GC/ELCD produce a chromatogram that is compared with the characteristic chromatographic patterns of the different Aroclors (US EPA, 1996a). For environmentally weathered and altered mixtures, an absence of these characteristic patterns can suggest the absence of Aroclors even if some congeners are present in high concentrations. Additionally, and commonly, the presence of interferents may also mask the characteristic response pattern of the Aroclors. The "pattern recognition" technique is inherently subjective, and different analysts may reach different conclusions regarding the presence or absence of Aroclors.

GCs configured with mass spectral detectors (**GC/MS**) allow identification of individual chemical compounds. GC/MS also produces a chromatogram, and additionally includes mass spectral information about the chemical identity of each peak in the chromatogram. Therefore, GC/MS adds a qualitative line of evidence above that included in GC/ECD or GC/ELCD techniques. GC/MS may be subject to interference, misinterpretation, or other problems.

High resolution (**HR**) isotope dilution GC/high resolution MS (**HRGC/HRMS**), while not as common technique as GC-ECD or GC-MS, is a specific GC/MS technique that has proven reliable for PCB analysis. In HRGC/HRMS exhaustive sample clean-up techniques are employed, and isotopic tracers are used to support identification.

Therefore, the HWB recommends the use of HRGC/HRMS analyses in evaluating health risks to humans and the environment. If HRGC/HRMS methods are not employed, then site specific data must be used to demonstrate that the methods employed are appropriate to the site, or HRGC/HRMS confirmation must be integrated into the analytical plan, for instance on a one in 20 sample basis, or a for a minimum number of samples, or as otherwise agreed. Both detections and non-detections should be confirmed.

Results of GC techniques may be expressed as Aroclors, congeners, homologues, or as total PCBs in units of weight/weight [mg/kg, μ g/kg, nanogram per kilogram (ng/kg)] or weight/volume [μ g/L or pictogram per liter (pg/L)]. It is necessary to specify the reporting requirements prior to analysis and negotiate the analytical list and reporting limits. Results must be reported on a dry weight basis for soil, sediment and waste samples (excluding liquids).

In addition to the traditional GC analysis, a number of biological and immunological assays are now available, as well as field GC. These may be suited for use as screening methods to guide day-to-day remediation efforts, but are not suited to evaluating health risks to humans and the environment as stand-alone methodologies.

Table D-3. Analytical Methods for PCBs

Method	Technology	Report As ¹	Approximate Detection Limits	Comments
SW-846 8082A	GC/ECD or GC/ELCD	Aroclors Congeners	50-100 μg/kg	Must supply site-specific performance data or use HRGC/HRMS confirmation
SW-8270D	GC/MS	Aroclors	>1000 µg/kg ²	Detection limits may not support project data quality objectives
SW-846 8275A	GC/MS	Congeners	200 μg/kg	
Method 1668B	HRGC/HRMS	Congeners	<1µg/kg, often in the ng/kg range ²	Use this method for confirmation

NOTES:

Reporting types have been limited to those mentioned in the subject methods. Laboratories may offer additional reporting modalities, such as homologues and total PCBs.

²Detection Limits not specified in the method. Various sample preparation options and matrix effects may affect results

6.0 STORM WATER RUNOFF MONITORING RECOMMENDATIONS

The potential for transport to human or ecological receptors (including ground and surface water) should be evaluated for all corrective action sites impacted or suspected of being impacted by PCBs. PCB concentrations in storm water runoff resulting from contaminated soil/sediments should be monitored **and** the soils remediated to ensure that there is no release or runoff from the Solid Waste Management Unit (**SWMU**) or Area of Concern (**AOC**) which results in a total PCB concentration in excess of the Clean Water Act (**CWA**)-recommended freshwater aquatic life chronic criterion of $0.014 \, \mu \text{g/L}^{12}$ (unfiltered water) to a *water of the State*. Likewise, concentrations of PCB-contaminated stream bottom, lake or reservoir deposits should not result in total PCB concentrations in unfiltered water which exceeds the CWA-recommended freshwater aquatic life chronic criterion of $0.014 \, \mu \text{g/L}$.

The evaluation of a site's PCB concentrations and erosion potential will aid in determining and prioritizing the corrective actions and best management practices (**BMPs**) necessary to protect surface water quality. Each facility should develop a method for evaluating the erosion potential and present the methodology to the NMED HWB for approval prior to implementation. This evaluation should be conducted on all known or suspected PCB sites. All PCB sites with elevated erosion potentials should implement BMPs to reduce transport of PCB-contaminated sediments and soils. BMP effectiveness should be evaluated and monitored regularly through a formalized inspection and maintenance program. BMPs should be implemented as interim actions or stabilization measures which are consistent with a final remedy and should not be misconstrued as a final remedy.

NMED's HWB believes that controlling the total suspended solids (**TSS**) load of storm water runoff may effectively control PCB migration in surface water because PCBs are hydrophobic, tend to adsorb to soil and organic particles, and are transported in suspended sediments during storm runoff events. Therefore, the TSS should be monitored to aid in predicting and, therefore, potentially controlling the transport of PCBs into *watercourses*¹⁵.

Storm water samples should be collected from storm water events which are greater than 0.1 inches in magnitude (US EPA, 1992). Grab samples should be collected within the first 30 minutes or as soon as practical, but not more than 1 hour after runoff discharge begins. A sufficient quantity of runoff should be collected (i.e., 5 liters) because additional analyses for PCBs may be required based upon the TSS analytical results. The runoff samples should be analyzed for TSS using Method 2540D of the most recent edition of the *Standard Methods for the Examination of Water and* Wastewater.

¹²This concentration is the Clean Water Act §304(a) recommended chronic criterion for aquatic life (http://water.epa.gov/scitech/swguidance/standards/current/index.cfm).

¹³Water(s) of the State means all interstate and intrastate water including, natural ponds and lakes, playa lakes, reservoirs, perennial streams and their tributaries, intermittent streams, sloughs, prairie potholes and wetlands (Title 20 New Mexico Annotated Code Chapter 6.1).

¹⁴NMED HWB recommends the approach to evaluating erosion potential presented in the *Matrix Approach to Contaminant Transport Potential* (Mays and Veenis, 1998).

¹⁵Watercourse means any river, creek, arroyo, canyon, draw, or wash, or any other channel having definite banks and beds with visible evidence of the occasional flow of water (Title 20 New Mexico Annotated Code Chapter 6.1).

Grab samples should be used for monitoring. Composite samples may **not** be used for monitoring; however, flow-weighted composite samples may be used in the development and validation of storm water contaminant transport modeling.

The following bullets describe recommended trigger levels and actions based on the analytical results of TSS analyses:

- If TSS is less than 100 mg/L, no action is required.
- If TSS is greater than 100 mg/L, but less than 1,000 mg/L, then the effectiveness of existing BMPs should be evaluated and repaired as necessary, and additional BMPs may need to be implemented to reduce TSS loading
- If the TSS is greater than 1,000 mg/L, then the remaining portion of the sample should be centrifuged and the solids analyzed for PCBs using EPA SW-846 Method 8082 (US EPA, 1997d), EPA Method 680, or draft EPA Method 1668 (Alford-Stevens, et al., 1985 and US EPA, 1996a).

7.0 RISK EVALUATION

The risk to human health and the environment must be evaluated for all corrective action *solid* waste management units/areas of contamination¹⁶ (**SWMU/AOCs**) impacted or suspected of being impacted by PCBs and having a potential for transport to a human or ecological receptor. The risk posed by PCBs at these SWMU/AOCs may be modeled (based on adequate available data) and should be monitored to ensure an acceptable level of risk¹⁷ (see *Storm Water Runoff Monitoring Recommendations*).

As discussed in *Environmental Processes*, the congener composition of environmentally-aged PCBs can dramatically differ from the original Aroclor mixture released to the environment. Consequently, environmental processes can affect both exposure to, and toxicity of, environmental PCBs. Therefore, the approach to evaluating health risks from environmental PCBs differs depending upon whether the PCB congener- or Aroclor-specific (or homologue-specific) data are available for the environmental media (see also *PCB Cleanup Levels*).

PCB congeners with chlorine atoms in positions 2 and 6 (ortho) are generally more readily metabolized, while those with chlorines in positions 4 and 4' (para) or positions 3, 4 or 3, 4, 5 on one or both rings tend to be more toxic and are retained mainly in fatty tissues (Eisler, 1986). Persistent congeners may retain biological activity long after the exposure. The most toxic PCB

¹⁶SWMU means "any discernable unit at which solid wastes have been placed at any time, irrespective of whether the unit was intended for the management of solid or hazardous waste. Such units include any area at a facility at which solid wastes have been routinely and systematically released." AOC "...refers to releases which warrant investigation or remediation under the authorities discussed above, regardless of whether they are associated with a specific SWMU..."

¹⁷A risk or hazard is considered *acceptable* if an estimated risk/hazard is below pre-established target risk and/or hazard levels.

congeners can assume a conformation, generally similar to that of 2, 3, 7, 8-tetrachloro-dibenzo-dioxin (**TCDD**), and are approximate stereo analogs of this compound (Hoffman, et al., 1996).

These dioxin-like congeners share a common mechanism of toxicity involving binding to the aryl hydrocarbon receptor; the same mechanism of action is believed to induce the toxicity of PCDDs and PCDFs. These congeners were assigned toxicity equivalency factors (**TEFs**) expressed as a fraction of the toxicity of 2,3,7,8-TCDD. Therefore, when PCB congener-specific analytical data are available, risk evaluation of human and ecological health should consider both dioxin-like and other adverse health effects. Two sections within this document (*Human Health*, *Carcinogenic Effects*, *Dioxin-like Toxicity Approach* and *Ecological Health*, *Dioxin-like PCBs*) provide guidance for applying these TEFs where congener-specific analyses are available. If only Aroclor/homologue concentrations are available for a site, total PCB concentrations reported as the sum of Aroclor/homologue concentrations should be used to estimate the risk to human health and the environment.

If a health risk evaluation is based on total PCB concentrations (estimated as the sum of Aroclors or PCB homologues) and the individual congeners comprising the PCB mixtures cannot be identified, the uncertainty and potential bias in the resulting risk estimates should be described in the risk assessment report. For example, if total PCB concentrations have been estimated based on Aroclor analyses, conservative assumptions should be made about the mixture composition and toxicity: the assumption that congeners with greater than four chlorines per PCB molecule comprise greater than 0.5% of total PCBs present in a given abiotic medium at the site triggers the selection of the highest cancer slope factor from Table D-3. Whereas, total PCB concentrations estimated based on the results of PCB homologue analyses may allow for a refinement of these conservative assumptions. More detailed information on an approach to evaluating the health risk from environmental PCBs and PCB data requirements can be found in US EPA (1996b); Van den Berg, et al. (1998); Cogliano (1998); Giesy and Kannan (1998) and Valoppi, et al. (1999).

7.1 Human Health

Since PCBs may cause both carcinogenic and non-carcinogenic adverse human health effects, separate risk assessments must be performed for each of these health effects.

7.1.1 Carcinogenic Effects

The evaluation of carcinogenic risk from exposure to PCB mixtures (i.e., represented by total PCBs or PCB congeners) should follow the slope factor approach described in *PCBs: Cancer Dose-Response Assessment and Application to Environmental Mixtures* (US EPA, 1996b) and as outlined below. This approach distinguishes among toxic potencies of different PCB mixtures by utilizing information regarding environmental processes. In the absence of PCB congener- or homologue-specific analyses (i.e., if total PCB concentrations were estimated based on Aroclor analyses), this approach requires conservative assumptions about the risk and persistence of PCB mixtures at the site.

If congener-specific concentrations are available and congener analyses indicate that congeners with more than 4 (four) chlorines comprise greater that 0.5 percent of total PCBs in a given medium, the slope factor approach should be supplemented by the analysis of dioxin toxicity equivalency quotient (**TEQ**). Risk from *dioxin-like congeners*¹⁸ should be added to the risk estimated for the rest of the PCB mixture which does not exhibit dioxin-like toxicity.

If other dioxin-like compounds (i.e., PCDDs and/or PCDFs) are present at a site in addition to PCBs, TEQs for dioxin-like PCBs should be added to TEQs calculated for those other dioxin-like compounds to yield a total TEQ. A slope factor for 2,3,7,8-TCDD should be applied to this total TEQ. Under these circumstances, the concentrations of dioxin-like PCBs should be subtracted from the total PCB concentration to avoid overestimating risks from dioxin-like PCBs by evaluating them twice.

7.1.1.1 Slope Factor Approach

Site-specific carcinogenic risk evaluations should be performed using PCB cancer potency or slope factors specific to the exposure scenarios and pathways at a particular site. Table D-3 provides the criteria for using these slope factors (categorized into high, medium, and low levels of risk and PCB persistence) that address a variety of exposure scenarios and the toxicity of PCB mixtures in the environment. A review of recent research on PCB toxicity that formed the basis for the derivation of these slope factors and a discussion of uncertainties surrounding toxicity information can be found in US EPA (1996b) and Cogliano (1998).

The slope factors in Table D-4 represent the upper-bound slopes that are recommended for evaluating human health risk from carcinogenic effects of PCBs. Both the upper-bound and central-estimate slopes are available from the US EPA's Integrated Risk Information System (**IRIS**). The central-estimate slopes can be used to support the analysis of uncertainties inherent in available toxicity information on PCBs.

¹⁸Dioxin-like congeners of PCBs are those with dioxin-like health effects and are evaluated using dioxin TEQs (Van den Berg, et al., 1998). A complete listing of PCB congeners can be found at http:\\www.epa.gov/grtlakes/toxteam/pcbid/table.htm (US EPA's Great Lakes website).

Table D-4. PCB Cancer Slope Factor Values by Level of Risk and Persistence¹⁹

CRITERIA FOR USE	LEVEL OF RISK AND PERSISTENCE	PCB CANCER SLOPE FACTOR VALUES ²⁰ [risk per mg/kg-day]
Food chain exposure Sediment/soil ingestion Dust/aerosol inhalation		
Dermal exposure (if an absorption factor has been applied) Presence of dioxin like tymer premoting or		
Presence of dioxin-like, tumor-promoting, or persistent congeners Early-life (less than 6 years old) exposure by all pathways and to all mixtures	High	2.0
Congeners with greater than four chlorines per PCB molecule comprise greater than 0.5% of the total PCBs present		
Congeners with greater than four chlorines per PCB molecule comprise less than 0.5% of the total PCBs present (all pathways except soil ingestion by adults)		
Ingestion of water-soluble (less chlorinated) congeners		
Inhalation of evaporated (less chlorinated) congeners	Medium	0.4
Dermal exposure (if no absorption factor has been applied)		
Congeners with greater than four chlorines per PCB molecule comprise less than 0.5% of the total PCBs present (soil ingestion by adults only)	Low	0.07

The cancer slope factors in Table D-3 characterize the toxic potency of different environmental mixtures of PCBs. Information on potential exposure pathways and PCB mixture composition at a given site guides in the selection of the appropriate cancer slope factors for risk assessment.

The highest slope factor in Table D-3 (2.0 per mg/kg-day) corresponds to the high risk and persistence of environmental PCB mixtures and, as such, should be selected for pathways (including food chain exposures, ingestion of soil and sediment, inhalation of dust or aerosol,

¹⁹Modified from Cogliano, 1998 and US EPA, 1996b and 1998c.

²⁰See IRIS (US EPA, 2011).

exposure to dioxin-like, tumor-promoting or persistent congeners, and early-life exposure) where environmental processes act to increase risk.

A lower slope factor (0.4 per mg/kg-day) corresponds to the low risk and persistence of environmental PCB mixtures and is appropriate for exposure pathways (such as ingestion of water-soluble congeners and inhalation of evaporated congeners) where environmental processes act to decrease risk.

Finally, the lowest slope factor in Table D-3 (0.07 per mg/kg-day) corresponds to the lowest risk and persistence of environmental PCB mixtures and should be selected for soil ingestion by adults when congener or homologue analyses confirm that congeners with greater than four chlorine atoms per PCB molecule comprise less than 0.5% of the total PCBs present at the site.

Once the appropriate slope factor has been selected, it is multiplied by a lifetime average daily dose (**LADD**) to estimate the risk of cancer (see US EPA, 1996b for sample risk calculations). Because the use of Aroclors to characterize PCB exposures can be both imprecise and inappropriate, total PCBs or congener analyses should be used in the following LADD calculation:

$$LADD = (C_T \times IR \times ED \times EF) / (BW \times AT)$$
 Equation D-1

Where:

LADD =Lifetime average daily dose (mg/kg-day) Total PCBs or total non-dioxin-like congener concentration in a C_{T} medium (mg/L [water], mg/kg [soil], or milligram per cubic meter (mg/m^3) [air]) Intake rate (L/day [water], mg/day [soil], or mg/m³ [air]) IR ED Exposure duration (years) Exposure frequency (days/year) EF = Average body weight of the receptor over the exposure period (kg) BWAveraging time - the period over which exposure is averaged AT (days)²¹

The cancer slope factors and recommended Aroclor fate and transport properties (Table D-5), should be used to evaluate the carcinogenic risk posed by PCB mixtures or PCB congeners which do not exhibit a dioxin-like toxicity.

²¹For carcinogens, the averaging time is 25,550 days based on a lifetime exposure of 70 years.

Table D-5. Cancer Slope Factors and Fate & Transport Properties For PCBs

	CRITERIA: Congeners with equal to or greater than four (4) chlorines comprise	CARCINOO Dioxin-like PCBs	GENIC EFFECTS Other PCB Congeners ²²
CANCER SLOPE	greater than 0.5% of the total PCBs present	1.3E+05 ²⁴	2.0
FACTORS ²³ (mg/kg-day) ⁻¹	less than 0.5% of the total PCBs present	NA ²⁵	0.07
FATE &	greater than 0.5% of the total PCBs present	Aroclor 1254	Aroclor 1254
TRANSPORT PROPERTIES	less than 0.5% of the total PCBs present	Aroclor 1016	Aroclor 1016

For example, if a PCB mixture contains 45% congeners with greater than four chlorines, the cancer slope factor for 2,3,7,8-TCDD and the fate and transport properties of Aroclor 1254 would be used.

If the following special exposure conditions exist, a slope factor of 0.4 may be applied to PCBs which do not exhibit dioxin-like toxicity: ingestion of water-soluble congeners, inhalation of evaporated congeners or dermal exposure (with no applied absorption factor).

7.1.1.2 Dioxin-like Toxicity Approach

Dioxin-like PCBs are some of the moderately chlorinated PCB congeners (see Table D-5) which have been demonstrated to produce dioxin-like effects²⁶ in humans. The dioxin-like toxicity approach should be implemented **only** when congener-specific concentrations are available for environmental media at a site. In this approach, individual dioxin-like PCB congener concentrations are multiplied by TEFs that represent the potency of a given congener relative to 2,3,7 8-TCDD (see Table 2-2 in Volume I).

²²Other PCB congeners mean those congeners which do not exhibit dioxin-like toxicity.

²³PCB cancer slope factors can be found in IRIS (US EPA, 2010).

²⁴US EPA, 2011

²⁵NA means not applicable. Do not evaluate dioxin-like PCBs if they comprise less than 0.5% of the total PCBs present; evaluate the other PCB congeners.

²⁶Dioxin-like congeners can react with the aryl hydrocarbon receptor, the toxicity mechanism that is believed to initiate the adverse effects of PCDDs and PCDFs.

Table 2-2 of Volume I lists the TEF values derived for dioxin-like PCB congeners. Using TEF values in the risk evaluation allows for the estimation of a combined risk resulting from an exposure to a mixture of dioxin-like PCB congeners (assuming that the risks are additive).

The carcinogenic risk resulting from exposure to dioxin-like PCBs should be estimated by calculating the TEQ. The TEQ is the sum of each congener-specific concentration in the medium multiplied by its corresponding congener-specific TEF value. Multiplying the congener-specific medium concentration by the corresponding congener-specific TEF value provides a relative (i.e., "toxicity-weighted") measure of the dioxin concentration within a medium.

The TEQ for dioxin-like PCBs should be calculated as indicated in the following equation:

$$TEQ = \Sigma (C_{mi} \times TEF_i)$$
 Equation D-2

Where:

TEO = Toxicity equivalency quotient (mg/L [water] or mg/kg [soil or sediment]) Concentration of ith congener in medium (mg/L [water] or mg/kg [soil or C_{mi}

sediment])

 $TEF_i =$ Toxicity equivalency factor for *i*th congener (unitless)

Once the dioxin TEQ has been determined, the LADD should be calculated using the following equation:

$$LADD = (TEQ \times IR \times ED \times EF) / (BW \times AT)$$
 Equation D-3

Where:

LADD = Lifetime average daily dose (mg/kg-day)

TEQ = Toxicity equivalency quotient (mg/L [water], mg/kg [soil], or mg/m³ [air])

= Intake rate (L/day [water], mg/day [soil], or mg/m³ [air]) IR

= Exposure duration (years) ED

EF = Exposure frequency (days/year)

= Average body weight of the receptor over the exposure period (kg) BW= Averaging time - the period over which exposure is averaged (days) AT

The following equation can be used to estimate carcinogenic risk from dioxin-like PCBs:

Cancer Risk = LADD x CSF_{TCDD} Equation D-4 Where:

LADD = Lifetime average daily dose (mg/kg-day) CSF_{TCDD} = Cancer slope factor for 2,3,7,8-TCDD²⁷

7.1.2 Non-Carcinogenic Effects

For Aroclors having reference doses (**RfDs**) specified in IRIS (e.g., Aroclor 1254, 1016, etc.), the non-carcinogenic risk should also be evaluated. The evaluation of non-carcinogenic risk should follow the approach typical for other non-PCB chemicals. However, fate and transport properties of the recommended Aroclor (see Table D-6) should be used to evaluate the risk posed.

Table D-6. Toxicological and Fate & Transport Properties For PCBs With Human Health Non-Carcinogenic Effects and Ecological Health Non-Dioxin-Like Effects

CRITERIA: Congeners with equal to or greater than four (4) chlorines comprise	NON-CARCINOGENIC EFFECTS AND FATE AND TRANSPORT PROPERTIES
greater than 0.5% of the total PCBs present	Aroclor 1254
less than 0.5% of the total PCBs present	Aroclor 1016

The RfD derived for Aroclor 1254 should typically be used when conducting a risk assessment. The RfD derived for Aroclor 1016 can be used when at least 99.5% of the mass of the PCB mixture has fewer than four (4) chlorine atoms per molecule as determined by a chromatography/spectroscopy analytical method. Using Table D-6, determine which Aroclor most accurately represents the PCB mixture of concern. Use the RfD and fate and transport properties of this Aroclor as a surrogate to evaluate the non-carcinogenic effects of the PCB mixture.

7.2 Ecological Health

Since PCBs adversely impact both community- and class-specific guild measurement receptors, risks must be estimated for each receptor within both groups. Plants and invertebrates should be evaluated as community measurement receptors (see *Exposure Assessment for Community Measurement Receptors*).

²⁷The cancer slope factor for 2,3,7,8-TCDD should be obtained from the most recent IRIS (US EPA, 2010) or HEAST (US EPA, 1997b). The current oral cancer slope factor for 2,3,7,8-TCDD of 1.3E+05 (mg/kg-day)⁻¹ is based on the administered dose from a 105-week dietary rat study and was adopted for inhalation exposure (US EPA, 2011).

When congener-specific concentrations are available, risk from exposure to dioxin-like PCBs should be estimated separately and added to the risk estimated for the remainder of the PCB mixture which does not exhibit dioxin-like toxicity. The resulting risk is likely to be overestimated if toxicity data from total PCBs is applied to those congeners which do not exhibit dioxin-like toxicity. This overestimation of risk should be addressed within the uncertainty analysis of the risk assessment report.

In the absence of PCB congener-specific data, total PCB concentrations, reported as the sum of Aroclor or homologue concentrations, should be used to estimate receptor exposure to PCBs and the toxicity value of the most toxic Aroclor present should be used in the site-specific ecological risk assessment.

7.2.1 Dioxin-like PCBs

Ecological risks to community- and class-specific guild measurement receptors from dioxin-like PCBs should be estimated by calculating a TEQ and then dividing it by the toxicity value for 2,3,7,8-TCDD (which is assumed to be the most toxic dioxin).

If in addition to PCBs, other dioxin-like compounds (i.e., PCDDs and/or PCDFs) are present at a site, TEQs for dioxin-like PCBs should be added to the TEQs calculated for those other dioxin-like compounds to yield a total TEQ. The 2,3,7,8-TCDD toxicity value should be applied to this total TEQ. For this evaluation, the concentrations of dioxin-like PCBs should be subtracted from the total PCB concentrations to avoid overestimating risks from dioxin-like PCBs by evaluating them twice.

The TEF values listed in Table 2-1 of Volume I and in Table D-7 below should be used in the TEQ calculation to convert the exposure media concentration of individual congeners to a relative measure of concentration within a medium.

Table D-7. Fish Toxicity Equivalency Factor Values For Dioxin-Like PCBs²⁸

1 000		
CONGENER	FISH TOXICITY EQUIVALENCY FACTOR VALUES ²⁹	
3,3',4,4'-Tetrachlorobiphenyl (77) ¹¹	0.0001	
3,4,4',5-Tetrachlorobiphenyl (81)	0.0005	
2,3,3',4,4'-Pentachlorobiphenyl (105)	$< 0.000005^{30}$	
2,3,4,4',5-Pentachlorobiphenyl (114)	< 0.000005	
2,3',4,4',5-Pentachlorobiphenyl (118)	< 0.000005	
2',3,4,4',5'-Pentachlorobiphenyl (123)	< 0.000005	
3,3',4,4',5-Pentachlorobiphenyl (126)	0.005	
2,3,3',4,4',5-Hexachlorobiphenyl (156)	< 0.000005	
2,3,3',4,4',5'-Hexachlorobiphenyl (157)	< 0.000005	
2,3',4,4',5,5'-Hexachlorobiphenyl (167)	< 0.000005	
3,3',4,4',5,5'-Hexachlorobiphenyl (169)	< 0.000005	
2,3,3',4,4',5,5'-Heptachlorobiphenyl (189)	< 0.000005	

Because congener-specific fate and transport data are not available for each of the dioxin-like PCBs listed in Table 2-1 of Volume I and Table D-7, the fate and transport properties of Aroclor 1254 should be used in exposure modeling.

7.2.1.1 Exposure Assessment for Community Measurement Receptors

To evaluate the exposure of water, sediment and soil communities to dioxin-like PCBs, a media-specific TEQ should be calculated. The TEQ is the sum of each congener-specific concentration (in the respective media to which the community is exposed) multiplied by its corresponding congener-specific TEF value derived for fish (Table D-7).

The TEQ for community measurement receptors exposed to dioxin-like PCBs should be calculated as indicated in the following equation:

$$TEQ = \Sigma (C_{mi} \times TEF_i)$$
 Equation D-5

Where:

²⁸Modified from the *Report from the Workshop on the Application of 2,3,7,8-TCDD Toxicity Equivalency Factors to Fish and Wildlife* (US EPA, 1998b).

²⁹The surrogate TEF values for fish are presented because invertebrate-specific TEF values have not yet been developed.

³⁰For all fish TEFs of "<0.000005," use the value of 0.000005 as a conservative estimate.

TEQ = Toxicity equivalency quotient (μg/L [water] or μg/kg [dry weight soil or sediment])

seumentj)

 C_{mi} = Concentration of *i*th congener in abiotic media (μ g/L [water] or μ g/kg [dry

weight soil or sediment])

 TEF_i = Toxicity equivalency factor (fish) for *i*th congener (unitless) (Table D-7)

Risk to the water, sediment or soil community is subsequently evaluated by comparing the media-specific TEQ to the media-specific toxicity value for 2,3,7,8-TCDD:

$$\mathbf{Risk} = \mathbf{TEQ} / \mathbf{TRV}_{\mathsf{TCDD}}$$
 Equation D-6

where:

TEQ = Toxicity equivalency quotient (μ g/L [water] or μ g/kg [dry weight soil or sediment])

 TRV_{TCDD} = Toxicity reference value for 2,3,7,8-TCDD (μ g/L [water] or μ g/kg [dry weight soil or sediment])

7.2.1.2 Exposure Assessment for Class-Specific Guild Measurement Receptors

To evaluate the exposure of class-specific guild measurement receptors to dioxin-like PCBs, congener-specific daily doses of food items (i.e., abiotic media, plants, animals, etc.) ingested by a measurement receptor ($\mathbf{DD_i}$) should be converted to a TEQ-based daily dose ($\mathbf{DD_{TEQ}}$). This DD_{TEQ} can subsequently be compared to the 2,3,7,8-TCDD toxicity values for an evaluation of the risk posed to class-specific guild measurement receptors.

The DD_{TEQ} for each measurement receptor should be calculated as shown in the following equation:

$$DD_{TEQ} = \Sigma DD_i \times TEF_{MR}$$
 Equation D-7

Where:

 $\begin{array}{lll} DD_{TEQ} & = & Daily \ dose \ of \ PCB \ TEQ \ (\mu g/kg \ fresh \ body \ weight-day) \\ DD_i & = & Daily \ dose \ of \ \emph{i}th \ congener \ (\mu g/kg \ fresh \ body \ weight-day) \\ TEF_{MR} & = & Toxicity \ equivalency \ factor \ (specific \ to \ measurement \ receptor) \\ & & (unitless) \ (Table \ D-8) \end{array}$

Risk to the class-specific guild being evaluated can be estimated by dividing the DD_{TEQ} by the toxicity reference value for 2,3,7,8-TCDD:

$$Risk = TEQ / TRV_{TCDD}$$
 Equation D-8

Where:

³¹The congener-specific daily doses of food items ingested by a measurement receptor should be calculated in accordance with the most current EPA and/or State guidance.

 DD_{TEO} = Daily dose of PCB TEQ (µg/kg fresh body weight-day)

 TRV_{TCDD} = Toxicity reference value for 2,3,7,8-TCDD (µg/kg fresh body weight-day)

7.2.2 Other PCB Congeners

In addition to the dioxin-like PCB congeners, the remaining PCBs should be evaluated like other bioaccumulating organic contaminants by assessing ecological risks to community- and class-specific guild measurement receptors. The fate and transport properties of Aroclor 1254³² should be used in the exposure modeling when evaluating the risk from PCB mixtures containing congeners with equal to or greater than 4 chlorines in quantities **greater** than 0.5% of the total PCBs. And, the fate and transport properties of Aroclor 1016³³ should be used in the exposure modeling when evaluating risks from PCB mixtures containing **less** than 0.5 % of PCB congeners with more than 4 chlorines (see Table D-6).

8.0 CONCLUSION

PCBs, which are a class of organic compounds that are persistent in the environment, are toxic to both humans and biota. PCBs may in certain instances become contaminated with more toxic PCDFs and PCDDs. Therefore, the potential presence of these compounds should also be evaluated and possibly investigated.

Based on federal and state regulations and standards, the HWB recommends that PCB-contaminated sediment/soils be remediated to either 1 mg/kg total PCBs or the most stringent of the calculated health risk-based concentrations in order to adequately protect human health and the environment.

Unless soil/sediments are remediated to 1 mg/kg total PCBs, the risk posed by PCBs to human health and the environment should be evaluated using a risk-based approach. All corrective action SWMU/AOCs impacted or suspected of being impacted by PCBs and having a potential for transport to a human or ecological receptor should be evaluated and monitored, as necessary, to protect human health and the environment.

PCB concentrations in soil/sediments should also be protective of both surface water and ground water resources; PCB concentrations in surface water should not exceed 0.014 μ g/L and PCB concentrations in ground water cannot exceed 0.5 μ g/L (drinking water) or 1 μ g/L in ground water with 10,000 mg/L or less total dissolved solids).

9.0 REFERENCES

Advances in Modern Environmental Toxicology, Volume XV, Risk Assessment and Risk Management of Industrial and Environmental Chemicals. Edited by Cothren, Mehuman,

 $^{^{32}\}mbox{Approximately 77\%}$ of Aroclor 1254 is composed of PCB congeners with more than 4 chlorines.

³³Approximately 99% of Aroclor 1016 is comprised of PCB congeners with 4 or less chlorines.

- and Marcus and published by Princeton Scientific Publishing Co., Inc., Princeton, New Jersey, 1988.
- Agency for Toxic Substances and Disease Registry (ATSDR). 1993. *Toxicological Profile for Chlorodibenzofurans*. US Department of Health and Human Services, Public Health Service. Atlanta, Georgia.
- Agency for Toxic Substances and Disease Registry (ATSDR). 1995. *Toxicological Profile for Polychlorinated Biphenyls*. Draft for Public Comment. US Department of Health and Human Services, Public Health Service. Atlanta, Georgia.
- Agency for Toxic Substances and Disease Registry (ATSDR). 1997. *Toxicological Profile for Chlorinated Dibenzo-p-Dioxin*. Draft for Public Comment. US Department of Health and Human Services, Public Health Service, Atlanta, Georgia.
- Alford-Stevens A., T.A. Bellar, J.W. Eichelberger, and W.L. Budde. November 1985. *Method 680: Determination of Pesticides and PCBs in Water and Soil/Sediment by Gas chromatography/Mass Spectrometry*. US EPA Office of Research and Development, Cincinnati, Ohio.
- Cogliano J. V. 1998. Assessing the Cancer Risk from Environmental PCBs. Environmental Health Perspectives, Volume 106, Number 6, pp. 317-323
- Eisler R. 1986. *Polychlorinated Biphenyl Hazard to Fish, Wildlife, and Invertebrates: A synoptic Review*. Contaminant Hazard Reviews Report No. 7, Biological Report 85 (1.7), 72 p. US Department of Interior, Fish and Wildlife Service.
- Giesy J. P. and K. Kannan. 1998. *Dioxin-Like and Non-Dioxin-Like Toxic Effects of Polychlorinated Biphenyls (PCBs): Implications for Risk Assessment*. Critical Reviews in Toxicology, Volume 28, Number 6, pp. 511-569.
- Hoffman D. J., C. P. Rice, and T. J. Kubiak. 1996. *PCBs and Dioxins in Birds*. Environmental Contaminants in Wildlife. SETAC Special Publication Series. CRC Press, Inc.
- Federal Register, Volume 61, Number 85. May 1, 1990. Correction Action for Releases from Solid Waste Management Units at Hazardous Waste Management Facilities.
- Federal Register, Volume 55, Number 145. July 27, 1990. Resource Conservation and Recovery Act, Proposed Subpart S.
- Federal Register, Volume 63, Number 124. June 29, 1998. *Disposal of Polychlorinated Biphenyls (PCBs); Final Rule*.
- Federal Register, Volume 63, Number 237. December 10, 1998. *National Recommended Water Quality Criteria*, Notice; Republication.

- Mays, D.C. and Veenis, Steven. July 1998. *Matrix Approach to Contaminant Transport Potential*. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management.
- New Mexico Environment Department (NMED) Hazardous and Radioactive Materials (HRM) Bureau. 1998. *Document Requirement Guide*, Section III.c.6, *Risk-based Decision Tree*.
- NMED. 2011. NMED Technical Background Document for Development of Soil Screening Levels. http://www.nmenv.state.nm.us/hwb/guidance.html
- National Oceanic and Atmospheric Administration (NOAA), 1993. Sampling and Analytical methods of the National Status and Trends Program, National Benthic Surveillance and Mussel Watch Projects 1984-1992. National Ocean Service, Office of Ocean Resources Conservation and Assessment, Silver Spring, MD, Technical Memorandum NOS ORCA 71, Vol. 1.
- Safe Drinking Water Act. Title 40 Code of Federal Regulations, parts 141 through 147 and 149 [40 CFR Parts 141-147 and 149].
- State of New Mexico Standards for Interstate and Intrastate Streams, Title 20 New Mexico Annotated Code, Chapter 6, Part 1 [20 NMAC 6.1]. January 23, 1995.
- State of New Mexico Ground and Surface Water Quality Protection Standards, Title 20 New Mexico Annotated Code, Chapter 6, Part 2 [20 NMAC 6.2]. December 1, 1995.
- US EPA. 1989. Risk Assessment Guidance for Superfund, Volume 1, *Human Health Evaluation Manual (Part A)*, Interim Final. Office of Emergency and Remedial Response, Washington, DC, 20460. EPA/540/1-89/002.
- US EPA. July 1992. *NPDES Storm Water Sampling Guidance Document*. Office of Water (EN-336). EPA 833-B-92-001.
- US EPA. 1996a. *Method 8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography*. Test Methods for Evaluating Solid Waste, Volume IB Laboratory Manual Physical/Chemical Methods. Third edition, Update 3, Revision 0. SW-846. Washington, D.C.
- US EPA. 1996b. *PCBs: Cancer Dose-Response Assessment and Application to Environmental Mixtures*. Office of Research and Development, Washington, DC. EPA/600/P-96/001A.
- US EPA. 1997a. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisory. Volume 2: Risk Assessment and Fish Consumption Limits. Second Edition. Office of Water, Washington, D.C. EPA 823-B-97-009.

- US EPA. 1997b. *Health Effects Assessment Summary Tables: FY 1997 Update*. National Center for Environmental Assessment (NCEA), Office of Research and Development and Office of Emergency and Remedial Response, Washington, D.C.
- US EPA. 1997c. *Method 1668 Toxic Polychlorinated Biphenyls by Isotope Dilution High Resolution Gas Chromatography/High Resolution Mass Spectometry*. Office of Water, Offices of Science and Technology, Engineering and Analyses Division, Washington, D.C.
- US EPA. 1998a. Memorandum: *Clarification Regarding Use of SW-846 Methods*. Office of Solid Waste, Washington, D.C.
- US EPA. 1998b. Report from the Workshop on the Application of 2,3,7,8-TCDD Toxicity Equivalency Factors to Fish and Wildlife, Chicago, Illinois, January 20-22, 1998. Eastern Research Group, Inc. Submitted to US EPA Risk Assessment Forum. US EPA. 1998c. Human Health Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Peer Review Draft. Office of Solid Waste and Emergency Response, Washington, DC, 20460. EPA 530-D-98-001a.
- US EPA. 1999. Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities. Peer Review Draft. Solid Waste and Emergency Response, Dallas, Texas, 75202. EPA 530-D-99-001A
- US EPA. 2011. Integrated Risk Information System (IRIS) Data Base, Office of Research and Development/National Center for Environmental Assessment.
- US EPA. Region 5 Toxics Reduction Team Website: http://www.epa.gov/grtlakes/toxteam/pcbid/table.htm.
- Valoppi, L., M. Petreas, R. M. Donohoe, L. Sullivan, and C.A. Callaham. 1999. *Use of PCB Congener and Homologue Analysis in Ecological Risk Assessment*. Environmental Toxicology and Risk Assessment: Recent Achievements in Environmental Fate and Transport, Ninth Volume, ASTM STP 1381, F. T. Price, K. V. Brix, and N. K. Lane, Eds., American Society for Testing and Materials, West Conshohocken, Pennsylvania.
- Van den Berg, M., L. Birnbaum, S. T. C. Bosveld, B. Brunstr_m, P. Cook, M. Feeley, J. P. Giesy, A. Hanberg, R. Hasegawa, S. W. Kennedy, T. Kubiak, J. C. Larsen, F. X. Rolaf van Leeuwen, A. K. Djien Liem, C. Nolt, R. E. Peterson, L. Poellinger, S. Safe, D. Schrenk, D. Tillitt, M. Tysklind, M. Younes, F. Waern, and T. Zacharewski, 1998. *Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife*. Environmental Health Perspectives. Vol. 106, No. 12, pp. 775-792.

VOLUME 2

TIER 1: SCREENING-LEVEL ECOLOGICAL RISK ASSESSMENT

PHASE I Scoping Assessment

TABLE OF CONTENTS

Acron	ymns and Abbreviations	ii
1.0	Introduction	1
2.0	Scoping Assessment	
2.1	Compile and Assess Basic Site Information	2
2.2	Site Visit	3
2.3	Identify Contaminants of Potential Ecological Concern	4
2.4	Developing the Preliminary Conceptual Site Exposure Model	
2.5	Assembling the Scoping Assessment Report	
3.0	Site Exclusion Criteria	9
4.0	Technical Decision Point: Is Ecological Risk Suspected?	
5.0	Screening Levels Ecological Risk Assessment (SLERA)	
5.1	Selection of Representative Species	10
5.2	Exposure pathways	10
5.3	slera exposure estimation	13
5.4	Effects assessment	13
5.5	risk characterization	13
6.0	TIER 2: Phase II - Quantitative Assessment	.14
7.0	References	
Figure	es ·	
Figure	1. NMED Ecological Risk Assessment Process	5
_	2. Example Preliminary Conceptual Site Exposure Model Diagram for a Hypothetical	
-	Site	8
Figure	2. Generic Food Web	.11

Attachments

Attachment A: Screening Level Ecological Risk Assessment Scoping Assessment Site Assessment Checklist

Attachment B: Ecological Site Exclusion Criteria Checklist and Decision Tree

Acronymns and Abbreviations

AUF Area Use Factor below ground surface

COPEC Constituent of Potential Ecological Concern

ft foot

GAERPC Guidance for Assessing Ecological Risks Posed by Chemicals

HI Hazard Index HQ Hazard Quotient

kg kilogram

LOAEL Lowest-observed adverse effect level

LULC land use and land cover

mg milligram

NMED New Mexico Environment Department NOAEL No-observed adverse effect level

PCSEM Preliminary Conceptual Site Exposure Model RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment
RFI RCRA Facility Investigation
T&E Threatened and Endangered
TRV Toxicity Reference Value

US EPA United States Environmental Protection Agency

1.0 INTRODUCTION

The purpose of an ecological risk assessment is to evaluate the potential adverse effects that chemical contamination has on the plants and animals that make up ecosystems. The risk assessment process provides a way to develop, organize and present scientific information so that it is relevant to environmental decisions.

The New Mexico Environment Department Hazardous Waste Bureau (NMED) has developed a tiered procedure for the evaluation of ecological risk. This procedure is outlined in the *Guidance for Assessing Ecological Risks Posed by Chemicals: Screening-Level Ecological Risk Assessment* (GAERPC) (NMED, 2000). Briefly, the tiers of the procedure are organized as follows:

TIER 1: PHASE I - QUALITATIVE ASSESSMENT

- Scoping Assessment
- Screening Assessment

TIER 2: PHASE II - QUANTITATIVE ASSESSMENT

• Site-Specific Ecological Risk Assessment

As discussed above and illustrated in Figure 1, the Scoping Assessment is the first phase of the Tier I Screening-Level Ecological Risk Assessment process as defined by the NMED GAERPC. This document provides specific procedures to assist the facility in conducting the first step (Scoping Assessment) of the Tier I, Screening-Level Ecological Risk Assessment process outlined in the GAERPC. The purpose of the Scoping Assessment is to gather information, which will be used to determine if there is "any reason to believe that ecological receptors and/or complete exposure pathways exist at or in the locality of the site" (NMED, 2000). The scoping assessment step also serves as the initial information-gathering phase for sites clearly in need of a more detailed assessment of potential ecological risk. This document outlines the methodology for conducting a Scoping Assessment, and includes a Site Assessment Checklist (Attachment A), which serves as tool for gathering information about the facility property and surrounding areas. Although the GAERPC provides a copy of the US Environmental Protection Agency (US EPA) Checklist for Ecological Assessment/Sampling (US EPA, 1997), the attached Site Assessment Checklist provides an expanded, user-friendly template, which both guides the user as to what information to collect and furnishes an organized structure in which to enter the information.

After the Site Assessment Checklist has been completed, the assessor must use the collected information to generate a Scoping Assessment Report and Preliminary Conceptual Site Exposure Model (PCSEM). Guidance for performing these tasks is provided in this document, and in the GAERPC. The Scoping Assessment Report and PCSEM are subsequently used to address the first in a series of Technical Decision Points of the tiered GAERPC process. Technical Decision Points are questions which must be answered by the assessor after the completion of certain phases in the process. The resulting answer to the question determines the next step to be

undertaken by the facility. The first Technical Decision Point, as illustrated in Figure 1, is to decide: *Is Ecological Risk Suspected?*

If the answer to the first Technical Decision Point is "no" (that is, ecological risk is not suspected), the assessor may use the Exclusion Criteria Checklist and Decision Tree (Attachment B) to help confirm or deny that possibility. However, it is unlikely that any site containing potential ecological habitat or receptors will meet the Site Exclusion Criteria.

If ecological risk is suspected, the facility will usually be directed to proceed to the next phase of Tier I, which is a Screening Level Ecological Risk Assessment (SLERA). A SLERA is a simplified risk assessment that can be conducted with limited site-specific data by defining assumptions for parameters that lack site-specific data (US EPA, 1997). Values used for screening are consistently biased in the direction of overestimating risk to ensure that sites that might pose an ecological risk are properly identified. The completed Site Assessment Checklist is a valuable source of information needed for the completion of the SLERA. Instructions for performing a SLERA can be found in the GAERPC and in a number of EPA guidance documents (e.g., US EPA, 1997; US EPA, 1998).

2.0 SCOPING ASSESSMENT

The Scoping Assessment serves as the initial information gathering and evaluation phase of the Tier I process. A Scoping Assessment consists of the following steps:

- Compile and Assess Basic Site Information (using Site Assessment Checklist)
- Conduct Site Visit
- Identify Preliminary Contaminants of Potential Ecological Concern
- Develop a Preliminary Conceptual Site Exposure Model
- Prepare a Scoping Assessment Report

The following subsections provide guidance for completing each step of the Scoping Assessment. For additional guidance, readers should refer to the GAERPC (NMED, 2000).

2.1 Compile and Assess Basic Site Information

The first step of the Scoping Assessment process is to compile and assess basic site information. Since the purpose of the Scoping Assessment is to determine if ecological habitats, receptors, and complete exposure pathways are likely to exist at the site, those items are the focus of the information gathering. The Site Assessment Checklist (Attachment A) should be used to complete this step. The questions in the Site Assessment Checklist should be addressed as completely as possible with the information available before conducting a site visit.

In many cases, a large portion of the Site Assessment Checklist can be completed using reference materials and general knowledge of the site. A thorough file search should be conducted to compile all potential reference materials. Resource Conservation and Recovery Act (RCRA)

Facility Assessment (RFA) and Facility Investigation (RFI) reports, inspection reports, RCRA Part B Permit Applications, and facility maps can all be good sources of the information needed for the Site Assessment Checklist.

Habitats and receptors which may be present at the site can be identified by contacting local and regional natural resource agencies. Habitat types may be determined by reviewing land use and land cover maps (LULC), which are available via the Internet at http://www.nationalatlas.gov/scripts. Additional sources of general information for the identification of ecological receptors and habitats are listed in the introduction section of the Site Assessment Checklist (Attachment A).

After all available information has been compiled and entered into the Site Assessment Checklist, the assessor should review the checklist and identify data gaps. Plans should then be made to obtain the missing information by performing additional research and/or by observation and investigation during the site visit.

2.2 Site Visit

When performing a Scoping Assessment, at least one site visit should be conducted to directly assess ecological features and conditions. As discussed in the previous section, completion of the Site Assessment Checklist should have begun during the compilation of basic site information. The site visit allows for verification of the information obtained from the review of references and other information sources. The current land and surface water usage and characteristics at the site can be observed, as well as direct and indirect evidence of receptors. In addition to the site, areas adjacent to the site and all areas where ecological receptors are likely to contact site-related chemicals (i.e., all areas which may have been impacted by the release or migration of chemicals from the site) should be observed or visited and addressed in the Site Assessment Checklist. The focus of the habitat and receptor observations should be on a community level. That is, dominant plant and animal species and habitats (e.g., wetlands, wooded areas) should be identified during the site visit. Photographs should be taken during the site visit and attached to the Scoping Assessment Report. Photographs are particularly useful for documenting the nature, quality, and distribution of vegetation, other ecological features, potential exposure pathways, and any evidence of contamination or impact. While the focus of the survey is on the community level, the U.S. Fish and Wildlife Service and the New Mexico Natural Heritage Program should be contacted prior to the site visit. The intent is to determine if state listed and/or federal listed Threatened & Endangered (T&E) species or sensitive habitats may be present at the site, or if any other fish or wildlife species could occur in the area (as indicated in the Site Assessment Checklist, Section IIID). A trained biologist or ecologist should conduct the biota surveys to appropriately characterize major habitats and to determine whether T&E species are present or may potentially use the site. The site assessment should also include a general survey for T&E species and any sensitive habitats (e.g. wetlands, perennial waters, breeding areas), due to the fact that federal and state databases might not be complete.

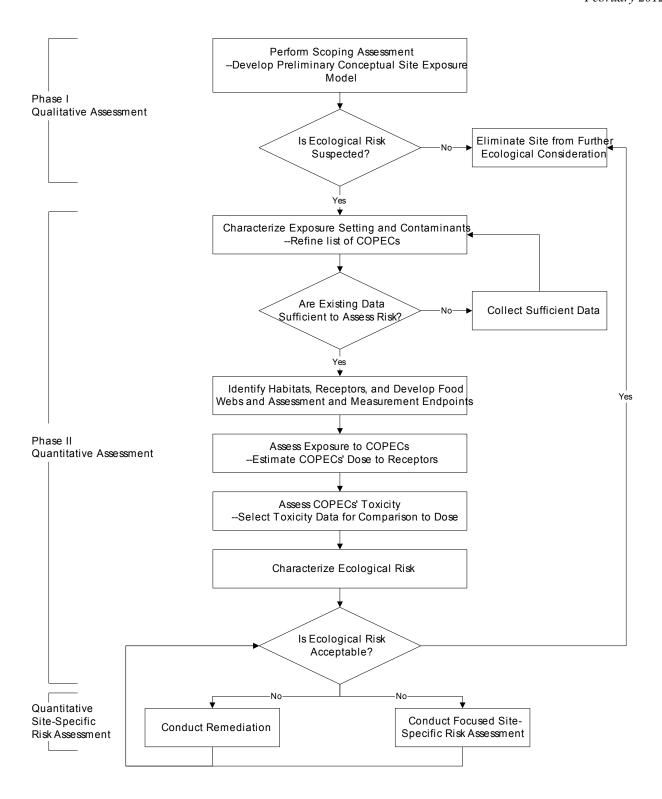
Site visits should be conducted at times of the year when ecological features are most apparent (i.e., spring, summer, early fall). Visits during winter might not provide as much evidence of the presence or absence of receptors and potential exposure pathways.

In addition to observations of ecological features, the assessor should note any evidence of chemical releases (including visual and olfactory clues), drainage patterns, areas with apparent erosion, signs of groundwater discharge at the surface (such as seeps or springs), and any natural or anthropogenic site disturbances.

2.3 Identify Contaminants of Potential Ecological Concern

Contaminants of Potential Ecological Concern (COPECs) are chemicals which may pose a threat to individual species or biological communities. For the purposes of the Scoping Assessment, <u>all</u> chemicals known or suspected of being released at the site are considered COPECs. The identification of COPECs is usually accomplished by the review of historical information in which previous site activities and releases are identified, or by sampling data which confirm the presence of contaminants in environmental media at the site. If any non-chemical stressors such as mechanical disturbances or extreme temperature conditions are known to be present at the site, they too are to be considered in the assessment.

After the COPECs have been identified, they should be summarized and organized (such as in table or chart form) for presentation in the Scoping Assessment Report.


2.4 <u>Developing the Preliminary Conceptual Site Exposure Model</u>

A PCSEM provides a summary of potentially complete exposure pathways, along with potentially exposed receptor types. The PCSEM, in conjunction with the scoping report, is used to determine whether further ecological assessment (i.e., Screening-Level Assessment, Site-Specific Assessment) and/or interim measures are required.

A complete exposure pathway is defined as a pathway having all of the following attributes (US EPA, 1998; NMED, 2000):

- A source and mechanism for hazardous waste/constituent release to the environment
- An environmental transport medium or mechanism by which a receptor can come into contact with the hazardous waste/constituent
- A point of receptor contact with the contaminated media or via the food web, and
- An exposure route to the receptor.

If any of the above components are missing from the exposure pathway, it is not a complete pathway for the site. A discussion regarding all possible exposure pathways and the rationale/justification for eliminating any pathways should be included in the PCSEM narrative and in the Scoping Assessment Report.

Adapted from GAERPC (NMED 2000).

Figure 1. NMED Ecological Risk Assessment Process

The PCSEM is presented as both a narrative discussion and a diagram illustrating potential contaminant migration and exposure pathways to ecological receptors. A sample PCSEM diagram is presented in Figure 2. On the PCSEM diagram, the components of a complete exposure pathway are grouped into three main categories: sources, release mechanisms, and potential receptors. As a contaminant migrates and/or is transformed in the environment, sources and release mechanisms can be defined as primary, secondary, and tertiary.

For example, Figure 2 depicts releases from a landfill that migrate into soils, and reach nearby surface water and sediment via storm water runoff. In this situation, the release from the landfill is considered the primary release, with infiltration as the primary release mechanism. Soil becomes the secondary source, and storm water runoff is the secondary release mechanism to surface water and sediments, the tertiary source.

Subsequent ecological exposures to terrestrial and aquatic receptors will result from this release. The primary exposure routes to ecological receptors are direct contact, ingestion, and possibly inhalation. For example, plant roots will be in direct contact with contaminated sediments, and burrowing mammals will be exposed via dermal contact with soil and incidental ingestion of contaminated soil. In addition, exposures for birds and mammals will occur as they ingest prey items through the food web.

Although completing the Site Assessment Checklist will not provide the user with a readymade PCSEM, a majority of the components of the PCSEM can be found in the information provided by the Site Assessment Checklist. The information gathered for the completion of Section II of the Site Assessment Checklist, can be used to identify sources of releases. The results of Section III, Habitat Evaluation, can be used to both identify secondary and tertiary sources and to identify the types of receptors which may be exposed. The information gathered for completion of Section IV, Exposure Pathway Evaluation, will assist users in tracing the migration pathways of releases in the environment, thus helping to identify release mechanisms and sources.

Once all of the components of the conceptual model have been identified, complete exposure pathways and receptors that have the potential for exposure to site releases can be identified.

For further guidance on constructing a PCSEM, consult the GAERPC (NMED, 2000), and EPA's Office of Solid Waste and Emergency Response's *Soil Screening Guidance: User's Guide* (1996).

2.5 Assembling the Scoping Assessment Report

After completion of the previously described activities of the scoping assessment, the Scoping Assessment Report should be assembled to summarize the site information and present an evaluation of receptors and pathways at the site. The Scoping Assessment Report should be designed to support the decision made regarding the first Technical Decision Point (Is Ecological Risk Suspected?). The Scoping Assessment Report should, at a minimum, contain the following information:

- Existing Data Summary
- Site Visit Summary (including a completed Site Assessment Checklist)

- Evaluation of Receptors and Pathways
- Recommendations
- Attachments (e.g. photographs, field notes, telephone conversation logs with natural resource agencies)
- References/Data Sources

After completion, the Scoping Assessment Report and PCSEM should be submitted to NMED for review and approval. These documents will serve as a basis for decisions regarding future actions at the site.

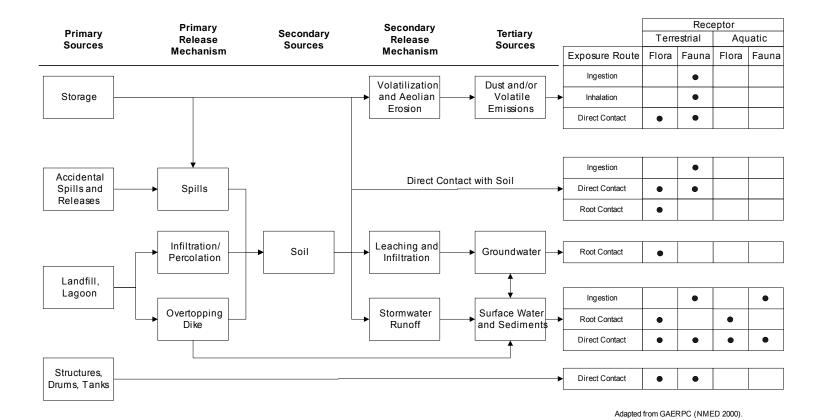


Figure 2. Example Preliminary Conceptual Site Exposure Model Diagram for a Hypothetical Site

3.0 SITE EXCLUSION CRITERIA

If the assessor believes that the answer to the first Technical Decision Point (Is Ecological Risk Suspected?) is "no" based on the results of the PCSEM and Scoping Assessment Report, it should be determined whether the facility meets the NMED Site Exclusion Criteria.

Exclusion criteria are defined as those conditions at an affected property which eliminate the need for a SLERA. The three criteria are as follows:

- Affected property does not include viable ecological habitat.
- Affected property is not utilized by potential receptors.
- Complete or potentially complete exposure pathways do not exist due to affected property setting or conditions of affected property media.

The Exclusion Criteria Checklist and associated Decision Tree (Attachment B) can be used as a tool to help the user determine if an affected site meets the exclusion criteria. The checklist assists in making a conservative, qualitative determination of whether viable habitats, ecological receptors, and/or complete exposure pathways exist at or in the locality of the site where a release of hazardous waste/constituents has occurred. Thus, meeting the exclusion criteria means that the facility can answer "no" to the first Technical Decision Point.

If the affected property meets the Site Exclusion Criteria, based on the results of the checklist and decision tree, the facility must still submit a Scoping Assessment Report to NMED which documents the site conditions and justification for how the criteria have been met. Upon review and approval of the exclusion by the appropriate NMED Bureau, the facility will not be required to conduct any further evaluation of ecological risk. However, the exclusion is not permanent; a future change in circumstances may result in the affected property no longer meeting the exclusion criteria.

4.0 TECHNICAL DECISION POINT: IS ECOLOGICAL RISK SUSPECTED?

As discussed in the beginning of this document, the Scoping Assessment is the first phase of the GAERPC ecological risk assessment process (Figure 1). Following the submission of the Scoping Assessment Report and PCSEM, NMED will decide upon one of the following three recommendations for the site:

- No further ecological investigation at the site, or
- Continue the risk assessment process, and/or
- Undertake a removal or remedial action.

If the information presented in the Scoping Assessment Report supports the answer of "no" to the first Technical Decision Point, and the site meets the exclusion criteria, the site will likely be excused from further consideration of ecological risk. However, this is only true if it can be documented that a complete exposure pathway does not exist and will not exist in the future at

the site based on current conditions. For those sites where valid pathways for potential exposure exist or are likely to exist in the future, further ecological risk assessment (usually in the form of a SLERA) will be required. However, if the Scoping Assessment indicates that a detailed assessment is warranted, the facility would not be required to conduct a SLERA. Instead the facility would move directly to Tier II—Site-Specific Ecological Risk Assessment.

5.0 SCREENING LEVELS ECOLOGICAL RISK ASSESSMENT (SLERA)

If the PSCEM indicates complete exposure pathways, a SLERA is most likely the next step. The data collected during the scoping assessment is used to define facility-wide conditions and define the steps needed for the SLERA and includes the below items. The SLERA should contain a detailed discussion of each of these items.

- Characterization of the environmental setting, including current and future land uses.
 Ecological assessments must include the evaluation of present day conditions and land uses but also evaluate future land uses.
- Identification of known or likely chemical stressors (chemicals of potential ecological concern, COPECs). The characterization data from the site (e.g., facility investigation) is evaluated to determine what constituents are present in which media. Selection of COPEC should follow the same methodology as outlined in Volume I.
- Identification of the fate and transport pathways that are complete. This includes an understanding of how COPECs may be mobilized from one media to another.
- Identification of the assessment endpoints that should be used to assess impact of the receptors; what is the environmental value to be protected.
- Identification of the complete exposure pathways and exposure routes (as identified in the example in Figure 2). What are the impacted media (soil, surface water, sediment, groundwater, and/or plants) and how might the representative receptors be exposed (direct ingestion, inhalation, and/or direct contact)?
- Species likely to be impacted and selection of representative receptors. From the list of species likely to be present on-site, what species are to be selected to represent specific trophic levels?

5.1 <u>Selection of Representative Species</u>

Sites may include a wide range of terrestrial, semi-aquatic, and aquatic wildlife. A generalized food web is shown in Figure 3. Wildlife receptors for the SLERA should be selected to represent the trophic levels and habitats present or potentially present at the site.

5.2 Exposure Pathways

Typically the exposure pathways for a SLERA are generalized.

For soil, two soil intervals should be evaluated:

- For all non-burrowing receptors, the soil interval to be considered is between zero (0) and five (5) feet below ground surface (ft bgs).
- For all burrowing receptors and plants, the soil interval to be evaluated is 0 10 ft bgs.

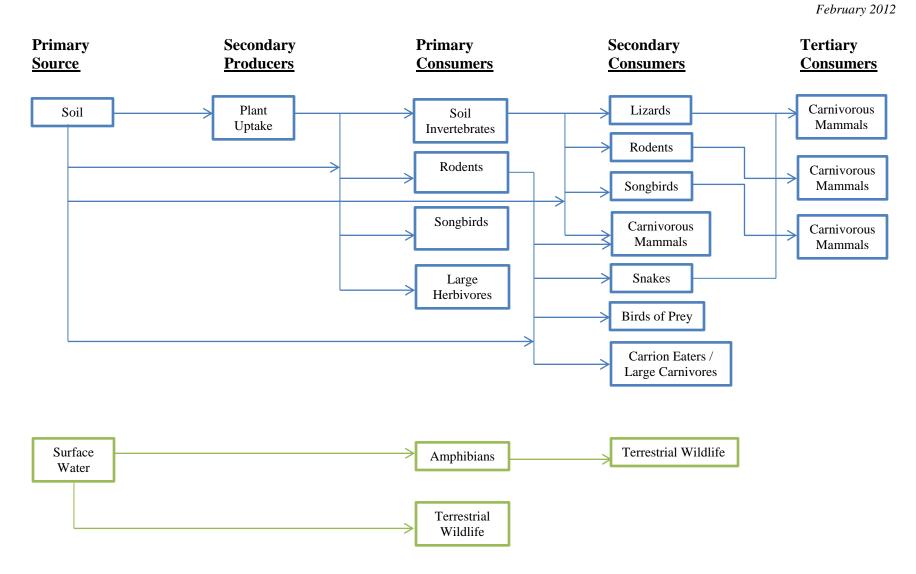


Figure 3. Generic Food Web.

Surface water, sediment, and groundwater should be evaluated based on site-specific conditions.

5.3 <u>SLERA Exposure Estimation</u>

For the initial SLERA, conservative assumptions should be applied as follows:

- 100% of the diet is assumed to contain the maximum concentration of each COPEC detected in the site media.
- Minimum reported body weights should be applied.
- Maximum dietary intake rates should be used.
- Foraging ranges are initial set equal to the size of the site being evaluated. This means that the area use factor (AUF) in the SLERA is set to a value of one.

Exposure doses for the various media should be calculated separately using the following equation:

$$Dose = \frac{C \times IR \times AUF}{BW}$$
 (Equation 1)

Where:

Dose = Screening level exposure dose (mg/kg-day)

C = Exposure point concentration, which is equal to the maximum detected

concentration for the COPC (mg/kg)

IR = Ingestion rate set equal to the maximum total dietary intake rate (kg/day)

AUF = Area use factor is assumed to be equal to the size of the site and set to a

value of one (unitless)

BW = Body weight set equal to the minimum reported body weight (kg).

5.4 Effects Assessment

The effects assessment evaluated the potential toxic effects on the receptors being exposed to the COPECs. The effects assessment includes selection of appropriate toxicity reference values (TRVs) for the characterization and evaluation of risk.

For the initial SLERA, the preference for TRVs is based on chronic or long term exposure, when available. The TRVs should be selected from peer-reviewed toxicity studies and from primary literature. Initial risk characterization should be conducted using the lowest appropriate chronic no-observed adverse effect level (NOAEL) for non-lethal or reproductive effects.

5.5 Risk Characterization

Risk is determined by dividing the receptor-specific dose determined using Equation 1 by the appropriate TRV, as follows:

$$HQ = \frac{Dose}{TRV}$$
 Equation 2

Where:

HQ = Hazard quotient, calculated for each receptor and COPEC (unitless)

Dose = Screening level exposure dose, calculated for each receptor (mg/kg-day)

TRV = Toxicity reference value, chemical-specific NOAEL (mg/kg-day)

HQs are calculated for each receptor and each COPEC. For each receptor, additive risk must be evaluated. For the initial screening assessment, it is assumed that all COPECs have equal potential risk to the receptor. The overall hazard index (HI) is then calculated for each receptor using Equation 3:

$$HI = HQ_x + HQ_y + ... + HQ_z$$
 Equation 3

Where:

HI = Hazard Index (unitless)

 HQ_x = Hazard quotient for each COPEC (unitless)

NMED applies a target risk level for ecological risk assessments of 1.0. If the HI for any receptor is above this target risk level, then there is a potential for adverse effects on ecological receptors and additional evaluation and possibly a site-specific ecological risk assessment may be warranted.

Some additional lines of evidence that may be used to assess risk when the HI is above the target level include:

- Modification of the TRV to reflect the lowest lowest-observed adverse effect level (LOAEL),
- Use of more refined exposure algorithms that incorporate more realistic exposure assumptions (such as specific ingestion rates for plants, soil, and/or water),
- Use of site-specific area use factors and population use factors,
- Evaluation of bioaccumulation, and
- Evaluation of risk by mechanism of effect.

As with all risk assessments, the SLERA should include a discussion of the uncertainties. More detailed information may be found in the *Guidance for Assessing Ecological Risks Posed by Chemicals: Screening-Level Ecological Risk Assessment(NMED, 2000)*.

6.0 TIER 2: PHASE II - QUANTITATIVE ASSESSMENT

In the event that the SLERA does not show that levels of contamination in the impacted media are below the target level of 1.0, additional quantitative analyses may be warranted. This may include incorporation of biota studies to evaluate impact at the site. NMED should be consulted prior to conducting a Tier 2 assessment.

7.0 REFERENCES

Los Alamos National Laboratory (LANL), 1997. Administrative Procedure 4.5, Draft

New Mexico Environment Department (NMED), 2000. Guidance for Assessing Ecological Risks Posed by Chemicals: Screening-Level Ecological Risk Assessment, Hazardous and Radioactive Materials Bureau, Final, March.

U.S. Environmental Protection Agency (US EPA), 1996. *Soil Screening Guidance: User's Guide*. Office of Solid Waste and Emergency Response. Washington, DC. EPA-540-R-96/018. July.

U.S. EPA, 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments, Environmental Response Team, Interim Final, June 5.

U.S.EPA, 1998. *Guidelines for Ecological Risk Assessment*, Risk Assessment Forum, Final, April. EPA/630/R-95/002F; http://www.epa.gov/ncea/ecorisk.htm.

ATTACHMENT A

SCREENING-LEVEL ECOLOGICAL RISK ASSESSMENT SCOPING ASSESSMENT SITE ASSESSMENT CHECKLIST

INTRODUCTION

This checklist has been developed as a tool for gathering information about the facility property and surrounding areas, as part of the scoping assessment. Specifically, the checklist assists in the compilation of information on the physical and biological aspects of the site including the site environmental setting, usage of the site, releases at the site, contaminant fate and transport mechanisms, and the area's habitats, receptors, and exposure pathways. The completed checklist can then be used to construct the preliminary conceptual site exposure model (PCSEM) for the site. In addition, the checklist and PCSEM will serve as the basis for the scoping assessment report. Section III of this document provides further information on using the completed checklist to develop the PCSEM.

In general, the checklist is designed for applicability to all sites, however, there may be unusual circumstances which require professional judgment in order to determine the need for further ecological evaluation (*e.g.*, cave-dwelling receptors). In addition, some of the questions in the checklist may not be relevant to all sites. Some facilities may have large amounts of data available regarding contaminant concentrations and hydrogeologic conditions at the site, while other may have only limited data. In either case, the questions on the checklist should be addressed as completely as possible with the information available.

Habitats and receptors, which may be present at the site, can be identified by direct or indirect³⁴ observations and by contacting local and regional natural resource agencies. Habitat types may be determined by reviewing land use and land cover maps (LULC), which are available via the Internet at http://www.nationalatlas.gov/mapit.html. With regard to receptors, it should be noted that receptors are often present at a site even when they are not observed. Therefore, for the purposes of this checklist, it should be assumed that receptors are present if viable habitat is present. The presence of receptors should be confirmed by contacting one or several of the organizations listed below.

Sources of general information available for the identification of ecological receptors and habitats include:

- U.S. Fish and Wildlife Service (http://www.fws.gov)
- Biota Information System of New Mexico (BISON-M) maintained by the New Mexico Department of Game and Fish (NMGF) (http://151.199.74.229/states/nm.htm)
- U.S. Forest Service (USFS) (http://www.fs.fed.us/)
- New Mexico Forestry Division (NMFD) of the Energy, Minerals and Natural Resources Department (http://www.emnrd.state.nm.us/forestry/index.htm)
- U.S. Bureau of Land Management (USBLM) (http://www.blm.gov/nhp/index.htm) or (http://www.nm.blm.gov/www/new_home_2.html)

³⁴ Examples of indirect observations that indicate the presence of receptors include: tracks, feathers, burrows, scat

- United States Geological Service (USGS) (http://www.usgs.gov)
- National Wetland Inventory Maps (http://wetlands.fws.gov)
- National Audubon Society (http://www.audobon.com)
- National Biological Information Infrastructure (http://biology.usgs.gov)
- Sierra Club (http://www.sierraclub.org)
- National Geographic Society (http://www.nationalgeographic.com)
- New Mexico Natural Heritage Program (http://nmnhp.unm.edu/)
- State and National Parks System
- Local universities
- Tribal organizations

INSTRUCTIONS FOR COMPLETING THE CHECKLIST

The checklist consists of four sections: Site Location, Site Characterization, Habitat Evaluation, and Exposure Pathway Evaluation. Answers to the checklist should reflect existing conditions and should not consider future remedial actions at the site. Completion of the checklist should provide sufficient information for the preparation of a PCSEM and scoping report and allow for the identification of any data gaps.

Section I - Site Location, provides general site information, which identifies the facility being evaluated, and gives specific location information. Site maps and diagrams, which should be attached to the completed checklist, are an important part of this section. The following elements should be clearly illustrated: 1) the location and boundaries of the site relative to the surrounding area, 2) any buildings, structures or important features of the facility or site, and 3) all ecological areas or habitats identified during completion of the checklist. It is possible that several maps will be needed to clearly and adequately illustrate the required elements. Although topographical information should be illustrated on at least one map, it is not required for every map. Simplified diagrams (preferably to scale) of the site and surrounding areas will usually suffice.

Section II - Site Characterization, is intended to provide additional temporal and contextual information about the site, which may have an impact on determining whether a certain area should be characterized as ecologically viable habitat or contains receptors. Answers to the questions in Section II will help the reviewer develop a broader and more complete evaluation of the ecological aspects of a site.

Section III - Habitat Evaluation, provides information regarding the physical and biological characteristics of the different habitat types present at or in the locality of the site. Aquatic features such as lakes, ponds, streams, arroyos and ephemeral waters can be identified by reviewing aerial photographs, LULC and topographic maps and during site reconnaissance visits. In New Mexico, there are several well-defined terrestrial communities, which occur naturally. Typical communities include wetlands, forest (e.g., mixed conifer, ponderosa pine and pinyon juniper), scrub/shrub, grassland, and desert. Specific types of vegetation characterize each of these communities and can be used to identify them. Field guides are often useful for identifying vegetation types. A number

of sites may be in areas that have been disturbed by human activities and may no longer match any of the naturally occurring communities typical of the southwest. Particularly at heavily used areas at facilities, the two most common of these areas are usually described as "weed fields" and "lawn grass". Vegetation at "weed fields" should be examined to determine whether the weeds consist primarily of species native to the southwest or introduced species such as Kochia. Fields of native weeds and lawn grass are best evaluated using the short grass prairie habitat guides.

The applicable portions of Section III of the checklist should be completed for each individual habitat identified. For example, the questions in Section III.A of the checklist should be answered for each wetland area identified at or in the locality of the site and the individual areas must be identified on a map or maps.

Section IV- Exposure Pathway Evaluation, is used to determine if contaminants at the site have the potential to impact habitat identified in Section III. An exposure pathway is the course a chemical or physical agent takes from a source to an exposed organism. Each exposure pathway includes a source (or release from a source), an environmental transport mechanism, an exposure point, and an exposure route. A complete exposure pathway is one in which each of these components, as well as a receptor to be exposed, is present. Essentially, this section addresses the fate and transport of contaminants that are known or suspected to have been released at the site. In most cases, without a complete exposure pathway between contaminants and receptors, additional ecological evaluation is not warranted.

Potential transport pathways addressed in this checklist include migration of contaminants via air dispersion, leaching into groundwater, soil erosion/runoff, groundwater discharge to surface water, and irradiation. Due to New Mexico's semi-arid climate, vegetation is generally sparse. The sparse vegetation, combined with the intense nature of summer storms in New Mexico, results in soil erosion that occurs sporadically over a very brief time frame. Soil erosion may be of particular concern for sites located in steeply sloped areas. Several questions within Section IV of this checklist have been developed to aid in the identification of those sites where soil erosion/runoff would be an important transport mechanism.

7.1 Using the Checklist to Develop the Preliminary Conceptual Site Exposure Model

The completed Site Assessment Checklist can be used to construct the PCSEM. An example PCSEM diagram is presented in Figure 1. The CSM illustrates actual and potential contaminant migration and exposure pathways to associated receptors. The components of a complete exposure pathway are simplified and grouped into three main categories: sources, release mechanisms, and potential receptors. As a contaminant migrates and/or is transformed in the environment, sources and release mechanisms may expand into primary, secondary, and tertiary levels. For example, Figure 1 illustrates releases from inactive lagoons (primary sources) through spills (primary release mechanism), which migrate to surface and subsurface soils (secondary sources), which are then leached (secondary release mechanism) to groundwater (tertiary source). Similarly, exposures of various trophic levels to the contaminant(s) and consequent

exposures via the food chain may lead to multiple groups of receptors. For example, Figure 1 illustrates groups of both aquatic and terrestrial receptors which may be exposed and subsequently serve as tertiary release mechanisms to receptors which prey on them.

Although completing the checklist will not provide the user with a readymade PCSEM, a majority of the components of the PCSEM can be found in the answers to the checklist. It is then up to the user to put the pieces together into a comprehensive whole. The answers from Section II of the checklist, Site Characterization, can be used to identify sources of releases. The answers to Section IV, Exposure Pathway Evaluation, will assist users in tracing the migration pathways of releases in the environment, thus helping to identify release mechanisms and sources. The results of Section III, Habitat Evaluation, can be used to both identify secondary and tertiary sources and to identify the types of receptors which may be exposed. Appendix B of the NMED's *Guidance for Assessing Ecological Risks Posed by Chemicals: Screening-Level Ecological Assessment* also contains sample food webs which may be used to develop the PCSEM.

Once all of the components have been identified, one can begin tracing the steps between the primary releases and the potential receptors. For each potential receptor, the user should consider all possible exposure points (e.g., prey items, direct contact with contaminated soil or water, etc.) then begin eliminating pathways, which are not expected to result in exposure to the contaminant at the site. Gradually, the links between the releases and receptors can be filled in, resulting in potential complete exposure pathways.

For further guidance on constructing a PCSEM, consult the NMED's *Guidance for Assessing Ecological Risks Posed by Chemicals: Screening-Level Ecological Assessment* (2000), and EPA's Office of Solid Waste and Emergency *Response's Soil Screening Guidance: User's Guide* (1996).

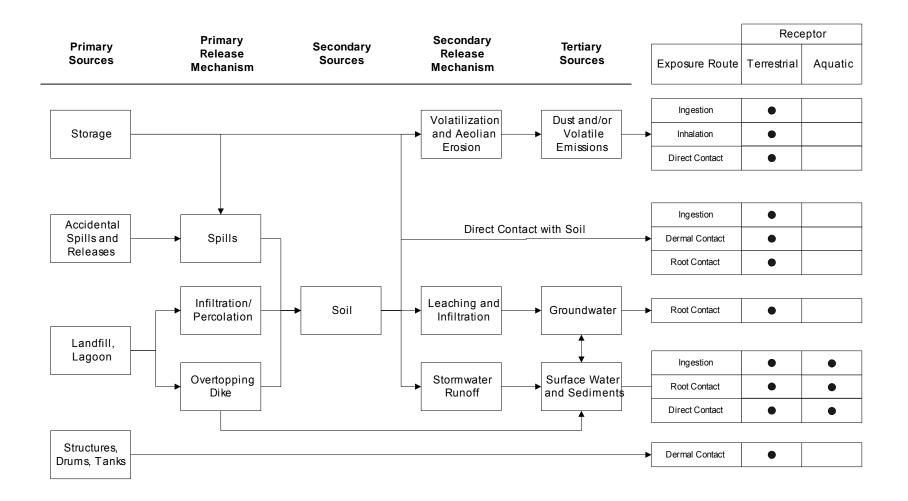


Figure 1. Example Preliminary Conceptual Site Exposure Model Diagram

NEW MEXICO ENVIRONMENT DEPARTMENT SITE ASSESSMENT CHECKLIST

I. SITE LOCATION

1.	Site		
	Name:		
	US EPA I.D.		
	Number:		
	Location:		
	County: City:		
2.	Latitude:		
2.	Longitude:		
3.	Attach site maps, including a to layout of the facility (e.g., site habitat areas identified in Secti illustrate known release areas, a features, if available.	boundaries, structures, etc.), on III of the checklist. Also	, and maps showing all o, include maps which
II.	SITE CHARACTERIZATIO)N	
1.	Indicate the approximate area of	of the site (i.e., acres or sq. f	t)
2.	Provide an approximate breakd	lown of the land uses on the	site:
	% Heavy Industrial	% Light Industrial	% Urban
	% Residential	% Rural	% Agricultural
	% Recreational ^a	% Undisturbed	% Other ^c
	^a For recreational areas, please of field, etc.):	describe the usage of the are	ea (e.g., park, playing
	^b For agricultural areas, please l	ist the crops and/or livestoc	k which are present:
	^c For areas designated as "other	", please describe the usage	of the area:

% Heavy Industrial	% Light Industrial	% Urban
% Residential	% Rural	% Agricultura
% Recreational ^a	% Undisturbed	% Other ^c
^a For recreational areas, please field, golf course, etc.):	e describe the usage of the area	(e.g., park, playing
^b For agricultural areas, please	list the crops and/or livestock	which are present:
^c For areas designated as "othe	er", please describe the usage of	of the area:
Describe reasonable and likely	y future land and/or water use	(s) at the site.
that may have occurred as a rerelease, provide information of liquid, vapor) and the known	f the site. Include information esult of previous land uses. For on the form of the chemical relor suspected causes or mechanoposal, dumping, explosion, etc.	or each chemical eased (i.e., solid, nism of the release
	aken place at the site, describe ly source of any disturbances il activities, removals, etc.) and	(e.g., erosion,

release	be the current uses of the site. Include information on recent (previous disturbances or chemical releases that have occurred. For each chemical, provide information on the form of the chemical released and the cauchanism of the release.
Provid	y the location or suspected location of chemical releases at the site. e an estimate of the distance between these locations and the areas ied in Section III.
Identif	to the symmetrial conteminants of concern (COCs) at the site. If Irmsym
includ	y the suspected contaminants of concern (COCs) at the site. If known, the the maximum contaminant levels. Please indicate the source of data a RFI, confirmatory sampling, etc.).
includ	e the maximum contaminant levels. Please indicate the source of data
include (e.g., F	e the maximum contaminant levels. Please indicate the source of data

III. **HABITAT EVALUATION**

III.A Wetland Habitats

	Are any wetland 35 areas such as marshes or swamps on or adjacent to the site? \Box Yes \Box No
	If yes, indicate the wetland area on the attached site map and answer the following questions regarding the wetland area. If more than one wetland area is present on or adjacent to the site, make additional copies of the following questions and fill out for each individual wetland area. Distinguish between wetland areas by using names or other designations (such as location), and clearly identify each area on the site map. Also, obtain and attach a National Wetlands Inventory Map (or maps) to illustrate each wetland area.
	Identify the sources of the observations and information (e.g., National Wetland Inventory, Federal or State Agency, USGS topographic maps) used to make the determination that wetland areas are or are not present.
	If no wetland areas are present, proceed to Section III.B.
	Wetland Area Questions
	☐ Onsite ☐ Offsite
Name Design	
1.	Indicate the approximate area of the wetland (acres or ft ²)
2.	Identify the type(s) of vegetation present in the wetland.
	 Submergent (i.e., underwater) vegetation Emergent (i.e., rooted in the water, but rising above it) vegetation Floating vegetation Scrub/shrub

35Wetlands are defined in 40 CFR §232.2 as "Areas inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances does support, a prevalence of vegetation typically adapted for life in saturated soil conditions." Examples of typical wetlands plants include: cattails, cordgrass, willows and cypress trees. National wetland inventory maps may be available at http:\\nwi.fws.gov. Additional information on wetland delineation criteria is also available from the Army Corps of Engineers.

Risk Assessment Guidance for Investigations and Remediation Volume 2 February 2012

	Wooded
	Other (Please describe):
Esti	mate the vegetation density of the wetland area.
	Dense (i.e., greater than 75% vegetation)
	Moderate (i.e., 25% to 75% vegetation)
	Sparse (i.e., less than 25% vegetation)
Is s	tanding water present?
If y	es, is the water primarily: \Box Fresh or \Box Brackish
-	icate the approximate area of the standing water (ft ²):
	icate the approximate depth of the standing water, if known (ft. or
in.)	
If k	nown, indicate the source of the water in the wetland.
	Stream/River/Creek/Lake/Pond
	Flooding
	Groundwater
	Surface runoff
Is th	here a discharge from the facility to the wetland? \Box Yes \Box No
If y	es, please
des	cribe:

Wetland Area Questions (Continued)

7.		s there a discharge from the wetland?
		Lake/Pond (Name:) Groundwater
8.		the area show evidence of flooding? \square Yes \square No f yes, indicate which of the following are present (mark all that apply):
		Standing water
		Water marks
		Buttressing
		2 40110 111140
		11100 110110
		Other (Please describe):
9.		nals observed in the wetland area or suspected to be present based on indirect ence or file material:
		Birds
		Fish
		Mammals
		Reptiles (e.g., snakes, turtles)
		Amphibians (e.g., frogs, salamanders)
		Sediment-dwelling invertebrates (e.g., mussels, crayfish, insect nymphs)
	S	pecify species, if known:
	_	

III.B Aquatic Habitats III.B.1 Non-Flowing Aquatic Features

	Are any non-flowing aquatic features (such as ponds or lakes) located at or adjacent to the site? \[\subseteq \text{Yes} \subseteq \text{No} \]
	If yes, indicate the aquatic feature on the attached site map and answer the following questions regarding the non-flowing aquatic features. If more than one non-flowing aquatic feature is present on or adjacent to the site, make additional copies of the following questions and fill out for each individual aquatic feature. Distinguish between aquatic features by using names or other designations, and clearly identify each area on the site map.
	If no, proceed to Section III.B.2.
	Non-Flowing Aquatic Feature Questions
	Onsite Offsite Name or Designation:
1.	Indicate the type of aquatic feature present:
	 Natural (e.g., pond or lake) Man-made (e.g., impoundment, lagoon, canal, etc.)
2.	Estimate the approximate size of the water body (in acres or sq. ft.)
3.	If known, indicate the depth of the water body (in ft. or in.).

Non-Flowing Aquatic Feature Questions (Continued)

4.		the general composition e following list.	of the	e bottom substrate.	Mark all s	ources that apply
		Bedrock		Sand		Concrete
		Boulder (>10 in.)		Silt		Debris
		Cobble (2.5 - 10 in.)		Clay		Detritus
		Gravel (0.1 - 2.5 in.)		Muck (fine/black)		
		Other (please specify):_				
5.		the source(s) of the wate e following list.	r in tl	ne aquatic feature. I	Mark all so	ources that apply
		River/Stream/Creek				
		Groundwater				
		Industrial Discharge Surface Runoff				
		Other (please				
	spec	rify):				
6.		a discharge from the faciles, describe the origin of e	-	_		□ No h:
7.	No If ye	e aquatic feature discharges, indicate the features from	om th	ne following list into	which the	aquatic feature
	uisci	naiges, and mulcate whet	1101 11	ic discharge occurs	onsite of 0	11511.
	□ I	River/Stream/Creek		\square onsite \square offs	ite	
	- (Groundwater		\square onsite \square offs	ite	
	_ \ \	Wetland	□ o	nsite \square offsite		
		Impoundment Other (please describe)		□ onsite □ offs	site	

Non-Flowing Aquatic Feature Questions (Continued)

	Birds
	Fish
	Mammals
	Reptiles (e.g., snakes, turtles)
	Amphibians (e.g., frogs, salamanders)
	Sediment-dwelling invertebrates (e.g., mussels, crayfish, insect nymphs)
Spec	cify species, if known:

III.B.2 Flowing Aquatic Features

Are any flowing aquatic features (such as streams or rivers) located at or adjacent to the site?
☐ Yes ☐ No
If yes, indicate the aquatic feature on the attached site map and answer the following questions regarding the flowing aquatic features. If more than one flowing aquatic feature is present on or adjacent to the site, make additional copies of the following questions and fill out for each individual aquatic feature. Distinguish between aquatic features by using names or other designations, and clearly identify each area on the site map
If no, proceed to Section III.C.

Flowing Aquatic Feature Questions

			Onsite	Offsite		
Na	me or Des	ignation:				
1.	Indicate t	he type of flowing ac	quatic fea	ture present.		
	□ St □ C: □ B: □ D □ A □ In	iver ream reek rook ry wash rroyo termittent stream rtificially created (dir	tch, etc.)			
2.		he general compositi	on of the			
		Bedrock		Sand		Concrete
		Boulder (>10 in.)		Silt		Debris
		Cobble (2.5 - 10 in.)		Clay		Detritus
		Gravel (0.1 - 2.5 in.)		Muck (fine/black)		
		Other (please specify	y):			
3.	Describe the aquati		oank (e.g	., height, slope, extent	of vege	etative cover) of
4.		_	-	the aquatic feature? ischarge and its migra		☐ No h:

5. Indicate the discharge point of the water body. Specify name, if known.

Risk Assessment Guidance for Investigations and Remediation	
Volume 2	
February 2012	

Flowing Aquatic Feature Questions (Continued)

6.	If t	the flowing aquatic feature is a dry wash or arroyo, answer the following questions.
		□ Check here if feature is not a dry wash or arroyo
		If known, specify the average number of days in a year in which flowing water is
		present in the feature:
		Is standing water or mud present? Check all that apply.
		□ Standing water
		□ Mud
		□ Neither standing water or mud
		Does the area show evidence of recent flow (e.g., flood debris clinging to
		vegetation)?
		□ Yes
		□ No
		□ Not sure
7.		nimals observed in the vicinity of the aquatic feature or suspected to be present
	bas	sed on indirect evidence or file material:
		Birds
		Fish
		Mammals
		Reptiles (e.g., snakes, turtles)
		Amphibians (e.g., frogs, salamanders)
		Sediment-dwelling invertebrates (e.g., mussels, crayfish, insect nymphs)
		Specify species, if known:
		specify species, it known.

III.C	Terrestrial	Habitats
III.C.1	Woo	oded

Are any wooded areas on or adjacent to the site? \square Yes \square No

If yes, indicate the wooded area on the attached site map and answer the following questions. If more than one wooded area is present on or adjacent to the site, make additional copies of the following questions and fill out for each individual wooded area. Distinguish between wooded areas by using names or other designations, and clearly identify each area on the site map.

If no, proceed to Section III.C.2.

Wooded Area Questions

		☐ On-site ☐ Off-site
Na	me	or Designation:
1.	Est	timate the approximate size of the wooded area (in acres or sq. ft.)
2.	Inc	licate the dominant type of vegetation in the wooded area.
		EvergreenDeciduousMixed
		Dominant plant species, if known:
3.	Est	timate the vegetation density of the wooded area.
		 Dense (i.e., greater than 75% vegetation) Moderate (i.e., 25% to 75% vegetation) Sparse (i.e., less than 25% vegetation)
4.	Inc	licate the predominant size of the trees at the site. Use diameter at chest height.
		 0-6 inches 6-12 inches >12 inches No single size range is predominant
5.		simals observed in the wooded area or suspected to be present based on indirect idence or file material:
		Birds Mammals Reptiles (e.g., snakes, lizards) Amphibians (e.g., toads, salamanders)
		Specify species, if known:

TIT C 3	Cl l. /C l.
III.C.2	Shrub/Scrub

Are any shrub/scrub areas on or adjacent to the site? \Box Yes \Box No

If yes, indicate the shrub/scrub area on the attached site map and answer the following questions. If more than one shrub/scrub area is present on or adjacent to the site, make additional copies of the following questions and fill out for each individual shrub/scrub area. Distinguish between shrub/scrub areas, using names or other designations, and clearly identify each area on the site map.

If no, proceed to Section III.C.3.

Shrub/Scrub Area Questions

 stimate the approximate size of the shrub/scrub area (in acres or sq. ft.)
Indicate the dominant type of shrub/scrub vegetation present, if known.
Estimate the vegetation density of the shrub/scrub area.
□ Dense (i.e., greater than 75% vegetation)
□ Moderate (i.e., 25% to 75% vegetation)
□ Sparse (i.e., less than 25% vegetation)
Indicate the approximate average height of the scrub/shrub vegetation.
□ 0-2 feet
□ 2-5 feet
□ >5 feet
Animals observed in the shrub/scrub area or suspected to be present based on
indirect evidence or file material:
□ Birds □ Manusala
Mammals Dentiles (e.g., analysis, ligands)
Reptiles (e.g., snakes, lizards) Amphibians (e.g., toads, salamenders)
□ Amphibians (e.g., toads, salamanders)
Specify species, if known:

III.C.3	Grassland	
	Are any grassland areas on or adjacent to the site? \Box Yes \Box No	
If yes, indicate the grassland area on the attached site map and answer the following questions. If more than one grassland area is present on or adjacen the site, make additional copies of the following questions and fill out for eac individual grassland area. Distinguish between grassland areas by using nam other designations, and clearly identify each area on the site map.		
	If no, proceed to Section III.C.4.	
	Grassland Area Questions	
Na	Onsite Offsite	
1.	Estimate the approximate size of the grassland area (in acres or sq. ft.)	
2.	Indicate the dominant plant type, if known.	
3.	Estimate the vegetation density of the grassland area.	
	 Dense (i.e., greater than 75% vegetation) Moderate (i.e., 25% to 75% vegetation) Sparse (i.e., less than 25% vegetation) 	
4.	Indicate the approximate average height of the dominant plant type (in ft. or in.)_	
5.	Animals observed in the grassland area or suspected to be present based on indirect evidence or file material:	
	 Birds Mammals Reptiles (e.g., snakes, lizards) Amphibians (e.g., toads, salamanders) 	
	Specify species, if known:	

III.C.4	Desert
	Are any desert areas on or adjacent to the site? \Box Yes \Box No
	If yes, indicate the desert area on the attached site map and answer the following questions. If more than one desert area is present on or adjacent to the site, make additional copies of the following questions and fill out for each individual desert area. Distinguish between desert areas by using names or other designations, and clearly identify each area on the site map.
	If no, proceed to Section III.C.5.
	Desert Area Questions
Na	Onsite Offsite
1.	Estimate the approximate size of the desert area (in acres or sq. ft.)
2.	Describe the desert area (e.g., presence or absence of vegetation, vegetation types, presence/size of rocks, sand, etc.)
3.	Animals observed in the desert area or suspected to be present based on indirect evidence or file material:
	□ Birds
	□ Mammals
	Reptiles (e.g., snakes, lizards)
	□ Amphibians (e.g., toads, salamanders)
	Specify species, if known:

III.C.5	Other
111.0.3	Ouici

1.	Are there any other terrestrial communities or habitats on or adjacent to the site which were not previously described? \[\subseteq \text{Yes} \subseteq \text{No} \]
	If yes, indicate the "other" area(s) on the attached site map and describe the area(s) below. Distinguish between onsite and offsite areas. If no, proceed to Section III.D.
III.D	Sensitive Environments and Receptors
1.	Do any other potentially sensitive environmental areas ³⁶ exist adjacent to or within 0.5 miles of the site? If yes, list these areas and provide the source(s) of information used to identify sensitive areas. <i>Do not answer "no" without confirmation from the U.S. Fish and Wildlife Service and appropriate State of New Mexico division.</i>

³ Areas that provide unique and often protected habitat for wildlife species. These areas are typically used during critical life stages such as breeding, hatching, rearing of young and overwintering. Refer to **Table 1** at the end of this document for examples of sensitive environments.

Ì	Are any areas on or near (i.e., within 0.5 miles) the site which are owned or us by local tribes? If yes, describe. <i>Contact the Tribal Liaison in the Office of the</i>
,	Secretary (505)827-2855 to obtain this information.
	Does the site serve or potentially serve as a habitat, foraging area, or refuge by rare, threatened, endangered, candidate and/or proposed species (plants or animals), or any otherwise protected species? If yes, identify species. This information should be obtained from the U.S. Fish and Wildlife Service and appropriate State of New Mexico division.
	Is the site potentially used as a breeding, roosting or feeding area by migratory bird species? If yes, identify which species.
	Is the site used by any ecologically ³⁷ , recreationally, or commercially importa
	is the site used by any ecologically, recreationally, of commercially importa

37 Ecologically important species include populations of species which provide a critical (i.e., not replaceable) food resource for higher organisms and whose function as such would not be replaced by more tolerant species; or perform a critical ecological function (such as organic matter decomposition) and whose functions will not be replaced by other species. Ecologically important species include pest and opportunistic species that populate an area if they serve as a food source for other species, but do not include domesticated animals (e.g., pets and livestock) or plants/animals whose existence is maintained by continuous human interventions (e.g., fish hatcheries, agricultural crops, etc.,)

	spec	species? If yes, explain.			
IV.	EXF	POSURE PATHWAY EVALUATION			
		ting data provide sufficient information on the nature, rate, and extent of nation at the site?			
		Yes			
		No			
		Uncertain			
		se provide an explanation for your ver:			
2.		existing data provide sufficient information on the nature, rate, and extent of amination in offsite affected areas?			
		Yes			
		No			
		Uncertain			
		No offsite contamination			
		se provide an explanation for your ver:			
3.	Do e	existing data address potential migration pathways of contaminants at the site?			
		Yes			
		Yes No			

Risk Assessment Guidance for Investigations and Remediation Volume 2 February 2012

Please provide an explanation for your			
answer:			
_			

	o existing data address potential migration pathways of contaminants in offsite fected areas?
	Yes
	No
	Uncertain
	No offsite contamination
Ple	ease provide an explanation for your
an	swer:
wi	re there visible indications of stressed habitats or receptors on or near (i.e., thin 0.5 miles) the site that may be the result of a chemical release? If yes, plain. Attach photographs if available.
ex	the location of the contamination such that receptors might be reasonably pected to come into contact with it? For soil, this means contamination in the il 0 to 5 feet below ground surface (bgs). If yes, explain.
	re receptors located in or using habitats where chemicals exist in air, soil, diment or surface water? If yes, explain.

dissolv	fould chemicals reach receptors via groundwater? Can chemicals leach or issolve to groundwater? Are chemicals mobile in groundwater? Does roundwater discharge into receptor habitats? If yes, explain.			
	chemicals reach receptors through runoff or erosion? Answer the ang questions:			
	s the approximate distance from the contaminated area to the nearest ourse or arroyo?			
	0 feet (i.e., contamination has reached a watercourse or arroyo)			
	1-10 feet			
	11-20 feet			
	21-50 feet			
	51-100 feet			
	101-200 feet			
	> 200 feet			
	> 500 feet			
	> 1000 feet			
What i	s the slope of the ground in the contaminated area?			
	0-10%			
	10-30%			
	> 30%			
	s the approximate amount of ground and canopy vegetative cover in t inated area?			
	< 25%			
	25-75%			
	> 75%			
	e visible evidence of erosion (e.g., a rill or gully) in or near the sinated area?			
	Yes			
_	No			
_				

Risk Assessment Guidance for Investigations and Remediation Volume 2 February 2012

	y structures, pavement, or natural drainage features direct run-on flow e flows originating upstream or uphill from the area of concern) into the ninated area?
<u> </u>	Yes No
	Do not know
	chemicals reach receptors through the dispersion of contaminants in a volatilization, vapors, fugitive dust)? If yes, explain.
(NAP	chemicals reach receptors through migration of non-aqueous phase lights)? Is a NAPL present at the site that might be migrating towards ors or habitats? Could NAPL discharge contact receptors or their habi
(NAP	Ls)? Is a NAPL present at the site that might be migrating towards
(NAP	Ls)? Is a NAPL present at the site that might be migrating towards
(NAP	Ls)? Is a NAPL present at the site that might be migrating towards
(NAP	Ls)? Is a NAPL present at the site that might be migrating towards
(NAP recept	Ls)? Is a NAPL present at the site that might be migrating towards
(NAP recept	Ls)? Is a NAPL present at the site that might be migrating towards ors or habitats? Could NAPL discharge contact receptors or their habitates. The site is a site of the site is a site of the site is a site of the site. The site is a sit
(NAP recept	Ls)? Is a NAPL present at the site that might be migrating towards ors or habitats? Could NAPL discharge contact receptors or their habitates. The site is a site of the site is a site of the site is a site of the site. The site is a sit

PHOTOGRAPHIC DOCUMENTATION

During the site visit(s), photographs should be taken to document the current conditions at the site and to support the information entered in the checklist. For example, photographs may be used to document the following:

- The nature, quality, and distribution of vegetation at the site
- Receptors or evidence of receptors
- Potentially important ecological features, such as ponds and drainage ditches
- Potential exposure pathways
- Any evidence of contamination or impact

The following space may be used to record photo subjects.		

7.2 SUMMARY OF OBSERVATIONS AND SITE SETTING

Include information on significant source areas and migration pathways that are likely to constitute complete exposure pathways.
Checklist Completed by
Affiliation
Author Assisted by
Date

TABLE 1 EXAMPLES OF SENSITIVE ENVIRONMENTS

National Parks and National Monuments

Designated or Administratively Proposed Federal Wilderness Areas

National Preserves

National or State Wildlife Refuges

National Lakeshore Recreational Areas

Federal land designated for protection of natural ecosystems

State land designated for wildlife or game management

State designated Natural Areas

Federal or state designated Scenic or Wild River

All areas that provide or could potentially provide critical habitat¹ for state and federally listed Threatened or Endangered Species, those species that are currently petitioned for listing, and species designated by other agencies as sensitive or species of concern

All areas that provide or could potentially provide habitat for state protected species as defined in the Wildlife Code, Chapter 17 of the New Mexico Statutes

All areas that provide or could potentially provide habitat for migratory birds as protected by the Migratory Bird Treaty Act (16 U.S.C. §§ 703-712)

All areas that provide or could potentially provide habitat for bald eagles and golden eagles as protected by the Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d)

¹ Critical habitats are defined by the Endangered Species Act (50 CFR §424.02(d)) as:

¹⁾ Specific areas within the geographical area currently occupied by a species, at the time it is listed in accordance with the Act, on which are found those physical or biological features (I) essential to the conservation of the species and (ii) that may require special management considerations or protection, and 2) Specific areas outside the geographical area occupied by a species at the time it is listed upon a determination by the Secretary [of Interior] that such areas are essential for the conservation of the species.

All areas that provide or could potentially provide habitat for song birds as protected by the State of New Mexico statute (New Mexico Statute, 1978, Chapter 17, Game and Fish, 17-2-13)

All areas that provide or could potentially provide habitat for hawks, vultures and owls as protected by the State of New Mexico statute (New Mexico Statute, 1978, Chapter 17, Game and Fish, 17-2-14)

All areas that provide or could potentially provide habitat for horned toads and Bullfrogs as protected by the State of New Mexico statute (New Mexico Statute, 1978, Chapter 17, Game and Fish, 17-2-15 and 16, resp.)

All perennial waters (e.g., rivers, lakes, playas, sloughs, ponds, etc)

All ephemeral drainage (e.g., arroyos, puddles/pools, intermittent streams, etc) that provide significant wildlife habitat or that could potentially transport contaminants off site to areas that provide wildlife habitat

All riparian habitats

All perennial and ephemeral wetlands (not limited to jurisdictional wetlands)

All areas that are potentially important breeding, staging, and overwintering habitats as well as other habitats important for the survival of animals during critical periods of their life cycle.

ATTACHMENT B ECOLOGICAL SITE EXCLUSION CRITERIA CHECKLIST AND DECISION TREE

NEW MEXICO ECOLOGICAL EXCLUSION CRITERIA CHECKLIST

The following questions are designed to be used in conjunction with the Ecological Exclusion Criteria Decision Tree (Figure 1). After answering each question, refer to the Decision Tree to determine the appropriate next step. In some cases, questions will be omitted as the user is directed to another section as indicated by the flow diagram in the Decision Tree. For example, if the user answers "yes" to Question 1 of Section I, he or she is directed to proceed to Section II.

I. Habitat

In the following questions, "affected property" refers to all property on which a release has occurred or is believed to have occurred, including off-site areas where contamination may have occurred or migrated.

- 1. Are any of the below-listed sensitive environments at, adjacent to, or in the locality1 of the affected property?
 - National Park or National Monument
 - Designated or administratively proposed Federal Wilderness Area
 - National Preserve
 - National or State Wildlife Refuge
 - Federal or State land designated for wildlife or game management
 - State designated Natural Areas
 - All areas that are owned or used by local tribes
 - All areas that are potentially important breeding, staging, and overwintering habitats as well as other habitats important for the survival of animals during critical periods of their life cycle
 - All areas that provide or could potentially provide habitat for state and federally listed Threatened or Endangered Species, those species that are currently petitioned for listing, and species designated by other agencies as sensitive or species of concern
 - All areas that provide or could potentially provide habitat for state protected species as defined in the Wildlife Code, Chapter 17 of the New Mexico Statutes
 - All areas that provide or could potentially provide habitat for migratory birds as protected by the Migratory Bird Treaty Act (16 U.S.C. §§ 703-712)
 - All areas that provide or could potentially provide habitat for bald eagles and golden eagles as protected by the Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d)
 - All areas that provide or could potentially provide habitat for song birds as protected by the state of New Mexico statute (New Mexico Statute, 1978, Chapter

Locality of the site refers to any area where an ecological receptor is likely to contact site-related chemicals. The locality of the site considers the likelihood of contamination migrating over time and places the site in the context of its general surrounding. Therefore, the locality is typically larger than the site and the areas adjacent to the site.

- 17, Game and Fish, 17-2-13)
- All areas that provide or could potentially provide habitat for hawks, vultures and owls as protected by the state of New Mexico statute (New Mexico Statute, 1978, Chapter 17, Game and Fish, 17-2-14)
- All areas that provide or could potentially provide habitat for horned toads and bullfrogs as protected by the state of New Mexico statute (New Mexico Statute, 1978, Chapter 17, Game and Fish, 17-2-15 and 16, respectively)
- 2. Does the affected property contain land areas which were not listed in Question 1, but could be considered viable ecological habitat? The following are examples (but not a complete listing) of viable ecological habitats:
 - Wooded areas
 - Shrub/scrub vegetated areas
 - Open fields (prairie)
 - Other grassy areas
 - Desert areas
 - Any other areas which support wildlife and/or vegetation, excluding areas which support only opportunistic species (such as house mice, Norway rats, pigeons, etc.) that do not serve as prey to species in adjacent habitats.

The following features are <u>not</u> considered ecologically viable:

- Pavement
- Buildings
- Paved areas of roadways
- Paved/concrete equipment storage pads
- Paved manufacturing or process areas
- Other non-natural surface cover or structure
- 3. Does the affected property contain any perennial or ephemeral aquatic features which were not listed in Question 1?

II. Receptors

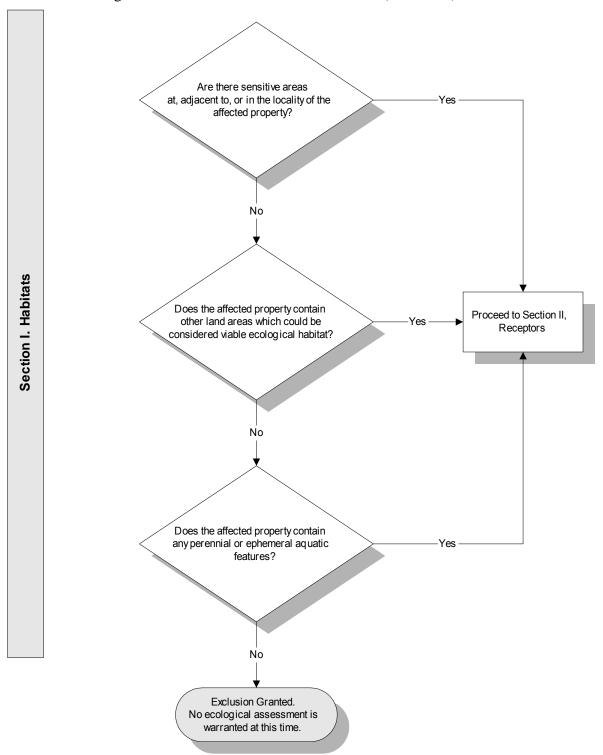
- 1. Is any part of the affected property used for habitat, foraging area, or refuge by any rare, threatened, or endangered species (plant *or* animal), or otherwise protected species (e.g., raptors, migratory birds)?
- 2. Is any part of the affected property used for habitat, foraging area, or refuge by any species used as a recreational (e.g., game animals) and/or commercial resource?

3. Is any part of the affected property used for habitat, foraging area, or refuge by any plant or animal species? This includes plants considered "weeds" and opportunistic insect and animal species (such as cockroaches and rats) if they are used as a food source for other species in the area.

III. Exposure Pathways

Could receptors be impacted by contaminants via direct contact?
 Is a receptor located in or using an area where it could contact contaminated air, soil3, or surface water?

For Questions 2 and 3, note that one must answer "yes" to all three bullets in order to be directed to the "exclusion denied" box of the decision tree. This is because answering "no" to one of the questions in the bullet list indicates that a complete exposure pathway is not present. For example, in Question 2, if the chemical cannot leach or dissolve to groundwater (bullet 1), there is no chance of ecological receptors being exposed to the chemical through contact with contaminated groundwater. Similarly, the responses to the questions in Question 4 determine whether a complete pathway exists for exposure to NAPL.


- 2. Could receptors contact contaminants via groundwater?
 - Can the chemical leach or dissolve to groundwater4?
 - Can groundwater mobilize the chemical?
 - Could (does) contaminated groundwater discharge into known or potential receptor habitats?
- 3. Could receptors contact contaminants via runoff (i.e., surface water and/or suspended sediment) or erosion by water or wind?
 - Are chemicals present in surface soils?
 - Can the chemical be leached from or eroded with surface soils?
 - Is there a receptor habitat located downgradient of the leached/eroded surface soil?
- 4. Could receptors contact contaminants via migration of non-aqueous phase liquids (NAPL)?
 - Is NAPL present at the site?
 - Is NAPL migrating toward potential receptors or habitats?
 - Could NAPL discharge impact receptors or habitats?

³ For soil, this means contamination less than 5 feet below ground surface (bgs).

Information on the environmental fate of specific chemicals can be found on the Internet at http://www.epa.gov/opptintr/chemfact/ or at a local library in published copies of the Hazardous Substances Data Bank.

Figure 1 -Ecological Exclusion Criteria Decision Tree (Refer to corresponding checklist for the full text of each question)

Figure 1 - Exclusion Criteria Decision Tree (continued)

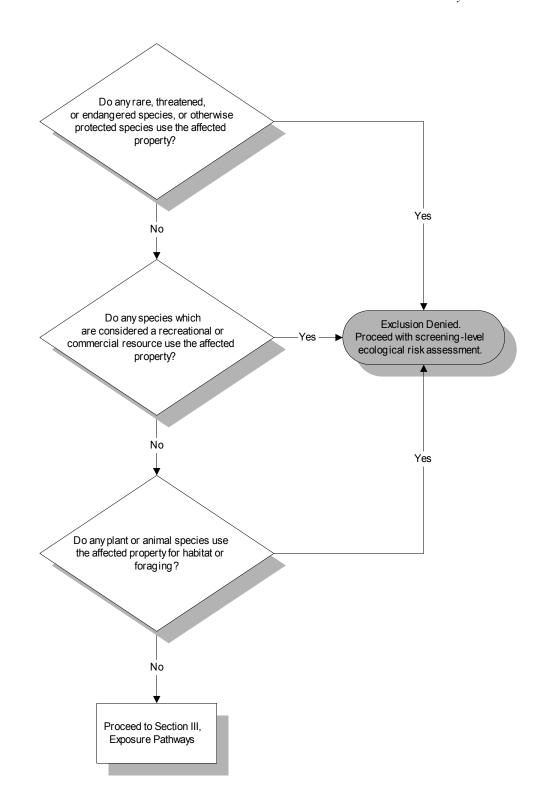
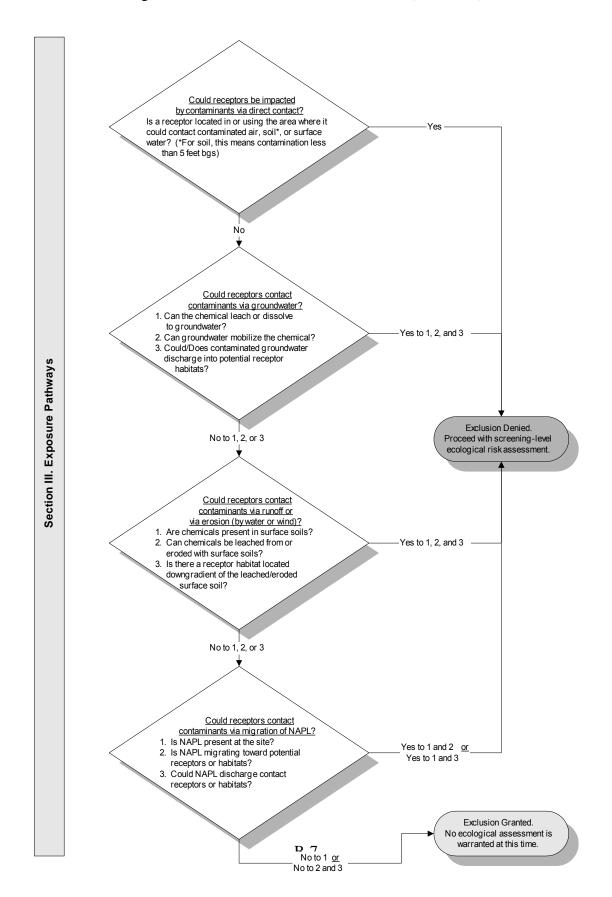



Figure 1 - Exclusion Criteria Decision Tree (continued)

Field Methods

Soil Gas Sampling

Sampling Procedure

Injection pressure and injection flow rates are collected from bioventing wells in which air is being injected. Soil gas samples are collected before groundwater purging and sampling.

Each well is equipped with an air-tight well cap for sample extraction through a sample port at the top of the well casing. Each well has dedicated flexible Teflon Food Grade tubing which extends through both sides of the sample port with one side continuing down into the well casing to approximately 1 foot above the water table. The other end (topside) protrudes from the cap and is available as a connector. Before purging, pressure is measured by attaching a hand-held Magnahelic Pressure Gauge to the topside tubing.

A portable vacuum pump is used for purging and sample collection. The topside tubing is connected to the suction of the vacuum pump and at least three purge volumes are withdrawn from the well prior to sample collection. After sufficient purging, a Tedlar bag is attached to the tubing at the discharge end of the pump for sample collection. All samples are properly labeled and placed in a cooler for delivery to the analytical laboratory or for field measurements of vapor-phase organics

Well Purging Technique

A vacuum pump is used to remove stagnant air from the soil gas sampling assembly. No less than three well volumes are purged from the well before sampling. Purged volumes are based on the following equation:

(Conversion Factor) x (depth-to-water) x (28 liters/ft3) x 3

The conversion factor is determined by the diameter of the well casing.

<u>Casing</u>	Conversion Factor
6"	0.196L/ft
4"	0.0873L/ft
2"	0.0218L/ft
1"	0.005545L/ft

Soil Gas Sampling and Sample Handling Procedure

Equipment and supplies needed for collecting representative soil gas samples include:

- Interface Probe
- Vacuum Pump
- 1 Liter Tedlar Bags
- PID Meter
- RKI Eagle Meter
- Cooler to store Tedlar Bags
- Sharpie Permanent Marker
- Field Paper work/Log sheet
- Trash container (plastic garbage bag)

Tedlar bags and tubing dedicated for each well are used for field measurements. New Tedlar bags are used for BTEX and GRO collection and analysis.

After sufficient purging, samples are collected using the vacuum pump. Field measurements of vapor-phase organics, oxygen, and carbon dioxide concentrations are recorded using portable field instruments. BTEX and GRO samples are labeled immediately with location, date, time, analysis, and sampler and then put in a trash bag and placed in a cooler. The field logsheet is reviewed to verify all entries. Samples are then shipped to the laboratory.

To prevent cross-contamination, procedures include dedicated tubing for each of the wells sampled as well as a five minute purge time of the vacuum pump in ambient air.

Instrument Calibration

<u>Multi-Gas Meter</u>

The RKI Eagle is a portable gas detection system with sensors for oxygen, carbon dioxide, and methane. Calibration of the instrument is conducted at the beginning of each day of sampling.

The meter is turned on and allowed to warm up. Fill the dedicated Tedlar bags with known calibration gas. One bag is used for the carbon dioxide calibration and the other bag contains the oxygen and methane calibration gasses. Press and hold the AIR/▲ button until a tone sounds. The Eagle automatically sets the toxics circuits to zero and the oxygen circuit to 20.9%.

Press and hold the SHIFT /▼ button, then press the DISP/ADJ button. The calibration menu is displayed. Use the AIR/▲ and SHIFT/▼ buttons to place the prompt next to the SINGLE CALIBRATION menu option. Press the POWER/ENTER button to display the Single Calibration menu. Use the AIR/▲ or SHIFT/▼ button to place the prompt next to the channel to calibrate. Press the POWER/ENTER button. Connect the tubing from the Tedlar bag to the Eagle's probe. If necessary, use the AIR/▲ (increase) and SHIFT/▼ (decrease) buttons to adjust the reading to match the concentration listed on the calibration cylinder. Press the POWER/ENTER button to set the span value. Repeat the steps for any other channels you want to calibrate.

Photoionization Detector

The MiniRae 2000 Portable VOC Monitor (PID) is calibrated at the beginning of each day of sampling. Turn on the monitor and wait for the Ready message display. Press and hold both (N/-) and (MODE) keys for three seconds to enter programming mode. The first menu item "Calibrate/select Gas?" will be displayed. Press (N/-) to scroll to Fresh Air Cal? And press (Y/-) to select that menu item. Clean ambient air can be used for the "fresh air" calibration. Press (Y/-) to begin the zeroing process.

After zeroing is complete, press (N/-) to scroll to the next menu item. When Span Cal? is displayed press (Y/-) to select that menu item. Connect the monitor to a known calibration gas cylinder (isobutylene) after the display shows Apply gas now! The monitor will then perform the calibration. When calibration is completed, turn off the flow of gas, disconnect the cylinder, and exit the programming mode by pressing the (MODE) key once.

Groundwater Sampling

Groundwater Elevation

All water/product levels are determined to an accuracy of 0.01 foot using a Geotech Interface Meter. The technician records separate phase hydrocarbon, depth to water, and total well depth using this probe.

Water Quality/Groundwater Sampling

Water quality parameters are measured using an YSI Professional Plus instrument. Electrical conductance, oxidation-reduction potential (ORP), pH, temperature, and dissolved oxygen are monitored during purging.

Well Purging Technique

At least three well volumes are purged from the well. Purge volumes are determined using the following equation:

The conversion factor is determined by the diameter of the well casing.

<u>Casing</u>	Conversion Factor
6"	1.50 gal/ft
5"	1.02 gal/ft
4"	0.74 gal/ft
3"	0.367 gal/ft
2"	0.163 gal/ft

Well Sampling and Sample Handling Procedure

Equipment and supplies needed for collecting representative groundwater samples include:

- Interface Probe
- YSI Professional Plus
- Distilled Water
- Disposable Nitrile Gloves
- Disposable Bailers
- · String/Twine
- · Cooler with Ice
- Bottle kits with Preservatives (provided by the contract laboratory)
- Sharpie Permanent Marker
- Field Paperwork/Log sheet
- Two 5-gallon buckets
- Trash container (plastic garbage bag)
- Ziploc Bags
- Paper towels

Typically disposable bailers are used for purging and sampling. Each bailer holds one liter of liquid. Three well volumes can be calculated by counting the number of times a well is bailed. All purged water is poured into a 55-gallon drum designated for sampling events.

After sufficient purging, samples are collected with the bailer and poured into the appropriate sample containers. Two people are usually utilized for sampling. Sampling takes place over a bucket to insure that spills are contained

Samples are labeled immediately with location, date, time, analysis, preservative, and sampler. Then they are put in a Ziploc bag and placed in a cooler holding sufficient ice to keep them cool. The field log sheet is reviewed to verify all entries.

Purge and Decontamination Water Disposal

The YSI Professional Plus and the interface probe are rinsed with distilled water after every well. The rinse procedure takes place over a bucket to insure that spills are contained. All rinse and purge water is contained and then disposed of through the refinery wastewater system.

Instrument Calibration

Calibration of the YSI Professional Plus occurs at the beginning of each day of sampling. The probe is powered on and allowed to stabilize, which usually takes 15 minutes. The calibration menu is selected. The LCD screen runs through a list of selections to specify units, calibration solutions, etc. The calibrations procedures outlined in the YSI Professional Plus instruction manual are followed.

Appendix C

Hall Environmental Analysis Laboratory

QUALITY ASSURANCE PLAN

Effective Date: August 13th, 2014

Revision 9.9

www.hallenvironmental.com

Control Number: 00000157

Approved By:

Andy Freeman

Laboratory Manager

Approved By:

8/12/2014

Cárolyn Swanson

Quality Assurance/Quality Control Officer

Approved By:	
Jelin	8/13/14
lan Cameron	/ Date
Assistant Laborato	ory Manager

John Caldwell Date
Assistant Laboratory Manager
Semi-Volatiles Technical Director

Rene Aguilera Date
Volatiles Technical Director

Tiffany Shaw Date
Metals Technical Director

Stacey McCoy Date
Wet Chemistry Technical Director

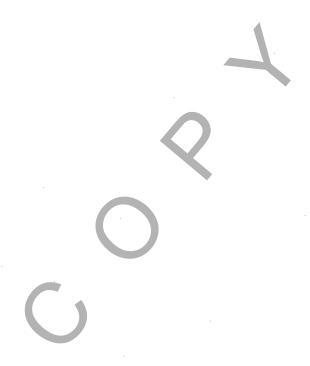
Stephanie Shaffers Date
Microbiology Technical Director

Table of Contents

Section	Title	<u>Page</u>
1.0	Title Page	1
2.0	Table of Contents	3
3.0 ∂	Introduction Purpose of Document Objectives Policies	6
4.0	Organization and Responsibility Company Certifications Personnel Laboratory Director Laboratory Manager/ Lead Technical Director Assistant Laboratory Manager Quality Assurance Quality Control Officer Project Managers Technical Directors Health and Safety/Chemical Hygiene Officer Analyst I, II and III Laboratory Technician Sample Control Manager Sample Custodians Sample Disposal Custodian Bookkeeper Administrative Assistant IT Specialist Delegations in the Absence of Key Personnel Laboratory Personnel Qualification and Training Organizational Chart	9
5.0	Receipt and Handling of Samples Reviewing Requests, Tenders and Contracts Sampling Procedures Containers Preservation Sample Custody Chain-of-Custody Form Receiving Samples	21

Page 3 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014

Logging in Samples and Storage Disposal of Samples	
Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures	25
Calibration Thermometers Refrigerators/Freezers Ovens Analytical and Table Top Balances Instrument Calibration pH Meter Other Analytical Instrumentation and Equipment Standards Reagents	30
Maintenance	34
Data Integrity	35
Quality Control Internal Quality Control Checks Client Requested QC Precision, Accuracy, Detection Levels Precision Accuracy Detection Limit Quality Control Parameter Calculations Mean Standard Deviation Percent Recovery (LCS and LCSD) Percent Recovery (MS, MSD) Control Limits Grubbs Outliers RPD (Relative Percent Difference) Uncertainty Measurements Total Nitrogen Langelier Saturation Index	36
	Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures Calibration Thermometers Refrigerators/Freezers Ovens Analytical and Table Top Balances Instrument Calibration pH Meter Other Analytical Instrumentation and Equipment Standards Reagents Maintenance Data Integrity Quality Control Internal Quality Control Checks Client Requested QC Precision, Accuracy, Detection Levels Precision Accuracy Detection Limit Quality Control Parameter Calculations Mean Standard Deviation Percent Recovery (LCS and LCSD) Percent Recovery (MS, MSD) Control Limits Grubbs Outliers RPD (Relative Percent Difference) Uncertainty Measurements Total Nitrogen


11.0 Data Reduction, Validation, Reporting, and Record Keeping 5

Weighting

Concentration Calculations

Page 4 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014 Data Reduction Validation Reports and Records

12.0	Corrective Action	53
13.0	Quality Assurance Audits, Reports and Complaints Internal/External Systems' Audits, Performance Evaluation Management Reviews Complaints Internal and External Reports	55 ons, and Complaints
14.0	References (Analytical Protocols Utilized at HEAL)	58

3.0 Introduction

Purpose of Document

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

Objectives

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. These activities are carried out by a laboratory staff that is analytically competent, well-qualified, and highly trained. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method or methods that are referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20th edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy and data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well-maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well-documented and defensible in a court of law.

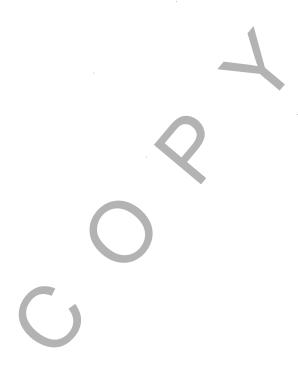
The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and

ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

Policies

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEAL's Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.


Understanding the importance of meeting customer requirements in addition to the requirements set forth in statutory and regulatory requirements, HEAL shall periodically seek feedback from customers and evaluate the feedback in order to initiate improvements.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

HEAL shall continually improve the effectiveness of its management system through the use of the policies and procedures outlined in this Quality Assurance Plan. Quality control results, internal and external audit findings, management reviews, new and continual training and corrective and preventive actions are continually evaluated to identify possible improvements and to ensure that appropriate communication processes are taking place regarding the effectiveness of the management system. HEAL shall ensure that the

integrity of the quality system is maintained when changes to the system are planned and implemented.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.

4.0 Organization and Responsibility

Company

HEAL is accredited in accordance with the 2009 TNI standard (see NELAC accredited analysis list in the QA Department or on the company website), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, and air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section, an inorganic section and a microbiology section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

Certifications

ORELAP - NELAC Oregon Primary accrediting authority.

TCEQ – NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

See our website at <u>www.hallenvironmental.com</u> or the QA Office for copies of current licenses and licensed parameters.

In the event of a certification being revoked or suspended, HEAL will notify, in writing, those clients that require the affected certification.

Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

HEAL ensures that all personnel are aware of the relevance and importance of their activities and how each employee contributes to the achievement of the objectives defined throughout this document.

All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures, and records management.

All employees' training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found at the end of this section and a personnel list is available in the current Controlled Document Logbook.

Laboratory Director

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

Laboratory Manager/Lead Technical Director

The Laboratory Manager shall exercise day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and, in conjunction with the section technical directors, is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, without missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure that good laboratory practices and proper techniques are being taught and utilized, and to assist in overall quality control implementation and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies that lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

Assistant Laboratory Manager

The Assistant Laboratory Manager shall aid the Laboratory Manager in exercising day—to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Assistant Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation.

The Assistant Laboratory Manager is responsible for helping the Laboratory Manager in the daily operations of the laboratory. In conjunction with the section Technical Directors, the Assistant Laboratory Manager is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data within a reasonable time frame.

The Assistant Laboratory Manager shall have at least ten years of experience in environmental analysis of representative inorganic and/or organic analytes for which the laboratory seeks or maintains accreditation.

Quality Assurance Quality Control Officer

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods for which data review is performed and have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions, and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

Project Managers

The role of the project manager is to act as a liaison between HEAL and our clients. The Project Manager updates clients on the status of projects in-house, prepares quotations for new work, and is responsible for HEAL's marketing effort.

All new work is assessed by the Project Manager and reviewed with the other managers so as to not exceed the laboratory's capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated without missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken, the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and perform a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

Technical Directors

Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance, monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, scheduling incoming work for their sections, and monitoring laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, and MDLs, and evaluate laboratory personnel in their Quality Control activities. In addition, technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

As Technical Directors of their associated section, they review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

The education requirements for a Technical Director may be waived at the discretion of HEAL's accrediting agencies.

Health and Safety / Chemical Hygiene Officer

Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the roles, responsibilities, and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

Analyst I, II and III

Analysts are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air, as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Analysts are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. An analyst reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the analyst. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, and cleaning and providing technical assistance to lower level laboratory staff.

The senior analyst in the section may be asked to perform supervisory duties as related to operational aspects of the section. The analyst may perform all duties of a lab technician.

The position of Analyst is a full or part time hourly position and is divided into three levels, Analyst I, II, and III. All employees hired into an Analyst position at HEAL must begin as an Analyst I and remain there at a minimum of three months regardless of their education and experience. Analyst I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). An Analyst I is responsible for analysis, instrument operation, including calibration and data reduction. Analyst II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst II. An Analyst II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction, and basic data review. Analyst II may also assist Analyst III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Analyst III must have Bachelor's degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of an Analyst III. An Analyst III is responsible for all tasks completed by an Analyst I and II as well as advanced data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

Laboratory Technician

A laboratory technician is responsible for providing support to analysts in the organics, inorganics and disposal departments. Laboratory Technicians can assist analysts in basic sample preparation, general laboratory maintenance, glassware washing, chemical inventories, sample disposal and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as an analyst.

Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the subcontractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted, the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the clients' needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

Sample Disposal Custodian

The sample disposal custodian is responsible for characterizing and disposing of samples in accordance to the most recent version of the sample disposal SOP. The sample disposal custodian collects waste from the laboratory and transports it to the disposal warehouse for storage and eventual disposal. The sample disposal custodian is responsible for maintaining the disposal warehouse and following the requirements for documentation, integrity, chemical hygiene and health and safety as set forth in the various HEAL administrative SOPs. The sample disposal custodian is responsible for overseeing any laboratory technicians employed at the disposal warehouse.

This position should be filled by someone with a high school diploma and a minimum of 1 year of related experience.

Bookkeeper

The Bookkeeper is responsible for the preparation of quarterly financials and quarterly payroll reports. The bookkeeper monitors payables, receivables, deposits, pays all bills and maintains an inventory of administrative supplies. The Bookkeeper completes final data package assembly and oversees the consignment of final reports. The Bookkeeper assists in the project management of drinking water compliance samples for NMED and NMEFC and any other tasks as assigned by the Laboratory Manager. This position should be filled by someone with a degree in accounting or a minimum of a high school diploma and at least 4 years of directly related experience.

Administrative Assistant

The Administrative Assistant is responsible for aiding administrative staff in tasks that include but are not limited to: the processing and consignment of final reports, and the generation of client specific spreadsheets. This position should be filled by someone with a minimum of a high school diploma.

IT Specialist

The IT Specialist is responsible for the induction and maintenance of all hard and software technology not maintained through a service agreement. The IT Specialist follows the requirements of this document, all regulatory documents and the EPAs Good Automated Laboratory Practices. This position should be filled by someone with a degree in a computer related field, or at least two years of directly related experience.

Delegations in the Absence of Key Personnel

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

Laboratory Personnel Qualification and Training

All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on-the-job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method(s) for the analysis must be read and signed by the employee indicating that they read, understand, and intend to comply with the requirements of the documents. The employee must undergo documented training. Training is conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Capability (IDOC). See the current Document Control Logbook for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. Certification to Complete Work Unsupervised (see the current Document Control Logbook) is then filled out by the employee and technical director.

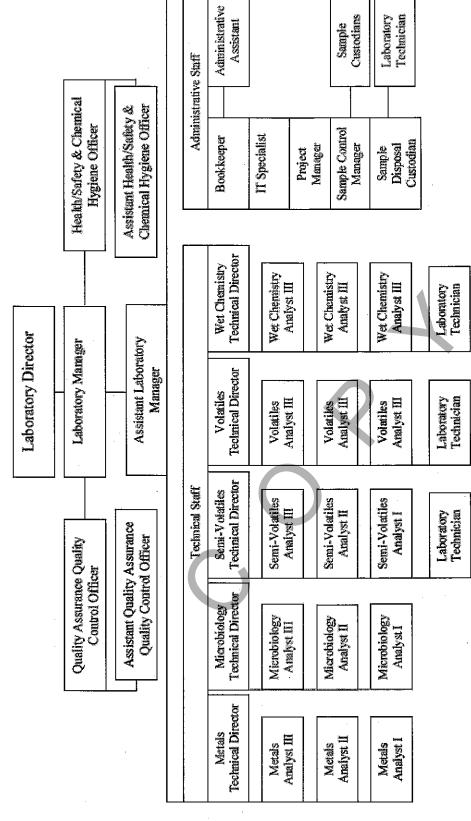
IDOCs are required for all new analysts and methods prior to sample analysis. IDOCs are also required any time there is a change in the instrument, analyte list or method. If more than twelve months have passed since an analyst performed an IDOC and they

have not performed the method and/or have not met the continuing DOC requirements, the analyst must perform an IDOC prior to resuming the test.

All IDOCs shall be documented through the use of the certification form which can be found in the current Document Control Logbook. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method(s) fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameter and the analyst must either locate and correct the source of the problem and repeat the test for all parameters of interest or repeat the test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest.

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).

At least once per year an ADOCP must be completed. This is achieved by the acceptable performance of a blind sample (typically by using a PT sample, but can be a single blind (to the analyst) sample), by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method(s).) ADOCPs are documented using a standard form and are kept on file in each analyst's employee folder. ADOCPs may be demonstrated as an analyst group utilizing LIMS control charting, so long as all listed analysts participated, the results are consecutive and pass the requirements for precision and accuracy.


Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turnaround time is

important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment, or civil/criminal prosecution.

Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques, or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms, or quizzes. This training documentation is located in analyst specific employee folders in the QA/QCO Office. On the front of all methods, SOPs, and procedures for HEAL, there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understand, and agree to perform the most recent version of the document.

The effectiveness of training will be evaluated during routine data review, annual employee reviews, and internal and external audits. Repetitive errors, complaints and audit findings serve as indicators that training has been ineffective. When training is deemed to have been ineffective a brief review of the training process will be completed and a re-training conducted as soon as possible.

HEAL Personnel Chart

Page 20 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014

5.0 Receipt and Handling of Samples

Reviewing Requests, Tenders and Contracts

All contracts and written requests by clients are closely reviewed to ensure that the client's data quality objectives can be met to their specifications. This review includes making sure that HEAL has the resources necessary to perform the tests to the clients specifications.

When HEAL is unable to meet the clients specifications their samples will be subcontracted to an approved laboratory capable of meeting the client's data quality objectives.

Sampling

Procedures

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice (The use of "blue ice" by anyone except HEAL personnel is discouraged because it generally does not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at the time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the required temperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

Containers

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case, re-sampling may be required.

Preservation

If sampling for analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts

and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives, the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

Sample Custody

Chain-of-Custody Form

A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all COCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manner. A sample chain-of-custody form can be found in the current Document Control Logbook or on line at www.hallenvironmental.com.

Should a specific project or client require the use of an internal COC, advanced notification and approval must be obtained. The use of internal COCs are not part of our standard operating procedure.

Receiving Samples

Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time, and sample temperature. This relinquishes custody of the samples from the sampler and

delegates sample custody to HEAL. The first (white) copy of the COC form is filed in the appropriate sample folder. The second (yellow) copy of the COC form is filed in the COC file in the sample control manager's office. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples.

Logging in Samples and Storage

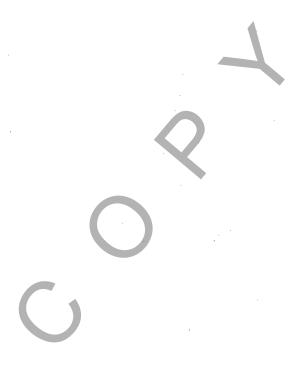
Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory and that all associated documentation, including chain of custody forms, is complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

All samples received that are requested for compliance, whether on the COC or by contract, will be identified as compliance samples in the LIMS so as to properly notify the analytical staff that they are to be analyzed in accordance with the test method(s) as well as the compliance requirements.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

Care will be taken to store samples isolated from laboratory contaminants, standards and highly contaminated samples.

All samples that require thermal preservation shall be acceptably stored at a temperature range just above freezing to 6 °C unless specified at another range by the SOP and Method.


Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

Disposal of Samples

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.

6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

List of Procedures Used

Typically, the procedures used by HEAL are EPA approved methodologies or 20th edition Standard Methods. However, proprietary methods for client specific samples are sometimes used. On occasion, multiple methods or multiple method revisions are used, in this event the SOP is written to include the requirements of all referenced methods. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification.

Methods Utilized at HEAL

Drinking Water(DW) Non-Potable Water (NPW) Solids (S)

Methodology	Matrix	Title of Method .
180.1.	DW	"Turbidity (Naphalamatria)"
	NPW	"Turbidity (Nephelometric)"
200.2	DW	"Sample Preparation Procedure For Spectrochemical
200.2	NPW	Determination of Total Recoverable Elements"
200.7	DW	"Determination of Metals and Trace Elements in Water and
	NPW	Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry"
200.8 DW NPW	DW	"Determination of Trace Elements in Waters and Wastes by
	NPW	Inductively Coupled Plasma-Mass Spectrometry."
245.1	DW	"Moreum, (Manuel Cold Vener Technique)"
	NPW	"Mercury (Manual Cold Vapor Technique)"

	DW	
300.0	NPW	"Determination of Inorganic Anions by Ion Chromatography"
	s	
413.2	NPW	"Oil and Grease"
	s	
418.1	NPW S	"Petroleum Hydrocarbons (Spectrophotometric, Infrared)"
504.1	DW	"EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"
524.2	DW	"Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"
552.3	DW .	"Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion-Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector"
624	NPW	Appendix A to Part 136 Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater Method 624-Purgeables"
1311	S	"Toxicity Characteristic Leaching Procedure"
1311ZHE	S	"Toxicity Characteristic Leaching Procedure"
166 4 A	NPW	"N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material) by Extraction and Gravimetry"
3005A	NPW	"Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy"
3010A	NPW	"Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"
3050B	s	"Acid Digestion of Sediment, Sludge, and Soils"
3510C	DW NPW	"Separatory Funnel Liquid-Liquid Extraction"
3540	S	"Soxhlet Extraction"
3545	S	"Pressurized Fluid Extraction(PFE)"
3665	NPW S	"Sulfuric Acid/Permanganate Cleanup"
5030B	NPW	"Purge-and-Trap for Aqueous Samples"
5035	s	"Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples"
6010B	NPW S	"Inductively Coupled Plasma-Atomic Emission Spectrometry"

7470A	NPW	"Mercury in Liquid Waste (Manual Cold-Vapor Technique)"
7471A	s	"Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"
	NPW	"Aromatic and Halogenated Volatiles By Gas
8021B	S	Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors"
8015D	NPW	"Nonhalogenated Volatile Organics by Gas Chromatography"
00100	S	(Gasoline Range and Diesel Range Organics)
8081A	NPW S	"Organochlorine Pesticides by Gas Chromatography"
8082	NPW S	"Polychlorinated Biphenyls (PCBs) by Gas Chromatography"
8260B	NPW S	"Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"
8270C	NPW S	"Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"
8310	NPW S	"Polynuclear Aromatic Hydrocarbons"
9060	NPW	"Total Organic Carbon"
9067	NPW S	"Phenolics (Spectrophotometric, MBTH With Distillation)"
9095A	S	"Paint Filter Liquids Test"
H-8167	DW NPW	"Method 8167 Chlorine, Total"
Walkley/Black	S	FOC/TOC WB
SM2320 B	DW NPW	"Alkalinity"
SM2340B	NPW	"2340 Hardness"
SM2510B	DW NPW	"2510 Conductivity"
SM2540 B	NPW	"Total Solids Dried at 103-105° C"
SM2540 C	DW NPW	"Total Dissolved Solids Dried at 180° C"
SM2540 D	NPW	"Total Suspended Solids Dried at 103-105° C"
SM4500-H+B	DW NPW	"pH Value"
SM4500-NH3 C	NPW S	"4500-NH3" Ammonia
SM4500-Norg	NPW	"4500-Norg" Total Kjeldahl Nitrogen (TKN)

С	s	
SM5210 B	NPW	"5210 B. 5-day BOD Test"
SM5310 B	DW	"5310" Total Organic Carbon (TOC)
SM9223B	NPW "0222 Engrana Substrate Coliform Toot"	"9223 Enzyme Substrate Coliform Test"
SIVIBZZSB	DW	9223 Enzyme Substrate Comoni Test
8000B	NPW "Determinative Chromotographic Separations"	"Determinative Chromatographic Separations"
S Determin	Determinative Chromatographic Separations	
8000C	NPW	"Determinative Chromatographic Separations"
	s	Determinative Chromatographic Separations

Criteria for Standard Operating Procedures

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS under the Documents and SOPs menu.

Hand written corrections or alterations to SOPs are not permitted. In the event that a correction is needed and a revision is not immediately possible, a corrective action report will be generated documenting the correction or alteration, signed by the section Technical Director and the QA/QC Officer and will be scanned into the current SOP and will document the change until a new revision is possible.

Controlled documents such as calibration summary forms, analysis bench sheets, etc. are tracked as appendices in SOPs, through the Controlled Document Logbook with copies available through the LIMS or through the MOAL as bound logbooks.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method;

Applicable matrix or matrices;

Limits of detection and quantitation;

Scope and application, including parameters to be analyzed;

Summary of the test method;

Definitions:

Interferences:

Safety:

Equipment and supplies;

Reagents and standards;

Page 28 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014 Sample collection, preservation, shipment and storage;

Quality control parameters;

Calibration and standardization,

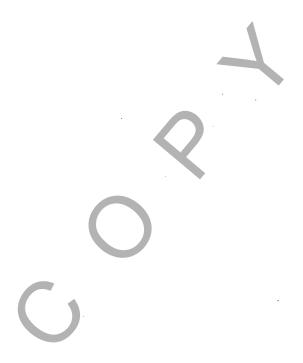
Procedure:

Data analysis and calculations;

Method performance;

Pollution prevention;

Data assessment and acceptance criteria for quality control measures;


Corrective actions for out-of-control data;

Contingencies for handling out-of-control or unacceptable data;

Waste management;

References; and

Any tables, diagrams, flowcharts and validation data.

7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers' guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform the operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

Thermometers

The thermometers in the laboratory are used to measure the temperatures of the refrigerators, freezers, ovens, water baths, incubators, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks, and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST-certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Data Loggers are used to record refrigerator temperatures. These data loggers are calibrated quarterly with NIST-certified thermometers.

The NIST thermometer should be recalibrated at least every five years or whenever the thermometer has been exposed to temperature extremes.

Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 0.1°C. The thermometers are kept with the bulb immersed in liquid. Each day of use, the temperatures of the refrigerators are recorded to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current Catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

Ovens

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked each day of use as required and in whatever way is dictated by or appropriate for the method in use.

Analytical and Table Top Balances

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked each day of use with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated by an external provider as required. The Class S weights are used once a year, or more frequently if required, to assign values to the Working Weights. During the daily balance checks, the working weights are compared to their assigned values and must pass in order to validate the calibration of the balance. The assigned values, as well as the daily checks, for the working weights are recorded in the balance logbook for each balance.

Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentration levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses.

The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs, it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of narrowing the calibration range and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and their corresponding SOPs.

pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day of use, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use.

Standards

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use and with an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacturer recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life, as defined by the manufacturer, shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents and do not extend beyond the expiration date listed for the primary reagent.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods. The majority of HEAL methods utilize medium quality deionized reagent water maintained at a resistivity greater than $1M\Omega$ in accordance with SM1080.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique Name of the Item or Equipment
Manufacturer
Type of Instrument
Model Number
Serial Number
Date Received and Date Placed into Service
Location of Instrument
Condition of Instrument Upon Receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date
Maintenance Description
Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

9.0 Data Integrity

For HEAL's policy on ethics and data integrity, see section 3.0 of this document. Upon being hired, and annually thereafter, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See the current Document Control Logbook for a copy of this agreement.

In instances of ethical concern, analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager, or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented, the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation, or termination will be determined on a case-by-case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

10.0 Quality Control

Internal Quality Control Checks

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB), and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%.

Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix effects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limit of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at </= 20%.

In an effort to evaluate all received matricies, MS/MSD samples are chosen randomly. Notable exceptions to this policy are when a client requests the MS/MSD be analyzed utilizing their sample or in the event the matrix requires such a significant dilution that utilizing it as an MS/MSD is impractical.

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

It is important to note that the LIMS qualifies samples for Method Blank failures when the amount in the blank is greater than the sample's listed PQL.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.

Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, between five and seven months apart, or at any other interval as defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples. PT results are reported as normal samples, within the working range of the associated calibration curve. In the event an analyte concentration is less than the PQL, the result shall be reported as less than the PQL.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Upon receiving a Not Acceptable PT result for any analyte, a root cause analysis is conducted and the cause of the failure determined and corrected. As defined by TNI, two

out of the past three PTs must be acceptable to maintain accreditation for any given analyte. If this requirement is not met, a successful history will be reestablished by the analysis of an additional PT sample. For accredited tests, the PT provider will be notified, when the PT is for corrective action purposes. The analysis dates of successive PT samples for the same TNI accredited analyte shall be at least fifteen days apart.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. The control limits approximate a 99% confidence interval around the mean recovery. Any matrix spike, surrogate, or LCS results outside of the control limits require further evaluation and assessment. This should begin with the comparison of the results from the samples or matrix spike with the LCS results. If the recoveries of the analytes in the LCS are outside of the control limits, then the problem may lie with the application of the extraction, with cleanup procedures, or with the chromatographic procedure. Once the problem has been identified and addressed, corrective action may include reanalysis of samples or reextraction followed by reanalysis. When the LCS results are within the control limits, the issue may be related to the sample matrix or to the use of an inappropriate extraction. cleanup, and/or determinative method for the matrix. If the results are to be used for regulatory compliance monitoring, then steps must be taken to demonstrate that the analytes of concern can be determined in the sample matrix at the levels of interest. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits are to be updated only by Technical Directors, Section Supervisors or the Quality Assurance Officer. Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Limits should typically be generated utilizing the most recent 20-40 data values. In order to obtain an even distribution across multiple instruments and to include more than a single day's worth of data, surrogate limits should be generated using around 100 data values. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. The results used to update control limits should meet all other QC criteria associated with the determinative method. For example, MS/MSD recoveries from a GC/MS procedure should be generated from samples analyzed after a valid tune and a valid initial calibration that includes all

analytes of interest. Additionally, no analyte should be reported when it is beyond the working range of the calibration currently in use. MS/MSD and surrogate limits should be generated using the same set of extraction, cleanup, and analysis procedures.

All generated limits should be evaluated for appropriateness. Where limits have been established for MS/MSD samples, the LCS/LCSD limits should fall within those limits, as the LCS/LCSD are prepared in a clean matrix. Surrogate limits should be updated using all sample types and should be evaluated to ensure that all instruments as well as a reasonable dispersion across days are represented by the data. LCS/LCSD recovery limits should be evaluated to verify that they are neither inappropriately wide nor unreasonably tight. The default LCS/LCSD acceptance limits of 70-130% and RPD of 20% (or those limits specified by the method for LCS/LCSD and/or CCV acceptability), should be used to help make this evaluation. Technical directors may choose to use warning limits when they feel their generated limits are too wide, or default LCS limits when they feel their limits have become arbitrarily tight.

Once new Control Limits have been established and updated in the LIMS, the Control Charts shall be printed and reviewed by the appropriate section supervisor and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have been reviewed and that the updated Limits have been determined to be accurate and appropriate. Any manual alterations to the limits will be documented and justified on the printed control chart. These initialed charts are then filed in the QA/QCO office.

Once established, control limits should be reviewed after every 20-30 data values and updated at least every six months, provided that there are sufficient points to do so. The limits used to evaluate results shall be those in place at the time that the sample was analyzed. Once limits are updated, those limits apply to all subsequent analyses.

When updating surrogate control limits, all data, regardless of sample/QC type, shall be updated together and assigned one set of limits for the same method/matrix.

In the event that there are insufficient data points to update limits that are over a year old, the default limits, as established in the method or SOP, shall be re-instated. Refer to the requirements in SW-846 method 8000B and 8000C for further guidance on generating control limits.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

Client Requested QC

Occasionally certain clients will require QC that is not defined by or covered in the SOPs. These special requests will be issued to all analysts and data reviewers in writing and the analysts and data reviewers will be provided with guidance on how to properly document the client requested deviation/QC in their preparation and analytical batches.

Precision, Accuracy, Detection Levels

Precision

The laboratory uses sample duplicates, laboratory control spike duplicates, and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 20% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

Accuracy

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

Analytical accuracy is expressed as the Percent Recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration* recovered)/(concentration* added)} X 100

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 80 to 120% is used unless the specific method dictates

^{*}or amount

otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, and out-of-control action or data qualification.

Detection Limit

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately

IDL: MDL: PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. MDL studies are required annually for each quality system matrix, technology and analyte, unless indicated otherwise in the referenced method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation(s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. Standard Methods and those methods used for drinking water analysis must have MDL studies that are performed over a period of at least three days in order to include day to day variations. The method detection limit (MDL) can be calculated using the standard deviation according to the formula:

$$MDL = s * t (99\%),$$

where t (99%) is the Student's t-value for the 99% confidence interval. The t-value depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

Number of Trials	t(99%)
6	3.36
7	3.14
8	3.00
9	2.90

Page 41 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

Where there are multiple MDL values for the same test method in the LIMS the highest MDL value is utilized.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

In the event that an analyte will not be reported less than the PQL, an MDL study is not required and a PQL check shall be done, at least annually, in place of the MDL study. The PQL check shall consist of a QC sample spiked at or below the PQL. All sample-processing and analysis steps of the analytical method shall be included in the PQL check and shall be done for each quality system matrix, technology, and analyte. A successful check is one where the recovery of each analyte is within the established method acceptance criteria. When this criterion is not defined by the method or SOP, a default limit of +/-50% shall be utilized.

Quality Control Parameter Calculations

Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average =
$$(\Sigma x_l) / n$$

 x_l = the value x in the l^{th} trial n = the number of trials

Standard Deviation

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the

values x_i . The variance, s^2 , can be calculated by summing the squares of the differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Standard deviation = s =
$$\left[\sum (x_1 - average)^2 / (n - 1)\right]^{\frac{1}{2}}$$

Percent Recovery (LCS and LCSD)

Percent Recovery (MS, MSD)

Control Limits

Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s).

Upper Control Limit =
$$x + 3s$$

Lower Control Limit = $x - 3s$

These control limits approximate a 99% confidence interval around the mean recovery.

Grubbs Outliers

Grubbs Outliers are calculated by the LIMS during the generation of control limits and uncertainties. An outlier is an observation that appears to deviate markedly from other observations in the sample set and are removed, unless documented otherwise.

Identify both the lowest and highest values in the sample set. Use the following equations to determine the T values.

$$T = \frac{x_{max} - x_{mean}}{sd}$$
 (for the largest value)

Page 43 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014

$$T = \frac{x_{mean} - x_{min}}{sd}$$
 (for the smallest value)

Compare the T values to the Grubbs' critical value table. If either value of T is greater than the critical value (assuming a 5% risk) for the sample size, the point(s) must be dropped then the calculation repeated for both the lowest and highest value using the new mean and standard deviation.

The Grubbs test is repeated until there are no longer any outliers detected. Keep in mind you must have at least 20 data points available to generate your limits.

RPD (Relative Percent Difference)

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 x (Sample Result – Duplicate Result) X 100 (Sample Result + Duplicate Result)

Uncertainty Measurements

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately, uncertainty measurements are used to state how good a test result is and to allow the end user of the data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses, the components and estimates of uncertainty are reduced by following well-established test methods. To further reduce uncertainty, results generally are not reported below the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influential quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation(s) is calculated using these LCS data points. Since it can be

assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation(s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{(n - 1)}}$$

Where: s = standard deviation

x = number in series

 \bar{x} = calculated mean of series

n = number of samples taken

95% $confidence = 2 \times s$

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement of uncertainty for Bromide (at 95% confidence = $2 \times s$) is 0.0652.

Total Nitrogen

Total nitrogen is calculated as follows:

Langelier Saturation Index

The Langelier Saturation Index (LSI) is calculated as follows:

Solids Factor (SF) =(Log10[TDS] - 1) / 10 Ca Hardness Factor (HF) = Log10([Ca] x 2.497) - 0.4 Alkalinity Factor (AF) = Log10[Alkalinity] Temp. Factor (TF) = -13.12 x Log10($^{\circ}$ C + 273) + 34.55 pHs (pH @ saturation) =(9.3 + SF + TF) - (HF + AF) LSI = pH - pH_s

Calibration Calculations

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$

$$CF=(A_x)/(C_x)$$

a. Average RF or CF

$$RF_{AVE} = \Sigma RF_i / n$$

b. Standard Deviation

s = SQRT {
$$[\Sigma (RF_i - RF_{AVE})^2] / (n-1) }$$

c. Relative Standard Deviation

Where:

 A_x = Area of the compound

 C_x = Concentration of the compound

 A_{is} = Area of the internal standard

C_{is} = Concentration of the internal standard

n = number of pairs of data

RF_i = Response Factor (or other determined value)

 RF_{AVE} = Average of all the response factors

 Σ = the sum of all the individual values

2. Linear Regression

a. Slope (m)

$$m = (\ n\Sigma x_i y_i - (n\Sigma x_i)^* (n\Sigma y_i)\)\ /\ (n\Sigma x_i^2 - (\Sigma x_i)^2)$$

b. Intercept (b)

$$b = y_{AVE} - m^*(x_{AVE})$$

c. Correlation Coefficient (cc)

$$\begin{array}{l} \text{CC (r) = } \{ \ \Sigma((x_i - x_{ave})^*(y_i - y_{ave})) \ \} \ / \ \{ \ \text{SQRT}((\Sigma(x_i - x_{ave})^2)^*(\Sigma(y_i - y_{ave})^2)) \ \} \\ \text{Or} \\ \text{CC (r) = } [(\Sigma w \ ^* \Sigma wxy) - (\Sigma wx \ ^* \Sigma wy)] \ / \ (\text{sqrt}(\ (\ [(\Sigma w \ ^* \Sigma wx^2) - (\Sigma wx \ ^* \Sigma wx)] \ ^* \ [(\Sigma w \ ^* \Sigma wy^2) - (\Sigma wy \ ^* \Sigma wy)])))] \\ \end{array}$$

d. Coefficient of Determination

$$COD(r^2) = CC*CC$$

Where:

y = Response (Area) Ratio A_x/A_{is}

 $x = Concentration Ratio C_x/C_{is}$

m = slope

b = intercept

n = number of replicate x,y pairs

 x_i = individual values for independent variable

y_i = individual values for dependent variable

 Σ = the sum of all the individual values

 x_{ave} = average of the x values

y_{ave} = average of the y values

w = weighting factor, for equal weighting w=1

3. Quadratic Regression

$$y = ax^2 + bx + c$$

a. Coefficient of Determination

COD
$$(r^2) = (\Sigma(y_{i-}y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_{i-}Y_i)^2]\}) / \Sigma(y_{i-}y_{ave})^2$$

Where:

y = Response (Area) Ratio A_x/A_{is}

 $x = Concentration Ratio C_x/C_{is}$

 $a = x^2$ coefficient

b = x coefficient

c = intercept

y_i = individual values for each dependent variable

 x_i = individual values for each independent variable

 y_{ave} = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (i.e., 3 for third order, 2 for second order)

Page 47 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014

$$Yi = ((2*a*(C_x/C_{is})^2)-b^2+b+(4*a*c))/(4a)$$

b. Coefficients (a,b,c) of a Quadratic Regression

$$a = S_{(x2y)}S_{(xx)} - S_{(xy)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$b = S_{(xy)}S_{(x2x2)} - S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)} - [S_{(xx2)}]^2$$

$$c = [(\Sigma yw)/n] - b^*[(\Sigma xw)/n] - a^*[\Sigma(x^2w)/n]$$

Where:

n = number of replicate x,y pairs

x = x values

y = y values

 $w = S^{-2} / (\Sigma S^{-2}/n)$

 $S_{(xx)} = (\Sigma x^2 w) - [(\Sigma x w)^2 / n]$

 $S_{(xy)} = (\Sigma xyw) - [(\Sigma xw)^*(\Sigma yw) / n]$

 $S_{(xx2)} = (\Sigma x^3 w) - [(\Sigma x w)^* (\Sigma x^2 w) / n]$

 $S_{(x2y)} = (\Sigma x^2 yw) - [(\Sigma x^2 w)^* (\Sigma yw) / n]$

 $S_{(x2x2)} = (\Sigma x^4 w) - [(\Sigma x^2 w)^2 / n]$

Or If unweighted calibration, w=1

S(xx) = (Sx2) - [(Sx)2 / n]

S(xy) = (Sxy) - [(Sx)*(Sy) / n]

S(xx2) = (Sx3) - [(Sx)*(Sx2) / n]

S(x2y) = (Sx2y) - [(Sx2)*(Sy) / n]

S(x2x2) = (Sx4) - [(Sx2)2 / n]

Weighting

Weighting of 1/x or $1/x^2$ is permissible for linear calibrations. Weighting shall not be employed for quadratic calibrations. When weighting, use the above equations by substituting x for $1/x^2$.

Concentration Calculations

On-Column Concentration for Average RRF Calibration using Internal Standard

On-Column Concentration $C_x = ((A_x)(C_{is}))/((A_{is})(RF_{AVE}))$

On-Column Concentration for Average CF Calibration using External Standard

On-Column Concentration $C_x = (A_x)/(CF_{AVE})$

On-Column Concentration for Linear Calibration

Page 48 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014 If determining an external standard, then exclude the A_{is} and C_{is} for internal standards On-Column Concentration $C_x = ((Absolute\{[(A_x)/(A_{is})] - b\})/m) * C_{is}$

Where: m = slope

b = intercept

 A_x = Area of the Sample

Cis = Concentration of the Internal Standard

A_{is} = Area of the Internal Standard

On-Column Concentration for Quadratic Calibration

If determining an external standard, then exclude the A_{is} and C_{is} for internal standards On-Column Concentration =[(+SQRT(b²-(4*a*(c-y)))-b)/(2*a)] * C_{is}

Where: $a = x^2$ coefficient

b = x coefficient

c = intercept

 $y = Area Ratio = A_x/A_{is}$

Cis = Concentration of the Internal Standard

Final Concentration (Wet Weight)

Concentration for Extracted Samples = (On-Column Conc)(Dilution)(Final Volume)
(Initial Amount)(Injection Volume)

Concentration for Purged Samples = (On-Column Conc)(Purged Amount)(Dilution)
(Purged Amount)

Dry Weight Concentration

Dry Weight Concentration = Final Concentration Wet Weight *100 % Solids

Percent Difference

% Difference= Absolute(Continuing Calibration RRF - Average RRF) * 100
Average RRF

Percent Drift

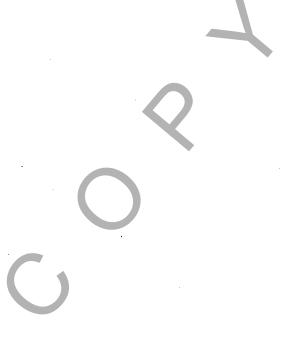
% Drift= <u>Absolute(Calculated Concentration - Theoretical Concentration)</u> * 100
Theoretical Concentration

Dilution Factor

Dilution Factor =(Volume of Solvent + Solute) / Volume of Solute

Relative Retention Time

RRT =RT of Compound / RT of ISTD


Page 49 of 59 Quality Assurance Plan 9.9 Effective August 13th, 2014

Breakdown Percent

Breakdown = <u>Area of DDD + Area of DDE</u> Average (DDT, DDE and DDD)

-or-

<u>Area of Endrin Ketone + Area of Endrin Aldehyde</u> Average (Endrin, Endrin Ketone, Endrin Aldehyde)

11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

Data Reduction

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

Validation

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected, it is brought to the analyst's attention so that he or she can rectify the error, and perform further checks to ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, the project manager, or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred between media, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand-written data from run logs, analytical standard logbooks, hand-entered data logbooks, or on instrument-generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for details regarding data validation.

Reports and Records

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

Sample reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample, the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables, or mailed hard copy.

When a project is completed, the final report, chain of custody, any relevant supporting data, and the quality assurance/control worksheets are scanned as a .pdf file onto the main server. Original client folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up routinely on the HEAL main server. The backup includes raw data, chromatograms, and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be password protected. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in the current Document Control Logbook.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike, or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following guidelines into consideration in order to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks, etc.).

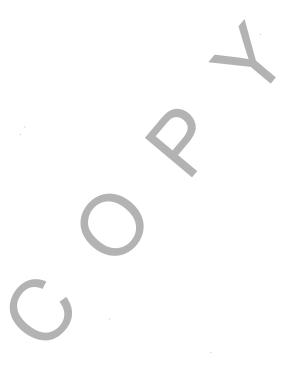
Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria cannot be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data as long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed, unless deemed unnecessary by the supervisor for matrix, historical data, or other analysis-related anomalies.


Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

In the event that results must be reported with associated QC failures, the data must be qualified appropriately to notify the end user of the QC failure.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter- and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.

13.0 Quality Assurance Audits, Reports and Complaints

Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements, and control charts. External performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC-accredited Proficiency Standard Vendor, are another method.

Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which PTs are available. HEAL participates in soil, waste water, drinking water, and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities, and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates, and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples, HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Internal audits are performed using the guidelines outlined below, which include, but are not limited to:

- Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards, and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks

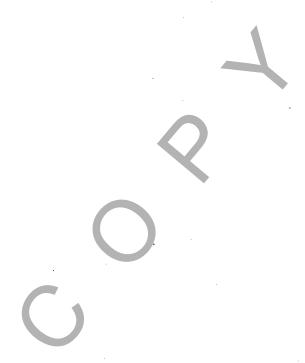
- 7. Data review procedures
- 8. Corrective action procedures
- Review of data packages, which is performed regularly by the lab manager/QA Officer.

The QA/QCO will conduct these audits on an annual basis.

Management Reviews

HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of inter-laboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources, and staff training.


Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

Complaints

Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratory's policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for five years unless otherwise stated.

Internal and External Reports

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they include significant QA problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.

14.0 References (Analytical Protocols Utilized at HEAL)

- 1. Analytical Chemistry of PCB's. Erickson, Mitchell D., CRC Press, Inc. 1992.
- 2. <u>Diagnosis & Improvement of Saline & Alkali Soils.</u> Agriculture Handbook No. 60, USDA, 1954
- 3. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 4. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils, USEPA, EPA-600/2-78-054, March 1978</u>
- 5. <u>Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Inc. 1981-1982.</u>
- 6. <u>Handbook on Reference Methods for Soil Testing.</u> The Council on Soil Testing & Plant Analysis, 1980 and 1992
- 7. <u>Laboratory Procedures for Analyses of Oilfield Waste.</u> Department of Natural Resources, Office of Conservation, Injection and Mining Division, Louisiana, August 1988
- 8. <u>Langelier index calculation.</u> http://www.corrosion-doctors.org/NaturalWaters/Langelier.htm.
- 9. <u>Manual for the Certification of Laboratories Analyzing Drinking Water, Criteria and procedures Quality Assurance Fifth Edition, U.S. Environmental Protection Agency, January 2005.</u>
- 10. <u>Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and Wastes Chemical and physical Parameter.</u> Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 11. The Merck Index, Eleventh Edition, Merck & Co., Inc. 1989.
- 12. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055)
- 13. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 14. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 15. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.

- 16. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1
- 17. Quality Systems for Analytical Services, Revision 2.2, U.S. Department of Energy, October 2006.
- 18. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 19. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 20. <u>Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility, Salinity and Trace Element Toxicity,</u> Technical Bulletin LT B88-2 January, 1988
- 21. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 22. <u>Technical Notes on Drinking Water Methods</u>, U.S. Environmental Protection Agency, October 1994.
- 23. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 01, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: River Terrace Air 4-21-14 OrderNo.: 1404959

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 7 sample(s) on 4/23/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Workorder Sample Summary

WO#: **1404959**

01-May-14

CLIENT: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
1404959-001	TP-5		4/21/2014 1:45:00 AM	4/23/2014	Air
1404959-002	TP-6		4/21/2014 2:00:00 PM	4/23/2014	Air
1404959-003	TP-8		4/21/2014 2:15:00 PM	4/23/2014	Air
1404959-004	TP-8D		4/21/2014 2:15:00 PM	4/23/2014	Air
1404959-005	TP-9		4/21/2014 2:30:00 PM	4/23/2014	Air
1404959-006	MW-49		4/21/2014 2:45:00 PM	4/23/2014	Air
1404959-007	DW-3		4/21/2014 1:30:00 PM	4/23/2014	Air

Date Reported: 5/1/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-5

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 1:45:00 AM

 Lab ID:
 1404959-001
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 5.0 μg/L 1 4/24/2014 11:14:38 AM R18204 Surr: BFB 84.6 48.4-164 %REC 4/24/2014 11:14:38 AM R18204 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: DJF Benzene ND 0.10 μg/L 1 4/24/2014 1:15:21 PM R18208 Toluene ND 0.10 μg/L 4/24/2014 1:15:21 PM R18208 Ethylbenzene ND 0.10 μg/L 1 4/24/2014 1:15:21 PM R18208 Xylenes, Total ND 0.30 μg/L 4/24/2014 1:15:21 PM R18208 Surr: 1,2-Dichloroethane-d4 106 70-130 %REC R18208 4/24/2014 1:15:21 PM Surr: 4-Bromofluorobenzene 88.2 70-130 %REC 4/24/2014 1:15:21 PM R18208 Surr: Dibromofluoromethane 97.3 %REC 70-130 1 4/24/2014 1:15:21 PM R18208 Surr: Toluene-d8 91.1 70-130 %REC 4/24/2014 1:15:21 PM R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 2 of 10

Hall Environmental Analysis Laboratory, Inc. Date Reported: 5/1/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-6

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 2:00:00 PM

 Lab ID:
 1404959-002
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch		
EPA METHOD 8015D: GASOLINE RANGE Analys								
Gasoline Range Organics (GRO)	ND	5.0	μg/L	1	4/24/2014 11:42:25 AM	R18204		
Surr: BFB	85.4	48.4-164	%REC	1	4/24/2014 11:42:25 AM	R18204		
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: DJF		
Benzene	ND	0.10	μg/L	1	4/24/2014 2:15:35 PM	R18208		
Toluene	ND	0.10	μg/L	1	4/24/2014 2:15:35 PM	R18208		
Ethylbenzene	ND	0.10	μg/L	1	4/24/2014 2:15:35 PM	R18208		
Xylenes, Total	ND	0.30	μg/L	1	4/24/2014 2:15:35 PM	R18208		
Surr: 1,2-Dichloroethane-d4	78.7	70-130	%REC	1	4/24/2014 2:15:35 PM	R18208		
Surr: 4-Bromofluorobenzene	91.5	70-130	%REC	1	4/24/2014 2:15:35 PM	R18208		
Surr: Dibromofluoromethane	93.4	70-130	%REC	1	4/24/2014 2:15:35 PM	R18208		
Surr: Toluene-d8	92.1	70-130	%REC	1	4/24/2014 2:15:35 PM	R18208		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 10

Client Sample ID: TP-8

Collection Date: 4/21/2014 2:15:00 PM

Date Reported: 5/1/2014

4/24/2014 2:45:58 PM

R18208

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14

Surr: Toluene-d8

Lab ID: 1404959-003 Matrix: AIR Received Date: 4/23/2014 10:02:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 5.0 μg/L 1 4/24/2014 1:38:01 PM R18204 Surr: BFB 87.9 48.4-164 %REC 4/24/2014 1:38:01 PM R18204 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: DJF Benzene ND 0.10 μg/L 1 4/24/2014 2:45:58 PM R18208 Toluene ND 0.10 μg/L 4/24/2014 2:45:58 PM R18208 Ethylbenzene ND 0.10 μg/L 1 4/24/2014 2:45:58 PM R18208 Xylenes, Total ND 0.30 μg/L 4/24/2014 2:45:58 PM R18208 Surr: 1,2-Dichloroethane-d4 103 70-130 %REC R18208 4/24/2014 2:45:58 PM Surr: 4-Bromofluorobenzene 89.1 70-130 %REC 4/24/2014 2:45:58 PM R18208 Surr: Dibromofluoromethane 91.7 %REC 70-130 1 4/24/2014 2:45:58 PM R18208

70-130

%REC

87.8

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 10

- Sample pH greater than 2. P
- RLReporting Detection Limit

Date Reported: 5/1/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: TP-8D

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 2:15:00 PM

 Lab ID:
 1404959-004
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 5.0 μg/L 1 4/24/2014 2:05:29 PM R18204 Surr: BFB 87.2 48.4-164 %REC 4/24/2014 2:05:29 PM R18204 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: DJF 4/24/2014 3:16:08 PM Benzene ND 0.10 μg/L 1 R18208 Toluene ND 0.10 μg/L 4/24/2014 3:16:08 PM R18208 Ethylbenzene ND 0.10 μg/L 1 4/24/2014 3:16:08 PM R18208 Xylenes, Total ND 0.30 μg/L 4/24/2014 3:16:08 PM R18208 Surr: 1,2-Dichloroethane-d4 83.3 70-130 %REC 4/24/2014 3:16:08 PM R18208 Surr: 4-Bromofluorobenzene 85.9 70-130 %REC 4/24/2014 3:16:08 PM R18208 Surr: Dibromofluoromethane %REC 92.1 70-130 1 4/24/2014 3:16:08 PM R18208 Surr: Toluene-d8 90.5 70-130 %REC 4/24/2014 3:16:08 PM R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 5 of 10

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Client Sample ID: TP-9

Date Reported: 5/1/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14 **Collection Date:** 4/21/2014 2:30:00 PM

Lab ID: 1404959-005 **Matrix:** AIR **Received Date:** 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0	μg/L	1	4/24/2014 2:32:52 PM	R18204
Surr: BFB	87.9	48.4-164	%REC	1	4/24/2014 2:32:52 PM	R18204
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: DJF
Benzene	ND	0.10	μg/L	1	4/24/2014 3:46:14 PM	R18208
Toluene	ND	0.10	μg/L	1	4/24/2014 3:46:14 PM	R18208
Ethylbenzene	ND	0.10	μg/L	1	4/24/2014 3:46:14 PM	R18208
Xylenes, Total	ND	0.30	μg/L	1	4/24/2014 3:46:14 PM	R18208
Surr: 1,2-Dichloroethane-d4	70.7	70-130	%REC	1	4/24/2014 3:46:14 PM	R18208
Surr: 4-Bromofluorobenzene	95.6	70-130	%REC	1	4/24/2014 3:46:14 PM	R18208
Surr: Dibromofluoromethane	86.5	70-130	%REC	1	4/24/2014 3:46:14 PM	R18208
Surr: Toluene-d8	98.7	70-130	%REC	1	4/24/2014 3:46:14 PM	R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 6 of 10

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc. Date Reported: 5/1/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-49

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 2:45:00 PM

 Lab ID:
 1404959-006
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch			
EPA METHOD 8015D: GASOLINE RANGE Analyst:									
Gasoline Range Organics (GRO)	ND	5.0	μg/L	1	4/24/2014 3:00:14 PM	R18204			
Surr: BFB	85.3	48.4-164	%REC	1	4/24/2014 3:00:14 PM	R18204			
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: DJF			
Benzene	ND	0.10	μg/L	1	4/24/2014 4:16:25 PM	R18208			
Toluene	ND	0.10	μg/L	1	4/24/2014 4:16:25 PM	R18208			
Ethylbenzene	ND	0.10	μg/L	1	4/24/2014 4:16:25 PM	R18208			
Xylenes, Total	ND	0.30	μg/L	1	4/24/2014 4:16:25 PM	R18208			
Surr: 1,2-Dichloroethane-d4	80.2	70-130	%REC	1	4/24/2014 4:16:25 PM	R18208			
Surr: 4-Bromofluorobenzene	88.8	70-130	%REC	1	4/24/2014 4:16:25 PM	R18208			
Surr: Dibromofluoromethane	90.0	70-130	%REC	1	4/24/2014 4:16:25 PM	R18208			
Surr: Toluene-d8	92.9	70-130	%REC	1	4/24/2014 4:16:25 PM	R18208			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 7 of 10
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc. Date Reported: 5/1/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DW-3

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 1:30:00 PM

 Lab ID:
 1404959-007
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE R	ANGE				Analysi	: NSB
Gasoline Range Organics (GRO)	150	5.0	μg/L	1	4/24/2014 3:27:51 PM	R18204
Surr: BFB	177	48.4-164	S %REC	1	4/24/2014 3:27:51 PM	R18204
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analyst	: DJF
Benzene	0.74	0.10	μg/L	1	4/24/2014 4:46:32 PM	R18208
Toluene	ND	0.10	μg/L	1	4/24/2014 4:46:32 PM	R18208
Ethylbenzene	12	1.0	μg/L	10	4/25/2014 3:30:56 PM	R18226
Xylenes, Total	20	3.0	μg/L	10	4/25/2014 3:30:56 PM	R18226
Surr: 1,2-Dichloroethane-d4	75.6	70-130	%REC	1	4/24/2014 4:46:32 PM	R18208
Surr: 4-Bromofluorobenzene	96.0	70-130	%REC	1	4/24/2014 4:46:32 PM	R18208
Surr: Dibromofluoromethane	89.9	70-130	%REC	1	4/24/2014 4:46:32 PM	R18208
Surr: Toluene-d8	83.2	70-130	%REC	1	4/24/2014 4:46:32 PM	R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 10

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

1700

WO#: **1404959**

01-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14

Surr: BFB

Sample ID 1404959-001ADUP SampType: DUP TestCode: EPA Method 8015D: Gasoline Range

2000

Client ID: **TP-5** Batch ID: **R18204** RunNo: **18204**

Prep Date: Analysis Date: 4/24/2014 SeqNo: 525403 Units: µg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GR0) ND 5.0 0 20

85.7

48.4

164

0

0

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RL Reporting Detection Limit

Page 9 of 10

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404959**

01-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14

Sample ID 1404959-001adup	SampType: DUP TestCode: EPA Method 8260B: Volatiles Short List					·				
Client ID: TP-5	Batch	n ID: R1	8208	RunNo: 18208						
Prep Date:	Analysis D	oate: 4/	24/2014	5	SeqNo: 5	25542	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.10								
Toluene	ND	0.10								
Ethylbenzene	ND	0.10								
Methyl tert-butyl ether (MTBE)	ND	0.10								
1,2,4-Trimethylbenzene	ND	0.10								
1,3,5-Trimethylbenzene	ND	0.10								
1,2-Dichloroethane (EDC)	ND	0.10								
1,2-Dibromoethane (EDB)	ND	0.10								
Naphthalene	ND	0.20								
1-Methylnaphthalene	ND	0.40								
2-Methylnaphthalene	ND	0.40								
Xylenes, Total	ND	0.30								
Surr: 1,2-Dichloroethane-d4	0.72		1.000		71.7	70	130			
Surr: 4-Bromofluorobenzene	0.86		1.000		85.6	70	130			
Surr: Dibromofluoromethane	0.90		1.000		90.2	70	130			
Surr: Toluene-d8	0.92		1.000		92.4	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 10

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Southw	Work Order Number	er: 1404959		RcptNo:	1
Received by/date: C5	04/23/14		· - · · · · · · · · · · · · · · · · · ·		
Logged By: Celina Sessa	4/23/2014				
Completed By: Celina Sessa	4/23/2014 11:21:56	AM.			
Reviewed By:	04/23/14				
Chain of Custody	09(0)[-1			<u>-</u>	·
Custody seals intact on sample bottles?		Yes	No :	Not Present 🗸	
Is Chain of Custody complete?		Yes 🗸	No:	Not Present	
3. How was the sample delivered?		Courier			
Log In	_	<u></u>	(T		
 Was an attempt made to cool the sample: 	\$?	Yes 🗔	No 🗔	NA 🗸	
5. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes L	No .	NA 🗸	
6. Sample(s) in proper container(s)?		Yes 🗸	No i		
7. Sufficient sample volume for indicated tes	t(s)?	Yes 🗸	No 🗀		
8. Are samples (except VOA and ONG) prop	erly preserved?	Yes 🛂	No 🗔		
9. Was preservative added to bottles?	•	Yes 🗔	No 🗹	NA 🛄	
10.VOA vials have zero headspace?		Yes 🗌	No 🗔	No VOA Vials	
11. Were any sample containers received bro	ken?	Yes	No 🔽	# of preserved	
				bottles checked	
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗸	No : : :	for pH: (<2 +	or >12 unless note
13. Are matrices correctly identified on Chain	of Custody?	Yes 🗸	No :	Adjusted?	
14. Is it clear what analyses were requested?	·	Yes 🗹	No i		
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🔽	No 🗔	Checked by:	
(ii ii e, ii e ii y e a a a a a a a a a a a a a a a a a a					•
pecial Handling (if applicable)					
16. Was client notified of all discrepancies wit	h this order?	Yes	No :	NA 🗸	
Person Notified:	Date:				
By Whom:	Via:	eMail P	hone Fax	[] In Person	1
Regarding:					
Client Instructions:		,		T	:
17. Additional remarks:					
18. <u>Cooler Information</u>					
	Seal Intact Seal No	Seal Date	Signed By		

Chain-of-C	Chain-of-Custody Record	Turn-Around Time:				I		HALL ENVIDONMENTAL	5	C	2	2 U	F	_	
Client: Western Refining	1 Refining	M Standard □	Rush			=	ĮŞ	ANALYSIS		}	Ŏ	LABORATORY	Ō	≾ ر	
		Project Name:				>	ww.ha	www.hallenvironmental.com		ital.co	Ę				
Mailing Address:	50 CR4990	Riverterraca	ca Air 4-21-14	4	4901 Hawkins NE	awkine		- Albuquerque, NM 87109	herd	je, R	M 871	60			
Bloomfield,	, NN 87413	Project #:			Tel. 505-345-3975	5-345	3975	Fax	x 505	505-345-4107	4107				
Phone #: 505-6	1						1	Analysis Request	is Re	quest					
email or Fax#:		Project Manager:			(6										
QA/QC Package:							(S				 				
□ Standard	K Level 4 (Full Validation)						WIS								
Accreditation ☐ NELAP ☐ Other	her	Sampler: MATT	T+ TS &								(A			(14) 30	(NL 10
☐ EDD (Type)		Sample Temperature;	e 220 00 00 00 00 00 00 00 00 00 00 00 00								ΟΛ-			<u> </u>	
Date Time Matrix	x Sample Request ID	Container Prese Type and # Ty	Preservative HEAL No. Type 1404959	TM + X3T8 TM + X3T8	8015B	TPH (Metho	EDB (Metho	RCRA 8 Me	O,7) anoinA oitee 1808	(OV) 809Z8	im92) 0728			<u>aeldd⊓R ii∆i</u>	Air Bubbles
1-21-4 1:45 AIR	- TP-5	TESTAT BA	-001		+		_			-					
1 2:00	Tr-6	1 1	700-		7					ゾ					
2:15	10-8		- 003		1					4					
2:15	15-6D		heo-		メ					7					
2:30	6-91		7005		'					7					
2,45	64-my		100-		人					14					
1 25:1	DW-3		1 200-		ゲ					X					Γ Ι
lime:	Relinquished by:	Received by:	Date Time	Remarks:	ks:										1
4-23-41531 16	Votest Traler	("housely	No 4/22/14 1531												
			Date Time									· '.			
122 172 173	This Haules	Celu man	co od/23/14 10:00	٦											
98	I to Hall Environn	ental may be subcontracted to other accredited laboratories	laboratories. This serves as notice of this possibility	oossibility	Any su	h-confra	ted data	will be cl	sarly no	afed on	the ana	Micalre	nort	:	i

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 05, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: River Terrace Water 4-22-14 OrderNo.: 1404A04

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 4/23/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1404A04**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-9

 Project:
 River Terrace Water 4-22-14
 Collection Date: 4/22/2014 8:45:00 AM

 Lab ID:
 1404A04-001
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE .				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	4/25/2014 1:55:29 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 1:55:29 PM	12859
Surr: DNOP	90.2	76-161	%REC	1	4/25/2014 1:55:29 PM	12859
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2014 5:30:45 PM	R18223
Surr: BFB	89.8	80.4-118	%REC	1	4/25/2014 5:30:45 PM	R18223
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst	ELS
Lead	ND	0.0050	mg/L	1	4/30/2014 12:17:19 PM	12920
EPA METHOD 8260: VOLATILES SH	IORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Toluene	ND	1.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Ethylbenzene	ND	1.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Xylenes, Total	ND	2.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Surr: 1,2-Dichloroethane-d4	91.5	70-130	%REC	1	4/28/2014 8:09:41 PM	R18253
Surr: 4-Bromofluorobenzene	94.1	70-130	%REC	1	4/28/2014 8:09:41 PM	R18253
Surr: Dibromofluoromethane	95.0	70-130	%REC	1	4/28/2014 8:09:41 PM	R18253
Surr: Toluene-d8	91.4	70-130	%REC	1	4/28/2014 8:09:41 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1404A04**

Date Reported: 5/5/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-49

Project: River Terrace Water 4-22-14 **Collection Date:** 4/22/2014 9:00:00 AM

Lab ID: 1404A04-002 **Matrix:** AQUEOUS **Received Date:** 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	4/25/2014 2:17:38 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 2:17:38 PM	12859
Surr: DNOP	110	76-161	%REC	1	4/25/2014 2:17:38 PM	12859
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2014 6:01:01 PM	R18223
Surr: BFB	90.5	80.4-118	%REC	1	4/25/2014 6:01:01 PM	R18223
EPA 6010B: TOTAL RECOVERABLE	E METALS				Analyst	: ELS
Lead	0.0064	0.0050	mg/L	1	4/30/2014 12:18:57 PM	12920
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Toluene	ND	1.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Ethylbenzene	ND	1.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Xylenes, Total	ND	2.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Surr: 1,2-Dichloroethane-d4	88.2	70-130	%REC	1	4/28/2014 8:37:42 PM	R18253
Surr: 4-Bromofluorobenzene	92.8	70-130	%REC	1	4/28/2014 8:37:42 PM	R18253
Surr: Dibromofluoromethane	96.8	70-130	%REC	1	4/28/2014 8:37:42 PM	R18253
Surr: Toluene-d8	92.5	70-130	%REC	1	4/28/2014 8:37:42 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1404A04**

Date Reported: 5/5/2014

Hall Environmental Analysis Laboratory, Inc.

-

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DW-3

 Project:
 River Terrace Water 4-22-14
 Collection Date: 4/22/2014 9:15:00 AM

 Lab ID:
 1404A04-003
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	1.7	0.20	mg/L	1	4/25/2014 2:39:45 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 2:39:45 PM	12859
Surr: DNOP	98.3	76-161	%REC	1	4/25/2014 2:39:45 PM	12859
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	8.8	1.0	mg/L	20	4/25/2014 6:31:06 PM	R18223
Surr: BFB	109	80.4-118	%REC	20	4/25/2014 6:31:06 PM	R18223
EPA 6010B: TOTAL RECOVERABLE	E METALS				Analyst	ELS
Lead	ND	0.0050	mg/L	1	4/30/2014 12:26:01 PM	12920
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: KJH
Benzene	67	10	μg/L	10	4/28/2014 10:57:45 PM	R18253
Toluene	ND	10	μg/L	10	4/28/2014 10:57:45 PM	R18253
Ethylbenzene	720	10	μg/L	10	4/28/2014 10:57:45 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	4/28/2014 10:57:45 PM	R18253
Xylenes, Total	1300	20	μg/L	10	4/28/2014 10:57:45 PM	R18253
Surr: 1,2-Dichloroethane-d4	92.5	70-130	%REC	10	4/28/2014 10:57:45 PM	R18253
Surr: 4-Bromofluorobenzene	86.5	70-130	%REC	10	4/28/2014 10:57:45 PM	R18253
Surr: Dibromofluoromethane	92.1	70-130	%REC	10	4/28/2014 10:57:45 PM	R18253
Surr: Toluene-d8	90.2	70-130	%REC	10	4/28/2014 10:57:45 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404A04**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Water 4-22-14

Sample ID MB-12859 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range
Client ID: PBW Batch ID: 12859 RunNo: 18202

Prep Date: 4/24/2014 Analysis Date: 4/25/2014 SeqNo: 525818 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.20
Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.55 0.5000 110 76 161

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404A04**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Water 4-22-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R18223 RunNo: 18223

Prep Date: Analysis Date: 4/25/2014 SeqNo: 526137 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 85.8 80.4 118

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404A04**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Water 4-22-14

Sample ID 5mL-rb Client ID: PBW Prep Date:		ype: ME n ID: R1 Date: 4/		F	tCode: El RunNo: 1 SeqNo: 5	8253	8260: Volatile Units: μg/L	es Short L	ist	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.1		10.00		90.8	70	130			
Surr: 4-Bromofluorobenzene	9.0		10.00		89.6	70	130			
Surr: Dibromofluoromethane	9.3		10.00		93.0	70	130			
Surr: Toluene-d8	9.0		10.00		90.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404A04**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Water 4-22-14

Sample ID MB-12920 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 12920 RunNo: 18309

Prep Date: 4/29/2014 Analysis Date: 4/30/2014 SeqNo: 528727 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.0050

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com

Client Name: Western Refining Southw Work Order Number:	1404/	\04		RcptNo: 1
Received by/date: 05. 04/23/14				
Logged By: Ashley Gallegos 4/23/2014 10:02:00 AM	1		A	
Completed By: Ashley Gallegos 4/24/2014 10:10:22 AM			AZ	:
	•		> - 0	
Chain of Custody	\$			
1. Custody seals intact on sample bottles?	Yes		No	Not Present ✔
2. Is Chain of Custody complete?	Yes	Y	No	Not Present
3. How was the sample delivered?	Cour	<u>ier</u>		
Log In				
4. Was an attempt made to cool the samples?	Yes	¥	No	NA
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes	V	No :	NA : 1
6. Sample(s) in proper container(s)?	Yes	V	No	
7. Sufficient sample volume for indicated test(s)?	Yes	V	_ No 「	CS 04/24/14
8. Are samples (except VOA and ONG) properly preserved?	Yes		No 🛚	(3) 04/24/19
9. Was preservative added to bottles? metals analysis: 1 mL +1NO3 was added +	Yes		No A	
10.VOA vials have zero headspace?	Yes	Y .	No :	" /ach -fac 211
11. Were any sample containers received broken?	Yes		No	
	•			# of preserved bottles checked 2
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes	V	No	for pH: (<20r>12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes	V	Ńo Ĺ	Adjusted 3 A 1/10
14. Is it clear what analyses were requested?	Yes		No .	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes	✓	No 🗆	Checked by: CS
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes		No	NA 🗸
Person Notified: Date:			<u> </u>	Address of the Control of the Contro
By Whom: Via:	eMa	il :	Phone F	Fax I In Person
Regarding:			***************************************	
Client Instructions:				
17. Additional remarks:				
18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No S 1 3.2 Good Yes	Seal Da	ite	Signed By	

	, ,	_					_			(IV)	<i>,</i>	<u> </u>	۸i∆		_	+	-	 	<u> </u>	_	_	 _	_	_	_	_		
	¥.	LABORATOR											-	-	╂—	+		-	}-	+	-	┼	\perp	\downarrow	+	_		
	5	ב					-	m	0	वि	₩	TaM M	91		╁		+			╀	+		 	+	-	4		port
		Ş	9	60			219	03	Q	K	0	Tersher	ज			<u> </u>	-	V		╀		 ^	1	+	╀	\dashv		fical re
	Ź	<u>5</u>	E :	8 .	1107					(√O/	V-imə2) 0	28		×	4	 			+-	+^	+	-	+	-	1		analy
	₫;	1) (S = 1	, Z	457		Son P	<i>3</i> 8	W)			(AOV) 808		ズ	<u> </u>	╫	X	<u> </u>		X	+	-	├	 	<u> </u>	-		on the
			www.hallenvironmental.com	Tollege of some - Albuquerque, NM 8/109	505-345-4107 Pegnest		S,	-CB		_		Pesticid		_	┝	+	-				}	_	<u> </u>	+		-		otated
	3	ANALTSIS	Ironi	ndne			[†] OS	° [†] O₀	∃' ^z O	Ν'ε	ON	ons (F,CI,	nA			 	†	 		┼-	-	\vdash		+-	+	-		early n
	□ }	, -	lenv	Q L	Analysis	(41)			•		_	steM 8 AR					 							-	-	1		l be ck
	_;	(v.hal	֡֝֜֝֝֜֜֜֝֝֓֓֓֓֜֜֜֜֝֓֓֓֓֓֓֜֜֜֜֜֜֓֓֡֓֜֜֜֜֜֡֓֓֡֡֡֡֜֜֜֡֡֡֓֜֜֡֡֡֡֡֡	ر د		1	(SM	IS 0.	728	or	01E8) s'H	∀ ⊿		_	T					 		_		-	†		ata wil
	HALL	Z	M 4	S 1	505-545-5975				(p()S t	B (Method	雪			 	<u> </u>			<u> </u>						1		ofed d
	-		- June 1	מאַאַ ה	ر ب				(.8	141	H (Methoc	41											_				contra
			7	- ŭ		(Z	5	يجا			_) 8015B H	٠ ا	X			X			メ			_			j		dns yr
	1		70	ř								EX + MTE														Remarks:		E. A.
_			_				(12	08) :	NB's	1 +	3E -	EX + MTE	L8									·				Rem		idisso
										1	6. (2)											-				Š	3	& of this p
			-							180	∳s P) No.	5	00			20			$\bar{\omega}$						Time		effice S
		*) (3							.	HEALING		0			B			8						7		74 Is as n
		Ì	tb.	3		İ			ء ا	No	۲		\$	ļ			1)						Date	Date	04/25/ This serve
	ے		12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3					100		1	14.000	<u> </u>		_			_										°. [9
	Rush	`	•	}					V		w	Preservative Type			7	3	7	200	3	ار		3			İ	1 1001	3	ratorie
ı ime:			T 50			,				Yes	iture	serva Type	1	<u>ا</u> إ	-4	5	#	71	3	HC	-	깇		Í			3	da b
	Ō	je:		1		ader) D		MAT	×	Sample Temperature		4		9	Ħ		9	7	داد	9	#					<u>}</u>	accredite
ı urn-Arouna	X Standard	Project Name:	15/gc/	#		Project Manag			ر ا		Ten	Container Type and #		<u>t</u> -	-900	2	4	0		40	a				.	+ '. ≼	d ≻	j je B
FI-A	Sta	oject	5.	ject) ject			Sampler:	On Ice:	nple	Container Type and #	100	ŠĮ.	જ	-500	5-VOA	1-500	1-500	5-16A	1-500	1-500				Received by:	ved b	Z g g g
<u>-</u>	<u> </u>	Pro		P.	т-	F.	<u> </u>	_	Sar	ဝ်	Sar		U	<u>1</u>	<u> </u>	<u> </u>	13		<u> </u>	N	4	1		_	[Rece	Received by:	Itage P
_			}					on)				Ω									$\overline{}$			7				sapco
			0	1	1.		ŀ	lidati			1	est								1								Z ès
ပ္ပ	3		6	874/3	100			II Val			I	nbe					9		1,	M						ر پار		onmental may be
Y	5	•	JR4890					Level 4 (Full Validation)				Sample Request ID	6	4	E		H-07/W			إإ		/	İ			3		S in in in in in in in in in in in in in
g	4		7	とと	1			vel				ldui	10	<u>.</u>	\nearrow		3/	1		J26-	4		1			1/2] -	기 를 3
SIC	ρZ		O	Z	3			4				လွ	 	- '			٤						ŀ		\ 	*	} ≽ →	를 함 표
3	3		2	Ø	V				=		┟	<u>×</u>	1	<u>-</u>	+	+	+	+	+	+	-	\dashv	+	+		Kelinduished by	Relinquished by:	S mitte
5	101		#	9	505			ļ	[] [Matrix	1707		4		_	_		-	_	-						bles si
Ξ	182		:sse	Š	50	-i-L	je:							,	+	+	$\frac{1}{2}$		+;	S	+	_	 	_	1	2	1	, salm
Unam-or-Custody Record	%		Addr	Š		Fax	acka	lard	ation	ا ي	Z Z	Time	8:45				1.00	1	Ġ	1:15					L Limo		Time:	f necessary, samples submitted to Hall Environmental may be subcontracted to other accredited taboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
١	Client Western Refining		Mailing Address: #50	Bloom Rield	Phone #:	email or Fax#:	QA/QC Package:	□ Standard	Accreditation	֓֞֞֝֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	□ EDD (Type)		7	+	+	+	+	+	+	+	+	+	+	+	<u> </u>	7,		<u> </u>
ł	ਹੁੰ		Ma	(n)	됩	ĕ	Ø		Acc	- '		Date	H-CC-4	-	_	+	+	+-	+	+	+				Date:	722-14 [53]	Date:	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 05, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: River Terrace 4-22-14 OrderNo.: 1404984

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 4 sample(s) on 4/23/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: TP-5

 Project:
 River Terrace 4-22-14
 Collection Date: 4/22/2014 8:00:00 AM

 Lab ID:
 1404984-001
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	BCN
Diesel Range Organics (DRO)	2.2	0.20	mg/L	1	4/25/2014 11:20:45 AM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 11:20:45 AM	12859
Surr: DNOP	118	76-161	%REC	1	4/25/2014 11:20:45 AM	12859
EPA METHOD 8015D: GASOLINE RANG	iΕ				Analyst	NSB
Gasoline Range Organics (GRO)	4.0	0.50	mg/L	10	4/25/2014 1:01:47 AM	R18204
Surr: BFB	103	80.4-118	%REC	10	4/25/2014 1:01:47 AM	R18204
EPA 6010B: TOTAL RECOVERABLE ME	TALS				Analyst	ELS
Lead	0.012	0.0050	mg/L	1	4/30/2014 12:10:56 PM	12884
EPA METHOD 8260: VOLATILES SHOR	T LIST				Analyst	KJH
Benzene	ND	5.0	μg/L	5	4/28/2014 5:49:04 PM	R18253
Toluene	ND	5.0	μg/L	5	4/28/2014 5:49:04 PM	R18253
Ethylbenzene	27	5.0	μg/L	5	4/28/2014 5:49:04 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	5	4/28/2014 5:49:04 PM	R18253
Xylenes, Total	450	10	μg/L	5	4/28/2014 5:49:04 PM	R18253
Surr: 1,2-Dichloroethane-d4	94.0	70-130	%REC	5	4/28/2014 5:49:04 PM	R18253
Surr: 4-Bromofluorobenzene	93.7	70-130	%REC	5	4/28/2014 5:49:04 PM	R18253
Surr: Dibromofluoromethane	92.8	70-130	%REC	5	4/28/2014 5:49:04 PM	R18253
Surr: Toluene-d8	91.9	70-130	%REC	5	4/28/2014 5:49:04 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-6

 Project:
 River Terrace 4-22-14
 Collection Date: 4/22/2014 8:15:00 AM

 Lab ID:
 1404984-002
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Q	Qual Uı	nits	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE					Analyst	BCN
Diesel Range Organics (DRO)	1.7	0.20	m	ng/L	1	4/25/2014 12:27:09 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	m	ng/L	1	4/25/2014 12:27:09 PM	12859
Surr: DNOP	120	76-161	%	6REC	1	4/25/2014 12:27:09 PM	12859
EPA METHOD 8015D: GASOLINE R	ANGE					Analyst	NSB
Gasoline Range Organics (GRO)	3.5	0.050	m	ng/L	1	4/25/2014 1:31:57 AM	R18204
Surr: BFB	381	80.4-118	S %	6REC	1	4/25/2014 1:31:57 AM	R18204
EPA 6010B: TOTAL RECOVERABLE	E METALS					Analyst	ELS
Lead	0.0084	0.0050	m	ng/L	1	4/30/2014 12:12:31 PM	12884
EPA METHOD 8260: VOLATILES SH	ORT LIST					Analyst	KJH
Benzene	ND	1.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Toluene	ND	1.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Ethylbenzene	28	1.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	1.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Xylenes, Total	93	2.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Surr: 1,2-Dichloroethane-d4	92.6	70-130	%	6REC	1	4/28/2014 6:17:09 PM	R18253
Surr: 4-Bromofluorobenzene	88.9	70-130	%	6REC	1	4/28/2014 6:17:09 PM	R18253
Surr: Dibromofluoromethane	91.3	70-130	%	6REC	1	4/28/2014 6:17:09 PM	R18253
Surr: Toluene-d8	92.7	70-130	%	6REC	1	4/28/2014 6:17:09 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 2 of 8
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-8

 Project:
 River Terrace 4-22-14
 Collection Date: 4/22/2014 8:30:00 AM

 Lab ID:
 1404984-003
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8015D: DIESEL RANGE** Analyst: BCN Diesel Range Organics (DRO) 2.3 0.20 mg/L 1 4/25/2014 12:49:19 PM 12859 Motor Oil Range Organics (MRO) ND 2.5 mg/L 4/25/2014 12:49:19 PM 12859 Surr: DNOP 118 %REC 4/25/2014 12:49:19 PM 12859 76-161 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) 4.0 0.25 mg/L 5 4/25/2014 2:02:07 AM R18204 Surr: BFB 110 80.4-118 %REC 4/25/2014 2:02:07 AM R18204 **EPA 6010B: TOTAL RECOVERABLE METALS** Analyst: ELS 4/30/2014 12:14:06 PM 12884 Lead 0.0080 0.0050 mg/L **EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: KJH Benzene ND 5.0 μg/L 5 4/28/2014 6:45:18 PM R18253 Toluene ND 5.0 5 4/28/2014 6:45:18 PM R18253 μg/L Ethylbenzene 19 5.0 μg/L 5 4/28/2014 6:45:18 PM R18253 Methyl tert-butyl ether (MTBE) ND 5.0 μg/L 5 4/28/2014 6:45:18 PM R18253 Xylenes, Total 83 10 5 4/28/2014 6:45:18 PM R18253 μg/L Surr: 1,2-Dichloroethane-d4 91.7 70-130 %REC 4/28/2014 6:45:18 PM R18253 Surr: 4-Bromofluorobenzene 90.9 70-130 %REC 5 4/28/2014 6:45:18 PM R18253 Surr: Dibromofluoromethane 95.0 70-130 %REC 4/28/2014 6:45:18 PM R18253 Surr: Toluene-d8 93.8 70-130 %REC 4/28/2014 6:45:18 PM R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-8D

 Project:
 River Terrace 4-22-14
 Collection Date: 4/22/2014 8:30:00 AM

 Lab ID:
 1404984-004
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	BCN
Diesel Range Organics (DRO)	2.3	0.20	mg/L	1	4/25/2014 1:11:24 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 1:11:24 PM	12859
Surr: DNOP	125	76-161	%REC	1	4/25/2014 1:11:24 PM	12859
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	2.2	0.25	mg/L	5	4/25/2014 2:32:13 AM	R18204
Surr: BFB	102	80.4-118	%REC	5	4/25/2014 2:32:13 AM	R18204
EPA 6010B: TOTAL RECOVERABLE M	ETALS				Analyst	ELS
Lead	0.0065	0.0050	mg/L	1	4/30/2014 12:15:43 PM	12884
EPA METHOD 8260: VOLATILES SHOP	RT LIST				Analyst	: KJH
Benzene	ND	5.0	μg/L	5	4/28/2014 7:13:28 PM	R18253
Toluene	ND	5.0	μg/L	5	4/28/2014 7:13:28 PM	R18253
Ethylbenzene	13	5.0	μg/L	5	4/28/2014 7:13:28 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	5	4/28/2014 7:13:28 PM	R18253
Xylenes, Total	51	10	μg/L	5	4/28/2014 7:13:28 PM	R18253
Surr: 1,2-Dichloroethane-d4	88.4	70-130	%REC	5	4/28/2014 7:13:28 PM	R18253
Surr: 4-Bromofluorobenzene	94.1	70-130	%REC	5	4/28/2014 7:13:28 PM	R18253
Surr: Dibromofluoromethane	92.2	70-130	%REC	5	4/28/2014 7:13:28 PM	R18253
Surr: Toluene-d8	94.2	70-130	%REC	5	4/28/2014 7:13:28 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404984**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace 4-22-14

Sample ID MB-12859 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: **PBW** Batch ID: 12859 RunNo: 18202 Prep Date: 4/24/2014 Analysis Date: 4/25/2014 SeqNo: 525818 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 ND Motor Oil Range Organics (MRO) 2.5 Surr: DNOP 0.55 0.5000 76 110 161

Sample ID 1404984-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: TP-5 Batch ID: 12859 RunNo: 18202 Prep Date: 4/24/2014 Analysis Date: 4/25/2014 SeqNo: 525820 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 2.175 54.4 S 3.5 2.500 72.1 156 Surr: DNOP 0.22 0.2500 89.0 76 161

Sample ID 1404984-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: TP-5 Batch ID: 12859 RunNo: 18202 Prep Date: 4/24/2014 Analysis Date: 4/25/2014 SeqNo: 525821 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 4.5 0.20 2.500 2.175 93.4 72.1 156 24.2 20 R Surr: DNOP 0.28 0.2500 110 76 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404984**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace 4-22-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R18204 RunNo: 18204

Prep Date: Analysis Date: 4/24/2014 SeqNo: 525400 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 85.8 80.4 118

Sample ID 1404984-001BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: **TP-5** Batch ID: **R18204** RunNo: **18204**

Prep Date: Analysis Date: 4/24/2014 SeqNo: 525411 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 9.8
 0.50
 5.000
 3.964
 117
 79
 121

 Surr: BFB
 220
 200.0
 110
 80.4
 118

Sample ID 1404984-001BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: **TP-5** Batch ID: **R18204** RunNo: **18204**

Prep Date: Analysis Date: 4/24/2014 SeqNo: 525412 Units: mg/L

%RPD Result SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 9.6 0.50 5.000 3.964 112 79 121 2.72 20 Surr: BFB 220 200.0 108 80.4 118 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404984**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace 4-22-14

Sample ID 5mL-rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short I	_ist	
Client ID: PBW	Batch	1D: R1	8253	F	RunNo: 1	8253				
Prep Date:	Analysis D	ate: 4/	28/2014	S	SeqNo: 5	27272	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.1		10.00		90.8	70	130			
Surr: 4-Bromofluorobenzene	9.0		10.00		89.6	70	130			
Surr: Dibromofluoromethane	9.3		10.00		93.0	70	130			
Surr: Toluene-d8	9.0		10.00		90.1	70	130			

Sample ID 5mL-rb	SampT	уре: МІ	BLK	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	n ID: R1	8271	F	RunNo: 1	8271				
Prep Date:	Analysis D	Date: 4,	/29/2014	S	SeqNo: 5	29548	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.9	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		92.9	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.1	70	130			
Surr: Toluene-d8	9.4		10.00		94.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404984**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace 4-22-14

Sample ID MB-12884 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 12884 RunNo: 18309

Prep Date: 4/25/2014 Analysis Date: 4/30/2014 SeqNo: 528725 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.0050

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 8

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com

Client Name:	Western Refinin	g Southw	Work Orde	r Number	: 14049	984			RcptNo	o: 1
Received by/date	e: <u>() (</u>	<u> </u>	04 [23] 1	4						
.ogged By:	Celina Sessa	4/2	23/2014 10	:02:00 Af	м					
Completed By:	Celina Sessa		23/2014 4:0							
Reviewed By:	ma	· •	il mile	. 1						
hain of Cus	tody		7/24/1	4				-		
	ls intact on sampl	le hottles?			Yes		No		Not Present ✓	
	Custody complete				Yes		No		Not Present	
	sample delivered				Cour					
og In										
Log In 4. Was an atte	mpt made to cool	the camples?			Yes		No		NA	:
T. Was all alle	mpt made to cool	tile samples!			res	M.i	140	£ _ ·	NG :	
5. Were all san	nples received at	a temperature of	>0° C to 6	.0°C	Yes	✓	No	i. i	NA ·	
6. Sample(s) ir	n proper container	r(s)?			Yes	V	No	1:		
7 Sufficient sai	mple volume for in	ndicated test(s)?			Yes	V	No			
	(except VOA and	, ,	reserved?		Yes	~	No			
	ative added to bo				Yes			V	NA	
10.VOA vials ha	ave zero headspac	ce?			Yes	~	No		No VOA Vials	:
11, Were any sa	ample containers	received broken?			Yes	[]]	No	V	1	
									# of preserved bottles checked	11.
	vork match bottle				Yes	✓	No		for pH:	or >12 unless noted
	pancies on chain of correctly identifie	-,	stody?		Yes		No	: :	Adjusted?	ルo
	at analyses were		olouy .		Yes	V	No		• •	-
	ding times able to				Yes	V	No		Checked by	CS.
(If no, notify	customer for auth	orization.)							L	
pecial Hand	ling (if applic	able)								
16. Was client n	otified of all discre	epancies with this	order?		Yes		No	:	NA .✔	
Person	Notified:		and the second	Date:	***************************************		**************************************	*************		•
By Wh	om:	**************************************	di laika isti oscor	Via:	eMa	il .	Phone	Fax	In Person	:
Regard	ding:						AND A STREET AND ADDRESS OF THE PARTY OF THE			E
Client I	Instructions:			indebide delinen warrannen annen annen an vorm						•
17. Additional re	emarks:							•		
8. <u>Cooler Info</u>	rmation	_								
		باعدات سرمي	Intact Se	al No	Seal Da	te .	Signed E	3v		
Cooler No	o Temp ºC C 3.2 Go								-	

	HALL ENVIRONMENTAL	ANALYSIS LABORATORY		4901	Tel. 505-345-3975 Fax 505-345-4107	Analysis Kequest	(SV	() () () () () () () () () () () () () (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATBE hod: hod: hetal: icide icide icide icide	EX + NEEX	ВТ — ТР — ТР — ТР — ТР — ТР — ТР — ТР —	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X	X	×	7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Remarks:			If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be described.	is possibility. Any sub-contracted data will be clearly notated on the analytical report.
	Standard Ruch]	17 th 1-12-14	evale was	Ţ	Project Manager:		Sampler: MATT + Bob	Sample Temperature 4 2 0		Container Preservative HEAL No Type and #	3	\top		1-500 HNO3	5-10A HC1 -002	1-500 amber	7	5-VOR ACI 1003	7	1-300 TINGS	<u> a</u>	1-500 H1)02		<u> </u>	Date Time	itracted to other accredited laboratories. This serves as notice of th	
DJOSAN KACOLO	Client: Western Refining		Mailing Address:#50 CR 4990	Blowfield NN AP413	Phone #. 505-632-4/35	email or Fax#:	QA/QC Package: Per Bib J& 64 23 14 ☐ Standard X Level 4 (Full Validation)	Accreditation	□ EDD (Type)		Date Time Matrix Sample Request ID	-32-14 8:00 HaO TO-5			1	29-12 (p-12			20		8:30 75 80			Relinquished by:	Time: Relinquished by:	2/ MITES Think Wassen	If necessary, samples submitted to Hall Environmental may be subcon	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 16, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 1-7-14 OrderNo.: 1401261

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 1/8/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 1/16/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lag

 Project:
 GAC 1-7-14
 Collection Date: 1/7/2014 11:10:00 AM

 Lab ID:
 1401261-001
 Matrix: AQUEOUS
 Received Date: 1/8/2014 9:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	1/10/2014 8:23:52 PM	11147
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	1/10/2014 8:23:52 PM	11147
Surr: DNOP	109	75.6-144	%REC	1	1/10/2014 8:23:52 PM	11147
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/9/2014 5:53:48 PM	R16005
Surr: BFB	90.6	80.4-118	%REC	1	1/9/2014 5:53:48 PM	R16005
EPA METHOD 8260: VOLATILES SHOR	RT LIST				Analyst	cadg
Benzene	ND	1.0	μg/L	1	1/10/2014 1:48:45 PM	R16018
Toluene	ND	1.0	μg/L	1	1/10/2014 1:48:45 PM	R16018
Ethylbenzene	ND	1.0	μg/L	1	1/10/2014 1:48:45 PM	R16018
Xylenes, Total	ND	2.0	μg/L	1	1/10/2014 1:48:45 PM	R16018
Surr: 1,2-Dichloroethane-d4	96.6	70-130	%REC	1	1/10/2014 1:48:45 PM	R16018
Surr: 4-Bromofluorobenzene	110	70-130	%REC	1	1/10/2014 1:48:45 PM	R16018
Surr: Dibromofluoromethane	107	70-130	%REC	1	1/10/2014 1:48:45 PM	R16018
Surr: Toluene-d8	97.6	70-130	%REC	1	1/10/2014 1:48:45 PM	R16018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 1
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/16/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC-Lead

Project: GAC 1-7-14 **Collection Date:** 1/7/2014 11:15:00 AM Lab ID: 1401261-002 Matrix: AQUEOUS Received Date: 1/8/2014 9:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	1/10/2014 9:30:23 PM	11147
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	1/10/2014 9:30:23 PM	11147
Surr: DNOP	112	75.6-144	%REC	1	1/10/2014 9:30:23 PM	11147
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/9/2014 6:24:01 PM	R16005
Surr: BFB	86.0	80.4-118	%REC	1	1/9/2014 6:24:01 PM	R16005
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: cadg
Benzene	ND	1.0	μg/L	1	1/10/2014 2:17:23 PM	R16018
Toluene	ND	1.0	μg/L	1	1/10/2014 2:17:23 PM	R16018
Ethylbenzene	ND	1.0	μg/L	1	1/10/2014 2:17:23 PM	R16018
Xylenes, Total	ND	2.0	μg/L	1	1/10/2014 2:17:23 PM	R16018
Surr: 1,2-Dichloroethane-d4	96.7	70-130	%REC	1	1/10/2014 2:17:23 PM	R16018
Surr: 4-Bromofluorobenzene	112	70-130	%REC	1	1/10/2014 2:17:23 PM	R16018
Surr: Dibromofluoromethane	107	70-130	%REC	1	1/10/2014 2:17:23 PM	R16018
Surr: Toluene-d8	94.5	70-130	%REC	1	1/10/2014 2:17:23 PM	R16018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

 - P Sample pH greater than 2 for VOA and TOC only.
 - Reporting Detection Limit

Date Reported: 1/16/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC-Inlet

 Project:
 GAC 1-7-14
 Collection Date: 1/7/2014 11:25:00 AM

 Lab ID:
 1401261-003
 Matrix: AQUEOUS
 Received Date: 1/8/2014 9:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	: JME
Diesel Range Organics (DRO)	0.35	0.20	mg/L	1	1/10/2014 9:52:29 PM	11147
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	1/10/2014 9:52:29 PM	11147
Surr: DNOP	110	75.6-144	%REC	1	1/10/2014 9:52:29 PM	11147
EPA METHOD 8015D: GASOLINE R.	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	8.8	1.0	mg/L	20	1/9/2014 6:54:18 PM	R16005
Surr: BFB	112	80.4-118	%REC	20	1/9/2014 6:54:18 PM	R16005
EPA METHOD 8260: VOLATILES SH	IORT LIST				Analyst	: cadg
Benzene	110	10	μg/L	10	1/10/2014 3:15:06 PM	R16018
Toluene	ND	10	μg/L	10	1/10/2014 3:15:06 PM	R16018
Ethylbenzene	760	10	μg/L	10	1/10/2014 3:15:06 PM	R16018
Xylenes, Total	750	20	μg/L	10	1/10/2014 3:15:06 PM	R16018
Surr: 1,2-Dichloroethane-d4	91.9	70-130	%REC	10	1/10/2014 3:15:06 PM	R16018
Surr: 4-Bromofluorobenzene	88.3	70-130	%REC	10	1/10/2014 3:15:06 PM	R16018
Surr: Dibromofluoromethane	102	70-130	%REC	10	1/10/2014 3:15:06 PM	R16018
Surr: Toluene-d8	94.8	70-130	%REC	10	1/10/2014 3:15:06 PM	R16018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 3
 - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1401261**

16-Jan-14

Client: Western Refining Southwest, Inc.

Project: GAC 1-7-14

Sample ID MB-11147	SampT	SampType: MBLK TestCode: EPA Meth						l Range		
Client ID: PBW	Batch	n ID: 11	147	F	RunNo: 10	6001				
Prep Date: 1/9/2014	Analysis D	ate: 1/	10/2014	S	SeqNo: 40	61457	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.57		0.5000		113	75.6	144			
Sample ID 1401261-001CMS	SampT	ype: MS	3	Tes	tCode: El	PA Method	8015D: Diese	l Range		
Client ID: GAC-Lag	Batch	n ID: 11	147	F	RunNo: 10	6001				
Prep Date: 1/9/2014	Analysis D	ate: 1/	10/2014	8	SeqNo: 40	61460	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.7	0.20	2.500	0	108	72.1	156			

Sample ID 1401261-001CM	SD SampT	ype: MS	SD	Tes	tCode: El	PA Method	8015D: Diese	l Range		
Client ID: GAC-Lag	Batch	ID: 11	147	F	RunNo: 1	6001				
Prep Date: 1/9/2014	Analysis D	ate: 1/	10/2014	S	SeqNo: 4	61461	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.6	0.20	2.500	0	105	72.1	156	2.63	20	
Surr: DNOP	0.29		0.2500		116	75.6	144	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1401261**

16-Jan-14

Client: Western Refining Southwest, Inc.

Project: GAC 1-7-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R16005 RunNo: 16005

Prep Date: Analysis Date: 1/9/2014 SeqNo: 461067 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 83.4 80.4 118

Sample ID 1401261-003BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R16005 RunNo: 16005

Prep Date: Analysis Date: 1/9/2014 SeqNo: 461084 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 20
 1.0
 10.00
 8.800
 107
 67.7
 128

 Surr: BFB
 470
 400.0
 117
 80.4
 118

Sample ID 1401261-003BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R16005 RunNo: 16005

Prep Date: Analysis Date: 1/9/2014 SeqNo: 461085 Units: mg/L

%RPD SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte Result **PQL** LowLimit Gasoline Range Organics (GRO) 19 10.00 8.800 104 67.7 128 1.46 20 Surr: BFB 460 400.0 115 80.4 118 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1401261**

16-Jan-14

Client: Western Refining Southwest, Inc.

Project: GAC 1-7-14

Sample ID 5mL rb	•	Гуре: МЕ		Tes	ist					
Client ID: PBW	Batc	h ID: R1	6018	F	RunNo: 1	6018				
Prep Date:	Analysis [Date: 1/	10/2014	9	SeqNo: 4	61501	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		114	70	130			
Surr: Dibromofluoromethane	11		10.00		114	70	130			
Surr: Toluene-d8	9.8		10.00		98.4	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: Western Refining Southw Work Order Number:	1401261		RcptNo:	1
Received by/date:			·	i
Logged By: Lindsay Mangin 1/8/2014 9:30:00 AM		Smaky Hlopps		i
Completed By: Lindsay Mangin 1/8/2014 2:03:12 PM		Simular Alexand		:
Reviewed By: MA 01/09/14		05.00		
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗀	Not Present ✓	
Is Chain of Custody complete?	Yes 🗹	No 🗔	Not Present	
3. How was the sample delivered?	<u>UPS</u>			
Log In				
4. Was an attempt made to cool the samples?	Yes 🗸	No 🗔	NA 🛄	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🔽	No 🗀	NA 🗆	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌		
7 Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗔		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No 🗌		
9. Was preservative added to bottles?	Yes	No 🗸	NA 🗓	
10.VOA vials have zero headspace?	Yes 🔽	No Lā	No VOA Vials	
11. Were any sample containers received broken?	Yes 🗌	No 🗹	# of preserved	
12. Does paperwork match bottle labels?	Yes 🗸	No 🗆	bottles checked for pH:	
(Note discrepancies on chain of custody)				r >12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🔽	No 🗔	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🗸	No L	Observational house	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 😾	No 🗔	Checked by:	
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified: Date:	***************************************			
By Whom: Via:	_ eMail [Phone Fax	In Person	
Regarding:				1
Client Instructions:				-
17. Additional remarks:				
18. Cooler Information				
Cooler No Temp °C Condition Seal Intact Seal No	Seal Date	Signed By		
1 1.4 Good Yes	. 1541 14	***************************************	1	

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107 Analysis Request	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides / 8082 PCB's 8270 (Semi-VOA) Air Bubbles (Y or N)	, 💢	X	× -	Time: Relinquished by: Size Capta Time Remarks:
ANALYS ANALYS ANALYS www.hallenv 4901 Hawkins NE - Alb Tel. 505-345-3975 F	BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO / BES (Method 418.1) TPH (Method 504.1) PAH's (8310 or 8270 SIMS) RCRA 8 Metals	*			Remarks:
hsh	HEAL No. (110) 2 20 (1)	100-	-002		Date Time Rem
Turn-Around Time: X Standard □ Rush Project Name:	Project Manager: Sampler: 59 6 On fee: 7 Yes Sample Temperature. / Container Preservative Type and # Type	5-VOA HC1 1-500ml amber	5-UBA HC1 1-500ml amber 5-UBA HC1	1-50mlamber	Received by:
Chain-of-Custody Record Luestern Refining BAdress # 50 CR 4990 BAFIELD N M 874/3 #555-632-4/35	wither Samp	O GAC-LAG	GAC-Lead GAC-INLET		Relinquished by: Relinquished by:
Chain-of-Custody Recollective Techning Address: #50 CR 4990 Bloom Field N M 874 Phone #555-632-4/35	email or Fax#: QA/QC Package: Standard Accreditation INELAP EDD (Type) Date Time Matrix	02H 01:11 H20	11:15		Date: Time: Reling

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 11, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 2-3-14 OrderNo.: 1402085

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 2/4/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **1402085**Date Reported: **2/11/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Lead

 Project:
 GAC 2-3-14
 Collection Date: 2/3/2014 10:25:00 AM

 Lab ID:
 1402085-001
 Matrix: AQUEOUS
 Received Date: 2/4/2014 10:36:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	0.21	0.20	mg/L	1	2/10/2014 1:37:52 PM	11556
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	2/10/2014 1:37:52 PM	11556
Surr: DNOP	135	76-161	%REC	1	2/10/2014 1:37:52 PM	11556
EPA METHOD 8015D: GASOLINE R.	ANGE				Analyst	: JMP
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	2/5/2014 3:11:52 PM	R16555
Surr: BFB	84.8	80.4-118	%REC	1	2/5/2014 3:11:52 PM	R16555
EPA METHOD 8260: VOLATILES SH	IORT LIST				Analyst	DJF
Benzene	ND	1.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Toluene	ND	1.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Ethylbenzene	ND	1.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Methyl tert-butyl ether (MTBE)	1.5	1.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Xylenes, Total	ND	2.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Surr: 1,2-Dichloroethane-d4	114	70-130	%REC	1	2/5/2014 2:48:13 PM	R16556
Surr: 4-Bromofluorobenzene	88.2	70-130	%REC	1	2/5/2014 2:48:13 PM	R16556
Surr: Dibromofluoromethane	103	70-130	%REC	1	2/5/2014 2:48:13 PM	R16556
Surr: Toluene-d8	94.3	70-130	%REC	1	2/5/2014 2:48:13 PM	R16556

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report

Lab Order **1402085**Date Reported: **2/11/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Inlet

 Project:
 GAC 2-3-14
 Collection Date: 2/3/2014 10:30:00 AM

 Lab ID:
 1402085-002
 Matrix: AQUEOUS
 Received Date: 2/4/2014 10:36:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	3.7	0.20	mg/L	1	2/10/2014 2:44:14 PM	11556
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	2/10/2014 2:44:14 PM	11556
Surr: DNOP	124	76-161	%REC	1	2/10/2014 2:44:14 PM	11556
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: ЈМР
Gasoline Range Organics (GRO)	8.3	1.0	mg/L	20	2/5/2014 3:42:05 PM	R16555
Surr: BFB	124	80.4-118	S %REC	20	2/5/2014 3:42:05 PM	R16555
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: DJF
Benzene	140	10	μg/L	10	2/5/2014 4:55:30 PM	R16556
Toluene	ND	10	μg/L	10	2/5/2014 4:55:30 PM	R16556
Ethylbenzene	870	10	μg/L	10	2/5/2014 4:55:30 PM	R16556
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	2/5/2014 4:55:30 PM	R16556
Xylenes, Total	980	20	μg/L	10	2/5/2014 4:55:30 PM	R16556
Surr: 1,2-Dichloroethane-d4	104	70-130	%REC	10	2/5/2014 4:55:30 PM	R16556
Surr: 4-Bromofluorobenzene	105	70-130	%REC	10	2/5/2014 4:55:30 PM	R16556
Surr: Dibromofluoromethane	99.4	70-130	%REC	10	2/5/2014 4:55:30 PM	R16556
Surr: Toluene-d8	100	70-130	%REC	10	2/5/2014 4:55:30 PM	R16556

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

0.33

WO#: **1402085**

11-Feb-14

Client: Western Refining Southwest, Inc.

Project: GAC 2-3-14

Surr: DNOP

Sample ID MB-11556	SampType: MBLK			TestCode: EPA Method 8015D: Diesel Range						
Client ID: PBW	Batch ID: 11556			F	RunNo: 1	6624				
Prep Date: 2/4/2014	Analysis Date: 2/10/2014		9	SeqNo: 478958						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.62		0.5000		124	76	161			
Sample ID 1402085-001BMS	SampType: MS TestCode: EPA Method 80					8015D: Diese	I Range			
Client ID: GAC Lead	Batch ID: 11556			RunNo: 16624						
Prep Date: 2/4/2014	Analysis Date: 2/10/2014		SeqNo: 478968			Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.5	0.20	2.500	0.2064	131	72.1	156			

Sample ID	1402085-001BMSE	SampType: MSD Batch ID: 11556			TestCode: EPA Method 8015D: Diesel Range						
Client ID:	GAC Lead				RunNo: 16624						
Prep Date: 2/4/2014		Analysis Date: 2/10/2014			SeqNo: 478969			Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Or	ganics (DRO)	3.5	0.20	2.500	0.2064	132	72.1	156	0.763	20	
Surr: DNOP		0.33		0.2500		134	76	161	0	0	

133

76

161

0.2500

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1402085**

11-Feb-14

Client: Western Refining Southwest, Inc.

Project: GAC 2-3-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R16555 RunNo: 16555

Prep Date: Analysis Date: 2/5/2014 SeqNo: 476566 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 90.2 80.4 118

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1402085**

11-Feb-14

Client: Western Refining Southwest, Inc.

Project: GAC 2-3-14

Sample ID 5ml rb	SampT	ype: ME	BLK	Tes	_ist					
Client ID: PBW	Batch	1D: R1	6556	F	tunNo: 1	6556				
Prep Date:	Analysis D	Analysis Date: 2/5/2014			eqNo: 4	76593	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 1,2-Dichloroethane-d4	12		10.00		115	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.8	70	130			
Surr: Dibromofluoromethane	10		10.00		105	70	130			
Surr: Toluene-d8	9.6		10.00		96.4	70	130			

Sample ID 1402085-001ams	Samp1	Туре: М \$	3	Tes	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: GAC Lead	Batcl	h ID: R1	6556	F	RunNo: 1	6556					
Prep Date:	Analysis D	Date: 2/	5/2014	9	SeqNo: 4	76596	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	22	1.0	20.00	0	111	68.6	126				
Toluene	20	1.0	20.00	0	99.6	72.5	122				
Surr: 1,2-Dichloroethane-d4	11		10.00		110	70	130				
Surr: 4-Bromofluorobenzene	9.8		10.00		97.6	70	130				
Surr: Dibromofluoromethane	8.6		10.00		85.7	70	130				
Surr: Toluene-d8	9.6		10.00		96.1	70	130				

Sample ID 1402085-001ams	d SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260: Volatile	s Short L	.ist	
Client ID: GAC Lead	Batch	n ID: R1	6556	F	RunNo: 1	6556				
Prep Date:	Analysis D	ate: 2/	/5/2014	9	SeqNo: 4	76597	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	98.7	68.6	126	11.6	20	
Toluene	18	1.0	20.00	0	88.6	72.5	122	11.7	20	
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130	0	0	
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130	0	0	
Surr: Dibromofluoromethane	8.7		10.00		86.7	70	130	0	0	
Surr: Toluene-d8	9.6		10.00		96.5	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

	Order Number: 1402085		RcptNo	: 1
Received by/date: AG 62/04/	1/4			
	10:36:00 AM	Michelle (or. Harem	
Completed By: Michelle Garcia 2/4/2014 1	1:50:41 AM	Mitale (7 ·····	
Reviewed By: 02 DU	114	rau	faria	
Chain of Custody	t'			
Custody seals intact on sample bottles?	Yes	No 🗀	Alace ===	
2. Is Chain of Custody complete?	Yes 🗸	No []	Not Present	
3. How was the sample delivered?	Courier	110 11	Not Present	
<u>Log In</u>	<u> </u>			
4. Was an attempt made to cool the samples?				
to cool the samples?	Yes 🔽	No 🗌	NA 🗔	
5. Were all samples received at a temperature of >0° C to 6	0.000			
	6.0°C Yes ✓	No 🗌	NA 🗔	
6. Sample(s) in proper container(s)?	Yes 🔽	No [i		
7. Sufficient sample volume for indicated test(s)?		,,,,,		
Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No 🔝		
Was preservative added to bottles?	Yes 🗸	No 🗔		•
	Yes 🗔	No 🔽	NA !_	
0.VOA vials have zero headspace?	Yes 🔽	. [
1. Were any sample containers received broken?	Yes 🗀	No ∐ No ☑ ┌	No VOA Vials	
2 Does paparage	.00	140 💌	# of preserved	
Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗸	No 🗔	bottles checked for pH:	
Are matrices correctly identified on Chain of Custody?	. :Ta			12 unless noted
. is it clear what analyses were requested?	Yes 🔀	No 🗔	Adjusted?	
. Were all holding times able to be met?	Yes [✔] Yes [✔]	No	01	
(If no, notify customer for authorization.)	103 (2)	NO 1	Checked by:	
ecial Handling (if applicable)				
Was client notified of all discrepancies with this order?				
	Yes 🗌	No 🗌	NA 🔽	
Person Notifiéd: By Whom:	Date:	Name of the second seco		
Regarding:	Via: DeMail Pho	ne 🦳 Fax	In Porner	
Client Instructions:		i i i ax	III Person	
or the control of th				
Additional remarks:	** **		the state of the s	
Cooler Information				
Cooler No Temp °C Condition Seal Intact Seal N	No Seal Date Sio	ned By		
1.0 Good Yes	SIQ.	neu by		

	_						VIN -	~ // 3e	<u> 144</u> 11	.A ₁iΑ	'J	1	1	ı	l	J	1	i	7		т-	т		
7	K												1	1	†			\dashv		+	╁	1		
E:	9												1					$\neg \dagger$	\dashv	+	┼─	1		
ENVIRONMENTA	LABOKA I OR	Albuquerque, NM 87109	7(-	घडा	9	M	wat x	7 0	DS	NA NA	×		×			-	7	+		 			rs. Into serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
2 2	, E	8 №	74	<u>.</u>			(∀	OV-im	es) ()7 <u>S</u> 8	- 19		}				\dashv	-	+-	+-	 	<u> </u>		analyt
~ ≥ ≤	www.hallenvironmental.com	ue, N	505-345-4107	Kequest	o 18. ——	 TM,>	河	(VO/	v) 80	928	X		X			_	\dashv	-	+	-				on the
Z	J. J.	Jergi		Же				sticides						_		_	\dashv	+	+-	╁╌┤				tated
HALL ENVI	Viror	pndı	Fax	Analysis - 	OS'*C	0 ² ,P(N'EC	E,CI,NG) suc	oinA						\dashv	十	+	╁	+				arly no
	allen	₹ -		2 7				Metals							7	- -	_}-	+	+-					be cle
HALL	w.h	ЫN	3975		(SN			o 0168			\neg				_	+	\dashv	+	+	\vdash	{			fa will
ĪĀ	Š	4901 Hawkins NE -	Tel. 505-345-3975					ethod (\neg				7	7		+	+-	\vdash	{			ted dai
	_	Нам	05-3					ethod -			\neg		7	\neg	十	+	+	╁	+-	┝─┼	{			ontrac
		901	<u>e</u> .					12B (C			V		X	_	\dashv		+	+	+	\vdash				sup-cc
		4						38TM -			7	٦	7	\dashv	\dashv		+-	╁	+	\dashv	{	ż		Any
			_ 4	_ (1S08)	s'8M	<u> </u>	38TM +	- X3.	т8	\top	7	\neg	7	_	+	+	╁-	+		- Johnson	<u> </u>	İ	sibility
								1	- (Ω	\top	\top		4	+	+	+	+-	+-{	\dashv		<u>ੰ</u> ਹਾ		sod sit
				}		}			9.*(3	8	30	63						İ	υ	7	公三	se of th
	`			1						M			Y		-			1		1	Time	3	<u>E</u> Z <u>G</u>	is noti
.	3-14)او		# <u>*</u>		1	1	'		-		-			-	Date	2	0.5	erves a
اج	W							3			}				1						۵	भीश		2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Rush	4							ative				٢	7		1	1	†		 	+	\dashv	7	4	i So
	~0						8 0	Preservative	Туре	1	ف ار	٠ دُ د د	-1-	2]			1	3	TOTE BY	2 2 2
و ا	<u>.</u>			ger:		122		Pres	•	17			710	r E							-	THE PARTY		1
Standard Project Name	\mathcal{C}			Project Manager:		l III	emir	G.	* *		<u> </u>	٤ _	1_	J	+-	+-			+	+	\dashv	3		; ;
Star	GAC	Project #	ľ	ect		Sampler	e e	Container	Type and #	13			$\begin{bmatrix} 5 \\ 5 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix}$	3	1				}		ĘĠ.	/	a di di	
<u> </u>	· ·	Pro		Proj	- 1	Sampler	Sample Temperature	8	ξ	5-1WA	1-50	750	1-12 - 1	1				}	1		Received by:	Received by	ted to other	_
			I = I	T						+=	 	7 13	+-	+	╁	╁ -		\dashv		- -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
2					K Level 4 (Full Validation)			Sample Request ID	!	1]							- [/	\sim	ogns e	
3 %		N-			Valic			lues	_	lea D		1+	<u>.</u>					1		1		\mathcal{Y}	nay be	
efining	18	13	35		Ξ			Rec		lea	}	GAG-T.10	Ş			} }		- }			1	d	ronmental may	
7	1	274		1	4 (1 1	<u>b</u> e		,	1	1.	1	1								8	vironm	
	13	Ø	1		Leve		1	Sam		GAC		96						ļ			1	KA		
	10	3	635-	l	×	<u>.</u>				4		U									N	\angle in the state of the sta		
1 3	13	7	9		ł	□ Other		Matrix	٠	H20						寸	_	\top	+-	+-	shed	A BE	ibmritte	
10	THE STATE OF	~	12	1				Σ		H						1					Refinquished by	Relinquished by:	Poles Submitted to Hall	
13	dres	iele	505	age:	۽ اِ ــ ا	=	(g)	ne		25		B				\dashv	+	╌┼╌	+-	+				
1.3	a Ad	TW.	1 ₩	Paç	darc	AP	Ē	 Time		10:25		6:3									کا الله د	77. ime:	If necessary, samples submitted to Hall Environmental may be subcontracted to other ascretized shown	:
Client: Western	Mailing Address: # 50 08 4880	Dom+ ield	Phone #: 5	OA/OC Package;	☐ Standard		☐ EDD (Type)	Date	\neg		7			\dashv	+	\dashv	+	+	+-	$\vdash \vdash$		 -		
10	≥ ţ	1	<u>क</u> है	18				۵	1	2-3-14		3.14									Date:	3~/4 Date:	3/14	:
													-	•	•	•	•	'	1	. 14	⊸ ′i	, , IU	1001	1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 13, 2014

Kelly Robinson
Western Refining Southwest, Inc.
#50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 3-3-14 OrderNo.: 1403057

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 3/4/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1403057

Date Reported: 3/13/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lag

 Project:
 GAC 3-3-14
 Collection Date: 3/3/2014 9:50:00 AM

 Lab ID:
 1403057-001
 Matrix: AQUEOUS
 Received Date: 3/4/2014 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analys	t: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	3/5/2014 9:42:49 PM	12005
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	3/5/2014 9:42:49 PM	12005
Surr: DNOP	118	76-161	%REC	1	3/5/2014 9:42:49 PM	12005
EPA METHOD 8015D: GASOLINE R	ANGE				Analys	t: JMP
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	3/5/2014 2:37:03 AM	R17094
Surr: BFB	94.9	80.4-118	%REC	1	3/5/2014 2:37:03 AM	R17094
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analys	t: DJF
Benzene	ND	1.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Toluene	ND	1.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Ethylbenzene	ND	1.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Xylenes, Total	ND	2.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Surr: 1,2-Dichloroethane-d4	102	70-130	%REC	1	3/7/2014 4:22:17 PM	R17180
Surr: 4-Bromofluorobenzene	107	70-130	%REC	1	3/7/2014 4:22:17 PM	R17180
Surr: Dibromofluoromethane	114	70-130	%REC	1	3/7/2014 4:22:17 PM	R17180
Surr: Toluene-d8	92.7	70-130	%REC	1	3/7/2014 4:22:17 PM	R17180

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1403057**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 3/13/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lead

 Project:
 GAC 3-3-14
 Collection Date: 3/3/2014 9:55:00 AM

 Lab ID:
 1403057-002
 Matrix: AQUEOUS
 Received Date: 3/4/2014 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	3/5/2014 10:48:05 PM	12005
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	3/5/2014 10:48:05 PM	12005
Surr: DNOP	115	76-161	%REC	1	3/5/2014 10:48:05 PM	12005
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: JMP
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	3/5/2014 3:07:18 AM	R17094
Surr: BFB	94.5	80.4-118	%REC	1	3/5/2014 3:07:18 AM	R17094
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: DJF
Benzene	ND	1.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Toluene	ND	1.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Ethylbenzene	ND	1.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Methyl tert-butyl ether (MTBE)	1.7	1.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Xylenes, Total	ND	2.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Surr: 1,2-Dichloroethane-d4	101	70-130	%REC	1	3/10/2014 4:31:26 PM	R17218
Surr: 4-Bromofluorobenzene	103	70-130	%REC	1	3/10/2014 4:31:26 PM	R17218
Surr: Dibromofluoromethane	120	70-130	%REC	1	3/10/2014 4:31:26 PM	R17218
Surr: Toluene-d8	87.6	70-130	%REC	1	3/10/2014 4:31:26 PM	R17218

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1403057**Date Reported: **3/13/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Inlet

 Project:
 GAC 3-3-14
 Collection Date: 3/3/2014 9:45:00 AM

 Lab ID:
 1403057-003
 Matrix: AQUEOUS
 Received Date: 3/4/2014 10:00:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	2.7	0.20	mg/L	1	3/5/2014 11:09:57 PM	12005
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	3/5/2014 11:09:57 PM	12005
Surr: DNOP	112	76-161	%REC	1	3/5/2014 11:09:57 PM	12005
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: ЈМР
Gasoline Range Organics (GRO)	7.9	1.0	mg/L	20	3/5/2014 3:37:29 AM	R17094
Surr: BFB	122	80.4-118	S %REC	20	3/5/2014 3:37:29 AM	R17094
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: DJF
Benzene	150	10	μg/L	10	3/10/2014 6:34:40 PM	R17218
Toluene	ND	10	μg/L	10	3/10/2014 6:34:40 PM	R17218
Ethylbenzene	750	10	μg/L	10	3/10/2014 6:34:40 PM	R17218
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	3/10/2014 6:34:40 PM	R17218
Xylenes, Total	830	20	μg/L	10	3/10/2014 6:34:40 PM	R17218
Surr: 1,2-Dichloroethane-d4	95.6	70-130	%REC	10	3/10/2014 6:34:40 PM	R17218
Surr: 4-Bromofluorobenzene	98.6	70-130	%REC	10	3/10/2014 6:34:40 PM	R17218
Surr: Dibromofluoromethane	111	70-130	%REC	10	3/10/2014 6:34:40 PM	R17218
Surr: Toluene-d8	91.0	70-130	%REC	10	3/10/2014 6:34:40 PM	R17218

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403057**

13-Mar-14

Client: Western Refining Southwest, Inc.

Project: GAC 3-3-14

Sample ID MB-12005 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: PBW Batch ID: 12005 RunNo: 17113 Prep Date: 3/4/2014 Analysis Date: 3/5/2014 SeqNo: 492091 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.50 0.5000 76 101 161

Sample ID 1403057-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: Lag Batch ID: 12005 RunNo: 17113 Prep Date: 3/4/2014 Analysis Date: 3/5/2014 SeqNo: 492552 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 0.1934 125 72.1 3.3 2.500 156 Surr: DNOP 0.28 0.2500 110 76 161

Sample ID 1403057-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: Lag Batch ID: 12005 RunNo: 17113 Prep Date: 3/4/2014 Analysis Date: 3/5/2014 SeqNo: 492553 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.2 0.20 2.500 0.1934 121 72.1 156 2.45 20 Surr: DNOP 0.28 0.2500 111 76 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403057**

13-Mar-14

Client: Western Refining Southwest, Inc.

Project: GAC 3-3-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R17094 RunNo: 17094

Prep Date: Analysis Date: 3/4/2014 SeqNo: 491570 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 96.0 80.4 118

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403057**

13-Mar-14

Client: Western Refining Southwest, Inc.

Project: GAC 3-3-14

Project: GAC 3-3	-14									
Sample ID 5ml rb	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	n ID: R1	7180	F	RunNo: 1	7180				
Prep Date:	Analysis D	oate: 3/	7/2014	S	SeqNo: 4	94248	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		92.2	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.3		10.00		93.0	70	130			
Sample ID 5ml rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	n ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	ate: 3/	10/2014	S	SeqNo: 4	95668	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		99.8	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	11		10.00		109	70	130			
Surr: Toluene-d8	9.1		10.00		90.7	70	130			
Sample ID 1403057-001ams	SampT	уре: М\$	<u> </u>	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: Lag	Batch	n ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	oate: 3/	10/2014	S	SeqNo: 4	95670	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	110	70	130			
Toluene	17	1.0	20.00	0	86.4	67.5	123			
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		104	70	130			
Surr: Dibromofluoromethane	9.1		10.00		91.1	70	130			

Qualifiers:

Surr: Toluene-d8

* Value exceeds Maximum Contaminant Level.

9.4

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

70

130

ND Not Detected at the Reporting Limit

94.2

P Sample pH greater than 2.

10.00

RL Reporting Detection Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403057**

13-Mar-14

Client: Western Refining Southwest, Inc.

Project: GAC 3-3-14

Sample ID 1403057-001amso	l SampT	SampType: MSD TestCode: EPA Method 8260: Volatiles Short List								
Client ID: Lag	Batch	ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	ate: 3/	10/2014	5	SeqNo: 4	95671	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	103	70	130	3.48	20	
Toluene	16	1.0	20.00	0	80.4	67.5	123	12.4	20	
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130	0	0	
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130	0	0	
Surr: Dibromofluoromethane	9.8		10.00		98.0	70	130	0	0	
Surr: Toluene-d8	9.6		10.00		96.3	70	130	0	0	

Sample ID 1403057-002ams	SampT	SampType: MS TestCode: EPA Method 8260: Volatiles Short List								
Client ID: Lead	Batch	ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	ate: 3/	10/2014	5	SeqNo: 4	95673	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Toluene	18	1.0	20.00	0	88.5	67.5	123			
Surr: 1,2-Dichloroethane-d4	9.5		10.00		95.4	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	9.0		10.00		90.4	70	130			
Surr: Toluene-d8	9.2		10.00		91.6	70	130			

Sample ID 1403057-002amsd	I SampT	ype: MS	SD	Tes	tCode: E	PA Method	8260: Volatile	es Short L	_ist	
Client ID: Lead	Batch	ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	ate: 3/	10/2014	8	SeqNo: 4	95674	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	108	70	130	0.409	20	
Toluene	18	1.0	20.00	0	90.7	67.5	123	2.39	20	
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.2	70	130	0	0	
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130	0	0	
Surr: Dibromofluoromethane	8.9		10.00		88.8	70	130	0	0	
Surr: Toluene-d8	9.3		10.00		92.6	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Work Order Number: 1403057 RcptNo: 1 Client Name: Western Refining Southw Received by/date: 3/4/2014 10:00:00 AM Logged By: Lindsay Marigin Completed By: 3/4/2014 10:36:56 AM **Lindsay Mangin** Reviewed By: 03/04/14 エロ Chain of Custody Not Present Yes 🗌 Nο 1. Custody seals intact on sample bottles? Not Present Yes 🗸 No 🗀 2. Is Chain of Custody complete? 3 How was the sample delivered? Courier Log In NA 🗌 Yes 🗸 No 4. Was an attempt made to cool the samples? NA 🗀 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗹 No 🗆 Yes 🗹 Sample(s) in proper container(s)? No Yes 7. Sufficient sample volume for indicated test(s)? 8. Are samples (except VOA and ONG) properly preserved? Yes V No Nο $\overline{\mathbf{V}}$ NA 🔲 Yes 9. Was preservative added to bottles? **~** No 🗌 No VOA Vials Yes 10.VOA vials have zero headspace? No 🗹 Yes 11. Were any sample containers received broken? # of preserved bottles checked for pH: No 🗆 Yes 🗹 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Yes 🗸 No 🗆 13. Are matrices correctly identified on Chain of Custody? No 🗆 Yes 🗹 14. Is it clear what analyses were requested? No 🗌 Checked by: Yes 🗸 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 NA 🗸 No 🗀 16. Was client notified of all discrepancies with this order? Person Notified: Date: Via: eMail Phone Fax In Person By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp ºC Condition Seal Intact | Seal No Seal Date Signed By 1.6 Good Yes

ecord	Turn-Around Time:	ime:				I		L	7		2	HALL ENVIDONMENTAL	¶ ⊢	
Client: Western Refund	Standard	□ Rush_				•	Į	 	SI	23	Ö	ANALYSIS LABORATORY	į į	. ≿
	Project Name:					i ≶ !	ww.h	www.hallenvironmental.com	onme	ntal.c	L EC	 		
Mailing Address:#50 OR 4990	GAC	3-3-	14	4	4901 Hawkins NE	awkin	s NE	- Albu	dnerd	Albuquerque, NM 87109	M 871	60		
<u> </u>	Project #:		,	'	Tel. 50	505-345-3975	-3975		Fax 50	505-345-4107	4107			
Phone #: 505-632-4/35								Analysis		Rednest				
	Project Manage	er:			(6					ang	/	2		
QA/QC Package:							(S					<u>'</u> <u>S</u>		
☐ Standard X Level 4 (Full Validation)							MIS					108		
Accreditation	Ή	- Q \$									(,	3 (7)		(IN -
doe)	Sample Temperature:	-										PO		Δ,
Matrix Sample Request ID	Container I	Preservative Type	HEAL NO.	3TM + X3T8 3TM + X3T8	B9108 HdJ	PH (Metho	DB (Metho	SCRA 8 Met	ID,(T) snoin <i>ł</i> 1081 Pestici	AOV) 808S	-imə2) 0728	<u> </u>		lir Bubbles
73-14 9:50 H20 LAG	5-VOA	Hel	199-						_					/
		combe 1	The second secon									X		
19:55 Lead	F-16A	461	700-		X	-				×				
	1-50m)	anber									·	メ		
19:45 inlet	5- VOA	401	-003		ΙÀ					×				
/	1-500ml	amber	l							-		人		
												+		-
												<u> </u>		
							+		+			<u> </u>		
Time: Religioushed by: 4 S40 Content Traken	Received by:	thate	$\frac{\text{Date}}{2\beta/\gamma} \text{ ISNO}$	Remarks:	ks:									
Date: Time: Relinquished by: 1/4 1766 Milatination	Received kyy	I E	Date Time											
mples submitted to Hall	intracted to other acc	redited laboratories	s. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report	possibility	. Any su	b-contra	cted dai	a will be	dearly no	otated or	the ans	ılytical reț	port.	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 24, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 4-7-14 OrderNo.: 1404320

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 4/8/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

 $Website: \underline{www.hallenvironmental.com}$

Workorder Sample Summary

WO#: 1404320 24-Apr-14

CLIENT: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
1404320-001	Lag		4/7/2014 10:30:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-001	Lag		4/7/2014 10:30:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-001	Lag		4/7/2014 10:30:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-002	Lead		4/7/2014 10:40:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-002	Lead		4/7/2014 10:40:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-002	Lead		4/7/2014 10:40:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-003	Inlet		4/7/2014 10:50:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-003	Inlet		4/7/2014 10:50:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-003	Inlet		4/7/2014 10:50:00 AM	4/8/2014 9:55:00 AM	Aqueous

Date Reported: 4/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lag

 Project:
 GAC 4-7-14
 Collection Date: 4/7/2014 10:30:00 AM

 Lab ID:
 1404320-001
 Matrix: AQUEOUS
 Received Date: 4/8/2014 9:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	4/9/2014 11:29:46 AM	12588
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/9/2014 11:29:46 AM	12588
Surr: DNOP	140	76-161	%REC	1	4/9/2014 11:29:46 AM	12588
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Toluene	ND	1.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Ethylbenzene	ND	1.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Xylenes, Total	ND	2.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Surr: 1,2-Dichloroethane-d4	93.5	70-130	%REC	1	4/9/2014 1:49:28 PM	R17896
Surr: 4-Bromofluorobenzene	93.8	70-130	%REC	1	4/9/2014 1:49:28 PM	R17896
Surr: Dibromofluoromethane	96.6	70-130	%REC	1	4/9/2014 1:49:28 PM	R17896
Surr: Toluene-d8	93.2	70-130	%REC	1	4/9/2014 1:49:28 PM	R17896
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	cadg
Gasoline Range Organics (GRO)	0.14	0.050	mg/L	1	4/16/2014 12:05:04 PM	R18044
Surr: BFB	96.0	70-130	%REC	1	4/16/2014 12:05:04 PM	R18044

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Date Reported: 4/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lead

 Project:
 GAC 4-7-14
 Collection Date: 4/7/2014 10:40:00 AM

 Lab ID:
 1404320-002
 Matrix: AQUEOUS
 Received Date: 4/8/2014 9:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	4/9/2014 12:36:16 PM	12588
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/9/2014 12:36:16 PM	12588
Surr: DNOP	113	76-161	%REC	1	4/9/2014 12:36:16 PM	12588
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Toluene	ND	1.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Ethylbenzene	ND	1.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Methyl tert-butyl ether (MTBE)	1.1	1.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Xylenes, Total	ND	2.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Surr: 1,2-Dichloroethane-d4	96.3	70-130	%REC	1	4/9/2014 3:41:14 PM	R17896
Surr: 4-Bromofluorobenzene	92.1	70-130	%REC	1	4/9/2014 3:41:14 PM	R17896
Surr: Dibromofluoromethane	95.9	70-130	%REC	1	4/9/2014 3:41:14 PM	R17896
Surr: Toluene-d8	93.2	70-130	%REC	1	4/9/2014 3:41:14 PM	R17896
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	cadg
Gasoline Range Organics (GRO)	0.088	0.050	mg/L	1	4/16/2014 1:31:21 PM	R18044
Surr: BFB	94.2	70-130	%REC	1	4/16/2014 1:31:21 PM	R18044

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc. Date Reported: 4/24/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Inlet

 Project:
 GAC 4-7-14
 Collection Date: 4/7/2014 10:50:00 AM

 Lab ID:
 1404320-003
 Matrix: AQUEOUS
 Received Date: 4/8/2014 9:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	iΕ				Analyst	BCN
Diesel Range Organics (DRO)	2.9	0.20	mg/L	1	4/9/2014 12:58:20 PM	12588
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/9/2014 12:58:20 PM	12588
Surr: DNOP	118	76-161	%REC	1	4/9/2014 12:58:20 PM	12588
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: KJH
Benzene	110	10	μg/L	10	4/9/2014 4:09:13 PM	R17896
Toluene	ND	10	μg/L	10	4/9/2014 4:09:13 PM	R17896
Ethylbenzene	1000	100	μg/L	100	4/10/2014 4:34:30 PM	R17924
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	4/9/2014 4:09:13 PM	R17896
Xylenes, Total	2700	200	μg/L	100	4/10/2014 4:34:30 PM	R17924
Surr: 1,2-Dichloroethane-d4	92.0	70-130	%REC	10	4/9/2014 4:09:13 PM	R17896
Surr: 4-Bromofluorobenzene	99.0	70-130	%REC	10	4/9/2014 4:09:13 PM	R17896
Surr: Dibromofluoromethane	95.5	70-130	%REC	10	4/9/2014 4:09:13 PM	R17896
Surr: Toluene-d8	92.1	70-130	%REC	10	4/9/2014 4:09:13 PM	R17896
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	cadg
Gasoline Range Organics (GRO)	17	2.5	mg/L	50	4/16/2014 2:00:07 PM	R18044
Surr: BFB	96.4	70-130	%REC	50	4/16/2014 2:00:07 PM	R18044

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404320**

24-Apr-14

Client: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Sample ID MB-12588 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: **PBW** Batch ID: 12588 RunNo: 17871 Prep Date: 4/8/2014 Analysis Date: 4/9/2014 SeqNo: 515440 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.60 0.5000 76 121 161

Sample ID 1404320-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: Lag Batch ID: 12588 RunNo: 17871 Prep Date: 4/8/2014 Analysis Date: 4/9/2014 SeqNo: 515604 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 3.3 2.500 131 72.1 156 Surr: DNOP 0.32 0.2500 128 76 161

Sample ID 1404320-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: Lag Batch ID: 12588 RunNo: 17871 Prep Date: 4/8/2014 Analysis Date: 4/9/2014 SeqNo: 515605 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.5 0.20 2.500 0 139 72.1 156 6.13 20 Surr: DNOP 0.33 0.2500 133 76 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 8

Hall Environmental Analysis Laboratory, Inc.

9.4

WO#: **1404320**

24-Apr-14

Client: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Sample ID 5mL-rb	SampType: MBLK TestCode: EPA Method 8260: Volatiles Short List									
Client ID: PBW	Batch	1D: R1	7896	F	tunNo: 1	7896				
Prep Date:	Analysis D	ate: 4/	9/2014	S	eqNo: 5	16213	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.4	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.5	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.1	70	130			
Surr: Toluene-d8	9.4		10.00		93.5	70	130			
Sample ID 1404320-001a ms	SampT	ype: M \$		Tes	Code: El	PA Method	8260: Volatile	es Short L	_ist	
Client ID: Lag	Batch	n ID: R1	7896	F	lunNo: 1	7896				
Prep Date:	Analysis D	ate: 4/	9/2014	S	eqNo: 5	16220	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	94.4	70	130			
Toluene	19	1.0	20.00	0	96.1	67.5	123			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.3	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.9	70	130			
Surr: Dibromofluoromethane	9.7		10.00		96.7	70	130			

Sample ID 1404320-001a m	sd SampT	ype: MS	SD	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: Lag	Batch	ID: R1	7896	F	RunNo: 1	7896				
Prep Date:	Analysis D	ate: 4/	9/2014	S	SeqNo: 5	16221	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	92.9	70	130	1.54	20	
Toluene	19	1.0	20.00	0	93.2	67.5	123	3.06	20	
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.8	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.6		10.00		95.7	70	130	0	0	
Surr: Dibromofluoromethane	9.5		10.00		95.3	70	130	0	0	
Surr: Toluene-d8	9.3		10.00		92.5	70	130	0	0	

94.4

70

130

10.00

Sample ID 5mL-rb	SampType: MBLK	TestCode: EPA Method	8260: Volatiles Short List
Client ID: PBW	Batch ID: R17924	RunNo: 17924	
Prep Date:	Analysis Date: 4/10/2014	SeqNo: 517155	Units: µg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Ethylbenzene	ND 1.0		

Qualifiers:

Surr: Toluene-d8

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404320**

24-Apr-14

Client: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Sample ID 5mL-rb	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batch	n ID: R1	7924	F	RunNo: 1	7924				
Prep Date:	Analysis D	ate: 4/	10/2014	S	SeqNo: 5	17155	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.0		10.00		90.4	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.9	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.1	70	130			
Surr: Toluene-d8	9.2 10.00				92.0					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404320**

24-Apr-14

Client: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Sample ID 5mL rb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R18044 RunNo: 18044

Prep Date: Analysis Date: 4/16/2014 SeqNo: 520568 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 9.6 10.00 96.0 70 130

Sample ID 1404320-003b ms SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: Inlet Batch ID: R18044 RunNo: 18044

Prep Date: Analysis Date: 4/16/2014 SeqNo: 520574 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 39
 2.5
 25.00
 16.78
 87.8
 70
 130

 Surr: BFB
 500
 500.0
 100
 70
 130

Sample ID 1404320-003b msd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: Inlet Batch ID: R18044 RunNo: 18044

Prep Date: Analysis Date: 4/16/2014 SeqNo: 520575 Units: mg/L

SPK value SPK Ref Val %RPD Result %REC HighLimit **RPDLimit** Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 38 2.5 25.00 16.78 84.2 70 130 2.30 20 Surr: BFB 500 500.0 101 70 130 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 8

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Work Order Number: 1404320 RcptNo: 1 Client Name: Western Refining Southw Received by/date: 4/8/2014 9:55:00 AM Lindsay Mangin Logged By: Lindsay Mangin 4/8/2014 10:43:33 AM Completed By: Reviewed By: Chain of Custody Not Present Yes 🗌 1 Custody seals intact on sample bottles? Yes 🗹 No 🗆 Not Present 2. Is Chain of Custody complete? **UPS** 3. How was the sample delivered? <u>Log In</u> NA 🗍 No 🗌 Yes 🗸 4. Was an attempt made to cool the samples? NA 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 Yes 🗸 No Sample(s) in proper container(s)? No 🗆 7. Sufficient sample volume for indicated test(s)? **V** No 🗌 8. Are samples (except VOA and ONG) properly preserved? NA 🗌 No 🛂 9. Was preservative added to bottles? No VOA Vials Yes 🗸 No 10.VOA vials have zero headspace? No 🗹 Yes 11. Were any sample containers received broken? # of preserved bottles checked Yes 🗸 No 🗌 for pH: 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No \square 13. Are matrices correctly identified on Chain of Custody? No 🗌 **V** 14. Is it clear what analyses were requested? Yes No 🗌 Checked by: 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) No 🗌 NA 🗹 Yes 🗌 16. Was client notified of all discrepancies with this order? Person Notified: Date: ■ eMail ■ Phone ■ Fax ■ In Person Via: By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp C Condition Seal Intact Seal No Seal Date Good 1.3 Yes

.				(N ac) (人	Air Bubbles				==							<u> </u>	1	
HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109												_				_	· -	-	
ξP			·														+	-	
ENVIRONMENTA YSIS LABORATOR environmental.com Albuquerque, NM 87109		S .	a)Ot	Pr	pu	DE0 EXT	W	X	X	×	٠	又				+	+	-	
Z Z Z Z Z Z Z Z Z Z	505-345-4107 Request	/				imə2) 0728	_3119		M. A.] .	
Etal.co	-345- ues	1 F @ 1/1	8IM	XJI	g (y	8S60B (VO	\prec		X		X								-
ATF S L Imeni ierqu	505 Rec					S081 Pestic										4			·
HALL ENVIRONME INALYSIS LABOR/ www.hallenvironmental.com ins NE - Albuquerque, NM 87109	Fax 505-345- Analysis Request	(†osʻ	,РО ₄			O,7) snoinA								-			+	4	
	5 Ana		CIVIIC			PAH's (8310 RCRA 8 Me							_	-	+	-		-	
HALL ANAL www.hall sins NE -	-397		SVVIC			EDB (Metho									-		1	1	
wkin w	5-345					TPH (Metho							-					1	
ANA Www.h	Tel. 505-345-3975	(/ (31	-/ O	19)	83108 H9T	メ	_	×		X							┧	
490	<u> </u>	(Ajuo	ssə)	HqT +	- 38	BTEX + MT												Remarks:	
		(120)8) s	amt +	BE ·	TM + X3T8												Ren	
7/-				Ne	2	HEALNO-	1007-		72.00-		-COBS	J						Tate Time	Date Time
Time: Rush		ger:		Est.	oerature: /	Preservative A	#cl	amber	121	amber	4C1	amber						10 MOS	-
Turn-Around Tim Standard Project Name:	-10Ject #-	Project Manager		Sampler: 1	Sample Temperature	Container Type and #	5-10A	Saun!	15-VOA	Soon	15-VOA	Soom					-	Received by	Received by
of-Custody Reco	Hloomtield NM 874/3 Phone #: 505-632-4135	email or Fax#:	Granderd	Accreditation	□ EDD (Type)	Date Time Matrix Sample Request ID	7-14 10:30 H20 LAG		10:40 Lead		1 10:50 INLET		a decoderate					Date: Time: Relinquished by: 1	Date: Time: Relinquished by: Received by Date Time

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 14, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 5-8-14 OrderNo.: 1405367

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 5/8/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1405367**

Date Reported: 5/14/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lag

 Project:
 GAC 5-8-14
 Collection Date: 5/8/2014 8:50:00 AM

 Lab ID:
 1405367-001
 Matrix: AQUEOUS
 Received Date: 5/8/2014 3:00:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	5/12/2014 11:52:51 AM	13081
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	5/12/2014 11:52:51 AM	13081
Surr: DNOP	127	76-161	%REC	1	5/12/2014 11:52:51 AM	13081
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	5/9/2014 6:29:13 PM	R18519
Surr: BFB	90.4	80.4-118	%REC	1	5/9/2014 6:29:13 PM	R18519
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	:: cadg
Benzene	ND	1.0	μg/L	1	5/12/2014 2:10:52 PM	R18547
Toluene	ND	1.0	μg/L	1	5/12/2014 2:10:52 PM	R18547
Ethylbenzene	ND	1.0	μg/L	1	5/12/2014 2:10:52 PM	R18547
Xylenes, Total	ND	2.0	μg/L	1	5/12/2014 2:10:52 PM	R18547
Surr: 1,2-Dichloroethane-d4	98.2	70-130	%REC	1	5/12/2014 2:10:52 PM	R18547
Surr: 4-Bromofluorobenzene	98.9	70-130	%REC	1	5/12/2014 2:10:52 PM	R18547
Surr: Dibromofluoromethane	102	70-130	%REC	1	5/12/2014 2:10:52 PM	R18547
Surr: Toluene-d8	104	70-130	%REC	1	5/12/2014 2:10:52 PM	R18547

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 6

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Lab Order **1405367**

Date Reported: 5/14/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lead

 Project:
 GAC 5-8-14
 Collection Date: 5/8/2014 9:10:00 AM

 Lab ID:
 1405367-002
 Matrix: AQUEOUS
 Received Date: 5/8/2014 3:00:00 PM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE					Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20		mg/L	1	5/12/2014 1:25:01 PM	13081
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	5/12/2014 1:25:01 PM	13081
Surr: DNOP	178	76-161	S	%REC	1	5/12/2014 1:25:01 PM	13081
EPA METHOD 8015D: GASOLINE R	ANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	5/9/2014 6:59:16 PM	R18519
Surr: BFB	89.9	80.4-118		%REC	1	5/9/2014 6:59:16 PM	R18519
EPA METHOD 8260: VOLATILES SH	IORT LIST					Analyst	: cadg
Benzene	ND	1.0		μg/L	1	5/12/2014 3:37:11 PM	R18547
Toluene	ND	1.0		μg/L	1	5/12/2014 3:37:11 PM	R18547
Ethylbenzene	ND	1.0		μg/L	1	5/12/2014 3:37:11 PM	R18547
Xylenes, Total	ND	2.0		μg/L	1	5/12/2014 3:37:11 PM	R18547
Surr: 1,2-Dichloroethane-d4	98.7	70-130		%REC	1	5/12/2014 3:37:11 PM	R18547
Surr: 4-Bromofluorobenzene	97.6	70-130		%REC	1	5/12/2014 3:37:11 PM	R18547
Surr: Dibromofluoromethane	103	70-130		%REC	1	5/12/2014 3:37:11 PM	R18547
Surr: Toluene-d8	105	70-130		%REC	1	5/12/2014 3:37:11 PM	R18547

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1405367

Date Reported: 5/14/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Inlet

 Project:
 GAC 5-8-14
 Collection Date: 5/8/2014 9:20:00 AM

 Lab ID:
 1405367-003
 Matrix: AQUEOUS
 Received Date: 5/8/2014 3:00:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	BCN
Diesel Range Organics (DRO)	1.7	0.20	mg/L	1	5/12/2014 1:55:38 PM	13081
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	5/12/2014 1:55:38 PM	13081
Surr: DNOP	159	76-161	%REC	1	5/12/2014 1:55:38 PM	13081
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	7.1	2.5	mg/L	50	5/9/2014 7:29:19 PM	R18519
Surr: BFB	90.3	80.4-118	%REC	50	5/9/2014 7:29:19 PM	R18519
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: cadg
Benzene	23	20	μg/L	20	5/12/2014 4:05:56 PM	R18547
Toluene	ND	20	μg/L	20	5/12/2014 4:05:56 PM	R18547
Ethylbenzene	700	20	μg/L	20	5/12/2014 4:05:56 PM	R18547
Xylenes, Total	1000	40	μg/L	20	5/12/2014 4:05:56 PM	R18547
Surr: 1,2-Dichloroethane-d4	96.6	70-130	%REC	20	5/12/2014 4:05:56 PM	R18547
Surr: 4-Bromofluorobenzene	89.0	70-130	%REC	20	5/12/2014 4:05:56 PM	R18547
Surr: Dibromofluoromethane	102	70-130	%REC	20	5/12/2014 4:05:56 PM	R18547
Surr: Toluene-d8	101	70-130	%REC	20	5/12/2014 4:05:56 PM	R18547

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1405367**

14-May-14

Client: Western Refining Southwest, Inc.

Project: GAC 5-8-14

Sample ID MB-13081 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: **PBW** Batch ID: 13081 RunNo: 18530 Prep Date: 5/9/2014 Analysis Date: 5/12/2014 SeqNo: 535430 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 ND Motor Oil Range Organics (MRO) 2.5 Surr: DNOP 0.64 0.5000 127 76 161

Sample ID 1405367-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: GAC-Lag Batch ID: 13081 RunNo: 18530 Prep Date: 5/9/2014 Analysis Date: 5/12/2014 SeqNo: 535750 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 140 8.05 20 3.5 2.500 72.1 156 Surr: DNOP 0.34 0.2500 137 76 161 0

Sample ID 1405367-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: GAC-Lag Batch ID: 13081 RunNo: 18530 Prep Date: 5/9/2014 Analysis Date: 5/12/2014 SeqNo: 535968 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.8 0.20 2.500 0 152 72.1 156 Surr: DNOP 0.36 0.2500 143 76 161

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1405367**

14-May-14

Client: Western Refining Southwest, Inc.

Project: GAC 5-8-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R18519 RunNo: 18519

Prep Date: Analysis Date: 5/9/2014 SeqNo: 534572 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 89.6 80.4 118

Sample ID 1405367-003BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R18519 RunNo: 18519

Prep Date: Analysis Date: 5/9/2014 SeqNo: 534590 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 32
 2.5
 25.00
 7.120
 98.5
 79
 121

 Surr: BFB
 1000
 1000
 102
 80.4
 118

Sample ID 1405367-003BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R18519 RunNo: 18519

Prep Date: Analysis Date: 5/9/2014 SeqNo: 534591 Units: mg/L

%RPD Result SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 30 25.00 7.120 92.5 79 121 4.81 20 Surr: BFB 1000 1000 103 80.4 118 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1405367**

14-May-14

Client: Western Refining Southwest, Inc.

Project: GAC 5-8-14

Sample ID 5mL rb	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8260: Volatiles Short List									
Client ID: PBW	Batch	n ID: R1	8547	F	RunNo: 1	8547								
Prep Date:	Analysis Date: 5/12/2014			S	SeqNo: 5	35867	Units: µg/L							
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Benzene	ND	1.0												
Toluene	ND	1.0												
Ethylbenzene	ND	1.0												
Xylenes, Total	ND	1.5												
Surr: 1,2-Dichloroethane-d4	9.6		10.00		96.5	70	130							
Surr: 4-Bromofluorobenzene	9.9		10.00		98.6	70	130							
Surr: Dibromofluoromethane	10		10.00		101	70	130							
Surr: Toluene-d8	11		10.00		107	70	130							

Sample ID 1405367-001a ms	SampT	SampType: MS TestCode: EPA Method 8260: Volatiles Short List											
Client ID: GAC-Lag	Batch	1D: R1	8547	RunNo: 18547									
Prep Date:	Analysis D	ate: 5/	12/2014	8	SeqNo: 5	35870	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	20	1.0	20.00	0	102	70	130						
Toluene	21	1.0	20.00	0	103	67.5	123						
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130						
Surr: 4-Bromofluorobenzene	9.6		10.00		96.1	70	130						
Surr: Dibromofluoromethane	9.9		10.00		99.2	70	130						
Surr: Toluene-d8	10		10 00		101	70	130						

Sample ID 1405367-001a m	sd SampT	ype: MS	SD	Tes	tCode: E	PA Method	8260: Volatile	s Short L	ist	
Client ID: GAC-Lag	Batch	1D: R1	8547	F	RunNo: 1	8547				
Prep Date:	Analysis D	ate: 5/	12/2014	9	SeqNo: 5	35871	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	100	70	130	1.81	20	
Toluene	20	1.0	20.00	0	99.8	67.5	123	3.21	20	
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.1	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.5		10.00		95.5	70	130	0	0	
Surr: Dibromofluoromethane	10		10.00		103	70	130	0	0	
Surr: Toluene-d8	10		10.00		104	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: Western Refining Southw Work Order Number	: 1405367		RcptNo:	1
Received by/date: MG 05 08 14				· · · · · · · · · · · · · · · · · · ·
Logged By: Lindsay Mangin 5/8/2014 3:00:00 PM		Similar Hlengs		
Completed By: Lindsay Mangin 5/9/2014 6:23:32 AM		January Herrys		
Reviewed By: A 05/09/14		000		
Chain of Custody				
1 Custody seals intact on sample bottles?	Yes	No 🗔	Not Present	
2. Is Chain of Custody complete?	Yes 🗸	No	Not Present	
3 How was the sample delivered?	<u>Courier</u>			
<u>Log In</u>			r-:	
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	NA 🗀	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🔽	No 🗀	NA \square	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗔		
7. Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🛅		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🔽	No 🗔		
9. Was preservative added to bottles?	Yes	No 🗹	NA	
10.VOA vials have zero headspace?	Yes 🗹	No 🗔	No VOA Vials	
11. Were any sample containers received broken?	Yes	No 🗹	# of preserved	
			bottles checked	1
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗸	No 🗀	for pH:(<2 (or >12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🗹	No		
15. Were all holding times able to be met?	Yes 🗸	No	Checked by:	
(If no, notify customer for authorization.)				·
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗔	No 🗍	NA 🗹	
Person Notified: Date: By Whom: Via:	•	Phone Fax	in Person	1
By Whom: Via:	: Giviali :	Thone Trax	W Clock	
Client Instructions:				
17. Additional remarks:				
18. Cooler Information Cooler No Temp C Condition Seal Intact Seal No	Seal Date	Signed By	I	
1 2.3 Good Yes	A CONTRACT OF STATE O			
\п. п. п. п. п. п. п. п. п. п. п. п. п. п				

			•				_			,	N 4	٠X) səj	qqn	a ₁i/	/	J	1		ŀ	l	J	7	_		_		, 				
		4	 								_						_	_†		 	1	十	\dashv	7			-	├	╁	-		
	E	<u>.</u> 6					_									T	T	7			1	\dagger	\dagger	\dashv				 -	┼╌	-{		
	2 W	₹	1	6				_		_							\top	1			\vdash	+	\top	\dashv	\neg		_		╁╴	-{		port.
	Σ	K		710	27			<i>8.</i> —	510	& —	1	pp	Valy	70	DS		75	7		1	\vdash	15	才	7	\dashv	_	_		 	-		fical
	Z	ĕ	Ö	™ 8	74	t	1				(Α	ΌΛ	-ime	s) 0	728		\top	十		┝∸	\vdash	†-	+	十	-+				-	-		analy
	2	5	ıtal.	Je, N	505-345-4107	ank							/O/				1	٦,	メ		X	十	+	+	7	\dashv			-	1		on the
	ENVIRONMENTA	LYSIS LABORATOR	www.hallenvironmental.com	Albuquerque, NM 87109	505	Analysis Request							oitee				T	\uparrow			Ť	}	十	\dashv	\dashv	7		-]		This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
	Ž	SI	NİO	bnq	Fax	ysis	([†] O	S'*	0d ^{°2}	ON	1, _E C	ΝΊ	O,7)	suc	inA			7	7			†	╁	\dagger	7	\dashv	_			1		arly no
		7	allen			Anal							9W 8				Γ	T	\exists			\vdash	+	十	+	十	+					be cle
	HALI	ANA	w. 'n	Ä	3975	Ì		(SI	WIS				168)					1	\dashv			一	†	$^{+}$	+	+	\dashv	\dashv			÷	ta will
	Ì	4	Š	kins	345-								yeth		- 1			T	T	_		 	\dagger	+	+	+	十	 				ted da
			_	4901 Hawkins NE	505-345-3975								ηэγ		- 1				7	\neg		-	†	+	\dagger	+	+	\dashv	\dashv			ontrac
				901	Tel. 5								3910			\overline{x}		7	Z	7	又	_	†-	┿	+	+	\dashv	-+	\dashv		i	o-gns
			l	4		(W +						\top	7			 	\dagger	\dagger	+	十	+		rks:		. Any
г		_					(17	 208)) s,g	MT	+	387	W +	X∃.	T8			\vdash	T	Ť				\dagger	+	+	\dashv	\dashv	\dashv	Remarks:		ssibility
		1				- [Religion					1				\top	T			_	\dagger	+	+	+	\dashv	─┤	<u>~</u>		sod sir
										24				بر چ چ	9	\exists		$ \wedge$	\iint		M			l					.		· B	æ of tl
1			~												\bigvee			2	از									1	F	7/77	Time	is notii
			12/	-							2 . 2 ç		ا ا			Y					H								Į.	<u> </u>	e	elves a
	ع.	_	Q							T	- (`	X			4							ı							Oato	Less .		Phis se
	Rush												itive			\top		_	\uparrow		+	\exists		 -	╁	╁	+	╁	\dashv	18	1. 1	
ë.	.>	\P	4							90	leaft in	ز 5	reservative	Туре		<u> </u>	او		نسر إر	입.	<u> </u>	امْ								7	de	aboratories.
i ime:		i				į) D		1/2			5	Pres	r—		ر 4	4	Ĭ] ,		뵌,	3					ļ		-		1 13	<u></u>
ruiri-Around	darc	lam		٠		lane.	<u> </u>		ĮΨ					— #	十	\top	Т		T	\top	+-	+	_		╁	┼-	╀	+	\dashv	71	3	
II-AE	Stan	ect)	9	Project #.		1 2	<u> </u>		pler	Ø	T elic		Container	anc	(2	8	なっ	Į	9 3	10	2							<u>~</u>	house		
5	14	Project Name:	<u>ر</u> ې	Proj		Project Manage	<u>.</u>		Sampler	On Ice:	Sample Tempe		Š,	l ype and #	7	,	- 200	15-VOR	1	7	- von	1-500							Received by:			2
					\prod	1	T			<u> </u>		_			+~	╫.	7	4)	F	14	1	7			<u> </u>	<u> </u>	1_	_	18. 18.			
5								Level 4 (Full Validation)		1			Sample Request ID									ł	- [ogns	
VI VUSIOUY RECOFG	0			3				/alid					nes				.	F					-							1	nay be	•
1	2		9	•	11			Į,		-			Red		1000	-		Lead		101.	2		1	}			ļ. 			3	ental	
Ž	S		19	20	13			14 (,				ple						,	3		1	1							1	Jin jin jin jin jin jin jin jin jin jin j	
3	Refining		2	NM 874,	632-4135			eve					amj		400	1/	'	5 8 5												· k ,		
2	W		C	2	N			Ž		_			ഗ		Q.			5		345				j					5	37 /2	D S D	
)			B	L	V				į	□ Omer			Ϋ́		0		\top	7		T	\vdash	\dagger	+	_	┥		_		shed	2) ge	Duritte	
5	1 9		#	الة.	4				[- -			Matrix		£32	-	+-	+			 - -								Relinquished by	Relinquished by	A sub	
	3		<u>g</u> (压	525	#	age:		_		(g)		 		Q,	 	10	+	_	-0	<u> </u>	+	+	+	\dashv	_			8	 -	If necessary samples submitted to Hall Environmental may be subcontracted to other annual.	; ;
	*		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2		Fa	ack	dard	tation	 -			Time		⇔ ;		28			9:20									Time:	142C Time:	M2S necessary	
' ;	Western		Walling Address:# 50 CR 4990	Bloom+ield	Phone #:	email or Fax#:	QA/QC Package:	Standard	Accreditation	֓֞֜֞֜֜֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	☐ EDD (Type)		Date	_	5-8-14 8:50	_	 	\dagger	\dashv	-		\vdash	+	+	\dashv	\dashv	\dashv		<u> </u>	*		:
5	5	:	≝ '	4	Ę	eH	ð		ğ Ĺ				Dê		8		T	+	+										Jate:	3 Jafe:	FI.	
														•	<i>01</i>		•	•	'	'		1	1	ı	ı	1	ı				U67 1	:

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 17, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 6-5-14 OrderNo.: 1406316

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 6/6/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 6/17/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC - Lag

 Project:
 GAC 6-5-14
 Collection Date: 6/5/2014 10:30:00 AM

 Lab ID:
 1406316-001
 Matrix: AQUEOUS
 Received Date: 6/6/2014 10:09:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	6/10/2014 9:31:11 PM	13569
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	6/10/2014 9:31:11 PM	13569
Surr: DNOP	125	76-161	%REC	1	6/10/2014 9:31:11 PM	13569
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/9/2014 4:59:40 PM	R19139
Surr: BFB	97.4	70.9-130	%REC	1	6/9/2014 4:59:40 PM	R19139
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: DJF
Benzene	ND	1.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Toluene	ND	1.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Ethylbenzene	ND	1.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Xylenes, Total	ND	2.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Surr: 1,2-Dichloroethane-d4	93.9	70-130	%REC	1	6/6/2014 4:48:19 PM	R19118
Surr: 4-Bromofluorobenzene	83.7	70-130	%REC	1	6/6/2014 4:48:19 PM	R19118
Surr: Dibromofluoromethane	90.2	70-130	%REC	1	6/6/2014 4:48:19 PM	R19118
Surr: Toluene-d8	95.2	70-130	%REC	1	6/6/2014 4:48:19 PM	R19118

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Date Reported: 6/17/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC - Lead

 Project:
 GAC 6-5-14
 Collection Date: 6/5/2014 10:15:00 AM

 Lab ID:
 1406316-002
 Matrix: AQUEOUS
 Received Date: 6/6/2014 10:09:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analysi	: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	6/10/2014 7:12:59 AM	13569
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	6/10/2014 7:12:59 AM	13569
Surr: DNOP	147	76-161	%REC	1	6/10/2014 7:12:59 AM	13569
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/9/2014 5:29:51 PM	R19139
Surr: BFB	93.3	70.9-130	%REC	1	6/9/2014 5:29:51 PM	R19139
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: DJF
Benzene	ND	1.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Toluene	ND	1.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Ethylbenzene	ND	1.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Xylenes, Total	ND	2.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Surr: 1,2-Dichloroethane-d4	103	70-130	%REC	1	6/6/2014 5:17:55 PM	R19118
Surr: 4-Bromofluorobenzene	86.2	70-130	%REC	1	6/6/2014 5:17:55 PM	R19118
Surr: Dibromofluoromethane	98.3	70-130	%REC	1	6/6/2014 5:17:55 PM	R19118
Surr: Toluene-d8	96.4	70-130	%REC	1	6/6/2014 5:17:55 PM	R19118

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1406316**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/17/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC - inlet

 Project:
 GAC 6-5-14
 Collection Date: 6/5/2014 10:00:00 AM

 Lab ID:
 1406316-003
 Matrix: AQUEOUS
 Received Date: 6/6/2014 10:09:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE .					Analyst	BCN
Diesel Range Organics (DRO)	3.1	0.20		mg/L	1	6/10/2014 10:35:46 PM	13569
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	6/10/2014 10:35:46 PM	13569
Surr: DNOP	126	76-161		%REC	1	6/10/2014 10:35:46 PM	13569
EPA METHOD 8015D: GASOLINE RA	ANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	9.5	1.0	Р	mg/L	20	6/9/2014 5:59:59 PM	R19139
Surr: BFB	127	70.9-130	Р	%REC	20	6/9/2014 5:59:59 PM	R19139
EPA METHOD 8260: VOLATILES SH	IORT LIST					Analyst	DJF
Benzene	170	20		μg/L	20	6/6/2014 5:47:29 PM	R19118
Toluene	ND	20		μg/L	20	6/6/2014 5:47:29 PM	R19118
Ethylbenzene	760	20		μg/L	20	6/6/2014 5:47:29 PM	R19118
Methyl tert-butyl ether (MTBE)	ND	20		μg/L	20	6/6/2014 5:47:29 PM	R19118
Xylenes, Total	1500	40		μg/L	20	6/6/2014 5:47:29 PM	R19118
Surr: 1,2-Dichloroethane-d4	99.0	70-130		%REC	20	6/6/2014 5:47:29 PM	R19118
Surr: 4-Bromofluorobenzene	92.9	70-130		%REC	20	6/6/2014 5:47:29 PM	R19118
Surr: Dibromofluoromethane	92.0	70-130		%REC	20	6/6/2014 5:47:29 PM	R19118
Surr: Toluene-d8	94.6	70-130		%REC	20	6/6/2014 5:47:29 PM	R19118

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.

Page 3 of 6

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Result

3.7

0.34

PQL

0.20

WO#: **1406316**

17-Jun-14

Client: Western Refining Southwest, Inc.

Project: GAC 6-5-14

Sample ID MB-13569	SampType: MBLK TestCode: EPA Method 8015							el Range		
Client ID: PBW	Batch	th ID: 13569 RunNo: 19122								
Prep Date: 6/6/2014	Analysis D	ate: 6/	10/2014	S	SeqNo: 5	53201	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.85		0.5000		170	76	161			S
Sample ID 1406316-001CMS	SampT	уре: М \$	<u> </u>	Tes	tCode: El	PA Method	8015D: Diese	el Range		
Client ID: GAC - Lag	Batch	n ID: 13	569	F	RunNo: 1	9152				
Prep Date: 6/6/2014	Analysis D	ate: 6/	10/2014	S	SeqNo: 5	54446	Units: mg/L			
		ate: 6/ PQL		SPK Ref Val	SeqNo: 5 %REC	54446 LowLimit	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Prep Date: 6/6/2014	Analysis D						Ü		RPDLimit	Qual
Prep Date: 6/6/2014 Analyte	Analysis D	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit		RPDLimit	Qual
Prep Date: 6/6/2014 Analyte Diesel Range Organics (DRO)	Analysis D Result 3.4 0.30	PQL	SPK value 2.500 0.2500	SPK Ref Val	%REC 134 121	LowLimit 64.4 76	HighLimit 178	%RPD	RPDLimit	Qual
Prep Date: 6/6/2014 Analyte Diesel Range Organics (DRO) Surr: DNOP	Analysis D Result 3.4 0.30 ED SampT	PQL 0.20	SPK value 2.500 0.2500	SPK Ref Val 0	%REC 134 121	LowLimit 64.4 76 PA Method	HighLimit 178 161	%RPD	RPDLimit	Qual

SPK value SPK Ref Val %REC

0

2.500

0.2500

Qualifiers:

Analyte

Surr: DNOP

Diesel Range Organics (DRO)

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

LowLimit

64.4

76

148

134

HighLimit

178

161

%RPD

9.34

0

RPDLimit

20

0

Qual

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1406316**

17-Jun-14

Client: Western Refining Southwest, Inc.

Project: GAC 6-5-14

Sample ID 1406316-003BMSD

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R19139 RunNo: 19139

Prep Date: Analysis Date: 6/9/2014 SeqNo: 553037 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 93.7 70.9 130

Sample ID 1406316-003BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC - inlet Batch ID: R19139 RunNo: 19139

Prep Date: Analysis Date: 6/9/2014 SeqNo: 553053 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 1.0 10.00 9.508 115 79 121

TestCode: EPA Method 8015D: Gasoline Range

 Surr: BFB
 550
 400.0
 137
 70.9
 130
 S

Client ID: GAC - inlet Batch ID: R19139 RunNo: 19139

SampType: MSD

Prep Date: Analysis Date: 6/9/2014 SeqNo: 553054 Units: mg/L

%RPD **RPDLimit** Result SPK value SPK Ref Val %REC HighLimit Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 20 10.00 9.508 101 79 121 7.09 20 Surr: BFB 520 400.0 130 70.9 130 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1406316**

17-Jun-14

Client: Western Refining Southwest, Inc.

Project: GAC 6-5-14

Sample ID 5ml rb	SampT	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: PBW	Batch	n ID: R1	9118	F	9118					
Prep Date:	Analysis D	Analysis Date: 6/6/2014			SeqNo: 5	52734	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130			
Surr: 4-Bromofluorobenzene	8.6		10.00		85.9	70	130			
Surr: Dibromofluoromethane	8.9		10.00		89.3	70	130			
Surr: Toluene-d8	11		10.00		105	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 6

4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com

Work Order Number:	1406316		RcptNo:	1
26/06/14		<u>-</u>	<u>.</u>	
5/6/2014 10:09:00 AM		Michelle Gon	uie	
6/6/2014 10:33:27 AM		Michell Com	uie)	
olifactiel		•		
	Yes 🗌	No 🗀	Not Present 🗹	
	Yes 🗹	No 🗌	Not Present	
	Courier			
	Yes 🗹	No 🗆	NA 🗌	
of >0° C to 6.0°C	Yes 🗸	No 🗌	NA \square	
	Yes 🗹	No 🗆		
?	Yes 🗹	No 🗌		
preserved?	Yes 🗹	No 🗔	_	
	Yes	No 🔽	NA 🗆	
	Yes 🗹	No 🗆	No VOA Vials	
1?	Yes	No 🗹	# of preserved	
	Ves 🗸	No 🗆	bottles checked for pH:	
	103 🖭	—	(<2 o	r >12 unless noted)
Custody?	Yes 🗹	No 🗆	Adjusted? _	
	Yes 🗹	No 📙		
	Yes 🗹	No □	Спескей ву:	
nis order?	Yes 🗌	No 🗆	NA 🗹	
Date:]
	□ eMail □	☐ Phone ☐ Fax	In Person	
	<u> </u>			
				_
	Seal Date _	Signed By	1	
	5/6/2014 10:09:00 AM 6/6/2014 10:33:27 AM 6/6/2014	Yes V Courier Yes V Courier Yes V	Side Color	Signed By Sign

	HALL ENVIRONMENTAL ANALYSIS LABORATORY	www hallenvironmental com	4901 Hawkins NE - Albuquerque, NM 87109		Analysis Request	10 (*C	775,8 05" (§	SMIS SMIS SMIS SMIS SMIS SMIS SMIS SMIS	7809 7809 700 700 700 700 700 700 700 700 700 7	O5 .40 .40 .50 .50 .50 .50 .50 .50 .50 .50 .50 .5	GF d 4 lals	MTEB ethoreethores Methores Methores Methores Methores Methores Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Market Model Methores Model Model Methores Model Market Market M	TH 80 STEX + STEX + STEX +	8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 ×	×	*	*	× ×	×				Remarks:		If the contracted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	Standard Rush		GAC 6-5-14	Project #:		Project Manager:			Sampler: Meth	On Ice; 💢 Yes 🗀 Ng	Sample Temperature (,70		Container Preservative HEAL No. Type and # Type 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1		1-500ml amber	5-VO4 HC1 -002	1-500 mil annber	5.104 Hel -03	1-500ml amber				Received by: Date Time F	Received by: Date Time	ntracted to other accredited laboratories. This serves as notice of this p
Chain-of-Custody Record	Client Western Refiling		Mailing Address: 4-50 CR 4990	BloomGeld NM 87413	-632-	email or Fax#:	QA/QC Package:	☐ Standard ★ Level 4 (Full Validation)	on	□ NELAP □ Other	□ EDD (Type)		Date Time Matrix Sample Request ID	6-5-14/0:30 H20 GAC-649	7	65-14/0:15 GAC-Lead		6-5-14/0:00 GAC-INIET			1000		Date: Time: c.Relinquished by: I Style Sty	1.10011	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 3rd QTR OrderNo.: 1407096

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 7/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1407096**

Date Reported: 7/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Gac-Lag

Project: GAC 3rd QTR
 Collection Date: 7/1/2014 11:00:00 AM

 Lab ID: 1407096-001
 Matrix: AQUEOUS
 Received Date: 7/2/2014 9:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E				Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	7/2/2014 11:59:42 PM	14040
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	7/2/2014 11:59:42 PM	14040
Surr: DNOP	100	76-161	%REC	1	7/2/2014 11:59:42 PM	14040
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	7/3/2014 11:47:28 AM	R19692
Surr: BFB	96.9	70.9-130	%REC	1	7/3/2014 11:47:28 AM	R19692
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	ND	1.0	μg/L	1	7/9/2014 3:23:52 AM	R19752
Toluene	ND	1.0	μg/L	1	7/9/2014 3:23:52 AM	R19752
Ethylbenzene	ND	1.0	μg/L	1	7/9/2014 3:23:52 AM	R19752
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	7/9/2014 3:23:52 AM	R19752
Xylenes, Total	ND	1.5	μg/L	1	7/9/2014 3:23:52 AM	R19752
Surr: 1,2-Dichloroethane-d4	94.1	70-130	%REC	1	7/9/2014 3:23:52 AM	R19752
Surr: 4-Bromofluorobenzene	88.3	70-130	%REC	1	7/9/2014 3:23:52 AM	R19752
Surr: Dibromofluoromethane	90.1	70-130	%REC	1	7/9/2014 3:23:52 AM	R19752
Surr: Toluene-d8	108	70-130	%REC	1	7/9/2014 3:23:52 AM	R19752

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 1 of 7

Lab Order **1407096**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/15/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lead

 Project:
 GAC 3rd QTR
 Collection Date: 7/1/2014 11:10:00 AM

 Lab ID:
 1407096-002
 Matrix: AQUEOUS
 Received Date: 7/2/2014 9:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGI	E				Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	7/3/2014 1:31:03 AM	14040
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	7/3/2014 1:31:03 AM	14040
Surr: DNOP	107	76-161	%REC	1	7/3/2014 1:31:03 AM	14040
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	7/3/2014 12:17:38 PM	R19692
Surr: BFB	97.2	70.9-130	%REC	1	7/3/2014 12:17:38 PM	R19692
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	ND	1.0	μg/L	1	7/9/2014 5:21:47 AM	R19752
Toluene	ND	1.0	μg/L	1	7/9/2014 5:21:47 AM	R19752
Ethylbenzene	ND	1.0	μg/L	1	7/9/2014 5:21:47 AM	R19752
Methyl tert-butyl ether (MTBE)	1.1	1.0	μg/L	1	7/9/2014 5:21:47 AM	R19752
Xylenes, Total	ND	1.5	μg/L	1	7/9/2014 5:21:47 AM	R19752
Surr: 1,2-Dichloroethane-d4	92.3	70-130	%REC	1	7/9/2014 5:21:47 AM	R19752
Surr: 4-Bromofluorobenzene	95.0	70-130	%REC	1	7/9/2014 5:21:47 AM	R19752
Surr: Dibromofluoromethane	92.1	70-130	%REC	1	7/9/2014 5:21:47 AM	R19752
Surr: Toluene-d8	110	70-130	%REC	1	7/9/2014 5:21:47 AM	R19752

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1407096**

Date Reported: 7/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Inlet

Project: GAC 3rd QTR
 Collection Date: 7/1/2014 11:20:00 AM

 Lab ID: 1407096-003
 Matrix: AQUEOUS
 Received Date: 7/2/2014 9:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E				Analyst	: ЈМЕ
Diesel Range Organics (DRO)	2.0	0.20	mg/L	1	7/3/2014 2:01:26 AM	14040
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	7/3/2014 2:01:26 AM	14040
Surr: DNOP	114	76-161	%REC	1	7/3/2014 2:01:26 AM	14040
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	7.0	1.0	mg/L	20	7/3/2014 12:47:44 PM	R19692
Surr: BFB	119	70.9-130	%REC	20	7/3/2014 12:47:44 PM	R19692
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	99	10	μg/L	10	7/9/2014 5:51:12 AM	R19752
Toluene	ND	10	μg/L	10	7/9/2014 5:51:12 AM	R19752
Ethylbenzene	710	10	μg/L	10	7/9/2014 5:51:12 AM	R19752
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	7/9/2014 5:51:12 AM	R19752
Xylenes, Total	890	15	μg/L	10	7/9/2014 5:51:12 AM	R19752
Surr: 1,2-Dichloroethane-d4	92.0	70-130	%REC	10	7/9/2014 5:51:12 AM	R19752
Surr: 4-Bromofluorobenzene	90.6	70-130	%REC	10	7/9/2014 5:51:12 AM	R19752
Surr: Dibromofluoromethane	88.6	70-130	%REC	10	7/9/2014 5:51:12 AM	R19752
Surr: Toluene-d8	102	70-130	%REC	10	7/9/2014 5:51:12 AM	R19752

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

3.4

0.25

0.20

2.500

0.2500

WO#: **1407096**

15-Jul-14

Client: Western Refining Southwest, Inc.

Project: GAC 3rd QTR

Sample ID MB-14040	SampType	e: MBLK	Test	Code: EPA Method	PA Method 8015D: Diesel Range						
Client ID: PBW	Batch ID): 14040	R	unNo: 19624							
Prep Date: 7/2/2014	Analysis Date	e: 7/2/2014	S	eqNo: 569973	Units: mg/L						
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit %	%RPD	RPDLimit	Qual			
Diesel Range Organics (DRO)	ND	0.20									
Motor Oil Range Organics (MRO)	ND	2.5									
Surr: DNOP	0.56	0.5000		112 76	161						
Sample ID LCS-14040	SampType	e: LCS	Test	Code: EPA Method	8015D: Diesel R	Range					
Client ID: LCSW	Batch ID	D: 14040	R	unNo: 19624							
Prep Date: 7/2/2014	Analysis Date	e: 7/2/2014	S	eqNo: 569974	Units: mg/L						
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit 9	%RPD	RPDLimit	Qual			
Diesel Range Organics (DRO)	3.0	0.20 2.500	0	119 65.8	162						
Surr: DNOP	0.25	0.2500		101 76	161						
Sample ID 1407096-001CMS	SampType	e: MS	Test	Code: EPA Method	8015D: Diesel F	Range					
Client ID: Gac-Lag	Batch ID): 14040	R	unNo: 19624							
Prep Date: 7/2/2014	Analysis Date	e: 7/3/2014	S	eqNo: 569978	Units: mg/L						
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit 9	%RPD	RPDLimit	Qual			
Diesel Range Organics (DRO)	3.3	0.20 2.500	0	133 64.4	178						
Surr: DNOP	0.25	0.2500		102 76	161						
Sample ID 1407096-001CMSI	D SampType	e: MSD	Test	Code: EPA Method	8015D: Diesel R	Range					
Client ID: Gac-Lag	Batch ID): 14040	R	unNo: 19624							
Prep Date: 7/2/2014	Analysis Date	e: 7/3/2014	Se	eqNo: 569979	Units: mg/L						
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit %	%RPD	RPDLimit	Qual			

0

137

101

64.4

76

178

161

3.23

0

20

0

Qualifiers:

Diesel Range Organics (DRO)

Surr: DNOP

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1407096**

15-Jul-14

Client: Western Refining Southwest, Inc.

Project: GAC 3rd QTR

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R19692 RunNo: 19692

Prep Date: Analysis Date: 7/3/2014 SeqNo: 571840 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 94.5 70.9 130

Sample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R19692 RunNo: 19692

Prep Date: Analysis Date: 7/3/2014 SeqNo: 571841 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 0.52
 0.050
 0.5000
 0
 104
 80
 120

 Surr: BFB
 21
 20.00
 107
 70.9
 130

Sample ID 1407096-003BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R19692 RunNo: 19692

Prep Date: Analysis Date: 7/3/2014 SeqNo: 571845 Units: mg/L

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** LowLimit HighLimit Qual Gasoline Range Organics (GRO) 18 1.0 10.00 7.028 112 79 121

Surr: BFB 520 400.0 130 70.9 130

Sample ID 1407096-003BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R19692 RunNo: 19692

Prep Date: Analysis Date: 7/3/2014 SeqNo: 571846 Units: mg/L

%REC Analyte Result **PQL** SPK value SPK Ref Val LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 18 1.0 10.00 7 028 107 79 121 2.90 20 Surr: BFB 510 400.0 129 70.9 130 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RL Reporting Detection Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1407096**

15-Jul-14

Client: Western Refining Southwest, Inc.

Project: GAC 3rd QTR

Sample ID 5ml rb	SampT	ype: M	BLK	Tes	tCode: El	PA Method	ATILES			
Client ID: PBW	Batch	n ID: R1	9752	F	RunNo: 1					
Prep Date:	Analysis D	ate: 7/	/8/2014	S	SeqNo: 5	73800	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		87.8	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		91.1	70	130			
Surr: Dibromofluoromethane	8.4		10.00		83.7	70	130			
Surr: Toluene-d8	11		10.00		107	70	130			
Sample ID 100ng lcs	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: R1	9752	F	RunNo: 1	9752				
Dran Data:	Analysis D	loto: 7	1010044		SagNa: E	70000	Linita:/I			

Client ID: LCSW	Batch	n ID: R1	9752	F	RunNo: 1	9752				
Prep Date:	Analysis D	ate: 7/	8/2014	9	SeqNo: 5	73802	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.1	70	130			
Toluene	21	1.0	20.00	0	105	80	120			
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.8	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	9.0		10.00		90.4	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

Sample ID b4	SampT	уре: МЕ	BLK	Tes	tCode: El					
Client ID: PBW	Batch	1D: R1	9752	F	RunNo: 1	9752				
Prep Date:	Analysis D	ate: 7/	8/2014	S	SeqNo: 5	73828	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.1	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		91.3	70	130			
Surr: Dibromofluoromethane	9.0		10.00		89.7	70	130			
Surr: Toluene-d8	11		10.00		105	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1407096**

15-Jul-14

Client: Western Refining Southwest, Inc.

Project: GAC 3rd QTR

Sample ID 100ng lcs2	SampT	SampType: LCS TestCode: EPA Method 826						ATILES		
Client ID: LCSW	Batch	Batch ID: R19752 RunNo: 19752								
Prep Date:	Analysis D	ate: 7/	8/2014	9	SeqNo: 5	73829	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	19	1.0	20.00	0	96.4	80	120			
Surr: 1,2-Dichloroethane-d4	8.7		10.00		87.3	70	130			
Surr: 4-Bromofluorobenzene	8.9		10.00		89.4	70	130			
Surr: Dibromofluoromethane	8.5		10.00		84.6	70	130			
Surr: Toluene-d8	9.8		10.00		98.5	70	130			

Sample ID 1407096-001ams2	2 SampT	SampType: MS TestCode: EPA Method 8260B: VOLATILES								
Client ID: Gac-Lag	Batch	Batch ID: R19752 RunNo: 19752								
Prep Date:	Analysis D	ate: 7/	9/2014	914 SeqNo: 573831 Units: μg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	104	70	130			
Toluene	20	1.0	20.00	0	102	67.5	123			
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.9	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		90.7	70	130			
Surr: Dibromofluoromethane	9.2		10.00		91.5	70	130			
Surr: Toluene-d8	11		10.00		107	70	130			

Sample ID 1407096-001amsd2 SampType: MSD TestCode: EPA Method 8260B: VOLATILES										
Client ID: Gac-Lag	Batch ID: R19752 RunNo: 19752									
Prep Date: Analysis Date: 7/9/2014 SeqNo: 573832 Units: μg/L										
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130	1.61	20	
Toluene	19	1.0	20.00	0	97.0	67.5	123	5.24	20	
Surr: 1,2-Dichloroethane-d4	10		10.00		99.5	70	130	0	0	
Surr: 4-Bromofluorobenzene	8.9		10.00		89.3	70	130	0	0	
Surr: Dibromofluoromethane	9.6		10.00		95.7	70	130	0	0	
Surr: Toluene-d8	10		10.00		102	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE

ANALYSIS TEL: 505-345-39	Albuquerque, NM 87 175 FAX: 505-345-4 hallenvironmental.c	107	Sample Log-In Check List					
Client Name: Western Refining Southw Work Order Numb	er: 1407096		RcptNo: 1					
Received by/date 0 100	9							
Logged By: Ashley Gallegos 7/2/2014 9:45:00 AM	Л	A						
Completed By: Ashley Gallegos 7/2/2014 11:43:28 A	M	A						
Reviewed By: 07/02/14								
Chain of Custody								
1. Custody seals intact on sample bottles?	Yes	No 🗆	Not Present 🗹					
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present					
3. How was the sample delivered?	<u>UPS</u>							
<u>Log In</u>								
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗆	na 🗆					
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	NA \square					
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌						
7. Sufficient sample volume for indicated test(s)?	Yes 🗸	No□						
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗆						
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗌					
10.VOA vials have zero headspace?	Yes 🗸	No 🗆	No VOA Vials					
11. Were any sample containers received broken?	Yes	No 🗹	# of preserved bottles checked					
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🔽	No 🗆	for pH: (<2 or >12 unless noted					
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗆	Adjusted?					
14. Is it clear what analyses were requested?	Yes 🗹	No ∐	Observed by					
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 📙	Checked by:					
Special Handling (if applicable)								
16. Was client notified of all discrepancies with this order?	Yes 🗆	No 🗆	NA					

16.\	Was client notified of all d	iscrepancies with this order?	Yes	No 🗌	NA 🗹
	Person Notified:		Date:		
	By Whom:	Charles to the comment of the commen	Via: 🗌 eMail 📗 F	Phone 🔲 Fax 📗	In Person
	Regarding:	and the second s	and the second s		to deposit the second s
	Client Instructions:				

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1 1.	.4	Good	Yes			

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107 Analysis Request	(M 10 V) 24	əlddii 8 ii∆								oort.
A A A	Octoo Park	1			 -			-		tical reç
ENVIRONME YSIS LABOR/ environmental.com Albuquerque, NM 87109 Fax 505-345-4107		8270 (Sen *국 6점(X	\dashv^{\times}	-	+	+ + +			ie analy
FIRONNS LABOI Mental.com erque, NM 87 505-345-4107	1	OV) 80928 >		X	X			\dashv		ed on the
IR I L nental rque, s05-3	icides / 8082 PCB's	 								ly notate
LYSIS LAE LYSIS LAE allenvironmental.cc - Albuquerque, NN Fax 505-345- Analysis Request	CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	,∃) snoinA								ie clearl
INALYSIS LABC NALYSIS LABC www.hallenvironmental.com ins NE - Albuquerque, NM 8 15-3975 Fax 505-345-41 Analysis Request	<u>.</u> .	RCRA 8 N			·					ta will b
HALL ANAL www.hal kins NE -	(1.403 bor (2MIS 0728 10 01	 	+							cted da
ANAL ANAL ANAL Aww.ha 4901 Hawkins NE Tel. 505-345-3975	.,	TPH (Meth	i i					<u> </u>		o-contra
11 Hai	В (СКО /-		Z T	メ	X) ió	Any suk
490 Te	TBE + TPH (Gas only)	M + X3T8							Remarks:	ibility.
	TBE + TMB's (8021)	M + X3T8		_	-		<u> </u>		<u>8</u>	is poss
		HEAL NO	8 8	C830	083	500			Time	s as notice of th
DI DI	E No	HEAL NO		99	7 7		:		Date Date	es. This serve
Time:	ger:	Preservative Type	HC anser	Hel	HCI	amber				ccredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around T Standard Project Name: CHC Project #:	Project Manager: Sampler: 626 On Ice: 7 Fes	Container Type and #	5-18A 1-500	5-VOA	5-10A	1-500			Received by:	contracted to other a
-Custody Record -N Te fining -50 CR 4990 -620-4/35	evel 4 (Full Validation)		Had GAC- LAG	GAC- Explead	GAC-INLET				Relinquished by: Color Kalle Relinquished by:	if necessary, samples submitted to Hall Environmental may be subcontracted to other acc
Client: Wester Mailing Address: #	1.20 0 = 12= 7 12= 1	Time	21-14 11:00	91:10	08:11	-			Date: Time: 7-(-14 3:00) Date: Time:	If necessary,

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

August 14, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 8-4-14 OrderNo.: 1408179

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 8/5/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1408179**Date Reported: **8/14/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lead

 Project:
 GAC 8-4-14
 Collection Date: 8/4/2014 10:00:00 AM

 Lab ID:
 1408179-001
 Matrix: AQUEOUS
 Received Date: 8/5/2014 8:10:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E				Analys	t: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	8/7/2014 1:40:39 AM	14574
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	8/7/2014 1:40:39 AM	14574
Surr: DNOP	112	75.2-161	%REC	1	8/7/2014 1:40:39 AM	14574
EPA METHOD 8015D: GASOLINE RA	NGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	8/6/2014 3:48:55 AM	R20387
Surr: BFB	86.4	70.9-130	%REC	1	8/6/2014 3:48:55 AM	R20387
EPA METHOD 8260: VOLATILES SHO	ORT LIST				Analys	t: KJH
Benzene	ND	1.0	μg/L	1	8/7/2014 7:56:26 PM	R20435
Toluene	ND	1.0	μg/L	1	8/7/2014 7:56:26 PM	R20435
Ethylbenzene	ND	1.0	μg/L	1	8/7/2014 7:56:26 PM	R20435
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/7/2014 7:56:26 PM	R20435
Xylenes, Total	ND	1.5	μg/L	1	8/7/2014 7:56:26 PM	R20435
Surr: 1,2-Dichloroethane-d4	94.8	70-130	%REC	1	8/7/2014 7:56:26 PM	R20435
Surr: 4-Bromofluorobenzene	86.3	70-130	%REC	1	8/7/2014 7:56:26 PM	R20435
Surr: Dibromofluoromethane	93.8	70-130	%REC	1	8/7/2014 7:56:26 PM	R20435
Surr: Toluene-d8	98.3	70-130	%REC	1	8/7/2014 7:56:26 PM	R20435

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1408179**Date Reported: **8/14/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-inlet

 Project:
 GAC 8-4-14
 Collection Date: 8/4/2014 10:15:00 AM

 Lab ID:
 1408179-002
 Matrix: AQUEOUS
 Received Date: 8/5/2014 8:10:00 AM

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE					Analys	t: BCN
Diesel Range Organics (DRO)	2.4	0.20		mg/L	1	8/7/2014 2:11:26 AM	14574
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	8/7/2014 2:11:26 AM	14574
Surr: DNOP	140	75.2-161		%REC	1	8/7/2014 2:11:26 AM	14574
EPA METHOD 8015D: GASOLINE R	ANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	14	1.0		mg/L	20	8/6/2014 4:18:54 AM	R20387
Surr: BFB	142	70.9-130	S	%REC	20	8/6/2014 4:18:54 AM	R20387
EPA METHOD 8260: VOLATILES SH	ORT LIST					Analys	t: KJH
Benzene	120	10		μg/L	10	8/7/2014 8:24:27 PM	R20435
Toluene	ND	10		μg/L	10	8/7/2014 8:24:27 PM	R20435
Ethylbenzene	750	10		μg/L	10	8/7/2014 8:24:27 PM	R20435
Methyl tert-butyl ether (MTBE)	ND	10		μg/L	10	8/7/2014 8:24:27 PM	R20435
Xylenes, Total	1200	15		μg/L	10	8/7/2014 8:24:27 PM	R20435
Surr: 1,2-Dichloroethane-d4	93.4	70-130		%REC	10	8/7/2014 8:24:27 PM	R20435
Surr: 4-Bromofluorobenzene	79.6	70-130		%REC	10	8/7/2014 8:24:27 PM	R20435
Surr: Dibromofluoromethane	92.3	70-130		%REC	10	8/7/2014 8:24:27 PM	R20435
Surr: Toluene-d8	93.8	70-130		%REC	10	8/7/2014 8:24:27 PM	R20435

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1408179**

14-Aug-14

Client: Western Refining Southwest, Inc.

Project: GAC 8-4-14

Sample ID MB-14574 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range PBW Client ID: Batch ID: 14574 RunNo: 20365 Prep Date: 8/4/2014 Analysis Date: 8/5/2014 SeqNo: 593029 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.59 0.5000 118 75.2 161

Sample ID MB-14574	SampT	ype: ME	BLK	TestCode: EPA Method 8015D: Diesel Range						
Client ID: PBW	Batch	n ID: 14	574	F	RunNo: 2	0400				
Prep Date: 8/4/2014	Analysis D	oate: 8/	6/2014	5	SeqNo: 5	94052	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.61		0.5000		122	75.2	161			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1408179**

14-Aug-14

Client: Western Refining Southwest, Inc.

Project: GAC 8-4-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R20387 RunNo: 20387

Prep Date: Analysis Date: 8/5/2014 SeqNo: 592947 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 86.9 70.9 130

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1408179**

14-Aug-14

Client: Western Refining Southwest, Inc.

Project: GAC 8-4-14

Sample ID b2	SampT	SampType: MBLK TestCode: EPA Method					8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	Batch ID: R20375 RunNo:								
Prep Date:	Analysis Da	Analysis Date: 8/5/2014			SeqNo: 5	eqNo: 593055 Units: %REC				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	8.6		10.00		86.1	70	130			
Surr: 4-Bromofluorobenzene	8.1		10.00		80.6	70	130			
Surr: Dibromofluoromethane	8.7		10.00		87.3	70	130			
Surr: Toluene-d8	9.3		10.00		92.6	70	130			
Sample ID b3	SampT	уре: М	BLK	TestCode: EPA Method 8260: Volatiles Short List				ist		

	•										
Client ID: PBW	Batcl	n ID: R2	20435	F	RunNo: 2	0435					
Prep Date:	Analysis D	Date: 8/	7/2014	5	SeqNo: 5	94698	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	1.0									
Xylenes, Total	ND	1.5									
mp-Xylenes	ND	1.0									
o-Xylene	ND	1.0									
Surr: 1,2-Dichloroethane-d4	8.5		10.00		84.5	70	130				
Surr: 4-Bromofluorobenzene	7.9		10.00		79.1	70	130				
Surr: Dibromofluoromethane	8.2		10.00		82.0	70	130				
Surr: Toluene-d8	9.0		10.00		89.8	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

RcptNo: 1 Client Name: Western Refining Southw Work Order Number: 1408179 Received by/date: Celin Som 8/5/2014 8:10:00 AM Logged By: Celina Sessa Celin Som 8/5/2014 12:02:27 PM Completed By: Celina Sessa Reviewed By: Chain of Custody Not Present Yes 1 Custody seals intact on sample bottles? Yes 🗸 No 🗌 Not Present 2. Is Chain of Custody complete? Courier 3 How was the sample delivered? <u>Log In</u> No 🗆 NA 🗌 Yes 🗹 4. Was an attempt made to cool the samples? NA 🗌 Yes 🗸 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗹 No 🗆 6. Sample(s) in proper container(s)? No 🗔 7. Sufficient sample volume for indicated test(s)? No 🔲 8. Are samples (except VOA and ONG) properly preserved? NA 🗌 No 🗹 Yes 9. Was preservative added to bottles? No VOA Vials ~ No 🗔 10.VOA vials have zero headspace? No 🗹 11. Were any sample containers received broken? # of preserved bottles checked Yes 🔽 No 🗆 for pH: 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗔 Yes 13 Are matrices correctly identified on Chain of Custody? No 🗆 14. Is it clear what analyses were requested? No. Checked by: $\overline{\mathbf{v}}$ Yes 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes No 🗆 NA 🔽 16. Was client notified of all discrepancies with this order? Person Notified: Date: eMail Phone Fax In Person By Whom: Via: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp C Condition Seal Intact Seal No Seal Date Signed By 1.4 Good Yes

Chain-ot-Custody Record	Turn-Around Time:	
Client: WESTERN REDINEN	X Standard 🗆 Rush	· ·
	Project Name:	www.hallenvironmental.com
Mailing Address: # 50 CR 4990	GAC 8-4-14	4901 Hawkins NE - Albuquerque, NM 87109
Bloomf.eb, NM 87413	Project #:	Tel. 505-345-3975 Fax 505-345-4107
٦,		Request
1	Project Manager:	(vin
QA/QC Package:		(SI
☐ Standard ★ Level 4 (Full Validation)		SIM (GS
Accreditation	Sampler: Bok	(1.8 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4
 	Temperature: / <	14 the second of
	Continuous December 1	HMTE (VOA Semi-")
Date Time Matrix Sample Request ID	Type and # Type LU08179	BTEX - BTEX - BTEX - TPH 80 Anions RCRA - ROB1 P ROB1 P ROB1 P ROB1 P ROB1 P
2-4-14 10:00 Had GAC-Lead	5-VOA HC/ -001	X
_	1-500ml amber -001	
-4-14 10:15 GAC-INLET	HC1 -	X X X
	anker	X
Date: Time: Relinquished by:	me Welle 8/4/14	Time Remarks: $/530$
Time: F	Date	Time
4/12 1850 JAN 44 Wester	11 Junio Source 08 05/14	08/0
i	ubcontracted to other accredited laboratories. This serves as n	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 9-3-14 OrderNo.: 1409152

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 9/4/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1409152**

Date Reported: 9/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lead

 Project:
 GAC 9-3-14
 Collection Date: 9/3/2014 8:15:00 AM

 Lab ID:
 1409152-001
 Matrix: AQUEOUS
 Received Date: 9/4/2014 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analys	: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	9/9/2014 7:08:01 AM	15117
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	9/9/2014 7:08:01 AM	15117
Surr: DNOP	128	75.2-161	%REC	1	9/9/2014 7:08:01 AM	15117
EPA METHOD 8015D: GASOLINE R	ANGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	9/5/2014 12:55:46 AM	R21004
Surr: BFB	93.8	70.9-130	%REC	1	9/5/2014 12:55:46 AM	R21004
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analys	t: KJH
Benzene	ND	1.0	μg/L	1	9/9/2014 1:05:53 PM	R21114
Toluene	ND	1.0	μg/L	1	9/9/2014 1:05:53 PM	R21114
Ethylbenzene	ND	1.0	μg/L	1	9/9/2014 1:05:53 PM	R21114
Xylenes, Total	ND	2.0	μg/L	1	9/9/2014 1:05:53 PM	R21114
Surr: 1,2-Dichloroethane-d4	102	70-130	%REC	1	9/9/2014 1:05:53 PM	R21114
Surr: 4-Bromofluorobenzene	101	70-130	%REC	1	9/9/2014 1:05:53 PM	R21114
Surr: Dibromofluoromethane	90.5	70-130	%REC	1	9/9/2014 1:05:53 PM	R21114
Surr: Toluene-d8	97.2	70-130	%REC	1	9/9/2014 1:05:53 PM	R21114

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1409152**

Date Reported: 9/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Inlet

 Project:
 GAC 9-3-14
 Collection Date: 9/3/2014 8:20:00 AM

 Lab ID:
 1409152-002
 Matrix: AQUEOUS
 Received Date: 9/4/2014 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analys	t: BCN
Diesel Range Organics (DRO)	2.4	0.20	mg/L	1	9/9/2014 9:16:37 AM	15117
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	9/9/2014 9:16:37 AM	15117
Surr: DNOP	126	75.2-161	%REC	1	9/9/2014 9:16:37 AM	15117
EPA METHOD 8015D: GASOLINE R	ANGE				Analys	t: NSB
Gasoline Range Organics (GRO)	5.0	1.0	mg/L	20	9/5/2014 1:24:29 AM	R21004
Surr: BFB	115	70.9-130	%REC	20	9/5/2014 1:24:29 AM	R21004
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analys	t: KJH
Benzene	71	10	μg/L	10	9/9/2014 2:34:56 PM	R21114
Toluene	ND	10	μg/L	10	9/9/2014 2:34:56 PM	R21114
Ethylbenzene	550	10	μg/L	10	9/9/2014 2:34:56 PM	R21114
Xylenes, Total	580	20	μg/L	10	9/9/2014 2:34:56 PM	R21114
Surr: 1,2-Dichloroethane-d4	97.7	70-130	%REC	10	9/9/2014 2:34:56 PM	R21114
Surr: 4-Bromofluorobenzene	93.9	70-130	%REC	10	9/9/2014 2:34:56 PM	R21114
Surr: Dibromofluoromethane	89.6	70-130	%REC	10	9/9/2014 2:34:56 PM	R21114
Surr: Toluene-d8	93.2	70-130	%REC	10	9/9/2014 2:34:56 PM	R21114

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409152**

15-Sep-14

Client: Western Refining Southwest, Inc.

Project: GAC 9-3-14

Sample ID MB-15117 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: **PBW** Batch ID: 15117 RunNo: 21055 Prep Date: 9/4/2014 Analysis Date: 9/9/2014 SeqNo: 613885 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.56 0.5000 75.2 112 161

Sample ID 1409152-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Batch ID: 15117 Client ID: Lead RunNo: 21055 Prep Date: 9/4/2014 Analysis Date: 9/9/2014 SeqNo: 613901 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 120 64.4 3.0 2.500 178 Surr: DNOP 0.26 0.2500 104 75.2 161

Sample ID 1409152-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: Lead Batch ID: 15117 RunNo: 21055 Prep Date: 9/4/2014 Analysis Date: 9/9/2014 SeqNo: 613903 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.8 0.20 2.500 0 151 64.4 178 22.5 20 R Surr: DNOP 0.32 0.2500 127 75.2 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: 1409152

15-Sep-14

Client: Western Refining Southwest, Inc.

Project: GAC 9-3-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R21004 RunNo: 21004

Prep Date: Analysis Date: 9/4/2014 SeqNo: 611409 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) ND 0.050

20.00 94.2 70.9 Surr: BFB 19 130

Sample ID 1409152-002BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: Inlet Batch ID: R21004 RunNo: 21004

Prep Date: Analysis Date: 9/5/2014 SeqNo: 611418 Units: mg/L

LowLimit Analyte Result **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) 16 1.0 10.00 5.024 105 70.4 127 480 400.0 70.9 Surr: BFB 121 130

Sample ID 1409152-002BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: Inlet Batch ID: R21004 RunNo: 21004

Prep Date: Analysis Date: 9/5/2014 SeqNo: 611419 Units: mg/L

%RPD SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte Result **PQL** LowLimit Gasoline Range Organics (GRO) 14 10.00 5.024 93.6 70.4 127 7.52 20 Surr: BFB 480 400.0 120 70.9 130 0 0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

10

WO#: **1409152**

15-Sep-14

Client: Western Refining Southwest, Inc.

Project: GAC 9-3-14

Sample ID b4	Samp1	ype: ME	BLK	Tes	tCode: E l	PA Method	8260: Volatile	es Short I	_ist	
Client ID: PBW	Batcl	n ID: R2	1114	F	RunNo: 2	1114				
Prep Date:	Analysis D	oate: 9/	9/2014	S	SeqNo: 6	14493	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
mp-Xylenes	ND	1.0								
o-Xylene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.8	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		93.3	70	130			
Surr: Dibromofluoromethane	8.2		10.00		81.8	70	130			
Surr: Toluene-d8	8.8		10.00		87.5	70	130			
Sample ID 1409152-001a ms	Sampl	mpType: MS TestCode: EPA Method 8260: Volatiles Short List								
Client ID: Lead	Batcl	n ID: R2	1114	F	RunNo: 2	1114				
Prep Date:	Analysis D	oate: 9/	9/2014	8	SeqNo: 6	14501	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.6	70	130			
Toluene	20	1.0	20.00	0	100	70	130			
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.8	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	8.8		10.00		88.1	70	130			

Sample ID 1409152-001a ms	sd SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: Lead	Batch	ID: R2	1114	F	RunNo: 2	1114				
Prep Date:	Analysis D	ate: 9/	9/2014	5	SeqNo: 6	14502	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.5	70	130	0.135	20	
Toluene	23	1.0	20.00	0	113	70	130	11.8	20	
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.5	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.0		10.00		89.8	70	130	0	0	
Surr: Dibromofluoromethane	8.6		10.00		85.7	70	130	0	0	
Surr: Toluene-d8	10		10.00		103	70	130	0	0	

99.6

70

130

10.00

Qualifiers:

Surr: Toluene-d8

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Western Refining Southw Work Order Number: 1409152 RcptNo: 1 Client Name: Received by/date: Lindsay Mangin 9/4/2014 7:00:00 AM Logged By: 9/4/2014 8:54:10 AM Completed By: Lindsay Mangin Reviewed By: Chain of Custody No 🗆 Not Present Yes 1. Custody seals intact on sample bottles? Yes 🗹 No 🗆 2. Is Chain of Custody complete? Not Present 3. How was the sample delivered? <u>Courier</u> <u>Log In</u> No 🗌 NA 🗆 Yes 🗸 4. Was an attempt made to cool the samples? No 🗌 NA 🗆 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗹 Yes 🗸 No 🗌 6. Sample(s) in proper container(s)? No 🗀 Yes 7. Sufficient sample volume for indicated test(s)? No 🗔 8. Are samples (except VOA and ONG) properly preserved? Yes NA 🗆 No 🗸 9. Was preservative added to bottles? Yes Yes 🗸 No No VOA Vials 10. VOA vials have zero headspace? Yes \square No 🔽 11. Were any sample containers received broken? # of preserved bottles checked No 🗌 for pH: Yes 🔽 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Yes 🗸 Nο 13 Are matrices correctly identified on Chain of Custody? No \square 14. Is it clear what analyses were requested? Yes 🗹 Checked by: No 🗌 15. Were all holding times able to be met? Yes 🗸 (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 16. Was client notified of all discrepancies with this order? No 🗀 NA 🗹 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information

Signed By

Cooler No Temp ºC Condition | Seal Intact | Seal No | Seal Date Good

Yes

ပ	hain-	of-C	Chain-of-Custody Record		um-Around ime:	ıme:				7	4		7	Č	7	ENVIDONMENT	2	•	
Client	Client		Refining		Standard	□ Rush					ANA	٠ - ا) IS		S M	ANALYSTS LABORATOR)		Į Ž	_
		1			Project Name:						ww.	- Ti nallen	www.hallenvironmental.com	nenta	Com			(
Mailing	Mailing Address:	# 50	5 CR 4990		GAG	0/	3-14	4	4901 Hawkins NE	lawkir	ls NE	- 1	ənbng	rque,	ΣZ	Albuquerque, NM 87109			
18	15/2MC/2	10/00	N 000 N 0	M	Project #:			•	Tel. 505-345-3975	5-34	5-397		Fax 505-345-4107	505-3	45-41	07			
Phone #:	N .	505-632	-4/35									Ana	Analysis Request	Sequi	est				
email or Fax#:	Fax#:				Project Manage	ger:		<u> </u>	(Ku)				([†] C	,	7				
QA/QC F	QA/QC Package:								io er			(0)S ^{'†} (s'8C	7 2				
☐ Standard	dard		太 Level 4 (Full Validation)	lidation)								IAIIS	JG,)d 7	$\overline{\Omega}$	8.			
Accreditation	tation	. 1			Sampler: R.6	9				(r.		0/2	^z ON	·		SIÇ			(N
□ NELAP	AP	□ Other	ər	_	On Ice:	ĭ Yes ⊸	🗖 No 🗈			81;						_			10
☐ EDD (Type)	(Type)_				Sample Temperature:	erature:				þ þ									Y)
Date	Time	Matrix	Sample Request ID	est ID	Container Type and #	Preservative Type	HEAL NO.	TM + X3T8 TM + X3T8	TPH 8015B	TPH (Metho	EDB (Wetho	PAH's (8310 	O,∃) anoinA	8081 Pestic	/OV) 80928	8270 (Semi- Lx3 SS (T	e manga		Air Bubbles
2344	8:15	H20	Lead		5-10A	HC/	100-		×						X		-		
					205-1	amber										X			
7-3-14	8:30		inlet		F-10A	124	700-		×		 				X				ļ.—
			/		1-500	amber										X			
																		<u> </u>	<u> </u>
																			_
															<u> </u>				
Date:	Time:	Relinquished by:	had by:	ا (م	py:	77	Date Time 13/4 (STO)	Remarks:	ks:										
Date: [/3//7	Time: 2024	Relinquished by	ned by: Hatta) >	Received by:	In De	Date Time 					· ·							
, I	f necessary,	samples sub	omitted to Hall Environmental	may be subco	intracted to other ac	credited laboratorie	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited taboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	possibility	. Any s	np-contr	acted o	ata will t	e clearly	/ notate	d on the	s analytic	al repor	نہ ا	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 09, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 4th QTR 10-1-14 OrderNo.: 1410098

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1410098**Date Reported: **10/9/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Lag

 Project:
 GAC 4th QTR 10-1-14
 Collection Date: 10/1/2014 10:15:00 AM

 Lab ID:
 1410098-001
 Matrix: AQUEOUS
 Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	•				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	10/7/2014 10:04:57 AM	15716
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	10/7/2014 10:04:57 AM	15716
Surr: DNOP	157	75.2-161	%REC	1	10/7/2014 10:04:57 AM	15716
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	10/8/2014 12:50:18 PM	R21756
Surr: BFB	93.3	70.9-130	%REC	1	10/8/2014 12:50:18 PM	R21756
EPA METHOD 8260: VOLATILES SHO	RT LIST				Analyst	: RAA
Benzene	ND	1.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Toluene	ND	1.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Ethylbenzene	ND	1.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Xylenes, Total	ND	2.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Surr: 1,2-Dichloroethane-d4	85.1	70-130	%REC	1	10/3/2014 7:08:57 PM	R21653
Surr: 4-Bromofluorobenzene	87.3	70-130	%REC	1	10/3/2014 7:08:57 PM	R21653
Surr: Dibromofluoromethane	82.9	70-130	%REC	1	10/3/2014 7:08:57 PM	R21653
Surr: Toluene-d8	87.2	70-130	%REC	1	10/3/2014 7:08:57 PM	R21653

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1410098**

Date Reported: 10/9/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Lead

 Project:
 GAC 4th QTR 10-1-14
 Collection Date: 10/1/2014 10:20:00 AM

 Lab ID:
 1410098-002
 Matrix: AQUEOUS
 Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E				Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	10/6/2014 10:40:34 PM	15716
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	10/6/2014 10:40:34 PM	15716
Surr: DNOP	137	75.2-161	%REC	1	10/6/2014 10:40:34 PM	15716
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	10/8/2014 2:20:53 PM	R21756
Surr: BFB	95.6	70.9-130	%REC	1	10/8/2014 2:20:53 PM	R21756
EPA METHOD 8260: VOLATILES SHO	ORT LIST				Analyst	: RAA
Benzene	ND	1.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Toluene	ND	1.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Ethylbenzene	ND	1.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Xylenes, Total	ND	2.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Surr: 1,2-Dichloroethane-d4	87.4	70-130	%REC	1	10/3/2014 8:32:37 PM	R21653
Surr: 4-Bromofluorobenzene	86.7	70-130	%REC	1	10/3/2014 8:32:37 PM	R21653
Surr: Dibromofluoromethane	82.7	70-130	%REC	1	10/3/2014 8:32:37 PM	R21653
Surr: Toluene-d8	92.2	70-130	%REC	1	10/3/2014 8:32:37 PM	R21653

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1410098**

Date Reported: 10/9/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Inlet

 Project:
 GAC 4th QTR 10-1-14
 Collection Date: 10/1/2014 10:30:00 AM

 Lab ID:
 1410098-003
 Matrix: AQUEOUS
 Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL Q	Qual U	J nits	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	.					Analyst	: JME
Diesel Range Organics (DRO)	3.0	0.20	ı	mg/L	1	10/6/2014 11:02:05 PM	15716
Motor Oil Range Organics (MRO)	ND	2.5	1	mg/L	1	10/6/2014 11:02:05 PM	15716
Surr: DNOP	146	75.2-161	(%REC	1	10/6/2014 11:02:05 PM	15716
EPA METHOD 8015D: GASOLINE RAI	NGE					Analyst	: NSB
Gasoline Range Organics (GRO)	6.0	0.50	ı	mg/L	10	10/8/2014 2:51:11 PM	R21756
Surr: BFB	143	70.9-130	S	%REC	10	10/8/2014 2:51:11 PM	R21756
EPA METHOD 8260: VOLATILES SHO	RT LIST					Analyst	: RAA
Benzene	54	10	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Toluene	ND	10	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Ethylbenzene	560	10	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Methyl tert-butyl ether (MTBE)	ND	10	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Xylenes, Total	760	20	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Surr: 1,2-Dichloroethane-d4	88.7	70-130	C	%REC	10	10/3/2014 9:00:38 PM	R21653
Surr: 4-Bromofluorobenzene	85.7	70-130	C	%REC	10	10/3/2014 9:00:38 PM	R21653
Surr: Dibromofluoromethane	85.0	70-130	C	%REC	10	10/3/2014 9:00:38 PM	R21653
Surr: Toluene-d8	87.6	70-130	(%REC	10	10/3/2014 9:00:38 PM	R21653

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1410098**

09-Oct-14

Client: Western Refining Southwest, Inc.

Project: GAC 4th QTR 10-1-14

Sample ID MB-15716 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range PBW Client ID: Batch ID: 15716 RunNo: 21668 Prep Date: 10/4/2014 Analysis Date: 10/6/2014 SeqNo: 636846 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.50 0.5000 99.0 75.2 161 Sample ID I CS-15716

Sample 10 LCS-15/16	Sampi	ype. LC	·S	res	icode. Ei	PA Wethod	ชบาวบ: Diese	Range		
Client ID: LCSW	Batch	ID: 15	716	F	RunNo: 2	1668				
Prep Date: 10/4/2014	Analysis D	ate: 10	0/6/2014	S	SeqNo: 6	36847	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.5	0.20	2.500	0	100	65.8	162			
Surr: DNOP	0.22		0.2500		87.9	75.2	161			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1410098**

09-Oct-14

Client: Western Refining Southwest, Inc.

Project: GAC 4th QTR 10-1-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R21756 RunNo: 21756

Prep Date: Analysis Date: 10/8/2014 SeqNo: 638827 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 91.7 70.9 130

Sample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R21756 RunNo: 21756

Prep Date: Analysis Date: 10/8/2014 SeqNo: 638828 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 0.49
 0.050
 0.5000
 0
 98.4
 80
 120

 Surr: BFB
 20
 20.00
 101
 70.9
 130

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1410098**

09-Oct-14

Client: Western Refining Southwest, Inc.

Project: GAC 4th QTR 10-1-14

Sample ID 5ml-rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short I	_ist	
Client ID: PBW	Batch	n ID: R2	1653	F	RunNo: 2	1653				
Prep Date:	Analysis D	ate: 10	0/3/2014	S	SeqNo: 6	36258	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.0		10.00		80.4	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	8.0		10.00		80.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.4	70	130			

Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: LCSW	Batch	n ID: R2	1653	F	RunNo: 2	1653				
Prep Date:	Analysis D	ate: 10	0/3/2014	S	SeqNo: 6	36259	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.4	70	130			
Toluene	20	1.0	20.00	0	98.8	80	120			
Surr: 1,2-Dichloroethane-d4	8.5		10.00		84.9	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.7	70	130			
Surr: Dibromofluoromethane	8.0		10.00		79.7	70	130			
Surr: Toluene-d8	9.1		10.00		91.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Work Order Number: 1410098 RcptNo: 1 Western Refining Southw Client Name: Received by/date: anne Sham 10/2/2014 6:50:00 AM Logged By: **Anne Thorne** ame Sham 10/2/2014 Completed By: **Anne Thorne** Reviewed By: Chain of Custody Not Present Yes 🗌 No 🗀 1. Custody seals intact on sample bottles? No 🗌 Not Present Yes 🔽 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log In NA 🗀 No 🗀 Yes 🔽 4. Was an attempt made to cool the samples? NA 🗆 Yes 🗹 No 5. Were all samples received at a temperature of >0° C to 6.0°C No Yes 🗹 Sample(s) in proper container(s)? No 🗌 Yes 7. Sufficient sample volume for indicated test(s)? No 🔲 Yes 8. Are samples (except VOA and ONG) properly preserved? NA \square No 🔽 Yes 9. Was preservative added to bottles? No 🗔 No VOA Vials Yes 10. VOA vials have zero headspace? Yes \square No 🗹 11. Were any sample containers received broken? # of preserved bottles checked No 🗆 for pH: Yes 🗹 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Yes 🔽 No 🗌 13. Are matrices correctly identified on Chain of Custody? Yes 🗹 No 🗌 14. Is it clear what analyses were requested? Checked by: Yes 🔽 No 🗌 15. Were all holding times able to be met? (if no, notify customer for authorization.) Special Handling (if applicable) NA 🗹 Yes 🗌 No 🗀 16. Was client notified of all discrepancies with this order? Date Person Notified: Via: eMail Phone Fax in Person By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 1.3 Good Yes

ord	Turn-Around Time:	ime:				I		Ш	2	Ž	Z	HALL ENVIRONMENTAL	Z	Ä	
Client: Western P. Pining	X Standard	□ Rush				<	Z Z	֡֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֡֟֝֡֡֝֡֡֝ ֡֡	SIS		BC	ANALYSIS LABORATORY		X	
# 50 CR 4980	Project Name:					>	ww.h	allen	www.hallenvironmental.com	์ าental	.com				
Mailing Address: 75/10 m.C.; e 1 d NM 87413	GAC	41-14-14	-10-1-14	4	4901 Hawkins NE	awkir	s NE	ı	enbno	rque,	ΣN	Albuquerque, NM 87109			
	Project #:				Tel. 5(505-345-3975	-397		Fax &	05-3	505-345-4107	07			
Phone #: 505-631-1/35								Anal	Analysis Request	Sedu	sst				
email or Fax#:	Project Manager:	jer:			/ 5				([†] O	4	4124		_		
QA/QC Package:					0.00		(5)	(0)	S' [†] C		₹ 2 2				
☐ Standard ★Level 4 (Full Validation)		į			·~\		MIS		од [,] с		<u>IM</u>	B.			
Accreditation	Sampler: Bo					(1.8		0.170	ΌΝ'ε		1				(N 10
(pd)	Sample Tempe	rature:				ÞР			ON'I) (V
Date Time Matrix Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	ITM + X3T8 ITM + X3T8	45108 H9T	TPH (Metho	EDB (Metho	PAH's (8310 RCRA 8 Me	O,7) anoinA	siteeq 1808	40V) 808S8 -imə2) 07S8	700-E3			Pir Bubbles
1-14 10:15 Had CAR LAS	5-110A		132	-	×		-	-							
	1-5am	ander	12Cd									X			
-1-14 10:20 1 GAY - Lead	5-V0A	401	100°		×						イ			!	
	1-500m	amber	-202		!							X			
0-1-14 10:30 GAC-INET	5-16A	He1	507-		\geq					-	\prec				\dashv
	1-50m	amber	E92									×			
										i	-				_
										_					
												_			
							_								-
Date: Time: Relinquished by:	Received by:	(beb	Date Time 10///4 1421	Remarks:	rks:										
Date: Time: Relinquished by:		To A	Date Time $(Z)^{\prime}L$ (L,E)												
1 /	contracted to other ac	ق	dited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report	possibility	/. Any s	ub-contr	acted da	ta will b	e clear	y notate	d on the	analytic	al report	برا	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 14, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 11-4-14 OrderNo.: 1411136

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 11/5/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **1411136**

Date Reported: 11/14/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Inlet

 Project:
 GAC 11-4-14
 Collection Date: 11/4/2014 8:30:00 AM

 Lab ID:
 1411136-001
 Matrix: AQUEOUS
 Received Date: 11/5/2014 7:30:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	iΕ				Analys	t: JME
Diesel Range Organics (DRO)	1.8	0.20	mg/L	1	11/11/2014 5:44:18 AN	Л 16294
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	11/11/2014 5:44:18 AN	Л 16294
Surr: DNOP	125	75.2-161	%REC	1	11/11/2014 5:44:18 AM	<i>l</i> 16294
EPA METHOD 8015D: GASOLINE RA	NGE				Analys	t: NSB
Gasoline Range Organics (GRO)	6.6	0.50	mg/L	10	11/10/2014 2:48:14 PM	/I R22439
Surr: BFB	125	80-120	S %REC	10	11/10/2014 2:48:14 PM	/I R22439
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analys	t: DJF
Benzene	87	10	μg/L	10	11/11/2014 7:50:52 PM	/I R22481
Toluene	ND	10	μg/L	10	11/11/2014 7:50:52 PM	/I R22481
Ethylbenzene	670	10	μg/L	10	11/11/2014 7:50:52 PM	/I R22481
Xylenes, Total	620	20	μg/L	10	11/11/2014 7:50:52 PM	/I R22481
Surr: 1,2-Dichloroethane-d4	90.9	70-130	%REC	10	11/11/2014 7:50:52 PM	/I R22481
Surr: 4-Bromofluorobenzene	81.7	70-130	%REC	10	11/11/2014 7:50:52 PM	/I R22481
Surr: Dibromofluoromethane	91.0	70-130	%REC	10	11/11/2014 7:50:52 PM	/I R22481
Surr: Toluene-d8	91.1	70-130	%REC	10	11/11/2014 7:50:52 PM	/I R22481

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Analytical Report

Lab Order **1411136**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/14/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC Lead

 Project:
 GAC 11-4-14
 Collection Date: 11/4/2014 8:40:00 AM

 Lab ID:
 1411136-002
 Matrix: AQUEOUS
 Received Date: 11/5/2014 7:30:00 AM

Analyses	Result	RL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE				Analyst:	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1 11/6/2014 9:27:04 PM	16263
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1 11/6/2014 9:27:04 PM	16263
Surr: DNOP	171	75.2-161	S %REC	1 11/6/2014 9:27:04 PM	16263
EPA METHOD 8015D: GASOLINE RANG	GE			Analyst	NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1 11/10/2014 4:09:31 PM	R22439
Surr: BFB	88.5	80-120	%REC	1 11/10/2014 4:09:31 PM	R22439
EPA METHOD 8260: VOLATILES SHOR	T LIST			Analyst	DJF
Benzene	ND	1.0	μg/L	1 11/11/2014 8:18:46 PM	R22481
Toluene	ND	1.0	μg/L	1 11/11/2014 8:18:46 PM	R22481
Ethylbenzene	ND	1.0	μg/L	1 11/11/2014 8:18:46 PM	R22481
Xylenes, Total	ND	2.0	μg/L	1 11/11/2014 8:18:46 PM	R22481
Surr: 1,2-Dichloroethane-d4	88.2	70-130	%REC	1 11/11/2014 8:18:46 PM	R22481
Surr: 4-Bromofluorobenzene	76.8	70-130	%REC	1 11/11/2014 8:18:46 PM	R22481
Surr: Dibromofluoromethane	96.6	70-130	%REC	1 11/11/2014 8:18:46 PM	R22481
Surr: Toluene-d8	91.2	70-130	%REC	1 11/11/2014 8:18:46 PM	R22481

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1411136**

14-Nov-14

Client: Western Refining Southwest, Inc.

Project: GAC 11-4-14

Project: GAC 11	7 17									
Sample ID MB-16263	SampTy	ре: МВ	BLK	Tes	tCode: E	PA Method	8015D: Diese	l Range		
Client ID: PBW	Batch	ID: 162	263	F	RunNo: 2	2362				
Prep Date: 11/6/2014	Analysis Da	ite: 11	/6/2014	5	SeqNo: 6	60163	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.80		0.5000		161	75.2	161			
Sample ID LCS-16263	SampTy	pe: LC	S	Tes	tCode: E	PA Method	8015D: Diese	I Range		
Client ID: LCSW	Batch	ID: 162	263	F	RunNo: 2	2362				
Prep Date: 11/6/2014	Analysis Da	ite: 11	/6/2014	9	SeqNo: 6	60164	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.6	0.20	2.500	0	146	65.8	162			
Surr: DNOP	0.39		0.2500		157	75.2	161			
Sample ID MB-16294	SampTy	ре: МВ	BLK	Tes	tCode: E	PA Method	8015D: Diese	l Range		
Client ID: PBW	Batch	ID: 162	294	F	RunNo: 2	2413				
Prep Date: 11/7/2014	Analysis Da	ite: 11	/10/2014	8	SeqNo: 6	61403	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.67		0.5000		134	75.2	161			
Sample ID LCS-16294	SampTy	pe: LC	S	Tes	tCode: E	PA Method	8015D: Diese	l Range		
Client ID: LCSW	Batch	ID: 162	294	F	RunNo: 2	2413				
Prep Date: 11/7/2014	Analysis Da	ite: 11	/11/2014	8	SeqNo: 6	61404	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.1	0.20	2.500	0	125	65.8	162			
Surr: DNOP	0.33		0.2500		131	75.2	161			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1411136**

14-Nov-14

Client: Western Refining Southwest, Inc.

Project: GAC 11-4-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R22439 RunNo: 22439

Prep Date: Analysis Date: 11/10/2014 SeqNo: 661831 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 88.4 80 120

Sample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R22439 RunNo: 22439

19

Prep Date: Analysis Date: 11/10/2014 SeqNo: 661832 Units: mg/L

20.00

LowLimit Analyte Result **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.48 0.050 0.5000 95.4 80 120

94.1

80

120

Qualifiers:

Surr: BFB

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1411136**

14-Nov-14

Client: Western Refining Southwest, Inc.

Project: GAC 11-4-14

Sample ID b5	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batch	1D: R2	2481	F	RunNo: 2	2481				
Prep Date:	Analysis D	ate: 11	I/11/2014	S	SeqNo: 6	63018	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.9	70	130			
Surr: 4-Bromofluorobenzene	7.8		10.00		77.6	70	130			
Surr: Dibromofluoromethane	9.4		10.00		94.0	70	130			
Surr: Toluene-d8	9.6		10.00		96.0	70	130			

Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: LCSW	Batch	n ID: R2	2481	F	RunNo: 2	2481				
Prep Date:	Analysis D)ate: 1	1/11/2014	5	SeqNo: 6	63019	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	23	1.0	20.00	0	113	70	130			
Toluene	21	1.0	20.00	0	105	80	120			
Surr: 1,2-Dichloroethane-d4	8.6		10.00		86.4	70	130			
Surr: 4-Bromofluorobenzene	8.1		10.00		80.6	70	130			
Surr: Dibromofluoromethane	9.1		10.00		90.6	70	130			
Surr: Toluene-d8	9.0		10.00		90.5	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory

4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com RcptNo: 1 Work Order Number: 1411136 Client Name: Western Refining Southw Received by/date: anne Sham 11/5/2014 7:30:00 AM Logged By: **Anne Thorne** Completed By: **Anne Thorne** 11/5/2014 Reviewed By: Chain of Custody Not Present Yes 1. Custody seals intact on sample bottles? ~ No 🗆 Not Present L 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? Log In No 🗌 NA 🗆 Yes 🗸 4. Was an attempt made to cool the samples? NA 🗀 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No ∐ Yes 🗸 No I Sample(s) in proper container(s)? Yes 🗹 No 7. Sufficient sample volume for indicated test(s)? **~** No 8. Are samples (except VOA and ONG) properly preserved? Yes No 🔽 Yes 9. Was preservative added to bottles? No □ 10. VOA vials have zero headspace? No 🗹 Yes 11. Were any sample containers received broken? # of preserved bottles checked No 🗌 for pH: Yes 🗸 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗆 13. Are matrices correctly identified on Chain of Custody? Yes 🗹 ✓ No 14. Is it clear what analyses were requested? Yes 🗸 No 🗌 Checked by: 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 NA 🗸 No | 16. Was client notified of all discrepancies with this order? Person Notified: Date Via: eMail Phone Fax By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Seal Date Signed By Seal Intact | Seal No Cooler No Temp ⁰C Condition 1.0 Good Yes

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 11, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 12-1-14 OrderNo.: 1412050

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 12/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **1412050**

Date Reported: 12/11/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC-Inlet

 Project:
 GAC 12-1-14
 Collection Date: 12/1/2014 9:30:00 AM

 Lab ID:
 1412050-001
 Matrix: AQUEOUS
 Received Date: 12/2/2014 7:30:00 AM

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E					Analyst	BCN
Diesel Range Organics (DRO)	2.9	0.20		mg/L	1	12/5/2014 2:31:54 PM	16628
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	12/5/2014 2:31:54 PM	16628
Surr: DNOP	112	75.2-161		%REC	1	12/5/2014 2:31:54 PM	16628
EPA METHOD 8015D: GASOLINE RA	NGE					Analyst	NSB
Gasoline Range Organics (GRO)	5.5	0.50		mg/L	10	12/2/2014 2:14:12 PM	R22888
Surr: BFB	123	80-120	S	%REC	10	12/2/2014 2:14:12 PM	R22888
EPA METHOD 8260: VOLATILES SHO	ORT LIST					Analyst	KJH
Benzene	78	10		μg/L	10	12/2/2014 12:00:10 PM	R22889
Toluene	ND	10		μg/L	10	12/2/2014 12:00:10 PM	R22889
Ethylbenzene	610	10		μg/L	10	12/2/2014 12:00:10 PM	R22889
Methyl tert-butyl ether (MTBE)	ND	10		μg/L	10	12/2/2014 12:00:10 PM	R22889
Xylenes, Total	590	15		μg/L	10	12/2/2014 12:00:10 PM	R22889
Surr: 1,2-Dichloroethane-d4	95.4	70-130		%REC	10	12/2/2014 12:00:10 PM	R22889
Surr: 4-Bromofluorobenzene	76.5	70-130		%REC	10	12/2/2014 12:00:10 PM	R22889
Surr: Dibromofluoromethane	90.5	70-130		%REC	10	12/2/2014 12:00:10 PM	R22889
Surr: Toluene-d8	89.8	70-130		%REC	10	12/2/2014 12:00:10 PM	R22889

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report

Date Reported: 12/11/2014

Lab Order **1412050**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lead

 Project:
 GAC 12-1-14
 Collection Date: 12/1/2014 9:20:00 AM

 Lab ID:
 1412050-002
 Matrix: AQUEOUS
 Received Date: 12/2/2014 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	12/5/2014 4:02:01 PM	16628
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	12/5/2014 4:02:01 PM	16628
Surr: DNOP	114	75.2-161	%REC	1	12/5/2014 4:02:01 PM	16628
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	12/2/2014 4:02:58 PM	R22888
Surr: BFB	90.0	80-120	%REC	1	12/2/2014 4:02:58 PM	R22888
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	12/2/2014 1:29:36 PM	R22889
Toluene	ND	1.0	μg/L	1	12/2/2014 1:29:36 PM	R22889
Ethylbenzene	ND	1.0	μg/L	1	12/2/2014 1:29:36 PM	R22889
Methyl tert-butyl ether (MTBE)	1.4	1.0	μg/L	1	12/2/2014 1:29:36 PM	R22889
Xylenes, Total	ND	1.5	μg/L	1	12/2/2014 1:29:36 PM	R22889
Surr: 1,2-Dichloroethane-d4	98.0	70-130	%REC	1	12/2/2014 1:29:36 PM	R22889
Surr: 4-Bromofluorobenzene	96.9	70-130	%REC	1	12/2/2014 1:29:36 PM	R22889
Surr: Dibromofluoromethane	99.2	70-130	%REC	1	12/2/2014 1:29:36 PM	R22889
Surr: Toluene-d8	99.9	70-130	%REC	1	12/2/2014 1:29:36 PM	R22889

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1412050**

11-Dec-14

Client: Western Refining Southwest, Inc.

Project: GAC 12-1-14

Sample ID MB-16628 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: PBW Batch ID: 16628 RunNo: 22956 Prep Date: 12/2/2014 Analysis Date: 12/5/2014 SeqNo: 678069 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 ND Motor Oil Range Organics (MRO) 2.5 Surr: DNOP 0.55 0.5000 75.2 110 161

Sample ID 1412050-001BMS SampType: MS TestCode: EPA Method 8015D: Diesel Range RunNo: 22956 Client ID: **GAC-Inlet** Batch ID: 16628 Prep Date: 12/2/2014 Analysis Date: 12/5/2014 SeqNo: 678781 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 2.932 169 82.6 7.2 2.500 172 Surr: DNOP 0.35 0.2500 141 75.2 161

Sample ID 1412050-001BMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: GAC-Inlet Batch ID: 16628 RunNo: 22956 Prep Date: 12/2/2014 Analysis Date: 12/5/2014 SeqNo: 678782 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 6.7 0.20 2.500 2.932 150 82.6 172 6.91 33.9 Surr: DNOP 0.35 0.2500 138 75.2 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: 1412050

11-Dec-14

Client: Western Refining Southwest, Inc.

Project: GAC 12-1-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: **R22888** RunNo: 22888

Prep Date: Analysis Date: 12/2/2014 SeqNo: 675893 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) ND 0.050

20.00 101 Surr: BFB 20 80 120

Sample ID 1412050-001AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R22888 RunNo: 22888

270

Prep Date: Analysis Date: 12/2/2014 SeqNo: 675902 Units: mg/L

200.0

LowLimit Analyte Result **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 10 0.50 5.000 5.478 93.2 70.4 127 270 200.0 S

136

134

80

80

120

120

0

0

S

Sample ID 1412050-001AMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range Client ID: **GAC-Inlet** Batch ID: R22888 RunNo: 22888 Prep Date: SeqNo: 675903 Analysis Date: 12/2/2014 Units: mg/L SPK value SPK Ref Val %RPD Result %REC HighLimit **RPDLimit** Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 9.8 0.50 5.000 5.478 86.6 70.4 127 3.33 20

Qualifiers:

Surr: BFB

Surr: BFB

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1412050**

11-Dec-14

Client: Western Refining Southwest, Inc.

Project: GAC 12-1-14

Sample ID 5mL-rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batch	ID: R2	2889	F	RunNo: 2	2889				
Prep Date:	Analysis D	ate: 12	2/2/2014	S	SeqNo: 6	75928	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.3	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		91.1	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.3	70	130			
Surr: Toluene-d8	9.3		10.00		92.6	70	130			

Sample ID 1412050-001a ms	SampT	ype: M \$	3	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: GAC-Inlet	Batch	n ID: R2	2889	F	RunNo: 2	2889				
Prep Date:	Analysis D	ate: 12	2/2/2014	S	SeqNo: 6	75931	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	260	10	200.0	77.64	90.9	70	130			
Toluene	190	10	200.0	0	95.2	70	130			
Surr: 1,2-Dichloroethane-d4	92		100.0		91.6	70	130			
Surr: 4-Bromofluorobenzene	78		100.0		77.7	70	130			
Surr: Dibromofluoromethane	88		100.0		87.7	70	130			
Surr: Toluene-d8	99		100.0		99.1	70	130			

Sample ID 1412050-001a m	sd SampT	уре: М \$	SD	Tes	tCode: El	PA Method	8260: Volatile	es Short L	_ist	
Client ID: GAC-Inlet	Batch	ID: R2	2889	F	RunNo: 2	2889				
Prep Date:	Analysis D	ate: 12	2/2/2014	5	SeqNo: 6	75932	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	280	10	200.0	77.64	103	70	130	9.11	20	
Toluene	220	10	200.0	0	109	70	130	13.1	20	
Surr: 1,2-Dichloroethane-d4	91		100.0		91.1	70	130	0	0	
Surr: 4-Bromofluorobenzene	85		100.0		84.8	70	130	0	0	
Surr: Dibromofluoromethane	91		100.0		91.4	70	130	0	0	
Surr: Toluene-d8	100		100.0		102	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107

(EL; 303-343-3973 FAX; 303-343-4107 Website; www.hallenvironmental.com

Sample Log-In Check List

RcptNo: 1 Western Refining Southw Work Order Number: 1412050 Client Name: 12/02/14 Received by/date:_ Celin Som 12/2/2014 7:30:00 AM Celina Sessa Logged By: Celin Som 12/2/2014 9:06:14 AM Completed By: Celina Sessa Reviewed By: Chain of Custody Not Present 1 Custody seals intact on sample bottles? Yes Yes 🔽 No 🗌 Not Present 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? Log In NA 🗌 Yes 🗸 No \square 4. Was an attempt made to cool the samples? NA 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 6. Sample(s) in proper container(s)? **V** Nο 7. Sufficient sample volume for indicated test(s)? **V** No 8. Are samples (except VOA and ONG) properly preserved? No 🗹 NA 🗀 Yes 🗌 9. Was preservative added to bottles? No VOA Vials No 🗀 Yes 🗹 10. VOA vials have zero headspace? No 🔽 Yes 11 Were any sample containers received broken? # of preserved bottles checked for pH: No Yes 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗆 13. Are matrices correctly identified on Chain of Custody? No 🗔 14. Is it clear what analyses were requested? **V** No 🗌 Checked by: Yes 🗸 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) No 🗆 NA 🗸 Yes \square 16. Was client notified of all discrepancies with this order? Date: Person Notified: Fax In Person Via: eMail Phone By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Seal Date Signed By Condition Seal Intact Seal No Cooler No Temp °C 3.2 Good Yes

LATI ENVIDONMENTAL	ANALYSIS LABORATORY	nental.com	Albuquerque, NM 87109	Fax 505-345-4107	Request		<u>78</u>	ĪΜ	80) (V) (Y)	<u>名(</u>)	8081 Pestic 8260B (VOV 8270 (Semi-	×	×		X					,	
T T T T T T T T T T T T T T T T T T T	ANALYSIS	www.hallenvironmental.com	4901 Hawkins NE - Albuque	Tel. 505-345-3975 Fax (Anal	(📆	(8)	WIS	(1.81) (1.40) (1.40)	(GE	BTEX + MTI TPH (Metho EDB (Metho PAH's (831) PCRA 8 Me	<u> </u>		メ						Remarks:	
lurn-Around Time:	Standard Rush	Project Name:	GAC 12-1-14	Project #:		Project Manager:	208		Sampler: 6,4	Femperature: 3,12	Container Preservative HEAL No. X Type and # Type HHACOSO D	5-109 HC1 -001	amper	5-VOA ACI -002	amber					Received by: Date Time Re Phys. 1600	025/0 1/2/2/
Chain-of-Custody Record	Client: Western Refining		Mailing Address: #50 C 12 4990	N RYAKA	505-632-	-ax#:	QA/QC Package:	☐ Standard (Full Validation)	Accreditation	□ EDD (Type)	Matrix Sample Request ID	2-1-14 9:30 H20 GAC-INLET	_	18:20 GAC-LEAD						Time: Relinquished by Trake	4/1-1744 Moster Wale

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 01, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: River Terrace Air 4-21-14 OrderNo.: 1404959

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 7 sample(s) on 4/23/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Workorder Sample Summary

WO#: **1404959**

01-May-14

CLIENT: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
1404959-001	TP-5		4/21/2014 1:45:00 AM	4/23/2014	Air
1404959-002	TP-6		4/21/2014 2:00:00 PM	4/23/2014	Air
1404959-003	TP-8		4/21/2014 2:15:00 PM	4/23/2014	Air
1404959-004	TP-8D		4/21/2014 2:15:00 PM	4/23/2014	Air
1404959-005	TP-9		4/21/2014 2:30:00 PM	4/23/2014	Air
1404959-006	MW-49		4/21/2014 2:45:00 PM	4/23/2014	Air
1404959-007	DW-3		4/21/2014 1:30:00 PM	4/23/2014	Air

Date Reported: 5/1/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-5

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 1:45:00 AM

 Lab ID:
 1404959-001
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 5.0 μg/L 1 4/24/2014 11:14:38 AM R18204 Surr: BFB 84.6 48.4-164 %REC 4/24/2014 11:14:38 AM R18204 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: DJF Benzene ND 0.10 μg/L 1 4/24/2014 1:15:21 PM R18208 Toluene ND 0.10 μg/L 4/24/2014 1:15:21 PM R18208 Ethylbenzene ND 0.10 μg/L 1 4/24/2014 1:15:21 PM R18208 Xylenes, Total ND 0.30 μg/L 4/24/2014 1:15:21 PM R18208 Surr: 1,2-Dichloroethane-d4 106 70-130 %REC R18208 4/24/2014 1:15:21 PM Surr: 4-Bromofluorobenzene 88.2 70-130 %REC 4/24/2014 1:15:21 PM R18208 Surr: Dibromofluoromethane 97.3 %REC 70-130 1 4/24/2014 1:15:21 PM R18208 Surr: Toluene-d8 91.1 70-130 %REC 4/24/2014 1:15:21 PM R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 2 of 10

Hall Environmental Analysis Laboratory, Inc. Date Reported: 5/1/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-6

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 2:00:00 PM

 Lab ID:
 1404959-002
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	:: NSB
Gasoline Range Organics (GRO)	ND	5.0	μg/L	1	4/24/2014 11:42:25 AM	R18204
Surr: BFB	85.4	48.4-164	%REC	1	4/24/2014 11:42:25 AM	R18204
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: DJF
Benzene	ND	0.10	μg/L	1	4/24/2014 2:15:35 PM	R18208
Toluene	ND	0.10	μg/L	1	4/24/2014 2:15:35 PM	R18208
Ethylbenzene	ND	0.10	μg/L	1	4/24/2014 2:15:35 PM	R18208
Xylenes, Total	ND	0.30	μg/L	1	4/24/2014 2:15:35 PM	R18208
Surr: 1,2-Dichloroethane-d4	78.7	70-130	%REC	1	4/24/2014 2:15:35 PM	R18208
Surr: 4-Bromofluorobenzene	91.5	70-130	%REC	1	4/24/2014 2:15:35 PM	R18208
Surr: Dibromofluoromethane	93.4	70-130	%REC	1	4/24/2014 2:15:35 PM	R18208
Surr: Toluene-d8	92.1	70-130	%REC	1	4/24/2014 2:15:35 PM	R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 10

Client Sample ID: TP-8

Collection Date: 4/21/2014 2:15:00 PM

Date Reported: 5/1/2014

4/24/2014 2:45:58 PM

R18208

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14

Surr: Toluene-d8

Lab ID: 1404959-003 Matrix: AIR Received Date: 4/23/2014 10:02:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 5.0 μg/L 1 4/24/2014 1:38:01 PM R18204 Surr: BFB 87.9 48.4-164 %REC 4/24/2014 1:38:01 PM R18204 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: DJF Benzene ND 0.10 μg/L 1 4/24/2014 2:45:58 PM R18208 Toluene ND 0.10 μg/L 4/24/2014 2:45:58 PM R18208 Ethylbenzene ND 0.10 μg/L 1 4/24/2014 2:45:58 PM R18208 Xylenes, Total ND 0.30 μg/L 4/24/2014 2:45:58 PM R18208 Surr: 1,2-Dichloroethane-d4 103 70-130 %REC R18208 4/24/2014 2:45:58 PM Surr: 4-Bromofluorobenzene 89.1 70-130 %REC 4/24/2014 2:45:58 PM R18208 Surr: Dibromofluoromethane 91.7 %REC 70-130 1 4/24/2014 2:45:58 PM R18208

70-130

%REC

87.8

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 10

- Sample pH greater than 2. P
- RLReporting Detection Limit

Date Reported: 5/1/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: TP-8D

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 2:15:00 PM

 Lab ID:
 1404959-004
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 5.0 μg/L 1 4/24/2014 2:05:29 PM R18204 Surr: BFB 87.2 48.4-164 %REC 4/24/2014 2:05:29 PM R18204 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: DJF 4/24/2014 3:16:08 PM Benzene ND 0.10 μg/L 1 R18208 Toluene ND 0.10 μg/L 4/24/2014 3:16:08 PM R18208 Ethylbenzene ND 0.10 μg/L 1 4/24/2014 3:16:08 PM R18208 Xylenes, Total ND 0.30 μg/L 4/24/2014 3:16:08 PM R18208 Surr: 1,2-Dichloroethane-d4 83.3 70-130 %REC 4/24/2014 3:16:08 PM R18208 Surr: 4-Bromofluorobenzene 85.9 70-130 %REC 4/24/2014 3:16:08 PM R18208 Surr: Dibromofluoromethane %REC 92.1 70-130 1 4/24/2014 3:16:08 PM R18208 Surr: Toluene-d8 90.5 70-130 %REC 4/24/2014 3:16:08 PM R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 5 of 10

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Client Sample ID: TP-9

Date Reported: 5/1/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14 **Collection Date:** 4/21/2014 2:30:00 PM

Lab ID: 1404959-005 **Matrix:** AIR **Received Date:** 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0	μg/L	1	4/24/2014 2:32:52 PM	R18204
Surr: BFB	87.9	48.4-164	%REC	1	4/24/2014 2:32:52 PM	R18204
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: DJF
Benzene	ND	0.10	μg/L	1	4/24/2014 3:46:14 PM	R18208
Toluene	ND	0.10	μg/L	1	4/24/2014 3:46:14 PM	R18208
Ethylbenzene	ND	0.10	μg/L	1	4/24/2014 3:46:14 PM	R18208
Xylenes, Total	ND	0.30	μg/L	1	4/24/2014 3:46:14 PM	R18208
Surr: 1,2-Dichloroethane-d4	70.7	70-130	%REC	1	4/24/2014 3:46:14 PM	R18208
Surr: 4-Bromofluorobenzene	95.6	70-130	%REC	1	4/24/2014 3:46:14 PM	R18208
Surr: Dibromofluoromethane	86.5	70-130	%REC	1	4/24/2014 3:46:14 PM	R18208
Surr: Toluene-d8	98.7	70-130	%REC	1	4/24/2014 3:46:14 PM	R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 6 of 10

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc. Date Reported: 5/1/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: MW-49

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 2:45:00 PM

 Lab ID:
 1404959-006
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0	μg/L	1	4/24/2014 3:00:14 PM	R18204
Surr: BFB	85.3	48.4-164	%REC	1	4/24/2014 3:00:14 PM	R18204
EPA METHOD 8260B: VOLATILES S	SHORT LIST				Analyst	: DJF
Benzene	ND	0.10	μg/L	1	4/24/2014 4:16:25 PM	R18208
Toluene	ND	0.10	μg/L	1	4/24/2014 4:16:25 PM	R18208
Ethylbenzene	ND	0.10	μg/L	1	4/24/2014 4:16:25 PM	R18208
Xylenes, Total	ND	0.30	μg/L	1	4/24/2014 4:16:25 PM	R18208
Surr: 1,2-Dichloroethane-d4	80.2	70-130	%REC	1	4/24/2014 4:16:25 PM	R18208
Surr: 4-Bromofluorobenzene	88.8	70-130	%REC	1	4/24/2014 4:16:25 PM	R18208
Surr: Dibromofluoromethane	90.0	70-130	%REC	1	4/24/2014 4:16:25 PM	R18208
Surr: Toluene-d8	92.9	70-130	%REC	1	4/24/2014 4:16:25 PM	R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 7 of 10
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc. Date Reported: 5/1/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DW-3

 Project:
 River Terrace Air 4-21-14
 Collection Date: 4/21/2014 1:30:00 PM

 Lab ID:
 1404959-007
 Matrix: AIR
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	150	5.0	μg/L	1	4/24/2014 3:27:51 PM	R18204
Surr: BFB	177	48.4-164	S %REC	1	4/24/2014 3:27:51 PM	R18204
EPA METHOD 8260B: VOLATILES	SHORT LIST				Analyst	: DJF
Benzene	0.74	0.10	μg/L	1	4/24/2014 4:46:32 PM	R18208
Toluene	ND	0.10	μg/L	1	4/24/2014 4:46:32 PM	R18208
Ethylbenzene	12	1.0	μg/L	10	4/25/2014 3:30:56 PM	R18226
Xylenes, Total	20	3.0	μg/L	10	4/25/2014 3:30:56 PM	R18226
Surr: 1,2-Dichloroethane-d4	75.6	70-130	%REC	1	4/24/2014 4:46:32 PM	R18208
Surr: 4-Bromofluorobenzene	96.0	70-130	%REC	1	4/24/2014 4:46:32 PM	R18208
Surr: Dibromofluoromethane	89.9	70-130	%REC	1	4/24/2014 4:46:32 PM	R18208
Surr: Toluene-d8	83.2	70-130	%REC	1	4/24/2014 4:46:32 PM	R18208

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 10

Hall Environmental Analysis Laboratory, Inc.

1700

WO#: **1404959**

01-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14

Surr: BFB

Sample ID 1404959-001ADUP SampType: DUP TestCode: EPA Method 8015D: Gasoline Range

2000

Client ID: **TP-5** Batch ID: **R18204** RunNo: **18204**

Prep Date: Analysis Date: 4/24/2014 SeqNo: 525403 Units: µg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GR0) ND 5.0 0 20

85.7

48.4

164

0

0

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RL Reporting Detection Limit

Page 9 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404959**

01-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Air 4-21-14

Sample ID 1404959-001adup	SampT	ype: DU	IP .	Tes	tCode: El	PA Method	8260B: Volat	iles Short	List	·
Client ID: TP-5	Batch	n ID: R1	8208	F	RunNo: 1	8208				
Prep Date:	Analysis D	oate: 4/	24/2014	5	SeqNo: 5	25542	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.10								
Toluene	ND	0.10								
Ethylbenzene	ND	0.10								
Methyl tert-butyl ether (MTBE)	ND	0.10								
1,2,4-Trimethylbenzene	ND	0.10								
1,3,5-Trimethylbenzene	ND	0.10								
1,2-Dichloroethane (EDC)	ND	0.10								
1,2-Dibromoethane (EDB)	ND	0.10								
Naphthalene	ND	0.20								
1-Methylnaphthalene	ND	0.40								
2-Methylnaphthalene	ND	0.40								
Xylenes, Total	ND	0.30								
Surr: 1,2-Dichloroethane-d4	0.72		1.000		71.7	70	130			
Surr: 4-Bromofluorobenzene	0.86		1.000		85.6	70	130			
Surr: Dibromofluoromethane	0.90		1.000		90.2	70	130			
Surr: Toluene-d8	0.92		1.000		92.4	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 10

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Southw	Work Order Number	er: 1404959		RcptNo:	1
Received by/date: (5	04/23/14				
Logged By: Celina Sessa	4/23/2014				
Completed By: Celina Sessa	4/23/2014 11:21:56 /	M			
Reviewed By: ('S/	04/23/14				
Chain of Custody	04/05/14				
Custody seals intact on sample bottles?		Yes	No	Not Present 🗸	
2. Is Chain of Custody complete?		Yes 🗸	No:	Not Present	
3. How was the sample delivered?		Courier	110	740(77000)	
5. How was the sample delivered:		Counci			
<u>Log In</u>					
4. Was an attempt made to cool the samples	3?	Yes 🗔	No 🗍	NA 🗹	
5. Were all samples received at a temperatur	re of >0° C to 6.0°C	Yes L	No .	NA 🗸	
6. Sample(s) in proper container(s)?		Yes 🗸	No 🗓		
7. Sufficient sample volume for indicated test	(s)?	Yes 🗸	No 🗀		
8. Are samples (except VOA and ONG) prop	erly preserved?	Yes 🛂	No :		
9. Was preservative added to bottles?	•	Yes 🗔	No 🗹	NA 🗔	
10.VOA vials have zero headspace?		Yes 🗌	No 🗔	No VOA Vials	
11. Were any sample containers received bro	ken?	Yes	No 🗸	# of preserved	
42 B		أمرأ بد	N.	bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗸	No : : ·	for pH: (<2 -	or >12 unless noted
13. Are matrices correctly identified on Chain	of Custody?	Yes 🗸	No :	Adjusted?	
14. Is it clear what analyses were requested?		Yes 🗹	No i		
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No .	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies with	this order?	Yes	No :	NA 🗸	
Person Notified:	Date:			•	
By Whom:	Via:	eMail P	hone Fax	In Person	1
Regarding:					
Client Instructions:					:
17. Additional remarks:					
18. Cooler Information					
	Seal Intact Seal No	Seal Date	Signed By		

Chain-of-C	Chain-of-Custody Record	Turn-Around Time:				I		HALL ENVIDONMENTAL	5	C	2	2 U	F	_	
Client: Western Refining	1 Refining	M Standard □	Rush			=	ĮŞ	ANALYSIS		}	Ŏ	LABORATORY	Ō	≾ ر	
		Project Name:				>	ww.ha	www.hallenvironmental.com		ital.co	Ę				
Mailing Address:	50 CR4990	Riverterraca	ca Air 4-21-14	4	4901 Hawkins NE	awkine		- Albuquerque, NM 87109	herd	je, R	M 871	60			
Bloomfield,	, NN 87413	Project #:			Tel. 505-345-3975	5-345	3975	Fax	x 505	505-345-4107	4107				
Phone #: 505-6	1						1	Analysis Request	is Re	quest					
email or Fax#:		Project Manager:			(6										
QA/QC Package:							(S				 				
□ Standard	K Level 4 (Full Validation)						WIS								
Accreditation ☐ NELAP ☐ Other	her	Sampler: MATT	T+ TS &								(A			(14) 30	(NL 10
☐ EDD (Type)		Sample Temperature;	e 220 00 00 00 00 00 00 00 00 00 00 00 00								ΟΛ-			<u> </u>	
Date Time Matrix	x Sample Request ID	Container Prese Type and # Ty	Preservative HEAL No. Type 1404959	TM + X3T8 TM + X3T8	8015B	TPH (Metho	EDB (Metho	RCRA 8 Me	O,7) anoinA oitee 1808	(OV) 809Z8	im92) 0728			<u>aeldd⊓R ii∆i</u>	Air Bubbles
1-21-4 1:45 AIR	- TP-5	TESTAT BA	-001		+		_			-					
1 2:00	Tr-6	1 1	700-		7					ゾ					
2:15	10-8		- 003		1					4					
2:15	15-6D		heo-		メ					7					
2:30	6-91		7005		'					7					
2,45	64-my		100-		人					14					
1 25:1	DW-3		1 200-		ゲ					X					Γ Ι
lime:	Relinquished by:	Received by:	Date Time	Remarks:	ks:										1
4-23-41531 16	Votest Traler	("housely	No 4/22/14 1531												
			Date Time									· '.			
122 172 173	This Haules	Celu man	co od/23/14 10:00	٦											
98	I to Hall Environn	ental may be subcontracted to other accredited laboratories	laboratories. This serves as notice of this possibility	oossibility	Any su	h-confra	ted data	will be cl	sarly no	afed on	the ana	Micalre	nort	:	i

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 05, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: River Terrace Water 4-22-14 OrderNo.: 1404A04

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 4/23/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1404A04**

Date Reported: 5/5/2014

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: TP-9

Project: River Terrace Water 4-22-14

CLIENT: Western Refining Southwest, Inc.

Collection Date: 4/22/2014 8:45:00 AM

Lab ID: 1404A04-001 **Matrix:** AQUEOUS **Received Date:** 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE				Analyst: BCN		
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	4/25/2014 1:55:29 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 1:55:29 PM	12859
Surr: DNOP	90.2	76-161	%REC	1	4/25/2014 1:55:29 PM	12859
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2014 5:30:45 PM	R18223
Surr: BFB	89.8	80.4-118	%REC	1	4/25/2014 5:30:45 PM	R18223
EPA 6010B: TOTAL RECOVERABLE METALS					Analyst	ELS
Lead	ND	0.0050	mg/L	1	4/30/2014 12:17:19 PM	12920
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: KJH
Benzene	ND	1.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Toluene	ND	1.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Ethylbenzene	ND	1.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Xylenes, Total	ND	2.0	μg/L	1	4/28/2014 8:09:41 PM	R18253
Surr: 1,2-Dichloroethane-d4	91.5	70-130	%REC	1	4/28/2014 8:09:41 PM	R18253
Surr: 4-Bromofluorobenzene	94.1	70-130	%REC	1	4/28/2014 8:09:41 PM	R18253
Surr: Dibromofluoromethane	95.0	70-130	%REC	1	4/28/2014 8:09:41 PM	R18253
Surr: Toluene-d8	91.4	70-130	%REC	1	4/28/2014 8:09:41 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 7

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Analytical ReportLab Order **1404A04**

Date Reported: 5/5/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-49

Project: River Terrace Water 4-22-14 **Collection Date:** 4/22/2014 9:00:00 AM

Lab ID: 1404A04-002 **Matrix:** AQUEOUS **Received Date:** 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	4/25/2014 2:17:38 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 2:17:38 PM	12859
Surr: DNOP	110	76-161	%REC	1	4/25/2014 2:17:38 PM	12859
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	4/25/2014 6:01:01 PM	R18223
Surr: BFB	90.5	80.4-118	%REC	1	4/25/2014 6:01:01 PM	R18223
EPA 6010B: TOTAL RECOVERABLE	E METALS				Analyst	: ELS
Lead	0.0064	0.0050	mg/L	1	4/30/2014 12:18:57 PM	12920
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Toluene	ND	1.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Ethylbenzene	ND	1.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Xylenes, Total	ND	2.0	μg/L	1	4/28/2014 8:37:42 PM	R18253
Surr: 1,2-Dichloroethane-d4	88.2	70-130	%REC	1	4/28/2014 8:37:42 PM	R18253
Surr: 4-Bromofluorobenzene	92.8	70-130	%REC	1	4/28/2014 8:37:42 PM	R18253
Surr: Dibromofluoromethane	96.8	70-130	%REC	1	4/28/2014 8:37:42 PM	R18253
Surr: Toluene-d8	92.5	70-130	%REC	1	4/28/2014 8:37:42 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1404A04**

Date Reported: 5/5/2014

Hall Environmental Analysis Laboratory, Inc.

-

CLIENT: Western Refining Southwest, Inc. Client Sample ID: DW-3

 Project:
 River Terrace Water 4-22-14
 Collection Date: 4/22/2014 9:15:00 AM

 Lab ID:
 1404A04-003
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	1.7	0.20	mg/L	1	4/25/2014 2:39:45 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 2:39:45 PM	12859
Surr: DNOP	98.3	76-161	%REC	1	4/25/2014 2:39:45 PM	12859
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	8.8	1.0	mg/L	20	4/25/2014 6:31:06 PM	R18223
Surr: BFB	109	80.4-118	%REC	20	4/25/2014 6:31:06 PM	R18223
EPA 6010B: TOTAL RECOVERABLE	E METALS				Analyst	ELS
Lead	ND	0.0050	mg/L	1	4/30/2014 12:26:01 PM	12920
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: KJH
Benzene	67	10	μg/L	10	4/28/2014 10:57:45 PM	R18253
Toluene	ND	10	μg/L	10	4/28/2014 10:57:45 PM	R18253
Ethylbenzene	720	10	μg/L	10	4/28/2014 10:57:45 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	4/28/2014 10:57:45 PM	R18253
Xylenes, Total	1300	20	μg/L	10	4/28/2014 10:57:45 PM	R18253
Surr: 1,2-Dichloroethane-d4	92.5	70-130	%REC	10	4/28/2014 10:57:45 PM	R18253
Surr: 4-Bromofluorobenzene	86.5	70-130	%REC	10	4/28/2014 10:57:45 PM	R18253
Surr: Dibromofluoromethane	92.1	70-130	%REC	10	4/28/2014 10:57:45 PM	R18253
Surr: Toluene-d8	90.2	70-130	%REC	10	4/28/2014 10:57:45 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404A04**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Water 4-22-14

Sample ID MB-12859 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range
Client ID: PBW Batch ID: 12859 RunNo: 18202

Prep Date: 4/24/2014 Analysis Date: 4/25/2014 SeqNo: 525818 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Diesel Range Organics (DRO) ND 0.20
Motor Oil Range Organics (MRO) ND 2.5

Surr: DNOP 0.55 0.5000 110 76 161

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404A04**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Water 4-22-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R18223 RunNo: 18223

Prep Date: Analysis Date: 4/25/2014 SeqNo: 526137 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 85.8 80.4 118

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404A04**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Water 4-22-14

Sample ID 5mL-rb Client ID: PBW Prep Date:		ype: ME n ID: R1 Date: 4/		F	tCode: El RunNo: 1 SeqNo: 5	8253	8260: Volatile Units: μg/L	es Short L	ist	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.1		10.00		90.8	70	130			
Surr: 4-Bromofluorobenzene	9.0		10.00		89.6	70	130			
Surr: Dibromofluoromethane	9.3		10.00		93.0	70	130			
Surr: Toluene-d8	9.0		10.00		90.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404A04**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace Water 4-22-14

Sample ID MB-12920 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 12920 RunNo: 18309

Prep Date: 4/29/2014 Analysis Date: 4/30/2014 SeqNo: 528727 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.0050

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com

Client Name: Western Refining Southw Work Order Number:	1404/	\04		RcptNo: 1
Received by/date: 05. 04/23/14				
Logged By: Ashley Gallegos 4/23/2014 10:02:00 AM	1		A	
Completed By: Ashley Gallegos 4/24/2014 10:10:22 AM			AZ	:
	•		> - 0	
Chain of Custody	\$			
1. Custody seals intact on sample bottles?	Yes		No	Not Present ✔
2. Is Chain of Custody complete?	Yes	Y	No	Not Present
3. How was the sample delivered?	Cour	<u>ier</u>		
Log In				
4. Was an attempt made to cool the samples?	Yes	Y	No	NA
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes	V	No :	NA : 1
6. Sample(s) in proper container(s)?	Yes	V	No	
7. Sufficient sample volume for indicated test(s)?	Yes	V	_ No 「	CS 04/24/14
8. Are samples (except VOA and ONG) properly preserved?	Yes		No 🛚	(3) 04/24/19
9. Was preservative added to bottles? metals analysis: 1 mL +1NO3 was added +	Yes		No A	
10.VOA vials have zero headspace?	Yes	Y .	No :	" /ach -fac 211
11. Were any sample containers received broken?	Yes		No	
	•			# of preserved bottles checked 2
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes	V	No	for pH: (<20r>12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes	V	Ńo Ĺ	Adjusted 3 A 1/10
14. Is it clear what analyses were requested?	Yes		No .	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes	✓	No 🗆	Checked by: CS
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes		No	NA 🗸
Person Notified: Date:			<u> </u>	Address of the Control of the Contro
By Whom: Via:	eMa	il :	Phone F	Fax I In Person
Regarding:			***************************************	
Client Instructions:				
17. Additional remarks:				
18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No S 1 3.2 Good Yes	Seal Da	ite	Signed By	

	, ,	_					_			(IV)	<i>,</i>	<u> </u>	۸i∆		_	+	-	 -	<u> </u>	_	_	 _	_	_	_	_		
	¥.	LABORATOR						<u> </u>					-	-	╂—	+		-	}-	+	-	+-	\perp	\downarrow	+	_		
	5	ב					-	m	0	वि	₩	TaM M	91		╁		+			╀	+		 	+	-	4		port
		Ş	9	60			219	03	Q	K	0	Tersher	ज			<u> </u>	-	V		╀		 ^	1	+	╀	\dashv		fical re
	Ź	<u>5</u>	E :	8 .	1107					(√O/	V-imə2) 0	28		×	4	 			+-	+^	+	-	+	-	1		analy
	<u>ō</u> ;	1) (S = 1	, Z	457		Son P	<i>3</i> 8	W)			(AOV) 808		ズ	<u> </u>	╫	X	<u> </u>		X	+	-	├	 	<u> </u>	-		on the
			www.hallenvironmental.com	Tollege of some - Albuquerque, NM 8/109	505-345-4107 Pegnest		S,	-CB		_		Pesticid		_	┝	+	-				}	_	<u> </u>	+		-		otated
	3	ANALTSIS	Ironi	ndne			[†] OS	° [†] O₀	∃' ^z O	Ν'ε	ON	ons (F,CI,	nA			 	†	 		┼-	-	\vdash		+-	+	-		early n
	□ }	, -	lenv	g L	Analysis	(41)			•			steM 8 AR					 							-	-	1		l be ck
	_;	(v.hal	֡֝֝֝֜֜֜֜֝֝֓֜֜֝֓֓֓֓֓֓֜֜֜֜֜֜֓֓֓֓֓֡֜֜֜֜֜֜֡֓֓֡֓֜֡֡֡֜֜֜֡֡֡֓֜֡֡֡֡֡֡	ر د		1	(SM	IS 0.	728	or	01E8) s'H	∀ ⊿		_	T					 		_		-	†		ata wil
	HALL	Z	M 4	S 1	505-545-5975				(p()S t	B (Method	雪			 	<u> </u>			<u> </u>						1		ofed d
	-		- American	מאַאַ ה	ر ب				(.8	141	H (Methoc	41											_				contra
			7	- ŭ		(Z	5	يجا			_) 8015B H	٠ ا	X			X			メ			_			j		dns yr
	1		70	ř								EX + MTE														Remarks:		E. A.
_			_				(12	08) :	NB's	1+	3E -	EX + MTE	L8									-				Rem		idisso
										1	6. (2)											-				Š	3	& of this p
			-							180	∳s P) No.	5	00			20			$\bar{\omega}$						Time		effice S
		*) (3							.	HEALING		0			B			8						7		74 15 as n
		Ì	tb.	3		İ			ء ا	No	۲		\$	ļ			1)						Date	Date	04/25/ This serve
	ے		12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3					100		1	14.000	<u> </u>		_			_										°. [9
	Rush	`	•	}					V		w	Preservative Type			7	3	7	200	3	ار		3			İ	1 1001	3	ratorie
ı ime:			T 50			,				Yes	iture	serva Type	1	<u>ا</u> إ	-4	5	#	71	3	HC	-	깇		Í			3	da b
	Ō	je:		1		ader) D		MAT	×	Sample Temperature		4		9	Ħ		9	7	داد	9	#					<u>}</u>	accredite
ı urn-Arouna	X Standard	Project Name:	17 /sec.	#		Project Manag			ر ا		Ten	Container Type and #		<u>t</u> -	-900	2	4	0		40	a				.	+ '. ≼	d ≻	j je B
FI-A	Sta	oject	5.	ject) ject			Sampler:	On Ice:	nple	Container Type and #	100	ŠĮ.	જ	-500	5-VOA	1-500	1-500	5-16A	1-500	1-500				Received by:	ved b	Z g g g
<u>-</u>	<u> </u>	Pro		P.	т-	F.	<u> </u>	_	Sar	ဝ်	Sar		U	<u>1</u>	<u> </u>	<u> </u>	15		<u> </u>	N	4	1		_	[Rece	Received by:	Itage P
_			}					on)				Ω									$\overline{}$			7				sapco
			0	1	1.		ŀ	lidati			1	est								1								Z ès
ပ္ပ	3		6	874/3	100			II Val			I	nbe					9		1,	M						ر پار		onmental may be
Y	5	•	JR4890					Level 4 (Full Validation)				Sample Request ID	6	4	E		H-07/W			إإ		/	İ			3		S in in in in in in in in in in in in in
g	4		7	とと	1			vel				ldui	10	<u>.</u>	\nearrow		3/	1		J26-	4		1			1/2] -	기 를 3
SIC	ρZ		O	Z	3			4				လွ	 	- '			٤						ŀ		\ 	*	} ≽ →	를 함 표
3	3		2	Ø	V				=		┟	<u>×</u>	1	<u>-</u>	+	+	+	+	+	+	-	\dashv	+	+		Kelinduished by	Relinquished by:	S mitte
5	101		#	9	505			ļ	[] [Matrix	1707		4		_	_		-	_	-						bles si
Ξ	182		:sse	Š	50	-i-L	je:							,	+	+	$\frac{1}{2}$		+;	S	+	_	 	_	1	2	1	, salm
Unam-or-Custody Record	%		Addr	Š		Fax	acka	lard	ation	ا ي	Z Z	Time	8:45				1.00	1	Ġ	1:15					L Limo		Time:	f necessary, samples submitted to Hall Environmental may be subcontracted to other accredited taboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
١	Client Western Refining		Mailing Address: #50	Bloom Rield	Phone #:	email or Fax#:	QA/QC Package:	□ Standard	Accreditation	֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	□ EDD (Type)		7	+	+	+	+	+	+	+	+	+	+	+	<u> </u>	7,		<u> </u>
ł	ਹੁੰ		Ma	(n)	됩	ĕ	Ø		Acc	- '		Date	H-CC-4	-	_	+	+	+-	+	+	+				Date:	722-14 [53]	Date:	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 05, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: River Terrace 4-22-14 OrderNo.: 1404984

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 4 sample(s) on 4/23/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-5

 Project:
 River Terrace 4-22-14
 Collection Date: 4/22/2014 8:00:00 AM

 Lab ID:
 1404984-001
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	BCN
Diesel Range Organics (DRO)	2.2	0.20	mg/L	1	4/25/2014 11:20:45 AM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 11:20:45 AM	12859
Surr: DNOP	118	76-161	%REC	1	4/25/2014 11:20:45 AM	12859
EPA METHOD 8015D: GASOLINE RANG	iΕ				Analyst	NSB
Gasoline Range Organics (GRO)	4.0	0.50	mg/L	10	4/25/2014 1:01:47 AM	R18204
Surr: BFB	103	80.4-118	%REC	10	4/25/2014 1:01:47 AM	R18204
EPA 6010B: TOTAL RECOVERABLE ME	TALS				Analyst	ELS
Lead	0.012	0.0050	mg/L	1	4/30/2014 12:10:56 PM	12884
EPA METHOD 8260: VOLATILES SHOR	T LIST				Analyst	KJH
Benzene	ND	5.0	μg/L	5	4/28/2014 5:49:04 PM	R18253
Toluene	ND	5.0	μg/L	5	4/28/2014 5:49:04 PM	R18253
Ethylbenzene	27	5.0	μg/L	5	4/28/2014 5:49:04 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	5	4/28/2014 5:49:04 PM	R18253
Xylenes, Total	450	10	μg/L	5	4/28/2014 5:49:04 PM	R18253
Surr: 1,2-Dichloroethane-d4	94.0	70-130	%REC	5	4/28/2014 5:49:04 PM	R18253
Surr: 4-Bromofluorobenzene	93.7	70-130	%REC	5	4/28/2014 5:49:04 PM	R18253
Surr: Dibromofluoromethane	92.8	70-130	%REC	5	4/28/2014 5:49:04 PM	R18253
Surr: Toluene-d8	91.9	70-130	%REC	5	4/28/2014 5:49:04 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-6

 Project:
 River Terrace 4-22-14
 Collection Date: 4/22/2014 8:15:00 AM

 Lab ID:
 1404984-002
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Q	Qual Uı	nits	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE					Analyst	BCN
Diesel Range Organics (DRO)	1.7	0.20	m	ng/L	1	4/25/2014 12:27:09 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	m	ng/L	1	4/25/2014 12:27:09 PM	12859
Surr: DNOP	120	76-161	%	6REC	1	4/25/2014 12:27:09 PM	12859
EPA METHOD 8015D: GASOLINE R	ANGE					Analyst	NSB
Gasoline Range Organics (GRO)	3.5	0.050	m	ng/L	1	4/25/2014 1:31:57 AM	R18204
Surr: BFB	381	80.4-118	S %	6REC	1	4/25/2014 1:31:57 AM	R18204
EPA 6010B: TOTAL RECOVERABLE	E METALS					Analyst	ELS
Lead	0.0084	0.0050	m	ng/L	1	4/30/2014 12:12:31 PM	12884
EPA METHOD 8260: VOLATILES SH	ORT LIST					Analyst	KJH
Benzene	ND	1.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Toluene	ND	1.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Ethylbenzene	28	1.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	1.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Xylenes, Total	93	2.0	μ	g/L	1	4/28/2014 6:17:09 PM	R18253
Surr: 1,2-Dichloroethane-d4	92.6	70-130	%	6REC	1	4/28/2014 6:17:09 PM	R18253
Surr: 4-Bromofluorobenzene	88.9	70-130	%	6REC	1	4/28/2014 6:17:09 PM	R18253
Surr: Dibromofluoromethane	91.3	70-130	%	6REC	1	4/28/2014 6:17:09 PM	R18253
Surr: Toluene-d8	92.7	70-130	%	6REC	1	4/28/2014 6:17:09 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Page 2 of 8
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: TP-8

 Project:
 River Terrace 4-22-14
 Collection Date: 4/22/2014 8:30:00 AM

 Lab ID:
 1404984-003
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE .				Analyst	BCN
Diesel Range Organics (DRO)	2.3	0.20	mg/L	1	4/25/2014 12:49:19 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 12:49:19 PM	12859
Surr: DNOP	118	76-161	%REC	1	4/25/2014 12:49:19 PM	12859
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	4.0	0.25	mg/L	5	4/25/2014 2:02:07 AM	R18204
Surr: BFB	110	80.4-118	%REC	5	4/25/2014 2:02:07 AM	R18204
EPA 6010B: TOTAL RECOVERABLE	METALS				Analyst	ELS
Lead	0.0080	0.0050	mg/L	1	4/30/2014 12:14:06 PM	12884
EPA METHOD 8260: VOLATILES SH	IORT LIST				Analyst	: KJH
Benzene	ND	5.0	μg/L	5	4/28/2014 6:45:18 PM	R18253
Toluene	ND	5.0	μg/L	5	4/28/2014 6:45:18 PM	R18253
Ethylbenzene	19	5.0	μg/L	5	4/28/2014 6:45:18 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	5	4/28/2014 6:45:18 PM	R18253
Xylenes, Total	83	10	μg/L	5	4/28/2014 6:45:18 PM	R18253
Surr: 1,2-Dichloroethane-d4	91.7	70-130	%REC	5	4/28/2014 6:45:18 PM	R18253
Surr: 4-Bromofluorobenzene	90.9	70-130	%REC	5	4/28/2014 6:45:18 PM	R18253
Surr: Dibromofluoromethane	95.0	70-130	%REC	5	4/28/2014 6:45:18 PM	R18253
Surr: Toluene-d8	93.8	70-130	%REC	5	4/28/2014 6:45:18 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/5/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: TP-8D

 Project:
 River Terrace 4-22-14
 Collection Date: 4/22/2014 8:30:00 AM

 Lab ID:
 1404984-004
 Matrix: AQUEOUS
 Received Date: 4/23/2014 10:02:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	BCN
Diesel Range Organics (DRO)	2.3	0.20	mg/L	1	4/25/2014 1:11:24 PM	12859
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2014 1:11:24 PM	12859
Surr: DNOP	125	76-161	%REC	1	4/25/2014 1:11:24 PM	12859
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	2.2	0.25	mg/L	5	4/25/2014 2:32:13 AM	R18204
Surr: BFB	102	80.4-118	%REC	5	4/25/2014 2:32:13 AM	R18204
EPA 6010B: TOTAL RECOVERABLE M	ETALS				Analyst	ELS
Lead	0.0065	0.0050	mg/L	1	4/30/2014 12:15:43 PM	12884
EPA METHOD 8260: VOLATILES SHOP	RT LIST				Analyst	: KJH
Benzene	ND	5.0	μg/L	5	4/28/2014 7:13:28 PM	R18253
Toluene	ND	5.0	μg/L	5	4/28/2014 7:13:28 PM	R18253
Ethylbenzene	13	5.0	μg/L	5	4/28/2014 7:13:28 PM	R18253
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	5	4/28/2014 7:13:28 PM	R18253
Xylenes, Total	51	10	μg/L	5	4/28/2014 7:13:28 PM	R18253
Surr: 1,2-Dichloroethane-d4	88.4	70-130	%REC	5	4/28/2014 7:13:28 PM	R18253
Surr: 4-Bromofluorobenzene	94.1	70-130	%REC	5	4/28/2014 7:13:28 PM	R18253
Surr: Dibromofluoromethane	92.2	70-130	%REC	5	4/28/2014 7:13:28 PM	R18253
Surr: Toluene-d8	94.2	70-130	%REC	5	4/28/2014 7:13:28 PM	R18253

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404984**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace 4-22-14

Sample ID MB-12859 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: **PBW** Batch ID: 12859 RunNo: 18202 Prep Date: 4/24/2014 Analysis Date: 4/25/2014 SeqNo: 525818 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 ND Motor Oil Range Organics (MRO) 2.5 Surr: DNOP 0.55 0.5000 76 110 161

Sample ID 1404984-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: TP-5 Batch ID: 12859 RunNo: 18202 Prep Date: 4/24/2014 Analysis Date: 4/25/2014 SeqNo: 525820 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 2.175 54.4 S 3.5 2.500 72.1 156 Surr: DNOP 0.22 0.2500 89.0 76 161

Sample ID 1404984-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: TP-5 Batch ID: 12859 RunNo: 18202 Prep Date: 4/24/2014 Analysis Date: 4/25/2014 SeqNo: 525821 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 4.5 0.20 2.500 2.175 93.4 72.1 156 24.2 20 R Surr: DNOP 0.28 0.2500 110 76 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404984**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace 4-22-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R18204 RunNo: 18204

Prep Date: Analysis Date: 4/24/2014 SeqNo: 525400 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 85.8 80.4 118

Sample ID 1404984-001BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: **TP-5** Batch ID: **R18204** RunNo: **18204**

Prep Date: Analysis Date: 4/24/2014 SeqNo: 525411 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 9.8
 0.50
 5.000
 3.964
 117
 79
 121

 Surr: BFB
 220
 200.0
 110
 80.4
 118

Sample ID 1404984-001BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: **TP-5** Batch ID: **R18204** RunNo: **18204**

Prep Date: Analysis Date: 4/24/2014 SeqNo: 525412 Units: mg/L

%RPD Result SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 9.6 0.50 5.000 3.964 112 79 121 2.72 20 Surr: BFB 220 200.0 108 80.4 118 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404984**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace 4-22-14

Sample ID 5mL-rb	SampT	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List							
Client ID: PBW	Batch	1D: R1	8253	F	RunNo: 1	8253					
Prep Date:	Analysis D	ate: 4/	28/2014	S	SeqNo: 5	27272	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	9.1		10.00		90.8	70	130				
Surr: 4-Bromofluorobenzene	9.0		10.00		89.6	70	130				
Surr: Dibromofluoromethane	9.3		10.00		93.0	70	130				
Surr: Toluene-d8	9.0		10.00		90.1	70	130				

Sample ID 5mL-rb	SampT	уре: МІ	BLK	Tes	TestCode: EPA Method 8260: Volatiles Short List							
Client ID: PBW	Batch	n ID: R1	8271	F	RunNo: 1	8271						
Prep Date:	Analysis D	Date: 4,	/29/2014	S	SeqNo: 5	29548	Units: %RE	С				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.9	70	130					
Surr: 4-Bromofluorobenzene	9.3		10.00		92.9	70	130					
Surr: Dibromofluoromethane	9.5		10.00		95.1	70	130					
Surr: Toluene-d8	9.4		10.00		94.1	70	130					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404984**

05-May-14

Client: Western Refining Southwest, Inc.

Project: River Terrace 4-22-14

Sample ID MB-12884 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 12884 RunNo: 18309

Prep Date: 4/25/2014 Analysis Date: 4/30/2014 SeqNo: 528725 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Lead ND 0.0050

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 8

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com

Client Name:	Western Refinin	g Southw	Work Orde	r Number	: 14049	984			RcptNo	o: 1
Received by/date	e: <u>() (</u>	<u> </u>	04 [23] 1	4						
.ogged By:	Celina Sessa	4/2	23/2014 10	:02:00 Af	м					
Completed By:	Celina Sessa		23/2014 4:0							
Reviewed By:	ma	· •	il mile	. 1						
hain of Cus	tody		7/24/1	4				-		
	ls intact on sampl	le hottles?			Yes		No		Not Present ✓	
	Custody complete				Yes		No		Not Present	
	sample delivered				Cour					
og In										
Log In 4. Was an atte	mpt made to cool	the complex?			Yes		No		NA	:
T. Was all alle	mpt made to cool	tile samples!			res	M.i	140	£ _ ·	NG :	
5. Were all san	nples received at	a temperature of	>0° C to 6	.0°C	Yes	✓	No	i. i	NA ·	
6. Sample(s) ir	n proper container	r(s)?			Yes	V	No	1:		
7 Sufficient sai	mple volume for in	ndicated test(s)?			Yes	V	No			
	(except VOA and	, ,	reserved?		Yes	~	No			
	ative added to bo				Yes			V	NA	
10.VOA vials ha	ave zero headspac	ce?			Yes	~	No		No VOA Vials	:
11, Were any sa	ample containers	received broken?			Yes	[]]	No	✓	1	
									# of preserved bottles checked	11.
	vork match bottle				Yes	✓	No		for pH:	or >12 unless noted
	pancies on chain of correctly identifie	-,	stody?		Yes		No	: :	Adjusted?	ルo
	at analyses were		olouy .		Yes	V	No		• •	-
	ding times able to				Yes	V	No		Checked by	CS.
(If no, notify	customer for auth	orization.)							L	
pecial Hand	ling (if applic	able)								
16. Was client n	otified of all discre	epancies with this	order?		Yes		No	:	NA .✔	
Person	Notified:		and the second	Date:	***************************************		**************************************	***********		•
By Wh	om:	**************************************	di laika isti oscor	Via:	eMa	il .	Phone	Fax	In Person	:
Regard	ding:						AND A STREET AND ADDRESS OF THE PARTY OF THE			E
Client I	Instructions:			indebide delinen warrannen annen annen an en en						•
17. Additional re	emarks:							•		
8. <u>Cooler Info</u>	rmation	_								
		باعدات سبحنا	Intact Se	al No	Seal Da	te .	Signed E	3v		
Cooler No	o Temp ºC C 3.2 Go								-	

	HALL ENVIRONMENTAL	ANALYSIS LABORATORY		4901	Tel. 505-345-3975 Fax 505-345-4107	Analysis Kequest	(SV	() () () () () () () () () () () () () (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATBE hod: hod: hetal: icide icide icide icide	EX + NEEX	ВТ — ТР — ТР — ТР — ТР — ТР — ТР — ТР —	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		X	X	×	7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	X		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Remarks:			If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be described.	is possibility. Any sub-contracted data will be clearly notated on the analytical report.
	Standard Ruch]	17 th 1-12-14	evale was	Ţ	Project Manager:		Sampler: MATT + Bob	Sample Temperature 4 2 0		Container Preservative HEAL No Type and #	3	\top		1-500 HNO3	5-10A HC1 -002	1-500 amber	-	5-VOR ACI 1003	7	1-300 TINGS	<u> a</u>	1-500 H1)02		<u> </u>	Date Time	itracted to other accredited laboratories. This serves as notice of the	
DJOSAN KACOLO	Client: Western Refining		Mailing Address:#50 CR 4990	Blowfield NN AP413	Phone #. 505-632-4/35	email or Fax#:	QA/QC Package: Per Bib J& 64 23 14 ☐ Standard X Level 4 (Full Validation)	Accreditation	□ EDD (Type)		Date Time Matrix Sample Request ID	-32-14 8:00 HaO TO-5			1	29-12 (p-12			20		8:30 75 80			Relinquished by:	Time: Relinquished by:	2/ MITES Think Wassen	If necessary, samples submitted to Hall Environmental may be subcon	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 16, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 1-7-14 OrderNo.: 1401261

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 1/8/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 1/16/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lag

 Project:
 GAC 1-7-14
 Collection Date: 1/7/2014 11:10:00 AM

 Lab ID:
 1401261-001
 Matrix: AQUEOUS
 Received Date: 1/8/2014 9:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE					Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	1/10/2014 8:23:52 PM	11147
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	1/10/2014 8:23:52 PM	11147
Surr: DNOP	109	75.6-144	%REC	1	1/10/2014 8:23:52 PM	11147
EPA METHOD 8015D: GASOLINE RAN	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/9/2014 5:53:48 PM	R16005
Surr: BFB	90.6	80.4-118	%REC	1	1/9/2014 5:53:48 PM	R16005
EPA METHOD 8260: VOLATILES SHOR	RT LIST				Analyst	cadg
Benzene	ND	1.0	μg/L	1	1/10/2014 1:48:45 PM	R16018
Toluene	ND	1.0	μg/L	1	1/10/2014 1:48:45 PM	R16018
Ethylbenzene	ND	1.0	μg/L	1	1/10/2014 1:48:45 PM	R16018
Xylenes, Total	ND	2.0	μg/L	1	1/10/2014 1:48:45 PM	R16018
Surr: 1,2-Dichloroethane-d4	96.6	70-130	%REC	1	1/10/2014 1:48:45 PM	R16018
Surr: 4-Bromofluorobenzene	110	70-130	%REC	1	1/10/2014 1:48:45 PM	R16018
Surr: Dibromofluoromethane	107	70-130	%REC	1	1/10/2014 1:48:45 PM	R16018
Surr: Toluene-d8	97.6	70-130	%REC	1	1/10/2014 1:48:45 PM	R16018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 1
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 1/16/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC-Lead

Project: GAC 1-7-14 **Collection Date:** 1/7/2014 11:15:00 AM Lab ID: 1401261-002 Matrix: AQUEOUS Received Date: 1/8/2014 9:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	1/10/2014 9:30:23 PM	11147
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	1/10/2014 9:30:23 PM	11147
Surr: DNOP	112	75.6-144	%REC	1	1/10/2014 9:30:23 PM	11147
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	1/9/2014 6:24:01 PM	R16005
Surr: BFB	86.0	80.4-118	%REC	1	1/9/2014 6:24:01 PM	R16005
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: cadg
Benzene	ND	1.0	μg/L	1	1/10/2014 2:17:23 PM	R16018
Toluene	ND	1.0	μg/L	1	1/10/2014 2:17:23 PM	R16018
Ethylbenzene	ND	1.0	μg/L	1	1/10/2014 2:17:23 PM	R16018
Xylenes, Total	ND	2.0	μg/L	1	1/10/2014 2:17:23 PM	R16018
Surr: 1,2-Dichloroethane-d4	96.7	70-130	%REC	1	1/10/2014 2:17:23 PM	R16018
Surr: 4-Bromofluorobenzene	112	70-130	%REC	1	1/10/2014 2:17:23 PM	R16018
Surr: Dibromofluoromethane	107	70-130	%REC	1	1/10/2014 2:17:23 PM	R16018
Surr: Toluene-d8	94.5	70-130	%REC	1	1/10/2014 2:17:23 PM	R16018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

 - P Sample pH greater than 2 for VOA and TOC only.
 - Reporting Detection Limit

Date Reported: 1/16/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC-Inlet

 Project:
 GAC 1-7-14
 Collection Date: 1/7/2014 11:25:00 AM

 Lab ID:
 1401261-003
 Matrix: AQUEOUS
 Received Date: 1/8/2014 9:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	: JME
Diesel Range Organics (DRO)	0.35	0.20	mg/L	1	1/10/2014 9:52:29 PM	11147
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	1/10/2014 9:52:29 PM	11147
Surr: DNOP	110	75.6-144	%REC	1	1/10/2014 9:52:29 PM	11147
EPA METHOD 8015D: GASOLINE R.	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	8.8	1.0	mg/L	20	1/9/2014 6:54:18 PM	R16005
Surr: BFB	112	80.4-118	%REC	20	1/9/2014 6:54:18 PM	R16005
EPA METHOD 8260: VOLATILES SH	IORT LIST				Analyst	: cadg
Benzene	110	10	μg/L	10	1/10/2014 3:15:06 PM	R16018
Toluene	ND	10	μg/L	10	1/10/2014 3:15:06 PM	R16018
Ethylbenzene	760	10	μg/L	10	1/10/2014 3:15:06 PM	R16018
Xylenes, Total	750	20	μg/L	10	1/10/2014 3:15:06 PM	R16018
Surr: 1,2-Dichloroethane-d4	91.9	70-130	%REC	10	1/10/2014 3:15:06 PM	R16018
Surr: 4-Bromofluorobenzene	88.3	70-130	%REC	10	1/10/2014 3:15:06 PM	R16018
Surr: Dibromofluoromethane	102	70-130	%REC	10	1/10/2014 3:15:06 PM	R16018
Surr: Toluene-d8	94.8	70-130	%REC	10	1/10/2014 3:15:06 PM	R16018

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 3
 - P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1401261**

16-Jan-14

Client: Western Refining Southwest, Inc.

Project: GAC 1-7-14

Sample ID MB-11147	1 31			Tes	tCode: El	l Range				
Client ID: PBW	Batch	n ID: 11	147	F	RunNo: 10	6001				
Prep Date: 1/9/2014	Analysis D	ate: 1/	10/2014	S	SeqNo: 40	61457	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.57		0.5000		113	75.6	144			
Sample ID 1401261-001CMS	SampT	ype: M \$	3	Tes	tCode: El	PA Method	8015D: Diese	l Range		
Client ID: GAC-Lag	Batch	n ID: 11	147	F	RunNo: 10	6001				
Prep Date: 1/9/2014	Analysis D	ate: 1/	10/2014	8	SeqNo: 40	61460	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.7	0.20	2.500	0	108	72.1	156			

Sample ID 1401261-001CM	SD SampT	ype: MS	SD	Tes	tCode: El	PA Method	8015D: Diese	l Range		
Client ID: GAC-Lag	Batch	ID: 11	147	F	RunNo: 1	6001				
Prep Date: 1/9/2014	Analysis D	ate: 1/	10/2014	S	SeqNo: 4	61461	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.6	0.20	2.500	0	105	72.1	156	2.63	20	
Surr: DNOP	0.29		0.2500		116	75.6	144	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1401261**

16-Jan-14

Client: Western Refining Southwest, Inc.

Project: GAC 1-7-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R16005 RunNo: 16005

Prep Date: Analysis Date: 1/9/2014 SeqNo: 461067 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 83.4 80.4 118

Sample ID 1401261-003BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R16005 RunNo: 16005

Prep Date: Analysis Date: 1/9/2014 SeqNo: 461084 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 20
 1.0
 10.00
 8.800
 107
 67.7
 128

 Surr: BFB
 470
 400.0
 117
 80.4
 118

Sample ID 1401261-003BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R16005 RunNo: 16005

Prep Date: Analysis Date: 1/9/2014 SeqNo: 461085 Units: mg/L

%RPD SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte Result **PQL** LowLimit Gasoline Range Organics (GRO) 19 10.00 8.800 104 67.7 128 1.46 20 Surr: BFB 460 400.0 115 80.4 118 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1401261**

16-Jan-14

Client: Western Refining Southwest, Inc.

Project: GAC 1-7-14

Sample ID 5mL rb					TestCode: EPA Method 8260: Volatiles Short List							
Client ID: PBW	Batc	h ID: R1	6018	F	RunNo: 1	6018						
Prep Date:	Prep Date: Analysis Date: 1/10/2014		9	SeqNo: 4	61501	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	1.0										
Toluene	ND	1.0										
Ethylbenzene	ND	1.0										
Xylenes, Total	ND	2.0										
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130					
Surr: 4-Bromofluorobenzene	11		10.00		114	70	130					
Surr: Dibromofluoromethane	11		10.00		114	70	130					
Surr: Toluene-d8	9.8		10.00		98.4	70	130					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2 for VOA and TOC only.
- RL Reporting Detection Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: Western Refining Southw Work Order Number:	1401261		RcptNo:	1
Received by/date:			·	i
Logged By: Lindsay Mangin 1/8/2014 9:30:00 AM		Smaky Hlopps		i
Completed By: Lindsay Mangin 1/8/2014 2:03:12 PM		Simular Alexand		:
Reviewed By: MA 01/09/14		05.00		
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗀	Not Present ✓	
Is Chain of Custody complete?	Yes 🗹	No 🗔	Not Present	
3. How was the sample delivered?	<u>UPS</u>			
Log In				
4. Was an attempt made to cool the samples?	Yes 🗸	No 🗔	NA 🛄	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🔽	No 🗀	NA 🗆	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌		
7 Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗔		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No 🗌		
9. Was preservative added to bottles?	Yes	No 🗸	NA 🗓	
10.VOA vials have zero headspace?	Yes 🔽	No Lā	No VOA Vials	
11. Were any sample containers received broken?	Yes 🗌	No 🗹	# of preserved	
12. Does paperwork match bottle labels?	Yes 🗸	No 🗆	bottles checked for pH:	
(Note discrepancies on chain of custody)				r >12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🔽	No 🗔	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🗸	No L	Observational house	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 😾	No 🗔	Checked by:	
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified: Date:	***************************************			
By Whom: Via:	_ eMail [Phone Fax	In Person	
Regarding:				1
Client Instructions:				-
17. Additional remarks:				
18. Cooler Information				
Cooler No Temp °C Condition Seal Intact Seal No	Seal Date	Signed By		
1 1.4 Good Yes	***************************************	***************************************	1	

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107 Analysis Request	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides / 8082 PCB's 8270 (Semi-VOA) Air Bubbles (Y or N)	, 💢	X	× -	Time: Relinquished by: Size Capta Time Remarks:
ANALYS ANALYS ANALYS www.hallenv 4901 Hawkins NE - Alb Tel. 505-345-3975 F	BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO / BES (Method 418.1) TPH (Method 504.1) PAH's (8310 or 8270 SIMS) RCRA 8 Metals	*			Remarks:
hsh	HEAL No. (110) 2 20 (1)	100-	-002		Date Time Rem
Turn-Around Time: X Standard □ Rush Project Name:	Project Manager: Sampler: 59 6 On fee: 7 Yes Sample Temperature. / Container Preservative Type and # Type	5-VOA HC1 1-500ml amber	5-UBA HC1 1-500ml amber 5-UBA HC1	1-50mlamber	Received by:
Chain-of-Custody Record Luestern Refining BAdress # 50 CR 4990 BAFIELD N M 874/3 #555-632-4/35	wither Samp	O GAC-LAG	GAC-Lead GAC-INLET		Relinquished by: Relinquished by:
Chain-of-Custody Recollective Techning Address: #50 CR 4990 Bloom Field N M 874 Phone #555-632-4/35	email or Fax#: QA/QC Package: Standard Accreditation INELAP EDD (Type) Date Time Matrix	02H 01:11 H20	11:15		Date: Time: Reling

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 11, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 2-3-14 OrderNo.: 1402085

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 2/4/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order **1402085**Date Reported: **2/11/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Lead

 Project:
 GAC 2-3-14
 Collection Date: 2/3/2014 10:25:00 AM

 Lab ID:
 1402085-001
 Matrix: AQUEOUS
 Received Date: 2/4/2014 10:36:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	0.21	0.20	mg/L	1	2/10/2014 1:37:52 PM	11556
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	2/10/2014 1:37:52 PM	11556
Surr: DNOP	135	76-161	%REC	1	2/10/2014 1:37:52 PM	11556
EPA METHOD 8015D: GASOLINE R.	ANGE				Analyst	: JMP
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	2/5/2014 3:11:52 PM	R16555
Surr: BFB	84.8	80.4-118	%REC	1	2/5/2014 3:11:52 PM	R16555
EPA METHOD 8260: VOLATILES SH	IORT LIST				Analyst	DJF
Benzene	ND	1.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Toluene	ND	1.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Ethylbenzene	ND	1.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Methyl tert-butyl ether (MTBE)	1.5	1.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Xylenes, Total	ND	2.0	μg/L	1	2/5/2014 2:48:13 PM	R16556
Surr: 1,2-Dichloroethane-d4	114	70-130	%REC	1	2/5/2014 2:48:13 PM	R16556
Surr: 4-Bromofluorobenzene	88.2	70-130	%REC	1	2/5/2014 2:48:13 PM	R16556
Surr: Dibromofluoromethane	103	70-130	%REC	1	2/5/2014 2:48:13 PM	R16556
Surr: Toluene-d8	94.3	70-130	%REC	1	2/5/2014 2:48:13 PM	R16556

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report

Lab Order **1402085**Date Reported: **2/11/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Inlet

 Project:
 GAC 2-3-14
 Collection Date: 2/3/2014 10:30:00 AM

 Lab ID:
 1402085-002
 Matrix: AQUEOUS
 Received Date: 2/4/2014 10:36:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	3.7	0.20	mg/L	1	2/10/2014 2:44:14 PM	11556
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	2/10/2014 2:44:14 PM	11556
Surr: DNOP	124	76-161	%REC	1	2/10/2014 2:44:14 PM	11556
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: ЈМР
Gasoline Range Organics (GRO)	8.3	1.0	mg/L	20	2/5/2014 3:42:05 PM	R16555
Surr: BFB	124	80.4-118	S %REC	20	2/5/2014 3:42:05 PM	R16555
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: DJF
Benzene	140	10	μg/L	10	2/5/2014 4:55:30 PM	R16556
Toluene	ND	10	μg/L	10	2/5/2014 4:55:30 PM	R16556
Ethylbenzene	870	10	μg/L	10	2/5/2014 4:55:30 PM	R16556
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	2/5/2014 4:55:30 PM	R16556
Xylenes, Total	980	20	μg/L	10	2/5/2014 4:55:30 PM	R16556
Surr: 1,2-Dichloroethane-d4	104	70-130	%REC	10	2/5/2014 4:55:30 PM	R16556
Surr: 4-Bromofluorobenzene	105	70-130	%REC	10	2/5/2014 4:55:30 PM	R16556
Surr: Dibromofluoromethane	99.4	70-130	%REC	10	2/5/2014 4:55:30 PM	R16556
Surr: Toluene-d8	100	70-130	%REC	10	2/5/2014 4:55:30 PM	R16556

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

0.33

WO#: **1402085**

11-Feb-14

Client: Western Refining Southwest, Inc.

Project: GAC 2-3-14

Surr: DNOP

Sample ID MB-11556	1 21					TestCode: EPA Method 8015D: Diesel Range							
Client ID: PBW	Batch	1D: 11	556	F	RunNo: 1	6624							
Prep Date: 2/4/2014	Analysis D	ate: 2/	10/2014	8	SeqNo: 4	78958	Units: mg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range Organics (DRO)	ND	0.20											
Motor Oil Range Organics (MRO)	ND	2.5											
Surr: DNOP	0.62		0.5000		124	76	161						
Sample ID 1402085-001BMS	SampT	ype: MS	;	Tes	tCode: EI	PA Method	8015D: Diese	I Range					
Client ID: GAC Lead	Batch	ı ID: 11	556	F	RunNo: 1	6624							
Prep Date: 2/4/2014	Analysis D	ate: 2/	10/2014	8	SeqNo: 4	78968	Units: mg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Diesel Range Organics (DRO)	3.5	0.20	2.500	0.2064	131	72.1	156						

Sample ID	1402085-001BMSE	S ampTy	ре: МS	SD	TestCode: EPA Method 8015D: Diesel Range										
Client ID:	GAC Lead	Batch	ID: 11	556	R	tunNo: 1	6624								
Prep Date:	2/4/2014	Analysis Da	te: 2/	10/2014	S	eqNo: 4	78969	Units: mg/L							
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Diesel Range Organics (DRO)		3.5	3.5 0.20 2.500		0.2064 132		72.1	72.1 156		20					
Surr: DNOP		0.33 0.2500			134	76	161	0	0						

133

76

161

0.2500

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1402085**

11-Feb-14

Client: Western Refining Southwest, Inc.

Project: GAC 2-3-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R16555 RunNo: 16555

Prep Date: Analysis Date: 2/5/2014 SeqNo: 476566 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 90.2 80.4 118

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1402085**

11-Feb-14

Client: Western Refining Southwest, Inc.

Project: GAC 2-3-14

Sample ID 5ml rb	SampT	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List									
Client ID: PBW	Batch	1D: R1	6556	F	tunNo: 1	6556							
Prep Date:	Analysis D	ate: 2/	5/2014	S	eqNo: 4	76593	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	ND	1.0											
Toluene	ND	1.0											
Ethylbenzene	ND	1.0											
Methyl tert-butyl ether (MTBE)	ND	1.0											
Xylenes, Total	ND	2.0											
Surr: 1,2-Dichloroethane-d4	12		10.00		115	70	130						
Surr: 4-Bromofluorobenzene	9.9		10.00		98.8	70	130						
Surr: Dibromofluoromethane	10		10.00		105	70	130						
Surr: Toluene-d8	9.6		10.00		96.4	70	130						

Sample ID 1402085-001ams	Samp1	Туре: М \$	3	TestCode: EPA Method 8260: Volatiles Short List											
Client ID: GAC Lead	Batcl	h ID: R1	6556	F	RunNo: 1	6556									
Prep Date:	Analysis D	Date: 2/	5/2014	9	SeqNo: 4	76596	Units: µg/L								
Analyte	Result	PQL	SPK value	K value SPK Ref Val %		LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Benzene	22	1.0	20.00	0	111	68.6	126								
Toluene	20	1.0	20.00	0	99.6	72.5	122								
Surr: 1,2-Dichloroethane-d4	11		10.00		110	70	130								
Surr: 4-Bromofluorobenzene	9.8		10.00		97.6	70	130								
Surr: Dibromofluoromethane	8.6		10.00		85.7	70	130								
Surr: Toluene-d8	9.6		10.00		96.1	70	130								

Sample ID 1402085-001ams	d SampT	ype: MS	SD	TestCode: EPA Method 8260: Volatiles Short List											
Client ID: GAC Lead	Batch	n ID: R1	6556	F	RunNo: 1	6556									
Prep Date:	Analysis D	ate: 2/	/5/2014	9	SeqNo: 4	76597	Units: µg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Benzene	20	1.0	20.00	0	98.7	68.6	126	11.6	20						
Toluene	18	1.0	20.00	0	88.6	72.5	122	11.7	20						
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130	0	0						
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130	0	0						
Surr: Dibromofluoromethane	8.7 10.00		86.7		70	130	0	0							
Surr: Toluene-d8	9.6		10.00		96.5	70	130	0	0						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

	order Number: 1402085		RcptNo	: 1
Received by/date: AG 62/04/	1/4			
	10:36:00 AM	Michelle (
Completed By: Michelle Garcia 2/4/2014 1	1:50:41 AM	Mitale (7	
Reviewed By: 12 DU	114	rau	faria	
Chain of Custody	T			
Custody seals intact on sample bottles?	Yes _	No 🗀	Alace ===	
2. Is Chain of Custody complete?	Yes 🗸	No []	Not Present	
3. How was the sample delivered?	Courier	110 11	Not Present	
<u>Log In</u>	<u> </u>			
4. Was an attempt made to cool the samples?				
to cool the samples?	Yes 🔽	No 🗌	NA 🗀	
5. Were all samples received at a temperature of >0° C to 6	0.000			
	6.0°C Yes ✓	No 🗌	NA 🗔	
6. Sample(s) in proper container(s)?	Yes 🔽	No [i		
7. Sufficient sample volume for indicated test(s)?		,,,,,		
Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No 🔝		
9. Was preservative added to bottles?	Yes 🗸	No 🗔		•
	Yes	No 🔽	NA !_	
0.VOA vials have zero headspace?	Yes 🔽	. [
1. Were any sample containers received broken?	Yes 🗀	No ∐ No ☑ ┌	No VOA Vials	
2 Does paparage	100 —	140 💌	# of preserved	
Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗸	No 🗔	bottles checked for pH:	
Are matrices correctly identified on Chain of Custody?	. : Ta			12 unless noted
. is it clear what analyses were requested?	Yes 🗹	No 🗔	Adjusted?	
. Were all holding times able to be met?	Yes [✔] Yes [✔]	No	01	
(If no, notify customer for authorization.)	103 19	NO 1	Checked by:	
ecial Handling (if applicable)				
Was client notified of all discrepancies with this order?				
	Yes 🗌	No []	NA 🔽	
Person Notifiéd: By Whom:	Date:	Name of the second seco		
Regarding:	Via: Pho	ne 🦳 Fax 📋	In Person	
Client Instructions:		i i i ax	III Person	
or the control of th				
Additional remarks:	· · · · · · · · · · · · · · · · · · ·		the state of the s	
Cooler Information				
Cooler No Temp °C Condition Seal Intact Seal N	Vo Seal Date Sig	ned By		
1.0 Good Yes	Old Service Se	neu By		

	_						VIN .	~ ^/	ગ્ગવવ	nA ai∠	']	1	1	ı	1	J	lí	í	7		т	т		
A L	Ķ												7	1	†			\dashv		+	╁	1		
Ę	9												\top				7	\dashv	+	+	┼─	1		
ENVIRONMENTA	LABORATOR ental.com	Albuquerque, NM 87109	70		घडा	DSC	NA NA	×		×			-	-	+					rs. Into serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.				
Z		™	4	<u>.</u>			(4	/OΛ-!	məS)	8270			_				\dashv	+	+-	+-	 -	<u> </u>		analyt
¥:	www.hallenvironmental.com	ue, A	505-345-4107	Request	SE 0	 TM.>	红	g (∀(0V) 8	8260	X		X	 		-+	\dashv	_	+	-				on the
Z	U E	nerqi	505	Rec		 92 P(_	_		_	\dashv	+	+-	╁╌┤				tated
HALL ENVI		pndı	Fax	Analysis	*OS'*(0 ₂ ,PC	N'EC	CI'NC	,7) sr	ioinA						_	+	+	╁	+				arly no
	allen	₹ -		Ana 					√18 A		\neg				7	_	+	+	+-					be cle
HALL	w.h	N	3975		(SI	NIS 0									$\neg \uparrow$	\dashv	+	+	+	\vdash				fa will
Ì	⋛	4901 Hawkins NE -	Tel. 505-345-3975						(Met		7				_	7	+	+	+-	\vdash	{			ted dai
	_	Haw	05-3						teM)	ı				\neg	_		+	+	+-	┝─┼	{			ontrac
		901	<u>e</u>	(€		/					V		X	_	\dashv	\top	+	╁	+	\vdash	\dashv			sup-cc
		4			no se						丁	٦	1	\dashv	7	_	_	+-	+	\dashv	{	ż		Any
		_		Ļ _	(1208)	s'8M	<u> </u>	38TN	V + X	3T8		7	7	7	+	+	+	+	+			<u> </u>	İ	sibility
	l									Lix		\top		4	十	+	+	╁	+-{	\dashv		<u>ੰ</u> ਹਾ		sod sit
				1					9	Ö	8	8	3	63		-	1			İ	a)	7	公三	se of th
//	,									ZQ '	γ		Y				}			1	Time	3	<u>E</u> Z <u>G</u>	is noti
.	3-14	.]				-	او)	Ψ.		1	1	'			-	1.	1		-	Date	2	0.5	erves a
اي	Ψ														-						۵	भीश		2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Rush	4								ative			٢	7		1	1	\uparrow	-	 	+	\dashv	7	4	i So
	7.0	3					8	j 5	Preservative Type	1		٠ دُ د د	-1	2							1	3	Carl House	2 2 2
= 	ا <u>ن</u>			ager:		122			P.				46	r E							-	THE PARTY		1
Standard Name:)		Project Manager:		II 🎼	Ē		# E		┰═	٤ _	- 1	J	+-	+-	 	 	+	+	\dashv	3		; ;
Star	DAT.	Project #		ect		Sampler	e e		Container Type and #	3	3, 6		$\left[\frac{5}{2} \right]_{s}$	3					}		ξģ	/	a di di	
<u> </u>		P. C.		Proj		Sam	Sample Temperature		3 ₹	5-100	1-50	750	1-63-1	1					1		Received by:	Received by	ted to other	_
			$ \ $			Im-				+~	+	7 13	+-	+	╁	 		\dashv		- -	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>			
2					X Level 4 (Full Validation)		1		Sample Request ID]					}		Î			,	\sim	ogns e	
3 0		٨٠		-	Valic			1	sent	(en. 1)	{	1+	<u>.</u>					Ì		1		\mathcal{Y}	nay be	
esining	18	13	35						Rec	les		GAG-T.10	Ž			} }					1	d	ronmental may	
101	4	874		-) 4 (<u>b</u> e] ;	/	1.	1/	1			1					2	vironm	
	13	ω	7	}	Lek		1 1		šam	200		96									1	KA		
	10	X X	635-	ł	×	<u>,</u>	1 1		., 	4		J									ا څ	\array{\delta}	Poles Submitted to Hall	
] 3	10	7	9			☐ Other		;	Matrix	Hao						7	\dashv	+	+-	+-	Refinquished by	Relinquished by:	ibmritte	
10	17	4	10	İ	ŀ				<u>8</u> ≥	Ha		•	 -										\$ 88 SI	
12	dres	ele	505	₹	<u> </u>	<u> </u>	<u>@</u>	-	<u>v</u>	25		B		_		\dashv	╁	+		+	<u>%()</u>			!
13	3 Ag	4	# L	rra Poct	idarc	ratic AP	Ē	<u>;</u>	<u> </u>	10:25		6:3			-						Time:	77. ime:	If necessary, samples submitted to Hall Environmental may be subcontracted to other ascretized shown	
Client: Western	Mailing Address: # 50 Cit. 4990	Bloom-field,	Phone #:	OA/OC Package:	☐ Standard	CCFGIGATION IN NELAP	☐ EDD (Type)	Date			7		_	\dashv	+	\dashv	+	+	+-	$\vdash \vdash$		 -		
10	≥ ∱	7	합 8		· □ \$	₹ □		۲	ĭ	2-3-14		3.14			- {						Date:	3~/4 Date:	3/11	:
										1.7		'	•	•	•	•	'	1	1	1 14	⊸ ''	' 41U	₩	1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 13, 2014

Kelly Robinson
Western Refining Southwest, Inc.
#50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 3-3-14 OrderNo.: 1403057

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 3/4/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1403057

Date Reported: 3/13/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lag

 Project:
 GAC 3-3-14
 Collection Date: 3/3/2014 9:50:00 AM

 Lab ID:
 1403057-001
 Matrix: AQUEOUS
 Received Date: 3/4/2014 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analys	t: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	3/5/2014 9:42:49 PM	12005
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	3/5/2014 9:42:49 PM	12005
Surr: DNOP	118	76-161	%REC	1	3/5/2014 9:42:49 PM	12005
EPA METHOD 8015D: GASOLINE R				Analys	t: JMP	
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	3/5/2014 2:37:03 AM	R17094
Surr: BFB	94.9	80.4-118	%REC	1	3/5/2014 2:37:03 AM	R17094
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analys	t: DJF
Benzene	ND	1.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Toluene	ND	1.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Ethylbenzene	ND	1.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Xylenes, Total	ND	2.0	μg/L	1	3/7/2014 4:22:17 PM	R17180
Surr: 1,2-Dichloroethane-d4	102	70-130	%REC	1	3/7/2014 4:22:17 PM	R17180
Surr: 4-Bromofluorobenzene	107	70-130	%REC	1	3/7/2014 4:22:17 PM	R17180
Surr: Dibromofluoromethane	114	70-130	%REC	1	3/7/2014 4:22:17 PM	R17180
Surr: Toluene-d8	92.7	70-130	%REC	1	3/7/2014 4:22:17 PM	R17180

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1403057**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 3/13/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lead

 Project:
 GAC 3-3-14
 Collection Date: 3/3/2014 9:55:00 AM

 Lab ID:
 1403057-002
 Matrix: AQUEOUS
 Received Date: 3/4/2014 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	3/5/2014 10:48:05 PM	12005
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	3/5/2014 10:48:05 PM	12005
Surr: DNOP	115	76-161	%REC	1	3/5/2014 10:48:05 PM	12005
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: JMP
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	3/5/2014 3:07:18 AM	R17094
Surr: BFB	94.5	80.4-118	%REC	1	3/5/2014 3:07:18 AM	R17094
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: DJF
Benzene	ND	1.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Toluene	ND	1.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Ethylbenzene	ND	1.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Methyl tert-butyl ether (MTBE)	1.7	1.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Xylenes, Total	ND	2.0	μg/L	1	3/10/2014 4:31:26 PM	R17218
Surr: 1,2-Dichloroethane-d4	101	70-130	%REC	1	3/10/2014 4:31:26 PM	R17218
Surr: 4-Bromofluorobenzene	103	70-130	%REC	1	3/10/2014 4:31:26 PM	R17218
Surr: Dibromofluoromethane	120	70-130	%REC	1	3/10/2014 4:31:26 PM	R17218
Surr: Toluene-d8	87.6	70-130	%REC	1	3/10/2014 4:31:26 PM	R17218

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1403057**Date Reported: **3/13/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Inlet

 Project:
 GAC 3-3-14
 Collection Date: 3/3/2014 9:45:00 AM

 Lab ID:
 1403057-003
 Matrix: AQUEOUS
 Received Date: 3/4/2014 10:00:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	2.7	0.20	mg/L	1	3/5/2014 11:09:57 PM	12005
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	3/5/2014 11:09:57 PM	12005
Surr: DNOP	112	76-161	%REC	1	3/5/2014 11:09:57 PM	12005
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: ЈМР
Gasoline Range Organics (GRO)	7.9	1.0	mg/L	20	3/5/2014 3:37:29 AM	R17094
Surr: BFB	122	80.4-118	S %REC	20	3/5/2014 3:37:29 AM	R17094
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: DJF
Benzene	150	10	μg/L	10	3/10/2014 6:34:40 PM	R17218
Toluene	ND	10	μg/L	10	3/10/2014 6:34:40 PM	R17218
Ethylbenzene	750	10	μg/L	10	3/10/2014 6:34:40 PM	R17218
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	3/10/2014 6:34:40 PM	R17218
Xylenes, Total	830	20	μg/L	10	3/10/2014 6:34:40 PM	R17218
Surr: 1,2-Dichloroethane-d4	95.6	70-130	%REC	10	3/10/2014 6:34:40 PM	R17218
Surr: 4-Bromofluorobenzene	98.6	70-130	%REC	10	3/10/2014 6:34:40 PM	R17218
Surr: Dibromofluoromethane	111	70-130	%REC	10	3/10/2014 6:34:40 PM	R17218
Surr: Toluene-d8	91.0	70-130	%REC	10	3/10/2014 6:34:40 PM	R17218

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403057**

13-Mar-14

Client: Western Refining Southwest, Inc.

Project: GAC 3-3-14

Sample ID MB-12005 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: PBW Batch ID: 12005 RunNo: 17113 Prep Date: 3/4/2014 Analysis Date: 3/5/2014 SeqNo: 492091 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.50 0.5000 76 101 161

Sample ID 1403057-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: Lag Batch ID: 12005 RunNo: 17113 Prep Date: 3/4/2014 Analysis Date: 3/5/2014 SeqNo: 492552 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 0.1934 125 72.1 3.3 2.500 156 Surr: DNOP 0.28 0.2500 110 76 161

Sample ID 1403057-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: Lag Batch ID: 12005 RunNo: 17113 Prep Date: 3/4/2014 Analysis Date: 3/5/2014 SeqNo: 492553 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.2 0.20 2.500 0.1934 121 72.1 156 2.45 20 Surr: DNOP 0.28 0.2500 111 76 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403057**

13-Mar-14

Client: Western Refining Southwest, Inc.

Project: GAC 3-3-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R17094 RunNo: 17094

Prep Date: Analysis Date: 3/4/2014 SeqNo: 491570 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 96.0 80.4 118

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403057**

13-Mar-14

Client: Western Refining Southwest, Inc.

Project: GAC 3-3-14

Project: GAC 3-3	-14									
Sample ID 5ml rb	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	n ID: R1	7180	F	RunNo: 1	7180				
Prep Date:	Analysis D	oate: 3/	7/2014	S	SeqNo: 4	94248	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		92.2	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.3		10.00		93.0	70	130			
Sample ID 5ml rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	n ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	ate: 3/	10/2014	S	SeqNo: 4	95668	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		99.8	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	11		10.00		109	70	130			
Surr: Toluene-d8	9.1		10.00		90.7	70	130			
Sample ID 1403057-001ams	SampT	уре: М\$	6	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: Lag	Batch	n ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	oate: 3/	10/2014	S	SeqNo: 4	95670	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	110	70	130			
Toluene	17	1.0	20.00	0	86.4	67.5	123			
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		104	70	130			
Surr: Dibromofluoromethane	9.1		10.00		91.1	70	130			

Qualifiers:

Surr: Toluene-d8

* Value exceeds Maximum Contaminant Level.

9.4

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

70

130

ND Not Detected at the Reporting Limit

94.2

P Sample pH greater than 2.

10.00

RL Reporting Detection Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403057**

13-Mar-14

Client: Western Refining Southwest, Inc.

Project: GAC 3-3-14

Sample ID 1403057-001amso	l SampT	уре: М\$	SD	Tes	tCode: E	PA Method	8260: Volatile	es Short L	ist	
Client ID: Lag	Batch	ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	ate: 3/	10/2014	5	SeqNo: 4	95671	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	103	70	130	3.48	20	
Toluene	16	1.0	20.00	0	80.4	67.5	123	12.4	20	
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130	0	0	
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130	0	0	
Surr: Dibromofluoromethane	9.8		10.00		98.0	70	130	0	0	
Surr: Toluene-d8	9.6		10.00		96.3	70	130	0	0	

Sample ID 1403057-002ams	SampT	уре: М \$	3	Tes	tCode: E	PA Method	8260: Volatile	es Short L	ist	
Client ID: Lead	Batch	ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	ate: 3/	10/2014	5	SeqNo: 4	95673	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Toluene	18	1.0	20.00	0	88.5	67.5	123			
Surr: 1,2-Dichloroethane-d4	9.5		10.00		95.4	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	9.0		10.00		90.4	70	130			
Surr: Toluene-d8	9.2		10.00		91.6	70	130			

Sample ID 1403057-002amsd	I SampT	ype: MS	SD	Tes	tCode: E	PA Method	8260: Volatile	es Short L	_ist	
Client ID: Lead	Batch	ID: R1	7218	F	RunNo: 1	7218				
Prep Date:	Analysis D	ate: 3/	10/2014	8	SeqNo: 4	95674	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	108	70	130	0.409	20	
Toluene	18	1.0	20.00	0	90.7	67.5	123	2.39	20	
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.2	70	130	0	0	
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130	0	0	
Surr: Dibromofluoromethane	8.9		10.00		88.8	70	130	0	0	
Surr: Toluene-d8	9.3		10.00		92.6	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Work Order Number: 1403057 RcptNo: 1 Client Name: Western Refining Southw Received by/date: 3/4/2014 10:00:00 AM Logged By: Lindsay Marigin Completed By: 3/4/2014 10:36:56 AM **Lindsay Mangin** Reviewed By: 03/04/14 エロ Chain of Custody Not Present Yes 🗌 Nο 1. Custody seals intact on sample bottles? Not Present Yes 🗸 No 🗀 2. Is Chain of Custody complete? 3 How was the sample delivered? Courier Log In NA 🗌 Yes 🗸 No 4. Was an attempt made to cool the samples? NA 🗀 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗹 No 🗆 Yes 🗹 Sample(s) in proper container(s)? No Yes 7. Sufficient sample volume for indicated test(s)? 8. Are samples (except VOA and ONG) properly preserved? Yes V No Nο $\overline{\mathbf{V}}$ NA 🔲 Yes 9. Was preservative added to bottles? **~** No 🗌 No VOA Vials Yes 10.VOA vials have zero headspace? No 🗹 Yes 11. Were any sample containers received broken? # of preserved bottles checked for pH: No 🗆 Yes 🗹 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Yes 🗸 No 🗆 13. Are matrices correctly identified on Chain of Custody? No 🗆 Yes 🗹 14. Is it clear what analyses were requested? No 🗌 Checked by: Yes 🗸 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 NA 🗸 No 🗀 16. Was client notified of all discrepancies with this order? Person Notified: Date: Via: eMail Phone Fax In Person By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp ºC Condition Seal Intact | Seal No Seal Date Signed By 1.6 Good Yes

ecord	Turn-Around Time:	ime:				I		L	7		2	HALL ENVIDONMENTAL	¶ ⊢	
Client: Western Ref. J. 109	Standard	□ Rush_				•	Į	 	SI	23	Ö	ANALYSIS LABORATORY	į į	. ≿
	Project Name:					i ≶ !	ww.h	www.hallenvironmental.com	onme	ntal.c	L EC	! ! 		
Mailing Address:#50 OR 4990	GAC	3-3-	14	4	4901 Hawkins NE	awkin	s NE	- Albu	dnerd	Albuquerque, NM 87109	M 871	60		
<u> </u>	Project #:		,	'	Tel. 50	505-345-3975	-3975		Fax 50	505-345-4107	4107			
Phone #: 505-632-4/35								Analysis		Rednest				
	Project Manage	er:			(6					ang	/	2		
QA/QC Package:							(S					<u>'</u> <u>S</u>		
☐ Standard X Level 4 (Full Validation)							MIS					108		
Accreditation	Ήλ	- Q \$									(,	3 (7)		(IN -
doe)	Sample Temperature:	-										PO		Δ,
Matrix Sample Request ID	Container I	Preservative Type	HEAL NO.	3TM + X3T8 3TM + X3T8	B9108 HdJ	PH (Metho	DB (Methor	SCRA 8 Met	ID,(T) snoin <i>ł</i> 1081 Pestici	AOV) 808S	-imə2) 0728	<u> </u>		lir Bubbles
73-14 9:50 H20 LAG	5-VOA	Hel	199-						_					/
		combe 1										X		
19:55 Lead	F-16A	461	700-		X	-				×				
	1-50m)	anber									·	メ		
19:45 inlet	5- VOA	401	-003		Ι×					×				
/	1-500ml	amber	l							-		人		
												+		-
												<u> </u>		
							+		+			<u> </u>		
Time: Religioushed by: 4 S40 Content Traken	Received by:	thate	$\frac{\text{Date}}{2\beta/\gamma} \text{ ISNO}$	Remarks:	ks:									
Date: Time: Relinquished by: 1/4 1766 Milatination	Received kyy	I E	Date Time											
mples submitted to Hall	intracted to other acc	redited laboratories	s. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	possibility	. Any su	b-contra	cted dai	a will be	dearly no	otated or	the ans	ılytical reț	port.	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 24, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 4-7-14 OrderNo.: 1404320

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 4/8/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

 $Website: \underline{www.hallenvironmental.com}$

Workorder Sample Summary

WO#: 1404320 24-Apr-14

CLIENT: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Lab SampleID	Client Sample ID	Tag No	Date Collected	Date Received	Matrix
1404320-001	Lag		4/7/2014 10:30:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-001	Lag		4/7/2014 10:30:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-001	Lag		4/7/2014 10:30:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-002	Lead		4/7/2014 10:40:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-002	Lead		4/7/2014 10:40:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-002	Lead		4/7/2014 10:40:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-003	Inlet		4/7/2014 10:50:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-003	Inlet		4/7/2014 10:50:00 AM	4/8/2014 9:55:00 AM	Aqueous
1404320-003	Inlet		4/7/2014 10:50:00 AM	4/8/2014 9:55:00 AM	Aqueous

Date Reported: 4/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lag

 Project:
 GAC 4-7-14
 Collection Date: 4/7/2014 10:30:00 AM

 Lab ID:
 1404320-001
 Matrix: AQUEOUS
 Received Date: 4/8/2014 9:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	4/9/2014 11:29:46 AM	12588
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/9/2014 11:29:46 AM	12588
Surr: DNOP	140	76-161	%REC	1	4/9/2014 11:29:46 AM	12588
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Toluene	ND	1.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Ethylbenzene	ND	1.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Xylenes, Total	ND	2.0	μg/L	1	4/9/2014 1:49:28 PM	R17896
Surr: 1,2-Dichloroethane-d4	93.5	70-130	%REC	1	4/9/2014 1:49:28 PM	R17896
Surr: 4-Bromofluorobenzene	93.8	70-130	%REC	1	4/9/2014 1:49:28 PM	R17896
Surr: Dibromofluoromethane	96.6	70-130	%REC	1	4/9/2014 1:49:28 PM	R17896
Surr: Toluene-d8	93.2	70-130	%REC	1	4/9/2014 1:49:28 PM	R17896
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	cadg
Gasoline Range Organics (GRO)	0.14	0.050	mg/L	1	4/16/2014 12:05:04 PM	R18044
Surr: BFB	96.0	70-130	%REC	1	4/16/2014 12:05:04 PM	R18044

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Date Reported: 4/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lead

 Project:
 GAC 4-7-14
 Collection Date: 4/7/2014 10:40:00 AM

 Lab ID:
 1404320-002
 Matrix: AQUEOUS
 Received Date: 4/8/2014 9:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	4/9/2014 12:36:16 PM	12588
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/9/2014 12:36:16 PM	12588
Surr: DNOP	113	76-161	%REC	1	4/9/2014 12:36:16 PM	12588
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Toluene	ND	1.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Ethylbenzene	ND	1.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Methyl tert-butyl ether (MTBE)	1.1	1.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Xylenes, Total	ND	2.0	μg/L	1	4/9/2014 3:41:14 PM	R17896
Surr: 1,2-Dichloroethane-d4	96.3	70-130	%REC	1	4/9/2014 3:41:14 PM	R17896
Surr: 4-Bromofluorobenzene	92.1	70-130	%REC	1	4/9/2014 3:41:14 PM	R17896
Surr: Dibromofluoromethane	95.9	70-130	%REC	1	4/9/2014 3:41:14 PM	R17896
Surr: Toluene-d8	93.2	70-130	%REC	1	4/9/2014 3:41:14 PM	R17896
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	cadg
Gasoline Range Organics (GRO)	0.088	0.050	mg/L	1	4/16/2014 1:31:21 PM	R18044
Surr: BFB	94.2	70-130	%REC	1	4/16/2014 1:31:21 PM	R18044

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc. Date Reported: 4/24/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: Inlet

 Project:
 GAC 4-7-14
 Collection Date: 4/7/2014 10:50:00 AM

 Lab ID:
 1404320-003
 Matrix: AQUEOUS
 Received Date: 4/8/2014 9:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	iΕ				Analyst	BCN
Diesel Range Organics (DRO)	2.9	0.20	mg/L	1	4/9/2014 12:58:20 PM	12588
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/9/2014 12:58:20 PM	12588
Surr: DNOP	118	76-161	%REC	1	4/9/2014 12:58:20 PM	12588
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	: KJH
Benzene	110	10	μg/L	10	4/9/2014 4:09:13 PM	R17896
Toluene	ND	10	μg/L	10	4/9/2014 4:09:13 PM	R17896
Ethylbenzene	1000	100	μg/L	100	4/10/2014 4:34:30 PM	R17924
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	4/9/2014 4:09:13 PM	R17896
Xylenes, Total	2700	200	μg/L	100	4/10/2014 4:34:30 PM	R17924
Surr: 1,2-Dichloroethane-d4	92.0	70-130	%REC	10	4/9/2014 4:09:13 PM	R17896
Surr: 4-Bromofluorobenzene	99.0	70-130	%REC	10	4/9/2014 4:09:13 PM	R17896
Surr: Dibromofluoromethane	95.5	70-130	%REC	10	4/9/2014 4:09:13 PM	R17896
Surr: Toluene-d8	92.1	70-130	%REC	10	4/9/2014 4:09:13 PM	R17896
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	cadg
Gasoline Range Organics (GRO)	17	2.5	mg/L	50	4/16/2014 2:00:07 PM	R18044
Surr: BFB	96.4	70-130	%REC	50	4/16/2014 2:00:07 PM	R18044

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 8

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404320**

24-Apr-14

Client: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Sample ID MB-12588 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: **PBW** Batch ID: 12588 RunNo: 17871 Prep Date: 4/8/2014 Analysis Date: 4/9/2014 SeqNo: 515440 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.60 0.5000 76 121 161

Sample ID 1404320-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: Lag Batch ID: 12588 RunNo: 17871 Prep Date: 4/8/2014 Analysis Date: 4/9/2014 SeqNo: 515604 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 3.3 2.500 131 72.1 156 Surr: DNOP 0.32 0.2500 128 76 161

Sample ID 1404320-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: Lag Batch ID: 12588 RunNo: 17871 Prep Date: 4/8/2014 Analysis Date: 4/9/2014 SeqNo: 515605 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.5 0.20 2.500 0 139 72.1 156 6.13 20 Surr: DNOP 0.33 0.2500 133 76 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 8

Hall Environmental Analysis Laboratory, Inc.

9.4

WO#: **1404320**

24-Apr-14

Client: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Sample ID 5mL-rb	SampType: MBLK TestCode: EPA Method 8260: Volatiles Short List									
Client ID: PBW	Batch	1D: R1	7896	F	tunNo: 1	7896				
Prep Date:	Analysis D	ate: 4/	9/2014	SeqNo: 516213 U		Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.4	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.5	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.1	70	130			
Surr: Toluene-d8	9.4		10.00		93.5	70	130			
Sample ID 1404320-001a ms	SampT	ype: M \$		Tes	Code: El	PA Method	8260: Volatile	es Short L	_ist	
Client ID: Lag	Batch	n ID: R1	7896	F	lunNo: 1	7896				
Prep Date:	Analysis D	ate: 4/	9/2014	S	eqNo: 5	16220	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	94.4	70	130			
Toluene	19	1.0	20.00	0	96.1	67.5	123			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		93.3	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.9	70	130			
Surr: Dibromofluoromethane	9.7		10.00		96.7	70	130			

Sample ID 1404320-001a m	sd SampType: MSD TestCode: EPA Method 8260: Volatiles Short List									
Client ID: Lag	Batch	ID: R1	7896	F	RunNo: 1	7896				
Prep Date:	Analysis D	ate: 4/	9/2014	S	SeqNo: 5	16221	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	92.9	70	130	1.54	20	
Toluene	19	1.0	20.00	0	93.2	67.5	123	3.06	20	
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.8	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.6		10.00		95.7	70	130	0	0	
Surr: Dibromofluoromethane	9.5		10.00		95.3	70	130	0	0	
Surr: Toluene-d8	9.3		10.00		92.5	70	130	0	0	

94.4

70

130

10.00

Sample ID 5mL-rb	SampType: MBLK	TestCode: EPA Method	8260: Volatiles Short List
Client ID: PBW	Batch ID: R17924	RunNo: 17924	
Prep Date:	Analysis Date: 4/10/2014	SeqNo: 517155	Units: µg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Ethylbenzene	ND 1.0		

Qualifiers:

Surr: Toluene-d8

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404320**

24-Apr-14

Client: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Sample ID 5mL-rb	SampT	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List							
Client ID: PBW	Batch	n ID: R1	7924	RunNo: 17924							
Prep Date:	Analysis D	ate: 4/	10/2014	S	SeqNo: 5	17155	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	9.0		10.00		90.4	70	130				
Surr: 4-Bromofluorobenzene	9.5		10.00		94.9	70	130				
Surr: Dibromofluoromethane	9.7		10.00		97.1	70	130				
Surr: Toluene-d8	9.2		10.00		92.0	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1404320**

24-Apr-14

Client: Western Refining Southwest, Inc.

Project: GAC 4-7-14

Sample ID 5mL rb SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R18044 RunNo: 18044

Prep Date: Analysis Date: 4/16/2014 SeqNo: 520568 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 9.6 10.00 96.0 70 130

Sample ID 1404320-003b ms SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: Inlet Batch ID: R18044 RunNo: 18044

Prep Date: Analysis Date: 4/16/2014 SeqNo: 520574 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 39
 2.5
 25.00
 16.78
 87.8
 70
 130

 Surr: BFB
 500
 500.0
 100
 70
 130

Sample ID 1404320-003b msd SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: Inlet Batch ID: R18044 RunNo: 18044

Prep Date: Analysis Date: 4/16/2014 SeqNo: 520575 Units: mg/L

SPK value SPK Ref Val %RPD Result %REC HighLimit **RPDLimit** Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 38 2.5 25.00 16.78 84.2 70 130 2.30 20 Surr: BFB 500 500.0 101 70 130 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 8

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Work Order Number: 1404320 RcptNo: 1 Client Name: Western Refining Southw Received by/date: 4/8/2014 9:55:00 AM Lindsay Mangin Logged By: Lindsay Mangin 4/8/2014 10:43:33 AM Completed By: Reviewed By: Chain of Custody Not Present Yes 🗌 1 Custody seals intact on sample bottles? Yes 🗹 No 🗆 Not Present 2. Is Chain of Custody complete? **UPS** 3. How was the sample delivered? <u>Log In</u> NA 🗍 No 🗌 Yes 🗸 4. Was an attempt made to cool the samples? NA 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 Yes 🗸 No Sample(s) in proper container(s)? No 🗍 7. Sufficient sample volume for indicated test(s)? **V** No 🗌 8. Are samples (except VOA and ONG) properly preserved? NA 🗌 No 🛂 9. Was preservative added to bottles? No VOA Vials Yes 🗸 No 10.VOA vials have zero headspace? No 🗹 Yes 11. Were any sample containers received broken? # of preserved bottles checked Yes 🗸 No 🗌 for pH: 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No \square 13. Are matrices correctly identified on Chain of Custody? No 🗌 **V** 14. Is it clear what analyses were requested? Yes No 🗌 Checked by: 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) No 🗌 NA 🗹 Yes 🗌 16. Was client notified of all discrepancies with this order? Person Notified: Date: ■ eMail ■ Phone ■ Fax ■ In Person Via: By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp C Condition Seal Intact Seal No Seal Date Good 1.3 Yes

.				(N ac) (人	Air Bubbles				==							<u> </u>	1	
HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109												_				_	· -	-	
ξP			·														+	-	
ENVIRONMENTA YSIS LABORATOR environmental.com Albuquerque, NM 87109		S .	a)Ot	Pr	pu	DE0 EXT	W	X	X	×	٠	又				+	+	-	
Z Z Z Z Z Z Z Z Z Z	505-345-4107 Request	/				imə2) 0728	_3119		M. A.] .	
Etal.co	-345- ues	1 F @ 1/1	8IM	XJI	g (y	8S60B (VO	\prec		X		X								-
ATF S L Imeni ierqu	505 Rec					S081 Pestic										4			·
HALL ENVIRONME INALYSIS LABOR/ www.hallenvironmental.com ins NE - Albuquerque, NM 87109	Fax 505-345- Analysis Request	(†osʻ	,РО ₄			O,7) snoinA								-			+	4	
	5 Ana		CIVIIC			PAH's (8310 RCRA 8 Me							_	-	+	-		-	
HALL ANAL www.hall sins NE -	-397		SVVIC			EDB (Metho									-		1	1	
wkin w	5-345					TPH (Metho							-					1	
ANA Www.h	Tel. 505-345-3975	(/ (31	-/ O	19)	83108 H9T	メ	_	×		X							┧	
490	<u> </u>	(Ajuo	ssə)	HqT +	- 38	BTEX + MT												Remarks:	
		(120)8) s	amt +	BE ·	TM + X3T8												Ren	
7/-				Ne	2	HEALNO-	1007-		72.00-		-COBS	J						Tate Time	Date Time
Time: Rush		ger:		Est.	oerature: /	Preservative A	#cl	amber	121	amber	4C1	amber						10 DATOS	-
Turn-Around Tim Standard Project Name:	-10Ject #-	Project Manager		Sampler: 1	Sample Temperature	Container Type and #	5-10A	Saum (15-VOA	Soon	15-VOA	Soom					-	Received by	Received by
of-Custody Reco	Hloomtield NM 874/3 Phone #: 505-632-4135	email or Fax#:	Granderd	Accreditation	□ EDD (Type)	Date Time Matrix Sample Request ID	7-14 10:30 H20 LAG		10:40 Lead		1 10:50 INLET		a decoderate					Date: Time: Relinquished by: 1	Date: Time: Relinquished by: Received by Date Time

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 14, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 5-8-14 OrderNo.: 1405367

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 5/8/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1405367**

Date Reported: 5/14/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lag

 Project:
 GAC 5-8-14
 Collection Date: 5/8/2014 8:50:00 AM

 Lab ID:
 1405367-001
 Matrix: AQUEOUS
 Received Date: 5/8/2014 3:00:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	5/12/2014 11:52:51 AM	13081
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	5/12/2014 11:52:51 AM	13081
Surr: DNOP	127	76-161	%REC	1	5/12/2014 11:52:51 AM	13081
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	5/9/2014 6:29:13 PM	R18519
Surr: BFB	90.4	80.4-118	%REC	1	5/9/2014 6:29:13 PM	R18519
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	:: cadg
Benzene	ND	1.0	μg/L	1	5/12/2014 2:10:52 PM	R18547
Toluene	ND	1.0	μg/L	1	5/12/2014 2:10:52 PM	R18547
Ethylbenzene	ND	1.0	μg/L	1	5/12/2014 2:10:52 PM	R18547
Xylenes, Total	ND	2.0	μg/L	1	5/12/2014 2:10:52 PM	R18547
Surr: 1,2-Dichloroethane-d4	98.2	70-130	%REC	1	5/12/2014 2:10:52 PM	R18547
Surr: 4-Bromofluorobenzene	98.9	70-130	%REC	1	5/12/2014 2:10:52 PM	R18547
Surr: Dibromofluoromethane	102	70-130	%REC	1	5/12/2014 2:10:52 PM	R18547
Surr: Toluene-d8	104	70-130	%REC	1	5/12/2014 2:10:52 PM	R18547

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 6

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Lab Order **1405367**

Date Reported: 5/14/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lead

 Project:
 GAC 5-8-14
 Collection Date: 5/8/2014 9:10:00 AM

 Lab ID:
 1405367-002
 Matrix: AQUEOUS
 Received Date: 5/8/2014 3:00:00 PM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE					Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20		mg/L	1	5/12/2014 1:25:01 PM	13081
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	5/12/2014 1:25:01 PM	13081
Surr: DNOP	178	76-161	S	%REC	1	5/12/2014 1:25:01 PM	13081
EPA METHOD 8015D: GASOLINE R	ANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	5/9/2014 6:59:16 PM	R18519
Surr: BFB	89.9	80.4-118		%REC	1	5/9/2014 6:59:16 PM	R18519
EPA METHOD 8260: VOLATILES SH	IORT LIST					Analyst	: cadg
Benzene	ND	1.0		μg/L	1	5/12/2014 3:37:11 PM	R18547
Toluene	ND	1.0		μg/L	1	5/12/2014 3:37:11 PM	R18547
Ethylbenzene	ND	1.0		μg/L	1	5/12/2014 3:37:11 PM	R18547
Xylenes, Total	ND	2.0		μg/L	1	5/12/2014 3:37:11 PM	R18547
Surr: 1,2-Dichloroethane-d4	98.7	70-130		%REC	1	5/12/2014 3:37:11 PM	R18547
Surr: 4-Bromofluorobenzene	97.6	70-130		%REC	1	5/12/2014 3:37:11 PM	R18547
Surr: Dibromofluoromethane	103	70-130		%REC	1	5/12/2014 3:37:11 PM	R18547
Surr: Toluene-d8	105	70-130		%REC	1	5/12/2014 3:37:11 PM	R18547

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1405367

Date Reported: 5/14/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Inlet

 Project:
 GAC 5-8-14
 Collection Date: 5/8/2014 9:20:00 AM

 Lab ID:
 1405367-003
 Matrix: AQUEOUS
 Received Date: 5/8/2014 3:00:00 PM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	BCN
Diesel Range Organics (DRO)	1.7	0.20	mg/L	1	5/12/2014 1:55:38 PM	13081
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	5/12/2014 1:55:38 PM	13081
Surr: DNOP	159	76-161	%REC	1	5/12/2014 1:55:38 PM	13081
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	7.1	2.5	mg/L	50	5/9/2014 7:29:19 PM	R18519
Surr: BFB	90.3	80.4-118	%REC	50	5/9/2014 7:29:19 PM	R18519
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: cadg
Benzene	23	20	μg/L	20	5/12/2014 4:05:56 PM	R18547
Toluene	ND	20	μg/L	20	5/12/2014 4:05:56 PM	R18547
Ethylbenzene	700	20	μg/L	20	5/12/2014 4:05:56 PM	R18547
Xylenes, Total	1000	40	μg/L	20	5/12/2014 4:05:56 PM	R18547
Surr: 1,2-Dichloroethane-d4	96.6	70-130	%REC	20	5/12/2014 4:05:56 PM	R18547
Surr: 4-Bromofluorobenzene	89.0	70-130	%REC	20	5/12/2014 4:05:56 PM	R18547
Surr: Dibromofluoromethane	102	70-130	%REC	20	5/12/2014 4:05:56 PM	R18547
Surr: Toluene-d8	101	70-130	%REC	20	5/12/2014 4:05:56 PM	R18547

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1405367**

14-May-14

Client: Western Refining Southwest, Inc.

Project: GAC 5-8-14

Sample ID MB-13081 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: **PBW** Batch ID: 13081 RunNo: 18530 Prep Date: 5/9/2014 Analysis Date: 5/12/2014 SeqNo: 535430 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 ND Motor Oil Range Organics (MRO) 2.5 Surr: DNOP 0.64 0.5000 127 76 161

Sample ID 1405367-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: GAC-Lag Batch ID: 13081 RunNo: 18530 Prep Date: 5/9/2014 Analysis Date: 5/12/2014 SeqNo: 535750 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 140 8.05 20 3.5 2.500 72.1 156 Surr: DNOP 0.34 0.2500 137 76 161 0

Sample ID 1405367-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Client ID: GAC-Lag Batch ID: 13081 RunNo: 18530 Prep Date: 5/9/2014 Analysis Date: 5/12/2014 SeqNo: 535968 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.8 0.20 2.500 0 152 72.1 156 Surr: DNOP 0.36 0.2500 143 76 161

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1405367**

14-May-14

Client: Western Refining Southwest, Inc.

Project: GAC 5-8-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R18519 RunNo: 18519

Prep Date: Analysis Date: 5/9/2014 SeqNo: 534572 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 89.6 80.4 118

Sample ID 1405367-003BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R18519 RunNo: 18519

Prep Date: Analysis Date: 5/9/2014 SeqNo: 534590 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 32
 2.5
 25.00
 7.120
 98.5
 79
 121

 Surr: BFB
 1000
 1000
 102
 80.4
 118

Sample ID 1405367-003BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R18519 RunNo: 18519

Prep Date: Analysis Date: 5/9/2014 SeqNo: 534591 Units: mg/L

%RPD Result SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 30 25.00 7.120 92.5 79 121 4.81 20 Surr: BFB 1000 1000 103 80.4 118 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1405367**

14-May-14

Client: Western Refining Southwest, Inc.

Project: GAC 5-8-14

Sample ID 5mL rb	SampT	pType: MBLK TestCode: EPA Method 8260: Volatiles Short List								
Client ID: PBW	Batch	n ID: R1	8547	F	RunNo: 1	8547				
Prep Date:	Analysis D	ate: 5/	12/2014	S	SeqNo: 5	35867	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.6		10.00		96.5	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.6	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	11		10.00		107	70	130			

Sample ID 1405367-001a ms	001a ms SampType: MS TestCode: EPA Method 8260: Volati							TestCode: EPA Method 8260: Volatiles Short List							
Client ID: GAC-Lag	Batch	1D: R1	8547	F	RunNo: 1	8547									
Prep Date:	Analysis D	ate: 5/	12/2014	8	SeqNo: 5	35870	Units: µg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Benzene	20	1.0	20.00	0	102	70	130								
Toluene	21	1.0	20.00	0	103	67.5	123								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130								
Surr: 4-Bromofluorobenzene	9.6		10.00		96.1	70	130								
Surr: Dibromofluoromethane	9.9		10.00		99.2	70	130								
Surr: Toluene-d8	10		10 00		101	70	130								

Sample ID 1405367-001a m	sd SampT	SampType: MSD TestCode: EPA Method 8260: Volatiles Short List									
Client ID: GAC-Lag	Batch	1D: R1	8547	F	RunNo: 1	8547					
Prep Date:	Analysis D	ate: 5/	12/2014	9	SeqNo: 5	35871	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	20	1.0	20.00	0	100	70	130	1.81	20		
Toluene	20	1.0	20.00	0	99.8	67.5	123	3.21	20		
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.1	70	130	0	0		
Surr: 4-Bromofluorobenzene	9.5		10.00		95.5	70	130	0	0		
Surr: Dibromofluoromethane	10		10.00		103	70	130	0	0		
Surr: Toluene-d8	10		10.00		104	70	130	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: Western Refining Southw Work Order Number	1405367		RcptNo:	1
Received by/date: MG 05 08 14				· · · · · · · · · · · · · · · · · · ·
Logged By: Lindsay Mangin 5/8/2014 3:00:00 PM		Junday Hlogge		
Completed By: Lindsay Mangin 5/9/2014 6:23:32 AM		Jimahay Hegage		
Reviewed By: A 05/09/14		000		
Chain of Custody				
1 Custody seals intact on sample bottles?	Yes	No 🗔	Not Present	
2. Is Chain of Custody complete?	Yes 🗸	No	Not Present	
3 How was the sample delivered?	Courier			
<u>Log In</u>		:	r-:	
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	NA 🗀	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🔽	No 🗀	NA 🗆	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗔		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No 🗀		
9. Was preservative added to bottles?	Yes	No 🔀	NA :	
10.VOA vials have zero headspace?	Yes 🗹	No 🗔	No VOA Vials	
11. Were any sample containers received broken?	Yes	No 🗷		
			# of preserved bottles checked	1
12. Does paperwork match bottle labels?	Yes 🗸	No 🗌	for pH:	or >12 unless noted)
(Note discrepancies on chain of custody)	Yes 🗸	No	Adjusted?	or > 12 unless noted)
13. Are matrices correctly identified on Chain of Custody? 14. Is it clear what analyses were requested?	Yes 🛂	No		
15. Were all holding times able to be met?	Yes 🗸	No	Checked by:	
(If no, notify customer for authorization.)				· · · · · · · · · · · · · · · · · · ·
<u> </u>				
Special Handling (if applicable)	 1	(**)	'	
16 Was client notified of all discrepancies with this order?	Yes	No 🗀	NA 🗹	\neg
Person Notified: Date:				
By Whom: Via:	eMail	Phone Fax	In Person	
Regarding:		·		
Client Instructions:				1
17. Additional remarks:				
18. Cooler Information	Chal Date	Clancel Du	I	
Cooler No Temp C Condition Seal Intact Seal No 1 2.3 Good Yes	Seal Date	Signed By		
		å	I	

			•				_			,	N v	υX) səj	qqn	a √ir	/	J	1		ŀ	l	J	7	_		_		Τ_				
		4	 				<u> </u>				_						_	_†		 	1	十	\dashv	7			-	-	╁	-		1
	E	<u>.</u> 6					_									T	T	7			1	\dagger	\dagger	\dashv				-	┼╌	-{		1
	2 W	₹	1	6			ļ 	_		_							\top	1			\vdash	+	\top	\dashv	\neg		_	_	╁╴	-{		port
	Σ	K		710	27			<i>8.</i> —	510	& —	1	pp	Va J	70	DS		75	7		1	\vdash	15	才	7	\dashv	_	_	-	 	-		fical re
	Z	ĕ	Ö	™ 8	74	t	1				(A	ΌΛ	-ime	s) c	728		\top	十		┝∸	\vdash	†-	+	十	_				-	-		analy
	2	5	ıtal.	Je, N	505-345-4107	ank							/O/				1	٦,	メ		X	十	+	+	7	\dashv			-	1		on the
	ENVIRONMENTA	LYSIS LABORATOR	www.hallenvironmental.com	Albuquerque, NM 87109	505	Analysis Request							oite				\top	\dagger	\neg		<u> </u>		十	\dashv	\dashv	-]		otated
·	Ż	SI	Viror	pnd	Fax	ysis	(₂ C	S'*	0d'²	ON	1, _E C	ΝΊ	O,7)	suc	inA			\dagger	7		_	1	╁	+	+	\dashv	_	_	<u> </u>	}		arly no
		7	allen .			Anal					- 5	slate	9W 8	AA —	ВС		T	T		7		├-	+	十	+	\dashv	+	\dashv		[be cle
	HALI	ANA	w.h		975			(SI	WIS	02	<u> </u>	10 0	168)	s,⊦	ΑЧ			1	\dashv	_		┢	+	+	+	+	\dashv	\dashv	_		•	la will
	Ì	4	Š	kins	45-3					<u>(1</u>	7 09	pc	yeth	A) B	回			Ť	7	_	_	 	╁	+	+	\dashv	ᆉ					ed dar
		_		٦aм	505-345-3975					(<u>1</u> .	811	pc	ηэγ	۸) H	ᄳ		_	T	\top	\dashv		-	╁	╁	╅	\dashv	+	\dashv	\dashv			ontract
		П		4901 Hawkins NE	Tel. 5								1910			$\overline{\mathbf{x}}$		7	Z	_	Z	_	†-	╁	+	+	\dashv	\dashv	\dashv			βub-α
1			l	4									W +			-		† `	+	\dashv			+	+	+	\dashv	\dashv	\dashv	{	<u>इ</u>		This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
_							(17	 S08)	s,g	MI	+	387	W +	X∃.	īВ	_		r	1	\dagger				+-	+	+	\dashv	\dashv	\dashv	Remarks:		sibility
		.												 	1			\vdash	\top	7	\dashv		_	十	+	+	\dashv	+	 '	<u>ně</u>		sod sin
														ا و	9	=			\prod		\mathcal{M}						1		.	2		eof∄
			~										1		$\sqrt{ }$														i	1474	Time	s notic
			Ì	-							. دا ₃					Y		1			H			ł				ŀ	4	` Z-	e 77	rves a
	_6		Q							1	- \ 	א ^י		-12	4			•				l							Date	LE ST		his sé
	Rush			3									live	MCALIFACIE		十	\dashv		\dagger	1	\dashv	\dashv		-	╀	╁	+-	+	-	, s	1. 1	
ю ::	\supset	\langle	3			1				90	3 2	Š	reservative	Type	-	_	900		نسرل	일_		ام								3	da	aboratories.
ime:		1				<u>i</u>	D		1/2 V		erafi ro		Pres	—	=	٦ ب	- }	Ĭ]]		된,	3							'	7	1 13	<u> </u>
und	ɗard	ame	•) du di	<u>g</u> 5		χ		Julia	<u>-</u>		— #	十	+	9		T	╁	+-	2			├_	╄-	+	+	4	V	7	
-¥.	Stan	ect N	9	# ct#			<u>₹</u>		Je l	G.	T e		Container	and	{	Z .	g	st o	1	3 5		2							خ خ	has		<u> </u>
r urri-Around	H	Project Name:	₽	Project #.		Project Manage	2		Sampler	On Ice:	Sample Temne		ပ္ပံု	l ype and #	7	ζ,	- 200	15-VOR	1	7	- von	1-500	-						Received by:			
	T			_	Ţ	† "	\top			U	၂ဟ	_			+	井.	7	7	<u> </u>	- 4	1	7	-4			<u> </u>	<u> </u>	\downarrow	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Track to the state of the state	
Þ								Level 4 (Full Validation)		1]	Ð																		Subco	
VI VUSIOUY RECORD	6		1	6				alide					Sample Request ID					Q					}								ay be	•
1	Refining		3	•	11			\ 					Red		1000	1		Lead		+	3		1	ł						3	intai m	
Y	Š		19	NM 874,	632-4135			4 (F					ë F		-	4			,	101.]		l							B	T minor	
5	CH.		2	~	1/			eve					amp		400	1/	' `	5 8 5-		;			-							3		
2	凶		2	2	3			Z		$\ \ $			ίχ		V		15	5		345			1	l	}				> <	-{K	Z and an an an an an an an an an an an an an	
5			B.	L					,	The			 خِ		0	†	+	7		\vdash	_	╁	+	+	-	_			hed b	3 gg	mittee	
5	15	1	#	9	-11				[□ Ciner			Matrix	1	E3		+-	4			 -			-					Relinquished by	Relinquished by	les sub	!
	Western		Walling Address:# 50 CR 4990	Bloom+ield	525	#	ge:		_							-	+	+	\dashv	_	<u> </u>	+	+	+	\dashv	[<u> </u>	 -	If necessary samples submitted to Hall Environmental may be subcontracted to other annual.	; , .
: -	₩ K		Add	2	~) 	Fax	acka	ard	atior	ا يا	Ty Q		Time		S.	•	28	4		9:20					-				e .	$\mathfrak{A}_{\mathbb{R}}$	M2S necessary	
' ;				100	Phone #:	email or Fax#:	QA/QC Package:	Standard	Accreditation	֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	☐ EDD (Type)		 	\dashv	5-8-14 8:50			+	\dashv			╁	+	+	\dashv		_		Time:	1.15 Time:	, jece	:
[5	5	:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Y	핅	em	Š	S .	Acc	- - 			Date		8		\vdash	+	-+										Jate:	3 Jafe:	71/8	
								•		•	'			1	W		1	1	í	1		1	1	1	1	1	ı	1	۳	. ! T.Ā.	23-	i

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 17, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: GAC 6-5-14 OrderNo.: 1406316

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 6/6/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 6/17/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC - Lag

 Project:
 GAC 6-5-14
 Collection Date: 6/5/2014 10:30:00 AM

 Lab ID:
 1406316-001
 Matrix: AQUEOUS
 Received Date: 6/6/2014 10:09:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	6/10/2014 9:31:11 PM	13569
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	6/10/2014 9:31:11 PM	13569
Surr: DNOP	125	76-161	%REC	1	6/10/2014 9:31:11 PM	13569
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/9/2014 4:59:40 PM	R19139
Surr: BFB	97.4	70.9-130	%REC	1	6/9/2014 4:59:40 PM	R19139
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: DJF
Benzene	ND	1.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Toluene	ND	1.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Ethylbenzene	ND	1.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Xylenes, Total	ND	2.0	μg/L	1	6/6/2014 4:48:19 PM	R19118
Surr: 1,2-Dichloroethane-d4	93.9	70-130	%REC	1	6/6/2014 4:48:19 PM	R19118
Surr: 4-Bromofluorobenzene	83.7	70-130	%REC	1	6/6/2014 4:48:19 PM	R19118
Surr: Dibromofluoromethane	90.2	70-130	%REC	1	6/6/2014 4:48:19 PM	R19118
Surr: Toluene-d8	95.2	70-130	%REC	1	6/6/2014 4:48:19 PM	R19118

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Date Reported: 6/17/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC - Lead

 Project:
 GAC 6-5-14
 Collection Date: 6/5/2014 10:15:00 AM

 Lab ID:
 1406316-002
 Matrix: AQUEOUS
 Received Date: 6/6/2014 10:09:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analysi	: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	6/10/2014 7:12:59 AM	13569
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	6/10/2014 7:12:59 AM	13569
Surr: DNOP	147	76-161	%REC	1	6/10/2014 7:12:59 AM	13569
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/9/2014 5:29:51 PM	R19139
Surr: BFB	93.3	70.9-130	%REC	1	6/9/2014 5:29:51 PM	R19139
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst	:: DJF
Benzene	ND	1.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Toluene	ND	1.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Ethylbenzene	ND	1.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Xylenes, Total	ND	2.0	μg/L	1	6/6/2014 5:17:55 PM	R19118
Surr: 1,2-Dichloroethane-d4	103	70-130	%REC	1	6/6/2014 5:17:55 PM	R19118
Surr: 4-Bromofluorobenzene	86.2	70-130	%REC	1	6/6/2014 5:17:55 PM	R19118
Surr: Dibromofluoromethane	98.3	70-130	%REC	1	6/6/2014 5:17:55 PM	R19118
Surr: Toluene-d8	96.4	70-130	%REC	1	6/6/2014 5:17:55 PM	R19118

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/17/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC - inlet

 Project:
 GAC 6-5-14
 Collection Date: 6/5/2014 10:00:00 AM

 Lab ID:
 1406316-003
 Matrix: AQUEOUS
 Received Date: 6/6/2014 10:09:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE .					Analyst	BCN
Diesel Range Organics (DRO)	3.1	0.20		mg/L	1	6/10/2014 10:35:46 PM	13569
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	6/10/2014 10:35:46 PM	13569
Surr: DNOP	126	76-161		%REC	1	6/10/2014 10:35:46 PM	13569
EPA METHOD 8015D: GASOLINE RA	ANGE					Analyst	NSB
Gasoline Range Organics (GRO)	9.5	1.0	Р	mg/L	20	6/9/2014 5:59:59 PM	R19139
Surr: BFB	127	70.9-130	Р	%REC	20	6/9/2014 5:59:59 PM	R19139
EPA METHOD 8260: VOLATILES SH	IORT LIST					Analyst	DJF
Benzene	170	20		μg/L	20	6/6/2014 5:47:29 PM	R19118
Toluene	ND	20		μg/L	20	6/6/2014 5:47:29 PM	R19118
Ethylbenzene	760	20		μg/L	20	6/6/2014 5:47:29 PM	R19118
Methyl tert-butyl ether (MTBE)	ND	20		μg/L	20	6/6/2014 5:47:29 PM	R19118
Xylenes, Total	1500	40		μg/L	20	6/6/2014 5:47:29 PM	R19118
Surr: 1,2-Dichloroethane-d4	99.0	70-130		%REC	20	6/6/2014 5:47:29 PM	R19118
Surr: 4-Bromofluorobenzene	92.9	70-130		%REC	20	6/6/2014 5:47:29 PM	R19118
Surr: Dibromofluoromethane	92.0	70-130		%REC	20	6/6/2014 5:47:29 PM	R19118
Surr: Toluene-d8	94.6	70-130		%REC	20	6/6/2014 5:47:29 PM	R19118

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.

Page 3 of 6

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Result

3.7

0.34

PQL

0.20

WO#: **1406316**

17-Jun-14

Client: Western Refining Southwest, Inc.

Project: GAC 6-5-14

Sample ID MB-13569	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Diese	el Range		
Client ID: PBW	Batch	n ID: 13	569	F	RunNo: 1	9122				
Prep Date: 6/6/2014	Analysis D	ate: 6/	10/2014	S	SeqNo: 5	53201	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.85		0.5000		170	76	161			S
Sample ID 1406316-001CMS	SampT	уре: М \$	<u> </u>	Tes	tCode: El					
Client ID: GAC - Lag	Batch	n ID: 13	569	F	RunNo: 1					
Prep Date: 6/6/2014	Analysis D	ate: 6/	10/2014	S	SeqNo: 5	54446	Units: mg/L			
		ate: 6/ PQL		SPK Ref Val	SeqNo: 5 %REC	54446 LowLimit	Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Prep Date: 6/6/2014	Analysis D						Ū		RPDLimit	Qual
Prep Date: 6/6/2014 Analyte	Analysis D	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit		RPDLimit	Qual
Prep Date: 6/6/2014 Analyte Diesel Range Organics (DRO)	Analysis D Result 3.4 0.30	PQL	SPK value 2.500 0.2500	SPK Ref Val	%REC 134 121	LowLimit 64.4 76	HighLimit	%RPD	RPDLimit	Qual
Prep Date: 6/6/2014 Analyte Diesel Range Organics (DRO) Surr: DNOP	Analysis D Result 3.4 0.30 ED SampT	PQL 0.20	2.500 0.2500	SPK Ref Val 0	%REC 134 121	LowLimit 64.4 76 PA Method	HighLimit 178 161	%RPD	RPDLimit	Qual

SPK value SPK Ref Val %REC

0

2.500

0.2500

Qualifiers:

Analyte

Surr: DNOP

Diesel Range Organics (DRO)

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

LowLimit

64.4

76

148

134

HighLimit

178

161

%RPD

9.34

0

RPDLimit

20

0

Qual

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1406316**

17-Jun-14

Client: Western Refining Southwest, Inc.

Project: GAC 6-5-14

Sample ID 1406316-003BMSD

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R19139 RunNo: 19139

Prep Date: Analysis Date: 6/9/2014 SeqNo: 553037 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 93.7 70.9 130

Sample ID 1406316-003BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC - inlet Batch ID: R19139 RunNo: 19139

Prep Date: Analysis Date: 6/9/2014 SeqNo: 553053 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 1.0 10.00 9.508 115 79 121

TestCode: EPA Method 8015D: Gasoline Range

 Surr: BFB
 550
 400.0
 137
 70.9
 130
 S

Client ID: GAC - inlet Batch ID: R19139 RunNo: 19139

SampType: MSD

Prep Date: Analysis Date: 6/9/2014 SeqNo: 553054 Units: mg/L

%RPD **RPDLimit** Result SPK value SPK Ref Val %REC HighLimit Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 20 10.00 9.508 101 79 121 7.09 20 Surr: BFB 520 400.0 130 70.9 130 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1406316**

17-Jun-14

Client: Western Refining Southwest, Inc.

Project: GAC 6-5-14

Sample ID 5ml rb	SampT	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List							
Client ID: PBW	Batch	n ID: R1	9118	F	RunNo: 1	9118					
Prep Date:	Analysis D	Analysis Date: 6/6/2014			SeqNo: 5	52734	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130				
Surr: 4-Bromofluorobenzene	8.6		10.00		85.9	70	130				
Surr: Dibromofluoromethane	8.9		10.00		89.3	70	130				
Surr: Toluene-d8	11		10.00		105	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 6

4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com

Work Order Number:	1406316		RcptNo:	1
26/06/14		<u>-</u>	<u>.</u>	
5/6/2014 10:09:00 AM		Michelle Gon	uie	
6/6/2014 10:33:27 AM		Michell Com	uie)	
olifactiel		•		
	Yes 🗌	No 🗀	Not Present 🗹	
	Yes 🗹	No 🗌	Not Present	
	Courier			
	Yes 🗹	No 🗆	NA 🗌	
of >0° C to 6.0°C	Yes 🗸	No 🗌	NA \square	
	Yes 🗹	No 🗆		
?	Yes 🗹	No 🗌		
preserved?	Yes 🗹	No 🗔	_	
	Yes	No 🔽	NA 🗆	
	Yes 🗹	No 🗆	No VOA Vials	
1?	Yes	No 🗹	# of preserved	
	Ves 🗸	No 🗆	bottles checked for pH:	
	103 🖭	—	(<2 o	r >12 unless noted)
Custody?	Yes 🗹	No 🗆	Adjusted? _	
	Yes 🗹	No 📙		
	Yes 🗹	No □	Спескей ву:	
nis order?	Yes 🗌	No 🗆	NA 🗹	
Date:]
	□ eMail □	☐ Phone ☐ Fax	In Person	
	<u> </u>			
				_
	Seal Date _	Signed By	1	
	5/6/2014 10:09:00 AM 6/6/2014 10:33:27 AM 6/6/2014	Yes V Courier Yes V Courier Yes V	Side Color	Signed By Sign

	HALL ENVIRONMENTAL ANALYSIS LABORATORY	www hallenvironmental com	4901 Hawkins NE - Albuquerque, NM 87109		Analysis Request	10 mm 10 mm	775,8 05" (§	SMIS SMIS SMIS SMIS SMIS SMIS SMIS SMIS	7809 7809 700 700 700 700 700 700 700 700 700 7	O5 .40 .40 .4.0 .4.0	GF d 4- lals	MTEB ethoreethores Methores Methores Methores Methores Methores Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Methores Model Market Model Methores Model Model Methores Model Market Market Market Model Market Ma	TH 80 STEX + STEX + STEX +	8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 × 8 ×	×	*	*	× ×	×				Remarks:		If the contracted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	Standard Rush		GAC 6-5-14	Project #:		Project Manager:			Sampler: Meth	On Ice; 💢 Yes 🗀 Ng	Sample Temperature (,70		Container Preservative HEAL No. Type and # Type 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1		1-500ml amber	5-VO4 HC1 -002	1-500 mil annber	5.104 Hel -03	1-500ml amber				Received by: Date Time F	Received by: Date Time	ntracted to other accredited laboratories. This serves as notice of this p
Chain-of-Custody Record	Client Western Refiling		Mailing Address: 4-50 CR 4990	BloomGeld NM 87413	-632-	email or Fax#:	QA/QC Package:	☐ Standard ★ Level 4 (Full Validation)	on	□ NELAP □ Other	□ EDD (Type)		Date Time Matrix Sample Request ID	6-5-14/0:30 H20 GAC-649	7	65-14/0:15 GAC-Lead		6-5-14/0:00 GAC-INIET			1000		Date: Time: c.Relinquished by: I Style Sty	1.10011	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 3rd QTR OrderNo.: 1407096

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 7/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1407096**

Date Reported: 7/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Gac-Lag

Project: GAC 3rd QTR
 Collection Date: 7/1/2014 11:00:00 AM

 Lab ID: 1407096-001
 Matrix: AQUEOUS
 Received Date: 7/2/2014 9:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E				Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	7/2/2014 11:59:42 PM	14040
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	7/2/2014 11:59:42 PM	14040
Surr: DNOP	100	76-161	%REC	1	7/2/2014 11:59:42 PM	14040
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	7/3/2014 11:47:28 AM	R19692
Surr: BFB	96.9	70.9-130	%REC	1	7/3/2014 11:47:28 AM	R19692
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	ND	1.0	μg/L	1	7/9/2014 3:23:52 AM	R19752
Toluene	ND	1.0	μg/L	1	7/9/2014 3:23:52 AM	R19752
Ethylbenzene	ND	1.0	μg/L	1	7/9/2014 3:23:52 AM	R19752
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	7/9/2014 3:23:52 AM	R19752
Xylenes, Total	ND	1.5	μg/L	1	7/9/2014 3:23:52 AM	R19752
Surr: 1,2-Dichloroethane-d4	94.1	70-130	%REC	1	7/9/2014 3:23:52 AM	R19752
Surr: 4-Bromofluorobenzene	88.3	70-130	%REC	1	7/9/2014 3:23:52 AM	R19752
Surr: Dibromofluoromethane	90.1	70-130	%REC	1	7/9/2014 3:23:52 AM	R19752
Surr: Toluene-d8	108	70-130	%REC	1	7/9/2014 3:23:52 AM	R19752

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 1 of 7

Lab Order **1407096**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/15/2014

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lead

 Project:
 GAC 3rd QTR
 Collection Date: 7/1/2014 11:10:00 AM

 Lab ID:
 1407096-002
 Matrix: AQUEOUS
 Received Date: 7/2/2014 9:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGI	E				Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	7/3/2014 1:31:03 AM	14040
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	7/3/2014 1:31:03 AM	14040
Surr: DNOP	107	76-161	%REC	1	7/3/2014 1:31:03 AM	14040
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	7/3/2014 12:17:38 PM	R19692
Surr: BFB	97.2	70.9-130	%REC	1	7/3/2014 12:17:38 PM	R19692
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	ND	1.0	μg/L	1	7/9/2014 5:21:47 AM	R19752
Toluene	ND	1.0	μg/L	1	7/9/2014 5:21:47 AM	R19752
Ethylbenzene	ND	1.0	μg/L	1	7/9/2014 5:21:47 AM	R19752
Methyl tert-butyl ether (MTBE)	1.1	1.0	μg/L	1	7/9/2014 5:21:47 AM	R19752
Xylenes, Total	ND	1.5	μg/L	1	7/9/2014 5:21:47 AM	R19752
Surr: 1,2-Dichloroethane-d4	92.3	70-130	%REC	1	7/9/2014 5:21:47 AM	R19752
Surr: 4-Bromofluorobenzene	95.0	70-130	%REC	1	7/9/2014 5:21:47 AM	R19752
Surr: Dibromofluoromethane	92.1	70-130	%REC	1	7/9/2014 5:21:47 AM	R19752
Surr: Toluene-d8	110	70-130	%REC	1	7/9/2014 5:21:47 AM	R19752

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1407096**

Date Reported: 7/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Inlet

Project: GAC 3rd QTR
 Collection Date: 7/1/2014 11:20:00 AM

 Lab ID: 1407096-003
 Matrix: AQUEOUS
 Received Date: 7/2/2014 9:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E				Analyst	: ЈМЕ
Diesel Range Organics (DRO)	2.0	0.20	mg/L	1	7/3/2014 2:01:26 AM	14040
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	7/3/2014 2:01:26 AM	14040
Surr: DNOP	114	76-161	%REC	1	7/3/2014 2:01:26 AM	14040
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	7.0	1.0	mg/L	20	7/3/2014 12:47:44 PM	R19692
Surr: BFB	119	70.9-130	%REC	20	7/3/2014 12:47:44 PM	R19692
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Benzene	99	10	μg/L	10	7/9/2014 5:51:12 AM	R19752
Toluene	ND	10	μg/L	10	7/9/2014 5:51:12 AM	R19752
Ethylbenzene	710	10	μg/L	10	7/9/2014 5:51:12 AM	R19752
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	7/9/2014 5:51:12 AM	R19752
Xylenes, Total	890	15	μg/L	10	7/9/2014 5:51:12 AM	R19752
Surr: 1,2-Dichloroethane-d4	92.0	70-130	%REC	10	7/9/2014 5:51:12 AM	R19752
Surr: 4-Bromofluorobenzene	90.6	70-130	%REC	10	7/9/2014 5:51:12 AM	R19752
Surr: Dibromofluoromethane	88.6	70-130	%REC	10	7/9/2014 5:51:12 AM	R19752
Surr: Toluene-d8	102	70-130	%REC	10	7/9/2014 5:51:12 AM	R19752

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 7

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

3.4

0.25

0.20

2.500

0.2500

WO#: **1407096**

15-Jul-14

Client: Western Refining Southwest, Inc.

Project: GAC 3rd QTR

Sample ID MB-14040	SampType	e: MBLK	Test	Code: EPA Method	8015D: Diesel R	Range		
Client ID: PBW	Batch ID): 14040	R	unNo: 19624				
Prep Date: 7/2/2014	Analysis Date	e: 7/2/2014	S	eqNo: 569973	Units: mg/L			
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit %	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20						
Motor Oil Range Organics (MRO)	ND	2.5						
Surr: DNOP	0.56	0.5000		112 76	161			
Sample ID LCS-14040	SampType	e: LCS	Test	Code: EPA Method	8015D: Diesel R	Range		
Client ID: LCSW	Batch ID	D: 14040						
Prep Date: 7/2/2014	Analysis Date	e: 7/2/2014	S	eqNo: 569974	Units: mg/L			
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit 9	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.0	0.20 2.500	0	119 65.8	162			
Surr: DNOP	0.25	0.2500		101 76	161			
Sample ID 1407096-001CMS	SampType	e: MS	Test	Code: EPA Method	8015D: Diesel F	Range		
Client ID: Gac-Lag	Batch ID): 14040	R	unNo: 19624				
Prep Date: 7/2/2014	Analysis Date	e: 7/3/2014	S	eqNo: 569978	Units: mg/L			
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit 9	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.3	0.20 2.500	0	133 64.4	178			
Surr: DNOP	0.25	0.2500		102 76	161			
Sample ID 1407096-001CMSI	D SampType	e: MSD	Test	Code: EPA Method	8015D: Diesel R	Range		
Client ID: Gac-Lag	Batch ID): 14040	R	unNo: 19624				
Prep Date: 7/2/2014	Analysis Date	e: 7/3/2014	Se	eqNo: 569979	Units: mg/L			
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC LowLimit	HighLimit %	%RPD	RPDLimit	Qual

0

137

101

64.4

76

178

161

3.23

0

20

0

Qualifiers:

Diesel Range Organics (DRO)

Surr: DNOP

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1407096**

15-Jul-14

Client: Western Refining Southwest, Inc.

Project: GAC 3rd QTR

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R19692 RunNo: 19692

Prep Date: Analysis Date: 7/3/2014 SeqNo: 571840 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 19 20.00 94.5 70.9 130

Sample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R19692 RunNo: 19692

Prep Date: Analysis Date: 7/3/2014 SeqNo: 571841 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 0.52
 0.050
 0.5000
 0
 104
 80
 120

 Surr: BFB
 21
 20.00
 107
 70.9
 130

Sample ID 1407096-003BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R19692 RunNo: 19692

Prep Date: Analysis Date: 7/3/2014 SeqNo: 571845 Units: mg/L

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** LowLimit HighLimit Qual Gasoline Range Organics (GRO) 18 1.0 10.00 7.028 112 79 121

Surr: BFB 520 400.0 130 70.9 130

Sample ID 1407096-003BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R19692 RunNo: 19692

Prep Date: Analysis Date: 7/3/2014 SeqNo: 571846 Units: mg/L

%REC Analyte Result **PQL** SPK value SPK Ref Val LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 18 1.0 10.00 7 028 107 79 121 2.90 20 Surr: BFB 510 400.0 129 70.9 130 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RL Reporting Detection Limit

Page 5 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1407096**

15-Jul-14

Client: Western Refining Southwest, Inc.

Project: GAC 3rd QTR

Sample ID 5ml rb	SampT	ype: M	BLK	Tes	tCode: El	ATILES				
Client ID: PBW	Batch	n ID: R1	9752	F	RunNo: 1	9752				
Prep Date:	Analysis D	ate: 7/	/8/2014	S	SeqNo: 5	73800	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		87.8	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		91.1	70	130			
Surr: Dibromofluoromethane	8.4		10.00		83.7	70	130			
Surr: Toluene-d8	11		10.00		107	70	130			
Sample ID 100ng lcs	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		·
Client ID: LCSW	Batch	n ID: R1	9752	F	RunNo: 1	9752				
Dran Data:	Analysis D	loto: 7	1010044		SagNa: E	70000	Linita:/I			

Client ID: LCSW	Batch	n ID: R1	9752	F	RunNo: 1	9752				
Prep Date:	Analysis D	ate: 7/	8/2014	9	SeqNo: 5	73802	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.1	70	130			
Toluene	21	1.0	20.00	0	105	80	120			
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.8	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	9.0		10.00		90.4	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

Sample ID b4	SampT	ype: ME	BLK	Tes						
Client ID: PBW	Batch	1D: R1	9752	F	RunNo: 1	9752				
Prep Date:	Analysis D	Analysis Date: 7/8/2014			SeqNo: 5	73828	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.1	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		91.3	70	130			
Surr: Dibromofluoromethane	9.0		10.00		89.7	70	130			
Surr: Toluene-d8	11		10.00		105	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 7

Hall Environmental Analysis Laboratory, Inc.

WO#: **1407096**

15-Jul-14

Client: Western Refining Southwest, Inc.

Project: GAC 3rd QTR

Sample ID 100ng lcs2	SampT	ype: LC	s	Tes						
Client ID: LCSW	Batch	ID: R1	9752	F	RunNo: 1	9752				
Prep Date:	Analysis D	ate: 7/	8/2014	9	SeqNo: 5	73829	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	19	1.0	20.00	0	96.4	80	120			
Surr: 1,2-Dichloroethane-d4	8.7		10.00		87.3	70	130			
Surr: 4-Bromofluorobenzene	8.9		10.00		89.4	70	130			
Surr: Dibromofluoromethane	8.5		10.00		84.6	70	130			
Surr: Toluene-d8	9.8		10.00		98.5	70	130			

Sample ID 1407096-001ams2	2 SampT	SampType: MS TestCode: EPA Method 8260B: VOLATILES										
Client ID: Gac-Lag	Batch	ID: R1	9752	F	RunNo: 1	9752						
Prep Date:	Analysis D	rsis Date: 7/9/2014 SeqNo: 573831 Units: μg/L										
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	21	1.0	20.00	0	104	70	130					
Toluene	20	1.0	20.00	0	102	67.5	123					
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.9	70	130					
Surr: 4-Bromofluorobenzene	9.1		10.00		90.7	70	130					
Surr: Dibromofluoromethane	9.2		10.00		91.5	70	130					
Surr: Toluene-d8	11		10.00		107	70	130					

Sample ID 1407096-001ams	sd2 SampT	уре: МS	SD	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: Gac-Lag	Batch	ID: R1	9752	F	RunNo: 1	9752				
Prep Date:	Analysis D	ate: 7/	9/2014	S	SeqNo: 5	73832	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	106	70	130	1.61	20	
Toluene	19	1.0	20.00	0	97.0	67.5	123	5.24	20	
Surr: 1,2-Dichloroethane-d4	10		10.00		99.5	70	130	0	0	
Surr: 4-Bromofluorobenzene	8.9		10.00		89.3	70	130	0	0	
Surr: Dibromofluoromethane	9.6		10.00		95.7	70	130	0	0	
Surr: Toluene-d8	10		10.00		102	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 7

Hall Environmental Analysis Laboratory 4901 Hawkins NE

ANALYSIS TEL: 505-345-39	Albuquerque, NM 87 175 FAX: 505-345-4 hallenvironmental.c	107	ole Log-In Check List
Client Name: Western Refining Southw Work Order Numb	er: 1407096		RcptNo: 1
Received by/date	9		
Logged By: Ashley Gallegos 7/2/2014 9:45:00 AM	Л	A	
Completed By: Ashley Gallegos 7/2/2014 11:43:28 A	M	A	
Reviewed By: 07/02/14			
Chain of Custody			
1. Custody seals intact on sample bottles?	Yes	No 🗆	Not Present 🗹
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
3. How was the sample delivered?	<u>UPS</u>		
<u>Log In</u>			
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗆	na 🗆
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	NA \square
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌	
7. Sufficient sample volume for indicated test(s)?	Yes 🗸	No□	
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗆	
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗌
10.VOA vials have zero headspace?	Yes 🗸	No 🗆	No VOA Vials
11. Were any sample containers received broken?	Yes	No 🗹	# of preserved bottles checked
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🔽	No 🗆	for pH: (<2 or >12 unless noted
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗆	Adjusted?
14. Is it clear what analyses were requested?	Yes 🗹	No ∐	Observed by
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 📙	Checked by:
Special Handling (if applicable)			
16. Was client notified of all discrepancies with this order?	Yes 🗆	No 🗆	NA

16.\	Was client notified of all d	iscrepancies with this order?	Yes	No 🗌	NA 🗹
	Person Notified:		Date:		
	By Whom:	Charles to the comment of the commen	Via: 🗌 eMail 📗 F	Phone 🔲 Fax 📗	In Person
	Regarding:	and the second s	and the second s		to deposit the second s
	Client Instructions:				

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1 1.	.4	Good	Yes			

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107 Analysis Request	(M 10 V) 24	əlddii 8 ii∆								oort.
A A A	Octoo Park	1			 -			-		tical reç
ENVIRONME YSIS LABOR/ environmental.com Albuquerque, NM 87109 Fax 505-345-4107		8270 (Sen *국 6점(X	\dashv^{\times}		+	+ + +			ie analy
FIRONNS LABOI Mental.com erque, NM 87 505-345-4107	1	OV) 80928 >		X	X			\dashv		ed on the
IR I L nental rque, s05-3	icides / 8082 PCB's	 								ly notate
LYSIS LAE LYSIS LAE allenvironmental.cc - Albuquerque, NN Fax 505-345- Analysis Request	CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	,∃) snoinA								ie clearl
INALYSIS LABC NALYSIS LABC www.hallenvironmental.com ins NE - Albuquerque, NM 8 15-3975 Fax 505-345-41 Analysis Request	<u>.</u> .	RCRA 8 N			·					ta will b
HALL ANAL www.hal kins NE -	(1.403 bor (2.018 orss)	 	+							cted da
ANAL ANAL ANAL Aww.ha 4901 Hawkins NE Tel. 505-345-3975	.,	TPH (Meth	i i					<u> </u>		o-contra
11 Hai	В (СКО /-		Z T	メ	X) ió	Any suk
490 Te	TBE + TPH (Gas only)	M + X3T8							Remarks:	ibility.
	TBE + TMB's (8021)	M + X3T8		_	-		<u> </u>		<u>8</u>	is poss
		HEAL NO	8 8	C830	083	500			Time	s as notice of th
DI DI	E No	HEAL NO		99	7 7		:		Date Date	es. This serve
Time:	ger:	Preservative Type	HC anser	Hel	HCI	amber				ccredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around T Standard Project Name: CHC Project #:	Project Manager: Sampler: 626 On Ice: 7 Fes	Container Type and #	5-18A 1-500	5-VOA	5-10A	1-500			Received by:	contracted to other a
-Custody Record -N Te fining -50 CR 4990 -620-4/35	evel 4 (Full Validation)		Had GAC- LAG	GAC- Explead	GAC-INLET				Relinquished by: Color Kalle Relinquished by:	if necessary, samples submitted to Hall Environmental may be subcontracted to other acc
Client: Wester Mailing Address: #	1.20 0 = 12= 7 12= 1	Time	21-14 11:00	91:10	08:11	-			Date: Time: 7-(-14 3:00) Date: Time:	If necessary,

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

August 14, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 8-4-14 OrderNo.: 1408179

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 8/5/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1408179**Date Reported: **8/14/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lead

 Project:
 GAC 8-4-14
 Collection Date: 8/4/2014 10:00:00 AM

 Lab ID:
 1408179-001
 Matrix: AQUEOUS
 Received Date: 8/5/2014 8:10:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E				Analys	t: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	8/7/2014 1:40:39 AM	14574
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	8/7/2014 1:40:39 AM	14574
Surr: DNOP	112	75.2-161	%REC	1	8/7/2014 1:40:39 AM	14574
EPA METHOD 8015D: GASOLINE RA	NGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	8/6/2014 3:48:55 AM	R20387
Surr: BFB	86.4	70.9-130	%REC	1	8/6/2014 3:48:55 AM	R20387
EPA METHOD 8260: VOLATILES SHO	ORT LIST				Analys	t: KJH
Benzene	ND	1.0	μg/L	1	8/7/2014 7:56:26 PM	R20435
Toluene	ND	1.0	μg/L	1	8/7/2014 7:56:26 PM	R20435
Ethylbenzene	ND	1.0	μg/L	1	8/7/2014 7:56:26 PM	R20435
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	8/7/2014 7:56:26 PM	R20435
Xylenes, Total	ND	1.5	μg/L	1	8/7/2014 7:56:26 PM	R20435
Surr: 1,2-Dichloroethane-d4	94.8	70-130	%REC	1	8/7/2014 7:56:26 PM	R20435
Surr: 4-Bromofluorobenzene	86.3	70-130	%REC	1	8/7/2014 7:56:26 PM	R20435
Surr: Dibromofluoromethane	93.8	70-130	%REC	1	8/7/2014 7:56:26 PM	R20435
Surr: Toluene-d8	98.3	70-130	%REC	1	8/7/2014 7:56:26 PM	R20435

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1408179**Date Reported: **8/14/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-inlet

 Project:
 GAC 8-4-14
 Collection Date: 8/4/2014 10:15:00 AM

 Lab ID:
 1408179-002
 Matrix: AQUEOUS
 Received Date: 8/5/2014 8:10:00 AM

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE					Analys	t: BCN
Diesel Range Organics (DRO)	2.4	0.20		mg/L	1	8/7/2014 2:11:26 AM	14574
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	8/7/2014 2:11:26 AM	14574
Surr: DNOP	140	75.2-161		%REC	1	8/7/2014 2:11:26 AM	14574
EPA METHOD 8015D: GASOLINE R	ANGE					Analys	t: NSB
Gasoline Range Organics (GRO)	14	1.0		mg/L	20	8/6/2014 4:18:54 AM	R20387
Surr: BFB	142	70.9-130	S	%REC	20	8/6/2014 4:18:54 AM	R20387
EPA METHOD 8260: VOLATILES SH	ORT LIST					Analys	t: KJH
Benzene	120	10		μg/L	10	8/7/2014 8:24:27 PM	R20435
Toluene	ND	10		μg/L	10	8/7/2014 8:24:27 PM	R20435
Ethylbenzene	750	10		μg/L	10	8/7/2014 8:24:27 PM	R20435
Methyl tert-butyl ether (MTBE)	ND	10		μg/L	10	8/7/2014 8:24:27 PM	R20435
Xylenes, Total	1200	15		μg/L	10	8/7/2014 8:24:27 PM	R20435
Surr: 1,2-Dichloroethane-d4	93.4	70-130		%REC	10	8/7/2014 8:24:27 PM	R20435
Surr: 4-Bromofluorobenzene	79.6	70-130		%REC	10	8/7/2014 8:24:27 PM	R20435
Surr: Dibromofluoromethane	92.3	70-130		%REC	10	8/7/2014 8:24:27 PM	R20435
Surr: Toluene-d8	93.8	70-130		%REC	10	8/7/2014 8:24:27 PM	R20435

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1408179**

14-Aug-14

Client: Western Refining Southwest, Inc.

Project: GAC 8-4-14

Sample ID MB-14574 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range PBW Client ID: Batch ID: 14574 RunNo: 20365 Prep Date: 8/4/2014 Analysis Date: 8/5/2014 SeqNo: 593029 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.59 0.5000 118 75.2 161

Sample ID MB-14574	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015D: Diese	el Range		
Client ID: PBW	Batch	n ID: 14	574	F	RunNo: 2	0400				
Prep Date: 8/4/2014	Analysis D	oate: 8/	6/2014	5	SeqNo: 5	94052	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.61		0.5000		122	75.2	161			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1408179**

14-Aug-14

Client: Western Refining Southwest, Inc.

Project: GAC 8-4-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R20387 RunNo: 20387

Prep Date: Analysis Date: 8/5/2014 SeqNo: 592947 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 17 20.00 86.9 70.9 130

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1408179**

14-Aug-14

Client: Western Refining Southwest, Inc.

Project: GAC 8-4-14

Sample ID b2	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	ID: R2	0375	F	RunNo: 2	0375				
Prep Date:	Analysis Da	ate: 8/	5/2014	9	SeqNo: 5	93055	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	8.6		10.00		86.1	70	130			
Surr: 4-Bromofluorobenzene	8.1		10.00		80.6	70	130			
Surr: Dibromofluoromethane	8.7		10.00		87.3	70	130			
Surr: Toluene-d8	9.3		10.00		92.6	70	130			
Sample ID b3	SampT	уре: М	BLK	Tes	tCode: E	PA Method	8260: Volatil	es Short L	ist	

	•									
Client ID: PBW	Batcl	n ID: R2	20435	F	RunNo: 2	0435				
Prep Date:	Analysis D	Date: 8/	7/2014	5	SeqNo: 5	94698	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
mp-Xylenes	ND	1.0								
o-Xylene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	8.5		10.00		84.5	70	130			
Surr: 4-Bromofluorobenzene	7.9		10.00		79.1	70	130			
Surr: Dibromofluoromethane	8.2		10.00		82.0	70	130			
Surr: Toluene-d8	9.0		10.00		89.8	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

RcptNo: 1 Client Name: Western Refining Southw Work Order Number: 1408179 Received by/date: Celin Som 8/5/2014 8:10:00 AM Logged By: Celina Sessa Celin Som 8/5/2014 12:02:27 PM Completed By: Celina Sessa Reviewed By: Chain of Custody Not Present Yes 1 Custody seals intact on sample bottles? Yes 🗸 No 🗌 Not Present 2. Is Chain of Custody complete? Courier 3 How was the sample delivered? <u>Log In</u> No 🔲 NA 🗌 Yes 🗹 4. Was an attempt made to cool the samples? NA 🗌 Yes 🗸 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗹 No 🗆 6. Sample(s) in proper container(s)? No 🗔 7. Sufficient sample volume for indicated test(s)? No 🔲 8. Are samples (except VOA and ONG) properly preserved? NA 🗌 No 🗹 Yes 9. Was preservative added to bottles? No VOA Vials ~ No 🗔 10.VOA vials have zero headspace? No 🗹 11. Were any sample containers received broken? # of preserved bottles checked Yes 🔽 No 🗆 for pH: 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗔 Yes 13 Are matrices correctly identified on Chain of Custody? No 🗆 14. Is it clear what analyses were requested? No. Checked by: $\overline{\mathbf{v}}$ Yes 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes No 🗆 NA 🔽 16. Was client notified of all discrepancies with this order? Person Notified: Date: eMail Phone Fax In Person By Whom: Via: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp C Condition Seal Intact Seal No Seal Date Signed By 1.4 Good Yes

Chain-of-Custody Record	Turn-Around Time:	INTERNATION OF THE PROPERTY OF
Client: Western Resilvan	X Standard	· ·
/ ~	Project Name:	www.hallenvironmental.com
Mailing Address: # 50 CR 4990	GAC 8-4-14	4901 Hawkins NE - Albuquerque, NM 87109
Blooms. (e.b., NM 87413	Project #:	Tel. 505-345-3975 Fax 505-345-4107
٦, ا		
1	Project Manager:	(vin
QA/QC Package:		(SI
☐ Standard ★ Level 4 (Full Validation)		SIM (GS
Accreditation	Sampler: Del	(1.8 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4 (1.4
 	Temperature: / <	14 the second of
	Container Drecentative	+ MTE (VOA (VOA (VOA (VOA (VOA
Date Time Matrix Sample Request ID	Type and #	PTEX - PAIR BUE PAH'S ROB1 PRO
2-4-14 10:00 Hal GAC-Lead	5-VOA HC/ -001	X
_	1-500ml Comber -001	X
-474 10:15 GAC-INLET	HC1 -	
	anker	X
Date: Time: Relinquished by:	me Weele 8/4/14	Time Remarks: $/530$
Time: F	Date	Time
4/12 1850 DAVITA Was 18	afric Susse 08/05/14	08/0
i	ubcontracted to other accredited laboratories. This serves as	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 9-3-14 OrderNo.: 1409152

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 9/4/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1409152**

Date Reported: 9/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Lead

 Project:
 GAC 9-3-14
 Collection Date: 9/3/2014 8:15:00 AM

 Lab ID:
 1409152-001
 Matrix: AQUEOUS
 Received Date: 9/4/2014 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analys	: BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	9/9/2014 7:08:01 AM	15117
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	9/9/2014 7:08:01 AM	15117
Surr: DNOP	128	75.2-161	%REC	1	9/9/2014 7:08:01 AM	15117
EPA METHOD 8015D: GASOLINE R	ANGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	9/5/2014 12:55:46 AM	R21004
Surr: BFB	93.8	70.9-130	%REC	1	9/5/2014 12:55:46 AM	R21004
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analys	t: KJH
Benzene	ND	1.0	μg/L	1	9/9/2014 1:05:53 PM	R21114
Toluene	ND	1.0	μg/L	1	9/9/2014 1:05:53 PM	R21114
Ethylbenzene	ND	1.0	μg/L	1	9/9/2014 1:05:53 PM	R21114
Xylenes, Total	ND	2.0	μg/L	1	9/9/2014 1:05:53 PM	R21114
Surr: 1,2-Dichloroethane-d4	102	70-130	%REC	1	9/9/2014 1:05:53 PM	R21114
Surr: 4-Bromofluorobenzene	101	70-130	%REC	1	9/9/2014 1:05:53 PM	R21114
Surr: Dibromofluoromethane	90.5	70-130	%REC	1	9/9/2014 1:05:53 PM	R21114
Surr: Toluene-d8	97.2	70-130	%REC	1	9/9/2014 1:05:53 PM	R21114

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1409152**

Date Reported: 9/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Inlet

 Project:
 GAC 9-3-14
 Collection Date: 9/3/2014 8:20:00 AM

 Lab ID:
 1409152-002
 Matrix: AQUEOUS
 Received Date: 9/4/2014 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	GE				Analys	t: BCN
Diesel Range Organics (DRO)	2.4	0.20	mg/L	1	9/9/2014 9:16:37 AM	15117
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	9/9/2014 9:16:37 AM	15117
Surr: DNOP	126	75.2-161	%REC	1	9/9/2014 9:16:37 AM	15117
EPA METHOD 8015D: GASOLINE R	ANGE				Analys	t: NSB
Gasoline Range Organics (GRO)	5.0	1.0	mg/L	20	9/5/2014 1:24:29 AM	R21004
Surr: BFB	115	70.9-130	%REC	20	9/5/2014 1:24:29 AM	R21004
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analys	t: KJH
Benzene	71	10	μg/L	10	9/9/2014 2:34:56 PM	R21114
Toluene	ND	10	μg/L	10	9/9/2014 2:34:56 PM	R21114
Ethylbenzene	550	10	μg/L	10	9/9/2014 2:34:56 PM	R21114
Xylenes, Total	580	20	μg/L	10	9/9/2014 2:34:56 PM	R21114
Surr: 1,2-Dichloroethane-d4	97.7	70-130	%REC	10	9/9/2014 2:34:56 PM	R21114
Surr: 4-Bromofluorobenzene	93.9	70-130	%REC	10	9/9/2014 2:34:56 PM	R21114
Surr: Dibromofluoromethane	89.6	70-130	%REC	10	9/9/2014 2:34:56 PM	R21114
Surr: Toluene-d8	93.2	70-130	%REC	10	9/9/2014 2:34:56 PM	R21114

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409152**

15-Sep-14

Client: Western Refining Southwest, Inc.

Project: GAC 9-3-14

Sample ID MB-15117 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: **PBW** Batch ID: 15117 RunNo: 21055 Prep Date: 9/4/2014 Analysis Date: 9/9/2014 SeqNo: 613885 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.56 0.5000 75.2 112 161

Sample ID 1409152-001CMS SampType: MS TestCode: EPA Method 8015D: Diesel Range Batch ID: 15117 Client ID: Lead RunNo: 21055 Prep Date: 9/4/2014 Analysis Date: 9/9/2014 SeqNo: 613901 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 120 64.4 3.0 2.500 178 Surr: DNOP 0.26 0.2500 104 75.2 161

Sample ID 1409152-001CMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: Lead Batch ID: 15117 RunNo: 21055 Prep Date: 9/4/2014 Analysis Date: 9/9/2014 SeqNo: 613903 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 3.8 0.20 2.500 0 151 64.4 178 22.5 20 R Surr: DNOP 0.32 0.2500 127 75.2 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: 1409152

15-Sep-14

Client: Western Refining Southwest, Inc.

Project: GAC 9-3-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R21004 RunNo: 21004

Prep Date: Analysis Date: 9/4/2014 SeqNo: 611409 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) ND 0.050

20.00 94.2 70.9 Surr: BFB 19 130

Sample ID 1409152-002BMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: Inlet Batch ID: R21004 RunNo: 21004

Prep Date: Analysis Date: 9/5/2014 SeqNo: 611418 Units: mg/L

LowLimit Analyte Result **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) 16 1.0 10.00 5.024 105 70.4 127 480 400.0 70.9 Surr: BFB 121 130

Sample ID 1409152-002BMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range

Client ID: Inlet Batch ID: R21004 RunNo: 21004

Prep Date: Analysis Date: 9/5/2014 SeqNo: 611419 Units: mg/L

%RPD SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte Result **PQL** LowLimit Gasoline Range Organics (GRO) 14 10.00 5.024 93.6 70.4 127 7.52 20 Surr: BFB 480 400.0 120 70.9 130 0 0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

10

WO#: **1409152**

15-Sep-14

Client: Western Refining Southwest, Inc.

Project: GAC 9-3-14

Sample ID b4	Samp1	ype: ME	BLK	Tes	tCode: E l	PA Method	8260: Volatile	es Short I	_ist	
Client ID: PBW	Batcl	n ID: R2	1114	F	RunNo: 2	1114				
Prep Date:	Analysis D	oate: 9/	9/2014	S	SeqNo: 6	14493	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
mp-Xylenes	ND	1.0								
o-Xylene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.8	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		93.3	70	130			
Surr: Dibromofluoromethane	8.2		10.00		81.8	70	130			
Surr: Toluene-d8	8.8		10.00		87.5	70	130			
Sample ID 1409152-001a ms	Sampl	уре: М \$	6	Tes	tCode: E	PA Method	8260: Volatile	es Short L	_ist	
Client ID: Lead	Batcl	n ID: R2	1114	F	RunNo: 2	1114				
Prep Date:	Analysis D	oate: 9/	9/2014	8	SeqNo: 6	14501	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.6	70	130			
Toluene	20	1.0	20.00	0	100	70	130			
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.8	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	8.8		10.00		88.1	70	130			

Sample ID 1409152-001a ms	sd SampT	ype: MS	SD	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: Lead	Batch	ID: R2	1114	F	RunNo: 2	1114				
Prep Date:	Analysis D	ate: 9/	9/2014	5	SeqNo: 6	14502	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.5	70	130	0.135	20	
Toluene	23	1.0	20.00	0	113	70	130	11.8	20	
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.5	70	130	0	0	
Surr: 4-Bromofluorobenzene	9.0		10.00		89.8	70	130	0	0	
Surr: Dibromofluoromethane	8.6		10.00		85.7	70	130	0	0	
Surr: Toluene-d8	10		10.00		103	70	130	0	0	

99.6

70

130

10.00

Qualifiers:

Surr: Toluene-d8

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Western Refining Southw Work Order Number: 1409152 RcptNo: 1 Client Name: Received by/date: Lindsay Mangin 9/4/2014 7:00:00 AM Logged By: 9/4/2014 8:54:10 AM Completed By: Lindsay Mangin Reviewed By: Chain of Custody No 🗆 Not Present Yes 1. Custody seals intact on sample bottles? Yes 🗹 No 🗆 2. Is Chain of Custody complete? Not Present 3. How was the sample delivered? <u>Courier</u> <u>Log In</u> No 🗌 NA 🗆 Yes 🗸 4. Was an attempt made to cool the samples? No 🗌 NA 🗆 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗹 Yes 🗸 No 🗌 6. Sample(s) in proper container(s)? No 🗀 Yes 7. Sufficient sample volume for indicated test(s)? No 🗔 8. Are samples (except VOA and ONG) properly preserved? Yes NA 🗆 No 🗸 9. Was preservative added to bottles? Yes Yes 🗸 No No VOA Vials 10. VOA vials have zero headspace? Yes \square No 🔽 11. Were any sample containers received broken? # of preserved bottles checked No 🗌 for pH: Yes 🔽 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Yes 🗸 Nο 13 Are matrices correctly identified on Chain of Custody? No \square 14. Is it clear what analyses were requested? Yes 🗹 Checked by: No 🗌 15. Were all holding times able to be met? Yes 🗸 (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 16. Was client notified of all discrepancies with this order? No 🗀 NA 🗹 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information

Signed By

Cooler No Temp ºC Condition | Seal Intact | Seal No | Seal Date Good

Yes

ပ	hain-	of-C	Chain-of-Custody Record		um-Around ime:	ıme:				7	4		7	Č	7	ENVIDONMENT	2	•	
Client	Client		Refining		Standard	□ Rush					ANA	٠ - ا) IS		S M	ANALYSTS LABORATOR)		Į Ž	_
		1			Project Name:						ww.	- Ti nallen	www.hallenvironmental.com	nenta	Com			(
Mailing	Mailing Address:	# 50	5 CR 4990		GAG	0/	3-14	4	4901 Hawkins NE	lawkir	ls NE	- 1	ənbng	rque,	ΣZ	Albuquerque, NM 87109			
18	15/2MC/2	10/00	N 000 N 0	M	Project #:			•	Tel. 505-345-3975	5-34	5-397		Fax 505-345-4107	505-3	45-41	07			
Phone #:	N .	505-632	-4/35									Ana	Analysis Request	Segui	est				
email or Fax#:	Fax#:				Project Manage	ger:		<u> </u>	(Ku)				([†] C	,	7				
QA/QC F	QA/QC Package:								io er			(0	S ^{*†} (s'8C	7 2				
☐ Standard	dard		太 Level 4 (Full Validation)	lidation)								IAIIS	JG,)d 7	$\overline{\Omega}$	8.			
Accreditation	tation	. 1			Sampler: R.6	9				(r.		0/2	^z ON	·		SIÇ			(N
□ NELAP	AP	□ Other	ər	_	On Ice:	ĭ Yes ⊸	🗖 No 🗈			81;						_			JO
☐ EDD (Type)	(Type)_				Sample Temperature:	erature:				þ þ									Y)
Date	Time	Matrix	Sample Request ID	est ID	Container Type and #	Preservative Type	HEAL NO.	TM + X3T8 TM + X3T8	TPH 8015B	TPH (Metho	EDB (Wetho	PAH's (8310 	O,∃) anoinA	8081 Pestic	/OV) 80928	8270 (Semi- Lx3 SS (T	e en eq.		Air Bubbles
2344	8:15	H20	Lead		5-10A	HC/	100-		×						X		-		
					205-1	amber										X			
7-3-14	8:30		inlet		F-10A	124	700-		×		 				X				ļ.—
			/		1-500	amber										X			
																		<u> </u>	<u> </u>
																			_
															<u> </u>				
Date:	Time:	Relinquished by:	had by:	ا (م	py:	77	Date Time 13/4 (STO)	Remarks:	ks:										
Date: [/3//7	Time: 2024	Relinquished by	ned by: Hatta) >	Received by:	In De	Date Time 29/04/14 0200					· ·							
, I	f necessary,	samples sub	omitted to Hall Environmental	may be subco	intracted to other ac	credited laboratorie	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited taboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	possibility	. Any s	np-contr	acted o	ata will t	e clearly	/ notate	d on the	s analytic	al repor	نہ ا	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 09, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 4th QTR 10-1-14 OrderNo.: 1410098

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1410098**Date Reported: **10/9/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Lag

 Project:
 GAC 4th QTR 10-1-14
 Collection Date: 10/1/2014 10:15:00 AM

 Lab ID:
 1410098-001
 Matrix: AQUEOUS
 Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	•				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	10/7/2014 10:04:57 AM	15716
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	10/7/2014 10:04:57 AM	15716
Surr: DNOP	157	75.2-161	%REC	1	10/7/2014 10:04:57 AM	15716
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	10/8/2014 12:50:18 PM	R21756
Surr: BFB	93.3	70.9-130	%REC	1	10/8/2014 12:50:18 PM	R21756
EPA METHOD 8260: VOLATILES SHO	RT LIST				Analyst	: RAA
Benzene	ND	1.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Toluene	ND	1.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Ethylbenzene	ND	1.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Xylenes, Total	ND	2.0	μg/L	1	10/3/2014 7:08:57 PM	R21653
Surr: 1,2-Dichloroethane-d4	85.1	70-130	%REC	1	10/3/2014 7:08:57 PM	R21653
Surr: 4-Bromofluorobenzene	87.3	70-130	%REC	1	10/3/2014 7:08:57 PM	R21653
Surr: Dibromofluoromethane	82.9	70-130	%REC	1	10/3/2014 7:08:57 PM	R21653
Surr: Toluene-d8	87.2	70-130	%REC	1	10/3/2014 7:08:57 PM	R21653

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1410098**

Date Reported: 10/9/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Lead

 Project:
 GAC 4th QTR 10-1-14
 Collection Date: 10/1/2014 10:20:00 AM

 Lab ID:
 1410098-002
 Matrix: AQUEOUS
 Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E				Analyst	: JME
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	10/6/2014 10:40:34 PM	15716
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	10/6/2014 10:40:34 PM	15716
Surr: DNOP	137	75.2-161	%REC	1	10/6/2014 10:40:34 PM	15716
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	10/8/2014 2:20:53 PM	R21756
Surr: BFB	95.6	70.9-130	%REC	1	10/8/2014 2:20:53 PM	R21756
EPA METHOD 8260: VOLATILES SHO	ORT LIST				Analyst	: RAA
Benzene	ND	1.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Toluene	ND	1.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Ethylbenzene	ND	1.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Xylenes, Total	ND	2.0	μg/L	1	10/3/2014 8:32:37 PM	R21653
Surr: 1,2-Dichloroethane-d4	87.4	70-130	%REC	1	10/3/2014 8:32:37 PM	R21653
Surr: 4-Bromofluorobenzene	86.7	70-130	%REC	1	10/3/2014 8:32:37 PM	R21653
Surr: Dibromofluoromethane	82.7	70-130	%REC	1	10/3/2014 8:32:37 PM	R21653
Surr: Toluene-d8	92.2	70-130	%REC	1	10/3/2014 8:32:37 PM	R21653

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical ReportLab Order **1410098**

Date Reported: 10/9/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC Inlet

 Project:
 GAC 4th QTR 10-1-14
 Collection Date: 10/1/2014 10:30:00 AM

 Lab ID:
 1410098-003
 Matrix: AQUEOUS
 Received Date: 10/2/2014 6:50:00 AM

Analyses	Result	RL Q	Qual U	J nits	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	.					Analyst	: JME
Diesel Range Organics (DRO)	3.0	0.20	ı	mg/L	1	10/6/2014 11:02:05 PM	15716
Motor Oil Range Organics (MRO)	ND	2.5	1	mg/L	1	10/6/2014 11:02:05 PM	15716
Surr: DNOP	146	75.2-161	(%REC	1	10/6/2014 11:02:05 PM	15716
EPA METHOD 8015D: GASOLINE RAI	NGE					Analyst	: NSB
Gasoline Range Organics (GRO)	6.0	0.50	ı	mg/L	10	10/8/2014 2:51:11 PM	R21756
Surr: BFB	143	70.9-130	S	%REC	10	10/8/2014 2:51:11 PM	R21756
EPA METHOD 8260: VOLATILES SHO	RT LIST					Analyst	: RAA
Benzene	54	10	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Toluene	ND	10	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Ethylbenzene	560	10	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Methyl tert-butyl ether (MTBE)	ND	10	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Xylenes, Total	760	20	ı	µg/L	10	10/3/2014 9:00:38 PM	R21653
Surr: 1,2-Dichloroethane-d4	88.7	70-130	C	%REC	10	10/3/2014 9:00:38 PM	R21653
Surr: 4-Bromofluorobenzene	85.7	70-130	C	%REC	10	10/3/2014 9:00:38 PM	R21653
Surr: Dibromofluoromethane	85.0	70-130	C	%REC	10	10/3/2014 9:00:38 PM	R21653
Surr: Toluene-d8	87.6	70-130	(%REC	10	10/3/2014 9:00:38 PM	R21653

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 6

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1410098**

09-Oct-14

Client: Western Refining Southwest, Inc.

Project: GAC 4th QTR 10-1-14

Sample ID MB-15716 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range PBW Client ID: Batch ID: 15716 RunNo: 21668 Prep Date: 10/4/2014 Analysis Date: 10/6/2014 SeqNo: 636846 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 Motor Oil Range Organics (MRO) ND 2.5 Surr: DNOP 0.50 0.5000 99.0 75.2 161 Sample ID I CS-15716

Sample 10 LCS-15/16	Sampi	ype. LC	.5	res	icode. Ei	PA Wethod	ชบาวบ: Diese	Range		
Client ID: LCSW	Batch	ID: 15	716	F	RunNo: 2	1668				
Prep Date: 10/4/2014	Analysis D	ate: 10	0/6/2014	S	SeqNo: 6	36847	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	2.5	0.20	2.500	0	100	65.8	162			
Surr: DNOP	0.22		0.2500		87.9	75.2	161			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1410098**

09-Oct-14

Client: Western Refining Southwest, Inc.

Project: GAC 4th QTR 10-1-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R21756 RunNo: 21756

Prep Date: Analysis Date: 10/8/2014 SeqNo: 638827 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 91.7 70.9 130

Sample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R21756 RunNo: 21756

Prep Date: Analysis Date: 10/8/2014 SeqNo: 638828 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 0.49
 0.050
 0.5000
 0
 98.4
 80
 120

 Surr: BFB
 20
 20.00
 101
 70.9
 130

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 6

Hall Environmental Analysis Laboratory, Inc.

WO#: **1410098**

09-Oct-14

Client: Western Refining Southwest, Inc.

Project: GAC 4th QTR 10-1-14

Sample ID 5ml-rb Client ID: PBW	•	ype: ME			tCode: El		8260: Volatil	es Short I	_ist	
Prep Date:	Analysis D	ate: 10	0/3/2014	S	SeqNo: 6	36258	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.0		10.00		80.4	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	8.0		10.00		80.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.4	70	130			

Sample ID 100ng lcs	SampT	ype: LC	s	Tes	tCode: EI	PA Method	8260: Volatile	es Short L	ist	
Client ID: LCSW	Batch	1D: R2	1653	F	RunNo: 2	1653				
Prep Date:	Analysis D	ate: 10	0/3/2014	S	SeqNo: 6	36259	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.4	70	130			
Toluene	20	1.0	20.00	0	98.8	80	120			
Surr: 1,2-Dichloroethane-d4	8.5		10.00		84.9	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.7	70	130			
Surr: Dibromofluoromethane	8.0		10.00		79.7	70	130			
Surr: Toluene-d8	9.1		10.00		91.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Work Order Number: 1410098 RcptNo: 1 Western Refining Southw Client Name: Received by/date: anne Sham 10/2/2014 6:50:00 AM Logged By: **Anne Thorne** ame Sham 10/2/2014 Completed By: **Anne Thorne** Reviewed By: Chain of Custody Not Present Yes 🗌 No 🗀 1. Custody seals intact on sample bottles? No 🗌 Not Present Yes 🔽 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log In NA 🗀 No 🗀 Yes 🔽 4. Was an attempt made to cool the samples? NA 🗆 Yes 🗹 No 5. Were all samples received at a temperature of >0° C to 6.0°C No Yes 🗹 Sample(s) in proper container(s)? No 🗌 Yes 7. Sufficient sample volume for indicated test(s)? No 🔲 Yes 8. Are samples (except VOA and ONG) properly preserved? NA \square No 🔽 Yes 9. Was preservative added to bottles? No 🗔 No VOA Vials Yes 10. VOA vials have zero headspace? Yes \square No 🗹 11. Were any sample containers received broken? # of preserved bottles checked No 🗆 for pH: Yes 🗹 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? Yes 🔽 No 🗌 13. Are matrices correctly identified on Chain of Custody? Yes 🗹 No 🗌 14. Is it clear what analyses were requested? Checked by: Yes 🔽 No 🗌 15. Were all holding times able to be met? (if no, notify customer for authorization.) Special Handling (if applicable) NA 🗹 Yes 🗌 No 🗀 16. Was client notified of all discrepancies with this order? Date Person Notified: Via: eMail Phone Fax in Person By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 1.3 Good Yes

ord	Turn-Around Time:	ime:				I		Ш	2	Ž	Z	HALL ENVIRONMENTAL	Z	Ä	
Client: Western P. Pining	X Standard	□ Rush				<	Z Z	֡֟֝֟֝֟֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֡֟֝֡֟֝֡֡֝ ֡	SIS		BC	ANALYSIS LABORATORY		X	
# 50 CR 4980	Project Name:					>	ww.h	allen	www.hallenvironmental.com	์ าental	.com				
Mailing Address: 75/10 m.C.; e 1 d NM 87413	GAC	41-14-14	-10-1-14	4	4901 Hawkins NE	awkir	s NE	ı	enbno	rque,	ΣN	Albuquerque, NM 87109			
	Project #:				Tel. 5(505-345-3975	-397		Fax &	05-3	505-345-4107	07			
Phone #: 505-631-1/35								Anal	Analysis Request	Sedu	sst				
email or Fax#:	Project Manager:	jer:			/ 5				([†] O	4	4124		_		
QA/QC Package:					0.00		(5)	(0)	S' [†] C		₹ 2 2				
☐ Standard ★Level 4 (Full Validation)		į			·~\		MIS		од [,] с		<u>IM</u>	B.			
Accreditation	Sampler: Bo					(1.8		0.170	ΌΝ'ε		1				(N 10
(pd)	Sample Tempe	rature:				ÞР			ON'I) (V
Date Time Matrix Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	ITM + X3T8 ITM + X3T8	45108 H9T	TPH (Metho	EDB (Metho	PAH's (8310 PCRA 8 Me	O,7) anoinA	siteeq 1808	40V) 808S8 -imə2) 07S8	700-E3			Pir Bubbles
1-14 10:15 Had CAR LAS	5-110A		132	-	×		-	-							
	1-5am	ander	12Cd									X			
-1-14 10:20 1 GAY - Lead	5-V0A	401	100°		×						イ			!	
	1-500m	amber	-202		!							X			
0-1-14 10:30 GAC-INET	5-16A	He1	507-		\geq					-	\prec				\dashv
	1-50m	amber	E92									×			
										i	-				_
										_					
												_			
							_								-
Date: Time: Relinquished by:	Received by:	(beb	Date Time 10///4 1421	Remarks:	rks:										
Date: Time: Relinquished by:		To A	Date Time $(Z)^{\prime}L$ (L,E)												
1 /	contracted to other ac	ق	dited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report	possibility	/. Any s	ub-contr	acted da	ta will b	e clear	y notate	d on the	analytic	al report	برا	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 14, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 11-4-14 OrderNo.: 1411136

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 11/5/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1411136**

Date Reported: 11/14/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Inlet

 Project:
 GAC 11-4-14
 Collection Date: 11/4/2014 8:30:00 AM

 Lab ID:
 1411136-001
 Matrix: AQUEOUS
 Received Date: 11/5/2014 7:30:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	iΕ				Analys	t: JME
Diesel Range Organics (DRO)	1.8	0.20	mg/L	1	11/11/2014 5:44:18 AN	Л 16294
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	11/11/2014 5:44:18 AN	Л 16294
Surr: DNOP	125	75.2-161	%REC	1	11/11/2014 5:44:18 AM	<i>l</i> 16294
EPA METHOD 8015D: GASOLINE RA	NGE				Analys	t: NSB
Gasoline Range Organics (GRO)	6.6	0.50	mg/L	10	11/10/2014 2:48:14 PM	/I R22439
Surr: BFB	125	80-120	S %REC	10	11/10/2014 2:48:14 PM	/I R22439
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analys	t: DJF
Benzene	87	10	μg/L	10	11/11/2014 7:50:52 PM	/I R22481
Toluene	ND	10	μg/L	10	11/11/2014 7:50:52 PM	/I R22481
Ethylbenzene	670	10	μg/L	10	11/11/2014 7:50:52 PM	/I R22481
Xylenes, Total	620	20	μg/L	10	11/11/2014 7:50:52 PM	/I R22481
Surr: 1,2-Dichloroethane-d4	90.9	70-130	%REC	10	11/11/2014 7:50:52 PM	/I R22481
Surr: 4-Bromofluorobenzene	81.7	70-130	%REC	10	11/11/2014 7:50:52 PM	/I R22481
Surr: Dibromofluoromethane	91.0	70-130	%REC	10	11/11/2014 7:50:52 PM	/I R22481
Surr: Toluene-d8	91.1	70-130	%REC	10	11/11/2014 7:50:52 PM	/I R22481

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Lab Order **1411136**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 11/14/2014

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC Lead

 Project:
 GAC 11-4-14
 Collection Date: 11/4/2014 8:40:00 AM

 Lab ID:
 1411136-002
 Matrix: AQUEOUS
 Received Date: 11/5/2014 7:30:00 AM

Analyses	Result	RL Q	ual Units	DF Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE				Analyst:	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1 11/6/2014 9:27:04 PM	16263
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1 11/6/2014 9:27:04 PM	16263
Surr: DNOP	171	75.2-161	S %REC	1 11/6/2014 9:27:04 PM	16263
EPA METHOD 8015D: GASOLINE RANG	GE			Analyst	NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1 11/10/2014 4:09:31 PM	R22439
Surr: BFB	88.5	80-120	%REC	1 11/10/2014 4:09:31 PM	R22439
EPA METHOD 8260: VOLATILES SHOR	T LIST			Analyst	DJF
Benzene	ND	1.0	μg/L	1 11/11/2014 8:18:46 PM	R22481
Toluene	ND	1.0	μg/L	1 11/11/2014 8:18:46 PM	R22481
Ethylbenzene	ND	1.0	μg/L	1 11/11/2014 8:18:46 PM	R22481
Xylenes, Total	ND	2.0	μg/L	1 11/11/2014 8:18:46 PM	R22481
Surr: 1,2-Dichloroethane-d4	88.2	70-130	%REC	1 11/11/2014 8:18:46 PM	R22481
Surr: 4-Bromofluorobenzene	76.8	70-130	%REC	1 11/11/2014 8:18:46 PM	R22481
Surr: Dibromofluoromethane	96.6	70-130	%REC	1 11/11/2014 8:18:46 PM	R22481
Surr: Toluene-d8	91.2	70-130	%REC	1 11/11/2014 8:18:46 PM	R22481

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1411136**

14-Nov-14

Client: Western Refining Southwest, Inc.

Project: GAC 11-4-14

Project: GAC 11	7 17									
Sample ID MB-16263	SampTy	ре: МВ	BLK	Tes	tCode: E	PA Method	8015D: Diese	I Range		
Client ID: PBW	Batch	ID: 162	263	F	RunNo: 2	2362				
Prep Date: 11/6/2014	Analysis Da	ite: 11	/6/2014	5	SeqNo: 6	60163	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.80		0.5000		161	75.2	161			
Sample ID LCS-16263	SampTy	pe: LC	S	Tes	tCode: E	PA Method	8015D: Diese	I Range		
Client ID: LCSW	Batch	ID: 162	263	F	RunNo: 2	2362				
Prep Date: 11/6/2014	Analysis Da	ite: 11	/6/2014	9	SeqNo: 6	60164	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.6	0.20	2.500	0	146	65.8	162			
Surr: DNOP	0.39		0.2500		157	75.2	161			
Sample ID MB-16294	SampTy	ре: МВ	BLK	Tes	tCode: E	PA Method	8015D: Diese	l Range		
Client ID: PBW	Batch	ID: 162	294	F	RunNo: 2	2413				
Prep Date: 11/7/2014	Analysis Da	ite: 11	/10/2014	8	SeqNo: 6	61403	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	0.20								
Motor Oil Range Organics (MRO)	ND	2.5								
Surr: DNOP	0.67		0.5000		134	75.2	161			
Sample ID LCS-16294	SampTy	pe: LC	S	Tes	tCode: E	PA Method	8015D: Diese	l Range		
Client ID: LCSW	Batch	ID: 162	294	F	RunNo: 2	2413				
Prep Date: 11/7/2014	Analysis Da	ite: 11	/11/2014	8	SeqNo: 6	61404	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	3.1	0.20	2.500	0	125	65.8	162			
Surr: DNOP	0.33		0.2500		131	75.2	161			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1411136**

14-Nov-14

Client: Western Refining Southwest, Inc.

Project: GAC 11-4-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: R22439 RunNo: 22439

Prep Date: Analysis Date: 11/10/2014 SeqNo: 661831 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 0.050

Surr: BFB 18 20.00 88.4 80 120

Sample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015D: Gasoline Range

Client ID: LCSW Batch ID: R22439 RunNo: 22439

19

Prep Date: Analysis Date: 11/10/2014 SeqNo: 661832 Units: mg/L

20.00

LowLimit Analyte Result **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 0.48 0.050 0.5000 95.4 80 120

94.1

80

120

Qualifiers:

Surr: BFB

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1411136**

14-Nov-14

Client: Western Refining Southwest, Inc.

Project: GAC 11-4-14

Sample ID b5	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batch	1D: R2	2481	F	RunNo: 2	2481				
Prep Date:	Analysis D	ate: 11	I/11/2014	S	SeqNo: 6	63018	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.9	70	130			
Surr: 4-Bromofluorobenzene	7.8		10.00		77.6	70	130			
Surr: Dibromofluoromethane	9.4		10.00		94.0	70	130			
Surr: Toluene-d8	9.6		10.00		96.0	70	130			

Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: LCSW	Batch	n ID: R2	2481	F	RunNo: 2	2481				
Prep Date:	Analysis D)ate: 1	1/11/2014	5	SeqNo: 6	63019	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	23	1.0	20.00	0	113	70	130			
Toluene	21	1.0	20.00	0	105	80	120			
Surr: 1,2-Dichloroethane-d4	8.6		10.00		86.4	70	130			
Surr: 4-Bromofluorobenzene	8.1		10.00		80.6	70	130			
Surr: Dibromofluoromethane	9.1		10.00		90.6	70	130			
Surr: Toluene-d8	9.0		10.00		90.5	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory

4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com RcptNo: 1 Work Order Number: 1411136 Client Name: Western Refining Southw Received by/date: anne Sham 11/5/2014 7:30:00 AM Logged By: **Anne Thorne** Completed By: **Anne Thorne** 11/5/2014 Reviewed By: Chain of Custody Not Present Yes 1. Custody seals intact on sample bottles? ~ No 🗆 Not Present L 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? Log In No 🗌 NA 🗆 Yes 🗸 4. Was an attempt made to cool the samples? NA 🗀 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No ∐ Yes 🗸 No I Sample(s) in proper container(s)? Yes 🗹 No 7. Sufficient sample volume for indicated test(s)? **~** No 8. Are samples (except VOA and ONG) properly preserved? Yes No 🔽 Yes 9. Was preservative added to bottles? No □ 10. VOA vials have zero headspace? No 🗹 Yes 11. Were any sample containers received broken? # of preserved bottles checked No 🗌 for pH: Yes 🗸 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗆 13. Are matrices correctly identified on Chain of Custody? Yes 🗹 ✓ No 14. Is it clear what analyses were requested? Yes 🗸 No 🗌 Checked by: 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 NA 🗸 No | 16. Was client notified of all discrepancies with this order? Person Notified: Date Via: eMail Phone Fax By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Seal Date Signed By Seal Intact | Seal No Cooler No Temp ⁰C Condition 1.0 Good Yes

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 11, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: GAC 12-1-14 OrderNo.: 1412050

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 12/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1412050**

Date Reported: 12/11/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Client Sample ID: GAC-Inlet

 Project:
 GAC 12-1-14
 Collection Date: 12/1/2014 9:30:00 AM

 Lab ID:
 1412050-001
 Matrix: AQUEOUS
 Received Date: 12/2/2014 7:30:00 AM

Analyses	Result	RL Q	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANG	E					Analyst	BCN
Diesel Range Organics (DRO)	2.9	0.20		mg/L	1	12/5/2014 2:31:54 PM	16628
Motor Oil Range Organics (MRO)	ND	2.5		mg/L	1	12/5/2014 2:31:54 PM	16628
Surr: DNOP	112	75.2-161		%REC	1	12/5/2014 2:31:54 PM	16628
EPA METHOD 8015D: GASOLINE RA	NGE					Analyst	NSB
Gasoline Range Organics (GRO)	5.5	0.50		mg/L	10	12/2/2014 2:14:12 PM	R22888
Surr: BFB	123	80-120	S	%REC	10	12/2/2014 2:14:12 PM	R22888
EPA METHOD 8260: VOLATILES SHO	ORT LIST					Analyst	KJH
Benzene	78	10		μg/L	10	12/2/2014 12:00:10 PM	R22889
Toluene	ND	10		μg/L	10	12/2/2014 12:00:10 PM	R22889
Ethylbenzene	610	10		μg/L	10	12/2/2014 12:00:10 PM	R22889
Methyl tert-butyl ether (MTBE)	ND	10		μg/L	10	12/2/2014 12:00:10 PM	R22889
Xylenes, Total	590	15		μg/L	10	12/2/2014 12:00:10 PM	R22889
Surr: 1,2-Dichloroethane-d4	95.4	70-130		%REC	10	12/2/2014 12:00:10 PM	R22889
Surr: 4-Bromofluorobenzene	76.5	70-130		%REC	10	12/2/2014 12:00:10 PM	R22889
Surr: Dibromofluoromethane	90.5	70-130		%REC	10	12/2/2014 12:00:10 PM	R22889
Surr: Toluene-d8	89.8	70-130		%REC	10	12/2/2014 12:00:10 PM	R22889

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Date Reported: 12/11/2014

Lab Order **1412050**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: GAC-Lead

 Project:
 GAC 12-1-14
 Collection Date: 12/1/2014 9:20:00 AM

 Lab ID:
 1412050-002
 Matrix: AQUEOUS
 Received Date: 12/2/2014 7:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RAN	GE				Analyst	BCN
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	12/5/2014 4:02:01 PM	16628
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	12/5/2014 4:02:01 PM	16628
Surr: DNOP	114	75.2-161	%REC	1	12/5/2014 4:02:01 PM	16628
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	12/2/2014 4:02:58 PM	R22888
Surr: BFB	90.0	80-120	%REC	1	12/2/2014 4:02:58 PM	R22888
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst	: KJH
Benzene	ND	1.0	μg/L	1	12/2/2014 1:29:36 PM	R22889
Toluene	ND	1.0	μg/L	1	12/2/2014 1:29:36 PM	R22889
Ethylbenzene	ND	1.0	μg/L	1	12/2/2014 1:29:36 PM	R22889
Methyl tert-butyl ether (MTBE)	1.4	1.0	μg/L	1	12/2/2014 1:29:36 PM	R22889
Xylenes, Total	ND	1.5	μg/L	1	12/2/2014 1:29:36 PM	R22889
Surr: 1,2-Dichloroethane-d4	98.0	70-130	%REC	1	12/2/2014 1:29:36 PM	R22889
Surr: 4-Bromofluorobenzene	96.9	70-130	%REC	1	12/2/2014 1:29:36 PM	R22889
Surr: Dibromofluoromethane	99.2	70-130	%REC	1	12/2/2014 1:29:36 PM	R22889
Surr: Toluene-d8	99.9	70-130	%REC	1	12/2/2014 1:29:36 PM	R22889

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1412050**

11-Dec-14

Client: Western Refining Southwest, Inc.

Project: GAC 12-1-14

Sample ID MB-16628 SampType: MBLK TestCode: EPA Method 8015D: Diesel Range Client ID: PBW Batch ID: 16628 RunNo: 22956 Prep Date: 12/2/2014 Analysis Date: 12/5/2014 SeqNo: 678069 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 0.20 ND Motor Oil Range Organics (MRO) 2.5 Surr: DNOP 0.55 0.5000 75.2 110 161

Sample ID 1412050-001BMS SampType: MS TestCode: EPA Method 8015D: Diesel Range RunNo: 22956 Client ID: **GAC-Inlet** Batch ID: 16628 Prep Date: 12/2/2014 Analysis Date: 12/5/2014 SeqNo: 678781 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.20 2.932 169 82.6 7.2 2.500 172 Surr: DNOP 0.35 0.2500 141 75.2 161

Sample ID 1412050-001BMSD SampType: MSD TestCode: EPA Method 8015D: Diesel Range Client ID: GAC-Inlet Batch ID: 16628 RunNo: 22956 Prep Date: 12/2/2014 Analysis Date: 12/5/2014 SeqNo: 678782 Units: mg/L Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 6.7 0.20 2.500 2.932 150 82.6 172 6.91 33.9 Surr: DNOP 0.35 0.2500 138 75.2 161 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: 1412050

11-Dec-14

Client: Western Refining Southwest, Inc.

Project: GAC 12-1-14

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015D: Gasoline Range

Client ID: PBW Batch ID: **R22888** RunNo: 22888

Prep Date: Analysis Date: 12/2/2014 SeqNo: 675893 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Gasoline Range Organics (GRO) ND 0.050

20.00 101 Surr: BFB 20 80 120

Sample ID 1412050-001AMS SampType: MS TestCode: EPA Method 8015D: Gasoline Range

Client ID: GAC-Inlet Batch ID: R22888 RunNo: 22888

270

Prep Date: Analysis Date: 12/2/2014 SeqNo: 675902 Units: mg/L

200.0

LowLimit Analyte Result **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 10 0.50 5.000 5.478 93.2 70.4 127 270 200.0 S

136

134

80

80

120

120

0

0

S

Sample ID 1412050-001AMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range Client ID: **GAC-Inlet** Batch ID: R22888 RunNo: 22888 Prep Date: SeqNo: 675903 Analysis Date: 12/2/2014 Units: mg/L SPK value SPK Ref Val %RPD Result %REC HighLimit **RPDLimit** Qual Analyte **PQL** LowLimit Gasoline Range Organics (GRO) 9.8 0.50 5.000 5.478 86.6 70.4 127 3.33 20

Qualifiers:

Surr: BFB

Surr: BFB

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Reporting Detection Limit

Page 4 of 5

Hall Environmental Analysis Laboratory, Inc.

WO#: **1412050**

11-Dec-14

Client: Western Refining Southwest, Inc.

Project: GAC 12-1-14

Sample ID 5mL-rb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batch	ID: R2	2889	F	RunNo: 2	2889				
Prep Date:	Analysis D	ate: 12	2/2/2014	S	SeqNo: 6	75928	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.3	70	130			
Surr: 4-Bromofluorobenzene	9.1		10.00		91.1	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.3	70	130			
Surr: Toluene-d8	9.3		10.00		92.6	70	130			

Sample ID 1412050-001a ms	SampT	ype: M \$	3	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: GAC-Inlet	Batch	n ID: R2	2889	F	RunNo: 2	2889				
Prep Date:	Analysis D	ate: 12	2/2/2014	S	SeqNo: 6	75931	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	260	10	200.0	77.64	90.9	70	130			
Toluene	190	10	200.0	0	95.2	70	130			
Surr: 1,2-Dichloroethane-d4	92		100.0		91.6	70	130			
Surr: 4-Bromofluorobenzene	78		100.0		77.7	70	130			
Surr: Dibromofluoromethane	88		100.0		87.7	70	130			
Surr: Toluene-d8	99		100.0		99.1	70	130			

Sample ID 1412050-001a m	sd SampT	уре: М\$	SD	Tes	tCode: El	PA Method	8260: Volatile	es Short L	_ist	
Client ID: GAC-Inlet	Batch	ID: R2	2889	F	RunNo: 2	2889				
Prep Date:	Analysis D	ate: 12	2/2/2014	5	SeqNo: 6	75932	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	280	10	200.0	77.64	103	70	130	9.11	20	
Toluene	220	10	200.0	0	109	70	130	13.1	20	
Surr: 1,2-Dichloroethane-d4	91		100.0		91.1	70	130	0	0	
Surr: 4-Bromofluorobenzene	85		100.0		84.8	70	130	0	0	
Surr: Dibromofluoromethane	91		100.0		91.4	70	130	0	0	
Surr: Toluene-d8	100		100.0		102	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105 TEL: 505-345-3975 FAX: 505-345-4107

(EL; 303-343-3973 FAX; 303-343-4107 Website; www.hallenvironmental.com

Sample Log-In Check List

RcptNo: 1 Western Refining Southw Work Order Number: 1412050 Client Name: 12/02/14 Received by/date:_ Celin Som 12/2/2014 7:30:00 AM Celina Sessa Logged By: Celin Som 12/2/2014 9:06:14 AM Completed By: Celina Sessa Reviewed By: Chain of Custody Not Present 1 Custody seals intact on sample bottles? Yes Yes 🔽 No 🗌 Not Present 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? Log In NA 🗌 Yes 🗸 No \square 4. Was an attempt made to cool the samples? NA 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 6. Sample(s) in proper container(s)? **V** Nο 7. Sufficient sample volume for indicated test(s)? **V** No 8. Are samples (except VOA and ONG) properly preserved? No 🗹 NA 🗀 Yes 🗌 9. Was preservative added to bottles? No VOA Vials No 🗀 Yes 🗹 10. VOA vials have zero headspace? No 🔽 Yes 11 Were any sample containers received broken? # of preserved bottles checked for pH: No Yes 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗆 13. Are matrices correctly identified on Chain of Custody? No 🗔 14. Is it clear what analyses were requested? **V** No 🗌 Checked by: Yes 🗸 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) No 🗆 NA 🗸 Yes \square 16. Was client notified of all discrepancies with this order? Date: Person Notified: Fax In Person Via: eMail Phone By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Seal Date Signed By Condition Seal Intact Seal No Cooler No Temp °C 3.2 Good Yes

LATI ENVIDONMENTAL	ANALYSIS LABORATORY	nental.com	Albuquerque, NM 87109	Fax 505-345-4107	Fax 505-345-4107	Request		<u>78</u>	ĪΜ	80) (V) (Y)	<u>名(</u>)	8081 Pestic 8260B (VOV 8270 (Semi-	×	×		X					,	
T T T T T T T T T T T T T T T T T T T	ANALYSIS	www.hallenvironmental.com	4901 Hawkins NE - Albuque	Tel. 505-345-3975 Fax (Anal	(📆	(8)	WIS	(1.81) (1.40) (1.40)	(GE	BTEX + MTI TPH (Metho EDB (Metho PAH's (831) PCRA 8 Me	<u> </u>		メ						Remarks:		
lurn-Around Time:	Standard Rush	Project Name:	GAC 12-1-14	Project #:		Project Manager:	208		Sampler: 6,4	Femperature: 3,12	Container Preservative HEAL No. X Type and # Type HHACOSO D	5-109 HC1 -001	amper	5-VOA ACI -002	amber					Received by: Date Time Re Phys. 1600	025/0 1/2/2/	
Chain-of-Custody Record	Client: Western Refining		Mailing Address: #50 C 12 4990	ENECK MIN O	505-632-	-ax#:	QA/QC Package:	☐ Standard (Full Validation)	Accreditation	□ EDD (Type)	Matrix Sample Request ID	2-1-14 9:30 H20 GAC-INLET	_	18:20 GAC-LEAD						Time: Relinquished by Trake	4/1-1744 Moster Wale	

Chavez, Carl J, EMNRD

From: Robinson, Kelly <Kelly.Robinson@wnr.com>

Sent: Friday, August 15, 2014 4:18 PM

To: Powell, Brandon, EMNRD; Perrin, Charlie, EMNRD

Cc: Schmaltz, Randy; Krakow, Matt; Chavez, Carl J, EMNRD; Weaver, Ron

Subject: Bloomfield Terminal C-141: Sour Water Release

Attachments: C-141_Final_Sour Water Release.pdf

Good Afternoon Gentlemen,

The attached C-141 documents the release of sour water that occurred at the Bloomfield Terminal as a result of routine underground line testing activities. These testing activities are conducted each year pursuant to Condition 13 of the Facility's OCD Discharge Permit (GW-001). Attached is the completed C-141 documenting this event. If you have any questions or would like to discuss this event further, please do not hesitate to contact me at your convenience.

Thank you for your time, and have great weekend.

Sincerely,

Kelly R. Robinson I Environmental

Western Refining I 111 County Road 4990 I Bloomfield, NM87413 (o) 505-632-4166 I (c) 505-801-5616 I (e) kelly.robinson@wnr.com

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action

						OPERA	TOR	[Initi	al Report	\boxtimes	Final Report		
Name of Co			ing South	west, Inc.		Contact: K	elly Robinson			·····				
Address: 50						Telephone No.: 505-632-4166								
Facility Nar	ne: Bloor	nfield Termi	nal			Facility Type: Products Terminal								
	~~,		~											
Inc.	ner: West	ern Refining	Southwes	t, Miner	al Owner				API No.					
				10	CATIO	ON OF RELEASE								
Unit Letter	Section	Township	Dongo	Feet from th		/South Line		D4/337	4 T	10				
Omit Letter	Section	Township	Range	reet from in	e Norti	1/South Line	Feet from the	East/W	est Line	County				
NWSW	26	29N	11W									İ		
Latitude 36.695219 Longitude -107.967848														
				$\mathbf{N}_{\mathbf{z}}$	ATURE	OF REL	EASE							
Type of Relea						Volume of	Release: < 25 ba	arrels	Volume F	Recovered: 1	34 gallo	ons		
Source of Rel	ease: hydr	o test failure				Date and I	Iour of Occurrence			Hour of Disc				
							1 (approx. 11:00ai	m)	8/04/2014	4 at 08:00 Al	1			
Was Immedia	ite Notice C					If YES, To								
		M	Yes ∐	No 🗌 No	t Required	1) (Carl Chavez with	NMOCD	– Santa F	e Office,				
By Whom?:	Matt Krako					Date and F	Iour :							
25 1110111. 11	Watt I KI take	•					2:01 pm on 8/7/20	114 to Car	1 Chavez	(VIMOCD)				
						', -	pin on 0, 1, 20	111000	1 0114,02	(гинось)				

Was a Watero	ourse Reac	_	10° 157			If YES, Vo	lume Impacting t	he Water	course,					
			Yes 🛚	No										
If a Watercou	rse was Im	pacted, Descri	be Fully.*											
	ŕ		-											
D	CD 11	10	*! *	n 1										
Describe Caus					-!+ (CW A	01) \$\$74			-111 <i>i</i>					
the facility. D	during the n	ressure testing	y of a sour v	scharge Fen vater ninelin	⊞ (OW-0	ui), western i	s required to perfe ipe failed. This te	orm annu er foilure	ai nyaro t	esting of und	iergroui	nd piping at		
water stain at	the point of	discharge fro	m the unde	rground nine	e. Western	was able to is	olate the pipeline	from nor	was iuciii mal facili	tv operations	ialery D	Western's		
intent that the	pipeline no	t be returned	to service, a	nd a new pi	eline will	be installed in	its place.		140111	-y opolution	,, IC 13	obtoili 5		
							-					İ		

Describe Area Affected and Cleanup Action Taken.*									
The segment of pipeline which failed the hydro test is located along the Highway 4990. Western was able to recover 134 gallons of the test wat	west side service road that provides a ter.	access to the ev	aporation ponds south of						
quantity of water that was released during this event. Conservative calc	Due to the location of the pipeline breach, for safety reasons Western has chosen not to expose the pipeline. Therefore it is not certain as to the final quantity of water that was released during this event. Conservative calculations show that the maximum amount possible to release is less than 25 barrels. It is possible that this event resulted in a quantity of less than 5 barrels of water that discharged to ground.								
The pipeline in-question is normally used to transfer sour water from the transfer pump located north of the evaporation ponds to the evaporation pond inlet. From the evaporation pond, the sour water is discharged through the on-site injection well. The hydro testing of the pipeline was done using the sour water that is normally carried through the pipeline. This water is sampled on a regular basis prior to the point of injection through the on-site injection well. Samples collected of the sour water are not normally analyzed for total petroleum hydrocarbons. However following the occurrence of this event, Western collected a sample of the sour water for TPH analysis. A copy of the analytical results showing the quality of the sour water released during this event is attached.									
The analytical shows that the water does not contain concentrations that <i>Remediation of Leaks, Spills, and Releases</i> dated August 13, 1993. The further corrective action be issued by OCD for this event.	exceed the applicable spill clean-up s refore based on the analytical informa	standards pursu tion provided,	ant to the OCD <i>Guidelines for</i> Western is requesting a no						
I hereby certify that the information given above is true and complete to regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by a should their operations have failed to adequately investigate and remedient the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations.	notifications and perform corrective a the NMOCD marked as "Final Report ate contamination that pose a threat to does not relieve the operator of respon	actions for relead " does not relied ground water, nsibility for co	ases which may endanger we the operator of liability surface water, human health impliance with any other						
Signature: Kelle Colledore	<u>OIL CONSER</u>	<u>VATION 1</u>	<u>DIVISION</u>						
Printed Name: Kelly Robinson	Approved by Environmental Special	list:							
Title: Environmental Manager	Approval Date:	Expiration D	ate:						
E-mail Address: Kelly, Robinson @wnr.com	Conditions of Approval:		Attached						

Date: 8/15/14 Phone: 505-632-4166

* Attach Additional Sheets If Necessary

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

August 15, 2014

Kelly Robinson

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 7-28-14 3rd QTR

OrderNo.: 1407D12

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/29/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Intel

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1407D12**

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Lab ID: 1407D12-001

Client Sample ID: Injection Well

Collection Date: 7/28/2014 9:30:00 AM

Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	t: LGP
Chloride	510	25	mg/L	50	8/4/2014 5:04:09 PM	R20363
Sulfate	41	2.5	mg/L	5	7/29/2014 4:17:43 PM	R20236
EPA METHOD 7470: MERCURY					Analys	t: MMD
Mercury	ND	0.00020	mg/L	1	8/4/2014 2:43:32 PM	14571
EPA 6010B: TOTAL RECOVERABLE	METALS				Analys	t: ELS
Arsenic	ND	0.020	mg/L	1	8/2/2014 2:09:02 PM	14549
Barium	0.63	0.020	mg/L	1	8/2/2014 2:09:02 PM	14549
Cadmium	ND	0.0020	mg/L	1	8/2/2014 2:09:02 PM	14549
Calcium	480	5.0	mg/L	5	8/2/2014 2:10:49 PM	14549
Chromium	ND	0.0060	mg/L	1	8/2/2014 2:09:02 PM	14549
Lead	ND	0.0050	mg/L	1	8/2/2014 2:09:02 PM	14549
Magnesium	99	1.0	mg/L	1	8/2/2014 2:09:02 PM	14549
Potassium	36	1.0	mg/L	1	8/2/2014 2:09:02 PM	14549
Selenium	ND	0.050	mg/L	1	8/2/2014 2:09:02 PM	14549
Silver	ND	0.0050	mg/L	1	8/2/2014 2:09:02 PM	14549
Sodium	1100	20	mg/L	20	8/2/2014 3:24:50 PM	14549
EPA METHOD 8270C: SEMIVOLATIL	ES				Analys	t: DAM
Acenaphthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Acenaphthylene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Aniline	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Anthracene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Azobenzene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benz(a)anthracene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(a)pyrene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(b)fluoranthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(g,h,i)perylene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(k)fluoranthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzoic acid	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzyl alcohol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chloroethoxy)methane	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chloroethyl)ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chloroisopropyl)ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-ethylhexyl)phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Bromophenyl phenyl ether	ND	100	μg/L.	1	7/31/2014 8:37:47 PM	14520
Butyl benzyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Carbazole	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Chloro-3-methylphenol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Chloroaniline	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 7-28-14 3rd QTR

Collection Date: 7/28/2014 9:30:00 AM

Lab ID: 1407D12-001

Matrix: AQUEOUS

Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLA	TILES				Analyst	: DAM
2-Chloronaphthalene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2-Chlorophenol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Chlorophenyl phenyl ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Chrysene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-butyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-octyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Dibenz(a,h)anthracene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Dibenzofuran	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
1,2-Dichlorobenzene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
1,3-Dichlorobenzene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
1,4-Dichlorobenzene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
3,3'-Dichlorobenzidine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Diethyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Dimethyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dichlorophenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dimethylphenol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4,6-Dinitro-2-methylphenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinitrophenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinitrotoluene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2,6-Dinitrotoluene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Fluoranthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Fluorene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlorobenzene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlorobutadiene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Hexachtorocyclopentadiene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Hexachloroethane	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Indeno(1,2,3-cd)pyrene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Isophorone	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
1-Methylnaphthalene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2-Methylnaphthalene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2-Methylphenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
3+4-Methylphenol	210	100	μg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodi-n-propylamine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodimethylamine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodiphenylamine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Naphthalene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitroaniline	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
3-Nitroaniline	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitroaniline	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

 Project:
 Injection Well 7-28-14 3rd QTR
 Collection Date: 7/28/2014 9:30:00 AM

 Lab ID:
 1407D12-001
 Matrix: AQUEOUS
 Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATI	LES					Analyst	: DAM
Nitrobenzene	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitrophenol	ND	100		μg/Ŀ	1	7/31/2014 8:37:47 PM	14520
4-Nitrophenol	ND	100		μg/∟	1	7/31/2014 8:37:47 PM	14520
Pentachlorophenol	ND	200		μg/L	1	7/31/2014 8:37:47 PM	14520
Phenanthrene	ND	100		μg/∟	1	7/31/2014 8:37:47 PM	14520
Phenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Pyrene	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Pyridine	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
1,2,4-Trichlorobenzene	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
2,4,5-Trichlorophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
2,4,6-Trichlorophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Surr: 2-Fluorophenol	0	12.1-85.8	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: Phenol-d5	0	17.7-65.8	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 2,4,6-Tribromophenol	0	26-138	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: Nitrobenzene-d5	0	47.5-119	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 2-Fluorobiphenyl	0	48.1-106	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 4-Terphenyl-d14	0	44-113	S	%REC	1	7/31/2014 8:37:47 PM	14520
EPA METHOD 8260B: VOLATILES						Analyst	: DJF
Benzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Toluene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Ethylbenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Methyl tert-butyl ether (MTBE)	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,4-Trimethylbenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
1,3,5-Trimethylbenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2-Dichloroethane (EDC)	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2-Dibromoethane (EDB)	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Naphthalene	ND	4.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
1-Methylnaphthalene	ND	8.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
2-Methylnaphthalene	ND	8.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Acetone	85	20		μg/L	2	7/31/2014 1:41:17 PM	R20298
Bromobenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Bromodichloromethane	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Bromoform	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Bromomethane	ND	6.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
2-Butanone	ND	20		μg/L	2	7/31/2014 1:41:17 PM	R20298
Carbon disulfide	ND	20		μg/L	2	7/31/2014 1:41:17 PM	R20298
Carbon Tetrachloride	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Chlorobenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Chloroethane	ND	4.0		μg/L	2	7/31/2014 1:41:17 PM	R20298

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 7-28-14 3rd QTR

Collection Date: 7/28/2014 9:30:00 AM

Lab ID: 1407D12-001

Matrix: AQUEOUS

Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL Qı	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: DJF
Chloroform	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Chloromethane	ND	6.0	μg/L `	2	7/31/2014 1:41:17 PM	R2029
2-Chlorotoluene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
4-Chlorotoluene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
cis-1,2-DCE	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Dibromochloromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Dibromomethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2-Dichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,3-Dichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,4-Dichiorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Dichlorodifluoromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1-Dichloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1-Dichloroethene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2-Dichloropropane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,3-Dichloropropane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
2,2-Dichloropropane	ND	4.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Hexachlorobutadiene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
2-Hexanone	ND	20	μg/L	2	7/31/2014 1:41:17 PM	R2029
lsopropylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
4-Isopropyltoluene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
4-Methyl-2-pentanone	ND	20	μg/L	2	7/31/2014 1:41:17 PM	R2029
Methylene Chloride	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
n-Butylbenzene	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
n-Propylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
sec-Butylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Styrene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
tert-Butylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1,2,2-Tetrachloroethane	ND	4.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
Tetrachioroethene (PCE)	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
trans-1,2-DCE	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,2,4-Trichiorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1,1-Trichloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R2029
1,1,2-Trichloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: Injection Well

Project: Injection Well 7-28-14 3rd QTR Collection Date: 7/28/2014 9:30:00 AM

Lab ID: 1407D12-001 Matrix: AQUEOUS Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES						Analyst	DJF
Trichloroethene (TCE)	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Trichlorofluoromethane	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,3-Trichloropropane	ND	4.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Vinyl chloride	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Xylenes, Total	ND	3.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Surr: 1,2-Dichloroethane-d4	92.4	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: 4-Bromofluorobenzene	95.4	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Dibromofluoromethane	100	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Toluene-d8	93.6	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
SM2510B: SPECIFIC CONDUCTANCE	Ē					Analyst	: JRR
Conductivity	1900	0.010		µmhos/cm	1	7/29/2014 12:08:01 PM	R20245
SM4500-H+B: PH						Analyst	: JRR
рН	7.10	1.68	Н	pH units	1	7/29/2014 12:08:01 PM	R20245
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	220	20		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Total Alkalinity (as CaCO3)	220	20		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	1380	200	*	mg/L	1	7/30/2014 5:19:00 PM	14475

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level,
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 20

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140730036

Address:

4901 HAWKINS NE SUITE D

Project Name:

1407D12

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

140730036-001

7/28/2014 Sampling Date

Date/Time Received 7/30/2014

12:25 PM

Client Sample ID

1407D12-001E / INJECTION WELL

Sampling Time 9:30 AM

Matrix

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (reactive)	ND	mg/L	1	8/12/2014	CRW	SW846 CH7	
Flashpoint	>200	°F		8/5/2014	KFG	EPA 1010	
pH	7.44	ph Units		8/5/2014	AJT	SM 4500pH-B	
Reactive sulfide	ND	mg/L	1	8/1/2014	AJT	SW846 CH7	

Authorized Signature

John Coddington, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

140730036

Address:

4901 HAWKINS NE SUITE D

Project Name:

1407D12

7441033

Attn:

ALBUQUERQUE, NM 87109

ANDY FREEMAN

Analytical Results Report

Quality Control Data

Lab Control San	nple										
Parameter		LCS Result	Units	LCS	Spike	%Rec	AR	%Rec	Prep	Date	Analysis Date
Reactive sulfide		0.16	mg/L	4).2	80,0	70	-130	8/1/2	2014	8/1/2014
Cyanide (reactive)		0,505	mg/L	•	0.5	101.0	80	-120	8/12/	2014	8/12/2014
Lab Control San	nple Duplicate										
Parameter		LCSD Result	Units	LCSD Spike	%Rec	%R	60 a	AR %RPD	Ргер 🕻)ate /	Analysis Date
Reactive sulfide		0,18	mg/L	0.2	90.0	11		0-25	8/1/20		8/1/2014
Matrix Spike						,					
Onesala Namahan	Parameter		Sample	MS Result	Unit	_	MS	%Rec	AR %Rec	Prep Date	Analysis Date
	rarameter Reactive sulfide		Result ND	0.22	mg/i	-	Splke 0.2	110.0	70-130	8/1/2014	8/1/2014
	Cyanide (reactive)		ND	0.919	mg/l		1	91.9	80-120	8/12/2014	,
Matrix Spike Du	plicate		<u>, </u>	WALL DE	·		· ·				
_	•	. MSD		MSD	n/ m			AR		- 5-4-	Aughoria Bada
Parameter Cyanide (reactive)		Result 0.906	Units mg/L	Spike 1	%R 90		%RPD 1.4	%RPE 0-25		p Date 2/2014	Analysis Date 8/12/2014
Method Blank											
Parameter			Res	sult	Ųr	nits		PQL	Pr	ep Date	Analysis Date
Cyanide (reactive)			N	D	m	g/L		1	8/1	2/2014	8/12/2014
Reactive sulfide			N	D	m	g/L		1	8/	1/2014	8/1/2014

AR

Acceptable Range

ND

Not Detected

PQL

Practical Quantitation Limit

Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA:ID00018; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

Hall Environmental Analysis Laboratory, Inc.

15-Aug-14

1407D12

WO#:

Client:	Western Refining Southwest, Inc.
Project:	Injection Well 7-28-14 3rd QTR

Project:	Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR
Sample ID MB	SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID: PBW	Batch ID: R20236 RunNo: 20236
Prep Date:	Analysis Date: 7/29/2014 SeqNo: 588153 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Sulfate	ND 0.50
Sample ID LCS	SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID: LCS	W Batch ID: R20236 RunNo: 20236
Prep Date:	Analysis Date: 7/29/2014 SeqNo: 588154 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Sulfate	9.7 0.50 10.00 0 97.4 90 110
Sample ID MB	SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID: PBW	Batch ID: R20236 RunNo: 20236
Prep Date:	Analysis Date: 7/29/2014 SeqNo: 588211 Units: mg/L
Analyte	Resuit PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Sulfate	ND 0.50
Sample ID LCS	SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID: LCS	W Batch ID: R20236 RunNo: 20236
Prep Date:	Analysis Date: 7/29/2014 SeqNo: 588212 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Sulfate	9.6 0.50 10.00 0 95.6 90 110
Sample ID MB	SampType: MBLK TestCode: EPA Method 300.0: Anions
Client ID: PBW	Batch ID: R20363 RunNo: 20363
Prep Date:	Analysis Date: 8/4/2014 SegNo: 592146 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride	ND 0.50
Sample ID LCS	SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID: LCSV	N Batch ID: R20363 RunNo: 20363
Prep Date:	Analysis Date: 8/4/2014 SeqNo: 592147 Units: mg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Chloride	4.7 0.50 5.000 0 94.2 90 110

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- О RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2. Reporting Detection Limit

Page 6 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID MB

SampType: MBLK

TestCode: EPA Method 300.0: Anions

Client ID: **PBW**

Sample ID LCS

Client ID: LCSW

Batch ID: R20363

RunNo: 20363

SeqNo: 592208

Units: mg/L

Prep Date:

Analysis Date: 8/5/2014

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit** Qual

Analyte Chloride

Result

0.50

TestCode: EPA Method 300.0: Anions

ND

SampType: LCS Batch ID: R20363

PQL

0.50

PQL

RunNo: 20363

Prep Date:

Analysis Date: 8/5/2014

SeqNo: 592209

Units: mg/L

Analyte

SPK value SPK Ref Val

93.8

LowLimit 90 HighLimit %RPD

Chloride

Result 4.7

5.000

%REC

110

RPDLimit

Qual

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

RPD outside accepted recovery limits R

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Page 7 of 20

P Sample pH greater than 2.

Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client: Project:

Sample ID 5ml rb

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

SampType: MBLK

Sample ID 5mL rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES PBW Client ID: Batch ID: R20230 RunNo: 20230 Prep Date: Analysis Date: 7/29/2014 SeqNo: 587928 Units: %REC Analyte **PQL** %REC Result SPK value SPK Ref Val LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 1,2-Dichloroethane-d4 9.1 10.00 91.3 70 130 Surr: 4-Bromofluorobenzene 9.3 10.00 93.2 70 130 Surr: Dibromofluoromethane 10 10.00 102 70 130 Surr: Toluene-d8 9.7 10.00 96.7 70 130

Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R20230 RunNo: 20230 Prep Date: Analysis Date: 7/29/2014 SeqNo: 587930 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Surr: 1,2-Dichloroethane-d4 9.9 10.00 98.6 70 130 Surr: 4-Bromofluorobenzene 9.5 10.00 95.4 70 130 Surr: Dibromofluoromethane 11 10.00 70 107 130 Surr: Toluene-d8 9.4 10.00 94.3 70 130

Client ID: PBW	Batch ID: R20298			F	RunNo: 2	0298						
Prep Date:	Analysis Date: 7/31/2014		9	SeqNo: 589943								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	1.0										
Toluene	ND	1.0										
Ethylbenzene	ND	1.0										
Methyl tert-butyl ether (MTBE)	ND	1.0										
1,2,4-Trimethylbenzene	ND	1.0										
1,3,5-Trimethylbenzene	ND	1.0										
1,2-Dichloroethane (EDC)	ND	1.0										
1,2-Dibromoethane (EDB)	ND	1.0										
Naphthalene	ND	2.0										
1-Methylnaphthalene	ND	4.0										
2-Methylnaphthalene	ND	4.0										
Acetone	ND	10										
Bromobenzene	ND	1.0										
Bromodichloromethane	ND	1.0										
Bromoform	ND	1.0										
Bromomethane	ND	3.0										
2-Butanone	ND	10										
Carbon disulfide	ND	10										
Carbon Tetrachloride	ND	1.0										
Chlorobenzene	ND	1.0										

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

TestCode: EPA Method 8260B: VOLATILES

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client: Project: Western Refining Southwest, Inc.

Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES								
Client ID: PBW	Batch ID: R20298			RunNo: 20298								
Prep Date:	Analysis D	ate: 7	31/2014		SeqNo: 589943			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Chloroethane	ND	2.0				•						
Chloroform	ND	1.0										
Chloromethane	ND	3.0										
2-Chlorotoluene	ND	1.0										
4-Chlorotoluene	ND	1.0										
cis-1,2-DCE	ND	1.0										
cis-1,3-Dichloropropene	ND	1.0										
1,2-Dibromo-3-chloropropane	ND	2.0										
Dibromochloromethane	ND	1.0										
Dibromomethane	ND	1.0										
1,2-Dichlorobenzene	ND	1.0										
1,3-Dichlorobenzene	ND	1.0										
1,4-Dichlorobenzene	ND	1.0										
Dichlorodifluoromethane	ND	1.0										
1,1-Dichloroethane	ND	1.0										
1,1-Dichloroethene	ND	1.0										
1,2-Dichloropropane	ND	1.0										
1,3-Dichloropropane	ND	1.0										
2,2-Dichloropropane	ND	2.0										
1,1-Dichloropropene	ND	1.0										
Hexachlorobutadiene	ND	1.0										
2-Hexanone	ND	10										
Isopropylbenzene	ND	1.0										
4-Isopropyltoluene	ND	1.0										
4-Methyl-2-pentanone	ND	10										
Methylene Chloride	ND	3.0										
n-Butylbenzene	ND	3.0										
n-Propylbenzene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
tert-Butylbenzene	ND	1.0										
1,1,1,2-Tetrachloroethane	ND	1.0										
1,1,2,2-Tetrachloroethane	ND	2.0										
Tetrachioroethene (PCE)	ND	1.0										
trans-1,2-DCE	ND	1.0										
trans-1,3-Dichloropropene	DN CN	1.0										
1,2,3-Trichlorobenzene	ND CN	1.0										
1,2,4-Trichlorobenzene												
• •	ND ND	1.0										
1,1,1-Trichloroethane	ND	1.0										

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 9 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb	SampType: MBLK			Tes	,					
Client ID: PBW	Batch ID: R20298			F	RunNo: 2	0298				
Prep Date:	Analysis Date: 7/31/2014			S	SeqNo: 5	89943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.2	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.9		10.00		98.9	70	130			

Sample ID 100ng Ics	SampType: LCS			Tes	tCode: El					
Client ID: LCSW	Batch ID: R20298			F	RunNo: 2	0298				
Prep Date:	Analysis Date: 7/31/2014			S	SeqNo: 5	89945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	21	1.0	20.00	0	107	80	120			
Chlorobenzene	20	1.0	20.00	0	99.3	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	110	82.6	131			
Trichloroethene (TCE)	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1

1407D12

15-Aug-14

Client: Project: Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID mb-14520 TestCode: EPA Method 8270C: Semivolatiles SampType: MBLK Client ID: PBW Batch ID: 14520 RunNo: 20300 Prep Date: 7/31/2014 Analysis Date: 7/31/2014 SeqNo: 590031 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual ND Acenaphthene 10 ND Acenaphthylene 10 Aniline ND 10 ND 10 Anthracene Azobenzene ND 10 Benz(a)anthracene ND 10 Benzo(a)pyrene ND 10 Benzo(b)fluoranthene ND 10 Benzo(g,h,i)perylene ND 10 ND Benzo(k)fluoranthene 10 Benzoic acid ND 20 ND Benzyl alcohol 10 ND Bis(2-chioroethoxy)methane 10 ND Bis(2-chloroethyl)ether 10 ND Bis(2-chloroisopropyl)ether 10 Bis(2-ethylhexyl)phthalate ND 10 4-Bromophenyl phenyl ether ND 10 Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 ND 4-Chloroaniline 10 ND 2-Chloronaphthalene 10 ND 2-Chlorophenol 10 4-Chlorophenyl phenyl ether ND 10 ND 10 Chrysene Di-n-butyl phthalate ND 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene ND 10 ND Dibenzofuran 10 ND 1,2-Dichlorobenzene 10 1,3-Dichlorobenzene ND 10 1,4-Dichlorobenzene ND 10 3,3'-Dichlorobenzidine ND 10 Diethyl phthalate ND 10 ND 10 Dimethyl phthalate ND 20 2,4-Dichlorophenol 2,4-Dimethylphenol ND 10 4,6-Dinitro-2-methylphenol ND 20 ND 2,4-Dinitrophenol 20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client: Project: Western Refining Southwest, Inc.

Injection Well 7-28-14 3rd QTR

Sample ID mb-14520	SampType: MBLK			TestCode: EPA Method 8270C: Semivolatiles							
Client ID: PBW	Batch ID: 14520			F							
Prep Date: 7/31/2014	Analysis D	ate: 7/3	31/2014	5	SeqNo: 5	90031	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
2,4-Dinitrotoluene	ND	10									
2,6-Dinitrotoluene	ND	10									
Fluoranthene	ND	10									
Fluorene	ND	10									
Hexachlorobenzene	ND	10									
Hexachiorobutadiene	ND	10									
Hexachlorocyclopentadiene	ND	10									
Hexachloroethane	ND	10									
Indeno(1,2,3-cd)pyrene	ND	10									
Isophorone	ND	10									
1-Methylnaphthalene	ND	10									
2-Methylnaphthalene	ND	10									
2-Methylphenol	ND	20									
3+4-Methylphenol	ND	10									
N-Nitrosodi-n-propylamine	ND	10									
N-Nitrosodimethylamine	ND	10									
N-Nitrosodiphenylamine	ND	10									
Naphthalene	ND	10									
2-Nitroaniline	ND	10									
3-Nitroaniline	ND	10									
4-Nitroaniline	ND	10									
Nitrobenzene	ND	10									
2-Nitrophenol	ND	10									
4-Nitrophenol	ND	10									
Pentachlorophenol	ND	20									
Phenanthrene	ND	10									
Phenol	ND	10									
Pyrene	ND	10									
Pyridine	ND	10									
1,2,4-Trichlorobenzene	ND	10									
2,4,5-Trichlorophenol	ND	10									
2,4,6-Trichlorophenol	ND	10									
Surr: 2-Fluorophenol	130		200.0		66.7	12.1	85.8				
Surr: Phenol-d5	95		200.0		47.4	17.7	65.8				
Surr: 2,4,6-Tribromophenol	170		200.0		86.4	26	138				
Surr: Nitrobenzene-d5	84		100.0		83.6	47.5	119				
Surr: 2-Fluorobiphenyl	84		100.0		83.7	48.1	106				
Surr: 4-Terphenyl-d14	94		100.0		94.5	44	113				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- II Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 12 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID Ics-14520	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	ID: 14	520	F	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7/	31/2014	S	SeqNo: 5	90032	Units: µg/L			
Analyte	Result	PQL.	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	87	10	100.0	0	87.0	50.3	109			
4-Chloro-3-methylphenol	200	10	200.0	0	99.0	51.2	113			
2-Chlorophenol	190	10	200.0	0	94.9	48.5	104			
1,4-Dichlorobenzene	80	10	100.0	0	79.5	39.5	106			
2,4-Dinitrotoluene	82	10	100.0	0	82.3	45.4	107			
N-Nitrosodi-n-propylamine	91	10	100.0	0	91.0	50.4	119			
4-Nitrophenol	110	10	200.0	0	53.6	15.5	62.2			
Pentachlorophenol	150	20	200.0	0	72.7	23,5	93.5			
Phenol	110	10	200.0	0	54.8	26.8	65.6			
Pyrene	96	10	100.0	0	95.5	54.4	108			
1,2,4-Trichlorobenzene	78	10	100.0	0	78.0	39.9	106			
Surr: 2-Fluorophenol	140		200.0		72.4	12.1	85.8			
Surr: Phenol-d5	100		200.0		52.5	17.7	65.8			
Surr: 2,4,6-Tribromophenol	170		200.0		87.0	26	138			
Surr: Nitrobenzene-d5	100		100.0		101	47.5	119			
Surr: 2-Fluorobiphenyl	96		100.0		96.0	48,1	106			
Surr: 4-Terphenyl-d14	91		100.0		90.9	44	113			

Sample ID Icsd-14520	Samp1	ype: LC	_CSD TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSS02	Batcl	n ID: 14	520	F	RunNo: 2	0300						
Prep Date: 7/31/2014	Analysis D)ate: <i>7/</i>	31/2014	\$	SeqNo: 5	90033	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Acenaphthene	77	10	100.0	0	76.5	50.3	109	12.8	27.2			
4-Chloro-3-methylphenol	190	10	200.0	0	93.8	51,2	113	5.37	25.9			
2-Chlorophenol	170	10	200.0	0	84.4	48.5	104	11.7	22.5			
1,4-Dichlorobenzene	73	10	100.0	0	73.3	39.5	106	8.19	24.6			
2,4-Dinitrotoluene	73	10	100.0	0	73.1	45.4	107	11.9	25.3			
N-Nitrosodi-n-propylamine	85	10	100.0	0	84.9	50.4	119	6.98	23.6			
4-Nitrophenol	110	10	200.0	0	52.7	15.5	62.2	1.69	34.7			
Pentachlorophenol	150	20	200.0	0	72.9	23.5	93.5	0.275	32.8			
Phenol	100	10	200,0	0	51.6	26.8	65.6	6.05	25.5			
Pyrene	89	10	100.0	0	88.8	54.4	108	7.31	31.4			
1,2,4-Trichlorobenzene	68	10	100.0	0	68.4	39.9	106	13.1	25.9			
Surr: 2-Fluorophenol	140		200.0		68.8	12.1	85.8	0	0			
Surr: Phenol-d5	110		200.0		53.9	17.7	65.8	0	0			
Surr: 2,4,6-Tribromophenol	170		200.0		86.5	26	138	0	0			
Surr: Nitrobenzene-d5	88		100.0		88.1	47.5	119	0	0			
Surr: 2-Fluorobiphenyl	90		100.0		89.9	48.1	106	0	0			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 13 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Qual

Client:

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Project:

Sample ID Icsd-14520

SampType: LCSD

TestCode: EPA Method 8270C: Semivolatiles

Client ID:

LCSS02

Batch ID: 14520

RunNo: 20300

Prep Date: 7/31/2014

Analysis Date: 7/31/2014

SeqNo: 590033

Units: µg/L

Analyte

Result

SPK value SPK Ref Val

%REC

LowLimit

HighLimit

%RPD

RPDLimit

90,0

100.0

44

113

Surr: 4-Terphenyl-d14

90

0

Qualifiers:

Value exceeds Maximum Contaminant Level.

E Value above quantitation range

Analyte detected below quantitation limits J

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

Reporting Detection Limit

Page 14 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID 1407d12-001b dup

SampType: DUP

TestCode: SM2510B: Specific Conductance

Client ID:

Injection Well

Batch ID: R20245

RunNo: 20245

Prep Date:

Analysis Date: 7/29/2014

SeqNo: 588403

Units: µmhos/cm

Analyte

Result

SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD

RPDLimit Qual

Conductivity

PQL

1800

0.010

4.30

20

Qualifiers:

Value exceeds Maximum Contaminant Level.

Е Value above quantitation range

Analyte detected below quantitation limits J

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample pH greater than 2.

RLReporting Detection Limit Page 15 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID MB-14571

SampType: MBLK

TestCode: EPA Method 7470: Mercury

Client ID:

PBW

Batch ID: 14571

PQL

RunNo: 20345

Units: mg/L

Prep Date:

8/4/2014

Analysis Date: 8/4/2014

Result

SeqNo: 591482

HighLimit

%RPD **RPDLimit** Qual

Analyte Mercury

ND 0.00020

TestCode: EPA Method 7470: Mercury

Client ID:

SampType: LCS Batch ID: 14571

RunNo: 20345

Units: mg/L

Prep Date: 8/4/2014

Sample ID LCS-14571

LCSW

Analysis Date: 8/4/2014

SeqNo: 591483

SPK value SPK Ref Val %REC LowLimit

HighLimit %RPD **RPDLimit**

Qual

Analyte

SPK value SPK Ref Val %REC

LowLimit

PQL

98.9

120

Mercury

0.0049 0.00020 0.005000

80

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit O
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. P Reporting Detection Limit

Page 16 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client: Project:

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID MB-14549 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals Client ID: **PBW** Batch ID: 14549 RunNo: 20323 Prep Date: 8/1/2014 Analysis Date: 8/2/2014 SeqNo: 590696 Units: mg/L PQL SPK value SPK Ref Val %REC LowLimit Analyte Result HighLimit %RPD **RPDLimit** Qual Arsenic ND 0.020 Barium ND 0.020 Cadmium ND 0.0020 ND Calcium 1.0 Chromium ND 0.0060 Lead ND 0.0050 Magnesium ND 1.0 Potassium ND 1.0 Selenium ND 0.050 Silver ND 0.0050 Sodium ND 1.0

Sample ID LCS-14549	Samp	Type: LC	S	Tes	tCode: El	PA 6010B:	Total Recover	rable Meta	als	
Client ID: LCSW	Bate	h ID: 14	549	F	RunNo: 2	0323				
Prep Date: 8/1/2014	Analysis	Date: 8/	2/2014	S	90697	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.50	0.020	0.5000	0	101	80	120			
Barium	0.50	0.020	0.5000	0	99.7	80	120			
Cadmium	0.50	0.0020	0.5000	0	99.7	80	120			
Calcium	ND	1.0	50.00	0	0	80	120			S
Chromium	0.50	0.0060	0.5000	0	100	80	120			
Lead	0.50	0.0050	0.5000	0	99.5	80	120			
Magnesium	ND	1.0	50.00	0	0	80	120			S
Potassium	ND	1.0	50.00	0	0	80	120			S
Selenium	0.52	0.050	0.5000	0	105	80	120			
Silver	0.085	0.0050	0.1000	0	84.9	80	120			
Sodium	ND	1.0	50.00	0	0	80	120			S

Sample ID LCS Cat-14549	SampT	ype: LC	s	Tes	tCode: E	PA 6010B:	Total Recove	rable Met	als	
Client ID: LCSW	Batch	n ID: 14	549	F	RunNo: 2	0323				
Prep Date: 8/1/2014	Analysis D	ate: 8/	2/2014	8	SeqNo: 5	90698	Units: mg/L			
Analyte	Resuit	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	51	1.0	50.00	0	102	80	120			
Magnesium	51	1.0	50.00	0	101	80	120			
Potassium	49	1.0	50.00	0	97.3	80	120			
Sodium	50	1.0	50.00	0	101	80	120			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 17 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#: 1407D12

15-Aug-14

Client: Project:

Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID 1407d12-001b dup

Injection Well

SampType: DUP

TestCode: SM4500-H+B; pH

Batch ID: R20245

RunNo: 20245

Client ID: Prep Date:

Analysis Date: 7/29/2014

SeqNo: 588388

Units: pH units

Qual

Analyte pН

Result **PQL** 7.11

SPK value SPK Ref Val %REC LowLimit

1.68

HighLimit

%RPD

RPDLimit

Н

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RLReporting Detection Limit

Page 18 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12 15-Aug-14

Client:

Western Refining Southwest, Inc.

Project:

Injection Well 7-28-14 3rd QTR

Sample ID mb-1

SampType: MBLK

PQL

20

TestCode: SM2320B: Alkalinity

Client ID: PBW Batch ID: R20245

RunNo: 20245

Prep Date:

Analysis Date: 7/29/2014

SeqNo: 588355

SPK value SPK Ref Val %REC LowLimit

Units: mg/L CaCO3

%RPD

%RPD

%RPD

HighLimit

Qual

Analyte Total Alkalinity (as CaCO3)

ND

Result

80.00

TestCode: SM2320B: Alkalinity

RPDLimit

Client ID: LCSW

Sample ID Ics-1

SampType: LCS

Batch ID: R20245

RunNo: 20245

Prep Date:

Analysis Date: 7/29/2014

80

Result

Result

80

ND

SeqNo: 588356

Units: mg/L CaCO3

Analyte Total Alkalinity (as CaCO3) Result PQL

SPK value SPK Ref Val

%REC LowLimit 100

HighLimit 110 **RPDLimit**

Qual

Sample ID mb-2

SampType: MBLK

TestCode: SM2320B: Alkalinity

90

Client ID: **PBW**

Batch ID: R20245

20

RunNo: 20245

Units: mg/L CaCO3

Prep Date: Analyte

Analysis Date: 7/29/2014

SeqNo: 588376

SPK value SPK Ref Val %REC **PQL**

HighLimit LowLimit

RPDLimit

RPDLimit

Qual

Total Alkalinity (as CaCO3)

20

SampType: LCS

TestCode: SM2320B: Alkalinity

Sample ID Ics-2 Client ID: LCSW

Batch ID: R20245

PQL

20

RunNo: 20245

Units: mg/L CaCO3

Prep Date: Analyte

Analysis Date: 7/29/2014

SeaNo: 588377

%REC LowLimit

HighLimit %RPD 110

Qual

Total Alkalinity (as CaCO3)

SPK value SPK Ref Val

80.00

0

100

90

Qualifiers:

Value exceeds Maximum Contaminant Level.

Spike Recovery outside accepted recovery limits

Ε Value above quantitation range

J Analyte detected below quantitation limits

0 RSD is greater than RSDlimit

R RPD outside accepted recovery limits Analyte detected in the associated Method Blank

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RLReporting Detection Limit

H Holding times for preparation or analysis exceeded

Page 19 of 20

Hall Environmental Analysis Laboratory, Inc.

WO#:

1407D12

15-Aug-14

Client: Project: Western Refining Southwest, Inc. Injection Well 7-28-14 3rd QTR

Sample ID MB-14475

SampType: MBLK

TestCode: SM2540C MOD: Total Dissolved Solids

Client ID:

PBW

Batch ID: 14475

Prep Date:

RunNo: 20257

Units: mg/L

Analyte

7/29/2014

Analysis Date: 7/30/2014 **PQL**

SeqNo: 588640 SPK value SPK Ref Val %REC LowLimit

HighLimit

%RPD **RPDLimit** Qual

Total Dissolved Solids

Result ND

TestCode: SM2540C MOD: Total Dissolved Solids

%RPD

Sample ID LCS-14475

Client ID: **LCSW** SampType: LCS Batch ID: 14475

RunNo: 20257

Prep Date: 7/29/2014

Analysis Date: 7/30/2014

SeqNo: 588641

Units: mg/L

Analyte

Result PQL SPK value SPK Ref Val

%REC 102

LowLimit HighLimit

Total Dissolved Solids

1020

٥

120

RPDLimit

Qual

20.0

1000

80

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Sample pH greater than 2.
- Reporting Detection Limit

Ρ

Page 20 of 20

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Southw Work Order Numb	er: 1407D12		ReptNo: 1
Received by/date: 4 07 29114			
Logged By: Anne Thorne 7/29/2014 7:55:00 A	.M	ani Sham	
Completed By: Anne Thorne 7/29/2014		ane Il-	
Reviewed By: MA M29/14		CAME SICO	
Chain of Custody	•		
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
3. How was the sample delivered?	Courier		
<u>Log In</u>			
4. Was an attempt made to cool the samples?	Yes 🔽	No 🗆	na 🗆
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	na 🗆
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌	
7. Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗆	
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No 🗆	
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆
10.VOA vials have zero headspace?	Yes 🗸	No 🗆	No VOA Vials
11. Were any sample containers received broken?	Yes	No 🗹	# of preserved
	ma		hottles checked 2
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No ∐	for pH: (<2)or >12 unless noted)
13, Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗆	Adjusted?
14, Is it clear what analyses were requested?	Yes 🗹	No 🗆	a O
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 🗆	Checked by:
A			
Special Handling (if applicable) 16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗆	na 🗹
Person Notified: Date		· · · · · · · · · · · · · · · · · · ·	
By Whom: Via:	#	Phone Fax	☐ In Person
Regarding:			
Client Instructions:	to proceed the second s		The state of the s
17. Additional remarks:			
18. Cooler Information	n <u>az (numuk</u> un eset k	· 실망중 # 222 - + + 1	
Cooler No Temp C Condition Seal Intact Seal No. 1 1.0 Good Yes	Seal Date	Signed By	
. 100 000 100			

INTERNATION INTERNATION	ANALYSIS LABORATORY		4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	(*c) 	28,82 20°7 20°7 20°7 20°7 20°7 20°7 20°7 20°	OS Mis	01.07.07.07.07.07.07.07.07.07.07.07.07.07.	S O O O O O O O O O	5) (8 ste ste hic (A (A) (A) (A)	TPH 8015B PAH's (831 RCRA 8 MG ROS1 Pestic 8081 Pestic 8081 Pestic 8270 (Sem ZeacTivi FeacTivi			X	X	X	X	×	×				ks:		173 Whope Walls Charles to the contract of the	י און אתם-ניסוומסופס חמוש אזון דב תופטות והכימים מזו יום מיים מיים היים היים היים היים היים היי
		*	'ମ କ	<u> </u>								BTEX + MT										-		Remarks)	This social High	Cities processions
	**************************************	-82-4	e 3 m 0]										-20/	(00)	192	102	20l	Ser!	102)02	·			Date Time	Date Time	040	S. THIS SCHUGG GO INCHES
Time:	□ Rush		いってい			ger:			400	X	mperature.	Preservative Type	116	amber		\	142 SO4	HNO3	HOM	Acetate.		-		1.7.1	- William		וציו בחוובת ומהחומהיויהי
Tum-Around Time:	K Standard	Project Name	Dieci	Project #;		Project Manager:			Sampler:	⇒10 (A⊤		Container Type and #	3-VOA	1-1:ter	(-500m	1-500m	1-250ml	1-500ml	1-500m	1-500ml				Received by:	Received by:		CONTRACION IN OURSE O
pic	Clients Western Reguius		Mailing Address: #56 CR 4990	Phone Field, NN 874/3	I IV		QA/QC Package:	Standard 🗆 Level 4 (Full Validation)	Accreditation	1.	□ EDD (Type)	Date Time Matrix Sample Request ID	7-28-14 9:20 HaO Injection Well									and the second s		Time: Relinquished by:	Time: Relinquished by:	Palm 1704 Duntu Walle	If Recessing samples submitted to man chiving many or a some

Analytical Report

Report Summary

Client: Western Refining Southwest, Inc.
Chain Of Custody Number: 17288
Samples Received: 8/7/2014 3:20:00PM

Job Number: 96012-0115 Work Order: P408024

Project Name/Location: Injection Well

Entire Report Reviewed By:

Tim Cain, Laboratory Manager

Date:

8/8/14

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

envirotech-inc.com

Project Name:

Injection Well

PO Box 159

Bloomfield NM, 87413

Project Number: Project Manager: 96012-0115

Kelly Robinson

Reported: 08-Aug-14 17:39

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Inj. Well	P408024-01A	Aqueous	08/07/14	08/07/14	Voa vial, 40mL, HCl
	P408024-01B	Aqueous	08/07/14	08/07/14	Voa vial, 40mL, HCl
	P408024-01C	Aqueous	08/07/14	08/07/14	Voa vial, 40mL, HCl

Project Name:

Injection Well

PO Box 159

Project Number:

96012-0115

Reported:

Bloomfield NM, 87413

Project Manager:

Kelly Robinson

08-Aug-14 17:39

Inj. Well P408024-01 (Water)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Nonhalogenated Organics by 8015									
Gasoline Range Organics (C6-C10)	ND	0.10	mg/L	1	1432028	08/08/14	08/08/14	EPA 8015D	
Diesel Range Organics (C10-C28)	4.99	2.37	mg/L	1	1432027	08/08/14	08/08/14	EPA 8015D	
Surrogate: Benzo[a]pyrene		35.5 %	50	-200	1432027	08/08/14	08/08/14	EPA 8015D	Surr2
Surrogate: Bromochlorobenzene	.	98.4 %	50	-150	1432028	08/08/14	08/08/14	EPA 8015D	

Project Name:

Injection Well

PO Box 159

Project Number:

96012-0115

Reported: 08-Aug-14 17:39

Bloomfield NM, 87413

Project Manager: Kelly Robinson

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1432027 - Sep Funnel Liquid-Liq	uid Extraction El	PA 3510C		·m						
Blank (1432027-BLK1)				Prepared &	t Analyzed:	08-Aug-14	ļ			
Diesel Range Organics (C10-C28)	ND	2.78	mg/L							
Surrogate: Benzo[a]pyrene	11.8	23	н	18.0		65.6	50-200			
LCS (1432027-BS1)				Prepared &	k Analyzed:	08-Aug-14	-			
Diesel Range Organics (C10-C28)	11.4	2.73	mg/L	12.5		91.3	36-132			
Surrogate: Benzo[a]pyrene	11.3		n	18.3		61.4	50-200			
Matrix Spike (1432027-MS1)	Sou	ce: P408025-	01	Prepared &	z Analyzed:	08-Aug-14				
Diesel Range Organics (C10-C28)	1640	268	mg/L	12.5	2960	NR	36-132			SPK1
Surrogate: Benzo[a]pyrene	14.6		и	18,7		78. I	50-200			
Matrix Spike Dup (1432027-MSD1)	Sour	ce: P408025-	01	Prepared &	z Analyzed:	08-Aug-14				
Diesel Range Organics (C10-C28)	1200	250	mg/L	12.5	2960	NR	36-132	31.2	20	D1, SPK
Surrogate: Benzo[a]pyrene	10.5		п	20.0		52.5	50-200			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Three Springs - 65 Mercado Street, Suite 115, Durango, CO 81301

Project Name:

Injection Well

PO Box 159

Bloomfield NM, 87413

Project Number: Project Manager: 96012-0115

Kelly Robinson

Reported:

08-Aug-14 17:39

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1432028 - Purge and Trap EPA 5030A										
Blank (1432028-BLK1)				Prepared &	: Analyzed:	08-Aug-14	1			
Gasoline Range Organics (C6-C10)	ND	0.10	mg/L							
Surrogate: Bromochlorobenzene	0.0463		n	0.0500		92.5	50-150			
Duplicate (1432028-DUP1)	Sou	rce: P408024-	01	Prepared &	: Analyzed:	08-Aug-14	ļ			
Gasoline Range Organics (C6-C10)	ND	0.10	mg/L		ND				200	
Surrogate: Bromochlorobenzene	0.0496		и	0.0500	·	99.3	50-150			
Matrix Spike (1432028-MS1)	Sour	rce: P408024-	01	Prepared &	: Analyzed;	08-Aug-14	-			
Gasoline Range Organics (C6-C10)	0.44	0.10	mg/L	0,450	ND	97.3	80-120			
Surrogate: Bromochlorobenzene	0.0489		u	0.0500		97.8	50-150			

Project Name:

Injection Well

PO Box 159

Project Number:

96012-0115

Reported:

Bloomfield NM, 87413

Project Manager:

Kelly Robinson

08-Aug-14 17:39

Notes and Definitions

Surr2 Surrogate recovery was below acceptable limits.

SPK1 The spike recovery for this QC sample is outside of control limits.

D1 Duplicates or Matrix Spike Duplicates Relative Percent Difference exceeds control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

CHAIN OF CUSTODY RECORD

Western Refining	20,00	Programme Progra	Project Name / Location:	on: ~ Uel/					ANA	LYSIS	/ PAF	3AME	ANALYSIS / PARAMETERS	40			
Email results to:	\	San	Sampler Name:							,	1		•				
Client Phone No.:		Clie	Client No.: $\theta / \ell \ell$	5110-2100	10	boriteN boriteM)	horteM	S Metal	noinA \	d/H 41!M	-01e əld	(1.811	∃UE			looO e	e Jutact
Sample No./ Identification	Sample Date	Sample Time	Lab No.	No./Volume of Containers	Preservative HNO ₃ HCI				RCI		CO Tal	ь) Н Ч Т	CHTOL			Sample	Sample
IN; we//	87-14 3:0	3:B	10-172 8 930Hd	3x VOA-WIM	7	\times)	7
Administration of the second o																	
										-							
1100																	
THE PARTY OF THE P				1													
meron announce.															***************************************		
Relinquished by: (Signature)	7			Date Time 1	Received by: (Signature)	ignature)		,	1/1		V	İ			Date // // //	~~~	Time
Relinquished by: (Signature)					Received by: (Signature	andre			(X)				Assemble de Assemble de la constitución de la const				
Sample Matrix Solid Sludge	Sludge ☐ Aqueous 🕅 Other ☐	Other									***************************************						
	hours to sec	ure drop off	area.				"									-	
Rush				Analia Analia	ENVICOIECN Analytical Laboratory	S tots		1:0	11.6, 12.6 12.	~~~ ```		N	_				
5795 US Highway 64 • Farmington, NM 87401 • 505-632-0615	4 • Farmingto	n, NM 8740	1 • 505-632-0615 • 1	• Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301 • Laboratory@envirotech-ind	fercado Sfreet, S	Suite 115,	Durang	0,00	81301	• labo	raton	@en/	/irotec	h-ind	Pa	ge 7 (Page 7 of 7

Chavez, Carl J, EMNRD

From: Robinson, Kelly <Kelly.Robinson@wnr.com>

Sent: Wednesday, December 18, 2013 10:51 AM

To: Chavez, Carl J, EMNRD; Kelly, Jonathan, EMNRD

Cc: Tsinnajinnie, Leona, NMENV; Schmaltz, Randy
Subject: C-141 Final Report for Tank 44 Ethanol Release

Attachments: C-141 Notification_Tank 44 Ethanol Release_Final Report.pdf

Good Morning Gentlemen,

Attached is the C-141 Final Report documenting the Corrective Actions completed that pertain to the ethanol release which occurred at the Bloomfield Terminal earlier this month. If you have any questions regarding this event, please do not hesitate to contact me at your convenience. A hard copy will be sent to you via certified mail for your convenience.

Thank you for your time and Happy Holidays!

Kelly R. Robinson Environmental Supervisor

Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 8, 2011

	Release Notification and Corrective Action												
						OPERA	TOR		Initi	al Report	\boxtimes	Final Report	
Name of Co	mpany: W	estern Refir	ing Southwe	st, Inc.		Contact: R							
Address: 5							No.: 505-632-4						
Facility Na	me: Bloor	nfield Termi	nal			Facility Ty	pe: Products Te	rminal					
Surface Ow Inc.	ner: West	ern Refining	Southwest,	Mineral O	wner				API No).			
				LOCA	TIO	N OF F	CASE						
Unit Letter	Section	Township	Range Fe	et from the	North	/South Line	Feet from the	East/V	Vest Line	County			
NESE	27	29N	uw			***** * **							
	121		6° 41' 48.52		****	Longitud	e 107° 58' 1	4.78" V	v				
		2			URE	OF REL							
Type of Rele	ase: Ethan	ol		IVAI		Volume o	f Release: greater	than	Volume I	Recovered:	Estimat	ed 2 barrels	
C	1 O	rflow of Tank	14			10 barrels	Hour of Occurrence	\ <u>\</u>	Date and	Hour of Dis	ecovers.		
Source of Re	lease. Ove	I IIOW OI I ZIIK				12/2/2013		λ.		7:30pm	octory,		
			pon discovery			If YES, T							
volume		Yes 🛄	No Not R	equired			Carl Chavez with Jonathan Kelly wi						
By Whom?:	Kelly Roh	inson				Date and		IN INIVIC	CD – AZII	z Onice			
by whom:	12011) 2100					1)	3:30 pm 12/4/201						
						2) 3:30 pm on 12/4:2013 to Jonathan Kelly (NMOCD) via e-mail							
Was a Water	course Read					If YES, V	olume Impacting t	the Wate	ercourse.				
			Yes 🛛 No	•									
		pacted, Descr	ibe Fully.*										
No water cou	irse has bee	n impacted.											
Describe Cau	se of Probl	em and Reme	dial Action Ta	ken.*									
truck was un	loading, th	e auto gauge of in the field th	on the Tank rea	ad 18'-4," indi discharging f	icating from th	that there wa e tank top ve	pading into Tank 4 s sufficient room ints. Unloading ac	in the tau	nk to unloa	d the truck.	During	unloading	
estimates of t	the total vol	ume lost throu letermined the	igh the tank vo at the total volu	ents were repo ume of Ethano	rted as	less than 5 b was over 10 b	much Ethanol tha arrels. However o arrels. The invest e on the tank has s	on Decer igation i	nber 4 th , 20 into the evo	013 after fur ent also dete	ther inv rmined	estigation that the	

Describe Area		

The volume of ethanol released to ground was contained within the secondary containment of Tank 44. On December 3th, 2013, Western contracted with Envirotech to excavate the impacted soil material around the tank perimeter for off-site disposal. Approximately 30 cubic yards of soil was excavated. The excavated material was transported to the Envirotech Landfarm south of Bloomfield, New Mexico.

Following excavation activities, Western collected a five point composite sample of the excavated base. The sample was submitted to Hall Laboratories for laboratory analysis. The sample was analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX), total petroleum hydrocarbons (TPH) – gasoline range organics, and TPH – diesel range organics as required under the New Mexico Oil Conservation Division Guidelines for Remediation of Leaks, Spills, and Releases dated August 13, 1993. A summary of the final confirmation samples is as follows:

	Sample ID: Bite-Pinal	OCD Screening Levels (1)
	(ing/kg)	(ppm)
Benzene	COUNTY TO SERVICE	10
Toluene	10.05	
Ethylbenzene	40.05	
Total Xylenes	10-11 	li-sin
Total BTEX	0.20	50
TPH-GRO	150	
TPH -DRO	300	W
Total TPH	<35	100

Notes:

(1) Based on most conservative clean-up levels per the OCD Guidelines for Remediation of Leaks, Spills, and Releases dated August 13, 1993.

A copy of the analytical report is attached for reference. Based on the analytical results, Western is requesting that a "No Further Corrective Action Required" designation be approved for this event.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

ederal, state, or local laws alter or regulations.												
Signature Kelly Policinu	OIL CONSERVATION DIVISION											
Printed Name: Kelly Robinson	Approved by Environmental Specialist:											
Title: Environmental Supervisor	Approval Date:	Expiration Date:										
E-mail Address: Kelly.robinson@wnr.com	Conditions of Approval:		Attached									
Date: 12/18/2013 Phone: (505) 632-4166												

^{*} Attach Additional Sheets If Necessary

Analytical Report

Report Summary

Client: Western Refining-Bloomfield
Chain Of Custody Number: 15948

Samples Received: 12/9/2013 3:55:00PM

Job Number: 96012-0115 Work Order: P312043

Project Name/Location: Tank 44-BLM Term

	Tim Cain, Lab	poratory Manager			
Entire Report Reviewed By:		1	Date:	12/11/13	

The results in this report apply to the samples submitted to Envirotech's Analytical Laboratory and were analyzed in accordance with the chain of custody document supplied by you, the client, and as such are for your exclusive use only. The results in this report are based on the sample as received unless otherwise noted. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. If you have any questions regarding this analytical report, please don't hesitate to contact Envirotech's Laboratory Staff.

PO Box 159

Bloomfield NM, 87413

Project Name:

Tank 44-BLM Term

Project Number: Project Manager: 96012-0115

Kelly Robinson

Reported: 11-Dec-13 14:31

Analyical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Western Refining	P312043-01A	Soil	12/09/13	12/09/13	Glass Jar, 8 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

engliotech-shickern laboratory@environer-milkom

Three Springs • 65 Mercado Street, Suite 115, Durango, CO 81301

Ph (970) 259-0615 Fr (800) 362-1879

Page 2 of 8

Project Name:

Tank 44-BLM Term

PO Box 159

Project Number:

96012-0115

Reported:

Bloomfield NM, 87413

Project Manager:

Kelly Robinson

11-Dec-13 14:31

Western Refining P312043-01 (Solid)

		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.05	mg/kg	1	1350001	12/10/13	12/10/13	HPA 8021B	
Tolucne	ND	0.05	mg/kg	1	1350001	12/10/13	12/10/13	EPA 8021B	
Ethylbenzene	ND	0.05	mg/kg	1	1350001	12/10/13	12/10/13	EPA 8021B	
p,m-Xylene	ND	0.05	mg/kg	1	1350001	12/10/13	12/10/13	EPA 8021B	
o-Xylene	ND	0.05	mg/kg	1	1350001	12/10/13	12/10/13	EPA 8021B	
Total Xylenes	ND	0.05	mg/kg	1	1350001	12/10/13	12/10/13	EPA 8021B	
Total BTEX	ND	0.05	mg/kg	1	1350001	12/10/13	12/10/13	EPA 8021B	
Surrogate: Bromochlorobenzene		93.8 %	80-	120	1350001	12/10/13	12/10/13	EPA 8021B	
Surrogate: 1,3-Dichlorobenzene		90.7 %	80-	120	1350001	12/10/13	12/10/13	EPA 8021B	
Nonhalogenated Organics by 8015									
Gasoline Range Organics (C6-C10)	ND	5.00	mg/kg	1	1350001	12/10/13	12/10/13	EPA 8015D	
Diesel Range Organics (C10-C28)	ND	30.0	mg/kg	1	1350002	12/09/13	12/09/13	EPA 8015D	
GRO and DRO Combined Fractions	ND	5.00	mg/kg		[CALC]	12/10:13	12/10/13	EPA 8015D	

Project Name:

Tank 44-BLM Term

PO Box 159

Project Number:

96012-0115

Project Manager: Bloomfield NM, 87413

Kelly Robinson

Reported: 11-Dec-13 14:31

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1350001 - Purge and Trap EPA 5030A										
Blank (1350001-BLK1)	10.5			Prepared &	Analyzed:	09-Dec-13	1			
Benzene	ND	0.05	mg/kg							
l'oluene	ND	0.05	•							
Ethylbenzene	ND	0.05	•							
,m-Xylene	ND	0.05	: ág							
-Xylene	ND	0.05	W							
otal Xylenes	ND	0.05	•							
onal BTEX	ND	0.05	*							
urrogate: 1,3-Dichlorobenzene	48.7		ug/L	50.0		97.3	80-120			
urrogate: Bromochlorobenzene	50.6		•	50,0		101	80-120			
Puplicate (1350001-DUP1)	Source: P312038-01			Prepared: 0	9-Dec-13	Analyzed:	10-Dec-13			
Benzene	ND	0.05	mg/kg		ND				30	
Coluene	ND	0.05	4		ND				30	
Ethyl benzene	ND	0.05	-		ND				30	
p,m-Xylene	ND	0.05			ND				30	
-Xylene	ND	0.05	lt .		ND				30	
Surrogute: 1,3-Dichiorobenzene	46.8		ug/L	50 .0		93.5	80-120	7,000,000		
Surrogate: Bromochlorobenzene	49.7		•	50,0		99.4	80-120			
Matrix Spike (1350001-MS1)	Sou	rce: P312038-	0 1	Prepared: 0	9-Dec-13	Analyzed:	10-Dec-13			
Senzene	37,2		ug/L	50.0	ND	74,4	39-150			
Coluene	51.4		*	50.0	ND	103	46-148			
Ethylbenzene	51.6		•	50.0	ND	103	32-160			
n,m-Xylene	102		"	100	ND	102	46-148			
-Xylene	50.6		*	50.0	ND	101	46-148			
Surrogate: 1,3-Dichlorobenzene	50.2		*	50.0		100	80-120			200
Surrogate: Bromochlorobenzene	52.4		ŭ	50.0		105	80-120			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

enunctech im com

Project Name:

Tank 44-BLM Term

PO Box 159

Project Number:

96012-0115

Reported:

Bloomfield NM, 87413

Project Manager:

Kelly Robinson

11-Dec-13 14:31

Nonhalogenated Organics by 8015 - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1350001 - Purge and Trap EPA 5030A						***************************************			-	
Blank (1350001-BLK1)				Prepared &	Analyzed:	09-Dec-13				
Gasoline Range Organics (C6-C10)	ND	4.99	mg/kg							
Duplicate (1350001-DUP1)	Sour	re: P312038-	01	Prepared: (9-Dec-13	Analyzed:	10-Dec-13			
Gasoline Range Organics (C6-C10)	ND	4.99	mg/kg		ND		•		30	
Matrix Spike (1350001-MS1)	Sour	ee: P312038	8 1	Prepared: (9-Dec-13	Analyzed:				
Gasoline Range Organics (C6-C10)	0.48		mg/L	0.450	0.07	91.1	75-125			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 US Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

cassialturarabit

Project Name:

Tank 44-BLM Term

PO Box 159

Project Number:

96012-0115

Reported: 11-Dec-13 14:31

Bloomfield NM, 87413

Project Manager:

Kelly Robinson

Nonhalogenated Organics by 8015 - Quality Control

Environtant Analytical Laboratory

Envirotech	Analytical	Laboratory	

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1350002 - DRO Extraction EPA 3550C										
Blank (1350002-BLK1)				Prepared &	: Analyzed:	09-Dec-13				
Diesel Range Organics (C10-C28)	ND	30.0	mg/kg							
Duplicate (1350002-DUP1)	Sour	rce: P312038-	01	Prepared &	Analyzed:	09-Dec-13				
Diesel Range Organics (C10-C28)	ND	30.0	mg/kg		ND				30	
Matrix Spike (1350002-MS1)	Sour	rce: P312038-	01	Prepared &	Analyzed:	09-Dec-13				
Diesel Range Organics (C10-C28)	167	31.6	mg/kg	263	ND	63.6	75-125			SPK1

Project Name:

Tank 44-BLM Term

PO Box 159

Project Number:

96012-0115

Reported:

Bloomfield NM, 87413

Project Manager:

Kelly Robinson

11-Dec-13 14:31

Notes and Definitions

SPK1 The spike recovery for this QC sample is outside of control limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

(Rush)	CI	O NIAH	F CUS	ГС	D	Y	R	E	C	DF	RE)			1	59	48			
Client: Western Refin	iiv	F	roject Name / Locati	on: 14 - BLM	TER	<u>~</u>		analysis / Parameters													
Email results to: Kelly . Robinson	Girine (0.00	ampler Name:	deuson				015) -	8021)	3260)					-						
Client Phone No.: (Std 801-561L			llent No.: 96012-0115					TPH (Method 8021) VOC (Method 8260) VOC (Method 8260) RCRA 8 Metals Catlon / Anion RCI CCTEP with H/P CO Table 910-1 TPH (418.1) CHLORIDE						e Cool	Sample Intact						
Sample No./ Identification	Sample Date	Sample Time	Lab No.	No./Volume of Containers	Pi HNO ₃	eservati HCl	ive	TPH (A	втех	voc (RCRA	Cation	RCI	TCLP	CO Ta	ундт (CHLORIDE			Sample Cool	Samp
BASE - FINIAL	12/9/13	11200A	P312043-01	(1) BOZ	_			λ	ス											X	Y
																				\dashv	
·																					
							,														
											,										
					-																
					_																_
					 																
Relinquished by: (Signature)	non			Date Time	Rece	ived b	y: (S	ignat	ure)	1			- 4	•				.	Date 12/9/	Tir	- 1
Relinquished by: (Signature)				773	Rece	lved b	y: (S	ignat	ure)										1 61	1/5	77
Sample Matrix Soil X Solid Sludge	Aqueous [Other			-							7.5°+ day									
☐ Sample(s) dropped off after				env							4		>H	<u></u>)						
5795 US Highway 6	4 • Farmingt	on, NM 87	401 • 505-632-0615 • 1	Three Springs • 65 A	Nerca	do Str	eet, S	uite	115, D	uran	30, C	0.81	متسلا)	doo	ratory	r@en	virote	ch-inc.	com		

Chavez, Carl J, EMNRD

From:

Chavez, Carl J, EMNRD

Sent:

Wednesday, October 24, 2012 9:19 AM

To:

'Robinson, Kelly'

Cc:

Tsinnajinnie, Leona, NMENV; VonGonten, Glenn, EMNRD

Subject:

RE: Tank 35 Leak Detection System Release Notification - Western Refining Southwest,

Inc. - Bloomfield Refinery

Kelly:

OCD is allowing a 90-day period (on/or before 1/16/2013) to investigate and resolve (Final C-141 with attached corrective action(s)) the Tank 35 leak.

OCD requires tank repairs to comply with applicable API and/or ASTM Methods. Also, please be advised of the OCD Discharge Permit condition(s) related to retrofitting old tanks to current permit requirements. As the OCD discussed with Western on 10/16 the tank inspection and tracking system in place for the refinery and should reflect the inspection and repair work.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Thursday, October 18, 2012 11:22 AM

To: Chavez, Carl J, EMNRD

Subject: RE: Tank 35 Leak Detection System Release Notification - Western Refining Southwest, Inc. - Bloomfield

Refinery

Thank you, Sir!

I will be in-touch with up-dates as information and scheduling becomes available. Have a great day!

Kelly R. Robinson

Environmental Supervisor

Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024

(e) kelly.robinson@wnr.com

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Thursday, October 18, 2012 9:16 AM

To: Robinson, Kelly

Subject: RE: Tank 35 Leak Detection System Release Notification - Western Refining Southwest, Inc. - Bloomfield

Refinery

Kelly:

Received. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

From: Robinson, Kelly [mailto:Kelly.Robinson@wnr.com]

Sent: Wednesday, October 17, 2012 12:14 PM

To: Chavez, Carl J, EMNRD

Cc: Cobrain, Dave, NMENV; Tsinnajinnie, Leona, NMENV; Schmaltz, Randy; Weaver, Ron

Subject: Tank 35 Leak Detection System Release Notification - Western Refining Southwest, Inc. - Bloomfield Refinery

Good Morning Carl,

I appreciated you taking the time to talk with Randy and I yesterday regarding the issue at the Bloomfield Refinery pertaining to the leak detection system at Tank 35. As we discussed during our conference call with you yesterday morning, crude oil was found dripping from one area of the leak detection system at Tank 35 on Monday morning (October 15, 2012). Western has implemented procedures that include capturing the fluids from the leak detection system and transporting those fluids to the on-site wastewater treatment system. In addition, we have minimized the release of oil from the leak detection system by adding a layer of fresh water to the oil tank. The addition of water keeps the oil from being in-contact with the tank floor, and thus impedes further oil from dripping through the Tank's leak detection system.

As we indicated during our earlier conversation with you, we estimate the leak rate to be approximately one quart per hour. Based on this rate, we are collecting approximately 6 gallons per day from the leak detection system. Based on this rate, the amount released through the leak detection system is currently less than the State reportable amount of 5 barrels. However, pursuant to Condition 9 of the facility's Discharge Permit (GW-001), we wanted to inform OCD that we suspect there is a leak at Tank 35 and are working expediently to correct the situation.

As you requested, attached is an initial C-141 Report that documents this event based on the information we have been able to obtain thus far. We do not yet have a set schedule as to when we will be able to completely remove Tank 35 from service. Operation of this Tank at this time is necessary due to the high crude storage demand and until such time that our Gallup Refinery has returned to full operation following their recent maintenance turnaround activities. Western's priority is to remove Tank 35 from service as quickly as possible so as to be able to inspect the tank and make any necessary repairs. Once a schedule is set to accomplish this, Western will provide OCD with that schedule.

We appreciate your time! If there are any questions, please don't hesitate to contact either Randy or I at your convenience.

Sincerely,

Kelly R. Robinson Environmental Supervisor

Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

Chavez, Carl J, EMNRD

From: Robinson, Kelly <Kelly.Robinson@wnr.com>

Sent: Wednesday, October 17, 2012 12:14 PM

To: Chavez, Carl J, EMNRD

Cc: Cobrain, Dave, NMENV; Tsinnajinnie, Leona, NMENV; Schmaltz, Randy; Weaver, Ron

Subject: Tank 35 Leak Detection System Release Notification - Western Refining Southwest, Inc. -

Bloomfield Refinery

Attachments: C-141_WNR_Tank 35 Leak Detection.pdf

Good Morning Carl,

I appreciated you taking the time to talk with Randy and I yesterday regarding the issue at the Bloomfield, Refinery pertaining to the leak detection system at Tank 35. As we discussed during our conference call with you yesterday morning, crude oil was found dripping from one area of the leak detection system at Tank 35 on Monday morning (October 15, 2012). Western has implemented procedures that include capturing the fluids from the leak detection system and transporting those fluids to the on-site wastewater treatment system. In addition, we have minimized the release of oil from the leak detection system by adding a layer of fresh water to the oil tank. The addition of water keeps the oil from being in-contact with the tank floor, and thus impedes further oil from dripping through the Tank's leak detection system.

As we indicated during our earlier conversation with you, we estimate the leak rate to be approximately one quart per hour. Based on this rate, we are collecting approximately 6 gallons per day from the leak detection system. Based on this rate, the amount released through the leak detection system is currently less than the State reportable amount of 5 barrels. However, pursuant to Condition 9 of the facility's Discharge Permit (GW-001), we wanted to inform OCD that we suspect there is a leak at Tank 35 and are working expediently to correct the situation.

As you requested, attached is an initial C-141 Report that documents this event based on the information we have been able to obtain thus far. We do not yet have a set schedule as to when we will be able to completely remove Tank 35 from service. Operation of this Tank at this time is necessary due to the high crude storage demand and until such time that our Gallup Refinery has returned to full operation following their recent maintenance turnaround activities. Western's priority is to remove Tank 35 from service as quickly as possible so as to be able to inspect the tank and make any necessary repairs. Once a schedule is set to accomplish this, Western will provide OCD with that schedule

We appreciate your time! If there are any questions, please don't hesitate to contact either Randy or I at your convenience.

Sincerely,

Kelly R. Robinson Environmental Supervisor

Western Refining Southwest, Inc.

111 County Road 4990 Bloomfield, NM87413

- (o) 505-632-4166
- (c) 505-801-5616
- (f) 505-632-4024
- (e) kelly.robinson@wnr.com

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

Date: 10-16-12

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 3. St. F14		1 rc, 14lvt 6750.	, 		S	anta F	e, NM 875	505									
			Rele	ease	Notific	catio	n and Co	orrective A	ction								
							OPERA'		⊠ Initia	al Report		Final Report					
Name of C	ompany: W	estern Refin	ing Sout	hwest.	Inc.	— Т	Contact: R				at Report		Fulai Kepori				
Address: 5			<u> </u>				Telephone No.: 505-632-4185										
Facility Na	me: Bloom	nfield Refine	ery				Facility Type: Oil Refinery										
	vner: West	ern Refining	Southwe	est, l	Mineral C	Owner				API No).						
Inc.																	
					LOCA	ATIO	N OF RE	LEASE									
Unit Letter	Section	Township	Range	Feet f	rom the	North	/South Line	Feet from the	East/W	est Line	County						
L	27	29N	11W	<u> </u>				<u> </u>	<u> </u>								
Latitude 36° 41' 55"N Longitude 107° 58' 26" W																	
	_				NAT	URE	OF REL	EASE									
Type of Rele	ase: Crude	Oil						Release: 5 gallor			Recovered:						
Source of Re	elease: Tank	35 leak dete	ction syste	m			Date and H 10/15/2013	Your of Occurrence 7:15am			Hour of Dis 2 7:15am	cover	y:				
Was Immedi	ate Notice G		Yes [1 av. 1			If YES, To		711 (O OD	S	. 06						
D- 117 0	D- 4- C-1	maltz and Ke		٠		equireu		Carl Chavez with	NMOCD	– Santa r	e Onice						
By Whom?	Randy Sch	maitz and Ke	my Kooins	son			Date and I	9:39 am on 10/16	5/2012 to	Carl Chav	ez (NMOC	D)					
Was a Water	course Reac	hed?	Yes 🗵	No			If YES, Volume Impacting the Watercourse.										
If a Watercon			ibe Fully.				<u>- </u>										
Describe Car	ise of Proble	m and Reme	dial Action	n Taken	.*		····										
On Monday, being capture treatment sys	ed in a trougi	h. The leak r	ern person ate is estin	nel iden nated to	tified cruc be appro:	de oil dr ximately	ripping out of y one quart pe	the leak detection or hour. All fluids	system to are being	inder Tan g transferr	k 35. Curre ed to the on	ntly al :-site v	l fluids are vastewater				
Describe Are	a Affected a	nd Cleanup A	Action Tak	en.*						····							
in the tank, a treatment sys	ny further re stem. Wester	lease will be m is currently	water and y in the pre	not cru ocess of	de oil. Al f determin	l fluids ing the	are being cap quickest mea	and to serve as a b tured in a trough a ns of taking the ta oving Tank 35 from	and are be ank out of	eing trans f service in	ferred to the	on-sit	te wastewater				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.												endanger of liability uman health					
	OIL CONSERVATION DIVISION																
Signature:	Tan	alea	re														
Printed Nam	e: Roi	n We	a ver				Approved by	Environmental S	pecialist:								
Title: Reg		ermin			age-		- Approval Date: Expiration Date:										
E-mail Addre							Conditions of Approval:										

Chavez, Carl J, EMNRD

From:

Chavez, Carl J, EMNRD

Sent:

Thursday, May 24, 2012 12:09 PM

To:

Ed.Riege@wnr.com

Subject:

Western Refining Southwest Refineries: GW-001 and AP-11

Ed:

FYI, the OCD is now logging spills/releases at refineries into its OCD Online system "Spills" (click here).

Please contact me if you have questions. Thank you.

xc: OCD Online "C-141s" thumbnail

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Department

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Drive, Santa Fe, New Mexico 87505

Office: (505) 476-3490

E-mail: CarlJ.Chavez@State.NM.US

Website: http://www.emnrd.state.nm.us/ocd/

"Why Not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward With the Rest of the

Nation?" To see how, please go to: "Pollution Prevention & Waste Minimization" at

http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental

Chavez, Carl J, EMNRD

From: Sent: Donnelly, Patti [Patti.Donnelly@wnr.com] Thursday, January 19, 2012 8:29 AM

To:

Chavez, Carl J, EMNRD

Cc: Subject: Robinson, Kelly; Schmaltz, Randy Crude release at Bloomfield Refinery

Attachments:

Release Notification and Corrective Action 1-18-12.pdf

Good morning! A copy of this report will be mailed to Brandon Powell but as a courtesy we wanted to also keep you informed. If you have any questions please don't hesitate to contact either Kelly Robinson or Randy Schmaltz.

Thank you, Patti Donnelly

Patti Donnelly Logistics, HSER Western Refining 111 CR 4990 Bloomfield, NM 87413 (505) 632-4005 patti.donnelly@wnr.com District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rel	easc	e Notific	catio	n and Co	orrective <i>i</i>	Action	n				
								TOR	☐ Initi	al Report	\boxtimes	Final Repor		
Name of Company: Western Refining Southwest, Inc.							Contact: Victor McDaniel							
Address: 50 Road 4990							Telephone No.: 505-632-4146							
Facility Name: Bloomfield Refinery								Facility Type: Oil Refinery						
Surface Owner: Western Refining Southwest, Mineral Owner Inc.								API No.						
				-	LOCA	ATIO	N OF RE	LEASE						
Unit Letter	Section	Township	Range	Fee			South Line	East/	East/West Line County					
	27	29N	11W	1				}						
		·	e 36 ⁰ 41	, 55	"NI		Longitude	107° 58'	 26" W	· · · · · · · · · · · · · · · · · · ·	.l			
		Dania	<u> </u>				_		20 11		_			
7 6D -1-		0:1			NAI	UKE	OF REL			1377		0001		
Type of Release: Crude Oil								Volume of Release: 300 barrels Volume Recovered: 280 barrels						
Source of Release: Pipe flange connection							Date and Hour of Occurrence: Date and Hour of Discovery: 1/14/2012 at 4:30pm						•	
Was Immediate Notice Given? ☑ Yes ☐ No ☐ Not Required							If YES, To Whom?							
							1) Brandon Powell with NMOCD – Aztec Office,							
							2) Dave Cobrain with NMED Haz Waste Bureau;							
By Whom?	Randy Sch	maltz and Ke	ily Robins	on			3) Carl Chavez with NMOCD - Santa Fe Office Date and Hour:							
By Whom?: Randy Schmaltz and Kelly Robinson							1) 11:13 am on 1/15/2012 to Brandon Powell (NMOCD)							
!							2) 11:15 am on 1/15/2012 to Dave Cobrain (NMHWB)							
` .								3) 3:25 pm on 1/16/2012 to Carl Chavez (NMOCD)						
Was a Watercourse Reached?								olume Impacting	the Wat	970011700				
☐ Yes ⊠ No								nume impacting	uic wan	cicouisc.				
If a Watercou	rse was Imp	pacted, Descri	be Fully.				.4				-			
												•		
Describe Cau	se of Proble	m and Remed	dial Action	1 Tak	en.†									
Bloomfield R	efinery. Fo	llowing place in a release of	nent the ne	ew lir thin t	ne into servio he Tank 11	ce, it wa	s noticed that	on of a new crude one of the flang pon discovery of	e connec	tions along	the new pip	eline w	as not	
the line to elir prevented the	cted includ ninate the locrude oil fr tock-piled	es a small por eak and Weste om penetration on secondary	tion of the em person g deep int containme	cont nel u	sed the on-si soil. Envir	ite vacui otech In	um truck to va ic. mobilized	ocated. Upon di acuum up the oi to the Refinery t of disposal activ	l. The hig o excava	ghly compa te the impa	cted soil wit cted soil. T	hin the he exce	tank dike	
							·							
regulations all public health should their o	operators a or the envir- perations ha ment. In a	are required to onment. The ave failed to a ddition, NMO	report an acceptance dequately CD accep	d/or f e of a inves	file certain re C-141 repostigate and re	elease northernormal emediate	otifications are NMOCD made contamination	knowledge and nd perform corre arked as "Final l on that pose a th e the operator of	ctive acti Report" d reat to gr	ions for rele loes not reli ound water	ases which eve the oper , surface wa	may en ator of ter, hun	danger liability nan health	

Signature: Theto 12 MEDM100	OIL CONS	SERVATION	DIVISION
Printed Name: 1/1 Ctor R MCDANICL	Approved by Environmental Sp	ecialist:	
Title: facility MANAger	Approval Date:	Expiration I	Date:
E-mail Address: 1/10. mcdaxiel & wnr. com Date: 1-18-2012 Phone: 505 632 4146	Conditions of Approval:		Attached

^{*} Attach Additional Sheets If Necessary

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141
Revised August 8, 2011

John 1 Copy to appropriate District Office in

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM.87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Rele	ease Notific	eation	and Co	rrective A	ction	CT II	D		
				· ·		OPERA	ГOR	[Initia	al Report 45 🛭	Final Report	
		estern Refin				Contact: Victor McDaniel						
		990, Bloomi		, 874136			No.: (505) 632-					
Facility Nan	ne: Bloom	nfield Refine	ry			acility Typ	e: Oil Refinery					
Surface Own	ner			Mineral C)wner				API No).		
P		·				OF REI			·	,	,	
Unit Letter	Section 27	Township 29N	Range 11W	Feet from the	North/	h/South Line Feet from the East/West Lin				County		
		Latitude	36° 41'	57" N		Longitude	<u>107° 58' 1</u>	.9" W				
				NAT	URE	OF RELI	EASE					
		red Groundwa					Release 80 barre			Recovered		
Source of Rel	ease: disch	arge piping fr	om Tank 3			Date and H	our of Occurrence			Hour of Discover	у `	
Was Immedia	te Notice C	Given?				If YES, To		<u></u>	10/02/201	i at Ivani		
·			No Not Re	equired		on Gotten, Acting			MOCD .	ma maria		
By Whom? K			ervisor		Date and H	our: 10/03/2011	at 2:30pn	n				
Was a Watercourse Reached? If YES, Volume Imp							lume Impacting t	he Water	course.	gen en la rge		
* 1 3 3 4 4	~ ;	. –		•						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nese carrier according	
If a Watercou		pacted, Descri	be Fully.*							and the same		
4.0	•		•	•			•		: .	• • •	***	
Describe Caus	se of Proble	am and Dame	lial Action	Takan *					······			
					of the lir	ne joints to br	eak apart. Refine	ery Opera	tors ident	ified the pipe-brea	ak, isolated	
the line from	operation, a	and notified th	e Operation	on Supervisor of t	he incide	ent. Operato				recover the water		
Maintenance	personnel v	vere called-ou	t to the Re	finery to quickly	repair th	e line.	•					
												
Describe Area	Affected a	and Cleanup A	Action Tak	en.*		•					ĺ	
The volume o	f recovered	water release	d was con	tained within the	facility r	property. The	e affected area wa	as within a	a non-veg	etative area. The	majority of	
the spill accur	nulated in l	low-lying area	s just nort	h and east of the	containm	ent dike for	Tanks 13 and 14.	Soils in t	the area w	vhere was release	occurred were	
already satura and allowing					sed the m	ajority of the	released water to	o pond, th	us minim	izing infiltration i	nto the soil	
and anowing	·	covery of the	icicascu v	vator,							,	
										suant to NMOCD		
public health	or the envir	are required it	accentanc	d/or file certain re e of a C-141 repo	etease no	NMOCD ma	arked as "Final Re	enort" doe	es not reli	eases which may e eve the operator o	f liability	
										, surface water, hu		
					report do	es not relieve	the operator of r	esponsibi	lity for co	ompliance with an	y other	
federal, state,		vs and/or regu	lations.	*	1:		OIL COM	TED X / A	TION	DIVICIONI	-	
33.5 84.	7 /	MA				1	OIL CONS	<u>SERVA</u>	TION	<u>DIVISION</u>		
Signature:	KI	11/1/1/10	110	e · · · · ·						•		
Printed Name	Vica	tor m	1ºDA	NICL	A	approved by	Environmental Sp	oecialist:	•	** ** **** .	· · · · · · · · · · · · · · · · · · ·	
Title:	sife	MANI	19 eV		A	pproval Date	ə:	Ex	piration I	Date:		
E-mail Addres	ss: Vic-	, medan.	/ el@1/	UNR.Com	C	Conditions of	Approval:			Attached		

RECEIVED OCD

201 FED 14 P 1:09

February 11, 2011

Ms. Hope Monzeglio New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303

Mr. Carl Chavez State of New Mexico Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, NM 87505

Certified Mail: 7010 1870 0000 0709 4594

7010 1870 0000 0709 4600

Re: Western Refining Southwest, Inc. – Bloomfield Refinery

Newly Surfaced Groundwater Data Summary

Dear Ms. Monzeglio and Mr. Chavez:

Western Refining Southwest, Inc. – Bloomfield Refinery (Bloomfield) is providing New Mexico Environmental Department (NMED) and New Mexico Oil Conservation Division (NMOCD) a summary of the activities performed and data collected to date that pertains to the newly surfaced groundwater location identified in May 2010.

Discovery Summary

On Wednesday, May 19th 2010 during the bi-monthly visual inspections of the area north of the Refinery, Bloomfield identified a new area where groundwater had surfaced. This new area is located north of the raw water ponds within an arroyo along the north side of the Hammond Ditch. Bloomfield has identified this area as the "East Fork" area based on its location within the arroyo. **Figure 1** includes an aerial photo identifying the approximate location of the East Fork area.

A sample of the surface water was collected on the day of discovery and analyzed for benzene, toluene, ethylbenzene, and xylene (BTEX) and methyl tert-butyl ether (MTBE) by EPA method 8260. The results were received on May 26, 2010 and indicated a detected benzene concentration of 110 ug/L. All other analytes were non-detect. Bloomfield collected confirmation split samples on May 26, 2010 which were sent to Envirotech Analytical Laboratory (Envirotech) and Hall Environmental Analysis Laboratory (HEAL) for BTEX analysis. The split samples from Envirotech and HEAL detected benzene concentrations of 167 ug/L and 120 ug/L, respectively. All other analytes for the two split samples were non-detect.

On June 1, 2010 following receipt of the confirmation sample results, Bloomfield notified NMED Hazardous Waste Bureau and NMOCD via e-mail of the recent developments regarding discovery of the new surface water in the East Fork area and immediate actions taken upon discovery.

Response Action Taken

Immediately following confirmation of the benzene results, Bloomfield installed a catchment system to catch the surfacing groundwater at the East Fork area. The system consists of a trough and pump, which transports the captured groundwater to the Refinery's waste water treatment system. The catchment system remained operational from the first week of June 2010 until after receipt of the NMED letter dated July 30, 2010 that granted approval to cease pumping.

Surfaced groundwater samples were collected at the East Fork area on a weekly basis from May 26, 2010 through July 8, 2010. The samples were analyzed for BTEX and MTBE by EPA Method 8260. At NMED's request as stated in an e-mail from Hope Monzeglio dated June 3, 2010, samples collected on June 3, 2010 were also analyzed for diesel range organics (TPH-DRO), gasoline range organics (TPH-GRO), and motor oil range organics (TPH-MRO) by EPA Method 8015B.

In compliance with the NMED letter dated July 30, 2010, Western personnel collected one surface water sample the week before the irrigation ditch company turned off the water to the Hammond Ditch; as well as collected one surface water sample at two, six, and ten weeks after the irrigation ditch company discontinued releasing water to the Hammond Ditch. Samples were analyzed for BTEX and MTBE using EPA Method 8260 and General Chemistry EPA Method 300.0 (major cations/anions, nitrates/nitrites, carbonate). The surface water sample collected at the six week interval included analysis for GRO, DRO, and MRO using EPA Method 8015. **Table 1** provides a summary of the analytical results collected to-date. A copy of the respective analytical reports is provided in **Attachment A**.

In addition, Western personnel collected groundwater elevation measurements from monitoring wells MW-1, MW-50, and MW-51 at the specified intervals. Elevation measurements can be found in **Table 2**. A synopsis of the elevation measurements is presented in **Figure 2**. This data demonstrates that the groundwater elevation of the upgradient wells show little fluctuation relative to Hammond Ditch operations.

The source of the surfaced groundwater at the East Fork area is still not explicitly known. During visual inspection of the possible sources in the area, cracks were evident in the concrete lining of the Hammond Ditch. It is possible that these cracks in the ditch liner may be a significant hydraulic contributor to groundwater in this area.

By using a graduated cylinder and stopwatch, Western personnel measured the flow from the East Fork catchment the day before the irrigation ditch company turned off the water to the Hammond Ditch and again twelve days after canal shut off occurred. On October 14, 2010 the flow was at 1000 mls per 11 seconds or 1.4 gpm. On October 27, 2010 the flow was recorded at 1000mls per 11 seconds or 1.4 gpm. This

data illustrates in that 12 day time period the East Fork is not affected by Hammond Ditch operations.

Using the same measurement methods, Western personnel determined the flow from Outfall #3 the day before the irrigation ditch company shut off the canal (October 14, 2010)and again three days after canal shut off (October 18, 2010). Flows decreased from 75 gpm on October 14, 2010 to 5 gpm on October 18, 2010.

By comparing the data from Outfall #3 and the East Fork, there is a direct correlation to Hammond Ditch operation and flow at Outfall #3 and possibly to the East Fork. Outfall #3 is taking the water directly from a pipe connected to the French Drain underneath Hammond Ditch whereas water flowing to the East Fork must travel through the soil profile before daylighting.

Proposed Actions

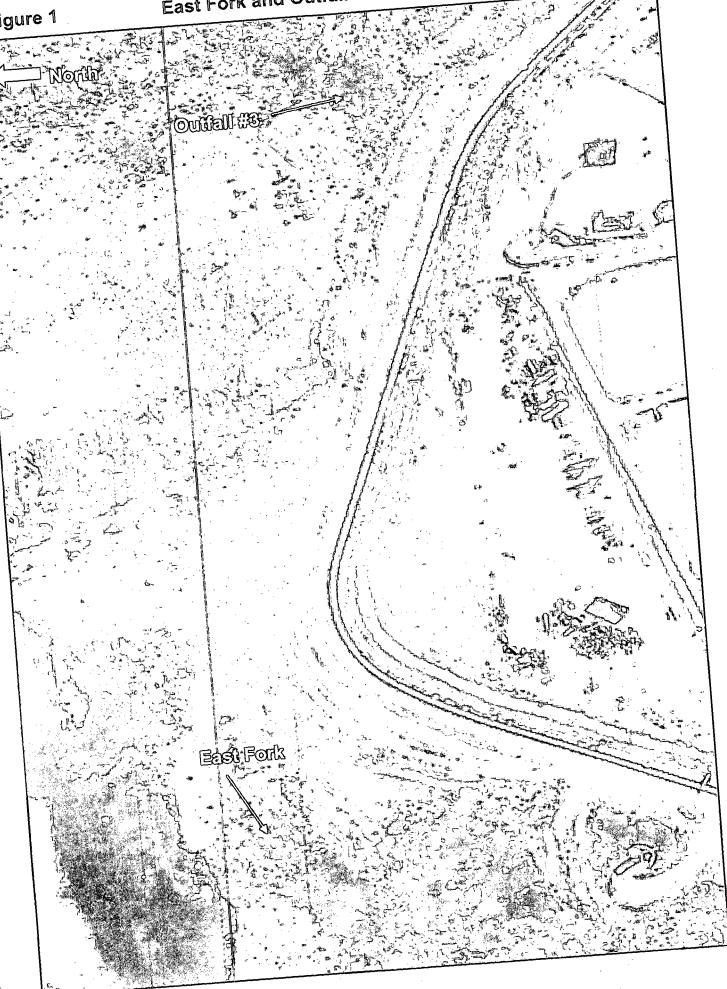
The benzene concentrations at the newly identified groundwater surface location (East Fork area) have progressively decreased since May 26, 2010. Detected benzene concentrations have been below the WQCC screening level of 10 ug/L since June 3rd, 2010, and below the EPA Maximum Contaminant Level (MCL) of 5 ug/L since June 16th, 2010 (Refer to **Table 1** for the analytical summary trend).

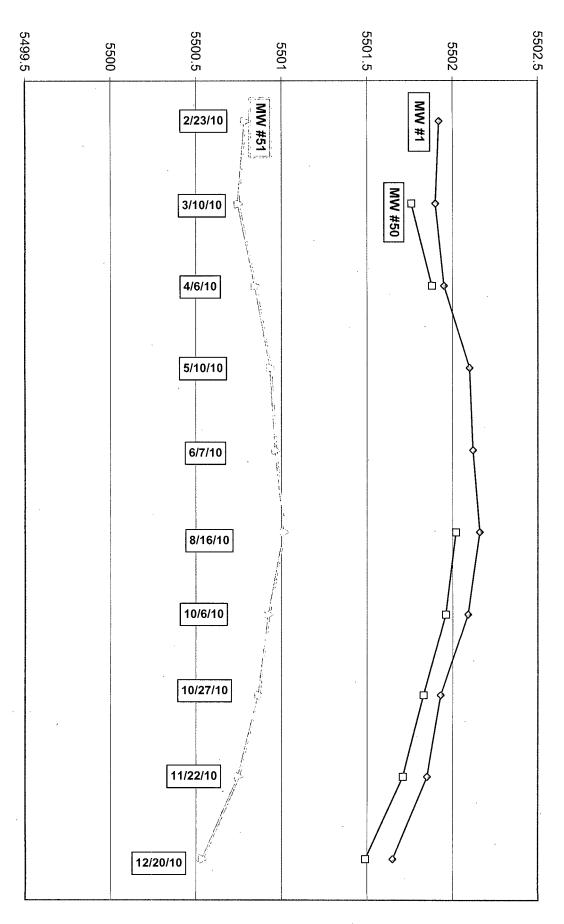
Bloomfield proposes to collect one surface water sample from the East Fork and flow measurements from Outfall #3 and the East Fork one week before water is let into Hammond Ditch and a follow up sample and flow measurements six weeks after ditch operations commence. Samples will be analyzed for BTEX and MTBE using EPA Method 8260 and for gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO) using EPA Method 8015.

If you have any questions or would like to further discuss this topic, please contact me at (505) 632-4171.

Spincere(y,

James R. Schmaltz


Environmental Manager


Western Refining Southwest, Inc.

Bloomfield Refinery

cc: Allen Hains - Western Refining El Paso

FIGURES

* d / 1.0

是源,400

Mr. Service

大學

* 12 V.V.

ガンカル

教を必じ

5. See 37.0

2 W . w

2000

16 1 di/u

100 mm

Figure 2
Groundwater Elevation - Near the East Fork - 2010

TABLES

Table 1
East Fork Analytical Monitoring

									(1)	(2)	(6	(10		Š
5/19/2010	5/26/2010	5/26/2010 (5)	6/3/2010	6/8/2010	6/16/2010	6/25/2010	7/1/2010	7/8/2010	10/06/2010 (1 wk before shut off)	10/27/2010 (2 wks after shut off)	11/22/2010 (6 wks after shut off)	12/20/2010 (10 wks after shut off)	Sampling Event	Screening Level (mg/L)
0.11	0.12	0.167	0.0096	0.0052	0.0034	0.0016	0.0023	0.002	<0.001	<0.001	<0.001	<0.001	Benzene (mg/L)	0'005((2)
<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	Toluene (mg/L)	0.75 (3)
<0.001	<0.001	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	Ethylbenzene (mg/L)	0.7 (2)
<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.0015	<0.002	<0.002	e Xylene (mg/L)	0.62 (3)
<0.001	<0.001	N N	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	MTBE (mg/L)	0.012 (1)
NA	N	N	<0.20	Z	Z	N P	N	N	N N	N N	<0.20	NA	DRO (mg/L)	0.2 (4)
NA	N A	N N	<0.05	N A	N A	N N	N N	N A	N N	N N	<0.05	N A	GRO (mg/L)	e ^r (, j.e.)
NA	N N	N N	<2.5	N A	N N	N N	N N	N A	N N	N	<2.5	NA	MRO (mg/L)	
NA A	NA A	NA	N	NA	N A	N	N	NA	0.47	0.45	0.44	0.41	Fluoride (mg/L)	1.6 (3)
NA	N A	NA	N A	N A	N A	N A	N A	NA	13	12	12	12	Çhloride (mg/L)	250 (3)
N A	NA	N A	NA	NA	N	NA	NA	N A	0.11	NA	0.14	AN	Bromide (mg/L)	
NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0	Nitrate/ Nitrite (mg/L)	
Š	Z Z	N N	N N	Š	N N	N N	Š	N N	<0.50	<0.50	<0.50	<0.50	P (mg/L)	
NA A	N A	NA	N A	N	N A	N A	N A	NA	110	90	75	74	Sulfate (mg/L)	600'(3)
N A	N A	N A	N N	N P	Z >	N	N N	N A	73	69	65	63	Calcium (mg/L)	4
NA	N A	N	N	N N	N N	N N	N D	NA	19	18	17	17	Mg (mg/L)	
NA	N A	N A	N N	NA.	N	Z	N	N N	1.9	1.9	-1.4	1.8	K (mg/L)	
NA A	Š	Z >	Š	Z S	Z	N N	N A	N N	57	55	53	53	Sodium (mg/L)	
NA A	N A	N N	N N	N A	Š	N N	N	N N	250	250	250	250	CO2 (mg/L)	
Z	Z Z	Z P	Z D	N N	Z Z	Z Z	N N	N N	250	250	250	250	ALK (mg/L)	641

. . .

3.8.5

1000

EPA Regional Screening Level (April 2009) - EPA Regional Screening Level Tap Water
 EPA - Regional Screening Level (April 2009) - MCL
 NMED WQCC Standards - Title 20 Chapter 6 Part 2 - 20.6.2.3101 Standards for Groundwater of 10,000 mg/L TDS Concentration or Less.
 NMED TPH Screening Guidelines October 2006 - unknown oil.
 Split sample analyzed by Envirotech Analytical Labororatory.
 NA - No Analysis

TABLE 2
Groundwater Elevation Measurement Summary - Near East Fork Area

Well ID	Monitoring Event	Date	Measuring Point Elevation	Total Well Depth	Depth To	Depth To Water (DTW)	Corrected Groundwater Elevation		·
·	10 weeks after S/O	12/20/2010	5519.21	21.56	NPP	17.56	5501.65)	e t
	6 weeks after S/O	11/22/2010	5519.21	21.56	NPP	17.36	5501.85	}	Hammond Ditch Shut Off
	2 weeks after S/O	10/27/2010	5519.21	21.56	NPP	17.28	5501.93		Har
	1 week before S/O	10/6/2010	5519.21	21.56	NPP	17.12	5502.09	ń	tch
V-1	3rd QTR	8/16/2010	5519.21	21.56	NPP	17.05	5502.16		Hammond Ditch Operating
MW-1	5th Month	6/7/2010	5519.21	21.56	NPP	17.09	5502.12		nmor Opera
	4th Month	5/10/2010	5519.21	21.56	NPP	17.11	5502.10		Han
	2nd QTR (3rd M)	4/6/2010	.5519.21	21.56	NPP	17.26	5501.95		nd Tut
	1st QTR (2nd M)	3/10/2010	5519.21	21.56	NPP	17.31	5501.90	}	Hammond Ditch Shut Off
	1st Month	2/23/2010	5519.21	21.56	NPP	17.29	5501.92		Ha
	10 weeks after S/O	12/20/2010	5518.79	22.14	NPP	17.30	5501.49	٦	r g
	6 weeks after S/O	11/22/2010	5518.79	22.14	NPP	17.08	5501.71		Hammond Ditch Shut Off
	2 weeks after S/O	10/27/2010	5518.79	22.14	NPP	16.96	5501.83		Han Ditc
	1 week before S/O	10/6/2010	5518.79	22.14	NPP	16.83	5501.96	5	ch C
-50	3rd QTR	8/16/2010	5518.79	22.14	NPP	16.77	5502.02	1 (Hammond Ditch Operating
MW-50	5th Month	NA	5518.79	22.14	NA	NA	. NA		nmond Di
	4th Month	NA	5518.79	22.14	NA	NA	NA		Нап
	2nd QTR (3rd M)	4/6/2010	5518.79	22.14	NPP	16.91	5501.88		nd Jut
	1st QTR (2nd M)	3/10/2010	5518.79	22.14	NPP	17.03	5501.76	}	Hammond Ditch Shut Off
	1st Month	NA	5518.79	22.14	NA	NA	NA		Hai
	10 weeks after S/O	12/20/2010	5515.58	22.18	NPP	15.04	5500.54)	z z
]	6 weeks after S/O	11/22/2010	5515.58	22.18	NPP	14.83	5500.75	}	Hammond Ditch Shut Off
]	2 weeks after S/O	10/27/2010	5515.58	22.18	NPP	14.71	5500.87	 	Han Dito
	1 week before S/O	10/6/2010	5515.58	22.18	NPP	14.65	5500.93		tch
-51	3rd QTR	8/16/2010	5515.58	22.18	NPP	14.56	5501.02		nd Di
MW-51	5th Month	6/7/2010	5515.58	22.18	NPP	14.61	5500.97		Hammond Ditch Operating
	4th Month	5/10/2010	5515.58	22.18	NPP	14.64	5500.94		Han
	2nd QTR (3rd M)	4/6/2010	5515.58	22.18	NPP	14.73	5500.85)	nd Jut
1	1st QTR (2nd M)	3/10/2010	5515.58	22.18	NPP	14.83	5500.75	}	Hammond Ditch Shut Off
	1st Month	2/23/2010	5515.58	22.18	NPP	14.79	5500.79		Hai

S/O - Shut Off of Hammond Ditch

Secondary A

ATTACHMENT A Analytical Reports

COVER LETTER

Tuesday, May 25, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: 5-19-10 Drainage North of TK#38

Dear Cindy Hurtado:

Order No.: 1005560

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 5/20/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab# NM9425 NM0901

AZ license # AZ0682 ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX

Date: 25-May-10

CLIENT:

Western Refining Southwest, Inc.

Project:

5-19-10 Drainage North of TK#38

Lab Order:

1005560

Lab ID:

1005560-01

Collection Date: 5/19/2010 2:15:00 PM

Client Sample ID: West Fork

Matrix: AQUEOUS

Analyses	Result	PQL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: HL
Benzene	ND	1.0	μg/L	1	5/20/2010 5:23:50 PM
Toluene	ND	1.0	μg/L	1	5/20/2010 5:23:50 PM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2010 5:23:50 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L ·	1	5/20/2010 5:23:50 PM
Xylenes, Total	ND	2.0	µg/L	1	5/20/2010 5:23:50 PM

Lab ID:

1005560-02

Collection Date: 5/19/2010 2:25:00 PM

Client Sample ID: East Fork		Matrix: AQUEOUS								
Analyses	Result	PQL	Qual Units	DF	Date Analyzed					
EPA METHOD 8260: VOLATILES S	HORT LIST	, 110			Analyst: HL					
Benzene	. 110	5.0	μg/L	5	5/21/2010 6:03:59 PM					
Toluene	, ND	1.0	μg/L	1	5/20/2010 6:52:11 PM					
Ethylbenzene	ND	1.0	μg/L	1	5/20/2010 6:52:11 PM					
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	5/20/2010 6:52:11 PM					
Xylenes, Total	ND	2.0	μg/L	1	5/20/2010 6:52:11 PM					

Qualifiers:

Value exceeds Maximum Contaminant Level

Estimated value Е

Analyte detected below quantitation limits

NC Non-Chlorinated

Practical Quantitation Limit

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit Spike recovery outside accepted recovery limits Page 1 of 1

Date: 25-May-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: 5-19-10 Drainage North of TK#38

Work Order:

1005560

Analyte	Result	Units	PQL	SPK Va S	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260: Vo	olatiles Shor	t List									
Sample ID: 1005560-01a msd		MSD				Batch ID:	R38830	Analysi	s Date:	5/20/2010	6:22:54 PI
Benzene	20.31	μg/L	1.0	20	0	102	72.4	126	0.138	20	
Toluene	21.54	μg/L	1.0	20	0	108	79.2	115	1.72	20	
Sample ID: 5ml rb		MBLK				Batch ID:	R38830	Analysi	s Date:	5/20/2010	B:45:56 Al
Benzene	ND	μg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/∟	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 5ml rb		MBLK				Batch ID:	'R38844	Analysis	s Date:	5/21/2010	8:57:02 A
Benzene	ND	µg/L	1.0								
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0						•		
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 5ml rb		MBLK				Batch ID:	R38830	Analysis	s Date:	5/20/2010	3:45:56 AN
Benzene	ND	μg/L	1.0								
Toluene	ND	μg/L	1.0			•					
Ethylbenzene	ND	μg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0								
Xylenes, Total	ND	μg/L	2.0								
Sample ID: 100ng lcs		LCS				Batch ID:	R38830	Analysis	B Date:	5/20/2010 10):54:22 AN
Benzene	20.06	μg/L	1.0	20	0	100	82.4	116			
Toluene	22.33	μg/L	1.0	20	0.	112	89.5	123			
Sample ID: 100ng ics		LCS				Batch ID:	R38844	Analysis	Date:	5/21/2010 10):19:50 AN
Benzene	18.82	μg/L	1.0	20	0	94.1	82.4	116			
Toluene	21.74	μg/L	1.0	20	0	109	89.5	123			
Sample ID: 100ng ics		LCS				Batch ID:	R38830	Analysis	Date:	5/20/2010 10	:54:22 AN
Benzene	20.06	μg/L	1.0	20	0	100	82.4	116			
Toluene	22.33	µg/L	1.0	20	0	112	89.5	123			
Sample ID: 1005560-01a ms		MS				Batch ID:	R38830	Analysis	Date:	5/20/2010 5	:53:38 PM
Benzene	20.28	μg/L	1.0	20	0	101	72.4	126			
Toluene	21.91	μg/L	1.0	20	Ö	110	79.2	115			
		,			-						

E Estimated value

J Analyte detected below quantitation limits

ID Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Sample Receipt Checklist

Water - VOA vials have zero headspace? No VOA vials submitted ☐ Yes ☑ No ☐ pH: Water - Preservation labels on bottle and cap match? Yes ☐ No ☐ N/A ☑	pped
Checklist completed by:	pped 🗌
Shipping container/cooler in good condition? Ves No Not Present Not Shi Custody seals intact on shipping container/cooler? Ves No Not Present Not Shi Custody seals intact on sample bottles? Ves No No N/A Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Yes No No No No No No No No No N	oped []
Custody seals intact on shipping container/cooler? Yes No Not Present Not Shi Custody seals intact on sample bottles? Yes No No N/A Chain of custody present? Chain of custody signed when relinquished and received? Yes No No No No No No No No No N	pped
Custody seals intact on sample bottles? Yes No No N/A No No N/A No No N/A No No No N/A No No No No No No No No No N	oped \square
Chain of custody present? Chain of custody signed when relinquished and received? Yes V No Chain of custody agrees with sample labels? Chain of custody agrees with sample labels? Samples in proper container/bottle? Samples in proper container/bottle? Yes V No C No C No C No C No C No C No C No	
Chain of custody signed when relinquished and received? Yes No No No No No No No No No No No No No	
Chain of custody agrees with sample labels? Samples in proper container/bottle? Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA vials have zero headspace? No VOA vials submitted Yes No No Numbott Noter - Preservation labels on bottle and cap match? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable Sontainer/Temp Blank temperature? 4.0° Vater - VOA vials submitted Yes No No N/A V Vater - pH acceptable If given sufficient time to cool.	
Samples in proper container/bottle? Samples in proper container/bottle? Yes V No \ Sufficient sample volume for indicated test? All samples received within holding time? Ves V No \ Number Number Ves V No \ Number VoA vials have zero headspace? No VOA vials submitted Yes No \ No	
Sample containers intact? Sufficient sample volume for indicated test? All samples received within holding time? Vater - VOA vials have zero headspace? Vater - Preservation labels on bottle and cap match? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt? Vater - pH acceptable upon receipt?	
Sufficient sample volume for indicated test? All samples received within holding time? Water - VOA vials have zero headspace? No VOA vials submitted Yes No No No No No No No No No N	
Number Nu	
Number Nu	
Vater - VOA vials have zero headspace? No VOA vials submitted ☐ Yes ☑ No ☐ pH: Vater - Preservation labels on bottle and cap match? Yes ☐ No ☐ N/A ☑ Vater - pH acceptable upon receipt? Yes ☐ No ☐ N/A ☑ <2 > below Container/Temp Blank temperature? 4.0° <6° C Acceptable If given sufficient time to cool.	ber of preserve
Vater - Preservation labels on bottle and cap match? Yes □ No □ N/A ✓ Vater - pH acceptable upon receipt? Yes □ No □ N/A ✓ No □ N/A ✓ **Delow** Container/Temp Blank temperature? 4.0° **Acceptable** If given sufficient time to cool.	es checked for
below container/Temp Blank temperature? 4.0° <6° C Acceptable If given sufficient time to cool.	
Container/Temp Blank temperature? 4.0° <6° C Acceptable If given sufficient time to cool.	12 unless noted
If given sufficient time to cool.	
:=====================================	
illent contacted Date contacted: Person contacted	
B	
contacted by: Regarding:	
omments:	
·	
Corrective Action	

COVER LETTER

Wednesday, June 02, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 5-26-10

Dear Cindy Hurtado:

Order No.: 1005835

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 5/27/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

Date: 02-Jun-10

	Vestern Refining So Prainage North of T				L	ab Orde	er: 1005835
Lab ID:	1005835-01			ı	Collection Date	5/26/2	010 1: 0 5:00 PM
Client Sample ID:	West Fork				Matrix	: AQUE	EOUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260	: VOLATILES SHO	ORT LIST		···			Analyst: DAN
Benzene		ND	1.0		µg/L	1	5/28/2010 10:37:23 AM
Toluene		ND	1.0	•	μ g/ L	1	5/28/2010 10:37:23 AM
Ethylbenzene		ND	1.0		µg/Ļ	1	5/28/2010 10:37:23 AM
Methyl tert-butyl ethe	r (MTBE)	· ND	1.0		µg/L	1	5/28/2010 10:37:23 AM
Xylenes, Total		ND	2.0		μg/L	1	5/28/2010 10:37:23 AM
Lab ID:	1005835-02			. (Collection Date:	5/26/2	010 12:50:00 PM
Client Sample ID:	East Fork				Matrix:	AQUE	OUS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260	: VOLATILES SHO	RT LIST					Analyst: DAM
Benzene		· 120	10		μg/L	10	5/28/2010 11:05:28 AM
Toluene		ND	1.0		μg/L	1	5/28/2010 11:33:35 AM
Ethylbenzene		ND	1.0		µg/L	1	5/28/2010 11:33:35 AM
Methyl tert-butyl ethe	r (MTBE)	ND	1.0		µg/L	1	5/28/2010 11:33:35 AM
Xylenes, Total		ND	2.0		μg/L	1	5/28/2010 11:33:35 AM
Lab ID:	1005835-03		· · · · · · · · · · · · · · · · · · ·	(Collection Date:	5/26/20	010 12:30:00 PM
Client Sample ID:	Outfall #2		•		Matrix:	AQUE	ous
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260	: VOLATILES SHO	RT LIST					Analyst: DAM
Benzene		ND	1.0		µg/L	1	5/28/2010 12:30:03 PM
Toluene		ND	1.0		μg/L	1	5/28/2010 12:30:03 PM
Ethylbenzene		ND	1.0		μg/L	1	5/28/2010 12:30:03 PM
Methyl tert-butyl ether	· (MTBE)	ND	1.0		µg/L	1	5/28/2010 12:30:03 PM
Xylenes, Total		ND ·	2.0		μ g /L	1	5/28/2010 12:30:03 PM
Lab ID:	1005835-04				Collection Date:	5/26/20	010 12:15:00 PM
Client Sample ID:	MW-51				Matrix:		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260:	VOLATILES SHO	RT LIST					Analyst: DAM
Benzene		6400	100		μg/L	100	5/28/2010 9:24:16 PM
Toluene		220	100		μg/L	100	5/28/2010 9:24:16 PM
Ethylbenzene	•	250	100		µg/L	100	5/28/2010 9:24:16 PM
Methyl tert-butyl ether	(MTBE)	ND	1.0		μg/L	1	5/28/2010 12:57:13 PM
Xylenes, Total	•	1800	200		μg/L	100	5/28/2010 9:24:16 PM

MCL Maximum Contaminant Level
ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits age 1 of 1

Date: 02-Jun-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38 5-26-10

Work Order:

1005835

Analyte	Result	Units	PQL	SPK Va SPK rel	%Rec L	owLimit Hi	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 8260: V	olatiles Shor	t List						
Sample ID: 5ml rb	•	MBLK	•		Batch ID:	R38998	Analysis Date:	5/28/2010 8:44:54 AM
Benzene	ND	μg/L	1.0					
Toluene	ND	µg/L	1.0				•	
Ethylbenzene	ND	μg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0					•
Xylenes, Total	ND	µg/L	2.0	•				
Sample ID: 100ng lcs		LCS			Batch ID:	R38998	Analysis Date:	5/28/2010 9:41:09 AM
Веплепе	21.46	μg/L	1.0	20 0	107	82.4	116	
Toluene	23.42	μg/L	1.0	20 0	117	89.5	123	•

Qualifiers:

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT			Date Received	i:	5/27/2010
Work Order Number 1005835	λ	. ار	Received by:	: ARS	: 0
Checklist completed by: Signature	\\	5/2 Dat	7110	·	Initials
Matrix:	Carrier name:	UPS			
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipping container/coo	ler?	Yes 🗹	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	N/A	2
Chain of custody present?		Yes 🗹	No 🗆		
Chain of custody signed when relinquished and	d received?	Yes 🗹	No 🗆		•
Chain of custody agrees with sample labels?		Yes 🗹	No 🗆		
Samples in proper container/bottle?	•	Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗆	•	
All samples received within holding time?		Yes 🗹	No 🗌		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials subr	mitted 🗌	Yes 🗹	No 🗌	bottles checked for pH:
Water - Preservation labels on bottle and cap n	natch?	Yes 🗌	No 🗌	N/A 🗹	
Water - pH acceptable upon receipt?		Yes 🗌	No 🗆	N/A 🗹	<2 >12 unless noted
Container/Temp Blank temperature?		6.7°	<6° C Acceptable	,	below.
COMMENTS:		٠	If given sufficient	time to cool.	
•					
•					
					•
Client contacted	Date contacted:		Perso	on contacted	
Contacted by:	Regarding:				
Comments:		•			
	·				
Corrective Action					
CONTROL HOUSE					
		······································	_ ~		

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Western Refining	Project#:	96012-0009
Sample ID:	West Fork	Date Reported:	05-31-10
Chain of Custody:	9482	Date Sampled:	05-26-10
Laboratory Number:	54454	Date Received:	05-26-10
Sample Matrix:	Aqueous	Date Analyzed:	05-27-10
Preservative:	Cool	Analysis Requested:	BTEX
Condition:	Intact		

Parameter	Concentration (ug/L)	Dilution Factor	Det. Limit (ug/L)
Benzene	1.9	1	0.2
Toluene	ND	. 1	0.2
Ethylbenzene	ND	1	0.2
p,m-Xylene	ND	1	0.2
o-Xylene	ND	1	0.1

Total BTEX 1.9

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	fluorobenzene	107 %
	1,4-difluorobenzene	98.3 %
	4-bromochlorobenzene	97.7 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

Drainage North of TK #38

Analyst

Review

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

	1			
Client:	Western Refining	Project #:	96012-0009	
Sample ID:	East Fork	Date Reported:	05-31-10	
Chain of Custody:	9482	Date Sampled:	05-26-10	
Laboratory Number:	54455	Date Received:	05-26-10	
Sample Matrix:	Aqueous	Date Analyzed:	05-27-10	
Preservative:	Cool	Analysis Requested:	BTEX	
Condition:	Intact			

Parameter	Concentration (ug/L)	Dilution Factor	Det. Limit (ug/L)
Benzene	167	1	0.2
Toluene	ND	1	0.2
Ethylbenzene	ND	1	0.2
p,m-Xylene	ND	1	. 0.2
o-Xylene	ND	1	0.1

Total BTEX 167

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries: Parameter		Percent Recovery
	fluorobenzene	113 %
	1,4-difluorobenzene	101 %
	4-bromochlorobenzene	122 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

Drainage North of TK #38

Analyst

eview //

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client:	N/A	Project #:	N/A
Sample ID:	0528BBLK QA/QC	Date Reported:	05-20-10
Laboratory Number:	544 54	Date Sampled:	N/A
Sample Matrix:	Aqueous	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	05-27-10
Condition:	N/A	Analysis:	BTEX

Galipretion land: Detection Limite (vg/L):	E PER LONDON	r C-CaliRE McCeptoRanj	Ziolii ge 0 - 169	Blank Conc	Detect. Limit
Benzene	1,2445E+006	1.2483E+006	0.30%	ND	0.2
Toluene	8.0034E+005	8.0275E+005	0.30%	ND	0.2
Ethylbenzene	6.5663E+005	6.5860E+005	0.30%	ND	0.2
p,m-Xylene	1.8965E+006	1.9022E+006	0.30%	ND	0.2
o-Xylene	6.2516E+005	6.2705E+005	0.30%	ND	0.1

emplicate Soits (19/2);	Cara Gample	Dupleage.	%DIff.	Acceptalinit	
Benzene	1.9	1.8	0.0%	0 - 30%	
Toluene	ND	ND	0.0%	0 - 30%	
Ethylbenzene	ND	ND	0.0%	0 - 30%	
p,m-Xylene	ND	ND	0.0%	0 - 30%	
o-Xylene	ND	ND	0.0%	0 - 30%	

Spike Gone (ug/L)	Sample A	amount Spiked/ Spik	ed Sample	% Recovery	Acceptilimits
Benzene	1.9	50.0	55.7	107%	39 - 150
Toluene	ND	50.0	56.2	112%	46 - 148
Ethylbenzene	ND	50.0	52.4	105%	32 - 160
p,m-Xylene	ND	100	118	118%	46 - 148
o-Xylene	ND	50.0	53.8	108%	46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 54454 and 54455.

Analyst

CHAIN OF CUSTODY RECORD

Western Cefining Project Name/ Location:	8015) 8260)	Method 8 Metal Month Mith H/P Mith Mith H/P Mith Mith H/P Mith Mith H/P Mith Mith H/P Mith Mith Mith Mith Mith Mith Mith Mith	Sample No.Volume Preservative (A PCRA Of PROCHALINE) And HOLL OF PACH	Ge 3-404 X X		Soil Sludge Soild Aqueous	Soil Sludge Soild Aqueous		_	Soil Sludge Solid Aqueous	ļ	-	Time Received by: (Signature) . (Date	01-25 8-10 H; 05 H	Received by: (Signature)	Received by: (Signature)		Analytical Laboratory
	Sampl	Olient	Samp										4	(سو				

A. 100 A.

No. 20 and 20.

1

10 may 10 m

A 300 .

AT THE STREET

7,000.00

3 数

ă.

A 105 . W

COVER LETTER

Friday, June 11, 2010

Cindy Hurtado
Western Refining Southwest, Inc.
#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 6/3/10

Dear Cindy Hurtado:

Order No.: 1006193

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 6/4/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab# NM9425 NM0901 AZ license # AZ0682 ORELAP Lab# NM100001

Texas Lab# T104704424-08-TX

Date: 11-Jun-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1006193

Project: Drainage North of TK#38 6/3/10

Lab ID:

1006193-01

Client Sample ID: East Fork

Collection Date: 6/3/2010 1:20:00 PM

Date Received: 6/4/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	GE				Analyst: JB
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	6/10/2010 12:59:10 PM
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	6/10/2010 12:59:10 PM
Surr: DNOP	137	82-162	%REC	1	6/10/2010 12:59:10 PM
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/10/2010 1:27:25 PM
Surr: BFB	93.0	55.2-107	%REC	1	6/10/2010 1:27:25 PM
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst: HL
Benzene	9.6	1.0	µg/∟	1	6/8/2010 2:57:30 PM
Toluene	NĎ	1.0	µg/L	1	6/8/2010 2:57:30 PM
Ethylbenzene	ND	1.0	µg/L	1	6/8/2010 2:57:30 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	4 .	6/8/2010 2:57:30 PM
Xylenes, Total	NÞ	2.0	μg/L	1	6/8/2010 2:57:30 PM
Surr: 1,2-Dichloroethane-d4	85.0	54.6-141	%REC	1	6/8/2010 2:57:30 PM
Surr: 4-Bromofluorobenzene	99.3	60.1-133	%REC	1	6/8/2010 2:57:30 PM
Surr: Dibromofluoromethane	91.3	78.5-130	%REC	1	6/8/2010 2:57:30 PM
Surr: Toluene-d8	102	79.5-126	%REC	1	6/8/2010 2:57:30 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 11-Jun-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38 6/3/10

Work Order:

1006193

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit .	%RPD	RPDLimit Qual
Method: EPA Method 8015B: D	Diesel Range			-						
Sample ID: MB-22660		MBLK				Batch ID:	22560	Analysis	Date:	6/10/2010 9:35:54 AM
Diesel Range Organics (DRO)	ND	mg/L	0.20							
Motor Oil Range Organics (MRO)	ND	mg/L	2.5							
Sample ID: LCS-22560		LCS	1			Batch ID:	22560	Analysis	Date:	6/10/2010 10:09:45 AM
Diesel Range Organics (DRO)	3.750	mg/L	0.20	2.5	0.1779	143	74	157		
Sample ID: LCSD-22560		LCSD				Batch ID:	22560	Analysis	Date:	6/10/2010 10:43:52 AM
Diesel Range Organics (DRO)	3.569	mg/L	0.20	2.5	0.1779	136	74	157	4.96	23
Method: EPA Method 8015B: G	asoline Ran	ae								
Sample ID: 5ML RB		MBLK				Batch ID:	R39200	Analysis	Date:	6/10/2010 9:35:51 AM
Gasoline Range Organics (GRO)	ND	mg/L	0.050							
Sample ID: 2.5UG GRO LCS		LCS				Batch ID:	R39200	Analysis	Date:	6/10/2010 6:45:23 PM
Gasoline Range Organics (GRO)	0.4882	mg/L	0.050	0.5	0	97.6	77.8	124		
Method: EPA Method 8260: Vo	iatiles Short	List								
Sample ID: 6ml rb		MBLK		٠.		Batch ID:	R39141	Analysis	Date:	6/8/2010 8:42:02 AM
Benzene	ND	μg/L	1.0							
Toluene	ND	μg/L	1.0							
Ethylbenzene	ND	µg/L	1.0	*						
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0							
Xylenes, Total	ND ,	μg/L	2.0					*		
Sample ID: 100ng Ics		LCS				Batch ID:	R39141	Analysis I	Date:	6/8/2010 9:53:19 AM
Benzene	18.99	μg/L	1.0	20	0	94.9	82.4	116		
Toluene	21.58	μg/L	1.0	20	0	108	89.5	123		

One	Hifi	erc:

E Estimated value

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

ID Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT				Date. Receive	ed:	6/4/2010	
Work Order Number 1006193	·			Received by	y: TLS	AT	
Q)			1.	Sample ID I	abels checked b		
Checklist completed by:		1 · C	Date	1 6	-	Initials	
	Carrier name:						
Matrix:	Carner name:	<u>UPS</u>					
Shipping container/cooler in good condition?		Yes 🖸	2	No 🗆	Not Present		
Custody seals intact on shipping container/co	ooler?	Yes 🛚	2	. No 🗆	Not Present	Not Shipped	
Custody seals intact on sample bottles?		Yes 🖢		No 🗆	N/A		
Chain of custody present?		Yes 🛂		No 🗆	•	•	
Chain of custody signed when relinquished ar	nd received?	Yes 🗹		No 🗆			
Chain of custody agrees with sample labels?		Yes 🛚	2	No 🗆			
Samples in proper container/bottle?		Yes 🛚		No 🗌			
Sample containers intact?		Yes 🗹	2	No 🗌			
Sufficient sample volume for indicated test?		Yes 🗹		No 🗌		•	•
All samples received within holding time?		Yes 🖳		No 🗌		Number of	
Water - VOA vials have zero headspace?	No VOA vials subn	nitted [Yes 🗹	No 🗌	bottles che pH;	cked for
Water - Preservation labels on bottle and cap	match?	Yes [No 🗌	N/A 🗹		
Water - pH acceptable upon receipt?		Yes []	No 🗌	N/A 🗹	<2 >12 unle	ess noted
Container/Temp Blank temperature?		9.5°		<6° C Acceptal		below.	
COMMENTS:			. 1	f given sufficien	t time to cool.		
							,
		===					
						V.	
					•		
	:						
Client contacted	Date contacted:			Pers	son contacted _		
Contacted by:	Regarding:						
Comments:						_	
							······································
		i. .		- A-10.5	· · · · · · · · · · · · · · · · · · ·		
	<u> </u>						
Corrective Action		· · - · · · · ·	······································	······································			
Confective Action				<u> </u>			
			,				<u> </u>

COVER LETTER

Wednesday, June 16, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 6-8-10

Dear Cindy Hurtado:

Order No.: 1006309

Hall Environmental Analysis Laboratory, Inc. received 3 sample(s) on 6/9/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Date: 16-Jun-10

CLIENT: Project:

Western Refining Southwest, Inc.

Drainage North of TK#38 6-8-10

Lab Order:

1006309

Lab ID:

Client Sample ID: MW-1

1006309-01

Collection Date: 6/8/2010 2:25:00 PM

Matrix: AQUEOUS

Analyses	Result	PQL Qua	l Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst: BDH
Benzene	ND	1.0	μg/L	1	6/10/2010 7:47:50 PM
Toluene :	ND	1.0	μ g/L	1 .	6/10/2010 7:47:50 PM
Ethylbenzene	ND	1.0	µg/L	1	6/10/2010 7:47:50 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	6/10/2010 7:47:50 PM
Xylenes, Total	ND	2.0	µg/L	1	6/10/2010 7:47:50 PM

Lab ID:

Client Sample ID:

1006309-02

Fresh Water Pond

Collection Date: 6/8/2010 2:40:00 PM

Matrix: AQUEOUS

Result POL Qual Units DF Analyses **Date Analyzed EPA METHOD 8260: VOLATILES SHORT LIST** Analyst: BDH ND Benzene μg/L 1 1.0 6/10/2010 8:16:06 PM ND Toluene 1.0 μg/L 1 6/10/2010 8:16:06 PM ND Ethylbenzene 1.0 μg/L 6/10/2010 B:16:06 PM Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 6/10/2010 8:16:06 PM Xylenes, Total ND 2.0 μg/L 6/10/2010 8:16:06 PM

Lab ID:

1006309-03

Collection Date: 6/8/2010 2:50:00 PM

Client Sample ID: East Fork

Matrix: AQUEOUS

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: MMS
Benzene	5.2	1.0	µg/L	1	6/11/2010 2:29:29 PM
Toluene	ND	1.0	µg/L	1	6/11/2010 2:29:29 PM
Ethylbenzene	ND	1.0	μg/L	1	6/11/2010 2:29:29 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	6/11/2010 2:29:29 PM
Xylenes, Total	ND	2.0	µg/L	1	6/11/2010 2:29:29 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

NC Non-Chlorinated

Practical Quantitation Limit

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

Not Detected at the Reporting Limit ND

Spike recovery outside accepted recovery limits Page 1 of 1

Date: 16-Jun-10

QA/QC SUMMARY REPORT

_..ent:

Western Refining Southwest, Inc.

Project: Drainage North of TK#38 6-8-10

Work Order:

1006309

-									
4	Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	owLimit Hig	ghLimit %RPD	RPDLimit Qual
	Method: EPA Method 8260: Vo Sample ID: b2	latiles Shor	t List MBLK			Batch ID:	R39204	Analysis Date:	6/10/2010 11:34:40 AM
6	Benzene	ND	μg/L	1.0		•			•
13.00	Toluene	ND	µg/L	1.0					
	Ethylbenzene	ND	µg/L	1.0					
S.P.	Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0					
	Xylenes, Total	ND	µg/∟	2.0			•		
	Sample ID: 100ng lcs		LCS			Batch ID:	R39204	Analysis Date:	6/10/2010 11:06:25 AM
	Benzene	19.88	µg/L	1.0	20 0	99.4	82.4	116	
The A Mark	Toluene	19.09	μg/L	1.0	20 0	95.5	89.5	123	

	_	_		
/ 119	li	fi	er	s:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT	,		Date Receiv	ed:	6/9/2010
Work Order Number 1006309	v.,		Received b	y: ARS	Λ
Checklist completed by:	; . ;	Date	Sample ID	labels checked by:	Initials
Matrix:	Carrier name	e: <u>UPS</u>			
Shipping container/cooler in good condition?		Yes 🗹	No 🗆	Not Present	·
Custody seals intact on shipping container/coole	r?	Yès 🗹	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?	•	Yes 🗹	No 🗌	N/A	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and r	eceived?	Yes 🗹	No 🗆		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌	·	
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗌		Number of preserved
Water - VOA viałs have zero headspace?	No VOA vials sub	omitted	Yes 🗹	No 🗌	bottles checked for pH:
Water - Preservation labels on bottle and cap ma	tch?	Yes 🗌	No 🗀	N/A 🗹	
Water - pH acceptable upon receipt?		Yes 🗌	No 🗌	N/A 🗹	<2 >12 unless noted below.
Container/Temp Blank temperature?		8.3°"	<6° C Accepta		Dolow.
COMMENTS:			If given sufficie	nt time to cool.	
•					
Client contacted	Date contacted:		Per	son contacted	
Contacted by:	Regarding:				
Comments:	!				
			,		
Corrective Action					
OURISOUND AUTOR	 				

	HALL ENVIRONMENTAL ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Ana	(†O(†)	eiO\z	(Gs2)	1.81 1.81 1.40 (HA) (HA)	28 to 4 bo 6 bo 7 to 9 to 9 to 9 to 9 to 9 to 9 to 9 t	Dorthow Horthood Corthow Horthood BOB (Methood BOB (PNA) CRA 8 Methood CRA 8 Methood CA NO (PNO) CA NO (Somi- CA NO (Somi- CA NO (Somi-	i	*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							rks:		If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
			<u>~</u>								TEX + MT TM + X3T8										Remarks		his possibility
ime:	□ Rush	0/-8-9	22 NOTE OF TE#38	!		er:		7.	ALCO TANDONICO CONTRACTOR OF THE CONTRACTOR OF T	eratúre:	Preservative Type Electronic Elec	Hci	HC/ 9	HC1 3		,					Date Time	Date 1 time	redited laboratories. This serves as notice of th
Turn-Around Time:	Standard	Project Name:	DRAIDAGE	Project #:		Project Manager:		Sampler: (A	On Toes	Sample Temperatur	Container Type and #	3-104	3-10A	3-10A					٧	_	Received by:	Kecelved by:	ontracted to other acc
Record			Mailing Address: 井5つ CR 4990		Phone #: 525-631- 4161	505-632-3911	OA/QC Package: V Standard		□ NELAP □ Other	☐ EDD (Type)	Date Time Matrix Sample-Request ID	6-8-10 225 Has MW-1	1 2:40 Has Fresh water POND								Time:	Date: Reinquished by:	If necessary, samples submitted to Hall Environmental may be subco

Air Bubbles (Y or N)

F - 3 14.16

September 1

100

. c. c. c. d.

A 15 Co.

199

10.00 mg

- 50

4000

discounty.

County II A.

7.7

20,000

COVER LETTER

Friday, June 25, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 6/16/10

Dear Cindy Hurtado:

Order No.: 1006609

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 6/17/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Date: 25-Jun-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1006609

Project: Drainag

Drainage North of TK#38 6/16/10

Lab ID:

1006609-01

Client Sample ID: East Fork

Collection Date: 6/16/2010 3:10:00 PM

Date Received: 6/17/2010

Matrix: AQUEOUS

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: HL
Benzene	3.4	1.0	μg/L	1	6/23/2010 8:53:52 PM
Toluene	ND:	1.0	μg/L	1	6/23/2010 8:53:52 PM
Ethylbenzene	ND	1.0	μg/L	1	6/23/2010 8:53:52 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	6/23/2010 8:53:52 PM
Xylenes, Total	ND	2.0	μg/L	1	6/23/2010 8:53:52 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

Page 1 of 1

Date: 25-Jun-10

QA/QC SUMMARY REPORT

.ient:

Western Refining Southwest, Inc.

Project: Drainage North of TK#38 6/16/10

Work Order:

1006609

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 8260: Vo Sample ID: 1008609-01a msd	otatiles Shor	t List MSD	,			Batch ID:	R39454	Analysis Date:	6/23/2010 9:49:10 PN
Benzene	23.61	· μg/L	1.0	20	3.38	101	72.4	126 3.44	20
Toluene Sample ID: b6	21.40	μg/L <i>MBLK</i>	1.0	20	0	107 Batch ID:	79.2 R39454	115 0.200 Analysis Date:	20 6/23/2010 10:44:23 PM
Benzene	ND	μg/L	1.0			-			
Toluene	ND	µg/L	1.0						
Ethylbenzene	ND	μg/L	1.0					¥	
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0						4
Xylenes, Total	ND	µg/L	2.0						
Sample ID: 5ml rb		MBLK				Batch ID:	R39454	Analysis Date:	6/23/2010 9:38:36 AM
Benzene	ND	μg/L	1.0						
Toluene	ND	μg/L	1.0						
Ethylbenzene	ND	µg/∟	1.0						
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0						
Xylenes, Total	ND	µg/L	2.0						
Sample ID: 100ng lcs_b		LCS				Batch ID:	R39454	Analysis Date:	6/23/2010 11:39:28 PM
Benzene	18.87	µg/L	1.0	20	0	94.4	82.4	116	
Toluene	20.66	µg/∟	1.0	20	0	103	89.5	123	
Sample ID: 100ng Ics		LCS	11			Batch ID:	R39454	Analysis Date:	6/23/2010 11:07:02 AM
enzene	19.41	µg/L	1.0	20	. 0	97.0	82.4	116	
Toluene	20.35	µg/L	1.0	20	0	102	89.5	123	
Sample ID: 1006609-01a ms		MS				Batch ID:	R39454	Analysis Date:	6/23/2010 9:21:36 PM
Benzene	22.81	µg/L	1.0	20	3.38	97.2	72.4	126	
Toluene	21.36	μg/L	1.0	20	0	107	79.2	115	•

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT	"			Date I	Received:			6/17/2010	
Work Order Number 1006609				Rece	eived by:	TL	S	An	
\$. 1	, ~ I.	ple ID lab	els checl	red by:	- W N	
Checklist completed by:			e	Date /)			Initials	
Matrix:	Carrier na	me: <u>UPS</u>	<u> </u>						
Shipping container/cooler in good condition?		Yes	V	No [Not Pres	ent 🗀		,
Custody seals intact on shipping container/coo	ler?	Yes	V	No [] ,	Not Pres	ent 🗌	Not Shipped	
Custody seals intact on sample bottles?		Yes	V	No [] 1	N/A			•
Chain of custody present?		Yes	V	No [•	
Chain of custody signed when relinquished and	d received?	Yes	V	No [
Chain of custody agrees with sample labels?		Yes	\checkmark	No [
Samples in proper container/bottle?		Yes	V	No []				
Sample containers intact?		Yes	V	No [•	
Sufficient sample volume for indicated test?		Yes	V	No [
All samples received within holding time?		Yes	Y	No [preserved
Water - VOA vials have zero headspace?	No VOA viais s	submitted		Yes 🖳	2	No		bottles che pH:	ecked for
Water - Preservation labels on bottle and cap n	natch?	Yes		No [N/A	V		·
Water - pH acceptable upon receipt?		Yes		No 🗆		N/A	V	<2 >12 unle below.	ess noted
Container/Temp Blank temperature?		5.	3°		cceptable			Delow.	
COMMENTS:				If given so	ufficient tir	ne to co	ol.		
					•				
									====
Client contacted	Date contacted:				Person -	contacte	d		
Contacted by:	Regarding:					* \			
Comments:	1								
								·	
			·····	. ,,					
Corrective Action									
									
				····					

The state of

A STATE OF

196

B. B. Jak

Section 1

A reserve

STATE OF THE STATE

A STATE OF THE STA

San A

COVER LETTER

Thursday, July 08, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413 TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK #38 6/24/10

Dear Cindy Hurtado:

Order No.: 1006905

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 6/25/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682

ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX

Date: 08-Jul-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1006905

Client Sample ID: East Fork

Collection Date: 6/29/2010 2:45:00 PM

Project:

Drainage North of TK #38 6/24/10

Date Received: 6/25/2010

1006905-01 Lab ID:

Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SI	HORT LIST	······································			Analyst: HL
Benzene	1.6	1.0	μg/L	1	7/7/2010 7:27:01 AM
Toluene	ИĎ	1.0	μg/L	1	7/7/2010 7:27:01 AM
Ethylbenzene	ND	1.0	μg/L	1	7/7/2010 7:27:01 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	7/7/2010 7:27:01 AM
Xylenes, Total	ND	2.0	µg/L	. 1	7/7/2010 7:27:01 AM
Surr: 1,2-Dichloroethane-d4	95.6	73.1-133	%REC	1	7/7/2010 7:27:01 AM
Surr: 4-Bromofluorobenzene	110	82.9-140	%REC	1	7/7/2010 7:27:01 AM
Surr: Dibromofluoromethane	99.2	79.2-119	%REC	1	7/7/2010 7:27:01 AM
Surr: Toluene-d8	101	84.4-118	%REC	1	7/7/2010 7:27:01 AM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value E
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- Ħ Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Date: 08-Jul-10

QA/QC SUMMARY REPORT

lient:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38 6/24/10

Work Order:

1006905

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260: Ve	olatiles Shor	t List									•
Sample ID: 1006905-01a msd		MSD				Batch ID:	R39668	Analys	is Date:	7/7/2010 8	3:22:12 AM
Benzene	21.60	μg/L	1.0	20	1.63	99.8	71.2	127	7.27	20	
Toluene	20.59	μg/L	1.0	20	0	103	90.2	127	1.67	20	
Sample ID: b6		MBLK				Batch ID:	R39668	Analys	is Date:	7/6/2010 10):43:45 PM
Benzene	ND	μg/L	1.0								
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	μg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0								
Xylenes, Total	ND	μg/L	2.0								
Sample ID: 100ng lcs_b		LCS				Batch ID:	R39668	Analysi	is Date:	7/6/2010 11	:38:43 PM
Benzene	19.14	μg/L	1.0	20	0	95.7	82.4	116			
Toluene	20.73	μg/L	1.0	20	0	104	89.5	123			
Sample ID: 1006905-01a ms		MS				Batch ID:	R39668	Analysi	s Date:	7/7/2010 7	':54:38 AM
Benzene	20.08	μg/L	1.0	20	1.63	92.3	71.2	127			
Toluene	20.25	μg/L	1.0	20	0	101	90.2	127			

)ualifiers:

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT		Date Receive	ed:	6/25/2010
Work Order Number 1006905		Received b	y: TLS	~ >
1		Sample ID	labels checked by:	()
Checklist completed by:	<u></u>	72 150	-	Initials
'		·		
Matrix: Carrier	name <u>UPS</u>			
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗹	No 🗌	N/A	
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗆	•	
Samples in proper container/bottle?	Yes 🗹	No 🗆		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for Indicated test?	Yes 🗹	No 🗆		
All samples received within holding time?	Yes 🗹	No 🗆		Number of preserved
Water - VOA vials have zero headspace? No VOA via	s submitted	Yes 🗹	No 🗌	bottles checked for pH:
Water - Preservation labels on bottle and cap match?	Yes 🗌	No 🗆	N/A	**************************************
Water - pH acceptable upon receipt?	Yes 🗌	No 🗆	N/A 🗹	<2 >12 unless noted
Container/Temp Blank temperature?	9.6°	<6° C Acceptal		below.
COMMENTS:		If given sufficier	it time to cool.	•
			•	
		•		
Client contacted Date contacted	l:	Pers	son contacted	
Contacted by: Regarding:	****	·		
Comments:				,
				
Corrective Action				
The second secon				
				mand up to the same of the sam

Chain-e	of-Cust	Record	Turn-Around Time:	ime:]	HALL ENVIDONMENTAL	Ü	7		2	2	¥		1
Client: Western Refining	N Ref.		प्र Standard	□ Rush					ANALYSIS LABORATORY		S 1		Ŏ	ZAT	Ö	<u> </u>	
			Project Name		9-24-10) 	www.hallenvironmental.com	llenvi	onme	ntal.cc	E		1	: (
Mailing Address: 450 CR 4990	#50 CR		DRAINS RATE	,	0PTK#38		4901 F	lawkir	4901 Hawkins NE - Albuquerque, NM 87109	- Albı	ıquerq	ne, N	M 871	60			
Bloomfield, NM 87413	P. N.W.		Project #:				Tel. 5	05-34	Tel. 505-345-3975		Fax 50	505-345-4107	4107				1
Phone #: 505	505-631-416	4/6/								Analy	sis Re	nalysis Request					
email or Fax#: 505-632-39	25-632	//	Project Manager:	jer:			<u> </u>						1				$\overline{}$
OA/QC.Package:												A					
X Standard		☐ Level 4 (Full Validation)															
_	□ Other		Sampler: R	ob.												(14.20	later
□ EDD (Type)			Sample Temp	erature										- 		/	111
Date Time	Matrix	Sample-Request ID	Container Type and #	Preservative Type	100//do	TM + X3T8	BTEX + MT	odieM) H9T	EDB (Metho	RCRA 8 Me	O, H) snoinA	8081 Pestic 8080 (VO	ime2) 0728			golddig ai A	Air Bubbles
1 54.4 J. 45- 9	140 E	EAST FORK	3-10A	$\ c\ $	/-					,		X					
									-								i
											_						Ī
											-	_		-	_		
							_										
					-												
Time: 75 320	Relinquished by:	Kaken	Received by:	(0)	Date Time	Remarks	arks:										
	Relinquished by:		Received by:		Date Time						•		•			-	
If necessary, sai	amples submitted	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	ontracted to other ac	credited laboratorie	s. This serves as notice of this	s possibili	ty. Any	sub-cont	acted da	a will be	dearly n	otated or	n the and	alytical re	eport.		٦

.

COVER LETTER

Tuesday, July 13, 2010

Cindy Hurtado
Western Refining Southwest, Inc.
#50 CR 4990
Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 7-1-10

Dear Cindy Hurtado:

Order No.: 1007081

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 7/2/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Date: 13-Jul-10

CLIENT: Lab Order: Western Refining Southwest, Inc.

Drainage North of TK#38 7-1-10

1007081

Client Sample ID: East Fork Collection Date: 7/1/2010 2:30:00 PM

Date Received: 7/2/2010

Matrix: AQUEOUS

Project: Lab ID:

1007081-01

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST	····			Analyst: HL
Benzene	2.3 :	1.0	μg/L	1	7/8/2010 11:54:58 PM
Toluene	ND	1.0	µg/L	1	7/8/2010 11:54:58 PM
Ethylbenzene	ND	1.0	μg/L	- 1	7/8/2010 11:54:58 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	· 1	7/8/2010 11:54:58 PM
Xylenes, Total	ND	2.0	μg/L	1	7/8/2010 11:54:58 PM
Surr: 1,2-Dichioroethane-d4	99.7	54.6-141	%REC	1	7/8/2010 11:54:58 PM
Surr: 4-Bromofluorobenzene	116	60.1-133	%REC	1	7/8/2010 11:54:58 PM
Surr: Dibromofluoromethane	101	78.5-130	%REC	1	7/8/2010 11:54:58 PM
Surr: Toluene-d8	111	79.5-126	%REC	1	7/8/2010 11:54:58 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value E
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Date: 13-Jul-10

QA/QC SUMMARY REPORT

.ient:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38 7-1-10

Work Order:

1007081

Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec L	owLimit Hi	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 8260: \	otatiles Shor	t List	:					
Sample ID: 5ml rb		MBLK			Batch ID:	R39704	Analysis Date:	7/8/2010 8:57:37 AM
Benzene	ND	μg/L	1.0					
Toluene	ND	μg/L	1.0					
Ethylbenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/∟	1.0					
Xylenes, Total	ND	µg/∟	2.0	•				
Sample ID: b5		MBLK			Batch ID:	R39704	Analysis Date:	7/8/2010 9:09:52 PM
Benzene	ND	µg/L	1.0					
Toluene	ND	μg/L	1.0					•
Ethylbenzene	ND	μg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	μg/L	1 .0			,		
Xylenes, Total	ND	µg/L	2.0					
Sample ID: 100ng ics		LCS	1		Batch ID:	R39704	Analysis Date:	7/8/2010 10:20:21 AM
Benzene	21.06	μg/L	1.0	20 0	105	82.4	116	
Toluene	21.60	μg/L	1.0	20 0	108	89.5	123	
Sample ID: 100ng lcs_b		LCS			Batch ID:	R39704	· Analysis Date:	7/8/2010 10:04:52 PM
Вепхеле	20.44	μg/L	1.0	20 0	102	82.4	116	
Toluene	21.56	µg/L	1.0	20 0	108	89.5	123	

u	A	li	fi	e	r	S	:

E Estimated value

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT	,		Date Received	i :	7/2/2010
Work Order Number 1007081	24		Received by		James
Checklist completed by:	10	Date	Sample ID la	bels checked by:	Initials
Matrix:	Carrier name: <u>UPS</u>				
Shipping container/cooler in good condition?	Yes	V	No 🗌	Not Present	l
Custody seals intact on shipping container/cooler	? Yes	\checkmark	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes		No 🗌	N/A ☑	
Chain of custody present?	Yes	\checkmark	No 🗌		
Chain of custody signed when relinquished and re	eceived? Yes	\checkmark	No 🗌		
Chain of custody agrees with sample labels?	Yes	. 🗸	No 🗆		
Samples in proper container/bottle?	Yes	\checkmark	No 🗌		
Sample containers intact?	Yes	V	No 🗌		•
Sufficient sample volume for indicated test?	Yes	V	No 🔲		
All samples received within holding time?	Yes	V	No 🗌		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials submitted		Yes 🗹	No 🗌	bottles checked for pH;
Water - Preservation labels on bottle and cap mat	ch? Yes	\checkmark	No 🗌	N/A	
Water - pH acceptable upon receipt?	Yes	V	No 🗌	N/A	<2 >12 unless noted
Container/Temp Blank temperature?	2	.1°	<6° C Acceptabl		below.
COMMENTS:			If given sufficient	time to cool.	
	·		•		
	•				
					•
Client contacted D	ate contacted:		Perso	on contacted	
Contacted by:	egarding:				
Comments:					
Comments.					
	· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·			······································	
Corrective Astion	1				
Corrective Action	<u> </u>				
	1				
•					

ئ چ	alir	of-Cu	Chan-of-Custody Record	Tum-Around Time:	lime:						HALL ENVIRONMENTAL	<u></u>	Ź	2	, C	Σ	2	Y L	_	
JII WESTERN ROFINIUS	Sleri	J. R. C.	Nive	X Standard	□ Rush					. •	ANALYSTS LABORATORY	\	S		0			C	<u> </u>	
		-		Project Name:						ť	www.hallenvironmental.com	aller	viron	ment	l.co	;) _	7 7 5	,	a \$	
Mailing Ad	dress:	#56 (Mailing Address: 井ら CR 4550	DEAINAGE NOTH OF TK#38	NOFTH OF	K#38 7	1-12	7	4901 Hawkins NE	-lawki	ns N		pndn	Albuquerque, NM 87109	N.	8710	<u>6</u>			
Bloomfield) si=	NW E	NM 87413	Project #:					Tel. 505-345-3975	05-34	5-39		Fax	505-	454	107				
Phone #:	505	505-632-416	1-4161	.	,						3 ²	Ahe	lyšis	👉 Analysis Request 📆	jše					A
email or Fax#: 525-633-	ax#: 5	25-6.	32-3911	Project Manager:	ger:							-	(*(10	_				
2A/QC Package:	kage:												25'		9					
Standard Standard	ē		☐ Level 4 (Full Validation)										<u>,09</u>		877					
Accreditation	ion	□ Other		Sampler: T	27- 27- 28-	W TON					(1.40	(HA	³ 'NO ⁵		TEX V	(<i>P</i>				(N)
□ EDD (Type)	ype)			Sample Tempera	erature = 7	ション)g p				EL (′ΟΛ				o Y)
Date	Time	Matrix	Sample-Request ID	Container Type and #	Preservative Type	7 39		TM + X3T8	ITM + X3T8 DouteM H9T	TPH (Metho	EDB (Metho	AN9) 0168	RCRA 8 Me	8081 Pestici	4OV) 80628	-ime2) 0728				Air Bubbles
1-10	2130	ho	EAST FOOK	3-104	Hc1	305001	3/	4							X					1
								· · ·												
								-												
									-							-				
			1			,						!								
					·															
									-											
						·														
									-			-				3	-			
									_						-	v ·		_		
6	Ð	Relinquished by	od by: I Kalber	Received by		7/2/10	Time 14:3	Remarks	rks:									.		Ī
		Relinquished by:	ed by:	Received by:)	Date	Time									٠,				
												i				, , , 	•			
If nec	sessary, s	samples subr	If necessary, samples submitted to Half Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report	contracted to other ac	credited laboratori	es. This serves a	is notice of this	Hiqissoc	y. Any	noo-dus	tracted	tata will	be dez	rly nota	ed on t	he ana	ytical re	port.		

100 m

And the second

San Parent

200

1 X 3 X 3

September 1

A 20 M

Service Services

COVER LETTER

Thursday, July 15, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 7-8-10

Dear Cindy Hurtado:

Order No.: 1007281

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 7/9/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Date: 15-Jul-10

CLIENT:

Western Refining Southwest, Inc.

Client Sample ID: East Fork

Lab Order:

1007281

Collection Date: 7/8/2010 2:15:00 PM

Project:

Drainage North of TK#38 7-8-10

Date Received: 7/9/2010

Lab ID:

1007281-01

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST		····		····	Analyst: MMS
Benzene	2.0	1.0		µg/L	1	7/13/2010 5:51:44 PM
Toluene	ND	1.0		µg/L	1	7/13/2010 5:51:44 PM
Ethylbenzene	ND	1.0		µg/L	1	7/13/2010 5:51:44 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		µg/L	1	7/13/2010 5:51:44 PM
Xylenes, Total	ND	2.0		µg/L	1	7/13/2010 5:51:44 PM
Surr: 1,2-Dichloroethane-d4	88.4	54.6-141		%REC	1	7/13/2010 5:51:44 PM
Surr: 4-Bromofluorobenzene	91.1	60.1-133	•	%REC	1	7/13/2010 5:51:44 PM
Surr: Dibromofluoromethane	140	78.5-130	S	%REC	1 .	7/13/2010 5:51:44 PM
Surr. Toluene-d8	97.7	79.5-126		%REC	1	7/13/2010 5:51:44 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

Date: 15-Jul-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38 7-8-10

Work Order:

1007281

Analyte	Res	ult Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260: Sample ID: 1007281-01a msc		Short List MSD		,		Batch ID:	R39786	Analys	is Date:	7/13/2010	6:48:17 PM
Benzene	° 14.	46 μg/L	1.0	20	2.025	62.2	72.4	126	12.3	20	S
Toluene	14.	76 µg/L	1.0	20	. 0	73.8	79.2	115	10.9	20	S
Sample ID: 1007281-01a ms		MS			•	Batch ID:	R39786	Analys	is Date:	7/13/2010	6:20:03 PN
Benzene	16.	35 μg/L	1.0	20	2.025	71.6	72.4	126			s
Toluene	16.	46 µg/L	1.0	20	. 0	82.3	79.2	115			

Qualifiers:

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

E Estimated value

Analyte detected below quantitation limits

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT			Date Receive	ed:	7/9/2010
Work Order Number 1007281			Received b	y: TLS	
Checklist completed by:		Da	9/10	labels checked by:	Initiats
Matrix:	Carrier name:	Greyhound	1		
Shipping container/cooler in good condition?	1	Yes 🗹	No 🗆	Not Present	
Custody seals intact on shipping container/coole	r? 1	Yes 🗹	No 🗆	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes 🗹	No 🗀	N/A	
Chain of custody present?	:	Yes 🗹	No 🗌		•
Chain of custody signed when relinquished and r	eceived?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗆		
All samples received within holding time?		Yes 🗹	No 🗌		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials sub	mitted	Yes 🗹	No 🗔	bottles checked for pH:
Water - Preservation labels on bottle and cap ma	itch?	Yes 🗌	No 🗀	N/A	
Water - pH acceptable upon receipt?		Yes 🗌	No 🗆	N/A 🗹	<2 >12 unless noted
Container/Temp Blank temperature?	; I	11.9°	<6° C Accepta		below.
COMMENTS:			ii giveri sumciei	it tille to cool.	•
. wy					
				·	•
•					
Client contacted	Date contacted:		Per	son contacted	
Contacted by:	Regarding:				
Comments:		,	•		
Comments.					
					·
	1			····	
Corrective Action					
			· · · · · · · · · · · · · · · · · · ·		

Signature	lain-	of-Cu	Chain-of-Custody Record	Turn-Around Time:	Fime:				1	HALL		2	ENVIRONMENTA	2	Σ	Z	Į	
	65 les	7, 5	Western Kefining	Standard Groject Name:	□ Rush	-				ANALYSIS LABORATOR	LY	SIS	3	BC	K	TC	J.K.	
				בוחופרו ואשווים		2-8-10	<u> </u>	1		www.hallenvironmental.com	allen	ironn	nental	EOO.				
nailing A	ddress;	#50	Aailing Address: 井ちっ CR 4890	DrainAge North		Of TIC#3A		4901	∃awki	4901 Hawkins NE -	₹ -	andne	Albuquerque, NM 87109	ΣN	37109			
Bloomfie	ont	tie (t	NM 87413	Project #:				Tel.	505-34	-345-3975		Fax !	505-345-4107	15-41	07	;		
hone #:	- 1	5-63	505-632-4161				, fam.				Ána	ysis	Redue	Şt	4			
mail or F	-ax#: (4	mail or Fax#: 505-6 33-	32-3911	Project Manager:	ger:		(,			(*(200				
λλ/QC Package: ≰′Standard	ickage: ard		☐ Level 4 (Full Validation)				r208) a					PO4,5G		MIBE				
Accreditation	tition	□ Other	1	Sampler: C	ind		+ TMB							/	15			- (N 10
TEDD (Type)	Type)_			Sample Tem	erature	6	36) (人
Date_	Time	Matrix	Sample Request ID	Container-Type and #	Preservative Type		ITM + X∃T8	BTEX + MTE borteM H9T	ortieM) H9T	EDB (Metho	5 AN9) 01:E8 9310 8 Me	(F,Cl	ioitee9 1808	AOV) 80828 -ime ²) 0728				Air Bubbles
8-10	215	Hao	EAST FORK	3-10A	Hc/)				11	1	+						
														_				
																		_
			•															
·																		
																		<u> </u>
		\$						-		·				-				
10		Relinquished by:	wey Hutado	Received by:		Date Time COVO	Remarks	arks:										
ate:	Time:	Relinquished by:	ed by: '	Received by:	1	V Date Time												
15 ne	cessary, s	samples subn	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	ontracted to other ac	credited laboratoric	es. This serves as notice of th	is possibil	ity. Any	noo-qns	racted d	sta will b	e dear	y notated	d on the	analyti	le repoi	-	

""

Sept. Sept.

3 No. of the Lot

Commercial Commercial

1.000

September 1

A. S. B. W.

T. M. VARIA

Strong Co

COVER LETTER

Wednesday, October 27, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK #38

Dear Cindy Hurtado:

Order No.: 1010563

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 10/6/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Date: 28-Oct-10

CLIENT:	Western	Refining	Southwest,	Inc.
---------	---------	----------	------------	------

Project: Drainage North of TK #38

Lab Order:

1010563

Work Ord	der Sample	Summary
----------	------------	---------

Lab Sample ID	Client Sample ID	Batch ID	Test Name	Collection Date
1010563-01A	East Fork	R41532	EPA Method 8260: Volatiles Short List	10/6/2010 8:45:00 AM
1010563-01B	East Fork	R41620	EPA Method 300.0: Anions	10/6/2010 8:45:00 AM
1010563-01B	East Fork	R41594	EPA Method 300.0: Anions	10/6/2010 8:45:00 AM
1010563-01B	East Fork	R41585	SM 2320B: Alkalinity	10/6/2010 8:45:00 AM
1010563-01B	East Fork	R41535	EPA Method 300.0: Anions	10/6/2010 8:45:00 AM
1010563-01B	East Fork	R41535	EPA Method 300.0: Anions	10/6/2010 8:45:00 AM
1010563-01C	East Fork	24117	EPA 6010B: Total Recoverable Metals	10/6/2010 8:45:00 AM

Date: 28-Oct-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1010563

TS 1 37 /1

Drainage North of TK #38

Project: Lab ID:

1010563-01

Client Sample ID: East Fork

Collection Date: 10/6/2010 8:45:00 AM

Date Received: 10/6/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS	į į		•			Analyst: SRM
Fluoride	0.47	0.10		mg/L	1	10/13/2010 4:56:42 PM
Chloride	13	0.50		mg/L	1	10/13/2010 4:56:42 PM
Bromide	0.11	0.10		mg/Ľ	1	10/16/2010 8:58:39 PM
Nitrate (As N)+Nitrite (As N)	ND	1.0		mg/L	5	10/18/2010 4:33:35 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	10/13/2010 4:56:42 PM
Sulfate	110	10		mg/L	20	10/13/2010 5:14:07 PM
EPA 6010B: TOTAL RECOVERABLE	METALS		•			Analyst: SNV
Calcium	73	1.0		mg/L	1	10/17/2010 4:59:03 PM
Magnesium	19	1.0		mg/L	1	10/17/2010 4:59:03 PM
Potassium	1.9	1.0		mg/L	1	10/17/2010 4:59:03 PM
Sodium	57	1.0		mg/L	1	10/17/2010 4:59:03 PM
EPA METHOD 8260: VOLATILES SHO	RT LIST					Analyst: MMS
Benzene	ND	1.0		μg/L	1	10/13/2010 10:05:24 PM
Toluene	ND	1.0		µg/L	1	10/13/2010 10:05:24 PM
Ethylbenzene	ND	1.0		μg/L	1	10/13/2010 10:05:24 PN
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	10/13/2010 10:05:24 PM
Xylenes, Total	ND	2.0		μg/L	1	10/13/2010 10:05:24 PM
Surr: 1,2-Dichloroethane-d4	91.9	54.6-141		%REC	1	10/13/2010 10:05:24 PM
Surr: 4-Bromofluorobenzene	89.4	60.1-133		%REC	1	10/13/2010 10:05:24 PN
Surr: Dibromofluoromethane	105	78.5-130		%REC	1	10/13/2010 10:05:24 PN
Surr: Toluene-d8	99.5	79.5-126		%REC	1	10/13/2010 10:05:24 PN
SM 2320B: ALKALINITY						Analyst: IC
Alkalinity, Total (As CaCO3)	250	20		mg/L CaCO3	1	10/14/2010 5:09:00 PM
Carbonate	ND	2.0		mg/L CaCO3	1	10/14/2010 5:09:00 PM
Bicarbonate	250	20		mg/L CaCO3	1	10/14/2010 5:09:00 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

DATES REPORT

Hall Environmental Analysis Laboratory, Inc.

Lab Order: 1010563

Western Refining Southwest, Inc.

Client:

Project: Drainage North of TK #38

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Instrument Run ID QC Batch ID Prep Date	QC Batch ID	Prep Date	Analysis Date
1010563-01A	East Fork	10/6/2010 8:45:00 AM	Aqueous	EPA Method 8260; Volatiles Short List	VAL_101013A	R41532		10/13/2010
1010563-01B				EPA Method 300.0: Anions	ORION_101018A	R41620		10/18/2010
				EPA Method 300.0: Anions	ORION_101015B	R41594		10/16/2010
				EPA Method 300.0: Anions	TRITON_101013A	R41535		10/13/2010
				EPA Method 300.0: Anions	TRITON_101013A	R41535		10/13/2010
				SM 2320B: Alkalinity	OSEIDON_101014.	R41585		10/14/2010
1010563-01C				EPA 6010B: Total Recoverable Metals	ISIS 101017A	24117	10/14/2010	10/17/2010

W. T.

6.28.50 mar

1.6.2.2

* 200 a

S

東倉

2. 电影影

No.

S. S. Dingle

を

Date: 28-Oct-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38

Work Order:

1010563

Analyte		Result	Units	PQL	SPK Va SF	K ref	%Rec Lo	owLimit Hi	ghLimit %RPI	RPDLimit Qual
Method: EPA	Method 300.0: Ani	lons						•		
Sample ID: ME	3		MBLK				Batch ID:	R41535	Analysis Date:	10/13/2010 11:08:35 AT
Fluoride		ND	mg/L	0.10						
Chloride		ND .	mg/L	0.50						
Nitrate (As N)+N	itrite (As N)	ND	mg/L	0.20						
	hophosphate (As P)		mg/L	0.50						
Sulfate	,	ND	mg/L	0.50						
Sample ID: ME	3		MBLK	1			Batch ID:	R41535	Analysis Date:	10/14/2010 2:48:39 A
Fluoride		ND	mg/L	0.10		•			•	
Chloride	,	ND	mg/L	0.10						
Bromide		ND	=	0,10						*
	itrita (A.a. NI)	ND	mg/L	0.10						
Nitrate (As N)+N	•		mg/L	0.20						
Sulfate	hophosphate (As P)	ND	mg/L	0.50						
	•	, ND	mg/L	0.50			Batch ID:	R41594	Anglysis Data:	10/16/2010 11:52:46 Pt
Sample ID: ME	•		MBLK	j			Datch ID.	K41084	Allalysis Date.	10/10/2010 11.52:40 FI
Fluoride		ND	mg/L	0.10						
Chloride		ND	mg/L	0.50						
Bromide		ND	mg/L	0.10						
Nitrate (As N)+N	itrite (As N)	ND	mg/L	0.20						
Phosphorus, Ort	hophosphate (As P)	ND	mg/L	0.50						
Sulfate		ND	mg/L	0.50					•	
Sample ID: ME			MBLK	İ			Batch ID:	R41620	Analysis Date:	10/18/2010 11:20:10 At
Fluoride		ND	mg/L	0.10						
Chloride		ND	mg/L	0.50			•			
Bromide		ND	mg/L	0.10						
Nitrate (As N)+N	trite (As N)	ND	mg/L	0.20						
	nophosphate (As P)	ND	mg/L	0.50						
Sulfate		ND	mg/L	0.50						
Sample ID: LC	5		LCS	i			Batch ID:	R41535	Analysis Date:	10/13/2010 11:25:59 AF
Fluoride		0.5051	mg/L	0.10	0.5	G	101	90	110	
Chloride		4.977	mg/L	0.50	5	ō	99.5	90	110	
Bromide		2.501	mg/L	0.10	2.5	ō	100	90	110	
Nitrate (As N)+N	trite (As N)	3.517	mg/L	0.20	3.5	Ö	100	90	110	
	nophosphate (As P)		mg/L	0.50	5	0	102	90	110	
Sulfate	ioprioopriato (1017)	10.07	mg/L	0.50	10	ō	101	90	110	
Sample ID: LC	2	10.07	LCS	7.00		•	Batch ID:	R41535	Analysis Date:	10/14/2010 3:06:04 AI
-	-	0.5470		d 40	٥٠	^	-		-	10/14/2010 0.00.04/1
Fluoride		0.5473	mg/L	0.10	0.5	0	109	90	110	
Chloride		5.219	mg/L	0.50	5	0	104	90	110	
Bromide	4.11 (A. N.)	2.654	mg/L	0.10	2.5	0	106	90	110	
Nitrate (As N)+N		3.737	mg/L	0.20	3.5	0	107	90	110	
·	iophosphate (As P)	5.249	mg/L	0.50	. 5	0	105	90	110	
Sulfate	_	10.53	mg/L	0.50	10	0	105	90	110	4047064545
Sample ID: LC	Š		LCS	1			Batch ID:	R41594	Analysis Date:	10/17/2010 12:10:11 Al
Fluoride		0.5353	mg/L	0.10	0.5	0	107	90	110	
Chloride		4.902	mg/L	0.50	5	0	98.0	90	110	

Estimated value E

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded Н

NC Non-Chlorinated

RPD outside accepted recovery limits

Page 1

Date: 28-Oct-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38

Work Order:

1010563

Analyte	Result	Units	PQL	SPK V	a SPK ref	%Rec L	owLimit. Hi	ghLimit %RP	D RPDLimit Qual
Method: EPA Method 300.0: Ani	ons					Batch ID:	R41594	Analysis Date:	10/17/2010 12:10:11 AM
Sample ID: LCS		LCS			_			•	10/1//2010 12.10.11 //
Bromide	2.505	mg/L	0.10	2.5		100	90	110	
Nitrate (As N)+Nitrite (As N)	3.601	mg/L	0.20	3.5		103	90	110	•
Phosphorus, Orthophosphate (As P)		mg/L	0.50	5		100	90	110	
Sulfate	10.31	mg/L	0.50	10	0	103	90 B44630	110 Analysis Date:	40/40/2040 44-27-25 AB
Sample ID: LCS		LCS	1			Batch ID:	R41620	Analysis Date:	10/18/2010 11:37:35 AI
Fluoride	0.5359	mg/L	0.10	0.5		107	90	110	
Chloride	4.960	mg/L	0.50	5		99.2	90	110	
Bromide	2.561	mg/L	0.10	2.5		102	90	110	
Nitrate (As N)+Nitrite (As N)	3.637	mg/L	0.20	3.5		104	90	110	•
Phosphorus, Orthophosphate (As P)	5.148	mg/L	0.50	5		103 104	90 90	110 110	
Sulfate	10.44	mg/L	0.50	10	0	104	_ 90	110	
Method: SM 2320B: Alkalinity Sample ID: MB-1		MBLK				Batch ID:	R41585	Analysis Date:	10/14/2010 4:10:00 PM
Alkalinity, Total (As CaCO3)	ND	mg/L Ca	20						
Carbonate	ND	mg/L Ca	2.0						
Bicarbonate	ND	mg/L Ca	20						
Sample ID: MB-2	,	MBLK	-			Batch ID:	R41685	Analysis Date:	10/14/2010 11:08:00 PM
Alkalinity, Total (As CaCO3)	ND	mg/L Ca	20					•	
Carbonate	ND	mg/L Ca	2.0						
Bicarbonate	ND	mg/L Ca	20						
Sample ID: LCS-1	.,,,	LCS				Batch ID:	R41585	Analysis Date:	10/14/2010 4:16:00 Ph
•	70.20		ào	80	0	99.2	96.5	104	
Alkalinity, Total (As CaCO3)	79.36	mg/L Ca <i>LCS</i>	20	80	U	Batch ID:	R41585	Analysis Date:	10/14/2010 11:15:00 PM
Sample ID: LCS-2	80.00	mg/L Ca	20	80	0	100	96.5	104	10/14/2010 11.15.00 P)
Alkalinity, Total (As CaCO3)						100			
Method: EPA Method 8260: Vola Sample ID: 1010563-01a msd	wies Snort	MSD			•	Batch ID:	R41532	Analysis Date:	10/13/2010 11:01:46 PN
•	16.70	µg/L	1.0	20	0	83.5	72.4	126 3.39	
Benzene Foluene	19.28	µg/L µg/L	1.0	20	0	96.4	79.2	115 6.66	
Sample ID: b2	10.20	MBLK	1.0	20	·	Batch ID:	R41532	Analysis Date:	10/13/2010 1:37:25 PM
•	ND		4.0				,,,,,,,	· ····································	,0,10,20,0 1.07.2011
Senzene Fatura a	ND ND	µg/L	1.0						
Foluene Ethylbenzene	ND ND	µg/L µg/L	1.0 1.0						
Methyl (ert-butyl ether (MTBE)	ND	μg/L μg/L	1.0						
(ylenes, Total	ND	µg/L	2.0						
Sample ID: 100ng lcs		LCS	7.0			Batch ID:	R41532	Analysis Date:	10/13/2010 12:41:50 PN
Benzene	19.37	μg/L	1.0	20	0	96.8	82.4	116	10/10/2010 12/11/00/11
Foluene	19.26	μg/L	1.0	20	0	96.3	89.5	123	
Sample ID: 1010563-01a ms	19.20	MS MS	11.0	20	J	Batch ID:	R41532	Analysis Date:	10/13/2010 10:33:39 PM
	47.07			20	^			· ·	TO TORUTO TO GOOD FILE
Senzene Faturare	17.27	µg/L	1.0	20	0	86.4	72.4	126	
Foluene	20.61	µg/L	1.0	20	0	103	79.2	115	
Qualifiers:				. —— —					***************************************
E Estimated value			-	Н Но	lding times	for preparation	n or analvei	s exceeded	
J Analyte detected below quantitat	ion limits		1		n-Chlorinat		02 21141 701		
ND Not Detected at the Reporting Li			· ; '			ccepted recov	ery limite		Page 2

Date: 28-Oct-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38

Work Order:

1010563

	· · · ·								
Analyte	Result	Units	PQL	SPK V	a SPK ref	%Rec Lo	owLimit Hi	ghLimit %RPD	RPDLimit Qual
	Total Recoverable Me	etals	İ						
Sample ID: MB-24117		MBLK				Batch ID:	24117	Analysis Date:	10/17/2010 4:34:57 PM
Calcium	ND ,	mg/L	1.0						
Magnesium	ND	mg/L	1.0						
Potassium	ND	mg/L	1,0						
Sodium	ND	mg/L	1.0						
Sample ID: LCS-24117		LCS				Batch ID:	24117	Analysis Date:	10/17/2010 4:37:55 PM
Calcium	52.61	mg/L	1:0	50	0	105	80	120	
Magnesium	53.22	mg/L	1:0	50	0	106	80	120	
Potassium	55.24	mg/L	1,0	50	0.0943	110	80	120	
Sodium	56.26	mg/L	1,0	50	0.4958	112	80	120	
Sample ID: LCS-24117		LCS				Batch ID:	24117	Analysis Date:	10/17/2010 4:41:05 PM
, Calcium	52.48	mg/L	1.0	50	0	105	80	120	
Magnesium	53.25	mg/L	1.0	50	0	106	80	120	
Potassium	55.39	mg/L	1.0	50	0.0943	1 1 1	80	120	
Sodium	56.28	mg/L	1.0	50	0.4958	112	80	120	
A .									

Qualifiers:

ND Not Detected at the Reporting Limit

NC Non-Chlorinated

R RPD outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

Client Name WESTERN REFINING SOUT

Work Order Number 1010563

Sample Receipt Checklist

Date Received:

Received by:

MLW

10/6/2010

Checklist completed by:	h		/ <i>0/6/</i> / Date	mple ID lab	els checked i	by: M Initials
Matrix:	Carrier name	<u>UPS</u>				
Shipping container/cooler in good condition?	•	Yes .	. No) KÎ	Not Present	維
Custody seals intact on shipping container/cooler?	•	Yes :✔	, No) ,	Not Present	Not Shipped
Custody seals intact on sample bottles?	•	Yes	No	•	N/Á	✓
Chain of custody present?	•	Yes 🗸	No	•		
Chain of custody signed when relinquished and recei	ved?	Yes 🗸	, No	1		
Chain of custody agrees with sample labels?	,	Yes ✔	, No	1		•
Samples in proper container/bottle?	;	Yes 🔀	. No	1		
Sample containers intact?	· •	Yes ✔	, No			
Sufficient sample volume for indicated test?	, ,	res .✔	No			
All samples received within holding time?)	res 🗸	, No			Number of preserved
Water - VOA vials have zero headspace?	VOA vials submit	ted .	Yes	.	No .	bottles checked for pH:
Water - Preservation labels on bottle and cap match?	· \	res 🗸	No		N/A	2
Water - pH acceptable upon receipt?	· Y	∕es ✔	. No		N/A	<2)>12 unless noted
Container/Temp Blank temperature?		2.0°	<6° C .	Acceptable		below.
COMMENTS:			If given	sufficient ti	me to cool.	,
						•
Client contacted Date	contacted:			Person	contacted	
•	ırding:					
Comments: Un preserved for Cations/A	Sample 101/2/10	<i>f</i> .	nuved	A v	1 pre	scoved w/AW03

Corrective Action

			•					(N	ر 10	Y) se	lddu8 riA															1
	ן <u>ע</u>	į					341	hun s	<u>^~~</u>	7 V	१ ५०० (1							_	4				lesd 492 Kdenes	
	HALL ENVIKONMENIAL ANALYSIS LABORATORY) •				_	70			10	CALDON	-	メメ	X			-		-	\rightarrow		+	1		ΣŽ	report
	ENVIKONMEN YSIS LABORAT		60			-	SNO	ग्तम्	र्डत	<u>aita</u>	D-aviaM		×	ベ			┢	 	-	+	\dashv		3		12	alytical.
		٤	Albuquerque, NM 87109	4107			1		AO.	V-im	e2) 0728						-			\neg	1	_	3	1	4	the and
			e S	505-345-4107	uest		many 180		18	(AO	V) 80928	X											 	Stanta	12	ted on
į	בור צור	www hallenvironmental com	erau	505-							8081 Pes			,],			dy nota
		, viro	nbng	Fax	lyšis	(*()S [*] Oc	I,sON,			1) snoinA									_	4	_	3	offellon of	Reguested	e clea
	ַר ר		1	10	Analy	_					8310 (PN RCRA 8									-	\dashv		3	12 1	I to	E Will
	ANAL	, W	S NE	-397		<u> </u>					EDB (We									\dashv	+	+	7	ر مند (E 22	cted da
:	È 🔻	i	4901 Hawkins NE	505-345-3975			<u></u>				eM) H9T									+	+	+	20	4	. #	contra
	7 [T Ha	. 505		(les	eiQ\e				IeM HqT						-	ļ		\dashv	_		3	Ž.	CA	dis fu
			490	<u>1</u>		(ylr	Gas or) HGT	+ 3	IBTN	+ X3T8												Remarks		E	A A
	L_					(1208)	s'8MT	+ 3	I8TN	+ X∃T8												Rem		Y	dissoc
												<u>_</u>		-							ł			द्य		of this
											(e)))	1						İ			Time	TI QI	}	s notice
			38		i			SANSON			188							ı					e e	~	?	S Savi
			ATK#38							川.	(6)												Date	5		This se
	Sh Sh		d						Į,		<u>\$</u>		<u> </u>	7						-	+	+-	}	7		tories.
	□ Rush		150								Preservative Type	7		25										ACCOURTE		apora
Time:			2			ger:		1826			Pres.	H		Ha										3		redited
pun	dard	ame	12.9			- lanaç					d#	Ą	1										; <u>;</u>	3	<u>;</u>	her acc
Tum-Around	X Standard	ect N	Dainage 1	Project #:		Project Mana		Sampler			Container Type and #	3-10A	1-500m	1-250									Received by:	molina		ed to of
Tur	×	Proj		Proj		Proj		Sam		2.	ა ௲	5		1									Rece			ontract
							(no				<u>_</u>													i		e subc
ord	6			Δ			K-IO27115 K Level 4 (Full Validation)		$\ \cdot\ $		Sample Request ID											1		\mathcal{L}		may b
oc oc	15	•	4990	87413	1	2					Zedı	ForK											,	6		menta
N N	5		45	87	416	3	25. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1			ple F	i / 1								j				3		Enviror
po	fa		72	2	1	7	至				Sam	FAST									İ			1		₽ Ha⊒
ust	8			N	33	3		1							_					_	_	_	ed by	3		mitted
Ş	3		36	B	10	7		O P			Matrix	1420											Relinguished by	Relinguished by		es sap
P	10		#:8:#	رق	35	20,	às.	-		-			_		_	_				\dashv	_	4				, samp
Chain-of-Custody Record	Client: WESTERN REGINING		Mailing Address:#50	Bloom	Phone #: 505	email or Fax#: 5c5~633	QA/QC Package: ☐ Standard	tion	Vne	<u> </u>	Time	8:45		-									Time:	3,00		If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
ວ	. 2		ng A	3	Эе #:	힏	QA/QC Packa ☐ Standard	Accreditation	FDD (Tyme)	<u>i</u>			_	\dashv					-	+	+	+		9		1 2 2 E
	Clie		Maili	M	Pho	ema	QAYC S	Acc]	Date	2-9-01	-			ļ							Date:	0-0-10		
	•			·	•	٠		•	•		1	~.	•	,		•			•	•		•	-	0	'	•

7

e T

Sec. Se

4

a Ver

16.00

COVER LETTER

Wednesday, November 17, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38

Dear Cindy Hurtado:

Order No.: 1011023

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 10/28/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting' limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901

AZ license # AZ0682

ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX

Date: 17-Nov-10

CLIENT: Western Refining Southwest, Inc.

Project: Drainage North of TK#38

Lab Order: 1011023

NATIONAL STATES		6
Work Order	Sample	Summary

Lab Sample ID	Client Sample ID	Batch ID	Test Name	Collection Date
1011023-01A	East Fork	R41901	EPA Method 8260B: VOLATILES	10/27/2010 1:50:00 AM
1011023-02A	East Fork	R42078	EPA Method 300.0: Anions	11/1/2010 1:15:00 PM
1011023-02A	East Fork	R42058	EPA Method 300.0: Anions	11/1/2010 1:15:00 PM
1011023-02A	East Fork	R42058	EPA Method 300.0: Anions	11/1/2010 1:15:00 PM
1011023-02A	East Fork	R42014	SM 2320B: Alkalinity	11/1/2010 1:15:00 PM
1011023-02A	East Fork	24359	SM2540C MOD: Total Dissolved Solids	11/1/2010 1:15:00 PM
1011023-02A	East Fork	R41917	EPA Method 300.0: Anions	11/1/2010 1:15:00 PM
1011023-02A	East Fork	R41917	EPA Method 300.0: Anions	11/1/2010 1:15:00 PM
1011023-02B	East Fork	24431	EPA 6010B: Total Recoverable Metals	11/1/2010 1:15:00 PM

Date: 17-Nov-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1011023

Project:

Drainage North of TK#38

Lab ID:

1011023-01

Client Sample ID: East Fork

Collection Date: 10/27/2010 1:50:00 AM

Date Received: 10/28/2010 Matrix: AQUEOUS

Analyses	Result	PQL (ual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES	<u></u>	· · · · · · · · · · · · · · · · · · ·			Analyst: MMS
Benzene	ND.	1.0	μg/L	1	11/2/2010 5:41:36 AM
Toluene	ND:	1.0	μg/L	1	11/2/2010 5:41:36 AM
Ethylbenzene	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
1,3,5-Trimethylbenzene	ND	1.0	μ g/L	1	11/2/2010 5:41:36 AM
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
1,2-Dibromoethane (EDB)	ND.	1.0	μg/L	1	11/2/2010 5:41:36 AM
Naphthalene	ND:	2.0	μg/L	1	11/2/2010 5:41:36 AM
1-Methylnaphthalene	ND	4.0	μg/L	1	11/2/2010 5:41:36 AM
2-Methylnaphthalene	ND ⁻	4.0	µg/L	1	11/2/2010 5:41:36 AM
Acetone	ND:	10	µg/L	1	11/2/2010 5:41:36 AM
Bromobenzene	ND	1.0	μg/Ł	1	11/2/2010 5:41:36 AM
Bromodichloromethane	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
Bromoform	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
Bromomethane	ND	3.0	µg/L	1	11/2/2010 5:41:36 AM
2-Butanone	ND	10	μg/L	1	11/2/2010 5:41:36 AM
Carbon disulfide	ND	10	µg/L	. 1	11/2/2010 5:41:36 AM
Carbon Tetrachloride	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
Chlorobenzene	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
Chforoethane	ND	2.0	μg/L	1	11/2/2010 5:41:36 AM
Chloroform	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
Chloromethane	ND	3.0	μg/L	1	11/2/2010 5:41:36 AM
2-Chiorotoluene	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
4-Chlorotoluene	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
cis-1,2-DCE	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
cls-1,3-Dichloropropene	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	11/2/2010 5:41:36 AM
Dibromochloromethane	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
Dibromomethane	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
1,2-Dichlorobenzene	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
1,3-Dichlorobenzene	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
1,4-Dichlorobenzene	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
Dichlorodifluoromethane	NĎ	1.0	μg/L	1	11/2/2010 5:41:36 AM
1,1-Dichloroethane	NÞ	1.0	µg/L	1	11/2/2010 5:41:36 AM
1,1-Dichloroethene	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
1,2-Dichloropropane	ND	1.0	µg/L	1	11/2/2010 5:41:36 AM
1,3-Dichloropropane	NÞ	1.0	µg/L	1	11/2/2010 5:41:36 AM
2,2-Dichloropropane	NÞ	2.0	µg/L	1	11/2/2010 5:41:36 AM
1,1-Dichloropropene	ND	1.0	μg/L	1	11/2/2010 5:41:36 AM
Hexachlorobutadiene	ND	1.0	μg/L	1 .	11/2/2010 5:41:36 AM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value Ε
- Analyte detected below quantitation limits
- Non-Chlorinated NC
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Page 1 of 3

Date: 17-Nov-10

CLIENT: Lab Order:

Project:

Lab ID:

Western Refining Southwest, Inc.

1011000

1011023

Drainage North of TK#38

1011023-01

Client Sample ID: East Fork

Collection Date: 10/27/2010 1:50:00 AM

Date Received: 10/28/2010
Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES						Analyst: MMS
2-Hexanone	ND	10		μg/L	1	11/2/2010 5:41:36 AM
Isopropylbenzene	ND	1.0		µg/L	1	11/2/2010 5:41:36 AM
4-isopropyltoluene	ND	1.0		μg/L	1	11/2/2010 5:41:36 AM
4-Methyl-2-pentanone	ND	10		µg/L	1	11/2/2010 5:41:36 AM
Methylene Chloride	ND	3.0		µg/L	1	11/2/2010 5:41:36 AM
n-Butylbenzene	ND	1.0		μg/L	1	11/2/2010 5:41:36 AM
n-Propylbenzene	ND .	1.0		µg/L	1	11/2/2010 5:41:36 AM
sec-Butylbenzene	ND -	1.0		μg/L	1	11/2/2010 5:41:36 AM
Styrene	ND	1.0		μg/L	1	11/2/2010 5:41:36 AM
tert-Butylbenzene	ND	1.0		μg/L	1	11/2/2010 5:41:36 AM
1,1,1,2-Tetrachloroethane	ND	1.0		µg/L	1	11/2/2010 5:41:36 AM
1,1,2,2-Tetrachloroethane	NO ;	2.0		µg/L	1	11/2/2010 5:41:38 AM
Tetrachioroethene (PCE)	ND	1.0		μg/L	1	11/2/2010 5:41:36 AM
trans-1,2-DCE	ND	1.0		μg/L	1	11/2/2010 5:41:36 AM
trans-1,3-Dichloropropene	ND	1.0		µg/L	1	11/2/2010 5:41:36 AM
1,2,3-Trichlorobenzene	ND	1.0		μg/L	1	11/2/2010 5:41:36 AM
1,2,4-Trichlorobenzene	ND '	1.0		μg/L	1	11/2/2010 5:41:36 AM
1,1,1-Trichloroethane	ND	1.0		μg/L	1	11/2/2010 5;41:36 AM
1,1,2-Trichloroethane	ND	1.0		µg/L	1	11/2/2010 5:41:36 AM
Trichloroethene (TCE)	ND :	1.0		µg/L	1	11/2/2010 5:41:36 AM
Trichlorofluoromethane	ND -	1.0		μg/L	1	11/2/2010 5:41:36 AM
1,2,3-Trichloropropane	ND .	2.0		µg/L	1	11/2/2010 5:41:36 AM
Vinyl chloride	ND	1.0		μg/L	1	11/2/2010 5:41:36 AM
Xylenes, Total	ND	1.5		µg/L	1	11/2/2010 5:41:36 AM
Surr: 1,2-Dichloroethane-d4	98.5	77.7-113		%REC	1	11/2/2010 5:41:36 AM
Surr: 4-Bromofluorobenzene	105	76.4-106		%REC	1	11/2/2010 5:41:36 AM
Surr: Dibromofiuoromethane	103	91.6-125		%REC	1	11/2/2010 5:41:36 AM
Surr: Toluene-d8	91.9	92.3-107	S	%REC	1	11/2/2010 5:41:36 AM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

Page 2 of 3

Date: 17-Nov-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1011023

Project:

Drainage North of TK#38

Lab ID:

1011023-02

Client Sample ID: East Fork_____

Collection Date: 11/1/2010 1:15:00 PM

Date Received: 10/28/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS	. !					Analyst: SRM
Fluoride	0.45	0.10		mg/L	1	11/10/2010 2:53:41 AM
Chloride	12	0.50		mg/L	1	11/10/2010 2:53:41 AM
Nitrate (As N)+Nitrite (As N)	ND	1.0		mg/L	5	11/11/2010 8:21:24 AM
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	11/10/2010 2:53:41 AM
Sulfate	90	10		mg/L	20	11/10/2010 3:11:06 AM
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst: RAGS
Calcium	69	1.0		mg/L	1	11/9/2010 11:25:39 AM
Magnesium	18	1.0		mg/L	1	11/9/2010 11:25:39 AM
Potassium	1.9	1.0		mg/L	1	11/9/2010 11:25:39 AM
Sodium	55	1.0		mg/L	1	11/9/2010 11:25:39 AM
SM 2320B: ALKALINITY						Analyst: IC
Alkalinity, Total (As CaCO3)	250	20		mg/L CaCO3	1	11/5/2010 6:45:00 PM
Carbonate	ND	2.0		mg/L CaCO3	1	11/5/2010 6:45:00 PM
Bicarbonate	250	20		mg/L CaCO3	1	11/5/2010 6:45:00 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3 of 3

Apalysis Date

11/2/2010

11/10/2010 11/10/2010

11/11/2010

11/5/2010

11/9/2010

1011023

Lab Order:

LAD Order:	1011023							
Client:	Western Refining Southwest, Inc.	Southwest, Inc.				DATI	DATES REPORT)RT
Project:	Drainage North of TK#38	TK#38						
Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Instrument Run ID QC Batch ID Prep Date 👔 Apalysis D	QC Batch ID	Prep Date	Analysis I
1011023-01A	East Fork	10/27/2010 1:50:00 AM	Aqueous	EPA Method 8260B: VOLATILES	JEPTUNE_101101/ R41901	R41901	Service.	102/2/11
1011023-02A		11/1/2010 1:15:00 PM		EPA Method 300.0: Anions	ORION_101110A	R42078	t. '*'	11/11/20
				EPA Method 300.0: Anions	TRITON_101109B	R42058		11/10/20
				EPA Method 300.0: Anions	TRITON_101109B	R42058		11/10/20
,				SM 2320B: Alkalinity	OSEIDON_101105.	R42014		11/5/201
1011023-02B				EPA 6010B. Total Recoverable Metals	ISIS_101109A	24431	11/8/2010	11/9/20]

10000

1

A. S. A.

N. Marie

Long Por Land

1. 3.

Date: 17-Nov-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Drainage North of TK#38

Work Order: 1011023

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec I	owLimit H	iahl imit %PD	D RPDLimit Qual
		OTINS	FUL	1		701100 1		MILENIN VOLVE	D. KPDEIIII. Quai
Method: EPA Method 300.0: An Sample ID: MB	ions	MBLK			,	Batch ID:	R42058	Analysis Date:	11/9/2010 9:05:29 PI
g Fluoride	ND	mg/L	0.10						
Chloride	ND	mg/L	0.50						
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20						
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50						
Sulfate Sample ID: MB	ND	mg/L	0.50						
Sample ID: MB		MBLK				Batch ID:	R42078	Analysis Date:	11/10/2010 1:46:57 PM
Fluoride	ND	mg/L	0.10						
Chloride	ND	mg/L	0.50						
Chloride Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20						
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50						
Sulfate	ИD	mg/L	0.50						
Sample ID: MB		MBLK				Batch ID:	R42078	Analysis Date:	11/11/2010 5:27:15 AN
Fluoride	ND	mg/L	0.10						
Out	ND	mg/L	0.50						•
Nitrate (As N)+Nitrite (As N) Phosphorus Orthophosphate (As P)	ND	mg/L	0.20					•	
Phosphorus, Orthophosphate (As P)		mg/L	0.50						
Sulfate	ND	mg/L	0.50						
Sample ID: LCS Fluoride		LCS				Batch ID:	R42058	Analysis Date:	11/9/2010 9:22:53 PN
Fluoride	0.5225	mg/L	0.10	0.5	0	105	90	110	
Chloride	4.863	mg/L	0.50	5	0	97.3	90	110	
	3.472	mg/L	0.20	3.5	0	99.2	90	110	
Nitrate (As N)+Nitrite (As N) Phosphorus, Orthophosphate (As P)		mg/L	0.50	5.5 5	0	99.1	80	110	
Sulfate	9.815	mg/L	0.50	10	0	98.2	90	110	
Cample ID. 1 CC	0.010	LCS	0.50	10	·	Batch ID:	R42078	Analysis Date:	11/10/2010 2:04:21 PN
					_	•		-	1 11 10/2010 2.04.21 PW
Fluoride	0.5167	mg/L	0.10	0.5	0	103	90	110	
Chloride	4.999	mg/L	0.50	5	0	100	90	110	
Nitrate (As N)+Nitrite (As N)	3.606	mg/L	0.20	3.5	0	103	90	110	
Phosphorus, Orthophosphate (As P)	5.056	mg/L	0.50	5	0	101	90	110	
4	10.06	mg/L	0.50	10	0	101	90	110	444470040
Sample ID: LCS		LCS	1			Batch ID:	R42078	Analysis Date:	11/11/2010 5:44:40 AM
Fluoride Chloride	0.4941	mg/L	0.10	0.5	0	98.8	90	110	
	4.921	mg/L	0.50	5	0	98.4	90	110	
Nitrate (As N)+Nitrite (As N)	3.550	mg/L	0.20	3.5	0	101	90	110	
Phosphorus, Orthophosphate (As P) Sulfate	5.045	mg/L	0.50	5	0	101	90	110	
Sulfate	10.25	mg/L	0.50	10	0	103	90	110	
Method: SM 2320B: Alkalinity			'						
Sample ID: MB		MBLK				Batch ID:	R42014	Analysis Date:	11/5/2010 4:50:00 PM
Alkalinity, Total (As CaCO3)	ND	mg/L Ca	20						
Carbonate	ND	mg/L Ca	20						
Bicarbonate	ND	mg/L Ca	20						
Sample ID: LCS		LCS				Batch ID:	R42014	Analysis Date:	11/5/2010 4:56:00 PM
•	70.45		20	00				•	1 17-20 TO 4.30,00 PIV
Alkalinity, Total (As CaCO3)	79.48	mg/L Ca	20	80	0	99.4	96.5	104	
016									
Qualifiers: E Estimated value			. І			or preparatio			

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

Non-Chlorinated NC

RPD outside accepted recovery limits

Page 1

Н Holding times for preparation or analysis exceeded

Date: 17-Nov-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38

Work Order:

1011023

Project: Diamage 1	Norm of 1K#.	70					WOLK ALL	Orger:	1011023
Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec L	owLimit Hi	ghLimit %RPD	RPDLimit	Qual
Method: EPA Method 8260B	: VOLATILES		<u> </u>		· -	•			
Sample ID: b6		MBLK	1		Batch ID:	R41901	Analysis Date:	11/1/2010	4:25:32 PN
Benzena	ND	µg/L	1,.0		•		V.		
Toluene	ND	μg/L	1.0						
Ethylbenzene	ND	µg/L	1 .0						
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0						
1,2,4-Trimethylbenzene	ND	μg/L	1:.0						
1,3,5-Trimethylbenzene	ND	μg/L.	1.0						
1,2-Dichloroethane (EDC)	ND	μg/L	1.0						
1,2-Dibromoethane (EDB)	ND	μg/L	1.0			•			
Naphthalene	ND	μg/L	2.0						
1-Methylnaphthalene	ND	μg/L	4.0						
2-Methylnaphthalene	ND	μg/L	4.0						
Acetone	ND	μg/L	10						
Bromobenzene	ND	μg/L	1.0						
Bromodichloromethane	· ND	µg/L	1.0						
Bromoform	ND	μg/L	1.0						
Bromomethane	ND	μg/L	3.0						
2-Butanone	ND	μg/L	10						
Carbon disulfide	ND	μg/L	10						
Carbon Tetrachloride	ND	μg/L	1.0						
Chlorobenzene	ND	μg/L	1.0						
Chloroethane	ND	μg/L	2.0						•
Chloroform	ND	μg/L	1.0						
Chloromethane	ND	µg/L	3.0						
2-Chlorotoluene	ND	μg/L	1.0						
4-Chlorotoluene	ND	μg/L	1.0						
cis-1,2-DCE	ND	μg/L	1.0						
cis-1,3-Dichloropropene	ND	μg/L	1.0				•		
1,2-Dibrorno-3-chloropropane	ND	μg/L	2.0						
Dibromochloromethane	ND	μg/L	1.0					-	
Dibromomethane	ND	μg/L	1.0						
1,2-Dichlorobenzene	ND	μg/L	1.0						
1,3-Dichlorobenzene	ND	μg/L	1.0						
1,4-Dichlorobenzene	ND	μg/L	1.0						
Dichlorodifluoromethane	ND	μg/L	1.0						
1,1-Dichloroethane	ND	μg/L	1.0						
1,1-Dichloroethene	ND	μg/L	1.0						
1,2-Dichloropropane	NO	µg/L	1.0						
1,3-Dichloropropane	ND	µg/L	1.0						
2,2-Dichloropropane	ND	μg/L	2.0						
1,1-Dichloropropene	ND	μg/L	1.0						
Hexachlorobutadiene	ND	µg/L	1.0						
2-Hexanone	ND	µg/L	10						
Isopropylbenzene	ND	µg/L	1.0						
4-Isopropyltoluene	ND	μg/L	1.0						•
·h.abhramana	• •=	r o -							

0	ua	lif	ìe:	rs:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Date: 17-Nov-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Drainage North of TK#38

Work Order:

1011023

								. 200				
	Analyte	Result	Units	PQL	SPK Va SPI	K ref	%Rec*L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
	Method: EPA Method 8260B: Sample ID: b6	VOLATILES	MBLK				Batch ID:	R41901	Analysi	s Date:	11/1/2010	1:25:32 PN
	4-Methyl-2-pentanone	ND	μg/L	10								
	Methylene Chloride	ND	μg/L	3.0							٠	
	n-Butylbenzene	ND	μg/L	1.0								
	n-Propylbenzene	ND	μg/L	1.0								
	sec-Butylbenzene	NĐ	μg/L	1.0								
	Styrene	ND	μg/L	1.0								
ā	tert-Butylbenzene	ND	μg/L	1.0								
er I	1,1,1,2-Tetrachlorosthane	ND	µg/L	1.0			•					
	1,1,2,2-Tetrachloroethane	ND	μg/L	2.0								
ì	Tetrachloroethene (PCE)	ND	µg/L	1.0								
	trans-1,2-DCE	ND	μg/L	1.0								
	trans-1,3-Dichloropropene	ND	µg/L	1.0								
SHELLIN	1,2,3-Trichlorobanzene	ND	µg/L	1.0								
	1,2,4-Trichlorobenzene	ND	μg/L	1.0								•
n	1,1,1-Trichloroethane	ND	μg/L	1.0								
The second second	1,1,2-Trichloroethane	ND	μg/L	1.0								
ži.	Trichloroethene (TCE)	ND	μg/L	1.0								
	Trichlorofluoromethane	ND	μg/L	1.0								
A CONTRACTOR	1,2,3-Trichloropropane	ND	μg/L	2.0								
	Vinyl chloride	ND	μg/L	1.0								
	Xylenes, Total	ND	µg/L	1.5								
1	Surr: 1,2-Dichloroethane-d4	9.787	µg/L	0	10	0	97.9	77.7	113			
	Surr: 4-Bromofluorobenzene	10.94	μg/L	0	10	0	109	76.4	106			S
8	Surr: Dibromofluoromethane	10.07	μg/L	0	10	0	101	91.6	125			
9	Surr: Toluene-d8	9.991	μg/L	0	10	0	99.9	92.3	107			
	Sample ID: 100ng ics		LCS				Batch ID:	R41901	Analysis	Date:	11/1/2010 3	:58:01 PM
	Benzene	18.85	μg/L	1.0	20	0	94.2	84.6	109			
	Toluene	21.15	μg/L	1.0	20	0	106	81	114			
ŝ	Chlorobenzene	20.01	μg/L	1.0	20	0	100	85.2	113			
8	1,1-Dichloroethene	21.46	µg/L	1.0	20	0	107	79.6	124			
	Trichloroethene (TCE)	16.38	μg/L	1.0	20	0	81.9	78.3	102			
	Surr: 1,2-Dichloroethane-d4	9.645	μg/L	0	10	0	96.5	77. 7	113			
	Surr: 4-Bromofluorobenzene	11.27	μg/L	o	10	0	113	76.4	108			s
a	Surr: Dibromofluoromethane	10.05	μg/L	O	10	0	101	91.6	125		•	
	Surr: Toluene-d8	9.349	hg/L	0	10	0	93.5	92.3	107			

0	nia	H	le	re

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Date: 17-Nov-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38

Work Order:

1011023

			1							
Analyte	Result	Units	PQL	SPK V	SPK ref	%Rec Lo	owLimit Hi	ghLimit	%RPD	RPDLimit Qua
Method: EPA 6010B: Total	Recoverable M	etals	1							
Sample ID: MB-24431		MBLK				Batch ID:	24431	Analysis	B Date:	11/9/2010 11:16:00
Calcium	ND	mg/L	1!0							
Magnesium	ND	mg/L	10							
Potassium	ND	mg/L	1.0							
Sodium	ND	mg/L	1.0							
Sample ID: LCS-24431		LCS				Batch ID:	24431	Analysis	s Date:	11/9/2010 11:19:20
Calcium	51.48	mg/L	1.0	50	0	103	80	120		
Magnesium	52.09	mg/L	1.0	50	٥	104	80	120		
Potassium	54.75	mg/L	1,0	50	0	110	80	120		
Sodium	54.83	mg/L	1.0	50	0.0359	110	80	120		

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

Sample Receipt Checklist

1	Client Name WESTERN REFINING SOUT				Date Receive	ed:		10/28/2010
Marie Marie Marie	Work Order Number 1011023				Received b	y: LNM		
	Checklist completed by:	 	7	Date	11/1/10	labels checked	by:	Millets
	Matrix: Carrier r	ame: <u>l</u>	<u>UPS</u>	<u>i</u>				:
6	Shipping container/cooler in good condition?	1	Yes	\checkmark	No 🔲	Not Present	\Box	
	Custody seals intact on shipping container/cooler?	<u> </u>	Yes	\mathbf{V}	No 🗆	Not Present		Not Shipped
1	Custody seals intact on sample bottles?	<u> </u>	Yes		No 🗆	N/A	V	
	Chain of custody present?	`	⁄es	\checkmark	No 🗀			•
	Chain of custody signed when relinquished and received?	Y	'es	V	No 🗆			
9	Chain of custody agrees with sample labels?	. Y	/es	\checkmark	No 🗆			
	Samples in proper container/bottle?	Y	/es	V	No 🗆			
•	Sample containers intact?	· Y	es (\checkmark	No 🗌			
	Sufficient sample volume for indicated test?	Y	es/	V	No 🗀			•
I	All samples received within holding time?	Y	es/		No 🗆			Number of preserved
	Water - VOA vials have zero headspace? No VOA vials	s submitt	ted		Yes 🗹	No 🗀		bottles checked for pH:
	Water - Preservation labels on bottle and cap match?	Y	es/	$ \mathbf{V} $	No 🗌	N/A		$\sim N$
	Water - pH acceptable upon receipt?	Y	'es	\checkmark	No 🗆	N/A □		<2 >12 unless noted
	Container/Temp Blank temperature?	:	5.	7°	<6° C Acceptat			below.
,	COMMENTS:	r 1			If given sufficien	t time to cool.		
		<u>.</u>						
						-		
		===		==			==	
ŀ								
			•					
		: 						
ŀ	Client contacted Date contacted			100	Pers	on contacted		
	Contacted by: Regarding:				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
l	Comments:							
•								
		<u>. </u>		•				
l		i						
ļ	Corrective Action				-	,		
†						· · · · · · · · · · · · · · · · · · ·		
!						,		
í								

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com	4901 Hawki	(AOV) (AOV) (AOV) (AOV) (AOV) (AOV)	BTEX + MTH hethod hotho (Metho EDB (Metho B310 (PNA o ANG) OFE8 ANG (PNA o ANG) ANG	×	**							139 10/24/10 P.CH Sendin, More	Volume to Cations/Alk/Amouns	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report,
A S	7109	ZUDIUA/2001			×							1 6	Ž	nalytical
	VM 8.					<u>'</u>	\perp		_			1	学。	The a
PR LA Malicial	que, 1 5-34 soue	()		a		\rightarrow	_	-				1	1 x	ptated o
	querc x 50 is Re	(200, 200)				\dashv	_	-			-	{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Š	early no
EN YS:	Albu Fa ratys						_				- `-	17.	ta,	2 8 E
LL PL	, d				7	1		†			+	de	Š.	data wi
	ins N 15-39	(1.403 b	edb (Metho			-			1		 	0	T	racted
***	lawk: 05-3⁄	(1.814 b	odieM) H9T									1/4/	18	4 San
	901 F el. 5											100	ZQ	Any St
	4				_	_		-			_ _	mark		spility.
		(1508) s'BMT + 38	TM + X3T8		\dashv		_			_	+	\$ Z	1	is poss
Tum-Around Time:	DARINAGE NOTT OF TK#38 Project#:	Project Manager: Sampler: Bob	-Container Preservative FE 5	3-10A HCI 1	1-250ml H2504						7	Recoved by: Time Time	Received by: Time	contracted to other accredited laboratories. This serves as notice of
4 17 1	Mailing Address: #56 OR 4990 8100 Mfield, NM 97413 Phone #: 505-631-4161	email or Fax#: 565-632-39// OA/QC Package: Standard Accreditation □ NELAP □ EDD (Type)		-27-10 1:50 Had EAST Fork								Time: 70 3.08	Date: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subt

数数

(Y or V)	
TY AIKAIINITY	
N F Satstandan YX	
E Staling Staling XX	
S B	
Ö ≦ 월 % 원 [8] (AOV) 80928	
Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) Sistemental Son Sectio	
### ANALYSIS LABORATOR Www.hallenvironmental.com #### Kins NE - Albuquerque, 10 ##### Kins NE - Albuquerque, 10 ##### Kins NE - Albuquerque, 10 ##### Kins NE - Albuquerque, 10 ###################################	
RCRA 8 Metals	
新	
EDB (Method 504.1)	
# (1.814 bortheM) HPT	
### MATER + TPH (Gas only) Tel. 5001 Hawkins NE	- - - <u>;</u>
BTEX + MTBE + TMB's (8021)	Remarks.
	Time Time
	Date Date
	Date O Date
Rush Pe Pe Pe Pe Pe Pe Pe Pe Pe Pe Pe Pe Pe	1 0
Servat Type	l l
Firme: Rush Rush	
Aroun lands of the ct M. Ct M.	id by by
Turn-Around Time: Standard Project Name: Project Manager: Sampler: On toe: Sampler: On toe: Type and # I-5am Hill Container Type and # Typ	Received by:
Sample Request ID Stody Record Refining N. M. 874 3 A 416	
	7
Rec A Trull V Sir Kedin V Sir	
Ody Record Refining Refining Refining Refining Refine Reques Ref For K	1 2
Sam Sam	
	ge ge
Off-Cus Matrix Matrix	Relinquished by:
Chain-of-Custody Record ent: Western Refinings Standard Standard Creditation NELAP Dother Dother Time Matrix Sample Request 1, 15 Hab EAST For K 1, 15 Hab EAST For K 1, 15 Hab EAST For K 1, 15 Hab EAST For K	
Mess. 11me Time Time (Type)	3. 8 11me:
Chain Client: West Mailing Address Phone #: 56 email or Fax#: QA/QC Package: QA/QC Package: Date_ Time Date_ Time	
Chain-of-Custody Reco	Date:

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

4

*

TOTAL STREET

and the second

Separameter

100

30

\$ 5.00 J

1

1

神

1

COVER LETTER.

Monday, January 03, 2011

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK #38

Dear Cindy Hurtado:

Order No.: 1011933

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 11/23/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Hall Environmental Analysis Laboratory, Inc.

Date: 03-Jan-11

CLIENT: Project: Lab Order:	Western Refining So Drainage North of T 1011933		Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Batch ID	Test Name	Collection Date
1011933-01A	East Fork	R42411	EPA Method 8015B: Gasoline Range	11/22/2010 1:30:00 PM
1011933-01A	East Fork	R42386	EPA Method 8260: Volatiles Short List	11/22/2010 1:30:00 PM
1011933-01B	East Fork	24676	EPA Method 8015B: Diesel Range	11/22/2010 1:30:00 PM
1011933-01C	East Fork	24685	EPA 6010B: Total Recoverable Metals	11/22/2010 1:30:00 PM
1011933-01D	East Fork	R42368	SM 2320B; Alkalinity	11/22/2010 1:30:00 PM
1011933-01D	East Fork	R42328	EPA Method 300.0: Anions	11/22/2010 1:30:00 PM
1011933-01D	East Fork	R42328	EPA Method 300.0: Anions	11/22/2010 1:30:00 PM

Hall Environmental Analysis Laboratory, Inc.

Date: 03-Jan-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1011933

Project:

Drainage North of TK #38

Lab ID:

1011933-01

Client Sample ID: East Fork

Collection Date: 11/22/2010 1:30:00 PM

Date Received: 11/23/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E				Analyst: JB
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	11/30/2010 6:33:22 PM
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	11/30/2010 6:33:22 PM
Surr: DNOP	128	82-162	%REC	1	11/30/2010 6:33:22 PM
EPA METHOD 8015B: GASOLINE RA	NGE	,			Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	11/30/2010 1:17:37 PM
Surr: BFB	101	84.5-118	%REC	1	11/30/2010 1:17:37 PM
EPA METHOD 300.0: ANIONS	·				Analyst: LJB
Fluoride	0.44	0.10	mg/L [*]	1	11/23/2010 9:03:27 PM
Chloride	12	0.50	mg/L	1	11/23/2010 9:03:27 PM
Nitrogen, Nitrite (As N)	ND	0.10	mg/L	1	11/23/2010 9:03:27 PM
Bromide	0.14	0.10	mg/L	1	11/23/2010 9:03:27 PM
Nitrogen, Nitrate (As N)	0.14	0.10	mg/L	1	11/23/2010 9:03:27 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	11/23/2010 9:03:27 PM
Sulfate	75	10	mg/L	20	11/23/2010 9:20:52 PM
EPA 6010B: TOTAL RECOVERABLE	METALS				Anaiyst: RAGS
Calcium	65	1.0	mg/L	1	12/7/2010 5:51:24 PM
Magnesium	17	1.0	mg/L	1	12/7/2010 5:51:24 PM
Potassium	1.4	1.0	mg/L	1	12/7/2010 5:51:24 PM
Sodium	53	1.0	mg/L	1	12/7/2010 5:51:24 PM
EPA METHOD 8260: VOLATILES SHO	RT LIST	•			Analyst: RAA
Benzene	ND	1.0	μg/L	1	11/29/2010 5:55:56 PM
Toluene	ND	1.0	µg/L	1	11/29/2010 5:55:56 PM
Ethylbenzene	ND	1.0	µg/L	1	11/29/2010 5:55:56 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	11/29/2010 5:55:56 PM
Xylenes, Total	ND	2.0	µg/L	1	11/29/2010 5:55:56 PM
Surr: 1,2-Dichloroethane-d4	101	77.7-113	%REC	1	11/29/2010 5:55:56 PM
Surr: 4-Bromofluorobenzene	94.1	76.4-106	%REC	1	11/29/2010 5:55:56 PM
Surr: Dibromofluoromethane	99.0	91.6-125	%REC	1	11/29/2010 5:55:56 PM
Surr: Toluene-d8	96.6	92.3-107	%REC	1	11/29/2010 5:55:56 PM
SM 2320B: ALKALINITY	T.				Analyst: IC
Alkalinity, Total (As CaCO3)	250	20	mg/L CaCO3	1	11/24/2010 9:33:00 PM
Carbonate	ND	2.0	mg/L CaCO3	1	11/24/2010 9:33:00 PM
Bicarbonate	250	20	mg/L CaCO3	1	11/24/2010 9:33:00 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 1

State of the last

1,000

Sept. Sept.

1

4

fu

A

\$ 10 m

神

Hall Environmental Analysis Laboratory, Inc.

1011933	Western Refining Southwes
Lab Order:	Client

DATES REPORT

03-Jan-11

Drainage North of TK #38 **Project:**

Sample ID	Client Sample ID	Collection Date	Matrix	Test Name	Instrument Run ID QC Batch ID Prep Date	QC Batch ID	Prep Date	Analysis Date
1011933-01A	East Fork	11/22/2010 1:30:00 PM	Aqueous	EPA Method 8015B: Gasoline Range	APOLLO_101130A	R42411		11/30/2010
		,		EPA Method 8260: Volatiles Short List	THOR_101129A	R42386		11/29/2010
1011933-01B				EPA Method 8015B: Diesel Range	TD(17A) 2_101130,	24676	11/29/2010	11/30/2010
1011933-01C				EPA 6010B: Total Recoverable Metals	ISIS_101207B	24685	11/29/2010	12/7/2010
1011933-01D				EPA Method 300.0: Anions	ORION_101123A	R42328		11/23/2010
				EPA Method 300.0: Anions	ORION_101123A	R42328		11/23/2010
				SM 2320B: Alkalinity	OSEIDON_101124.	R42368		11/24/2010

Date: 03-Jan-11

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38

Work Order:

1011933

Analyte	Result	Units	PQL	SPK Va	a SPK ref	%Rec L	owLimit Hi	ghLimit %RF	PD RPDLimit Qual
flethod: EPA Method 300.0: Ani	ons								
Sample ID: MB		MBLK				Batch ID:	R42328	Analysis Date	: 11/23/2010 1:42:56 Pl
luoride	ND	mg/L	0.10				* *		•
Chloride	ND	·mg/L	0.50						
litrogen, Nitrite (As N)	ND	mg/L	0.10						
_	ND	mg/L	0.10						
litrogen, Nitrate (As N)	ND	mg/L	0.10						•
•	ND	mg/L	0.50						
•	ND	mg/L	0.50					_	
iample ID: LCS		LCS	ì			Batch ID:	R42328	Analysis Date	: 11/23/2010 2:00:21 PI
iuoride	0.5250	ma/L	0.10	0.5	0	105	90	110	
		-							
		_		_					
•		-	l l		_				
					_				
-									
•		_			-				
diato		- 11.81							· · · · · · · · · · · · · · · · · · ·
tethod: SM 2320B: Alkalinity									
ample ID: MB-1		MBLK				Batch ID:	R42368	Analysis Date	: 11/24/2010 3:14:00 PM
Alkalinity, Total (As CaCO3)	ND	mg/L Ca	20						,
Carbonate	ND	mg/L Ca	2.0						
icarbonate	ND	mg/L Ca	20						
ample ID: MB-2		MBLK				Batch ID:	R42368	Analysis Date	: 11/24/2010 7:30:00 PM
Ikalinity Total (As CaCO3)	ND	ma/L Ca	20						
		-							
	110					Batch ID:	RASSER	Analysis Data	: 11/24/2010 3:20:00 PN
•					_			<u>-</u>	. 11/24/2010 3.20.00 FI
	80.04		20	80	U				
ample ID: LCS-2		LCS				Batch ID:	R42368	Analysis Date:	11/24/2010 7:36:00 PN
Ikalinity, Total (As CaCO3)	80.56	mg/L Ca	20	80	0	101	96.5	104	
	sel Range		i						
						Batch ID:	24676	Analysis Date:	11/30/2010 7:40:33 PN
iesel Range Organics (DRO)	2.452	mg/L	0.20	2.5	0.107	93.8	71	161 15.6	5 23
ample ID: MB-24676		MBLK	١.,			Batch ID:	24676	Analysis Date:	11/30/2010 4:51:29 PN
iesel Range Organics (DRO)	ND	mg/L	0.20						
otor Oil Range Organics (MRO)	ND		2.5						
ample ID: LCS-24676			1			Batch ID:	24676	Analysis Date:	11/30/2010 5:25:35 PM
•	2 822		0.20	25	0 1265		74	•	
ample ID: CSD-24676	2.VCE		J.20	2.0	J. 1200				11/20/2010 5-50-20 03-
ample in. Logbrade (0.000		0.00		0.4000				
esel Range Organics (DRO)	2.833		0.20	2.5	U.1265				
ample ID: 1011933-01BMS		MS				Batch ID:	24676	Analysis Date:	11/30/2010 7:06:57 PN
		mg/L	0.20		0.107	110		161	
	Fluoride Chloride Chloride Nitrogen, Nitrite (As N) Gromide Nitrogen, Nitrate (As N) Phosphorus, Orthophosphate (As P) Sulfate Gample ID: LCS Fluoride Chloride Nitrogen, Nitrite (As N) Bromide Nitrogen, Nitrate (As N) Bromide Nitrogen, Nitrate (As N) Phosphorus, Orthophosphate (As P) Sulfate Method: SM 2320B: Alkalinity Bample ID: MB-1 Alkalinity, Total (As CaCO3) Carbonate Bicarbonate B	Method: EPA Method 300.0: Anions Bample ID: MB Fluoride ND Chloride ND Stromide ND Stromide ND Phosphorus, Orthophosphate (As P) ND Sulfate ND Sulfatinity, Total (As CaCO3) ND Surbonate ND Sur	### Method: EPA Method 300.0: Anions ### Bample ID: MB Fluoride	Method: EPA Method 300.0: Anions Sample ID: MB	Method: EPA Method 300.0: Anions Sample ID: MB	Method: EPA Method 300.0: Anions Sample ID: MB	Method: EPA Method 300.0: Anions Sample ID: MB	Method: EPA Method 300.0: Anions Sample ID: MB	Method: EPA Method 300.0: Anions Mash

Qualifiers:

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Date: 03-Jan-11

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38

Work Order:

1011933

Analyte	Result	Units	PQL	SPK V	'a SPK ref	%Rec L	owLimit H	ighLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8015B: G	asoline Ra	nge	l								
Sample ID: 5ML RB		MBLK	1			Batch ID:	R42411	Analysis	s Date: .	11/30/2010	8:39:20 AN
Gasoline Range Organics (GRO)	ND	mg/L	0.050	l							
Sample ID: 2.5UG GRO LCS		LCS	İ			Batch ID:	R42411	Analysis	B Date:	11/30/2010	5:08:50 PN
Gasoline Range Organics (GRO)	0.5788	mg/L	0.050	0.6	5 0	116	83.7	124			
Sample ID: 2.5UG GRO LCSD		LCSD	i			Batch ID:	R42411	Analysis	s Date:	11/30/2010	5:37:42 PN
Gasoline Range Organics (GRO)	0.5414	mg/L	0.050	0.6	0	108	83.7	124	6.68	12	
Method: EPA Method 8280: Vol	atiles Shori	List									
Sample ID: 6mL rb		MBLK	i			Batch ID:	R42386	Analysis	s Date:	11/29/2010	B:17:42 AN
Benzene	ND	µg/L	1.0								
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0								
Xylenes, Total	ND	μg/L	2.0								
Sample ID: b5		MBLK	!			Batch ID:	R42386	Analysis	Date:	11/29/2010	7:41:01 PM
Benzene	ND	µg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	μg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND ·	µg/L	2.0		•						
Sample ID: 100ng Ics		LCS				Batch ID:	R42386	Analysis	Date:	11/29/2010 9	9:10:07 AN
Benzene	18.11	µg/L	1 .0	20	0	90.6	84.6	109			
Toluene	19.31	µg/L	1 .0	20	0	96.6	81	114			
Sample ID: 100ng Ics		LCS				Batch ID:	R42386	Analysis	Date:	11/29/2010 8	3:33:29 PM
Benzene	19.11	µg/L	1.0	20	0	95.6	84.6	109			
Toluene	17.63	µg/L	1.0	20	0	88.1	81	114			
Method: EPA 6010B: Total Reco	verable Me	tals									
Sample ID: MB-24685		MBLK				Batch ID:	24685	Analysis	Date:	12/7/2010 11	:19:43 AM
Calcium	ND	mg/L	1.0								
Magnesium	ND	mg/L	1.0						•		*
Sample ID: MB-24685		MBLK				Batch ID:	24685	Analysis	Date:	12/7/2010 5	:05:43 PM
Potassium	ND	mg/L	1.0								
Sodium	ND	mg/L	1.0								
Sample ID: LCS-24685		LCS	; !			Batch ID:	24685	Analysis	Date:	12/7/2010 11	:22:50 AM
Calcium	53.44	mg/L	1.0	50	0.0708	107	80	120			
/lagnesium	53.73	mg/L	1.0		0.1838	107	80	120			
Sample ID: LCS-24685		LCS	-			Batch ID:	24885	Analysis	Date:	12/7/2010 5	:08:45 PM
· Potassium	53.11	mg/L	1.0	50	0	106	80	120			
	49.28	mg/L	1.0		0.6185	97.3		120			

Oua	lifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc. Sample Receipt Checklist Client Name WESTERN REFINING SOUT Date Received: 11/23/2010 Work Order Number 1011933 Received by: **AMG** Sample ID labels checked I Checklist completed by: Carrier name: UPS Matrix: Yes 🗹 No 🖂 Shipping container/cooler in good condition? Not Present No 🗆 Yes 🗹 Custody seals Intact on shipping container/cooler? Not Present Not Shipped No 🗆 Yes 🗌 Custody seals intact on sample bottles? N/A Chain of custody present? Yes 🗸 No 🗔 Yes 🗹 No 🗆 Chain of custody signed when relinquished and received? Yes 🗹 No 🗆 Chain of custody agrees with sample labels? Yes 🗹 No 🗌 Samples in proper container/bottle? Sample containers intact? Yes 🗹 No 🗌 Sufficient sample volume for indicated test? Yes 🗹 No 🗆 Yes V No \square All samples received within holding time? Number of preserved bottles checked for No VOA vials submitted Yes 🗹 No 🔲 Water - VOA vials have zero headspace? No 🖂 Water - Preservation labels on bottle and cap match? Yes 🗹 N/A No 🗆 Yes 🗌 N/A 🐼 Water - pH acceptable upon receipt? Container/Temp Blank temperature? 4.7° <6° C Acceptable If given sufficient time to cool. COMMENTS: Client contacted Date contacted: Person contacted Contacted by: Regarding: Comments: Corrective Action

									(N	시 이) selddu8 1iA															7
	7 6	•									PKAlivid			X	X	X							L			
	<u> </u>	;									Taud 18			X	<u></u>	×										
į	z						بركو	1030			Major CAT			く	X	X										
ļ	HALL ENVIRONMENTAL ANALYSIS LABORATOR)	Albuquerque, NM 87109	~					Ó.	DE	वश्व		×													f nerbessar camples estimited to the information of the second of the se
1) E	M 87	4107		/					/-im92) 07 <u>\$</u> 8	1														
į	9 4	2	Ž	345	uest	700	· 38	<u>TM</u>	[EX	g . (AOV) 809S8	×														
	7 T	www.hallenvironmental.com	rdue	505	s [‡] Reď		8,8	29	Z808 /	səp	S081 Pesticlo															
		ron	ndne	æ	Sis≛	(7(<u>)</u>	'Od	°ZON'E	ON'	IO, anoinA															
		env		ш,	naliy					sp	RCRA 8 Met															
į	-	hal.	Щ ,	375	¥				(H)	/d 1	o AN9) 01E8															
	HALL		SI N	5-36					(1.4	09 p	EDB (Metho															1
1	⊥ ⋖	1	awki	505-345-3975	* * * * * * * * * * * * * * * * * * * *				(1.8	1 t F	TPH (Method															
			4901 Hawkins NE -			(H		/SE	9) 8 9	08	BTEX + MTE	×								7				::		
			49(<u>e</u>		(A)	uo s	(Ga	НЧТ	3E +	TM + X3T8								\neg					Remarks		
					20	(120	8) s	'8MT	+ ∃8	BTEX + MTE				7			1		7		\neg	\neg	Rem		
	ļ	6				_												\dashv		1		\Box		S		1
		01-22-11												. {			, {						·	Fig. (2)	ae Be	
		11-	90									<u> </u>					,			- {	1				F .	1
		ı	of TK#38								(0.0)	. '			ļ	-{			ļ		}				eg eg	l
			K		i					XIII	(1)	}			- 1							,				l
	Rush		ð								Ne.			7	Ī	2		\dashv					\neg			ŀ
	_ ₽		Ę	1							servat Type	HCI	2	B	$ \cdot $	703	' {	Í	ĺ			1	{			ł
Time:			સ્		ĺ	<u>ان</u>			_0		Preservative Type	#	2	丑	\mathbb{N}	#	ĺ	ł			ľ		- 1	1	b	
id T	5	me:	96			nage			12				-	-	7	- z		_		-+	\dashv	-	\dashv	17		
Tum-Around	X Standard	t Naj	DRAINAGE NOFTL	##		Project Manager:			ان. اوز		Container Type and #	*	1-500m	1-25cm	-500m	50m)			}					مرغ د	١
Ę.	St	ojec	Ϋ́ R	Project #:		ojec			Sampler:		Cont	3-10A	3	त	35	-5						Ì	}	Received by:	Celver	
匠		<u>a</u> .		<u>a</u>		٥			ΙÖ			2	_		\dashv	\dashv	\dashv	\dashv	_	\dashv		\dashv		[∞] /		1
				}			ļ	tion)																7)	
270			2	M				ilida			lest			ĺ			1	{				-				ļ
ပိုင်	0		CR 4890	87413		1	ļ	X Level 4 (Full Validation)			Sample Request ID	Fork	=	=	=	72	- {				- 1	-		- g		
Ř	2	•	4	24	716	38	Ì	4 (FL			e l	13	-	- {		}								a de		
ģ	(3)			Ø	, 7			, sel			l die		ļ	- [- [}	J			}		78		
š	14			MM	1	M		Le Le			හි	EAST	*	~	7	~	1			}				A di	<u>```</u>	1
ķ	KI KI		10	7	632	9	ŀ	~3	her		<u>.×</u>		ᅱ	J	굮	ᅱ	\dashv	\dashv	\dashv	\dashv	\dashv	+	\dashv	Special Specia	shed	
Ť	13		批	8		5	,		□ Other		Matrix	Hao	120	Hao	Hao	420	-							Relinquished by	Relinquished by	1
5	19		176	3	12	3	ள்	İ	J		<u> </u>	}	7	7	H	#	+	+	-	_			4		<u>&</u>	
Chain-of-Custody Record	SSI		g die	Bloomfield	43	aX#	kage	ā	tion	y pe	Time	.38	-		-		}		}		}	}	}	1 me: 3:00	Time:	
5	**		g Ac	00	#	O F) Pac	inda	ditat	D O	1				\dashv		+	+	\dashv	+		\dashv	-	= 10	<u> </u>	,
_	Client: WESTERN REFINING		Mailing Address: #50	A	ğ	email or Fax#: 505	QA/QC Package:	☐ Standard	Accreditation	□ EDD (Type)	Date	0-22-10	+			-		1				1	\ }	1-22-10 7:60	Date:	
,	lo l		2	/ 1	or ¦	Ø.	a	니	∢ ⊔	ļЦ	1	<u>-1</u>	1	i	ļ	}	ł	. •	ļ	I	Ì	I	\d	· 文	ద	ł
											1															

COVER LETTER

Thursday, January 06, 2011

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK #38

Dear Cindy Hurtado:

Order No.: 1012812

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 12/21/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Hall Environmental Analysis Laboratory, Inc.

Date: 06-Jan-11

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1012812

Drainage North of TK #38

Project: Lab ID:

1012812-01

Client Sample ID: East Fork

Collection Date: 12/20/2010 9:20:00 AM

Date Received: 12/21/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: SRM
Fluoride	0.41	0.10		mg/L	1	12/23/2010 2:55:02 PM
Chloride	12	0.50		mg/L	1	12/23/2010 3:37:03 AM
Nitrate (As N)+Nitrite (As N)	ND	1.0		mg/L	5	12/27/2010 7:34:15 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	12/23/2010 3:37:03 AM
Sulfate	74	10		mg/L	20	12/23/2010 3:54:28 AM
EPA 6010B: TOTAL RECOVERABLE I	METALS					Analyst: SNV
Calcium	63	1.0		mg/L	1	1/4/2011 2:52:56 PM
Magnesium	17	1.0		mg/L	1	1/4/2011 2:52:56 PM
Potassium	1.8	1.0		mg/L	1	1/4/2011 2:52:58 PM
Sodium	53	1.0		mg/L	1	1/4/2011 2:52:56 PM
EPA METHOD 8260: VOLATILES SHO	RT LIST					Analyst: RAA
Benzene	ND :	1.0		μg/L	1	12/23/2010 8:18:20 PM
Toluene	ND	1.0		µg/L	1	12/23/2010 8:18:20 PM
Ethylbenzene	ND	1.0		μg/L	1 ,	12/23/2010 8:18:20 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	12/23/2010 8:18:20 PM
Xylenes, Total	ND	2.0		μg/L	1	12/23/2010 8:18:20 PM
Surr: 1,2-Dichloroethane-d4	91.6	77.7-113		%REC	1	12/23/2010 8:18:20 PM
Surr: 4-Bromofluorobenzene	113	76.4-106	S	%REC	1	12/23/2010 8:18:20 PM
Surr: Dibromofluoromethane	88.8	91.6-125	S	%REC	1	12/23/2010 8:18:20 PM
Surr: Toluene-d8	101	92.3-107		%REC	1	12/23/2010 8:18:20 PM
SM 2320B: ALKALINITY						Analyst: IC
Alkalinity, Total (As CaCO3)	250	20		mg/L CaCO3	1	12/27/2010 9:11:00 PM
Carbonate	ND :	2.0		mg/L CaCO3	-1	12/27/2010 9:11:00 PM
Bicarbonate	250	20		mg/L CaCO3	1,	12/27/2010 9:11:00 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 1 of 1

Date: 06-Jan-11

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38

Work Order:

1012812

						·				
	Analyte	Result	Units	PQL	SPK Val SI	PK ref	%Rec Lo	owLimit Hi	ghLimit %RPI	RPDLimit Qual
488	Method: EPA Method 300.0: Ani Sample ID: MB	lons	MBLK				Batch ID:	R42828	Analysis Date:	12/22/2010 10:12:30 AN
	Fluoride	ND	mg/L	0.10						
	Chloride	ND	mg/L	0.50						
1633	Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20						•
	Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50						
	Sulfate	ND	mg/L	0.50						
	Sample ID: MB	.,	MBLK				Batch ID:	R42828	Analysis Date:	12/22/2010 10:41:06 PM
	•	AID		0 40						
	Fluoride	ND	mg/L	0.10						•
Mái	Chloride	ND	mg/L	0.50						
	Nitrate (As N)+Nitrite (As N)	ND ND	mg/L	0.20						
	Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50						
i di	Sulfate	ND	mg/L	0.50			Ootob ID:	DANGEE	Analysis Data:	10/02/2010 1:07:50 DB
	Sample ID: MB		MBLK				Batch ID:	R42855	Analysis Date:	12/23/2010 1:27:59 PN
	Fluoride	ND	mg/L	0.10						
_ (Chloride	ND	mg/L	0.50						
	vitrate (As N)+Nitrite (As N)	ND	mg/L	0.20						
	Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50						
:	Sulfate	ND	mg/L	0.50				•		
FI :	Sample ID: ,MB		MBLK	1			Batch ID:	R42882	Analysis Date:	12/27/2010 2:38:14 PM
	Fluoride	ND	mg/L	0.10				•		,
3.6	Chloride	ND	mg/L	0.50						•
	Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20						
	Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50						
	Sulfate	ND	mg/L	0.50						
	Sample ID: LCS		LCS	*.,	•		Batch ID:	R42828	Analysis Date:	12/22/2010 10:29:55 AM
-	•	0.5005		0.40	0.5	0	102	90	110	
E39	luoride	0.5095	mg/L	0.10	0.5	0				•
	Chloride	5.054	mg/L	0.50	5	0	101	90	110	
	litrate (As N)+Nitrite (As N)	3.622	mg/L	0.20	3.5	0	103	90	110	
	Phosphorus, Orthophosphate (As P)	5.185	mg/L	0.50	5	0	104	90	110	
	Sulfate	10.25	mg/L	0.50	10	0	102	90	110	40/00/0040 40 50 04 044
5	Sample ID: LCS		LCS				Batch ID:	R42828	Analysis Date:	12/22/2010 10:58:31 PM
	Chloride	5.161	mg/L	0.50	5	Ò	103	90	110	•
ľ	litrate (As N)+Nitrite (As N)	3.675	mg/L	0.20	3.5	0	105	90	110	
F	hosphorus, Orthophosphate (As P)	5.151	mg/L	0.50	5	0	103	90	110	
 5	ulfate	10.68	mg/L	0.50	10	0	107	90	110	
S	ample ID: LCS		LCS				Batch ID:	R42855	Analysis Date:	12/23/2010 1:45:23 PM
F	luoride	0.5432	mg/L	0.10	0.5	0	109	90	110	,
	hloride	5.134	mg/L	0.50	5	0	103	90	110	
	litrate (As N)+Nitrite (As N)	3.727	mg/L	0.20	3.5	0	106	90	110	
F	hosphorus, Orthophosphate (As P)	5.329	mg/L	0.50	5	0	107	90	110	
	ulfate	10.80	mg/L	0.50	10	0	108	90	110	
			LÇS	-			Batch ID:	R42882	Analysis Date:	12/27/2010 2:55:39 PM
	ample ID: LCS luoride	0.5040	mg/L	0.10	0.5	0	101	90	110	
			-		5	0	98.2	90		
C	hloride	4.908	mg/L	0.50	5	U	30.∡	80	110	

Qualiflers

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Date: 06-Jan-11

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38

Work Order:

1012812

Analyte	Result	Units	PQL	SPK Val S	PK ref	%Rec L	owLimit Hi	ghLimit %RP	D RPDLimit Qual
Method: EPA Method 300.0: Ani	ons					Ontob (D)	D.40000	Anahuis Data	40/07/0040 0:55:00 01
Sample ID: LCS		LCS			_	Batch ID:	R42882	Analysis Date:	12/27/2010 2:55:39 PN
Nitrate (As N)+Nitrite (As N)	3,546	mg/L	0.20	3.5	0	101	90	110	•
Phosphorus, Orthophosphate (As P) Sulfate	4.818 9.990	mg/L mg/L	0.50 0.50	5 10	0	96.4 99.9	90 90	110 110	
Method: SM 2320B: Alkalinity	·			· <u>···············</u>					
Sample ID: MB-1		MBLK	1			Batch ID:	R42931	Analysis Date:	12/27/2010 7:08:00 PN
Alkalinity, Total (As CaCO3)	ND	mg/L Ca	20						
Carbonate	ND .	mg/L Ca	2.0	•					
Bicarbonate	ND	mg/L Ca	20						•
Sample ID: MB-2		MBLK				Batch ID:	R42931	Analysis Date:	12/28/2010 3:23:00 AM
Alkalinity, Total (As CaCO3)	ND	mg/L Ca	20						
Parbonate	ND	mg/L Ca	2.0						
i carbonate	ND	mg/L Ca	20						
S imple ID: LCS-1		LCS				Batch ID:	R42931	Analysis Date:	12/27/2010 7:14:00 PM
Alk⊸linity, Total (As CaCO3)	80.47	mg/L Ca	20	80	0	101	96.5	104	
Saniple ID: LCS-2		LCS			•	Batch ID:	R42931	Analysis Date:	12/28/2010 3:29:00 AM
Alkalinity, Total (As CaCO3)	80.12	mg/L Ca	20	80	0	100	96.5	104	
Method: EPA Method 8260: Vola	tiles Short	List	!						
Sample ID: 1012812-01a msd		MSD				Batch ID:	R42858	Analysis Date:	12/23/2010 9:13:22 PM
Benzene	17.40	μg/L	1.0	20	0 -	87.0	73.1	117 1.04	11.3
Toluene	19.70	µg/L	1.0	20	0	98.5	82.9	109 5.03	11.6
Sample ID: b2		MBLK				Batch ID:	R42858	Analysis Date:	12/23/2010 10:09:21 AM
Benzene	ND	μg/L	1.0						
Toluene	ND	μg/L	1.0			,			
Ethylbenzene	ND	μg/L	1.0						
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0						
Kylenes, Total	ND	μg/L	2.0					•	
Sample ID: 100ng Ics		LCS	j I			Batch ID:	R42858	Analysis Date:	12/23/2010 11:25:51 AM
Benzene	18.68	µg/L	1.0	20	0	93.4	84.6	109	
Foluene	21.98	µg/L	1.0	20	0	110	81	114	
Sample ID: 1012812-01a ms		MS	'			Batch ID:	R42858	Analysis Date:	12/23/2010 8:45:51 PM
Benzene	17.22	μg/L.	1.0	20	0	86.1	73.1	117	
Toluene	20.72	µg/Ł	1.0	20	0	104	82.9	109	

Qua	lif	ie	8

ND

E Estimated value

Analyte detected below quantitation limits Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

RPD outside accepted recovery limits

Date: 06-Jan-11

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:	Drainage N	orth of TK	7 38	·						Work	Order:	1012812
Analyte		Result	Units	PQL	SPK Val SPK r	ef %	6Rec L	owLimit Hi	ghLimit	%RPD	RPDLImit	Qual
Method: Sample ID:	EPA 6010B: Total Re	coverable M	etals MBLK			Ro	tch ID:	25069	Analie	is Date:	1/4/2014	2:12:47 PM
•		MD		4 4		Da	len ib.	20009	Allalys	is Date.	1/4/2011	2.12.47 PW
Calcium	•	ND	mg/L	1.0								
Magnesium		ND	mg/L	1.0								
Calcium Magnesium Potassium	•	ND	mg/L	1.0				•				•
Sodium		ND	mg/L	1.0								
Sample ID:	LCS-25069		LCS	1		Ba	tch ID:	25069	Analysi	s Date:	1/4/2011	2:16:09 PM
Calcium		51.00	mg/L	1.0	50 0	10	02	80	120			
Magnesium		53.49	mg/L	1.0	50 0	16	07	80	120			
Potassium		54.76	mg/L	1.0	. 50 0	1	10	80	120			
Potassium Sodium		51.56	mg/L	1.0	50 0	10	03	80	120			

Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

Holding times for preparation or analysis exceeded Н

NC Non-Chlorinated

RPD outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT				Date Receive	d:	12/21/2010	
Work Order Number 1012812				Received by	. MMG		
	<u> </u>	101	1.	Sample ID la	abels checked by:	¥6	
Checklist completed by Signature		13/5	Date			initials:	
S		1	,				
Matrix: Ca	rrier nam	ne: <u>UPS</u>	•				
Shipping container/cooler in good condition?	İ	Yes	V	No 🗆	Not Present		
Custody seals intact on shipping container/cooler?	:	Yes	\checkmark	No 🗆	Not Present	Not Shipped	
Custody seals intact on sample bottles?	I	Yes		No 🗆	N/A ☑		
Chain of custody present?		Yes	\mathbf{Z}	No 🗆			
Chain of custody signed when relinquished and received?	•	Yes	¥	No 🗆			
Chain of custody agrees with sample labels?		Yes	V	No 🗆			
Samples in proper container/bottle?		Yes		No 🗆			
Sample containers intact?		Yes	$\overline{\mathbf{V}}$	No 🗆			
Sufficient sample volume for indicated test?	1	Yes		No 🗆			
All samples received within holding time?		Yes	$ \mathbf{Z} $	No 🗌			preserved
Water - VOA vials have zero headspace? No VO	A vials s	ubmitted		Yes 🗹	No 🗆	bottles che pH:	ecked for
Nater - Preservation labels on bottle and cap match?		Yes	\checkmark	No 🗆	N/A	~ b _	
Nater - pH acceptable upon receipt?	1	Yes	\checkmark	No 🗆	N/A	<2) >12 unit	ess noted
Container/Temp Blank temperature?		2.	5°	<6° C Acceptab		Dayow.	
COMMENTS:				If given sufficien	t time to cool.		
		<u></u>					
					,		
Direct contacted Date contacted	tacted:			Pers	on contacted		
Contacted by: Regarding	g: 					- <u> </u>	
Comments:							
					The same of the sa		
							
						-	
					<u> </u>		
Corrective Action						-	
	 -						

		_							(V	10	()	səlq	Air Bub]
	7 6				*	_			· .	-1	11.1	(V)	AIKA		×	X	1			}	-	_	_	_	\vdash	}		
į						_							4110		X	メ	V		-	├─	-	-			-		٠.	about
	KONMENTAL TABORATOR	5	g	3		-	3	N P	NU	1	- 1	· i	10CAM		$\frac{1}{2}$	X	X		-	-	┢╌	·	-	·	\vdash	1	-	credited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
		•	== 	5 5	è				_	(A(ΟΛ-	ime	3) 0728					771	\vdash	-	 		_			1		he and
	<u> </u>			, 'A			₹ ₹	11.	NX	<u>3</u> 13	4 .(∀	(OV)	8260B	×			-				<u> </u>	_	_	<u> </u>		,		8 8
			www.namenvinorinjemai.com	ָבָר בְּיִבְּיה בְּיִבְּיה בְּיִבְּיה בְּיִבְּיה בְּיִבְּיה בְּיִבְּיה בְּיִבְּיה בְּיִבְּיה בְּיִבְיה בְּיִבְ	Analysis Redifest		s'8	ЭЧ	S 808	/ S	ebi	oitea	q 1808					,							Ι.		,	y notat
	AALL ENVI Anai ysts				VSIS	(7(၁ຮ"	ЪО	NO ^{S¹}	ΈC	N,K	O,7)	snoinA															clear
ĺ	ш <u>Ş</u>			-	Anal		~~~~						RCRA															will be
			E L	700	02/0		· ·						1) 0168								ļ	_			-		• .	d data
:			king w	745	6		·						EDB (V			·			_	<u> </u>	ļ.,	_			_	.		ontracte
_		_	www.n.	ָּבְּיבְיבָּיבְיבָּיבְיבָּיבְיבָּיבְיבָּיבְיבָּיבְיבָּיבְיבָיבְיבָיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְיבְי	c/sc-c+c-cnc	(10		, leb					M H9T N) H9T						<u> </u>					<u> </u>	_	ļ ·		o-dis
			1901	2 2		1							X3T8						-		-					rks:		. Any
			•			<u> </u>							X3T8							-	_				_	Remarks:		Sibility
				Τ		-		-												-						* 2	<u> </u>	≅ 18.
													(36						ĺ							E C	ē	gg of
			. ,			1							1 (V)														[투 }	s as no
	1		8	g						i.			iu) (C) ii.					r						. '	-	St. St.)ate (Serve
			7	+																				٠.		20		iž.
	□ Rush		4 784 30			.						ativo		1	4	. i	•									2		ratorie
 **		} .									e e	Presenzative	Type	6	504	\setminus	HNDZ)	<u>8</u>
Time:		65	DRAINAGE NOTE	1		ger			20	Z.	9	Ū ā	<u> </u>	7	14		H						_		}	-	<u>.</u>	
Tum-Around	Standard	Project Name	NA9	#:		Project Mana			P		Sample Text	ā	# P	40 F	- 1	· -	_						·			oy:	};	therac
-Ar	Stan	ject	RAI	Project #:		ject			Sampler	0	age	Container	Type and #	3-16A	1-250m	1-50m	1-50m									Received by:	eved i	ted to
<u> </u>	×	P _O	<u> </u>	<u>R</u>		P B	· · ·		Sal	ő	8		· 	110	1	-1	1	<u></u>								Reg	Receiv	outrac
				N				ion)	<u> </u>		,		₽															og Supp
ord	0/		2	72	1	1		Level 4 (Full Validation)				ļ	Sample Request ID													γ		may
ec.	10		2364	\$ 25 E	3/2	1 0-		N III					Zedi	Sork.							·		·			19		menta
K	1,5	·			3	1		4 (F					ble l	10		*	=									18		Enviror
bd	4		77.	1	1,	17)	eveľ					ami	EAST		ĺ										1/	j	o Hall
Ist			1	Pe	fr	-63		×					<i></i>	E	,	`	=									bd by:	ed by:	ig de la la la la la la la la la la la la la
Ö	72		150	9	21 N E	11			į				Matrix	Del						-						Relinquished by	Relinquished by:	ugns sa
-of	10		批	14	1/2	100			(-			≚		"		×		`.									sample
Chain-of-Custody Record	Client Western Refining		Hailing Address:#	- m	500	email or Fax#: 525	kage:	g	ПO		ype)	:	Time	9:20		_	_						j			Date: Time: 3-20-6	<u></u>	If necessary, samples submitted to Hall Environmental may be subcontracted to other ac
S	3		ig Ad		#	or F.	3 Pac	anda	ditati	3	탉											_	_			Time:	<u>ri</u>	If nec
	Client		Mailin	$ \S $	Phone #:	smail	QA/QC Package:	□ Standard	Accreditation	NELAE	□ EDD (Type)	ı	Date	12-20-10	-	_		į								Date:	ate:	
•	- I		ι-	V	, 4	ן שין		1		- 1	-,		i	3		,				!	. (,	1			- K	ч	•

the second

1,000

**

100 mg

4 10 mm

100

SUSANA MARTINEZ Governor

JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030

www.nmenv.state.nm.us

DAVE MARTIN Secretary

RAJ SOLOMON, P.E. Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

March 2, 2011

Mr. Randy Schmaltz Environmental Manager Western Refining, Southwest, Inc. Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

RE: RESPONSE TO NEWLY SURFACED GROUNDWATER DATA SUMMARY WESTERN REFINING SOUTHWEST INC., BLOOMFIELD REFINERY EPA ID# NMD089416416 HWB-WRB-MISC

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has reviewed Western Refining Southwest, Inc., Bloomfield Refinery (Western) *Newly Surfaced Groundwater Data Summary* letter dated February 11, 2011. The letter summarizes the discovery of surface water containing concentrations of benzene at a location designated East Fork, north of the Raw Water Ponds, and the results of water sampling required by NMED's July 30, 2010 letter.

As water is still present in the East Fork, Western proposes to "collect one surface water sample from the East Fork and flow measurements from Outfall#3 and the East Fork one week before water is let into Hammond Ditch and a follow up sample and flow measurements six weeks after ditch operations commence. Samples will be analyzed for [benzene, toluene, ethylbenzene, xylenes] BTEX and [methyl tert-Butyl Ether] MTBE using EPA Method 8260 and for gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO) using EPA Method 8015."

Randy Schmaltz March 2, 2011 Page 2 of 2

Within 30 days after collection of the six-week sampling event Western must submit the analytical results, present any additional findings, and propose future monitoring activities for the East Fork. The findings and proposed monitoring activities must also be submitted to the Oil Conservation Division (OCD).

If you have any questions regarding this letter, please contact Hope Petrie of my staff at (505) 476-6045.

Sincerely,

John E. Kieling

Program Manager

Permits Management Program

Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB

H. Petrie, NMED HWB

C. Chavez, OCD

A. Hains, Western

File: HWB-WRB-MISC and Reading File 2011

BILL RICHARDSON
Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030

www.nmenv.state.nm.us

RON CURRY Secretary

SARAH COTTRELL Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

November 8, 2010

Mr. Randy Schmaltz Environmental Manager Western Refining, Southwest, Inc. Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

RE: NOTICE OF DISAPPROVAL

INVESTIFATION WORK PLAN GROUP 6 (AOC NO. 19 SEEP NORTH OF MW-45, AOC NO. 20 SEEP NORTH OF MW-46, AND AOC NO. 21 SEEP NORTH OF MW-47)

WESTERN REFINING SOUTHWEST, INC., BLOOMFIELD REFINERY

EPA ID # NMD089416416

WRB-10-002

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has reviewed Western Refining Southwest, Inc., Bloomfield Refinery (Western) *Investigation Work Plan Group 6 (AOC No. 19 Seep North of MW-45, AOC No. 20 Seep North of MW-46, and AOC No. 21 Seep North of MW-47)* (Work Plan) dated December, 2009. NMED hereby issues this Notice of Disapproval. Western must address the following comments before NMED can take final action on the Work Plan.

Comment 1

Western discusses the facility's surface and subsurface conditions in Sections 3.1 (Surface Conditions) and Section 3.2 (Subsurface Conditions). However, these Sections do not address the conditions for subject AOCs. Western must revise these Sections to address the surface and subsurface conditions for AOCs 19, 20, and 21.

Randy Schmaltz November 8, 2010 Page 2 of 3

Comment 2

In Sections 4.1 (Anticipated Activities) and 5.2 (Soil Sampling), Western proposes to advance hand augured soil borings to a depth of two feet or more based on field screening at the seeps and drainage pathways leading toward the San Juan River. Western proposes to submit soil samples collected from each boring at depths of 0-0.5 feet and 1.5 to 2 feet below ground surface (bgs), and from the intervals where field screening evidence of contamination is observed for laboratory analysis. In order to determine the vertical extent of contamination, the soil sample collected from the bottom of all samples locations must be submitted for laboratory analysis. Western must revise the Work Plan accordingly.

Comment 3

In Section 4.2 (Background Information Research), page 9, Western states "[d]ocuments containing the results of previous investigations and subsequent routine groundwater monitoring data from monitoring wells and the seeps were reviewed to facilitate development of this work plan. The previously collected data provide detailed information on the overall subsurface conditions, including hydrogeology and contaminant distribution within groundwater on a site-wide basis. The data collected under this scope of services will supplement the existing soil and groundwater information and provide specific information regarding contaminant occurrence and distribution within soils near the seeps." It is unclear where the previously collected data is located within this document. Western must identify where within the Work Plan the data are located, or revise the Work Plan to include the data.

Comment 4

In Section 5.2 (Soil Sampling), page 11, Western states "[s]urface soil samples (0-6") collected from the sides of the steep slopes along the drainage pathways and at the edge of catchment liners will be used to define the horizontal extent of any impacts identified in the seep faces and bottom of the drainage pathways." Western must also determine the vertical extent of contamination. Western must revise the Work Plan to include the details for determining the vertical extent of contamination. See also Comment 2.

Comment 6

In Section 6 (Monitoring and Sampling Program), page 20, Western states "[g]roundwater is removed from any seep where analytical results exceed any of the standards set by the Water Quality Control Commission (WQCC), the EPA Maximum Contaminant Level (MCL), or the EPA Region VI Human Health Medium Specific Screening Levels (Tap Water) in the absence of a WQCC standard or MCL (NMED, 2008)." The Tap Water Screening Levels have been replaced with the EPA Regional Screening Levels (as updated). Western must revise the Work Plan to reference the EPA Regional Screening Levels (as updated) instead of the Tap Water Screening Levels.

Comment 6

In Appendix A (Photographs), the first photograph from Google maps does not contain any cardinal directions on it. Western must revise the Work Plan to include a reference compass direction for this photograph.

Randy Schmaltz November 8, 2010 Page 3 of 3

Western must address all comments contained in this NOD and submit a revised Work Plan to NMED on or before February 8, 2011. The revised Work Plan must be submitted with a response letter that details where all revisions have been made, cross-referencing NMED's numbered comments. In addition, an electronic version of the revised work plan must be submitted that identifies where all changes have been made in redline strikeout format.

If you have any questions regarding this letter, please contact Hope Monzeglio of my staff at (505) 476-6045.

Sincerely,

James P. Bearzi

Chief

Hazardous Waste Bureau

JPB:hm

cc: J. Kieling, NMED HWB

D. Cobrain, NMED HWB

C. Chavez, OCD

A. Hains, Western

File: WRB-10-002 and Reading 2010

BILL RICHARDSON Governor

DIANE DENISH Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1
Santa Fe, New Mexico 87505-6303
Phone (505) 476-6000 Fax (505) 476-6030

www.nmenv.state.nm.us

RON CURRY Secretary

SARAH COTTRELL
Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

July 30, 2010

Mr. Randy Schmaltz Environmental Manager Western Refining, Southwest, Inc. Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

RE: NEWLY SURFACED GROUNDWATER DATA SUMMARY LETTER WESTERN REFINING SOUTHWEST INC., BLOOMFIELD REFINERY

EPA ID# NMD089416416

HWB-WRB-MISC

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has received Western Refining Southwest, Inc., Bloomfield Refinery (Western) *Newly Surfaced Groundwater Data Summary* letter dated July 22, 2010. The letter summarizes the discovery of surface water containing residual levels of benzene north of the Raw Water Ponds.

In response to the "Proposed Actions" described on page two, Western may cease pumping at the east Fork area. In place of the "Proposed Actions," Western must collect one surface water sample the week before the irrigation ditch company turns off the water to the Hammond Ditch; as well as collect one surface water sample at two, six, and ten weeks after the irrigation ditch company discontinues releasing water to the Hammond Ditch. The surface water samples must be analyzed for benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tert-Butyl Ether (MTBE) using EPA Method 8021B or 8260 and General Chemistry (major cations/anions, nitrates/nitrites, carbonate). If a surface water sample can be collected at the six week interval, the sample must also be analyzed for gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO) using EPA Method 8015. In addition, Western must also collect groundwater elevation measurements from monitoring wells MW-1, MW-50,

Randy Schmaltz July 30, 2010 Page 2 of 2

and MW-51 at the intervals specified above.

Western must submit a letter (similar to the July 22, 2010 letter) to NMED and the Oil Conservation Division (OCD) on or before February 15, 2011 that summarizes Western's findings. The letter must include the analytical laboratory reports, and all groundwater elevation measurements obtained in 2010, and any proposed future activities for this area.

If you have any questions regarding this letter, please contact Hope Monzeglio of my staff at (505) 476-6045.

Sincerely,

John Kieling

Program Manager

Permits Management Program

Hazardous Waste Bureau

cc:

D. Cobrain, NMED HWB

H. Monzeglio, NMED HWB

C. Chavez, OCD

A. Hains, Western

File: HWB-WRB-MISC and Reading File 2010

July 22, 2010

Ms. Hope Monzeglio New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303

Mr. Carl Chavez
State of New Mexico Oil Conservation Division
1220 South Saint Francis Drive
Santa Fe, NM 87505

Re: Western Refining Southwest, Inc. – Bloomfield Refinery Newly Surfaced Groundwater Data Summary

Dear Ms. Monzeglio and Mr. Chavez:

Western Refining Southwest, Inc. – Bloomfield Refinery (Bloomfield) is providing New Mexico Environmental Department (NMED) and Oil Conservation Division (OCD) a summary of the activities performed and data collected to date that pertains to the newly surfaced groundwater location identified in May 2010.

Discovery Summary

On Wednesday, May 19th 2010 during the bi-monthly visual inspections of the area north of the Refinery, Bloomfield identified a new area where groundwater had surfaced. This new area is located north of the raw water ponds within an arroyo along the north side of the Hammond Ditch. Bloomfield has identified this area as the "East Fork" area based on its location within the arroyo. **Figure 1** includes an aerial photo identifying the approximate location of the East Fork area.

A sample of the surface water was collected on the day of discovery and analyzed for BTEX and MTBE by EPA method 8260. The results were received on May 26, 2010 and indicated a detected benzene concentration of 110 ug/L. All other analytes were non-detect. Bloomfield collected confirmation split samples on May 26, 2010 which were sent to Envirotech Analytical Laboratory (Envirotech) and Hall Environmental Analysis Laboratory (HEAL) for BTEX analysis. The split samples from Envirotech and HEAL detected benzene concentrations of 167 ug/L and 120 ug/L, respectively. All other analytes for the two split samples were non-detect.

On Tuesday, June 1, 2010 following receipt of the confirmation sample results, Bloomfield notified New Mexico Environment Department (NMED) Hazardous Waste Bureau and New Mexico Oil Conservation Division (NMOCD) via e-mail of the recent

developments regarding discovery of the new surface water in the East Fork area and immediate actions taken upon discovery.

Response Action Taken

Immediately following confirmation of the benzene results, Bloomfield installed a catchment system to catch the surfacing groundwater at the East Fork area. The system consists of a trough and pump, which transports the captured groundwater to the Refinery's waste water treatment system. The catchment system has remained operational since it was installed the first week of June 2010.

In addition, samples have been collected of the surfaced groundwater at the East Fork area on a weekly basis since May 26, 2010. The samples were analyzed for BTEX and MTBE by EPA Method 8260. At NMED's request as stated in an e-mail from Hope Monzeglio dated June 3, 2010, samples collected on June 3, 2010 were also analyzed for TPH-DRO, TPH-GRO, and TPH-MRO. Table 1 attached provides a summary of the BTEX analytical results collected to-date. A copy of the respective analytical reports is provided in Attachment A. The chromatograms for the TPH and benzene results are provided in Attachment B.

The source of the newly surfaced groundwater at the East Fork area is not explicitly known. During visual inspection of the possible sources in the area, visually evident cracks were noticed in the concrete lining of the Hammond ditch. It is possible that the evident cracks in the Hammond ditch liner may be a significant hydraulic contributor to groundwater in this area. As requested by NMED in an e-mail dated June 3rd, 2010, groundwater elevations were collected from monitoring wells nearest the area of the East Fork area (MW-1, MW-50, and MW-51). Groundwater elevations measurements were collected in 2010 prior to the Hammond Ditch coming on-line (prior to April 15th, 2010), and after the Hammond Ditch was put into service (after April 15th, 2010). The average groundwater elevation increased after the Hammond Ditch was placed into service by approximately 0.18 ft. A summary of the groundwater elevations measurements collected are attached (**Table 2**).

Proposed Actions

The benzene concentrations at the newly identified groundwater surface location (East Fork area) have progressively decreased since May 26, 2010. Detected benzene concentrations have been below the WQCC screening level of 10 ug/L since June 3rd, 2010, and below the EPA Maximum Contaminant Level (MCL) of 5 ug/L since June 16th, 2010 (Refer to **Table 1** for the analytical summary trend).

Bloomfield proposes that the pumping cease at the East Fork area, thus allowing the surfaced groundwater to continue to promote vegetative growth in this area. Bloomfield also proposes to continue sampling the newly surfaced groundwater weekly through August 2010 and monthly thereafter through October 2010, at which time the flow in the Hammond ditch will have ceased due to the end of the irrigation season. Bloomfield will then re-evaluate the conditions of this area.

If you have any questions or would like to further discuss this topic, please contact me at (505) 632-4171.

Sincerely,

Ames R. Schmaltz

Environmental Manager

Western Refining Southwest, Inc.

Bloomfield Refinery


Hope Monzeglio – NMED HWB cc:

Dave Cobrain - NMED HWB

Carl Chavez - NMOCD (w/attachment)

Allen Hains - Western Refining El Paso

FIGURE

Analytical Results for Newly Surfaced Groundwater Location (Sample ID = East Fork) **TABLE 1**

							Date of Sa	Date of Sample Collection	ction			
	******	Screening	βı				i					
	Units	Level		5/19/2010	5/26/2010	5/26/2010 (5)	6/3/2010	6/8/2010	6/16/2010	6/29/2010	7/1/20010	7/8/2010
Benzene	7/Bn	5	(2)	110	120	167	9.6	5.2	3.4	1.6	2.3	2.0
Toluene	ng/L	750	(3)	<1.0	<1.0	<0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	ng/L	200	(2)	<1.0	<1.0	<0.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MTBE	ng/L	12	(i)	<1.0	<1.0	na	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Xylenes	ng/L	620	(3)	<2.0	<2.0	<0.2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
TPH-DRO	mg/L	1.34	(4)	su	SU	Su	<0.20	SU	ns	su	su	ns
TPH-MRO	mg/L	•		ns	ns	ns	<2.5	ns	ns	su	SU	ns
TPH-GRO	mg/L	1.34	(4)	ns	ns	ns	<0.05	ns	ns	ns	ns	ns

Notes:

- EPA Regional Screening Level (April 2009) EPA Regional Screening Level Tap Water
 EPA Regional Screening Level (April 2009) MCL
 NMED WQCC Standards Title 20 Chapter 6 Part 2 20.6.2.3101 Standards for Groundwater of 10,000 mg/L TDS Concentration or Less.
 NMED TPH Screening Guidelines October 2006 #3 and #6 fuel oil.
 Split sample analyzed by Envirotech Analytical Labororatory.

TABLE 2
Groundwater Elevation Measurement Summary - Near East Fork Area

***************************************	MW-1	MW-50	MW-51	,	
TOC Elevation (ft amsl) ->	5519.21	5518.794	5515.583	_	
2/23/2010	5501.92		5500.79]	
3/10/2010	5501.90	5501.76	5500.75	}	Hammond Ditch Off-Line
4/6/2010	5501.95	5501.88	5500.81	J	
5/10/2010	5502.10		5500.94	ไว้	Hammond Ditch On-Line
6/7/2010	5502.12	5501.99	5500.97	}	Hammond Ditch On-Line

	MW-1	MW-50	MW-51
Avg Groundwater Elevation -> (with Hammond Ditch Off-Line)	5501.92	5501.82	5500.79
Avg Groundwater Elevation -> (with Hammond Ditch On-Line)	5502.11	5501.99	5500.96
Average Elevation Difference:	0.19	0.17	0.17

Historic Data	MW-50	MW-51
10/28/2008	5502.14	5501.00
1/8/2009	5501.62	5500.65

ATTACHMENT A Analytical Reports

Tuesday, May 25, 2010

Cindy Hurtado

Western Refining Southwest, Inc.

#50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4161

FAX (505) 632-3911

RE: 5-19-10 Drainage North of TK#38

Dear Cindy Hurtado:

Order No.: 1005560

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 5/20/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab# NM9425 NM0901

AZ license # AZ0682

ORELAP Lab # NM100001

Date: 25-May-10

CLIENT: Western Refining Southwest, Inc. Project: 5-19-10 Drainage North of TK#38

1005560 Lab Order:

Lab ID:	1005560-01	Collection Date:	5/19/2010 2:15:00 PM
Client Sample ID:	West Fork	Matrix:	AQUEOUS

		Units	DF	Date Analyzed
ORT LIST			<u> </u>	Analyst: HL
ND	1.0	µg/L	1	5/20/2010 5:23:50 PM
ND	1.0	μg/L	1	5/20/2010 5:23:50 PM
ND	1.0	μg/L	1	5/20/2010 5:23:50 PM
ND	1.0	μg/L	1	5/20/2010 5:23:50 PM
ND	2.0	μg/L	1	5/20/2010 5:23:50 PM
	ND ND ND	ND 1.0 ND 1.0 ND 1.0 ND 1.0	ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L	ND 1.0 μg/L 1 ND 1.0 μg/L 1 ND 1.0 μg/L 1 ND 1.0 μg/L 1

Lab ID: 1005560-02 Collection Date: 5/19/2010 2:25:00 PM Client Sample ID: East Fork Matrix: AQUEOUS

Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST	· · · · · · · · · · · · · · · · · · ·			Analyst: HL
Benzene	110	5.0	μg/L	5	5/21/2010 6:03:59 PM
Toluene	ND	1.0	μg/L	1	5/20/2010 6:52:11 PM
Ethylbenzene	ND	1.0	μg/L	1	5/20/2010 6:52:11 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	5/20/2010 6:52:11 PM
Xýlenes, Total	ND	2.0	μg/L	1	5/20/2010 6:52:11 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits page 1 of 1

Date: 25-May-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: 5-19-10 Drainage North of TK#38

Work Order:

1005560

Analyte	Result	Units	PQL	SPK Va S	PK ref	%Rec L	owLimit Hig	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260: Vo	latiles Shor	t List									
Sample ID: 1005560-01a msd		MSD				Batch ID:	R38830	Analys	is Date:	5/20/2010	3:22:54 PN
Benzene	20.31	µg/L	1.0	20	0	102	72.4	126	0.138	20	
Toluene	21.54	μg/L	1.0	20	0	108	79.2	115	1.72	20	
Sample ID: 5ml rb		MBLK				Batch ID:	R38830	Analys	is Date:	5/20/2010 8	3:45:56 AN
Benzene	ND	μg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	μg/L	1.0			•					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND	h8/L	2.0								
Sample ID: 5ml rb		MBLK				Batch ID:	R38844	Analys	is Date:	5/21/2010 8	3:57:02 AN
Benzene	ND	µg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ИD	µg/L	1,0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 5ml rb		MBLK				Batch ID:	R38830	Analys	is Date:	5/20/2010 8	3:45:56 AN
Benzene	ND	μg/L	1.0								
Toluene -	ND	μġ/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0								
Xylenes, Total	ND .	μg/L	2.0								
Sample ID: 100ng Ics		LCS				Batch ID:	R38830	Analys	is Date:	5/20/2010 10):54:22 AN
Benzene	20.06	μg/L	1.0	20	0	100	82.4	116			
Toluene	22.33	µg/L	1.0	20	0.	112	89.5	123		,	•
Sample ID: 100ng lcs		LCS				Batch ID:	R38844	Analys	ls Date:	5/21/2010 1	0:19:50 AN
Benzene	18.82	µg/L	1.0	20	0	94.1	82.4	116			
Toluene	21.74	µg/L	1.0	20	0	109	89,5	123			
Sample ID: 100ng ics		LCS				Batch ID:	R38830	Analys	is Date:	5/20/2010 10):54:22 AN
Benzene	20.06	µg/L	1.0	20	0	100	82.4	116			
Toluene	22.33	µg/L	1.0	20	0	112	89.5	123			
Sample ID: 1005560-01a ms		MS				Batch ID:	R38830		is Date:	5/20/2010 5	5:53:38 PM
Benzene	20.28	µg/L	1.0	20	0	101	72,4	126			
Toluene	21.91	μg/L	1.0	20	0	110	79.2	115			

•••	-	•••		_					•
6	٦		a	1	f	io	'n	r	

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client Name WESTERN REFINING SOUT				Date Receive	d:		5/20/2010	
Work Order Number 1005560				Received by	: TLS		a	
Checklist completed by:	8	5	20 Date	Sample ID to	abels checked	by:	Initials	
Matrix:	Carrier name:	UPS	3					
Shipping container/cooler in good condition?		Yes	\checkmark	No 🗆	Not Present			
Custody seals intact on shipping container/coole	er?	Yes	\checkmark	No 🗆	Not Present		Not Shipped	
Custody seals intact on sample bottles?		Yes		No 🗌	N/A	V		
Chain of custody present?		Yes	\mathbf{Y}	No 🗌				
Chain of custody signed when relinquished and	received?	Yes	\checkmark	No 🗌				
Chain of custody agrees with sample labels?		Yes	\checkmark	No 🗌				
Samples in proper container/bottle?		Yes	\checkmark	No 🗌				
Sample containers intact?		Yes	V	No 🗌				
Sufficient sample volume for indicated test?		Yes	V	No 🗌				
All samples received within holding time?		Yes	V	No 🗌				f preserved
Water - VOA viais have zero headspace?	No VOA vials subn	nitted		Yes 🗹	No 🗀		bottles chi pH:	ecked for
Water - Preservation labels on bottle and cap m	atch?	Yes		No 🗌	N/A 🗹			
Water - pH acceptable upon receipt?		Yes		No 🗌	N/A 🗹		<2 >12 unl	ess noted
Container/Temp Blank temperature?		4.	.0°	<6° C Acceptab			below.	
COMMENTS:				If given sufficient	t time to cool.			
		===						
•								
Client contacted	Date contacted:			Pers	on contacted		***************************************	
Contacted by:	Regarding:							
Comments;								
				· · · · · · · · · · · · · · · · · · ·	·			
			******	***************************************				
							- · · · · · · · · · · · · · · · · · · ·	
							.,	
Corrective Action					·,·	·		
		,		N. 1994 (7) 2004 (2014 (······································			
			-71-					

	ANALYSIS ABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	ি সুকু Analysis Request ি	(les	syDie	9) H (Ges)	\ \ 808 (E \cdot	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	BTEX + MTB BTEX + MTD TPH (Methoc TPH (Methoc B310 (PNA c RS10 (PNA c RS10 (F,C) 8081 Pestici RO81 Pestici RO81 Pestici RO81 Pestici	×	×						Remarks:		to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	K Standard	Project Name: 5-19-10	DRAINAGE NOTH OF TK# 38			Project Manager:			Sample: (In of the bounded on the second of the second on the second of	Sample Temperature 一一一〇	Container Preservative Type Type	3-voa HC1 1	3-VOR HC1 2						Received by: Accelered by:	Received by / Date Time	
Chain-of-Custody Record	Client: Western Refining		Mailing Address: 井50 CR 4990	M	Phone #. 505-632-4/4/	email or Fax#: 505-632-39//	ige:	A Standard Level 4 (Full Validation)	□ Other	☐ EDD (Type)	Date Time Matrix Sample Request ID	5-19-10 2:15 420 WEST FORK	5-18-10 2:25 Has EAST FORK						5:0 (chaffalon)	Date: Rêlinquished be:	If necessary, samples submitted to Hall Environmental may be subcontracted

Wednesday, June 02, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 5-26-10

Dear Cindy Hurtado:

Order No.: 1005835

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 5/27/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

Date: 02-Jun-10

	ning Southwest, Inc. th of TK#38 5-26-10				Lab Orde	r: 1005835
Lab ID: 1005835-0	1		(Collection Dat	te: 5/26/20	010 1:05:00 PM
Client Sample ID: West Fork				Matri	x: AQUE	ous
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILE	S SHORT LIST	<u>,</u>				Analyst: DAM
Benzene	ND	1.0		µg/L	1	5/28/2010 10:37:23 AM
Toluene	. ND	1.0		μg/L	1	5/28/2010 10:37:23 AM
Ethylbenzene	ND	1.0		µg/L	1	5/28/2010 10:37:23 AM
Methyl tert-butyl ether (MTBE)	· ND	1,0		µg/L	1	5/28/2010 10:37:23 AM
Xylenes, Total	ND	2.0		µg/L	1	5/28/2010 10;37:23 AM
Lab ID: 1005835-0	2			Collection Dat	te: 5/26/20	010 12:50:00 PM
Client Sample ID: East Fork				Matri	x: AQUE	ous
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILE	S SHORT LIST					Analyst: DAM
Benzene	120	10		µg/L	10	5/28/2010 11:05:28 AM
Toluene	ND	1.0		µg/L	1	5/28/2010 11:33:35 AM
Ethylbenzene	ND	1.0		µg/L	1	5/28/2010 11:33:35 AM
Methyl tert-butyl ether (MTBE)	ND	1.0		h8/F	1	5/28/2010 11:33:35 AM
Xylenes, Total	ND	2.0		µg/L	1	5/28/2010 11:33:35 AM
Lab ID: 1005835-0	3	, ₍₁ . 1 1 1 1 1 1 1 1 1 1 	(Collection Dat	te: 5/26/20	010 12:30:00 PM
Client Sample ID: Outfall #2				Matri	x: AQUE	OUS
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILE	S SHORT LIST					Analyst: DAM
Benzene	ND	- 1.0		µg/L	1	5/28/2010 12:30:03 PM
Toluene	ND	1.0		µg/L	1	5/28/2010 12:30:03 PM
Ethylbenzene	ND	1.0		μg/L	1	5/28/2010 12:30:03 PM
Methyl tert-butyl eiher (MTBE)	ND	1.0		µg/L	1	5/28/2010 12:30:03 PM
Xylenes, Total	ND	2.0		µg/L	1	5/28/2010 12:30:03 PM
Lab ID: 1005835-0	4		C	Collection Dat	te: 5/26/20	010 12:15:00 PM
Client Sample ID: MW-51				Matri	ix: AQUE	ous ·
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILE	S SHORT LIST					Analyst: DAM
Benzene	6400	100		hg/F	100	5/28/2010 9:24:16 PM
Toluene	220	100		μg/L	100	5/28/2010 9:24:16 PM
Ethylbenzene	250	100		h@/L	100	5/28/2010 9:24:16 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	5/28/2010 12:57:13 PM
Xylenes, Total	1800	200		μg/L.	100	5/28/2010 9:24:16 PM
Outline Value over to	Agricultura Contessionant I cont		r	2 Analysis data	ctad in the ca	propieted Method Disnis
•	Maximum Contaminant Level			· ·		sociated Method Blank ition or analysis exceeded
E Estimated value J Analyte detected				cl Maximum C		·
NC Non-Chlorinated	l below quantitation limits		N	D Not Detected	i at the Reno	rting Limit
PQL Practical Quanti				S Spike recove	ery outside ac	cepted recovery limits age 1 c

Date: 02-Jun-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38 5-26-10

Work Order:

1005835

Analyte	Result	Units	PQL	SPK Va. SPK-ref	%Rec L	owLimit Hi	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 8260: V	olatiles Shor	t List			•			
Sample ID: 5ml rb	•	MBLK			Batch ID:	R38998	Analysis Date:	5/28/2010 8:44:54 AM
Benzene	ND	μg/L	1.0					
Toluene	ND	µg/L	1.0					
Elhylbenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	hg/L	1.0					
Xylenes, Total	ND	µg/L	2.0					
Sample ID: 100ng lcs		LCS			Batch ID:	R38998	Analysis Date:	5/28/2010 9:41:09 AM
Benzene	21.46	μg/L	1.0	20 0	107	82.4	116	
Toluene	23.42	μg/L	1.0	20 0	- 117	89.5	123	

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client Name WESTERN REFINING SOUT			Date Received	k	5/27/2010	
Work Order Number 1005835	r		Received by:	ARS	Ω_{\sim}	
Checklist completed by:		17</td <td>Sample ID la</td> <td>bels checked by</td> <td>y: Initials</td> <td>-</td>	Sample ID la	bels checked by	y: Initials	-
Signature		Date	110			
Matrix:	Carrier name: <u>UPS</u>	3				
Shipping container/cooler in good condition?	Yes	$ \checkmark $	No 🗌	Not Present		
Custody seals intact on shipping container/cooler?	Yes	✓	No 🗌	Not Present	Not Shipped	
Custody seals intact on sample bottles?	Yes		No 🗌	N/A	V	
Chain of custody present?	Yes	V	No 🗀			
Chain of custody signed when relinquished and rece	eived? Yes	\mathbf{V}	No 🗌			
Chain of custody agrees with sample labels?	Yes	V	No 🗌			
Samples in proper container/bottle?	Yes	V	No 🗌			
Sample containers intact?	Yes	V	No 🗌			
Sufficient sample volume for indicated test?	Yes	\square	No 🗌	•		
All samples received within holding time?	Yes	\checkmark	No 🗌		Number of bottles ch	of preserved
Water - VOA vials have zero headspace?	lo VOA vials submitted		Yes 🗹	No 🗌	pH:	ECKEG 10
Water - Preservation labels on bottle and cap match	? Yes		No 🗌	N/A 🔽		of the same of the
Water - pH acceptable upon receipt?	Yes		No 🗌	N/A 🔽	<2 >12 un below.	iess noted
Container/Temp Blank temperature?	6	-	<6° C Acceptable		<i>B</i> 0.077,	
COMMENTS:	•		If given sufficient	time to cool.		
•						
					•	
Client contacted Dat	te contacted:		Perso	on contacted	**************************************	
Contacted by: Reg	garding:		The state of the s			
Comments:						
						and another the Millian was a low to a proprietable
						*
						\\ \text{\tint{\text{\tin}\text{\tetx{\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\texi}\tint{\tin}\tint{\text{\ti}\tint{\text{\texi}\text{\texit{\texi}\text{\texi}\texit{\
Corrective Action					A PART OF THE PART	
			article Processing and the Control of the Control o			

2 6 8 8									(1)	<u>1</u> 10) 人) səlddu8 ıiA									report.
	nall envikummen al Analysis laboratory	nmental.com	Albuquerque, NM 87109	505-345-4107	s Request		s'80)d 7	2808	3 / 5	l (1808 (40V) 409S8	4	×	×	¥					Ce Results to Kelly Robinson
	ALL EN	www.hallenvironmental.com	. 1		Amalysis I		OS.4		()	-1∀∢	d 10	EDB (Method 6310 (PNA o 8 Met RCRA 8 Met IO,7)			-						esults to
		M	4901 Hawkins NE	Tel. 505-345					1) B (C	316 .81)8 I	BTEX + MTE									Remarks: Please Cc F
		5-26-10	of TK#38				1208	8) s'	.BW.	H-November	3E	HEALNO DOS		7	3	ح					Date Time Remarks: 5/23/10 1045 Please C. Results to Kelly Rebinson Bate Time possibility. Any sub-contracted data will be clearly notated on the analytical report.
Time:	□ Rush		North			ger:	,		ab	Z Yes	e Temperature: 🛴	Preservative Type	HCI	HC/	HCI	Hc/					Street aboratorie
Turn-Around Time:	X Standard	Tioject Natile	DRAiDage	Project #:		Project Manager:			Sampler Bab	On loe:	Sample Temp	Container Type and #	3-VOA	3-VOA	3-UOA	3-VOA					Received by:
Chain-of-Custody Record	Client: Western Refining		CR 4990	NW. 874/3	32-4/6	1		□ Level 4 (Full Validation)				Sample Request ID	WEST FORK	EAST FORK	C# 11451mg	MW-51		And the state of t			Time: Relinquished by: Receive Time: Relinquished by: Receive Receive Receive Receive Receive Receive Receive
-of-Cu	Ern B		- 1	Pield.	516	505-6				Other		Matrix	Had								Relinquished by Relinquished by Samples submitted
Chain	t. West		Mailing Address: #50	Bloom Piel	1e#: 535	email or Fax#: 505	QA/QC Package:	Standard	Accreditation	U NELAP	C EDD (Type)	е Тіте	5-26-10 1:05	12:50	12:30	12:15			,		Time: Time: Time:
	Clien		Mailir	7	Phone #:	email	OAQ	A St	Accre	z 		Date	5-26-	-							Date: 5-36-70 Date:

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Western Refining	Project#:	96012-0009
Sample ID:	West Fork	Date Reported:	05-31-10
Chain of Custody:	9482	Date Sampled:	05-26-10
Laboratory Number:	5 44 54	Date Received:	05-26-10
Sample Matrix:	Aqueous	Date Analyzed:	05-27-10
Preservative:	Cool	Analysis Requested:	BTEX
Condition:	Intact		

		(ug/L)
1.9	1	0.2
ND ND	1	0.2 0.2 0.2 0.1
	ND ND	ND 1 ND 1 ND 1

Total BTEX 1.9

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	fluorobenzene	107 %
	1,4-difluorobenzene	98.3 %
	4-bromochlorobenzene	97.7 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

Drainage North of TK #38

Analyst

Review (/

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Western Refining	Project #:	96012-0009
Sample ID:	East Fork	Date Reported:	05-31-10
Chain of Custody:	9482	Date Sampled:	05-26-10
Laboratory Number:	54455	Date Received:	05-26-10
Sample Matrix:	Aqueous	Date Analyzed:	05-27-10
Preservative:	Cool	Analysis Requested:	BTEX
Condition:	Intact		

Parameter	Concentration (ug/L)	Dilution Factor	Det. Limit (ug/L)
Benzene	167	1	0.2
Toluene	ND .	1	0.2
Ethylbenzene	ND	1	0.2
p,m-Xylene	ND	1	0.2
o-Xylene	ND	1	0.1

Total BTEX 167

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	fluorobenzene	113 %
	1,4-difluorobenzene	101 %
	4-bromochlorobenzene	122 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

Drainage North of TK #38

Analyst

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client:	N/A-	Project #:	N/A
Sample ID:	0528BBLK QA/QC	Date Reported:	05-20-10
Laboratory Number:	54454	Date Sampled:	N/A
Sample Matrix:	Aqueous	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	05-27-10
Condition:	N/A	Analysis:	BTEX

Galibration and a Detection Limits (ug/L)	Para Jeografia	C-GallRF Accept Ran	% % piff *** ge 0 - 15% ***	Blank Gono	Detect Limit
Benzene	1,2445E+006	1.2483E+006	0.30%	ND	0.2
Toluene	8.0034E+005	8.0275E+005	0.30%	ND	0.2
Ethylbenzene	6.5663E+005	6.5860E+005	0.30%	ND	0.2
p,m-Xylene	1,8965E+006	1.9022E+006	0.30%	ND	0.2
o-Xylene	6.2516E+005	6.2705E+005	0.30%	ND	0.1

Duplicate Conc. (ug/L)	Sample	Duplicate :	%e)(f)	Acceptalimit
Benzene	1.9	1.8	0.0%	0 - 30%
Toluene	ND	ND	0.0%	0 - 30%
Ethylbenzene	ND	ND	0.0%	0 - 30%
p,m-Xylene	ND	ND	0.0%	0 - 30%
o-Xylene	ND	ND	0.0%	0 - 30%

Sample	Amount Spiked Spik	ed Sample as a	% Recovery	Accept Limits
1.9	50.0	55.7	107%	39 - 150
ND	50.0	56.2	112%	46 - 148
ND	50.0	52.4	105%	32 - 160
ND	100	118	118%	46 - 14B
ND	50.0	53. 8	108%	46 - 148
	1.9 ND ND ND	1.9 50.0 ND 50.0 ND 50.0 ND 100	1.9 50.0 55.7 ND 50.0 56.2 ND 50.0 52.4 ND 100 118	ND 50.0 56.2 112% ND 50.0 52.4 105% ND 100 118 118%

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments:

QA/QC for Samples 54454 and 54455.

Analyst

Review

CHAIN OF CUSTODY RECORD

Project Name / Location	Western (etia) Ny Drainage north of 18# 38	Sampler Name: 8260)	Client No: Other No:	Sample Sample Lab No. Matrix Container Mo. Wolume Preservative H C C C C C C C C C C C C C C C C C C	5-26-70 1.05 54454 Solid Aduleous 3-1/104 X X	5-26-70 121.50 54455 Solid (Aqueous)	Soil Studge Soll Aqueous	Soil Sludge Solid Aqueous	Soil Sludge Solid Aqueous	Soil Sludge Solid Aqueous	Soil Studge Solfd Aqueous	Soil Sludge Soid Aqueous	Soil Sludge Solid Aqueous		4.8-10 7-36-70 7-10 Received by: (Signature)	ned by: (Signature) Received by: (Signature)	envirolech Analytical Laboratory
Client	Western (et	Client Address:	Client Phone No.:	Sample No./	\		de delingte de production de la companyation de la							Relinquished by: (Signature)	Relinquished by: (Signature)	Relinquished by: (Signature)	

Friday, June 11, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161

FAX (505) 632-3911

RE: Drainage North of TK#38 6/3/10

Dear Cindy Hurtado:

Order No.: 1006193

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 6/4/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab# NM9425 NM0901 ·

AZ license # AZ0682

ORELAP Lab # NM100001

Date: 11-Jun-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1006193

Project:

Drainage North of TK#38 6/3/10

Lab ID:

1006193-01

Client Sample ID: East Fork

Collection Date: 6/3/2010 1:20:00 PM

Date Received: 6/4/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B; DIESEL RANG	3E				Analyst: JB
Diesel Range Organics (DRO)	ND	0.20	mg/L	1	6/10/2010 12:59:10 PM
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	6/10/2010 12:59:10 PM
Surr: DNOP	137	82-162	%REC	1	6/10/2010 12:59:10 PM
EPA METHOD 8015B: GASOLINE R.	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	6/10/2010 1:27:25 PM
Surr: BFB	93.0	55.2-107	%REC	1	6/10/2010 1:27:25 PM
EPA METHOD 8260: VOLATILES SH	IORT LIST				Analyst: HL
Benzene	9.6	1.0	µg/L	1	6/8/2010 2:57:30 PM
Toluene	ND	1.0	µg/L	1	6/8/2010 2:57:30 PM
Ethylbenzene	ND	1.0	µg/L	1	6/8/2010 2:57:30 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	-1	6/8/2010 2:57:30 PM
Xylenes, Total	ND	2.0	µg/L	1	6/8/2010 2:57:30 PM
Surr: 1,2-Dichloroethane-d4	85.0	54.6-141	%REC	1	6/8/2010 2:57:30 PM
Surr: 4-Bromofluorobenzene	99.3	60.1-133	%REC	1	6/8/2010 2:57:30 PM
Surr: Dibromofluoromethane	91.3	78.5-130	%REC	1	6/8/2010 2:57:30 PM
Surr: Toluene-d8	102	79.5-126	%REC	1	6/8/2010 2:57:30 PM

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 11-Jun-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: Drainage North of TK#38 6/3/10

Work Order:

1006193

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit %	RPD	RPDLimit	Qual
Method: EPA Method 8015B: E Sample ID: MB-22660	Diesel Range	MBLK				Batch (D:	22560	Analysis D	ate:	6/10/2010	9:35:54 AN
Diesel Range Organics (DRO)	ND	mg/L	0.20								
Motor Oil Range Organics (MRO)	ND	mg/L	2.5								
Sample ID: LCS-22560		LCS				Batch ID:	22560	Analysis D	ate:	6/10/2010 1	0:09:45 AN
Diesel Range Organics (DRO)	3.750	mg/L	0.20	2.5	0.1779	143	74	157			
Sample ID: LCSD-22560		LCSD				Batch ID:	22560	Analysis D	ate:	6/10/2010 1	0:43:52 AN
Diesel Range Organics (DRO)	3,569	mg/L	0.20	2.5	0.1779	136	74	157	4.96	23	
Method: EPA Method 8015B; 0	Sasoline Rar	ıae									
Sample ID: 5ML RB		MBLK				Batch ID:	R39200	Analysis D	ate:	6/10/2010	9:35:51 AM
Gasoline Range Organics (GRO)	ND	mg/L	0.050								
Sample ID: 2.5UG GRO LCS		LCS				Batch ID:	R39200	Analysis D	ate:	6/10/2010	6:45:23 PN
Gasoline Range Organics (GRO)	0.4882	mg/L	0.050	0.5	0	97.6	77.8	124			
Method: EPA Method 8260: Vo	natiles Shor	t List									
Sample ID: 6ml rb		MBLK				Batch ID:	R39141	Analysis D	ate:	6/8/2010	B:42:02 AN
Benzene	ND	µg/L	1.0								
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND	μg/L	2.0								
Sample ID: 100ng lcs		LCS				Batch ID:	R39141	Analysis D	ate:	6/8/2010	9:53:19 AM
Benzene	18.99	µg/L	1.0	20	0	94.9	82.4	116			
Toluene	21.58	μg/L	1.0	20	0	108	89.5	123			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1

Client Name WESTERN REFINING SOUT			Date Received	:	6/4/2010	
Work Order Number 100B193	·		Received by:	TLS	AT	
Checklist completed by:		Dale	Sample ID tal	oels checked by:	Initials	
Matrix:	Carrier name: <u>U</u>	<u>JPS</u>				
Shipping container/cooler in good condition?		∕es ☑	No 🗌	Not Present]	
Custody seals intact on shipping container/cooler?		res 🗹	. No 🗆	Not Present	Not Shipped	П
Custody seals intact on sample bottles?		res ☑	No 🗆	N/A]	
Chain of custody present?		′es ☑	No 🗆		•	
Chain of custody signed when relinquished and rece		res ☑	No 🗀	•		
Chain of custody agrees with sample labels?		∕es 🗹	No 🗌			
Samples in proper container/bottle?	Υ	′es ☑	No 🗀	•		
Sample containers Intact?	Υ	′es 🗹	No 🗌			
Sufficient sample volume for indicated test?	Υ	′es 🗹	No 🗌			**
All samples received within holding time?	· Y	′es ☑	No 🗌			f preserved
Water - VOA viale have zero headspace?	io VOA vials submitt	ed []	Yes 🗹	No 🗆	bottles che pH:	ecked for
Water - Preservation labels on bottle and cap match	? Y	'es 🗌	No 🗌	N/A 🗹		
Water - pH acceptable upon receipt?	Y	es 🗌	No 🗌	N/A 🗹	<2 >12 uni	ess noted
Container/Temp Blank temperature?			<6° C Acceptable		below.	
COMMENTS:		. 1	f given suffloient	time to cool.		
						•
·						
				•		
Client contacted Dat	e contacted:		Perso	n contacted		
Contacted by: Reg	garding:					
	Residence of the last section in the last sec				· · · · · · · · · · · · · · · · · · ·	
Comments:						***************************************
·	and the second s		·			
	***************************************			. 		
· Corrective Action						

)200. (1)		: { 1		ı				(N) Y	, <u>V</u>)	asidduR riA												
	いることでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ		_					······································														transfer la
# S		l	4901 Hawkins NE - Albuquerque, NM 87109	۷.																		A dece
E C		mo	M 8	505-345-4107				,		ime2) 0758			 									144
		ntal.c	Je, N	-345	Redices					OV) 808S8	X											1
			uera	505	92					S081 Pestic			 	 					 		•	40.0
£		viror	bnq	Fаx	lalysis l	(°0s	, _p 09,			O,7) snoinA			 	···								1
L	ANALYSIS	allen	₹-		Atte					RCRA 8 Me			 	 								1
80 88 48		r.yw	쀨	3975						AN9) 0188							_					4 40
122		;	/kins	345-						TPH (Metho			 	 								1
-			Нау	505-		امعما	U is si			OdteM H9T		X	 									4
			1901	Tel. 505-345-3975						BTEX + MT			 			_				rks:		4
			7	i						BTEX + MTI			 						 -	Remarks:		mile (FA
														 						u.		-
		9-3-10	户下书38					No.	<u>d</u> :2:	HOODIAN STATES		186			•					Date Time	Date Time	Thin a common of a common of
Time:	□ Rush	.;	DRAINAGE WITH OF THESE			ager:		206 XQuestiment	perafure	rative e	HCI	Amber								79		soft and the liberty
Tum-Around Time:	(X Standard	Project Nam	DRAINA	Project #:		Project Manager:		Sampler. [-	Sample Temperature	Container Type and #	3-10A	1-250								Received by:	Receivedby	notested to other a
Chairof-Custody Record	Client: Western Refining		Iress: #50 (R 4990	Field NM BT413	505-632-4161	email or Fax#, 505-632-39//	age: 1	□ Other		Time Matrix Sample Request ID	1:20 AD EAST FORK	1.20 1120 EAST FORK								Relinquished by: Color Hubber	e: Relinquished by:	ssay, samples submitted to Hall Environmental way he enhanced
Cha	ent: We:		Mailing Address:	Blockfield	Phone #: 5	nail or Fax	UA/UC Package: 域 Standard	Accreditation	□ EDD (Type)	Date Tin	6-3-10 1:	6-3-10 11	,							2/-	e: Time:	Preparati
	ð		Ma	1	Ē	ell e	K E	Ac 🗆			6-3	5-5								Date: 6-3-	Date:	

Wednesday, June 16, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 6-8-10

Dear Cindy Hurtado:

Order No.: 1006309

Hall Environmental Analysis Laboratory, Inc. received 3 sample(s) on 6/9/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ, license # AZ0682 ORELAP Lab # NM100001

Date: 16-Jun-10

	Western Refining So Drainage North of T			-	arania na tatawa	La	b Orde	r: 1006309
Lab ID:	1006309-01			(Collect	ion Date:	6/8/20	10 2:25:00 PM
Client Sample ID:	: MW-1					Matrix:	AQUE	OUS
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 826	0: VOLATILES SHO	ORT LIST	Transaction Programme			- Francisco	**********	Analyst: BDF
Benzene		ND	1.0		μg/L	·	1	6/10/2010 7:47:50 PM
Toluene :		ND	1.0		μg/L		1 .	6/10/2010 7:47:50 PM
Ethylbenzene		ND	1.0		µg/L		1	6/10/2010 7:47:50 PM
Methyl tert-butyl et	her (MTBE)	ND	1.0		μg/L		1	6/10/2010 7:47:50 PM
Xylenes, Total		ND	2.0		µg/L		1	6/10/2010 7:47:50 PM
Lab ID:	1006309-02				Collect	ion Date:	6/8/20	10 2:40:00 PM
Client Sample ID	: Fresh Water Pond	!				Matrix:	AQUE	ous
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 820	30: VOLATILES SHO	ORT LIST			. *			Analyst: BDI
Benzene · ·		ND	1.0		μg/L		1	6/10/2010 8:16:06 PM
Toluene		ND	1.0		μg/L		1	6/10/2010 8:16:06 PM
Ethylbenzene		ND	1.0		μg/L		1	6/10/2010 8:16:06 PM
Methyl tert-butyl et	her (MTBE)	ND	1.0		μg/L		1	6/10/2010 8:16:06 PM
Xylenes, Total		ND	2.0		µg/L		1	6/10/2010 8:16:06 PM
Lab ID:	1006309-03		nese - Ir de spenso ner	······································	Collect	ion Date:	6/8/20	10 2:50:00 PM
Client Sample ID	: East Fork					Matrix:	AQUE	ous
Analyses	•	Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 82	60: VOLATILES SHO	ORT LIST						Analyst: MM
Benzene		5.2	1.0		µg/L		1	6/11/2010 2:29:29 PM
Toluene		ND	1.0		μg/L		1	6/11/2010 2;29:29 PM
Ethylbenzene		ND	1.0		μg/L		1	6/11/2010 2:29:29 PM
Methyl tert-butyl et	her (MTBE)	ND	1.0		µg/L		1	6/11/2010 2:29:29 PM
Xylenes, Total		ND	2.0		μg/L		1	6/11/2010 2:29:29 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level
	E	Estimated value
	J	Analyte detected below quantitation limits

NC Non-Chlorinated

PQL Practical Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits Page 1 of 1

QA/QC SUMMARY REPORT

...ent:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38 6-8-10

Work Order:

1006309

Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec L	owLimit Hi	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 8260: Ve	olatiles Shor	List						
Sample ID: b2		MBLK			Batch ID:	R39204	Analysis Date:	6/10/2010 11:34:40 AM
Benzene	ND.	µg/L	1.0		•			
Toluene	ND	h8/F	1.0					
Ethylbenzene	ND	μg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	2.0					
Sample ID: 100ng ics		LCS			Batch ID:	R39204	Analysis Date:	6/10/2010 11:06:25 AM
Benzene	19.88	μg/L	1.0	20 D	99.4	82.4	116	
Toluene	19.09	µg/L	1.0	20 0	9 5.5	89.5	123	•

¿ualifiers:

J

E Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1

Client Name WESTERN REFINING SOUT			Date F	Received:		6/9/2010
Work Order Number 1006309			Rece	eived by: AR	S	\wedge
Checklist completed by:			Sam	ple ID labels check	keđ by:	Initials
Matrix:	Carrier name:	<u>ups</u>				
Shipping container/cooler in good condition?	•	Yes 🗹	No [Not Pres	ent 🗆	
Custody seals intact on shipping container/cool	er?	Yes 🗹	No [Not Pres	ent 🗌	Not Shipped
Custody seals intact on sample bottles?		Yes 🗹	No [] N/A		
Chain of custody present?		Yes 🗹	No [
Chain of custody signed when relinquished and	received?	Yes 🗹	No [
Chain of custody agrees with sample labels?		Yes 🗹	No [
Samples in proper container/bottle?		Yes 🗹	No [
Sample containers intact?		Yes 🔽	· No []		
Sufficient sample volume for indicated test?		Yes 🗹	No [
All samples received within holding time?		Yes 🗹	No [Number of preserved
Water - VOA vials have zero headspace?	No VOA vials subn	nitted [Yes &	Ž No		bottles checked for pH;
Water - Preservation labels on bottle and cap m	natch?	Yes 🗌	No [N/A	V	
Water - pH acceptable upon receipt?		Yes 🗌	No E	□ N/A	\checkmark	<2 >12 unless noted
Container/Temp Blank temperature?		8.3°"		cceptable		below.
COMMENTS:			If given s	ufficient time to co	oi.	
					:=	de describe supplier common products products products products products and
Client contacted	Date contacted:			Person contact	ed	
Contacted by:	Regarding:		and the second second second second second second			
Comments:						

		A CONTRACTOR OF THE CONTRACTOR			··	
Corrective Action		***************************************		, , , , , , , , , , , , , , , , , , ,	·	Vin un well as a series of the
						AND AND THE REST OF THE PARTY O

Chain-of-Custody Record	Turn-Around Time:	ne:				, p	d d		¥		. (9	· 6	6	_	
Client: WESTERN REPINIUS	区 Standard	□ Rush				⊑ ≪	MAL		> V = U		Š				_ >	
2	Project Name:		01-8-9				WWW	www.hallenvironmenfal.com	ironny	lenfa		<u> </u>	2	5	ikki . d	
Walling Address: #50 CR 4990	DRAIDAGE	e North	みた本次の		4901 Hawkins NE -	ławkji	SN SC	- A	enbno	Albuquerque, NM 87109	Σ	87.10	മ			
Bloomfield, NM Br413	Project #:		1	.,	Tel. 505-345-3975	35-34	5-397		Fax	Fax 505-345-4107	45-41	107				
Phone #: 505-631- 4/6				- dep	E 6 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- i	4	na	ysis	sis Request	ts a				â	
email or Fax#: 505-631-3911	Project Manager:	L							(*C			<u> </u>				
ige:	*******************************						····)S'*C	CB,a	IBE					
A Standard L Level 4 (Full Validation)		-)d' [;]		W				 .	
Accreditation	Sampler: K	6 8es	E NOSE ASSESSMENT						ON'8			(\			(M 1	
CI EDD (Type)	Sample Temperature	ature	<u> </u>									10 A			U X,	
Date Time Matrix Sample Request ID	Container Pr Type and #	Preservative Type	HEAT No.	STEX + MTE	STEX + MTE	orttəM) Hq1	EDB (Metho	3310 (PNA c	lO,∃) anoinA	ioiteeq 1808	AOV) 80828	-imə2) 0728			Air Bubbles (
-8-10 2225 Has MW-1	3-104	Hai					1)			/	.1
2,40 Has Fresh water pour	3-10A	HCI	6		<u> </u>			_		-	14				-	T
2:50 H20 FAST FORK	3-VOA	HCI	٤								1				-	1
												-				T
								-		-	 	-	-		-	T
											-	-				T
												<u> </u>				T
	V															
	_000															
Firme:	Received by:		Date Time	Remarks:	rks:											
Date: Time: Relinquished by:	Received/by:	\supset	Date Time													
If necessary, samples submitted to Half Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	oconfracted to other accres	dited laboratorie	s. This serves as notice of this	nossibilit	y. Any s	ub-confr	acted da	ta will b	e clearh	/ notate	d on the	e anaty	dar lep	sort.		٦

Friday, June 25, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990

Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 6/16/10

Dear Cindy Hurtado:

Order No.: 1006609

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 6/17/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901

AZ license # AZ0682

ORELAP Lab # NM100001

Date: 25-Jun-10

CLIENT: . .

Western Refining Southwest, Inc.

Lab Order:

1006609

Client Sample ID: East Fork

Collection Date: 6/16/2010 3:10:00 PM

Project:

Drainage North of TK#38 6/16/10

Date Received: 6/17/2010

Lab ID:

1006609-01

Matrix: AQUEOUS

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST		~~ <u>~</u>		Analyst: HL
Benzene	3.4	1.0	μg/L	1 ·	6/23/2010 8:53:52 PM
Toluene	ND	1.0	μg/L	1	6/23/2010 8:53:52 PM
Ethylbenzene	ND	1.0	μg/L	1	6/23/2010 8:53:52 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	6/23/2010 8:53:52 PM
Xylenes, Total	ND	2.0	μg/L	1	6/23/2010 8:53:52 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Ε Estimated value
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Date: 25-Jun-10

QA/QC SUMMARY REPORT

.ient:

Western Refining Southwest, Inc.

Project: Drainage North of TK#38 6/16/10

Work Order:

1006609

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	owLimit Hig	hLimit %RPE	O RPDLìmit Qual
Method: EPA Method 8260: V	olatiles Shor								
Sample ID: 1006609-01a msd		MSD				Batch ID;	R39454	Analysis Date:	6/23/2010 9:49:10 PM
Benzene	23.61	hg/L	1.0	20	3.38	101	72.4	126 3.44	20
Toluene	21.40	µg/L	1.0	20	0	107	79.2	115 0.200	20
Sample ID: b6		MBLK				Batch ID:	R39454	Analysis Date:	6/23/2010 10:44:23 PM
Benzene	ND	. µg/L	1.0			•			
Toluene	ND	μg/L	1.0						
Ethylbenzene	ND	μg/L	1.0						,
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0					· ·	
Xylenes, Total	ND	μg/L	2.0						
Sample ID: 5ml rb		MBLK				Batch ID:	R39454	Analysis Date:	6/23/2010 9:38:36 AM
Benzene	ND	µg/L	1.0						
Toluene	ND	μg/L	1.0						
Ethylbenzene	ND	µg/L	1.0						
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0						
Xylenes, Total	ND	µg/L	2.0						
Sample ID: 100ng lcs_b		LCS				Batch ID:	R39454	Analysis Date:	6/23/2010 11:39:28 PM
Benzene	18.87	μg/L	1.0	20	0	94.4	82.4	116	
Toluene	20.66	µg/L	1.0	20	0	103	89.5	123 '	
Sample ID: 100ng ics		LCS				Batch ID:	R39454	Analysis Date:	6/23/2010 11:07:02 AM
enzene	19,41	µg/L	1.0	20	0	97.0	82.4	116	
Toluene	20.35	μg/L	1.0	20	0	102	89.5	123	
Sample ID: 1006609-01a ms		MS				Batch ID:	R39454	Analysis Date:	6/23/2010 9:21:36 PM
Вепхеле	22.81	· µg/L	1.0	20	3.38	97.2	72.4	126	
Toluene	21.36	µg/L	1.0	20	0	107	79.2	115	

Ous	lifi	ers

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client Name WESTERN REFINING SOUT			Date Received	f:	6/17/2010
Work Order Number 1006609			Received by:	TLS	Ab
Checklist completed by:		to late	Sample ID la	bels checked by:	Infitats
Matrix:	Carrier name:	<u>UPS</u>			
Shipping container/cooler in good condition?		Yes 🗹	No 🗆	Not Present	
Custody seals infact on shipping container/cool	er?	Yes 🗹	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes 🗹	No 🗌	N/A	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🔽	No 🗆		
Sample containers intact?		Yes 🗹	No 🗌		·
Sufficient sample volume for indicated test?	•	Yes 🗹	No 🗆		
All samples received within holding time?		Yes 🗹	No 🗆		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials subm	itted 🗌	Yes 🗹	No 🗌	bottles checked for pH:
Water - Preservation labels on bottle and cap m	natch?	Yes 🗌	No 🗌	N/A 🗹	· · · · · · · · · · · · · · · · · · ·
Water - pH acceptable upon receipt?		Yes 🗌	No 🗀	N/A 🗹	<2 >12 unless noted below.
Container/Temp Blank temperature?			<6° C Acceptable		Delott.
COMMENTS:			If given sufficient	time to cool.	
					telled word with the telled to the
·					
Client contacted	Date contacted:		Perso	on contacted	
Contacted by:	Regarding:				
Comments:			•		
			,		
					A CALL PROPERTY OF THE PARTY OF
		W1			
Corrective Action					

Chain-of-Custody Record	Tum-Around Time:		10.5		ľ	:		F 2	ĺ	9	. 8		. 1		
Client Western Refining	(A Standard Rush					analysts I arodator:	ı Ş					38 F		_ >	
	ài.	2-16-10	5		i >	www.hallenvironmental.com	llenvi	i i i	ental.	шos	2	R Ø	į	53 .4	
Mailing Address: # 50 02 4590	DRAINAGE NORTH OF TREE 35	£ 38	46	01 H	4901 Hawkins NE		- Albuquerque, NM 87109	ıdner	que, l	NM 8	37109				
Bloomfield, NM 87413			-	Tel. 50	505-345-3975	3975	LL.	Fax 5(505-345-4107	5-41	7.0				
							laaly	SISR		₩.					
email or Fax#: 5.65-6.33-39//	Project Manager:									<u>/</u> = = = = = = = = = = = = = = = = = = =					
QAQC Package:										'RIW					
n Other	Sampler: Bob									1				(10 -	/
□ EDD (Type)	Sample Temperature 25 S													<u>ν</u> ,	<u>د د</u> د
Date Time Matrix Sample Request ID	Container Preservative Type and # Type	HEALTHON	BTEX + MT	onteM H9T	TPH (Metho	EDB (Metho	BM 8 AADA	O,∃) enoinĄ	8081 Pestic	8260B (VO)			·	Air Bubbles	aninana w
6-16-10 3:10 Has EAST FORK	3-16A HC/	1							× _	~/	1				1
	:														
															i
					!										
	4														1
Date: Time: Relinquished by: -16-/6 3.30 (Ceffer As Lessen Date: Time: Relinquished by:	Received by: Collower Date Collower Date	Time 1/02.5	Remarks	.;;			·								
If necessary, samples submitted to Half Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	contracted to other accredited laboratories. This se	erves as notice of this po	ssibility.	Amy sut	contrac	ted date	ed lliw	learly r	otated	on the	analytic	al repo	ı.t		7

Thursday, July 08, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK #38 6/24/10

Dear Cindy Hurtado:

Order No.: 1006905

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 6/25/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901

AZ license # AZ0682

ORELAP Lab # NM100001

Date: 08-Jul-10

CLIENT:

Western Refining Southwest, Inc.

Client Sample ID: East Fork

Lab Order:

1006905

Collection Date: 6/29/2010 2:45:00 PM

Project:

Drainage North of TK #38 6/24/10

Lab ID:

1006905-01

Date Received: 6/25/2010 Matrix: AQUEOUS

Analyses	Result	PQL (Qual Units	DF	Date Analyzed			
EPA METHOD 8260: VOLATILES SI		Analyst: HL						
Benzene	1.6	1.0	μg/L	1	7/7/2010 7:27:01 AM			
Toluene	ND	1.0	μg/L	1	7/7/2010 7:27:01 AM			
Ethylbenzene	ND	1.0	μg/L	1	7/7/2010 7:27:01 AM			
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	7/7/2010 7:27:01 AM			
Xylenes, Total	ND	2.0	µg/L	. 1	7/7/2010 7:27:01 AM			
Surr: 1,2-Dichloroethane-d4	95.6	73.1-133	%REC	1	7/7/2010 7:27:01 AM			
Surg 4-Bromofluorobenzene	110	82.9-140	%REC	1	7/7/2010 7:27:01 AM			
Surr: Dibromofluoromethane	99.2	79.2-119	%REC	1	7/7/2010 7:27:01 AM			
Surr: Toluene-d8	101	84.4-118	%REC	1	7/7/2010 7:27:01 AM			

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits J
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Date: 08-Jul-10

QA/QC SUMMARY REPORT

lient:

Western Refining Southwest, Inc.

Project:

Drainage North of TK #38 6/24/10

Work Order:

1006905

Analyte	Result	Units	PQL	SPK Va	SPK_ref	%Rec L	owLimit Hig	ghLimit %	4RPD	RPDLimit	Qual
Method: EPA Method 8260: V	olatiles Shor	t List									
Sample ID: 1006905-01a msd		MSD				Batch ID:	R39668	Analysis [Date:	7/7/2010	8:22:12 AN
Benzene	21.60	μg/L	1.0	20	1.63	99.8	71.2	127	7.27	20	
Toluene	20.59	μg/L	1.0	20	0	103	90.2	127	1.67	20	
Sample ID: b6		MBLK				Batch ID:	R39668	Analysis [Date:	7/6/2010 1	0:43:45 PN
Benzene	ND	µg/L	1.0								**
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	μg/L	1,0								
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0								
Xylenes, Total	ND	μg/L	2.0								
Sample ID: 100ng lcs_b		LCS				Batch ID:	R39668	Analysis [Date:	7/6/2010 1	1:38:43 PA
Benzene	19.14	μg/L	1.0	20	0	95.7	82.4	116			
Toluene	20.73	μg/L	1.0	20	0	104	89.5	123			
Sample ID: 1006905-01a ms		MS				Batch ID:	R39868	Anaiysis [Date:	7/7/2010	7:54:38 AN
Benzene	20.08	µg/L	1.0	20	1.63	92.3	71.2	127			
Toluene	20.25	µg/L	1.0	20	٥	101	90.2	127			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Client Name WESTERN REFINING SOUT	*	Date Received	ł:	6/25/2010
Work Order Number 1006905		Received by:	TLS	~ >
Checklist completed by:	Q 25	Sample ID ta	bels checked by:	initials
Matrix: Carrier name	<u>UPS</u>			
Shipping container/cooler in good condition?	Yes 🔽	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗹	No 🗌	N/A	
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🔽	No 🗌		
Sample containers intact?	Yes 🗹	No 🗀		
Sufficient sample volume for Indicated test?	Yes 🗹	No 🗌		
All samples received within holding time?	Yes 🔽	No 🗌		Number of preserved
Water - VOA vials have zero headspace? No VOA vials sub-	nitted 🗌	Yes 🗹	Na 🗆	bottles checked for pH:
Water - Preservation labels on bottle and cap match?	Yes 🗌	No 🗀	N/A 🗹	energy agreement
Water - pH acceptable upon receipt?	Yes 🗌	No 🗌	N/A 🗹	<2 >12 unless noted below.
Container/Temp Blank temperature?	9.6°	<6* C Acceptab		Dalbar.
COMMENTS:		If given sufficient	time to cool.	•
		•		
Olivet southerful		n		
Client contacted Date contacted:		reis	on contacted	
Contacted by: Regarding:			and the second designation of the second	
Comments:				
		w 194 As and 20 100 14 20 20 20 20 20 20 20 20 20 20 20 20 20		
			····	
Corrective Action				

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	4nā	(les	ei□/	od a	(1,8,1) (1,4) (H) (H) (4,1) (H) (H) (H) (H) (H) (H) (H) (H) (H) (H	08 (OV)	Dethod EDB (Method B310 (PNA o RCRA 8 Met Anions (F,Cl 8081 Pesticia 8260B (VOA 8260B (VOA 8270 (Semi-	į.							· i		Any sub-contracted data will be clearly notated on the analytical report.
			49	٣	The state of the s	<u> </u>					BTEX + MTE								Remarks:		ossibility.
Turn-Around Time:	X Standard 🗆 Rush	Project Name:	DRAINER WITH OF TK#38			Project Manager:			Sampler: Ryh	26	ative HEALMO	13-16A HC1 -1							Date Hige	Received by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited faboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
Chain-of-Custody Record	Client: WESTEND RELIVING				Phone #: 505-634-4/6/	email or Fax#: 505-63ユーヌア//	<u>:</u>	X Standard □ Level 4 (Full Validation)	□ Other	□ EDD (Type)	Matrix Sample Request ID	6-29-10 21-15 HaO FAST FORK						j	1 3 3 20	Date: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subco

Tuesday, July 13, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 7-1-10

Dear Cindy Hurtado:

Order No.: 1007081

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 7/2/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001

Hall Environmental Analysis Laboratory, Inc.

Date: 13-Jul-10

CLIENT:

Western Refining Southwest, Inc.

Client Sample ID: East Fork

Lab Order:

1007081

Collection Date: 7/1/2010 2:30:00 PM

Project:

Drainage North of TK#38 7-1-10

Date Received: 7/2/2010

Lab ID:

1007081-01

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
PA METHOD 8260: VOLATILES SH	HORT LIST				Analyst: HL
Benzene	2.3	1.0	μg/L	1	7/8/2010 11:54:58 PM
Toluene	ND	1.0	μg/L	1	7/8/2010 11:54:58 PM
Ethylbenzene	ND	1.0	μg/L	1	7/8/2010 11:54:58 PM
Methyl tert-butyl ether (MTBE)	. ND	1.0	µg/L	. 1	7/8/2010 11:54:58 PM
Xylenes, Total	ND	2.0	µg/L	1	7/8/2010 11:54:58 PM
Surr: 1,2-Dichloroethane-d4	99.7	54.6-141	%REC	1	7/8/2010 11:54:58 PM
Surr: 4-Bromofluorobenzene	116	60.1-133	%REC	1	7/8/2010 11:54:58 PM
Surr: Dibromofluoromethane	101	78.5-130	%REC	1	7/8/2010 11:54:58 PM
Surr: Toluene-d8	111	79.5-126	%REC	1	7/8/2010 11:54:58 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- В Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Date: 13-Jul-10

QA/QC SUMMARY REPORT

.tent:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38 7-1-10

Work Order:

1007081

Analyte	Result	Units	PQL	SPK Va SPK re	f %Rec L	owLimit Hi	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 8260: V	olatiles Shor	t List						
Sample ID: 5ml rb		MBLK			Batch ID:	R39704	Analysis Date:	7/8/2010 8:57:37 AN
Benzene	ND	μg/L	1.0					
Toluene	ND	µg/L	1.0					
Ethylbenzene	ND	µg/L	-1.0					
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0					•
Xylenes, Total	ND	µg/L	2.0					
Sample ID: b5		MBLK			Batch ID:	R39704	Analysis Date:	7/8/2010 9:09:52 PM
Benzene	ND	µg/L	1.0					
Toluene	ND	μg/L	1.0					
Ethylbenzene	ND	µg/L	1.0					
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0					
Xylenes, Total	ND	µg/L	2.0					
Sample ID: 100ng lcs		LCS			Batch ID:	R39704	Analysis Date:	7/8/2010 10:20:21 AM
Benzene	21.06	μg/L	1.0	20 0	105	82.4	116	
Toluene	21.60	μg/L	1.0	20 0	108	89.5	123	
Sample ID: 100ng lcs_b		LCS			Batch ID:	R39704	Analysis Date:	7/8/2010 10:04:52 PM
Benzene	20.44	μg/L	1.0	20 0	102	82.4	1 16	
Toluene	21.56	µg/L	1.0	20 0	108	89.5	123	

ualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1

Hali Environmental Analysis Laboratory, Inc.

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT			Date Received	:	7/2/2010
Work Order Number 1007084) 21		Received by:	DAM	Isnx
Checklist completed by:	40	Date	Sample ID la	pels checked by: (MANN Y \ initials
- Digitalore		Date			
Matrix:	Carrier name	: <u>UPS</u>			
Shipping container/cooler in good condition?		Yes 🗹	No 🗆	Not Present	
Custody seals intact on shipping container/co	poler?	Yes 🔽	No 🗀	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes 🗌	No 🗀	N/A ✓	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished a	and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?	•	Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🔽	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🔲		
All samples received within holding time?		Yes 🗹	No 🗌		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials sub	omitted [Yes 🗹	No 🗌	bottles checked for pH;
Water - Preservation labels on bottle and cap	o match?	Yes 🔽	No 🗌	N/A 🗌	
Water - pH acceptable upon receipt?		Yes 🗹	No 🗌	N/A	<2 >12 unless noted
Container/Temp Blank temperature?		2.1°	<6° C Acceptable)	below.
COMMENTS:			If given sufficient	time to cool.	
	•				
					2
Client contacted	Date contacted:		Perso	n contacted	
Contacted by:	Regarding:				
Comments:					
					A TOTAL TO THE TOT
		•		***************************************	
		——————————————————————————————————————			The state of the s
Corrective Action	The second secon			White the section of	
				·	
					, , , , , , , , , , , , , , , , , , ,

Ü		of-Cr	Changof-Custody Record	Turn-Around Time:	Time:				je:	. 45	. L	,		É	¥	É	Ø		
Client	les Ten	Olient Western Refining	johi pg	X Standard	Rush								nere nere						
				Project Name:	, i				i	www.	nallen	viron	www.hallenvironmental.com	I.com		is S)	ž.	
Mailing /	Address:	#56 (Mailing Address: 井ら CR 4553	Dealnage	DEAINAGE NOTE OF TK#38	7-1-16	7	901 F	ławki	4901 Hawkins NE		nbng	- Albuquerque, NM 87109	₹ N	8710	6			
Ricon	Fie la	NW S	Riconfield, NM B7413	Project #:				Tel. 5	35-34	Tel. 505-345-3975	2	Fax	505-345-4107	45-4	107				
Phone #	505	Phone #: 505-632-41	2-4161								Ana	ysis	Regu	ŧ					
email or Fax#.	Fax#: 4	email or Fax#: <i>525-4</i> 33	33-3911	Project Manager:	ager:							(†os	8,8	Jone -	· · · · · · ·				
Standard	tard lard		☐ Level 4 (Full Validation)							- 		bO [¢]	PCE	7810			~~		
Accreditation O NELAP	ation \P	□ Other	Je	Sampler: The Onlow Washington	次 な な な な な な な な な な ま る ま る ま る ま る ま る	The Notice of the State of the			(1.81					,	(\			· (N 10	,
□ EDD (Type)	(Type)_			Sample Fen	peratures	2 50			. t p						ΏΛ			2 人)	
Date	Time	Matrix	Sample Request ID	_	Preservative Type	HEALTH CONTRACTOR	BTEX + MTE	BTEX + MTE	TPH (Metho	EDB (Metho	3 AN9) 01£8 9M 8 A939	Noins (F,Cl	8081 Pestici	4OV) 809S8	-imə2) 0758			Air Bubbles	
21-1-6	2130	Hao	EAST FOOK	3-104	Hc1	1007001								X					1
				-															
								·										1	
																			1
																			1
								·											1
														~					
0	Time: $\mathcal{S}'_{\mathcal{B}}$	Relinquished by:	ned by: I halfer	Received by (72/10 14:30	Remarks	ks:									_		
Date:	Time:	Relinquished by:	ed by:	Received by:		Date Time	,												
	Tecessary, s	samples subi	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited lathoratories	ubcontracted to other a	caredited laboratories	. This serves as notice of this possibility	onssibilih		th-cont	acted d	Illiwy eti	S C Pas	Any sub-contracted data will be cleady notated on the ar	d on the	1 6	dical report	#2 25		

COVER LETTER

Thursday, July 15, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: Drainage North of TK#38 7-8-10

Dear Cindy Hurtado:

Order No.: 1007281

Hall Environmental Analysis Laboratory, Inc. received 1 sample(s) on 7/9/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX

Hall Environmental Analysis Laboratory, Inc.

Date: 15-Jul-10

CLIENT:

Western Refining Southwest, Inc.

Lab Order:

1007281

Drainage North of TK#38 7-8-10

Project: Lab ID:

1007281-01

Client Sample ID: East Fork

Collection Date: 7/8/2010 2:15:00 PM

Date Received: 7/9/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
PA METHOD 8260: VOLATILES SH	IORT LIST	·····				Analyst: MMS
Benzene	2.0	1.0		µg/L	1	7/13/2010 5:51:44 PM
Toluene	ND	1.0		μg/L	1	7/13/2010 5:51:44 PM
Ethylbenzene	ND	1.0		μg/L	1	7/13/2010 5:51:44 PM
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	7/13/2010 5:51:44 PM
Xylenes, Total	ND	2.0		μg/L	1	7/13/2010 5:51:44 PM
Surr: 1,2-Dichloroethane-d4	88.4	54.6-141		%REC	1	7/13/2010 5:51:44 PM
Surr: 4-Bromofluorobenzene	91.1	60.1-133		%REC	1	7/13/2010 5:51:44 PM
Surr; Dibromofluoromothane	140	78.5-130	S	%REC	1	7/13/2010 5:51:44 PM
Surr: Toluene-d8	97.7	79.5-126		%REC	1	7/13/2010 5:51:44 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 13-Jul-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project:

Drainage North of TK#38 7-8-10

Work Order:

1007281

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimi!	%RPD	RPDLimit	Qual
Method: EPA Method 8280: Vo	olatiles Shor	t List									,
Sample ID: 1007281-01a msd		MSD				Batch ID:	R39786	Analys	is Date:	7/13/2010	6:48:17 PM
Benzene	14,46	μg/L	1.0	20	2.025	62,2	72.4	126	12.3	20	s
Toluene	14.76	μg/L	1.0	20	0	73.8	79.2	115	10.9	20	S
Sample ID: 1007281-01a ms		MS			•	Batch ID:	R39786	Analys	is Date:	7/13/2010	6:20:03 PM
Benzene	16.35	µg/L	1.0	20	2.025	71.6	72.4	126			S
Toluene	16.46	μg/L	1.0	20	٥	82.3	79.2	115			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

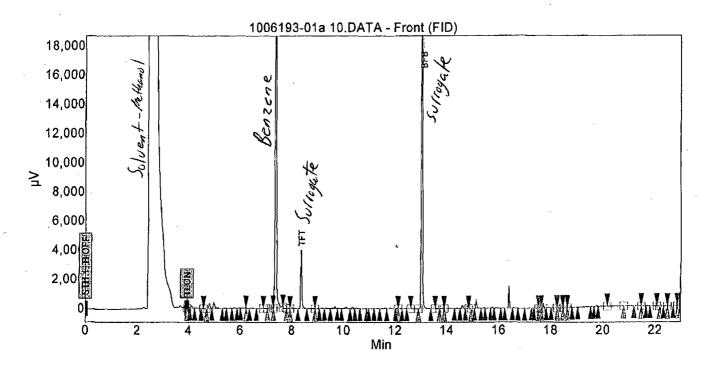
Sample Receipt Checklist

Client Name WESTERN REFINING SOUT	,		Date Receiv	ed:	7/9/2010	
Work Order Number 1007281			Received b	y: TLS	. , ,	
Checklist completed by:		Date	Sample ID	labels checked by	y: Initials	
Matrix: C	arrier name: <u>G</u>	Arevhound				
Shipping container/cooler in good condition?	Y	es 🗹	No 🗆	Not Present		
Custody seals intact on shipping container/cooler?	Y	es 🗹	No 🗌	Not Present	Not Shipped	$\dot{\Box}$
Custody seals intact on sample bottles?	Y	es 🗹	No 🗌	N/A		
Chain of custody present?	· Y	es 🗹	No □			
Chain of custody signed when relinquished and received	? Y	es 🗹	No 🗌			
Chain of custody agrees with sample labels?	Y	es 🗹	No 🗆			
Samples in proper container/bottle?	Υ	es 🗹	No 🗌			
Sample containers intact?	Υ	es 🗹	No 🗌			
Sufficient sample volume for indicated test?	Y	′es ☑	No 🗆			
All samples received within holding time?	· Y	′es 🗹	No 🗌			f preserved
Water - VOA vials have zero headspace? No Vo	DA vials submitt	ted 🗌	Yes 🗹	No 🗌	bottles ch pH:	ecked for
Water - Preservation labels on bottle and cap match?	Y	′es □	No 🗌	N/A 🔽		
Water - pH acceptable upon receipt?	Υ	′es □	No 🗌	N/A 🗹	<2 >12 uni below.	less noted
Container/Temp Blank temperature?		11.9°	<6° C Accepta		Delow.	
COMMENTS:			If given sufficie	int time to cool.	4	
						NATIONAL AND AND AND AND AND AND AND AND AND AND
,						
Client contacted Date co	ntacted:		Pe	rson contacted		Anta 11
Contacted by: Regard	ng:	····				
Comments:			······································	*	and an and making strongly and the second second second second second second second second second second second	
						- AMERICAN PARK

		·				The rates find the state of the
Corrective Action	The state of the s	_				

Chair	Chain-of-Custody Record	Turn-Around Time:			2	i i		6 6	2	# E	
Slient: Western	Refining	Standard 🗆 Rush		4 Z	and yeig i arobatory						k
		Project Name: 7-8-70		. W.	www.hallenvironmental.com	ivironm	ental.o	LIC LIC	1 1	é 2	
Mailing Address: 450	S. 450, CR 4890	#>11 do .	4901	4901 Hawkins NE		lbuquer	- Albuquerque, NM 87109	M 8710	6		
KK/oor	50mfield. N.M. 87413	Project #:	Tel.	505-345-3975	975	Fax 5	505-345-4107	4107			
Phone #: 50	32-4161	,	F 27 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ame	100 Sept. 100	eques	lest			
email or Fax#:	- 1	Project Manager:	(ylr	,				/			
JA/QC Package: ≰Stạndard	:: C Level 4 (Full Validation)		rS08) a no saĐ seiO\sa			O\$'⁺Oc	PCB's				
Accreditation	Other	Sampler: Cind	НЧТ	(1.8	(H)			/			(N
☐ EDD (Type)		Sample Temperature # 9	+ ∃(lt F		ON					70 V
1		Conjainar Draconcytical Section 1997	etm -	ooujel		(F,CI,) səlq
Date Time	Matrix Sample Request ID	Type and # Type (*(3)(0)(1)(2)(4)	- ХЭТ8	л) нчт л) ваз	8310 (F	enoinA	8081 P	s) 0728			du8 זiA
8-10 215	Hao EASTFORK	3-10A HC/									4
							<u> </u>				
										-	
					-		-				
										<u> </u>	
										<u> </u>	
				·						<u> </u>	
Pate: Time: 8-10 2309		Received by: 1 Date Time	Remarks:	·							ļ
vate: Time:	Relinquished by:	Received by Time									
lf necessar,	, samples submitted to Hall Environmental may be subco	If necessary, samples submitted to Hall Environmental may be subcontracted to other accedited laboratones. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	possibility. Any s	ub-contracted	dəta will	se clearly	notated or	the analy	fical repo	لب	

ATTACHMENT B Chromatograms


Chromatogram: 1006193-01a 10_channel1

System : Apollo Method : Test Mth User : Nick Bliss Description :x1 5ml g

6-RU

Acquired: 6/10/2010 1:27:25 PM Processed: 6/11/2010 8:01:51 AM Printed: 6/11/2010 8:01:53 AM

Printed: 6/11/2010 8:01:53 AM
Calibration: Apollo Headspace\Cal Curve\052310 Apollo GRO

Peak Results:

Index	Name	Time (Min)	Quantity (gg)	Regression model
19	TFT	8.37	0.000	
39	BFB	13.04	93.004	Linear
Total			93,122	

Group Results:

Index	Name	Area [µV.Min]	Quantily [ug]
1	gro c6-c14	2182.543	0,117
2	<c6< td=""><td>85.431</td><td>0.005</td></c6<>	85.431	0.005
3	c6-c7	1791.986	0.096
4	c7-c8	255.641	0.002
5	c8-c9	52.615	0.003
6	c9-c10	1418.846	93.005
7	c10-c11	65,968	0.004
8	c11-c12	71.232	0.004
9	c12-c14	34.881	0.002
10	c14 &<	25.381	0.001
Total		5984.524	93.239

8260B Report

Sample Name:

1006193-01a

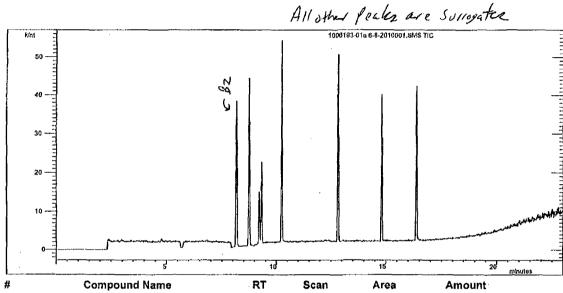
Operator Name:

Hongxuan Lu

Instrument ID:

Neptune_1

Inst. Method:


C:\VarianWS\meth Inj. Notes: ods\8260

r1 5ml East Fork

Acquisition Date: 6/8/2010 2:57:30 PM

042810n.mth

Calculation Date: 6/8/2010 3:20:29 PΜ

#	Compound Name	- RT	Scan	Area	Amount
28	Benzene, fluoro-	8.726	706	53744	50.000
49	Benzene-d5-, chloro-	12.813	1066	32826	50.000
72	1,4-Dichlorobenzene-d4	16.364	1379	10416	50.000
1	Dichlorodifluoromethane	2.461	153		N/A
2	Chloromethane	2.836	186	60	N/A
3	Vinyl chloride	3.010	202		N/A
4	Vinyl Acetate	3.468	242	1420	6.200
5	Chloroethane	3.570	251		N/A
6	Bromomethane	3.661	259	220	N/A
7	Trichlorofluoromethane	3.801	271		N/A
8	1,1-Dichloroethene	4.648	346		N/A
9	Carbon disulfide	4.849	364	79	N/A
10	Methyl tert-butyl ether (MTBE)	5.004	377		N/A
11	Acetone	5.136	389	4270	7.530
12	Iodomethane	5.275	401		N/A
13	Isopropyl ether	5.373	410		N/A
14	ETBE	5.769	445		N/A
15	trans-1,2-DCE	6.205	483		- N/A
16	t-butanol	6.311	493		N/A
17	1,1-Dichloroethane	6.607	519		N/A
18	2,2-Dichtoropropane	6.619	520		N/A
19	Methylene Chloride	6.822	538	5575	N/A

#	Compound Name	RT	Scan	Area	Amount	
20	2-Butanone	6.912	546	1867	2.506	
21	TAME	7.089	562		N/A	
22	1,1-Dichloropropene	7.343	584		N/A	
23	1,1,1-Trichloroethane	7.340	583		N/A	
24	Carbon Tetrachloride	7.551	602		N/A	
25	cls-1,2-DCE	8.147	655		∠ N/A	76
26	Benzene	8.149	655	39629	48.208	10
27	Chloroform	8.601	695		N/A	
29	Bromochloromethane	8.972	728		N/A	
30	Trichloroethene (TCE)	9.005	731		N/A	
31	Dibromofluoromethane	9.201	748	42807	45.629	
32	1,2-Dichloroethane-d4	9.303	757	80603	42,492	
33	1,2-Dichloroethane (EDC)	9.402	765		N/A	
34	4-Methyl-2-pentanone	9.538	777		N/A	
35	isobutyl alcohol	9.550	778	•	N/A	
36	1,2-Dichtoropropane	9.563	780		N/A	
37	Toluene-d8	10.228	838	46494	50.907	
38	Toluene	10.300	844	427	N/A	
39	Tetrachloroethene (PCE)	10.664	877		N/A	
40	2-Hexanone	10.723	882		N/A	
41	cis-1,3-dichloropropene	10.846	893		N/A	
42	Bromodichloromethane	10.953	902		N/A	
43	Dibromomathane	11.083	914 🔻		N/A	
44	1,3-Dichloropropane	11.863	982		N/A	
45	trans-1,3-dichloropropene	11.911	987		N/A	
46	Ethylbenzene	12.054	999	149	N/A	
47	mp-Xylenes	12.277	1019	620	0.288	
48	1,1,2-Trichloroethane	12.638	1051		N/A	
50	Chlorobenzene	12.849	1069		N/A	
51	1,2-Dibromoethane (EDB)	12.990	1082		N/A	
52	o-Xylene	13.007	1083		N/A	
53	Isopropylbenzene	13.135	1094		N/A	
54	1,1,1,2-Tetrachloroethane	13.210	1101		N/A	
55	Dibromochloromethane	13.319	1111		N/A	
56	Styrene	13.624	1138		N/A	
57	n-Propylbenzene	13.753	1149		N/A	
58	1,3,5-Trimethylbenzene	14.242	1192		N/A	
59	tert-Butylbenzene	14.402	1207		N/A	
60	sec-Butylbanzene	14.669	1230		N/A	
61	2-Chlorotoluene	14.666	1230		N/A	
62	4-Bromofluorobenzene	14.801	1242	43696	49.646	
63	4-Chlorotoluene	14.829	1244		N/A	
64	1,2,4-Trimethylbenzene	14.841	1245		N/A	
65	Bromobenzene	14.928	1253		N/A	
66	Toluene, p-isopropyl	14.943	1254	147	N/A	
67	Bromoform	15.560	1309		· N/A	
68	n-Butylbenzene	15.580	1310		N/A	
69	1,2,3-Trichloropropane	15.695	1320		N/A	
70	1,3-Dichlorobenzene	16.114	1357		N/A	
71	1,1,2,2-Tetrachloroethane	16.111	1357		N/A	
73	1,4-Dichlorobenzene	16.400	1382		N/A	

#	Compound Name	RT	Scan	Area	Amount
74	1,2-Dichlorobenzene	17.029	1438		N/A
75	Hexachlorobutadiene	18.426	1561		N/A
76	1,2-Dibromo-3-chloropropane	19.005	1612		N/A
77	1,2,4-Trichlorobenzene	19.306	1638		N/A
78	1,2,3-Trichlorobenzene	20.261	1722		N/A
. 79	Naphthalene	20.306	1726		N/A
80	2-Methylnaphthalene	21.823	. 1858		N/A
81	1-Methylnaphthalene	22.255	1895		N/A

6/8/2010 3:20 PM: Processed as Analysis sample using method: 'C:\VarianWS\methods\8260 042810n.mth'

From:

Schmaltz, Randy [Randy.Schmaltz@wnr.com]

Sent:

Wednesday, June 09, 2010 10:15 AM

To:

Monzeglio, Hope, NMENV

Cc:

Cobrain, Dave, NMENV; Chavez, Carl J, EMNRD; Robinson, Kelly

Subject:

RE: Newly surfaced groundwater

Hope,

My answers are below.

Thanks

From: Monzeglio, Hope, NMENV [mailto:hope.monzeglio@state.nm.us]

Sent: Thursday, June 03, 2010 1:46 PM

To: Schmaltz, Randy

Cc: Cobrain, Dave, NMENV; Chavez, Carl J, EMNRD; Robinson, Kelly

Subject: Newly surfaced groundwater

Randy

A few questions concerning the new area where groundwater has surfaced:

- 1) Just to confirm, the Hammond Ditch is filled with water on April 15 of each year? That is correct April 15 of each year.
- 2) When does the water in the Hammond Ditch stop running? It is late October of each year I don't have an exact date.
- 3) Is the French drain located at the east end of the Hammond Ditch or is there some other system that could contribute to groundwater flow in that area? The French Drain that was installed by Giant stops just west of the pipeline right-of-way. The Hammond Ditch design did include a relief system to prevent the build up of water on any one side, or under the ditch that would exert additional pressure on the concrete causing damage. This relief system is basically a perforated pipe in a gravel bed that prevents the build up of water on any one side, or under of the concrete ditch.
- 4) When you sample next (next week) in addition to BTEX, also analyze for GRO and DRO and obtain the chromatograms (do you have chromatograms for the most recent analytical data?). We will analyze for BTEX, GRO, and DRO. We do not have chromatograms yet, but we have asked the lab to provide with the next samples.
- 5) Collect depth to water measurements from monitoring wells MW-50, MW-51, and MW-1. Compare MW-1 water levels to past sampling events and compare the MW-50 and MW-51 water level measurements to the data collected when these wells were installed. This may show an increase in water elevation in this area which may be linked to a leaking Hammond Ditch? We will collect the depth to water measurements requested.
- 6) Approximately how far is this location from East Outfall #1? This location is approximately 300 feet east of East Outfall #1.

I realize you are out of town until Monday and we may not hear from you until next week. Let me know if you have any questions.

Thanks Hope

Hope Monzeglio

Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505

Phone: (505) 476-6045; Main No.: (505)-476-6000

Fax: (505)-476-6060

hope.monzeglio@state.nm.us

Websites:

New Mexico Environment Department Hazardous Waste Bureau

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

0

From:

Monzeglio, Hope, NMENV

Sent:

Thursday, June 03, 2010 1:46 PM

To:

Schmaltz, Randy

Cc:

Cobrain, Dave, NMENV; Chavez, Carl J, EMNRD; Robinson, Kelly

Subject:

Newly surfaced groundwater

Randy

A few questions concerning the new area where groundwater has surfaced:

- 1) Just to confirm, the Hammond Ditch is filled with water on April 15 of each year?
- 2) When does the water in the Hammond Ditch stop running?
- 3) Is the French drain located at the east end of the Hammond Ditch or is there some other system that could contribute to groundwater flow in that area?
- 4) When you sample next (next week) in addition to BTEX, also analyze for GRO and DRO and obtain the chromatograms (do you have chromatograms for the most recent analytical data?).
- 5) Collect depth to water measurements from monitoring wells MW-50, MW-51, and MW-1. Compare MW-1 water levels to past sampling events and compare the MW-50 and MW-51 water level measurements to the data collected when these wells were installed. This may show an increase in water elevation in this area which may be linked to a leaking Hammond Ditch?
- 6) Approximately how far is this location from East Outfall #1?

I realize you are out of town until Monday and we may not hear from you until next week. Let me know if you have any questions.

Thanks Hope

Hope Monzeglio Environmental Specialist New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, BLDG 1 Santa Fe NM 87505

Phone: (505) 476-6045; Main No.: (505)-476-6000

Fax: (505)-476-6060

hope.monzeglio@state.nm.us

Websites:

New Mexico Environment Department

Hazardous Waste Bureau

From:

Schmaltz, Randy [Randy.Schmaltz@wnr.com]

Sent:

Wednesday, June 02, 2010 9:53 AM

To:

Chavez, Carl J, EMNRD; Monzeglio, Hope, NMENV

Cc:

Robinson, Kelly; Hurtado, Cindy

Subject: Attachments: RE: Groundwater Discovery Pond Location Map.pdf

Carl,

The ponds you are thinking about and describing are either the "evaporation ponds" located south of the refinery or the "aeration Lagoons" which are located just west of the tank farm. The raw water ponds only store river water prior to filtering and plant use. I have enclosed a map showing the three different pond locations.

Thanks

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Wednesday, June 02, 2010 8:35 AM **To:** Schmaltz, Randy; Monzeglio, Hope, NMENV

Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** RE: Groundwater Discovery

Randy:

As I recall, they also store UIC non-hazardous non-exempt oilfield waste fluids before disposal when the refinery was in operation and the disposal well was used, but I think you're saying that the fluids are currently not what they used to be when the refinery was in full operation. Thanks.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/ index.htm (Pollution Prevention Guidance is under "Publications")

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com]

Sent: Wednesday, June 02, 2010 8:30 AM

To: Chavez, Carl J, EMNRD; Monzeglio, Hope, NMENV

Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** RE: Groundwater Discovery

Carl,

The raw water ponds are the earthen ponds located on the north east portion of the refinery. These earthen pond receive the river water, their basic use is for storage and allow for settling to take place prior to filtering. I'm not sure what could be done on the Hammond Ditch irrigation canal.

Thanks Randy From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Wednesday, June 02, 2010 5:55 AM **To:** Schmaltz, Randy; Monzeglio, Hope, NMENV

Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** RE: Groundwater Discovery

Randy:

Seems like there were some secondary containment issues with the raw water ponds during OCD's last inspection. I'll review the OCD's last inspection of the ponds and LDSs. You indicated there may be recharge occurring from a damaged portion of the Hammond Drain? Is this repairable? Thanks.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/index.htm (Pollution Prevention Guidance is under "Publications")

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com]

Sent: Tuesday, June 01, 2010 5:28 PM

To: Chavez, Carl J, EMNRD; Monzeglio, Hope, NMENV

Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** RE: Groundwater Discovery

Carl,

The area is a new location. I don't know why it is occurring but it only recently appeared. The catchment system will include a receiving vessel (tank, liner, etc) that will collect all the groundwater. This collected groundwater will be pumped back into the refinery's wastewater system (API separator) for treatment.

Western has sampled this groundwater downstream of the current location and it is "non-detect". The groundwater does not reach the water. Western will monitor this to insure it is contained.

I will keep you posted on Western's progress.

Thanks Randy

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Tuesday, June 01, 2010 2:48 PM

To: Schmaltz, Randy; Monzeglio, Hope, NMENV

Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** RE: Groundwater Discovery

Randy:

Good afternoon. Some questions based on the discovery.

Is this a former or a new seep area or location? If so, do you know why it occurred or is occurring now? A description of system to "catch" the groundwater would be appreciated? Also, how will the waste water system treat the contaminated ground water?

Has Western evaluated the potential discharge location(s) along the river and conducted any analytical surface water sampling along the river to assess any discharge of ground water or via overland flow into the river?

Please clarify the above and/or any followup plans based on the above to assess impacts to the river. Thank you.

Carl J. Chavez. CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/index.htm (Pollution Prevention Guidance is under "Publications")

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com]

Sent: Tuesday, June 01, 2010 2:33 PM

To: Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD

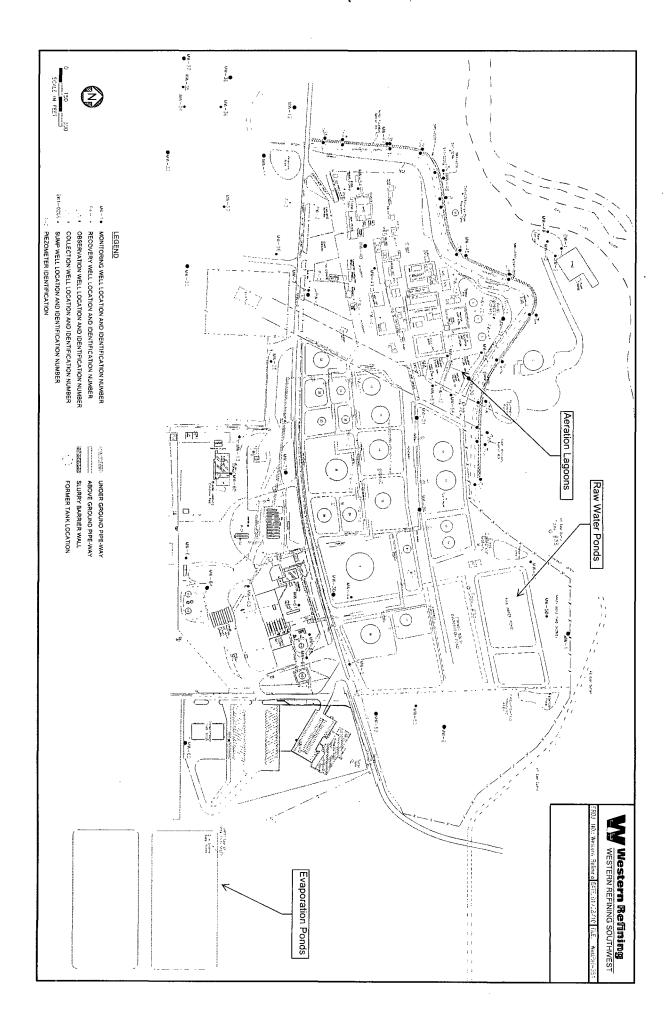
Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** Groundwater Discovery

Hope & Carl,

On Wednesday, May 19, 2010 during the bi-monthly visual inspections of area north of the refinery, Bloomfield found a new area where groundwater had surfaced. This new area is located north of the raw water ponds and is shown on the attached property map. A sample was collected on that day and analyzed for BTEX and MTBE using method 8260. Results were received on May 26, 2010 showing benzene at 110 ug/l. Bloomfield collected confirmation split samples on May 26, 2010, and received results from Envirotech Analytical Laboratory on June 1, 2010 showing benzene at 167 ug/l. Results from Hall Environmental Analysis Laboratory are still pending.

Bloomfield is currently installing a system to catch this groundwater, which will be transported to the refinery's wastewater system. Bloomfield will collect weekly samples of this captured water and will analyze for BTEX and MTBE. Bloomfield will provide a monthly summary on sample results and progress.

Randy Schmaltz Environmental Manager


Western Refining Southwest, Inc. Bloomfield Refinery #50 County Road 4990 Bloomfield, New Mexico 87413 (505) 632-4171 (505) 320-6989

email: randy.schmaltz@wnr.com

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

From:

Schmaltz, Randy [Randy.Schmaltz@wnr.com]

Sent:

Tuesday, June 01, 2010 5:28 PM

To:

Chavez, Carl J, EMNRD; Monzeglio, Hope, NMENV

Cc:

Robinson, Kelly; Hurtado, Cindy

Subject:

RE: Groundwater Discovery

Carl,

The area is a new location. I don't know why it is occurring but it only recently appeared. The catchment system will include a receiving vessel (tank, liner, etc) that will collect all the groundwater. This collected groundwater will be pumped back into the refinery's wastewater system (API separator) for treatment.

Western has sampled this groundwater downstream of the current location and it is "non-detect". The groundwater does not reach the water. Western will monitor this to insure it is contained.

I will keep you posted on Western's progress.

Thanks Randy

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Tuesday, June 01, 2010 2:48 PM

To: Schmaltz, Randy; Monzeglio, Hope, NMENV

Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** RE: Groundwater Discovery

Randy:

Good afternoon. Some questions based on the discovery.

Is this a former or a new seep area or location? If so, do you know why it occurred or is occurring now?

A description of system to "catch" the groundwater would be appreciated? Also, how will the waste water system treat the contaminated ground water?

Has Western evaluated the potential discharge location(s) along the river and conducted any analytical surface water sampling along the river to assess any discharge of ground water or via overland flow into the river?

Please clarify the above and/or any followup plans based on the above to assess impacts to the river. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/ index.htm (Pollution Prevention Guidance is under "Publications")

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com]

Sent: Tuesday, June 01, 2010 2:33 PM

To: Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD

Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** Groundwater Discovery

Hope & Carl,

On Wednesday, May 19, 2010 during the bi-monthly visual inspections of area north of the refinery, Bloomfield found a new area where groundwater had surfaced. This new area is located north of the raw water ponds and is shown on the attached property map. A sample was collected on that day and analyzed for BTEX and MTBE using method 8260. Results were received on May 26, 2010 showing benzene at 110 ug/l. Bloomfield collected confirmation split samples on May 26, 2010, and received results from Envirotech Analytical Laboratory on June 1, 2010 showing benzene at 167 ug/l. Results from Hall Environmental Analysis Laboratory are still pending.

Bloomfield is currently installing a system to catch this groundwater, which will be transported to the refinery's wastewater system. Bloomfield will collect weekly samples of this captured water and will analyze for BTEX and MTBE. Bloomfield will provide a monthly summary on sample results and progress.

Randy Schmaltz Environmental Manager

Western Refining Southwest, Inc. Bloomfield Refinery #50 County Road 4990 Bloomfield, New Mexico 87413 (505) 632-4171 (505) 320-6989 email: randy.schmaltz@wnr.com

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

From:

Chavez, Carl J, EMNRD

Sent:

Tuesday, June 01, 2010 2:48 PM

To:

'Schmaltz, Randy'; Monzeglio, Hope, NMENV

Cc: Subject: Robinson, Kelly; Hurtado, Cindy RE: Groundwater Discovery

Randy:

Good afternoon. Some questions based on the discovery.

Is this a former or a new seep area or location? If so, do you know why it occurred or is occurring now? A description of system to "catch" the groundwater would be appreciated? Also, how will the waste water system treat the contaminated ground water?

Has Western evaluated the potential discharge location(s) along the river and conducted any analytical surface water sampling along the river to assess any discharge of ground water or via overland flow into the river?

Please clarify the above and/or any followup plans based on the above to assess impacts to the river. Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/index.htm (Pollution Prevention Guidance is under "Publications")

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com]

Sent: Tuesday, June 01, 2010 2:33 PM

To: Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD

Cc: Robinson, Kelly; Hurtado, Cindy **Subject:** Groundwater Discovery

Hope & Carl,

On Wednesday, May 19, 2010 during the bi-monthly visual inspections of area north of the refinery, Bloomfield found a new area where groundwater had surfaced. This new area is located north of the raw water ponds and is shown on the attached property map. A sample was collected on that day and analyzed for BTEX and MTBE using method 8260. Results were received on May 26, 2010 showing benzene at 110 ug/l. Bloomfield collected confirmation split samples on May 26, 2010, and received results from Envirotech Analytical Laboratory on June 1, 2010 showing benzene at 167 ug/l. Results from Hall Environmental Analysis Laboratory are still pending.

Bloomfield is currently installing a system to catch this groundwater, which will be transported to the refinery's wastewater system. Bloomfield will collect weekly samples of this captured water and will analyze for BTEX and MTBE. Bloomfield will provide a monthly summary on sample results and progress.

Randy Schmaltz Environmental Manager

Western Refining Southwest, Inc. Bloomfield Refinery #50 County Road 4990 Bloomfield, New Mexico 87413 (505) 632-4171 (505) 320-6989

email: randy.schmaltz@wnr.com

From:

Schmaltz, Randy [Randy.Schmaltz@wnr.com]

Sent:

Tuesday, June 01, 2010 2:33 PM

To:

Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD

Cc:

Robinson, Kelly; Hurtado, Cindy

Subject:

Groundwater Discovery

Attachments:

Groundwater to surface location map.pdf; Groundwater to surface - Envirotech.pdf;

Groundwater to surface - Hall.pdf

Hope & Carl,

On Wednesday, May 19, 2010 during the bi-monthly visual inspections of area north of the refinery, Bloomfield found a new area where groundwater had surfaced. This new area is located north of the raw water ponds and is shown on the attached property map. A sample was collected on that day and analyzed for BTEX and MTBE using method 8260. Results were received on May 26, 2010 showing benzene at 110 ug/l. Bloomfield collected confirmation split samples on May 26, 2010, and received results from Envirotech Analytical Laboratory on June 1, 2010 showing benzene at 167 ug/l. Results from Hall Environmental Analysis Laboratory are still pending.

Bloomfield is currently installing a system to catch this groundwater, which will be transported to the refinery's wastewater system. Bloomfield will collect weekly samples of this captured water and will analyze for BTEX and MTBE. Bloomfield will provide a monthly summary on sample results and progress.

Randy Schmaltz Environmental Manager

Western Refining Southwest, Inc. Bloomfield Refinery #50 County Road 4990 Bloomfield, New Mexico 87413 (505) 632-4171 (505) 320-6989

email: randy.schmaltz@wnr.com

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	Western Refining	Project #:	96012-0009
Sample ID:	East Fork	Date Reported:	05-31-10
Chain of Custody:	9482	Date Sampled:	05-26-10
Laboratory Number:	54455	Date Received:	05-26-10
Sample Matrix:	Aqueous	Date Analyzed:	05-27-10
Preservative:	Cool	Analysis Requested:	BTEX
Condition:	Intact		

Parameter	Concentration (ug/L)	Dilution Factor	Det. Limit (ug/L)
Benzene	,167	1	0.2
Toluene	ND	1	0.2
Ethylbenzene	ND	1	0.2
p,m-Xylene	ND	· 1	0.2
o-Xylene	ND	1	0.1

Total BTEX 167

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	fluorobenzene	113 %
	1,4-difluorobenzene	101 %
	4-bromochlorobenzene	122 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using

Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 lab@envirotech-inc.com envirotech-inc.com

Comments:

Drainage North of TK #38

Analyst

COVER LETTER

Tuesday, May 25, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: 5-19-10 Drainage North of TK#38

Dear Cindy Hurtado:

Order No.: 1005560

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 5/20/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

(Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901

AZ license # AZ0682

ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX

Hall Environmental Analysis Laboratory, Inc.

Date: 25-May-10

CLIENT:

Western Refining Southwest, Inc.

Project:

5-19-10 Drainage North of TK#38

Lab Order:

1005560

Lab ID: Client Sample ID: West Fork

1005560-01

Collection Date: 5/19/2010 2:15:00 PM

Matrix: AQUEOUS

Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST		nga masasan shipun tiprorismo — Ingasan		Analyst: HL
Benzene	ND	1.0	µg/L	1	5/20/2010 5:23:50 PM
Toluene	ND	1.0	μg/L	1	5/20/2010 5:23:50 PM
Ethylbenzene	ND	1,0	μ g/L	1	5/20/2010 5:23:50 PM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L `	1	5/20/2010 5:23:50 PM
Xylenes, Total	ND	2.0	μg/L	1	5/20/2010 5:23:50 PM

Lab ID:

1005560-02

Collection Date: 5/19/2010 2:25:00 PM

Matrix: AQUEOUS

Client Sample ID: East Fork PQL Qual Units Result DF Date Analyzed Analyses Analyst: HL **EPA METHOD 8260: VOLATILES SHORT LIST** Benzene 110 5.0 µg/L 5 5/21/2010 6:03:59 PM Toluene ND 1.0 μg/L 1 5/20/2010 6:52:11 PM Ethylbenzene ND 1.0 μg/L 1 5/20/2010 6:52:11 PM ND 5/20/2010 6:52:11 PM Methyl tert-butyl ether (MTBE) 1.0 μg/L 1 Xylenes, Total ND 2.0 µg/L 5/20/2010 6:52:11 PM

Quali	fiers:
-------	--------

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
 - ND Not Detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits page 1 of 1

Date: 25-May-10

QA/QC SUMMARY REPORT

Client:

Western Refining Southwest, Inc.

Project: 5-19-10 Drainage North of TK#38

Work Order:

1005560

Analyte	Result	Units	PQL	SPK Va S	PK ref	%Rec L	owLimit Hig	gh L imit	%RPD	RPDLimit	Qual
Method: EPA Method 8260: Vo	olatiles Shor	t List						 .	•		
Sample ID: 1005560-01a msd		MSD				Batch ID:	R38830	Analysis	s Date:	5/20/2010	6:22:54 PN
Benzene	20.31	μ g/L	1.0	20	0	102	72.4	126	0.138	20	
Toluene	21.54	μg/L	1.0	20	0	108	79.2	115	1.72	20	
Sample ID: 5ml rb		MBLK				Batch ID:	R38830	Analysis	s Date:	5/20/2010	8:45:56 AN
Benzene	ND	μg/L	1.0								
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 5ml rb		MBLK				Batch ID:	R38844	Analysis	s Date:	5/21/2010	8:57:02 AM
Benzene	ND	µg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 5ml rb		MBLK				Batch ID:	R38830	Analysis	s Date:	5/20/2010	8:45:56 AN
Benzene	ND	μ g/L	1.0								
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	μg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 100ng lcs		LCS				Batch ID:	R38830	Analysis	s Date:	5/20/2010 1	0:54:22 AN
Benzene	20.06	µg/L	1.0	20	0	100	82.4	116			
Toluene	22.33	μg/L	1.0	20	0.	112	89.5	123			
Sample ID: 100ng ics		LCS				Batch ID:	R38844	Analysis	s Date:	5/21/2010 1	0:19:50 AM
Benzene	18.82	μ g/L	1.0	20	0	94.1	82.4	116			
Toluene	21.74	μ g/L	1.0	20	0	109	89,5	123			
Sample ID: 100ng ics		LCS				Batch ID:	R38830	Analysis	s Date:	5/20/2010 1	0;54:22 AN
Benzene	20.06	. µg/L	1.0	20	0	100	82.4	116			
Toluene	22.33	μg/L	1.0	20	0	112	89.5	123			
Sample ID: 1005560-01a ms		MS			-	Batch ID:	R38830	Analysis	Date:	5/20/2010	5:53:38 PM
Benzene	20.28	μg/L	1.0	20	o	101	72.4	126			
Toluene	21.91	µg/L	1.0	20	0	110	79.2	115			

Oua	lifi	ers

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

Sample Receipt Checklist

Client Name WESTERN REFINING SOUT		Date Receive	d:	5/20/2010	
Work Order Number 1005560	i i	Received by		<i>(D</i>)	
Checklist completed by: Signature	5/20/ Date	// Sample ID II	abels checked by	Initials	÷
Matrix: Carrier nam	e: <u>UPS</u>				
Shipping container/cooler in good condition?	Yes 🗹	No 🗀	Not Present		
Custody seals intact on shipping container/cooler?	Yes 🔽	No 🗌	Not Present	Not Shipped	
Custody seals intact on sample bottles?	Yes 🗌	No 🗀	N/A 🖫	2	
Chain of custody present?	Yes 🗹	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗀			
Chain of custody agrees with sample labels?	Yes 🔽	No 🗌			
Samples in proper container/bottle?	Yes 🗹	No 🗌	•		
Sample containers intact?	Yes 🗹	No 🗆			
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
All samples received within holding time?	Yes 🗹	No 🗌		Number of	
Water - VOA vials have zero headspace? No VOA vials su	ibmitted	Yes 🗹	No 🗀	bottles che pH:	cked for
Water - Preservation labels on bottle and cap match?	Yes 🗆	No 🗀	N/A 🗹	·	
Water - pH acceptable upon receipt?	Yes	No 🗆	N/A 🗹	<2 >12 unle	iss noted
Container/Temp Blank temperature?	4.0°	<6° C Acceptab	le	below.	
COMMENTS:		If given sufficien	t time to cool.		
			nome tables when the color of t		
Client contacted Date contacted:		Pers	on contacted		to approximate the Art Angle Ann
Contacted by: Regarding:			- Million of the control of the cont		
2 company					
Comments:		The state of the s	and an order of the state of th		
Comments:					
Comments:					
Comments:					
Corrective Action					

	ANALYSIS ABODATOBY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	(\f\ \	as or	(G)	H9T -4 (1.81) (1.40) (1.40) (HA) (808 \) (A	AO' AO' AO' AO' AO' AO' AO' AO' AO' AO'	BTEX + MTE BTEX + MTE TPH (Method TPH (Method B310 (PNA d B310 (PNA d B081 Pesticl R081 Pesticl B081 Pesticl ANIONS (Semi-	×	×						Remarks:		to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	X Standard	 	DRAINAGE NOTH OF TX# 38			Project Manager:) \$,	Sampler: Cily & Bab Onice Set of the Sample Set	emperature: 🖰 🔿	Container Preservative + HEAL-No. X Type and # Type	3-voa HC1 1	3-10A HCI 2	,			1		Received by, Date Time Re 1013	Received by Date Time	
Chain-of-Custody Record	Client Western Refining		Mailing Address: 井50 CR 4990	2	32-	-39//	ige:	X Standard □ Level 4 (Full Validation)	Accreditation □ NELAP □ Other	□ EDD (Type)	Matrix Sample Request ID	5-19-10 2:15 Has WEST FORK	5-11-10 2:25 H20 EAST FORK						Date: Time: Retinguished by: 5-19-10 3:00 (Coffeed A. J. J. J. J. J. J. J. J. J. J. J. J. J.	Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted

77 1 1

From:

Schmaltz, Randy [Randy.Schmaltz@wnr.com]

Sent:

Monday, January 25, 2010 2:09 PM

To: Subject: Chavez, Carl J, EMNRD RE: Tank #33 Discharge Water

Carl,

This all goes as far back as 2003 when hydrocarbons were first discovered in the #1 east outfall. This discovery resulted in Western (f.k.a. Giant) installing the #1 East Outfall Collection system.

Briefly, the #1 East Outfall water is collected in Tank #38. This collected water/hydrocarbon is pumped to a separator tank (tank #33) that is set up for gravitational separation of the mixed hydrocarbon effluent. Recovered oil is routed to a horizontal vessel (V-610). The underflow, clarified water, is sampled and routed to the refinery's raw water ponds.

Western is still investigating the recent change in the recovered water.

Thanks Randy

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Friday, January 22, 2010 1:55 PM

To: Schmaltz, Randy

Subject: RE: Tank #33 Discharge Water

Thanks Randy. I received your phone call, but have been unable to contact you yet.

Was there a discharge to the environment that may require a C-141 notification to the OCD? Could you explain what the fluid and related process is for Tk 33? What caused contamination to get into Tk 33 or exceed regulatory limits? Thanks.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3490 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/ index.htm (Pollution Prevention Guidance is under "Publications")

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com]

Sent: Friday, January 22, 2010 11:49 AM

To: Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD

Subject: Tank #33 Discharge Water

This email is a follow up to the phone calls made on 1/14/2010 to NMED and OCD concerning the Tank # 33 discharge.

On January 14, 2010 Western received analytical results showing the discharge water from Tank #33 to be out of compliance. Tank #33 discharge water was immediately rerouted to the frontend of the API Separator and through the wastewater system. This is accomplished by using a vacuum truck to pump out Tank #33 as it fills. Key Energy, a local trucking company has been employed to be on-site continuously to transfer the Tank #33 water to the API Separator.

Randy Schmaltz Western Refining Southwest, Inc. Bloomfield Refinery Main (505) 632-8013 Direct (505) 632-4171 email: randy.schmaltz@wnr.com

This inbound email has been scanned for malicious software and transmitted safely to you using Webroot Email Security.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

Confidentiality Notice: This e-mail,including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review,use,disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message.

This email has been scanned using Webroot Email Security.

SOIL AND GROUNDWATER INVESTIGATION REPORT

XTO ENERGY, INC.

DAVIS GC F#1E PRODUCTION WELL SITE BLOOMFIELD, NEW MEXICO

OCD # TBD

Prepared for:

382 CR-3100 Aztec, New Mexico 87410

Prepared by:

TETRATECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 114-690126

September 4, 2009

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	I.I Site Background	1
2.0	soil and groundwater investigation	1
	2.1 Methodology and Results	1
3.0	excavation expansion and additional soil removal	3
	3.1 Methodology and Results	3
2.0	SUMMARY AND CONCLUSIONS	4
FIGL	JRES	
١.	Site Location Map	
2.	Site Layout Map with Pothole Locations and Laboratory Analytical Results	
3.	Site Excavation Detail Map with Laboratory Analytical Results	

TABLES

- 1. Soil Analytical Results
- 2. Groundwater Analytical Results

APPENDICES

Appendix A. Soil and Groundwater Laboratory Analytical Reports

Appendix B. Waste Manifest Forms

SOIL AND GROUNDWATER INVESTIGATION REPORT DAVIS GAS COM F#IE, SAN JUAN COUNTY, NEW MEXICO SEPTEMBER 2009

1.0 INTRODUCTION

This report discusses the soil and groundwater investigation conducted by Tetra Tech, Inc. (Tetra Tech) from August II through 19, 2009 at the XTO Energy, Inc. (XTO) Davis Gas Com F#IE site located in Bloomfield, New Mexico (Site). The Site is located in Unit H of Section 27 within Township 29N and Range IIW, of San Juan County, New Mexico (Figure I). The site layout is illustrated on Figure 2.

1.1 Site Background

On July 9, 2009, XTO's lease operator discovered a small hole in the 90 barrel open-top beneath grade separator tank. The water from the tank was immediately removed, and XTO's construction supervisor was contacted to replace the tank. XTO construction crews discovered impacted soil beneath its former location and excavated approximately 200 cubic yards of sand and river cobble. The excavation stopped at 18' feet below ground surface (bgs) in sandstone bedrock due to sidewall stability concerns. A thin layer of groundwater began seeping in at that depth along the top of the sandstone bedrock. Within the excavation pit, the deepest 2.5' of cobbles (approximately 16-18' bgs) were gray in color, likely representing the groundwater smear zone where soil may have been impacted by a historic release. Potential up-gradient sources are also shown on Figure I and include the adjacent San Juan Refinery owned and operated by Western Refining Company and the Jacque #2 gas production well, owned and operated by Holcomb Oil. The subsurface investigation discussed in this report was initiated to better characterize lithology, delineate vertical and lateral extent of impacted soil, and investigate possible up-gradient concerns.

The location and dimensions of the excavation pit advanced during July 2009 and total petroleum hydrocarbon (TPH) results from the associated composite sampling are shown on Figures 2 and 3. Review of those results by the New Mexico Oil Conservation Division (NMOCD), prompted XTO to initiate this investigation.

2.0 SOIL AND GROUNDWATER INVESTIGATION

2.1 Methodology and Results

Tetra Tech. Inc.	. 1	September 2009

Beginning on August 11, 2009, Tetra Tech supervised advancement of six potholes at the site by Core Oil Field Services of Waterflow, New Mexico using excavator and backhoe equipment. Figure 2 illustrates the location of the potholes. Three holes were advanced up-gradient of the initial excavation (B1, B2, and B3). Two holes were advanced on the east side of the existing excavation (B4 and B5) and one hole on the south side to plan for additional soil removal (B6). A pothole was not advanced on the west side, due to the presence of four high pressure gas lines located directly adjacent to that side of the excavation. Figure 2 illustrates the approximate locations of the pipelines and identifies ownership. Since the original soil sample collected from the bottom of the west wall contained only 434 parts per million (ppm) total petroleum hydrocarbon (TPH), Brandon Powell, with the NMOCD, who reviewed the initial analytical results, suggested XTO collect an additional composite sample of the west wall and request closure with those results if they were still relatively low or close to the standard of 100 ppm for site remediation required by the NMOCD. This sample was collected prior to additional excavation and had measured TPH of 138 ppm (Figure 3).

Soil from within the potholes was screened in the field for volatile organic compounds, described, and collected for laboratory analysis when the lithology changed or discoloration or hydrocarbon odor was noted. The total depth of potholes was controlled by the depth to groundwater, which was encountered along the top of the sandstone layer at approximately 17 to 18 feet below ground surface in most locations. Potholes containing no impacted soil were backfilled with original material.

The sample from the highest field screening result and the sample from just above the groundwater level in the bottom of each pothole was submitted for laboratory analysis. If no impacts were detected through field screening, only the sample from just above the groundwater level was collected for laboratory analysis. A photo-ionization detector (PID) was used for field screening by the heated headspace method.

The laboratory samples were placed in pre-cleaned glass jars supplied by Hall Environmental Laboratory, labeled with the location, date, time, sampler, and method of analysis and immediately placed on ice. Strict chain-of-custody procedures were followed during transport of the samples to the laboratory. Soil samples were analyzed for benzene, toluene, ethyl-benzene and xylenes (BTEX) and TPH according to USEPA Methods 8021 and 8015B, and anions/cations by USEPA Methods 300.0 and 6010B per NMOCD request. Soil sampling results from the pothole locations are presented in Table 1 and on Figure 2. The complete laboratory reports are attached as Appendix A.

Tetra Tech, Inc. 2 September 2009

All pothole soil samples were non-detect or below standards for BTEX and TPH, with the exception of B3 (3 feet to 3.5 feet deep), which was collected from an area where black sandy-silt was encountered from approximately two to four feet bgs. B3 was advanced approximately 65 feet north of the Jacque #2 wellhead.

Groundwater accumulated in the bottom of each pothole location, with the exception of B3, which was approximately 17 to 18 feet deep and advanced into the sandstone. The accumulated groundwater was collected from each location using a stainless steel cup attached to a telescoping rod that was lowered into the bottom of the excavations. The sampling device was decontaminated prior to use at each location by rinsing with de-ionized water. All groundwater samples were submitted to Hall Environmental Laboratory for analysis of BTEX and anions/cations according to USEPA Methods 8260B, 300.0, and 6010B. Groundwater sampling results are presented in Table 2 and Figure 2. The complete laboratory reports are attached as Appendix A.

All pothole groundwater results were non-detect or below the New Mexico Water Quality Control Commission (NMWQCC) standards for BTEX. The NMWQCC standard for sulfate was exceeded in potholes B4, B5, and B6 (Figure 2). The NMWQCC standard for chloride was exceeded in B6.

Following pothole advancement, prior to backfilling, it was noted that there was an area with varying degrees of light discoloration in the soil located approximately four to five feet deep in each location. Soil samples for field chloride analysis were collected from B1, B5, B6, and the east wall of the existing excavation for rush turn around at Envirotech, Inc. located in Farmington in order to compare the levels and determine if possible chloride presence could be naturally occurring. The results of those samples are included on Table 1. All pothole soil samples ranged from less than 33 ppm to 55 ppm, while the sample collected from the same depth in the east wall of the existing excavation resulted in 400 ppm chloride. The complete laboratory report is contained in Appendix A.

3.0 EXCAVATION EXPANSION AND ADDITIONAL SOIL REMOVAL

3.1 Methodology and Results

Groundwater from the initial 200 cubic yard excavation was sampled for cations/anions in addition to BTEX and TPH prior to additional soil removal in the area. A vacuum truck operated by Riley Industrial Services was used to purge the water prior to sampling. Sample collection took place the following day on August 12, 2009. Groundwater collected from the excavation prior to additional soil removal contained 3,300 ppm chloride; however, another groundwater sample was collected

Tetra Tech, Inc. 3 September 2009

following excavation expansion due to the large volume of additional soil removed. This groundwater sample, collected on August 19, 2009, resulted in 590 ppm chloride. BTEX was non-detect or below the standards for both groundwater samples.

The decision to remove additional soil from the excavation was made based on soil sampling results collected during the initial excavation work completed in July 2009 (Figure 3). NMOCD advised additional removal of soil from the north, south, and east walls. This work began on August 13, 2009. Confirmatory soil samples were collected for laboratory analysis of BTEX and TPH by USEPA Methods 8021 and 8015B, and anions/cations by USEPA Methods 300.0 and 6010B. Soil containing white crystallization, PID readings above 100 ppm, hydrocarbon odor, or discoloration were removed from the site for disposal at the Envirotech landfarm located south of Bloomfield, New Mexico. The associated waste manifest documents are attached as Appendix B.

On August 13, 2009, the south wall of the excavation was expanded approximately 25 feet from the original south boundary. Gray material was completely removed to the sandstone layer at approximately 17 feet deep and PID readings no longer indicated hydrocarbon impacts. Confirmatory composite soil samples from the south bottom and the south wall were collected. Laboratory results were non-detect for BTEX and TPH.

On August 14, 2009 the north wall of the excavation was expanded approximately 37 feet north until gray material was completely removed to the sandstone layer at approximately 17 feet deep and PID readings no longer indicated hydrocarbon impacts. Confirmatory composite soil samples from the north bottom and the north wall were collected. Laboratory results were non-detect for BTEX and TPH.

On August 17, 2009 the east wall of the excavation was expanded approximately 22 feet east until the soil containing white crystallization from approximately four to seven feet deep and all gray material from approximately 14 feet to 17 feet deep was removed. Confirmatory composite soil samples from the north bottom and the north wall were collected. Laboratory results were non-detect for BTEX and TPH.

4.0 SUMMARY AND CONCLUSIONS

Approximately 2,180 cubic yards of soil was excavated in situ at the Davis Gas Com F#1E site. Potholes were advanced to determine if the source was up-gradient. The results indicate this is likely a historic release that is not connected to existing up-gradient impacts. All TPH impacts have been removed from the excavation area to below standards with the exception of the west wall,


Tetra Tech, Inc. 4 September 2009

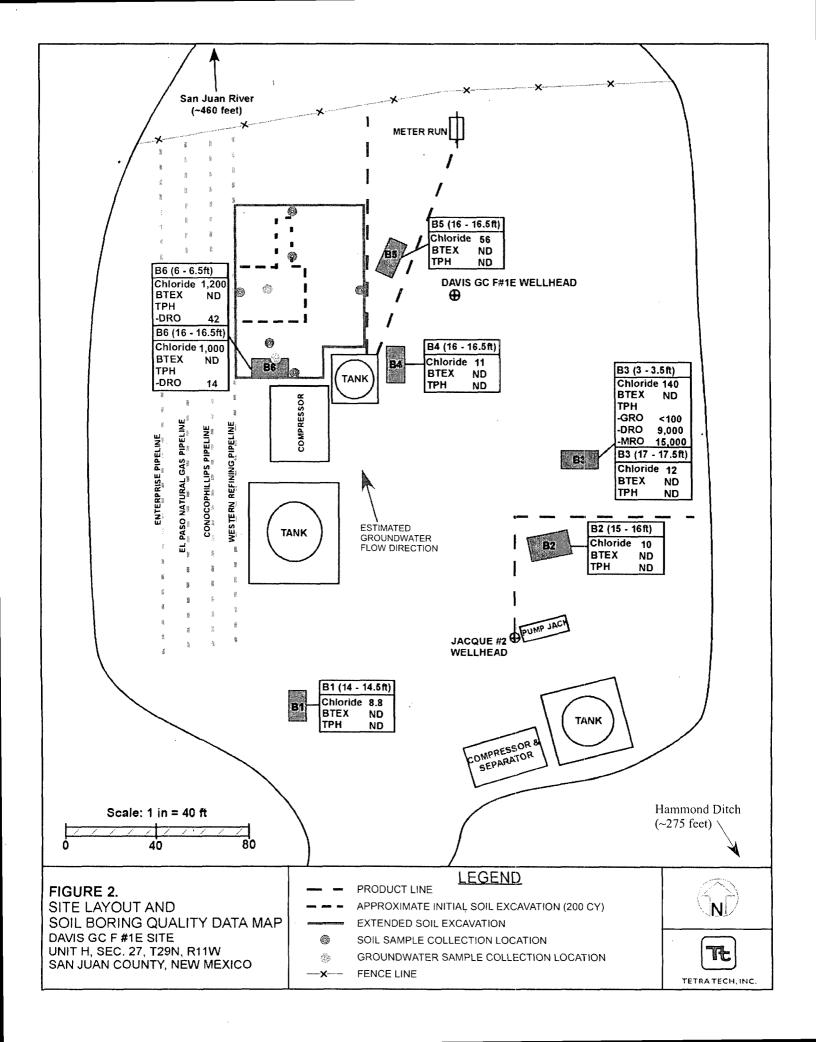
which resulted in 138 ppm TPH. Tetra Tech, on behalf of XTO, requests no further action be taken to remediate soil at the Site in the area of the excavation.

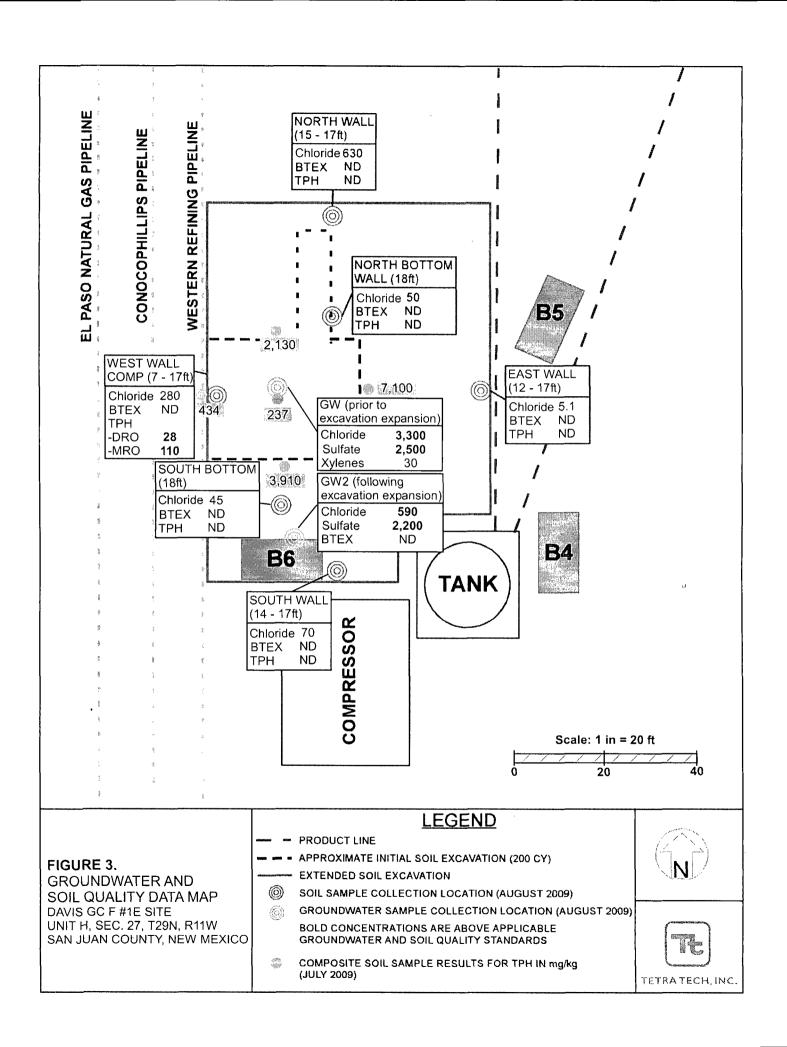
Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

Tetra Tech, Inc. 5 September 2009

FIGURES

FIGURE 1.


Site Location Map XTO Energy, Inc. Davis Gas Com F#1E Bloomfield, NM



Approximate XTO Energy, Inc. Davis Gas Com F#1E Site location

TETRATECH, INC.

TABLES

TE ICTALTECHUMC.
Table 1. Soil Laboratory Analytical Results - XTO Energy - Davis GC F #1E Excavation

			Ā	Anions by Method E300.0 (n	Anions by Method E300.0 (mg/kg - dry)	g - dry)		Volatile C	rganics by Meth	Volatile Organics by Method 8021B (mg/kg - dry)	- dry)	трн бу Ме	TPH by Method 8015B (mg/kg - dry)	g/kg - dry)
Sample Location	Date Sampled	Flouride	Chloride	Nitrite (as N)	Nitrate (as N)	Phosphorous, Orthophosphate (as P)	Sulfate	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	MRO
B1 (14 - 14,5 feet)	08/11/09	2.7	8.8	<1.5	<1.5	5'2>	1,600	050:0>	<0.050	<0.050	<0.10	<5.0	<10	650
B2 (15 - 16 feet)	08/11/09	2.0	10	<1.5	<1.5	5.7>	37	<0:050	<0.050	050:0>	<0.10	<5.0	¢10	<50
B3 (3 - 3.5 feet)	08/11/09	<1.5	140	<1.5	<1.5	<7.5	66	0.1>	<1.0	<1.0	<2.0	• <100	9,000	15,000
B3 (17 - 17.5 feet)	08/11/09	1.8	12	<1,5	<1.5	5.7>	46	050:0>	<0.050	<0.050	<0.10	<5.0	<10	<50
B4 (16 - 16.5 feet)	08/12/09	5.6	11	<1.5	<1.5	<7.5	510	09:0>	<0.050	<0.050	<0.10	<5.0	<10	°50
B5 (16 - 16.5 feet	08/12/09	<1.5	. 26	<1.5	<1.5	<7.5	570	<0.050	<0.050	<0.050	<0.10	<5.0	<10	· \$0
B6 (6 - 6.5 feet)	08/12/09	6.2	1,200	<1.5	14	<7.5	1,500	<0.050	<0.050	050.0>	<0.10	<10	42	<50
B6 (16 - 16.5 feet)	08/12/09	3.8	1,000	<1.5	12	<7.5	3,800	<0.10	<0.10	01.0>	<0.20	<5.0	14	<50
North Wall (15 - 17 feet)	08/14/09	2.0	630	<1.5	3.2	<7.5	430	050'0>	050:0>	050'0>	<0.10	<5.0	<+0	<50
South Wall (14 - 17 feet)	08/13/09	2.4	70	<1.5	3.1	<7.5	1,700	<0.050	<0.050	<0.050	<0.10	<5.0	<10	<50
East Wall (12 - 17 feet)	08/17/09	69'0	5.1	<0.3	0.33	<1.5	920	<0.050	050:0>	<0.050	<0.10	<10	<10	<50
West Wall Comp. (7 - 17 feet	08/13/09	2.5	280	<1.5	3.8	<7.5	1,000	<0.10	<0.10	<0.10	<0.20	<10	28	110
South Bottom (18 feet)	08/14/09	1.6	45	<1.5	<1.5	<7.5	230	<0.050	<0.050	050'0> .	<0.10	<5.0	<10	<50
North Bottom (18 feet)	08/14/09	1.6	50	<1.5	<1.5	<7.5	180	<0.050	<0.050	050.0>	<0.10	<5.0	<10	<50
Excavation D (Duplicate of North Bottom)	08/14/09	<1.5	10	<1.5	<1.5	<7.5	57	<0.050	<0.050	<0.050	<0.10	<5.0	<10	-50
NMOCD Standards	ards	¥	NE	NE	Ä	EN.	NE	10pl	om - Benzene; 50	10ppm - Benzene; 50ppm - Total BTEX			100	

<u>Explanation</u>

NMOCD = New Mexico Oil Conservation Division recommended action level

NE = Not established by MMOCD

N = Nitrogen

mg/kg - dry = Mitligrams per kikogram; analyzed after residual water was removed from soil P = Phosphate

MTBE = Methyl tertiary-butyl ether

GRO = Gasoline Range Organics

DRO = Diesel Range Organics MRO = Motor Oil Range Organics ppm = Parts per million

Envirotech Field Test Results for Chloride

Sample	Date	Chloride (ppm)
B1 (4 -5 feet)	8/12/2009	<33
B5 (4 - 5 feet)	8/12/2009	<33
B6 (4 - 5 feet)	8/12/2009	55
Existing Excavation (4- 5 feet)	8/12/2009	001

TETRATECHING.

Table 2. Groundwater Laboratory Analytical Results - XTO Energy - Davis GC F #1E Excavation

			5							
					SAMP	SAMPLE ID / Date Collected	ollected			
Constituent			8/12/2009	8/12/2009	8/13/2009	8/13/2009	8/13/2009	8/12/2009	8/19/2009	
								*Excavation	**Excavation	NMWQCC Groundwater
Anions	Method	Units	B1 - GW	B2 - GW	B4 - GW	B5 - GW	B6 - GW	Pit GW	GW2	Quality Standard
Fluoride	E300.0	mg/L	0.46	1:1	1.4	0.78	1.1	1.4	0.44	1.6
Chloride	E300.0	mg/L	65	69	110	200	430	3,300	290	250
Nitrate (as N)	E300.0	ma/L	<0.10	<0.10	<2.0	<2.0	<2.0	<10	3.3	10
Nitrite (as N)	E300.0	mg/L	<0.10	1.2	4	1.9	14	<10	<2.0	NE
Phosphorus, Orthophospate (as P)	E300.0	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5	NE
Sulfate	E300.0	mg/L	380	560	1,600	1,500	2,700	2,500	2,200	900
								Excavation	Excavation	NMWQCC Groundwater
VOCs (detections and BTEX only)	Method	Units	B1 - GW	B2 - GW	B4 - GW	B5 - GW	B6 - GW	ij	GW2	Quality Standard
Benzene	8260B	hg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10
Toluene	8260B	ng/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	750
Ethylbenzene	8260B	ng/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	750
Total Xvlenes	8260B	ng/L	<1.5	<1.5	<1.5	<1.5	<1.5	30	<1.5	620
		-	!							

Notes:

 $\overline{\text{NMWQCC}} = \text{New Mexico Water Quality Control Commission} \\ \text{Constituents in } \textbf{BOLD} \text{ are in excess of NMWQCC groundwater quality standards} \\ \text{VOCs} = \text{volatile organic compounds} \\ \end{aligned}$

mg/L = milligrams per liter

μg/L = micrograms per liter P = phosphate N = nitrogen NE = not established

NA = not analyzed **Excavation Pit GW sample collected prior to removal of additional soil in excavated area. **Excavation GW2 sample collected following removal of additional soil in excavated area.

1 of 1

AP	P	E	N	ı	D	Ĭ	C	E	S

APPENDIX A

Soil and Groundwater Laboratory Analytical Reports

Client: XTO Energy Project #: 98031-0121 B5 (4'-5') Sample ID: Date Reported: 08-13-09 Lab ID#: 51224 Date Sampled: 08-12-09 Sample Matrix; Soil Date Received: 08-12-09 Preservative: Cool Date Analyzed: 08-12-09 Condition: Intact Chain of Custody: 7702

Parameter

Concentration (mg/Kg)

Total Chloride

< 33

Reference:

Quantab Titrator

Comments:

Davis GC F #1E / Bloomfield, NM.

Analyst

Client: XTO Energy Project #: 98031-0121 B6 (4'-5') Sample ID: Date Reported: 08-13-09 51225 Lab ID#: Date Sampled: 08-12-09 Sample Matrix: Soil Date Received: 08-12-09 Preservative: Cool Date Analyzed: 08-12-09 Condition: Intact Chain of Custody: 7702

Parameter

Concentration (mg/Kg)

Total Chloride

55

Reference:

Quantab Titrator

Comments:

Davis GC F #1E / Bloomfield, NM.

Analyst

XTO Energy Client: Project #: 98031-0121 Sample ID: Existing Excavation (4'-5') Date Reported: 08-13-09 Lab ID#: 51226 Date Sampled: 08-12-09 Sample Matrix: Soil Date Received: 08-12-09 Preservative: Cool 08-12-09 Date Analyzed: Condition: Intact Chain of Custody: 7702

Parameter

Concentration (mg/Kg)

Total Chloride

400

Reference:

Quantab Titrator

Comments:

Davis GC F #1E / Bloomfield, NM.

Client: XTO Energy Project #: 98031-0121 Sample ID: B1 (4'-5') Date Reported: 08-13-09 Lab ID#: 51227 Date Sampled: 08-12-09 Sample Matrix: Soil Date Received: 08-12-09 Cool Preservative: Date Analyzed: 08-12-09 Condition: Intact Chain of Custody: 7702

Parameter

Concentration (mg/Kg)

Total Chloride

< 33

Reference:

Quantab Titrator

Comments:

Davis GC F #1E / Bloomfield, NM.

CHAIN OF CUSTODY RECORD

Olient: Amond Chira	Project Name / Location:) V	a va /	AMET	. 083		!		
by reparred	Davis GCF#IE/Bromfield, NA	1E/B/POK	whield, NM					֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	2		_ 	2 -+Se				
Client Address: 3106 Hyle,	Sampler Name: Lelly Blanchard (Terra-Tech)	ard (Te	hatech)	8012)	(1208 b	8560)			d			4 8/97]	
Client Phone No.:				pou			uoin		/H 4		(1.8	1 30		100	ıtact	
1505-975-2563	98031-	012/					// 8 / ——— A ∖ n		tiw '		314)			O əld	nl əlc	
Sample No./ Sample Sample	le Lab No.	Sample	No./Volume Preservative					CI	СГЬ	Н∀	На	HFC	***************************************	swb 	swb	
Identification Date Time		ຊັ	Containers Hoc. Hd	IT				Я	T	<i>'</i> В	1) - C		s	S	
135 (455) 8-12-09 11:00	+221S	Sludge Aqueous	(- 40z.									X		>	>	
B 6 (455) 182-09 1250 57225	S 2.2.15 00	Sludge	20/17											<u>></u>	>	
EXISTAND (415)8/12/09 18305177			7-48									又		>	>	
BI (4.55) 8/12/0 1350 57777	14		200万									×		>	>	
	-															
	Solid	ļ			\dagger	-	-	_						_		
	Soil	Sludge Aqueous	-		***************************************											
	Soil	Sludge			[
	Soil						<u> </u>	-						<u> </u>		
	Solid	Aqueous			1			-								
	Soil	Sludge Aqueous														
	lios	Sludge		L			_									
Relinquished by: (Sisnature)		Date	Time Received by:		(Signature)			1					Date	}	Time	
D/	\sim	8-12-69	04.7.		S	B	7	<u> </u>					.1/8	7 14	14:45	
Remoushed by: (Signature)		6.17	Received by: (Signature)) :\ 9 px: (Signat	(e)		-	,				12.	7	14.165	•
Refinquished by: (Signature)		0.10	Received by: (Signature)) :ka ps	(Signat	(e)		<u>}</u>	ı				1			
												!				
Verbals in a.M.			envirotech					email results to:	5	Sul	X	j	-	•		
A CAN CAN CAN LAND	CALLOS AND		Analytical Laboratory Analytical Laboratory		bord	itory	doct- in	8	2	3	Mon	Kelly, Han charde-texateth.	9- 1 6-	ated	ژ	
1777	A Stab US High		שימיו, ואואו פו איט שיטים	35-00 13	lan	200	וברו בווי	200				VUV	APPENIT Brinking - Enem 20.0007	10 - CArm	tuon.oc	

COVER LETTER

Thursday, September 17, 2009

Martin Nee XTO Energy 382 County Road 3100 Aztec, NM 87410

TEL: (505) 333-3100 FAX (505) 333-3280

RE: Davis GC F#1E

Dear Martin Nee:

Order No.: 0908207

Hall Environmental Analysis Laboratory, Inc. received 9 sample(s) on 8/13/2009 for the analyses presented in the following report.

This report is an addendum to the report dated September 3 2009. This is an updated report.

No determination of compounds below these (denoted by the ND or < sign) has been made. Please don't hesitate to contact Hall Environmental for any additional information or clarifications.

Reporting limits are determined by EPA methodology.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

Date: 17-Sep-09

CLIENT:

XTO Energy

Client Sample ID: B1 (14'-14.5')

Lab Order:

0908207

Collection Date: 8/11/2009 12:00:00 PM

Project:

Davis GC F#1E

Date Received: 8/13/2009

Lab ID:

0908207-01

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGI	E ORGANICS	················				Analyst: SCC
Diesel Range Organics (DRO)	ND	10	ı	mg/Kg	1	8/17/2009
. Motor Oil Range Organics (MRO)	ND	50	r	mg/Kg	1	8/17/2009
Surr: DNOP	85.0	61.7-135	Ç	%REC	1	8/17/2009
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NS B
Gasoline Range Organics (GRO)	ND	5.0	· r	ng/Kg	1	8/18/2009 4:18:34 PM
Surr: BFB	82.0	58.8-123	Ċ	%REC	1	8/18/2009 4:18:34 PM
EPA METHOD 8021B: VOLATILES						Analyst: NSE
Benzene ·	ND	0.050	r	ng/Kg	1	8/18/2009 4:18:34 PM
Toluene	ND	0.050	r	ng/Kg	1	8/18/2009 4:18:34 PM
Ethylbenzene	ND	0.050	ſ	mg/Kg	1	8/18/2009 4:18:34 PM
Xylenes, Total	ND	0.10	ı	mg/Kg	1	8/18/2009 4:18:34 PM
Surr: 4-Bromofluorobenzene	89.6	66.8-139	Ģ	%REC	1	8/18/2009 4:18:34 PM
EPA METHOD 300.0: ANIONS						Analyst: TAF
Fluoride	2.7	1.5	r	ng/Kg	5	8/17/2009 5:07:37 PM
Chloride	8.8	1.5	r	mg/Kg	5	8/17/2009 5:07:37 PM
Nitrogen, Nitrite (As N)	ND	1.5	r	ng/Kg	5	8/17/2009 5:07:37 PM
Nitrogen, Nitrate (As N)	ND	1.5	r	ng/Kg	5	8/17/2009 5:07:37 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	r	ng/Kg	5	8/17/2009 5:07:37 PM
Sulfate	160	7.5	r	mg/Kg	5	8/17/2009 5:07:37 PM
EPA METHOD 6010B: SOIL METALS						Analyst: SNV
Calcium	6000	120	r	mg/Kg	5	8/20/2009 11:47:46 AM
Magnesium	980	25	r	ng/Kg	1	8/18/2009 5:22:29 PM
Potassium	340	50	1	ng/Kg	1	8/18/2009 5:22:29 PM
Sodium	130	25	ſ	ng/Kg	1	8/18/2009 5:22:29 PM

n	 a	ı	i	fi	۵	rg	

Value exceeds Maximum Contaminant Level

Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

0908207

Lab Order: Project:

Davis GC F#1E

Lab ID:

0908207-02

Client Sample ID: B3 (17'-17.5')

Collection Date: 8/11/2009 2:30:00 PM

Date Received: 8/13/2009

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS			7. a a 4. A 4. A 4. A 4. A 4. A 4. A 4. A		Analyst: SCC
Diesel Range Organics (DRO)	ND	10		mg/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	ND	50		mg/ Kg	1	8/18/2009
Surr: DNOP	86.7	61.7-135		%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NS B
Gasoline Range Organics (GRO)	ND	5.0		mg/Kg	1	8/18/2009 4:49:04 PM
Surr: BFB	82.6	58.8-123		%REC	1	8/18/2009 4:49:04 PM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	0.050		mg/Kg	1	8/18/2009 4:49:04 PM
Toluene	ND	0.050		mg/Kg	1	8/18/2009 4:49:04 PM
Ethylbenzene	ND	0.050		mg/Kg	1	8/18/2009 4:49:04 PM
Xylenes, Total	ND	0.10		mg/Kg	1	8/18/2009 4:49:04 PM
Surr: 4-Bromofluorobenzene	91.6	66.8-139		%REC	1	8/18/2009 4:49:04 PM
EPA METHOD 300.0: ANIONS						Analyst: TA F
Fluoride	1.8	1.5		mg/Kg	5	8/17/2009 5:42:26 PM
Chloride	12	1.5		mg/Kg	5	8/17/2009 5:42:26 PM
Nitrogen, Nitrite (As N)	ND	1.5		mg/Kg	5	8/17/2009 5:42:26 PM
Nitrogen, Nitrate (As N)	ND	1.5		mg/Kg	5	8/17/2009 5:42:26 PM
Phosphorus, Orthophosphate (As P)	ND	7.5		mg/Kg	5	8/17/2009 5:42:26 PM
Sulfate	46	7.5		mg/Kg	5	8/17/2009 5:42:26 PM
EPA METHOD 6010B: SOIL METALS						Analyst: SNV
Calcium	880	25		mg/Kg	1	8/18/2009 5:25:28 PM
Magnesium	500	25		mg/Kg	1	8/18/2009 5:25:28 PM
Potassium	200	50		mg/Kg	' 1	8/18/2009 5:25:28 PM
Sodium	100	25		mg/Kg	1	8/18/2009 5:25:28 PM

O		۸1	2	r.	_		_
.,	u	ы	ш	11	t.	I.	

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits J
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908207

Client Sample ID: B3 (3'-3.5')

Collection Date: 8/11/2009 2:40:00 PM

Project: Lab ID: Davis GC F#1E

Date Received: 8/13/2009

0908207-03

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS		_			Analyst: SCC
Diesel Range Organics (DRO)	9000	1000		mg/Kg	100	8/18/2009
Motor Oil Range Organics (MRO)	15000	5000		mg/Kg	100	8/18/2009
Surr: DNOP	0	61.7-135	s	%REC	100	8/18/2009
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	100		mg/Kg	20	8/18/2009 5:19:37 PM
Surr: BFB	77.9	58.8-123		%REC	20	8/18/2009 5:19:37 PM
EPA METHOD 8021B: VOLATILES						Analyst: NS B
Benzene	ND	1.0		mg/Kg	20	8/18/2009 5:19:37 PM
Toluene	ND	1.0		mg/Kg	20	8/18/2009 5:19:37 PM
Ethylbenzene	ND	1.0		mg/Kg	20	8/18/2009 5:19:37 PM
Xylenes, Total	ND	2.0		mg/Kg	20	8/18/2009 5:19:37 PM
Surr: 4-Bromofluorobenzene	83.8	66.8-139		%REC	20	8/18/2009 5:19:37 PM
EPA METHOD 300.0: ANIONS						Analyst: TAF
Fluoride	ND	1.5		mg/Kg	5	8/17/2009 7:09:29 PM
Chloride	140	1.5		mg/Kg	5	8/17/2009 7:09:29 PM
Nitrogen, Nitrite (As N)	ND	1.5		mg/Kg	5	8/17/2009 7:09:29 PM
Nitrogen, Nitrate (As N)	ND	1.5		mg/Kg	5	8/17/2009 7:09:29 PM
Phosphorus, Orthophosphate (As P)	ND	7.5		mg/Kg	5	8/17/2009 7:09:29 PM
Sulfate	99	7.5		mg/Kg	. 5	8/17/2009 7:09:29 PM
EPA METHOD 6010B: SOIL METALS						Analyst: SNV
Calcium	3100	2500		mg/Kg	100	8/20/2009 1:27:32 PM
Magnesium	ND	2500		mg/Kg	100	8/20/2009 1:27:32 PM
Potassium	ND	5000		mg/Kg	100	8/20/2009 1:27:32 PM
Sodium	5100	2500		mg/Kg	100	8/20/2009 1:27:32 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908207

Davis GC F#1E

Project: Lab ID:

0908207-04

Client Sample ID: B2 (15-16')

Collection Date: 8/11/2009 3:45:00 PM

Date Received: 8/13/2009

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS					Analyst: SCC
Diesel Range Organics (DRO)	ND	10		mg/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	ND.	50		mg/Kg	1	8/18/2009
Surr: DNOP	85.3	61.7-135		%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RA	NGE	ί,				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0		mg/Kg	1	8/18/2009 5:50:06 PM
Surr: BFB	82.3	58.8-123		%REC	1	8/18/2009 5:50:06 PM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	0.050		mg/Kg	1	8/18/2009 5:50:06 PM
Toluene	ND	0.050		mg/Kg	1	8/18/2009 5:50:06 PM
Ethylbenzene	ND	0.050		mg/Kg	1	8/18/2009 5:50:06 PM
Xylenes, Total	ND	0.10		mg/Kg	1	8/18/2009 5:50:06 PM
Surr: 4-Bromofluorobenzene	89.6	66.8-139		%REC	1	8/18/2009 5:50:06 PM
EPA METHOD 300.0: ANIONS						Analyst: T AF
Fluoride	2.0	1.5		mg/Kg	5	8/17/2009 7:44:18 PM
Chloride	10	1.5		mg/Kg	5	8/17/2009 7:44:18 PM
Nitrogen, Nitrite (As N)	ND	1.5		mg/Kg	5	8/17/2009 7:44:18 PM
Nitrogen, Nitrate (As N)	ND	1.5		mg/Kg	5	8/17/2009 7:44:18 PM
Phosphorus, Orthophosphate (As P)	ND	7.5		mg/Kg	5	8/17/2009 7:44:18 PM
Sulfate	37	7.5		mg/Kg	5	8/17/2009 7:44:18 PM
EPA METHOD 6010B: SOIL METALS	•					Analyst: SNV
Calcium	1600	25		mg/Kg	1	8/18/2009 5:41:45 PM
Magnesium	1000	25		mg/Kg	1	8/18/2009 5:41:45 PM
Potassium	480	50		mg/Kg	1	8/18/2009 5:41:45 PM
Sodium	200	25		mg/Kg	1	8/18/2009 5:41:45 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits
- Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

Client Sample ID: B4 (16-16.5')

0908207

Collection Date: 8/12/2009 9:58:00 AM

Project:

Davis GC F#1E

Date Received: 8/13/2009

Lab ID:

0908207-05

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	ORGANICS					Analyst: SCC
Diesel Range Organics (DRO)	ND	10	r	mg/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	ND	50	ı	mg/Kg	1	8/18/2009
Surr; DNOP	87.7	61.7-135	· c	%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	r	ng/Kg	1	8/18/2009 6:20:41 PM
Surr: BFB	83.0	58.8-123	Ç	%REC	1	8/18/2009 6:20:41 PM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene -	ND	0.050	r	ng/Kg	1	8/18/2009 6:20:41 PM
Toluene	ND	0.050	r	ng/Kg	1	8/18/2009 6:20:41 PM
Ethylbenzene	ND	0.050	r	ng/Kg	1	8/18/2009 6:20:41 PM
Xylenes, Total	ND	0.10	·r	ng/Kg	1	8/18/2009 6:20:41 PM
Surr: 4-Bromofluorobenzene	93,4	66.8-139	Q	%REC	1	8/18/2009 6:20:41 PM
EPA METHOD 300.0: ANIONS						Analyst: TAF
Fluoride	5.6	1.5	r	ng/Kg	5	8/17/2009 8:19:06 PM
Chloride	11	1.5	r	ng/Kg	5	8/17/2009 8:19:06 PM
Nitrogen, Nitrite (As N)	ND	1.5	r	ng/Kg	5	8/17/2009 8:19:06 PM
Nitrogen, Nitrate (As N)	ND	1.5	r	ng/Kg	5	8/17/2009 8:19:06 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	r	ng/Kg	5	8/17/2009 8:19:06 PM
Sulfate	510	7.5	r	mg/Kg	5	8/17/2009 8:19:06 PM
EPA METHOD 6010B: SOIL METALS						Analyst: SNV
Calcium	21000	130	r	ng/Kg	5	8/20/2009 11:54:21 AM
Magnesium	2600	130	r	ng/Kg	. 5	8/20/2009 11:54:21 AM
Potassium	920	250	ı	ng/Kg	5	8/20/2009 11:54:21 AM
Sodium	690	130	r	ng/Kg	5	8/20/2009 11:54:21 AM

Qua	lifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908207

Davis GC F#1E

Project: Lab ID:

0908207-06

Client Sample ID: B5 (16-16.5')

Collection Date: 8/12/2009 11:35:00 AM

Date Received: 8/13/2009

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE	ORGANICS		-			Analyst: SCC
Diesel Range Organics (DRO)	ND	10	1	mg/Kg	1 ,	8/18/2009
Motor Oil Range Organics (MRO)	ND	50	ı	mg/Kg	1	8/18/2009
Surr: DNOP	83.9	61.7-135	•	%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RAI	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	ı	mg/ Kg	1	8/18/2009 6:51:20 PM
Surr: BFB	78.6	58.8-123	(%REC	1	8/18/2009 6:51:20 PM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	0.050	(mg/Kg	1	8/18/2009 6:51:20 PM
Toluene	ND	0.050	1	mg/Kg	1	8/18/2009 6:51:20 PM
Ethylbenzene	ND	0.050	1	mg/Kg	1	8/18/2009 6:51:20 PM
Xylenes, Total	ND	0.10	1	mg/Kg	1	8/18/2009 6:51:20 PM
Surr: 4-Bromofluorobenzene	87.4	66.8-139	1	%REC	1	8/18/2009 6:51:20 PM
EPA METHOD 300.0: ANIONS					.*	Analyst: T A F
Fluoride	ND	1.5	1	mg/Kg	5	8/17/2009 8:53:55 PM
Chloride	5 6	1.5	ļ	mg/Kg	5	8/17/2009 8:53:55 PM
Nitrogen, Nitrite (As N)	ND	1.5	•	mg/Kg	5	8/17/2009 8:53:55 PM
Nitrogen, Nitrate (As N)	ND	1.5	1	mg/Kg	5	8/17/2009 8:53:55 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	i	mg/Kg	5 .	8/17/2009 8:53:55 PM
Sulfate	570	7.5		mg/Kg	5	8/17/2009 8:53:55 PM
EPA METHOD 6010B; SOIL METALS						Analyst: SNV
Calcium	1100	25		mg/Kg	1	8/18/2009 5:48:49 PM
Magnesium	600	25		mg/Kg	1	8/18/2009 5:48:49 PM
Potassium	240	50		mg/Kg	1	8/18/2009 5:48:49 PM
Sodium	400	25		mg/Kg	1	8/18/2009 5;48:49 PM

Onalifiers	

Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

Not Detected at the Reporting Limit ND

Spike recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908207

0706207

Project: Lab ID:

0908207-07

Davis GC F#1E

Client Sample ID: B6 (16-16.5')

Collection Date: 8/12/2009 1:00:00 PM

Date Received: 8/13/2009

Analyses	Result	PQL	Qual (Jnits	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGI	ORGANICS	···				Analyst: SCC
Diesel Range Organics (DRO)	14	10	n	ng/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	ND	50	n	ng/ Kg	1	8/18/2009
Surr: DNOP	92.0	61.7-135	9	%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSE
Gasoline Range Organics (GRO)	ND	5.0	n	ng/Kg	1	8/18/2009 7:21:43 PM
Surr; BFB	87.1	58.8-123	9,	6REC	1	8/18/2009 7:21:43 PM
EPA METHOD 8021B: VOLATILES						Analyst: NSE
Benzene	ND	0.050	n	ng/Kg	1	8/18/2009 7:21:43 PM
Toluene	ND	0.050	n	n g/Kg	1	8/18/2009 7:21:43 PM
Ethylbenzene	ND	0.050	'n	ng/Kg	1	8/18/2009 7:21:43 PM
Xylenes, Total	ND	0.10	n	ng/Kg	1	8/18/2009 7:21:43 PM
Surr: 4-Bromofluorobenzene	95.1	66.8-139	9	%REC	1	8/18/2009 7:21:43 PM
EPA METHOD 300.0: ANIONS			*			Analyst: TAF
Fluoride	3.8	1.5	n	ng/Kg	5	8/17/2009 9:28:44 PM
Chloride	1000	15	n	ng/Kg	50	8/17/2009 10:38:23 PM
Nitrogen, Nitrite (As N)	ND	1.5	n	ng/Kg	5	8/17/2009 9:28:44 PM
Nitrogen, Nitrate (As N)	12	1.5	· n	ng/Kg	5	8/17/2009 9:28:44 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	n	ng/Kg	5	8/17/2009 9:28:44 PM
Sulfate	3800	75	n	ng/Kg	50	8/17/2009 10:38:23 PM
EPA METHOD 6010B: SOIL METALS						Analyst: SNV
Calcium	9900	130	n	ng/Kg	5	8/20/2009 11:57:23 AM
Magnesium	1700	130	n	ng/Kg	5	8/20/2009 11:57:23 AM
Potassium	850	250	n	ng/Kg	5	. 8/20/2009 11:57:23 AM
Sodium	2200	130	n	ng/Kg	5	8/20/2009 11:57:23 AM

Λ.	IJΩ	 æ		
	111	 11	PI	

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908207.

Project:

Davis GC F#1E

Lab ID:

0908207-08

Client Sample ID: B6 (6-6.5')

Collection Date: 8/12/2009 12:20:00 PM

Date Received: 8/13/2009

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: SCC
Diesel Range Organics (DRO)	42	. 10	mg/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/18/2009
Surr: DNOP	91.4	61.7-135	%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	10	mg/Kg	2 .	8/18/2009 11:56:00 PM
Surr: BFB	83.9	58.8-123	%REC	2	8/18/2009 11:56:00 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.10	mg/Kg	2	8/18/2009 11:56:00 PM
Toluene	ND	0.10	mg/Kg	2	8/18/2009 11:56:00 PM
Ethylbenzene	ND	0.10	mg/Kg	2	8/18/2009 11:56:00 PM
Xylenes, Total	ND	0.20	mg/Kg	2	8/18/2009 11;56:00 PM
Surr: 4-Bromofluorobenzene	92.2	66.8-139	%REC	2	8/18/2009 11:56:00 PM
EPA METHOD 300.0: ANIONS	•				Analyst: TAF
Fluoride	6.2	1.5	mg/Kg	5	8/17/2009 10:55:47 PM
Chloride	1200	15	mg/Kg	50	8/17/2009 11:13:12 PM
Nitrogen, Nitrite (As N)	NÐ	1.5	mg/Kg	. 5	8/17/2009 10:55:47 PM
Nitrogen, Nitrate (As N)	14	1.5	mg/K g	5	8/17/2009 10:55:47 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 10:55:47 PM
Sulfate	1500	75	mg/Kg	50	8/17/2009 11:13:12 PM
EPA METHOD 6010B: SOIL METALS			•		Analyst: SNV
Calcium	2400	25	mg/Kg	1	8/18/2009 5:56:17 PM
Magnesium	1100	25	mg/Kg	1	8/18/2009 5:56:17 PM
Potassium	580	50	mg/Kg	1	8/18/2009 5:56:17 PM
Sodium	1900	25	mg/Kg	1	8/18/2009 5:56:17 PM

Qu	я	11	fì	e	r	2
Vu	а	••	ĸ	c		

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908207

Project: Lab ID:

Davis GC F#1E

0908207-09

Client Sample ID: Excavation Pit

Collection Date: 8/12/2009 2:10:00 PM

Date Received: 8/13/2009

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS	A A A A A A A A A A A A A A A A A A A		**************************************		Analyst: RAGS
Fluoride	1.4	0.10	mg/L	1	8/13/2009 1:48:54 PM
Chloride	3300	20	mg/L	200	8/18/2009 12:33:16 AM
Nitrate (As N)+Nitrite (As N)	ND	10	mg/L	50	8/18/2009 12:50:40 AM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	8/13/2009 1:48:54 PM
Sulfate	2500	100	mg/L	200	8/18/2009 12:33:16 AM
EPA METHOD 6010B: DISSOLVED M	ETALS				Analyst: SNV
Calcium	860	10	mg/L	10	8/18/2009 10:38:03 AM
Magnesium	150	10	mg/L	10	8/18/2009 10:38:03 AM
Potassium	13	1.0	mg/L	1	8/17/2009 4:39:23 PM
Sodium	1600	20	mg/L	20	8/18/2009 10:40:59 AM
EPA METHOD 8260B: VOLATILES					Analyst: HL
Benzene	ND	. 1.0	μg/L	1	8/14/2009 7:38:16 AM
Toluene	ND	1.0	μg/L	1	8/14/2009 7:38:16 AM
Ethylbenzene	ND	1.0	μg/L	1	8/14/2009 7:38:16 AM
Xylenes, Total	30	1.5	μg/L	1	8/14/2009 7:38:16 AM
Surr: 1,2-Dichloroethane-d4	95.4	54.6-141	%REC	1	8/14/2009 7:38:16 AM
Surr: 4-Bromofluorobenzene	1.09	60.1-133	%REC	1	8/14/2009 7:38:16 AM
Surr: Dibromofluoromethane	100	78.5-130	%REC	1	8/14/2009 7:38:16 AM
Surr: Toluene-d8	98.7	79.5-126	%REC	1	8/14/2009 7:38:16 AM

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Η Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

Reporting Limit

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908207

									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Oraci.	0700207
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	wLimit Hig	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 300.0; Anic	ons										
Sample ID: MB-19889		MBLK				Batch ID:	19889	Analysi	s Date:	8/17/2009 1	2:11:39 PN
Fluoride	ND	mg/Kg	0.30								
Chloride	ND	mg/Kg	0.30								
Nitrogen, Nitrite (As N)	ND	mg/Kg	0.30								
Nitrogen, Nitrate (As N)	ND	mg/Kg	0.30								
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5								
Sulfate	3.201	mg/Kg	1.5			•				•	
Sample ID: MB-19889		MBLK				Batch ID:	19889	Analysi	s Date:	8/18/2009	2:07:17 AN
Fluoride	ND	mg/Kg	0.30								
Chloride	ND	mg/Kg	0.30								
Nitrogen, Nitrite (As N)	ND	mg/Kg	0.30						i		
Nitrogen, Nitrate (As N)	ND	mg/Kg	0.30			•					
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5								
Sulfate	2.985	mg/Kg	. 1.5								
Sample ID: LCS-19889		LCS				Batch ID:	19889	Analysi	is Date:	8/17/2009	12:29:03 PN
Fluoride	1.557	mg/Kg	0.30	1.5	0	104	90	110			
Chloride	14.71	mg/Kg	0.30	15	0	98.0	90	110			
Nitrogen, Nitrite (As N)	2.990	mg/Kg	0.30	3	. 0	99.7	90	110			
Nitrogen, Nitrate (As N)	7.378	mg/Kg	0.30	7.5	0	98.4	90	110			
Phosphorus, Orthophosphate (As P)	14.57	mg/Kg	1.5	15	0	97.1	90	110			
Sulfate	29.49	mg/Kg	1.5	30	2.985	88.4	90	110			BS

E Estimated value

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

J Analyte detected below quantitation limits

QA/QC SUMMARY REPORT

Client: Project:

XTO Energy

Davis GC F#1E

Work Order:

0908207

Analyte	Result	Units	PQL.	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 300.0: Ani	ons					.					
Sample ID: 0908207-09BMSD		MSD				Batch ID:	R34902	Analysis		8/13/2009	2:41:09 PN
Fluoride	1.836	mg/L	0.10	0.5	1.402	86.8	75.3	117	0.202	20	
Phosphorus, Orthophosphate (As P)	4.405	mg/L	0.50	. 5	0	88.1	74.5	116	1.46	20	*
Sample ID: MB		MBLK				Batch ID:	R34902	Analysis	Date:	8/13/2009	9:45:10 AN
Chloride	ND	mg/L	0.10		•						
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20								
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: MB		MBLK				Batch ID:	R34924	Analysis	Date:	8/14/2009	8:54:06 AN
Fluoride	ND	mg/L	0.10								
Chloride	ND	mg/L	0.10								
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20								
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50			•					
Sulfate	ND	mg/L	0.50						•		
Sample ID: MB	,,,,	MBLK	0.00			Batch ID:	R34944	Analysis	Date:	8/17/2009	8:53:05 AN
Fluoride	NID		0.10					,			
	ND .	mg/L									
Chloride	ND ND	mg/L	0.10								
Nitrate (As N)+Nitrite (As N)	ND ND	mg/L	0.20								
Phosphorus, Orthophosphate (As P) Sulfate	ND ND	mg/L	0.50								
Sample ID: LCS	ND	mg/L LCS	0.50			Batch ID:	R34902	Análysis	Date	8/13/2009 1	0:02:34 AN
-	4.040		0.40	c	0			•	20,0.	0,10,200	
Chloride	4.910	mg/L	0.10	5	0	98.2	90	110			
Nitrate (As N)+Nitrite (As N)	3.424	mg/L	0.20	3.5	0	97.8	90	110			
Phosphorus, Orthophosphate (As P)	4.805	mg/L	0.50	5	0	96.1	90	110			
Sulfate	9.814	mg/L	0.50	10	0	98.1	90	110	Datas	0/43/0000	4.4 4.0E DB
Sample ID: LCS-b		LCS				Batch ID:	R34902	Analysis	Date:	8/13/2009	1: 14:U5 PK
Fluoride	0.5170	mg/L	0.10	0.5	. 0	103	90	110			
Sample ID: LCS		LCS				Batch ID:	R34924	Analysis	Date:	8/14/2009	9:11:31 AN
Fluoride	0.5038	mg/L	0.10	0.5	٥	101	90	110			
Chloride	4.778	mg/L	0.10	5	0	95.6	90	110			
Nitrate (As N)+Nitrite (As N)	3.353	mg/L	0.20	3.5	0	95.8	90	110			
Phosphorus, Orthophosphate (As P)	4.885	mg/L	0.50	5	0	97.7	90	110			
Sulfate	9.849	mg/L	0.50	10	0	98.5	90	110			
Sample ID: LCS		LCS				Batch ID:	R34944	Analysis	Date:	8/17/2009	9:10:30 A
Fluoride	0.4744	mg/L	0.10	0.5	0	94.9	90	110			
Chloride	4.793	mg/L	0.10	5	0	95.9	90	110			
Nitrate (As N)+Nitrite (As N)	3.355	mg/L	0.20	3.5	0	95.8	90	110			
Phosphorus, Orthophosphate (As P)	4.816	mg/L	0.50	5	0	96.3	90	110			
Sulfate	9.772	mg/L	0.50	10	0	97.7	90	110			
Sample ID: 0908207-09BMS	W17 / 00	MS	2.00	, 5	·	Batch ID:	R34902	Analysis	Date:	8/13/2009	2:23:44 PI
	4 000		0.40	0.5	1 400					2	,
Fluoride	1.832	mg/L	0.10	0.5	1.402	86.1	75.3	117			
Phosphorus, Orthophosphate (As P)	4.470	mg/L	0.50	5	0	89.4	74.5	116			

Qualiflers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908207

Result	Units									
	Onits	PQL	SPK Va	SPK ref	%Rec Lo	owl_imit Hig	ghLimit	%RPD	RPDLimit	Qual
sel Range	Organics MSD				Batch ID:	19884	Analysi	s Date:	•	8/18/200
36.44	mg/Kg <i>MBLK</i>	10	50	0	72.9 Batch ID:	67.4 19884	117 Analysi	0.283 s Date:	17.4	8/17/200
ND ND	mg/Kg mg/Kg LCS	10 50			Batch ID:	19884	Analysi	s Date:		8/17/200
35.66	mg/Kg LCSD	10	50	0	71.3 Batch ID:	64.6 1 9884	116 Analysi	s Date:		8/17/200
39,25	mg/Kg <i>MS</i>	10	50	0	78.5 Batch ID:	64.6 19884	116 Analysi	9.59 s Date:	17.4	8/17/200
36.34	mg/Kg	10	50	0	72.7	67.4	117	,		
oline Rar	U				Batch ID:	19869	Analysi	s Date:	8/21/2009 1	1:49:59 Pt
27.63	mg/Kg MBLK	5.0	25	4.05	94.3 Batch ID:	69.5 19869	120	7.55	11.6 8/19/2009	
ND	mg/Kg	5.0			Batch ID:	19869	Analysi	s Date:	8/22/2009 1	2:20:12 AI
27.71	mg/Kg <i>MS</i>	5.0	25	0	111 Batch ID:	64.4 19869	133 Analysi	s Date:	8/21/2009 1	1:19:39 Pf
25.62	mg/Kg	5.0	25	4.05	86.3	69.5	120			
	36.44 ND ND 35.66 39.25 36.34 coline Rai 27.63 ND 27.71	36.44 mg/Kg	MSD 36.44 mg/Kg 10 MBLK ND mg/Kg 10 ND mg/Kg 50 LCS 35.66 mg/Kg 10 LCSD 39.25 mg/Kg 10 MS 36.34 mg/Kg 10 soline Range MSD 27.63 mg/Kg 5.0 MBLK ND mg/Kg 5.0 LCS 27.71 mg/Kg 5.0 MS	MSD 36.44 mg/Kg 10 50 MBLK ND mg/Kg 10 ND mg/Kg 50 LCS 35.66 mg/Kg 10 50 LCSD 39.25 mg/Kg 10 50 MS 36.34 mg/Kg 10 50 soline Range MSD 27.63 mg/Kg 5.0 25 MBLK ND mg/Kg 5.0 LCS 27.71 mg/Kg 5.0 25 MS	MSD 36.44 mg/Kg 10 50 0 MBLK ND mg/Kg 10 ND mg/Kg 50 LCS 35.66 mg/Kg 10 50 0 LCSD 39.25 mg/Kg 10 50 0 MS 36.34 mg/Kg 10 50 0 soline Range MSD 27.63 mg/Kg 5.0 25 4.05 MBLK ND mg/Kg 5.0 LCS 27.71 mg/Kg 5.0 25 0 MS	MSD Batch ID: 36.44 mg/Kg 10 50 0 72.9 MBLK Batch ID: ND mg/Kg 10 50 0 71.3 Batch ID: 39.25 mg/Kg 10 50 0 78.5 Batch ID: 36.34 mg/Kg 10 50 0 72.7 Soline Range Batch ID: 27.63 mg/Kg 5.0 25 4.05 94.3 Batch ID: ND mg/Kg 5.0 25 0 111 MSD 25 0 111 MSD 25 0 111 MSD 25 0				

Qualifiers:

R RPD outside accepted recovery limits

S Spike recovery outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908207

											0700207
Analyte	Result	Units	PQL	SPK V	a SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8021B: \	Volatiles										
Sample ID: 0908207-01A MSD		MSD				Batch ID:	19869	Analys	sis Date:	8/22/2009	5:23:53 AM
Methyl tert-butyl ether (MTBE)	0.9763	mg/Kg	0.10	1	0	97.6	67.9	135	1.65	28	
Benzene	0.9698	mg/Kg	0.050	1	0.0038	96.6	78.8	132	0.607	27	
Toluene	0.9600	mg/Kg	0.050	1	0	96.0	78.9	112	6.40	19	
Ethylbenzene	0.9559	mg/Kg	0.050	1	0	95.6	69.3	125	9.78	10	
Xylenes, Total	2.802	mg/Kg	0.10	3	0	93.4	73	128	10.8	13	
Sample ID: MB-19869		MBLK				Batch ID:	19869	Analys	sis Date:	8/19/2009	3:59:26 AM
Methyl tert-butyl ether (MTBE)	ND	mg/Kg	0.10								
Benzene	ND	mg/Kg	0.050								
Toluene	ND	mg/Kg	0.050								
Ethylbenzene	ND	mg/Kg	0.050								
Xylenes, Total	ND	mg/Kg	0.10								
Sample ID: LCS-19869		LCS				Batch ID:	19869	Analys	sis Date:	8/22/2009	5:54:13 AM
Methyl tert-butyl ether (MTBE)	1.038	mg/Kg	0.10	1	0	104	67.9	135			
Benzene	0.9817	mg/Kg	0.050	1	0	98.2	78.8	132			
Toluene	0.9746	mg/Kg	0.050	1	0	97.5	78.9	112			
Ethylbenzene	0.9807	mg/Kg	0.050	1	0	98.1	69.3	125			
Xylenes, Total	2.883	mg/Kg	0.10	3	0	96.1	73	128			
Sample ID: 0908207-01A MS		MS				Batch ID:	19869	Analys	is Date:	8/22/2009	4:53:33 AM
Methyl tert-butyl ether (MTBE)	0.9603	mg/Kg	0.10	. 1	0	96.0	67.9	135			
Benzene	0.9757	mg/Kg	0.050	1	0.0038	97.2	78.8	132			
Toluene	1.024	mg/Kg	0.050	1	0	102	78.9	112			
Ethylbenzene	1.054	mg/Kg	0.050	1	0	105	69.3	125			
Xylenes, Total	3.123	mg/Kg	0.10	3	0	104	73	128			

Qualifiers:

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908207

Analyte .	Result	Units	PQL	SPK Va S	PK ref	%Rec Lo	owLimit Hig	ghLimit -	%RPD	RPDLimit	Qual
Method: EPA Method 8260B:	VOLATILES										l
Sample ID: 0908207-09a MSD		MSD				Batch ID:	R34910	Analysi	is Date:	8/14/2009	8:33:28 AM
Benzene	19.82	μg/L	1.0	· 20	0	99.1	78.9	115	2.63	15	
Toluene	18.49	μg/L	1.0	20	0	92.5	80.5	105	5.51	15	
Chlorobenzene	18.59	μg/L	1.0	20	0	93.0	85	102	7.31	15	
1,1-Dichloroethene	18.09	μg/L	1.0	20	0	90.5	80.2	128	0.149	17.8	
Trichloroethene (TCE)	16.03	μg/L	1.0	20	0	80.2	70.3	125	3.32	19.8	
Sample ID: b4		MBLK				Batch ID:	R34910		is Date:	8/13/2009 1	2:54:09 PM
Benzene	ND	μg/L	1.0					-			
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	μg/L	1.0							•	
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0								
1,2,4-Trimethylbenzene	ND	μg/L μg/L	1.0								
1,3,5-Trimethylbenzene	ND	μg/L μg/L	1.0								
1,2-Dichloroethane (EDC)	ND	μg/L	1.0								
1,2-Dibromoethane (ED8)	ND	μg/L	1.0								
Naphthalene	ND	µg/L	2.0								
1-Methylnaphthalene	ND	μg/L μg/L	4.0								
2-Methylnaphthalene	ND	μg/L	4.0							•	
Acetone	ND	μg/L μg/L	10								
Bromobenzene	ND	μg/L	1.0								
Bromodichloromethane	ND	μg/L	1.0								
Bromoform	ND	μg/L	1.0								
Bromomethane	ND	μg/L	1.0								
2-Butanone	ND	μg/L μg/L	1.0							•	
Carbon disulfide	ND	μg/L	10								
Carbon Tetrachloride	ND	μg/L μg/L	1.0								
Chlorobenzene	ND	μg/L μg/L	1.0								
Chloroethane	ND	µg/L	2.0								
Chloroform	ND	µg/L	1.0								
Chloromethane	ND	μg/L	1.0								
2-Chlorotoluene	ND	μg/L	1.0								
4-Chlorotoluene	ND	μg/ L	1.0								
cis-1,2-DCE	ND	μg/L	1.0								
cis-1,3-Dichloropropene	ND	µg/L	1.0								
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0								
Dibromochloromethane	ND	μg/L	1.0								
Dibromomethane	ND	µg/L	1.0								
1,2-Dichlorobenzene	ND	µg/L	1.0								
1,3-Dichlorobenzene	ND	μg/L	1.0								
1,4-Dichlorobenzene	ND	μg/L	1.0								
Dichlorodifluoromethane	ND	µg/L	1.0								
1,1-Dichloroethane	ND	μg/L	1.0								
1,1-Dichloroethene	ND	μg/L	1.0								
1,2-Dichloropropane	ND	μg/L	1.0								
1,3-Dichloropropane	ND	μg/L	1.0								

Qualifiers:

E Estimated value

Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client: Project: XTO Energy

Davis GC F#1E

Work Order:

0908207

Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	owLimit Hig	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260B	: VOLATILES	······								
Sample ID: b4		MBLK			Batch ID:	R34910	Analysi	s Date:	8/13/2009 1	2:54:09 PI
2,2-Dichloropropane	· ND	μg/L	2.0							
1,1-Dichloropropene	ND	μg/L	1.0			t				
Hexachlorobutadiene	ND	μg/L	1.0							
2-Hexanone	ND	μg/L	10							
Isopropylbenzene	ND	μg/L	1.0							
4-!sopropyltoluene	ND	μg/L	1.0							
4-Methyl-2-pentanone	ND	μg/L	10							
Methylene Chloride	ND	μ g/L	3.0							
n-Butylbenzene	ND	μg/L	1.0	•						
n-Propylbenzene	ND	µg/L	1.0							
sec-Butylbenzene	ND	µg/L	1.0							
Styrene	ND	μg/L	1.0					•		
tert-Butylbenzene	. ND	μg/L	1.0							
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0							
1,1,2,2-Tetrachloroethane	ND	μg/L	2.0							
Tetrachloroethene (PCE)	ND	μg/L	1.0							
trans-1,2-DCE	ND	μg/L	1.0							
trans-1,3-Dichloropropene	ND	µg/L	1.0							
1,2,3-Trichlorobenzene	ND	μg/L	1.0							
1,2,4-Trichlorobenzene	ND	μg/L	1.0							
1,1,1-Trichloroethane	ND	µg/L	1.0							
1,1,2-Trichloroethane	ND	μg/L	1.0							
Trichloroethene (TCE)	ND	μg/L	1.0							
Trichlorofluoromethane	ND	μg/L	1.0							
1,2,3-Trichloropropane	ND	μg/L	2.0							
Vinyl chloride	ND	µg/L	1.0							
Xylenes, Total	ND	µg/L	1.5			•				
Sample ID: b8		MBLK			Batch ID:	R34910	Analysi	s Date:	8/14/2009	2:06:53 AN
Benzene	ND	µg/L	1.0			•	•			
Toluene	ND	µg/L µg/L	1.0							
Ethylbenzene	ND	μg/L μg/L	1.0							
Methyl.tert-butyl ether (MTBE)	ND	μg/L	1.0							
1,2,4-Trimethylbenzene	ND	µg/L	1.0						•	-
1,3,5-Trimethylbenzene	ND	µg/L	1.0							
1,2-Dichloroethane (EDC)	ND	µg/L	1.0							
1,2-Dibromoethane (EDB)	ND	μg/L	1.0							
Naphthalene	ND	µg/L	2.0							
1-Methylnaphthalene	ND	μg/L	4.0							
2-Methylnaphthalene	ND	μg/L μg/L	4.0							
Acetone	ND	µg/L µg/L	10							
Bromobenzene	ND	µg/L µg/L	1.0							
Bromodichloromethane	ND	µg/L µg/L	1.0							
Bromoform	ND	µg/L µg/L	1.0							
	NU	h8.r	1.0							

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908207

Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	wLimit Hig	ghLimit	%RPD	RPDLim	t Qual
Method: EPA Method 8260B	: VOLATILES									
Sample ID: b8		MBLK			Batch ID:	R34910	Analys	is Date:	8/14/200	9 2:06:53 AN
2-Butanone	ND	μg/L	10						J	
Carbon disulfide	ND	μg/L	10							
Carbon Tetrachloride	ND	μg/L	1.0	•						
Chlorobenzene	ND	µg/L	1.0							
Chloroethane	ND	μg/L	2.0							
Chloroform	ND	µg/L	1.0							
Chloromethane	ND	μg/L	1.0							
2-Chlorotoluene	ND ·	μg/L	1.0							
4-Chlorotoluene	ND	μg/L	1.0							
cis-1,2-DCE	ND	μg/L	1.0							
cis-1,3-Dichloropropene	ND	μg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0							
Dibromochloromethane	ND	μg/L	1.0							
Dibromomethane	ND	µg/L	1.0							
1,2-Dichlorobenzene	ND	µg/L	1.0			•		•		
1,3-Dichlorobenzene	ND	μg/L	1.0							
1,4-Dichlorobenzene	ND	μg/L	1.0							
Dichlorodifluoromethane	ND	μg/L	1.0							
1,1-Dichloroethane	ND	μg/L μg/L	1.0							
1,1-Dichloroethene	ND	μg/L	1.0							
1,2-Dichloropropane	ND	μg/L	1.0							
1,3-Dichloropropane	ND .	μg/L	1.0							
2,2-Dichloropropane	ND	μg/L μg/L	2.0			•				
1,1-Dichloropropene	ND									
Hexachlorobutadiene	ND	μg/L μg/L	1.0 1.0							
2-Hexanone	ND	μg/L	10							
	ND									
Isopropylbenzene 4-Isopropyltoluene	ND	µg/L µg/L	1.0 1.0							
4-Methyl-2-pentanone	ND	μg/L	1.0				•			
Methylene Chloride	ND	μg/L μg/L	3.0							
n-Butylbenzene	ND	μg/L	1.0							
n-Propylbenzene	ND	μg/L	1.0							
sec-Butylbenzene	ND	μg/L	1.0							
Styrene	ND	μg/L	1.0							
tert-Butylbenzene	ND	µg/L	1.0							
1,1,1,2-Tetrachloroethane	ND	μg/Ľ	1.0							
1,1,2,2-Tetrachloroethane	ND	μg/L	2.0							
Tetrachloroethene (PCE)	ND	μg/L	1.0							
trans-1,2-DCE	ND	μg/L	1.0							
trans-1,3-Dichloropropene	ND	ha\r	1.0							
1,2,3-Trichlorobenzene	ND	µg/L	1.0							
1,2,4-Trichlorobenzene	ND	hã/r	1.0							
1,1,1-Trichloroethane	ND	µg/∟	1.0				-			
1,1,2-Trichloroethane	ND	μg/L	1.0	*						

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908207

Project: Davis GC								- TOTA	Order:	0908207
Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	owLimit Hig	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260B:	VOLATILES									
Sample ID: b8		MBLK			Batch ID:	R34910	Analys	is Date:	8/14/2009	2:06:53 AN
Trichloroethene (TCE)	ND	μg/L	1.0							
Trichlorofluoromethane	ND	μg/L	1.0							
1,2,3-Trichloropropane	ND	µg/L	2.0							
Vinyl chloride	ND	μg/L	1.0							
Xylenes, Total	ND	μg/L	1.5							
Sample ID: b11		MBLK			Batch ID:	R34910	Analys	s Date:	8/14/2009	1:44:23 PN
Benzene	ND	μg/L	1.0							
Toluene	ND	μg/L	1.0							
Ethylbenzene	ND	μg/L	1.0							
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0							
1,2,4-Trimethylbenzene	ND	μg/L	1.0							
1,3,5-Trimethylbenzene	ND	μg/L	1.0							
1,2-Dichloroethane (EDC)	ND	μg/L	1.0							
1,2-Dibromoethane (EDB)	ND	μg/L	1.0							
Naphthalene	ND	μg/L	2.0	•						
1-Methylnaphthalene	ND	μg/L	4.0							
2-Methylnaphthalene	ND	μg/L	4.0							
Acetone	ND	μġ/L	10							
Bromobenzene	ND	μg/L	1.0			•				
Bromodichloromethane	ND	μg/L	1.0							
Bromoform	ND	h8\r ha\r	1.0							
Bromomethane	ND	µg/L	1.0							
2-Butanone	ND	µg/L	10							
Carbon disulfide	ND	µg/L	10							
Carbon Tetrachloride	ND	ha\r ha\r	1.0					•		
Chlorobenzene	ND		1.0							
Chloroethane	ND	µg/L µg/L	2.0						•	
Chloroform	ND	h8/F	1.0							
Chloromethane	ND		1.0							
2-Chlorotoluene	ND	µg/L	1.0							
4-Chlorotoluene	ND	µg/L µg/L	1.0							
cis-1,2-DCE	ND	μg/L μg/L	1.0							
cis-1,3-Dichloropropene	ND	μg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	μg/L μg/L	2.0							
Dibromochloromethane	ND	μg/L μg/L	1.0							
Dibromomethane	ND	μg/L	1.0							
1,2-Dichlorobenzene	ND	μg/L	1.0							
1,3-Dichlorobenzene	ND	μg/L	1.0							
1,4-Dichlorobenzene	ND	μg/L.	1.0							
Dichlorodifluoromethane	ND	μg/L	1.0							
1,1-Dichloroethane	ND	μg/L	1.0							
1,1-Dichloroethene	ND	µg/∟ µg/L	1.0					-		
1,2-Dichloropropane	ND	μg/L μg/L	1.0							
			1.0							
1,3-Dichloropropane	ND	µg/L	1.0							

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E Work Order:

0908207

Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	owLimit Hig	jhLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260B:	VOLATILES									
Sample ID: b11		MBLK			Batch ID:	R34910	Analysis	Date:	8/14/2009	1:44:23 PM
2,2-Dichloropropane	ND	μg/L	2.0							
1,1-Dichloropropene	ND	μg/L	1.0							
Hexachlorobutadiene	ND	μg/L	1.0	•						
2-Hexanone	ND	μg/L	10							
Isopropyibenzene	ND	µg/L	1.0			•				
4-isopropyltoluene	ND	μg/L	1.0							
4-Methyl-2-pentanone	ND	µg/L	10							
Methylene Chloride	ND	µg/L	3.0							
n-Butylbenzene	ND	μg/L	1.0							
n-Propylbenzene	ND	μ g /L	1.0							
sec-Butylbenzene	ND	μg/L	1.0							
Styrene	ND	μg/L	1.0					•		
tert-Butylbenzene	ND	µg/L	1.0							
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0							
1,1,2,2-Tetrachloroethane	ND	μg/L	2.0							
Tetrachloroethene (PCE)	ND	μg/L	1.0							
trans-1,2-DCE	ND	μg/L	1.0							
trans-1,3-Dichloropropene	ND	μg/L	1.0							
1,2,3-Trichlorobenzene	· ND	μg/L	1.0							
1,2,4-Trichlorobenzene	ND	μg/L	1.0							
1,1,1-Trichloroethane	ND	µg/L	1.0							
1,1,2-Trichloroethane	ND	μg/L	1.0				1			
Trichloroethene (TCE)	ND	µg/L	1.0			•				
Trichlorofluoromethane	ND	µg/L	1.0							
1,2,3-Trichloropropane	ND	μg/L	2.0							
Vinyl chloride	ND	μg/L	1.0							
Xylenes, Total	ND	μg/L	1.5							
Sample ID: 100ng lcs		LCS			Batch ID:	R34910	Analysis	s Date:	8/13/2009	1:50:06 PI
Benzene	17.48	μg/L	1.0	20 0	87.4	76.7	114			
Toluene	19.25	. μg/L	1.0	20 0	96.2	78.4	117 -			
Chlorobenzene	19.09	µg/L	1.0	20 0	95.5	80.7	127			
1,1-Dichloroethene	18.37	μg/L	1.0	20 0	91.9	80.2	128			
Trichloroethene (TCE)	11.32	µg/L	1.0	20 0	56.6	77.4	115			S
Sample ID: 100ng lcs-b		LCS			Batch ID:	R34910	Analysi	s Date:	8/14/2009	1:39:16 Ai
Benzene	18.81	µg/L	1.0	20 0	94.1	76.7	114			
Toluene	18.61	μg/L	1.0	20 0	93.0	78.4	117			
Chlorobenzene	19.02	µg/L	1.0	20 0	95.1	80.7	127			
1,1-Dichloroethene	18.89	μg/L	1.0	20 0	94.4	80.2	128			
Trichloroethene (TCE)	14.81	μg/L	1.0	20 0	74.1	77.4	115			S
Sample ID: 0908207-09a MS		MS			Batch ID:	R34910	Analysi	s Date:	8/14/2009	8:05:54 Af
Bénzene	19.30	→ µg/L	1.0	20 0	96.5	78.9	115			
Taluene	19.54	µg/L	1.0	20 0	97.7	80.5	105			
Chlorobenzene	20.00	µg/L	1.0	20 0	100	85	102			
	18.12	µg/L	1.0	20 0	90.6	80.2	128			

E Estimated value

Analyte detected below quantitation limits

RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908207

											
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hig	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260B:	VOLATILES	2							D .4	04440000	
Sample ID: 0908207-09a MS		MS				Batch ID:	R34910	Analysis	s Date:	8/14/2009	8:U5:54 AN
Trichloroethene (TCE)	15.51	μg/L	1.0	20	0	77.5	70.3	125			
Method: EPA Method 6010B: I	Dissolved Me	etals	•								
Sample ID: MB		MBLK				Batch ID:	R34935	Analysi	s Date:	8/17/2009	3:19:12 PM
Calcium	ND	mg/L	1.0								
Magnesium	ND	mg/L	1.0								
Potassium	ND	mg/L	1.0								
Sodium	ND	mg/L	1.0								•
Sample ID: LCS		LCS				Batch ID:	R34935	Analysis	s Date:	8/17/2009	3:22:13 PM
Calcium	49.11	mg/L	1.0	50.5	0	97.3	80	120			
Magnesium	49.11	mg/L	1.0	50.5	0	97.3	80	120			
Potassium	52,25	mg/L	1.0	55	0	95.0	80	120		•	
Sodium	48.51	mg/L	1.0	50.5	0	96.1	- 80	120			
Method: EPA Method 6010B: 5	Soil Metals										
Sample ID: MB-19887	Jon motaro	MBLK				Batch ID:	19887	Analysis	s Date:	8/18/2009	4:55:33 PN
Calcium	ND	mg/Kg	25					-			
Magnesium	ND	mg/Kg	25								
Potassium	ND	mg/Kg	- 50								
Sodium	ND	mg/Kg	25								
Sample ID: MB-19887	,,_	MBLK				Batch ID:	19887	Analysis	s Date:	8/20/2009 1	2:14:44 PN
Calcium	ND	mg/Kg	25							•	
Magnesium	ND	mg/Kg	25								
Potassium	ND	mg/Kg	50								
Sodium	ND	mg/Kg	25								
Sample ID: LCS-19887	,,,,	LCS				Batch ID:	19887	Analysis	s Date:	8/18/2009	4:58:37 PM
Calcium	2321	mg/Kg	25	2500	0	92.8	80	120			
Magnesium	2336	mg/Kg	25	2500	0	93.5	80	120			
Potassium	2508	mg/Kg	50	2500	0	100	80	120			
Sodium	2490	mg/Kg	25	2500	0	99.6	80	120			
Sample ID: LCS-19887	-,	LCS			-	Batch ID:	19887	Analysi	s Date:	8/20/2009 1	2:17:47 PM
Calcium	2440	mg/Kg	25	2500	0	97.6	80	120			
Magnesium	2433	mg/Kg	25	2500	0	97.3	80	120			
Potassium	2609	mg/Kg	50	2500	15.88	104	80	120			
	2628	mg/Kg			· · · · -						

Qualifiers

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Sample Receipt Checklist

Client Name XTO ENERGY			Date Receive	d:	8/13/2009
Work Order Number 0908207			Received by	: ARS	$\Omega \wedge$
		8/10	Sample ID la	abels checked by:	<u> </u>
Checklist completed by: Signature	ny	() S	10-1		Initials
Matrix:	Carrier name:	FedEx			
Shipping container/cooler in good condition?		Yes 🗹	No 🗆	Not Present	
Custody seals intact on shipping container/coole	er?	Yes 🗹	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes \square	No 🗌	N/A ☑	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and	received?	Yes 🔽	No 🗆		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers Intact?		Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🔽	No 🗌		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials subn	nitted 🗌	Yes 🗹	No 🗌	bottles checked for pH:
Water - Preservation labels on bottle and cap m	atch?	Yes 🗹	No 🗀	N/A	$\alpha = \frac{\partial}{\partial x}$
Water - pH acceptable upon receipt?		Yes 🗹	No 🗌	N/A □	>12 unless noted
Container/Temp Blank temperature?		3.0°	<6° C Acceptab		below.
COMMENTS:	•		If given sufficien	t time to cool.	
	•				
				•	
_					
Client contacted	Date contacted:		Per	son contacted	
Contacted by:	Regarding:				
Comments:				·	
		,			
Corrective Action					

Chain-of-Custody Record	d Tum-Around Time:						į	1	Ì		1		ı	
Client XTO FOO ALL TAI Du to	Dy Tehn Felly Standard Bush				I •	HALL ENVIRONMENTAL	֞֞֞֞֓֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	>	ַצְּלֵבְּ בּיבּילָבְּי		Σ,		7	
	 ac				₹ ′	ANALTSIS L		7	5	ָם פ	2	ABOKALOKY	¥	
Mailing Address: 3 5 3 18 - 316 0	21 th 10 to 3 mil	77		904 L	, ideach	www.nakelivironnenal.com	} } } }				0			
2 84	Project #:		г ′	. 10년 12년 12년	505-34	745-3975		Juduel Fay 5	դսե, Դ <u>դ.</u> 34	Fax 505-345-4107	80 6		*	
333 - 2			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				Anal	(0)	sis Request	st		1	2	
email or Fax#:	Project Manager:	1001.						(10				-		
QA/QC Package:	Kelly Blanch	ad .							s'80					
X Standard □ Level 4 (Full Validation)	ATO-May	40							7 PC					
□ Other	Sampler: Kelly Bring	Jaca 170							808					(N
□ EDD (1ype)												-0		10 人
												pin) səj
Date Time Matrix Sample Request ID	st ID Container Preservative Type and # Type	A TOTAL STATE OF THE STATE OF T	ETEX.+	eM(H9)r	M) H9T	EDB (Md	8 AЯ ЭЯ) snoinA	99 1808 	() 80928 () 0728	17/10)	omo		ddu8 1iA
8-11-09 12:00 SOIL BI (14-14,5'	5') alass fan cold		メ	1		Ь	ļ	├	 	<u> </u>	X		ļ	
8-11-69 11-30 Soil B3 (17-11-8	()	7	\searrow	~				\overline{A}		_	×			
8-11-69/14-40 soil 183 (3-3.51) Glass for	3	/	\succeq				\geq			\leq	-		
8-11-015-45 Soil B2 (15-16)) Gless Yors cold	7		\geq				X			\ge			``
8-12-09 9:58 soil By (16-16,5') dassiars cold	S	×	\bowtie				X			X			
840 400 Soil B5 (451)	Selection of the										4.	X		
8-12 cf 11:35 siil BS (16-16.51		2	X	X				X			X	<u></u>		
3-12-01 12-50 East 36 (4-5')	Harrison Cold										1-34	X		
186		FT	X	\geq				X			X			
8-12-64/220 Soil BG (6-26.57)	Blass jers cold	8	\times	\times				メ			\times			
8-12-09/1410 water Excavation Pit	Yariousty Yarious	0	_	\times				X			7	-		
C						\dashv					-			
8/12/09/1920 (College Blombon	Lange And Lange Mile	Date Time (\$\sqrt{8}/12 /425	Remarks:	ķ.										
Date: Time: Relinquisherby: 15:20 Km Hospitu.	Weconked by A	Date Time $8 3 6$												
If necessary, samples submitted to Hall Environmental may be subcontracted to other	ay be subcontracted to other accredited laboratories.	This serves as	possibility	. Amy s	np-contr	acted da	a will be	dearly	notated	on the	Inalytica	I report]

COVER LETTER

Thursday, September 17, 2009

Martin Nee XTO Energy 382 County Road 3100 Aztec, NM 87410

TEL: (505) 333-3100 FAX (505) 333-3280

RE: Davis GC F#1E

Dear Martin Nee:

Order No.: 0908234

Hall Environmental Analysis Laboratory, Inc. received 8 sample(s) on 8/14/2009 for the analyses presented in the following report.

This report is an addendum to the report dated August 28, 2009. This is an updated report.

No determination of compounds below these (denoted by the ND or < sign) has been made. Please don't hesitate to contact Hall Environmental for any additional information or clarifications.

Reporting limits are determined by EPA methodology.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

Date: 17-Sep-09

CLIENT:

XTO Energy

Project:

Davis GC F#1E

Lab Order:

0908234

CASE NARRATIVE

See Corrective Action: [2595] MB for batch 19889 for 300.0 in soil had value for SO4 in blank higher than reporting limit.

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908234

Project:

Davis GC F#1E

Lab ID:

0908234-01

Client Sample ID: B1-GW

Collection Date: 8/12/2009 2:55:00 PM

Date Received: 8/14/2009

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: LJB
Fluoride	0.46	0.10		mg/L	1	8/14/2009 3:51:54 PM
Chloride	65	2.0		mg/L	20	8/14/2009 4:09:19 PM
Nitrate (As N)+Nitrite (As N)	ND	1.0		mg/L	5	8/20/2009 1:58:35 AM
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	8/14/2009 3:51:54 PM
Sulfate	380	10		mg/L	20	8/14/2009 4:09:19 PM
EPA METHOD 6010B: DISSOLVED ME	TALS					Analyst: IC
Calcium	110	10		mg/L	10	8/24/2009 12:49:44 PM
Magnesium	23	1.0		mg/L	1	8/24/2009 12:02:42 PM
Potassium	2.5	1.0		mg/L	1	8/24/2009 12:02:42 PM
Sodium	190	10		mg/L	10	8/24/2009 12:49:44 PM
EPA METHOD 8260B; VOLATILES						Analyst: DAM
Benzene	ND	1.0		μg/L	1	8/17/2009 3:34:59 PM
Toluene	ND	1.0		μg/L	1	8/17/2009 3:34:59 PM
Ethylbenzene	ND	1.0		μg/L	1	8/17/2009 3:34:59 PM
Xylenes, Total	ND	1.5		μg/L	1	8/17/2009 3:34:59 PM
Surr: 1,2-Dichloroethane-d4	99.2	54.6-141		%REC	1	8/17/2009 3:34:59 PM
Surr: 4-Bromofluorobenzene	95.8	60.1 - 133		%REC	1	8/17/2009 3:34:59 PM
Surr: Dibromofluoromethane	103	78.5-130		%REC	1	8/17/2009 3:34:59 PM
Surr: Toluene-d8	98.3	79.5-126		%REC	1	8/17/2009 3:34:59 PM

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908234

Project:

Davis GC F#1E

Lab ID:

0908234-02

Client Sample ID: B2-GW

Collection Date: 8/12/2009 3:20:00 PM

Date Received: 8/14/2009

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS	7					Analyst: LJB
Fluoride	1.1	0.10		mg/L	1	8/14/2009 4:26:43 PM
Chloride	69	2.0		mg/L	20	8/14/2009 4:44:08 PM
Nitrate (As N)+Nitrite (As N)	1.2	1.0		mg/L	5	8/20/2009 2:16:00 AM
Phosphorus, Orthophosphate (As P)	ND	0.50	Н	mg/L	1	8/14/2009 4:26:43 PM
Sulfate	560	10		mg/L	20	8/14/2009 4:44:08 PM
EPA METHOD 6010B: DISSOLVED M	ETALS					Analyst: IC
Calcium	140	10		mg/L	10	8/24/2009 12:52:48 PM
Magnesium	32	1.0		mg/L	1	8/24/2009 12:05:54 PM
Potassium	2.7	1.0		mg/L	1	8/24/2009 12:05:54 PM
Sodium	230	10		mg/L	10	.8/24/2009 12:52:48 PM
EPA METHOD 8260B: VOLATILES						Analyst: DAM
Benzene	ND	1.0		µg/L	1	8/17/2009 4:03:22 PM
Toluene	ND	1.0		µg/L	1	8/17/2009 4:03:22 PM
Ethylbenzene	ND	1.0		µg/L	1	8/17/2009 4:03:22 PM
Xylenes, Total	ND	1.5		µg/L	1	8/17/2009 4:03:22 PM
Surr: 1,2-Dichloroethane-d4	101	54.6-141		%REC	1	8/17/2009 4:03:22 PM
Surr: 4-Bromofluorobenzene	94.7	60.1-133		%REC	1	8/17/2009 4:03:22 PM
Surr: Dibromofluoromethane	96.1	78.5-130		%REC	1	8/17/2009 4:03:22 PM
Surr: Toluene-d8	95.4	79.5-126		%REC	1	8/17/2009 4:03:22 PM

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908234

Project:

Davis GC F#1E

Lab ID:

0908234-03

Client Sample ID: B4-GW

Collection Date: 8/13/2009 9:00:00 AM

Date Received: 8/14/2009

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS	-				Analyst: LJB
Fluoride	1.4	0.10	mg/L	1	8/14/2009 5:01:33 PM
Chloride	110	2.0	mg/L	20	8/14/2009 5:18:58 PM
Nitrogen, Nitrite (As N)	ND	2.0	mg/L	20	8/14/2009 5:18:58 PM
Nitrogen, Nitrate (As N)	4.0	0.10	mg/L	1	8/14/2009 5:01:33 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	8/14/2009 5:01:33 PM
Sulfate	1600	25	mg/L	50	8/17/2009 7:54:41 PM
EPA METHOD 6010B: DISSOLVED ME	TALS				Analyst: IC
Calcium	160	10	mg/L	10	8/24/2009 12:55:52 PM
Magnesium	33	1.0	mg/L	1	8/24/2009 12:11:48 PM
Potassium	3.5	1.0	mg/L	1	8/24/2009 12:11:48 PM
Sodium	590	10	mg/L	10	8/24/2009 12:55:52 PM
EPA METHOD 8260B: VOLATILES					Analyst: DAM
Benzene	ND	1.0	μg/L	1	8/17/2009 4:31:48 PM
Toluene	ND	1.0	μg/L	1	8/17/2009 4:31:48 PM
Ethylbenzene	ND	1.0	μg/L	1	8/17/2009 4:31:48 PM
Xylenes, Total	ND	1.5	μg/L	1	8/17/2009 4:31:48 PM
Surr: 1,2-Dichloroethane-d4	96.4	54.6-141	%REC	1	8/17/2009 4:31:48 PM
Surr: 4-Bromofluorobenzene	96.7	60.1-133	%REC	1	8/17/2009 4:31:48 PM
Surr: Dibromofluoromethane	99.9	78.5-130	%REC	1	8/17/2009 4:31:48 PM
Surr: Toluene-d8	94.2	79.5-126	%REC	1	8/17/2009 4:31:48 PM

^{*} Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Client Sample ID: B5-GW

Lab Order:

0908234

Collection Date: 8/13/2009 9:20:00 AM

Project:

Davis GC F#1E

Date Received: 8/14/2009

Lab ID:

0908234-04

Matrix: AQUEOUS

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: LJB
Fluoride	0.78	0.10	mg/L	1	8/14/2009 5:36:22 PM
Chloride	200	2.0	mg/L	20	8/14/2009 5:53:46 PM
Nitrogen, Nitrite (As N)	ND	2.0	mg/L	20	8/14/2009 5:53:46 PM
Nitrogen, Nitrate (As N)	1.9	0.10	mg/L	1	8/14/2009 5:36:22 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	8/14/2009 5:36:22 PM
Sulfate	1500	25	mg/L	50	8/17/2009 8:12:05 PM
EPA METHOD 6010B: DISSOLVED ME	TALS				Analyst: SNV
Calcium	210	10	mg/L	10	8/18/2009 10:26:35 AM
Magnesium	42	1.0	mg/L	1	8/17/2009 4:30:46 PM
Potassium	4.6	1.0	mg/L	1	8/17/2009 4:30:46 PM
Sodium	√ 510	10	mg/L	10	8/18/2009 10:26:35 AM
EPA METHOD 8260B: VOLATILES					Analyst: DAM
Benzene	ND	1.0	µg/L	1	8/17/2009 5:00:15 PM
Toluene	ND	1.0	μg/L	1	8/17/2009 5:00:15 PM
Ethylbenzene	ND	1.0	μg/L	1	8/17/2009 5:00:15 PM
Xylenes, Total	ND	1.5	μg/L	1	8/17/2009 5:00:15 PM
Surr: 1,2-Dichloroethane-d4	95.5	54.6-141	%REC	1	8/17/2009 5:00:15 PM
Surr: 4-Bromofluorobenzene	95.5	60.1-133	%REC	1	8/17/2009 5:00:15 PM
Surr: Dibromofluoromethane	98.9	78.5-130	%REC	1	8/17/2009 5:00:15 PM
Surr: Toluene-d8	95.4	79.5-126	%REC	1	8/17/2009 5:00:15 PM

Ona	Kfi	ers

Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

MCL Maximum Contaminant Level

Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908234

Project:

Davis GC F#1E

Lab ID:

0908234-05

Client Sample ID: B6-GW

Collection Date: 8/13/2009 9:40:00 AM

Date Received: 8/14/2009

Matrix: AQUEOUS

Analyses	Result	PQL (Qual Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS					Analyst: L JB
Fluoride	1.1	0.10	mg/L	1	8/14/2009 6:11:11 PM
Chloride	430	5.0	mg/L	50	8/17/2009 8:29:30 PM
Nitrogen, Nitrite (As N)	ND	2.0	mg/L	20	8/14/2009 6:28:36 PM
Nitrogen, Nitrate (As N)	. 14	2.0	mg/L	20	8/14/2009 6:28:36 PM
Phosphorus, Orthophosphate (As P)	ND	0.50	mg/L	1	8/14/2009 6:11:11 PM
Sulfate	2700	50	mg/L	100	8/17/2009 8:46:55 PM
EPA METHOD 6010B: DISSOLVED MI	ETALS			•	Analyst: SNV
Calcium	430	10	mg/L	10	8/18/2009 10:29:40 AM
Magnesium	84	1.0	mg/L	1	8/17/2009 4:35:08 PM
Potassium	9.5	1.0	mg/L	1	8/17/2009 4:35:08 PM
Sodium	840	10	· mg/L	10	8/18/2009 10:29:40 AM
EPA METHOD 8260B: VOLATILES					Analyst: DAM
Benzene	ND	1.0	μg/L	1	8/17/2009 5:28:38 PM
Toluene	ND	1.0	μg/L	1	8/17/2009 5:28:38 PM
Ethylbenzene	ND	1.0	µg/L	1	8/17/2009 5:28:38 PM
Xylenes, Total	ND	1.5	μg/L	1	8/17/2009 5:28:38 PM
Surr: 1,2-Dichloroethane-d4	96.2	54.6-141	%REC	1	8/17/2009 5:28:38 PM
Surr: 4-Bromofluorobenzene	92.3	60.1-133	%REC	1	8/17/2009 5:28:38 PM
Surr: Dibromofluoromethane	98.0	78.5-130	%REC	1	8/17/2009 5:28:38 PM
Surr: Toluene-d8	98.8	79.5-126	%REC	1	8/17/2009 5:28:38 PM

O	1:6:		
Qua	1111	ers.	

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908234

Project:

Davis GC F#1E

Lab ID:

0908234-06

Client Sample ID: West Wall Composite (7-17')

Collection Date: 8/13/2009 10:40:00 AM

Date Received: 8/14/2009

Matrix: SOIL

A 1	Dagult	DOI	Oust I	Inita	DE	Data Analyzad
Analyses	Result	PQL	Quai U	nus	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS					Analyst: SCC
Diesel Range Organics (DRO)	28	10	n	ng/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	110	50	n	ng/Kg	1	8/18/2009
Surr: DNOP	86.0	61.7-135	9	6REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSE
Gasoline Range Organics (GRO)	ND	10	n	ng/Kg	2	8/19/2009 12:26:26 AM
Surr: BFB	90.0	58.8-123	9	6REC	2	8/19/2009 12:26:26 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSE
Benzene	ND	0.10	n	ng/Kg	2	8/19/2009 12:26:26 AM
Toluene	ND	0.10	n	ng/Kg	2	8/19/2009 12:26:26 AM
Ethylbenzene	ND	0.10	n	ng/Kg	2	8/19/2009 12:26:26 AM
Xylenes, Total	ND	0.20	n	ng/Kg	2	8/19/2009 12:26:26 AN
Surr: 4-Bromofluorobenzene	96.1	66.8-139	9	4REC	2	8/19/2009 12:26:26 AM
EPA METHOD 300.0: ANIONS						Analyst: TAF
Fluoride	2.5	1.5	n	ng/Kg	5	8/17/2009 3:57:59 PM
Chloride	280	1.5	n	n g/Kg	5	8/17/2009 3:57:59 PM
Nitrogen, Nitrite (As N)	ND	1.5	n	ng/Kg	5	8/17/2009 3:57:59 PM
Nitrogen, Nitrate (As N)	3.8	1.5	n	n g/Kg	5	8/17/2009 3:57:59 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	n	ng/Kg	5	8/17/2009 3:57:59 PM
Sulfate	1000	75	n	ng/Kg	50	8/17/2009 4:15:24 PM
EPA METHOD 6010B: SOIL METALS		•				Analyst: SNV
Calcium	4200	130	· n	ng/Kg	5	8/20/2009 12:07:22 PM
Magnesium	930	130	n	ng/Kg	5	8/20/2009 12:07:22 PM
Potassium	380	250	n	ng/Kg	5	8/20/2009 12:07:22 PM
Sodium	690	130	n	ng/Kg	5	8/20/2009 12:07:22 PM

_		
Qua	dific	ers:

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908234

Project:

Davis GC F#1E

Lab ID:

0908234-07

Client Sample ID: South Wall (14-17')

Collection Date: 8/13/2009 3:00:00 PM

Date Received: 8/14/2009

Matrix: SOIL

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE	ORGANICS			· · · · · · · · · · · · · · · · · · ·	Analyst: SCC
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/18/2009
Surr: DNOP	86.5	61.7-135	%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RAI	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/ Kg	1	8/19/2009 12:56:54 AM
Surr. BFB	85.5	58.8-123	%REC	1	8/19/2009 12:56:54 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	1	8/19/2009 12:56:54 AM
Toluene	ND	0.050	mg/Kg	1	8/19/2009 12:56:54 AM
Ethylbenzene	ND	0.050	mg/Kg	1	8/19/2009 12:56:54 AM
Xylenes, Total	ND	0.10	mg/Kg	1	8/19/2009 12:56:54 AM
Surr: 4-Bromofluorobenzene	95.6	66.8-139	%REC	1	8/19/2009 12:56:54 AM
EPA METHOD 300.0: ANIONS					Analyst: TAF
Fluoride	2.4	1.5	mg/Kg	5	8/17/2009 4:32:49 PM
Chloride	70	1.5	mg/Kg	5	8/17/2009 4:32:49 PM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	8/17/2009 4:32:49 PM
Nitrogen, Nitrate (As N)	3.1	1.5	mg/Kg	5	8/17/2009 4:32:49 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 4:32:49 PM
Sulfate	1700	75	mg/Kg	50	8/17/2009 4:50:13 PM
EPA METHOD 6010B: SOIL METALS					Analyst: SNV
Calcium	7500	120	mg/Kg	5	8/20/2009 12:11:54 PM
Magnesium	810	25	mg/Kg	1	8/18/2009 6:06:44 PM
Potassium	290	50	mg/Kg	1	8/18/2009 6:06:44 PM
Sodium	280	25	mg/Kg	1	8/18/2009 6:06:44 PM

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
 - RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908234

Davis GC F#1E

Project: Lab ID:

0908234-08

Client Sample ID: TRIP BLANK

Collection Date:

Date Received: 8/14/2009

Matrix: TRIP BLANK

Analyses	Result	sult PQL Qual Units		DF	Date Analyzed		
EPA METHOD 8260B: VOLATILES	·				Analyst: DAM		
Benzene	ND	1.0	μg/L	1	8/17/2009 5:56:58 PM		
Toluene	ND	1.0	μg/L	1	8/17/2009 5:56:58 PM		
Ethylbenzene	ND	1.0	μg/L	1	8/17/2009 5:56:58 PM		
Xylenes, Total	ND	1.5	μg/L	1	8/17/2009 5:56:58 PM		
Surr: 1,2-Dichloroethane-d4	98.5	54.6-141	%REC	1	8/17/2009 5:56:58 PM		
Surr: 4-Bromofluorobenzene	94.9	60.1-133	%REC	1	8/17/2009 5:56:58 PM		
Surr: Dibromofluoromethane	98.2	78.5-130	%REC	1	8/17/2009 5:56:58 PM		
Surr: Toluene-d8	98.8	79.5-126	%REC	1	8/17/2009 5:56:58 PM		

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
 - RL Reporting Limit

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908234

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	wLimit Hig	ghLimit %RP	D RPDLimit Qual
Method: EPA Method 300.0: Ani	ons								į
Sample ID: MB-19889	*	MBLK				Batch ID:	19889	Analysis Date:	8/17/2009 12:11:39 PN
Fluoride	ND	mg/Kg	0.30						
Chloride	ND	mg/Kg	0.30						
Nitrogen, Nitrite (As N)	ND -	mg/Kg	0.30						
Nitrogen, Nitrate (As N)	ND	mg/Kg	0.30						
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5						
Sulfate	3.201	mg/Kg	1.5						
Sample ID: MB-19889		MBLK				Batch ID:	19889	Analysis Date:	8/18/2009 2:07:17 AM
Fluoride	ND	mg/Kg	0.30						
Chloride	ND	mg/Kg	0.30						
Nitrogen, Nitrite (As N)	ND	mg/Kg	0.30						
Nitrogen, Nitrate (As N)	ÑD	mg/Kg	0.30						
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5						
Sulfate	2.985	mg/Kg	1.5						
Sample ID: LCS-19889		LCS				Batch ID:	19889	Analysis Date:	8/17/2009 12:29:03 PM
Fluoride	1.557	mg/Kg	0.30	1.5	0	104	90	110	
Chloride	14.71	mg/Kg	0.30	15	0	98.0	90	1 1 0	
Nitrogen, Nitrite (As N)	2.990	mg/Kg	0.30	3	0	99.7	90	110 -	
Nitrogen, Nitrate (As N)	7.378	mg/Kg	0.30	7.5	0	98.4	90	110	v ·
Phosphorus, Orthophosphate (As P)	14.57	mg/Kg	1.5	15	0	97.1	90	110	
Sulfate	29.49	mg/Kg	1.5	30	2.985	88.4	90	110	BS

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908234

Analyte	Result	Units	PQL	SPK Va SPK re	%Rec L	owLimit Hig	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 300.0: Ani	ons							,
Sample ID: MB		MBLK			Batch ID:	R34924	Analysis Date:	8/14/2009 8:54:06 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrogen, Nitrite (As N)	ND	mg/L	0.10					
Nitrogen, Nitrate (As N)	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					•
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50		٠			
Sulfate	ND	mg/L	0.50					
Sample ID: MB		MBLK			Batch ID:	R34944	Analysis Date:	8/17/2009 8:53:05 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrogen, Nitrite (As N)	ND	mg/L	0.10					
Nitrogen, Nitrate (As N)	ND	mg/L	0.10					
Phosphorus, Orthophosphate (As P)	ND .	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB		MBLK			Batch ID:	R34961	Analysis Date:	8/18/2009 10:29:06 AM
Fluoride	ND	mg/L	0.10					
Chtoride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20					
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: MB		MBLK			Batch ID:	R34971	Analysis Date:	8/19/2009 11:28:08 AM
Fluoride	ND	mg/L	0.10					
Chloride	ND	mg/L	0.10					
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20	•				
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50					
Sulfate	ND	mg/L	0.50					
Sample ID: LCS		LCS			Batch ID:	R34924	Analysis Date:	8/14/2009 9:11:31 AM
Fluoride	0.5038	mg/L	0.10	0.5 0	101	90	110	
Chloride	4.778	mg/L	0.10	5 0	95.6	90	110	
Nitrogen, Nitrite (As N)	0.9352	mg/L	0.10	1 0	93.5	90	110	
Nitrogen, Nitrate (As N)	2.418	mg/L	0.10	2.5 0	96.7	90	110	
Nitrate (As N)+Nitrite (As N)	3.353	mg/L	0.20	3.5 0	95.8	90	110	
Phosphorus, Orthophosphate (As P)		mg/L	0.50	5 0	97.7	90	110	
Sulfate	9.849	mg/L	0.50	10 0	98.5	90	110	
Sample ID: LCS	*	LCS			Batch ID:	R34944	Analysis Date:	8/17/2009 9:10:30 AM
Fluoride	0.4744		0.10	0.5 0	94.9	90	110	
Chloride	4.793	mg/L mg/L	0.10	0.5 0 5 0	95.9	90	110	
	4.793 0.9172	mg/L	0.10	1 0	91.7	90	110	
Nitrogen, Nitrite (As N) Nitrogen, Nitrate (As N)	2.438	mg/L	0.10	2.5 0	97.5	90	110	•
-			0.10	5 0	96.3	90	110	
Phosphorus, Orthophosphate (As P)	9.772	mg/L	0.50	10 0	97.7	90	110	
Sulfate	9.116	mg/L LCS	0.50	10 0	Batch ID:	R34961	Analysis Date:	8/18/2009 10:46:30 Af
Sample ID: LCS	0.6400		0.40	0.5. 0	104	90	110	0, 10/2003 10.40.30 AF
Fluoride	0.5198	mg/L	0.10	0.5 0	104	90	110	

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908234

Troject. Davis GCT#	115								- AA O1 K	Oruer:	0908234
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 300.0: Ani	ons									0/40/0000	
Sample ID: LCS		LCS				Batch ID:	R34961	•	s Date:	8/18/2009 1	0:46:30 AM
Chloride	4.931	mg/L	0.10	5	0	98.6	90	110			
Nitrate (As N)+Nitrite (As N)	3.454	mg/L	0.20	3.5	0	98.7	90	110			
Phosphorus, Orthophosphate (As P)		mg/L	0.50	5	0	99.4	90	110			
Sulfate	10.03	mg/L	0.50	10	. 0	100	90	110			
Sample ID: LCS		LCS				Batch ID:	R34971	Analysi	is Date:	8/19/2009 1	1:45:32 AN
Fluoride	0.5090	mg/L	0.10	0.5	0	102	90	110			
Chloride	4.761	mg/L	0.10	5	0	95.2	90	110			
Nitrate (As N)+Nitrite (As N)	3.345	mg/L	0.20	3.5	0	00.0	90	110			
Phosphorus, Orthophosphate (As P)		mg/L	0.50	5	0	96.2	90	110			
Sulfate	9.624	mg/L	0.50	10_	0	96.2	90	110			
Method: EPA Method 8015B; Di Sample ID: MB-19884	esel Range	e O r ganics <i>MBLK</i>	,			Batch ID:	19884	Analysi	is Date:		8/17/2009
Diesel Range Organics (DRO)	ND	mg/Kg	10								
Motor Oil Range Organics (MRO)	ND	mg/Kg	50								
Sample ID: LCS-19884		LCS				Batch ID:	19884	Analys	is Date:		8/17/2009
Diesel Range Organics (DRO)	35.66	mg/Kg	10	50	0	71.3	64.6	116			
Sample ID: LCSD-19884		LCSD				Batch ID:	19884	Analys	is Date:		8/17/2009
Diesel Range Organics (DRO)	39.25	mg/Kg	10	50	0	78.5	64.6	116	9.59	17.4	
Method: EPA Method 8015B: Ga	asoline Ra	_									
Sample ID: 0908234-07A MSD	•	MSD				Batch ID:	19881	Analys	is Date:		1:20:59 AN
Gasoline Range Organics (GRO)	24.75	mg/Kg	5.0	25	2.92	87.3	69.5	120	6.53	11.6	
Sample ID: MB-19881		MBLK	•			Batch ID:	19881	Analys	is Date:	8/19/2009	4:30:09 AN
Gasoline Range Organics (GRO)	ND	mg/Kg	5.0			,					
Sample ID: LCS-19881		LCS				Batch ID:	19881	Analys	is Date:	8/22/2009	1:51:16 AM
Gasoline Range Organics (GRO)	26.50	mg/Kg	5.0	25	0	106	64.4	133			
Sample ID: 0908234-07A MS		MS				Batch ID:	19881		is Date:	8/22/2009	12:50:46 AN
Gasoline Range Organics (GRO)	26.42	mg/Kg	5.0	25	2.92	94.0	69.5	120			
Tattimo (tango organios (orto)		59	5.0	_0		· ···	2				

					_
O	119	li	fi	er	

E Estimated value

R RPD outside accepted recovery limits

S Spike recovery outside accepted recovery limits

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908234

	· ——	١								
Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
olatiles										
	MSD				Batch ID:	19881	Analys	is Date:	8/22/2009	6:55:04 AM
0.9896	mg/Kg	0.10	1	. 0	99.0	67.9	135	1.49	28	
0.9577	mg/Kg	0.050	1	0.0039	95.4	78.8	132	1.46	27	
0.9437	mg/Kg	0.050	1	0	94.4	78.9	112 .	0.734	19	
0.9408	mg/ Kg	0.050	1	0	94.1	69.3	125	0.908	10	
2.747	mg/Kg	0.10	3	0 -	91.6	73	128	0.215	13	
	MBLK				Batch ID:	19881	Analys	is Date:	8/19/2009 4	4:30:09 AM
ND	mg/Kg	0.10								
ND	mg/Kg	0.050	•							
ND	mg/Kg	0.050								
ND	mg/Kg	0.050								
ND	mg/Kg	0.10					•			
	LCS				Batch ID:	19881	Analys	is Date.	8/23/2009 4	4:58:36 AM
0.8267	mg/Kg	0.10	1	0	82.7	67.9	135			
0.9609	mg/Kg	0.050	1	0.0029	95.8	78.8	132			
0.9366	mg/Kg	0.050	1	0	93.7	78.9	112			
0.9119	mg/Kg	0.050	1	0	91.2	69.3	125			
2.702	mg/Kg	0.10	3	0	90.1	73	128			-
	MS				Batch ID:	19881	Analys	is Date:	8/22/2009 6	6:24:34 AM
0.9750	mg/Kg	0.10	1	0	97.5	67.9	135			
0.9438	mg/Kg	0.050	1	0.0039	94.0	78.8	132			
0.9368	mg/Kg	0.050	. 1	0	93.7	78.9	112			
0.9323	mg/Kg	0.050	1	0	93.2	69.3	125			
2.741	mg/Kg	0.10	3	0	91.4	73	128			
	Olatiles 0.9896 0.9577 0.9437 0.9408 2.747 ND ND ND ND ND ND ND 0.8267 0.9609 0.9366 0.9119 2.702 0.9750 0.9438 0.9368 0.9323	/olatiles //olati	### ### ### ### ### ### ### ### ### ##	/olatiles //olati	/olatiles //olati	/olatiles //Olati	Volatiles MSD Batch ID: 19881 0.9896 mg/Kg 0.10 1 0 99.0 67.9 0.9577 mg/Kg 0.050 1 0.0039 95.4 78.8 0.9437 mg/Kg 0.050 1 0 94.4 78.9 0.9408 mg/Kg 0.050 1 0 94.1 69.3 2.747 mg/Kg 0.10 3 0 91.6 73 MBLK Batch ID: 19881 ND mg/Kg 0.050 ND mg/Kg 0.050 ND mg/Kg 0.050 ND mg/Kg 0.050 ND mg/Kg 0.050 ND mg/Kg 0.050 ND mg/Kg 0.050 ND mg/Kg 0.050 ND mg/Kg 0.050 0.9609 mg/Kg 0.050 1 0.0029 95.8 78.8		MSD	MSD

Qualifi	ers	;
---------	-----	---

E Estimated value

R RPD outside accepted recovery limits

S Spike recovery outside accepted recovery limits

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908234

Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	wLimit Hig	jh Limit	%RPD	RPDLimit	Quai
Method: EPA Method 8260B:	VOLATILES									
Sample ID: 5ml rb		MBLK			Batch ID:	R34941	Analys	is Date:	8/17/2009	8:58:35 Al
Benzens	ND	μg/L	1.0			•				
Toluene	ND	µg/L	1.0				•			
Ethylbenzene	ND	μg/L	1.0							
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0							
1,2,4-Trimethylbenzene	ND	μg/L	1.0							
1,3,5-Trimethylbenzene	ND	μg/L	1.0							
1,2-Dichloroethane (EDC)	ND	µg/L	1.0						14	
1,2-Dibromoethane (EDB)	ND	μg/L	1.0							
Naphthalene	ND	μg/L	2.0							
1-Methylnaphthalene	ND	μg/L	4.0					•		
2-Methylnaphthalene	ND	µg/L	4.0							
Acetone	ND	μg/L	10							
Bromobenzene	ND	μg/L	1.0							
Bromodichloromethane	ND	μg/L	1.0							
Bromoform	ND	µg/L	1.0							
Bromomethane	ND	μg/L	1.0							
2-Butanone	ND	μg/L	10							
Carbon disulfide	ND	μg/L	10							
Carbon Tetrachloride	ND	μg/L	1.0							
Chlorobenzene	ND >	µg/L	1.0							
Chloroethane	ND	μg/L	2.0							
Chloroform	ND	μg/L	1.0							
Chloromethane	ND	μg/L	1.0							
2-Chlorotoluene	ND	μg/L	1.0				٠			
4-Chlorotoluene	ND	μg/L	1.0							
cis-1,2-DCE	ND	μg/L	1.0							
cis-1,3-Dichloropropene	ND	µg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0				•			
Dibromochloromethane	ND	μg/L	1.0							
Dibromomethane	ND	μg/L	1.0							
1,2-Dichlorobenzene	ND	μg/L	1.0							
1,3-Dichlorobenzene	ND	μg/L	1.0							
1,4-Dichlorobenzene	ND	μg/L	1.0							
Dichlorodifluoromethane	ND	μg/L	1.0							
1,1-Dichloroethane	ND	µg/L	1.0							
1,1-Dichloroethene	ND	μg/L	1.0							
1,2-Dichloropropane	ND	μg/L	1.0							
1,3-Dichloropropane	ND	μg/L	1.0							
2,2-Dichloropropane	ND	μg/L	2.0							
1,1-Dichloropropene	ND	μg/L	1.0							
Hexachlorobutadiene	ND	μg/L	1.0							
2-Hexanone	ND	μg/L	10							
Isopropylbenzene	ND	μg/L	1.0							
4-Isopropyltoluene	ND	μg/L -	1.0							

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908234

Analyte	Result	Units	PQL	SPK Va SPK ro	of %Rec L	.owLimit Hi	ghLimlt %RPD	RPDLimit Qual
Method: EPA Method 8260 Sample ID: 5ml rb	B: VOLATILES	MBLK			Batch ID:	R34941	Analysis Date:	8/17/2009 8:58:35 AM
4-Methyl-2-pentanone	ND	µg/L	10				•	
Methylene Chloride	ND	μg/L	3.0	•				1.
n-Butylbenzene	, ND	μg/L	1.0				·	
n-Propylbenzene	ND	μg/L	1.0					
sec-Butylbenzene	ND .	μg/L	1.0					
Styrene	ND	μg/L	1.0					
tert-Butylbenzene	ND	μg/L	1.0	•				
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0					
1,1,2,2-Tetrachloroethane	ND	μg/L	2.0					
Tetrachloroethene (PCE)	ND	µg/L	1.0	•				
trans-1,2-DCE	ND	μg/L	1.0					
trans-1,3-Dichloropropene	ND	μg/L	1.0					
1,2,3-Trichlorobenzene	ND	μg/L	1.0					
1,2,4-Trichtorobenzene	ND	μg/L	1.0					
1,1,1-Trichloroethane	ND	μg/L	1.0					
1,1,2-Trichloroethane	ND	μg/L	1.0					
Trichloroethene (TCE)	ND	μg/L	1.0	•				
Trichlorofluoromethane	ND	μg/L	1.0					
1,2,3-Trichloropropane	ND	μg/L	2.0					
Vinyl chloride	ND	µg/L	1.0					
Xylenes, Total	ND	μg/L	1.5					
Sample ID: 100ng ics		LCS			Batch ID:	R34941	Analysis Date:	8/17/2009 9:54:43 AM
Benzene	22.50	μg/L	1.0	20 0	113	76.7	114	
Toluene	20.05	μg/L	1.0	20 0	100	78.4	117	
Chlorobenzene	20.10	μg/L	1.0	20 0	100	80.7	127	
1,1-Dichloroethene	25.15	μg/L	1.0	20 0	126	80.2	128	
Trichloroethene (TCE)	24.23	μg/L	1.0	20 0	121	77.4	115	S

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project:

Davis GC F#1E

Work Order:

0908234

Analyte		Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	wLimit Hig	ghLimit %RPD	RPDLimit Qual
	EPA Method 6010	B: Dissolved M								
Sample ID:	МВ	•	MBLK				Batch ID:	R34935	Analysis Date:	8/17/2009 3:19:12 PI
Calcium		ND	mg/L	1.0	•					
Magnesium		ND	mg/L	1.0						
Potassium		ND	mg/L	1.0						
Sodium		ND	mg/L	1.0						
Sample ID:	MB		MBLK				Batch ID:	R35008	Analysis Date:	8/24/2009 11:08:34 At
Calcium		ND	mg/L	1.0						
Magnesium		ND	mg/L	1.0						
Potassium		ND	mg/L	1.0						
Sodium		ND	mg/L	1.0						
Sample ID:	LCS		LCS				Batch ID:	R34935	Analysis Date:	8/17/2009 3:22:13 PI
Calcium		49.11	mg/L	1.0	50.5	0	97.3	80	120	
Magnesium	•	49.11	mg/L	1.0	50.5	0	97.3	80	120	
Potassium		52.25	mg/L	1.0	55	О	95.0	80	120	
Sodium		48.51	mg/L	1.0	50.5	0	96.1	80 .	120	
Sample ID:	LCS		LCS				Batch ID:	R35008	Analysis Date:	8/24/2009 11:11:37 A
Calcium		51.07	mg/L	1.0	50.5	0.0429	101	80	120	
Magnesium		51.62	mg/L	1.0	50.5	0.0213	102	80	120	
Potassium		56.10	mg/L	1.0	55	0.1766	102	80	120	
Sodium		51.14	mg/L	1.0	50.5	0.0804	101	80	120	
Method:	EPA Method 6010	B: Soil Metals								
	MB-19887	2. 30 11 111011110	MBLK				Batch ID:	19887	Analysis Date:	8/18/2009 4:55:33 P
Calcium	•	ND	mg/Kg	25					•	
Magnesium		ND	mg/Kg	25						
Potassium		ND	mg/Kg	50						
Sodium	•	ND	mg/Kg	25						
	MB-19887		MBLK				Batch ID:	19887	Analysis Date:	8/20/2009 12:14:44 P
Calcium		ND	mg/Kg	25					•	
Magnesium		ND	mg/Kg	25						
Potassium		ND	mg/Kg	50						
Sodium		ND	mg/Kg	25						
Sample ID:	LCS-19887		LCS				Batch ID:	19887	Analysis Date:	8/18/2009 4:58:37 P
Calcium		2321	mg/Kg	25	2500	0	92.8	80	120	
Magnesium		2336	mg/Kg	25	2500	0	93.5	80	120	
Potassium		2508	mg/Kg	50	2500	0	100	80	120	•
Sodium		2490	mg/Kg	25	2500	0	99.6	80	120	
	LCS-19887		LCS				Batch ID:	19887	Analysis Date:	8/20/2009 12:17:47 P
Calcium		2440	mg/Kg	25	2500	0	97.6	. 80	120	
Magnesium		2433	mg/Kg	25	2500	0	97.3	80	120	
Potassium		2609	mg/Kg	50	2500	15.88	104	80	120	
Sodium		2628	mg/Kg	25	2500	0	105	80	120	

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Sample Receipt Checklist

Client Name XTO ENERGY			Date Received	d:	8/14/2009
Work Order Number 0908234			Received by	: TLS	
Checklist completed by:		8//4 Date	Sample ID la	bels checked by:	Initials
Matrix:	Carrier name:	<u>FedEx</u>	·		
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipping container/coole	er?	Yes 🗹	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	N/A ✓	
Chain of custody present?		Yes 🗹	No 🗌	•	
Chaln of custody signed when relinquished and	received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌		•
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗌		Number of preserved
Water - VOA vials have zero headspace?	No VOA vials subm	nitted 🗌	Yes 🗹	No 🗌	bottles checked for pH:
Water - Preservation labels on bottle and cap m	atch?	Yes 🗹	No 🗌	N/A	
Water - pH acceptable upon receipt?	•	Yes 🗹	No 🗀	N/A 🗌	2 >12 unless noted below.
Container/Temp Blank temperature?		0.1°	<6° C Acceptab		Depon.
COMMENTS:			If given sufficient	time to cool.	
		== = =	======		
Client contacted	Date contacted:	····	Pers	on contacted	
Contacted by:	Regarding:				
Comments:					
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
· .					
Corrective Action					

					-																						
							·		(1	/ 1c	<u>(</u>	seldo	ivB ₁iA	1	ļ.			<u> </u>									
	날 6	Z													ļ					<u> </u>							
	<u> </u>	5				1					A	· . · · · ·		<u> </u>					<u> </u>							,	
	2 2	- 1	_	_							Ġ	Hou	FIN			>			\geq			\geq			X		
	7	2	5	2	_						5	VQĮ	tras		X			\times			X			X			
			E 5	ro :	505-345-4107				·	(A	OΛ-	ima2) 0728													ĺ	
	O t		S 2	ِ اِ ان ا	345	Request					()	10N)	8260B	×			\times			$\overline{\mathbf{x}}$,		$\overline{\times}$				
		1	Jent	ָבָּבְיבָּיבְיבָּיבְיבָּיבְיבָּיבְיבָּיבְיבָיבְיבָיבְיבָיבְיבְיבָיבְיבָיבְיבָיבְיבָיבְיבָיבְיבָיבְיבָיבְיבָיבְ	05	i G G	8,8	Dd i	2808	8 / 8	sebi	oitse	1 1808														٠
	> !	1	מיס מ		Fax		(bosi	bo ^t	10 ⁵ '	1, _E C	JN'i	O,7) a	suoinA	NAW.	>			×			X			ス			
	E V	ָרֵי נ <u>י</u>	envi	֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֓֓֓֟ ֓	4	ıaly					slet	eM 8	ARCRA	7				-	-								
	4		ਜੂ ਸੂਬ ਸੂਬ		(S	\mathbf{V}_{i}			(1	H∀¢	J 10	ANG) 0168				<u> </u>	 									
	HALL ENVIRONMENTAL		www.hallenvironmental.com	2 6	Tel. 505-345-3975			P	(1	70	g po	Metho	EDB (I					ļ									
	I <	(د ز		45								I) HqT	 	<u> </u>											i	
			2	ָם -	သို		(ləsəiC]/88;					N H9T	173			de									; 	
100			Š	<u>}</u>	lei.		(Vlno s							1.111		25	5.114	,								rks:	
•		21 30 g			***								Xata													Remarks	
				Ţ	₹.	9								-												<u>ĸ</u>	1
							Λ.						Ū													Φ.	6)
							E /	.					٦,														Time
						ı	20	}					ž		-	_	B	B	B		m	M	7	2	3	, 5	_o
			ť			ŀ	3 5	,	z	100			G							8						Date (Date
	ير		71)				\$ 65	:	Blancharz			t)				3			<u>_</u>			2			3	•	
	□ Rush		五			Ì	3/2	اً کا	km			Preservative	Ф		ر ما	hoseH/		9	17463/H2Su		7	HNB2/H2504		7	HNC3) H25	Blillog	_
<u>ن</u>			正				3,3	- ₹	73			sen	Туре	HCI	None	/ EQNIH		None	(2)	HCI	Nene	(63)	Ü	None	3		_
Ë	_	 	の田田				ger.	Eneran	M		200	Pre		二			Ĭ	2	3	工	Z	主	王	Z			
Turn-Around Time:	X Standard	Project Name:		41.			Project Manager: Kully Blanchard + tota Tellu, Marth Noe	11	\mathcal{L}			je	# pı	4)	(1)	olustic (2)	()	(h)	3	Œ	3	2	Œ	3	plastic(2)	× ===	
i-Ar	Stan	ect	Davis	Project #:		1	ect 1	3	Sampler:	4	ble	Container	Type and #	Yoas (4	plashc(J)	乏	VOGS (4)	关	olashed)	Vous(4)	plaske (1)	clashe (z	as (plaskc(1	宝	yed)	ved t
15	X	Proj	\leftarrow	Proj	•		5 + G	-	San	Onlice:	7	ပိ	Τ̈́	Αρc	D to	, a	2	plastich)	S.	لاً ـ	13	च	Voas (4)	न्द्र	2	Rece!	Received IV
	્ર						Project Mar																			. ,	
؏	13						ଧ୍ୟ	□ Level 4 (Full Validation)	ı	1	ļ	1	oampie Request ID				İ		·			- }	l			Monthell	
õ	7					اد					ļ		ent dane							İ		İ	İ	l	ı	7	
ě	12				1	<u>3</u>	72	E.				,	Ď Ľ	,	~		2	3	3	38	3	S.	3	>	3	(K)	
>	ڠٳ		310		.4	2	<u> </u>	4 (.		<u>5</u> .	3	6 la	S	2	5	9-	9-	- GW			F	3	B	,
og	12		1	}	3 6	ر ا د	7	-eve				(מב	BI-GW	Bi-6W	B1-6W	B3-62	B3-68	B2-60	304	古	B4-	135-	35.	7) .
St	14	ŀ	B		₹	2578446-18Malen	8	_							¢٣	(X)	CL	(X)	نسديا	(-)	۲	82	G3	8	35	ž 3	3 R
ಽ	5	2	5		4	4	Sign				-	j	<u>×</u>	4	इ	क्र	\$	क्	क्र	草	É	ex	\$	er	क्		uishe
Chain-of-Custody Record	6 Energly, trac by Tetration		98		7557	3		j				2	Maux	Water	Water	3	3	Verley.	rafer.	Late	wafer	Water	Worler	water	Water	Relinquished by:	Relinc
ځ	12		ess:	4	7	્રો	#\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			e)	-	9	ñ		١ ١	7	Q									<u> </u>	
Ja	12		Addr		13	Ğ)	Fax	lard		(Typ	- 1	<u>{</u>	=	1455		无	150	5	3	9:00	9:00	9:00	15	9:10	9:70		Time:
Ö			Mailing Address: 382 12-3100		'	Phone #:(505)	email or Fax#. (505) 333-5196-X- OA/OC Package Killy, blow.changle_fethal	K Standard	□ Other	□ EDD (Type)		4	<u> </u>		12-19/1455	8-12-19 1455 Water	8-12-09 1530 Water	8-11-09 1520	8-12-09 1520		4		8-13-69 9:20		C)	2	
	Client.		Mail		1			X	 			400	ວັ	15-09	2	-	12	4	5	-13-16	8-13-09	8336	3	8-13-69	8.3-69	Pate 72	Date:
		-	-		-	•	•							2	ϕ	Ø₽,	حد	0	00	လ်ခ	×-	ርንም,	SO,	οώ.	Οω ,	' مد	

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratones. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

COVER LETTER

Thursday, September 17, 2009

Martin Nee XTO Energy 382 County Road 3100 Aztec, NM 87410

TEL: (505) 333-3100 FAX (505) 333-3280

RE: Davis GC F#1E

Dear Martin Nee:

Order No.: 0908259

Hall Environmental Analysis Laboratory, Inc. received 4 sample(s) on 8/17/2009 for the analyses presented in the following report.

This report is an addendum to the report dated August 24, 2009. This is an updated report.

No determination of compounds below these (denoted by the ND or < sign) has been made. Please don't hesitate to contact Hall Environmental for any additional information or clarifications.

Reporting limits are determined by EPA methodology.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

Date: 17-Sep-09

CLIENT:

XTO Energy

Project:

Davis GC F#1E

Lab Order:

0908259

CASE NARRATIVE

See Corrective Action: [2595] MB for batch 19889 for 300.0 in soil had value for SO4 in blank higher than reporting limit.

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908259

Client Sample ID: Excavation South Bottom (18')

Collection Date: 8/14/2009 9:00:00 AM

Project:

Davis GC F#1E

Date Received: 8/17/2009

Lab ID: 09082	59-01				Matri	x: SOIL	
Analyses	Re	sult	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: D	IESEL RANGE ORGA	NICS					Analyst: SCC
Diesel Range Organics (D	RO)	ND	10		mg/Kg	1	8/18/2009
Motor Oil Range Organics	(MRO)	ND	50		mg/Kg	1	8/18/2009
Surr: DNOP	i	80.3	61.7-135°		%REC	1	8/18/2009
EPA METHOD 8015B: G	ASOLINE RANGE						Analyst: NSB
Gasoline Range Organics	(GRO)	ND	5.0		mg/Kg	1	8/19/2009 1:27:13 AM
Surr: BFB	;	85.1	58.8-123		%REC	1	8/19/2009 1:27:13 AM
EPA METHOD 8021B: V	OLATILES						Analyst: NSB
Benzene		ND	0.050		mg/Kg	1	8/19/2009 1:27:13 AM
Toluene		ND	0.050		mg/Kg	1	8/19/2009 1:27:13 AM
Ethylbenzene		ND	0.050		mg/Kg	1	8/19/2009 1:27:13 AM
Xylenes, Total		ND	0.10		mg/Kg	1	8/19/2009 1:27:13 AM
Surr: 4-Bromofluoroben	zene	91.4	66.8-139		%REC	1	8/19/2009 1:27:13 AM
EPA METHOD 300.0: AI	NIONS						Analyst: TAF
Fluoride		1.6	1.5		mg/Kg	5	8/17/2009 12:46:28 PM
Chloride		45	1.5		mg/Kg	5	8/17/2009 12:46:28 PM
Nitrogen, Nitrite (As N)		ND	1.5		mg/Kg	5	8/17/2009 12:46:28 PM
Nitrogen, Nitrate (As N)		ND	1.5		mg/Kg	5	8/17/2009 12:46:28 PM
Phosphorus, Orthophosph	nate (As P)	ND	7.5		mg/Kg	5	8/17/2009 12:46:28 PM
Sulfate	·	230	7.5		mg/Kg	5	8/17/2009 12:46:28 PM
EPA METHOD 6010B: S	OIL METALS						Analyst: SNV
Calcium		200	25		mg/Kg	1	8/18/2009 6:31:06 PM
Magnesium		900	25		mg/Kg	1	8/18/2009 6:31:06 PM
Potassium		240	50		mg/Kg	1	8/18/2009 6:31:06 PM

25

mg/Kg

830

0	นล	lif	ier:	8:

Sodium

8/18/2009 6:31:06 PM

Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Analyte detected in the associated Method Blank В

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Client Sample ID: Excavation North Wall (15-17')

Lab Order:

0908259

Collection Date: 8/14/2009 2:30:00 PM

Project:

Davis GC F#1E

Date Received: 8/17/2009

Lab ID:

0908259-02

Matrix: SOIL

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS				Analyst: SCC
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	ND	50	m g /Kg	1	8/18/2009
Surr: DNOP	85.3	61.7-135	%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSE
Gasoline Range Organics (GRO)	ND	5.0	mg/ Kg	1	8/19/2009 1:57:33 AM
Surr: BFB	87.2	58.8-123	%REC	1	8/19/2009 1:57:33 AM
EPA METHOD 8021B: VOLATILES		•			Analyst: NSE
Benzene	ND	0.050	mg/Kg	1	8/19/2009 1:57:33 AM
Toluene	ND	0.050	mg/Kg	1 .	8/19/2009 1:57:33 AM
Ethylbenzene	ND	0.050	mg/Kg	1	8/19/2009 1:57:33 AM
Xylenes, Total	ND	0.10	mg/Kg	1	8/19/2009 1:57:33 AM
Surr: 4-Bromofluorobenzene	99.1	66.8-139	%REC	1	8/19/2009 1:57:33 AM
EPA METHOD 300.0: ANIONS					Analyst: TAF
Fluoride	2.0	1.5	mg/Kg	5	8/17/2009 1:21:18 PM
Chloride	630	15	mg/Kg	50	8/17/2009 1:38:42 PM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	8/17/2009 1:21:18 PM
Nitrogen, Nitrate (As N)	3.2	1.5	mg/Kg	5	8/17/2009 1:21:18 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 1:21:18 PM
Sulfate	430	7.5	mg/Kg	5	8/17/2009 1:21:18 PM
EPA METHOD 6010B: SOIL METALS					Analyst: \$N\
Calcium	2500	25	mg/Kg	1	8/18/2009 6:33:57 PM
Magnesium	850	25	mg/Kg	1	8/18/2009 6:33:57 PM
Potassium	370	50	mg/Kg	1	8/18/2009 6:33:57 PM
Sodium	670	25	mg/Kg	1	8/18/2009 6:33:57 PM

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908259

Davis GC F#1E

Project: Lab ID:

0908259-03

Client Sample ID: Excavation North Bottom (18')

Collection Date: 8/14/2009 2:45:00 PM

Date Received: 8/17/2009

Matrix: SOIL

Analyses	Result	PQL	Qual Ur	nits	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGI	ORGANICS					Analyst: SCC
Diesel Range Organics (DRO)	. ND	10	mg	g/Kg	1	8/18/2009
Motor Oll Range Organics (MRO)	ND	50	mg	g/Kg	1	8/18/2009
Surr: DNOP	83.6	61.7-135	%F	REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RAI	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg	_J /Kg	1	8/19/2009 2:28:02 AM
Surr: BFB	86.5	58.8-123	%F	REC	1	8/19/2009 2:28:02 AM
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	0.050	mg	_J /Kg	1	8/19/2009 2:28:02 AM
Toluene	ND	0.050	mg	J/Kg	1	8/19/2009 2:28:02 AM
Ethylbenzene	ND	0.050	mg	J/Kg	1	8/19/2009 2:28:02 AM
Xylenes, Total	ND	0.10	mg	J/Kg	1	8/19/2009 2:28:02 AM
Surr: 4-Bromofluorobenzene	98.2	66.8-139	%F	REC	1	8/19/2009 2:28:02 AM
EPA METHOD 300.0: ANIONS						Analyst: TAF
Fluoride	1.6	1.5	mg	J/Kg	5	8/17/2009 1:56:06 PM
Chloride	50	1.5	mg	ı/Kg	5	8/17/2009 1:56:06 PM
Nitrogen, Nitrite (As N)	ND	1.5	mg	J/Kg	5	8/17/2009 1:56:06 PM
Nitrogen, Nitrate (As N)	ND	1.5	mg	ı/Kg	5	8/17/2009 1:56:06 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg	J/Kg	5	8/17/2009 1:56:06 PM
Sulfate	180	7.5	mg	ı/Kg	5	8/17/2009 1:56:06 PM
EPA METHOD 6010B: SOIL METALS						Analyst: SNV
Calcium	2400	25	mg	/Kg	1	8/18/2009 6:42:51 PM
Magnesium	870	25	mg	/Kg	1	8/18/2009 6:42:51 PM
Potassium	210	50	mg	g/Kg	. 1	8/18/2009 6:42:51 PM
Sodium	330	25		J/Kg	1 .	8/18/2009 6:42:51 PM

O	ıal	if	in	re

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908259

Project:

Davis GC F#1E

Lab ID:

0908259-04

Client Sample ID: Excavation D

Collection Date: 8/14/2009 3:00:00 PM

Date Received: 8/17/2009

Matrix: SOIL

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGI	ORGANICS				Analyst: SCC
Diesel Range Organics (DRO)	. ND	10	mg/Kg	1	8/18/2009
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/18/2009
Surr: DNOP	81.9	61.7-135	%REC	1	8/18/2009
EPA METHOD 8015B: GASOLINE RAI	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/19/2009 3:28:47 AM
Surr: BFB	83.8	58.8-123	%REC	1	8/19/2009 3:28:47 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	1	8/19/2009 3:28:47 AM
Toluene	ND	0.050	mg/Kg	1	8/19/2009 3:28:47 AM
Ethylbenzene	ND	0.050	mg/Kg	1	8/19/2009 3:28:47 AM
Xylenes, Total	ND	0.10	mg/Kg	1	8/19/2009 3:28:47 AM
Surr: 4-Bromofluorobenzene	94.9	66.8-139	%REC	1	8/19/2009 3:28:47 AM
EPA METHOD 300.0; ANIONS					Analyst: TAF
Fluoride	ND	1.5	mg/Kg	5	8/17/2009 2:30:55 PM
Chloride	` 10	1.5	mg/Kg	5	8/17/2009 2:30:55 PM
Nitrogen, Nitrite (As N)	ND	1.5	mg/Kg	5	8/17/2009 2:30:55 PM
Nitrogen, Nitrate (As N)	ND	1.5	mg/Kg	5	8/17/2009 2:30:55 PM
Phosphorus, Orthophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 2:30:55 PM
Sulfate	57	7.5	mg/Kg	5	8/17/2009 2:30:55 PM
EPA METHOD 6010B: SOIL METALS					Analyst: SNV
Calcium	2600	25	mg/Kg	1	8/18/2009 6:45:51 PM
Magnesium	700	25	mg/Kg	1	8/18/2009 6:45:51 PM
Potassium	180	50	mg/Kg	1	8/18/2009 6:45:51 PM
Sodium	270	25	mg/Kg	1	8/18/2009 6:45:51 PM

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
 - RL Reporting Limit

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908259

24.0 301.0							·		TY OIR	Order.	
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 300.0: Ani	ons										
Sample ID: MB-19889		MBLK				Batch ID:	19889	Analysis	s Date:	8/17/2009 1	2:11:39 PM
Fluoride	ND	mg/Kg	0.30								
Chloride	ND	mg/Kg	0.30							•	
Nitrogen, Nitrite (As N)	ND	mg/Kg	0.30								
Nitrogen, Nitrate (As N)	ND	mg/Kg	0.30								
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5								
Sulfate	3.201	mg/Kg	1.5								
Sample ID: MB-19889		MBLK				Batch ID:	19889	Analysis	Date:	8/18/2009	2:07:17 AN
Fluoride	ND	mg/Kg	0.30								
Chloride	ND	mg/Kg	0.30								
Nitrogen, Nitrite (As N)	ND	mg/Kg	0.30								
Nitrogen, Nitrate (As N)	ND	mg/Kg	0.30								
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5								
Sulfate	2.985	mg/Kg	1.5								
Sample ID: LCS-19889		LCS				Batch ID:	19889	Analysis	Date:	8/17/2009 1	2:29:03 PM
Fluoride	1.557	mg/Kg	0.30	1.5	0	104	90	110			
Chloride	14.71	mg/Kg	0.30	15	0	98.0	90	110			
Nitrogen, Nitrite (As N)	2.990	mg/Kg	0.30	3	0	99.7	90	110			
Nitrogen, Nitrate (As N)	7.378	mg/Kg	0.30	7.5	0	98.4	90	110			
Phosphorus, Orthophosphate (As P)	14.57	mg/Kg	1.5	15	0	97.1	90	110			
Sulfate	29.49	mg/Kg	1.5	30	2.985	88.4	90	110			B\$
Method: EPA Method 8015B: Die	esel Range	o Organics						•	•		
Sample ID: MB-19884	•	MBLK				Batch ID:	19884	Analysis	Date:		8/17/2009
Diesel Range Organics (DRO)	ND	mg/Kg	10								
Motor Oil Range Organics (MRO)	ND	mg/Kg	50								
Sample ID: LCS-19884		LCS				Batch ID:	19884	Analysis	s Date:		8/17/2009
Diesel Range Organics (DRO)	35.66	mg/Kg	10	50	0	71.3	64.6	116			
Sample ID: LCSD-19884	00.00	LCSD			ŭ	Batch ID:	19884	Analysis	s Date:		8/17/2009
Diesel Range Organics (DRO)	39.25	mg/Kg	10	50	0	78.5	64.6	116	9.59	17.4	0.1172000
						10.0			0.00		
Method: EPA Method 8015B; Ga Sample ID: MB-19898	isolinė Kai	nge <i>MBLK</i>				Batch ID:	19898	Analysis	. Date	8/19/2009	5:00:35 AN
,						Daton ID.	13030	Allalyon	Date.	0/10/2000	0.00.007110
Gasoline Range Organics (GRO)	ND	mg/Kg	5.0			D-4-1: ID	40000	A 1 1	- D-!	0.00.000	0.04.05.65
Sample ID: LCS-19898		LCS				Batch ID:	19898	Analysis	s Date:	8/22/2009	2:21:25 AN
Gasoline Range Organics (GRO)	31.42	mg/Kg	5.0	25	0	126	64.4	133			
Sample ID: LCSD-19898		LCSD				Batch ID:	19898	Analysis	Date:	8/22/2009	2:51:57 AN
Gasoline Range Organics (GRO)	30.88	mg/Kg	5.0	25	0	124	69.5	133	1.73	11.6	
				•				•	· ·	_	

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project:

Davis GC F#1E

Work Order:

0908259

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	owLimit Hig	hLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8021B:	Volatiles										
Sample ID: MB-19898		MBLK				Batch ID:	19898	Analys	sis Date:	8/19/2009	5:00:35 AN
Methyl tert-butyl ether (MTBE)	ND	mg/Kg	0.10								·
Benzene	ND	mg/Kg	0.050								
Toluene	ND	mg/Kg	0.050		•						
Ethylbenzene	ND	mg/Kg	0.050								
Xylenes, Total	ND	mg/Kg	0.10								
Sample ID: LCS-19898		LCS				Batch ID:	19898	Analys	sis Date:	8/23/2009	5:28:56 Af
Methyl tert-butyl ether (MTBE)	0.8509	mg/Kg	0.10	1	0	85.1	67.9	135			
Benzene	1.012	mg/Kg	0.050		0.0025	101	78.8	132			
Toluene	1.051	mg/Kg	0.050	1	0	105	78.9	112			
Ethylbenzene	1.065	mg/Kg	0.050	1	0	107	69.3	125			
Xylenes, Total	3.166	mg/Kg	0.10	3	0	106	73	128			
Sample ID: LCSD-19898		LCSD				Batch ID:	19898	Analys	sis Date:	8/23/2009	5:59:28 AN
Methyl tert-butyl ether (MTBE)	0.8444	mg/Kg	0.10	1	0	84.4	67.9	135	0.767	28	
Benzene	0.9735	mg/Kg	0.050	1	0.0025	97.1	78.8	132	3.83	27	
Toluene	0.9391	mg/Kg	0.050	1	0	93.9	78.9	112	11.3	19	
Ethylbenzene	0.9243	mg/Kg	0.050	1	0	92.4	69.3	125	14.1	10	R
Xylenes, Total	2.724	mg/Kg	0.10	3	0	90.8	73	128	15.0	13	R
Method: EPA Method 6010B:	Soil Motale										
Sample ID: 0908259-02BMSD	JOH WELAIS	MSD				Batch ID:	19901	Analys	sis Date:	8/18/2009	6:39:52 PM
Calcium	4426	mg/Kg	25	2486	2485	78.1	75	125	3.17	30	
Magnesium	2788	mg/Kg	25	2486	845.5	78.2	75	125	0.858	30	
Potassium	2443	mg/Kg	50	2486	370.1	83.4	75	125	0.772	30	
Sodium	2750	mg/Kg	25	2486	667.7	83.7	75	125	0.626	30	
Sample ID: MB-19901		MBLK				Batch ID:	19901	Analys	sis Date:	8/18/2009	6:23:20 PN
Calcium	ND	mg/Kg	25								
Magnesium	ND	mg/Kg	25		•						
Potassium	ND	mg/Kg	50				•				
Sodium	ND	mg/Kg	25								
Sample ID: LCS-19901		LCS		•		Batch ID:	19901	Analys	sis Date:	8/18/2009	6:26:24 PI
Calcium	2427	mg/Kg	25	2500	0	97.1	80	120			
Magnesium	2432	mg/Kg	25	2500		97.3	80	120			
Potassium	2554	mg/Kg	50	2500	0	102	80	120			
	2592	mg/Kg	25	2500		104	80	120			
Sodium						Batch ID:	19901		sis Date:	8/18/2009	6:36:53 PM
Sodium Sample ID: 0908259-02BMS		MS						-			
Sample 1D: 0908259-02BMS	4568		25	2474	2485	84.2	75	125			
Sample ID: 0908259-02BMS Calcium	4 568 2812	mg/Kg	25 25	2474 2474		84.2 79.5	75 75	125 125			
Sample ID: 0908259-02BMS	4 568 2812 246 2		25 25 49	2474 2474 2474	845.5	84.2 79.5 84.6	75 75 75	125 125 125		,	

O	u	a	lií	ĩe	rs	

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH (Method 8015B (Gas/Diesel) TPH (Method 418.1) B310 (PMA or PAH) RCRA 8 Metals Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) RCRA 8 Metals 8250 (Semi-VOA) 8270 (Semi-VOA) 8270 (Semi-VOA) 8270 (Semi-VOA)		X X X X X X X X X X X X X X X X X X X	X			Pate Time 13:10 Characters: Date Time Pate Time This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time: Astandard Astand	Sample Request 1D Type and # Type	2) Cold	Fx Cavation Voctor Bottom (18) 8205 (2)	Excavation D Blass gazz cold it X X			Time: Relinquished by: 1346 Kill Charles Received by: Time: Relinquished by: Receive
Client: XTO ENGLAU Client: XTO ENGLAU Mailing Address: 382 CA Phone #: 505 - 333 - 3	email or Fax#: Yellun, } OA/OC Package: Other Date Time Matrix	8-14-09 14-09 Soil	8-14-09/1445 Soil	8-14-04 1500 00:1			Pate: Time: Relinque Date: Time: Relinque Sandre: Time: Relimbu

/

COVER LETTER

Thursday, September 17, 2009

Martin Nee XTO Energy 382 County Road 3100 Aztec, NM 87410

TEL: (505) 333-3100 FAX (505) 333-3280

RE: Davis GC F#1E

Dear Martin Nee:

Order No.: 0908316

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 8/19/2009 for the analyses presented in the following report.

This report is an addendum to the report dated August 28, 2009. This is an updated report.

No determination of compounds below these (denoted by the ND or < sign) has been made. Please don't hesitate to contact Hall Environmental for any additional information or clarifications.

Reporting limits are determined by EPA methodology.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

Hall Environmental Analysis Laboratory, Inc.

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908316

Client Sample ID: Excavation East Wall (12-17')

Collection Date: 8/17/2009 11:00:00 AM

Project:

Davis GC F#1E

Date Received: 8/19/2009

Lab ID:

0908316-01

Matrix: SOIL

Analyses	Result	PQL	Qual U	Jnits	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E ORGANICS					Analyst: SCC
Diesel Range Organics (DRO)	ND	10	n	ng/Kg	1	8/21/2009 5:50:04 AM
Motor Oil Range Organics (MRO)	ND	50	n	ng/Kg	1	8/21/2009 5:50:04 AM
Surr: DNOP	77.6	61.7-135	9/	6REC	1	8/21/2009 5:50:04 AM
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	n	ng/Kg	1	8/23/2009 10:46:14 PM
Surr: BFB	86.0	65.9-118	9	6REC	1	8/23/2009 10:46:14 PM
EPA METHOD 300.0: ANIONS						Analyst: TAF
Fluoride	0.69	0.30	rr	ng/Kg	1	8/21/2009 7:46:31 AM
Chloride	5.1	0.30	m	ng/Kg	1	8/21/2009 7:46:31 AM
Nitrogen, Nitrite (As N)	ND	0.30	m	ng/Kg	1	8/21/2009 7:46:31 AM
Nitrogen, Nitrate (As N)	0.33	0.30	·m	ng/Kg	['] 1	8/21/2009 7:46:31 AM
Phosphorus, Orthophosphate (As P)	ND	1.5	m	ng/Kg	1	8/21/2009 7:46:31 AM
Sulfate	570	75	n	ng/Kg	50	8/21/2009 8:03:55 AM
EPA METHOD 6010B: SOIL METALS						Analyst: TES
Calcium	2600	25	n	ng/Kg	1	8/26/2009 12:13:33 PM
Magnesium	670	25	m	ng/Kg	1	8/26/2009 12:13:33 PM
Potassium	280	50	m	ng/Kg	1	8/26/2009 12:13:33 PM
Sodium	160	25	m	ng/Kg	1	8/26/2009 12:13:33 PM
EPA METHOD 8260B: VOLATILES SI	ORT LIST					Analyst: DAN
Benzene	ND	0.050	m	ng/Kg	1	8/24/2009 2:36:37 PM
Toluene	ND	0.050	m	ng/Kg	1	8/24/2009 2:36:37 PM
Ethylbenzene	ND	0.050	n	ng/Kg	1	8/24/2009 2:36:37 PM
Xylenes, Total	ND	0.10	n	ng/Kg	1	8/24/2009 2:36:37 PM
Surr: 4-Bromofluorobenzene	97.1	84.7-111	9/	6REC	1	8/24/2009 2:36:37 PM

Ou	alifi	ers:

Value exceeds Maximum Contaminant Level

E Estimated value

Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date: 17-Sep-09

CLIENT:

XTO Energy

Lab Order:

0908316

Project:

Davis GC F#1E

Lab ID:

0908316-02

Client Sample ID: Excavation GW2

Collection Date: 8/19/2009 8:40:00 AM

Date Received: 8/19/2009

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGI				<u>, ,</u>		Analyst: SCC
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	8/20/2009 9:25:38 PM
Motor Oil Range Organics (MRO)	ND	5.0	1	mg/Ļ	1	8/20/2009 9:25:38 PM
Surr: DNOP	108	58-140	1	%REC	1	8/20/2009 9:25:38 PM
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	8/24/2009 1:49:05 AM
Surr: BFB	81.7	55.2-107		%REC	1	8/24/2009 1:49:05 AM
EPA METHOD 300.0: ANIONS						Analyst: TAF
Fluoride	0.44	0.10		mg/L	1	8/19/2009 9:02:38 PM
Chloride	590	5.0		mg/L	50	8/21/2009 9:13:34 AM
Nitrogen, Nitrite (As N)	ND	2.0		mg/L	20	8/19/2009 9:54:51 PM
Nitrogen, Nitrate (As N)	3.3	0.10		mg/L	1	8/19/2009 9:02:38 PM
Phosphorus, Orthophosphate (As P)	ND	2.5		mg/L	5	8/20/2009 2:04:30 PM
Sulfate	2200	25		mg/L	50	8/21/2009 9:13:34 AM
EPA METHOD 6010B: DISSOLVED M	ETALS					Analyst: IC
Calcium	550	10		mg/L	10	8/24/2009 12:22:18 PM
Magnesium	71	1.0		mg/L	1	8/24/2009 11:26:27 AM
Potassium	6.3	1.0		mg/L	1	8/24/2009 11:26:27 AM
Sodium	630	10		mg/L	10	8/24/2009 12:22:18 PM
EPA METHOD 8260B: VOLATILES						Analyst: DAM
Benzene	ND	1.0		μg/L	1	8/20/2009 2:56:47 PM
Toluene	ND	1.0		µg/L	1	8/20/2009 2:56:47 PM
Ethylbenzene	ND	1.0		µg/L	1	8/20/2009 2:56:47 PM
Xylenes, Total	ND	1.5		µg/L	1	8/20/2009 2:56:47 PM
Surr: 1,2-Dichloroethane-d4	97.2	54.6-141		%REC	1	8/20/2009 2:56:47 PM
Surr: 4-Bromofluorobenzene	101	60.1-133		%REC	1	8/20/2009 2:56:47 PM
Surr: Dibromofluoromethane	103	78.5-130		%REC	1 ,	8/20/2009 2:56:47 PM
Surr: Toluene-d8	99.4	79.5-126		%REC	1	8/20/2009 2:56:47 PM

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908316

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit His	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 300.0: Ani	ons	•									
Sample ID: 0908316-01BMSD		MSD				Batch ID:	19925	Analys	is Date:	8/21/2009	8:38:45 AM
Fluoride	1.956	mg/Kg	0.30	1.5	0.6912	84.3	50	150	0.847	20	
Chloride	20.55	mg/Kg	0.30	15	5.127	103	53.9	146	0.162	20	
Nitrogen, Nitrite (As N)	3.033	mg/Kg	0.30	3	0	101	74.9	116	2.62	20	
Nitrogen, Nitrate (As N)	7.597	mg/Kg	0.30	7.5	0.3267	96.9	71.4	132	2.53	20	•
Phosphorus, Orthophosphate (As P)	10.89	mg/Kg	1.5	15	0	72.6	50	150	4.50	20	
Sample ID: MB-19925		MBLK				Batch ID:	19925	Analys	is Date:	8/21/2009	7:11:42 AM
Fluoride	ND	mg/Kg	0.30								
Chloride	ND	mg/Kg	0.30								
Nitrogen, Nitrite (As N)	ND	mg/Kg	0.30								
Nitrogen, Nitrate (As N)	ND	mg/Kg	0.30		•					•	
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5							•	
Sulfate	ND	mg/Kg	1.5								
Sample ID: LCS-19925		LCS				Batch ID:	19925	Analys	is Date:	8/21/2009	7:29:07 AM
Fluoride	1.508	mg/Kg	0.30	1.5	0	101	90	110			
Chloride	15.18	mg/Kg	0.30	15	0	101	90	110			
Nitrogen, Nitrite (As N)	3.120	mg/Kg	0.30	3	0	104	90	110			
Nitrogen, Nitrate (As N)	7.533	mg/Kg	0.30	7.5	0	100	90	110			
Phosphorus, Orthophosphate (As P)	14.73	mg/Kg	1.5	15	0	98.2	90	110			
Sulfate	30.09	mg/Kg	1.5	30	0	100	90	110			
Sample ID: 0908316-01BMS		MS				Batch ID:	19925	Analys	is Date:	8/21/2009 8	3:21:20 AM
Fluoride	1.940	mg/Kg	0.30	1.5	0.6912	83.2	50	150			
Chloride	20.58	mg/Kg	0.30	15	5.127	103	53.9	146			
Nitrogen, Nitrite (As N)	3.113	mg/Kg	0.30	3	0	104	74.9	116			
Nitrogen, Nitrate (As N)	7.791	mg/Kg	0.30	7.5	0.3267	99.5	71.4	132			
Phosphorus, Orthophosphate (As P)	11.39	mg/Kg	1.5	15	0	75.9	50	150			

Qualifiers:

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

E Estimated value

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project:

Davis GC F#1E

Work Order:

0908316

Analyte	Result	Units	PQL	SPK Va SF	PK ref	%Rec Lo	wLimit Hig	ghLimit 9	%RPD	RPDLimit	Qual
Method: EPA Method 300.0: Ani	ons					· 🙀 🔏	***		n .		
Sample ID: MB		MBLK				Batch ID:	R34971	Analysis	Date:	8/19/2009 1	1:28:08 AN
Fluoride	ND	mg/L	0.10								
Chloride	ND	mg/L	0.10			*					
Nitrogen, Nitrite (As N)	ND	mg/L	0.10								
Nitrogen, Nitrate (As N)	ND	mg/L	0.10								
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: MB		MBLK				Batch ID:	R34983	Analysis	Date:	8/20/2009	2:56:44 PN
Fluoride	ND	mg/L	0.10								
Chloride	ND	mg/L	0.10								
Nitrogen, Nitrite (As N)	ND	mg/L	0.10								
Nitrogen, Nitrate (As N)	ND	mg/L	0.10								
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: LCS		LCS				Batch ID:	R34971	Analysis	Date:	8/19/2009 1	1:45:32 AN
Fluoride	0.5090	mg/L	0.10	0.5	0	102	.90	110			
Chloride	4.761	mg/L	0.10	5	0	95.2	90	110		•	
Nitrogen, Nitrite (As N)	0.9067	mg/L	0.10	1	0	90.7	90	110			
Nitrogen, Nitrate (As N)	2.438	mg/L	0.10	2.5	0	97.5	90	110			
Phosphorus, Orthophosphate (As P)	4.812	mg/L	0.50	5	0	96.2	90	110			
Sulfate	9.624	mg/L	0.50	10	0	96.2	90	110			
Sample ID: LCS		LCS				Batch ID:	R34983	Analysis	Date:	8/20/2009	3:14:09 PN
Fluoride	0.4961	mg/L	0.10	0.5	0	99.2	90	110			
Chloride	4.912	mg/L	0.10	5	0	98.2	90	110			
Nitrogen, Nitrite (As N)	1.019	mg/L	0.10	. 1	0	102	90	110			
Nitrogen, Nitrate (As N)	2.439	mg/L	0.10	2.5	0	97.6	90	110			
Phosphorus, Orthophosphate (As P)		mg/L	0:50	5	0	96.4	90	110	•		
Sulfate	9.842	mg/L	0.50	10	. 0	98.4	90	110			
Method: EPA Method 8015B: Di	esel Range	Organics									
Sample ID: MB-19914		MBLK				Batch ID:	19914	Analysis	Date:	8/20/2009	6:56:37 AN
Diesel Range Organics (DRO)	ND	mg/Kg	10								
Motor Oil Range Organics (MRO)	ND	mg/Kg	50								*
Sample ID: LCS-19914		LCS				Batch ID:	19914	Analysis	Date:	8/20/2009	7:32:41 AN
Diesel Range Organics (DRO)	37.47	mg/Kg	10	50	0	74.9	64.6	116			
Sample ID: LCSD-19914	31.41	LCSD	10	30	U	Batch ID:	19914	Analysis	Date:	8/20/2000	8:08:41 AN
•	07.00				_			•			U.UU.41 MI
Diesel Range Organics (DRO)	37.88	mg/Kg	10	50	0	75.8	64.6	116	1.09	17.4	

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908316

.117								WOFK	Order:	0908316
Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
iesel Range					Patah ID:	40024	Anglyoid	. Data:	9/90/9000 1	4.07.40 AB
					Daton ID.	19924	Analysis	Date.	0/20/2009	1:07. TO AN
	•									
ND	-	5.0			Poteb ID:	10024	Analusia	Doto	0/00/0000 4	4.40.27 AN
							•	Date:	8/20/2009	1:42:37 AN
4.378	•	1.0	5	. 0				. .		
	LCSD				Batch ID:	19924	Analysis	Date:	8/20/2009 1	2:18:04 PN
4.502	mg/L	1.0	5	0	90.0	74	157	2.78	23	
asoline Rar	ige									
•	MBLK				Batch ID:	19923	Analysis	Date:	8/24/2009	1:18:36 AM
ND	mg/Kg	5.0								
	LCS				Batch ID:	19923	Analysis	Date:	8/24/2009 1	2:48:17 AN
30.53	mg/Kg	5.0	25	3.82	107	64.4	133			
asoline Ran	ude				•				-	
acomo rai	_				Batch ID:	R35001	Analysis	Date:	8/23/2009	6:44:15 PM
ND		0.050					•			
110	•	0.000			Batch ID:	R35001	Analysis	Date:	8/24/2009	4:21:25 AM
0.5046		0.050	0.5	0			•			,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.5046	-	0.050	0.5	U				Date:	8/24/2009	A-51-AQ AM
0.5492		0.050	0.5	0						7.01.40 7.10
		0.000	0.5		104		115	2.00	0.39	
olatiles Sho					D-4 1 1D	40000	A		0/04/0000	0.00.00.01
							•		•	3:33:00 PN
	- •		1	-	• •					
0.9718	mg/Kg	0.050	1	0		-			,	
	MBLK		•		Batch ID:	19923	Analysis	Date:	8/24/2009	4:57:30 PM
ND	mg/Kg	0.050								
ND	mg/Kg	0.050								
ND	mg/Kg	0.050								
ND	mg/Kg	0.050								
ND	mg/Kg	0.10								
	LCS				Batch ID:	19923	Analysis	Date:	8/24/2009	4:01:14 PM
1.100	mg/Kg	0.050	1	0	110	78.2	123			
0.9760	- 0	0.050	1	0	97.6	72.6	128			
		_			Batch ID:	19923	Analysis	Date:	8/24/2009	3.04.48 104
	MS				Daton 15.	10020	7 111 aly 010	Date.	U/2-112-000	3.04.40 F N
1.045	<i>ivi</i> S mg/Kg	0.050	1	0	105	83.2	118	Date.	0,2-112000	3.04.40 1-10
	Result iesel Range ND ND 4.378 4.502 asoline Ran ND 30.53 asoline Ran ND 0.5046 0.5182 olatiles Sho 1.058 0.9718 ND ND ND ND ND ND ND ND ND ND ND ND ND	Result Units	Result Units PQL	Result Units PQL SPK Variesel Range MBLK	Result Units PQL SPK Va SPK ref	Result Units PQL SPK Va SPK ref %Rec Late War	Result Units PQL SPK va SPK ref %Rec LowLimit Historiesel Range MBLK Batch ID: 19924	Result Units PQL SPK Va SPK ref %Rec LowLimit HighLimit	Result Units PQL SPK va SPK ref %Rec LowLimit HighLimit %RPD	Result Units PQL SPK va SPK ref %Rec LowLimit HighLimit %RPD RPDLimit Resel Range MBLK Batch ID: 19924 Analysis Date: 8/20/2009 1 1.0 MD mg/L 5.0 LCS Batch ID: 19924 Analysis Date: 8/20/2009 1 4.502 mg/L 1.0 5 0 87.6 74 157 LCSD Batch ID: 19924 Analysis Date: 8/20/2009 1 4.502 mg/L 1.0 5 0 90.0 74 157 2.78 23 23 23 23 25 25 25 3.82 107 64.4 133 3 24 2009 1 25 25 3.82 107 64.4 133 3 24 2009 1 25 25 3.82 107 64.4 133 3 24 2009 1 25 25 3.82 107 64.4 133 3 24 2009 1 25 25 3.82 107 64.4 133 3 24 2009 1 25 25 25 25 25 25 25

Qua	1161	
LINA	HILL	

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project:

Davis GC F#1E

Work Order:

0908316

Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	wLimit Hig	hLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260B	: VOLATILES									
Sample ID: 5ml rb		MBLK			Batch ID:	R34985	Analys	is Date: 🕟	8/20/2009	9:03:32 AI
Benzene	ND	µg/L	1.0				•		•	
Toluene	ND	μg/L	1.0							
Ethylbenzene	ND	μg/L	1.0							
Methyl tert-butyl ether (MTBE)	ND	μg/L	1.0		,					
1,2,4-Trimethylbenzene	ND	μg/L	1.0							
1,3,5-Trimethylbenzene	ND	µg/L	1.0							
1,2-Dichloroethane (EDC)	ND	μg/L	1.0							
1,2-Dibromoethane (EDB)	ND	µg/L	1.0		•					
Naphthalene	ND	μg/L	2.0							
1-Methylnaphthalene	ND	μg/L	4.0	•						
2-Methylnaphthalene	ND	µg/L	4.0							
Acetone .	ND	µg/L	10							
Bromobenzene	ND	'µg/L	1.0							
Bromodichloromethane	· ND	µg/L	1.0							
Bromoform	ND	μg/L	1.0							
Bromomethane	ND	µg/L	1.0	•	•					
2-Butanone	ND	μg/L	10							
Carbon disulfide	ND	µg/L	10							
Carbon Tetrachloride	ND	µg/L	1.0							
Chlorobenzene	ND	µg/L	1.0							
Chloroethane	ND	µg/L	2.0							
Chloroform	· ND	μg/L	1.0							
Chloromethane	ND	μg/L	1.0							
2-Chlorotoluene	ND	µg/L	1.0	4						
4-Chlorotoluene	ND	μg/L	1.0		·					
cis-1,2-DCE	ND	μg/L	1.0						•	
cis-1,3-Dichloropropene	ND	µg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0			•				
Dibromochloromethane	ND	μg/L	1.0							
Dibromomethane	ND	µg/L	1.0							
1,2-Dichlorobenzene	ND	μg/L	1.0							
1,3-Dichlorobenzene	ND	μg/L	1.0							
1,4-Dichlorobenzene	ND	μg/L	1.0							
Dichlorodifluoromethane	ND	µg/L	1.0							
1,1-Dichloroethane	ND	μg/L	1.0							
1,1-Dichloroethene	ND	μg/L	1.0							
1,2-Dichloropropane	ND	μg/L	1.0							
1,3-Dichloropropane	ND	µg/L	1.0	•						
2,2-Dichloropropane	ND	μg/L	2.0							
1,1-Dichloropropene	ND	µg/L	1.0							
Hexachlorobutadiene	ND	µg/L	1.0							
2-Hexanone	ND	µg/L	10	,	•					
Isopropylbenzene	ND	µg/L	1.0							
4-Isopropyltoluene	ND	μg/L	1.0							

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project: Davis GC F#1E

Work Order:

0908316

Analyte	Result	Units	PQL	SPĶ Va	SPK ref	%Rec Lo	owLimit Hig	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 8260B:	VOLATILES							<u> </u>	
Sample ID: 5ml rb		MBLK				Batch ID:	R34985	Analysis Date:	8/20/2009 9:03:32 AN
4-Methyl-2-pentanone	ND	μg/L	10						
Methylene Chloride	ND	μg/L	3.0						
n-Butylbenzene	ND	μg/L	1.0						
n-Propylbenzene	ND	μg/L	1.0						
sec-Butylbenzene	ND	μg/L	1.0						
Styrene	ND	μg/L	1.0						
tert-Butylbenzene	ND	μg/L	1.0					•	
1,1,1,2-Tetrachloroethane	ND	μg/L	1.0						
1,1,2,2-Tetrachloroethane	ND	μg/L	2.0						
Tetrachloroethene (PCE)	ND	μg/L	1.0						
trans-1,2-DCE	ND	μg/L	1.0						
trans-1,3-Dichloropropene	ND	μg/L	1.0						
1,2,3-Trichlorobenzene	ND	μg/L	1.0				*		
1,2,4-Trichlorobenzene	ND	μg/L	1.0						
1,1,1-Trichloroethane	ND	μg/L	1.0						
1,1,2-Trichloroethane	ND	μg/L	1.0		•				
Trichloroethene (TCE)	ND	μg/L	1.0						
Trichlorofluoromethane	ND	μg/L	1.0						
1,2,3-Trichloropropane	ND	μg/L	2.0						•
Vinyl chloride	ND	μg/L	1.0						
Xylenes, Total	ND	μg/L	1.5						
Sample ID: 100ng Icsb		LCS				Batch ID:	R34985	Analysis Date:	8/20/2009 10:59:43 AM
Benzene	21.90	μg/L	1.0	20	0	109	76.7	114	
Toluene	20.89	μg/L	1.0	20	0	104	78.4	117	
Chlorobenzene	20.75	μg/L	1.0	20	0	104	80.7	127	
1,1-Dichloroethene	23.68	μg/L	1.0	20	0	118 .	80.2	128	
Trichloroethene (TCE)	21.53	μg/L	1.0	20	0	108	77.4	115	
Method: EPA Method 6010B:	Dissolved Me	etals							
Sample ID: MB		MBLK				Batch ID:	R35008	Analysis Date:	8/24/2009 11:08:34 AM
Calcium	ND	mg/L	1.0						
Magnesium	ND	mg/L	1.0						
Potassium	ND	mg/L	1.0						
Sodium	ND	mg/L	1.0						
Sample ID: LCS		LCS				Batch ID:	R35008	Analysis Date:	8/24/2009 11:11:37 AN
Calcium	51.07	mg/L	1.0	50.5	0.0429	101	80	120	
Magnesium	51.62	mg/L	1.0		0.0213	102	80	120	
Potassium	56.10	mg/L	1.0		0.1766	102	80	120	
	51.14	mg/L	1.0		0.0804	101	80	120	

rs

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client:

XTO Energy

Project:

Davis GC F#1E

Work Order:

0908316

Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	wLimit Hig	ghLimit %RPD	RPDLimit Qual
Method: EPA Method 6010	B: Soil Metals								
Sample ID: MB-19929		MBLK		,		Batch ID:	19929	Analysis Date:	8/26/2009 12:30:39 PM
Calcium	ND	mg/Kg	25						
Magnesium	ND	mg/Kg	25						
Potassium	ND	mg/Kg	50						
Sodium	ND	mg/Kg	25						
Sample ID: LCS-19929	•	LCS				Batch ID:	19929	Analysis Date:	8/26/2009 12:33:41 PM
Calcium	2562	mg/Kg	25	2500	0	102	80	120	
Magnesium	2482	mg/Kg	25	2500	0	99.3	80	120	
Potassium	2633	mg/Kg	50	2500	11.11	105	80	120	
Sodium	2601	mg/Kg	25	2500	0	104	80 .	120	

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Hall Environmental Analysis Laboratory, Inc.

Sample Receipt Checklist

Client Name XTO ENERGY		Date Receiv	ed:	8/19/2009
Work Order Number 0908316	ماره	Received b	y: ARS	\bigcirc
Checklist completed by: Signature	S/I/4	109	- '	Initials
Matrix: Car	rrier name: <u>Client drop-o</u>	<u>off</u>		·
Shipping container/cooler in good condition?	Yes 🗸	No 🗆	Not Present	
Custody seals intact on shipping container/cooler?	Yes	No 🗀	Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗹	No 🗌	N/A	
Chain of custody present?	Yes 🗹	No 🗆		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗀		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌		
All samples received within holding time?	Yes 🗹	No 🗌		Number of preserved
Water - VOA vials have zero headspace? No VOA	A vials submitted	Yes 🗹	No 🗌	bottles checked for pH:
Water - Preservation labels on bottle and cap match?	Yes 🗹	No 🗌	N/A	α
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	N/A	<2)>12 unless noted
Container/Temp Blank temperature?	3.9°	<6° C Accepta	eble	Voejów.
COMMENTS:		If given sufficier	nt time to cool.	
Client contacted Date conf	tacted:	Per	rson contacted	
Contacted by: Regarding	g:			
Comments:				
	,			
		- 14		
				1
Corrective Action				
Corrective Action				

	HALL ENVIKONMENTAL	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109		Analysis	() () () ()	o ssá eiQ\s	NB's P	######################################	BE 800 4 800 4 800 5 10 10 10 10 10 10 10 10 10 10 10 10 10	+ MT Method Method Method Method Sexion (VOV Sexion Movestic Moves	87 БТЕХ ВТЕХ ВТЕХ ВТЕН (П В 8310 (В 8081 Р В 8	$ X \times X = X \times X $	×	×		X					le Remarks:	2	
i udi-Alouda Time:	□ Standard M Rush		DAVIS GC FF 10	Project #:		vact Manager: Martin Neo-X	Killy Dandad Tenated	Sampler VIVI Blowchard		South temperative South Section 2	Container Preservative		1) 945 (ald		2 plos sold	-plasta(1) HNO3	13 H2504 (1) 42504				\subseteq	Received by: Date Time	Date	
ody Record			Mailing Address: 332 CR-300		Phone #: 505-333-300	email or Fax#: [Cluy bien hur & Cotatetech, Project Manager: Martin Ned-xT		Level 4 (ruii vailuauon)				Maurx Sample Request ID T	Soil Exerchan Edging (12/12) 8/45	8-19-09 8140 water Excavation GWZ VI	8-19-49 8-40 water Exavation 6w 2 boomlpless	8-19-69 8:40 water Excavation 62/3 Pl	8 # 46 water Excavation and plastill					Keller Blancher	Relinquished by:	f persecan cambles cultinited to Hall Environmental may be enthoughed to other
Chain-	Client. XTO Energia		Mailing Address:	1	Phone #: 505	email or Fax#:	QA/QC Package:	Other	□ EDD (Type)			e	8-1769 11:00	8-19-09 8:40	8-19-89 8:40	a his 60-101-8	8-19-4 कर्रेम्ड					3/19/09 1220	Date: Time: F	

Chavez, Carl J, EMNRD

From:

Chavez, Carl J, EMNRD

Sent:

Tuesday, March 18, 2008 4:58 PM

To:

Jones, Brad A., EMNRD

Subject:

FW: Naptha Unit Leak Bloomfield Refinery (GW-1)

Attachments:

IMG 0804.ipg

FYI.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3491 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/ index.htm (Pollution Prevention Guidance is under "Publications")

From: Randy Schmaltz [mailto:Randy.Schmaltz@wnr.com]

Sent: Tuesday, March 18, 2008 4:26 PM

To: Chavez, Carl J, EMNRD

Subject: RE: Naptha Unit Leak Bloomfield Refinery (GW-1)

Carl,

The spill was less than two barrels of mostly water and some Naphtha. It occurred in the tank farm, it was on a line at the water draw sump of Tank #19 (picture enclosed). We did not send C-141 as the spill was below the OCD five barrel reportable quantity.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Tuesday, March 18, 2008 4:01 PM

To: Randy Schmaltz **Cc:** Price, Wayne, EMNRD

Subject: Naptha Unit Leak Bloomfield Refinery (GW-1)

Randy:

I received word that there is a leak at the Naptha Unit and contaminated soils are being removed for disposal. I do not recall receiving a C-141 for this kind of release? Can you update me on the Naptha leak? Thank you.

Carl J. Chavez, CHMM

New Mexico Energy, Minerals & Natural Resources Dept.

Oil Conservation Division, Environmental Bureau

1220 South St. Francis Dr., Santa Fe, New Mexico 87505

Office: (505) 476-3491 Fax: (505) 476-3462

E-mail: CarlJ.Chavez@state.nm.us

Website: http://www.emnrd.state.nm.us/ocd/index.htm (Pollution Prevention Guidance is under "Publications")

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and

may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is
prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not
the intended recipient, please contact the sender and destroy all copies of this message This email has been
scanned by the Sybari - Antigen Email System.

This inbound email has been scanned by the MessageLabs Email Security System.

