#### Griswold, Jim, EMNRD

From: Joshua Morrissette@bjservices.com
Sent: Thursday, February 04, 2010 2:11 PM

To: Griswold, Jim, EMNRD

Subject: Re: Former FracMaster Facility in Hobbs (1RP-2)

Attachments: Hobbs Fracmaster Boring Logs.PDF

Here you go Jim. Sorry about that.

Josh

BJ Services Company, USA J. Morrissette HSE Specialist 11211 FM 2920 Tomball, TX 77375 Office: 281.357.2573

Mobile: 713.705.4875 Fax: 281.357.2585

"Griswold, Jim, EMNRD" < Jim.Griswold@state.nm.us>

To < joshua.morrissette@bjservices.com>

CC

02/01/2010 11:36 AM

Subject Former FracMaster Facility in Hobbs (1RP-2)

Josh,

I received a letter from Brown & Caldwell dated 1/15/10 providing responses to my questions regarding the May 2009 field work (report dated 8/24/09) at the Hobbs facility. The letter refers to corrected boring logs as attachments. These corrected logs were not included in the FedEx package I received. Could you have Richard Rexroad please forward them to me. Thank you.

Jim Griswold Senior Hydrologist Environmental Bureau ENMRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

direct: 505.476.3465

email: jim.griswold@state.nm.us

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please notify the system manager. This message contains confidential information and is intended only for the individual named. If you are not the



| _ |   | ٠. |   | 4 |
|---|---|----|---|---|
| ľ | И | V  | V | 4 |

Project Name: BJ Services Company, U.S.A. - Fracmaster Facility

Project Number: 128125

Sheet 1 of 2

| Project Location: Hobbs, NM |                                                          |               |           |                                                                |                          |              |                                         | Logged By: R. Banda Che |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Checked By:R.Rexroad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |  |
|-----------------------------|----------------------------------------------------------|---------------|-----------|----------------------------------------------------------------|--------------------------|--------------|-----------------------------------------|-------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|
| Drilli                      | ing C                                                    | ontra         | ctor:     | TSS                                                            |                          |              |                                         |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Finished: 5/1/09            |  |
| Drilli                      | ing E                                                    | quip          | nent:     | B-59                                                           | Driller: C. Perry        | mar          | 1                                       | I                       | Total Boring Depth: (feet) 61.0  Depth to Static Water: (feet) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth to Static<br>Water: (feet) |  |
| Drilli                      | Drilling Method: Hollow Stem Auger Borehole Diameter: 8" |               |           |                                                                |                          |              |                                         |                         | TOC Elevation: Ground Elevation: 102.21                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |  |
| Samp                        | Sampling Method: Split Spoon                             |               |           |                                                                |                          |              |                                         | Diameter<br>of Well C   | and Type Casing: 2                                             | Sched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ule 40 PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |  |
| Com                         | Comments:                                                |               |           |                                                                |                          |              | Slot Size: 0.010 Filter Material: 20/40 |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |  |
|                             |                                                          |               |           |                                                                |                          |              |                                         | I                       | Developn                                                       | nent Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Subm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ersible Pump                     |  |
| Depth (feet)                | Depth to Water                                           | USC Soil Type | Lithology | Description                                                    |                          | PID Readings | Sampled Interval                        | Recovery (feet)         | Sample ID                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onitoring Well<br>Remarks        |  |
| 2-<br>2-<br>4-              |                                                          |               |           | Gravel, Sand, Silt, etc.                                       |                          | 0            |                                         |                         |                                                                | the state of the s | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 Above-grade completion.        |  |
| 2 - 4                       |                                                          | SP            |           | SAND (SP); Tan; dry; 1/4" gravel                               | S                        | 0            | X                                       | 2                       |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | でなるのでは                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |  |
| 10-                         |                                                          |               |           |                                                                |                          | 0            |                                         |                         |                                                                | The second secon | The state of the s |                                  |  |
| 16-                         |                                                          |               |           | Pinkish tan; very fine to medium sandstone nodules, few gravel | grained, <1/4" lithified | 0            | X                                       | 2                       |                                                                | e de la companya de l | the state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |  |
| 20-                         |                                                          |               |           | Pinkish brown; moist                                           |                          | 0            |                                         |                         |                                                                | The state of the s | Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ntonite Seal                     |  |
| 24                          |                                                          | -             |           |                                                                |                          | 0            | X                                       | 2                       |                                                                | The same of the sa | できる ははないのできないはん                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |  |
|                             |                                                          |               |           |                                                                |                          |              |                                         |                         |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |  |



MW-4

Project Number: 128125 BJ Services Company, U.S.A. - Fracmaster Facility Sheet \_2 of \_2 Project Name: Readings Sampled Interval USC Soil Type Recovery (feet) Depth to Water Monitoring Well Depth (feet) Sample ID Description Remarks PID 2" Diameter Schedule 40 PVC Riser. SAND (SW); Pinkish brown; moist; very fine grained 32-0 43.0 45.0 0 20/40 Silica filter pack Moist to wet, hydrocarbon odor. 0 53-55' 0.01 slotted PVC screen 60.0 60-2" Diameter Schedule 40 PVC 61.0 Bottom Cap.

This log should not be used separately from the original report.



BROWN AND CALDWELL 1415 Louisiana St. Suite 2500 Monitoring Well:

| M | W | <i>I-</i> 5 |  |
|---|---|-------------|--|
|   |   |             |  |

Project Name: BJ Services Company, U.S.A. - Fracmaster Facility

Project Number: 128125 Sheet 1 of 2

| Project Location: Hobbs, NM |                                                       |               |           |                                                                                                      |                                          |              |                                       | Logged By: R. Rexroad Checked By:L. Teague |                                                                |                     |           |                           |  |
|-----------------------------|-------------------------------------------------------|---------------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|---------------------------------------|--------------------------------------------|----------------------------------------------------------------|---------------------|-----------|---------------------------|--|
| Drilli                      | ing C                                                 | Contra        | ctor:     | Geoprojects International                                                                            |                                          |              |                                       |                                            | Date Started: 4/7/09 Date Finished: 4/7/09                     |                     |           |                           |  |
| Drilli                      | ing E                                                 | quip          | nent:     |                                                                                                      | Driller: C. Perry                        | man          | <br>1                                 |                                            | Total Boring Depth: (feet) 61.0  Depth to Static Water: (feet) |                     |           |                           |  |
| Drilli                      | Drilling Method: Hollow Stem Auger Borehole Diameter: |               |           |                                                                                                      |                                          |              |                                       |                                            | TOC Elevation: Ground Elevation: 102.41                        |                     |           |                           |  |
| Samp                        | oling                                                 | Meth          | od:       | Split Spoon                                                                                          |                                          |              |                                       | ,                                          | of Well C                                                      | and Type<br>Casing: | 2 Schedi  | ule 40                    |  |
| Com                         | ment                                                  | ts:           |           |                                                                                                      |                                          |              |                                       |                                            | Slot Size:                                                     | 0.010               | Filter Ma | terial: 20/40             |  |
|                             |                                                       |               |           |                                                                                                      |                                          |              |                                       | 7                                          | Developr                                                       | nent Method:        | Submo     | ersible Pump              |  |
| Depth (feet)                | Depth to Water                                        | USC Soil Type | Lithology | Description                                                                                          |                                          | PID Readings | Sampled Interval                      | Recovery (feet)                            | Sample ID                                                      |                     | Mo        | onitoring Well<br>Remarks |  |
| 2—<br>4—<br>6—<br>8—        |                                                       | SM            |           | SILTY SAND (SM); Light brown<br>grained sand                                                         | dry; very fine to fine                   | o            | · · · · · · · · · · · · · · · · · · · | .5                                         |                                                                |                     | 3X        | 3 Above-grade completion. |  |
| 12 14 16                    |                                                       | SP            |           | SAND (SP); Light tan; very fine to poorly sorted  Sand is mostly quartz with <5% for medium grained) |                                          | 0            | 高大                                    | .25                                        |                                                                | 我在我就是一个人的人          |           |                           |  |
| 20-                         |                                                       |               |           | Pinkish mostly fine to (40%) med<br>scattered (<1%) dark materials;<br>feldspars                     | ium quartz sand;<br>slightly moist; 1-2% | 0            | 5 T. S.                               | .5                                         |                                                                |                     | Ber       | ntonite Seal              |  |
| 26-                         |                                                       | SP            |           | SANDSTONE SAND (SP); very fine to fine grain                                                         | ned sand                                 | 0            | - E                                   | .75                                        |                                                                |                     |           |                           |  |



MW-5

Project Name: BJ Services Company, U.S.A. - Fracmaster Facility Project Number: 128125 Sheet 2 of 2

| Depth (feet)                                                 | Depth to Water | USC Soil Type | Lithology | Description                                                                                                                                                                 | PID Readings | Sampled Interval | Recovery (feet) | Sample ID | Monitoring Well<br>Remarks                  |
|--------------------------------------------------------------|----------------|---------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------------|-----------|---------------------------------------------|
| 32 -                                                         |                |               |           | SANDSTONE; Light gray; well cemented.                                                                                                                                       | 0            |                  | 1               |           | 2" Diameter Schedule 40 PVC<br>Riser.       |
| 36-                                                          |                | SP            |           | SAND (SP); Light pinkish brown; dry to moist; sorted very fine grained to moderately coarse sand (80% fine grained with ~5% dark minerals; fine grained sand is subrounded. | 0            |                  | .25             |           |                                             |
| 32 —<br>34 —<br>36 —<br>40 —<br>42 —<br>44 —<br>46 —<br>48 — |                |               |           | Decreased grain size to very fine grained; very well sorted; moist.                                                                                                         | 0            |                  | .5              |           |                                             |
| 44-                                                          |                |               |           |                                                                                                                                                                             | 0            |                  | <b>2</b> .25    |           | 45.0                                        |
| 48-                                                          |                |               |           |                                                                                                                                                                             |              |                  |                 |           |                                             |
| 52-                                                          |                |               |           | Moist to wet at 50' bgs.                                                                                                                                                    | 0            |                  | .25             | 50-51'    | 20/40 Silica filter pack                    |
| 56-                                                          |                |               |           |                                                                                                                                                                             |              |                  |                 | 54-55'    | 0.01 slotted PVC screen                     |
| 58-                                                          |                |               |           |                                                                                                                                                                             |              |                  |                 |           | 60.02" Diameter Schedule 40 PVC Bottom Cap. |
|                                                              |                |               |           |                                                                                                                                                                             |              |                  |                 |           |                                             |
|                                                              |                |               |           | •                                                                                                                                                                           | •            |                  |                 |           |                                             |



| ١ | 1 | ۷ | ۷ | -6 |  |  |  |
|---|---|---|---|----|--|--|--|
|---|---|---|---|----|--|--|--|

Project Name: BJ Services Company, U.S.A. - Fracmaster Facility

Project Number: 128125

Sheet 1 of 2

| Drilling Contractor: TSS  Date Started: 4/30/09  Total Boring Depth: (feet) 65.0  Drilling Method: Air Rotary  Borehole Diameter: 8"  TOC Elevation: Diameter and Type                  | Date Finished: 4/30/09 Depth to Static Water: (feet) 55.00 Ground Elevation: 102.48 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Drilling Equipment: B-59  Driller: C. Perryman  Depth: (feet) 65.0  Drilling Method: Air Rotary  Borehole Diameter: 8"  TOC Elevation:                                                  | Water: (feet) 55.00  Ground Elevation: 102.48                                       |
|                                                                                                                                                                                         | . <del> </del>                                                                      |
| Diameter of Trus                                                                                                                                                                        | Jula 40                                                                             |
| Sampling Method: Corebarrel of Well Casing: 2 Sched                                                                                                                                     | iule 40                                                                             |
| Comments: Slot Size: 0.010 Filter M                                                                                                                                                     | aterial: 20/40                                                                      |
| Development Method: Subm                                                                                                                                                                | ersible Pump                                                                        |
| Depth (feet) USC Soil Type Lithology  PID Readings Sampled Interval Recovery (feet) Sample ID                                                                                           | onitoring Well<br>Remarks                                                           |
|                                                                                                                                                                                         | (3 Above-grade completion.                                                          |
| Tan; dry; Limestone, very dense, strong reaction to acid test.  Tan; dry; Limestone, very dense, strong reaction to acid test.  Pinkish white; Med. density; dry; Caliche, 1/4" gravels |                                                                                     |
|                                                                                                                                                                                         |                                                                                     |
|                                                                                                                                                                                         |                                                                                     |
|                                                                                                                                                                                         |                                                                                     |
| Pinkish white; Med. density; dry; Caliche, 1/4" gravels                                                                                                                                 |                                                                                     |
|                                                                                                                                                                                         |                                                                                     |
| Pinkish white; Med. density; dry; Caliche, 1/4" gravels  SP SAND (SP); Pinkish tan; dry to moist; .255" gravels(sandstone), fine to medium grained sand  0 0                            |                                                                                     |
|                                                                                                                                                                                         |                                                                                     |
| 1979.                                                                                                                                                                                   |                                                                                     |
| 20 -   0   Be                                                                                                                                                                           | entonite Seal                                                                       |
| 18—<br>20—<br>22—<br>24—<br>24—<br>26—<br>28—<br>-<br>28—                                                                                                                               |                                                                                     |
| 24-                                                                                                                                                                                     |                                                                                     |
| 26-7                                                                                                                                                                                    |                                                                                     |
|                                                                                                                                                                                         | į                                                                                   |



MW-6

Project Name: BJ Services Company, U.S.A. - Fracmaster Facility Project Number: 128125 Sheet 2 of 2

| Depth (feet)                            | Depth to Water | USC Soil Type | Lithology | Description                                                       |   | Sampled Interval                        | Recovery (feet) | Sample ID | Monitoring Well<br>Remarks                                                                                                     |
|-----------------------------------------|----------------|---------------|-----------|-------------------------------------------------------------------|---|-----------------------------------------|-----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------|
| 34 - 34 - 34 - 34 - 34 - 34 - 34 - 34 - | Dep            | NSA.          | Pip       | Little gravel at 47' bgs.  1/4" to 1/2" gravels.  Wet at 55' bgs. |   | Same Same Same Same Same Same Same Same | 0               | 24-55°    | 2" Diameter Schedule 40 PVC Riser.  20/40 Silica filter pack  0.01 slotted PVC screen  2" Diameter Schedule 40 PVC Bottom Cap. |
| 62                                      |                |               |           |                                                                   | 0 |                                         | 0               |           | 65.0                                                                                                                           |

# **1RP-2**

# Former Fracmaster Facility

# April-May 2009 Soil and Groundwater Sampling Report

August, 2009

#### Griswold, Jim, EMNRD

From:

Griswold, Jim, EMNRD

Sent: To: Monday, February 01, 2010 10:36 AM 'joshua.morrissette@bjservices.com'

Subject:

Former FracMaster Facility in Hobbs (1RP-2)

Josh,

I received a letter from Brown & Caldwell dated 1/15/10 providing responses to my questions regarding the May 2009 field work (report dated 8/24/09) at the Hobbs facility. The letter refers to corrected boring logs as attachments. These corrected logs were not included in the FedEx package I received. Could you have Richard Rexroad please forward them to me. Thank you.

Jim Griswold Senior Hydrologist Environmental Bureau ENMRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

direct: 505.476.3465

email: jim.griswold@state.nm.us

Tel: (713) 759-0999 Fax: (713) 308-3886

www.brownandcaldwell.com

RECEIVED OCD

January 15, 2010

2010 JAN 20 A 11: 34:



Mr. Jim Griswold
State of New Mexico
Energy, Minerals, and Natural Resources Department
Oil Conservation Division
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505

Subject: Responses to NMOCD Comments Pertaining to April-May 2009 Soil and

**Groundwater Sampling Report** 

BJ Services (Former FracMaster Facility, Hobbs, New Mexico)

1RP-2

Dear Mr. Griswold:

Brown and Caldwell, on behalf of BJ Services Company, U.S.A. (BJ Services), offers the following responses to verbal comments provided to BJ Services by the New Mexico Oil Conservation Division (NMOCD) pertaining to the subject report, as reported to Brown and Caldwell. For ease of review, the NMOCD comments are listed in italicized font, followed by Brown and Caldwell's response in normal font.

1. Elaborate on the specific difficulties encountered during drilling of MW-4.

On May 1, 2009, air rotary methods were used to attempt the installation of MW-4 in the previously excavated area. Two attempts were made to drill to the required depth but, in both instances, the borehole sidewall collapsed into the drill pipe and bit, almost locking the drill string into the hole. This was attributed to the apparently underconsolidated nature of the backfill materials. It was decided that hollow stem auger technology would be the best approach for installing MW-4, so hollow stem augers were delivered to the site. Even when hollow stem augers were used, gravels in the apparently underconsolidated fill materials tended to accumulate around the outside of the augers and caused them to bind in the hole. After describing the above verbally to NMOCD, approval to move the monitor well location immediately outside and downgradient of the excavated area was granted by NMOCD.

2. Clarify the drilling method for MW-4 and MW-6, the text in the first paragraph of Section 2.0 and the boring logs do not match.

Monitor well MW-4 was drilled using hollow stem augers. Monitor well MW-6 was installed using air rotary. The boring logs (attached) have been amended accordingly.

3. The PID data was not provided on the boring logs as indicated in the first paragraph of Section 2.1.

The PID data had been entered into the boring log program, but it had failed to print out. The attached boring logs now show the PID data.

Tel: (713) 759-0999 Fax: (713) 308-3886

www.brownandcaldwell.com

4. Clarify that soil samples from each monitor well were collected immediately above the saturated zone. Based on the logs they were collected in the saturated zone, but the text indicates just above. The logs for monitor wells MW-5 and MW-6 indicate sample depths of 50 to 51' bgs and 55 to 60' bgs, respectively. In the text, Section 2.1 paragraph 2, it states that a sample was collected from monitor well MW-5 at the 50' to 51' interval first, which was not enough volume, and an additional sample was collected from 54' to 55' bgs. For monitor well MW-6 it states that the sample interval was 54' to 55' bgs.

It is not always possible to pinpoint the top of the saturated zone during the initial stages of drilling activities at a given drilling location. Only after a monitor well is installed can the depth to the top of the saturated zone be measured to a precision of 0.01 foot. During drilling activities for monitor wells MW-4 through MW-6, field personnel relied on data from boring logs and depth-to-groundwater measurements at existing site monitor wells MW-1 through MW-3, and accordingly attempted to collect soil samples from the interval above where the top of the saturated zone was anticipated. In monitor well MW-4, the soil sample was collected from 53-55 feet, and the depth to water was subsequently recorded at 53 feet (note that the core barrel used for collecting a soil core must be advanced ahead of the drill bit; hence, soil coring within a given interval must be conducted prior to determining whether the top of the saturated zone is actually present within that interval). In monitor well MW-6, the soil sample was collected at 54-55 feet, and the depth to water was subsequently recorded at 55 feet. In monitor well MW-5, soil sampling was performed using a 5-foot core barrel; a soil sample was collected from 50-51 feet, and the depth to water was subsequently recorded at 50 feet. As stated in the report, an insufficient volume of soil was recovered from the 50-51 foot depth interval for all of the required analyses, so a soil core was recovered from the next 5-foot interval at 54-55 feet and submitted for the analyses that could not be performed on the soil recovered from 50-51 feet due to insufficient recovery volume.

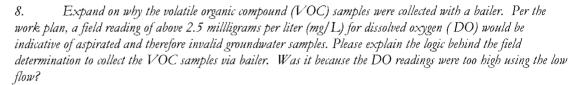
5. Confirm that the accuracy of the survey is 0.01 ft on the vertical plane.

The wells were field-surveyed by Brown and Caldwell to a vertical accuracy of 0.01 foot.

6. Based on review the contours on Figure 3, the gradient appears to be more steep from monitor well MW-6 to monitor well MW-4 to monitor well MW-5.

Based strictly on well-to-well groundwater elevation differences between monitor wells MW-6 and MW-4 versus between monitor wells MW-4 and MW-5, the calculated gradient from monitor well MW-6 to monitor well MW-4 is slightly less (0.0093 ft/ft) than the calculated gradient from monitor well MW-4 to monitor well MW-5 (0.0109 ft/ft).

However, when taking into account the groundwater elevation data from all six wells at the site, the groundwater elevation contours are more closely spaced between 48.0' and 48.6' than between 47.4' and 48.0'.


7. Has BJ Services looked into any Salt Water Disposal wells that may be to the south of the property or a pumping water well located to the north of the property? The gradient appears steep for this area and we could be observing the effects of an injection well or an extraction well. A Salt Water Disposal well operating nearby could also be the source of the chlorides.



Tel: (713) 759-0999 Fax: (713) 308-3886

www.brownandcaldwell.com

BJ Services has not performed a survey to locate salt water disposal wells and pumping wells in the area of the facility.



NMOCD comments pertaining to the February 2006 report submitted by Brown and Caldwell for the subject facility stated that "comparison of the dissolved oxygen levels from the three wells (*i.e.*, monitor wells MW-1, MW-2, and MW-3) potentially indicates the MW-2 sample was improperly aspirated during pumping which could have resulted in the volatilization or degradation of hydrocarbons from the sample".

In response to this NMOCD comment, the work plan for the April-May 2009 site activities stated that "Use of a flow cell in the presence of hydrocarbons may degrade the membrane of the DO probe, resulting in erroneous data. An observed DO level greater than 2.5 mg/L may be considered as indicative of a potentially aspirated (and thus invalid) groundwater sample. If a stabilized groundwater DO level greater than 2.5 mg/L is observed, then the DO measurement will be confirmed through the following procedure:

- a. A dedicated, previously unused, or properly decontaminated bailer will be gently lowered into the well no more than 1 foot below the water table and gently removed from the well.
- b. The DO content of the water will be measured using a HACH Test Kit ampule.
- c. If the HACH Test Kit ampule DO reading is greater than or equal to 2.5 mg/L, then the flow cell DO reading will be considered valid and all sample aliquots will be collected from the monitor well discharge tubing after it is disconnected from the flow cell as described in Section 3.6 (of the work plan).
- d. If the HACH Test Kit ampule DO reading is less than 2.5 mg/L, then the flow cell DO reading will be considered invalid (*i.e.*, aspirated) and the sample aliquot designated for VOCs analysis will be collected by gently lowering a dedicated, previously unused, or properly decontaminated bailer into the well no more than 1 foot below the water table, then gently removing the bailer from the well, then gently filling the VOC sample containers."

This work plan was submitted to and approved by NMOCD prior to implementation of field activities. It was followed during field activities. This is the reason that a bailer was used to collect VOC aliquots from selected wells. The work plan did not indicate that a field reading exceeding 2.5 mg/L was indicative of an invalid groundwater sample. The work plan stated that a confirmatory sample would be collected for DO testing if the flow cell DO reading exceeded 2.5 mg/L, and that the VOC sample aliquot would be collected using a bailer if the DO test on the groundwater recovered using a bailer confirmed (based on a substantially lower DO value in the bailer sample) that use of the pump had aspirated the groundwater.

9. Since monitor well MW-4 was installed on May 1, 2009 and sampled on May 2, 2009, 24 hours did not actually elapse between well development and sampling. Based upon the Groundwater Sampling



Tel: (713) 759-0999 Fax: (713) 308-3886

www.brownandcaldwell.com

Field Data Sheet for monitor well MW-4, sampling was started at 11 AM on May 2, 2009. Was development of monitor well MW-4 completed by 11 AM on May 1, 2009?

The interval of time that elapsed between the development and sampling of MW-4 was less than 24 hours. Based on the amount of time and resources that were expended in the initial two attempts to install MW-4 at a location within the formerly excavated area using air rotary drilling (and including the subsequent wait for delivery of hollow stem augers to the site for the third unsuccessful attempt to install the well within the formerly excavated area using hollow stem augers), it was necessary to compress the timeframe for development and sampling of MW-4 in order to complete field activities within the allocated timeframe for this phase of the project.

Review of the data pertaining to development and sampling of monitor well MW-4 indicates that the well was properly developed, the groundwater produced at the conclusion of purging was of low turbidity (i.e., 1.5 nephelometric turbidity units), and groundwater geochemical parameters (i.e., pH, temperature, specific conductivity, oxidation-reduction potential, and DO) had stabilized at the conclusion of the purging process prior to groundwater sample collection. Therefore, Brown and Caldwell believes that the data from monitor well MW-4 are representative of groundwater conditions at the site.

If you have any questions pertaining to the information presented herein, please contact Mr. Josh Morrissette of BJ Services at 281-357-2573.

Les Teague

Principal

Sincerely,

**BROWN AND CALDWELL** 

Richard Rexroad Project Manager

Attachments (3)

cc:

Josh Morrissette (BJ Services)

File: 128125

#### 1RP-2

### Notes upon review of 8/24/09 Report from Brown & Caldwell *April-May 2009 Soil and Groundwater Sampling Report Hobbs (Fracmaster), New Mexico Facility.*

- •Did not install monitoring well (MW-4) within margins of former excavation as explicitly directed in my approval of 10/22/08. The reason provided in the report was "Substantial drilling difficulties..." and we did have a phone call in this regard. However, those explicit difficulties need to be affirmed in writing.
- •Report text states soil borings for MW-4 and 6 were advanced using air rotary and the boring for MW-5 was advanced via hollow stem auger. Boring/well logs (Appendix A) indicate all borings were advanced via HSA.
- •Text also states the soil headspace data was gathered and is presented as part of the well logs. This is not the case, and furthermore the headspace data is not provided anywhere in the report.
- •The report states the wells were completed with approximately 2.5 feet of casing remaining above grade (page 5). Depth to water from top of casing measured on May 2<sup>nd</sup> varied from 53.69 to 55.05 ft. That would place the water table at 51 to 52.5 ft below ground surface. This would mean the soil samples submitted for lab analysis from all wells would have been water-saturated.
- •What was the accuracy of the survey? Should be at least 0.1 ft laterally and 0.01 ft vertically.
- •Hydraulic gradients (Figure 3)

```
MW-6 to MW-5: i = (48.79 - 47.36)/142 = 0.0101 = 53.2 ft/mile MW-6 to MW-4: i = (48.79 - 47.95)/88 = 0.0096 = 50.4 ft/mile MW-4 to MW-5: i = (47.95 - 47.36)/53 = 0.0111 = 58.8 ft/mile The steeper gradient, by 17%, is between MW-4 and MW-5, but the contouring reflects the opposite.
```

```
MW-6 to MW-1: i = (48.79 - 47.81)/56 = 0.0175 = 92.4 ft/mile MW-6 to MW-2: i = (48.79 - 47.55)/118 = 0.0105 = 55.5 ft/mile MW-4 to MW-3: i = (47.95 - 47.46)/49 = 0.0100 = 52.8 ft/mile MW-4 to MW-2: i = (47.95 - 47.55)/51 = 0.0078 = 41.4 ft/mile MW-4 to MW-1: i = (47.95 - 47.81)/50 = 0.0028 = 15.8 ft/mile
```

Direction of groundwater flow based on this data is more toward the NW rather than north. The gradients are quite large, 1 to 2% in the downgradient direction, which is perhaps an order of magnitude higher that one might expect unless there is a point of recharge to the south, or someone pumping to the north and the site resides within the drawdown cone. If so, then this could be affecting the dissolved-phase concentrations by not only dilution, but also dissociation from the overlying adsorbed soil contamination.

#### Change in DTWs

|      | 2/23/06 | 5/2/09 | delta |
|------|---------|--------|-------|
| MW-1 | 53.64   | 55.40  | 1.76  |
| MW-2 | 52.78   | 54.50  | 1.72  |
| MW-3 | 53.22   | 54.95  | 1.73  |

- •Observed increase in dissolved-phase concentrations in MW-2 in spite of a drop in water levels
- · Change in gradient over time

#### 2/23/06

```
MW-1 to MW-3: i = (49.57 - 49.19)/70 = 0.0054 = 28.7 ft/mile MW-2 to MW-3: i = (49.27 - 49.19)/88 = 0.0009 = 4.8 ft/mile MW-1 to MW-2: i = (49.57 - 49.27)/97 = 0.0031 = 16.3 ft/mile
```

#### 5/2/09

```
MW-1 to MW-3: i = (47.81 - 47.46)/70 = 0.0050 = 26.4 ft/mile (decrease of 9%) MW-2 to MW-3: i = (47.55 - 47.46)/88 = 0.0010 = 5.4 ft/mile (increase of 13%) MW-1 to MW-2: i = (47.81 - 47.55)/97 = 0.0027 = 14.2 ft/mile (decrease of 15%)
```

•Explain the reason for using bailed samples when testing for VOCs, but pumped samples for everything else.

#### •Change in DOs

|      |         | 2009  | 2009 |
|------|---------|-------|------|
|      | 2/23/06 | meter | kit  |
| MW-1 | 0.6     | 4.73  | 1.4  |
| MW-2 | 4.3     | 3.78  | 0.8  |
| MW-3 | 0.6     | 1.92  | 0.6  |
| MW-4 |         | 0.54  | 0.4  |
| MW-5 |         | 3.46  | 0    |
| MW-6 |         | 8.79  | 9.2  |

It appears MW-4 was sampled the same day it was installed; 5/2/09.

1415 Louisiana Suite 2500 Houston, Texas 77002

Tel: (713) 759-0999 Fax: (713) 308-3886

www.brownandcaldwell.com

August 24, 2009



2009 AUG 25 P 3: 03



Mr. Jim Griswold
State of New Mexico
Energy, Minerals, and Natural Resources Department
Oil Conservation Division
1220 South Saint Francis Drive
Santa Fe, New Mexico 87505

Subject:

Transmittal of April-May 2009 Soil and Groundwater Sampling Report

BJ Services (Former FracMaster Facility, Hobbs, New Mexico)

1RP-2

Dear Mr. Griswold:

Attached please find a report summarizing soil and groundwater sampling conducted at the BJ Services Company, U.S.A. (BJ Services) former FracMaster facility in Hobbs, New Mexico in April-May 2009.

Based on the results presented herewith, BJ Services proposes an aggressive remedial approach involving use of Oxygen-Release Compound® to address hydrocarbon-impacted groundwater at the site.

Chloride impact to groundwater is present at the site, but is confined to wells that are upgradient of or lateral to the former field waste station and appears to be related to an upgradient off-site source. Wells located downgradient of the former field waste station are not chloride-impacted. On this basis, no further action with regard to chloride at the site appears to be warranted.

After completion of your review of the enclosed report, BJ Services and Brown and Caldwell would like to meet with you to discuss BJ Services' proposed remedial approach for the site. We will contact you shortly to discuss your availability.

Les Teague Principal

Thank you for your attention to this matter.

Sincerely,

BRØŴN AND CALDWELL

Richard Rexroad Project Manager

cc:

Josh Morrissette (BJ Services)

File: 128125

## APRIL-MAY 2009 SOIL AND GROUNDWATER SAMPLING REPORT HOBBS (FRACMASTER), NEW MEXICO FACILITY

1RP-2

BJ SERVICES COMPANY, U.S.A.

August 24, 2009

## APRIL-MAY 2009 SOIL AND GROUNDWATER SAMPLING REPORT HOBBS (FRACMASTER), NEW MEXICO FACILITY

1RP-2

Prepared for

BJ Services Company, U.S.A. 11211 FM 2920 Tomball, Texas 77375

BC Project Number: 128125

2009 AUG 25 P 3: 03

Richard L. Rexroad Project Manager

August 24, 2009

**Brown and Caldwell** 

1415 Louisiana, Suite 2500 Houston, Texas 77002 - (713) 759-0999

#### **CONTENTS**

| 1.0    | INT            | RODUCTION                                                                                                 |      |
|--------|----------------|-----------------------------------------------------------------------------------------------------------|------|
| 2.0    | FIEI           | LD ACTIVITIES                                                                                             | 3    |
| 2.0    | 2.1            | Soil Sampling Activities                                                                                  |      |
|        | 2.2            | Monitor Well Installation and Development Activities                                                      |      |
|        | 2.3            | Groundwater Sampling Activities                                                                           |      |
|        | 2.4            | Quality Assurance / Quality Control (QA/QC) Samples                                                       |      |
|        | 2.5            | Decontamination and Waste Management                                                                      |      |
| 3.0    | ANA            | ALYTICAL RESULTS                                                                                          | 8    |
|        | 3.1.           | Soil Samples                                                                                              |      |
|        | 3.2            | Groundwater Samples                                                                                       | 8    |
|        | 3.3            | Natural Attenuation Evaluation                                                                            | 10   |
|        | 3.3.1          | Primary Evidence                                                                                          | 11   |
|        | 3.3.2          | Secondary Evidence                                                                                        |      |
|        | 3.3.3          | Summary                                                                                                   |      |
| 4.0    | CON            | NCLUSIONS AND RECOMMENDATIONS                                                                             | 15   |
|        | 4.1            | Conclusions                                                                                               | 15   |
|        | 4.2            | Recommendations                                                                                           |      |
|        | RIBUT<br>URES  | TION AND QA/QC REVIEWER'S SIGNATURE                                                                       |      |
| 1      | Sita I         | centian Man                                                                                               |      |
| 1      |                | Location Map                                                                                              |      |
| 2 3    | Site N         | •                                                                                                         |      |
|        |                | ndwater Elevation Map: May 2, 2009                                                                        |      |
| 4      |                | ene Concentrations in Groundwater: April-May, 2009                                                        |      |
| 5<br>6 | -              | thalene Concentrations in Groundwater: April-May, 2009 ide Concentrations in Groundwater: April-May, 2009 |      |
| 0      | Cilioi         | ide Concentrations in Groundwater: April-May, 2009                                                        |      |
| TAB    | LES            | ·                                                                                                         |      |
| 1      | Grou           | ndwater Elevation Data                                                                                    |      |
| 2      |                | ndwater Geochemical Data                                                                                  |      |
| 3      |                | rtical Results for Soil Samples                                                                           |      |
| 4      | •              | nary of Detected Constituents in Groundwater Samples                                                      |      |
| 5      |                | ent and Historic Analytical Results for Detected Constituents                                             |      |
| -      |                | oundwater Samples                                                                                         |      |
| APP    | ENDIC          | ES                                                                                                        |      |
| A      | Borin<br>and M | ng Logs and Monitor Well Construction Diagrams: Monitor Wells MW-4, MW-6                                  | V-5, |
| В      | Labor          | ratory Analytical Reports                                                                                 |      |
| С      | Grou           | ndwater Sampling Forms                                                                                    |      |
|        |                |                                                                                                           |      |

#### 1.0 INTRODUCTION

Brown and Caldwell conducted monitor well installation and soil and groundwater sampling activities at the BJ Services Company, U.S.A. (BJ Services) FracMaster facility located at 1329 N. West County Road in Hobbs, New Mexico in April-May 2009. Figure 1 shows the location of the BJ Services FracMaster facility. This report presents a description of the field activities and a summary and evaluation of the analytical results. A site map depicting the locations of the new and previously existing monitor wells at the facility is provided as Figure 2.

A former field waste tank and approximately 1,400 tons of soil were previously removed at the inactive BJ Services FracMaster facility in Hobbs, New Mexico. Post-excavation samples reportedly indicated impacts to soil by gasoline- and diesel-range total petroleum hydrocarbons (TPH-G and TPH-D). Volatile and semivolatile organic compounds (VOCs and SVOCs) were reportedly detected in the post-excavation floor sample; the post-excavation sidewall samples were not analyzed for VOCs and SVOCs. The approximately 25-foot deep excavated area was subsequently backfilled. Subsurface sampling conducted by Brown and Caldwell in July 2005 indicated impacts to vadose zone soils by benzene, toluene, ethylbenzene and xylenes (BTEX) and total petroleum hydrocarbons (TPH) at the Sample ES and WS locations to the east and west of the former field waste tank area, as well as impacts to underlying groundwater by benzene, naphthalene, and xylenes.

Three monitor wells were installed in the area of the former field waste tank in February 2006 to determine the direction of groundwater flow and to more fully evaluate impact to groundwater at the site. Soil samples were collected from two of the monitor well soil borings installed in February 2006 to delineate the extent of soil impact determined on the basis of the July 2005 sampling event. Data from monitor wells MW-1, MW-2, and MW-3 indicated that groundwater was present at approximately 49 feet to 50 feet below grade under unconfined conditions in the uppermost aquifer at the formerly excavated area, and that groundwater flow direction is in a generally northward direction. Chloride concentrations measured in cross-gradient monitor well MW-1 and downgradient MW-2 in February 2006 exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard of 250 milligrams per liter (mg/L). TPH-G,

naphthalene, 1,2,4,-trimethylbenzene, and m,p-xylenes were detected in the groundwater sample collected from monitor well MW-2, but concentrations of these constituents were less than applicable NMWQCC criteria.

On August 21, 2008, the New Mexico Oil and Gas Conservation Commission (NMOCD) requested that BJ Services submit a work plan for installation and sampling of three additional monitor wells to further assess soil and groundwater impact in the vicinity of the formerly excavated area. This work plan was submitted on November 13, 2008 and subsequently approved by NMOCD. This report presents the results of the investigation performed per the requirements of the November 13, 2008 work plan.

#### 2.0 FIELD ACTIVITIES

Brown and Caldwell installed three monitor wells in the vicinity of the formerly excavated area using hollow stem auger and air rotary drilling techniques in April-May 2009. Monitor well MW-5 was installed on April 7, 2009 using hollow stem augers. The hollow stem auger drilling rig met refusal at approximately 10 feet below grade at the monitor well MW-6 location, so this boring was plugged and abandoned. Brown and Caldwell remobilized to the site on April 30, 2009 with air rotary drilling and completed the installation of monitor wells MW-4 and MW-6. The following subsections describe the field activities conducted by Brown and Caldwell during the groundwater sampling and soil sampling event. Section 3.0 presents an evaluation of these data.

#### 2.1 Soil Sampling Activities

The soil borings for monitor wells MW-4, MW-5, and MW-6 were sampled at 5-foot intervals from ground surface to the top of the saturated zone. Recovered soil cores were classified in accordance with the Unified Soil Classification System (USCS) and scanned with a calibrated photoionization detector (PID). PID screening was performed by placing a portion of each recovered core in a previously unused zip-lock plastic bag, sealing the bag, allowing the bag to set in sunlight for approximately 5 minutes, then inserting the PID probe into the bag. PID response was measured and recorded on the soil boring and monitor well installation logs presented in Appendix A.

No elevated PID responses were measured, so soil samples were collected for laboratory analysis from the interval immediately above the top of the saturated zone. Samples were collected from the 53- to 55-foot interval in the monitor well MW-4 boring and from the 54- to 55-foot interval in the monitor well MW-6 boring. A soil sample was collected from the 50- to 51-foot interval of the monitor well MW-5 soil boring. The volume of soil recovered from this interval was insufficient for all of the required analyses, so an additional soil sample was collected from the 54- to 55-foot interval of monitor well MW-5 soil boring.

The monitor well MW-4, MW-5, and MW-6 soil samples were analyzed for the following parameters:

- TPH-G, TPH-D, and mineral spirits-range total petroleum hydrocarbons (TPH-M) by Method 8015M;
- VOCs by Method 8260B; and
- SVOCs by Method 8270C.

The soil sample collected from the soil boring installed for the installation of the upgradient monitor well, MW-6, was analyzed for chloride by Method 300.0. Chloride analysis of soil samples collected from the soil borings installed for downgradient monitor wells MW-4 and MW-5 was inadvertently omitted. The effects of this omission on the assessment appear to be minimal because chloride concentrations in the groundwater samples collected from monitor wells MW-5 and MW-5 are less than the NMWQCC standard of 250 mg/L (see Section 3.2).

The soil sample collected from the upgradient monitor well MW-6 location was also analyzed for the following additional parameters:

- RCRA metals;
- Major Anions (i.e., chloride, fluoride, sulfate, nitrate); and
- Major Cations (*i.e.*, calcium, magnesium, potassium, sodium).

The laboratory analytical reports and chain-of-custody documentation for the soil samples are provided in Appendix B.

#### 2.2 Monitor Well Installation and Development Activities

Monitor wells MW-4, MW-5, and MW-6 were installed in the area of the former field waste tank to determine the extent of groundwater impact at the site. Monitor well MW-4 was originally intended to be installed within the lateral boundaries of the formerly excavated area. Substantial drilling difficulties were encountered at the original MW-4 location within the formerly excavated area, so

after discussion with Mr. Jim Griswold of NMOCD, monitor well MW-4 was installed immediately north of the former field waste tank excavation. Monitor well MW-5 was installed further north at a location further downgradient of the former field waste tank excavation, between existing monitor wells MW-2 and MW-3. Monitor well MW-6 was installed approximately 60 feet south of the former field waste tank excavation at an upgradient location.

The monitor well soil borings were advanced to an approximate depth of 61 feet to 65 feet below ground surface, and approximately 10 feet below the observed top of the uppermost saturated zone. The wells were constructed with 15 feet of 2-inch diameter 0.010-inch slotted Schedule 40 PVC screen, a 1-foot Schedule 40 PVC sediment sump, and sufficient 2-inch diameter Schedule 40 PVC riser to extend the top of the riser to approximately 2.5 feet above grade. The well screens were placed to straddle the saturated zone with approximately 5 feet of screen above the apparent top of the saturated zone and approximately 10 feet of screen below the apparent top of the saturated zone. The annular area of each well was backfilled with 20/40-grade filter sand installed from the total depth of the well to approximately 2 feet above the top of the screen. An approximate 2-foot hydrated bentonite seal was placed atop the filter pack, and the remaining annular area was backfilled with bentonite. The wells were constructed with a concrete surface pad measuring approximately 2 feet by 2 feet by 4 inches thick, with an above-grade locking steel protective cover. Construction diagrams for monitor wells MW-4, MW-5, and MW-6 are presented in Appendix A.

The monitor wells were developed with a submersible pump until produced groundwater was clear and reasonably free of suspended sediment. The top-of-casing elevation of each of the six monitor wells at the site was surveyed relative to an arbitrary benchmark of 100.00 feet, located on the concrete surface near the warehouse, using field surveying techniques. The horizontal locations of the wells were measured relative to existing features at the facility.

#### 2.3 Groundwater Sampling Activities

The static depth-to-water from the top-of-casing of each monitor well was measured using a decontaminated oil-water interface probe on May 2, 2009, prior to any purging and sampling activities conducted on that date. Groundwater elevation data for the wells are presented in Table 1.

A groundwater elevation map for May 2, 2009 is presented in Figure 3. The groundwater elevation data indicate that the general direction of groundwater flow is to the north.

The monitor wells were purged with a submersible pump and previously unused down-hole tubing until groundwater stabilization occurred. Low flow/low stress purging was performed to maintain the water level at or near the static water level. Field parameter measurements for pH, temperature, specific conductivity, dissolved oxygen, and redox potential were collected during purging activities. Each well was purged until variability of less than 10 percent for specific conductivity, less than 0.1 standard pH units, and less than 0.5°C for temperature was achieved. Groundwater dissolved oxygen and ferrous iron concentrations were measured in each monitor well upon conclusion of purging activities. Field parameter readings were recorded on the groundwater sampling forms included in Appendix C. Table 2 summarizes groundwater geochemical data for the April-May 2009 sampling event.

Groundwater sample aliquots designated for VOCs analysis were collected using a previously unused disposable bailer. Groundwater sample aliquots for all other analytical parameters were obtained directly from the discharge line of the submersible pump. The groundwater samples were placed in laboratory-prepared, clean glass containers, sealed with Teflon<sup>®</sup>-lined lids, labeled, and placed on ice in an insulated cooler for delivery to Southern Petroleum Laboratory in Houston, Texas for analysis using standard chain-of-custody procedures. The laboratory analytical reports and chain-of-custody documentation for groundwater samples collected during the current sampling event are provided in Appendix B.

Groundwater samples were analyzed for the following parameters:

- TPH-G, TPH-D, and TPH-M by Method 8015M;
- VOCs by Method 8260B;
- SVOCs by Method 8270C;
- Chloride by Method 300;
- Nitrate by Method 300;
- Sulfate by Method 300;
- Methane by Method RSK 147/175; and
- Alkalinity by Method 310.1.

#### 2.4 Quality Assurance / Quality Control (QA/QC) Samples

QA/QC samples were collected throughout the duration of field activities for the project. Trip blanks were submitted at a rate of one trip blank per cooler containing one or more soil or groundwater samples designated for VOCs analysis. Trip blanks were analyzed for VOCs. Field blanks were collected at a rate of one field blank per day on any day during which a soil or groundwater sample designated for VOCs analysis was collected. Field blanks were analyzed for VOCs.

One equipment rinsate blank pertaining to soil sampling equipment and one equipment rinsate blank pertaining to groundwater sampling equipment were collected. The equipment rinsate blank pertaining to soil sampling equipment was collected by pouring distilled water over a decontaminated split spoon sampling device and collecting the runoff in appropriate sample containers. The equipment rinsate blank pertaining to groundwater sampling equipment was collected by pumping distilled water through the decontaminated pump and unused polyethylene tubing used for collection of groundwater samples and collecting the discharged water runoff in appropriate sample containers. The equipment rinsate blanks were analyzed for VOCs, SVOCs, and TPH-D, TPH-G, and TPH-M.

A duplicate groundwater sample, designated as MW-99, was collected from monitor well MW-3 and analyzed for VOCs, SVOCs, and TPH-D, TPH-G, and TPH-M.

#### 2.5 Decontamination and Waste Management

Heavy drilling equipment was decontaminated by washing with high-pressure potable water. Small-scale sampling equipment was decontaminated using distilled water and a non-phosphate detergent. Soil cuttings, decontamination fluids, and produced groundwater were containerized in DOT-approved 55-gallon drums that were moved to a central drum storage area at the site, pending disposal by BJ Services.

#### 3.0 ANALYTICAL RESULTS

The following subsections present the analytical results for soil and groundwater samples collected during the April-May 2009 sampling event.

#### 3.1 Soil Samples

The soil samples collected from the monitor well MW-4, MW-5, and MW-6 borings were analyzed for the parameters listed in Section 2.1. Soil sample analytical results are summarized in Table 3.

TPH and BTEX analysis results were compared to NMOCD criteria listed in "Guidelines for Remediation of Leaks, Spills, and Releases (NMOCD, August 13, 1993). The NMOCD soil remediation action levels for unsaturated contaminated soils (for a NMOCD hazard ranking of >19, based on groundwater occurrence at <50 feet) are benzene at 10 milligrams per kilogram (mg/kg), total benzene, toluene, ethylbenzene, and xylenes (BTEX) at 50 mg/kg, and TPH at 100 mg/kg. The concentrations for TPH and BTEX from the soil samples collected from the monitor well MW-4, MW-5, and MW-6 borings were below the applicable NMOCD remediation action levels.

#### 3.2 Groundwater Samples

The groundwater samples from monitor wells MW-1 through MW-6 were analyzed for the parameters listed in Section 2.3. Table 4 presents analytical results for these groundwater samples.

With the following exceptions, concentrations of TPH-G, TPH-D, TPH-M, and all VOCs and SVOCs are less than applicable NMWQCC standards:

- Benzene in monitor wells MW-2 and MW-4;
- Naphthalene in monitor well MW-4; and
- Chloride in monitor wells MW-1, MW-2, and MW-6.

The detections of benzene in monitor wells MW-2 and MW-4 at respective concentrations of 0.018 mg/L and 0.081 mg/L exceed the NMWQCC standard of 0.010 mg/L for benzene. The downgradient extent of benzene impact in monitor well MW-4 is generally defined by monitor wells MW-3 and MW-5. Benzene concentrations are shown in Figure 4.

Naphthalene was detected in monitor well MW-4 at concentrations of 0.086 mg/L (by Method 8260B analysis) and 0.044 mg/L (by Method 8270C analysis). A NMWQCC standard of 0.03 mg/L exists for naphthalene plus total monomethylnaphthalenes. 2-Methylnaphthalene was detected at a concentration of 0.027 mg/L (Method 8270C analysis) in monitor well MW-4, but was not detected in any other wells at the site. The concentrations of naphthalene and of naphthalene plus monomethylnaphthalene in monitor well MW-4 thus exceed the applicable NMWQCC standard. The downgradient extent of naphthalene plus monomethylnaphthalene impact in monitor well MW-4 is generally defined by monitor wells MW-3 and MW-5. Naphthalene concentrations are shown in Figure 5.

The NMWQCC standard of 250 mg/L for chloride was exceeded in monitor wells MW-1, MW-2, and MW-6 at respective concentrations of 456 mg/L, 452 mg/L, and 624 mg/L. Chloride concentrations are shown in Figure 6. The fact that the highest chloride concentration was measured in upgradient monitor well MW-6 and that chloride concentrations less than the NMWQCC standard of 250 mg/L were measured in monitor wells MW-3, MW-4, and MW-5, which are located directly downgradient of the former field waste tank area, indicates that chloride impact at the site is associated with an upgradient, off-site source. Substantial decreases in chloride concentrations from 1,070 mg/L to 456 mg/L in monitor well MW-1 and from 512 mg/L to 452 mg/L in monitor well MW-2 have occurred between 2006 and 2009.

Naphthalene, 1,2,4,-trimethylbenzene, ethylbenzene, and xylenes were also detected in monitor well MW-2, but at concentrations less than the applicable NMWQCC criteria. TPH-G and TPH-D were also detected in the MW-2 groundwater sample.

#### 3.3 Natural Attenuation Evaluation

Natural attenuation causes the mass of contaminants in a groundwater plume to be reduced through naturally occurring subsurface processes. These processes include sorption, volatilization, advection, diffusion, abiotic degradation, and biotic degradation. Of these mechanisms, biotic and abiotic degradation are destructive, whereas the other processes are non-destructive. Biotic degradation is also known as "Intrinsic Bioremediation" or "Passive Bioremediation".

Intrinsic bioremediation uses indigenous electron acceptors (dissolved oxygen, nitrate, ferric iron, sulfate, and carbon dioxide) to transform contaminants to innocuous end products (carbon dioxide, methane, and water) through biologically mediated oxidation-reduction reactions. To verify that natural attenuation of dissolved contaminants is occurring, contaminant loss as well as the relationship between contaminant concentration and the concentration of electron acceptors and/or reduction products are evaluated.

The primary evidence for the occurrence of natural attenuation is loss of contaminant mass from a plume such that the size or concentration of the plume is stable or decreasing. This may be evidenced by decreases in contaminant concentrations over distance from a source area or by decreases in contaminant concentrations in individual monitor wells over time.

Geochemical data may provide secondary supporting evidence of natural attenuation. During natural attenuation, dissolved oxygen levels decrease as oxygen is consumed by microbial activity. After dissolved oxygen is depleted, nitrate serves as the next available electron acceptor, causing nitrate concentrations to decrease. Ferric iron is the next electron acceptor used during microbial activity. Ferric iron concentrations are not easily measured, so the concentration of ferrous iron, a product of ferric iron reduction during hydrocarbon biodegradation, is measured instead. Thus, concentrations of ferrous iron are expected to increase in areas where natural attenuation of hydrocarbons is occurring. Utilization of sulfate as an electron acceptor may occur after consumption of dissolved oxygen, nitrate, and ferric iron. Therefore, sulfate concentrations may also decrease in areas where natural biodegradation of hydrocarbons is occurring. Methane forms

when carbon dioxide is utilized as an electron acceptor during natural attenuation of hydrocarbons. The oxidation-reduction potential (ORP) of groundwater is often decreased in areas where biodegradation of hydrocarbons is occurring. Fatty acids formed by microbial organisms as metabolic by-products during degradation of hydrocarbons may dissolve carbonates in saturated zone soils, causing alkalinity of groundwater to increase where biodegradation is occurring.

The following subsections present an analysis of site-specific data pertinent to the evaluation of natural attenuation of hydrocarbons at the facility.

#### 3.3.1 Primary Evidence

Table 5 presents current and historic VOCs, SVOCs, TPH, and chloride concentration data for groundwater samples collected from monitor wells MW-1, MW-2, and MW-3. Groundwater concentration data from monitor wells MW-4, MW-5, and MW-6 are not included in Table 5 because these wells have been sampled only once.

Concentrations of VOCs, naphthalene, TPH-D and TPH-G have increased in monitor well MW-2 between 2006 and 2009. It is unclear at present if these concentration increases are due to source area loading or whether they may be related to differences in groundwater elevations between the two groundwater sampling events.

Chloride concentrations in monitor wells MW-1, MW-2, and MW-3 have decreased between 2006 and 2009.

#### 3.3.2 Secondary Evidence

Groundwater geochemical data pertinent to evaluation of the potential for natural attenuation of hydrocarbons in groundwater at the site are presented in Table 2. Indicator-specific discussions of secondary evidence of natural attenuation of hydrocarbons are presented below.

#### Dissolved Oxygen

Dissolved oxygen concentrations as measured by Hach Test methodology range from 0 mg/L to 0.8 mg/L in monitor wells MW-2, MW-3, MW-4, and MW-5, which are situated at locations generally downgradient of the former field waste station. Corresponding dissolved oxygen concentrations were measured at 1.4 mg/L in cross-gradient monitor well MW-1 and at 9.2 mg/L in upgradient monitor well MW-6.

The decreased dissolved oxygen concentrations measured in groundwater downgradient of the former field waste station suggest that natural attenuation of hydrocarbons is occurring in this area of the site.

#### **Nitrate**

Nitrate concentrations ranged from 0.564 mg/L to less than 0.5 mg/L in monitor wells MW-2, MW-3, MW-4, and MW-5, which are situated at locations generally downgradient of the former field waste station. Nitrate was measured at a concentration of 4 mg/L in cross-gradient monitor well MW-1 and less than 0.5 mg/L in upgradient monitor well MW-6.

The depletion of nitrate in wells located downgradient of the former field waste station suggests that nitrate is being used as an electron acceptor during natural attenuation of hydrocarbons at the site.

Nitrate was not detected in upgradient well MW-6; this measurement should be confirmed in future groundwater sampling events.

#### Ferrous Iron

The elevated ferrous iron concentration of 2.2 mg/L in monitor well MW-2, which had the highest concentration of VOCs during the April-May 2009 sampling event, provides further indication of natural attenuation of hydrocarbons in this portion of the site. Ferrous iron concentrations in

monitor wells MW-3, MW-5, and MW-6 were substantially lower, ranging from 0 mg/L to 0.2 mg/L. The concentration of ferrous iron was not measured in monitor well MW-4.

#### Sulfate

Sulfate concentrations in downgradient monitor wells MW-2, MW-3, MW-4 and MW-5 ranged from 5.25 mg/L to 89 mg/L, with the lowest sulfate concentration measured in monitor well MW-2, which had the highest concentration of VOCs during the April-May 2009 sampling event. In contrast, sulfate concentrations ranged from 128 mg/L in cross-gradient well MW-1 to 91.9 mg/L in upgradient well MW-6.

The depletion of sulfate in wells located downgradient of the former field waste station suggests that sulfate is being used as an electron acceptor during natural attenuation of hydrocarbons at the site.

#### Methane

Methane was measured at a concentration of 0.23 mg/L in monitor well MW-2, which had the highest concentration of VOCs measured during the April-May 2009 groundwater sampling event. This methane concentration is two orders of magnitude greater than in any other monitor well at the site.

The elevated methane concentration in hydrocarbon-impacted monitor well MW-2 provides further secondary evidence of natural attenuation of hydrocarbons in the area downgradient of the former field waste station.

#### Alkalinity

The alkalinity of groundwater in hydrocarbon-impacted monitor wells MW-2 and MW-4 is substantially elevated relative to groundwater in other wells at the site, providing additional secondary evidence of natural attenuation of hydrocarbons at the site.

#### 3.3.3 Summary

Concentrations of chloride in monitor wells MW-1, MW-2, and MW-3 have decreased by 12 percent to 57 percent between 2006 and 2009.

Additional chemical concentration and groundwater elevation data will be needed to determine whether the increases in VOCs concentrations in this well between 2006 and 2009 are a function of source area loading or changes in groundwater elevation.

Data from each of the groundwater geochemical indicators provide evidence that natural attenuation of hydrocarbons is occurring at the site.

#### 4.0 CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on information obtained during the April-May 2009 sampling event at the BJ Services FracMaster Hobbs, New Mexico facility.

#### 4.1 Conclusions

- Groundwater elevation data indicate an overall northward direction of groundwater flow at the site.
- Chloride impact to groundwater appears to be related to an upgradient, off-site source. The highest chloride concentration is present in the upgradient monitor well at the site. Chloride concentrations less than the NMWQCC standard of 250 mg/L were measured in wells directly downgradient of the former field waste station, thus defining the downgradient extent of this chloride impact. On this basis, no further action is warranted with respect to chloride at the site.
- Benzene was measured at concentrations exceeding the applicable NMWQCC standard
  in the groundwater samples collected from monitor wells MW-2 and MW-4 during the
  current sampling event. The downgradient extent of benzene impact in monitor well
  MW-4 is defined by monitor wells MW-3 and MW-5, but the downgradient extent of
  benzene impact to groundwater at the monitor well MW-2 location is not defined.
- The concentration of naphthalene and the concentration of naphthalene plus monomethylnaphthalenes in monitor well MW-4 exceed the applicable NMWQCC standard of 0.03 mg/L. The downgradient extent of this impact is defined by monitor wells MW-2, MW-3, and MW-5.

#### 4.2 Recommendations

• Add Oxygen-Release Compound® (ORC) to hydrocarbon-impacted monitor wells MW-2 and MW-4.

• Conduct follow-up gauging and sampling of site monitor wells to assess concentration trends in these wells. If hydrocarbon concentrations decrease in monitor wells MW-2 and MW-4 following addition of ORC to these wells, then inject ORC directly to the aquifer in the area of the former field waste station and downgradient to the area of monitor wells MW-2 and MW-4.

#### DISTRIBUTION

April-May 2009 Soil and Groundwater Sampling Report BJ Services Company, U.S.A. Hobbs (Fracmaster), New Mexico Facility

August 24, 2009

Final Distribution as follows:

1 copy to: State of New Mexico

Energy, Minerals, and Natural Resources Department

Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Attention: Mr. Jim Griswold

1 copy to: State of New Mexico

Oil Conservation Division, Hobbs District Office

1625 N. French Dr. Post Office Box 1980 Hobbs, New Mexico 88240

Attention: Mr. Chris Williams

1 copy to: BJ Services Company, U.S.A.

2708 West County Road Hobbs, New Mexico 88240

Attention: Mr. John Adcock

1 copy to: BJ Services Company, U.S.A.

11211 FM 2920

Tomball, Texas 77375

Attention: Ms. Jo Ann Cobb

1 copy to: Brown and Caldwell Project File

ALITY CONTROL REVIEWER

Les Teague Principal

# **FIGURES**

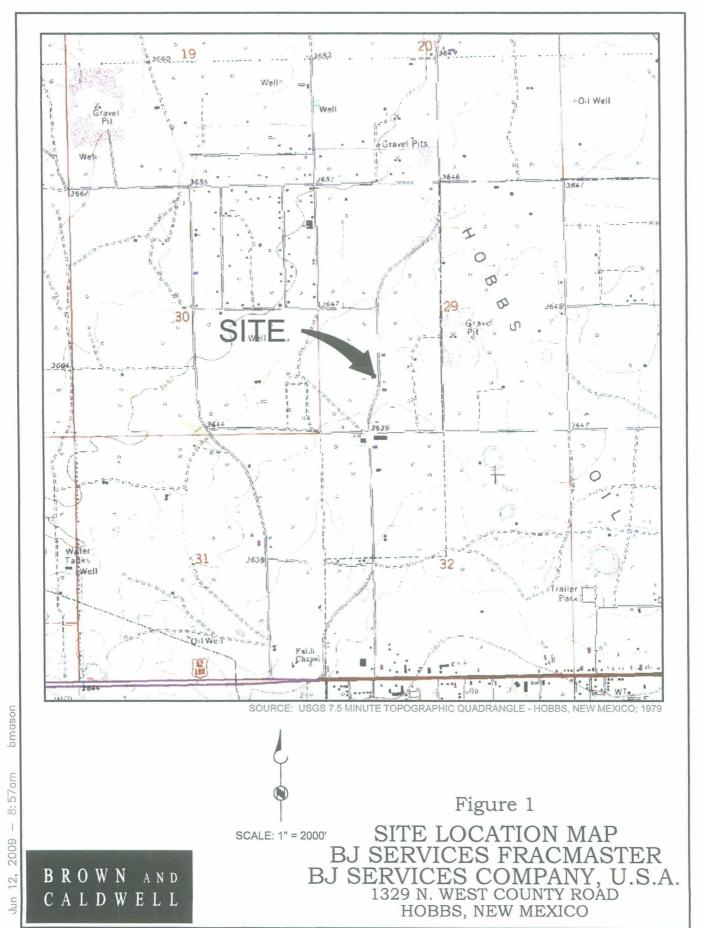
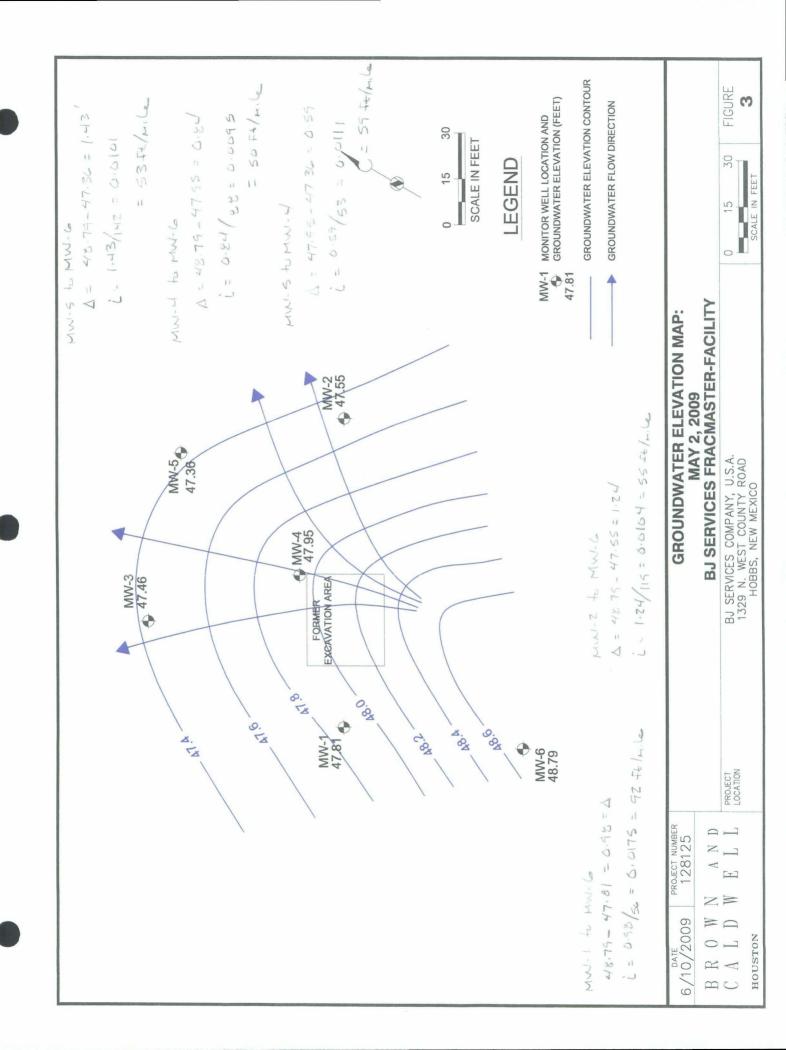
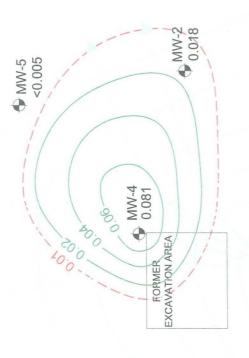





Figure 2
SITE MAP
BJ SERVICES FRACMASTER
BJ SERVICES COMPANY, U.S.A.
1329 N. WEST COUNTY ROAD
HOBBS, NEW MEXICO 1329 N. West County RD. Gravel lot Warehouse Office MONITOR WELL LOCATIONS PROPERTY BOUNDARY FENCE LINE SITE PLAN LEGEND 0 0 25 50 SCALE IN FEET Concrete Ramp Concrete Catch Basin BROWN AND CALDWELL (West Property Boundary not defined) nut 2, 2009 - 10:49am P.RJ Services Co USA/128125 - BJ FracMaster Hobbs/Drawings/ES/May209/Fig2-SiteMap.dwg







MW-1 4

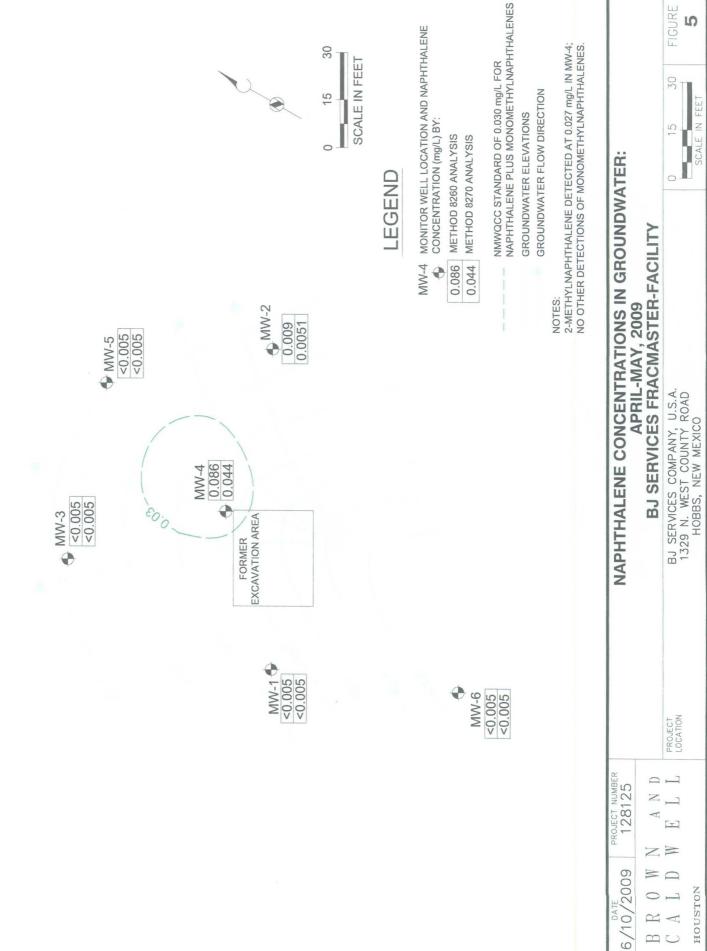
30 SCALE IN FEET 15

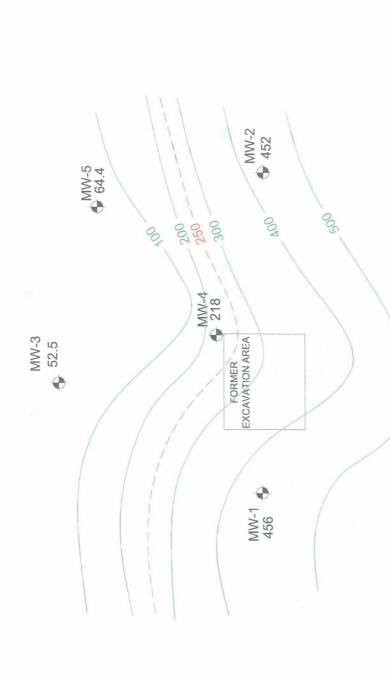
# LEGEND

MW-6 <0.005

MW-2 MONITOR WELL LOCATION AND BENZENE CONCENTRATION (mg/L) 0.018

BENZENE ISOCONCENTRATION CONTOUR GROUNDWATER FLOW DIRECTION NMWQCC STANDARD 0.010 mg/L **GROUNDWATER ELEVATIONS** 


BENZENE CONCENTRATIONS IN GROUNDWATER:
APRIL-MAY, 2009
BJ SERVICES FRACMASTER-FACILITY


|                          | PROJECT            |
|--------------------------|--------------------|
| PROJECT NUMBER<br>128125 | N A N D<br>W E L L |
| 6/10/2009                | B R O W C A L D    |

HOUSTON

| U.S.A.   | ROAD       |            |
|----------|------------|------------|
| COMPANY, | EST COUNTY | NFW MFXICO |
| SERVICES | 329 N. WES | HORRS      |
| B        | -          |            |

Layout: Layout2





30 SCALE IN FEET 15

# LEGEND

MONITOR WELL LOCATION AND CHLORIDE CONCENTRATION (mg/L) 456 MW-1

009

MW-6 624

CHLORIDE ISOCONCENTRATION CONTOUR NAWQCC STANDARD 250 mg/L

GROUNDWATER ELEVATIONS GROUNDWATER FLOW DIRECTION

|                          | PROJECT         |         |
|--------------------------|-----------------|---------|
| PROJECT NUMBER<br>128125 | N A N D PF      |         |
| 6/26/2009                | B R O W C A L D | HOUSTON |

| TER:                                                    |                                    | 0                           |                          |                   |
|---------------------------------------------------------|------------------------------------|-----------------------------|--------------------------|-------------------|
| CHLORIDE CONCENTRATIONS IN GROUNDWATER: APRIL-MAY, 2009 | BJ SERVICES FRACIMAS I ER-FACILITY | BJ SERVICES COMPANY, U.S.A. | 1329 N. WEST COUNTY ROAD | HOBBS, NEW MEXICO |



## **TABLES**

Table 1
Groundwater Elevation Data
BJ Services FracMaster Facility
Hobbs, New Mexico

| Well<br>Number | Date   | Top-of-Casing<br>Elevation (ft) <sup>(1)</sup> | Depth to<br>Groundwater (ft) | Groundwater<br>Elevation (ft) <sup>(1)</sup> | Depth to<br>Product | Product<br>Thickness |
|----------------|--------|------------------------------------------------|------------------------------|----------------------------------------------|---------------------|----------------------|
| MW-1           | 5/2/09 | 103.21                                         | 55.40                        | 47.81                                        | -                   | -                    |
| MW-2           | 5/2/09 | 102.05                                         | 54.50                        | 47.55                                        | -                   | -                    |
| MW-3           | 5/2/09 | 102.41                                         | 54.95                        | 47.46                                        | -                   | -                    |
| MW-4           | 5/2/09 | 102.21                                         | 54.26                        | 47.95                                        | -                   | -                    |
| MW-5           | 5/2/09 | 102.41                                         | 55.05                        | 47.36                                        | -                   | -                    |
| MW-6           | 5/2/09 | 102.48                                         | 53.69                        | 48.79                                        | -                   | -                    |

<sup>(1) -</sup> Relative to an arbitrary site datum of 100.00 feet

Table 2
Groundwater Geochemical Data
BJ Services FracMaster Facility
Hobbs, New Mexico

| Well   | Sample | Hd           | Specific | Oxidation-     | Dissolved Oxygen (mg/L) | ygen (mg/L) | Ferrous           | Nitrate | Sulfate | Methane | Alkalinity |
|--------|--------|--------------|----------|----------------|-------------------------|-------------|-------------------|---------|---------|---------|------------|
| Number | Date   | (std. units) | (µs/cm)  | Potential (mv) | YSI Meter               | Hach Test   | (mg/L)            | (mg/L)  | (mg/L)  | (mg/L)  | (mg/L)     |
| MW-1   | 4/7/09 | 7.15         | 2.059    | -4.7           | 4.73                    | 1.4         | 2.2               | 4       | 128     | 0.0014  | 198        |
| MW-2   | 4/7/09 | 69.9         | 2.057    | -72.1          | 3.78                    | 0.8         | 2.2               | 0.564   | 5.25    | 0.23    | 585        |
| MW-3   | 4/8/09 | 7.80         | 0.547    | 14.0           | 1.92                    | 9.0         | 0                 | <0.5    | 83.6    | <0.0012 | 174        |
| MW-4   | 5/2/09 | 6.72         | 1.938    | -128           | 0.54                    | 0.4         | 0.0               | 0.553   | 46.4    | <0.0012 | 477        |
| MW-5   | 4/9/09 | 8.04         | 0.583    | -56.9          | 3.46                    | . 0         | NM <sup>(1)</sup> | <0.5    | 89      | 0.0039  | 195        |
| MW-6   | 5/1/09 | 6.77         | 2.330    | 72             | 8.79                    | 9.2         | 0.0               | <0.5    | 91.9    | <0.0012 | 192        |

(1) - NM = Not Measured

# Table 3 Analytical Results<sup>(1)</sup> for Soil Samples April-May 2009 Sampling Event BJ Services FracMaster Facility Hobbs, New Mexico

|                           | Samp              | le ID / Sample D  | lepth (ft. below o | ırade)     |
|---------------------------|-------------------|-------------------|--------------------|------------|
| Parameter                 | MW4-52-55         | MW-5-50-51        | MW-5-54-55         | MW-6-54-55 |
|                           | 52-55             | 50-51             | 54-55              | 54-55      |
| VOCs                      | ND <sup>(2)</sup> | ND                | NA                 | ND         |
| SVOCs                     | ND                | NA <sup>(3)</sup> | ND                 | ND         |
| TPH-D_                    | 6.3               | NA                | 36                 | 12         |
| TPH-G                     | <0.1              | <0.1              | NA                 | <0.1       |
| TPH-M                     | <10               | NA                | <10                | <10        |
| Alkalinity <sup>(4)</sup> | NA                | NA                | NA                 | 190        |
| Chloride                  | NA                | NA                | NA                 | 61.1       |
| Fluoride                  | NA                | NA                | NA                 | <5         |
| Nitrate                   | NA                | NA                | NA                 | <5         |
| Nitrite                   | NA                | NA                | NA                 | <5         |
| Sulfate_                  | NA                | NA                | NA                 | 20.2       |
| Arsenic                   | NA                | NA                | NA                 | 1.2        |
| Barium_                   | NA                | NA                | NA                 | 85.7       |
| Cadmium                   | NA                | NA                | NA                 | <0.5       |
| Calcium                   | NA                | NA                | NA                 | 39600      |
| Chromium                  | NA                | NA                | NA                 | 4.03       |
| Lead                      | NA                | NA                | NA                 | 1.51       |
| Magnesium                 | NA                | NA                | NA                 | 1520       |
| Mercury                   | NA                | NA                | NA                 | < 0.03     |
| Selenium                  | NA                | NA                | NA                 | <0.5       |
| Silver                    | NA                | NA                | NA                 | <0.5       |
| Sodium                    | NA                | NA                | NA                 | 125        |

<sup>(1) -</sup> in milligrams per kilogram (mg/kg).

<sup>(2) -</sup> ND indicates none detected.

<sup>(3) -</sup> NA indicates not analyzed.

<sup>(4) -</sup> Bicarbonate alkalinity.

Table 4 Analytical Results<sup>(1)</sup> for Detected Constituents in Groundwater Samples April-May 2009 Sampling Event **BJ Services FracMaster Facility Hobbs, New Mexico** 

|                        | NMWQCC              |        | Мо     | nitor Well / | Sample Da | ate    |         |
|------------------------|---------------------|--------|--------|--------------|-----------|--------|---------|
| Analytes               | Standard            | MW-1   | MW-2   | MW-3         | MW-4      | MW-5   | MW-6    |
|                        | (mg/L)              | 4/7/09 | 4/7/09 | 4/8/09       | 5/2/09    | 4/9/09 | 5/1/09  |
| VOCs                   |                     |        |        |              |           |        |         |
| 1,2,4-Trimethylbenzene | NL <sup>(2)</sup>   | <0.005 | 0.063  | <0.005       | 0.440     | <0.005 | <0.005  |
| 1,3,5-Trimethylbenzene | NL                  | <0.005 | <0.005 | <0.005       | 0.019     | <0.005 | <0.005  |
| 4-Isopropyltoluene     | NL                  | <0.005 | <0.005 | <0.005       | 0.0096    | <0.005 | <0.005  |
| Benzene                | 0.01                | <0.005 | 0.018  | <0.005       | 0.081     | <0.005 | <0.005  |
| Ethylbenzene           | 0.75                | <0.005 | 0.024  | <0.005       | 0.530     | <0.005 | <0.005  |
| Isopropylbenzene       | NL                  | <0.005 | <0.005 | <0.005       | 0.041     | <0.005 | <0.005  |
| Naphthalene            | 0.03 <sup>(3)</sup> | <0.005 | 0.009  | <0.005       | 0.086     | <0.005 | <0.005  |
| n-Butylbenzene         | NL                  | <0.005 | <0.005 | <0.005       | 0.028     | <0.005 | <0.005  |
| n-Propylbenzene        | NL                  | <0.005 | <0.005 | <0.005       | 0.045     | <0.005 | <0.005  |
| sec-Butylbenzene       | NL                  | <0.005 | <0.005 | <0.005       | 0.018     | <0.005 | < 0.005 |
| m,p-Xylene             | NL                  | <0.005 | 0.110  | <0.005       | 0.730     | <0.005 | <0.005  |
| o-Xylene               | NL                  | <0.005 | 0.026  | <0.005       | 0.220     | <0.005 | <0.005  |
| Xylenes, Total         | 0.62                | <0.005 | 0.136  | <0.005       | 0.950     | <0.005 | <0.005  |
| SVOCs                  |                     |        |        |              |           |        |         |
| Di-n-butyl phthalate   | NL                  | <0.005 | <0.005 | <0.005       | 0.0083    | <0.005 | 0.011   |
| 2-Methylnaphthalene    | 0.03 <sup>(3)</sup> | <0.005 | <0.005 | < 0.005      | 0.027     | <0.005 | <0.005  |
| Naphthalene            | 0.03 <sup>(3)</sup> | <0.005 | 0.0051 | <0.005       | 0.044     | <0.005 | <0.005  |
| TPH-G                  | NL                  | <0.1   | 0.64   | <0.1         | 4.7       | <0.1   | <0.1    |
| TPH-D                  | NL                  | <0.1   | 2.3    | <0.1         | 2.4       | 0.14   | 0.21    |
| TPH-M                  | NL                  | <0.1   | <0.1   | <0.1         | 2.1       | <0.1   | <0.1    |
| Chloride               | 250                 | 456    | 452    | 52.5         | 218       | 64.4   | 624     |

<sup>(1) -</sup> in milligrams per liter (mg/L) (2) - NL = Not Listed

<sup>(3) -</sup> Total naphthalene plus monomethylnaphthalenes

Table 5
Current and Historic Analytical Results<sup>(1)</sup> for Detected Constituents in Groundwater Samples
BJ Services FracMaster Facility
Hobbs, New Mexico

| <u> </u>               | NMWQCC              |                   | Sample D | ate     |        |         |         |
|------------------------|---------------------|-------------------|----------|---------|--------|---------|---------|
| Analytes               | Standard            | MV                | V-1      | MV      | V-2    | MV      | V-3     |
|                        | (mg/L)              | 2/23/06           | 4/7/09   | 2/23/06 | 4/7/09 | 2/23/06 | 4/8/09  |
| VOCs                   |                     |                   |          |         |        |         |         |
| 1,2,4-Trimethylbenzene | NL <sup>(2)</sup>   | <0.005            | <0.005   | 0.019   | 0.063  | <0.005  | <0.005  |
| Benzene                | 0.01                | <0.005            | < 0.005  | <0.005  | 0.018  | <0.005  | <0.005  |
| Ethylbenzene           | 0.75                | <0.005            | <0.005   | <0.005  | 0.024  | <0.005  | <0.005  |
| Naphthalene            | 0.03 <sup>(3)</sup> | <0.005            | <0.005   | 0.006   | 0.009  | <0.005  | <0.005  |
| m,p-Xylene             | NL                  | <0.005            | <0.005   | 0.056   | 0.110  | <0.005  | <0.005  |
| o-Xylene               | NL                  | <0.005            | <0.005   | <0.005  | 0.026  | <0.005  | <0.005  |
| Xylenes, Total         | 0.62                | < 0.005           | <0.005   | 0.056   | 0.136  | <0.005  | < 0.005 |
| SVOCs                  | _                   |                   |          |         |        |         |         |
| Naphthalene            | 0.03 <sup>(3)</sup> | <0.005            | <0.005   | <0.005  | 0.0051 | <0.005  | <0.005  |
| TPH-G                  | NL                  | <0.1              | <0.1     | 0.19    | 0.64   | <0.1    | <0.1    |
| TPH-D                  | NL                  | <1.0              | <0.1     | <1.0    | 2.3    | <1.0    | <0.1    |
| TPH-M                  | NL                  | NM <sup>(4)</sup> | <0.1     | NM      | <0.1   | NM      | <0.1    |
| Chloride               | 250                 | 1070              | 456      | 512     | 452    | 66.6    | 52.5    |

<sup>(1) -</sup> in milligrams per liter (mg/L)



<sup>(2) -</sup> NL = Not Listed

<sup>(3) -</sup> Total naphthalene plus monomethylnaphthalenes

<sup>(4) -</sup> NM = Not Measured

## **APPENDICES**

## APPENDIX A

Boring Logs and Monitor Well Construction Diagrams: Monitor Wells MW-4, MW-5, and MW-6



28

#### Monitoring Well:

**MW-4** 

BJ Services Company, U.S.A. - Fracmaster Facility Sheet <u>1</u> of <u>2</u> 128125 Project Number: Project Name: Project Location: Hobbs, NM Logged By: R. Banda Checked By: R. Rexroad Drilling Contractor: TSS Date Started: 5/1/09 Date Finished: 5/1/09 Total Boring Depth to Static Water: (feet) B-59 Driller: C. Perryman Depth: (feet) 61.0 Drilling Equipment: Borehole Diameter: 8" Drilling Method: **Hollow Stem Auger** TOC Elevation: Ground Elevation: 102.21 Diameter and Type of Well Casing: 2 Schedule 40 PVC Sampling Method: Split Spoon Comments: Slot Size: 0.010 Filter Material: 20/40 Development Method: Submersible Pump Readings Sampled Interval Depth to Water USC Soil Type Recovery (feet) Monitoring Well Depth (feet) Lithology Description Sample ID Remarks Gravel, Sand, Silt, etc. 3X3 Above-grade completion. SP SAND (SP); Tan; dry; 1/4" gravels Pinkish tan; very fine to medium grained, <1/4" lithified HOUSTON 4 128125\_CH FOR CROSS SECTIONS.GPJ CHRIS10.GDT 6/11/09 sandstone nodules, few gravel 16 18-20-Pinkish brown; moist Bentonite Seal 22 24 26



MW-4

Project Name: BJ Services Company, U.S.A. - Fracmaster Facility Project Number: 128125 Sheet 2 of 2

| Depth (feet)                                                   | Depth to Water | USC Soil Type | Lithology | Description                                             | PID Readings | Sampled Interval | Recovery (feet) | Sample ID | Monitoring Well<br>Remarks                                       |
|----------------------------------------------------------------|----------------|---------------|-----------|---------------------------------------------------------|--------------|------------------|-----------------|-----------|------------------------------------------------------------------|
| 32 — 34 — 36 — 38 — 40 — 44 — 44 — 46 — 48 — 48 — 48 — 48 — 48 |                | SW            |           | SAND (SW); Pinkish brown; moist; very fine grained sand |              |                  |                 |           | 2" Diameter Schedule 40 PVC Riser.                               |
| HOUSTON 4 128125 CH FOR CROSS SECTIONS GPJ CHRIS10 GDT 6/11/09 |                |               |           | Moist to wet, hydrocarbon odor.                         |              |                  |                 |           | 0.01 slotted PVC screen  2" Diameter Schedule 40 PVC Bottom Cap. |



MW-5

BJ Services Company, U.S.A. - Fracmaster Facility 128125 Sheet <u>1</u> of <u>2</u> Project Number: Project Name: Project Location: Hobbs, NM Logged By: R. Rexroad Checked By:L. Teague **Geoprojects International** Date Started: 4/7/09 Date Finished: 4/7/09 Drilling Contractor: Total Boring Depth to Static B-59 C. Perryman 61.0 Drilling Equipment: Driller: Depth: (feet) Water: (feet) **Hollow Stem Auger** Borehole Diameter: 102.41 Drilling Method: TOC Elevation: Ground Elevation: Diameter and Type of Well Casing: 2 Schedule 40 Sampling Method: Split Spoon Comments: Slot Size: 0.010 Filter Material: 20/40 Development Method: Submersible Pump Sampled Interval Readings Recovery (feet) Depth to Water USC Soil Type Monitoring Well Depth (feet) Sample ID Lithology Description Remarks PID SM SILTY SAND (SM); Light brown; dry; very fine to fine 3X3 Above-grade completion. grained sand SP SAND (SP); Light tan; very fine to fine grained sand; poorly sorted Sand is mostly quartz with <5% feldspar(pink, fine to HOUSTON 4 128125 CH FOR CROSS SECTIONS.GPJ CHRIS10.GDT 6/11/09 medium grained) 16 20-Pinkish mostly fine to (40%) medium quartz sand; Bentonite Seal scattered (<1%) dark materials; slightly moist; 1-2% feldspars 22-24 26 28 SANDSTONE SAND (SP); very fine to fine grained sand



MW-5

BJ Services Company, U.S.A. - Fracmaster Facility 128125 Sheet 2 of 2 Project Name: Project Number: Sampled Interval Readings Depth to Water Recovery (feet) USC Soil Type Monitoring Well Depth (feet) Sample ID Description Remarks Lithology 2" Diameter Schedule 40 PVC SANDSTONE; Light gray; well cemented. 32-SAND (SP); Light pinkish brown; dry to moist; sorted very fine grained to moderately coarse sand (80% fine grained with ~5% dark minerals; fine grained 36sand is subrounded. 38-40-Decreased grain size to very fine grained; very well sorted; moist. 43.0 45.0 46 50-20/40 Silica filter pack Moist to wet at 50' bgs. 128125\_CH FOR CROSS SECTIONS.GPJ CHRIS10.GDT 6/11/09 0.01 slotted PVC screen 58-60.0 60 2" Diameter Schedule 40 PVC 61.0 Bottom Cap.

| В | R. | 0 | W | N | A N D |  |
|---|----|---|---|---|-------|--|
| C | Á  | Ļ | D | W | ELL   |  |

MW-6

BJ Services Company, U.S.A. - Fracmaster Facility 128125 Sheet <u>1</u> of <u>2</u> Project Number: Project Name: Hobbs, NM Logged By: R. Banda Checked By: R.Rexroad Project Location: Drilling Contractor: TSS Date Started: 4/30/09 Date Finished: 4/30/09 Total Boring Depth to Static 65.0 55.00 B-59 Driller: C. Perryman Drilling Equipment: Depth: (feet) Water: (feet) **Hollow Stem Auger** Borehole Diameter: Ground Elevation: 102.48 Drilling Method: TOC Elevation: Diameter and Type of Well Casing: 2 Schedule 40 Corebarrel Sampling Method: Comments: Filter Material: 20/40 Slot Size: 0.010 Development Method: Submersible Pump Readings Sampled Interval Depth to Water Recovery (feet) USC Soil Type Monitoring Well Depth (feet) Description Sample ID Remarks SILTY SAND; Gray; dry SM 3X3 Above-grade completion. Tan; dry; Limestone, very dense, strong reaction to acid test. 10 Pinkish white; Med. density; dry; Caliche, 1/4" gravels 12 SP SAND (SP); Pinkish tan; dry to moist; .25-.5" gravels(sandstone), fine to medium grained sand HOUSTON 4 128125 CH FOR CROSS SECTIONS.GPJ CHRIS10.GDT 6/11/09 20 Bentonite Seal 26 28

| B. | R | 0 | W. | N | A N    | D : |
|----|---|---|----|---|--------|-----|
| C  | A | Ŀ | D  | W | E  . L | ŗ.  |

MW-6

Project Number: 128125 BJ Services Company, U.S.A. - Fracmaster Facility Project Name: Sheet \_2 of \_2 Readings Sampled Interval Recovery (feet) Depth to Water USC Soil Type Monitoring Well Remarks Depth (feet) Sample ID Description Lithology PID 2" Diameter Schedule 40 PVC Riser. 43.0 45.0 Little gravel at 47' bgs. 48-50-1/4" to 1/2" gravels. 20/40 Silica filter pack 52-54-HOUSTON 4 128125 CH FOR CROSS SECTIONS GPJ CHRIS10.GDT 6/11/09 Wet at 55' bgs. 0.01 slotted PVC screen 56 60.0 2" Diameter Schedule 40 PVC 61.0 Bottom Cap. 62-65.0

## APPENDIX B

**Laboratory Analytical Reports** 



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

# Certificate of Analysis Number: 09040281

| Report To:              | Project Name: Fracmaster BJ Service,#128125 |
|-------------------------|---------------------------------------------|
| Brown & Caldwell        | Site: Hobbs NM                              |
| Rick Rexroad            | Site Address:                               |
| 1415 Louisiana          |                                             |
| Suite 2500              | BO Number:                                  |
| Houston                 | PO Number:                                  |
| TX                      | State: New Mexico                           |
| 77002-                  | State Cert. No.:                            |
| ph: (713) 759-0999 fax: | Date Reported: 4/23/2009                    |

This Report Contains A Total Of 45 Pages

Excluding This Page, Chain Of Custody

And

**Any Attachments** 



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Case Narrative for: Brown & Caldwell

### Certificate of Analysis Number:

#### 09040281

Report To: Fracmaster BJ Service,#128125 Project Name: Site: Hobbs NM **Brown & Caldwell** Rick Rexroad Site Address: 1415 Louisiana **Suite 2500** PO Number: Houston **New Mexico** State: ΤX 77002-State Cert. No.: ph: (713) 759-0999 fax: 4/23/2009 **Date Reported:** 

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

For Volatile Organics analysis (8260B), the results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID: 89427 for the Semivolatile Hydrocarbons analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89412 for the Semivolatile Organics analysis by SW846 Method 8270C. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Your sample ID "FB-4-7-09" (SPL ID:09040281-03) was randomly selected for use in SPL's quality control program for the Volatile Organics analysis by SW846 Method 8260B (Batch ID:270264). The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) recoveries were outside of the advisable quality control limits due to possible matrix interference for the following analytes:

2-Chloroethyl vinyl ether n-Butylbenzene

A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits,

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

Agnes V. Vickeaire

09040281 Page 1

4/23/2009

Agnes V. Vicknair

Date



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Case Narrative for: Brown & Caldwell

Certificate of Analysis Number: 09040281

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Agnes V-Victure

09040281 Page 2 4/23/2009

Agnes V. Vicknair



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Certificate of Analysis Number:

### 09040281

Report To:

Fax To:

**Brown & Caldwell** 

Rick Rexroad

1415 Louisiana **Suite 2500** 

Houston

ΤX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Project Name:

Fracmaster BJ Service,#128125

Site:

Hobbs NM

Site Address:

PO Number: State:

**New Mexico** 

State Cert. No.:

Date Reported:

4/23/2009

| Client Sample ID | Lab Sample ID | Matrix | Date Collected       | Date Received        | COC ID | HOLD |
|------------------|---------------|--------|----------------------|----------------------|--------|------|
| MW5-50-51        | 09040281-01   | Soil   | 4/7/2009 11:26:00 AM | 4/9/2009 10:00:00 AM | 322328 |      |
| MW-2             | 09040281-02   | Water  | 4/7/2009 11:44:00 AM | 4/9/2009 10:00:00 AM | 322329 |      |
| FB-4-7-09        | 09040281-03   | Water  | 4/7/2009 12:43:00 PM | 4/9/2009 10:00:00 AM | 322329 |      |
| TB-4-7-09        | 09040281-04   | Water  | 4/7/2009 12:46:00 PM | 4/9/2009 10:00:00 AM | 322329 |      |

Ignes V. Vickeaire

4/23/2009

Date

Kesavalu M. Bagawandoss Laboratory Director

> Ted Yen Quality Assurance Officer

Agnes V. Vicknair

Project Manager



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW5-50-51 Collected: 04/07/2009 11:26 SPL Sample ID: 09040281-01

Site: Hobbs NM

| Analyses/Method            | Result | QUAL | Re | p.Limit | Di  | l. Facto | r Date Anal | yzed | Analyst     | Seq. #  |
|----------------------------|--------|------|----|---------|-----|----------|-------------|------|-------------|---------|
| GASOLINE RANGE ORGANICS    |        |      |    |         | MCL | S        | W8015B      | Ur   | nits: mg/Kg |         |
| Gasoline Range Organics    | ND     |      |    | 0.1     |     | 1        | 04/14/09    | 5:51 | EMB         | 4985034 |
| Surr: 1,4-Difluorobenzene  | 95.8   |      | %  | 63-142  |     | 1        | 04/14/09    | 5:51 | EMB         | 4985034 |
| Surr: 4-Bromofluorobenzene | 98.0   |      | %  | 50-159  |     | 1        | 04/14/09    | 5:51 | EMB         | 4985034 |

| Prep Method | Prep Date        | Prep Initials |      |
|-------------|------------------|---------------|------|
| SW5030B     | 04/13/2009 11:53 | XML           | 1.00 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040281 Page 4 4/23/2009 5:47:28 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW5-50-51

Collected: 04/07/2009 11:26

SPL Sample ID:

09040281-01

| Site: | Hobbs | . AIRA |
|-------|-------|--------|
| Site. | ทบมมร | IVIV   |

| Analyses/Method             | Result QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst     | Seq. #  |
|-----------------------------|-------------|-----------|-------------|----------------|-------------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B  |           | MCL SV      | V8260B Ur      | nits: ug/kg |         |
| 1,1,1,2-Tetrachloroethane   | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,1,1-Trichloroethane       | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,1,2,2-Tetrachloroethane   | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,1,2-Trichloroethane       | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,1-Dichloroethane          | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,1-Dichloroethene          | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,1-Dichloropropene         | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2,3-Trichlorobenzene      | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2,3-Trichloropropane      | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2,4-Trichlorobenzene      | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2,4-Trimethylbenzene      | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2-Dibromo-3-chloropropane | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2-Dibromoethane           | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2-Dichlorobenzene         | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2-Dichloroethane          | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,2-Dichloropropane         | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,3,5-Trimethylbenzene      | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,3-Dichlorobenzene         | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,3-Dichloropropane         | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 1,4-Dichlorobenzene         | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 2,2-Dichloropropane         | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 2-Butanone                  | ND          | 20        | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 2-Chloroethyl vinyl ether   | ND          | 10        | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 2-Chlorotoluene             | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 2-Hexanone                  | ND          | 10        | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 4-Chlorotoluene             | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 4-Isopropyltoluene          | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| 4-Methyl-2-pentanone        | ND          | 10        | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Acetone                     | ND          | 100       | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Acrylonitrile               | ND          | 50        | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Benzene                     | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Bromobenzene                | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Bromochloromethane          | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Bromodichloromethane        | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Bromoform                   | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Bromomethane                | ND          | . 10      | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Carbon disulfide            | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Carbon tetrachloride        | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |
| Chlorobenzene               | ND          | 5         | 1           | 04/13/09 18:26 | E_G         | 4983601 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040281 Page 5 4/23/2009 5:47:28 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW5-50-51

Collected: 04/07/2009 11:26

SPL Sample ID:

09040281-01

|                             |        |      | Site | : Н    | obbs NM |             |                |         |         |
|-----------------------------|--------|------|------|--------|---------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re   | p.Limi | t       | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |      |      | 10     | )       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Chloroform                  | ND     |      |      |        | ;       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Chloromethane               | ND     |      |      | 10     | )       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Dibromochloromethane        | ND     |      |      | 5      | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Dibromomethane              | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Dichlorodifluoromethane     | ND     |      |      | 10     | )       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Ethylbenzene                | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Hexachlorobutadiene         | ND     |      |      | į      | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Isopropylbenzene            | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Methyl tert-butyl ether     | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Methylene chloride          | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Naphthalene                 | ND     |      |      | į      | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| n-Butylbenzene              | ND     |      |      | ţ      | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| n-Propylbenzene             | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| sec-Butylbenzene            | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Styrene                     | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| tert-Butylbenzene           | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Tetrachloroethene           | ND     |      |      | ,      | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Toluene                     | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Trichloroethene             | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Trichlorofluoromethane      | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Vinyl acetate               | ND     |      |      | 10     | )       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Vinyl chloride              | ND     |      |      | 10     | )       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| cis-1,2-Dichloroethene      | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| cis-1,3-Dichloropropene     | ND     |      |      | ļ      | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| m,p-Xylene                  | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| o-Xylene                    | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| trans-1,2-Dichloroethene    | ND     |      |      | ;      | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| trans-1,3-Dichloropropene   | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Xylenes,Total               | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| 1,2-Dichloroethene (total)  | ND     |      |      |        | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Surr: 1,2-Dichloroethane-d4 | 98.0   |      | %    | 64-11  | 5       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Surr: 4-Bromofluorobenzene  | 100    |      | %    | 65-13  | 1       | 1           | 04/13/09 18:26 | E_G     | 4983601 |
| Surr: Toluene-d8            | . 104  |      | %    | 75-13  | 3       | 1           | 04/13/09 18:26 | E_G     | 4983601 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW5030B     | 04/13/2009 11:56 | E_G           | 1.00        |
|             |                  |               |             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-2 Collected: 04/07/2009 11:44 SPL Sample ID: 09040281-02

Site: Hobbs NM QUAL Analyses/Method Result Rep.Limit Dil. Factor Date Analyzed Analyst Seq. # ALKALINITY (AS CACO3), TOTAL MCL E310.1 Units: mg/L Alkalinity, Total (As CaCO3) 585 2 04/13/09 11:20 PAC 4982663 **GASOLINE RANGE ORGANICS** MCL SW8015B Units: mg/L 0.64 Gasoline Range Organics 0.5 04/13/09 17:18 CLJ 4984673 Surr: 1,4-Difluorobenzene 93.1 % 60-155 5 04/13/09 17:18 CLJ 4984673 Surr: 4-Bromofluorobenzene 106 % 50-158 04/13/09 17:18 CLJ 5 4984673 **HEADSPACE GAS ANALYSIS** MCL **RSK147** Units: mg/L 0.0024 0.23 2 04/20/09 15:19 V\_L 4990878 E300.0 ION CHROMATOGRAPHY MCL Units: mg/L 4985117 Chloride 452 25 50 04/14/09 22:35 BDG Sulfate 5.25 0.5 04/09/09 11:26 BDG 4984922 1 04/09/09 11:26 BDG 4984859 Nitrogen, Nitrate (As N) 0.564 0.5 1

| SEMIVOLATILE HYDROCARBOI       | NS   |          | MCL | S | W8015B     | Units: mg/L |         |
|--------------------------------|------|----------|-----|---|------------|-------------|---------|
| Diesel Range Organics          | 2.3  | 0.1      |     | 1 | 04/17/09 0 | :20 NW      | 4987514 |
| Mineral Spirits Range Organics | ND   | 0.1      |     | 1 | 04/17/09 0 | :20 NW      | 4987514 |
| Surr: n-Pentacosane            | 40.2 | % 20-150 |     | 1 | 04/17/09 0 | :20 NW      | 4987514 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 04/13/2009 14:10 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-2

Collected: 04/07/2009 11:44

SPL Sample ID:

09040281-02

| Site: | HA | bbs | NIM   |
|-------|----|-----|-------|
| one.  | по | DDS | IN IV |

| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |
|-----------------------------|----------------|-----------|-------------|----------------|-----------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C Un      | its: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 1,2-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 1,2-Diphenylhydrazine       | ND             | 10        | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 1,3-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 1,4-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992750 |
| 2,4,5-Trichlorophenol       | ND             | 10        | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2,4,6-Trichlorophenol       | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2,4-Dichlorophenol          | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992750 |
| 2,4-Dimethylphenol          | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2,4-Dinitrophenol           | ND             | 25        | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2,4-Dinitrotoluene          | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2,6-Dinitrotoluene          | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2-Chloronaphthalene         | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2-Chlorophenol              | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2-Methylnaphthalene         | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2-Nitroaniline              | ND             | 25        | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 2-Nitrophenol               | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 4992750 |
| 3,3'-Dichlorobenzidine      | ND             | 10        | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 3-Nitroaniline              | ND             | 25        | 1           | 04/22/09 12:55 | GY        | 4992753 |
| 4,6-Dinitro-2-methylphenol  | ND             | 25        | 1           | 04/22/09 12:55 | GY        | 499275  |
| 4-Bromophenyl phenyl ether  | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| 4-Chloro-3-methylphenol     | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| 4-Chloroaniline             | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| 4-Chlorophenyl phenyl ether | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| 4-Nitroaniline              | ND             | 25        | 1           | 04/22/09 12:55 | GY        | 499275  |
| 4-Nitrophenol               | ND             | 25        | 1           | 04/22/09 12:55 | GY        | 4992753 |
| Acenaphthene                | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Acenaphthylene              | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Aniline                     | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Anthracene                  | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Benz(a)anthracene           | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Benzo(a)pyrene              | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Benzo(b)fluoranthene        | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Benzo(g,h,i)perylene        | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Benzo(k)fluoranthene        | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Benzoic acid                | ND             | 25        | 1           | 04/22/09 12:55 | GY        | 499275  |
| Benzyl alcohol              | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Bis(2-chloroethoxy)methane  | ND             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
| Bis(2-chloroethyl)ether     | МD             | 5         | 1           | 04/22/09 12:55 | GY        | 499275  |
|                             |                |           |             |                |           |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-2 Collected: 04/07/2009 11:44 SI

SPL Sample ID: 09

09040281-02

| Site: | Hobbs | NM |
|-------|-------|----|
|       |       |    |

| Analyses/Method             | Result | QUAL | Re | p.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
|-----------------------------|--------|------|----|---------|-------------|----------------|---------|---------|
| Bis(2-chloroisopropyl)ether | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Butyl benzyl phthalate      | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Carbazole                   | ND     | •    |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Chrysene                    | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Dibenz(a,h)anthracene       | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Dibenzofuran                | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Diethyl phthalate           | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Dimethyl phthalate          | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Di-n-butyl phthalate        | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Di-n-octyl phthalate        | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Fluoranthene                | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Fluorene                    | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Hexachlorobenzene           | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Hexachlorobutadiene         | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Hexachlorocyclopentadiene   | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Hexachloroethane            | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Isophorone                  | ND     | ·-   |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Naphthalene                 | 5.1    |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Nitrobenzene                | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 499275  |
| N-Nitrosodi-n-propylamine   | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| N-Nitrosodiphenylamine      | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Pentachlorophenol           | ND     |      |    | 25      | 1           | 04/22/09 12:55 | GY      | 4992753 |
| Phenanthrene                | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 499275  |
| Phenol                      | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 499275  |
| Pyrene                      | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 499275  |
| Pyridine                    | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 499275  |
| 2-Methylphenol              | ND     |      |    | 5       | 1           | 04/22/09 12:55 | GY      | 499275  |
| 3 & 4-Methylphenol          | ND     | -    |    | 5       | 1           | 04/22/09 12:55 | GY      | 499275  |
| Surr: 2,4,6-Tribromophenol  | 106    |      | %  | 10-123  | 1           | 04/22/09 12:55 | GY      | 499275  |
| Surr: 2-Fluorobiphenyl      | 77.4   |      | %  | 23-116  | 1           | 04/22/09 12:55 | GY      | 499275  |
| Surr: 2-Fluorophenol        | 81.6   |      | %  | 16-110  | 1           | 04/22/09 12:55 | GY      | 499275  |
| Surr: Nitrobenzene-d5       | 75.8   |      | %  | 21-114  | 1           | 04/22/09 12:55 | GY      | 499275  |
| Surr: Phenol-d5             | 63.9   |      | %  | 10-110  | 1           | 04/22/09 12:55 | GY      | 499275  |
| Surr: Terphenyl-d14         | 62.8   | -    | %  | 22-141  | 1           | 04/22/09 12:55 | GY      | 499275  |

| Prep Method | Prep Date       | Prep Initials | Prep Factor |
|-------------|-----------------|---------------|-------------|
| SW3510C     | 04/13/2009 8:15 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-2

Collected: 04/07/2009 11:44 SPL S

SPL Sample ID:

09040281-02

| Site: Hobbs | N | N | ı |
|-------------|---|---|---|
|-------------|---|---|---|

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyze  | d Analyst   | Seq. #  |
|-----------------------------|------------|------|-----------|-------------|---------------|-------------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B |      |           | MCL SV      | V8260B        | Jnits: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/14/09 20:3 | 0 JC        | 4985228 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,1-Dichloroethene          | ND         | -    | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2,4-Trimethylbenzene      | 63         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2-Dibromo-3-chloropropane | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 20:3 | 30 JC       | 4985228 |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 4985228 |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 4985228 |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 4985228 |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 4985228 |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 4985228 |
| 2-Butanone                  | ND         |      | 20        | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| 2-Hexanone                  | ND         |      | 10        | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Acetone                     | ND         |      | 20        | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Acrylonitrile               | ND         |      | 10        | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Benzene                     | 18         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Bromobenzene                | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Bromochloromethane          | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Bromodichloromethane        | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Bromoform                   | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Bromomethane                | ND         |      | 10        | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Carbon disulfide            | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
| Chlorobenzene               | ND         |      | 5         | 1           | 04/14/09 20:  | 30 JC       | 498522  |
|                             |            |      |           |             |               |             |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-2 Collected: 04/07/2009 11:44 SPL Sample ID: 09040281-02

|                             |        |      | Site | e:    | Hobbs NM |             |                |         |         |
|-----------------------------|--------|------|------|-------|----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re   | p.Lin | it       | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |      |      |       | 0        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Chloroform                  | ND     |      |      |       | 5        | 1 .         | 04/14/09 20:30 | JC      | 4985228 |
| Chloromethane               | ND     |      |      | -     | 0        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Dibromochloromethane        | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Dibromomethane              | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Dichlorodifluoromethane     | ND     | ,    |      |       | 0        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Ethylbenzene                | 24     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Hexachlorobutadiene         | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Isopropylbenzene            | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Methyl tert-butyl ether     | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Methylene chloride          | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Naphthalene                 | 9      |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| n-Butylbenzene              | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| n-Propylbenzene             | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| sec-Butylbenzene            | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Styrene                     | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| tert-Butylbenzene           | ND     | -    |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Tetrachloroethene           | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Toluene                     | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Trichloroethene             | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Trichlorofluoromethane      | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Vinyl acetate               | ND     |      |      |       | 10       | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Vinyl chloride              | ND     |      |      |       | 2        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| cis-1,2-Dichloroethene      | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| cis-1,3-Dichloropropene     | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| m,p-Xylene                  | 110    |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| o-Xylene                    | 26     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| trans-1,2-Dichloroethene    | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| trans-1,3-Dichloropropene   | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| 1,2-Dichloroethene (total)  | ND     |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Xylenes,Total               | 136    |      |      |       | 5        | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Surr: 1,2-Dichloroethane-d4 | 98.0   |      | %    | 65-1  | 11       | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Surr: 4-Bromofluorobenzene  | 110    |      | %    | 87-1  | 20       | 1           | 04/14/09 20:30 | JC      | 4985228 |
| Surr: Toluene-d8            | 96.0   |      | %    | 88-1  | 16       | 1           | 04/14/09 20:30 | JC      | 4985228 |

#### Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-4-7-09

Collected: 04/07/2009 12:43

**Hobbs NM** 

SPL Sample ID:

09040281-03

| Analyses/Method           | Result QUAL | Rep.Limit | Dil. Facto | r Date Analyzed | Analyst    | Seq. #  |
|---------------------------|-------------|-----------|------------|-----------------|------------|---------|
| VOLATILE ORGANICS BY MI   | ETHOD 8260B |           | MCL S      | W8260B U        | nits: ug/L |         |
| 1,1,1,2-Tetrachloroethane | ND          | 5         | 1          | 04/14/09 17:19  | ) JC       | 4985221 |
| 1,1,1-Trichloroethane     | ND          | 5         | 1          | 04/14/09 17:19  | ) JC       | 4985221 |
| 1,1,2,2-Tetrachloroethane | ND          | 5         | 1          | 04/14/09 17:19  | ) JC       | 4985221 |
| 1,1,2-Trichloroethane     | ND          | 5         | 1          | 04/14/09 17:19  | ) JC       | 4985221 |
| 1,1-Dichloroethane        | ND          | 5         | 1          | 04/14/09 17:19  | ) JC       | 4985221 |
| 1,1-Dichloroethene        | ND          | 5         | 1          | 04/14/09 17:19  | ) JC       | 4985221 |
| 1,1-Dichloropropene       | ND .        | 5         | 1          | 04/14/09 17:19  | ) JC       | 4985221 |
| 1,2,3-Trichlorobenzene    | ND          | 5         | 1          | 04/14/09 17:19  | ) JC       | 4985221 |
| 4 2 2 Triphlananana       | ND          |           |            | 04/44/00 47:4/  | ) (C       | 4005001 |

Site:

| 1,1,1-Trichloroethane       | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
|-----------------------------|------|-----|---|-------------------|---------|
| 1,1,2,2-Tetrachloroethane   | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,1,2-Trichloroethane       | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,1-Dichloroethane          | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,1-Dichloroethene          | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,1-Dichloropropene         | ND   | . 5 | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2,3-Trichlorobenzene      | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2,3-Trichloropropane      | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2,4-Trichlorobenzene      | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2,4-Trimethylbenzene      | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2-Dibromo-3-chloropropane | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2-Dibromoethane           | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2-Dichlorobenzene         | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2-Dichloroethane          | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,2-Dichloropropane         | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,3,5-Trimethylbenzene      | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,3-Dichlorobenzene         | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,3-Dichloropropane         | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 1,4-Dichlorobenzene         | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 2,2-Dichloropropane         | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 2-Butanone                  | ND   | 20  | 1 | 04/14/09 17:19 JC | 4985221 |
| 2-Chloroethyl vinyl ether   | ND J | 10  | 1 | 04/14/09 17:19 JC | 4985221 |
| 2-Chlorotoluene             | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 2-Hexanone                  | ND   | 10  | 1 | 04/14/09 17:19 JC | 4985221 |
| 4-Chlorotoluene             | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 4-Isopropyltoluene          | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| 4-Methyl-2-pentanone        | ND   | 10  | 1 | 04/14/09 17:19 JC | 4985221 |
| Acetone                     | ND . | 20  | 1 | 04/14/09 17:19 JC | 4985221 |
| Acrylonitrile               | ND   | 10  | 1 | 04/14/09 17:19 JC | 4985221 |
| Benzene                     | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| Bromobenzene                | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| Bromochloromethane          | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| Bromodichloromethane        | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| Bromoform                   | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| Bromomethane                | ND   | 10  | 1 | 04/14/09 17:19 JC | 4985221 |
| Carbon disulfide            | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
| Carbon tetrachloride        | ND   | 5   | 1 | 04/14/09 17:19 JC | 4985221 |
|                             |      |     |   |                   |         |

Qualifiers:

Chlorobenzene

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

ND

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

04/14/09 17:19 JC

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

4985221



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-4-7-09

Collected: 04/07/2009 12:43 SPL Sample ID:

09040281-03

|                             |        |      | Site | e: 1  | MN addol |             |                |         |         |
|-----------------------------|--------|------|------|-------|----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re   | p.Lim | it       | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |      | 1     | 0        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Chloroform                  | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Chloromethane               | ND     |      |      | 1     | 0        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Dibromochloromethane        | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Dibromomethane              | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Dichlorodifluoromethane     | ND     |      |      | 1     | 0        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Ethylbenzene                | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Hexachlorobutadiene         | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Isopropylbenzene            | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Methyl tert-butyl ether     | ND     |      | ·    |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Methylene chloride          | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Naphthalene                 | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| n-Butylbenzene              | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| n-Propylbenzene             | ND     |      |      | •     | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| sec-Butylbenzene            | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Styrene                     | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| tert-Butylbenzene           | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Tetrachloroethene           | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Toluene                     | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Trichloroethene             | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Trichlorofluoromethane      | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Vinyl acetate               | ND     |      |      |       | 0        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Vinyl chloride              | ND     |      |      |       | 2        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| cis-1,2-Dichloroethene      | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| cis-1,3-Dichloropropene     | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| m,p-Xylene                  | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| o-Xylene                    | ND     |      | _    |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| trans-1,2-Dichloroethene    | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| trans-1,3-Dichloropropene   | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| 1,2-Dichloroethene (total)  | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Xylenes,Total               | ND     |      |      |       | 5        | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Surr: 1,2-Dichloroethane-d4 | 98.0   |      | %    | 65-1  | 11       | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Surr: 4-Bromofluorobenzene  | 108    |      | %    | 87-1  | 20       | 1           | 04/14/09 17:19 | JC      | 4985221 |
| Surr: Toluene-d8            | 94.0   |      | %    | 88-1  | 16       | _ 1         | 04/14/09 17:19 | JC      | 4985221 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:TB-4-7-09

Collected: 04/07/2009 12:46 SPL

SPL Sample ID:

09040281-04

| _     |       |       |
|-------|-------|-------|
| Site: | Hobbs | KIR#  |
| JILE. | nouus | IAIAI |

| Analyses/Method             | Result QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |
|-----------------------------|-------------|-----------|-------------|----------------|-----------|---------|
| VOLATILE ORGANICS BY MET    | HOD 8260B   |           | MCL SV      | V8260B Un      | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,1,1-Trichloroethane       | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,1,2,2-Tetrachloroethane   | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,1,2-Trichlorœthane        | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,1-Dichloroethane          | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,1-Dichloroethene          | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,1-Dichloropropene         | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2,3-Trichlorobenzene      | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2,3-Trichloropropane      | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2,4-Trichlorobenzene      | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2,4-Trimethylbenzene      | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2-Dibromo-3-chloropropane | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2-Dibromoethane           | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2-Dichlorobenzene         | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2-Dichloroethane          | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,2-Dichloropropane         | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,3,5-Trimethylbenzene      | ND          | . 5       | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,3-Dichlorobenzene         | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,3-Dichloropropane         | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 1,4-Dichlorobenzene         | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 2,2-Dichloropropane         | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 2-Butanone                  | ND          | 20        | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 2-Chloroethyl vinyl ether   | ND J        | 10        | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 2-Chlorotoluene             | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 2-Hexanone                  | ND          | 10        | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 4-Chlorotoluene             | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| 4-Isopropyltoluene          | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 498522  |
| 4-Methyl-2-pentanone        | ND          | 10        | 1           | 04/14/09 20:02 | JC        | 4985227 |
| Acetone                     | ND          | 20        | 1           | 04/14/09 20:02 | JC        | 4985227 |
| Acrylonitrile               | ND          | 10        | 1           | 04/14/09 20:02 | JC        | 498522  |
| Benzene                     | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| Bromobenzene                | ND          | 5         | . 1         | 04/14/09 20:02 | JC        | 498522  |
| Bromochloromethane          | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 498522  |
| Bromodichloromethane        | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 498522  |
| Bromoform                   | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 498522  |
| Bromomethane                | ND          | 10        | 1           | 04/14/09 20:02 | JC        | 498522  |
| Carbon disulfide            | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
| Carbon tetrachloride        | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 498522  |
| Chlorobenzene               | ND          | 5         | 1           | 04/14/09 20:02 | JC        | 4985227 |
|                             |             |           |             |                |           |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: TB-4-7-09 Collected: 04/07/2009 12:46 SPL Sample ID: 09040281-04

|                             |        |                                       | Site: | Hobbs  | NM          |                |         |         |
|-----------------------------|--------|---------------------------------------|-------|--------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL                                  | Rep.  | Limit  | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |                                       |       | 10     | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Chloroform                  | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Chloromethane               | ND     |                                       |       | 10     | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Dibromochloromethane        | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Dibromomethane              | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Dichlorodifluoromethane     | ND     |                                       | _     | 10     | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Ethylbenzene                | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Hexachlorobutadiene         | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Isopropylbenzene            | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Methyl tert-butyl ether     | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Methylene chloride          | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Naphthalene                 | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| n-Butylbenzene              | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| n-Propylbenzene             | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| sec-Butylbenzene            | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Styrene                     | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| tert-Butylbenzene           | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Tetrachloroethene           | ND     | · · · · · · · · · · · · · · · · · · · |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Toluene                     | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Trichloroethene             | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Trichlorofluoromethane      | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Vinyl acetate               | ND     |                                       |       | 10     | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Vinyl chloride              | ND     |                                       |       | 2      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| cis-1,2-Dichloroethene      | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| cis-1,3-Dichloropropene     | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| m,p-Xylene                  | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| o-Xylene                    | ND     |                                       | -     | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| trans-1,2-Dichloroethene    | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| trans-1,3-Dichloropropene   | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| 1,2-Dichloroethene (total)  | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Xylenes,Total               | ND     |                                       |       | 5      | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Surr: 1,2-Dichloroethane-d4 | 96.0   |                                       | % 6   | 5-111  | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Surr: 4-Bromofluorobenzene  | 110    |                                       | % 8   | 37-120 | 1           | 04/14/09 20:02 | JC      | 4985227 |
| Surr: Toluene-d8            | 94.0   |                                       | % 8   | 8-116  | 1           | 04/14/09 20:02 | JC      | 4985227 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

# Quality Control Documentation



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Analysis:

Semivolatile Hydrocarbons

Method:

RunID:

SW8015B

Fracmaster BJ Service,#128125

WorkOrder:

09040281

Lab Batch ID:

89427

Method Blank

HP\_V\_090416B-4987505

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/14/2009 23:43

Analyst: NW 09040281-02C

MW-2

Preparation Date:

04/13/2009 14:10

Prep By:

N\_M Method SW3510C

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Diesel Range Organics          | ND     | 0.10      |
| Mineral Spirits Range Organics | ND     | 0.10      |
| Surr: n-Pentacosane            | 51.2   | 20-150    |

### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP\_V\_090416B-4987506

mg/L NW

Analysis Date:

04/15/2009 0:03

Units: Analyst:

Preparation Date:

04/13/2009 14:10

Prep By:

N\_M Method SW3510C

| Analyte               | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| Diesel Range Organics | 1.00                  | 0.895         | 89.5                       | 1.00                   | 0.880          | 88.0                        | 1.7 | 40           | 21             | 150            |
| Surr: n-Pentacosane   | 0.0500                | 0.0494        | 98.8                       | 0.0500                 | 0.0485         | 97.0                        | 1.8 | 30           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 17

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis:

Headspace Gas Analysis

Method:

RunID:

RSK147

WorkOrder:

Samples in Analytical Batch:

09040281

Lab Batch ID:

R270691

Method Blank

VARC\_090420A-4990870

Units:

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

04/20/2009 12:47

Analyst:  $V_L$  09040281-02E

MW-2

| Analyte | Result | Rep Limit |
|---------|--------|-----------|
| Methane | ND     | 0.0012    |

### Sample Duplicate

Original Sample:

09040240-01

RunID:

VARC\_090420A-4990871

Units:

mg/L

Analysis Date:

04/20/2009 13:03

Analyst:

 $V_L$ 

| Analyte | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|---------|------------------|---------------|-----|--------------|
| Methane | ND               | ND            | 0   | 50           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

BN - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 18

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service,#128125

Analysis:

**Gasoline Range Organics** 

Method:

RunID:

SW8015B

demaster bo der vice,#120125

WorkOrder:

09040281

Lab Batch ID:

R270269

Method Blank

Units:

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

HP\_P\_090413A-4984662

Date: 04/13/2009 5:20

Analyst:

mg/L

CLJ

09040281-02D

MW-2

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 91.5   | 60-155    |
| Surr: 4-Bromofluorobenzene | 104.0  | 50-158    |

### Laboratory Control Sample (LCS)

RuniD:

HP P 090413A-4984660

Units:

mg/L

Analysis Date:

04/13/2009 4:22

Analyst:

: CLJ

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.859  | 85.9                | 42             | 136            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.0949 | 94.9                | 60             | 155            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.108  | 108                 | 50             | 158            |

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040343-01

RunID:

HP\_P\_090413A-4984664

Units:

mg/L

Analysis Date:

04/13/2009 10:44

Analyst: CLJ

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Gasoline Range Organics    | ND               | 1                    | 0.852        | 85.2             | 1                     | 0.868         | 86.8              | 1.92 | 36           | 22           | 174           |
| Surr: 1,4-Difluorobenzene  | ND               | 0.1                  | 0.0922       | 92.2             | 0.1                   | 0.0932        | 93.2              | 1.08 | 30           | 60           | 155           |
| Surr: 4-Bromofluorobenzene | ND               | 0.1                  | 0.105        | 105              | 0.1                   | 0.107         | 107               | 1.41 | 30           | 50           | 158           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 19

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis:

**Gasoline Range Organics** 

Method:

RunID:

SW8015B

WorkOrder:

Samples in Analytical Batch:

09040281

Lab Batch ID:

R270293

Method Blank

HP\_O\_090414B-4985033

Units: mg/Kg

Lab Sample ID

Client Sample ID

Analysis Date:

04/14/2009 5:22

Analyst: **EMB**  09040281-01A

MW 5-50-51

Preparation Date: 04/14/2009 5:22 Prep By:

Method SW5030B

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 98.4   | 63-142    |
| Surr: 4-Bromofluorobenzene | 103.3  | 50-159    |

### Laboratory Control Sample (LCS)

RunID:

HP\_O\_090414B-4985047

Units:

mg/Kg **EMB** 

Analysis Date:

Preparation Date:

04/14/2009 22:02 04/14/2009 22:02 Analyst: Prep By:

Method SW5030B

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.862  | 86.2                | 70             | 130            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.0992 | 99.2                | 63             | 142            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.101  | 101                 | 50             | 159            |

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09040277-01

HP\_O\_090414B-4985040

Units:

Analysis Date:

04/14/2009 14:11

mg/Kg Analyst: **EMB** 

Preparation Date:

04/13/2009 13:12

Prep By: XML Method SW5030B

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Gasoline Range Organics    | 0.910            | 1                    | 1.02         | 11.3 *           | 1                     | 1.12          | 21.3 *            | 9.27 | 50           | 26           | 147           |
| Surr: 1,4-Difluorobenzene  | ND               | 0.1                  | 0.0962       | 96.2             | 0.1                   | 0.100         | 100               | 4.17 | 30           | 63           | 142           |
| Surr: 4-Bromofluorobenzene | ND               | 0.1                  | 0.14         | 140              | 0.1                   | 0.146         | 146               | 4.13 | 30           | 50           | 159           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 20



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

### Fracmaster BJ Service,#128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040281

Lab Batch ID:

89412

### Method Blank

RunID:

H\_090417E-4992370

Units:

ug/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

09040281-02B

MW-2

Analysis Date: Preparation Date: 04/13/2009 8:15

04/17/2009 9:40

Analyst:

GY

Prep By: N\_M Method SW3510C

| Analyte                     | Result | Rep Limi |
|-----------------------------|--------|----------|
| 1,2,4-Trichlorobenzene      | ND     | 5.0      |
| 1,2-Dichlorobenzene         | ND     | 5.0      |
| 1,2-Diphenylhydrazine       | ND     | 10       |
| 1.3-Dichlorobenzene         | ND     | 5.0      |
| 1,4-Dichlorobenzene         | ND     | 5.0      |
| 2,4,5-Trichlorophenol       | ND     | 1(       |
| 2,4,6-Trichlorophenol       | ND     | 5.0      |
| 2,4-Dichlorophenol          | ND     | 5.0      |
| 2,4-Dimethylphenol          | ND     | 5.0      |
| 2,4-Dinitrophenol           | ND     | 25       |
| 2,4-Dinitrotoluene          | ND     | 5.0      |
| 2,6-Dinitrotoluene          | ND     | 5.0      |
| 2-Chloronaphthalene         | ND     | 5.0      |
| 2-Chlorophenol              | ND     | 5.0      |
| 2-Methylnaphthalene         | ND     | 5.0      |
| 2-Nitroaniline              | ND     | 2!       |
| 2-Nitrophenol               | ND     | 5.0      |
| 3,3'-Dichlorobenzidine      | ND     | 10       |
| 3-Nitroaniline              | ND     | 2:       |
| 4,6-Dinitro-2-methylphenol  | ND     | 2        |
| 4-Bromophenyl phenyl ether  | ND     | 5.0      |
| 4-Chloro-3-methylphenol     | ND     | 5.0      |
| 4-Chloroanifine             | ND     | 5.0      |
| 4-Chlorophenyl phenyl ether | ND     | 5.0      |
| 4-Nitroaniline              | ND     | 25       |
| 4-Nitrophenol               | ND     | 2        |
| Acenaphthene                | ND     | 5.0      |
| Acenaphthylene              | ND     | 5.0      |
| Aniline                     | ND     | 5.0      |
| Anthracene                  | ND     | 5.0      |
| Benz(a)anthracene           | ND     | 5.4      |
| Benzo(a)pyrene              | ND     | 5.0      |
| Benzo(b)fluoranthene        | ND     | 5.0      |
| Benzo(g,h,i)perylene        | ND     | 5.0      |
| Benzo(k)fluoranthene        | ND     | 5.1      |
| Benzoic acid                | ND     | 2        |
| Benzyl alcohol              | ND     | 5.1      |
| Bis(2-chloroethoxy)methane  | ND     | 5.       |
| Bis(2-chloroethyl)ether     | . ND   | 5.       |
| Bis(2-chloroisopropyl)ether | . ND   | 5.       |
| Bis(2-ethylhexyl)phthalate  | ND     | 5.       |
| Butyl benzyl phthalate      | ND     | 5.       |
| Carbazole                   | ND     | 5.       |
|                             | ND     | 5.       |
| Chrysene                    | ND ND  |          |
| Dibenz(a,h)anthracene       |        | 5.0      |
| Dibenzofuran                | ND ND  | 5.0      |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

09040281 Page 21

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040281

Lab Batch ID:

89412

### Method Blank

RuntD:

H\_090417E-4992370

Units:

ug/L

Analysis Date:

04/17/2009 9:40

Analyst: GΥ

Preparation Date:

04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                    | Result | Rep Limit   |
|----------------------------|--------|-------------|
| Diethyl phthalate          | ND     | 5.0         |
| Dimethyl phthalate         | ND     | 5.0         |
| Di-n-butyl phthalate       | ND     | 5.0         |
| Di-n-octyl phthalate       | ND     | 5.0         |
| Fluoranthene               | ND     | 5.0         |
| Fluorene                   | ND     | 5.0         |
| Hexachlorobenzene          | ND     | 5.0         |
| Hexachlorobutadiene        | ND     | 5.0         |
| Hexachlorocyclopentadiene  | ND     | 5.0         |
| Hexachloroethane           | ND     | 5.0         |
| Indeno(1,2,3-cd)pyrene     | ND     | 5.0         |
| Isophorone                 | ND     | 5.0         |
| Naphthalene                | ND     | 5.0         |
| Nitrobenzene               | ND     | 5.0         |
| N-Nitrosodi-n-propylamine  | ND     | 5.0         |
| N-Nitrosodiphenylamine     | ND     | 5.0         |
| Pentachlorophenol          | ND     | 25          |
| Phenanthrene               | ND     | _5.0        |
| Phenol                     | ND     | <u>5</u> .0 |
| Pyrene                     | ND     | 5.0         |
| Pyridine                   | ND     | 5.0         |
| 2-Methylphenol             | ND     | 5.0         |
| 3 & 4-Methylphenoi         | ND     | 5.0         |
| Surr: 2,4,6-Tribromophenol | 95.2   | 10-123      |
| Surr: 2-Fluorobiphenyl     | 72.6   | 23-116      |
| Surr: 2-Fluorophenol       | 76.1   | 16-110      |
| Surr: Nitrobenzene-d5      | 68.4   | 21-114      |
| Surr: Phenol-d5            | 62.5   | 10-110      |
| Surr: Terphenyl-d14        | 68.4   | 22-141      |

### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst:

GΥ

Preparation Date: 04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2 | 39           | 21             | 120            |
| 1,2-Dichlorobenzene    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.7           | 66.8                        | 8.1 | 50           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

 $\ensuremath{\mathsf{B}}\xspace{\mathsf{N}}\xspace$  - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 22

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

### Fracmaster BJ Service,#128125

Analysis:

Semivolatile Organics by Method 8270C

SW8270C Method:

Units:

WorkOrder: Lab Batch ID: 09040281 89412

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

ug/L

Analysis Date:

04/17/2009 10:42

GΥ Analyst:

Preparation Date: 04/13/2009 8:15 Prep By: N M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| 1,2-Diphenylhydrazine       | 25.0                  | 16.5          | 66.0                       | 25.0                   | 17.6           | 70.4                        | 6.5  | 50           | 10             | 251            |
| 1,3-Dichlorobenzene         | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.5           | 66.0                        | 6.9  | 50           | 20             | 150            |
| 1,4-Dichlorobenzene         | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.2           | 64.8                        | 5.7  | 45           | 20             | 150            |
| 2,4,5-Trichlorophenol       | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.4           | 61.6                        | 3.3  | 50           | 30             | 150            |
| 2,4,6-Trichlorophenol       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.0           | 64.0                        | 5.1  | 50           | 30             | 150            |
| 2,4-Dichlorophenol          | 25.0                  | 14.5          | 58.0                       | 25.0                   | 15.9           | 63.6                        | 9.2  | 50           | 30             | 150            |
| 2,4-Dimethylphenol          | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.0           | 64.0                        | 3.8  | 50           | 32             | 140            |
| 2,4-Dinitrophenol           | 25.0                  | 11.9          | 47.6                       | 25.0                   | 12.8           | 51.2                        | 7.3  | 50           | 10             | 160            |
| 2,4-Dinitrotoluene          | 25.0                  | 16.1          | 64.4                       | 25.0                   | 16.3           | 65.2                        | 1.2  | 50           | 30             | 150            |
| 2,6-Dinitrotoluene          | 25.0                  | 15.8          | 63.2                       | 25.0                   | 15.7           | 62.8                        | 0.6  | 50           | 30             | 150            |
| 2-Chloronaphthalene         | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.5           | 66.0                        | 4.3  | 50           | 30             | 150            |
| 2-Chlorophenol              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 15.9           | 63.6                        | 3.2  | 40           | 23             | 134            |
| 2-Methylnaphthalene         | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2  | 50           | 20             | 170            |
| 2-Nitroaniline              | 25.0                  | 14.8          | 59.2                       | 25.0                   | 15.9           | 63.6                        | 7.2  | 50           | 20             | 160            |
| 2-Nitrophenol               | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.8           | 63.2                        | 5.9  | 50           | 29             | 182            |
| 3,3'-Dichlorobenzidine      | 25.0                  | 13.3          | 53.2                       | 25.0                   | 13.7           | 54.8                        | 3.0  | 50           | 30             | 200            |
| 3-Nitroaniline              | 25.0                  | 14.4          | 57.6                       | 25.0                   | 14.8           | 59.2                        | 2.7  | 50           | 20             | 160            |
| 4,6-Dinitro-2-methylphenol  | 25.0                  | 13.7          | 54.8                       | 25.0                   | 14.2           | 56.8                        | 3.6  | 50           | 10             | 160            |
| 4-Bromophenyl phenyl ether  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.8           | 63.2                        | 1.3  | 50           | 30             | 150            |
| 4-Chloro-3-methylphenol     | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.1           | 64.4                        | 5.8  | 42           | 25             | 160            |
| 4-Chloroaniline             | 25.0                  | 15.5          | 62.0                       | 25.0                   | 16.2           | 64.8                        | 4.4  | 50           | 20             | 160            |
| 4-Chlorophenyl phenyl ether | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.3           | 65.2                        | 3.8  | 50           | 25             | 158            |
| 4-Nitroaniline              | 25.0                  | 13.9          | 55.6                       | 25.0                   | 14.8           | 59.2                        | 6.3  | 50           | 20             | 160            |
| 4-Nitrophenol               | 25.0                  | 13.0          | 52.0                       | 25.0                   | 14.8           | 59.2                        | 12.9 | 50           | 10             | 132            |
| Acenaphthene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.3           | 65.2                        | 6.3  | 31           | 30             | 150            |
| Acenaphthylene              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.4           | 65.6                        | 6.3  | 50           | 33             | 250            |
| Aniline                     | 50.0                  | 29.9          | 59.8                       | 50.0                   | 30.9           | 61.8                        | 3.3  | 50           | 10             | 135            |
| Anthracene                  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.5           | 66.0                        | 5.6  | 50           | 27             | 133            |
| Benz(a)anthracene           | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.4           | 65.6                        | 5.0  | 50           | 33             | 143            |
| Benzo(a)pyrene              | 25.0                  | 12.2          | 48.8                       | 25.0                   | 12.7           | 50.8                        | 4.0  | 50           | 17             | 163            |
| Benzo(b)fluoranthene        | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.2           | 60.8                        | 2.0  | 50           | 24             | 159            |
| Benzo(g,h,i)perylene        | 25.0                  | 15.7          | 62.8                       | 25.0                   | 15.9           | 63.6                        | 1.3  | 50           | 30             | 160            |
| Benzo(k)fluoranthene        | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.2           | 60.8                        | 1.3  | 50           | 11             | 162            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 23

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040281

Lab Batch ID:

89412

### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RuniD:

H\_090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst:

GY

04/13/2009 8:15 Preparation Date:

Prep By: N\_M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| Benzoic acid                | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.0           | 64.0                        | 1.9  | 50           | 10             | 400            |
| Benzyl alcohol              | 25.0                  | 14.7          | 58.8                       | 25.0                   | 16.2           | 64.8                        | 9.7  | 50           | 30             | 160            |
| Bis(2-chloroethoxy)methane  | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 50           | 33             | 184            |
| Bis(2-chloroethyl)ether     | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.7           | 66.8                        | 5.5  | 50           | 12             | 158            |
| Bis(2-chloroisopropyl)ether | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.1           | 64.4                        | 3.2  | 50           | 20             | 160            |
| Bis(2-ethylhexyl)phthalate  | 25.0                  | 16.1          | 64.4                       | 25.0                   | 17.0           | 68.0                        | 5.4  | 50           | 10             | 158            |
| Butyl benzyl phthalate      | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.0           | 68.0                        | 4.2  | 50           | 30             | 160            |
| Carbazole                   | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 30             | 150            |
| Chrysene                    | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.0           | 64.0                        | 6.5  | 50           | 17             | 168            |
| Dibenz(a,h)anthracene       | 25.0                  | 15.5          | 62.0                       | 25.0                   | 15.7           | 62.8                        | 1.3  | 50           | 30             | 160            |
| Dibenzofuran                | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.4           | 65.6                        | 4.4  | 50           | 30             | 150            |
| Diethyl phthalate           | 25.0                  | 16.0          | 64.0                       | 25.0                   | 17.1           | 68.4                        | 6.6  | 50           | 30             | 160            |
| Dimethyl phthalate          | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.8           | 67.2                        | 6.8  | 50           | 30             | 160            |
| Di-n-butyl phthalate        | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.1           | 68.4                        | 3.0  | 50           | 30             | 160            |
| Di-n-octyl phthalate        | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.0           | 68.0                        | 4.8  | 50           | 20             | 150            |
| Fluoranthene                | 25.0                  | 15.9          | 63.6                       | 25.0                   | 16.3           | 65.2                        | 2.5  | 50           | 26             | 137            |
| Fluorene                    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.3           | 65.2                        | 5.7  | 50           | 30             | 150            |
| Hexachlorobenzene           | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.6           | 66.4                        | 7.5  | 50           | 20             | 150            |
| Hexachlorobutadiene         | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 20             | 140            |
| Hexachlorocyclopentadiene   | 25.0                  | 17.2          | 68.8                       | 25.0                   | 19.1           | 76.4                        | 10.5 | 50           | 10             | 150            |
| Hexachloroethane            | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.3           | 65.2                        | 8.3  | 50           | 14             | 120            |
| Indeno(1,2,3-cd)pyrene      | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.5           | 70.0                        | 7.1  | 50           | 30             | 160            |
| Isophorone                  | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.3           | 69.2                        | 6.6  | 50           | 21             | 196            |
| Naphthalene                 | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.2           | 64.8                        | 5.1  | 50           | 21             | 133            |
| Nitrobenzene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.0           | 64.0                        | 4.5  | 50           | 20             | 160            |
| N-Nitrosodi-n-propylamine   | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.4           | 61.6                        | 1.3  | 38           | 30             | 160            |
| N-Nitrosodiphenylamine      | 50.0                  | 38.0          | 76.0                       | 50.0                   | 40.4           | 80.8                        | 6.1  | 50           | 30             | 150            |
| Pentachlorophenol           | 25.0                  | 11.5          | 46.0                       | 25.0                   | 12.8           | 51.2                        | 10.7 | 50           | 14             | 176            |
| Phenanthrene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.1           | 64.4                        | 5.1  | 50           | 10             | 140            |
| Phenot                      | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 42           | 40             | 132            |
| Pyrene                      | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.6           | 66.4                        | 4.9  | 38           | 30             | 150            |
| Pyridine                    | 50.0                  | 27.0          | 54.0                       | 50.0                   | 29.4           | 58.8                        | 8.5  | 50           | 10             | 150            |
| 2-Methylphenol              | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.2           | 64.8                        | 3.1  | 50           | 30             | 160            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 24

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster BJ Service.#128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040281

Lab Batch ID:

89412

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units:

Analysis Date:

04/17/2009 10:42

ug/L Analyst:

GY

Preparation Date:

04/13/2009 8:15

Prep By: N M Method SW3510C

| Analyte                    | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 3 & 4-Methylphenol         | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.2           | 68.8                        | 3.6 | 50           | 10             | 160            |
| Surr: 2,4,6-Tribromophenol | 75.0                  | 61.1          | 81.5                       | 75.0                   | 60.8           | 81.1                        | 0.5 | 30           | 10             | 123            |
| Surr: 2-Fluorobiphenyl     | 50.0                  | 28.6          | 57.2                       | 50.0                   | 29.5           | 59.0                        | 3.1 | 30           | 23             | 116            |
| Surr: 2-Fluorophenol       | 75.0                  | 50.0          | 66.7                       | 75.0                   | 50.8           | 67.7                        | 1.6 | 30           | 16             | 110            |
| Surr: Nitrobenzene-d5      | 50.0                  | 29.0          | 58.0                       | 50.0                   | 30.0           | 60.0                        | 3.4 | 30           | 21             | 114            |
| Surr: Phenol-d5            | 75.0                  | 43.1          | 57.5                       | 75.0                   | 44.2           | 58.9                        | 2.5 | 30           | 10             | 110            |
| Surr: Terphenyl-d14        | 50.0                  | 28.4          | 56.8                       | 50.0                   | 28.7           | 57.4                        | 1.1 | 30           | 22             | 141            |



Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 25

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### Brown & Caldwell

Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270194

Method Blank

Samples in Analytical Batch:

RunID:

L 090413B-4983600

Units:

ug/kg E\_G

Lab Sample ID

Client Sample ID

Analysis Date:

04/13/2009 15:44

Analyst:

09040281-01A

MW 5-50-51

| Analyte                     | Result | Rep Limit   |
|-----------------------------|--------|-------------|
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0         |
| 1,1,1-Trichloroethane       | ND     | 5.0         |
| 1,1,2,2-Tetrachloroethane   | ND     | 5.0         |
| 1,1,2-Trichloroethane       | ND     | 5.0         |
| 1,1-Dichloroethane          | ND     | 5.0         |
| 1,1-Dichloroethene          | ND     | 5.0         |
| 1,1-Dichloropropene         | ND     |             |
| 1,2,3-Trichlorobenzene      | ND     |             |
| 1,2,3-Trichloropropane      | ND     |             |
| 1,2,4-Trichlorobenzene      | ND     | 5.0         |
| 1,2,4-Trimethylbenzene      | ND     | 5.0         |
| 1,2-Dibromo-3-chloropropane | ND     |             |
| 1,2-Dibromoethane           | ND     | 5.0         |
| 1.2-Dichlorobenzene         | ND     |             |
| 1,2-Dichloroethane          | ND     | 5.0         |
| 1,2-Dichloropropane         | ND     |             |
| 1,3,5-Trimethylbenzene      | ND     |             |
| 1,3-Dichlorobenzene         | ND     |             |
| 1,3-Dichloropropane         | ND     |             |
| 1,4-Dichlorobenzene         | ND     |             |
| 2,2-Dichloropropane         | ND     | 5.0         |
| 2-Butanone                  | ND     |             |
| 2-Chloroethyl vinyl ether   | ND     |             |
| 2-Chlorotoluene             | ND     | 5.0         |
| 2-Hexanone                  | ND     | 10          |
| 4-Chlorotoluene             | ND     |             |
| 4-Isopropyltoluene          | ND     | 5.0         |
| 4-Methyl-2-pentanone        | ND     |             |
| Acetone                     | ND     |             |
| Acrylonitrile               | ND     |             |
| Benzene                     | ND     |             |
| Bromobenzene                | ND ND  |             |
| Bromochloromethane          | ND     |             |
| Bromodichloromethane        | ND     |             |
| Bromoform                   | ND     | <del></del> |
| Bromomethane                | ND     |             |
| Carbon disulfide            | ND ND  |             |
| Carbon distille             | ND     |             |
| Chlorobenzene               | ND     | +           |
| Chloroethane                | ND     |             |
| Chloroform                  | ND     |             |
| Chloromethane               | ND     |             |
| Dibromochloromethane        | ND     |             |
| Dibromomethane              | ND     |             |
|                             |        |             |
| Dichlorodifluoromethane     | ND     |             |
| Ethylbenzene                | ND     | 5.0         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 26

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270194

### Method Blank

RunID:

L\_090413B-4983600

Units:

ug/kg

Analysis Date:

04/13/2009 15:44

Analyst:

 $E_G$ 

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND.    | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND.    | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND.    | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | . 10      |
| Vinyi chloride              | ND     | 10        |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND     | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND     | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND.    | 5.0       |
| Xylenes,Total               | ND ND  | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 90.0   | 64-115    |
| Surr: 4-Bromofluorobenzene  | 96.0   | 65-131    |
| Surr: Toluene-d8            | 102.0  | 75-136    |

### Laboratory Control Sample (LCS)

RunID:

L\_090413B-4983900

Units:

ug/kg

Analysis Date:

04/13/2009 15:15

Analyst: E\_G

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 18.0   | 90.0                | 56             | 140            |
| 1,1,1-Trichloroethane     | 20.0           | 15.0   | 75.0                | 58             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 18.0   | 90.0                | 52             | 139            |
| 1,1,2-Trichloroethane     | 20.0           | 20.0   | 100                 | 81             | 138            |
| 1,1-Dichloroethane        | 20.0           | 17.0   | 85.0                | 56             | 137            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 27

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell** Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270194

### Laboratory Control Sample (LCS)

RunID:

L\_090413B-4983900

Units:

ug/kg

Analysis Date:

04/13/2009 15:15

Analyst:

E\_G

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 17.0   | 85.0                | 56             | 13             |
| 1,1-Dichloropropene         | 20.0           | 16.0   | 80.0                | 62             | 13:            |
| 1,2,3-Trichlorobenzene      | 20.0           | 17.0   | 85.0                | 53             | 14             |
| 1,2,3-Trichloropropane      | 20.0           | 9.00   | 45.0                | 44             | 14             |
| 1,2,4-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 51             | 14:            |
| 1,2,4-Trimethylbenzene      | 20.0           | 17.0   | 85.0                | 59             | 14             |
| 1,2-Dibromo-3-chloropropane | 20.0           | 16.0   | 80.0                | 53             | 14             |
| 1,2-Dibromoethane           | 20.0           | 18.0   | 90.0                | 55             | 13             |
| 1,2-Dichlorobenzene         | 20.0           | 18.0   | 90.0                | 63             | 13             |
| 1,2-Dichloroethane          | 20.0           | 16.0   | 80.0                | 56             | 13             |
| 1,2-Dichloropropane         | 20.0           | 18.0   | 90.0                | 62             | 13             |
| 1,3,5-Trimethylbenzene      | 20.0           | 16.0   | 80.0                | 54             | 14             |
| 1,3-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 66             | 13             |
| 1,3-Dichloropropane         | 20.0           | 20.0   | 100                 | 59             | 13             |
| 1,4-Dichlorobenzene         | 20.0           | 17.0   | 85.0                | 61             | 14             |
| 2,2-Dichloropropane         | 20.0           | 13.0   | 65.0                | 55             | 13             |
| 2-Butanone                  | 20.0           | 24.0   | 120                 | 10             | 19             |
| 2-Chloroethyl vinyl ether   | 20.0           | 12.0   | 60.0                | 10             | 18             |
| 2-Chlorotoluene             | 20.0           | 17.0   | 85.0                | 64             | 13             |
| 2-Hexanone                  | 20.0           | 18.0   | 90.0                | 18             | 18             |
| 4-Chlorotoluene             | 20.0           | 17.0   | 85.0                | 63             | 13             |
| 4-Isopropyltoluene          | 20.0           | 17.0   | 85.0                | 59             | 15             |
| 4-Methyl-2-pentanone        | 20.0           | 16.0   | 80.0                | 10             | 16             |
| Acetone                     | 20.0           | 29.0   | 145                 | 10             | 20             |
| Acrylonitrile               | 20.0           | 23.0   | 115                 | 38             | 16             |
| Benzene                     | 20.0           | 17.0   | 85.0                | 64             | 13             |
| Bromobenzene                | 20.0           | 18.0   | 90.0                | 58             | 13             |
| Bromochloromethane          | 20.0           | 18.0   | 90.0                | 66             | 12             |
| Bromodichloromethane        | 20.0           | 16.0   | 80.0                | 59             | 13             |
| Bromoform                   | 20.0           | 18.0   | 90.0                | 65             | 13             |
| Bromomethane                | 20.0           | 15.0   | 75.0                | 40             | 13             |
| Carbon disulfide            | 20.0           | 16.0   | 80.0                | 53             | 13             |
| Carbon tetrachloride        | 20.0           | 16.0   | 80.0                | 61             | 13             |
| Chlorobenzene               | 20.0           | 18.0   | 90.0                | 60             | 14             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 28

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

SW8260B Method:

WorkOrder:

09040281

Lab Batch ID:

R270194

### Laboratory Control Sample (LCS)

RunID:

L 090413B-4983900

Units:

ug/kg

Analysis Date:

04/13/2009 15:15

Analyst:

 $E_G$ 

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 17.0   | 85.0                | 45             | 140            |
| Chloroform                  | 20.0           | 17.0   | 85.0                | 64             | 131            |
| Chloromethane               | 20.0           | 20.0   | 100                 | 39             | 140            |
| Dibromochloromethane        | 20.0           | 17.0   | 85.0                | 54             | 138            |
| Dibromomethane              | 20.0           | 17.0   | 85.0                | 64             | 131            |
| Dichlorodifluoromethane     | 20.0           | 11.0   | 55.0                | 35             | 133            |
| Ethylbenzene                | 20.0           | 18.0   | 90.0                | 58             | 143            |
| Hexachlorobutadiene         | 20.0           | 16.0   | 80.0                | 56             | 166            |
| Isopropylbenzene            | 20.0           | 16.0   | 80.0                | 58             | 133            |
| Methyl tert-butyl ether     | 40.0           | 20.0   | 50.0                | 50             | 132            |
| Methylene chloride          | 20.0           | 17.0   | 85.0                | 52             | 144            |
| Naphthalene                 | 20.0           | 18.0   | 90.0                | 51             | 139            |
| n-Butylbenzene              | 20.0           | 17.0   | 85.0                | 59             | 164            |
| n-Propylbenzene             | 20.0           | 18.0   | 90.0                | 57             | 140            |
| sec-Butylbenzene            | 20.0           | 16.0   | 80.0                | 63             | 146            |
| Styrene                     | 20.0           | 17.0   | 85.0                | 57             | 134            |
| tert-Butylbenzene           | 20.0           | 16.0   | 80.0                | 57             | 144            |
| Tetrachloroethene           | 20.0           | 17.0   | 85.0                | 41             | 156            |
| Toluene                     | 20.0           | 19.0   | 95.0                | 63             | 139            |
| Trichloroethene             | 20.0           | 17.0   | 85.0                | 62             | 135            |
| Trichlorofluoromethane      | 20.0           | 15.0   | 75.0                | 53             | 140            |
| Vinyl acetate               | 20.0           | 17.0   | 85.0                | 17             | 163            |
| Vinyl chloride              | 20.0           | 15.0   | 75.0                | 45             | 148            |
| cis-1,2-Dichloroethene      | 20.0           | 18.0   | 90.0                | 70             | 129            |
| cis-1,3-Dichloropropene     | 20.0           | 17.0   | 85.0                | 58             | 132            |
| m,p-Xylene                  | 40.0           | 37.0   | 92.5                | 64             | 137            |
| o-Xylene                    | 20.0           | 20.0   | 100                 | 64             | 143            |
| trans-1,2-Dichloroethene    | 20.0           | 17.0   | 85.0                | 63.            | 130            |
| trans-1,3-Dichloropropene   | 20.0           | 16.0   | 80.0                | 58             | 128            |
| 1,2-Dichloroethene (total)  | 40             | 35     | 88                  | 63             | 130            |
| Xylenes,Total               | 60             | 57     | 95                  | 64             | 143            |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 47     | 94.0                | 64             | 115            |
| Surr: 4-Bromofluorobenzene  | 50.0           | 50     | 100                 | 65             | 131            |
| Surr: Toluene-d8            | 50.0           | 54     | 108                 | 75             | 136            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 29

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell** Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270194

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-01

RunID:

L\_090413B-4983602

Units:

ug/kg

Analysis Date:

04/13/2009 18:51

Analyst:

 $E_G$ 

Preparation Date: 04/13/2009 11:57 Prep By:

E\_G Method SW5030B

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 30           | 38           | 129           |
| 1,1,1-Trichloroethane       | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 30           | 44           | 154           |
| 1,1,2,2-Tetrachloroethane   | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 30           | 14           | 143           |
| 1,1,2-Trichloroethane       | ND               | 20                   | 23.0         | 115              | 20                    | 23.0          | 115               | 0    | 30           | 34           | 135           |
| 1,1-Dichloroethane          | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 30           | 42           | 146           |
| 1,1-Dichloroethene          | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 22           | 39           | 168           |
| 1,1-Dichloropropene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 30           | 42           | 156           |
| 1,2,3-Trichlorobenzene      | ND               | 20                   | 14.0         | 70.0             | 20                    | 14.0          | 70.0              | 0    | 30           | 10           | 125           |
| 1,2,3-Trichloropropane      | ND               | 20                   | 12.0         | 60.0             | 20                    | 11.0          | 55.0              | 8.70 | 30           | 10           | 154           |
| 1,2,4-Trichlorobenzene      | ND               | 20                   | 13.0         | 65.0             | 20                    | 13.0          | 65.0              | 0    | 30           | 10           | 128           |
| 1,2,4-Trimethylbenzene      | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 30           | 22           | 139           |
| 1,2-Dibromo-3-chloropropane | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 30           | 23           | 139           |
| 1,2-Dibromoethane           | ND               | 20                   | 22.0         | 110              | 20                    | 21.0          | 105               | 4.65 | 30           | 32           | 129           |
| 1,2-Dichforobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 30           | 17           | 130           |
| 1,2-Dichloroethane          | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 30           | 15           | 158           |
| 1,2-Dichloropropane         | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 30           | 42           | 133           |
| 1,3,5-Trimethylbenzene      | ND               | 20                   | 16.0         | 80.0             | 20                    | 14.0          | 70.0              | 13.3 | 30           | 22           | 135           |
| 1,3-Dichlorobenzene         | ND               | 20                   | 16.0         | 80.0             | 20                    | 14.0          | 70.0              | 13.3 | 30           | 22           | 130           |
| 1,3-Dichloropropane         | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 30           | 37           | 131           |
| 1,4-Dichlorobenzene         | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 30           | 20           | 129           |
| 2,2-Dichloropropane         | ND               | 20                   | 15.0         | 75.0             | 20                    | 15.0          | 75.0              | 0    | 30           | 39           | 155           |
| 2-Butanone                  | ND               | 20                   | 30.0         | 150              | 20                    | 28.0          | 140               | 6.90 | 30           | 10           | 200           |
| 2-Chloroethyl vinyl ether   | ND               | 20                   | 18.0         | 90.0             | 20                    | 16.0          | 80.0              | 11.8 | 30           | 10           | 168           |
| 2-Chlorotoluene             | ND               | 20                   | 17.0         | 85.0             | 20                    | 15.0          | 75.0              | 12.5 | 30           | 30           | 133           |
| 2-Hexanone                  | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 30           | 14           | 151           |
| 4-Chiorotoluene             | ND               | 20                   | 17.0         | 85.0             | 20                    | 15.0          | 75.0              | 12.5 | 30           | 24           | 133           |
| 4-Isopropyltoluene          | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 30           | 17           | 143           |
| 4-Methyl-2-pentanone        | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 30           | 10           | 176           |
| Acetone                     | ND               | 20                   | 44.0         | 140              | 20                    | 42.0          | 130               | 4.65 | 30           | 10           | 200           |
| Acrylonitrile               | ND               | 20                   | 27.0         | 135              | 20                    | 25.0          | 125               | 7.69 | 30           | 10           | 200           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 30

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

RunID:

Method:

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270194

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-01

L\_090413B-4983602

Units:

ug/kg

Analysis Date: Preparation Date: 04/13/2009 18:51 04/13/2009 11:57 Analyst: E\_G

Prep By: E\_G Method SW5030B

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Benzene                 | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 21           | 49           | 135           |
| Bromobenzene            | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 30           | 29           | 127           |
| Bromochloromethane      | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 30           | 27           | 147           |
| Bromodichloromethane    | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 30           | 32           | 138           |
| Bromoform               | ND               | 20                   | 22.0         | 110              | 20                    | 21.0          | 105               | 4.65 | 30           | 27           | 129           |
| Bromomethane            | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 30           | 32           | 142           |
| Carbon disulfide        | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 30           | 25           | 168           |
| Carbon tetrachloride    | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 30           | 48           | 151           |
| Chlorobenzene           | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 21           | 38           | 130           |
| Chloroethane            | ND               | 20                   | 18.0         | 90.0             | 20                    | 16.0          | 80.0              | 11.8 | 30           | 29           | 161           |
| Chloroform              | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 30           | 34           | 153           |
| Chloromethane           | ND               | 20                   | 20.0         | 100              | 20                    | 21.0          | 105               | 4.88 | 30           | 31           | 151           |
| Dibromochloromethane    | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 30           | 31           | 127           |
| Dibromomethane          | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 30           | 30           | 141           |
| Dichlorodifluoromethane | ND               | 20                   | 13.0         | 65.0             | 20                    | 12.0          | 60.0              | 8.00 | 30           | 15           | 167           |
| Ethylbenzene            | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 30           | 39           | 135           |
| Hexachlorobutadiene     | ND               | 20                   | 12.0         | 60.0             | 20                    | 12.0          | 60.0              | 0    | 30           | 10           | 149           |
| Isopropylbenzene        | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 30           | 25           | 142           |
| Methyl tert-butyl ether | ND               | 40                   | 26.0         | 65.0             | 40                    | 25.0          | 62.5              | 3.92 | 30           | 19           | 142           |
| Methylene chloride      | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 30           | 13           | 170           |
| Naphthalene             | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 30           | 10           | 124           |
| n-Butylbenzene          | ND               | 20                   | 14.0         | 70.0             | 20                    | 13.0          | 65.0              | 7.41 | 30           | 10           | 156           |
| n-Propylbenzene         | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 30           | 20           | 141           |
| sec-Butylbenzene        | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 30           | 29           | 142           |
| Styrene                 | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 30           | 28           | 133           |
| tert-Butylbenzene       | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 30           | 26           | 141           |
| Tetrachloroethene       | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 30           | 33           | 149           |
| Toluene                 | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 21           | 49           | 133           |
| Trichloroethene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 24           | 51           | 142           |
| Trichlorofluoromethane  | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 30           | 24           | 184           |
| Vinyl acetate           | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 30           | 10           | 174           |
| Vinyl chloride          | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 30           | 29           | 177           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 31

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

Fracmaster BJ Service,#128125

WorkOrder:

09040281

Lab Batch ID:

R270194

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09040281-01

L\_090413B-4983602

Units:

ug/kg

ug/kg

Analysis Date: Preparation Date: 04/13/2009 18:51 04/13/2009 11:57 Analyst: E\_G

Prep By: E\_G Method SW5030B

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 30           | 38           | 151           |
| cis-1,3-Dichloropropene     | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 30           | 31           | 131           |
| m,p-Xylene                  | ND               | 40                   | 39.0         | 97.5             | 40                    | 37.0          | 92.5              | 5.26 | 30           | 32           | 140           |
| o-Xylene                    | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 30           | 36           | 142           |
| trans-1,2-Dichloroethene    | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 30           | 41           | 153           |
| trans-1,3-Dichloropropene   | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 30           | 27           | 128           |
| 1,2-Dichloroethene (total)  | ND               | 40                   | 38           | 95               | 40                    | 37            | 92                | 2.7  | 30           | 38           | 153           |
| Xylenes,Total               | ND               | 60                   | 59           | 98               | 60                    | 57            | 95                | 3.4  | 30           | 32           | 142           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 47           | 94.0             | 50                    | 47.0          | 94.0              | 0    | 30           | 64           | 115           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 50           | 100              | 50                    | 50.0          | 100               | 0    | 30           | 65           | 131           |
| Surr: Toluene-d8            | ND               | 50                   | 53           | 106              | 50                    | 53.0          | 106               | 0    | 30           | 75           | 136           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 32

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

Analysis Date:

Preparation Date:

SW8260B

04/14/2009 14:10

04/14/2009 14:10

•

WorkOrder:

09040281

Lab Batch ID:

R270264

### Method Blank

RunID: Q\_090414A-4985214

Units: Analyst:

Prep By:

ug/L JC

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

09040281-02A

MW-2

09040281-03A

FB-4-7-09

| IVI | ęи | IC | u |  |
|-----|----|----|---|--|
|     |    |    |   |  |

09040281-04A

TB-4-7-09

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1.1.1.2-Tetrachloroethane   | ND     | 5.0       |
| 1,1,1-Trichloroethane       | ND     | 5.0       |
| 1,1,2,2-Tetrachloroethane   | ND     | 5.0       |
| 1,1,2-Trichloroethane       | ND     | 5.0       |
| 1.1-Dichloroethane          | ND     | 5.0       |
| 1.1-Dichloroethene          | ND     | 5.0       |
| 1,1-Dichloropropene         | ND     | 5.0       |
| 1.2.3-Trichlorobenzene      | ND     | 5.0       |
| 1,2,3-Trichloropropane      | ND     | 5.0       |
| 1.2.4-Trichlorobenzene      | ND     | 5.0       |
| 1,2,4-Trimethylbenzene      | ND     | 5.0       |
| 1,2-Dibromo-3-chloropropane | ND     | 5.0       |
| 1.2-Dibromoethane           | ND     | 5.0       |
| 1.2-Dichlorobenzene         | ND     | 5.0       |
| 1,2-Dichloroethane          | ND     | 5.0       |
| 1.2-Dichloropropane         | ND     | 5.0       |
| 1,3,5-Trimethylbenzene      | ND     | 5.0       |
| 1.3-Dichlorobenzene         | ND     | 5.0       |
| 1,3-Dichloropropane         | ND     |           |
| 1.4-Dichlorobenzene         | ND     |           |
| 2,2-Dichloropropane         | ND     | -         |
| 2-Butanone                  | ND     |           |
| 2-Chloroethyl vinyl ether   | ND     | ·         |
| 2-Chlorotoluene             | ND     | 5.0       |
| 2-Hexanone                  | ND     |           |
| 4-Chlorotoluene             | ND     |           |
| 4-Isopropyltoluene          | ND     |           |
| 4-Methyl-2-pentanone        | ND     |           |
| Acetone                     | ND     |           |
| Acrylonitrile               | ND     |           |
| Benzene                     | ND     |           |
| Bromobenzene                | ND     |           |
| Bromochloromethane          | ND     |           |
| Bromodichloromethane        | ND     |           |
| Bromoform                   | ND     | +         |
| Bromomethane                | ND     |           |
| Carbon disulfide            | ND     |           |
| Carbon tetrachloride        | ND     |           |
| Chlorobenzene               | ND     |           |
| Chloroethane                | ND     |           |
| Chloroform                  | ND     |           |
| Chloromethane               | ND     |           |
| Dibromochloromethane        | ND     | •         |
| Dibromomethane              | ND     |           |
| Dichlorodifluoromethane     | ND     |           |
|                             | ND     | 1         |
| Ethylbenzene                | I ND   | 5.0       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

nod Blank D - R

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 33

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

Fracmaster BJ Service,#128125

09040281

WorkOrder: Lab Batch ID:

R270264

### Method Blank

RunID:

Q\_090414A-4985214

Units:

ug/L

Analysis Date:

04/14/2009 14:10

JC Analyst:

Method

Preparation Date: 04/14/2009 14:10 Prep By:

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND.    | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | 1(        |
| Vinyl chloride              | ND.    | 2.0       |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND.    | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND.    | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes,Total               | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 98.0   | 65-111    |
| Surr: 4-Bromofluorobenzene  | 108.0  | 87-120    |
| Surr: Toluene-d8            | 92.0   | 88-116    |

### Laboratory Control Sample (LCS)

RunID:

Q 090414A-4985213

Units:

ug/L JC

Analysis Date: Preparation Date:

04/14/2009 13:43 04/14/2009 13:43

Analyst: Prep By:

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 19.0   | 95.0                | 71             | 128            |
| 1,1,1-Trichloroethane     | 20.0           | 20.0   | 100                 | 61             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 18.0   | 90.0                | 60             | 133            |
| 1,1,2-Trichloroethane     | 20.0           | 18.0   | 90.0                | 77             | 127            |
| 1,1-Dichloroethane        | 20.0           | 20.0   | 100                 | 68             | 132            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 34

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell** Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270264

### Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

Analysis Date:

04/14/2009 13:43

ug/L JC

Preparation Date:

04/14/2009 13:43

Analyst: Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 22.0   | 110                 | 65             | 134            |
| 1,1-Dichloropropene         | 20.0           | 18.0   | 90.0                | 68             | 126            |
| 1,2,3-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 36             | 154            |
| 1,2,3-Trichloropropane      | 20.0           | 19.0   | 95.0                | 38             | 153            |
| 1,2,4-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 69             | 144            |
| 1,2,4-Trimethylbenzene      | 20.0           | 14.0   | 70.0                | 64             | 128            |
| 1,2-Dibromo-3-chloropropane | 20.0           | 14.0   | 70.0                | 44             | 14             |
| 1,2-Dibromoethane           | 20.0           | 19.0   | 95.0                | 75             | 124            |
| 1,2-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 68             | 124            |
| 1,2-Dichloroethane          | 20.0           | 18.0   | 90.0                | 61             | 138            |
| 1,2-Dichloropropane         | 20.0           | 18.0   | 90.0                | 76             | 123            |
| 1,3,5-Trimethylbenzene      | 20.0           | 14.0   | 70.0                | 61             | 12             |
| 1,3-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 68             | 12             |
| 1,3-Dichloropropane         | 20.0           | 17.0   | 85.0                | 76             | 12             |
| 1,4-Dichlorobenzene         | 20.0           | 15.0   | 75.0                | 68             | 12             |
| 2,2-Dichloropropane         | 20.0           | 19.0   | 95.0                | 42             | 14             |
| 2-Butanone                  | 20.0           | 20.0   | 100                 | 22             | 18             |
| 2-Chloroethyl vinyl ether   | 20.0           | 18.0   | 90.0                | 10             | 17             |
| 2-Chlorotoluene             | 20.0           | 15.0   | 75.0                | 64             | 13             |
| 2-Hexanone                  | 20.0           | 16.0   | 80.0                | 31             | 17             |
| 4-Chlorotoluene             | 20.0           | 15.0   | 75.0                | 61             | 13             |
| 4-Isopropyltoluene          | 20.0           | 14.0   | 70.0                | 63             | 13             |
| 4-Methyl-2-pentanone        | 20.0           | 16.0   | 80.0                | 10             | 15             |
| Acetone                     | 20.0           | 25.0   | 125                 | 10             | 20             |
| Acrylonitrile               | 20.0           | 20.0   | 100                 | 54             | 15             |
| Benzene                     | 20.0           | 18.0   | 90.0                | 74             | 12             |
| Bromobenzene                | 20.0           | 15.0   | 75.0                | 68             | 12             |
| Bromochloromethane          | 20.0           | 21.0   | 105                 | 71             | 12             |
| Bromodichloromethane        | 20.0           | 19.0   | 95.0                | 72             | 12             |
| Bromoform                   | 20.0           | 19.0   | 95.0                | 81             | 13             |
| Bromomethane                | 20.0           | 21.0   | 105                 | 53             | 13             |
| Carbon disulfide            | 20.0           | 27.0   | 135                 | 41             | 14             |
| Carbon tetrachloride        | 20.0           | 21.0   | 105                 | 59             | 14             |
| Chlorobenzene               | 20.0           | 18.0   | 90.0                | 75             | 12             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 35

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

Fracmaster BJ Service,#128125

WorkOrder:

09040281

Lab Batch ID:

R270264

### Laboratory Control Sample (LCS)

RunID:

Q 090414A-4985213

Units:

ug/L JC

Analysis Date:

04/14/2009 13:43

Analyst:

Preparation Date: 04/14/2009 13:43 Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 20.0   | 100                 | 60             | 134            |
| Chloroform                  | 20.0           | 20.0   | 100                 | 71             | 127            |
| Chloromethane               | 20.0           | 16.0   | 80.0                | 50             | 139            |
| Dibromochloromethane        | 20.0           | 18.0   | 90.0                | 65             | 130            |
| Dibromomethane              | 20.0           | 20.0   | 100                 | 79             | 124            |
| Dichlorodifluoromethane     | 20.0           | 17.0   | 85.0                | 22             | 162            |
| Ethylbenzene                | 20.0           | 17.0   | 85.0                | 72             | 127            |
| Hexachlorobutadiene         | 20.0           | 16.0   | 80.0                | 45             | 152            |
| Isopropylbenzene            | 20.0           | 15.0   | 75.0                | 58             | 130            |
| Methyl tert-butyl ether     | 40.0           | 40.0   | 100                 | 63             | 123            |
| Methylene chloride          | 20.0           | 21.0   | 105                 | 61             | 135            |
| Naphthalene                 | 20.0           | 16.0   | 80.0                | 33             | 148            |
| n-Butylbenzene              | 20.0           | 14.0   | 70.0                | 62             | 136            |
| n-Propylbenzene             | 20.0           | 14.0   | 70.0                | 57             | 131            |
| sec-Butylbenzene            | 20.0           | 14.0   | 70.0                | 63             | 131            |
| Styrene                     | 20.0           | 17.0   | 85.0                | 69             | 120            |
| tert-Butylbenzene           | 20.0           | 14.0   | 70.0                | 59             | 131            |
| Tetrachloroethene           | 20.0           | 21.0   | 105                 | 45             | 173            |
| Toluene                     | 20.0           | 17.0   | 85.0                | 74             | 126            |
| Trichloroethene             | 20.0           | 20.0   | 100                 | 79             | 131            |
| Trichlorofluoromethane      | 20.0           | 23.0   | 115                 | 49             | 153            |
| Vinyl acetate               | 20.0           | 16.0   | 80.0                | 10             | 167            |
| Vinyl chloride              | 20.0           | 20.0   | 100                 | 51             | 148            |
| cis-1,2-Dichloroethene      | 20.0           | 20.0   | 100                 | 71             | 128            |
| cis-1,3-Dichloropropene     | 20.0           | 17.0   | 85.0                | 67             | 128            |
| m,p-Xylene                  | 40.0           | 35.0   | 87.5                | 71             | 129            |
| o-Xylene                    | 20.0           | 18.0   | 90.0                | 74             | 130            |
| trans-1,2-Dichloroethene    | 20.0           | 21.0   | 105                 | 66             | 128            |
| trans-1,3-Dichloropropene   | 20.0           | 16.0   | 80.0                | 60             | 128            |
| 1,2-Dichloroethene (total)  | 40             | 41     | 100                 | 66             | 128            |
| Xylenes,Total               | 60             | 53     | 88                  | 71             | 130            |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 48     | 96.0                | 65             | 11             |
| Surr: 4-Bromofluorobenzene  | 50.0           | 56     | 112                 | 87             | 120            |
| Surr: Toluene-d8            | 50.0           | 46     | 92.0                | 88             | 116            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 36

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270264

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

RunID:

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst: JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 68           | 124           |
| 1,1,1-Trichloroethane       | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 69           | 123           |
| 1,1,2,2-Tetrachloroethane   | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 69           | 130           |
| 1,1,2-Trichloroethane       | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 75           | 126           |
| 1,1-Dichloroethane          | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 65           | 129           |
| 1,1-Dichloroethene          | ND               | 20                   | 23.0         | 115              | 20                    | 23.0          | 115               | 0    | 22           | 61           | 139           |
| 1,1-Dichloropropene         | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 69           | 121           |
| 1,2,3-Trichlorobenzene      | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 53           | 127           |
| 1,2,3-Trichloropropane      | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 79           | 124           |
| 1,2,4-Trichlorobenzene      | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 20           | 58           | 118           |
| 1,2,4-Trimethylbenzene      | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 43           | 132           |
| 1,2-Dibromo-3-chloropropane | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 20           | 46           | 131           |
| 1,2-Dibromoethane           | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 76           | 122           |
| 1,2-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 74           | 110           |
| 1,2-Dichloroethane          | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 60           | 129           |
| 1,2-Dichloropropane         | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 76           | 116           |
| 1,3,5-Trimethylbenzene      | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 20           | 51           | 121           |
| 1,3-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 71           | 110           |
| 1,3-Dichloropropane         | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 20           | 80           | 119           |
| 1,4-Dichlorobenzene         | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 69           | 110           |
| 2,2-Dichloropropane         | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 52           | 122           |
| 2-Butanone                  | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 10           | 133           |
| 2-Chloroethyl vinyl ether   | ND               | 20                   | 0            | 0 *              | 20                    | 0             | 0 *               | 0    | 20           | 10           | 182           |
| 2-Chlorotoluene             | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 69           | 112           |
| 2-Hexanone                  | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 10           | 163           |
| 4-Chlorotoluene             | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 37           | 110           |
| 4-Isopropyltoluene          | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 65           | 116           |
| 4-Methyl-2-pentanone        | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 10           | 103           |
| Acetone                     | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 10           | 160           |
| Acrylonitrile               | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 45           | 155           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply

TNTC - Too numerous to count

09040281 Page 37

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell** Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

RunID:

Method:

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270264

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst:

JC

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Benzene                 | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 22           | 70           | 124           |
| Bromobenzene            | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 72           | 11            |
| Bromochloromethane      | ND               | 20                   | 25.0         | 125              | 20                    | , 24.0        | 120               | 4.08 | 20           | 73           | 126           |
| Bromodichloromethane    | ND               | 20                   | 20.0         | 100              | 20                    | 18.0          | 90.0              | 10.5 | 20           | 68           | 12            |
| Bromoform               | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 44           | 132           |
| Bromomethane            | ND               | 20                   | 23.0         | 115              | 20                    | 21.0          | 105               | 9.09 | 20           | 50           | 140           |
| Carbon disulfide        | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 46           | 143           |
| Carbon tetrachloride    | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 66           | 126           |
| Chlorobenzene           | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 21           | 68           | 123           |
| Chloroethane            | ND               | 20                   | 22.0         | 110              | 20                    | 21.0          | 105               | 4.65 | 20           | 59           | 134           |
| Chloroform              | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 68           | -             |
| Chloromethane           | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 51           | 13            |
| Dibromochloromethane    | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 58           | 13            |
| Dibromomethane          | ND               | 20                   | 22.0         | 110              | 20                    | 20.0          | 100               | 9.52 | 20           | 82           | 12:           |
| Dichlorodifluoromethane | ND               | 20                   | 16.0         | 80.0             | 20                    | 17.0          | 85.0              | 6.06 | 20           | 35           | 14:           |
| Ethylbenzene            | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 76           | 12            |
| Hexachlorobutadiene     | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 43           | 13            |
| Isopropylbenzene        | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 20           | 57           | 12            |
| Methyl tert-butyl ether | ND               | 40                   | 43.0         | 108              | 40                    | 42.0          | 105               | 2.35 | 20           | 10           | 20            |
| Methylene chloride      | ND               | 20                   | 23.0         | 115              | 20                    | 22.0          | 110               | 4.44 | 20           | 70           | 13            |
| Naphthalene             | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 42           | 14            |
| n-Butylbenzene          | ND               | 20                   | 16.0         | 80.0 *           | 20                    | 16.0          | 80.0 *            | 0    | 20           | 82           | 11:           |
| n-Propylbenzene         | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 73           | 10            |
| sec-Butylbenzene        | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 20           | 76           | 11            |
| Styrene                 | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 58           | 15            |
| tert-Butylbenzene       | ND               | 20                   | 15.0         | 75.0             | 20                    | 15.0          | 75.0              | 0    | 20           | 66           | 12            |
| Tetrachloroethene       | ND               | 20                   | 25.0         | . 125            | 20                    | 25.0          | 125               | 0    | 20           | 71           | 13            |
| Toluene                 | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 24           | 80           | 11            |
| Trichloroethene         | ND               | 20                   | 23.0         | 115              | 20                    | 22.0          | 110               | 4.44 | 21           | 82           | 12            |
| Trichlorofluoromethane  | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 74           | 13            |
| Vinyl acetate           | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 66           | 13            |
| Vinyl chloride          | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 |              | 45           | <del> </del>  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 38

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

### Fracmaster BJ Service,#128125

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040281

Lab Batch ID:

R270264

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

Q\_090414A-4985222

Units:

RunID: Analysis Date:

uq/L

04/14/2009 17:46 Analyst:

JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 20                   | 25.0         | 125              | 20                    | 23.0          | 115               | 8.33 | 20           | 67           | 132           |
| cis-1,3-Dichloropropene     | ND               | 20                   | 18.0         | 90.0             | 20                    | 16.0          | 80.0              | 11.8 | 20           | 67           | 116           |
| m,p-Xylene                  | ND               | 40                   | 40.0         | 100              | 40                    | 38.0          | 95.0              | 5.13 | 20           | 69           | 127           |
| o-Xylene                    | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 84           | 114           |
| trans-1,2-Dichloroethene    | ND               | 20                   | 24.0         | 120              | 20                    | 23.0          | 115               | 4.26 | 20           | 68           | 131           |
| trans-1,3-Dichloropropene   | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 56           | 131           |
| 1,2-Dichloroethene (total)  | ND               | 40                   | 49           | 120              | 40                    | 46            | 120               | 6.3  | 20           | 67           | 132           |
| Xylenes,Total               | ND               | 60                   | 61           | 100              | 60                    | 58            | 97                | 5.0  | 20           | 69           | 127           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 49           | 98.0             | 50                    | 49.0          | 98.0              | 0    | 30           | 65           | 111           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 53           | 106              | 50                    | 54.0          | 108               | 1.87 | 30           | 87           | 120           |
| Surr: Toluene-d8            | ND               | 50                   | 47           | 94.0             | 50                    | 48.0          | 96.0              | 2.11 | 30           | 88           | 116           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 39

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Alkalinity (as CaCO3), Total

Analysis: Method:

RunID:

E310.1

Fracmaster BJ Service,#128125

WorkOrder:

09040281

Lab Batch ID:

R270144

Method Blank

WET\_090413F-4982657

Units: mg/L

PAC

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/13/2009 11:20

Analyst:

09040281-02F

MW-2

| Analyte                      | Result | Rep Limit |
|------------------------------|--------|-----------|
| Alkalinity, Total (As CaCO3) | ND     | 2.0       |

### Laboratory Control Sample (LCS)

RunID:

WET\_090413F-4982659

Units:

mg/L

Analysis Date:

04/13/2009 11:20

Analyst:

PAC

| Analyte                      | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|------------------------------|----------------|--------|---------------------|----------------|----------------|
| Alkalinity, Total (As CaCO3) | 38.70          | 39.00  | 100.8               | 90             | 110            |

### Sample Duplicate

Original Sample:

09040278-01

WET\_090413F-4982660

Units: mg/L

Analysis Date:

RunID:

04/13/2009 11:20

Analyst: PAC

| Analyte                      | Sample<br>Result | DUP<br>Result | RPD   | RPD<br>Limit |
|------------------------------|------------------|---------------|-------|--------------|
| Alkalinity, Total (As CaCO3) | 174              | 175           | 0.573 | 20           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 40



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

# **Brown & Caldwell**

Analysis:

Ion Chromatography

Method:

E300.0

Fracmaster BJ Service,#128125

WorkOrder:

09040281

Lab Batch ID:

R270277A

Method Blank

Samples in Analytical Batch:

RunID:

IC2\_090409A-4984862

Units:

mg/L BDG

Lab Sample ID

Client Sample ID

Analysis Date:

04/09/2009 12:18

Analyst:

09040281-02F

MW-2

| Analyte                  | Result | Rep Limit |
|--------------------------|--------|-----------|
| Nitrogen, Nitrate (As N) | ND     | 0.50      |

### Laboratory Control Sample (LCS)

RunID:

IC2\_090409A-4984863

Units:

mg/L

Analysis Date:

04/09/2009 12:36

BDG Analyst:

|   | Analyte                 | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---|-------------------------|----------------|--------|---------------------|----------------|----------------|
| 1 | Nitrogen Nitrate (As N) | 10.00          | 9 147  | 91 47               | 90             | 110            |

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040169-02

IC2\_090409A-4984879

Units: mg/L

Analysis Date:

RuniD:

04/09/2009 18:26

Analyst: BDG

| Analyte                  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD     | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|--------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|---------|--------------|--------------|---------------|
| Nitrogen, Nitrate (As N) | ND               | 10                   | 10.10        | 101.0            | 10                    | 10.09         | 100.9             | 0.06932 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 41

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service,#128125

Analysis:

Ion Chromatography

Method:

RunID:

E300.0

WorkOrder:

09040281

Lab Batch ID:

R270281

Method Blank

IC2\_090414B-4984924

Units:

mg/L BDG

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/09/2009 12:18

Analyst:

09040281-02F

MW-2

| Analyte | Result | Rep Limit |
|---------|--------|-----------|
| Sulfate | ND     | 0.50      |

### Laboratory Control Sample (LCS)

RunID:

IC2\_090414B-4984925

Units:

mg/L

Analysis Date:

04/09/2009 12:36

Analyst: BDG

| Analyte | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------|----------------|--------|---------------------|----------------|----------------|
| Sulfate | 10.00          | 9.751  | 97.51               | 85             |                |

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040009-04

RunID:

IC2\_090414B-4984929

Units:

mg/L

Analysis Date:

04/09/2009 17:51

Analyst:

BDG

| Analyte | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|---------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Sulfate | 9.802            | 10                   | 22.03        | 122.3 *          | 10                    | 21.47         | 116.7             | 2.565 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040281 Page 42

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service,#128125

Analysis:

Ion Chromatography

Method:

RunID:

E300.0

ister bo cervice,# izo izo

WorkOrder:

09040281

Lab Batch ID:

R270297

Method Blank

IC2\_090414D-4985092

Units:

mg/L BDG

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/14/2009 10:38

Analyst:

09040281-02F

MW-2

|          | Analyte | Result | Rep Limit |
|----------|---------|--------|-----------|
| Chloride |         | ND     | 0.50      |

### Laboratory Control Sample (LCS)

RunID:

IC2\_090414D-4985093

Units:

mg/L

Analysis Date:

04/14/2009 10:55

Analyst: BDG

| Analyte  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------|----------------|--------|---------------------|----------------|----------------|
| Chloride | 10.00          | 10.52  | 105.2               | 85             | 115            |

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040254-01

IC2\_090414D-4985097

Units:

mg/L

Analysis Date:

RuniD:

04/14/2009 12:05

Analyst: BDG

| Analyte  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-----|--------------|--------------|---------------|
| Chloride | ND               | 10                   | 10.68        | 106.8            | 10                    | 10.66         | 106.6             |     | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

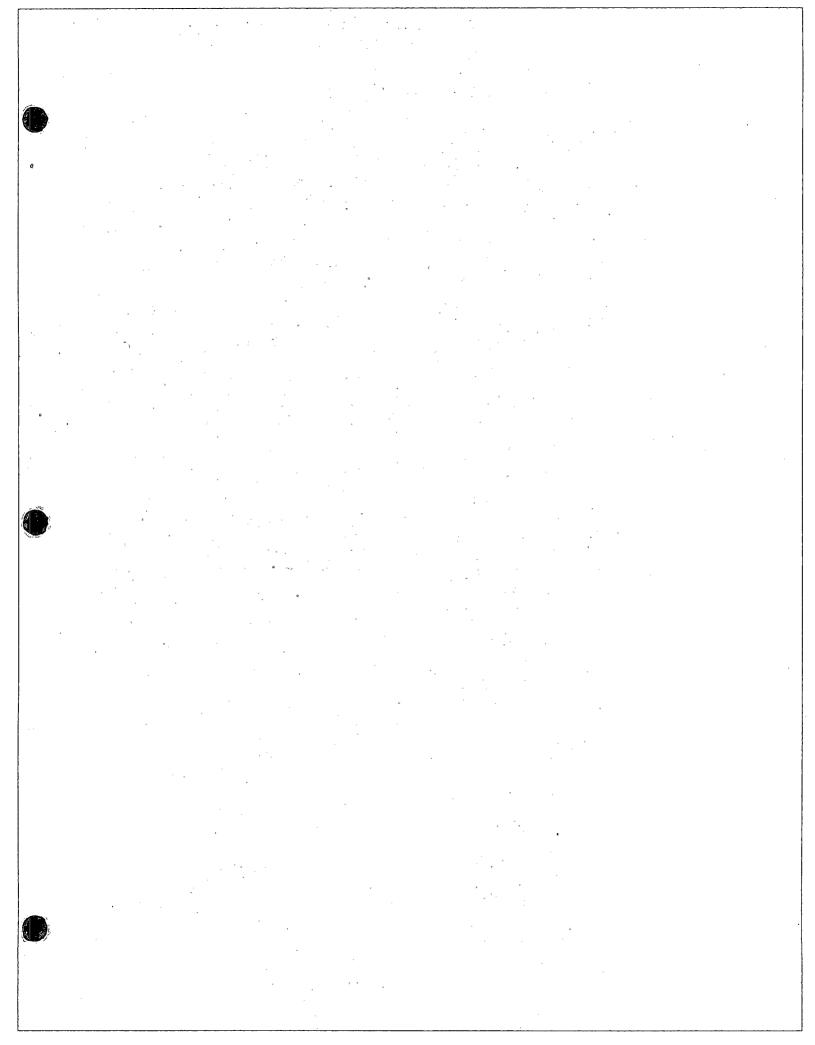
TNTC - Too numerous to count

09040281 Page 43

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

# Sample Receipt Checklist And Chain of Custody




8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### Sample Receipt Checklist

| Date | rkorder:<br>e and Time Received:<br>aperature: | 09040281<br>4/9/2009 10:00:00 AM<br>3.0°C                                             |        |                 | Received Carrier na | ame:       | BF<br>FedEx<br>Water Ice |          |
|------|------------------------------------------------|---------------------------------------------------------------------------------------|--------|-----------------|---------------------|------------|--------------------------|----------|
| 1.   | Shipping container/co                          | oler in good condition?                                                               | Yes    | ✓               | No 🗌                |            | Not Present              |          |
| 2.   | Custody seals intact o                         | n shippping container/cooler?                                                         | Yes    | <b>✓</b>        | No 🗌                |            | Not Present              |          |
| 3.   | Custody seals intact of                        | n sample bottles?                                                                     | Yes    |                 | No 🗔                |            | Not Present              | <b>~</b> |
| 4.   | Chain of custody pres                          | ent?                                                                                  | Yes    | $\checkmark$    | No 🗌                |            |                          |          |
| 5.   | Chain of custody sign                          | ed when relinquished and received?                                                    | Yes    | <b>✓</b>        | No 🗌                |            |                          |          |
| 6.   |                                                | es with sample labels?<br>HCL for CH4 Methane but not written on chain,<br>r Methane. | Yes    |                 | No 🗹                |            |                          |          |
| 7.   | Samples in proper con                          | ntainer/bottle?                                                                       | Yes    | <b>~</b>        | No 🗌                |            |                          |          |
| 8.   | Sample containers int                          | act?                                                                                  | Yes    | •               | No 🗌                |            |                          |          |
| 9.   | Sufficient sample volu                         | ime for indicated test?                                                               | Yes    | <b>✓</b>        | No 🗌                |            |                          |          |
| 10.  | All samples received v                         | within holding time?                                                                  | Yes    | ✓               | No 🗆                |            |                          |          |
| 11.  | Container/Temp Blank                           | temperature in compliance?                                                            | Yes    | <b>✓</b>        | No 🗌                |            |                          |          |
| 12.  | Water - VOA vials hav                          | e zero headspace?                                                                     | Yes    | <b>~</b>        | No $\square$        | VOA Vi     | als Not Present          |          |
| 13.  | Water - Preservation of                        | checked upon receipt (except VOA*)?                                                   | Yes    |                 | No 🗌                |            | Not Applicable           | <b>✓</b> |
|      | *VOA Preservation Ch                           | ecked After Sample Analysis                                                           |        |                 |                     |            |                          |          |
|      | SPL Representati                               | ve: Rodriguez, Alisha C.                                                              | Cont   | act Date & T    | ime: 4/9/200        | 09 2:53:00 | PM                       |          |
|      | Client Name Contact                            | ed: Rick Rexroad w/Brown & Caldwell                                                   |        |                 |                     |            |                          |          |
|      | Non Conformance Issues:                        |                                                                                       |        |                 |                     |            |                          |          |
|      | Client Instructions: Cli                       | ent emailed back at 13:31 on Monday 04/13/09                                          | reques | ting that the e | extra vials be      | analyzed f | or Methane only          |          |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                      |              | SPL Workorder No.                                           | .Ng.                       | 328                                 | 322328            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|--------------|-------------------------------------------------------------|----------------------------|-------------------------------------|-------------------|
| SPL, Inc. Analysis Request & Chain of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                  |                                                      |              | 18504090                                                    | 1800                       | page /                              | of                |
| Client Same: MOUND and Collabell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  | matrix bottle                                        | size         | pres.                                                       | Redu                       | Requested Analysi                   | ysis              |
| 1114 #3500  State TK  State TK  STOCK Email: RES  L/ (67 \ \sum \lambda \)  The Kroud  The Kroud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1002<br>(2 Brancab                                               | V=water S=soil O=oil A=a<br>L=sludge E=encore X=otho | Selas        | =HCI Z=HNO3 =HCI Z=HNO3  EHZSO4 X=other  Interpreted SOISIN | (OC (NOTES 8UC)            | 164-66 (Mathad 3001<br>194-6 / VOCS | <i>ש</i> ניעו)    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIME comp grab                                                   |                                                      | 7 1 8        | ε                                                           | 7.                         | Y X                                 |                   |
| 11/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / | X                                                                | Ţ                                                    | 111104       | X /7/9m/                                                    | X                          | ×                                   |                   |
| FB-4-7-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £3 X                                                             | 3                                                    | 131          | 8 -                                                         | X>                         |                                     |                   |
| 2) ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                                                                | 3                                                    |              | 7                                                           |                            |                                     |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                      |              |                                                             |                            |                                     | 107               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                                      |              |                                                             |                            |                                     |                   |
| Client/Consultant Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Laboratory remarks:                                              | `<br>  .                                             |              |                                                             |                            | Intact? Tee?                        |                   |
| Special Reporting Requirements Standard ON Level 3 QC L. Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fax BEm                                                          | ail Prof                                             | Special Dete | Special Detection Limits (specify):                         | ccify);                    | W. C.                               | review (initial): |
| Standard 1. Relificationed by Sampler:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | date                                                             | 10/02                                                | time         | 2. Received by:                                             | y:                         |                                     |                   |
| es prior notice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | date                                                             | 50/6/                                                | time<br>1000 | 6. Received.                                                | 6. Received by Laboratory: | 4 6.5                               | 4                 |
| S880 Interchange Drive Houston, TX 77054 (713) 660-0901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500 Ambassador Caffery Parkway<br>Scott, LA 70583 (337) 237-4775 | affery Parl<br>37) 237-477                           | kway ,       | Tra                                                         | 459<br>verse City N        | 7                                   | ve<br>1) 947-5777 |





Rick Rexroad

Houston

ΤX 77002-

1415 Louisiana **Suite 2500** 

ph: (713) 759-0999

### **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

# Certificate of Analysis Number: 09040283

Report To: **Brown & Caldwell** 

fax: (713) 308-3886

**Project Name:** 

Fracmaster BJ Service -#128125

Site:

Hobbs NM

Site Address:

PO Number:

State:

**New Mexico** 

State Cert. No.:

**Date Reported:** 

4/23/2009

This Report Contains A Total Of 24 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### Case Narrative for: **Brown & Caldwell**

# Certificate of Analysis Number:

### 09040283

Report To:

**Project Name:** 

Fracmaster BJ Service -#128125

**Brown & Caldwell** 

Site:

Hobbs NM

Rick Rexroad 1415 Louisiana Site Address:

**Suite 2500** Houston

PO Number:

**New Mexico** 

TX

State:

77002-

ph: (713) 759-0999

fax: (713) 308-3886

State Cert. No.: **Date Reported:** 

4/23/2009

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process

For Volatile Organics analysis (8260B), the results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID: 89427 for the Semivolatile Hydrocarbons analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89412 for the Semivolatile Organics analysis by SW 846 Method 8270C. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Ismes V. Vickeaire

09040283 Page 1

4/23/2009

Agnes V. Vicknair

Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

Date



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

# **Certificate of Analysis Number:**

# 09040283

Report To:

Fax To:

Brown & Caldwell

Rick Rexroad 1415 Louisiana Suite 2500 Houston

TX 77002-

ph: (713) 759-0999

fax: (713) 308-3886

Brown & Caldwell Rick Rexroad

fax: (713) 308-3886

Project Name:

Fracmaster BJ Service -#128125

Site:

Hobbs NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported: 4/23/2009

| Client Sample ID | Lab Sample ID | Matrix | Date Collected       | Date Received        | COC ID | HOLD |
|------------------|---------------|--------|----------------------|----------------------|--------|------|
| MW-99            | 09040283-01   | Water  | 4/8/2009 10:11:00 AM | 4/9/2009 10:00:00 AM | 322331 |      |

Agnes V. Vickeaire

4/23/2009

Date

Kesavalu M. Bagawandoss Laboratory Director

Ted Yen
Quality Assurance Officer

Agnes V. Vicknair

Project Manager



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-99 Collected: 04/08/2009 10:11 SPL Sample ID: 09040283-01

| Site: | Hobbs NM |
|-------|----------|
|       |          |

|                                |        |      | 311 | - 1105   | D2 MM |           |             |        |            |         |
|--------------------------------|--------|------|-----|----------|-------|-----------|-------------|--------|------------|---------|
| Analyses/Method                | Result | QUAL | Re  | ep.Limit | (     | Dil. Fact | or Date Ana | yzed   | Analyst    | Seq.#   |
| GASOLINE RANGE ORGANICS        |        |      |     |          | MCL   |           | SW8015B     | Ur     | nits: mg/L |         |
| Gasoline Range Organics        | ND     |      |     | 0.1      |       | 1         | 04/13/09    | 17:47  | CLJ        | 4984674 |
| Surr: 1,4-Difluorobenzene      | 91.2   |      | %   | 60-155   |       | 1         | 04/13/09    | 17:47  | CLJ        | 4984674 |
| Surr: 4-Bromofluorobenzene     | 105    |      | %   | 50-158   |       | 1         | 04/13/09    | 17:47  | CLJ        | 4984674 |
| SEMIVOLATILE HYDROCARBON       | S      |      |     |          | MCL   |           | SW8015B     | Ur     | nits: mg/L |         |
| Diesel Range Organics          | 0.24   |      |     | 0.1      |       | 1         | 04/17/09    | 9 0:40 | NW         | 4987515 |
| Mineral Spirits Range Organics | ND     |      |     | 0.1      |       | 1         | 04/17/09    | 9 0:40 | NW         | 4987515 |
| Surr: n-Pentacosane            | 86.8   |      | %   | 20-150   |       | 1         | 04/17/0     | 9 0:40 | NW         | 4987515 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 04/13/2009 14:10 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-99

Collected: 04/08/2009 10:11 SPL

SPL Sample ID:

09040283-01

| Site: | Hobbs | NM |
|-------|-------|----|
|-------|-------|----|

| Analyses/Method             | Result QUA     | AL Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |
|-----------------------------|----------------|--------------|-------------|----------------|-----------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C | ;            | MCL SV      | V8270C Un      | its: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 1,2-Dichlorobenzene         | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 1,2-Diphenylhydrazine       | ND             | 10           | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 1,3-Dichlorobenzene         | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 1,4-Dichlorobenzene         | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2,4,5-Trichlorophenol       | ND             | 10           | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2,4,6-Trichlorophenol       | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2,4-Dichlorophenol          | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| 2,4-Dimethylphenol          | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2,4-Dinitrophenol           | ND             | 25           | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2,4-Dinitrotoluene          | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992370 |
| 2,6-Dinitrotoluene          | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2-Chloronaphthalene         | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2-Chlorophenol              | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2-Methylnaphthalene         | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 4992376 |
| 2-Nitroaniline              | ND             | 25           | 1           | 04/17/09 17:41 | GY        | 499237  |
| 2-Nitrophenol               | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| 3,3'-Dichlorobenzidine      | ND             | 10           | 1           | 04/17/09 17:41 | GY        | 4992370 |
| 3-Nitroaniline              | ND             | 25           | 1           | 04/17/09 17:41 | GY        | 499237  |
| 4,6-Dinitro-2-methylphenol  | ND             | 25           | 1           | 04/17/09 17:41 | GY        | 499237  |
| 4-Bromophenyl phenyl ether  | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| 4-Chloro-3-methylphenol     | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| 4-Chloroaniline             | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| 4-Chlorophenyl phenyl ether | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| 4-Nitroaniline              | ND             | 25           | . 1         | 04/17/09 17:41 | GY        | 499237  |
| 4-Nitrophenol               | ND             | 25           | 1           | 04/17/09 17:41 | GY        | 499237  |
| Acenaphthene                | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Acenaphthylene              | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Aniline                     | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Anthracene                  | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Benz(a)anthracene           | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Benzo(a)pyrene              | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Benzo(b)fluoranthene        | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Benzo(g,h,i)perylene        | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Benzo(k)fluoranthene        | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Benzoic acid                | ND             | 25           | 1           | 04/17/09 17:41 | GY        | 499237  |
| Benzyl alcohol              | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Bis(2-chloroethoxy)methane  | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |
| Bis(2-chloroethyl)ether     | ND             | 5            | 1           | 04/17/09 17:41 | GY        | 499237  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-99 Collected: 04/08/2009 10:11 SPL Sample ID: 09040283-01

| Analyses/Mothod                             | Result   | QUAL | Ron         | Limit   | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
|---------------------------------------------|----------|------|-------------|---------|-------------|----------------|---------|---------|
| Analyses/Method Bis(2-chloroisopropyl)ether | ND       | QUAL | Kep         | 5.Limit | Dir. Factor | 04/17/09 17:41 | GY      | 4992376 |
| Bis(2-ethylhexyl)phthalate                  | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Butyl benzyl phthalate                      | ND       |      |             |         | <u>'</u>    | 04/17/09 17:41 | GY      | 4992376 |
| Carbazole                                   | ND       |      |             | 5<br>   | <u>'</u>    | 04/17/09 17:41 | GY      | 4992376 |
|                                             | ND       |      |             | 5<br>5  | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Chrysene Dibenz(a,h)anthracene              | ND       |      |             | 5<br>   | <u>'</u>    | 04/17/09 17:41 | GY      | 4992376 |
|                                             | ND ND    |      |             | 5       |             |                | GY      |         |
| Dibenzofuran                                | ND<br>ND |      | <del></del> |         | 1           | 04/17/09 17:41 |         | 4992376 |
| Diethyl phthalate                           |          |      |             |         | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Dimethyl phthalate                          | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Di-n-butyl phthalate                        | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Di-n-octyl phthalate                        | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Fluoranthene                                | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Fluorene                                    | ND       |      |             | 5       | 11          | 04/17/09 17:41 | GY      | 4992376 |
| Hexachlorobenzene                           | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Hexachlorobutadiene                         | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Hexachlorocyclopentadiene                   | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Hexachloroethane                            | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Indeno(1,2,3-cd)pyrene                      | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Isophorone                                  | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Naphthalene                                 | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Nitrobenzene                                | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| N-Nitrosodi-n-propylamine                   | ND       | -    |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| N-Nitrosodiphenylamine                      | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Pentachlorophenol                           | ND       |      |             | 25      | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Phenanthrene                                | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Phenol                                      | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Pyrene                                      | ND       |      | -           | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Pyridine                                    | ND       |      |             | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| 2-Methylphenol                              | ND       |      | -           | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| 3 & 4-Methylphenol                          | ND       |      | -           | 5       | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Surr: 2,4,6-Tribromophenol                  | 81.9     |      | %           | 10-123  | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Surr: 2-Fluorobiphenyl                      | 61.4     |      | %           | 23-116  | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Surr: 2-Fluorophenol                        | 49.1     |      | %           | 16-110  | 1           | 04/17/09 17:41 | GY      | 4992370 |
| Surr: Nitrobenzene-d5                       | 58.0     | -    |             | 21-114  | 1           | 04/17/09 17:41 | GY      | 4992376 |
| Surr: Phenol-d5                             | 33.5     |      | %           | 10-110  | 1           | 04/17/09 17:41 | GY      | 4992370 |
| Surr: Terphenyl-d14                         | 55.0     |      | %           | 22-141  | 1           | 04/17/09 17:41 | GY      | 4992370 |

| Prep Method | Prep Date       | Prep Initials | Prep Factor |
|-------------|-----------------|---------------|-------------|
| SW3510C     | 04/13/2009 8:15 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-99

Collected: 04/08/2009 10:11

SPL Sample ID:

09040283-01

|                             |           |             | Site:       | Hobl | bs NM       |             | _       |         |           | _       |
|-----------------------------|-----------|-------------|-------------|------|-------------|-------------|---------|---------|-----------|---------|
| Analyses/Method             | Result    | QUAL        | Rep.L       | imit |             | Dil. Factor | Date An | alyzed  | Analyst   | Seq. #  |
| VOLATILE ORGANICS BY MET    | HOD 8260B |             |             |      | MCL         | SV          | V8260B  | Un      | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,1,1-Trichloroethane       | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,1,2,2-Tetrachloroethane   | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,1,2-Trichloroethane       | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,1-Dichloroethane          | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,1-Dichloroethene          | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,1-Dichloropropene         | ND        | <u> </u>    |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2,3-Trichlorobenzene      | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2,3-Trichloropropane      | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2,4-Trichlorobenzene      | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2,4-Trimethylbenzene      | ND        | _           |             | 5    | -           | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2-Dibromo-3-chloropropane | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2-Dibromoethane           | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2-Dichlorobenzene         | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2-Dichloroethane          | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,2-Dichloropropane         | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,3,5-Trimethylbenzene      | ND        |             | <del></del> | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,3-Dichlorobenzene         | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,3-Dichloropropane         | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 1,4-Dichlorobenzene         | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 2,2-Dichloropropane         | ND        | <del></del> |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 2-Butanone                  | ND        |             |             | 20   |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 2-Chloroethyl vinyl ether   | ND J      |             |             | 10   |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 2-Chlorotoluene             | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 2-Hexanone                  | ND        |             |             | 10   |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 4-Chlorotoluene             | ND        |             |             | 5    |             | 1           | 04/14/0 |         | JC        | 4985229 |
| 4-Isopropyltoluene          | ND        |             |             | 5    |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| 4-Methyl-2-pentanone        | ND        |             |             | 10   |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| Acetone                     | ND        |             |             | 20   |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| Acrylonitrile               | ND        |             |             | 10   |             | 1           | 04/14/0 | 9 20:57 | JC        | 4985229 |
| Benzene                     | ND        |             |             | 5    |             | 1           |         | 9 20:57 | JC        | 4985229 |
| Bromobenzene                | ND        |             |             | 5    |             | 1           | 04/14/0 |         | JC        | 4985229 |
| Bromochloromethane          | ND        |             |             | 5    |             | 1           |         | 9 20:57 | JC        | 4985229 |
| Bromodichloromethane        | ND        |             |             | 5    |             | 1           |         | 9 20:57 | JC        | 4985229 |
| Bromoform                   | ND        |             |             | 5    |             | 1           |         | 9 20:57 | JC        | 4985229 |
| Bromomethane                | ND        |             |             | 10   | <del></del> | 1           |         | 9 20:57 | JC        | 4985229 |
| Carbon disulfide            | ND        |             |             | 5    |             | 1           |         | 9 20:57 | JC        | 4985229 |
| Carbon tetrachloride        | ND        |             |             | 5    |             | 1           |         | 9 20:57 | JC        | 4985229 |
| Chlorobenzene               | ND        |             |             | 5    |             | 1           |         | 9 20:57 | JC        | 4985229 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-99

Collected: 04/08/2009 10:11

SPL Sample ID:

09040283-01

|                             |        |               | Site | : H    | obbs NM |             |                |         |         |
|-----------------------------|--------|---------------|------|--------|---------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL          | Rep  | p.Limi | t       | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |               |      | 10     | )       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Chloroform                  | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Chloromethane               | ND     |               |      | 1(     | )       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Dibromochloromethane        | ND     |               |      | į      | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Dibromomethane              | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Dichlorodifluoromethane     | ND     | · <del></del> |      | 10     | )       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Ethylbenzene                | ND     |               |      | į      | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Hexachlorobutadiene         | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Isopropylbenzene            | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Methyl tert-butyl ether     | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Methylene chloride          | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Naphthalene                 | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| n-Butylbenzene              | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| n-Propylbenzene             | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| sec-Butylbenzene            | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Styrene                     | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| tert-Butylbenzene           | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Tetrachloroethene           | ND     |               |      |        | <br>5   | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Toluene                     | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Trichloroethene             | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Trichlorofluoromethane      | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Vinyl acetate               | ND     |               |      | 1      | 0       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| Vinyl chloride              | ND     |               |      |        | 2       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| cis-1,2-Dichloroethene      | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| cis-1,3-Dichloropropene     | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| m,p-Xylene                  | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| o-Xylene                    | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| trans-1,2-Dichloroethene    | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| trans-1,3-Dichloropropene   | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 4985229 |
| 1,2-Dichloroethene (total)  | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 498522  |
| Xylenes,Total               | ND     |               |      |        | 5       | 1           | 04/14/09 20:57 | JC      | 498522  |
| Surr: 1,2-Dichloroethane-d4 | 98.0   |               | %    | 65-11  | 1       | 1           | 04/14/09 20:57 | JC      | 498522  |
| Surr: 4-Bromofluorobenzene  | 108    |               | %    | 87-12  | 0       | 1           | 04/14/09 20:57 | JC      | 498522  |
| Surr: Toluene-d8            | 94.0   |               | %    | 88-11  | <br>6   | 1           | 04/14/09 20:57 | JC      | 4985229 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

# **Quality Control Documentation**



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster BJ Service -#128125

Analysis:

Semivolatile Hydrocarbons

Method:

Run(D:

SW8015B

WorkOrder:

Samples in Analytical Batch:

09040283

Lab Batch ID:

89427

Method Blank

HP\_V\_090416B-4987505

Units:

mg/L NW

Lab Sample ID

Client Sample ID

Analysis Date:

04/14/2009 23:43

Analyst:

09040283-010

MW-99

Preparation Date:

04/13/2009 14:10

Prep By:

N\_M Method SW3510C

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Diesel Range Organics          | ND     | 0.10      |
| Mineral Spirits Range Organics | ND     | 0.10      |
| Surr: n-Pentacosane            | 51.2   | 20-150    |

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP\_V\_090416B-4987506

mg/L

NW

Analysis Date:

04/15/2009 0:03

Units: Analyst:

Preparation Date:

04/13/2009 14:10

Prep By: N M Method SW3510C

Analyte LCS LCS LCS LCSD LCSD LCSD RPD RPD Lower Upper Spike Result Percent Spike Result Percent Limit Limit Limit Added Recovery Added Recovery Diesel Range Organics 1.00 0.895 89.5 1.00 0.880 88.0 1.7 40 21 150 Surr: n-Pentacosane 0.0500 0.0494 98.8 0.0500 0.0485 97.0 1.8 30 20 150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 9

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell

#### Fracmaster BJ Service -#128125

Analysis:

**Gasoline Range Organics** 

Method:

SW8015B

4011120101 DV 0017100 // 120120

WorkOrder:

09040283

Lab Batch ID:

R270269

Method Blank

RunID: HP\_P\_090413A-4984662

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

04/13/2009 5:20

Analyst: CLJ

mg/L

09040283-01B

Samples in Analytical Batch:

MW-99

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 91.5   | 60-155    |
| Surr: 4-Bromofluorobenzene | 104.0  | 50-158    |

#### Laboratory Control Sample (LCS)

RunID:

HP P 090413A-4984660

Units: mg/L

......

Analysis Date:

04/13/2009 4:22

Analyst:

t: CLJ

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.859  | 85.9                | 42             | 136            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.0949 | 94.9                | 60             | 155            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.108  | 108                 | 50             | 158            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040343-01

RunID:

HP\_P\_090413A-4984664

Units:

Analysis Date:

04/13/2009 10:44

Analyst:

mg/L CLJ

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Gasoline Range Organics    | ND               | 1                    | 0.852        | 85.2             | 1                     | 0.868         | 86.8              | 1.92 | 36           | 22           | 174           |
| Surr: 1,4-Difluorobenzene  | ND               | 0.1                  | 0.0922       | 92.2             | 0.1                   | 0.0932        | 93.2              | 1.08 | 30           | 60           | 155           |
| Surr: 4-Bromofluorobenzene | ND               | 0.1                  | 0.105        | 105              | 0.1                   | 0.107         | 107               | 1.41 | 30           | 50           | 158           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 10

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

#### Fracmaster BJ Service -#128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040283

Lab Batch ID:

89412

#### Method Blank

RunID:

Analysis Date:

H\_090417E-4992370

Units:

ug/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

09040283-01C

MW-99

Preparation Date:

04/17/2009 9:40 04/13/2009 8:15 Analyst: GΥ

Prep By: N\_M Method SW3510C

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1,2,4-Trichlorobenzene      | ND     | 5.0       |
| 1,2-Dichlorobenzene         | ND     | 5.0       |
| 1,2-Diphenylhydrazine       | ND     | 10        |
| 1,3-Dichlorobenzene         | ND     | 5.0       |
| 1.4-Dichlorobenzene         | ND     | 5.0       |
| 2,4,5-Trichlorophenol       | ND     | 10        |
| 2,4,6-Trichlorophenol       | ND     | 5.0       |
| 2,4-Dichlorophenol          | ND     | 5.0       |
| 2,4-Dimethylphenol          | ND     | 5.0       |
| 2.4-Dinitrophenol           | ND     | 25        |
| 2.4-Dinitrotoluene          | ND     | 5.0       |
| 2,6-Dinitrotoluene          | ND     | 5.0       |
| 2-Chloronaphthalene         | ND     | 5.0       |
| 2-Chlorophenol              | ND     | 5.0       |
| 2-Methylnaphthalene         | ND     | 5.0       |
| 2-Nitroaniline              | ND     | 25        |
| 2-Nitrophenol               | ND     |           |
| 3,3'-Dichlorobenzidine      | ND     |           |
| 3-Nitroaniline              | ND     | 25        |
| 4,6-Dinitro-2-methylphenol  | ND     | 25        |
| 4-Bromophenyl phenyl ether  | ND     | 5.0       |
| 4-Chloro-3-methylphenol     | ND     | 5.0       |
| 4-Chloroaniline             | ND     | 5.0       |
| 4-Chlorophenyl phenyl ether | ND     | 5.0       |
| 4-Nitroaniline              | ND     | 25        |
| 4-Nitrophenol               | ND     |           |
| Acenaphthene                | ND     | 5.0       |
| Acenaphthylene              | ND     | 5.0       |
| Aniline                     | ND     | 5.0       |
| Anthracene                  | ND     |           |
| Benz(a)anthracene           | ND     | 5.0       |
| Benzo(a)pyrene              | ND     | 5.0       |
| Benzo(b)fluoranthene        | ND     |           |
| Benzo(g,h,i)perylene        | ND     |           |
| Benzo(k)fluoranthene        | ND     | 5.0       |
| Benzoic acid                | ND     |           |
| Benzyl alcohol              | ND     |           |
| Bis(2-chloroethoxy)methane  | ND     |           |
| Bis(2-chloroethyl)ether     | ND     |           |
| Bis(2-chloroisopropyl)ether | ND     |           |
| Bis(2-ethylhexyl)phthalate  | ND     |           |
| Butyl benzyl phthalate      | ND     |           |
| Carbazole                   | ND     |           |
| Chrysene                    | ND     |           |
| Dibenz(a,h)anthracene       | ND     |           |
| Dibenzofuran                | ND ND  |           |
| Dipenzoraran                | I      | 1. 5.0    |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 11

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

#### Fracmaster BJ Service -#128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040283

Lab Batch ID:

89412

#### Method Blank

RunID:

H\_090417E-4992370

Units:

ug/L

Analysis Date:

04/17/2009 9:40

Analyst: GY

Preparation Date: 04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 5.0       |
| Dimethyl phthalate         | ND     | 5.0       |
| Di-n-butyl phthalate       | ND     | 5.0       |
| Di-n-octyl phthalate       | ND     | 5.0       |
| Fluoranthene               | ND     | 5.0       |
| Fluorene                   | ND     | 5.0       |
| Hexachlorobenzene          | ND     | 5.0       |
| Hexachlorobutadiene        | ND     | 5.0       |
| Hexachlorocyclopentadiene  | _ ND   | 5.0       |
| Hexachioroethane           | ND     | 5.0       |
| Indeno(1,2,3-cd)pyrene     | ND     | 5.0       |
| Isophorone                 | ND     | 5.0       |
| Naphthalene                | ND     | 5.0       |
| Nitrobenzene               | ND     | 5.0       |
| N-Nitrosodi-n-propylamine  | ND     | 5.0       |
| N-Nitrosodiphenylamine     | ND     | 5.0       |
| Pentachlorophenol          | ND     | 25        |
| Phenanthrene               | ND     | 5.0       |
| Phenol                     | ND     | 5.0       |
| Pyrene                     | ND     | 5.0       |
| Pyridine                   | ND     | 5.0       |
| 2-Methylphenol             | ND     | 5.0       |
| 3 & 4-Methylphenol         | ND     | 5.0       |
| Surr: 2,4,6-Tribromophenol | 95.2   | 10-123    |
| Surr: 2-Fluorobiphenyl     | 72.6   | 23-116    |
| Surr: 2-Fluorophenol       | 76.1   | 16-110    |
| Surr: Nitrobenzene-d5      | 68.4   | 21-114    |
| Surr: Phenol-d5            | 62.5   | 10-110    |
| Surr: Terphenyl-d14        | 68.4   | 22-141    |

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units:

ug/L

Analysis Date: Preparation Date: 04/17/2009 10:42 04/13/2009 8:15

Analyst: GΥ

Prep By: N\_M Method SW3510C

| Analyte                | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2 | 39           | 21             | 120            |
| 1,2-Dichlorobenzene    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.7           | 66.8                        | 8.1 | 50           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 12

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service -#128125

Analysis: Method: Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040283

Lab Batch ID:

89412

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units: uc

ug/L

Analysis Date:

04/17/2009 10:42

Analyst: GY

Preparation Date: 04/13/2009 8:15

Prep By: N M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| 1,2-Diphenylhydrazine       | 25.0                  | 16.5          | 66.0                       | 25.0                   | 17.6           | 70.4                        | 6.5  | 50           | 10             | 251            |
| 1,3-Dichlorobenzene         | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.5           | 66.0                        | 6.9  | 50           | 20             | 150            |
| 1,4-Dichlorobenzene         | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.2           | 64.8                        | 5.7  | 45           | 20             | 150            |
| 2,4,5-Trichlorophenol       | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.4           | 61.6                        | 3.3  | 50           | 30             | 150            |
| 2,4,6-Trichlorophenol       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.0           | 64.0                        | 5.1  | 50           | 30             | 150            |
| 2,4-Dichlorophenol          | 25.0                  | 14.5          | 58.0                       | 25.0                   | 15.9           | 63.6                        | 9.2  | 50           | 30             | 150            |
| 2,4-Dimethylphenol          | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.0           | 64.0                        | 3.8  | 50           | 32             | 140            |
| 2,4-Dinitrophenol           | 25.0                  | 11.9          | 47.6                       | 25.0                   | 12.8           | 51.2                        | 7.3  | 50           | 10             | 160            |
| 2,4-Dinitrotoluene          | 25.0                  | 16.1          | 64.4                       | 25.0                   | 16.3           | 65.2                        | 1.2  | 50           | 30             | 150            |
| 2,6-Dinitrotoluene          | 25.0                  | 15.8          | 63.2                       | 25.0                   | 15.7           | 62.8                        | 0.6  | 50           | 30             | 150            |
| 2-Chloronaphthalene         | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.5           | 66.0                        | 4.3  | 50           | 30             | 150            |
| 2-Chlorophenol              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 15.9           | 63.6                        | 3.2  | 40           | 23             | 134            |
| 2-Methylnaphthalene         | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2  | 50           | 20             | 170            |
| 2-Nitroaniline              | 25.0                  | 14.8          | 59.2                       | 25.0                   | 15.9           | 63.6                        | 7.2  | 50           | 20             | 160            |
| 2-Nitrophenol               | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.8           | 63.2                        | 5.9  | 50           | 29             | 182            |
| 3,3'-Dichlorobenzidine      | 25.0                  | 13.3          | 53.2                       | 25.0                   | 13.7           | 54.8                        | 3.0  | 50           | 30             | 200            |
| 3-Nitroaniline              | 25.0                  | 14.4          | 57.6                       | 25.0                   | 14.8           | 59.2                        | 2.7  | 50           | 20             | 160            |
| 4,6-Dinítro-2-methylphenol  | 25.0                  | 13.7          | 54.8                       | 25.0                   | 14.2           | 56.8                        | 3.6  | 50           | 10             | 160            |
| 4-Bromophenyl phenyl ether  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.8           | 63.2                        | 1.3  | 50           | 30             | 150            |
| 4-Chloro-3-methylphenol     | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.1           | 64.4                        | 5.8  | 42           | 25             | 160            |
| 4-Chloroaniline             | 25.0                  | 15.5          | 62.0                       | 25.0                   | 16.2           | 64.8                        | 4.4  | 50           | . 20           | 160            |
| 4-Chlorophenyl phenyl ether | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.3           | 65.2                        | 3.8  | 50           | 25             | 158            |
| 4-Nitroaniline              | 25.0                  | 13.9          | 55.6                       | 25.0                   | 14.8           | 59.2                        | 6.3  | 50           | 20             | 160            |
| 4-Nitrophenol               | 25.0                  | 13.0          | 52.0                       | 25.0                   | 14.8           | 59.2                        | 12.9 | 50           | 10             | 132            |
| Acenaphthene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.3           | 65.2                        | 6.3  | 31           | 30             | 150            |
| Acenaphthylene              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.4           | 65.6                        | 6.3  | 50           | 33             | 250            |
| Aniline                     | 50.0                  | 29.9          | 59.8                       | 50.0                   | 30.9           | 61.8                        | 3.3  | 50           | 10             | 135            |
| Anthracene                  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.5           | 66.0                        | 5.6  | 50           | 27             | 133            |
| Benz(a)anthracene           | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.4           | 65.6                        | 5.0  | 50           | 33             | 143            |
| Benzo(a)pyrene              | 25.0                  | 12.2          | 48.8                       | 25.0                   | 12.7           | 50.8                        | 4.0  | 50           | 17             | 163            |
| Benzo(b)fluoranthene        | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.2           | 60.8                        | 2.0  | 50           | 24             | 159            |
| Benzo(g,h,i)perylene        | 25.0                  | 15.7          | 62.8                       | 25.0                   | 15.9           | 63.6                        | 1.3  | 50           | 30             | 160            |
| Benzo(k)fluoranthene        | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.2           | 60.8                        | 1.3  | 50           | 11             | 162            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 13

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service -#128125

Analysis: Method: Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040283

Lab Batch ID:

89412

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst: GY

Preparation Date: 04

04/13/2009 8:15 Prep

Prep By: N\_M Method SW3510C

| Analyte                      | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| Benzoic acid                 | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.0           | 64.0                        | 1.9  | 50           | 10             | 400            |
| Benzyl alcohol               | 25.0                  | 14.7          | 58.8                       | 25.0                   | 16.2           | 64.8                        | 9.7  | 50           | 30             | 160            |
| Bis (2-chloroethoxy)methane  | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 50           | 33             | 184            |
| Bis (2-chloroethyl)ether     | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.7           | 66.8                        | 5.5  | 50           | 12             | 158            |
| Bis (2-chloroisopropyl)ether | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.1           | 64.4                        | 3.2  | 50           | 20             | 160            |
| Bis(2-ethylhexyl)phthalate   | 25.0                  | 16.1          | 64.4                       | 25.0                   | 17.0           | 68.0                        | 5.4  | 50           | 10             | 158            |
| Butyl benzyl phthalate       | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.0           | 68.0                        | 4.2  | 50           | 30             | 160            |
| Carbazole                    | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 30             | 150            |
| Chrysene                     | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.0           | 64.0                        | 6.5  | 50           | 17             | 168            |
| Dibenz(a,h)anthracene        | 25.0                  | 15.5          | 62.0                       | 25.0                   | 15.7           | 62.8                        | 1.3  | 50           | 30             | 160            |
| Dibenzofuran                 | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.4           | 65.6                        | 4.4  | 50           | 30             | 150            |
| Diethyl phthalate            | 25.0                  | 16.0          | 64.0                       | 25.0                   | 17.1           | 68.4                        | 6.6  | 50           | 30             | 160            |
| Dimethyl phthalate           | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.8           | 67.2                        | 6.8  | 50           | 30             | 160            |
| Di-n-butyl phthalate         | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.1           | 68.4                        | 3.0  | 50           | 30             | 160            |
| Di-n-octyl phthalate         | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.0           | 68.0                        | 4.8  | 50           | 20             | 150            |
| Fluoranthene                 | 25.0                  | 15.9          | 63.6                       | 25.0                   | 16.3           | 65.2                        | 2.5  | 50           | 26             | 137            |
| Fluorene                     | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.3           | 65.2                        | 5.7  | 50           | 30             | 150            |
| Hexachlorobenzene            | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.6           | 66.4                        | 7.5  | 50           | 20             | 150            |
| Hexachlorobutadiene          | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 20             | 140            |
| Hexachlorocyclopentadiene    | 25.0                  | 17.2          | 68.8                       | 25.0                   | 19.1           | 76.4                        | 10.5 | 50           | 10             | 150            |
| Hexachloroethane             | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.3           | 65.2                        | 8.3  | 50           | 14             | 120            |
| Indeno(1,2,3-cd)pyrene       | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.5           | 70.0                        | 7.1  | 50           | 30             | 160            |
| Isophorone                   | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.3           | 69.2                        | 6.6  | 50           | 21             | 196            |
| Naphthalene                  | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.2           | 64.8                        | 5.1  | 50           | 21             | 133            |
| Nitrobenzene                 | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.0           | 64.0                        | 4.5  | 50           | 20             | 160            |
| N-Nitrosodi-n-propylamine    | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.4           | 61.6                        | 1.3  | 38           | 30             | 160            |
| N-Nitrosodiphenylamine       | 50.0                  | 38.0          | 76.0                       | 50.0                   | 40.4           | 80.8                        | 6.1  | 50           | 30             | 150            |
| Pentachlorophenol            | 25.0                  | 11.5          | 46.0                       | 25.0                   | 12.8           | 51.2                        | 10.7 | 50           | 14             | 176            |
| Phenanthrene                 | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.1           | 64.4                        | 5.1  | 50           | 10             | 140            |
| Phenol                       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 42           | 40             | 132            |
| Pyrene                       | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.6           | 66.4                        | 4.9  | 38           | 30             | 150            |
| Pyridine                     | 50.0                  | 27.0          | 54.0                       | 50.0                   | 29.4           | 58.8                        | 8.5  | 50           | 10             | 150            |
| 2-Methylphenol               | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.2           | 64.8                        | 3.1  | 50           | 30             | 160            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 14

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

#### Fracmaster BJ Service -#128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040283

Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units:

Lab Batch ID:

89412

Analysis Date:

04/17/2009 10:42

ug/L Analyst:

GY

Preparation Date:

04/13/2009 8:15

Prep By: N M Method SW3510C

| Analyte                    | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 3 & 4-Methylphenol         | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.2           | 68.8                        | 3.6 | 50           | 10             | 160            |
| Surr: 2,4,6-Tribromophenol | 75.0                  | 61.1          | 81.5                       | 75.0                   | 60.8           | 81.1                        | 0.5 | 30           | 10             | 123            |
| Surr: 2-Fluorobiphenyl     | 50.0                  | 28.6          | 57.2                       | 50.0                   | 29.5           | 59.0                        | 3.1 | 30           | 23             | 116            |
| Surr: 2-Fluorophenol       | 75.0                  | 50.0          | 66.7                       | 75.0                   | 50.8           | 67.7                        | 1.6 | 30           | 16             | 110            |
| Surr: Nitrobenzene-d5      | 50.0                  | 29.0          | 58.0                       | 50.0                   | 30.0           | 60.0                        | 3.4 | 30           | 21             | 114            |
| Surr: Phenoi-d5            | 75.0                  | 43.1          | 57.5                       | 75.0                   | 44.2           | 58.9                        | 2.5 | 30           | 10             | 110            |
| Surr: Terphenyl-d14        | 50.0                  | 28.4          | 56.8                       | 50.0                   | 28.7           | 57.4                        | 1.1 | 30           | 22             | 141            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 15

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

Fracmaster BJ Service -#128125

WorkOrder:

09040283

Lab Batch ID:

R270264

#### Method Blank

Q 090414A-4985214 RunID:

Units:

ug/L

Lab Sample ID 09040283-01A

Samples in Analytical Batch:

Client Sample ID

MW-99

Analysis Date: Preparation Date: 04/14/2009 14:10 04/14/2009 14:10 Analyst: Prep By:

Method

| Analyte                     | Result | Rep Limit   |
|-----------------------------|--------|-------------|
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0         |
| 1,1,1-Trichloroethane       | ND     | 5.0         |
| 1,1,2,2-Tetrachloroethane   | ND     | 5.0         |
| 1,1,2-Trichloroethane       | ND     | 5.0         |
| 1,1-Dichloroethane          | ND     | 5.0         |
| 1,1-Dichloroethene          | ND     | 5.0         |
| 1,1-Dichloropropene         | ND     | 5.0         |
| 1,2,3-Trichlorobenzene      | ND     | 5.0         |
| 1,2,3-Trichloropropane      | ND     | 5.0         |
| 1,2,4-Trichlorobenzene      | ND     | 5.0         |
| 1,2,4-Trimethylbenzene      | ND     | 5.0         |
| 1,2-Dibromo-3-chloropropane | ND     | 5.0         |
| 1,2-Dibromoethane           | ND     |             |
| 1.2-Dichlorobenzene         | ND     | 5.0         |
| 1,2-Dichloroethane          | ND     |             |
| 1,2-Dichloropropane         | ND     | 5.0         |
|                             | ND     |             |
| 1,3,5-Trimethylbenzene      | ND ND  |             |
| 1,3-Dichlorobenzene         |        |             |
| 1,3-Dichloropropane         | ND ND  |             |
| 1,4-Dichlorobenzene         | ND     |             |
| 2,2-Dichloropropane         | ND ND  |             |
| 2-Butanone                  | ND ND  |             |
| 2-Chloroethyl vinyl ether   | ND ND  |             |
| 2-Chlorotoluene             | ND ND  |             |
| 2-Hexanone                  | ND ND  | <del></del> |
| 4-Chlorotoluene             | ND ND  |             |
| 4-Isopropyltoluene          | ND     |             |
| 4-Methyl-2-pentanone        | ND     | <del></del> |
| Acetone                     | ND ND  |             |
| Acrylonitrile               | ND ND  |             |
| Benzene                     | ND.    |             |
| Bromobenzene                | ND     |             |
| Bromochloromethane          | ND     |             |
| Bromodichloromethane        | ND.    |             |
| Bromoform                   | ND     |             |
| Bromomethane                | ND.    | 10          |
| Carbon disulfide            | ND.    | 5.0         |
| Carbon tetrachloride        | NDND   | +           |
| Chlorobenzene               | ND     | 5.0         |
| Chloroethane                | ND     | 10          |
| Chloroform                  | ND     | 5.0         |
| Chloromethane               | ND     | 10          |
| Dibromochloromethane        | ND     | 5.0         |
| Dibromomethane              | ND     | 5.0         |
| Dichlorodifluoromethane     | ND     | 1           |
| Ethylbenzene                | ND     | 5.1         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 16

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** Fracmaster BJ Service -#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040283

Lab Batch ID:

R270264

#### Method Blank

RunID: Analysis Date:

Q\_090414A-4985214

Units:

ug/L

04/14/2009 14:10

Analyst:

JC

Preparation Date:

04/14/2009 14:10

Prep By:

Method

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachioroethene           | ND     | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichtorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND.    | 10        |
| Vinyl chloride              | ND     | 2.0       |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND     | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND     | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes, Total              | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 98.0   | 65-111    |
| Surr: 4-Bromofluorobenzene  | 108.0  | 87-120    |
| Surr: Toluene-d8            | 92.0   | 88-116    |

## Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

Prep By:

ug/L

Analysis Date: Preparation Date: 04/14/2009 13:43 04/14/2009 13:43 Analyst: JC

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 19.0   | 95.0                | 71             | 128            |
| 1,1,1-Trichloroethane     | 20.0           | 20.0   | 100                 | 61             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 18.0   | 90.0                | 60             | 133            |
| 1,1,2-Trichloroethane     | 20.0           | 18.0   | 90.0                | 77             | 127            |
| 1,1-Dichloroethane        | 20.0           | 20.0   | 100                 | 68             | 132            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 17

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell** Fracmaster BJ Service -#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040283

Lab Batch ID:

R270264

## Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

Analysis Date:

04/14/2009 13:43

ug/L

Analyst: JC

Preparation Date:

04/14/2009 13:43

Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 22.0   | 110                 | 65             | 134            |
| 1,1-Dichloropropene         | 20.0           | 18.0   | 90.0                | 68             | 126            |
| 1,2,3-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 36             | 154            |
| 1,2,3-Trichloropropane      | 20.0           | 19.0   | 95.0                | 38             | 153            |
| 1,2,4-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 69             | 144            |
| 1,2,4-Trimethylbenzene      | 20.0           | 14.0   | 70.0                | 64             | 128            |
| 1,2-Dibromo-3-chloropropane | 20.0           | 14.0   | 70.0                | 44             | 141            |
| 1,2-Dibromoethane           | 20.0           | 19.0   | 95.0                | 75             | 124            |
| 1,2-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 68             | 124            |
| 1,2-Dichloroethane          | 20.0           | 18.0   | 90.0                | 61             | 138            |
| 1,2-Dichloropropane         | 20.0           | 18.0   | 90.0                | 76             | 123            |
| 1,3,5-Trimethylbenzene      | 20.0           | 14.0   | 70.0                | 61             | 127            |
| 1,3-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 68             | 127            |
| 1,3-Dichloropropane         | 20.0           | 17.0   | 85.0                | 76             | 125            |
| 1,4-Dichlorobenzene         | 20.0           | 15.0   | 75.0                | 68             | 124            |
| 2,2-Dichloropropane         | 20.0           | 19.0   | 95.0                | 42             | 142            |
| 2-Butanone                  | 20.0           | 20.0   | 100                 | 22             | 183            |
| 2-Chloroethyl vinyl ether   | 20.0           | 18.0   | 90.0                | 10             | 179            |
| 2-Chlorotoluene             | 20.0           | 15.0   | 75.0                | 64             | 132            |
| 2-Hexanone                  | 20.0           | 16.0   | 80.0                | 31             | 178            |
| 4-Chlorotoluene             | 20.0           | 15.0   | 75.0                | 61             | 132            |
| 4-Isopropyltoluene          | 20.0           | 14.0   | 70.0                | 63             | 136            |
| 4-Methyl-2-pentanone        | 20.0           | 16.0   | 80.0                | 10             | 159            |
| Acetone                     | 20.0           | 25.0   | 125                 | 10             | 200            |
| Acrylonitrile               | 20.0           | 20.0   | 100                 | 54             | 155            |
| Benzene                     | 20.0           | 18.0   | 90.0                | 74             | 123            |
| Bromobenzene                | 20.0           | 15.0   | 75.0                | 68             | 129            |
| Bromochloromethane          | 20.0           | 21.0   | 105                 | 71             | 124            |
| Bromodichloromethane        | 20.0           | 19.0   | 95.0                | 72             | 128            |
| Bromoform                   | 20.0           | 19.0   | 95.0                | 81             | 138            |
| Bromomethane                | 20.0           | 21.0   | 105                 | 53             | 130            |
| Carbon disulfide            | 20.0           | 27.0   | 135                 | 41             | 143            |
| Carbon tetrachloride        | 20.0           | 21.0   | 105                 | 59             | 142            |
| Chlorobenzene               | 20.0           | 18.0   | 90.0                | 75             | 125            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 18

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell** Fracmaster BJ Service -#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040283

Lab Batch ID:

R270264

#### Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

Analysis Date:

04/14/2009 13:43

ug/L JC Analyst:

Preparation Date:

04/14/2009 13:43

Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 20.0   | 100                 | 60             | 134            |
| Chloroform                  | 20.0           | 20.0   | 100                 | 71             | 127            |
| Chloromethane               | 20.0           | 16.0   | 80.0                | 50             | 139            |
| Dibromochloromethane        | 20.0           | 18.0   | 90.0                | 65             | 130            |
| Dibromomethane              | 20.0           | 20.0   | 100                 | 79             | 124            |
| Dichlorodifluoromethane     | 20.0           | 17.0   | 85.0                | 22             | 162            |
| Ethylbenzene                | 20.0           | 17.0   | 85.0                | 72             | 127            |
| Hexachlorobutadiene         | 20.0           | 16.0   | 80.0                | 45             | 152            |
| Isopropylbenzene            | 20.0           | 15.0   | 75.0                | 58             | 130            |
| Methyl tert-butyl ether     | 40.0           | 40.0   | 100                 | 63             | 123            |
| Methylene chloride          | 20.0           | 21.0   | 105                 | 61             | 135            |
| Naphthalene                 | 20.0           | 16.0   | 80.0                | 33             | 148            |
| n-Butylbenzene              | 20.0           | 14.0   | 70.0                | 62             | 136            |
| n-Propylbenzene             | 20.0           | 14.0   | 70.0                | 57             | 131            |
| sec-Butylbenzene            | 20.0           | 14.0   | 70.0                | 63             | 131            |
| Styrene                     | 20.0           | 17.0   | 85.0                | 69             | 120            |
| tert-Butylbenzene           | 20.0           | 14.0   | 70.0                | 59             | 131            |
| Tetrachloroethene           | 20.0           | 21.0   | 105                 | 45             | 173            |
| Toluene                     | 20.0           | 17.0   | 85.0                | 74             | 126            |
| Trichloroethene             | 20.0           | 20.0   | 100                 | 79             | 131            |
| Trichlorofluoromethane      | 20.0           | 23.0   | 115                 | 49             | 153            |
| Vinyl acetate               | 20.0           | 16.0   | 80.0                | 10             | 167            |
| Vinyl chloride              | 20.0           | 20.0   | 100                 | 51             | 148            |
| cis-1,2-Dichloroethene      | 20.0           | 20.0   | 100                 | 71             | 128            |
| cis-1,3-Dichloropropene     | 20.0           | 17.0   | 85.0                | 67             | 128            |
| m,p-Xylene                  | 40.0           | 35.0   | 87.5                | 71             | 129            |
| o-Xylene                    | 20.0           | 18.0   | 90.0                | 74             | 130            |
| trans-1,2-Dichloroethene    | 20.0           | 21.0   | 105                 | 66             | 128            |
| trans-1,3-Dichloropropene   | 20.0           | 16.0   | 80.0                | 60             | 128            |
| 1,2-Dichloroethene (total)  | 40             | 41     | 100                 | 66             | 128            |
| Xylenes,Total               | 60             | 53     | 88                  | 71             | 130            |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 48     | 96.0                | 65             | 111            |
| Surr: 4-Bromofluorobenzene  | 50.0           | 56     | 112                 | 87             | 120            |
| Surr: Toluene-d8            | 50.0           | 46     | 92.0                | 88             | 116            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 19

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service #128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B

WorkOrder:

09040283

Lab Batch ID:

R270264

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

RunID:

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst: JC

MS MS MS % MSD MSD MSD % RPD RPD Analyte Sample Low High Result Spike Result Recovery Spike Result Recovery Limit Limit Limit Added Added ND 20 21.0 1,1,1,2-Tetrachloroethane 105 20 20.0 100 4.88 20 68 124 20 20 20 1,1,1-Trichloroethane ND 21.0 105 20.0 100 4.88 69 123 20 ND 20.0 20 20 1,1,2,2-Tetrachloroethane 100 20.0 100 0 69 130 1,1,2-Trichloroethane ND 20 20.0 100 20 100 0 20 126 20.0 75 ND 20 21.0 105 20 20.0 4.88 1,1-Dichloroethane 100 20 65 129 ND 20 23.0 20 22 1,1-Dichloroethene 115 23.0 115 0 61 139 1,1-Dichloropropene ND 20 21.0 105 20 20.0 100 4.88 20 69 121 ND 20 20 1,2,3-Trichlorobenzene 17.0 85.0 85.0 0 20 53 127 17.0 20 1,2,3-Trichloropropane ND 20.0 100 20 19.0 95.0 5.13 20 79 124 20 1,2,4-Trichlorobenzene ND 17.0 85.0 20 16.0 80.0 6.06 20 58 118 20 ND 16.0 0.08 20 15.0 75.0 6.45 20 43 1,2,4-Trimethylbenzene 132 20 1,2-Dibromo-3-chloropropane ND 15.0 75.0 20 14.0 70.0 6.90 20 131 46 20 1,2-Dibromoethane ND 20.0 20 100 20 100 20.0 n 76 122 20 20 NΩ 18.0 90.0 1,2-Dichlorobenzene 17.0 85.0 5.71 20 74 110 ND 20 18.0 1,2-Dichloroethane 90.0 20 18.0 90.0 0 20 60 129 1,2-Dichloropropane 20 ND 20.0 100 20 19.0 95.0 5.13 20 76 116 1,3,5-Trimethylbenzene ND 20 15.0 75.0 20 14.0 70.0 6.90 20 51 121 20 1,3-Dichlorobenzene ND 18.0 90.0 20 17.0 85.0 5.71 20 71 110 20 ND 19.0 95.0 20 90.0 5.41 20 119 1,3-Dichloropropane 18.0 80 1,4-Dichlorobenzene ND 20 17.0 85.0 20 17.0 85.0 0 20 110 20 2,2-Dichloropropane ND 22.0 110 20 22.0 110 0 20 52 122 20 NΩ 21.0 105 20 21.0 105 0 20 10 2-Butanone 133 2-Chloroethyl vinyl ether ND 20 0 0 \* 20 0 \* 0 20 10 182 0 2-Chlorotoluene NΩ 20 18.0 90.0 20 17.0 85.0 5.71 20 69 112 20 ND 16.0 80.0 20 16.0 0.08 20 10 163 2-Hexanone 0 4-Chlorotoluene ND 20 17.0 85.0 20 37 17.0 85.0 0 20 110 4-Isopropyltoluene ND 20 16.0 80.0 20 16.0 80.0 0 20 116 65 ND 20 17.0 20 4-Methyl-2-pentanone 85.0 17.0 85.0 0 20 10 103 ND 20 Acetone 22.0 110 20 22.0 110 0 20 10 160 NΩ 20 20.0 100 20 0 Acrylonitrile 20.0 100 20 45 155

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve \* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply

09040283 Page 20

TNTC - Too numerous to count



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service #128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

acmaster BJ Service -#128125

WorkOrder:

09040283

Lab Batch ID:

R270264

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09040281-03

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst:

JC

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Benzene                 | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 22           | 70           | 124           |
| Bromobenzene            | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 72           | 111           |
| Bromochloromethane      | ND               | 20                   | 25.0         | 125              | 20                    | 24.0          | 120               | 4.08 | 20           | 73           | 126           |
| Bromodichloromethane    | ND               | 20                   | 20.0         | 100              | 20                    | 18.0          | 90.0              | 10.5 | 20           | 68           | 125           |
| Bromoform               | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 44           | 132           |
| Bromomethane            | ND               | 20                   | 23.0         | 115              | 20                    | 21.0          | 105               | 9.09 | 20           | 50           | 140           |
| Carbon disulfide        | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 46           | 143           |
| Carbon tetrachloride    | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 66           | 126           |
| Chlorobenzene           | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 21           | 68           | 123           |
| Chloroethane            | ND               | 20                   | 22.0         | 110              | 20                    | 21.0          | 105               | 4.65 | 20           | 59           | 134           |
| Chloroform              | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 68           | 127           |
| Chloromethane           | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 51           | 137           |
| Dibromochloromethane    | ND               | 20                   | 18.0         | 90.0             | . 20                  | 17.0          | 85.0              | 5.71 | 20           | 58           | 131           |
| Dibromomethane          | ND               | 20                   | 22.0         | 110              | 20                    | 20.0          | 100               | 9.52 | 20           | 82           | 123           |
| Dichlorodifluoromethane | ND               | 20                   | 16.0         | 80.0             | 20                    | 17.0          | 85.0              | 6.06 | 20           | 35           | 143           |
| Ethylbenzene            | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 76           | 122           |
| Hexachlorobutadiene     | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | .20          | 43           | 137           |
| Isopropylbenzene        | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 20           | 57           | 124           |
| Methyl tert-butyl ether | ND               | 40                   | 43.0         | 108              | 40                    | 42.0          | 105               | 2.35 | 20           | 10           | 200           |
| Methylene chloride      | ND               | 20                   | 23.0         | 115              | 20                    | 22.0          | 110               | 4.44 | 20           | 70           | 134           |
| Naphthalene             | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 42           | 140           |
| n-Butylbenzene          | ND               | 20                   | 16.0         | 80.0 *           | 20                    | 16.0          | 80.0 *            | 0    | 20           | 82           | 112           |
| n-Propylbenzene         | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 73           | 108           |
| sec-Butylbenzene        | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 20           | 76           | 110           |
| Styrene                 | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 58           | 152           |
| tert-Butylbenzene       | ND               | 20                   | 15.0         | 75.0             | 20                    | 15.0          | 75.0              | 0    | 20           | 66           | 120           |
| Tetrachloroethene       | ND               | 20                   | 25.0         | 125              | 20                    | 25.0          | 125               | 0    | 20           | 71           | 130           |
| Toluene                 | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 24           | 80           | 117           |
| Trichloroethene         | ND               | 20                   | 23.0         | 115              | 20                    | 22.0          | 110               | 4.44 | 21           | 82           | 121           |
| Trichlorofluoromethane  | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 74           | 138           |
| Vinyl acetate           | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 66           | 135           |
| Vinyl chloride          | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 45           | 143           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040283 Page 21

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service -#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

10/0

WorkOrder:

09040283

Lab Batch ID:

R270264

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

RunID:

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst:

JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 20                   | 25.0         | 125              | 20                    | 23.0          | 115               | 8.33 | 20           | 67           | 132           |
| cis-1,3-Dichloropropene     | ND               | 20                   | 18.0         | 90.0             | 20                    | 16.0          | 80.0              | 11.8 | 20           | 67           | 116           |
| m,p-Xylene                  | ND               | 40                   | 40.0         | 100              | 40                    | 38.0          | 95.0              | 5.13 | 20           | 69           | 127           |
| o-Xylene                    | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 84           | 114           |
| trans-1,2-Dichloroethene    | ND               | 20                   | 24.0         | 120              | 20                    | 23.0          | 115               | 4.26 | 20           | 68           | 131           |
| trans-1,3-Dichloropropene   | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 56           | 131           |
| 1,2-Dichloroethene (total)  | ND               | 40                   | 49           | 120              | 40                    | 46            | 120               | 6.3  | 20           | 67           | 132           |
| Xylenes,Total               | ND               | 60                   | 61           | 100              | 60                    | 58            | 97                | 5.0  | 20           | 69           | 127           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 49           | 98.0             | 50                    | 49.0          | 98.0              | 0    | 30           | 65           | 111           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 53           | 106              | 50                    | 54.0          | 108               | 1.87 | 30           | 87           | 120           |
| Surr: Toluene-d8            | ND               | 50                   | 47           | 94.0             | 50                    | 48.0          | 96.0              | 2.11 | 30           | 88           | 116           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

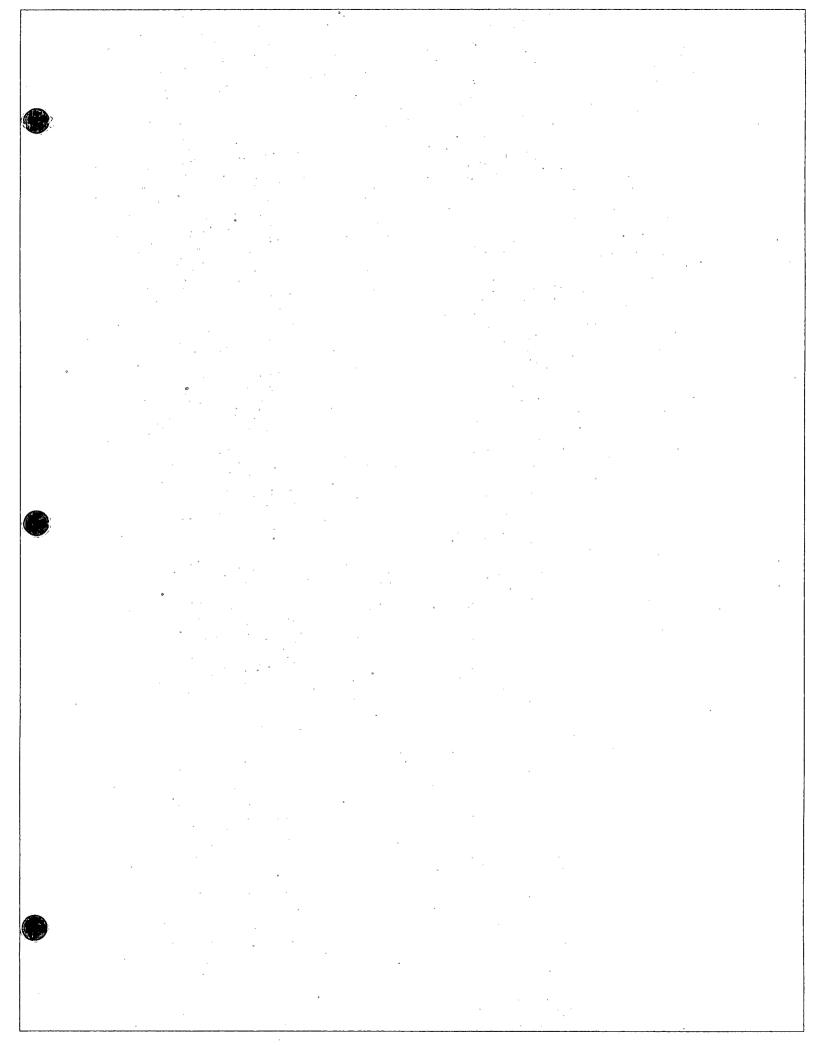
09040283 Page 22

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

# Sample Receipt Checklist And Chain of Custody






8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Sample Receipt Checklist

| Workorder: 09040283  Date and Time Received: 4/9/2009 10:0 | 0:00 AM                |                | Received By:<br>Carrier name: | BF<br>FedEx         |
|------------------------------------------------------------|------------------------|----------------|-------------------------------|---------------------|
| Temperature: 3.5°C                                         |                        |                | Chilled by:                   | Water Ice           |
| 1. Shipping container/cooler in good co                    | ondition?              | Yes 🔽          | No 🗆                          | Not Present         |
| 2. Custody seals intact on shippping co                    | ontainer/cooler?       | Yes 🗸          | No 🗆                          | Not Present         |
| 3. Custody seals intact on sample bott                     | les?                   | Yes            | No 🗆                          | Not Present 🗹       |
| 4. Chain of custody present?                               |                        | Yes 🔽          | No 🗌                          |                     |
| 5. Chain of custody signed when reline                     | quished and received?  | Yes 🗸          | No 🗌                          |                     |
| 6. Chain of custody agrees with sample                     | e labels?              | Yes 🗹          | No 🗆                          |                     |
| 7. Samples in proper container/bottle?                     |                        | Yes 🔽          | No 🗌                          |                     |
| 8. Sample containers intact?                               |                        | Yes 🗹          | No 🗌                          |                     |
| 9. Sufficient sample volume for indicate                   | ted test?              | Yes 🗸          | No 🗆                          |                     |
| 10. All samples received within holding                    | time?                  | Yes 🗹          | No 🗌                          |                     |
| 11. Container/Temp Blank temperature                       | in compliance?         | Yes 🗹          | No 🗌                          |                     |
| 12. Water - VOA vials have zero headsp                     | ace?                   | Yes 🔽          | No 🗌 VO                       | A Vials Not Present |
| 13. Water - Preservation checked upon                      | receipt (except VOA*)? | Yes            | No 🗆                          | Not Applicable   ✓  |
| *VOA Preservation Checked After S                          | ample Analysis         |                |                               |                     |
| SPL Representative:                                        |                        | Contact Date 8 | Time:                         |                     |
| Client Name Contacted:                                     |                        |                |                               |                     |
| Non Conformance<br>Issues:                                 |                        |                |                               |                     |
| Client Instructions:                                       |                        |                |                               |                     |



|                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPL Workorder No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 322331                                                       |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Analysis Reques                                                                             | SPL, Inc.<br>Analysis Request & Chain of Custody Record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 09040033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pageof                                                       |
| Tient Name: Brolly and al                                                                   | matrix bottle size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pres. Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sted Analysis                                                |
| 15 LOW STORE # 5<br>5 Lon<br>713 - 759 - 6<br>713 - 759 - 6<br>FOLWASKE B<br>SAMPLE ID R R. | DATE TIME Comp Paralli XR excell Consulti XR excell XR excell Consulti XR excell XR e | X   MH - D   6   M (8015)   S = H204   X = other   X   M2 (82.70)   X   M2 (82.70)   X   M3 = H204   X = other   X   M4 = D   6   M (8015)   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M = D   6   M |                                                              |
| Thent/Consultant Remarks:                                                                   | Laboratory remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Intact? TY N<br>Ice? Y N<br>Temp: 3, St.                     |
|                                                                                             | Special Reporting Requirements Results: Fax  Email X PDF  Special Det Standard QC  Leyer 3 Pecial Level 4 QC  TX TRRP  LA RECAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Special Detection Limits (specify):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PM review (initial):                                         |
| Standard                                                                                    | 1. Relinquisher by Sampler: date time 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2. Received by: 4. Received by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                            |
| es prior notice                                                                             | date /4/69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6. Received by Laboratory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                            |
| ☐ 8880 Interchange Drive<br>Houston, TX 77054 (713) 660-0901                                | ive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Traverse City, MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | / 459 Hughes Drive<br>Traverse City, MI 49686 (231) 947-5777 |





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

# Certificate of Analysis Number: 09040279

| Report To:              | Project Name: Fracmaster |
|-------------------------|--------------------------|
| Brown & Caldwell        | Site: Hobbs NM           |
| Rick Rexroad            | Site Address:            |
| 1415 Louisiana          |                          |
| Suite 2500              | PO Number:               |
| Houston                 |                          |
| TX                      | State: New Mexico        |
| 77002-                  | State Cert. No.:         |
| ph: (713) 759-0999 fax: | Date Reported: 4/27/2009 |

This Report Contains A Total Of 43 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Case Narrative for: Brown & Caldwell

# Certificate of Analysis Number: 09040279

Report To: Project Name: Fracmaster Hobbs NM Site: **Brown & Caldwell** Rick Rexroad Site Address: 1415 Louisiana **Suite 2500** PO Number: Houston State: **New Mexico** TX 77002-State Cert. No.: ph: (713) 759-0999 fax: **Date Reported:** 4/27/2009

For Volatile Organics analysis (8260B), the results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89427 for the Semivolatile Hydrocarbons analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89412 for the Semivolatile Organics analysis by SW846 Method 8270C. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs. Prep Comments for PR3510\_DRO, Sample 09040279-02C: Unpreserved bottle

Agnes V-Vickeaire

09040279 Page 1

4/27/2009

Agnes V. Vicknair

Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

Date



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

# **Certificate of Analysis Number:**

# 09040279

Report To:

Fax To:

**Brown & Caldwell** 

Rick Rexroad 1415 Louisiana

Suite 2500 Houston

TX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Ismes V. Vicheave

Project Name:

Fracmaster

Site:

Hobbs NM

Site Address:

PO Number:

State:

**New Mexico** 

State Cert. No.:

Date Reported:

4/27/2009

| Client Sample ID | Lab Sample ID | Matrix | Date Collected       | Date Received        | COC ID | HOLD |
|------------------|---------------|--------|----------------------|----------------------|--------|------|
| MW 5-54-55       | 09040279-01   | Soil   | 4/7/2009 2:31:00 PM  | 4/9/2009 10:00:00 AM | 322330 |      |
| MW-1             | 09040279-02   | Water  | 4/7/2009 3:09:00 PM  | 4/9/2009 10:00:00 AM | 322329 |      |
| TB-4-8-09B       | 09040279-03   | Water  | 4/8/2009 10:07:00 AM | 4/9/2009 10:00:00 AM | 322329 |      |
| FB-4-8-09B       | 09040279-04   | Water  | 4/8/2009 10:10:00 AM | 4/9/2009 10:00:00 AM | 322329 |      |

Agnes V. Vicknair Project Manager

4/27/2009

Date

Kesavalu M. Bagawandoss Laboratory Director

Ted Yen Quality Assurance Officer





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

09040279-01

Client Sample ID: MW5-54-55 Collected: 04/07/2009 14:31 SPL Sample ID:

Site: Hobbs NM

| Analyses/Method                | Result | QUAL | Rep.Limit | Dil. | Facto | or Date Anal | yzed  | Analyst    | Seq. #  |
|--------------------------------|--------|------|-----------|------|-------|--------------|-------|------------|---------|
| SEMIVOLATILE HYDROCARBON       | S      |      |           | MCL  |       | SW8015B      | Un    | its: mg/kg |         |
| Diesel Range Organics          | 36     |      | 5         | _    | 1     | 04/16/09     | 23:19 | NW         | 4987380 |
| Mineral Spirits Range Organics | ND     |      | 10        |      | 1     | 04/16/09     | 23:19 | NW         | 4987380 |
| Surr: n-Pentacosane            | 84.2   |      | % 20-154  |      | 1     | 04/16/09     | 23:19 | NW         | 4987380 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3550B     | 04/13/2009 16:58 | QMT           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040279 Page 3 4/27/2009 5:02:01 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

09040279-01

Client Sample ID: MW5-54-55 Collected: 04/07/2009 14:31 SPL Sample ID:

Site: Hobbs NM

| Site: Hobbs NM              |                |           |             |               |             |         |  |  |  |
|-----------------------------|----------------|-----------|-------------|---------------|-------------|---------|--|--|--|
| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyzed | Analyst     | Seq. #  |  |  |  |
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C Ur     | nits: ug/kg |         |  |  |  |
| 1,2,4-Trichlorobenzene      | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 1,2-Dichlorobenzene         | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 1,2-Diphenylhydrazine       | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 1,3-Dichlorobenzene         | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 1,4-Dichlorobenzene         | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 2,4,5-Trichlorophenol       | ND             | 800       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 2,4,6-Trichlorophenol       | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 2,4-Dichlorophenol          | ND             | 330       | . 1         | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 2,4-Dimethylphenol          | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 2,4-Dinitrophenol           | ND             | 800       | 1           | 04/16/09 1:52 | ER          | 4986262 |  |  |  |
| 2,4-Dinitrotoluene          | ND             | 800       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 2,6-Dinitrotoluene          | ND             | 330       | 1           | 04/16/09 1:52 | E R         | 4986262 |  |  |  |
| 2-Chloronaphthalene         | ND             | 330       | 1           | 04/16/09 1:52 | E R         | 4986262 |  |  |  |
| 2-Chlorophenol              | ND             | 330       | 1           | 04/16/09 1:52 | E R         | 4986262 |  |  |  |
| 2-Methylnaphthalene         | ND             | 330       | 1           | 04/16/09 1:52 | E R         | 4986262 |  |  |  |
| 2-Nitroaniline              | ND             | 800       | 1           | 04/16/09 1:52 | E R         | 4986262 |  |  |  |
| 2-Nitrophenol               | ND             | 330       | 1           | 04/16/09 1:52 | E R         | 4986262 |  |  |  |
| 3,3'-Dichlorobenzidine      | ND             | 330       | 1           | 04/16/09 1:52 | <br>E_R     | 4986262 |  |  |  |
| 3-Nitroaniline              | ND             | 800       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 4,6-Dinitro-2-methylphenol  | ND             | 800       | 1           | 04/16/09 1:52 | ER          | 4986262 |  |  |  |
| 4-Bromophenyl phenyl ether  | ND             | 330       | 1           | 04/16/09 1:52 | ER          | 4986262 |  |  |  |
| 4-Chloro-3-methylphenol     | ND             | 330       | 1           | 04/16/09 1:52 | <br>E_R     | 4986262 |  |  |  |
| 4-Chloroaniline             | ND             | 330       | 1           | 04/16/09 1:52 | ER          | 4986262 |  |  |  |
| 4-Chlorophenyl phenyl ether | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| 4-Nitroaniline              | ND             | 800       | 1           | 04/16/09 1:52 | E R         | 4986262 |  |  |  |
| 4-Nitrophenol               | ND             | 800       | 1           | 04/16/09 1:52 |             | 4986262 |  |  |  |
| Acenaphthene                | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| Acenaphthylene              | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| Aniline                     | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| Anthracene                  | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| Benz(a)anthracene           | ND             | 330       | 1           | 04/16/09 1:52 | <br>E_R     | 4986262 |  |  |  |
| Benzo(a)pyrene              | ND             | 330       | 1           | 04/16/09 1:52 | <br>E_R     | 4986262 |  |  |  |
| Benzo(b)fluoranthene        | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| Benzo(g,h,i)perylene        | ND             | 330       | 1           | 04/16/09 1:52 | <br>E_R     | 4986262 |  |  |  |
| Benzo(k)fluoranthene        | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| Benzoic acid                | ND             | 1600      | 1           | 04/16/09 1:52 | <br>E_R     | 4986262 |  |  |  |
| Benzyl alcohol              | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
| Bis(2-chloroethoxy)methane  | ND             | 330       | 1           | 04/16/09 1:52 | <br>E_R     | 4986262 |  |  |  |
| Bis(2-chloroethyl)ether     | ND             | 330       | 1           | 04/16/09 1:52 | E_R         | 4986262 |  |  |  |
|                             |                |           |             |               |             |         |  |  |  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW5-54-55

Collected: 04/07/2009 14:31

SPL Sample ID:

09040279-01

|                             |        |      | Site | : Hobbs | NM          |               |         |        |
|-----------------------------|--------|------|------|---------|-------------|---------------|---------|--------|
| Analyses/Method             | Result | QUAL | Rep  | o.Limit | Dil. Factor | Date Analyzed | Analyst | Seq.#  |
| Bis(2-chloroisopropyl)ether | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Butyl benzyl phthalate      | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Carbazole                   | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Chrysene                    | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Dibenz(a,h)anthracene       | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Dibenzofuran                | ND     |      | -    | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Diethyl phthalate           | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Dimethyl phthalate          | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Di-n-butyl phthalate        | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Di-n-octyl phthalate        | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Fluoranthene                | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Fluorene                    | ND     |      | -    | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Hexachlorobenzene           | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Hexachlorobutadiene         | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Hexachlorocyclopentadiene   | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Hexachloroethane            | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Isophorone                  | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Naphthalene                 | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Nitrobenzene                | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| N-Nitrosodi-n-propylamine   | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| N-Nitrosodiphenylamine      | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Pentachlorophenol           | ND     |      |      | 800     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Phenanthrene ·              | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Phenol                      | ND     | -    |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Pyrene                      | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Pyridine                    | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| 2-Methylphenol              | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| 3 & 4-Methylphenol          | ND     |      |      | 330     | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Surr: 2,4,6-Tribromophenol  | 59.6   |      | %    | 19-135  | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Surr: 2-Fluorobiphenyl      | 41.7   |      | %    | 15-140  | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Surr: 2-Fluorophenol        | 54.8   |      | %    | 15-122  | 1           | 04/16/09 1:52 | <br>E_R | 498626 |
| Surr: Nitrobenzene-d5       | 37.1   |      | %    | 10-134  | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Surr: Phenol-d5             | 56.4   |      | %    | 10-123  | 1           | 04/16/09 1:52 | E_R     | 498626 |
| Surr: Terphenyl-d14         | 40.2   |      | %    | 18-166  | 1           | 04/16/09 1:52 | E_R     | 498626 |
|                             |        |      |      |         |             |               |         |        |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3550B     | 04/13/2009 11:33 | QMT           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-1 Collected: 04/07/2009 15:09 SPL Sample ID: 09040279-02

|                                |        |      | Sit | e: Hob   | bs NM |          |            |        |           |         |
|--------------------------------|--------|------|-----|----------|-------|----------|------------|--------|-----------|---------|
| Analyses/Method                | Result | QUAL | R   | ep.Limit | Di    | l. Facto | r Date Ana | lyzed  | Analyst   | Seq. #  |
| ALKALINITY (AS CACO3), TOTA    | AL.    |      |     |          | MCL   |          | E310.1     | Uni    | ts: mg/L  |         |
| Alkalinity, Total (As CaCO3)   | 198    |      |     | 2        |       | 1        | 04/13/09   | 11:20  | PAC       | 4982662 |
| GASOLINE RANGE ORGANICS        |        |      |     |          | MCL   | S        | W8015B     | Uni    | ts: mg/L  |         |
| Gasoline Range Organics        | ND     |      |     | 0.1      |       | 1        | 04/13/09   | 16:49  | CLJ       | 4984672 |
| Surr: 1,4-Difluorobenzene      | 91.0   |      | %   | 60-155   |       | 1        | 04/13/09   | 16:49  | CLJ       | 4984672 |
| Surr: 4-Bromofluorobenzene     | 105    |      | %   | 50-158   |       | 1        | 04/13/09   | 16:49  | CLJ       | 4984672 |
| HEADSPACE GAS ANALYSIS         |        |      |     |          | MCL   |          | RSK147     | Uni    | its: mg/L |         |
| Methane                        | 0.0014 |      |     | 0.0012   |       | 1        | 04/24/09   | 14:48  | V_L       | 4996392 |
| ION CHROMATOGRAPHY             |        |      |     |          | MCL   |          | E300.0     | Uni    | its: mg/L |         |
| Chloride                       | 456    |      |     | 25       |       | 50       | 04/14/09   | 22:18  | BDG       | 4985116 |
| Sulfate                        | 128    |      |     | 25       |       | 50       | 04/14/09   | 22:18  | BDG       | 4985116 |
| Nitrogen,Nitrate (As N)        | 4      |      |     | 0.5      |       | 1        | 04/09/09   | 11:43  | BDG       | 4984860 |
| SEMIVOLATILE HYDROCARBO        | NS     |      |     | -        | MCL   | 5        | SW8015B    | Uni    | its: mg/L |         |
| Diesel Range Organics          | ND     |      |     | 0.1      |       | 1        | 04/17/0    | 9 0:00 | NW        | 4987513 |
| Mineral Spirits Range Organics | ND     |      |     | 0.1      |       | 1        | 04/17/0    | 9 0:00 | NW        | 4987513 |
| Surr: n-Pentacosane            | 41.8   |      | %   | 20-150   |       | 1        | 04/17/0    | 9 0:00 | NW        | 4987513 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 04/13/2009 14:10 | N_M           | 1.00        |



ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1

**Collected:** 04/07/2009 15:09

SPL Sample ID:

09040279-02

|                             |                | Site: Hob | bs NM       |                |           |         |  |
|-----------------------------|----------------|-----------|-------------|----------------|-----------|---------|--|
| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |  |
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C Ur      | its: ug/L |         |  |
| 1,2,4-Trichlorobenzene      | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 1,2-Dichlorobenzene         | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 1,2-Diphenylhydrazine       | ND             | 10        | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 1,3-Dichlorobenzene         | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 1,4-Dichlorobenzene         | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2,4,5-Trichlorophenol       | ND             | 10        | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2,4,6-Trichlorophenol       | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2,4-Dichlorophenol          | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2,4-Dimethylphenol          | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2,4-Dinitrophenol           | ND             | 25        | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2,4-Dinitrotoluene          | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2,6-Dinitrotoluene          | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2-Chloronaphthalene         | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2-Chlorophenol              | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2-Methylnaphthalene         | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 4992374 |  |
| 2-Nitroaniline              | ND             | 25        | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 2-Nítrophenol               | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 3,3'-Dichlorobenzidine      | ND             | 10        | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 3-Nitroaniline              | ND             | 25        | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 4,6-Dinitro-2-methylphenol  | ND             | 25        | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 4-Bromophenyl phenyl ether  | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 4-Chloro-3-methylphenol     | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 4-Chloroaniline             | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 4-Chlorophenyl phenyl ether | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 4-Nitroaniline              | ND             | 25        | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| 4-Nitrophenol               | ND             | 25        | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| Acenaphthene                | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| Acenaphthylene              | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| Aniline                     | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| Anthracene                  | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| Benz(a)anthracene           | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| Benzo(a)pyrene              | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| Benzo(b)fluoranthene        | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| Benzo(g,h,i)perylene        | ND             | 5         | 1           | 04/17/09 16:37 | GY        | 499237  |  |
| - 412                       |                |           |             |                |           |         |  |

5

25

5

5

5

Qualifiers:

Benzo(k)fluoranthene

Bis(2-chloroethoxy)methane

Bis(2-chloroethyl)ether

Benzoic acid

Benzyl alcohol

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

ND

ND

ND

ND

ND

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

04/17/09 16:37 GY

04/17/09 16:37 GY

GΥ

GY

04/17/09 16:37

04/17/09 16:37

04/17/09 16:37

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

1

1

1

1

1

4992374

4992374

4992374

4992374

4992374



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-1

Collected: 04/07/2009 15:09

SPL Sample ID:

09040279-02

|                             |        |      | Site: | Hobbs  | NM          |                |         |         |
|-----------------------------|--------|------|-------|--------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep   | .Limit | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Bis(2-chloroisopropyl)ether | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Butyl benzyl phthalate      | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Carbazole                   | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Chrysene                    | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Dibenz(a,h)anthracene       | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Dibenzofuran                | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Diethyl phthalate           | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Dimethyl phthalate          | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Di-n-butyl phthalate        | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Di-n-octyl phthalate        | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Fluoranthene                | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Fluorene                    | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Hexachlorobenzene           | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Hexachlorobutadiene         | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Hexachlorocyclopentadiene   | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Hexachloroethane            | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Isophorone                  | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Naphthalene                 | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 499237  |
| Nitrobenzene                | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| N-Nitrosodi-n-propylamine   | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| N-Nitrosodiphenylamine      | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Pentachlorophenol           | ND     |      |       | 25     | 1           | 04/17/09 16:37 | GY      | 499237  |
| Phenanthrene                | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Phenol                      | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 4992374 |
| Pyrene                      | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 499237  |
| Pyridine                    | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 499237  |
| 2-Methylphenol              | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 499237  |
| 3 & 4-Methylphenol          | ND     |      |       | 5      | 1           | 04/17/09 16:37 | GY      | 499237  |
| Surr: 2,4,6-Tribromophenol  | 81.6   |      | %     | 10-123 | 1           | 04/17/09 16:37 | GY      | 499237  |
| Surr: 2-Fluorobiphenyl      | 63.8   |      | % 2   | 23-116 | 1           | 04/17/09 16:37 | GY      | 499237  |
| Surr: 2-Fluorophenol        | 60.9   |      | %     | 16-110 | 1           | 04/17/09 16:37 | GY      | 499237  |
| Surr: Nitrobenzene-d5       | 61.8   |      | % 2   | 21-114 | 1           | 04/17/09 16:37 | GY      | 499237  |
| Surr: Phenol-d5             | 41.3   |      | %     | 10-110 | 1           | 04/17/09 16:37 | GY      | 499237  |
| Surr: Terphenyl-d14         | 55.8   |      | % 2   | 22-141 | 1           | 04/17/09 16:37 | GY      | 499237  |
|                             |        |      |       |        |             |                |         |         |

| Prep Method | Prep Date       | Prep Initials | Prep Factor |
|-------------|-----------------|---------------|-------------|
| SW3510C     | 04/13/2009 8:15 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-1

Collected: 04/07/2009 15:09

SPL Sample ID:

09040279-02

Site: Hobbs NM

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dìl. Factor | Date Analyzed  | Analyst | Seq.#  |
|-----------------------------|------------|------|-----------|-------------|----------------|---------|--------|
| OLATILE ORGANICS BY ME      | THOD 8260B |      |           | MCL SV      | V8260B U       |         |        |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,2,4-Trimethylbenzene      | ND         |      | 5         | 1           | 04/13/09 18:22 | . JC    | 498455 |
| 1,2-Dibromo-3-chloropropane | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 04/13/09 18:22 | . JC    | 498455 |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 04/13/09 18:22 | ! JC    | 498455 |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 498455 |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 04/13/09 18:22 | . JC    | 498455 |
| 1,3-Dichlorobenzene         | ND         | _    | . 5       | 1           | 04/13/09 18:22 | . JC    | 498455 |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 04/13/09 18:22 | . JC    | 498455 |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 04/13/09 18:22 | . JC    | 498455 |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 04/13/09 18:22 | . JC    | 498455 |
| 2-Butanone                  | ND         |      | 20        | 1           | 04/13/09 18:22 | . JC    | 498455 |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 04/13/09 18:22 | JC .    | 49845  |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| 2-Hexanone                  | ND         |      | 10        | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| Acetone                     | ND         |      | 20        | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| Acryfonitrile               | ND         |      | 10        | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| Benzene                     | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 49845  |
| Bromobenzene                | ND         |      | 5         | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| Bromochloromethane          | ND         |      | 5         | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| Bromodichloromethane        | ND         |      | 5         | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| Bromoform                   | ND         |      | 5         | 1           | 04/13/09 18:22 | Z JC    | 49845  |
| Bromomethane                | ND         |      | 10        | 1           | 04/13/09 18:22 | 2 JC    | 49845  |
| Carbon disulfide            | ND         |      | 5         | 1           | 04/13/09 18:22 | JC      | 49845  |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 04/13/09 18:22 | Z JC    | 49845  |
| Chlorobenzene               | ND         |      | 5         | 1           | 04/13/09 18:22 | 2 JC    | 49845  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-1 Collected: 04/07/2009 15:09 SPL Sample ID: 09040279-02

|                             |        |      | Site | : Hobbs N | IM          |                |         |         |
|-----------------------------|--------|------|------|-----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep  | o.Limit   | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |      | 10        | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Chloroform                  | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Chloromethane               | ND     |      |      | 10        | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Dibromochloromethane        | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Dibromomethane              | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Dichlorodifluoromethane     | ND     |      |      | 10        | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Ethylbenzene                | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Hexachlorobutadiene         | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Isopropylbenzene            | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Methyl tert-butyl ether     | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Methylene chloride          | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Naphthalene                 | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| n-Butylbenzene              | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| n-Propylbenzene             | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| sec-Butylbenzene            | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Styrene                     | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| tert-Butylbenzene           | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Tetrachloroethene           | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Toluene                     | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Trichloroethene             | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Trichlorofluoromethane      | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Vinyl acetate               | ND     |      |      | 10        | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Vinyl chloride              | ND     |      |      | 2         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| cis-1,2-Dichloroethene      | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| cis-1,3-Dichloropropene     | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| m,p-Xylene                  | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| o-Xylene                    | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| trans-1,2-Dichloroethene    | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| trans-1,3-Dichloropropene   | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| 1,2-Dichloroethene (total)  | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Xylenes,Total               | ND     |      |      | 5         | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Surr: 1,2-Dichloroethane-d4 | 100    |      | %    | 65-111    | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Surr: 4-Bromofluorobenzene  | 108    |      | %    | 87-120    | 1           | 04/13/09 18:22 | JC      | 4984550 |
| Surr: Toluene-d8            | 92.0   |      | %    | 88-116    | 1           | 04/13/09 18:22 | JC      | 4984550 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: TB-4-8-09B Collected: 04/08/2009 10:07 SPL Sample ID: 09040279-03

|                             |             | Site: Hobb | s NM        |                   |           |         |
|-----------------------------|-------------|------------|-------------|-------------------|-----------|---------|
| Analyses/Method             | Result QUAL | Rep.Limit  | Dil. Factor | Date Analyzed     | Analyst   | Seq. #  |
| VOLATILE ORGANICS BY ME     | THOD 8260B  |            | MCL SV      | V8260B Un         | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,1,1-Trichloroethane       | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,1,2,2-Tetrachloroethane   | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,1,2-Trichloroethane       | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,1-Dichloroethane          | NĎ          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,1-Dichloroethene          | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,1-Dichloropropene         | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,2,3-Trichlorobenzene      | ND          | 5          | . 1         | 04/13/09 18:49    | JC        | 4984551 |
| 1,2,3-Trichloropropane      | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,2,4-Trichlorobenzene      | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,2,4-Trimethylbenzene      | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,2-Dibromo-3-chloropropane | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,2-Dibromoethane           | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,2-Dichlorobenzene         | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,2-Dichloroethane          | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,2-Dichloropropane         | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,3,5-Trimethylbenzene      | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,3-Dichlorobenzene         | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,3-Dichloropropane         | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 1,4-Dichlorobenzene         | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 2,2-Dichloropropane         | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 2-Butanone                  | ND          | 20         | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 2-Chloroethyl vinyl ether   | ND J        | 10         | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 2-Chlorotoluene             | ND          | 5          |             | 04/13/09 18:49    | JÇ        | 4984551 |
| 2-Hexanone                  | ND          | 10         | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 4-Chlorotoluene             | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 4-Isopropyltoluene          | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| 4-Methyl-2-pentanone        | ND          | 10         | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Acetone                     | ND          | 20         | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Acrylonitrile               | ND          | 10         | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Benzene                     | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Bromobenzene                | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Bromochloromethane          | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Bromodichloromethane        | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Bromoform                   | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Bromomethane                | ND          | 10         | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Carbon disulfide            | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Carbon tetrachloride        | ND          | 5          | 1           | 04/13/09 18:49    | JC        | 4984551 |
| Chlorobenzene               | ND          | 5          |             | 04/13/09 18:49    | JC        | 4984551 |
|                             |             |            |             | 2 17 107 00 10.10 |           | 1001001 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:TB-4-8-09B Collected: 04/08/2009 10:07 SPL Sample ID: 09040279-03

| <del></del>                 |        |      |       |        |             |                |         |         |
|-----------------------------|--------|------|-------|--------|-------------|----------------|---------|---------|
|                             |        |      | Site: | Hobb   | s NM        |                |         |         |
| Analyses/Method             | Result | QUAL | Rep   | .Limit | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |       | 10     | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Chloroform                  | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Chloromethane               | ND     | -    |       | 10     | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Dibromochloromethane        | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Dibromomethane              | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Dichlorodifluoromethane     | ND     |      |       | 10     | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Ethylbenzene                | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Hexachlorobutadiene         | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Isopropylbenzene            | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Methyl tert-butyl ether     | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Methylene chloride          | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 4984551 |
| Naphthalene                 | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 4984551 |
| n-Butylbenzene              | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| n-Propylbenzene             | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| sec-Butylbenzene            | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Styrene                     | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| tert-Butylbenzene           | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Tetrachloroethene           | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Toluene                     | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Trichloroethene             | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Trichlorofluoromethane      | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Vinyl acetate               | ND     |      |       | 10     | 1           | 04/13/09 18:49 | JC      | 498455  |
| Vinyl chloride              | ND     |      |       | 2      | 1           | 04/13/09 18:49 | JC      | 498455  |
| cis-1,2-Dichloroethene      | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| cis-1,3-Dichloropropene     | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| m,p-Xylene                  | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| o-Xylene                    | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| trans-1,2-Dichloroethene    | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| trans-1,3-Dichloropropene   | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| 1,2-Dichloroethene (total)  | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Xylenes,Total               | ND     |      |       | 5      | 1           | 04/13/09 18:49 | JC      | 498455  |
| Surr: 1,2-Dichloroethane-d4 | 98.0   |      | % 6   | 65-111 | 1           | 04/13/09 18:49 | JC      | 498455  |
| Surr: 4-Bromofluorobenzene  | 108    |      | % 8   | 37-120 | 1           | 04/13/09 18:49 | JC      | 498455  |
|                             |        |      |       |        |             |                |         |         |

% 88-116

Qualifiers:

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

92.0

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

04/13/09 18:49

JC

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

4984551



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: FB-4-8-09B Collected: 04/08/2009 10:10 SPL Sample ID: 09040279-04

Site: Hobbs NM

|                             | Result QUAL |             | Dil Factor | Data Analyza     | Anglest   | Sc. #   |
|-----------------------------|-------------|-------------|------------|------------------|-----------|---------|
| Analyses/Method             | Result QUAL | . Rep.Limit |            | Date Analyzed    | Analyst   | Seq. #  |
| VOLATILE ORGANICS BY ME     |             |             |            |                  | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,1,1-Trichloroethane       | ND ND       | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,1,2,2-Tetrachloroethane   | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,1,2-Trichloroethane       | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,1-Dichloroethane          | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,1-Dichloroethene          | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,1-Dichloropropene         | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2,3-Trichlorobenzene      | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2,3-Trichloropropane      | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2,4-Trichlorobenzene      | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2,4-Trimethylbenzene      | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2-Dibromo-3-chloropropane | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2-Dibromoethane           | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2-Dichlorobenzene         | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2-Dichloroethane          | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,2-Dichloropropane         | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,3,5-Trimethylbenzene      | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,3-Dichlorobenzene         | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,3-Dichloropropane         | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 1,4-Dichlorobenzene         | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 2,2-Dichloropropane         | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 2-Butanone                  | ND          | 20          | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 2-Chloroethyl vinyl ether   | ND J        | 10          | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 2-Chlorotoluene             | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 2-Hexanone                  | ND          | 10          | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 4-Chlorotoluene             | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 4-Isopropyltoluene          | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| 4-Methyl-2-pentanone        | ND          | 10          | 1          | 04/13/09 19:17   | JC        | 4984552 |
| Acetone                     | ND          | 20          | 1          | 04/13/09 19:17   | JC        | 4984552 |
| Acrylonitrile               | ND          | 10          | 1          | 04/13/09 19:17   | JC        | 4984552 |
| Benzene                     | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| Bromobenzene                | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| Bromochloromethane          | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| Bromodichloromethane        | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| Bromoform                   | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 4984552 |
| Bromomethane                | ND          | 10          | 1          | 04/13/09 19:17   | JC        | 498455  |
| Carbon disulfide            | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 498455  |
| Carbon tetrachloride        | ND          | 5           | 1          | 04/13/09 19:17   | JC        | 498455  |
| Chlorobenzene               | ND          | 5           | <u>_</u>   | 04/13/09 19:17   | JC        | 4984552 |
|                             |             |             |            | 0 17 10,00 10.17 |           | 100-100 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-4-8-09B

Collected: 04/08/2009 10:10

SPL Sample ID:

09040279-04

| Site | : | Но | bbs | NM |
|------|---|----|-----|----|
|      | • |    | ~~~ |    |

| Analyses/Method             | Result | QUAL | Re | p.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
|-----------------------------|--------|------|----|---------|-------------|----------------|---------|---------|
| Chloroethane                | ND     |      | -  | 10      | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Chloroform                  | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Chloromethane               | ND     |      |    | 10      | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Dibromochloromethane        | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Dibromomethane              | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Dichlorodifluoromethane     | ND     |      |    | 10      | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Ethylbenzene                | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Hexachlorobutadiene         | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Isopropylbenzene            | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Methyl tert-butyl ether     | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Methylene chloride          | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Naphthalene                 | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| n-Butylbenzene              | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| n-Propylbenzene             | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| sec-Butylbenzene            | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Styrene                     | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| tert-Butylbenzene           | ND     |      | _  | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Tetrachloroethene           | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Toluene                     | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Trichloroethene             | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Trichlorofluoromethane      | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Vinyl acetate               | ND     |      |    | 10      | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Vinyl chloride              | ND     |      |    | 2       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| cis-1,2-Dichloroethene      | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| cis-1,3-Dichloropropene     | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| m,p-Xylene                  | ND     |      | _  | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| o-Xylene                    | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| trans-1,2-Dichloroethene    | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| trans-1,3-Dichloropropene   | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| 1,2-Dichloroethene (total)  | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Xylenes,Total               | ND     |      |    | 5       | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Surr: 1,2-Dichloroethane-d4 | 100    |      | %  | 65-111  | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Surr: 4-Bromofluorobenzene  | 108    |      | %  | 87-120  | 1           | 04/13/09 19:17 | JC      | 4984552 |
| Surr: Toluene-d8            | 92.0   |      | %  | 88-116  | 1           | 04/13/09 19:17 | JÇ      | 4984552 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

# Quality Control Documentation



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Hydrocarbons

Method:

RunID:

SW8015B

WorkOrder:

09040279

Lab Batch ID:

Samples in Analytical Batch:

89427

Method Blank

Lab Sample ID

Client Sample ID

Analysis Date:

HP\_V\_090416B-4987505

Units:

09040279-02C

Preparation Date:

04/14/2009 23:43

04/13/2009 14:10

Analyst: Prep By:

N M Method SW3510C

MW-1

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Diesel Range Organics          | ND     | 0.10      |
| Mineral Spirits Range Organics | ND     | 0.10      |
| Surr: n-Pentacosane            | 51.2   | 20-150    |

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP\_V\_090416B-4987506

mg/L

NW

mg/L

Analysis Date:

04/15/2009 0:03

Analyst: NW

Units:

Preparation Date: 04/13/2009 14:10

N\_M Method SW3510C Prep By:

LCS LCS LCS LCSD LCSD LCSD RPD RPD Lower Analyte Upper Spike Result Percent Spike Result Percent Limit Limit Limit Added Recovery Added Recovery Diesel Range Organics 1.00 0.895 89.5 1.00 0.880 88.0 1.7 40 21 150 Surr: n-Pentacosane 0.0500 0.0494 98.8 0.0500 0.0485 1.8 30 97.0 20 150

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 16

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Hydrocarbons

Method:

RunID:

SW8015B

WorkOrder:

09040279

Lab Batch ID:

89434

Method Blank

Units:

l al

Samples in Analytical Batch:

Lab Sample ID

Client Sample ID

Analysis Date:

HP\_V\_090414C-4987373

04/14/2009 12:47

Analyst:

NW

mg/kg

09040279-01A

MW 5-54-55

Preparation Date:

04/13/2009 16:58

Prep By:

QMT Method SW3550B

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Diesel Range Organics          | ND     | 5.0       |
| Mineral Spirits Range Organics | ND     | 10        |
| Surr: n-Pentacosane            | 92.8   | 20-154    |

#### Laboratory Control Sample (LCS)

Run(D:

HP\_V\_090414C-4987374

Units:

its: mg/kg

Analysis Date:

Preparation Date:

04/14/2009 13:07 04/13/2009 16:58 Analyst: NW

Prep By: QMT Method SW3550B

| Analyte               | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------|----------------|--------|---------------------|----------------|----------------|
| Diesel Range Organics | 33.3           | 29.6   | 88.9                | 57             | 150            |
| Surr: n-Pentacosane   | 1.66           | 1.55   | 93.6                | 20             | 154            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

H0904023700

RunID:

HP\_V\_090414C-4987376

Units: mg/kg

Analysis Date:

04/14/2009 15:37

Analyst: NW

Preparation Date:

04/13/2009 16:58

Prep By: QMT Method SW3550B

| Analyte               | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-----|--------------|--------------|---------------|
| Diesel Range Organics | 8150             | 33.3                 | 8990         | N/C              | 33.3                  | 9400          | N/C               | N/C | 50           | 21           | 175           |
| Surr: n-Pentacosane   | ND               | 1.66                 | D            | D                | 1.66                  | D             | D                 | D   | 30           | 20           | 154           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Headspace Gas Analysis

Method:

RunID:

**RSK147** 

WorkOrder:

09040279

Lab Batch ID:

R271083

Method Blank

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

VARC\_090424A-4996391

04/24/2009 14:37

Analyst: V\_L

09040279-02E

MW-1

| Analyte | Result | Rep Limit |
|---------|--------|-----------|
| Methane | ND     | 0.0012    |

#### Sample Duplicate

Original Sample:

09040488-02

RunID:

VARC\_090424A-4996394

Units:

mg/L

Analysis Date:

04/24/2009 15:14

Analyst: V\_L

| Analyte | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|---------|------------------|---------------|-----|--------------|
| Methane | 0.0037           | 0.00379       | 2.8 | 50           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis:

**Gasoline Range Organics** 

Method:

SW8015B

Samples in Analytical Batch:

09040279

WorkOrder: Lab Batch ID:

R270269

Method Blank

RunID: HF

HP\_P\_090413A-4984662

Units:

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

04/13/2009 5:20

Analyst:

CŁJ

09040279-02D

MW-1

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 91.5   | 60-155    |
| Surr: 4-Bromofluorobenzene | 104.0  | 50-158    |

#### Laboratory Control Sample (LCS)

RunID:

HP\_P\_090413A-4984660

Units:

mg/L

Analysis Date:

04/13/2009 4:22

Analyst: CLJ

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.859  | 85.9                | 42             | 136            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.0949 | 94.9                | 60             | 155            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.108  | 108                 | 50             | 158            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040343-01

RunID:

HP P\_090413A-4984664

Units:

Analysis Date:

04/13/2009 10:44

Analyst:

mg/L CLJ

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Gasoline Range Organics    | ND               | 1                    | 0.852        | 85.2             | 1                     | 0.868         | 86.8              | 1.92 | 36           | 22           | 174           |
| Surr: 1,4-Difluorobenzene  | ND               | 0.1                  | 0.0922       | 92.2             | 0.1                   | 0.0932        | 93.2              | 1.08 | 30           | 60           | 155           |
| Surr: 4-Bromofluorobenzene | ND               | 0.1                  | 0.105        | 105              | 0.1                   | 0.107         | 107               | 1.41 | 30           | 50           | 158           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 19

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

#### Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

RunID:

SW8270C

WorkOrder:

Samples in Analytical Batch:

09040279

Lab Batch ID:

89412

#### Method Blank

H\_090417E-4992370

Units:

ug/L

Lab Sample ID

Client Sample ID

Analysis Date:

04/17/2009 9:40

Analyst: GΥ 09040279-02B

MW-1

Preparation Date: 04/13/2009 8:15

Prep By: N M Method SW3510C

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1,2,4-Trichlorobenzene      | ND     | 5.0       |
| 1,2-Dichlorobenzene         | ND     | 5.0       |
| 1,2-Diphenylhydrazine       | ND     | 10        |
| 1,3-Dichlorobenzene         | ND     | 5.0       |
| 1,4-Dichlorobenzene         | ND     | 5.0       |
| 2,4,5-Trichlorophenol       | ND     | 10        |
| 2,4,6-Trichlorophenol       | ND     | 5.0       |
| 2,4-Dichlorophenol          | ND     | 5.0       |
| 2,4-Dimethylphenol          | ND     | 5.0       |
| 2,4-Dinitrophenol           | ND     | 25        |
| 2,4-Dinitrotoluene          | ND     | 5.0       |
| 2,6-Dinitrotoluene          | ND     | 5.0       |
| 2-Chloronaphthalene         | ND     | 5.0       |
| 2-Chlorophenol              | ND     | 5.0       |
| 2-Methylnaphthalene         | ND     | 5.0       |
| 2-Nitroaniline              | ND     | 25        |
| 2-Nitrophenol               | ND     | 5.0       |
| 3,3'-Dichlorobenzidine      | ND     | 10        |
| 3-Nitroaniline              | ND     | 25        |
| 4,6-Dinitro-2-methylphenol  | ND     | 25        |
| 4-Bromophenyl phenyl ether  | ND     | 5.0       |
| 4-Chloro-3-methylphenol     | ND     | 5.0       |
| 4-Chloroaniline             | ND     | 5.0       |
| 4-Chlorophenyl phenyl ether | ND     | 5.0       |
| 4-Nitroaniline              | ND     | 25        |
| 4-Nitrophenol               | ND     | 25        |
| Acenaphthene                | ND     | 5.0       |
| Acenaphthylene              | ND     | 5.0       |
| Aniline                     | ND     | 5.0       |
| Anthracene                  | ND     | 5.0       |
| Benz(a)anthracene           | ND     | 5.0       |
| Benzo(a)pyrene              | ND     | 5.0       |
| Benzo(b)fluoranthene        | ND     | 5.0       |
| Benzo(g,h,i)perylene        | ND     | 5.0       |
| Benzo(k)fluoranthene        | ND     | 5.0       |
| Benzoic acid                | ND     | 25        |
| Benzyl alcohol              | ND     | 5.0       |
| Bis(2-chloroethoxy)methane  | ND     | 5.0       |
| Bis(2-chloroethyl)ether     | ND     | 5.0       |
| Bis(2-chloroisopropyl)ether | ND     | 5.0       |
| Bis(2-ethylhexyl)phthalate  | ND     | 5.0       |
| Butyl benzyl phthalate      | ND     | 5.0       |
| Carbazole                   | ND     | 5.0       |
| Chrysene                    | ND     | 5.0       |
| Dibenz(a,h)anthracene       | DN     | 5.0       |
| Dibenzofuran                | ND     | 5.0       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 20

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040279

Lab Batch ID:

89412

#### Method Blank

RunID:

H\_090417E-4992370

Units:

ug/L

Analysis Date:

04/17/2009 9:40

Analyst:

t: GY

Preparation Date: 04/13/2009 8:15

Prep By:

N\_M Method SW3510C

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 5.0       |
| Dimethyl phthalate         | ND     | 5.0       |
| Di-n-butyl phthalate       | ND     | 5.0       |
| Di-n-octyl phthalate       | ND     | 5.0       |
| Fluoranthene               | ND.    | 5.0       |
| Fluorene                   | ND     | 5.0       |
| Hexachlorobenzene          | ND     | 5.0       |
| Hexachlorobutadiene        | ND     | 5.0       |
| Hexachlorocyclopentadiene  | ND     | 5.0       |
| Hexachloroethane           | ND     | 5.0       |
| Indeno(1,2,3-cd)pyrene     | ND     | 5.0       |
| Isophorone                 | ND     | 5.0       |
| Naphthalene                | ND.    | 5.0       |
| Nitrobenzene               | ND     | 5.0       |
| N-Nitrosodi-n-propylamine  | ND     | 5.0       |
| N-Nitrosodiphenylamine     | ND     | 5.0       |
| Pentachiorophenol          | ND     | 25        |
| Phenanthrene               | ND     | 5.0       |
| Phenoi                     | ND     | 5.0       |
| Pyrene                     | ND     | 5.0       |
| Pyridine                   | ND     | 5.0       |
| 2-Methylphenol             | ND.    | 5.0       |
| 3 & 4-Methylphenol         | ND     | 5.0       |
| Surr: 2,4,6-Tribromophenol | 95.2   | 10-123    |
| Surr: 2-Fluorobiphenyl     | 72.6   | 23-116    |
| Surr: 2-Fluorophenol       | 76.1   | 16-110    |
| Surr: Nitrobenzene-d5      | 68.4   | 21-114    |
| Surr: Phenol-d5            | 62.5   |           |
| Surr: Terphenyl-d14        | 68.4   | 22-141    |

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units:

ug/L GY

Analysis Date: Preparation Date:

04/17/2009 10:42 04/13/2009 8:15 Analyst:

Prep By: N\_M Method SW3510C

| Analyte                | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2 | 39           | 21             | 120            |
| 1,2-Dichlorobenzene    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.7           | 66.8                        | 8.1 | 50           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 21

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

#### Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder: Lab Batch ID: 09040279

89412

# Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst:

ĢΥ

Preparation Date: 04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| 1,2-Diphenylhydrazine       | 25.0                  | 16.5          | 66.0                       | 25.0                   | 17.6           | 70.4                        | 6.5  | 50           | 10             | 251            |
| 1,3-Dichlorobenzene         | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.5           | 66.0                        | 6.9  | 50           | 20             | 150            |
| 1,4-Dichlorobenzene         | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.2           | 64.8                        | 5.7  | 45           | 20             | 150            |
| 2,4,5-Trichlorophenol       | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.4           | 61.6                        | 3.3  | 50           | 30             | 150            |
| 2,4,6-Trichlorophenol       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.0           | 64.0                        | 5.1  | 50           | 30             | 150            |
| 2,4-Dichlorophenol          | 25.0                  | 14.5          | 58.0                       | 25.0                   | 15.9           | 63.6                        | 9.2  | 50           | 30             | 150            |
| 2,4-Dimethylphenol          | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.0           | 64.0                        | 3.8  | 50           | 32             | 140            |
| 2,4-Dinitrophenol           | 25.0                  | 11.9          | 47.6                       | 25.0                   | 12.8           | 51.2                        | 7.3  | 50           | 10             | 160            |
| 2,4-Dinitrotoluene          | 25.0                  | 16.1          | 64.4                       | 25.0                   | 16.3           | 65.2                        | 1.2  | 50           | 30             | 150            |
| 2,6-Dinitrotoluene          | 25.0                  | 15.8          | 63.2                       | 25.0                   | 15.7           | 62.8                        | 0.6  | 50           | 30             | 150            |
| 2-Chloronaphthalene         | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.5           | 66.0                        | 4.3  | 50           | 30             | 150            |
| 2-Chlorophenol              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 15.9           | 63.6                        | 3.2  | 40           | 23             | 134            |
| 2-Methylnaphthalene         | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2  | 50           | 20             | 170            |
| 2-Nitroaniline              | 25.0                  | 14.8          | 59.2                       | 25.0                   | 15.9           | 63.6                        | 7.2  | 50           | 20             | 160            |
| 2-Nitrophenol               | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.8           | 63.2                        | 5.9  | 50           | 29             | 182            |
| 3,3'-Dichlorobenzidine      | 25.0                  | 13.3          | 53.2                       | 25.0                   | 13.7           | 54.8                        | 3.0  | 50           | 30             | 200            |
| 3-Nitroaniline              | 25.0                  | 14.4          | 57.6                       | 25.0                   | 14.8           | 59.2                        | 2.7  | 50           | 20             | 160            |
| 4,6-Dinitro-2-methylphenol  | 25.0                  | 13.7          | 54.8                       | 25.0                   | 14.2           | 56.8                        | 3.6  | 50           | 10             | 160            |
| 4-Bromophenyl phenyl ether  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.8           | 63.2                        | 1.3  | 50           | 30             | 150            |
| 4-Chloro-3-methylphenol     | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.1           | 64.4                        | 5.8  | 42           | 25             | 160            |
| 4-Chloroaniline             | 25.0                  | 15.5          | 62.0                       | 25.0                   | 16.2           | 64.8                        | 4.4  | 50           | 20             | 160            |
| 4-Chlorophenyl phenyl ether | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.3           | 65.2                        | 3.8  | 50           | 25             | 158            |
| 4-Nitroaniline              | 25.0                  | 13.9          | 55.6                       | 25.0                   | 14.8           | 59.2                        | 6.3  | 50           | 20             | 160            |
| 4-Nitrophenol               | 25.0                  | 13.0          | 52.0                       | 25.0                   | 14.8           | 59.2                        | 12.9 | 50           | 10             | 132            |
| Acenaphthene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.3           | 65.2                        | 6.3  | 31           | 30             | 150            |
| Acenaphthylene              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.4           | 65.6                        | 6.3  | 50           | 33             | 250            |
| Aniline                     | 50.0                  | 29.9          | 59.8                       | 50.0                   | 30.9           | 61.8                        | 3.3  | 50           | 10             | 135            |
| Anthracene                  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.5           | 66.0                        | 5.6  | 50           | 27             | 133            |
| Benz(a)anthracene           | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.4           | 65.6                        | 5.0  | 50           | 33             | 143            |
| Benzo(a)pyrene              | 25.0                  | 12.2          | 48.8                       | 25.0                   | 12.7           | 50.8                        | 4.0  | 50           | 17             | 163            |
| Benzo(b)fluoranthene        | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.2           | 60.8                        | 2.0  | 50           | 24             | 159            |
| Benzo(g,h,i)perylene        | 25.0                  | 15.7          | 62.8                       | 25.0                   | 15.9           | 63.6                        | 1.3  | 50           | 30             | 160            |
| Benzo(k)fluoranthene        | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.2           | 60.8                        | 1.3  | 50           | 11             | 162            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 22

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040279

Lab Batch ID:

89412

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst: GΥ

Preparation Date:

04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| Benzoic acid                | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.0           | 64.0                        | 1.9  | 50           | 10             | 400            |
| Benzyl alcohol              | 25.0                  | 14.7          | 58.8                       | 25.0                   | 16.2           | 64.8                        | 9.7  | 50           | 30             | 160            |
| Bis(2-chloroethoxy)methane  | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 50           | 33             | 184            |
| Bis(2-chloroethyl)ether     | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.7           | 66.8                        | 5.5  | 50           | 12             | 158            |
| Bis(2-chloroisopropyl)ether | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.1           | 64.4                        | 3.2  | 50           | 20             | 160            |
| Bis(2-ethylhexyl)phthalate  | 25.0                  | 16.1          | 64.4                       | 25.0                   | 17.0           | 68.0                        | 5.4  | 50           | 10             | 158            |
| Butyl benzyl phthalate      | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.0           | 68.0                        | 4.2  | 50           | 30             | 160            |
| Carbazole                   | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 30             | 150            |
| Chrysene                    | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.0           | 64.0                        | 6.5  | 50           | 17             | 168            |
| Dibenz(a,h)anthracene       | 25.0                  | 15.5          | 62.0                       | 25.0                   | 15.7           | 62.8                        | 1.3  | 50           | 30             | 160            |
| Dibenzofuran                | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.4           | 65.6                        | 4.4  | 50           | 30             | 150            |
| Diethyl phthalate           | 25.0                  | 16.0          | 64.0                       | 25.0                   | 17.1           | 68.4                        | 6.6  | 50           | 30             | 160            |
| Jimethyl phthalate          | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.8           | 67.2                        | 6.8  | 50           | 30             | 160            |
| Di-n-butyl phthalate        | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.1           | 68.4                        | 3.0  | 50           | 30             | 160            |
| Di-n-octyl phthalate        | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.0           | 68.0                        | 4.8  | 50           | 20             | 150            |
| Fluoranthene                | 25.0                  | 15.9          | 63.6                       | 25.0                   | 16.3           | 65.2                        | 2.5  | 50           | 26             | 137            |
| Fluorene                    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.3           | 65.2                        | 5.7  | 50           | 30             | 150            |
| Hexachlorobenzene           | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.6           | 66.4                        | 7.5  | 50           | 20             | 150            |
| Hexachlorobutadiene         | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 20             | 140            |
| Hexachlorocyclopentadiene   | 25.0                  | 17.2          | 68.8                       | 25.0                   | 19.1           | 76.4                        | 10.5 | 50           | 10             | 150            |
| Hexachioroethane            | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.3           | 65.2                        | 8.3  | 50           | 14             | 120            |
| Indeno(1,2,3-cd)pyrene      | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.5           | 70.0                        | 7.1  | 50           | 30             | 160            |
| isophorone                  | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.3           | 69.2                        | 6.6  | 50           | 21             | 196            |
| Naphthalene                 | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.2           | 64.8                        | 5.1  | 50           | 21             | 133            |
| Nitrobenzene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.0           | 64.0                        | 4.5  | 50           | 20             | 160            |
| N-Nitrosodi-n-propylamine   | 25.0                  | 15.6          | 62.4                       | - 25.0                 | 15.4           | 61.6                        | 1.3  | 38           | 30             | 160            |
| N-Nitrosodiphenylamine      | 50.0                  | 38.0          | 76.0                       | 50.0                   | 40.4           | 80.8                        | 6.1  | 50           | 30             | 150            |
| Pentachlorophenol           | 25.0                  | 11.5          | 46.0                       | 25.0                   | 12.8           | 51.2                        | 10.7 | 50           | 14             | 176            |
| Phenanthrene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.1           | 64.4                        | 5.1  | 50           | 10             | 140            |
| Phenol                      | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 42           | 40             | 132            |
| Pyrene                      | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.6           | 66.4                        | 4.9  | 38           | 30             | 150            |
| Pyridine                    | 50.0                  | 27.0          | 54.0                       | 50.0                   | 29.4           | 58.8                        | 8.5  | 50           | 10             | 150            |
| 2-Methylphenol              | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.2           | 64.8                        | 3.1  | 50           | 30             | 160            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 23

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040279

Lab Batch ID:

89412

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

H\_090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst: GΥ

Preparation Date: 04/13/2009 8:15 Prep By: N\_M Method SW3510C

| Analyte                    | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 3 & 4-Methylphenol         | 25.0                  | 16.6          | 66.4                       | 25.0                   | . 17.2         | 68.8                        | 3.6 | 50           | 10             | 160            |
| Surr: 2,4,6-Tribromophenol | 75.0                  | 61.1          | 81.5                       | 75.0                   | 60.8           | 81.1                        | 0.5 | 30           | 10             | 123            |
| Surr: 2-Fluorobiphenyl     | 50.0                  | 28.6          | 57.2                       | 50.0                   | 29.5           | 59.0                        | 3.1 | 30           | 23             | 116            |
| Surr: 2-Fluorophenol       | 75.0                  | 50.0          | 66.7                       | 75.0                   | 50.8           | 67.7                        | 1.6 | 30           | 16             | 110            |
| Surr: Nitrobenzene-d5      | 50.0                  | 29.0          | 58.0                       | 50.0                   | 30.0           | 60.0                        | 3.4 | 30           | 21             | 114            |
| Surr: Phenol-d5            | 75.0                  | 43.1          | 57.5                       | 75.0                   | 44.2           | 58.9                        | 2.5 | 30           | 10             | 110            |
| Surr: Terphenyl-d14        | 50.0                  | 28.4          | 56.8                       | 50.0                   | 28.7           | 57.4                        | 1.1 | 30           | 22             | 141            |



ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 24

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

04/16/2009 0:41

WorkOrder:

Samples in Analytical Batch:

09040279

Lab Batch ID:

89418

#### Method Blank

RunID: Analysis Date:

R\_090415F-4986260

Units:

Analyst:

ug/kg E\_R

Prep By: QMT Method SW3550B

Lab Sample ID

Client Sample ID

09040279~01A

MW 5-54-55

| Preparation Date: | 04/13/2009 11:33 |
|-------------------|------------------|
|                   |                  |

| Analyte         | Result | Rep Limit |
|-----------------|--------|-----------|
| richlorobenzene | ND     | 330       |
| hlorobenzene    | ND     | 330       |
| henylhydrazine  | ND     | 330       |
| hlorobenzene    | ND     | 330       |
| hlorobenzene    | ND     | 330       |
|                 | N.D.   | 000       |

| 1,2-Dichlorobenzene         | ND    | 330  |
|-----------------------------|-------|------|
| 1,2-Diphenylhydrazine       | ND    | 330  |
| 1,3-Dichlorobenzene         | ND    | 330  |
| 1,4-Dichlorobenzene         | ND    | 330  |
| 2,4,5-Trichlorophenol       | ND    | 800  |
| 2,4,6-Trichlorophenol       | ND    | 330  |
| 2,4-Dichlorophenol          | ND    | 330  |
| 2,4-Dimethylphenol          | ND    | 330  |
| 2,4-Dinitrophenol           | ND    | 800  |
| 2,4-Dinitrotoluene          | ND    | 800  |
| 2,6-Dinitrotoluene          | ND    | 330  |
| 2-Chloronaphthalene         | ND    | 330  |
| 2-Chlorophenol              | ND    | 330  |
| 2-Methylnaphthalene         | ND    | 330  |
| 2-Nitroaniline              | ND    | 800  |
| 2-Nitrophenol               | ND    | 330  |
| 3,3'-Dichlorobenzidine      | ND    | 330  |
| 3-Nitroaniline              | ND    | 800  |
| 4,6-Dinitro-2-methylphenol  | ND    | 800  |
| 4-Bromophenyl phenyl ether  | ND    | 330  |
| 4-Chioro-3-methylphenol     | ND    | 330  |
| 4-Chloroaniline             | ND    | 330  |
| 4-Chlorophenyl phenyl ether | ND    | 330  |
| 4-Nitroaniline              | ND    | 800  |
| 4-Nitrophenol               | ND    | 800  |
| Acenaphthene                | ND    | 330  |
| Acenaphthylene              | ND    | 330  |
| Aniline                     | ND    | 330  |
| Anthracene                  | ND    | 330  |
| Benz(a)anthracene           | ND    | 330  |
| Benzo(a)pyrene              | ND    | 330  |
| Benzo(b)fluoranthene        | ND    | 330  |
| Benzo(g,h,i)perylene        | ND    | 330  |
| Benzo(k)fluoranthene        | ND    | 330  |
| Benzoic acid                | ND    | 1600 |
| Benzyl alcohol              | ND    | 330  |
| Bis(2-chloroethoxy)methane  | ND ND | 330  |
| Bis(2-chloroethyl)ether     | ND    | 330  |
| Bis(2-chloroisopropyl)ether | ND ND | 330  |
| Bis(2-ethylhexyl)phthalate  | ND    | 330  |
| Butyl benzyl phthalate      | ND    | 330  |
| Carbazole                   | ND ND | 330  |
| Chrysene                    | ND    | 330  |
| Dibenz(a,h)anthracene       | ND ND | 330  |
| Dibenzofuran                | ND    | 330  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 25

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040279

Lab Batch ID:

89418

Method Blank

RunID:

R\_090415F-4986260

Units:

ug/kg

Analysis Date:

04/16/2009 0:41

Analyst:

ΕR

Preparation Date:

04/13/2009 11:33

Prep By:

QMT Method SW3550B

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 330       |
| Dimethyl phthalate         | ND     | 330       |
| Di-n-butyl phthalate       | ND     | 330       |
| Di-n-octyl phthalate       | _ ND   | 330       |
| Fluoranthene               | ND     | 330       |
| Fluorene                   | ND     | 330       |
| Hexachlorobenzene          | ND     | 330       |
| Hexachlorobutadiene        | ND     | 330       |
| Hexachlorocyclopentadiene  | ND     | 330       |
| Hexachloroethane           | ND     | 330       |
| Indeno(1,2,3-cd)pyrene     | ND     | 330       |
| Isophorone                 | ND     | 330       |
| Naphthalene                | ND     | 330       |
| Nitrobenzene               | ND     | 330       |
| N-Nitrosodi-n-propylamine  | ND     | 330       |
| N-Nitrosodiphenylamine     | ND     | 330       |
| Pentachiorophenol          | ND     | 800       |
| Phenanthrene               | ND     | 330       |
| Phenol                     | ND     | 330       |
| Pyrene                     | ND     | 330       |
| Pyridine                   | ND_    | 330       |
| 2-Methylphenol             | ND     | 330       |
| 3 & 4-Methylphenol         | ND     | 330       |
| Surr: 2,4,6-Tribromophenol | 128.8  | 19-135    |
| Surr: 2-Fluorobiphenyl     | 85.9   | 15-140    |
| Surr: 2-Fluorophenol       | 114.8  | 15-122    |
| Surr: Nitrobenzene-d5      | 78.2   | 10-134    |
| Surr: Phenol-d5            | 115.6  | 10-123    |
| Surr: Terphenyl-d14        | 89.4   | 18-166    |

#### **Laboratory Control Sample (LCS)**

RunID:

R\_090415F-4986261

Units:

ug/kg · FR

Analysis Date:

04/16/2009 1:17

Analyst: E\_R

Preparation Date: 04/13/2009 11:33

5 D D

Prep By: QMT Method SW3550B

| Analyte                | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 850            | 437    | 51.4                | 34             | 116            |
| 1,2-Dichlorobenzene    | 850            | 444    | 52.2                | 32             | 129            |
| 1,2-Diphenylhydrazine  | 850            | 430    | 50.6                | 10             | 256            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 26

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040279

Lab Batch ID:

89418

#### Laboratory Control Sample (LCS)

RunID:

R 090415F-4986261

Units:

Battii ID.

8941

Analysis Date:

04/16/2009 1:17

Analyst:

t: ER

ug/kg

Preparation Date: 0

04/13/2009 11:33

Prep By:

QMT Method SW3550B

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,3-Dichlorobenzene         | 850            | 434    | 51.1                | 10             | 172            |
| 1,4-Dichlorobenzene         | 850            | 426    | 50.1                | 20             | 124            |
| 2,4,5-Trichlorophenol       | 850            | 421    | 49.5                | 40             | 150            |
| 2,4,6-Trichlorophenol       | 850            | 470    | 55.3                | 37             | 144            |
| 2,4-Dichlorophenol          | 850            | 445    | 52.4                | 39             | 135            |
| 2,4-Dimethylphenol          | 850            | 443    | 52.1                | 32             | 119            |
| 2,4-Dinitrophenol           | 850            | 276    | 32.5                | 10             | 191            |
| 2,4-Dinitrotoluene          | 850            | 409    | 48.1                | 30             | 150            |
| 2,6-Dinitrotoluene          | 850            | 419    | 49.3                | 30             | 150            |
| 2-Chloronaphthalene         | 850            | 460    | 54.1                | 20             | 175            |
| 2-Chlorophenol              | 850            | 463    | 54.5                | 23             | 134            |
| 2-Methylnaphthalene         | 850            | 427    | 50.2                | 30             | 135            |
| 2-Nitroaniline              | 850            | 400    | 47.1                | 20             | 175            |
| 2-Nitrophenol               | 850            | 421    | 49.5                | 29             | 182            |
| 3,3'-Dichlorobenzidine      | 850            | 421    | 49.5                | 10             | 261            |
| 3-Nitroaniline              | 850            | 389    | 45.8                | 20             | 175            |
| 4,6-Dinitro-2-methylphenol  | 850            | 260    | 30.6                | 10             | 181            |
| 4-Bromophenyl phenyl ether  | 850            | 450    | 52.9                | 20             | 175            |
| 4-Chloro-3-methylphenol     | 850            | 469    | 55.2                | 22             | 147            |
| 4-Chloroaniline             | 850            | 443    | 52.1                | 20             | 175            |
| 4-Chlorophenyl phenyl ether | 850            | 443    | 52.1                | 25             | 158            |
| 4-Nitroaniline              | 850            | 396    | 46.6                | 20             | 175            |
| 4-Nitrophenol               | 850            | 446    | 52.5                | 10             | 132            |
| Acenaphthene                | 850            | 433    | 50.9                | 30             | 160            |
| Acenaphthylene              | 850            | 449    | 52.8                | 10             | 150            |
| Aniline                     | 1700           | 846    | 49.8                | 10             | 160            |
| Anthracene                  | 850            | 441    | 51.9                | 27             | 133            |
| Benz(a)anthracene           | 850            | 454    | 53.4                | 33             | 143            |
| Benzo(a)pyrene              | 850            | 368    | 43.3                | 17             | 163            |
| Benzo(b)fluoranthene        | 850            | 432    | 50.8                | 24             | 159            |
| Benzo(g,h,i)perylene        | 850            | 439    | 51.6                | 10             | 219            |
| Benzo(k)fluoranthene        | 850            | 420    | 49.4                | 11             | 162            |
| Benzoic acid                | 850            | 127    | 14.9                | 10             | 450            |
| Benzyl alcohol              | 850            | 500    | 58.8                | 30             | 160            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 27

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method: SW8270C

WorkOrder:

09040279

Lab Batch ID:

89418

#### Laboratory Control Sample (LCS)

RunID:

R 090415F-4986261

Units:

Analysis Date:

04/16/2009 1:17

ug/kg ΕR Analyst:

Preparation Date: 04/13/2009 11:33

Prep By: QMT Method SW3550B

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Bis(2-chloroethoxy)methane  | 850            | 419    | 49.3                | 33             | 184            |
| Bis(2-chloroethyl)ether     | 850            | 438    | 51.5                | 28             | 158            |
| Bis(2-chloroisopropyl)ether | 850            | 412    | 48.5                | 36             | 166            |
| Bis(2-ethylhexyl)phthalate  | 850            | 389    | 45.8                | 10             | 158            |
| Butyl benzyl phthalate      | 850            | 412    | 48.5                | 10             | 152            |
| Carbazole                   | 850            | 430    | 50.6                | 45             | 135            |
| Chrysene                    | 850            | 450    | 52.9                | 17             | 168            |
| Dibenz(a,h)anthracene       | 850            | 442    | 52.0                | 10             | 227            |
| Dibenzofuran                | 850            | 447    | 52.6                | 30             | 160            |
| Diethyl phthalate           | 850            | 421    | 49.5                | 10             | 160            |
| Dimethyl phthalate          | 850            | 438    | 51.5                | 10             | 112            |
| Di-n-butyl phthalate        | 850            | 411    | 48.4                | 40             | 132            |
| Di-n-octyl phthalate        | 850            | 433    | 50.9                | 10             | 146            |
| Fluoranthene                | 850            | 459    | 54.0                | 26             | 137            |
| Fluorene                    | 850            | 435    | 51.2                | 35             | 135            |
| Hexachlorobenzene           | 850            | 466    | 54.8                | 10             | 152            |
| Hexachlorobutadiene         | 850            | 427    | 50.2                | 20             | 140            |
| Hexachlorocyclopentadiene   | 850            | 344    | 40.5                | 10             | 152            |
| Hexachloroethane            | 850            | 396    | 46.6                | 25             | 118            |
| Indeno(1,2,3-cd)pyrene      | 850            | 515    | 60.6                | 10             | 171            |
| Isophorone                  | 850            | 444    | 52.2                | 21             | 196            |
| Naphthalene                 | 850            | 433    | 50.9                | 21             | 133            |
| Nitrobenzene                | 850            | 397    | 46.7                | 35             | 180            |
| N-Nitrosodi-n-propylamine   | 850            | 418    | 49.2                | 10             | 230            |
| N-Nitrosodiphenylamine      | 1700           | 1070   | 62.9                | 30             | 160            |
| Pentachlorophenol           | 850            | 420    | 49.4                | 14             | 176            |
| Phenanthrene                | 850            | 428    | 50.4                | 35             | 135            |
| Phenol                      | 850            | 495    | 58.2                | 44             | 120            |
| Pyrene                      | 850            | 442    | 52.0                | 34             | 138            |
| Pyridine                    | 1700           | 767    | 45.1                | 10             | 150            |
| 2-Methylphenol              | 850            | 472    | 55.5                | 40             | 160            |
| 3 & 4-Methylphenol          | 850            | 420    | 49.4                | 40             | 160            |
| Surr: 2,4,6-Tribromophenol  | 2500           | 1780   | 71.2                | 19             | 135            |
| Surr: 2-Fluorobiphenyl      | 1700           | 851    | 50.1                | 15             | 140            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040279

Lab Batch ID:

89418

#### Laboratory Control Sample (LCS)

RunID:

R\_090415F-4986261

Units:

Analysis Date:

04/16/2009 1:17

ug/kg

E\_R Analyst:

Preparation Date: 04/13/2009 11:33

Prep By: QMT Method SW3550B

| Analyte               | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------|----------------|--------|---------------------|----------------|----------------|
| Surr: 2-Fluorophenol  | 2500           | 1720   | 68.8                | 15             | 122            |
| Surr: Nitrobenzene-d5 | 1700           | 783    | 46.1                | 32             | 153            |
| Surr: Phenol-d5       | 2500           | 1710   | 68.4                | 10             | 123            |
| Surr: Terphenyl-d14   | 1700           | 807    | 47.5                | 18             | 166            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040279-01

R\_090416C-4987093

Units: ug/kg

E\_R

Analysis Date: Preparation Date:

RunID:

04/16/2009 15:41 04/13/2009 11:33 Analyst: Prep By:

QMT Method SW3550B

| Analyte                | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| 1,2,4-Trichlorobenzene | NÐ               | 850                  | 727          | 85.5             | 850                   | 732           | 86.1              | 0.685 | 28           | 34           | 116           |
| 1,2-Dichlorobenzene    | ND               | 850                  | 710          | 83.5             | 850                   | 715           | 84.1              | 0.702 | 60           | 32           | 129           |
| 1,2-Diphenylhydrazine  | ND               | 850                  | 710          | 83.5             | 850                   | 736           | 86.6              | 3.60  | 60           | 10           | 256           |
| 1,3-Dichlorobenzene    | ND               | 850                  | 693          | 81.5             | 850                   | 688           | 80.9              | 0.724 | 60           | 10           | 172           |
| 1,4-Dichlorobenzene    | ND               | 850                  | 687          | 80.8             | 850                   | 696           | 81.9              | 1.30  | 28           | 20           | 124           |
| 2,4,5-Trichlorophenol  | ND               | 850                  | 775          | 91.2             | 850                   | 741           | 87.2              | 4.49  | 60           | 40           | 150           |
| 2,4,6-Trichlorophenol  | ND               | 850                  | 776          | 91.3             | 850                   | 796           | 93.6              | 2.54  | 60           | 37           | 144           |
| 2,4-Dichlorophenol     | ND               | 850                  | 763          | 89.8             | 850                   | 760           | 89.4              | 0.394 | 60           | 39           | 135           |
| 2,4-Dimethylphenol     | ND               | 850                  | 769          | 90.5             | 850                   | 749           | 88.1              | 2.64  | 60           | 32           | 119           |
| 2,4-Dinitrophenol      | ND               | 850                  | 502          | 59.1             | 850                   | 359           | 42.2              | 33.2  | 60           | 10           | 191           |
| 2,4-Dinitrotoluene     | ND               | 850                  | 796          | 93.6             | 850                   | 742           | 87.3              | 7.02  | 50           | 30           | 150           |
| 2,6-Dinitrotoluene     | ND               | 850                  | 753          | 88.6             | 850                   | 739           | 86.9              | 1.88  | 60           | 30           | 150           |
| 2-Chloronaphthalene    | ND               | 850                  | 745          | 87.6             | 850                   | 754           | 88.7              | 1.20  | 60           | 20           | 175           |
| 2-Chlorophenol         | ND               | 850                  | 764          | 89.9             | 850                   | 774           | 91.1              | 1.30  | 40           | 23           | 134           |
| 2-Methylnaphthalene    | ND               | 850                  | 726          | 85.4             | 850                   | 727           | 85.5              | 0.138 | 60           | 30           | 135           |
| 2-Nitroaniline         | ND               | 850                  | 727          | 85.5             | 850                   | 703           | 82.7              | 3.36  | 60           | 20           | 175           |
| 2-Nitrophenol          | ND               | 850                  | 749          | 88.1             | 850                   | 744           | 87.5              | 0.670 | 60           | 29           | 182           |
| 3,3'-Dichlorobenzidine | ND               | 850                  | 680          | 80.0             | 850                   | 702           | 82.6              | 3.18  | 60           | 10           | 261           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

BN - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 29

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040279

Lab Batch ID:

89418

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09040279-01

R\_090416C-4987093

Units:

ug/kg

Analyst: E R

Analysis Date: Preparation Date:

04/16/2009 15:41 04/13/2009 11:33

Prep By:

QMT Method SW3550B

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| 3-Nitroaniline              | ND               | 850                  | 776          | 91.3             | 850                   | 722           | 84.9              | 7.21  | 60           | 20           | 175           |
| 4,6-Dinitro-2-methylphenol  | ND               | 850                  | 594          | 69.9             | 850                   | 430           | 50.6              | 32.0  | 60           | 10           | 181           |
| 4-Bromophenyl phenyl ether  | ND               | 850                  | 732          | 86.1             | 850                   | 760           | 89.4              | 3.75  | 60           | 20           | 175           |
| 4-Chloro-3-methylphenol     | ND               | 850                  | 831          | 97.8             | 850                   | 816           | 96.0              | 1.82  | 42           | 22           | 147           |
| 4-Chloroaniline             | ND               | 850                  | 782          | 92.0             | 850                   | 760           | 89.4              | 2.85  | 60           | 20           | 175           |
| 4-Chlorophenyl phenyl ether | ND               | 850                  | 747          | 87.9             | 850                   | 750           | 88.2              | 0.401 | 60           | 25           | 158           |
| 4-Nitroaniline              | ND               | 850                  | 759          | 89.3             | 850                   | 685           | 80.6              | 10.2  | 60           | 20           | 175           |
| 4-Nitrophenol               | ND               | 850                  | 777          | 91.4             | 850                   | 671           | 78.9              | 14.6  | 50           | 10           | 132           |
| Acenaphthene                | ND               | 850                  | 726          | 85.4             | 850                   | 729           | 85.8              | 0.412 | 31           | 30           | 160           |
| Acenaphthylene              | ND               | 850                  | 752          | 88.5             | 850                   | 749           | 88.1              | 0.400 | 50           | 10           | 150           |
| Aniline                     | ND               | 1700                 | 1430         | 84.1             | 1700                  | 1380          | 81.2              | 3.56  | 60           | 10           | 160           |
| Anthracene                  | ND               | 850                  | 764          | 89.9             | 850                   | 756           | 88.9              | 1.05  | 50           | 27           | 133           |
| Benz(a)anthracene           | ND               | 850                  | 788          | 92.7             | 850                   | 791           | 93.1              | 0.380 | 50           | 33           | 143           |
| Benzo(a)pyrene              | ND               | 850                  | 632          | 74.4             | 850                   | 645           | 75.9              | 2.04  | 60           | 17           | 163           |
| Benzo(b)fluoranthene        | ND               | 850                  | 737          | 86.7             | 850                   | 767           | 90.2              | 3.99  | 60           | 24           | 159           |
| Benzo(g,h,i)perylene        | ND               | 850                  | 773          | 90.9             | 850                   | 770           | 90.6              | 0.389 | 60           | 10           | 219           |
| Benzo(k)fluoranthene        | ND               | 850                  | 752          | 88.5             | 850                   | 718           | 84.5              | 4.63  | 60           | 11           | 162           |
| Benzoic acid                | ND               | 850                  | 248          | 29.2             | 850                   | 185           | 21.8              | 29.1  | 60           | 10           | 450           |
| Benzyl alcohol              | ND               | 850                  | 864          | 102              | 850                   | 866           | 102               | 0.231 | 60           | 30           | 160           |
| Bis(2-chloroethoxy)methane  | ND               | 850                  | 711          | 83.6             | 850                   | 706           | 83.1              | 0.706 | 60           | 33           | 184           |
| Bis(2-chloroethyl)ether     | ND               | 850                  | 710          | 83.5             | 850                   | 718           | 84.5              | 1.12  | 60           | 28           | 158           |
| Bis(2-chloroisopropyl)ether | ND               | 850                  | 670          | 78.8             | 850                   | 674           | 79.3              | 0.595 | 60           | 36           | 166           |
| Bis(2-ethylhexyl)phthalate  | ND               | 850                  | 731          | 86.0             | 850                   | 734           | 86.4              | 0.410 | 60           | 10           | 158           |
| Butyl benzyl phthalate      | ND               | 850                  | 737          | 86.7             | 850                   | 729           | 85.8              | 1.09  | 60           | 10           | 152           |
| Carbazole                   | ND               | 850                  | 767          | 90.2             | 850                   | 736           | 86.6              | 4.13  | 60           | 45           | 135           |
| Chrysene                    | ND               | 850                  | 784          | 92.2             | 850                   | 770           | 90.6              | 1.80  | 60           | 17           | 168           |
| Dibenz(a,h)anthracene       | ND               | 850                  | 776          | 91.3             | 850                   | 809           | 95.2              | 4.16  | 60           | 10           | 227           |
| Dibenzofuran                | ND               | 850                  | 756          | 88.9             | 850                   | 751           | 88.4              | 0.664 | 60           | 45           | 135           |
| Diethyl phthalate           | ND               | 850                  | 723          | 85.1             | 850                   | 716           | 84.2              | 0.973 | 60           | 10           | 160           |
| Dimethyl phthalate          | ND               | 850                  | 746          | 87.8             | 850                   | 732           | 86.1              | 1.89  | 60           | 10           | 112           |
| Di-n-butyl phthalate        | ND               | 850                  | 756          | 88.9             | 850                   | 750           | 88.2              | 0.797 | 60           | 40           | 132           |
| Di-n-octyl phthalate        | ND               | 850                  | 675          | 79.4             | 850                   | 701           | 82.5              | 3.78  | 60           | 10           | 146           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 30

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040279

Lab Batch ID:

89418

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040279-01

R\_090416C-4987093

Units:

ug/kg

RunID: Analysis Date:

04/16/2009 15:41

Analyst:

 $E_R$ 

Preparation Date:

04/13/2009 11:33

Prep By: QMT Method SW3550B

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Fluoranthene               | ND               | 850                  | 822          | 96.7             | 850                   | 782           | 92.0              | 4.99  | 60           | 26           | 137           |
| Fluorene                   | ND               | 850                  | 748          | 88.0             | 850                   | 735           | 86.5              | 1.75  | 60           | 45           | 135           |
| Hexachlorobenzene          | ND               | 850                  | 773          | 90.9             | 850                   | 791           | 93.1              | 2.30  | 60           | 10           | 152           |
| Hexachlorobutadiene        | ND               | 850                  | 686          | 80.7             | 850                   | 702           | 82.6              | 2.31  | 60           | 20           | 140           |
| Hexachlorocyclopentadiene  | ND               | 850                  | 651          | 76.6             | 850                   | 547           | 64.4              | 17.4  | 60           | 10           | 152           |
| Hexachloroethane           | ND               | 850                  | 639          | 75.2             | 850                   | 640           | 75.3              | 0.156 | 60           | 25           | 118           |
| Indeno(1,2,3-cd)pyrene     | ND               | 850                  | 782          | 92.0             | 850                   | 826           | 97.2              | 5.47  | 60           | 10           | 171           |
| Isophorone                 | ND               | 850                  | 759          | 89.3             | 850                   | 750           | 88.2              | 1.19  | 60           | 21           | 196           |
| Naphthalene                | ND               | 850                  | 732          | 86.1             | 850                   | 720           | 84.7              | 1.65  | 60           | 21           | 133           |
| Nitrobenzene               | ND.              | 850                  | 693          | 81.5             | 850                   | 671           | 78.9              | 3.23  | 60           | 35           | 180           |
| N-Nitrosodi-n-propylamine  | ND               | 850                  | 693          | 81.5             | 850                   | 699           | 82.2              | 0.862 | 38           | 10           | 230           |
| N-Nitrosodiphenylamine     | ND               | 1700                 | 1780         | 105              | 1700                  | 1840          | 108               | 3.31  | 60           | 30           | 160           |
| Pentachlorophenol          | ND               | 850                  | 681          | 80.1             | 850                   | 690           | 81.2              | 1.31  | 50           | 14           | 176           |
| Phenanthrene               | ND               | 850                  | 737          | 86.7             | 850                   | 735           | 86.5              | 0.272 | 60           | 45           | 135           |
| Phenol                     | ND               | 850                  | 861          | 101              | 850                   | 828           | 97.4              | 3.91  | 42           | 44           | 120           |
| Pyrene                     | ND               | 850                  | 774          | 91.1             | 850                   | 757           | 89.1              | 2.22  | 31           | 26           | 127           |
| Pyridine                   | ND               | 1700                 | 1230         | 72.4             | 1700                  | 1200          | 70.6              | 2.47  | 60           | 10           | 150           |
| 2-Methylphenol             | ND               | 850                  | 814          | 95.8             | 850                   | 796           | 93.6              | 2.24  | 60           | 40           | 160           |
| 3 & 4-Methylphenol         | ND               | 850                  | 737          | 86.7             | 850                   | 724           | 85.2              | 1.78  | 60           | 40           | 160           |
| Surr: 2,4,6-Tribromophenol | ND               | 2500                 | 3160         | 126              | 2500                  | 3060          | 122               | 3.22  | 30           | 19           | 135           |
| Surr: 2-Fluorobiphenyl     | ND               | 1700                 | 1390         | 81.8             | 1700                  | 1410          | 82.9              | 1.43  | 30           | 15           | 140           |
| Surr: 2-Fluorophenol       | ND               | 2500                 | 2850         | 114              | 2500                  | 2800          | 112               | 1.77  | 30           | 15           | 122           |
| Surr: Nitrobenzene-d5      | ND               | 1700                 | 1340         | 78.8             | 1700                  | 1310          | 77.1              | 2.26  | 30           | 10           | 134           |
| Surr: Phenol-d5            | ND               | 2500                 | 2930         | 117              | 2500                  | 2840          | 114               | 3.12  | 30           | 10           | 123           |
| Surr: Terphenyl-d14        | ND               | 1700                 | 1390         | 81.8             | 1700                  | 1380          | 81.2              | 0.722 | 30           | 18           | 166           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 31

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

#### Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

04/13/2009 9:17

04/13/2009 9:17

WorkOrder:

09040279

Lab Batch ID:

R270179

#### Method Blank

RunID: Q\_09

Analysis Date:

Preparation Date:

Q\_090413A-4983274

Units: Analyst:

Prep By:

ug/L JC

Lab Sample ID

Client Sample ID

09040279-02A

Samples in Analytical Batch:

MW-1

09040279-03A 09040279-04A TB-4-8-09B FB-4-8-09B

Method

Analyte Result Rep Limit 1,1,1,2-Tetrachloroethane ND 5.0 ND 5.0 1,1,1-Trichloroethane ND 1,1,2,2-Tetrachloroethane 5.0 ND 5.0 1,1,2-Trichloroethane 1,1-Dichloroethane ND 5.0 ND 5.0 1,1-Dichloroethene 1,1-Dichloropropene ND 5.0 1,2,3-Trichlorobenzene ND 5.0 1,2,3-Trichloropropane ND 5.0 1,2,4-Trichlorobenzene ND 5.0 ND 5.0 1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane ND 5.0 1,2-Dibromoethane ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichloroethane ND 5.0 5.0 ND 1,2-Dichloropropane ND 1,3,5-Trimethylbenzene 5.0 ND 1,3-Dichlorobenzene 5.0 1,3-Dichloropropane ND 5.0 5.0 1,4-Dichlorobenzene ND 2,2-Dichloropropane ND 5.0 2-Butanone ND 20 2-Chloroethyl vinyl ether ND 10 2-Chlorotoluene ND 5.0 2-Hexanone ND 10 4-Chlorotoluene ND 5.0 4-Isopropyltoluene ND 5.0 4-Methyl-2-pentanone ND 10 20 Acetone ND ND 10 Acrylonitrile 5.0 Benzene ND Bromobenzene ND 5.0 Bromochloromethane ND 5.0 ND 5.0 Bromodichloromethane Bromoform ND 5.0 Bromomethane ND 10 Carbon disulfide ND 5.0 Carbon tetrachloride ND 5.0 Chlorobenzene ND 5.0 Chloroethane ND 10 Chloroform ND 5.0 Chloromethane ND 10 Dibromochloromethane ND 5.0 Dibromomethane ND 5.0 Dichlorodifluoromethane ND 10 Ethylbenzene ND 5.0

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve \* - Recovery Outside Advisable QC Limits

TNTC - Too numerous to count

09040279 Page 32

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040279

Lab Batch ID:

R270179

Method Blank

RunID:

Q 090413A-4983274

Units:

Analysis Date:

04/13/2009 9:17

ug/L

Analyst: JC

Preparation Date:

04/13/2009 9:17

Prep By:

Method

| Analyte                     | Result | Rep Limit   |
|-----------------------------|--------|-------------|
| Hexachlorobutadiene         | ND     | 5.0         |
| Isopropylbenzene            | ND     | 5.0         |
| Methyl tert-butyl ether     | ND     | 5.0         |
| Methylene chloride          | ND     | 5.0         |
| Naphthalene                 | ND     | 5.0         |
| n-Butylbenzene              | ND     | 5.0         |
| n-Propylbenzene             | ND     | 5.0         |
| sec-Butylbenzene            | ND.    | 5.0         |
| Styrene                     | ND     | 5.0         |
| tert-Butylbenzene           | ND     | 5.0         |
| Tetrachloroethene           | ND     | 5.0         |
| Toluene                     | ND     | 5.0         |
| Trichloroethene             | ND     | 5.0         |
| Trichlorofluoromethane      | ND     | 5.0         |
| Vinyl acetate               | ND     | 10          |
| Vinyl chloride              | ND     | 2.0         |
| cis-1,2-Dichloroethene      | ND     | 5.0         |
| cis-1,3-Dichloropropene     | ND     | 5.0         |
| m,p-Xylene                  | ND     | 5.0         |
| o-Xylene                    | ND     | 5.0         |
| trans-1,2-Dichloroethene    | ND     | <u>5</u> .0 |
| trans-1,3-Dichloropropene   | ND     | 5.0         |
| 1,2-Dichloroethene (total)  | ND     | 5.0         |
| Xylenes,Total               | ND     | 5.0         |
| Surr: 1,2-Dichloroethane-d4 | 100.0  | 62-130      |
| Surr: 4-Bromofluorobenzene  | 108.0  | 70-130      |
| Surr: Toluene-d8            | 94.0   | 74-122      |

#### Laboratory Control Sample (LCS)

RunID:

Q 090413A-4983272

Units:

ug/L JC

Analysis Date: Preparation Date: 04/13/2009 8:49 04/13/2009 8:49 Analyst: Prep By:

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 21.0   | 105                 | 71             | 136            |
| 1,1,1-Trichloroethane     | 20.0           | 22.0   | 110                 | 66             | 132            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 21.0   | 105                 | 55             | 139            |
| 1,1,2-Trichloroethane     | 20.0           | 21.0   | 105                 | 70             | 130            |
| 1,1-Dichloroethane        | 20.0           | 21.0   | 105                 | 67             | 131            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

racmaster

WorkOrder:

09040279

Lab Batch ID:

R270179

#### Laboratory Control Sample (LCS)

RunID:

Q\_090413A-4983272

Units:

ug/L

Analysis Date:

04/13/2009 8:49

Analyst: JC

.

Preparation Date:

04/13/2009 8:49

Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 24.0   | 120                 | 71             | 146            |
| 1,1-Dichloropropene         | 20.0           | 20.0   | 100                 | 59             | 138            |
| 1,2,3-Trichlorobenzene      | 20.0           | 18.0   | 90.0                | 37             | 155            |
| 1,2,3-Trichloropropane      | 20.0           | 20.0   | 100                 | 70             | 145            |
| 1,2,4-Trichlorobenzene      | 20.0           | 17.0   | 85.0                | 39             | 133            |
| 1,2,4-Trimethylbenzene      | 20.0           | 17.0   | 85.0                | 53             | 147            |
| 1,2-Dibromo-3-chloropropane | 20.0           | 16.0   | 80.0                | 43             | 137            |
| 1,2-Dibromoethane           | 20.0           | 21.0   | 105                 | 63             | 126            |
| 1,2-Dichlorobenzene         | 20.0           | 18.0   | 90.0                | 70             | 130            |
| 1,2-Dichloroethane          | 20.0           | 19.0   | 95.0                | 64             | 150            |
| 1,2-Dichloropropane         | 20.0           | 20.0   | 100                 | 76             | 124            |
| 1,3,5-Trimethylbenzene      | 20.0           | 17.0   | 85.0                | 57             | 140            |
| 1,3-Dichlorobenzene         | 20.0           | 18.0   | 90.0                | 72             | 13             |
| 1,3-Dichloropropane         | 20.0           | 19.0   | 95.0                | 78             | 131            |
| 1,4-Dichlorobenzene         | 20.0           | 18.0   | 90.0                | 70             | 13             |
| 2,2-Dichloropropane         | 20.0           | 18.0   | 90.0                | 45             | 15             |
| 2-Butanone                  | 20.0           | 20.0   | 100                 | 20             | 23             |
| 2-Chloroethyl vinyl ether   | 20.0           | 18.0   | 90.0                | 13             | 179            |
| 2-Chlorotoluene             | 20.0           | 18.0   | 90.0                | 64             | 12             |
| 2-Hexanone                  | 20.0           | 18.0   | 90.0                | 34             | 18.            |
| 4-Chlorotoluene             | 20.0           | 18.0   | 90.0                | 64             | 14:            |
| 4-Isopropyltoluene          | 20.0           | 17.0   | 85.0                | 60             | 13             |
| 4-Methyl-2-pentanone        | 20.0           | 18.0   | 90.0                | 11             | 14             |
| Acetone                     | 20.0           | 21.0   | 105                 | 13             | 38             |
| Acrylonitrile               | 20.0           | 20.0   | 100                 | 43             | 19             |
| Benzene                     | 20.0           | 21.0   | 105                 | 76             | 12             |
| Bromobenzene                | 20.0           | 18.0   | 90.0                | 70             | 13             |
| Bromochloromethane          | 20.0           | 24.0   | 120                 | 63             | 13             |
| Bromodichloromethane        | 20.0           | 21.0   | 105                 | 77             | 13             |
| Bromoform                   | 20.0           | 20.0   | 100                 | 55             | 12             |
| Bromomethane                | 20.0           | 24.0   | 120                 | 58             | 14             |
| Carbon disulfide            | 20.0           | 22.0   | 110                 | 46             | 14             |
| Carbon tetrachloride        | 20.0           | 21.0   | 105                 | 66             | 13             |
| Chlorobenzene               | 20.0           | 21.0   | 105                 | 67             | 13             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040279

Lab Batch ID:

R270179

# Laboratory Control Sample (LCS)

RunID:

Q\_090413A-4983272

Units:

ug/L

JC

Analysis Date:

04/13/2009 8:49

Analyst:

Method

| Droporation | Data  | 0.4 |
|-------------|-------|-----|
| Preparation | Date: | 04  |

4/13/2009 8:49

Prep By:

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 22.0   | 110                 | 50             | 137            |
| Chloroform                  | 20.0           | 22.0   | 110                 | 70             | 135            |
| Chloromethane               | 20.0           | 19.0   | 95.0                | 51             | 140            |
| Dibromochloromethane        | 20.0           | 20.0   | 100                 | 69             | 12             |
| Dibromomethane              | 20.0           | 21.0   | 105                 | 74             | 13             |
| Dichlorodifluoromethane     | 20.0           | 18.0   | 90.0                | 32             | 16             |
| Ethylbenzene                | 20.0           | 20.0   | 100                 | 67             | 12:            |
| Hexachlorobutadiene         | 20.0           | 16.0   | 80.0                | 43             | 14             |
| Isopropylbenzene            | 20.0           | 17.0   | 85.0                | 60             | 13             |
| Methyl tert-butyl ether     | 40.0           | 47.0   | 118                 | 48             | 16             |
| Methylene chloride          | 20.0           | 23.0   | 115                 | 52             | 14             |
| Naphthalene                 | 20.0           | 17.0   | 85.0                | 24             | 15             |
| n-Butylbenzene              | 20.0           | 16.0   | 80.0                | 50             | 14             |
| n-Propylbenzene             | 20.0           | 16.0   | 80.0                | 62             | 13             |
| sec-Butylbenzene            | 20.0           | 17.0   | 85.0                | 66             | 12             |
| Styrene                     | 20.0           | 20.0   | 100                 | 60             | 13             |
| tert-Butylbenzene           | 20.0           | 17.0   | 85.0                | 67             | 14             |
| Tetrachloroethene           | 20.0           | 26.0   | 130                 | 26             | 20             |
| Toluene                     | 20.0           | 20.0   | 100                 | 70             | 13             |
| Trichloroethene             | 20.0           | 22.0   | 110                 | 64             | 13             |
| Trichlorofluoromethane      | 20.0           | 23.0   | 115                 | 46             | 16             |
| Vinyl acetate               | 20.0           | 15.0   | 75.0                | 10             | 19             |
| Vinyl chloride              | 20.0           | 21.0   | 105                 | 31             | 14             |
| cis-1,2-Dichloroethene      | 20.0           | 24.0   | 120                 | 70             | 14             |
| cis-1,3-Dichloropropene     | 20.0           | 17.0   | 85.0                | 61             | 13             |
| m,p-Xylene                  | 40.0           | 41.0   | 102                 | 72             | 15             |
| o-Xylene                    | 20.0           | 21.0   | 105                 | 78             | 14             |
| trans-1,2-Dichloroethene    | 20.0           | 24.0   | 120                 | 67             | 14             |
| trans-1,3-Dichloropropene   | 20.0           | 16.0   | 80.0                | 56             | 13             |
| 1,2-Dichloroethene (total)  | 40             | 48     | 120                 | 73             | 13             |
| Xylenes,Total               | 60             | 62     | 100                 | 72             | 15             |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 48     | 96.0                | 62             | 13             |
| Surr: 4-Bromofluorobenzene  | 50.0           | 54     | 108                 | 70             | 13             |
| Surr: Toluene-d8            | 50.0           | 47     | 94.0                | 74             | 12             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 35

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040279

Lab Batch ID:

R270179

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040341-01

RunID:

Q\_090413A-4983276

Units:

ug/L

Analysis Date:

04/13/2009 10:12

Analyst:

JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0      | 20           | 35           | 175           |
| 1,1,1-Trichloroethane       | ND               | 20                   | 18.0         | 90.0             | 20                    | 19.0          | 95.0              | 5.41   | 20           | 35           | 175           |
| 1,1,2,2-Tetrachloroethane   | ND               | 20                   | 12.0         | 60.0             | 20                    | 13.0          | 65.0              | 8.00   | 20           | 35           | 175           |
| 1,1,2-Trichloroethane       | ND               | 20                   | 10.0         | 50.0             | 20                    | 10.0          | 50.0              | 0      | 20           | 35           | 175           |
| 1,1-Dichloroethane          | ND               | 20                   | 19.0         | 90.0             | 20                    | 18.0          | 85.0              | 5.41   | · 20         | 35           | 175           |
| 1,1-Dichloroethene          | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0      | 22           | 61           | 145           |
| 1,1-Dichloropropene         | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0      | 20           | 35           | 175           |
| 1,2,3-Trichlorobenzene      | ND               | 20                   | 17.0         | 85.0             | 20                    | 18.0          | 90.0              | 5.71   | 20           | 27           | 187           |
| 1,2,3-Trichloropropane      | ND               | 20                   | 22.0         | 110              | 20                    | 23.0          | 115               | 4.44   | 20           | 35           | 175           |
| 1,2,4-Trichlorobenzene      | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0      | 20           | 34           | 150           |
| 1,2,4-Trimethylbenzene      | 260              | 20                   | 250          | N/C              | 20                    | 250           | N/C               | N/C    | 20           | 35           | 175           |
| 1,2-Dibromo-3-chloropropane | ND               | 20                   | 24.0         | 120              | 20                    | 23.0          | 115               | 4.26   | 20           | 15           | 175           |
| 1,2-Dibromoethane           | 380              | 20                   | 390          | N/C              | 20                    | 380           | N/C               | N/C    | 20           | 35           | 175           |
| 1,2-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0      | 20           | 35           | 175           |
| 1,2-Dichloroethane          | 900              | 20                   | 880          | N/C              | 20                    | 870           | N/C               | N/C    | 20           | 35           | 175           |
| 1,2-Dichloropropane         | ND               | 20                   | 27.0         | 135              | 20                    | 27.0          | 135               | 0      | 20           | 35           | 175           |
| 1,3,5-Trimethylbenzene      | 190              | 20                   | 190          | N/C              | 20                    | . 190         | N/C               | N/C    | 20           | 35           | 175           |
| 1,3-Dichlorobenzene         | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41   | 20           | 35           | 175           |
| 1,3-Dichloropropane         | ND               | 20                   | 60.0         | 300 *            | 20                    | 62.0          | 310 *             | 3.28   | 20           | 35           | 175           |
| 1,4-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0      | 20           | 35           | 175           |
| 2,2-Dichloropropane         | ND               | 20                   | 15.0         | 75.0             | 20                    | 16.0          | 80.0              | 6.45   | 20           | 35           | 175           |
| 2-Butanone                  | 3400             | 20                   | 3400         | N/C              | 20                    | 3200          | N/C               | N/C    | 20           | 10           | 230           |
| 2-Chloroethyl vinyl ether   | ND               | 20                   | 2.00         | 10.0             | 20                    | 1.00          | 5.00 *            | 66.7 * | 20           | 10           | 250           |
| 2-Chlorotoluene             | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0      | 20           | 31           | 175           |
| 2-Hexanone                  | 320              | 20                   | 320          | N/C              | 20                    | 280           | N/C               | N/C    | 20           | 10           | 250           |
| 4-Chlorotoluene             | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0      | 20           | 31           | 175           |
| 4-Isopropyltoluene          | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88   | 20           | 35           | 175           |
| 4-Methyl-2-pentanone        | 110              | 20                   | 120          | N/C              | 20                    | 110           | N/C               | N/C    | 20           | 10           | 175           |
| Acetone                     | 2100             | 20                   | 1800         | N/C              | 20                    | 1800          | N/C               | N/C    | 20           | 10           | 400           |
| Acrylonitrile               | ND               | 20                   | 26.0         | 130              | 20                    | 24.0          | 120               | 8.00   | 20           | 15           | 250           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 36

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040279

Lab Batch ID:

R270179

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09040341-01

Q\_090413A-4983276

Units:

ug/L

| Analysis | Date: |  |
|----------|-------|--|

04/13/2009 10:12

Analyst: JC

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Benzene                 | 1100             | 20                   | 1000         | N/C              | 20                    | 1000          | N/C               | N/C  | 22           | 76           | 127           |
| Bromobenzene            | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 35           | 175           |
| Bromochloromethane      | ND               | 20                   | 21.0         | 105              | 20                    | 22.0          | 110               | 4.65 | 20           | 35           | 175           |
| Bromodichloromethane    | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 20           | 35           | 175           |
| Bromoform               | ND               | 20                   | 0            | 0 *              | 20                    | 0             | 0 *               | 0    | 20           | 35           | 175           |
| Bromomethane            | ND               | 20                   | 16.0         | 80.0             | 20                    | 18.0          | 90.0              | 11.8 | 20           | 35           | 175           |
| Carbon disulfide        | ND               | 20                   | 21.0         | 90.0             | 20                    | 21.0          | 90.0              | 0    | 20           | 30           | 225           |
| Carbon tetrachloride    | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 35           | 175           |
| Chlorobenzene           | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 21           | 70           | 130           |
| Chloroethane            | ND               | 20                   | 20.0         | 75.0             | 20                    | 20.0          | 75.0              | 0    | 20           | 35           | 175           |
| Chlorof <i>o</i> rm     | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 35           | 175           |
| Chloromethane           | ND               | 20                   | 13.0         | 65.0             | 20                    | 14.0          | 70.0              | 7.41 | 20           | 35           | 175           |
| Dibromochloromethane    | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 35           | 175           |
| Dibromomethane          | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 20           | 35           | 175           |
| Dichlorodifluoromethane | ND               | 20                   | 13.0         | 65.0             | 20                    | 13.0          | 65.0              | 0    | 20           | 35           | 175           |
| Ethylbenzene            | 960              | 20                   | 930          | N/C              | 20                    | 930           | N/C               | N/C  | 20           | 35           | 175           |
| Hexachlorobutadiene     | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 43           | 144           |
| Isopropylbenzene        | 60.0             | 20                   | 74.0         | 70.0             | 20                    | 73.0          | 65.0              | 1.36 | 20           | 35           | 175           |
| Methyl tert-butyl ether | 750              | 40                   | 750          | N/C              | 40                    | 740           | N/C               | N/C  | 20           | 35           | 175           |
| Methylene chloride      | ND               | 20                   | 18.0         | 90.0             | 20                    | 19.0          | 95.0              | 5.41 | 20           | 52           | 143           |
| Naphthalene             | 240              | 20                   | 230          | N/C              | 20                    | 230           | N/C               | N/C  | 20           | 20           | 210           |
| n-Butylbenzene          | 15.0             | 20                   | 31.0         | 80.0             | 20                    | 31.0          | 80.0              | 0    | 20           | 35           | 175           |
| n-Propylbenzene         | 160              | 20                   | 180          | N/C              | 20                    | 170           | N/C               | N/C  | 20           | 35           | 175           |
| sec-Butylbenzene        | ND               | 20                   | 26.0         | 130              | 20                    | 26.0          | 130               | 0    | 20           | 35           | 175           |
| Styrene                 | ND               | 20                   | 18.0         | 85.0             | 20                    | 19.0          | 90.0              | 5.41 | 20           | 35           | 175           |
| tert-Butylbenzene       | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 20           | 35           | 175           |
| Tetrachloroethene       | ND               | 20                   | 25.0         | 125              | 20                    | 26.0          | 130               | 3.92 | 20           | 30           | 250           |
| Toluene                 | 1600             | 20                   | 1400         | N/C              | 20                    | 1400          | N/C               | N/C  | 24           | 70           | 131           |
| Trichloroethene         | ND               | 20                   | 22.0         | 110              | 20                    | 21.0          | 105               | 4.65 | 21           | 60           | 140           |
| Trichlorofluoromethane  | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 17           | 250           |
| Vinyl acetate           | ND               | 20                   | 15.0         | 75.0             | 20                    | 15.0          | 75.0              | 0    | 20           | 10           | 250           |
| Vinyl chloride          | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 35           | 175           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 37

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040279

Lab Batch ID:

R270179

# Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040341-01

RunID:

Q 090413A-4983276

Units:

ug/L

Analysis Date:

04/13/2009 10:12

Analyst: JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 20                   | 21.0         | 105              | 20                    | 22.0          | 110               | 4.65 | 20           | 35           | 175           |
| cis-1,3-Dichloropropene     | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 20           | 35           | 175           |
| m,p-Xylene                  | 1200             | 40                   | 1200         | N/C              | 40                    | 1200          | N/C               | N/C  | 20           | 35           | 175           |
| o-Xylene                    | 920              | 20                   | 860          | N/C              | 20                    | 880           | N/C               | N/C  | 20           | 35           | 175           |
| trans-1,2-Dichloroethene    | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 20           | 35           | 175           |
| trans-1,3-Dichloropropene   | ND               | 20                   | 18.0         | 90.0             | 20                    | 15.0          | 75.0              | 18.2 | 20           | 35           | 175           |
| 1,2-Dichloroethene (total)  | ND               | 40                   | 40           | 100              | 40                    | 41            | 100               | 2.5  | 20           | 35           | 175           |
| Xylenes,Total               | 2120             | 60                   | 2060         | N/C              | 60                    | 2080          | N/C               | N/C  | 20           | 35           | 175           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 43           | 86.0             | 50                    | 42.0          | 84.0              | 2.35 | 30           | 62           | 130           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 50           | 100              | 50                    | 51.0          | 102               | 1.98 | 30           | 70           | 130           |
| Surr: Toluene-d8            | ND               | 50                   | 47           | 94.0             | 50                    | 48.0          | 96.0              | 2.11 | 30           | 74           | 122           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040279 Page 38

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster

Analysis:

Alkalinity (as CaCO3), Total

Method:

RunID:

E310.1

WorkOrder:

09040279

Lab Batch ID:

R270144

Method Blank

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

WET\_090413F-4982657

04/13/2009 11:20

Analyst: PAC 09040279-02F

MW-1

| Analyte                      | Result | Rep Limit |
|------------------------------|--------|-----------|
| Alkalinity, Total (As CaCO3) | ND     | 2.0       |

#### **Laboratory Control Sample (LCS)**

RunID:

WET\_090413F-4982659

Units:

mg/L

Analysis Date:

04/13/2009 11:20

PAC Analyst:

| Analyte                      | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|------------------------------|----------------|--------|---------------------|----------------|----------------|
| Alkalinity, Total (As CaCO3) | 38.70          | 39.00  | 100.8               | 90             | 110            |

# Sample Duplicate

Original Sample:

09040278-01

RunID:

WET\_090413F-4982660

Units: mg/L

Analysis Date:

04/13/2009 11:20

PAC Analyst:

| Analyte                      | Sample .<br>Result | DUP<br>Result | RPD   | RPD<br>Limit |
|------------------------------|--------------------|---------------|-------|--------------|
| Alkalinity, Total (As CaCO3) | 174                | 175           | 0.573 | 20           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

ion Chromatography

Method:

RunID:

E300.0

WorkOrder:

09040279

Lab Batch ID:

R270277A

Method Blank

Samples in Analytical Batch:

IC2\_090409A-4984862

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

04/09/2009 12:18

Units: Analyst:

BDG

09040279-02F

MW-1

| Analyte                  | Result | Rep Limit |
|--------------------------|--------|-----------|
| Nitrogen, Nitrate (As N) | ND     | 0.50      |

#### Laboratory Control Sample (LCS)

RunID:

IC2\_090409A-4984863

Units:

mg/L

Analysis Date:

04/09/2009 12:36

Analyst:

BDG

| Analyte                  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|--------------------------|----------------|--------|---------------------|----------------|----------------|
| Nitrogen, Nitrate (As N) | 10.00          | 9.147  | 91.47               | 90             | 110            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040169-02

RunID:

IC2\_090409A-4984879

Units:

mg/L

Analysis Date:

04/09/2009 18:26

Analyst: BDG

| Analyte                  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD     | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|--------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|---------|--------------|--------------|---------------|
| Nitrogen, Nitrate (As N) | ND               | 10                   | 10.10        | 101.0            | 10                    | 10.09         | 100.9             | 0.06932 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

BN - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Ion Chromatography

Method:

RuniD:

E300.0

uomuotoi

WorkOrder:

09040279

Lab Batch ID:

R270297

Method Blank

Units:

mg/L BDG

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

IC2\_090414D-4985092

04/14/2009 10:38

Analyst:

09040279-02F

MW-1

|          | Analyte | Result | Rep Limit |
|----------|---------|--------|-----------|
| Chloride |         | ND     | 0.50      |
| Sulfate  |         | ND     | 0.50      |

#### Laboratory Control Sample (LCS)

RunID:

IC2 090414D-4985093

Units:

mg/L

Analysis Date:

04/14/2009 10:55

Analyst:

BDG

| Analyte  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------|----------------|--------|---------------------|----------------|----------------|
| Chloride | 10.00          | 10.52  | 105.2               | 85             | 115            |
| Sulfate  | 10.00          | 10.57  | 105.7               | 85             | 115            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09040254-01

IC2 090414D-4985097

Units:

s: mg/L

Analysis Date:

04/14/2009 12:05

Analyst: BDG

| Analyte  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Chloride | ND               | 10                   | 10.68        | 106.8            | 10                    | 10.66         | 106.6             | 0.2155 | 20           | 80           | 120           |
| Sulfate  | ND               | 10                   | 11.07        | 110.7            | 10                    | 10.07         | 100.7             | 9.423  | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

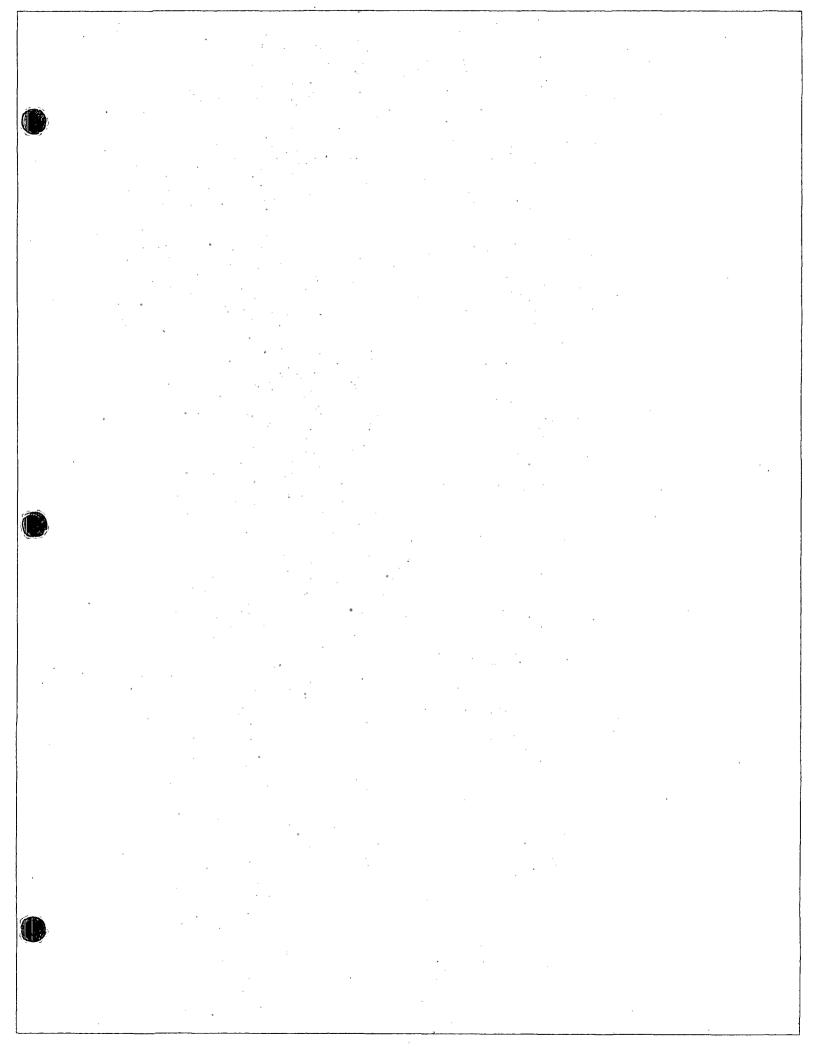
E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

# Sample Receipt Checklist And Chain of Custody




8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Sample Receipt Checklist

| Workorder:         09040279           Date and Time Received:         4/9/2009 10:00:00 AM           Temperature:         3.0°C |                   | Received By: Carrier name: Chilled by: | BF Fedex-Standard Overnight Water Ice |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------|---------------------------------------|
| 1. Shipping container/cooler in good condition?                                                                                 | Yes 🔽             | No 🗌                                   | Not Present                           |
| 2. Custody seals intact on shippping container/cooler?                                                                          | Yes 🔽             | No 🗀                                   | Not Present                           |
| 3. Custody seals intact on sample bottles?                                                                                      | Yes 🗌             | No 🗌                                   | Not Present                           |
| 4. Chain of custody present?                                                                                                    | Yes 🔽             | No 🗌                                   |                                       |
| 5. Chain of custody signed when relinquished and received?                                                                      | Yes 🔽             | No 🗔                                   |                                       |
| Chain of custody agrees with sample labels?     Received 3 vials w/HCL for CH4 Methane but not written on chain placed on hold. | Yes 🗌             | No 🗹                                   |                                       |
| 7. Samples in proper container/bottle?                                                                                          | Yes 🔽             | No 🗌                                   |                                       |
| 8. Sample containers intact?                                                                                                    | Yes 🔽             | No 🗌                                   |                                       |
| 9. Sufficient sample volume for indicated test?                                                                                 | Yes 🗹             | No 🗌                                   |                                       |
| 10. All samples received within holding time?                                                                                   | Yes 🗹             | No 🗌                                   |                                       |
| 11. Container/Temp Blank temperature in compliance?                                                                             | Yes 🗸             | No 🗌                                   |                                       |
| 12. Water - VOA vials have zero headspace?                                                                                      | Yes 🔽             | No 🗌 VOA                               | Vials Not Present                     |
| 13. Water - Preservation checked upon receipt (except VOA*)?                                                                    | Yes               | No 🗹                                   | Not Applicable                        |
| *VOA Preservation Checked After Sample Analysis                                                                                 |                   |                                        |                                       |
| SPL Representative: Rodriguez, Alisha C.  Client Name Contacted: Rick Rexroad w/Brown & Caldwell                                | Contact Date      | <b>&amp; Time:</b> 4/9/2009 2:53:0     | 00 PM                                 |
| Non Conformance<br>Issues:                                                                                                      |                   |                                        |                                       |
| Client Instructions: Client emailed back at 13:31 on Monday 04/13/0                                                             | 9 requesting that | the extra vials be analyze             | d for Methane only                    |



|                                                              |                                            |                                |                        |                   |                         |                            | SPL Wo   | SPL Workorder No.                   | Š                           |                 | `                        | 000                                   | 000                                    |       |
|--------------------------------------------------------------|--------------------------------------------|--------------------------------|------------------------|-------------------|-------------------------|----------------------------|----------|-------------------------------------|-----------------------------|-----------------|--------------------------|---------------------------------------|----------------------------------------|-------|
|                                                              | CDI Inc                                    |                                |                        |                   |                         |                            |          |                                     |                             |                 | '                        | 000770                                | 200                                    |       |
| Analysis R.                                                  | Analysis Request & Chain of Custody Record | yrd                            |                        |                   |                         | I. <u>-</u>                | 99       | 9704029                             | 348                         |                 | page                     | 2                                     | Jo Jo                                  |       |
| Client Name: Plowin and Ca.                                  | Caldwell                                   |                                |                        | matrix bottle     |                         | size pres.                 | š.       |                                     | ¥                           | Requested       |                          | Analysis                              | sis                                    |       |
| 15 Vad                                                       | # 3500                                     | ii.                            | 7                      | is=A<br>sdto=;    |                         | J.                         |          | 7                                   | (9                          |                 | (0                       | 365                                   |                                        |       |
| eFax: 713-759-                                               | 0999 / 7/3-                                | 308-388                        |                        | X эл              | 18 18<br>10=X<br>10=V   | <u>3</u><br>=0 <b>гр</b> е |          | ठ।२                                 | 2                           | $\frac{0}{3}$   | 100                      | 1EA                                   |                                        | •     |
| act: R                                                       | Email: K                                   | 30000 Brunca                   | ca ( d, ca             | оэцг              |                         | ONI<br>X 2                 | огрег    | 8)                                  | 7 <u>9,</u><br>7 <u>8</u> , |                 | (F)                      | $\gamma/\ell$                         |                                        |       |
| Project Name/No.: /28/25                                     | - BT Services                              |                                |                        | E=6               | ν=V<br>γ=V<br>γ=Δ       | 7=5<br>1602                | )=X      | h                                   | <i>9]</i><br>)              | 207<br>(8)      | 20                       | الجرا                                 |                                        |       |
| Site Name: TOCONO SK                                         | N                                          |                                |                        | əgbı              | SS                      | =91                        | 10 19    | 1/0                                 | 700                         | ) 5.<br>        |                          | 1//2                                  |                                        |       |
| Invoice To: A Cx Cox                                         | <i></i>                                    | Ph:713-(4/6-1                  | 129                    | ı[s=r             | eplas<br>elg=<br>iil [: | HC!                        | S7H      | Ho                                  | 2/15                        | 70<br>H         | 7/4                      | P/ [                                  | <u></u>                                |       |
| SAMPLEID                                                     | DATE                                       | TIME comp                      | 34                     | IS                | n.                      | =8<br>=[                   | =٤       | 4                                   | 3                           | 1               | ク                        | 1                                     |                                        |       |
| MUS-54-55                                                    | 4-7-09                                     | 1431                           | ×                      | γ)<br>            | a<br>V                  | 1                          |          | <u> </u>                            | ×                           |                 |                          |                                       |                                        |       |
| 1-WW                                                         | 7                                          | 6051                           | ×                      | 3                 | 1/s# dt/                | <b>*</b>                   | 4/ 90    | X                                   | χ                           | X               | Χ                        | Χ                                     |                                        |       |
| 70-4-8-3B                                                    | 4/8/03                                     | 7001                           | Х                      | $\omega$          | 7 4                     | 46 4                       | Lab 2    |                                     |                             | Y               | .,                       |                                       |                                        |       |
| FB-4-8-09B                                                   | 71                                         | 0101                           | ×                      | 3                 | 7                       | 7 3                        | lab 3    |                                     |                             | X               |                          |                                       |                                        |       |
|                                                              |                                            |                                |                        |                   |                         |                            |          |                                     |                             |                 |                          |                                       |                                        |       |
|                                                              |                                            |                                |                        |                   |                         |                            |          |                                     | -                           | -               |                          |                                       | +                                      |       |
|                                                              |                                            |                                |                        |                   |                         |                            |          |                                     |                             |                 |                          |                                       | 8                                      |       |
|                                                              |                                            |                                |                        |                   |                         |                            | -        |                                     | tará a                      |                 | ******                   | STATE OF THE STATE OF                 |                                        |       |
|                                                              |                                            |                                |                        |                   |                         |                            | -        |                                     | 128                         | <b>4</b>        |                          |                                       |                                        |       |
|                                                              |                                            |                                |                        |                   |                         |                            |          |                                     |                             |                 |                          |                                       |                                        |       |
| Client/Consultant Remarks:                                   |                                            | Laboratory remarks:            | emarks:                | ,                 |                         |                            |          |                                     |                             |                 | Intact?<br>Ice?<br>Temp: | r.<br>MC                              |                                        | ZZ    |
| ਲ                                                            | Special Reporting Requirements Results:    | س ا                            | # <b>-</b>             | PDR               |                         | al Detec                   | tion Lin | Special Detection Limits (specify): | ify):                       |                 | •                        |                                       | zziew (initial):                       | ial): |
| U Business Day Contract                                      | Contract Standard QC/NLywys QC Level 4 QC  | Level 4 QC 📜 TX TRRP 🗀         | _ 1                    | LA RECAP          |                         |                            |          |                                     |                             |                 |                          | ~                                     |                                        |       |
| Standard                                                     | 1. Relinquished by Sampler:                | Sis                            | date                   | 18/69             | time 9                  | 2                          | 2. Re    | 2. Received by:                     |                             |                 |                          |                                       |                                        |       |
| 3 Business Days                                              | 3. Relinquished by:                        |                                | date                   |                   | time                    |                            | 4. Re    | 4. Received by:                     |                             |                 |                          |                                       |                                        |       |
| Other                                                        | 5. Relinquished by:                        |                                | date                   | 19/09             | time                    | 38                         | 6. Re    | 6. Received by Laboratory:          | Labora                      | tory:           | 1 X                      | +                                     |                                        |       |
| ☐ 8880 Interchange Drive<br>Houston, TX 77054 (713) 660-0901 | Drive<br>) 660-0901                        | Scott, LA 70583 (337) 237-4775 | sador Caf<br>583 (337) | fery Pa<br>237-47 | ırkway<br>175           |                            |          | Trav                                | erse Ci                     | 459 I<br>ty, MI | Hughes<br>49686          | 459 Hughes Drive<br>8, MI 49686 (231) | Traverse City, MI 49686 (231) 947-5777 | 77    |





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Case Narrative for: Brown & Caldwell

# Certificate of Analysis Number:

#### 09040278

Report To: **Project Name:** Fracmaster Site: **Hobbs NM Brown & Caldwell** Rick Rexroad Site Address: 1415 Louisiana **Suite 2500** PO Number: Houston State: **New Mexico** ΤX 77002-State Cert. No.: ph: (713) 759-0999 fax: Date Reported: 4/27/2009

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

For Volatile Organics analysis (8260B), the results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89427 for the Semivolatile Hydrocarbons analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89412 for the Semivolatile Organics analysis by SW846 Method 8270C. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Isnes V. Vicheare

Agnes V. Vicknair

09040278 Page 1

4/27/2009

Project Manager

Date



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

## Certificate of Analysis Number:

## 09040278

Report To:

Fax To:

Brown & Caldwell

Rick Rexroad 1415 Louisiana Suite 2500

Houston TX 77002-

ph: (713) 759-0999

fax: (713) 308-3886

Isnes V. Vicheaire

Project Name:

Fracmaster

Site:

**Hobbs NM** 

Site Address:

PO Number:

State:

**New Mexico** 

State Cert. No.:

Date Reported:

4/27/2009

| Client Sample ID | Lab Sample ID | Matrix | Date Collected      | Date Received        | COCID  | HOLD |
|------------------|---------------|--------|---------------------|----------------------|--------|------|
| MW-3             | 09040278-01   | Water  | 4/8/2009 8:12:00 AM | 4/9/2009 10:00:00 AM | 322329 |      |
| TB-4-8-09A       | 09040278-02   | Water  | 4/8/2009 8:32:00 AM | 4/9/2009 10:00:00 AM | 322329 |      |
| FB-4-8-09A       | 09040278-03   | Water  | 4/8/2009 9:03:00 AM | 4/9/2009 10:00:00 AM | 322329 |      |

Agnes V. Vicknair Project Manager 4/27/2009

Date

Kesavalu M. Bagawandoss Laboratory Director

Ted Yen
Quality Assurance Officer



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-3 Collected: 04/08/2009 8:12 09040278-01 SPL Sample ID:

|                                |        |      | Sit | e: Hob   | bs NM |             |            |       |            |                                         |
|--------------------------------|--------|------|-----|----------|-------|-------------|------------|-------|------------|-----------------------------------------|
| Analyses/Method                | Result | QUAL | R   | ep.Limit | D     | il. Facto   | r Date Ana | lyzed | Analyst    | Seq. #                                  |
| ALKALINITY (AS CACO3), TOTAL   |        |      |     |          | MCL   |             | E310.1     | Ur    | nits: mg/L |                                         |
| Alkalinity, Total (As CaCO3)   | 174    |      |     | 2        |       | 1           | 04/13/09   | 11:20 | PAC        | 4982660                                 |
| GASOLINE RANGE ORGANICS        |        |      |     |          | MCL   | s           | W8015B     | Ur    | nits: mg/L |                                         |
| Gasoline Range Organics        | ND     |      |     | 0.1      |       | 1           | 04/13/09   | 16:21 | CLJ        | 4984671                                 |
| Surr: 1,4-Difluorobenzene      | 92.0   |      | %   | 60-155   |       | 1           | 04/13/09   | 16:21 | CLJ        | 4984671                                 |
| Surr: 4-Bromofluorobenzene     | 104    |      | %   | 50-158   |       | 1           | 04/13/09   | 16:21 | CLJ        | 4984671                                 |
| HEADSPACE GAS ANALYSIS         |        |      |     |          | MCL   |             | RSK147     | Ur    | nits: mg/L | ======================================= |
| Methane                        | ND     |      |     | 0.0012   |       | 1           | 04/24/09   | 16:07 | V_L        | 4996399                                 |
| ION CHROMATOGRAPHY             |        |      |     |          | MCL   | · · · · · · | E300.0     | Ur    | nits: mg/L |                                         |
| Chloride                       | 52.5   |      |     | 5        |       | 10          | 04/14/09   | 22:00 | BDG        | 4985115                                 |
| Sulfate                        | 83.6   |      |     | 5        |       | 10          | 04/14/09   | 22:00 | BDG        | 4985115                                 |
| Nitrogen,Nitrate (As N)        | ND     |      |     | 0.5      |       | 1           | 04/09/09   | 15:13 | BDG        | 4984872                                 |
| SEMIVOLATILE HYDROCARBON       | S      |      |     |          | MCL   | S           | W8015B     | Uı    | nits: mg/L |                                         |
| Diesel Range Organics          | ND     |      |     | 0.1      |       | 1           | 04/16/09   | 23:39 | NW         | 4987512                                 |
| Mineral Spirits Range Organics | ND     |      |     | 0.1      |       | 1           | 04/16/09   | 23:39 | NW         | 4987512                                 |
| Surr: n-Pentacosane            | 48.4   |      | %   | 20-150   |       | 1           | 04/16/09   | 23:39 | NW         | 4987512                                 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 04/13/2009 14:10 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-3

Collected: 04/08/2009 8:12

SPL Sample ID:

09040278-01

| Site: | 4-6 | <b>L</b> - | BIRA  |
|-------|-----|------------|-------|
| one:  | Hob | DS         | IAIAI |

| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |
|-----------------------------|----------------|-----------|-------------|----------------|-----------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C Un      | its: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 1,2-Dichlorobenzene         | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 1,2-Diphenylhydrazine       | ND             | 10        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 1,3-Dichlorobenzene         | ND             | 5         | _ 1         | 04/17/09 15:26 | GY        | 4992373 |
| 1,4-Dichlorobenzene         | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2,4,5-Trichlorophenol       | ND             | 10        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2,4,6-Trichlorophenol       | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2,4-Dichlorophenol          | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2,4-Dimethylphenol          | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2,4-Dinitrophenol           | ND             | 25        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2,4-Dinitrotoluene          | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2,6-Dinitrotoluene          | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2-Chloronaphthalene         | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2-Chlorophenol              | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2-Methylnaphthalene         | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2-Nitroaniline              | ND             | 25        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 2-Nítrophenol               | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 3,3'-Dichlorobenzidine      | ND             | 10        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 3-Nítroaniline              | ND             | 25        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 4,6-Dinitro-2-methylphenol  | ND             | 25        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 4-Bromophenyl phenyl ether  | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 4-Chloro-3-methylphenol     | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 4-Chloroaniline             | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 4-Chlorophenyl phenyl ether | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 4-Nitroaniline              | ND             | 25        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| 4-Nitrophenol               | ND             | 25        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Acenaphthene                | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Acenaphthylene              | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Aniline                     | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Anthracene                  | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Benz(a)anthracene           | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Benzo(a)pyrene              | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Benzo(b)fluoranthene        | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Benzo(g,h,i)perylene        | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Benzo(k)fluoranthene        | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Benzoic acid                | ND             | 25        | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Benzyl alcohol              | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Bis(2-chloroethoxy)methane  | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |
| Bis(2-chloroethyl)ether     | ND             | 5         | 1           | 04/17/09 15:26 | GY        | 4992373 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-3 Collected: 04/08/2009 8:12 SPL Sample ID: 09040278-01

| Analyses/Method             | Result | QUAL | Ren           | .Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
|-----------------------------|--------|------|---------------|--------|-------------|----------------|---------|---------|
| Bis(2-chloroisopropyl)ether | ND     |      | <u> </u>      | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Butyl benzyl phthalate      | ND     |      | · · · · · · - | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Carbazole                   | ND     | •    |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Chrysene                    | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Dibenz(a,h)anthracene       | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Dibenzofuran                | ND     | -    |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Diethyl phthalate           | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Dimethyl phthalate          | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Di-n-butyl phthalate        | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Di-n-octyl phthalate        | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Fluoranthene                | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Fluorene                    | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Hexachtorobenzene           | ND     | ···  |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Hexachlorobutadiene         | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Hexachlorocyclopentadiene   | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Hexachloroethane            | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Indeno(1,2,3-cd)pyrene      | ДN     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Isophorone                  | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Naphthalene                 | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Nitrobenzene                | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| N-Nitrosodi-n-propylamine   | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| N-Nitrosodiphenylamine      | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Pentachlorophenol           | ND     |      |               | 25     | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Phenanthrene                | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Phenol                      | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Pyrene                      | ND     | _    |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Pyridine                    | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| 2-Methylphenol              | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| 3 & 4-Methylphenol          | ND     |      |               | 5      | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Surr: 2,4,6-Tribromophenol  | 108    |      | %             | 10-123 | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Surr: 2-Fluorobiphenyl      | 82.4   |      | %             | 23-116 | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Surr: 2-Fluorophenol        | 70.1   |      | %             | 16-110 | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Surr: Nitrobenzene-d5       | 78.8   |      | %             | 21-114 | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Surr: Phenol-d5             | 50.5   |      | %             | 10-110 | 1           | 04/17/09 15:26 | GY      | 4992373 |
| Surr: Terphenyl-d14         | 73.2   |      | %             | 22-141 | 1           | 04/17/09 15:26 | GY      | 4992373 |
|                             |        |      |               |        |             |                |         |         |

| Prep Method | Prep Date       | Prep Initials | Prep Factor |
|-------------|-----------------|---------------|-------------|
| SW3510C     | 04/13/2009 8:15 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040278 Page 5 4/27/2009 4:46:39 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-3

Collected: 04/08/2009 8:12

SPL Sample ID:

09040278-01

|                             |            | Site: Ho      | bbs NM      |                |            |         |
|-----------------------------|------------|---------------|-------------|----------------|------------|---------|
| Analyses/Method             | Result Q   | UAL Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq. #  |
| VOLATILE ORGANICS BY MET    | THOD 8260B |               | MCL SV      | V8260B Ur      | nits: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         | 5             | 11          | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,1,1-Trichloroethane       | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,1,2,2-Tetrachloroethane   | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,1,2-Trichloroethane       | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,1-Dichloroethane          | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,1-Dichloroethene          | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,1-Dichloropropene         | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,2,3-Trichlorobenzene      | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,2,3-Trichloropropane      | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,2,4-Trichlorobenzene      | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,2,4-Trimethylbenzene      | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,2-Dibromo-3-chloropropane | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,2-Dibromoethane           | ND         | 5             | 1           | 04/11/09 22:20 | LU_L       | 4981669 |
| 1,2-Dichlorobenzene         | ND         | 5             | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 1,2-Dichloroethane          | ND         | 5             | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 1,2-Dichloropropane         | ND         | 5             | 1           | 04/11/09 22:20 | LUL        | 4981669 |
| 1,3,5-Trimethylbenzene      | ND         | 5             | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 1,3-Dichlorobenzene         | ND         | 5             | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 1,3-Dichloropropane         | ND         |               | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 1,4-Dichlorobenzene         | ND         | 5             | 1           | 04/11/09 22:20 |            | 4981669 |
| 2,2-Dichloropropane         | ND         |               | <u></u>     | 04/11/09 22:20 |            | 4981669 |
| 2-Butanone                  | ND         | 20            | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 2-Chloroethyl vinyl ether   | ND J       | 10            | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 2-Chlorotoluene             | ND         | 5             |             | 04/11/09 22:20 | LU L       | 4981669 |
| 2-Hexanone                  | ND         | 10            | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 4-Chlorotoluene             | ND         | 5             | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 4-Isopropyltoluene          | ND         | 5             | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| 4-Methyl-2-pentanone        | ND         | 10            | 1           | 04/11/09 22:20 |            | 4981669 |
| Acetone                     | ND         | 20            | 1           | 04/11/09 22:20 | LU L       | 4981669 |
| Acrylonitrile               | ND         | 10            | 1           | 04/11/09 22:20 |            | 4981669 |
| Benzene                     | ND         | 5             | 1           | 04/11/09 22:20 |            | 4981669 |
| Bromobenzene                | ND         | 5             | 1           | 04/11/09 22:20 |            | 4981669 |
| Bromochloromethane          | ND         | 5             | 1           | 04/11/09 22:20 |            | 4981669 |
| Bromodichloromethane        | ND         | 5             | 1           | 04/11/09 22:20 |            | 4981669 |
| Bromoform                   | ND         | 5             | 1           | 04/11/09 22:20 |            | 4981669 |
| Bromomethane                | ND         | 10            | 1           | 04/11/09 22:20 |            | 4981669 |
| Carbon disulfide            | ND         | 5             | · 1         | 04/11/09 22:20 |            | 498166  |
| Carbon tetrachloride        | ND         | 5             | 1 .         | 04/11/09 22:20 |            | 498166  |
| Chlorobenzene               | ND         | 5             | 1           | 04/11/09 22:20 |            | 498166  |



ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-3 Collected: 04/08/2009 8:12 SPL Sample ID: 09040278-01

|                             |        |       | Site: | Hobbs NM |             |                |         |         |
|-----------------------------|--------|-------|-------|----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL. | Rep.  | Limit    | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |       |       | 10       | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Chloroform                  | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Chloromethane               | ND     |       |       | 10       | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Dibromochloromethane        | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Dibromomethane              | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Dichlorodifluoromethane     | ND     |       | _     | 10       | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Ethylbenzene                | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Hexachlorobutadiene         | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Isopropylbenzene            | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Methyl tert-butyl ether     | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Methylene chloride          | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Naphthalene                 | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| n-Butylbenzene              | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| n-Propylbenzene             | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| sec-Butylbenzene            | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Styrene                     | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| tert-Butylbenzene           | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Tetrachloroethene           | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Toluene                     | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Trichloroethene             | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Trichlorofluoromethane      | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Vinyl acetate               | ND     |       |       | 10       | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Vinyl chloride              | ND     |       |       | 2        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| cis-1,2-Dichloroethene      | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| cis-1,3-Dichloropropene     | ND     |       | · -   | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| m,p-Xylene                  | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| o-Xylene                    | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| trans-1,2-Dichloroethene    | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| trans-1,3-Dichloropropene   | NĐ     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| 1,2-Dichloroethene (total)  | ND     |       |       | 5        | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Xylenes,Total               | ND     |       |       | 5        | _ 1         | 04/11/09 22:20 | LU_L    | 4981669 |
| Surr: 1,2-Dichloroethane-d4 | 92.0   |       | % 6   | 62-130   | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Surr: 4-Bromofluorobenzene  | 108    |       | % 7   | 70-130   | 1           | 04/11/09 22:20 | LU_L    | 4981669 |
| Surr: Toluene-d8            | 96.0   |       | % 7   | 74-122   | 1           | 04/11/09 22:20 | LU_L    | 4981669 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: TB-4-8-09A Collected: 04/08/2009 8:32 SPL Sample ID: 09040278-02

Site: Hobbs NM

|                             |             | Site: Hob | DS INIVI    |                       |         |
|-----------------------------|-------------|-----------|-------------|-----------------------|---------|
| Analyses/Method             | Result QUAL | Rep.Limit | Dil. Factor | Date Analyzed Analyst | Seq. #  |
| VOLATILE ORGANICS BY MET    | THOD 8260B  |           | MCL S       | W8260B Units: ug/L    |         |
| 1,1,1,2-Tetrachloroethane   | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,1,1-Trichloroethane       | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,1,2,2-Tetrachloroethane   | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,1,2-Trichloroethane       | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,1-Dichloroethane          | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,1-Dichloroethene          | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,1-Dichloropropene         | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2,3-Trichlorobenzene      | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2,3-Trichloropropane      | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2,4-Trichlorobenzene      | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2,4-Trimethylbenzene      | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2-Dibromo-3-chloropropane | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2-Dibromoethane           | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2-Dichlorobenzene         | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2-Dichloroethane          | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,2-Dichloropropane         | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,3,5-Trimethylbenzene      | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,3-Dichlorobenzene         | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,3-Dichloropropane         | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 1,4-Dichlorobenzene         | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 2,2-Dichloropropane         | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 2-Butanone                  | ND          | 20        | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 2-Chloroethyl vinyl ether   | ND J        | 10        | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 2-Chlorotoluene             | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 2-Hexanone                  | ND          | 10        | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 4-Chlorotoluene             | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 4-Isopropyltoluene          | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| 4-Methyl-2-pentanone        | ND          | 10        | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Acetone                     | ND          | 20        | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Acrylonitrile               | ND          | 10        | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Benzene                     | ND_         | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Bromobenzene                | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Bromochloromethane          | ND          | 5         | 111         | 04/11/09 21:23 LU_L   | 4981667 |
| Bromodichloromethane        | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Bromoform                   | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Bromomethane                | ND          | 10        | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Carbon disulfide            | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Carbon tetrachloride        | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
| Chlorobenzene               | ND          | 5         | 1           | 04/11/09 21:23 LU_L   | 4981667 |
|                             |             |           |             |                       |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: TB-4-8-09A Collected: 04/08/2009 8:32 SPL Sample ID: 09040278-02

| Site: | Hobbs  | NM   |
|-------|--------|------|
| Oite. | 110003 | 1411 |

|                             |        |      | Site: | RadoH | NIVI        |                |         |         |
|-----------------------------|--------|------|-------|-------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep.L | .imit | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |       | 10    | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Chloroform                  | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Chloromethane               | ND     |      |       | 10    | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Dibromochloromethane        | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Dibromomethane              | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Dichlorodifluoromethane     | ND     |      |       | 10    | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Ethylbenzene                | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Hexachlorobutadiene         | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Isopropylbenzene            | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Methyl tert-butyl ether     | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Methylene chloride          | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Naphthalene                 | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| n-Butylbenzene              | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| n-Propylbenzene             | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| sec-Butylbenzene            | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Styrene                     | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| tert-Butylbenzene           | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Tetrachloroethene           | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Toluene                     | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Trichloroethene             | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Trichlorofluoromethane      | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Vinyl acetate               | ND     |      |       | 10    | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Vinyl chloride              | ND     |      |       | 2     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| cis-1,2-Dichloroethene      | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| cis-1,3-Dichloropropene     | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| m,p-Xylene                  | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| o-Xylene                    | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| trans-1,2-Dichloroethene    | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| trans-1,3-Dichloropropene   | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| 1,2-Dichloroethene (total)  | ND     |      |       | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Xylenes,Total               | ND     |      | · -   | 5     | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Surr: 1,2-Dichloroethane-d4 | 96.0   |      | % 62  | 2-130 | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Surr: 4-Bromofluorobenzene  | 104    |      | % 70  | )-130 | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
| Surr: Toluene-d8            | 98.0   |      | % 74  | l-122 | 1           | 04/11/09 21:23 | LU_L    | 4981667 |
|                             |        |      |       |       |             |                |         |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-4-8-09A

Collected: 04/08/2009 9:03

SPL Sample ID:

09040278-03

| Site: | Hobbs | MM |
|-------|-------|----|
|       |       |    |

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyzed Analyst | Seq. #  |
|-----------------------------|------------|------|-----------|-------------|-----------------------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B |      |           | MCL SV      | V8260B Units: ug/L    |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2,4-Trimethylbenzene      | ND         |      | . 5       | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2-Dibromo-3-chloropropane | ND         | •    | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 4981668 |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| 2-Butanone                  | ND         |      | 20        | 1           | 04/11/09 21:52 LU_L   | 498166  |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 04/11/09 21:52 LU_L   | 498166  |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| 2-Hexanone                  | ND         |      | 10        | 1           | 04/11/09 21:52 LU_L   | 498166  |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Acetone                     | ND         |      | 20        | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Acrylonitrile               | ND         |      | 10        | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Benzene                     | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Bromobenzene                | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Bromochloromethane          | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Bromodichloromethane        | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Bromoform                   | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Bromomethane                | ND         |      | 10        | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Carbon disulfide            | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |
| Chlorobenzene               | ND         |      | 5         | 1           | 04/11/09 21:52 LU_L   | 498166  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

| Site: | Hobbs NM   |  |
|-------|------------|--|
| JILE. | PRODUS MIN |  |

|                             |        |      | Site: | Hobbs N | IM          |                |         |         |
|-----------------------------|--------|------|-------|---------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep.  | Limit   | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |      |       | 10      | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Chloroform                  | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Chloromethane               | ND     |      |       | 10      | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Dibromochloromethane        | ND     |      |       | 5       | 11          | 04/11/09 21:52 | LU_L    | 4981668 |
| Dibromomethane              | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Dichlorodifluoromethane     | ND     |      |       | 10      | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Ethylbenzene                | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Hexachlorobutadiene         | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Isopropylbenzene            | ND     | _    |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Methyl tert-butyl ether     | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Methylene chloride          | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Naphthalene                 | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| n-Butylbenzene              | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| n-Propylbenzene             | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| sec-Butylbenzene            | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Styrene                     | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| tert-Butylbenzene           | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Tetrachloroethene           | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Toluene                     | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Trichloroethene             | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Trichlorofluoromethane      | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Vinyl acetate               | ND     |      |       | 10      | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Vinyl chloride              | ND     |      |       | 2       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| cis-1,2-Dichloroethene      | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| cis-1,3-Dichloropropene     | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| m,p-Xylene                  | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| o-Xylene                    | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| trans-1,2-Dichloroethene    | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| trans-1,3-Dichloropropene   | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| 1,2-Dichloroethene (total)  | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Xylenes, Total              | ND     |      |       | 5       | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Surr: 1,2-Dichloroethane-d4 | 98.0   |      | % 6   | 2-130   | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Surr: 4-Bromofluorobenzene  | 106    |      | % 7   | 0-130   | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
| Surr: Toluene-d8            | 96.0   |      | % 7   | 4-122   | 1           | 04/11/09 21:52 | LU_L    | 4981668 |
|                             |        |      |       |         |             |                |         |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

# **Quality Control Documentation**



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Fracmaster

Analysis:

Semivolatile Hydrocarbons

Method:

RunID:

SW8015B

HP\_V\_090416B-4987505

WorkOrder:

Samples in Analytical Batch:

09040278

Lab Batch ID:

89427

#### Method Blank

Units: mg/L

NW

Lab Sample ID

Client Sample ID

Analysis Date:

Analyst:

09040278-01C

MW-3

Preparation Date: 04/13/2009 14:10

04/14/2009 23:43

Prep By:

N M Method SW3510C

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Diesel Range Organics          | ND     | 0.10      |
| Mineral Spirits Range Organics | ND     | 0.10      |
| Surr: n-Pentacosane            | 51.2   | 20-150    |

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP\_V\_090416B-4987506

mg/L

Analysis Date:

04/15/2009 0:03

Analyst:

Units:

Preparation Date: 04/13/2009 14:10

NW Prep By: N M Method SW3510C

| Analyte               | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| Diesel Range Organics | 1.00                  | 0.895         | 89.5                       | 1.00                   | 0.880          | 88.0                        | 1.7 | 40           | 21             | 150            |
| Surr: n-Pentacosane   | 0.0500                | 0.0494        | 98.8                       | 0.0500                 | 0.0485         | 97.0                        | 1.8 | 30           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 13

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Headspace Gas Analysis

Method:

**RSK147** 

WorkOrder:

09040278

Lab Batch ID:

R271083

Method Blank

Samples in Analytical Batch:

RunID:

VARC\_090424A-4996391

Units:

mg/L V\_L

Lab Sample ID

Client Sample ID

Analysis Date:

04/24/2009 14:37

Analyst:

09040278-01E

MW-3

| Analyte | Result | Rep Limit |
|---------|--------|-----------|
| Methane | ND     | 0.0012    |

#### Sample Duplicate

Original Sample:

09040488-02

RunID:

VARC\_090424A-4996394

Units:

mg/L

Analysis Date:

04/24/2009 15:14

Analyst: V\_L

| Analyte | Sample | DUP     | RPD | RPD   |
|---------|--------|---------|-----|-------|
|         | Result | Result  |     | Limit |
| Methane | 0.0037 | 0.00379 | 2.8 | 50    |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 14

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Fracmaster

Analysis:

**Gasoline Range Organics** 

Method:

RunID:

SW8015B

WorkOrder:

09040278

Lab Batch ID:

R270269

Method Blank

HP\_P\_090413A-4984662

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/13/2009 5:20

Analyst:

CLJ

09040278-01D

MW-3

|                            |        | 1         |
|----------------------------|--------|-----------|
| Analyte                    | Result | Rep Limit |
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 91.5   | 60-155    |
| Surr: 4-Bromofluorobenzene | 104.0  | 50-158    |

#### **Laboratory Control Sample (LCS)**

RunID:

HP\_P\_090413A-4984660

Units:

mg/L

Analysis Date:

04/13/2009 4:22

Analyst:

CLJ

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.859  | 85.9                | 42             | 136            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.0949 | 94.9                | 60             | 155            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.108  | 108                 | 50             | 158            |

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040343-01

RunID:

HP\_P\_090413A-4984664

Units:

mg/L

Analysis Date:

04/13/2009 10:44

Analyst: CLJ

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Gasoline Range Organics    | ND               | 1                    | 0.852        | 85.2             | 1                     | 0.868         | 86.8              | 1.92 | 36           | 22           | 174           |
| Surr: 1,4-Difluorobenzene  | ND               | 0.1                  | 0.0922       | 92.2             | 0.1                   | 0.0932        | 93.2              | 1.08 | 30           | 60           | 155           |
| Surr: 4-Bromofluorobenzene | ND               | 0.1                  | 0.105        | 105              | 0.1                   | 0.107         | 107               | 1.41 | 30           | 50           | 158           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 15

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

#### Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

RunID:

SW8270C

04/13/2009 8:15

WorkOrder:

09040278

Lab Batch ID:

89412

#### Method Blank

H\_090417E-4992370

Units:

ug/L

Lab Sample ID

09040278-01B

Samples in Analytical Batch:

Client Sample ID MW-3

Analysis Date: Preparation Date:

04/17/2009 9:40

Analyst:

GΥ

Prep By: N\_M Method SW3510C

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1,2,4-Trichlorobenzene      | ND     | 5.0       |
| 1,2-Dichlorobenzene         | ND     | 5.0       |
| 1,2-Diphenylhydrazine       | ND     | 10        |
| 1,3-Dichlorobenzene         | ND     | 5.0       |
| 1,4-Dichlorobenzene         | ND     | 5.0       |
| 2,4,5-Trichlorophenol       | ND     | 10        |
| 2,4,6-Trichlorophenol       | ND     | 5.0       |
| 2,4-Dichlorophenol          | ND     | 5.0       |
| 2,4-Dimethylphenol          | ND     | 5.0       |
| 2,4-Dinitrophenol           | ND     | 25        |
| 2,4-Dinitrotoluene          | ND     | 5.0       |
| 2,6-Dinitrotoluene          | ND     | 5.0       |
| 2-Chloronaphthalene         | ND     | 5.0       |
| 2-Chlorophenol              | ND     | 5.0       |
| 2-Methylnaphthalene         | ND     | 5.0       |
| 2-Nitroaniline              | ND     | 25        |
| 2-Nitrophenol               | ND     | 5.0       |
| 3,3'-Dichlorobenzidine      | ND     | 10        |
| 3-Nitroaniline              | ND     | 25        |
| 4.6-Dinitro-2-methylphenol  | ND     | 25        |
| 4-Bromophenyl phenyl ether  | ND     | 5.0       |
| 4-Chloro-3-methylphenol     | ND     | 5.0       |
| 4-Chloroaniline             | ND     | 5.0       |
| 4-Chlorophenyl phenyl ether | ND     | 5.0       |
| 4-Nitroaniline              | ND     | 25        |
| 4-Nitrophenol               | ND     | 25        |
| Acenaphthene                | ND     |           |
| Acenaphthylene              | ND     |           |
| Aniline                     | ND     |           |
| Anthracene                  | ND     |           |
| Benz(a)anthracene           | ND     |           |
| Benzo(a)pyrene              | ND     | 5.0       |
| Benzo(b)fluoranthene        | ND     |           |
| Benzo(g,h,i)perylene        | ND     |           |
| Benzo(k)fluoranthene        | ND     |           |
| Benzoic acid                | ND     | 25        |
| Benzyl alcohol              | ND     |           |
| Bis(2-chloroethoxy)methane  | ND     | 5.0       |
| Bis(2-chloroethyl)ether     | ND     | 5.0       |
| Bis(2-chloroisopropyl)ether | ND     | 5.0       |
| Bis(2-ethy/hexyl)phthalate  | ND     |           |
| Butyl benzyl phthalate      | ND     | 5.0       |
| Carbazole                   | ND     |           |
| Chrysene                    | ND     |           |
| Dibenz(a,h)anthracene       | ND     |           |
| Dibenzofuran                | ND     |           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

TNTC - Too numerous to count

09040278 Page 16 4/27/2009 4:46:43 PM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method: SV

SW8270C

·

WorkOrder:

09040278

Lab Batch ID:

89412

#### Method Blank

RunID: H

H\_090417E-4992370

Units:

ug/L

Analysis Date:

04/17/2009 9:40

Analyst: GY

Preparation Date: 04/13/2009 8:15

Prep By: N M Method SW3510C

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 5.0       |
| Dimethyl phthalate         | ND     | 5.0       |
| Di-n-butyl phthalate       | ND     | 5.0       |
| Di-n-octyl phthalate       | ND     | 5.0       |
| Fluoranthene               | ND     | 5.0       |
| Fluorene                   | ND     | 5.0       |
| Hexachlorobenzene          | ND     | 5.0       |
| Hexachlorobutadiene        | ND     | 5.0       |
| Hexachlorocyclopentadiene  | ND     | 5.0       |
| Hexachloroethane           | ND     | 5.0       |
| Indeno(1,2,3-cd)pyrene     | ND     | 5.0       |
| Isophorone                 | ND     | 5.0       |
| Naphthalene                | ND     | 5.0       |
| Nitrobenzene               | ND     | 5.0       |
| N-Nitrosodi-n-propylamine  | ND     | 5.0       |
| N-Nitrosodiphenylamine     | ND     | 5.0       |
| Pentachlorophenol          | ND.    | 25        |
| Phenanthrene               | ND     | 5.0       |
| Phenol                     | ND.    | 5.0       |
| Pyrene                     | ND     | 5.0       |
| Pyridine                   | ND     | 5.0       |
| 2-Methylphenol             | ND     | 5.0       |
| 3 & 4-Methylphenol         | ND     | 5.0       |
| Surr: 2,4,6-Tribromophenol | 95.2   | 10-123    |
| Surr: 2-Fluorobiphenyl     | 72.6   | 23-116    |
| Surr: 2-Fluorophenol       | 76.1   | 16-110    |
| Surr: Nitrobenzene-d5      | 68.4   | 21-114    |
| Surr: Phenol-d5            | 62.5   | 10-110    |
| Surr: Terphenyl-d14        | 68.4   | 22-141    |

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units:

ug/L

Analysis Date: Preparation Date: 04/17/2009 10:42 04/13/2009 8:15 Analyst: GY

Prep By: N\_M Method SW3510C

| Analyte                | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2 | 39           | 21             | 120            |
| 1,2-Dichlorobenzene    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.7           | 66.8                        | 8.1 | 50           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 17

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040278

Lab Batch ID:

89412

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units:

Analysis Date:

04/17/2009 10:42

Analyst: GY

ug/L

04/13/2009 8:15 Preparation Date:

Prep By: N\_M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| 1,2-Diphenylhydrazine       | 25.0                  | 16.5          | 66.0                       | 25.0                   | 17.6           | 70.4                        | 6.5  | 50           | 10             | 251            |
| 1,3-Dichlorobenzene         | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.5           | 66.0                        | 6.9  | 50           | 20             | 150            |
| 1,4-Dichlorobenzene         | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.2           | 64.8                        | 5.7  | 45           | 20             | 150            |
| 2,4,5-Trichlorophenol       | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.4           | 61.6                        | 3.3  | 50           | 30             | 150            |
| 2,4,6-Trichlorophenol       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.0           | 64.0                        | 5.1  | 50           | 30             | 150            |
| 2,4-Dichlorophenol          | 25.0                  | 14.5          | 58.0                       | 25.0                   | 15.9           | 63.6                        | 9.2  | 50           | 30             | 150            |
| 2,4-Dimethylphenol          | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.0           | 64.0                        | 3.8  | 50           | 32             | 140            |
| 2,4-Dinitrophenol           | 25.0                  | 11.9          | 47.6                       | 25.0                   | 12.8           | 51.2                        | 7.3  | 50           | 10             | 160            |
| 2,4-Dinitrotoluene          | 25.0                  | 16.1          | 64.4                       | 25.0                   | 16.3           | 65.2                        | 1.2  | 50           | 30             | 150            |
| 2,6-Dinitrotoluene          | 25.0                  | 15.8          | 63.2                       | 25.0                   | 15.7           | 62.8                        | 0.6  | 50           | 30             | 150            |
| 2-Chloronaphthalene         | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.5           | 66.0                        | 4.3  | 50           | 30             | 150            |
| 2-Chlorophenol              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 15.9           | 63.6                        | 3.2  | 40           | 23             | 134            |
| 2-Methylnaphthalene         | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2  | 50           | 20             | 170            |
| 2-Nitroaniline              | 25.0                  | 14.8          | 59.2                       | 25.0                   | 15.9           | 63.6                        | 7.2  | 50           | 20             | 160            |
| 2-Nitrophenol               | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.8           | 63.2                        | 5.9  | 50           | 29             | 182            |
| 3,3'-Dichlorobenzidine      | 25.0                  | 13.3          | 53.2                       | 25.0                   | 13.7           | 54.8                        | 3.0  | 50           | 30             | 200            |
| 3-Nitroaniline              | 25.0                  | 14.4          | 57.6                       | 25.0                   | 14.8           | 59.2                        | 2.7  | 50           | 20             | 160            |
| 4,6-Dinitro-2-methylphenol  | 25.0                  | 13.7          | 54.8                       | 25.0                   | 14.2           | 56.8                        | 3.6  | 50           | 10             | 160            |
| 4-Bromophenyl phenyl ether  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.8           | 63.2                        | 1.3  | 50           | 30             | 150            |
| 4-Chloro-3-methylphenol     | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.1           | 64.4                        | 5.8  | 42           | 25             | 160            |
| 4-Chloroaniline             | 25.0                  | 15.5          | 62.0                       | 25.0                   | 16.2           | 64.8                        | 4.4  | 50           | 20             | 160            |
| 4-Chlorophenyl phenyl ether | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.3           | 65.2                        | 3.8  | 50           | 25             | 158            |
| 4-Nitroaniline              | 25.0                  | 13.9          | 55.6                       | 25.0                   | 14.8           | 59.2                        | 6.3  | 50           | 20             | 160            |
| 4-Nitrophenol               | 25.0                  | 13.0          | 52.0                       | 25.0                   | 14.8           | 59.2                        | 12.9 | 50           | 10             | 132            |
| Acenaphthene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.3           | 65.2                        | 6.3  | 31           | 30             | 150            |
| Acenaphthylene              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.4           | 65.6                        | 6.3  | 50           | 33             | 250            |
| Aniline                     | 50.0                  | 29.9          | 59.8                       | 50.0                   | 30.9           | 61.8                        | 3.3  | 50           | 10             | 135            |
| Anthracene                  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.5           | 66.0                        | 5.6  | 50           | 27             | 133            |
| Benz(a)anthracene           | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.4           | 65.6                        | 5.0  | 50           | 33             | 143            |
| Benzo(a)pyrene              | 25.0                  | 12.2          | 48.8                       | 25.0                   | 12.7           | 50.8                        | 4.0  | 50           | 17             | 163            |
| Benzo(b)fluoranthene        | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.2           | 60.8                        | 2.0  | 50           | 24             | 159            |
| Benzo(g,h,i)perylene        | 25.0                  | 15.7          | 62.8                       | 25.0                   | 15.9           | 63.6                        | 1.3  | 50           | 30             | 160            |
| Benzo(k)fluoranthene        | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.2           | 60.8                        | 1.3  | 50           | 11             | 162            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 18

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

#### Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040278

Lab Batch ID:

89412

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

H\_090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst: GΥ

Preparation Date: 04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| Benzoic acid                | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.0           | 64.0                        | 1.9  | 50           | 10             | 400            |
| Benzyl alcohol              | 25.0                  | 14.7          | 58.8                       | 25.0                   | 16.2           | 64.8                        | 9.7  | 50           | 30             | 160            |
| Bis (2-chloroethoxy)methane | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 50           | 33             | 184            |
| Bis(2-chloroethyl)ether     | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.7           | 66.8                        | 5.5  | 50           | 12             | 158            |
| Bis(2-chloroisopropyl)ether | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.1           | 64.4                        | 3.2  | 50           | 20             | 160            |
| Bis(2-ethylhexyl)phthalate  | 25.0                  | 16.1          | 64.4                       | 25.0                   | 17.0           | 68.0                        | 5.4  | 50           | 10             | 158            |
| Butyl benzyl phthalate      | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.0           | 68.0                        | 4.2  | 50           | 30             | 160            |
| Carbazole                   | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 30             | 150            |
| Chrysene                    | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.0           | 64.0                        | 6.5  | 50           | 17             | 168            |
| Dibenz(a,h)anthracene       | 25.0                  | 15.5          | 62.0                       | 25.0                   | 15.7           | 62.8                        | 1.3  | 50           | 30             | 160            |
| Dibenzofuran                | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.4           | 65.6                        | 4.4  | 50           | 30             | 150            |
| Diethyl phthalate           | 25.0                  | 16.0          | 64.0                       | 25.0                   | 17.1           | 68.4                        | 6.6  | 50           | 30             | 160            |
| Dimethyl phthalate          | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.8           | 67.2                        | 6.8  | 50           | 30             | 160            |
| Di-n-butyl phthalate        | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.1           | 68.4                        | 3.0  | 50           | 30             | 160            |
| Di-n-octyl phthalate        | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.0           | 68.0                        | 4.8  | 50           | 20             | 150            |
| Fluoranthene                | 25.0                  | 15.9          | 63.6                       | 25.0                   | 16.3           | 65.2                        | 2.5  | 50           | 26             | 137            |
| Fluorene                    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.3           | 65.2                        | 5.7  | 50           | 30             | 150            |
| Hexachlorobenzene           | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.6           | 66.4                        | 7.5  | 50           | 20             | 150            |
| Hexachlorobutadiene         | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 20             | 140            |
| Hexachlorocyclopentadiene   | 25.0                  | 17.2          | 68.8                       | 25.0                   | 19.1           | 76.4                        | 10.5 | 50           | 10             | 150            |
| Hexachloroethane            | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.3           | 65.2                        | 8.3  | 50           | 14             | 120            |
| Indeno(1,2,3-cd)pyrene      | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.5           | 70.0                        | 7.1  | 50           | 30             | 160            |
| Isophorone                  | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.3           | 69.2                        | 6.6  | 50           | 21             | 196            |
| Naphthalene                 | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.2           | 64.8                        | 5.1  | 50           | 21             | 133            |
| Nitrobenzene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.0           | 64.0                        | 4.5  | 50           | 20             | 160            |
| N-Nitrosodi-n-propylamine   | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.4           | 61.6                        | 1.3  | 38           | 30             | 160            |
| N-Nitrosodiphenylamine      | 50.0                  | 38.0          | 76.0                       | 50.0                   | 40.4           | 80.8                        | 6.1  | 50           | 30             | 150            |
| Pentachlorophenol           | 25.0                  | 11.5          | 46.0                       | 25.0                   | 12.8           | 51.2                        | 10.7 | 50           | 14             | 176            |
| Phenanthrene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.1           | 64.4                        | 5.1  | 50           | 10             | 140            |
| Phenol                      | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 42           | 40             | 132            |
| Pyrene                      | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.6           | 66.4                        | 4.9  | 38           | 30             | 150            |
| Pyridine                    | 50.0                  | 27.0          | 54.0                       | 50.0                   | 29.4           | 58.8                        | 8.5  | 50           | 10             | 150            |
| 2-Methylphenol              | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.2           | 64.8                        | 3.1  | 50           | 30             | 160            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 19

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

Fracmaster

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040278

Lab Batch ID:

89412

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units:

Analysis Date:

04/17/2009 10:42

ug/L

GΥ Analyst:

Preparation Date: 04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                    | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 3 & 4-Methylphenol         | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.2           | 68.8                        | 3.6 | 50           | 10             | 160            |
| Surr: 2,4,6-Tribromophenol | 75.0                  | 61.1          | 81.5                       | 75.0                   | 60.8           | 81.1                        | 0.5 | 30           | 10             | 123            |
| Surr: 2-Fluorobiphenyl     | 50.0                  | 28.6          | 57.2                       | 50.0                   | 29.5           | 59.0                        | 3.1 | 30           | 23             | 116            |
| Surr: 2-Fluorophenol       | 75.0                  | 50.0          | 66.7                       | 75.0                   | 50.8           | 67.7                        | 1.6 | 30           | 16             | 110            |
| Surr: Nitrobenzene-d5      | 50.0                  | 29.0          | 58.0                       | 50.0                   | 30.0           | 60.0                        | 3.4 | 30           | 21             | 114            |
| Surr: Phenol-d5            | 75.0                  | 43.1          | 57.5                       | 75.0                   | 44.2           | 58.9                        | 2.5 | 30           | 10             | 110            |
| Surr: Terphenyl-d14        | 50.0                  | 28.4          | 56.8                       | 50.0                   | 28.7           | 57.4                        | 1.1 | 30           | 22             | 141            |



Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 20

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

04/11/2009 12:58

04/11/2009 12:58

WorkOrder:

09040278

Lab Batch ID:

R270073

#### Method Blank

RunID: Analysis Date:

Preparation Date:

N\_090411A-4981661

Units: Analyst:

Prep By:

ug/L LU L

Method

Lab Sample ID

Client Sample ID

09040278-01A

Samples in Analytical Batch:

MW-3

09040278-02A

TB-4-8-09A

09040278-03A

FB-4-8-09A

| Analyte                                 | Result   | Rep Limit   |
|-----------------------------------------|----------|-------------|
| 1,1,1,2-Tetrachloroethane               | ND       | 5.0         |
| 1,1,1-Trichloroethane                   | ND       | 5.0         |
| 1,1,2,2-Tetrachloroethane               | ND       | 5.0         |
| 1,1,2-Trichloroethane                   | ND       | 5.0         |
| 1,1-Dichloroethane                      | ND       | 5.0         |
| 1,1-Dichloroethene                      | ND       | 5.0         |
| 1,1-Dichloropropene                     | ND       | 5.0         |
| 1,2,3-Trichlorobenzene                  | ND       | 5.0         |
| 1,2,3-Trichloropropane                  | ND       | 5.0         |
| 1,2,4-Trichlorobenzene                  | ND       | 5.0         |
| 1,2,4-Trimethylbenzene                  | ND       | 5.0         |
| 1,2-Dibromo-3-chloropropane             | ND       | 5.0         |
| 1,2-Dibromoethane                       | ND       | 5.0         |
| 1,2-Dichlorobenzene                     | ND       | 5.0         |
| 1,2-Dichloroethane                      | ND       | 5.0         |
| 1,2-Dichloropropane                     | ND       | 5.0         |
| 1,3,5-Trimethylbenzene                  | ND       | 5.0         |
| 1,3-Dichlorobenzene                     | ND       | 5.0         |
| 1,3-Dichloropropane                     | ND       | 5.0         |
| 1,4-Dichlorobenzene                     | ND       |             |
| 2,2-Dichloropropane                     | ND       |             |
| 2-Butanone                              | ND       |             |
| 2-Chloroethyl vinyl ether               | ND       |             |
| 2-Chlorotoluene                         | ND       |             |
| 2-Hexanone                              | ND       | 10          |
| 4-Chlorotoluene                         | ND       |             |
|                                         | ND       |             |
| 4-Isopropyltoluene                      | ND ND    |             |
| 4-Methyl-2-pentanone                    | ND       | <del></del> |
| Acetone                                 | ND ND    |             |
| Acrylonitrile                           |          |             |
| Benzene                                 | ND       | +           |
| Bromobenzene                            | ND       |             |
| Bromochloromethane Bromodichloromethane | ND       |             |
|                                         | ND ND    | <del></del> |
| Bromoform                               | ND<br>ND | <del></del> |
| Bromomethane                            | ND       | +           |
| Carbon disulfide                        | ND       | +           |
| Carbon tetrachloride                    | ND ND    |             |
| Chlorobenzene                           | ND       | -           |
| Chloroethane                            | ND ND    |             |
| Chloroform                              | ND<br>ND |             |
| Chloromethane                           | ND       |             |
| Dibromochloromethane                    | ND       | <del></del> |
| Dibromomethane                          | ND       |             |
| Dichlorodifluoromethane                 | ND ND    |             |
| Ethylbenzene                            | ND       | 5.0         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 21

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

09040278

WorkOrder: Lab Batch ID:

R270073

#### Method Blank

RunID:

N 090411A-4981661

Units:

ug/L

Analysis Date:

04/11/2009 12:58

Analyst:

LU L

Preparation Date:

04/11/2009 12:58

Prep By:

Method

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND     | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | 10        |
| Vinyl chloride              | ND     | 2.0       |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND.    | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND     | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes,Total               | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 94.0   | 62-130    |
| Surr: 4-Bromofluorobenzene  | 104.0  | 70-130    |
| Surr: Toluene-d8            | 96.0   | 74-122    |

## Laboratory Control Sample (LCS)

RunID:

N\_090411A-4981660

Units:

ug/L LU L

Analysis Date: Preparation Date: 04/11/2009 11:50 04/11/2009 11:50 Analyst: Prep By:

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 25.0   | 125                 | 71             | 136            |
| 1,1,1-Trichloroethane     | 20.0           | 26.0   | 130                 | 66             | 132            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 25.0   | 125                 | 55             | 139            |
| 1,1,2-Trichloroethane     | 20.0           | 25.0   | 125                 | 70             | 130            |
| 1,1-Dichloroethane        | 20.0           | 22.0   | 110                 | 67             | 131            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 22

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

Fracmaster

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040278

Lab Batch ID:

R270073

#### Laboratory Control Sample (LCS)

RunID:

N 090411A-4981660

Units:

ug/L

Analysis Date:

04/11/2009 11:50

Analyst: LU L

Preparation Date:

04/11/2009 11:50

Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 23.0   | 115                 | 71             | 146            |
| 1,1-Dichloropropene         | 20.0           | 25.0   | 125                 | 59             | 138            |
| 1,2,3-Trichlorobenzene      | 20.0           | 21.0   | 105                 | 37             | 155            |
| 1,2,3-Trichloropropane      | 20.0           | 26.0   | 130                 | 70             | 145            |
| 1,2,4-Trichlorobenzene      | 20.0           | 23.0   | 115                 | 39             | 133            |
| 1,2,4-Trimethylbenzene      | 20.0           | 22.0   | 110                 | 53             | 147            |
| 1,2-Dibromo-3-chloropropane | 20.0           | 24.0   | 120                 | 43             | 137            |
| 1,2-Dibromoethane           | 20.0           | 25.0   | 125                 | 63             | 126            |
| 1,2-Dichlorobenzene         | 20.0           | 23.0   | 115                 | 70             | 130            |
| 1,2-Dichloroethane          | 20.0           | 24.0   | 120                 | 64             | 150            |
| 1,2-Dichloropropane         | 20.0           | 24.0   | 120                 | 76             | 124            |
| 1,3,5-Trimethylbenzene      | 20.0           | 23.0   | 115                 | 57             | 146            |
| 1,3-Dichlorobenzene         | 20.0           | 22.0   | 110                 | 72             | 134            |
| 1,3-Dichloropropane         | 20.0           | 24.0   | 120                 | 78             | 130            |
| 1,4-Dichlorobenzene         | 20.0           | 22.0   | 110                 | 70             | 130            |
| 2,2-Dichloropropane         | 20.0           | 26.0   | 130                 | 45             | 156            |
| 2-Butanone                  | 20.0           | 30.0   | 150                 | 20             | 235            |
| 2-Chloroethyl vinyl ether   | 20.0           | 22.0   | 110                 | 13             | 179            |
| 2-Chlorotoluene             | 20.0           | 24.0   | 120                 | 64             | 122            |
| 2-Hexanone                  | 20.0           | 31.0   | 155                 | 34             | 182            |
| 4-Chlorotoluene             | 20.0           | 23.0   | 115                 | 64             | 142            |
| 4-Isopropyltoluene          | 20.0           | 22.0   | 110                 | 60             | 134            |
| 4-Methyl-2-pentanone        | 20.0           | 27.0   | 135                 | 11             | 145            |
| Acetone                     | 20.0           | 34.0   | 170                 | 13             | 386            |
| Acrylonitrile               | 20.0           | 25.0   | 125                 | 43             | 194            |
| Benzene                     | 20.0           | 24.0   | 120                 | 76             | 126            |
| Bromobenzene                | 20.0           | 22.0   | 110                 | 70             | 130            |
| Bromochloromethane          | 20.0           | 25.0   | 125                 | 63             | 131            |
| Bromodichloromethane        | 20.0           | 24.0   | 120                 | 77             | 138            |
| Bromoform                   | 20.0           | 25.0   | 125                 | 55             | 129            |
| Bromomethane                | 20.0           | 20.0   | 100                 | 58             | 148            |
| Carbon disulfide            | 20.0           | 22.0   | 110                 | 46             | 146            |
| Carbon tetrachloride        | 20.0           | 27.0   | 135                 | 66             | 137            |
| Chlorobenzene               | 20.0           | 24.0   | 120                 | 67             | 136            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 23

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

#### Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B

WorkOrder:

09040278

Lab Batch ID:

R270073

#### Laboratory Control Sample (LCS)

RuniD:

N\_090411A-4981660

Units:

Analysis Date:

04/11/2009 11:50

Analyst:

ug/L LU\_L

Method

Preparation Date: 04/11/2009 11:50 Prep By:

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 20.0   | 100                 | 50             | 137            |
| Chloroform                  | 20.0           | 24.0   | 120                 | 70             | 135            |
| Chloromethane               | 20.0           | 20.0   | 100                 | 51             | 140            |
| Dibromochloromethane        | 20.0           | 25.0   | 125                 | 69             | 12             |
| Dibromomethane              | 20.0           | 26.0   | 130                 | 74             | 130            |
| Dichlorodifluoromethane     | 20.0           | 22.0   | 110                 | 32             | 16             |
| Ethylbenzene                | 20.0           | 24.0   | 120                 | 67             | 12             |
| Hexachlorobutadiene         | 20.0           | 26.0   | 130                 | 43             | 14             |
| Isopropylbenzene            | 20.0           | 22.0   | 110                 | 60             | 13             |
| Methyl tert-butyl ether     | 40.0           | 46.0   | 115                 | 48             | 16             |
| Methylene chloride          | 20.0           | 22.0   | 110                 | 52             | 14             |
| Naphthalene                 | 20.0           | 22.0   | 110                 | 24             | 15             |
| n-Butylbenzene              | 20.0           | 24.0   | 120                 | 50             | 14             |
| n-Propylbenzene             | 20.0           | 23.0   | 115                 | 62             | 13             |
| sec-Butylbenzene            | 20.0           | 23.0   | 115                 | 66             | 12             |
| Styrene                     | 20.0           | 24.0   | 120                 | 60             | 13             |
| tert-Butylbenzene           | 20.0           | 23.0   | 115                 | 67             | 14             |
| Tetrachloroethene           | 20.0           | 27.0   | 135                 | 26             | 20             |
| Toluene                     | 20.0           | 24.0   | 120                 | 70             | 13             |
| Trichloroethene             | 20.0           | 27.0   | 135                 | 64             | 13             |
| Trichlorofluoromethane      | 20.0           | 24.0   | 120                 | 46             | 16             |
| Vinyl acetate               | 20.0           | 24.0   | 120                 | 10             | 19             |
| Vinyl chloride              | 20.0           | 20.0   | 100                 | 31             | 14             |
| cis-1,2-Dichloroethene      | 20.0           | 24.0   | 120                 | 70             | 14             |
| cis-1,3-Dichloropropene     | 20.0           | 25.0   | 125                 | 61             | 13             |
| m,p-Xylene                  | 40.0           | 49.0   | 123                 | 72             | 15             |
| o-Xylene                    | 20.0           | 25.0   | 125                 | 78             | 14             |
| trans-1,2-Dichloroethene    | 20.0           | 23.0   | 115                 | 67             | 14             |
| trans-1,3-Dichloropropene   | 20.0           | 26.0   | 130                 | 56             | 13             |
| 1,2-Dichloroethene (total)  | 40             | 47     | 120                 | 73             | 13             |
| Xylenes,Total               | 60             | 74     | 120                 | 72             | 15             |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 47     | 94.0                | 62             | 13             |
| Surr: 4-Bromofluorobenzene  | 50.0           | 54     | 108                 | 70             | 13             |
| Surr: Toluene-d8            | 50.0           | 48     | 96.0                | 74             | 12             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 24

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040278

Lab Batch ID:

R270073

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040124-02

N 090411A-4981665

Units:

ug/L

Analysis Date:

RunID:

04/11/2009 18:35

Analyst:

LU L

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 20                   | 20.0         | 100              | 20                    | 21.0          | 105               | 4.88 | 20           | 35           | 175           |
| 1,1,1-Trichloroethane       | ND               | 20                   | 22.0         | 110              | 20                    | 24.0          | 120               | 8.70 | 20           | 35.          | 175           |
| 1,1,2,2-Tetrachloroethane   | ND               | 20                   | 23.0         | 115              | 20                    | 22.0          | 110               | 4.44 | 20           | 35           | 175           |
| 1,1,2-Trichloroethane       | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 35           | 175           |
| 1,1-Dichloroethane          | ND               | 20                   | 20.0         | 100              | 20                    | 21.0          | 105               | 4.88 | 20           | 35           | 175           |
| 1,1-Dichloroethene          | ND               | 20                   | 20.0         | 100              | 20                    | 21.0          | 105               | 4.88 | 22           | 61           | 145           |
| 1,1-Dichloropropene         | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 35           | 175           |
| 1,2,3-Trichlorobenzene      | ND               | 20                   | 10.0         | 50.0             | 20                    | 11.0          | 55.0              | 9.52 | 20           | 27           | 187           |
| 1,2,3-Trichloropropane      | ND               | 20                   | 25.0         | 125              | 20                    | 23.0          | 115               | 8.33 | 20           | 35           | 175           |
| 1,2,4-Trichlorobenzene      | ND               | 20                   | 13.0         | 65.0             | 20                    | 13.0          | 65.0              | 0    | 20           | 34           | 150           |
| 1,2,4-Trimethylbenzene      | ND               | 20                   | 20.0         | 90.0             | 20                    | 20.0          | 90.0              | 0    | 20           | 35           | 175           |
| 1,2-Dibromo-3-chloropropane | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 15           | 175           |
| 1,2-Dibromoethane           | ND               | 20                   | 23.0         | 115              | 20                    | 22.0          | 110               | 4.44 | 20           | 35           | 175           |
| 1,2-Dichlorobenzene         | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 20           | 35           | 175           |
| 1,2-Dichloroethane          | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               |      | 20           | 35           | 175           |
| 1,2-Dichloropropane         | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 35           | 175           |
| 1,3,5-Trimethylbenzene      | ND               | 20                   | 19.0         | 90.0             | 20                    | 20.0          | 95.0              | 5.13 | 20           | 35           | 175           |
| 1,3-Dichlorobenzene         | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 20           | 35           | 175           |
| 1,3-Dichloropropane         | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 35           | 175           |
| 1,4-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 19.0          | 95.0              | 5.41 | 20           | 35           | 175           |
| 2,2-Dichloropropane         | ND               | 20                   | 25.0         | 125              | 20                    | 24.0          | 120               | 4.08 | 20           | 35           | 175           |
| 2-Butanone                  | ND               | 20                   | 20.0         | 100              | 20                    | 21.0          | 105               | 4.88 | 20           | 10           | 230           |
| 2-Chloroethyl vinyl ether   | ND               | 20                   | 0            | 0 *              | 20                    | 0             | 0 *               | 0    | 20           | 10           | 250           |
| 2-Chiorotoluene             | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 31           | 175           |
| 2-Hexanone                  | ND               | 20                   | 27.0         | 135              | 20                    | 26.0          | 130               | 3.77 | 20           | 10           | 250           |
| 4-Chlorotoluene             | ND               | 20                   | 19.0         | 95.0             | 20                    | 19.0          | 95.0              | 0    | 20           | 31           | 175           |
| 4-Isopropyltoluene          | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 35           | 175           |
| 4-Methyl-2-pentanone        | ND               | 20                   | 26.0         | 130              | 20                    | 25.0          | 125               | 3.92 | 20           | 10           | 175           |
| Acetone                     | ND               | 20                   | 20.0         | 100              | 20                    | 21.0          | 105               | 4.88 | 20           | 10           | 400           |
| Acrylonitrile               | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 15           | 250           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 25

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

#### Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09

09040278

Lab Batch ID:

R270073

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040124-02

RunID:

N\_090411A-4981665

Units:

ug/L

Analysis Date:

04/11/2009 18:35

Analyst:

LU L

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Benzene                 | ND               | 20                   | 21.0         | 105              | 20                    | 22.0          | 110               | 4.65 | 22           | 76           | 127           |
| Bromobenzene            | ND               | 20                   | 20.0         | 100              | . 20                  | 19.0          | 95.0              | 5.13 | 20           | 35           | 175           |
| Bromochloromethane      | ND               | 20                   | 23.0         | 115              | 20                    | 21.0          | 105               | 9.09 | 20           | 35           | 175           |
| Bromodichloromethane    | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 35           | 175           |
| Bromoform               | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 35           | 175           |
| Bromomethane            | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 35           | 175           |
| Carbon disulfide        | ND               | 20                   | 19.0         | 95.0             | 20                    | 20.0          | 100               | 5.13 | 20           | 30           | 225           |
| Carbon tetrachloride    | ND               | 20                   | 23.0         | 115              | 20                    | 23.0          | 115               | 0    | 20           | 35           | 175           |
| Chlorobenzene           | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 21           | 70           | 130           |
| Chloroethane            | ND               | 20                   | 18.0         | 90.0             | 20                    | 19.0          | 95.0              | 5.41 | 20           | 35           | 175           |
| Chloroform              | ND               | 20                   | 23.0         | 115              | 20                    | 21.0          | 105               | 9.09 | 20           | 35           | 175           |
| Chloromethane           | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 35           | 175           |
| Dibromochloromethane    | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 35           | 175           |
| Dibromomethane          | ND               | 20                   | 22.0         | 110              | 20                    | 24.0          | 120               | 8.70 | 20           | 35           | 175           |
| Dichlorodifluoromethane | ND               | 20                   | 19.0         | 95.0             | 20                    | 20.0          | 100               | 5.13 | 20           | 35           | 175           |
| Ethylbenzene            | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 35           | 175           |
| Hexachlorobutadiene     | ND               | 20                   | 11.0         | 55.0             | 20                    | 10.0          | 50.0              | 9.52 | 20           | 43           | 144           |
| Isopropylbenzene        | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 35           | 175           |
| Methyl tert-butyl ether | 70.0             | 40                   | 110          | 100              | 40                    | 110           | 100               | 0    | 20           | 35           | 175           |
| Methylene chloride      | ND               | 20                   | 19.0         | 95.0             | 20                    | 20.0          | 100               | 5.13 | 20           | 35           | 175           |
| Naphthalene             | ND               | 20                   | 14.0         | 70.0             | 20                    | 14.0          | 70.0              | 0    | 20           | 20           | 210           |
| n-Butylbenzene          | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 35           | 175           |
| n-Propylbenzene         | ND               | 20                   | 19.0         | 90.0             | 20                    | 20.0          | 95.0              | 5.13 | 20           | 35           | 175           |
| sec-Butylbenzene        | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 35           | 175           |
| Styrene                 | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 35           | 175           |
| tert-Butylbenzene       | ND               | 20                   | 18.0         | 85.0             | 20                    | 18.0          | 85.0              | 0    | 20           | 35           | 175           |
| Tetrachloroethene       | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 30           | 250           |
| Toluene                 | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 24           | 70           | 131           |
| Trichloroethene         | ND               | 20                   | 23.0         | 115              | 20                    | 23.0          | 115               | 0    | 21           | 60           | 140           |
| Trichlorofluoromethane  | ND               | 20                   | 21.0         | 105              | 20                    | 22.0          | 110               | 4.65 | 20           | 17           | 250           |
| Vinyl acetate           | ND               | 20                   | 20.0         | 100              | 20,                   | 20.0          | 100               | 0    | 20           | 10           | 250           |
| Vinyl chloride          | ND               | 20                   | 18.0         | 90.0             | 20                    | 19.0          | 95.0              | 5.41 | 20           | 35           | 175           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 26

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040278

Lab Batch ID:

R270073

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040124-02

RunID:

N\_090411A-4981665

Units:

ug/L

Analysis Date:

04/11/2009 18:35

Analyst:

LU L

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 20                   | 22.0         | 110              | 20                    | 21.0          | 105               | 4.65 | 20           | 35           | 175           |
| cis-1,3-Dichloropropene     | ND               | 20                   | 20.0         | 100              | 20                    | 21.0          | 105               | 4.88 | 20           | 35           | 175           |
| m,p-Xylene                  | ND               | 40                   | 42.0         | 100              | 40                    | 42.0          | 100               | 0    | 20           | 35           | 175           |
| o-Xylene                    | ND               | 20                   | 23.0         | 105              | 20                    | 23.0          | 105               | 0    | 20           | 35           | 175           |
| trans-1,2-Dichloroethene    | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 35           | 175           |
| trans-1,3-Dichloropropene   | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 35           | 175           |
| 1,2-Dichloroethene (total)  | ND               | 40                   | 42           | 100              | 40                    | 41            | 100               | 2.4  | 20           | 35           | 175           |
| Xylenes,Total               | ND               | 60                   | 65           | 100              | 60                    | 65            | 100               | 0    | 20           | 35           | 175           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 47           | 94.0             | 50                    | 48.0          | 96.0              | 2.11 | 30           | 62           | 130           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 52           | 104              | 50                    | 52.0          | 104               | 0    | 30           | 70           | 130           |
| Surr: Toluene-d8            | ND               | 50                   | 48           | 96.0             | 50                    | 48.0          | 96.0              | 0    | 30           | 74           | 122           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve MI - Matrix Interference

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

resorting outside haviouble QO E

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 27

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### **Brown & Caldwell**

Fracmaster

Analysis:

Alkalinity (as CaCO3), Total

Method:

RunID:

E310.1

WET 090413F-4982657

WorkOrder:

09040278

Lab Batch ID:

R270144

Method Blank

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

04/13/2009 11:20

Units: Analyst:

PAC

09040278-01F

Samples in Analytical Batch:

MW-3

| Analyte                      | Result | Rep Limit |
|------------------------------|--------|-----------|
| Alkalinity, Total (As CaCO3) | ND     | 2.0       |

#### Laboratory Control Sample (LCS)

RunID:

WET\_090413F-4982659

Units:

mg/L

Analysis Date:

04/13/2009 11:20

PAC Analyst:

| Analyte                      | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |  |
|------------------------------|----------------|--------|---------------------|----------------|----------------|--|
| Alkalinity, Total (As CaCO3) | 38.70          | 39.00  | 100.8               | 90             | 110            |  |

#### Sample Duplicate

Original Sample:

09040278-01

WET\_090413F-4982660

Units:

Analysis Date:

RunID:

04/13/2009 11:20

Analyst: PAC

mg/L

| Analyte                      | Sample<br>Result | DUP<br>Result | RPD   | RPD<br>Limit |
|------------------------------|------------------|---------------|-------|--------------|
| Alkalinity, Total (As CaCO3) | 174              | 175           | 0.573 | 20           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 28



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Ion Chromatography

Method:

RunID:

E300.0

WorkOrder:

09040278

Lab Batch ID:

R270277A

Method Blank

Units:

Analyst:

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

IC2 090409A-4984862

04/09/2009 12:18

mg/L BDG

09040278-01F

MW-3

| Analyte                  | Result | Rep Limit |
|--------------------------|--------|-----------|
| Nitrogon Nitroto (An NI) | ND     | 0.50      |

#### **Laboratory Control Sample (LCS)**

RunID:

IC2 090409A-4984863

Units: mg/L

Analysis Date:

04/09/2009 12:36

Analyst:

BDG

| Analyte                  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|--------------------------|----------------|--------|---------------------|----------------|----------------|
| Nitrogen, Nitrate (As N) | 10.00          | 9.147  | 91.47               | 90             | 110            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RuntD:

09040169-02

IC2\_090409A-4984879

Units:

mg/L

Analysis Date:

04/09/2009 18:26

BDG Analyst:

| Analyte                  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD     | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|--------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|---------|--------------|--------------|---------------|
| Nitrogen, Nitrate (As N) | ND               | 10                   | 10.10        | 101.0            | 10                    | 10.09         | 100.9             | 0.06932 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040278 Page 29



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster

Analysis:

Ion Chromatography

Method:

RunID:

E300.0

WorkOrder:

09040278

Lab Batch ID:

R270297

Method Blank

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

IC2 090414D-4985092

04/14/2009 10:38

Analyst:

BDG

09040278-01F

MW-3

|          | Analyte | Result   | Rep Limit |
|----------|---------|----------|-----------|
| Chloride |         | ND       | 0.50      |
| Sulfate  |         | <br>l ND | 0.50      |

#### **Laboratory Control Sample (LCS)**

RunID:

IC2\_090414D-4985093

Units:

mg/L

Analysis Date:

04/14/2009 10:55

Analyst:

BDG

| Analyte  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------|----------------|--------|---------------------|----------------|----------------|
| Chloride | 10.00          | 10.52  | 105.2               | 85             | 115            |
| Sulfate  | 10.00          | 10.57  | 105.7               | 85             | 115            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

Analysis Date:

RunID:

09040254-01

10

10

ND

ND

IC2 090414D-4985097 04/14/2009 12:05

Units:

106.8

110.7

mg/L Analyst: BDG

10

10

| Analyte | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD | RPD<br>Limit | . L |
|---------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-----|--------------|-----|

10.68

11.07

Qualifiers:

Chloride

Sulfate

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

10.66

10.07

106.6

100.7

0.2155

9.423

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply. TNTC - Too numerous to count

09040278 Page 30

Low

Limit

80

80

20

20

High

Limit

120

120

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules

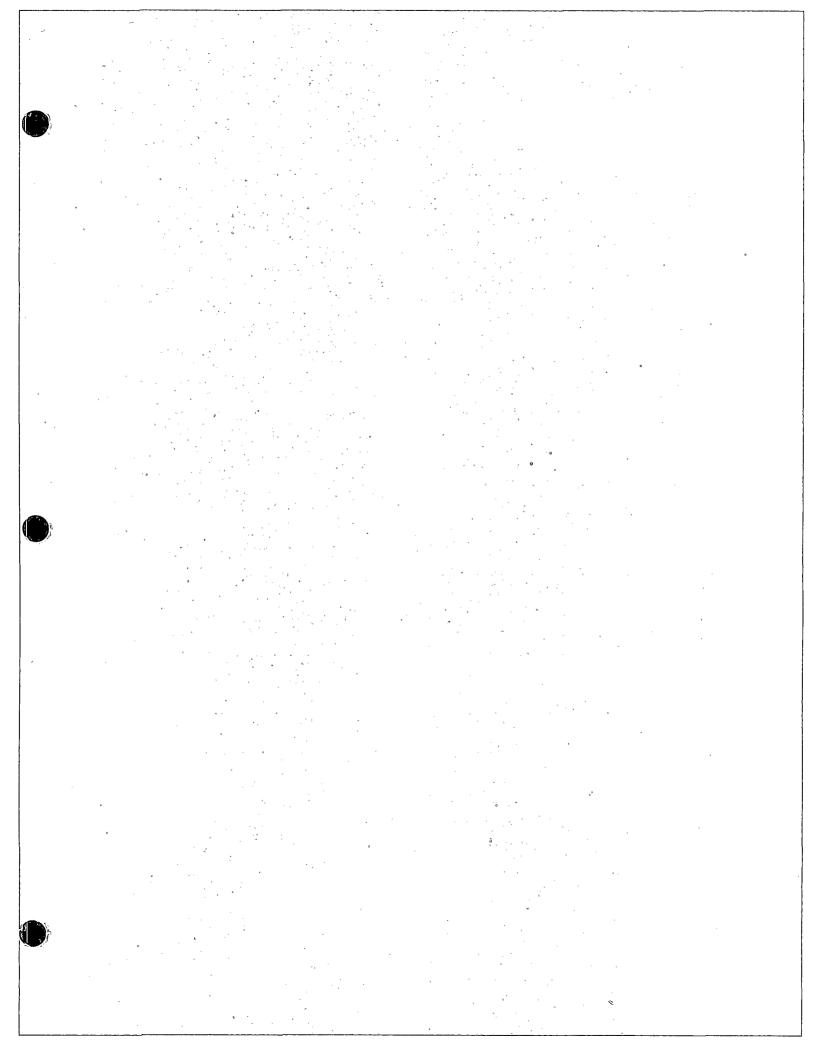




# Sample Receipt Checklist And Chain of Custody






8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Sample Receipt Checklist

| Date and Time Received:                                          | 09040278<br>4/9/2009 10:00:00 AM<br>2.0°C                              |        |               | Received By<br>Carrier name<br>Chilled by: |           | BF<br>FedEx<br>Water Ice |          |
|------------------------------------------------------------------|------------------------------------------------------------------------|--------|---------------|--------------------------------------------|-----------|--------------------------|----------|
| 1. Shipping container/coo                                        | oler in good condition?                                                | Yes    | <b>V</b>      | No 🗌                                       |           | Not Present              |          |
| 2. Custody seals intact or                                       | n shippping container/cooler?                                          | Yes    | <b>✓</b>      | No 🗌                                       |           | Not Present              |          |
| 3. Custody seals intact or                                       | n sample bottles?                                                      | Yes    |               | No 🗌                                       |           | Not Present              | V        |
| 4. Chain of custody prese                                        | ent?                                                                   | Yes    | <b>&gt;</b>   | No 🗌                                       |           |                          |          |
| 5. Chain of custody signe                                        | ed when relinquished and received?                                     | Yes    | <b>✓</b>      | No 🗌                                       |           |                          |          |
| 6. Chain of custody agree 1 Received 3 vials w/H placed on hold. | es with sample labels?<br>CL for CH4 Methane but not written on chain, | Yes    |               | No 🗹                                       |           |                          |          |
| 7. Samples in proper con                                         | tainer/bottle?                                                         | Yes    | <b>✓</b>      | No 🗆                                       |           |                          |          |
| 8. Sample containers inta                                        | act?                                                                   | Yes    | <b>✓</b>      | No 🗌                                       |           |                          |          |
| 9. Sufficient sample volu                                        | me for indicated test?                                                 | Yes    | ✓             | No 🗀                                       |           |                          |          |
| 10. All samples received w                                       | vithin holding time?                                                   | Yes    | ✓             | No 🗌                                       |           |                          |          |
| 11. Container/Temp Blank                                         | temperature in compliance?                                             | Yes    | V             | No 🗌                                       |           |                          |          |
| 12. Water - VOA vials have                                       | zero headspace?                                                        | Yes    | <b>✓</b>      | No 🗀                                       | VOA Via   | als Not Present          |          |
| 13. Water - Preservation c                                       | hecked upon receipt (except VOA*)?                                     | Yes    |               | No 🗌                                       |           | Not Applicable           | V        |
| *VOA Preservation Ch                                             | ecked After Sample Analysis                                            |        |               |                                            |           |                          |          |
| SPL Representativ                                                | re: Rodriguez, Alisha C.                                               | Cont   | tact Date & T | Fime: 4/9/2009                             | 2:53:00   | PM                       |          |
| Client Name Contacte                                             | d: Rick Rexroad w/Brown & Caldwell                                     |        |               |                                            |           |                          | <u> </u> |
| Non Conformance<br>Issues:                                       |                                                                        |        |               |                                            |           |                          |          |
| Client Instructions: Client                                      | ent emailed back at 13:31 on Monday 04/13/09                           | reques | ting that the | extra vials be an                          | alyzed fo | or Methane only          |          |



|                                      |                                            |                                |             |                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I, Work         | SPL, Workorder No. |                           |                          | 322329                                                       | 329                |          |
|--------------------------------------|--------------------------------------------|--------------------------------|-------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|---------------------------|--------------------------|--------------------------------------------------------------|--------------------|----------|
|                                      | SPL, Inc.                                  |                                |             |                                      | 1_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6               | 1                  | 1                         | -                        | -                                                            | \                  |          |
| Analysis Re-                         | Analysis Request & Chain of Custody Record | ģ                              |             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20              | 07640478           | 70                        | page                     | <b>\</b>                                                     | / Jo               |          |
| Tient Name: Drown and                | Pollwell                                   |                                | ma          | natrix bottle                        | size pres.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                    | Regu                      | ested                    | Requested Analysis                                           | is                 |          |
| 15 Low's raw                         | # 0250                                     | TOU'LL MILL                    | is=A lic    | is=A lic<br>X=othe<br>selg<br>redict | ther<br>ther                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | (2                 | 519                       | (8.00                    | £218                                                         |                    |          |
| 12/2/<br>12/2/                       | Enail: 4                                   | 8 CK road abruncald, com       | 1.1         | encore<br>smber<br>vial X            | 194103<br>HNO3<br>0=X Ze<br>0\$ 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ntainers        | (8)<br>(297        | ) W                       | (1)<br>(E) 3             | 201                                                          |                    | <u> </u> |
| roject Name/No.: DJ XCV              | ELVICES 128(12)                            |                                | S=S         |                                      | 09[=<br>b=b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 18)                | 15/                       | T.                       | <u> </u>                                                     |                    |          |
| Ч ::                                 | 7                                          |                                | gfcI        |                                      | 191<br>91 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 10)<br>57          | <u>/()</u> -              | 191                      |                                                              |                    |          |
|                                      | Barrach                                    | 64                             | w=V         | le=J<br> slq='<br> slg=i             | il 1=<br>so8=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 | 10/                | Ha                        |                          | . Di                                                         |                    |          |
| SAMPLE ID                            | DATE                                       | TIME comp                      | grab 7      | S                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>        |                    | 4                         | 7 /<br>}                 |                                                              |                    |          |
| MW-3                                 | 1/8/09                                     | 7180                           | ×           | VAF FOIL                             | 401/6 LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4               | <u>^</u><br>X      | X                         | K                        | <b>X</b>                                                     | 7                  |          |
| ACO-8-4-87                           |                                            | 2832                           | ×           | > _                                  | do Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4               | ×                  |                           |                          |                                                              |                    |          |
| TR-4-8-09A                           | >                                          | 0902                           | ×           | 7                                    | de 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3               | ×                  |                           |                          |                                                              | _                  |          |
| 7                                    |                                            |                                |             |                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                    |                           |                          |                                                              |                    |          |
|                                      |                                            |                                |             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | +                  |                           |                          | _                                                            |                    |          |
|                                      |                                            |                                |             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                    |                           |                          |                                                              | 2000               |          |
|                                      |                                            |                                |             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                    |                           |                          |                                                              |                    |          |
|                                      |                                            |                                |             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                    |                           | ,                        | }                                                            | 1                  |          |
|                                      |                                            |                                |             |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | -                  |                           |                          |                                                              |                    |          |
| lient/Consultant Remarks:            |                                            | Laboratory remarks:            | emarks:     |                                      | and the state of t |                 |                    |                           | Intact?<br>Ice?<br>Temp: | 9                                                            | in the second      | ZZ       |
| Pognosted TAT                        | Special Reporting Requirements Results:    | ts Results: Fax                | Emp PDF     |                                      | Special Detection Limits (specify):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on Limit        | s (specify         |                           |                          |                                                              | PM riew (initial): | a);      |
| tract                                | Standard Och Long 3-00 -                   | ☐ Level 4 QC ☐ TX TRRP         |             | AP 🗀                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                    | ı                         |                          |                                                              | ,                  |          |
| Standard                             | 1. /                                       | Q 2                            | date 4/8    | /SS time                             | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. Received by: | ved by:            |                           |                          |                                                              |                    |          |
| 3 Business Days                      | 3. Relinquished by:                        |                                | date        | time                                 | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4. Received by: | ved by:            |                           |                          |                                                              |                    |          |
| Other Sush TAT requires prior notice | 5. Relinquished by:                        |                                | date /8/1   | time 10                              | ve 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6. Reca         | Legar.             | 6. Received by Laboratory | 7                        |                                                              |                    |          |
| 8880 Interchange Drive               | Drive                                      | 500 Ambassador Caffery Parkway | ador Caffer | y Parkwa                             | ri v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | Traver             | 6 City                    | 9 Hugh<br>MI 496         | ☐ 459 Hughes Drive<br>Traverse City, MI 49686 (231) 947-5777 | 947-5777           | 7        |
| Houston, I.A. / 1054 (115)           | 1060-000                                   | מי עוד יווחספ                  | 1100) COC   | 611F-16                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                    | 5                         | 1                        | ( i                                                          |                    |          |





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

## Certificate of Analysis Number:

## 09040323

Report To:

Brown & Caldwell
Rick Rexroad
1415 Louisiana
Suite 2500

Houston TX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Project Name:

Fracmaster BJ Service,#128125

Site:

Hobbs NM

Site Address:

PO Number:

State:

**New Mexico** 

State Cert. No.:

Date Reported:

4/27/2009

This Report Contains A Total Of 32 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Case Narrative for: Brown & Caldwell

# Certificate of Analysis Number: 09040323

| Report To:                  |             | Project Name:         | Fracmaster BJ Service,#128125 |
|-----------------------------|-------------|-----------------------|-------------------------------|
| Brown & Caldwell            |             | Site:                 | Hobbs NM                      |
| Rick Rexroad                |             | Site Address:         |                               |
| 1415 Louisiana              |             |                       |                               |
| Suite 2500                  |             | PO Number:            |                               |
| Houston                     |             |                       |                               |
| TX                          |             | State:                | New Mexico                    |
| 77002-                      |             | State Cert. No .:     |                               |
| ph: (713) 759-0999 fax: (71 | 3) 308-3886 | <u>Date Reported:</u> | 4/27/2009                     |

For Volatile Organics analysis (8260B), the results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89427 for the Semivolatile Hydrocarbons analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89412 for the Semivolatile Organics analysis by SW846 Method 8270C. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Isnes V. Vicheaire

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs. Prep Comments for PR3510 DRO, Sample 09040323-01C: Unpreserved bottle

\_\_\_

09040323 Page 1

4/27/2009

Agnes V. Vicknair



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

## Certificate of Analysis Number:

## 09040323

Report To:

Fax To:

**Brown & Caldwell** 

Rick Rexroad

1415 Louisiana

**Suite 2500** 

Houston

77002-

Rick Rexroad

ph: (713) 759-0999 Brown & Caldwell

fax: (713) 308-3886

fax: (713) 308-3886

Project Name:

Fracmaster BJ Service,#128125

Site:

State:

Hobbs NM

Site Address:

PO Number:

**New Mexico** 

State Cert. No.:

Date Reported:

4/27/2009

| Client Sample ID | Lab Sample ID | Matrix | Date Collected      | Date Received        | COC ID | HOLD |
|------------------|---------------|--------|---------------------|----------------------|--------|------|
| MW-5             | 09040323-01   | Water  | 4/9/2009 8:45:00 AM | 4/9/2009 10:00:00 AM | 322332 |      |
| TB-4-9-09        | 09040323-02   | Water  | 4/9/2009 9:25:00 AM | 4/9/2009 10:00:00 AM | 322332 |      |
| FB-4-9-09        | 09040323-03   | Water  | 4/9/2009 9:31:00 AM | 4/9/2009 10:00:00 AM | 322332 |      |

Ignes V. Vicheave

4/27/2009

Date

Agnes V. Vicknair Project Manager

> Kesavalu M. Bagawandoss Laboratory Director

Ted Yen Quality Assurance Officer





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-5

Collected: 04/09/2009 8:45

SPL Sample ID:

09040323-01

| Site:   | Hobbs  | NM |
|---------|--------|----|
| <b></b> | 110000 | ,  |

| Analyses/Method                | Result | QUAL | Re | ep.Limit | Di  | l. Factor | r Date Ana | lyzed  | Analyst    | Seq. #  |
|--------------------------------|--------|------|----|----------|-----|-----------|------------|--------|------------|---------|
| ALKALINITY (AS CACO3), TOT     | AL.    |      |    |          | MCL |           | E310.1     | Ur     | nits: mg/L |         |
| Alkalinity, Total (As CaCO3)   | 195    |      |    | 2        |     | 1         | 04/13/09   | 11:20  | PAC        | 4982664 |
| GASOLINE RANGE ORGANICS        |        |      |    |          | MCL | s         | W8015B     | Ur     | nits: mg/L |         |
| Gasoline Range Organics        | ND     |      |    | 0.1      | ·   | 1         | 04/13/09   | 18:16  | CLJ        | 4984675 |
| Surr: 1,4-Diffuorobenzene      | 91.6   |      | %  | 60-155   |     | 1         | 04/13/09   | 18:16  | CLJ        | 4984675 |
| Surr: 4-Bromofluorobenzene     | 105    |      | %  | 50-158   |     | 1         | 04/13/09   | 18:16  | CLJ        | 4984675 |
| HEADSPACE GAS ANALYSIS         |        |      |    |          | MCL |           | RSK147     | Ur     | nits: mg/L |         |
| Methane                        | 0.0039 |      |    | 0.0012   |     | 1         | 04/23/09   | 18:57  | V_L        | 4994608 |
| ION CHROMATOGRAPHY             |        |      |    |          | MCL |           | E300.0     | Ur     | nits: mg/L |         |
| Chloride                       | 64.4   |      |    | 5        |     | 10        | 04/14/09   | 23:28  | BDG        | 4985120 |
| Sulfate                        | 89     |      |    | 5        |     | 10        | 04/14/09   | 23:28  | BDG        | 4985120 |
| Nitrogen,Nitrate (As N)        | ND     |      |    | 0.5      |     | 1         | 04/10/09   | 17:13  | BDG        | 4982582 |
| SEMIVOLATILE HYDROCARBO        | NS     |      |    |          | MCL | s         | W8015B     | Uı     | nits: mg/L |         |
| Diesel Range Organics          | 0.14   |      |    | 0.1      |     | 1         | 04/17/0    | 9 1:01 | NW         | 4987516 |
| Mineral Spirits Range Organics | ND     |      |    | 0.1      |     | 1         | 04/17/0    | 9 1:01 | NW         | 4987516 |
| Surr: n-Pentacosane            | 82.8   |      | %  | 20-150   |     | 1         | 04/17/0    | 9 1:01 | NW         | 4987516 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 04/13/2009 14:10 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-5

Collected: 04/09/2009 8:45

SPL Sample ID:

09040323-01

| Site: Hobbs | NN |
|-------------|----|
|-------------|----|

| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyz | ed Analyst  | Seq. #  |
|-----------------------------|----------------|-----------|-------------|-------------|-------------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C      | Units: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND             | 5         | 1           | 04/22/09 17 | .05 GY      | 4993775 |
| 1,2-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 1,2-Diphenylhydrazine       | ND             | 10        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 1,3-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 1,4-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2,4,5-Trichlorophenol       | ND             | 10        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2,4,6-Trìchlorophenol       | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2,4-Dichlorophenol          | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2,4-Dimethylphenol          | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2,4-Dinitrophenol           | ND             | 25        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2,4-Dinitrotoluene          | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2,6-Dinitrotoluene          | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2-Chloronaphthalene         | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2-Chlorophenol              | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2-Methylnaphthalene         | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 2-Nitroaniline              | ND             | 25        | 1           | 04/22/09 17 | :05 GY      | 499377  |
| 2-Nitrophenol               | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 3,3'-Dichlorobenzidine      | ND             | 10        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 3-Nitroaniline              | ND             | 25        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 4,6-Dinitro-2-methylphenol  | ND             | 25        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 4-Bromophenyl phenyl ether  | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
| 4-Chloro-3-methylphenol     | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
| 4-Chloroaniline             | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
| 4-Chlorophenyl phenyl ether | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 4-Nitroaniline              | ND             | 25        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| 4-Nitrophenol               | ND             | 25        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| Acenaphthene                | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| Acenaphthylene              | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
| Aniline                     | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| Anthracene                  | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| Benz(a)anthracene           | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| Benzo(a)pyrene              | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| Benzo(b)fluoranthene        | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| Benzo(g,h,i)perylene        | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
| Benzo(k)fluoranthene        | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
| Benzoic acid                | ND             | 25        | 1           | 04/22/09 17 | :05 GY      | 4993775 |
| Benzyl alcohol              | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
| Bis(2-chloroethoxy)methane  | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
| Bis(2-chloroethyl)ether     | ND             | 5         | 1           | 04/22/09 17 | :05 GY      | 499377  |
|                             |                |           |             |             |             |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-5

Collected: 04/09/2009 8:45

SPL Sample ID:

09040323-01

| Site: I | dobbs | MM |
|---------|-------|----|
|---------|-------|----|

| Analyses/Method             | Result | QUAL | Re | p.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
|-----------------------------|--------|------|----|---------|-------------|----------------|---------|---------|
| Bis(2-chloroisopropyl)ether | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Butyl benzyl phthalate      | ND     |      | ,  | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Carbazole                   | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Chrysene                    | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Dibenz(a,h)anthracene       | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Dibenzofuran                | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Diethyl phthalate           | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Dimethyl phthalate          | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Di-n-butyl phthalate        | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Di-n-octyl phthalate        | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Fluoranthene                | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Fluorene                    | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Hexachlorobenzene           | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Hexachlorobutadiene         | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Hexachlorocyclopentadiene   | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Hexachloroethane            | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Isophorone                  | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Naphthalene                 | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Nitrobenzene                | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| N-Nitrosodi-n-propylamine   | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| N-Nitrosodiphenylamine      | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Pentachlorophenol           | ND     |      |    | 25      | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Phenanthrene                | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Phenol                      | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Pyrene                      | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Pyridine                    | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| 2-Methylphenol              | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| 3 & 4-Methylphenol          | ND     |      |    | 5       | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Surr: 2,4,6-Tribromophenol  | 74.7   |      | %  | 10-123  | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Surr: 2-Fluorobiphenyl      | 57.2   |      | %  | 23-116  | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Surr: 2-Fluorophenol        | 49.6   |      | %  | 16-110  | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Surr: Nitrobenzene-d5       | 56.2   |      | %  | 21-114  | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Surr: Phenol-d5             | 32.0   |      | %  | 10-110  | 1           | 04/22/09 17:05 | GY      | 4993775 |
| Surr: Terphenyl-d14         | 49.6   |      | %  | 22-141  | 1           | 04/22/09 17:05 | GY      | 4993775 |
|                             |        |      |    |         |             |                |         |         |

| Prep Method | Prep Date       | Prep Initials | Prep Factor |
|-------------|-----------------|---------------|-------------|
| SW3510C     | 04/13/2009 8:15 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-5

Collected: 04/09/2009 8:45

SPL Sample ID:

09040323-01

| Site: | Hobbs  | NM    |
|-------|--------|-------|
| OILE. | 110003 | 14141 |

| Analyses/Method             | Result     | QUAL    | Rep.Limit | Dìl. Factor | Date Analyzed  | Analyst    | Seq. #  |  |
|-----------------------------|------------|---------|-----------|-------------|----------------|------------|---------|--|
| VOLATILE ORGANICS BY MET    | THOD 8260B | D 8260B |           | MCL SV      | V8260B U       | nits: ug/L |         |  |
| 1,1,1,2-Tetrachloroethane   | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,1,1-Trichloroethane       | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,1,2,2-Tetrachloroethane   | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,1,2-Trichloroethane       | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,1-Dichloroethane          | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,1-Dichloroethene          | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,1-Dichloropropene         | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2,3-Trichlorobenzene      | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2,3-Trichloropropane      | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2,4-Trichlorobenzene      | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2,4-Trimethylbenzene      | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2-Dibromo-3-chloropropane | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2-Dibromoethane           | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2-Dichlorobenzene         | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2-Dichloroethane          | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,2-Dichloropropane         | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,3,5-Trimethylbenzene      | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,3-Dichlorobenzene         | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,3-Dichloropropane         | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 1,4-Dichlorobenzene         | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 2,2-Dichloropropane         | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 2-Butanone                  | ND         |         | 20        | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 2-Chloroethyl vinyl ether   | ND J       |         | 10        | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 2-Chlorotoluene             | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 2-Hexanone                  | ND         |         | 10        | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 4-Chlorotoluene             | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 4-Isopropyltoluene          | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| 4-Methyl-2-pentanone        | ND         |         | 10        | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| Acetone                     | ND         |         | 20        | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| Acrylonitrile               | ND         |         | 10        | 1           | 04/14/09 21:24 | JC         | 498523  |  |
| Benzene                     | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 4985230 |  |
| Bromobenzene                | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 498523  |  |
| Bromochloromethane          | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 498523  |  |
| Bromodichloromethane        | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 498523  |  |
| Bromoform                   | ND         |         | . 5       | 1           | 04/14/09 21:24 | JC         | 498523  |  |
| Bromomethane                | ND         |         | 10        | 1           | 04/14/09 21:24 | JC         | 498523  |  |
| Carbon disulfide            | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 498523  |  |
| Carbon tetrachloride        | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 498523  |  |
| Chlorobenzene               | ND         |         | 5         | 1           | 04/14/09 21:24 | JC         | 498523  |  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040323 Page 6 4/27/2009 5:16:02 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-5

Collected: 04/09/2009 8:45

SPL Sample ID:

09040323-01

|                             |        |                                       | Site | e: l  | Hobbs NM |             |                |         |         |
|-----------------------------|--------|---------------------------------------|------|-------|----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL                                  | Re   | p.Lim | iit      | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |                                       |      | 1     | 10       | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Chloroform                  | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Chloromethane               | ND     |                                       |      | 1     | 10       | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Dibromochloromethane        | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Dibromomethane              | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Dichlorodifluoromethane     | ND     |                                       |      | -     | 10       | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Ethylbenzene                | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Hexachlorobutadiene         | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Ísopropylbenzene            | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Methyl tert-butyl ether     | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Methylene chloride          | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Naphthalene                 | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| n-Butylbenzene              | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| n-Propylbenzene             | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| sec-Butylbenzene            | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Styrene                     | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| tert-Butylbenzene           | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Tetrachloroethene           | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Toluene                     | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Trichloroethene             | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Trichlorofluoromethane      | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Vinyl acetate               | ND     |                                       |      |       | 10       | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Vinyl chloride              | ND     |                                       |      |       | 2        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| cis-1,2-Dichloroethene      | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| cis-1,3-Dichloropropene     | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| m,p-Xylene                  | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| o-Xylene                    | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| trans-1,2-Dichloroethene    | D      |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| trans-1,3-Dichloropropene   | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| 1,2-Dichloroethene (total)  | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Xylenes,Total               | ND     |                                       |      |       | 5        | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Surr: 1,2-Dichloroethane-d4 | 96.0   |                                       | %    | 65-1  | 11       | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Surr: 4-Bromofluorobenzene  | 108    |                                       | %    | 87-1  | 20       | 1           | 04/14/09 21:24 | JC      | 4985230 |
| Surr: Toluene-d8            | 96.0   |                                       | %    | 88-1  | 16       | 1           | 04/14/09 21:24 | JC      | 4985230 |
|                             |        | · · · · · · · · · · · · · · · · · · · |      | _     |          |             |                |         |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:TB-4-9-09

Collected: 04/09/2009 9:25

SPL Sample ID:

09040323-02

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |
|-----------------------------|------------|------|-----------|-------------|----------------|-----------|---------|
| VOLATILE ORGANICS BY MET    | THOD 8260B |      |           | MCL S\      | W8260B Un      | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/14/09 21:51 | JC .      | 4985231 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,2,4-Trimethylbenzene      | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,2-Dibromo-3-chloropropane | ND         | -    | 5         | 1           | 04/14/09 21:51 | JC        | 4985231 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 2-Butanone                  | ND         |      | 20        | 1           | 04/14/09 21:51 | JC        | 498523  |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 04/14/09 21:51 | JC        | 498523  |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 2-Hexanone                  | ND         |      | 10        | 1           | 04/14/09 21:51 | JC        | 498523  |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 04/14/09 21:51 | JC        | 498523  |
| Acetone                     | ND         | _    | 20        | 1           | 04/14/09 21:51 | JC        | 498523  |
| Acrylonitrile               | ND         |      | 10        | 1           | 04/14/09 21:51 | JC        | 498523  |
| Benzene                     | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| Bromobenzene                | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| Bromochloromethane          | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| Bromodichloromethane        | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| Bromoform                   | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| Bromomethane                | ND         |      | 10        | 1           | 04/14/09 21:51 | JC        | 498523  |
| Carbon disulfide            | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |
| Carbon tetrachloride        | ND         |      | 5         | 111         | 04/14/09 21:51 | JC        | 498523  |
| Chlorobenzene               | ND         |      | 5         | 1           | 04/14/09 21:51 | JC        | 498523  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: TB-4-9-09 Collected: 04/09/2009 9:25 SPL Sample ID: 09040323-02

|                             |        |      | Site | : Н     | MN addo |             |                |         |         |
|-----------------------------|--------|------|------|---------|---------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep  | o.Limit |         | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |      | 10      |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Chloroform                  | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Chloromethane               | ND     |      |      | 10      |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Dibromochloromethane        | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Dibromomethane              | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Dichlorodifluoromethane     | ND     |      | ~    | 10      |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Ethylbenzene                | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Hexachlorobutadiene         | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Isopropylbenzene            | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Methyl tert-butyl ether     | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Methylene chloride          | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Naphthalene                 | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| n-Butylbenzene              | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| n-Propylbenzene             | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| sec-Butylbenzene            | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Styrene                     | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| tert-Butylbenzene           | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Tetrachloroethene           | ND     | -    |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Toluene                     | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Trichloroethene             | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Trichlorofluoromethane      | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Vinyl acetate               | ND     |      |      | 10      |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Vinyl chloride              | ND     |      |      | 2       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| cis-1,2-Dichloroethene      | ND     |      | -    | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| cis-1,3-Dichloropropene     | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| m,p-Xylene                  | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| o-Xylene                    | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| trans-1,2-Dichloroethene    | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| trans-1,3-Dichloropropene   | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| 1,2-Dichloroethene (total)  | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Xylenes,Total               | ND     |      |      | 5       |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Surr: 1,2-Dichloroethane-d4 | 98.0   |      | %    | 65-111  |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Surr: 4-Bromofluorobenzene  | 108    |      | %    | 87-120  |         | 1           | 04/14/09 21:51 | JC      | 4985231 |
| Surr: Toluene-d8            | 94.0   |      | %    | 88-116  |         | 1           | 04/14/09 21:51 | JC      | 4985231 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040323 Page 9 4/27/2009 5:16:02 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-4-9-09

Collected: 04/09/2009 9:31

SPL Sample ID:

09040323-03

| Site: Hob | bs l | NM |
|-----------|------|----|
|-----------|------|----|

| nalyses/Method              | Result    | QUAL | Rep.Limit | Dil. Factor | Date Analy | zed   | Analyst   | Seq. #  |
|-----------------------------|-----------|------|-----------|-------------|------------|-------|-----------|---------|
| OLATILE ORGANICS BY MET     | HOD 8260B |      |           | MCL SV      | /8260B     | Un    | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,1,1-Trichloroethane       | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,1,2,2-Tetrachloroethane   | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,1,2-Trichloroethane       | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,1-Dichloroethane          | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,1-Dichloroethene          | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,1-Dichloropropene         | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2,3-Trichlorobenzene      | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2,3-Trichloropropane      | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2,4-Trichlorobenzene      | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2,4-Trimethylbenzene      | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2-Dibromo-3-chloropropane | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2-Dibromoethane           | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2-Dichlorobenzene         | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2-Dichloroethane          | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 4985232 |
| 1,2-Dichloropropane         | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 498523  |
| 1,3,5-Trimethylbenzene      | ND        |      | 5         | 1           | 04/14/09 2 | 2:19  | JC        | 498523  |
| 1,3-Dichlorobenzene         | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| 1,3-Dichloropropane         | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| 1,4-Dichlorobenzene         | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| 2,2-Dichloropropane         | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| 2-Butanone                  | ND        |      | 20        | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| 2-Chloroethyl vinyl ether   | ND J      |      | 10        | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| 2-Chlorotoluene             | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 4985232 |
| 2-Hexanone                  | ND        |      | 10        | 1           | 04/14/09 2 | 22:19 | JC        | 4985232 |
| 4-Chlorotoluene             | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 4985232 |
| 4-Isopropyltoluene          | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| 4-Methyl-2-pentanone        | ND        |      | 10        | 1           | 04/14/09 2 | 22:19 | JÇ        | 498523  |
| Acetone                     | ND        |      | 20        | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Acrylonitrile               | ND        |      | 10        | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Benzene                     | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Bromobenzene                | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Bromochloromethane          | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Bromodichloromethane        | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Bromoform                   | ND        |      | 5         | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Bromomethane                | ND        |      | 10        | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Carbon disulfide            | ND        |      | 5         | 1           | 04/14/09   | 22:19 | JC        | 498523  |
| Carbon tetrachloride        | ND        |      | . 5       | 1           | 04/14/09 2 | 22:19 | JC        | 498523  |
| Chlorobenzene               | ND        |      | 5         | 1           | 04/14/09   | 22:19 | JC        | 498523  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-4-9-09 Collected: 04/09/2009 9:31 SPL Sample ID: 09040323-03

|                             |        |      | Site: | Hol    | obs NM     |                |         |         |
|-----------------------------|--------|------|-------|--------|------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep.  | Limit  | Dil. Facto | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |       | 10     | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Chloroform                  | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Chloromethane               | ND     |      |       | 10     | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Dibromochloromethane        | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Dibromomethane              | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Dichlorodifluoromethane     | ND     |      |       | 10     | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Ethylbenzene                | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Hexachlorobutadiene         | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Isopropylbenzene            | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Methyl tert-butyl ether     | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Methylene chloride          | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Naphthalene                 | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| n-Butylbenzene              | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| n-Propylbenzene             | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| sec-Butylbenzene            | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Styrene                     | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| tert-Butylbenzene           | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Tetrachloroethene           | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Toluene                     | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Trichloroethene             | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Trichlorofluoromethane      | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Vinyl acetate               | ND     |      |       | 10     | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Vinyl chloride              | ND     |      |       | 2      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| cis-1,2-Dichloroethene      | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| cis-1,3-Dichloropropene     | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| m,p-Xylene                  | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| o-Xylene                    | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| trans-1,2-Dichloroethene    | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| trans-1,3-Dichloropropene   | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| 1,2-Dichloroethene (total)  | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Xylenes,Total               | ND     |      |       | 5      | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Surr: 1,2-Dichloroethane-d4 | 98.0   |      | % 6   | 35-111 | 1          | 04/14/09 22:19 | JC      | 4985232 |
| Surr: 4-Bromofluorobenzene  | 108    |      | % 8   | 37-120 | 1          | 04/14/09 22:19 | JC      | 4985232 |

% 88-116

Qualifiers:

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

92.0

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

04/14/09 22:19 JC

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

4985232

# Quality Control Documentation



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Analysis:

RunID:

Semivolatile Hydrocarbons

Method:

SW8015B

Surr: n-Pentacosane

Fracmaster BJ Service,#128125

WorkOrder:

09040323

Lab Batch ID:

89427

## Method Blank

HP\_V\_090416B-4987505

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/14/2009 23:43

Analyst: NW 09040323-01C

MW-5

Preparation Date:

04/13/2009 14:10

Prep By:

N\_M Method SW3510C

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Diesel Range Organics          | ND     | 0.10      |
| Mineral Spirite Range Organice | ND     | 0.10      |

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

20-150

RunID:

HP\_V\_090416B-4987506

51.2

Units:

mg/L

Analysis Date: Preparation Date: 04/15/2009 0:03 04/13/2009 14:10 Analyst: NW

Prep By: N\_M Method SW3510C

| Analyte               | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| Diesel Range Organics | 1.00                  | 0.895         | 89.5                       | 1.00                   | 0.880          | 88.0                        | 1.7 | 40           | 21             | 150            |
| Surr: n-Pentacosane   | 0.0500                | 0.0494        | 98.8                       | 0.0500                 | 0.0485         | 97.0                        | 1.8 | 30           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply

TNTC - Too numerous to count

09040323 Page 13

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis:

RunID:

Headspace Gas Analysis

Method: **RSK147**  WorkOrder:

09040323

Lab Batch ID:

R270984

Method Blank

VARC\_090423A-4994604

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/23/2009 15:49

Analyst:  $V_L$  09040323-01E

MW-5

| Analyte | Result | Rep Limit |
|---------|--------|-----------|
| Methane | ND     | 0.0012    |

## Sample Duplicate

Original Sample:

H0904040100

RunID: Analysis Date: VARC\_090423A-4994605

Units: mg/L

04/23/2009 16:06

Analyst: V L

| Analyte | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|---------|------------------|---------------|-----|--------------|
| Methane | ND               | ND            | 0   | 50           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 14

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service,#128125

Analysis:

RuniD:

**Gasoline Range Organics** 

Method: SW8015B

WorkOrder:

09040323

Lab Batch ID:

R270269

Method Blank

Units: mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/13/2009 5:20

HP P 090413A-4984662

Analyst:

CLJ

09040323-01D

MW-5

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 91.5   | 60-155    |
| Surr: 4-Bromofluorobenzene | 104.0  | 50-158    |

## Laboratory Control Sample (LCS)

RunID:

HP\_P\_090413A-4984660

Units:

mg/L

Analysis Date:

04/13/2009 4:22

Analyst:

CLJ

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.859  | 85.9                | 42             | 136            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.0949 | 94.9                | 60             | 155            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.108  | 108                 | 50             | 158            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040343-01

RunID:

HP\_P\_090413A-4984664

Units:

mg/L CLJ

Analysis Date:

04/13/2009 10:44

Analyst:

MSD % MS MS MS % MSD RPD RPD Low Analyte Sample MSD High Result Spike Result Spike Recovery Result Recovery Limit Limit Limit Added Added ND 0.852 Gasoline Range Organics 85.2 0.868 86.8 1.92 36 22 174 Surr: 1,4-Difluorobenzene ND 0.1 0.0922 92.2 0.1 0.0932 93.2 1.08 30 60 155 Surr: 4-Bromofluorobenzene 0.105 ND 0.1 105 0.1 0.107 107 1.41 30 50 158

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 15

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

## Fracmaster BJ Service,#128125

Analysis:

Semivolatile Organics by Method 8270C

WorkOrder:

09040323

Method:

SW8270C

Lab Batch ID:

89412

## Method Blank

RunID: H\_090417E-4992370 Units:

Lab Sample ID

Client Sample ID

Analysis Date:

04/17/2009 9:40

Analyst: GY

ug/L

09040323-01B

Samples in Analytical Batch:

MW-5

Preparation Date:

04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                     | Result   | Rep Limit |
|-----------------------------|----------|-----------|
| 1,2,4-Trichlorobenzene      | ND       | 5.0       |
| 1,2-Dichlorobenzene         | ND       | 5.0       |
| 1,2-Diphenylhydrazine       | ND       | 10        |
| 1,3-Dichlorobenzene         | ND       | 5.0       |
| 1,4-Dichlorobenzene         | ND       | 5.0       |
| 2,4,5-Trichlorophenol       | ND       | 10        |
| 2,4,6-Trichlorophenol       | ND       | 5.0       |
| 2,4-Dichlorophenol          | ND       | 5.0       |
| 2,4-Dimethylphenol          | ND       | 5.0       |
| 2,4-Dinitrophenol           | ND       | 25        |
| 2,4-Dinitrotoluene          | ND       |           |
| 2,6-Dinitrotoluene          | ND       | 5.0       |
| 2-Chloronaphthalene         | ND       | 5.0       |
| 2-Chlorophenol              | ND       | 5.0       |
| 2-Methylnaphthalene         | ND       | 5.0       |
| 2-Nitroaniline              | ND       | 25        |
| 2-Nitrophenol               | ND       | 5.0       |
| 3,3'-Dichlorobenzidine      | ND       | 10        |
| 3-Nitroaniline              | ND       | 25        |
| 4,6-Dinitro-2-methylphenol  | ND       | 25        |
| 4-Bromophenyl phenyl ether  | ND       | 5.0       |
| 4-Chloro-3-methylphenol     | ND       | 5.0       |
| 4-Chloroaniline             | ND       | 5.0       |
| 4-Chlorophenyl phenyl ether | ND       | 5.0       |
| 4-Nitroaniline              | ND       | 25        |
| 4-Nitrophenol               | ND       | 25        |
| Acenaphthene                | ND       | 5.0       |
|                             | ND       | 5.0       |
| Acenaphthylene<br>Aniline   | ND       | 5.0       |
| ····                        |          |           |
| Anthracene                  | ND ND    | 5.0       |
| Benz(a)anthracene           | ND ND    | 5.0       |
| Benzo(a)pyrene              | ND ND    | 5.0       |
| Benzo(b)fluoranthene        | ND<br>ND | 5.0       |
| Benzo(g,h,i)perylene        | ND ND    | 5.0       |
| Benzo(k)fluoranthene        | ND<br>ND | 5.0       |
| Benzoic acid                | ND       | 25        |
| Benzyl alcohol              |          | 5.0       |
| Bis(2-chloroethoxy)methane  | ND<br>ND | 5.0       |
| Bis(2-chloroethyl)ether     |          | 5.0       |
| Bis(2-chloroisopropyl)ether | ND       | 5.0       |
| Bis(2-ethylhexyl)phthalate  | ND ND    | 5.0       |
| Butyl benzyl phthalate      | ND ND    | 5.0       |
| Carbazole                   | ND ND    | 5.0       |
| Chrysene                    | ND ND    | 5.0       |
| Dibenz(a,h)anthracene       | ND.      | 5.0       |
| Dibenzofuran                | ND       | 5.0       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 16

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

## Fracmaster BJ Service,#128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040323

Lab Batch ID:

89412

## Method Blank

RuniD:

H 090417E-4992370

Units:

ug/L

Analysis Date:

04/17/2009 9:40

GY

Analyst: G

Preparation Date: 04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 5.0       |
| Dimethyl phthalate         | ND     | _ 5.0     |
| Di-n-butyl phthalate       | DИ     | 5.0       |
| Di-n-octyl phthalate       | ND     | 5.0       |
| Fluoranthene               | ND     | 5.0       |
| Fluorene                   | ND     | 5.0       |
| Hexachlorobenzene          | ND     | 5.0       |
| Hexachlorobutadiene        | ND     | 5.0       |
| Hexachlorocyclopentadiene  | ND     | 5.0       |
| Hexachloroethane           | ND     | 5.0       |
| Indeno(1,2,3-cd)pyrene     | ND     | 5.0       |
| Isophorone                 | ND     | 5.0       |
| Naphthalene                | ND     | 5.0       |
| Nitrobenzene               | ND     | 5.0       |
| N-Nitrosodi-n-propylamine  | ND ND  | 5.0       |
| N-Nitrosodiphenylamine     | ND.    | 5.0       |
| Pentachlorophenol          | ND     | 25        |
| Phenanthrene               | ND     | 5.0       |
| Phenol                     | ND.    | 5.0       |
| Pyrene                     | ND     | 5.0       |
| Pyridine                   | ND.    | 5.0       |
| 2-Methylphenol             | ND     | 5.0       |
| 3 & 4-Methylphenoi         | ND     | 5.0       |
| Surr: 2,4,6-Tribromophenol | 95.2   | 10-123    |
| Surr: 2-Fluorobiphenyl     | 72.6   | 23-116    |
| Surr: 2-Fluorophenol       | 76.1   | 16-110    |
| Surr: Nitrobenzene-d5      | 68.4   | 21-114    |
| Surr: Phenol-d5            | 62.5   | 10-110    |
| Surr: Terphenyl-d14        | 68.4   | 22-141    |

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst: GY

Preparation Date: 04/13/2009 8:15

Prep By: N\_M Method SW3510C

| Analyte                | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2 | 39           | 21             | 120            |
| 1,2-Dichlorobenzene    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.7           | 66.8                        | 8.1 | 50           | 20             | 150            |

Qualifiers:

 $\ensuremath{\mathsf{ND/U}}$  - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 17

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

## Fracmaster BJ Service,#128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040323

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units:

Lab Batch ID:

89412

Analysis Date:

04/17/2009 10:42

ug/L

GΥ Analyst:

Preparation Date: 04/13/2009 8:15

Prep By: N M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD   | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-------|--------------|----------------|----------------|
| 1,2-Diphenylhydrazine       | 25.0                  | 16.5          | 66.0                       | 25.0                   | 17.6           | 70.4                        | 6.5   | 50           | 10             | 251            |
| 1,3-Dichlorobenzene         | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.5           | 66.0                        | 6.9   | 50           | 20             | 150            |
| 1,4-Dichlorobenzene         | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.2           | 64.8                        | 5.7   | 45           | 20             | 150            |
| 2,4,5-Trichlorophenol       | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.4           | 61.6                        | 3.3   | 50           | 30             | 150            |
| 2,4,6-Trichlorophenol       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.0           | 64.0                        | . 5.1 | 50           | 30             | 150            |
| 2,4-Dichlorophenol          | 25.0                  | 14.5          | 58.0                       | 25.0                   | 15.9           | 63.6                        | 9.2   | 50           | 30             | 150            |
| 2,4-Dimethylphenol          | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.0           | 64.0                        | 3.8   | 50           | 32             | 140            |
| 2,4-Dinitrophenol           | 25.0                  | 11.9          | 47.6                       | 25.0                   | 12.8           | 51.2                        | 7.3   | 50           | 10             | 160            |
| 2,4-Dinitrotoluene          | 25.0                  | 16.1          | 64.4                       | 25.0                   | 16.3           | 65.2                        | 1.2   | 50           | 30             | 150            |
| 2,6-Dinitrotoluene          | 25.0                  | 15.8          | 63.2                       | 25.0                   | 15.7           | 62.8                        | 0.6   | 50           | 30             | 150            |
| 2-Chloronaphthalene         | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.5           | 66.0                        | 4.3   | 50           | 30             | 150            |
| 2-Chlorophenol              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 15.9           | 63.6                        | 3.2   | 40           | 23             | 134            |
| 2-Methylnaphthalene         | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2   | 50           | 20             | 170            |
| 2-Nitroaniline              | 25.0                  | 14.8          | 59.2                       | 25.0                   | 15.9           | 63.6                        | 7.2   | 50           | 20             | 160            |
| 2-Nitrophenol               | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.8           | 63.2                        | 5.9   | 50           | 29             | 182            |
| 3,3'-Dichlorobenzidine      | 25.0                  | 13.3          | 53.2                       | 25.0                   | 13.7           | 54.8                        | 3.0   | 50           | 30             | 200            |
| 3-Nitroaniline              | 25.0                  | 14.4          | 57.6                       | 25.0                   | 14.8           | 59.2                        | 2.7   | 50           | 20             | 160            |
| 4,6-Dinitro-2-methylphenol  | 25.0                  | 13.7          | 54.8                       | 25.0                   | 14.2           | 56.8                        | 3.6   | 50           | 10             | 160            |
| 4-Bromophenyl phenyl ether  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.8           | 63.2                        | 1.3   | 50           | 30             | 150            |
| 4-Chloro-3-methylphenol     | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.1           | 64.4                        | 5.8   | 42           | 25             | 160            |
| 4-Chloroaniline             | 25.0                  | 15.5          | 62.0                       | 25.0                   | 16.2           | 64.8                        | 4.4   | 50           | 20             | 160            |
| 4-Chlorophenyl phenyl ether | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.3           | 65.2                        | 3.8   | 50           | 25             | 158            |
| 4-Nitroaniline              | 25.0                  | 13.9          | 55.6                       | 25.0                   | 14.8           | 59.2                        | 6.3   | 50           | 20             | 160            |
| 4-Nitrophenol               | 25.0                  | 13.0          | 52.0                       | 25.0                   | 14.8           | 59.2                        | 12.9  | 50           | 10             | 132            |
| Acenaphthene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.3           | 65.2                        | 6.3   | 31           | 30             | 150            |
| Acenaphthylene              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.4           | 65.6                        | 6.3   | 50           | 33             | 250            |
| Aniline                     | 50.0                  | 29.9          | 59.8                       | 50.0                   | 30.9           | 61.8                        | 3.3   | 50           | 10             | 135            |
| Anthracene                  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.5           | 66.0                        | 5.6   | 50           | 27             | 133            |
| Benz(a)anthracene           | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.4           | 65.6                        | 5.0   | 50           | 33             | 143            |
| Benzo(a)pyrene              | 25.0                  | 12.2          | 48.8                       | 25.0                   | 12.7           | 50.8                        | 4.0   | 50           | 17             | 163            |
| Benzo(b)fluoranthene        | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.2           | 60.8                        | 2.0   | 50           | 24             | 159            |
| Benzo(g,h,i)perylene        | 25.0                  | 15.7          | 62.8                       | 25.0                   | 15.9           | 63.6                        | 1.3   | 50           | 30             | 160            |
| Benzo(k)fluoranthene        | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.2           | 60.8                        | 1.3   | 50           | 11             | 162            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply

TNTC - Too numerous to count

09040323 Page 18

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

## Fracmaster BJ Service,#128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

Lab Batch ID:

09040323

## <u>Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)</u>

RunID:

H\_090417E-4992371

Units:

WorkOrder:

89412

Analysis Date:

04/17/2009 10:42

ug/L

GΥ

Preparation Date:

Analyst:

Prep By: N\_M Method SW3510C 04/13/2009 8:15

| Analyte                      | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| Benzoic acid                 | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.0           | 64.0                        | 1.9  | 50           | 10             | 400            |
| Benzyl alcohol               | 25.0                  | 14.7          | 58.8                       | 25.0                   | 16.2           | 64.8                        | 9.7  | 50           | 30             | 160            |
| Bis(2-chloroethoxy)methane   | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 50           | 33             | 184            |
| Bis(2-chloroethyl)ether      | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.7           | 66.8                        | 5.5  | 50           | 12             | 158            |
| Bis (2-chloroisopropyl)ether | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.1           | 64.4                        | 3.2  | 50           | 20             | 160            |
| Bis(2-ethylhexyl)phthalate   | 25.0                  | 16.1          | 64.4                       | 25.0                   | 17.0           | 68.0                        | 5.4  | 50           | 10             | 158            |
| Butyl benzyl phthalate       | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.0           | 68.0                        | 4.2  | 50           | 30             | 160            |
| Carbazole                    | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 30             | 150            |
| Chrysene                     | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.0           | 64.0                        | 6.5  | 50           | 17             | 168            |
| Dibenz(a,h)anthracene        | 25.0                  | 15.5          | 62.0                       | 25.0                   | 15.7           | 62.8                        | 1.3  | 50           | 30             | 160            |
| Dibenzofuran                 | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.4           | 65.6                        | 4.4  | 50           | 30             | 150            |
| Diethyl phthalate            | 25.0                  | 16.0          | 64.0                       | 25.0                   | 17.1           | 68.4                        | 6.6  | 50           | 30             | 160            |
| Dimethyl phthalate           | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.8           | 67.2                        | 6.8  | 50           | 30             | 160            |
| Di-n-butyl phthalate         | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.1           | 68.4                        | 3.0  | 50           | 30             | 160            |
| Di-n-octyl phthalate         | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.0           | 68.0                        | 4.8  | 50           | 20             | 150            |
| Fluoranthene                 | 25.0                  | 15.9          | 63.6                       | 25.0                   | 16.3           | 65.2                        | 2.5  | 50           | 26             | 137            |
| Fluorene                     | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.3           | 65.2                        | 5.7  | 50           | 30             | 150            |
| Hexachlorobenzene            | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.6           | 66.4                        | 7.5  | 50           | 20             | 150            |
| Hexachlorobutadiene          | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 20             | 140            |
| Hexachlorocyclopentadiene    | 25.0                  | 17.2          | 68.8                       | 25.0                   | 19.1           | 76.4                        | 10.5 | 50           | 10             | 150            |
| Hexachloroethane             | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.3           | 65.2                        | 8.3  | 50           | 14             | 120            |
| Indeno(1,2,3-cd)pyrene       | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.5           | 70.0                        | 7.1  | 50           | 30             | 160            |
| Isophorone                   | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.3           | 69.2                        | 6.6  | 50           | 21             | 196            |
| Naphthalene                  | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.2           | 64.8                        | 5.1  | 50           | 21             | 133            |
| Nitrobenzene                 | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.0           | 64.0                        | 4.5  | 50           | 20             | 160            |
| N-Nitrosodi-n-propylamine    | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.4           | 61.6                        | 1.3  | 38           | 30             | 160            |
| N-Nitrosodiphenylamine       | 50.0                  | 38.0          | 76.0                       | 50.0                   | 40.4           | 80.8                        | 6.1  | 50           | 30             | 150            |
| Pentachlorophenol            | 25.0                  | 11.5          | 46.0                       | 25.0                   | 12.8           | 51.2                        | 10.7 | 50           | 14             | 176            |
| Phenanthrene                 | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.1           | 64.4                        | 5.1  | 50           | 10             | 140            |
| Phenol                       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 42           | 40             | 132            |
| Pyrene                       | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.6           | 66.4                        | 4.9  | 38           | 30             | 150            |
| Pyridine                     | 50.0                  | 27.0          | 54.0                       | 50.0                   | 29.4           | 58.8                        | 8.5  | 50           | 10             | 150            |
| 2-Methylphenol               | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.2           | 64.8                        | 3.1  | 50           | 30             | 160            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 19

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

## Fracmaster BJ Service,#128125

Analysis: Method: Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040323

Lab Batch ID:

89412

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units:

ug/L

Analysis Date:

04/17/2009 10:42

Analyst: GY

Preparation Date: 04/13/2009 8:15

Prep By:

N M Method SW3510C

| Analyte                    | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 3 & 4-Methylphenol         | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.2           | 68.8                        | 3.6 | 50           | 10             | 160            |
| Surr: 2,4,6-Tribromophenol | 75.0                  | 61.1          | 81.5                       | 75.0                   | 60.8           | 81.1                        | 0.5 | 30           | 10             | 123            |
| Surr: 2-Fluorobiphenyl     | 50.0                  | 28.6          | 57.2                       | 50.0                   | 29.5           | 59.0                        | 3.1 | 30           | 23             | 116            |
| Surr: 2-Fluorophenol       | 75.0                  | 50.0          | 66.7                       | 75.0                   | 50.8           | 67.7                        | 1.6 | 30           | 16             | 110            |
| Surr: Nitrobenzene-d5      | 50.0                  | 29.0          | 58.0                       | 50.0                   | 30.0           | 60.0                        | 3.4 | 30           | 21             | 114            |
| Surr: Phenol-d5            | 75.0                  | 43.1          | 57.5                       | 75.0                   | 44.2           | 58.9                        | 2.5 | 30           | 10             | 110            |
| Surr: Terphenyl-d14        | 50.0                  | 28.4          | 56.8                       | 50.0                   | 28.7           | 57.4                        | 1.1 | 30           | 22             | 141            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 20

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



04/14/2009 14:10

### **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

## Fracmaster BJ Service,#128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040323

Lab Batch ID:

R270264

## Method Blank

RunID: Q\_090414

Analysis Date:

Q\_090414A-4985214

Units: ug

ug/L JC

Lab Sample ID

Client Sample ID

09040323-01A 09040323-02A

Samples in Analytical Batch:

MW-5

09040323-03A

TB-4-9-09 FB-4-9-09

| Preparation Date: | 04/14/2009 14:10 |
|-------------------|------------------|
|                   |                  |

Analyst: Prep By:

Method

| Analyte                     | Result   | Rep Limit |
|-----------------------------|----------|-----------|
| 1,1,1,2-Tetrachloroethane   | ND       | 5.0       |
| 1,1,1-Trichloroethane       | ND       | 5.0       |
| 1,1,2,2-Tetrachloroethane   | ND       | 5.0       |
| 1,1,2-Trichloroethane       | ND       | 5.0       |
| 1,1-Dichloroethane          | ND       | 5.0       |
| 1,1-Dichloroethene          | ND       | 5.0       |
| 1,1-Dichloropropene         | ND       | 5.0       |
| 1,2,3-Trichlorobenzene      | ND       | 5.0       |
| 1,2,3-Trichloropropane      | ND       | 5.0       |
| 1,2,4-Trichlorobenzene      | ND       | 5.0       |
| 1,2,4-Trimethylbenzene      | ND       | 5.0       |
| 1,2-Dibromo-3-chloropropane | ND       | 5.0       |
| 1.2-Dibromoethane           | ND       | 5.0       |
| 1,2-Dichlorobenzene         | ND       | 5.0       |
| 1,2-Dichloroethane          | ND       | 5.0       |
| 1,2-Dichloropropane         | ND       |           |
| 1,3,5-Trimethylbenzene      | ND       |           |
| 1,3-Dichlorobenzene         | ND       |           |
| <del></del>                 | ND       |           |
| 1,3-Dichloropropane         |          |           |
| 1,4-Dichlorobenzene         | ND<br>ND |           |
| 2,2-Dichloropropane         |          |           |
| 2-Butanone                  | ND       |           |
| 2-Chloroethyl vinyl ether   | ND       |           |
| 2-Chlorotoluene             | ND<br>ND |           |
| 2-Hexanone                  | ND       |           |
| 4-Chlorotoluene             | ND       |           |
| 4-Isopropyltoluene          | ND       |           |
| 4-Methyl-2-pentanone        | ND       |           |
| Acetone                     | ND       |           |
| Acrylonitrile               | ND       | 1         |
| Benzene                     | ND       |           |
| Bromobenzene                | ND ND    |           |
| Bromochloromethane          | ND       |           |
| Bromodichloromethane        | ND       |           |
| Bromoform                   | ND       |           |
| Bromomethane                | ND       |           |
| Carbon disulfide            | ND       |           |
| Carbon tetrachloride        | ND       |           |
| Chlorobenzene               | ND       |           |
| Chloroethane                | ND       |           |
| Chloroform                  | ND       |           |
| Chloromethane               | ND       |           |
| Dibromochloromethane        | ND       | 5.0       |
| Dibromomethane              | ND.      | -         |
| Dichlorodifluoromethane     | ND       | 10        |
| Ethylbenzene                | ND       | 5.0       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 21

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

.........

WorkOrder:

09040323

Lab Batch ID:

R270264

## Method Blank

RunID: Q\_0

Q\_090414A-4985214

Units:

ug/L

Analysis Date: 04/14/2

04/14/2009 14:10

Analyst:

JC

Preparation Date: 04/14/2009 14:10

Prep By:

Method

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND.    | 5.0       |
| Toluene                     | _ ND   | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | 10        |
| Vinyl chloride              | ND.    | 2.0       |
| cis-1,2-Dichloroethene      | ND.    | 5.0       |
| cis-1,3-Dichloropropene     | ND     | 5.0       |
| m,p-Xylene                  | ND.    | 5.0       |
| o-Xylene                    | ND.    | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND ND  | 5.0       |
| Xylenes,Total               | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 98.0   | 65-111    |
| Surr: 4-Bromofluorobenzene  | 108.0  | 87-120    |
| Surr: Toluene-d8            | 92.0   | 88-116    |

## Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

Prep By:

ug/L

Analysis Date: Preparation Date:

04/14/2009 13:43 04/14/2009 13:43 Analyst: JC

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 19.0   | 95.0                | 71             | 128            |
| 1,1,1-Trichloroethane     | 20.0           | 20.0   | 100                 | 61             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 18.0   | 90.0                | 60             | 133            |
| 1,1,2-Trichloroethane     | 20.0           | 18.0   | 90.0                | 77             | 127            |
| 1,1-Dichloroethane        | 20.0           | 20.0   | 100                 | 68             | 132            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 22

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B

Fracmaster BJ Service,#128125

WorkOrder:

09040323

Lab Batch ID:

R270264

## Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

ug/L

Analysis Date:

04/14/2009 13:43

Analyst: JC

Preparation Date: 04/14/2009 13:43

Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 22.0   | 110                 | 65             | 134            |
| 1,1-Dichloropropene         | 20.0           | 18.0   | 90.0                | 68             | 126            |
| 1,2,3-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 36             | 154            |
| 1,2,3-Trichloropropane      | 20.0           | 19.0   | 95.0                | 38             | 153            |
| 1,2,4-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 69             | 144            |
| 1,2,4-Trimethylbenzene      | 20.0           | 14.0   | 70.0                | 64             | 12             |
| 1,2-Dibromo-3-chloropropane | 20.0           | 14.0   | 70.0                | 44             | 14             |
| 1,2-Dibromoethane           | 20.0           | 19.0   | 95.0                | 75             | 12             |
| 1,2-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 68             | 12             |
| 1,2-Dichloroethane          | 20.0           | 18.0   | 90.0                | 61             | 13             |
| 1,2-Dichloropropane         | 20.0           | 18.0   | 90.0                | 76             | 12             |
| 1,3,5-Trimethylbenzene      | 20.0           | 14.0   | 70.0                | 61             | 12             |
| 1,3-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 68             | 12             |
| 1,3-Dichloropropane         | 20.0           | 17.0   | 85.0                | 76             | 12             |
| 1,4-Dichlorobenzene         | 20.0           | 15.0   | 75.0                | 68             | 12             |
| 2,2-Dichloropropane         | 20.0           | 19.0   | 95.0                | 42             | 14             |
| 2-Butanone                  | 20.0           | 20.0   | 100                 | 22             | 18             |
| 2-Chloroethyl vinyl ether   | 20.0           | 18.0   | 90.0                | 10             | 17             |
| 2-Chlorotoluene             | 20.0           | 15.0   | 75.0                | 64             | 13             |
| 2-Hexanone                  | 20.0           | 16.0   | 80.0                | 31             | 17             |
| 4-Chlorotoluene             | 20.0           | 15.0   | 75.0                | 61             | 13             |
| 4-Isopropyltoluene          | 20.0           | 14.0   | 70.0                | 63             | 13             |
| 4-Methyl-2-pentanone        | 20.0           | 16.0   | 80.0                | 10             | 15             |
| Acetone                     | 20.0           | 25.0   | 125                 | 10             | 20             |
| Acrylonitrile               | 20.0           | 20.0   | 100                 | 54             | 15             |
| Benzene                     | 20.0           | 18.0   | 90.0                | 74             | 12             |
| Bromobenzene                | 20.0           | 15.0   | 75.0                | 68             | 12             |
| Bromochloromethane          | 20.0           | 21.0   | 105                 | 71             | 12             |
| Bromodichloromethane        | 20.0           | 19.0   | 95.0                | 72             | 12             |
| Bromoform                   | 20.0           | 19.0   | 95.0                | 81             | 13             |
| Bromomethane                | 20.0           | 21.0   | 105                 | 53             | 13             |
| Carbon disulfide            | 20.0           | 27.0   | 135                 | 41             | 14             |
| Carbon tetrachloride        | 20.0           | 21.0   | 105                 | 59             | 14             |
| Chlorobenzene               | 20.0           | 18.0   | 90.0                | 75             |                |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 23

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service,#128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040323

Lab Batch ID:

R270264

## Laboratory Control Sample (LCS)

RunID:

Q 090414A-4985213

Units:

ug/L

Analysis Date:

04/14/2009 13:43

Analyst:

JC

Preparation Date: 04/14/2009 13:43

Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 20.0   | 100                 | 60             | 134            |
| Chloroform                  | 20.0           | 20.0   | 100                 | 71             | 127            |
| Chloromethane               | 20.0           | 16.0   | 80.0                | 50             | 139            |
| Dibromochloromethane        | 20.0           | 18.0   | 90.0                | 65             | 130            |
| Dibromomethane              | 20.0           | 20.0   | 100                 | 79             | 124            |
| Dichlorodifluoromethane     | 20.0           | 17.0   | 85.0                | 22             | 162            |
| Ethylbenzene                | 20.0           | 17.0   | 85.0                | 72             | 127            |
| Hexachlorobutadiene         | 20.0           | 16.0   | 80.0                | 45             | 152            |
| Isopropylbenzene            | 20.0           | 15.0   | 75.0                | 58             | 130            |
| Methyl tert-butyl ether     | 40.0           | 40.0   | 100                 | 63             | 123            |
| Methylene chloride          | 20.0           | 21.0   | 105                 | 61             | 135            |
| Naphthalene                 | 20.0           | 16.0   | 80.0                | 33             | 148            |
| n-Butylbenzene              | 20.0           | 14.0   | 70.0                | 62             | 136            |
| n-Propylbenzene             | 20.0           | 14.0   | 70.0                | 57             | 131            |
| sec-Butylbenzene            | 20.0           | 14.0   | 70.0                | 63             | 131            |
| Styrene                     | 20.0           | 17.0   | 85.0                | 69             | 120            |
| tert-Butylbenzene           | 20.0           | 14.0   | 70.0                | 59             | 131            |
| Tetrachloroethene           | 20.0           | 21.0   | 105                 | 45             | 173            |
| Toluene                     | 20.0           | 17.0   | 85.0                | 74             | 126            |
| Trichloroethene             | 20.0           | 20.0   | 100                 | 79             | 131            |
| Trichlorofluoromethane      | 20.0           | 23.0   | 115                 | 49             | 153            |
| Vinyl acetate               | 20.0           | 16.0   | 80.0                | 10             | 167            |
| Vinyl chloride              | 20.0           | 20.0   | 100                 | 51             | 148            |
| cis-1,2-Dichloroethene      | 20.0           | 20.0   | 100                 | 71             | 128            |
| cis-1,3-Dichloropropene     | 20.0           | 17.0   | 85.0                | 67             | 128            |
| m,p-Xylene                  | 40.0           | 35.0   | 87.5                | 71             | 129            |
| o-Xylene                    | 20.0           | 18.0   | 90.0                | 74             | 130            |
| trans-1,2-Dichloroethene    | 20.0           | 21.0   | 105                 | 66             | 128            |
| trans-1,3-Dichloropropene   | 20.0           | 16.0   | 80.0                | 60             | 128            |
| 1,2-Dichloroethene (total)  | 40             | 41     | 100                 | 66             | 128            |
| Xylenes,Total               | 60             | 53     | 88                  | 71             | 130            |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 48     | 96.0                | 65             | 111            |
| Surr: 4-Bromofluorobenzene  | 50.0           | 56     | 112                 | 87             | 120            |
| Surr: Toluene-d8            | 50.0           | 46     | 92.0                | 88             | 116            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 24

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service.#128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040323

Lab Batch ID:

R270264

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

RunID:

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst: JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 68           | 124           |
| 1,1,1-Trichloroethane       | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 69           | 123           |
| 1,1,2,2-Tetrachloroethane   | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 69           | 130           |
| 1,1,2-Trichloroethane       | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 75           | 126           |
| 1,1-Dichloroethane          | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 65           | 129           |
| 1,1-Dichloroethene          | ND               | 20                   | 23.0         | 115              | 20                    | 23.0          | 115               | 0    | 22           | 61           | 139           |
| 1,1-Dichloropropene         | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 69           | 121           |
| 1,2,3-Trichlorobenzene      | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 53           | 127           |
| 1,2,3-Trichloropropane      | · ND             | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 79           | 124           |
| 1,2,4-Trichlorobenzene      | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 20           | 58           | 118           |
| 1,2,4-Trimethylbenzene      | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 43           | 132           |
| 1,2-Dibromo-3-chloropropane | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 20           | 46           | 131           |
| 1,2-Dibromoethane           | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 76           | 122           |
| 1,2-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 74           | 110           |
| 1,2-Dichloroethane          | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 60           | 129           |
| 1,2-Dichloropropane         | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 76           | 116           |
| 1,3,5-Trimethylbenzene      | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 20           | 51           | 121           |
| 1,3-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 71           | 110           |
| 1,3-Dichloropropane         | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 20           | 80           | 119           |
| 1,4-Dichlorobenzene         | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 69           | 110           |
| 2,2-Dichloropropane         | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 52           | 122           |
| 2-Butanone                  | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 10           | 133           |
| 2-Chloroethyl vinyl ether   | ND               | 20                   | 0            | 0 *              | 20                    | 0             | 0 *               | 0    | 20           | 10           | 182           |
| 2-Chlorotoluene             | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 69           | 112           |
| 2-Hexanone                  | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 10           | 163           |
| 4-Chlorotoluene             | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 37           | 110           |
| 4-Isopropyltoluene          | ND.              | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 65           | 116           |
| 4-Methyl-2-pentanone        | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 10           | 103           |
| Acetone                     | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 10           | 160           |
| Acrylonitrile               | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 45           | 155           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 25

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service,#128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040323

Lab Batch ID:

R270264

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

RunID:

Q\_090414A-4985222

Units: u

ug/L

Analysis Date:

04/14/2009 17:46

Analyst: JC

RPD MS MS % MSD MSD % RPD Analyte Sample MS MSD Low High Spike Result Limit Result Recovery Spike Result Recovery Limit Limit Added Added ND 21.0 100 20 105 20 20.0 4.88 22 70 124 Benzene ND 20 17.0 85.0 20 72 Bromobenzene 20 17.0 85.0 0 111 Bromochloromethane ND 20 25.0 125 20 24.0 120 4.08 20 73 126 ND 20 20.0 20 90.0 10.5 68 125 Bromodichloromethane 100 18.0 20 Bromoform ND 20 16.0 80.0 20 15.0 75.0 6.45 20 44 132 ND 20 23.0 115 20 21.0 105 9.09 20 50 140 Bromomethane ND 20 21.0 105 20 20.0 100 4.88 20 46 143 Carbon disulfide ND 20 20.0 100 20 20.0 100 20 66 126 Carbon tetrachloride 0 ND 20 21.0 105 20 20.0 100 4.88 21 68 123 Chlorobenzene Chloroethane ND 20 22.0 110 20 21.0 105 4.65 20 59 134 ND 20 21.0 20 100 Chloroform 105 20.0 4.88 20 68 127 ND 20 20 85.0 18.0 90.0 17.0 5 71 20 51 137 Chloromethane ND Dibromochloromethane 20 18.0 90.0 20 17.0 85.0 5.71 20 58 131 Dibromomethane ND 20 22.0 110 20 20.0 100 9.52 20 82 123 ND 20 16.0 80.0 85.0 6.06 35 Dichlorodifluoromethane 20 17.0 20 143 Ethylbenzene ND 20 20.0 100 20 19.0 95.0 5.13 20 76 122 Hexachlorobutadiene ND 20 18.0 90.0 20 17.0 85.0 5.71 20 43 137 20 17.0 57 ND 85.0 Isopropylbenzene 20 16.0 80.0 6.06 20 124 ND 40 43.0 2.35 Methyl tert-butyl ether 108 40 42.0 105 20 10 200 Methylene chloride ND 20 23.0 4.44 115 20 22.0 110 70 134 20 Naphthalene ND 20 16.0 80.0 20 16.0 80.0 0 20 42 140 ND 20 80.0 \* n-Butylbenzene 16.0 20 16.0 80.0 \* 0 20 82 112 ND 20 16.0 20 73 80.0 16.0 0 20 108 n-Propylbenzene 80.0 ND 20 sec-Butylbenzene 17.0 85.0 20 16.0 80.0 6.06 20 76 110 Styrene ND 20 18.0 90.0 20 17.0 85.0 5.71 20 58 152 ND 20 15.0 75.0 20 75.0 66 tert-Butylbenzene 15.0 0 20 120 ND 20 25.0 20 71 Tetrachloroethene 125 25.0 125 0 20 130 ND 20 20.0 Toluene 100 20 20.0 100 0 24 80 117 ND 20 Trichloroethene 23.0 115 20 22.0 110 4.44 21 82 121 20 Trichlorofluoromethane ND 21.0 105 20 21.0 105 0 20 74 138 20 Vinyl acetate ND 18.0 90.0 20 18.0 90.0 n 20 66 135 Vinyl chloride ND 20 20.0 100 20 19.0 95.0 5.13 20 45 143

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 26

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service.#128125

Analysis: Method:

Volatile Organics by Method 8260B

RunID:

SW8260B

WorkOrder:

09040323

Lab Batch ID:

R270264

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

-

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst: JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 20                   | 25.0         | 125              | 20                    | 23.0          | 115               | 8.33 | 20           | 67           | 132           |
| cis-1,3-Dichloropropene     | ND               | 20                   | 18.0         | 90.0             | 20                    | 16.0          | 80.0              | 11.8 | 20           | 67           | 116           |
| m,p-Xylene                  | ND               | 40                   | 40.0         | 100              | 40                    | 38.0          | 95.0              | 5.13 | 20           | 69           | 127           |
| o-Xylene                    | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 84           | 114           |
| trans-1,2-Dichloroethene    | ND               | 20                   | 24.0         | 120              | 20                    | 23.0          | 115               | 4.26 | 20           | 68           | 131           |
| trans-1,3-Dichloropropene   | ND               | . 20                 | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 56           | 131           |
| 1,2-Dichloroethene (total)  | ND               | 40                   | 49           | 120              | 40                    | 46            | 120               | 6.3  | 20           | 67           | 132           |
| Xylenes,Total               | ND               | 60                   | 61           | 100              | 60                    | 58            | 97                | 5.0  | 20           | 69           | 127           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 49           | 98.0             | 50                    | 49.0          | 98.0              | 0    | 30           | 65           | 111           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 53           | 106              | 50                    | 54.0          | 108               | 1.87 | 30           | 87           | 120           |
| Surr: Toluene-d8            | ND               | 50                   | 47           | 94.0             | 50                    | 48.0          | 96.0              | 2.11 | 30           | 88           | 116           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated Value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 27

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis: Method:

RunID:

Ion Chromatography

E300.0

IC2\_090410A-4982576

WorkOrder:

Samples in Analytical Batch:

09040323

Lab Batch ID:

R270143

Method Blank

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

04/10/2009 14:46

Units:

09040323-01F

MW-5

BDG Analyst:

| Analyte                  | Result | Rep Limit |
|--------------------------|--------|-----------|
| Nitrogen, Nitrate (As N) | ND     | 0.50      |

## Laboratory Control Sample (LCS)

RunID:

IC2\_090410A-4982577

Units:

mg/L

Analysis Date:

04/10/2009 15:04

Analyst:

BDG

| Analyte                 | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-------------------------|----------------|--------|---------------------|----------------|----------------|
| Nitrogen,Nitrate (As N) | 10.00          | 10.48  | 104.8               | 90             | 110            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040324-01

RunID:

IC2\_090410A-4982583

Units:

mg/L

Analysis Date:

04/10/2009 17:30

BDG Analyst:

| Analyte                  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|--------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Nitrogen, Nitrate (As N) | 11.59            | 10                   | 24.43        | 128.4 *          | 10                    | 24.35         | 127.6 *           | 0.3075 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 28

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

# Fracmaster BJ Service,#128125

Analysis:

Alkalinity (as CaCO3), Total

Method:

E310.1

WorkOrder:

09040323

Lab Batch ID:

R270144

Method Blank

RunID: WET 090413F-4982657

Units:

mg/L

PAC

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/13/2009 11:20

Analyst:

09040323-01F

MW-5

| Analyte                      | Result | Rep Limit |
|------------------------------|--------|-----------|
| Alkalinity, Total (As CaCO3) | ND     | 2.0       |

## Laboratory Control Sample (LCS)

RunID:

WET 090413F-4982659

Units:

mg/L

Analysis Date:

04/13/2009 11:20

Analyst:

PAC

| Analyte                      | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|------------------------------|----------------|--------|---------------------|----------------|----------------|
| Alkalinity, Total (As CaCO3) | 38.70          | 39.00  | 100.8               | 90             | 110            |

## Sample Duplicate

Original Sample:

09040278-01

WET\_090413F-4982660

Units:

mg/L PAC

175

0.573

20

RunID: Analysis Date:

Alkalinity, Total (As CaCO3)

04/13/2009 11:20

Analyst:

Analyte Sample DUP RPD RPD Result Limit Result

174

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank J - Estimated value between MDL and PQL

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 29

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

## Fracmaster BJ Service,#128125

Analysis:

Ion Chromatography

Method:

E300.0

WorkOrder:

Samples in Analytical Batch:

09040323

Lab Batch ID:

R270297

Method Blank

RuniD: IC

IC2\_090414D-4985092

Units:

mg/L BDG

Lab Sample ID

Client Sample ID

Analysis Date:

04/14/2009 10:38

Analyst:

09040323-01F

MW-5

|          | Analyte | Result | Rep Limit |
|----------|---------|--------|-----------|
| Chloride |         | N(     | 0.50      |
| Sulfate  |         | NI     | 0.50      |

## Laboratory Control Sample (LCS)

RunID:

IC2 090414D-4985093

Units:

mg/L

Analysis Date:

04/14/2009 10:55

Analyst:

BDG

| Analyte  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------|----------------|--------|---------------------|----------------|----------------|
| Chloride | 10.00          | 10.52  | 105.2               | 85             | 115            |
| Sulfate  | 10.00          | 10.57  | 105.7               | 85             | 115            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09040254-01

IC2\_090414D-4985097

Units:

mg/L

Analysis Date:

04/14/2009 12:05

Analyst:

BDG

| Analyte  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Chloride | ND               | 10                   | 10.68        | 106.8            | 10                    | 10.66         | 106.6             | 0.2155 | 20           | 80           | 120           |
| Sulfate  | ND               | 10                   | 11.07        | 110.7            | 10                    | 10.07         | 100.7             | 9.423  | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040323 Page 30

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



# Sample Receipt Checklist And Chain of Custody





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Sample Receipt Checklist

| Workorder:         09040323           Date and Time Received:         4/10/2009 10:00:00 AM           Temperature:         3.5°C |                       | Received By: Carrier name: Chilled by: | BF<br>FedEx<br>Water Ice |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|--------------------------|
| 1. Shipping container/cooler in good condition?                                                                                  | Yes 🗸                 | No 🗔                                   | Not Present              |
| 2. Custody seals intact on shippping container/cooler?                                                                           | Yes 🗸                 | No 🗌                                   | Not Present              |
| 3. Custody seals intact on sample bottles?                                                                                       | Yes                   | No 🗀                                   | Not Present              |
| 4. Chain of custody present?                                                                                                     | Yes 🗹                 | No 🗌                                   |                          |
| 5. Chain of custody signed when relinquished and received?                                                                       | Yes 🗸                 | No 🗌                                   |                          |
| 6. Chain of custody agrees with sample labels?                                                                                   | Yes 🔽                 | No 🗌                                   |                          |
| 7. Samples in proper container/bottle?                                                                                           | Yes 🗸                 | No 🗌                                   |                          |
| 8. Sample containers intact?                                                                                                     | Yes 🔽                 | No 🗌                                   |                          |
| 9. Sufficient sample volume for indicated test?                                                                                  | Yes 🔽                 | No 🗌                                   |                          |
| 10. All samples received within holding time?                                                                                    | Yes 🔽                 | No 🗌                                   |                          |
| 11. Container/Temp Blank temperature in compliance?                                                                              | Yes 🗹                 | No 🗆                                   |                          |
| 12. Water - VOA vials have zero headspace?                                                                                       | Yes                   | No 🗌 VOA                               | Vials Not Present 🗹      |
| 13. Water - Preservation checked upon receipt (except VOA*)?                                                                     | Yes 🗌                 | No 🗆                                   | Not Applicable           |
| *VOA Preservation Checked After Sample Analysis                                                                                  |                       |                                        |                          |
| SPL Representative: Rodriguez, Alisha C.  Client Name Contacted: Rick Rexroad w/Brown & Caldwell                                 | Contact Date &        | & Time: 4/9/2009 2:53:                 | 00 PM                    |
| Non Conformance<br>Issues:                                                                                                       |                       |                                        |                          |
| Client Instructions: Client emailed back at 13:31 on Monday 04/13/0                                                              | 09 requesting that th | e extra vials be analyze               | d for Methane only       |



|                                                                | , and                                                   |                     |                                                                  |                     |                                     | SPL           | SPL Workorder No. | ler No.   |                 |                                       | 322                                       | 2332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|----------------------------------------------------------------|---------------------------------------------------------|---------------------|------------------------------------------------------------------|---------------------|-------------------------------------|---------------|-------------------|-----------|-----------------|---------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Analysis Requ                                                  | SFL, Inc.<br>Analysis Request & Chain of Custody Record | ırd                 |                                                                  |                     |                                     | 0             | 106               | 99040 333 | 23              | page                                  | 7                                         | Jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /          |
| Chent Name: Drown and                                          | aldwell                                                 |                     |                                                                  | matrix bottle       | ottle size                          | pres.         |                   |           | Regu            | Requested                             | 1 St                                      | gaalysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -          |
| Address 1415 Louisiand<br>City Housfor                         | # s                                                     | Zip STT             | 180                                                              | is=A 1<br>orlio=X   | lsiv                                |               | <u> </u>          | (9/       | 5/0             | , y                                   | ן<br>נוינוי                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Phone Fax: 713-10-112                                          | 2 713-308-3                                             | <i>X</i> 36         | Bringalk                                                         |                     | ч10=х                               | лек<br>103    | iners             | 128       | 8)              | 1/-                                   | 0 <b>11</b> 0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Project Name/No.: 128125                                       | By Services                                             | 1                   | 161                                                              |                     | 20 <del> </del>  =                  | X=0{}<br>5=HV | Contai            | 3)        | म/o             | DP.                                   | fr.                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Site Name: Free WASACT                                         | I VY                                                    |                     |                                                                  |                     | [=9]                                | 70            | ) 10 1            | 5)<br>16  | 1/9             |                                       | 1/3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·-·        |
| Invoice To: K Key CO                                           | 4                                                       | PIE/13-759-         | 54-0999                                                          |                     | salg=<br>salg=<br>stil [:<br>sos    | H52<br>HCI    | əquir             | 0/1       | -) <del>(</del> | 7/7/1                                 | P/                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| SAMPLE ID                                                      | DATE                                                    |                     | comp grab                                                        |                     | =1                                  | =ε<br>=I      | ıN<br>VI          | 5         | 1               | , Y                                   | 7                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Mu)-5                                                          | 4-9.09                                                  | 5480                | ×                                                                | M                   | AP 4dulu                            | ant?          | 14/2              | メ         | X               | メフ                                    | 之<br>又                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| TB-4-9-03                                                      | į                                                       | 5160                | ×                                                                | 3                   | J W                                 | ,<br>->       | X                 |           |                 |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 1-6-4-9-                                                       | 7 6                                                     | 1660                | ×                                                                | 3.                  | 1 40                                | >             | 3<br>X            | . 7       |                 |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                |                                                         |                     |                                                                  |                     |                                     |               |                   |           |                 |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                |                                                         |                     |                                                                  |                     |                                     |               |                   |           | 180°            |                                       | Mark I                                    | 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|                                                                |                                                         |                     |                                                                  |                     |                                     |               | -                 |           |                 |                                       |                                           | ar aca, esci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
|                                                                |                                                         |                     |                                                                  |                     |                                     |               |                   | 120       |                 |                                       |                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|                                                                |                                                         |                     |                                                                  |                     |                                     | -             |                   |           |                 | _                                     | _                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|                                                                |                                                         |                     |                                                                  |                     |                                     |               | -                 |           |                 | -                                     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Client/Consultant Remarks:                                     |                                                         | Laboratory remarks: | remarks:                                                         |                     |                                     |               |                   |           |                 | Intact?<br>Ice?<br>Temn               | ct;                                       | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ZZ         |
| Requested TAT Spe                                              | Special Reporting Requirements Results:                 | ts Results: Fax     | Email PDF                                                        | <b>7</b>            | Special Detection Limits (specify): | tection I     | imits (s)         | ecify):   |                 |                                       | <u>a</u>                                  | ) \$ (i) \$ (ii) \$ (ii) \$ (iii) | (initial); |
| I Business Day Contract Sta                                    |                                                         | Level 4 OC TX TRRP  |                                                                  | LA RECAP            |                                     |               |                   |           |                 |                                       | -                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Standard                                                       | dores                                                   | May                 | date                                                             | 60/6                | 20 2 Junio                          | ä             | 2. Received by:   | pk:       |                 |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| ness Days                                                      | 3. Relinquished by:                                     |                     | date                                                             |                     | time                                | 4.            | 4. Received by:   | by:       |                 |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| Other 5. R Rush TAT requires prior notice                      | 5. Relinquished by:                                     |                     | date /                                                           | 10/03               | time<br>10:03                       | 3/            | C. Received.      | Tab       | Laboratory:     | 19                                    | 7                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| <b>B880</b> Interchange Drive Houston, TX 77054 (713) 660-0901 | ive<br>50-0901                                          | Scott, LA           | 500 Ambassador Caffery Parkway<br>Scott, LA 70583 (337) 237-4775 | fery Par<br>237-477 | kway<br>5                           | -3            | į                 | averse    | 1459<br>City N  | 459 Hughes Drive<br>3, MI 49686 (231) | es Dri<br>86 (23                          | ☐ 459 Hughes Drive<br>Traverse City MI 49686 (231) 947-5777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 777        |

. .



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

# Certificate of Analysis Number:

# 09040326

| Report To:         |      | Project Name:    | Fracmaster BJ Service,#128125 |
|--------------------|------|------------------|-------------------------------|
| Brown & Caldwell   |      | Site:            | Hobbs NM                      |
| Rick Rexroad       |      | Site Address:    |                               |
| 1415 Louisiana     |      |                  |                               |
| Suite 2500         |      | PO Number:       |                               |
| Houston            |      | FO Number.       |                               |
| тх                 | •    | State:           | New Mexico                    |
| 77002-             |      | State Cert. No.: |                               |
| ph: (713) 759-0999 | fax: | Date Reported:   | 4/24/2009                     |

This Report Contains A Total Of 29 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Case Narrative for: Brown & Caldwell

# Certificate of Analysis Number: 09040326

| Report To:         |      | Project Name:     | Fracmaster BJ Service,#128125 |
|--------------------|------|-------------------|-------------------------------|
| Brown & Caldwell   |      | Site:             | Hobbs NM                      |
| Rick Rexroad       |      | Site Address:     |                               |
| 1415 Louisiana     |      |                   |                               |
| Suite 2500         |      | PO Number:        |                               |
| Houston            |      |                   |                               |
| тх                 |      | State:            | New Mexico                    |
| 77002-             |      | State Cert. No .: |                               |
| ph: (713) 759-0999 | fax: | Date Reported:    | 4/24/2009                     |

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

For Volatile Organics analysis (8260B), the results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID: 89427 for the Semivolatile Hydrocarbons analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID:89412 for the Semivolatile Organics analysis by SW 846 Method 8270C. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Somes V. Vicheare

09040326 Page 1

4/24/2009

Agnes V. Vicknair

Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Fracmaster BJ Service,#128125

# **Brown & Caldwell**

# **Certificate of Analysis Number:**

## 09040326

Report To:

Fax To:

Brown & Caldwell

**Rick Rexroad** 

1415 Louisiana **Suite 2500** 

Houston ΤX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Site:

Site Address:

Project Name:

PO Number:

State:

**New Mexico** 

State Cert. No.:

Date Reported:

4/24/2009

Hobbs NM

| Client Sample ID | Lab Sample ID | Matrix | Date Collected       | Date Received         | COCID  | HOLD |
|------------------|---------------|--------|----------------------|-----------------------|--------|------|
| ERB-4-8-09       | 09040326-01   | Water  | 4/8/2009 12:03:00 PM | 4/10/2009 10:00:00 AM | 322331 |      |
| ERB-4-9-09       | 09040326-02   | Water  | 4/9/2009 10:16:00 AM | 4/10/2009 10:00:00 AM | 322331 |      |

Ignes V. Vickeaire Agnes V. Vicknair

4/24/2009

Date

Project Manager

Kesavalu M. Bagawandoss Laboratory Director

Ted Yen Quality Assurance Officer



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-8-09

Collected: 04/08/2009 12:03

SPL Sample ID:

09040326-01

|  | Sit | te: | Нο | bbs | NM |
|--|-----|-----|----|-----|----|
|--|-----|-----|----|-----|----|

| Analyses/Method                | Result | QUAL | Re | p.Limit |     | Dil. Factor | Date Ana | lyzed  | Analyst    | Seq.#   |
|--------------------------------|--------|------|----|---------|-----|-------------|----------|--------|------------|---------|
| GASOLINE RANGE ORGANICS        |        |      |    |         | MCL | S           | W8015B   | Ur     | nits: mg/L |         |
| Gasoline Range Organics        | ND     |      |    | 0.1     |     | 1           | 04/13/09 | 18:44  | CLJ        | 4984676 |
| Surr: 1,4-Difluorobenzene      | 92.6   |      | %  | 60-155  |     | 1           | 04/13/09 | 18:44  | CLJ        | 4984676 |
| Surr: 4-Bromofluorobenzene     | 106    |      | %  | 50-158  |     | 1           | 04/13/09 | 18:44  | CLJ        | 4984676 |
| SEMIVOLATILE HYDROCARBO        | NS     |      |    |         | MCL | S'          | W8015B   | Ur     | nits: mg/L |         |
| Diesel Range Organics          | ND     |      | -  | 0.1     |     | 1           | 04/17/0  | 9 1:21 | NW         | 4987517 |
| Mineral Spirits Range Organics | ND     |      | _  | 0.1     |     | 1           | 04/17/0  | 9 1:21 | NW         | 4987517 |
| Surr: n-Pentacosane            | 59.6   |      | %  | 20-150  |     | 1           | 04/17/0  | 9 1:21 | NW         | 4987517 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 04/13/2009 14:10 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040326 Page 3 4/24/2009 11:17:26 AM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-8-09

Collected: 04/08/2009 12:03

SPL Sample ID:

09040326-01

| Site: Hobbs N | N | ١ | ١ |  |  |  |  |  |  | į |  |  | ١ | ١ |  |  |  |  | ĺ |  | į | į |  |  |  |  |  |  |  |  |  | ı | ١ | ١ | ١ | ١ | ١ | i | ì | į |  |  |  | ١ |  |  |  |  |  |  |  |  |  |  |  |  | ۱ |  | ì |  |  |  | ١ | ۱ | ١ | ď | ı | į |  | ĺ |  | ١ | ١ |  |  |  |  |  | ١ | ١ | ١ | ١ |  |  |  |  |  |  |  | ľ | ľ | l |  |  |  | ŀ | ١ | ١ | 1 |  | l |  | ١ | i | ١ | ١ | ١ |  |  |  | ĺ | ί | ĺ | ł |  | ۱ | ١ |  | • |  |  | ۱ | ı | ı | ı |  |  | ۱ | ١ | Į |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|---------------|---|---|---|--|--|--|--|--|--|---|--|--|---|---|--|--|--|--|---|--|---|---|--|--|--|--|--|--|--|--|--|---|---|---|---|---|---|---|---|---|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|---|--|---|--|--|--|---|---|---|---|---|---|--|---|--|---|---|--|--|--|--|--|---|---|---|---|--|--|--|--|--|--|--|---|---|---|--|--|--|---|---|---|---|--|---|--|---|---|---|---|---|--|--|--|---|---|---|---|--|---|---|--|---|--|--|---|---|---|---|--|--|---|---|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|
|---------------|---|---|---|--|--|--|--|--|--|---|--|--|---|---|--|--|--|--|---|--|---|---|--|--|--|--|--|--|--|--|--|---|---|---|---|---|---|---|---|---|--|--|--|---|--|--|--|--|--|--|--|--|--|--|--|--|---|--|---|--|--|--|---|---|---|---|---|---|--|---|--|---|---|--|--|--|--|--|---|---|---|---|--|--|--|--|--|--|--|---|---|---|--|--|--|---|---|---|---|--|---|--|---|---|---|---|---|--|--|--|---|---|---|---|--|---|---|--|---|--|--|---|---|---|---|--|--|---|---|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|

| Analyses/Method             | Result QU      | AL Rep.Limit | Dil. Factor | Date Analyzed  | Analyst  | Seq.#   |
|-----------------------------|----------------|--------------|-------------|----------------|----------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 82700 | 3            | MCL SV      | V8270C Uni     | ts: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 1,2-Dichlorobenzene         | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 1,2-Diphenylhydrazine       | ND             | 10           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 1,3-Dichlorobenzene         | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 1,4-Dichlorobenzene         | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2,4,5-Trichlorophenol       | ND             | 10           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2,4,6-Trichlorophenol       | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2,4-Dichlorophenol          | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2,4-Dimethylphenol          | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2,4-Dinitrophenol           | ND             | 25           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2,4-Dinitrotoluene          | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2,6-Dinitrotoluene          | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2-Chloronaphthalene         | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2-Chlorophenol              | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2-Methylnaphthalene         | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2-Nitroaniline              | ND             | 25           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 2-Nitrophenol               | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 3,3´-Dichlorobenzidine      | ND             | 10           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 3-Nitroaniline              | ND             | 25           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 4,6-Dinitro-2-methylphenol  | ND             | 25           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 4-Bromophenyl phenyl ether  | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 4-Chloro-3-methylphenol     | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 4-Chloroaniline             | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 4-Chlorophenyl phenyl ether | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 4-Nitroaniline              | ND             | 25           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| 4-Nitrophenol               | ND             | 25           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Acenaphthene                | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Acenaphthylene              | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Aniline                     | ND             | 5            | 11          | 04/17/09 18:13 | GY       | 4992377 |
| Anthracene                  | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Benz(a)anthracene           | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Benzo(a)pyrene              | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Benzo(b)fluoranthene        | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Benzo(g,h,i)perylene        | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Benzo(k)fluoranthene        | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Benzoic acid                | ND             | 25           | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Benzyl alcohol              | DD             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Bis(2-chloroethoxy)methane  | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |
| Bis(2-chloroethyl)ether     | ND             | 5            | 1           | 04/17/09 18:13 | GY       | 4992377 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

Mi - Matrix Interference

09040326 Page 4 4/24/2009 11:17:26 AM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-8-09

Collected: 04/08/2009 12:03

SPL Sample ID:

09040326-01

| Site: | н | lob | he  | N  | ı | 4 |
|-------|---|-----|-----|----|---|---|
| JILE. |   | UU  | us. | 14 | ш | ш |

|                             |        |      | Site | : nous  |             |                |         |         |
|-----------------------------|--------|------|------|---------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re   | o.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Bis(2-chloroisopropyl)ether | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Butyl benzyl phthalate      | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Carbazole                   | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Chrysene                    | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Dibenz(a,h)anthracene       | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Dibenzofuran                | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Diethyl phthalate           | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Dimethyl phthalate          | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Di-n-butyl phthalate        | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Di-n-octyl phthalate        | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Fluoranthene                | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Fluorene                    | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Hexachlorobenzene           | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Hexachlorobutadiene         | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Hexachlorocyclopentadiene   | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Hexachloroethane            | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Isophorone                  | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Naphthalene                 | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Nitrobenzene                | ND     | -    |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| N-Nitrosodi-n-propylamine   | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| N-Nitrosodiphenylamine      | ND     |      | ,    | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Pentachlorophenol           | ND     |      |      | 25      | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Phenanthrene                | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Phenol                      | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Pyrene                      | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Pyridine                    | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| 2-Methylphenol              | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| 3 & 4-Methylphenol          | ND     |      |      | 5       | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Surr: 2,4,6-Tribromophenol  | 106    |      | %    | 10-123  | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Surr: 2-Fluorobiphenyl      | 80.6   |      | %    | 23-116  | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Surr: 2-Fluorophenol        | 72.8   |      | %    | 16-110  | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Surr: Nitrobenzene-d5       | 81.6   |      | %    | 21-114  | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Surr: Phenol-d5             | 51.3   |      | %    | 10-110  | 1           | 04/17/09 18:13 | GY      | 4992377 |
| Surr: Terphenyl-d14         | 80.8   |      | %    | 22-141  | 1           | 04/17/09 18:13 | GY      | 4992377 |

| Prep Method | Prep Date       | Prep Initials | Prep Factor |
|-------------|-----------------|---------------|-------------|
| SW3510C     | 04/13/2009 8:15 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-8-09

Collected: 04/08/2009 12:03 SP

SPL Sample ID:

09040326-01

| Analyses/Method                | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq.#   |
|--------------------------------|------------|------|-----------|-------------|----------------|-----------|---------|
| <b>VOLATILE ORGANICS BY ME</b> | THOD 8260B |      |           | MCL SV      | V8260B Un      | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane      | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,1,1-Trichloroethane          | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,1,2,2-Tetrachloroethane      | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,1,2-Trichloroethane          | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,1-Dichloroethane             | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,1-Dichloroethene             | ND         |      | 5         | 1           | 04/14/09 22:46 | JC .      | 4990091 |
| 1,1-Dichloropropene            | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2,3-Trichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2,3-Trichloropropane         | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2,4-Trichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2,4-Trimethylbenzene         | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2-Dibromo-3-chloropropane    | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2-Dibromoethane              | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2-Dichlorobenzene            | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2-Dichloroethane             | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,2-Dichloropropane            | ND         |      | 5         | · 1         | 04/14/09 22:46 | JC        | 4990091 |
| 1,3,5-Trimethylbenzene         | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,3-Dichlorobenzene            | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,3-Dichloropropane            | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 1,4-Dichlorobenzene            | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 2,2-Dichloropropane            | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 2-Butanone                     | ND         |      | 20        | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 2-Chloroethyl vinyl ether      | ND J       |      | 10        | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 2-Chlorotoluene                | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 2-Hexanone                     | ND         |      | 10        | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 4-Chlorotoluene                | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 4-Isopropyltoluene             | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| 4-Methyl-2-pentanone           | ND         |      | 10        | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Acetone                        | ND         |      | 20        | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Acrylonitrile                  | ND         |      | 10        | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Benzene                        | ND         |      | 5         | 11          | 04/14/09 22:46 | JC        | 4990091 |
| Bromobenzene                   | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Bromochloromethane             | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Bromodichloromethane           | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Bromoform                      | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Bromomethane                   | ND         |      | 10        | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Carbon disulfide               | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Carbon tetrachloride           | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |
| Chlorobenzene                  | ND         |      | 5         | 1           | 04/14/09 22:46 | JC        | 4990091 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040326 Page 6 4/24/2009 11:17:26 AM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-8-09

Collected: 04/08/2009 12:03

SPL Sample ID:

09040326-01

|                             |        |      | Site | . поы   | os NM    |      |                |         |         |
|-----------------------------|--------|------|------|---------|----------|------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep  | o.Limit | Dil. Fac | ctor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |      | 10      | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Chloroform                  | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Chloromethane               | ND     |      |      | 10      | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Dibromochloromethane        | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Dibromomethane              | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Dichlorodifluoromethane     | ND     |      |      | 10      | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Ethylbenzene                | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Hexachlorobutadiene         | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Isopropylbenzene            | ND     |      | -    | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Methyl tert-butyl ether     | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Methylene chloride          | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Naphthalene                 | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| n-Butylbenzene              | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| n-Propylbenzene             | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| sec-Butylbenzene            | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Styrene                     | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| tert-Butylbenzene           | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Tetrachloroethene           | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Toluene                     | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Trichloroethene             | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Trichlorofluoromethane      | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Vinyl acetate               | ND     |      |      | 10      | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Vinyl chloride              | ND     |      |      | 2       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| cis-1,2-Dichloroethene      | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| cis-1,3-Dichloropropene     | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| m,p-Xylene                  | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| o-Xylene                    | ND.    |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| trans-1,2-Dichloroethene    | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| trans-1,3-Dichloropropene   | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| 1,2-Dichloroethene (total)  | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Xylenes,Total               | ND     |      |      | 5       | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Surr: 1,2-Dichloroethane-d4 | 100    |      | %    | 70-120  | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Surr: 4-Bromofluorobenzene  | 108    |      | %    | 75-120  | 1        |      | 04/14/09 22:46 | JC      | 4990091 |
| Surr: Toluene-d8            | 86.0   |      | %    | 85-120  | 1        |      | 04/14/09 22:46 | JC      | 4990091 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040326 Page 7 4/24/2009 11:17:27 AM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-9-09

Collected: 04/09/2009 10:16 SF

SPL Sample ID: 09

09040326-02

| Site: I | lobbs | NM |
|---------|-------|----|
|---------|-------|----|

| Analyses/Method                | Result | QUAL | Re | ep.Limit | D   | il. Facto | or Date Analy | zed   | Analyst    | Seq. #  |
|--------------------------------|--------|------|----|----------|-----|-----------|---------------|-------|------------|---------|
| GASOLINE RANGE ORGANICS        |        |      |    |          | MCL |           | SW8015B       | Ur    | nits: mg/L |         |
| Gasoline Range Organics        | ND     |      |    | 0.1      |     | 1         | 04/13/09 2    | 0:39  | CLJ        | 4984680 |
| Surr: 1,4-Difluorobenzene      | 92.3   |      | %  | 60-155   |     | 1         | 04/13/09 2    | 20:39 | CLJ        | 4984680 |
| Surr: 4-Bromofluorobenzene     | 105    |      | %  | 50-158   |     | 1         | 04/13/09 2    | 0:39  | CLJ        | 4984680 |
| SEMIVOLATILE HYDROCARBON       | S      |      |    |          | MCL |           | SW8015B       | Ur    | nits: mg/L |         |
| Diesel Range Organics          | 0.2    |      |    | 0.1      |     | 1         | 04/17/09      | 1:41  | NW         | 4987518 |
| Mineral Spirits Range Organics | ND     |      |    | 0.1      |     | 1         | 04/17/09      | 1:41  | NW         | 4987518 |
| Surr: n-Pentacosane            | 54.2   |      | %  | 20-150   |     | 1         | 04/17/09      | 1:41  | NW         | 4987518 |
|                                |        |      |    |          |     |           |               |       |            |         |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 04/13/2009 14:10 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040326 Page 8 4/24/2009 11:17:27 AM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-9-09

 09040326-02

| Site: | Hobbs | NM |
|-------|-------|----|
|-------|-------|----|

| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyze  | d Analyst       | Seq.#   |
|-----------------------------|----------------|-----------|-------------|---------------|-----------------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C L      | <br>Jnits: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 1,2-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 1,2-Diphenylhydrazine       | ND             | 10        | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 1,3-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 1,4-Dichlorobenzene         | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 2,4,5-Trichlorophenol       | ND             | 10        | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 2,4,6-Trichlorophenol       | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 2,4-Dichlorophenol          | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 2,4-Dimethylphenol          | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 2,4-Dinitrophenol           | ND             | 25        | 1           | 04/22/09 17:3 | 6 GY            | 4993770 |
| 2,4-Dinitrotoluene          | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 4993776 |
| 2,6-Dinitrotoluene          | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 2-Chloronaphthalene         | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 2-Chlorophenol              | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 2-Methylnaphthalene         | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 2-Nitroaniline              | ND             | 25        | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 2-Nitrophenol               | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 3,3´-Dichlorobenzidine      | ND             | 10        | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 3-Nitroaniline              | ND             | 25        | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 4,6-Dinitro-2-methylphenol  | ND             | 25        | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 4-Bromophenyl phenyl ether  | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 4-Chloro-3-methylphenol     | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 4-Chloroaniline             | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 4-Chlorophenyl phenyl ether | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 4-Nitroaniline              | ND             | 25        | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| 4-Nitrophenol               | ND             | 25        | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Acenaphthene                | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Acenaphthylene              | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Aniline                     | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Anthracene                  | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Benz(a)anthracene           | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Benzo(a)pyrene              | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Benzo(b)fluoranthene        | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Benzo(g,h,i)perylene        | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Benzo(k)fluoranthene        | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Benzoic acid                | ND             | 25        | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Benzyl alcohol              | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Bis(2-chloroethoxy)methane  | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |
| Bis(2-chloroethyl)ether     | ND             | 5         | 1           | 04/22/09 17:3 | 6 GY            | 499377  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-9-09

Collected: 04/09/2009 10:16 SPL Sample ID:

09040326-02

| Site: F | lobbs | NM |
|---------|-------|----|
|---------|-------|----|

|                             |        |             | Site: Hopps i | 14141       |                |         |         |
|-----------------------------|--------|-------------|---------------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL        | Rep.Limit     | Dit. Factor | Date Analyzed  | Analyst | Seq. #  |
| Bis(2-chloroisopropyl)ether | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Bis(2-ethylhexyl)phthalate  | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Butyl benzyl phthalate      | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Carbazole                   | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Chrysene                    | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Dibenz(a,h)anthracene       | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Dibenzofuran                | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Diethyl phthalate           | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Dimethyl phthalate          | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Di-n-butyl phthalate        | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Di-n-octyl phthalate        | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Fluoranthene                | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Fluorene                    | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Hexachlorobenzene           | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Hexachlorobutadiene         | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Hexachlorocyclopentadiene   | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Hexachloroethane            | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Indeno(1,2,3-cd)pyrene      | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Isophorone                  | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Naphthalene                 | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Nitrobenzene                | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| N-Nitrosodi-n-propylamine   | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| N-Nitrosodiphenylamine      | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Pentachlorophenol           | ND     | · -         | 25            | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Phenanthrene                | ND     | <del></del> | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Phenol                      | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Pyrene                      | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Pyridine                    | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| 2-Methylphenol              | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| 3 & 4-Methylphenol          | ND     |             | 5             | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Surr: 2,4,6-Tribromophenol  | 103    |             | % 10-123      | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Surr: 2-Fluorobiphenyl      | 78.4   |             | % 23-116      | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Surr: 2-Fluorophenol        | 73.9   |             | % 16-110      | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Surr: Nitrobenzene-d5       | 75.4   |             | % 21-114      | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Surr: Phenol-d5             | 54.7   |             | % 10-110      | 1           | 04/22/09 17:36 | GY      | 4993776 |
| Surr: Terphenyl-d14         | 76.6   |             | % 22-141      | 1           | 04/22/09 17:36 | GY      | 4993776 |

| Prep Method | Prep Date       | Prep Initials | Prep Factor |
|-------------|-----------------|---------------|-------------|
| SW3510C     | 04/13/2009 8:15 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09040326 Page 10 4/24/2009 11:17:27 AM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-9-09

Collected: 04/09/2009 10:16 SPL Sample ID:

09040326-02

| Site: | Hobbs | NM |
|-------|-------|----|
|       |       |    |

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analy  | zed An  | alyst | Seq. #  |
|-----------------------------|------------|------|-----------|-------------|-------------|---------|-------|---------|
| OLATILE ORGANICS BY ME      | THOD 8260B |      |           | MCL SV      | V8260B      | Units:  | ug/L  |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 4985234 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 4985234 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 4985234 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 4985234 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 4985234 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 4985234 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 4985234 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 4985234 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 04/14/09 23 | 3:13 JC |       | 498523  |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 1,2,4-Trimethylbenzene      | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 1,2-Dibromo-3-chloropropane | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 4985234 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC | :     | 498523  |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 2-Butanone                  | ND         |      | 20        | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 2-Hexanone                  | ND         |      | 10        | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| Acetone                     | ND         |      | 20        | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| Acrylonitrile               | ND         | ~    | 10        | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| Benzene                     | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC | ;     | 498523  |
| Bromobenzene                | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC |       | 498523  |
| Bromochloromethane          | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC | ;     | 498523  |
| Bromodichloromethane        | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC | ;     | 498523  |
| Bromoform                   | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC | ;     | 498523  |
| Bromomethane                | ND         |      | 10        | 1           | 04/14/09 2  | 3:13 JC | ;     | 498523  |
| Carbon disulfide            | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC | ;     | 498523  |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC | ;     | 498523  |
| Chlorobenzene               | ND         |      | 5         | 1           | 04/14/09 2  | 3:13 JC | ;     | 498523  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: ERB-4-9-09 Collected: 04/09/2009 10:16 SPL Sample ID: 09040326-02

|                             |        | Site:     | Hobbs NN | 1           |                |         |         |
|-----------------------------|--------|-----------|----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL Rep. | Limit    | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |           | 10       | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Chloroform                  | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Chloromethane               | ND.    |           | 10       | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Dibromochloromethane        | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Dibromomethane              | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Dichlorodifluoromethane     | ND     |           | 10       | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Ethylbenzene                | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Hexachlorobutadiene         | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Isopropylbenzene            | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Methyl tert-butyl ether     | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Methylene chloride          | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Naphthalene                 | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| n-Butylbenzene              | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| n-Propylbenzene             | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| sec-Butylbenzene            | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Styrene                     | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| tert-Butylbenzene           | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Tetrachloroethene           | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Toluene                     | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Trichloroethene             | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Trichlorofluoromethane      | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Vinyl acetate               | ND     |           | 10       | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Vinyl chloride              | ND     |           | 2        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| cis-1,2-Dichloroethene      | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| cis-1,3-Dichloropropene     | ND_    |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| m,p-Xylene                  | ND     |           | 5        | 1           | 04/14/09 23:13 | 1C      | 4985234 |
| o-Xylene                    | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| trans-1,2-Dichloroethene    | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| trans-1,3-Dichloropropene   | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| 1,2-Dichloroethene (total)  | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Xylenes,Total               | ND     |           | 5        | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Surr: 1,2-Dichloroethane-d4 | 96.0   |           | 5-111    | 1           | 04/14/09 23:13 | JC      | 4985234 |
| Surr: 4-Bromofluorobenzene  | 108    |           | 7-120    | 11          | 04/14/09 23:13 | JC      | 4985234 |
| Surr: Toluene-d8            | 92.0   | % 8       | 8-116    | 1           | 04/14/09 23:13 | JC      | 4985234 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

# **Quality Control Documentation**



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

#### Fracmaster BJ Service,#128125

Analysis:

Semivolatile Hydrocarbons

Method:

RunID:

SW8015B

WorkOrder:

09040326

Lab Batch ID:

89427

Method Blank

HP\_V\_090416B-4987505

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/14/2000 2

Analyst:

NW

09040326-01D

ERB-4-8-09

Preparation Date:

04/14/2009 23:43 04/13/2009 14:10

Prep By:

N\_M Method SW3510C

09040326-02D

ERB-4-9-09

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Diesel Range Organics          | ND     | 0.10      |
| Mineral Spirits Range Organics | ND     | 0.10      |
| Surr: n-Pentacosane            | 51.2   | 20-150    |

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

Units:

RunID:

HP V 090416B-4987506

mg/L

04/15/2009 0:03

Analyst: NW

Analysis Date: Preparation Date:

04/13/2009 14:10

Prep By: N M Method SW3510C

| Analyte               | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| Diesel Range Organics | 1.00                  | 0.895         | 89.5                       | 1.00                   | 0.880          | 88.0                        | 1.7 | 40           | 21             | 150            |
| Surr: n-Pentacosane   | 0.0500                | 0.0494        | 98.8                       | 0.0500                 | 0.0485         | 97.0                        | 1.8 | 30           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

BN - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 14 4/24/2009 11:17:29 AM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

#### **Brown & Caldwell** Fracmaster BJ Service,#128125

Analysis:

**Gasoline Range Organics** 

Method:

RunID:

Analysis Date:

SW8015B

WorkOrder:

09040326

Lab Batch ID:

R270269

Method Blank

HP\_P\_090413A-4984662 04/13/2009 5:20 Units: Analyst:

Lab Sample ID

Client Sample ID

mg/L

CLJ

09040326-01B

Samples in Analytical Batch:

ERB-4-8-09

09040326-02B

ERB-4-9-09

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 91.5   | 60-155    |
| Surr: 4-Bromofluorobenzene | 104.0  | 50-158    |

#### Laboratory Control Sample (LCS)

RunID:

HP P 090413A-4984660

Units:

mg/L

Analysis Date:

04/13/2009 4:22

Analyst:

CLJ

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.859  | 85.9                | 42             | 136            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.0949 | 94.9                | 60             | 155            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.108  | 108                 | 50             | 158            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040343-01

RunID:

HP\_P\_090413A-4984664

Units:

mg/L

Analysis Date:

04/13/2009 10:44

Analyst: CLJ

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| Gasoline Range Organics    | ND               | 1                    | 0.852        | 85.2             | 1                     | 0.868         | 86.8              | 1.92 | 36           | 22           | 174           |
| Surr: 1,4-Difluorobenzene  | ND               | 0.1                  | 0.0922       | 92.2             | 0.1                   | 0.0932        | 93.2              | 1.08 | 30           | 60           | 155           |
| Surr: 4-Bromofluorobenzene | ND               | 0.1                  | 0.105        | 105              | 0.1                   | 0.107         | 107               | 1.41 | 30           | 50           | 158           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 15

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

4/24/2009 11:17:29 AM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Fracmaster BJ Service,#128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040326

Lab Batch ID:

89412

#### Method Blank

RunID:

H\_090417E-4992370

Units:

ug/L

Lab Sample ID 09040326-01C

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

04/17/2009 9:40

Analyst:

GY

ERB-4-8-09

Preparation Date:

04/13/2009 8:15

N M Method SW3510C Prep By:

09040326-02C

ERB-4-9-09

| Analyte                     | Result   | Rep Limit   |
|-----------------------------|----------|-------------|
| 1,2,4-Trichlorobenzene      | ND       | 5.0         |
| 1,2-Dichlorobenzene         | ND       | 5.0         |
| 1,2-Diphenylhydrazine       | ND       | 10          |
| 1,3-Dichlorobenzene         | ND       | 5.0         |
| 1,4-Dichlorobenzene         | ND       | 5.0         |
| 2,4,5-Trichlorophenol       | ND       | 10          |
| 2,4,6-Trichlorophenol       | ND       | 5.0         |
| 2,4-Dichlorophenol          | ND       | 5.0         |
| 2,4-Dimethylphenol          | ND       | 5.0         |
| 2,4-Dinitrophenol           | ND       | 25          |
| 2,4-Dinitrotoluene          | ND       |             |
| 2,6-Dinitrotoluene          | ND       |             |
| 2-Chloronaphthalene         | ND       |             |
| 2-Chlorophenol              | ND       |             |
| 2-Methylnaphthalene         | ND       | 5.0         |
| 2-Nitroaniline              | ND       |             |
| 2-Nitrophenol               | ND       |             |
| 3.3´-Dichlorobenzidine      | ND       |             |
| 3-Nitroaniline              | ND       |             |
| 4,6-Dinitro-2-methylphenol  | ND       |             |
| 4-Bromophenyl phenyl ether  | ND       |             |
| 4-Chloro-3-methylphenol     | ND       |             |
| 4-Chloroaniline             | ND       |             |
| 4-Chlorophenyl phenyl ether | ND       |             |
| 4-Nitroaniline              | ND       |             |
|                             | ND       |             |
| 4-Nitrophenol               |          | ,           |
| Acenaphthene                | ND       |             |
| Acenaphthylene              | ND<br>ND |             |
| Aniline                     | ND       | <del></del> |
| Anthracene                  | ND ND    | +           |
| Benz(a)anthracene           | ND       |             |
| Benzo(a)pyrene              | ND       |             |
| Benzo(b)fluoranthene        | ND       |             |
| Benzo(g,h,i)perylene        | ND       |             |
| Benzo(k)fluoranthene        | ND ND    |             |
| Benzoic acid                | ND       | <del></del> |
| Benzyl aicohol              | ND       |             |
| Bis(2-chloroethoxy)methane  | ND       |             |
| Bis(2-chloroethyl)ether     | ND       |             |
| Bis(2-chloroisopropyl)ether | ND ND    |             |
| Bis(2-ethylhexyl)phthalate  | ND       |             |
| Butyl benzyl phthalate      | ND ND    |             |
| Carbazole                   | ND       |             |
| Chrysene                    | ND       |             |
| Dibenz(a,h)anthracene       | ND ND    | 5.0         |
| Dibenzofuran                | ND       | 5.0         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 16

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service.#128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09040326

Lab Batch ID:

89412

Method Blank

RunID:

H 090417E-4992370

Units:

ug/L

Analysis Date:

04/17/2009 9:40

Analyst:

GY

04/13/2009 8:15 Preparation Date:

Prep By:

N\_M Method SW3510C

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 5.0       |
| Dimethyl phthalate         | ND     | 5.0       |
| Di-n-butyl phthalate       | ND     | 5.0       |
| Di-n-octyl phthalate       | ND     | 5.0       |
| Fluoranthene               | ND     | 5.0       |
| Fluorene                   | ND     | 5.0       |
| Hexachlorobenzene          | ND.    | 5.0       |
| Hexachlorobutadiene        | ND     | 5.0       |
| Hexachlorocyclopentadiene  | ND     | 5.0       |
| Hexachloroethane           | ND     | 5.0       |
| Indeno(1,2,3-cd)pyrene     | ND     | 5.0       |
| Isophorone                 | ND     | 5.0       |
| Naphthalene                | ND.    | 5.0       |
| Nitrobenzene               | ND     | 5.0       |
| N-Nitrosodi-n-propylamine  | ND     | 5.0       |
| N-Nitrosodiphenylamine     | ND.    | 5.0       |
| Pentachlorophenol          | ND     | 25        |
| Phenanthrene               | ND     | 5.0       |
| Phenol                     | ND     | 5.0       |
| Pyrene                     | ND     | 5.0       |
| Pyridine                   | ND     | 5.0       |
| 2-Methylphenol             | ND ND  | 5.0       |
| 3 & 4-Methylphenol         | ND     | 5.0       |
| Surr: 2,4,6-Tribromophenol | 95.2   | 10-123    |
| Surr: 2-Fluorobiphenyl     | 72.6   | 23-116    |
| Surr: 2-Fluorophenol       | 76.1   | 16-110    |
| Surr: Nitrobenzene-d5      | 68.4   | 21-114    |
| Surr: Phenol-d5            | 62.5   | 10-110    |
| Surr: Terphenyl-d14        | 68.4   | 22-141    |

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RuniD:

H\_090417E-4992371

Units:

04/17/2009 10:42

Analyst: GY

Analysis Date: Preparation Date:

04/13/2009 8:15

Prep By: N\_M Method SW3510C

ug/L

| Analyte                | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2 | 39           | 21             | 120            |
| 1.2-Dichlorobenzene    | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.7           | 66.8                        | 81  | 50           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 17

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Fracmaster BJ Service,#128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040326

Lab Batch ID:

89412

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units:

Analysis Date:

ug/L GY

Preparation Date:

04/17/2009 10:42 04/13/2009 8:15

Analyst:

Prep By: N\_M Method SW3510C

| Analyte                     | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| 1,2-Diphenylhydrazine       | 25.0                  | 16.5          | 66.0                       | 25.0                   | 17.6           | 70.4                        | 6.5  | 50           | 10             | 251            |
| 1,3-Dichlorobenzene         | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.5           | 66.0                        | 6.9  | 50           | 20             | 150            |
| 1,4-Dichlorobenzene         | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.2           | 64.8                        | 5.7  | 45           | 20             | 150            |
| 2,4,5-Trichlorophenol       | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.4           | 61.6                        | 3.3  | 50           | 30             | 150            |
| 2,4,6-Trichlorophenol       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.0           | 64.0                        | 5.1  | 50           | 30             | 150            |
| 2,4-Dichlorophenol          | 25.0                  | 14.5          | 58.0                       | 25.0                   | 15.9           | 63.6                        | 9.2  | 50           | 30             | 150            |
| 2,4-Dimethylphenol          | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.0           | 64.0                        | 3.8  | 50           | 32             | 140            |
| 2,4-Dinitrophenol           | 25.0                  | 11.9          | 47.6                       | 25.0                   | 12.8           | 51.2                        | 7.3  | 50           | 10             | 160            |
| 2,4-Dinitrotoluene          | 25.0                  | 16.1          | 64.4                       | 25.0                   | 16.3           | 65.2                        | 1.2  | 50           | 30             | 150            |
| 2,6-Dinitrotoluene          | 25.0                  | 15.8          | 63.2                       | 25.0                   | 15.7           | 62.8                        | 0.6  | 50           | 30             | 150            |
| 2-Chloronaphthalene         | 25.0                  | 15.8          | 63,2                       | 25.0                   | 16.5           | 66.0                        | 4.3  | 50           | 30             | 150            |
| 2-Chlorophenol              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 15.9           | 63.6                        | 3.2  | 40           | 23             | 134            |
| 2-Methylnaphthalene         | 25.0                  | 15.1          | 60.4                       | 25.0                   | 15.9           | 63.6                        | 5.2  | 50           | 20             | 170            |
| 2-Nitroaniline              | 25.0                  | 14.8          | 59.2                       | 25.0                   | 15.9           | 63.6                        | 7.2  | 50           | 20             | 160            |
| 2-Nitrophenol               | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.8           | 63.2                        | 5.9  | 50           | 29             | 182            |
| 3,3'-Dichlorobenzidine      | 25.0                  | 13.3          | 53.2                       | 25.0                   | 13.7           | 54.8                        | 3.0  | 50           | 30             | 200            |
| 3-Nitroaniline              | 25.0                  | 14.4          | 57.6                       | 25.0                   | 14.8           | 59.2                        | 2.7  | 50           | 20             | 160            |
| 4,6-Dinitro-2-methylphenol  | 25.0                  | 13.7          | 54.8                       | 25.0                   | 14.2           | 56.8                        | 3.6  | 50           | 10             | 160            |
| 4-Bromophenyl phenyl ether  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.8           | 63.2                        | 1.3  | 50           | 30             | 150            |
| 4-Chloro-3-methylphenol     | 25.0                  | 15.2          | 60.8                       | 25.0                   | 16.1           | 64.4                        | 5.8  | 42           | 25             | 160            |
| 4-Chloroaniline             | 25.0                  | 15.5          | 62.0                       | 25.0                   | 16.2           | 64.8                        | 4.4  | 50           | 20             | 160            |
| 4-Chlorophenyl phenyl ether | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.3           | 65.2                        | 3.8  | 50           | 25             | 158            |
| 4-Nitroaniline              | 25.0                  | 13.9          | 55.6                       | 25.0                   | 14.8           | 59.2                        | 6.3  | 50           | 20             | 160            |
| 4-Nitrophenol               | 25.0                  | 13.0          | 52.0                       | 25.0                   | 14.8           | 59.2                        | 12.9 | 50           | 10             | 132            |
| Acenaphthene                | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.3           | 65.2                        | 6.3  | 31           | 30             | 150            |
| Acenaphthylene              | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.4           | 65.6                        | 6.3  | 50           | 33             | 250            |
| Aniline                     | 50.0                  | 29.9          | 59.8                       | 50.0                   | 30.9           | 61.8                        | 3.3  | 50           | 10             | 135            |
| Anthracene                  | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.5           | 66.0                        | 5.6  | 50           | 27             | 133            |
| Benz(a)anthracene           | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.4           | 65.6                        | 5.0  | 50           | 33             | 143            |
| Benzo(a)pyrene              | 25.0                  | 12.2          | 48.8                       | 25.0                   | 12.7           | 50.8                        | 4.0  | 50           | 17             | 163            |
| Benzo(b)fluoranthene        | 25.0                  | 14.9          | 59.6                       | 25.0                   | 15.2           | 60.8                        | 2.0  | 50           | 24             | 159            |
| Benzo(g,h,i)perylene        | 25.0                  | 15.7          | 62.8                       | 25.0                   | 15.9           | 63.6                        | 1.3  | 50           | 30             | 160            |
| Benzo(k)fluoranthene        | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.2           | 60.8                        | 1.3  | 50           | 11             | 162            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 18

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell

#### Fracmaster BJ Service,#128125

Analysis: Method: Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040326

Lab Batch ID:

89412

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H\_090417E-4992371

Units: ug/L

Analysis Date:

Analyst:

GY

Preparation Date: 04

04/17/2009 10:42 04/13/2009 8:15

Prep By:

N\_M Method SW3510C

| Analyte                      | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD  | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|------------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|------|--------------|----------------|----------------|
| Benzoic acid                 | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.0           | 64.0                        | 1.9  | 50           | 10             | 400            |
| Benzyl alcohol               | 25.0                  | 14.7          | 58.8                       | 25.0                   | 16.2           | 64.8                        | 9.7  | 50           | 30             | 160            |
| Bis (2-chloroethoxy)methane  | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 50           | 33             | 184            |
| Bis(2-chloroethyl)ether      | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.7           | 66.8                        | 5.5  | 50           | 12             | 158            |
| Bis (2-chloroisopropyl)ether | 25.0                  | 15.6          | 62.4                       | 25.0                   | 16.1           | 64.4                        | 3.2  | 50           | 20             | 160            |
| Bis(2-ethylhexyl)phthalate   | 25.0                  | 16.1          | 64.4                       | 25.0                   | 17.0           | 68.0                        | 5.4  | 50           | 10             | 158            |
| Butyl benzyl phthalate       | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.0           | 68.0                        | 4.2  | 50           | 30             | 160            |
| Carbazole                    | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 30             | 150            |
| Chrysene                     | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.0           | 64.0                        | 6.5  | 50           | 17             | 168            |
| Dibenz(a,h)anthracene        | 25.0                  | 15.5          | 62.0                       | 25.0                   | 15.7           | 62.8                        | 1.3  | 50           | 30             | 160            |
| Dibenzofuran                 | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.4           | 65.6                        | 4.4  | 50           | 30             | 150            |
| Diethyl phthalate            | 25.0                  | 16.0          | 64.0                       | 25.0                   | 17.1           | 68.4                        | 6.6  | 50           | 30             | 160            |
| Dimethyl phthalate           | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.8           | 67.2                        | 6.8  | 50           | 30             | 160            |
| Di-n-butyl phthalate         | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.1           | 68.4                        | 3.0  | 50           | 30             | 160            |
| Di-n-octyl phthalate         | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.0           | 68.0                        | 4.8  | 50           | 20             | 150            |
| Fluoranthene                 | 25.0                  | 15.9          | 63.6                       | 25.0                   | 16.3           | 65.2                        | 2.5  | 50           | 26             | 137            |
| Fluorene                     | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.3           | 65.2                        | 5.7  | 50           | 30             | 150            |
| Hexachlorobenzene            | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.6           | 66.4                        | 7.5  | 50           | 20             | 150            |
| Hexachlorobutadiene          | 25.0                  | 15.0          | 60.0                       | 25.0                   | 15.9           | 63.6                        | 5.8  | 50           | 20             | 140            |
| Hexachlorocyclopentadiene    | 25.0                  | 17.2          | 68.8                       | 25.0                   | 19.1           | 76.4                        | 10.5 | 50           | 10             | 150            |
| Hexachloroethane             | 25.0                  | 15.0          | 60.0                       | 25.0                   | 16.3           | 65.2                        | 8.3  | 50           | 14             | 120            |
| Indeno(1,2,3-cd)pyrene       | 25.0                  | 16.3          | 65.2                       | 25.0                   | 17.5           | 70.0                        | 7.1  | 50           | 30             | 160            |
| Isophorone                   | 25.0                  | 16.2          | 64.8                       | 25.0                   | 17.3           | 69.2                        | 6.6  | 50           | 21             | 196            |
| Naphthalene                  | 25.0                  | 15.4          | 61.6                       | 25.0                   | 16.2           | 64.8                        | 5.1  | 50           | 21             | 133            |
| Nitrobenzene                 | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.0           | 64.0                        | 4.5  | 50           | 20             | 160            |
| N-Nitrosodi-n-propylamine    | 25.0                  | 15.6          | 62.4                       | 25.0                   | 15.4           | 61.6                        | 1.3  | 38           | 30             | 160            |
| N-Nitrosodiphenylamine       | 50.0                  | 38.0          | 76.0                       | 50.0                   | 40.4           | 80.8                        | 6.1  | 50           | 30             | 150            |
| Pentachlorophenol            | 25.0                  | 11.5          | 46.0                       | 25.0                   | 12.8           | 51.2                        | 10.7 | 50           | 14             | 176            |
| Phenanthrene                 | 25.0                  | 15.3          | 61.2                       | 25.0                   | 16.1           | 64.4                        | 5.1  | 50           | 10             | 140            |
| Phenol                       | 25.0                  | 15.2          | 60.8                       | 25.0                   | 15.8           | 63.2                        | 3.9  | 42           | 40             | 132            |
| Pyrene                       | 25.0                  | 15.8          | 63.2                       | 25.0                   | 16.6           | 66.4                        | 4.9  | 38           | 30             | 150            |
| Pyridine                     | 50.0                  | 27.0          | 54.0                       | 50.0                   | 29.4           | 58.8                        | 8.5  | 50           | 10             | 150            |
| 2-Methylphenol               | 25.0                  | 15.7          | 62.8                       | 25.0                   | 16.2           | 64.8                        | 3.1  | 50           | 30             | 160            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

Mi - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

 ${\rm J}$  - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 19

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### Brown & Caldwell

#### Fracmaster BJ Service,#128125

Analysis: Method: Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09040326

Lab Batch ID:

89412

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

H 090417E-4992371

Units:

Analysis Date:

04/17/2009 10:42

ug/L

Analyst: GY

Preparation Date:

04/17/2009 10:42

....,-...

Prep By: N\_M Method SW3510C

| Analyte                    | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|----------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| 3 & 4-Methylphenol         | 25.0                  | 16.6          | 66.4                       | 25.0                   | 17.2           | 68.8                        | 3.6 | 50           | 10             | 160            |
| Surr: 2,4,6-Tribromophenol | 75.0                  | 61.1          | 81.5                       | 75.0                   | 60.8           | 81.1                        | 0.5 | 30           | 10             | 123            |
| Surr: 2-Fluorobiphenyl     | 50.0                  | 28.6          | 57.2                       | 50.0                   | 29.5           | 59.0                        | 3.1 | 30           | 23             | 116            |
| Surr: 2-Fluorophenol       | 75.0                  | 50.0          | 66.7                       | 75.0                   | 50.8           | 67.7                        | 1.6 | 30           | 16             | 110            |
| Surr: Nitrobenzene-d5      | 50.0                  | 29.0          | 58.0                       | 50.0                   | 30.0           | 60.0                        | 3.4 | 30           | 21             | 114            |
| Surr: Phenol-d5            | 75.0                  | 43.1          | 57.5                       | 75.0                   | 44.2           | 58.9                        | 2.5 | 30           | 10             | 110            |
| Surr: Terphenyl-d14        | 50.0                  | 28.4          | 56.8                       | 50.0                   | 28.7           | 57.4                        | 1.1 | 30           | 22             | 141            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 20

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

#### Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

09040326

Lab Batch ID:

R270264

#### Method Blank

RunID: Q 090414A-4985214 Units: ug/L Lab Sample ID

Client Sample ID

Analysis Date:

09040326-01A

Samples in Analytical Batch:

ERB-4-8-09

04/14/2009 14:10

Analyst: JC

09040326-02A

Preparation Date:

04/14/2009 14:10

Prep By:

Method

ERB-4-9-09

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0       |
| 1,1,1-Trichloroethane       | ND     | 5.0       |
| 1,1,2,2-Tetrachloroethane   | ND     | 5.0       |
| 1,1,2-Trichloroethane       | ND     | 5.0       |
| 1,1-Dichloroethane          | ND     | 5.0       |
| 1,1-Dichloroethene          | ND     | 5.0       |
| 1,1-Dichloropropene         | ND     | 5.0       |
| 1,2,3-Trichlorobenzene      | ND     | 5.0       |
| 1,2,3-Trichloropropane      | ND     | 5.0       |
| 1,2,4-Trichlorobenzene      | ND     | 5.0       |
| 1,2,4-Trimethylbenzene      | ND     | 5.0       |
| 1,2-Dibromo-3-chloropropane | ND     | 5.0       |
| 1,2-Dibromoethane           | ND     | 5.0       |
| 1,2-Dichlorobenzene         | ND     | 5.0       |
| 1,2-Dichloroethane          | ND     | 5.0       |
| 1,2-Dichloropropane         | ИD     | 5.0       |
| 1,3,5-Trimethylbenzene      | ND     | 5.0       |
| 1,3-Dichlorobenzene         | ND     | 5.0       |
| 1,3-Dichloropropane         | ND     | 5.0       |
| 1,4-Dichlorobenzene         | ND     | 5.0       |
| 2,2-Dichloropropane         | ND     | 5.0       |
| 2-Butanone                  | ND     | 20        |
| 2-Chloroethyl vinyl ether   | ND     | 10        |
| 2-Chlorotoluene             | ND     | 5.0       |
| 2-Hexanone                  | ND     | 10        |
| 4-Chlorotoluene             | ND     | 5.0       |
| 4-Isopropyltoluene          | ND.    | 5.0       |
| 4-Methyl-2-pentanone        | ND     | 10        |
| Acetone                     | ND.    | 20        |
| Acrylonitrile               | ND.    | 10        |
| Benzene                     | ND.    | 5.0       |
| Bromobenzene                | ND     | 5.0       |
| Bromochloromethane          | ND.    | 5.0       |
| Bromodichloromethane        | ND.    | 5.0       |
| Bromoform                   | ND ND  | 5.0       |
| Bromomethane                | ND     | 10        |
| Carbon disulfide            | ND     | 5.0       |
| Carbon tetrachloride        | ND     | 5.0       |
| Chlorobenzene               | ND ND  | 5.0       |
| Chloroethane                | ND.    | 10        |
| Chloroform                  | ND     | 5.0       |
| Chloromethane               | ND     | 10        |
| Dibromochloromethane        | ND     | 5.0       |
| Dibromomethane              | ND ND  | 5.0       |
| Dichlorodifluoromethane     | ND     | 10        |
| Ethylbenzene                | ND     | 5.0       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 21

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040326

Lab Batch ID:

R270264

#### Method Blank

RunID:

Q\_090414A-4985214

Units:

ug/L

Analysis Date: Preparation Date: 04/14/2009 14:10 04/14/2009 14:10 Analyst: Prep By:

JC

Method

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND     | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND.    | 5.0       |
| Vinyl acetate               | ND     | 10        |
| Vinyl chloride              | ND     | 2.0       |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND     | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND     | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes, Total              | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 98.0   | 65-111    |
| Surr: 4-Bromofluorobenzene  | 108.0  | 87-120    |
| Surr: Toluene-d8            | 92.0   | 88-116    |

#### Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

ug/L

Analysis Date:

04/14/2009 13:43

Analyst: JC

Allalyst. J

Preparation Date: 04/14/2009 13:43

Prep By:

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 19.0   | 95.0                | 71             | 128            |
| 1,1,1-Trichloroethane     | 20.0           | 20.0   | 100                 | 61             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 18.0   | 90.0                | 60             | 133            |
| 1,1,2-Trichloroethane     | 20.0           | 18.0   | 90.0                | 77             | 127            |
| 1,1-Dichloroethane        | 20.0           | 20.0   | 100                 | 68             | 132            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 22

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

Fracmaster BJ Service,#128125

WorkOrder:

09040326

Lab Batch ID:

R270264

#### Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

Analysis Date:

04/14/2009 13:43

ug/L

Analyst: JC

Preparation Date: 04/14/2009 13:43 Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 22.0   | 110                 | 65             | 134            |
| 1,1-Dichloropropene         | 20.0           | 18.0   | 90.0                | 68             | 126            |
| 1,2,3-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 36             | 154            |
| 1,2,3-Trichloropropane      | 20.0           | 19.0   | 95.0                | 38             | 153            |
| 1,2,4-Trichlorobenzene      | 20.0           | 16.0   | 80.0                | 69             | 144            |
| 1,2,4-Trimethylbenzene      | 20.0           | 14.0   | 70.0                | 64             | 128            |
| 1,2-Dibromo-3-chloropropane | 20.0           | 14.0   | 70.0                | 44             | 141            |
| 1,2-Dibromoethane           | 20.0           | 19.0   | 95.0                | 75             | 124            |
| 1,2-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 68             | 124            |
| 1,2-Dichloroethane          | 20.0           | 18.0   | 90.0                | 61             | 138            |
| 1,2-Dichloropropane         | 20.0           | 18.0   | 90.0                | 76             | 123            |
| 1,3,5-Trimethylbenzene      | 20.0           | 14.0   | 70.0                | 61             | 127            |
| 1,3-Dichlorobenzene         | 20.0           | 16.0   | 80.0                | 68             | 12             |
| 1,3-Dichloropropane         | 20.0           | 17.0   | 85.0                | 76             | 125            |
| 1,4-Dichlorobenzene         | 20.0           | 15.0   | 75.0                | 68             | 124            |
| 2,2-Dichloropropane         | 20.0           | 19.0   | 95.0                | 42             | 14:            |
| 2-Butanone                  | 20.0           | 20.0   | 100                 | 22             | 183            |
| 2-Chloroethyl vinyl ether   | 20.0           | 18.0   | 90.0                | 10             | 179            |
| 2-Chlorotoluene             | 20.0           | 15.0   | 75.0                | 64             | 132            |
| 2-Hexanone                  | 20.0           | 16.0   | 80.0                | 31             | 178            |
| 4-Chlorotoluene             | 20.0           | 15.0   | 75.0                | 61             | 132            |
| 4-Isopropyltoluene          | 20.0           | 14.0   | 70.0                | 63             | 130            |
| 4-Methyl-2-pentanone        | 20.0           | 16.0   | 80.0                | 10             | 159            |
| Acetone                     | 20.0           | 25.0   | 125                 | 10             | 20             |
| Acrylonitrile               | 20.0           | 20.0   | 100                 | 54             | 15             |
| Benzene                     | 20.0           | 18.0   | 90.0                | 74             | 12             |
| Bromobenzene                | 20.0           | 15.0   | 75.0                | 68             | 12             |
| Bromochloromethane          | 20.0           | 21.0   | 105                 | 71             | 12             |
| Bromodichloromethane        | 20.0           | 19.0   | 95.0                | 72             | 12             |
| Bromoform                   | 20.0           | 19.0   | 95.0                | 81             | 13             |
| Bromomethane                | 20.0           | 21.0   | 105                 | 53             | 13             |
| Carbon disulfide            | 20.0           | 27.0   | 135                 | 41             | 14             |
| Carbon tetrachloride        | 20.0           | 21.0   | 105                 | 59             | 14.            |
| Chlorobenzene               | 20.0           | 18.0   | 90.0                | 75             | 12             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 23

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# **Brown & Caldwell**

Fracmaster BJ Service,#128125

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040326

Lab Batch ID:

R270264

#### Laboratory Control Sample (LCS)

RunID:

Q\_090414A-4985213

Units:

ug/L

Analysis Date:

04/14/2009 13:43

Analyst:

JC

| Preparation Date: | 04/14/2009 13:43 | Pt    | ер Ву: | Method  |
|-------------------|------------------|-------|--------|---------|
|                   |                  |       |        |         |
| Analy             | √te              | Spike | Result | Percent |

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 20.0   | 100                 | 60             | 134            |
| Chloroform                  | 20.0           | 20.0   | 100                 | 71             | 127            |
| Chloromethane               | 20.0           | 16.0   | 80.0                | 50             | 139            |
| Dibromochloromethane        | 20.0           | 18.0   | 90.0                | 65             | 130            |
| Dibromomethane              | 20.0           | 20.0   | 100                 | 79             | 124            |
| Dichlorodifluoromethane     | 20.0           | 17.0   | 85.0                | 22             | 162            |
| Ethylbenzene                | 20.0           | 17.0   | 85.0                | 72             | 127            |
| Hexachlorobutadiene         | 20.0           | 16.0   | 80.0                | 45             | 152            |
| Isopropylbenzene            | 20.0           | 15.0   | 75.0                | 58             | 130            |
| Methyl tert-butyl ether     | 40.0           | 40.0   | 100                 | 63             | 123            |
| Methylene chloride          | 20.0           | 21.0   | 105                 | 61             | 135            |
| Naphthalene                 | 20.0           | 16.0   | 80.0                | 33             | 148            |
| n-Butylbenzene              | 20.0           | 14.0   | 70.0                | 62             | 136            |
| n-Propylbenzene             | 20.0           | 14.0   | 70.0                | 57             | 131            |
| sec-Butylbenzene            | 20.0           | 14.0   | 70.0                | 63             | 131            |
| Styrene                     | 20.0           | 17.0   | 85.0                | 69             | 120            |
| tert-Butylbenzene           | 20.0           | 14.0   | 70.0                | 59             | 131            |
| Tetrachloroethene           | 20.0           | 21.0   | 105                 | 45             | 173            |
| Toluene                     | 20.0           | 17.0   | 85.0                | 74             | 126            |
| Trichloroethene             | 20.0           | 20.0   | 100                 | 79             | 131            |
| Trichlorofluoromethane      | 20.0           | 23.0   | 115                 | 49             | 153            |
| Vinyl acetate               | 20.0           | 16.0   | 80.0                | 10             | 167            |
| Vinyl chloride              | 20.0           | 20.0   | 100                 | 51             | 148            |
| cis-1,2-Díchloroethene      | 20.0           | 20.0   | 100                 | 71             | 128            |
| cis-1,3-Dichloropropene     | 20.0           | 17.0   | 85.0                | 67             | 128            |
| m,p-Xylene                  | 40.0           | 35.0   | 87.5                | 71             | 129            |
| o-Xylene                    | 20.0           | 18.0   | 90.0                | 74             | 130            |
| trans-1,2-Dichloroethene    | 20.0           | 21.0   | 105                 | 66             | 128            |
| trans-1,3-Dichloropropene   | 20.0           | 16.0   | 80.0                | 60             | 128            |
| 1,2-Dichloroethene (total)  | 40             | 41     | 100                 | 66             | 128            |
| Xylenes,Total               | 60             | 53     | 88                  | 71             | 130            |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 48     | 96.0                | 65             | 111            |
| Surr: 4-Bromofluorobenzene  | 50.0           | 56     | 112                 | 87             | 120            |
| Surr: Toluene-d8            | 50.0           | 46     | 92.0                | 88             | 116            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 24

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service,#128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040326

Lab Batch ID:

R270264

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

RuniD:

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst: JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 68           | 124           |
| 1,1,1-Trichloroethane       | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 69           | 123           |
| 1,1,2,2-Tetrachloroethane   | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 69           | 130           |
| 1,1,2-Trichloroethane       | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 75           | 126           |
| 1,1-Dichloroethane          | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 65           | 129           |
| 1,1-Dichloroethene          | ND               | 20                   | 23.0         | 115              | 20                    | 23.0          | 115               | 0    | 22           | 61           | 139           |
| 1,1-Dichloropropene         | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 69           | 121           |
| 1,2,3-Trichlorobenzene      | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 53           | 127           |
| 1,2,3-Trichloropropane      | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 79           | 124           |
| 1,2,4-Trichlorobenzene      | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.0          | 80.0              | 6.06 | 20           | 58           | 118           |
| 1,2,4-Trimethylbenzene      | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 43           | 132           |
| 1,2-Dibromo-3-chloropropane | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 20           | 46           | 131           |
| 1,2-Dibromoethane           | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 76           | 122           |
| 1,2-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 74           | 110           |
| 1,2-Dichloroethane          | ND               | 20                   | 18.0         | 90.0             | 20                    | 18.0          | 90.0              | 0    | 20           | 60           | 129           |
| 1,2-Dichloropropane         | ND               | 20                   | 20.0         | 100              | 20                    | 19.0          | 95.0              | 5.13 | 20           | 76           | 116           |
| 1,3,5-Trimethylbenzene      | ND               | 20                   | 15.0         | 75.0             | 20                    | 14.0          | 70.0              | 6.90 | 20           | 51           | 121           |
| 1,3-Dichlorobenzene         | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 71           | 110           |
| 1,3-Dichloropropane         | ND               | 20                   | 19.0         | 95.0             | 20                    | 18.0          | 90.0              | 5.41 | 20           | 80           | 119           |
| 1,4-Dichlorobenzene         | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 69           | 110           |
| 2,2-Dichloropropane         | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 52           | 122           |
| 2-Butanone                  | ND               | 20                   | 21.0         | 105              | 20                    | 21.0          | 105               | 0    | 20           | 10           | 133           |
| 2-Chloroethyl vinyl ether   | ND               | 20                   | 0            | 0 *              | 20                    | 0             | 0 *               | 0    | 20           | 10           | 182           |
| 2-Chiorotoluene             | ND               | 20                   | 18.0         | 90.0             | 20                    | 17.0          | 85.0              | 5.71 | 20           | 69           | 112           |
| 2-Hexanone                  | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 10           | 163           |
| 4-Chlorotoluene             | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 37           | 110           |
| 4-Isopropyltoluene          | ND               | 20                   | 16.0         | 80.0             | 20                    | 16.0          | 80.0              | 0    | 20           | 65           | 116           |
| 4-Methyl-2-pentanone        | ND               | 20                   | 17.0         | 85.0             | 20                    | 17.0          | 85.0              | 0    | 20           | 10           | 103           |
| Acetone                     | ND               | 20                   | 22.0         | 110              | 20                    | 22.0          | 110               | 0    | 20           | 10           | 160           |
| Acrylonitrile               | ND               | 20                   | 20.0         | 100              | 20                    | 20.0          | 100               | 0    | 20           | 45           | 155           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 25

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell Fracmaster BJ Service,#128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09040326

Lab Batch ID:

R270264

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09040281-03

RunID:

Q\_090414A-4985222

Units: ug/L

Analysis Date:

04/14/2009 17:46

Analyst: JC

MS MS MS % MSD MSD MSD % RPD RPD Sample Low High Analyte Result Spike Result Recovery Spike Result Recovery Limit Limit Limit Added Added 22 20 21.0 105 20 20.0 100 4.88 70 124 Benzene ND ND 20 17.0 85.0 20 17.0 85.0 72 111 Bromobenzene 0 20 ND 20 25.0 125 20 24.0 120 4.08 20 73 126 Bromochloromethane Bromodichloromethane ND 20 20.0 100 20 18.0 90.0 10.5 20 68 125 ND 20 16.0 0.08 20 15.0 75.0 6.45 20 44 132 Bromoform ND 20 23.0 115 20 21.0 105 9.09 20 50 140 Bromomethane ND 20<sup>1</sup> 21.0 105 20 20.0 100 4.88 20 Carbon disulfide 46 143 ND 20 20.0 100 20 20.0 100 20 66 126 Carbon tetrachloride 0 20 ND 21.0 105 20 20.0 100 21 Chlorobenzene 4.88 68 123 ND 20 22.0 105 Chloroethane 110 20 21.0 4.65 20 59 134 ND 21.0 20 105 20 20.0 100 4.88 20 68 127 Chloroform 20 Chloromethane ND 18.0 90.0 20 17.0 85.0 5.71 20 51 137 Dibromochloromethane ND 20 18.0 90.0 20 17.0 85.0 5.71 20 58 131 22.0 Dibromomethane ND 20 110 20 20.0 100 9.52 20 82 123 Dichlorodifluoromethane ND 20 16.0 80.0 20 17.0 85.0 6.06 20 35 143 Ethylbenzene ND 20 20.0 100 20 19.0 95.0 5.13 20 76 122 20 Hexachlorobutadiene ND 18.0 90.0 20 17.0 85.0 5.71 20 43 137 Isopropylbenzene ND 20 17.0 85.0 20 16.0 80.0 6.06 20 57 124 ND 40 43.0 108 40 42.0 105 2.35 20 200 Methyl tert-butyl ether 10 Methylene chloride ND 20 23.0 115 20 22.0 110 4.44 20 70 134 Naphthalene ND 20 16.0 80.0 20 16.0 80.0 0 20 140 42 NΩ 20 16.0 80.0 \* 20 16.0 80.0 \* 82 n-Butylbenzene 20 112 0 20 n-Propylbenzene ND 20 16.0 80.0 16.0 80.0 O, 20 73 108 sec-Butylbenzene ND 20 17.0 85.0 20 16.0 80.0 6.06 20 76 110 ND 20 18.0 90.0 20 20 17.0 85.0 5.71 58 152 Styrene tert-Butylbenzene ND 20 15.0 75.0 20 15.0 75.0 20 0 66 120 Tetrachloroethene ND 20 25.0 125 20 25.0 125 0 20 71 130 20.0 ND 20 100 20 Toluene 20.0 100 0 24 80 117 Trichloroethene ND 20 23.0 115 20 22.0 110 4.44 21 82 121 Trichlorofluoromethane ND 20 21.0 105 20 21.0 105 0 20 74 138 ND 20 Vinyl acetate 18.0 90.0 20 18.0 90.0 0 20 135 66 Vinyl chloride ND 20 20.0 100 20 19.0 95.0 20 5.13 45 143

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 26 4/24/2009 11:17:31 AM

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell

Fracmaster BJ Service,#128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09040326

Lab Batch ID:

R270264

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09040281-03

Q\_090414A-4985222

Units:

ug/L

Analysis Date:

04/14/2009 17:46

Analyst:

JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD  | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 20                   | 25.0         | 125              | 20                    | 23.0          | 115               | 8.33 | 20           | 67           | 132           |
| cis-1,3-Dichloropropene     | ND               | 20                   | 18.0         | 90.0             | 20                    | 16.0          | 80.0              | 11.8 | 20           | 67           | 116           |
| m,p-Xylene                  | ND               | 40                   | 40.0         | 100              | 40                    | 38.0          | 95.0              | 5.13 | 20           | 69           | 127           |
| o-Xylene                    | ND               | 20                   | 21.0         | 105              | 20                    | 20.0          | 100               | 4.88 | 20           | 84           | 114           |
| trans-1,2-Dichloroethene    | ND               | 20                   | 24.0         | 120              | 20                    | 23.0          | 115               | 4.26 | 20           | 68           | 131           |
| trans-1,3-Dichloropropene   | ND               | 20                   | 16.0         | 80.0             | 20                    | 15.0          | 75.0              | 6.45 | 20           | 56           | 131           |
| 1,2-Dichloroethene (total)  | ND               | 40                   | 49           | 120              | 40                    | 46            | 120               | 6.3  | 20           | 67           | 132           |
| Xylenes,Total               | ND               | 60                   | 61           | 100              | 60                    | 58            | 97                | 5.0  | 20           | 69           | 127           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 49           | 98.0             | 50                    | 49.0          | 98.0              | 0    | 30           | 65           | 111           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 53           | 106              | 50                    | 54.0          | 108               | 1.87 | 30           | 87           | 120           |
| Surr: Toluene-d8            | ND               | 50                   | 47           | 94.0             | 50                    | 48.0          | 96.0              | 2.11 | 30           | 88           | 116           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09040326 Page 27

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



# Sample Receipt Checklist And Chain of Custody





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Sample Receipt Checklist

| Workorder: <b>09040326</b>                                   |              | Received By:  | BF                   |
|--------------------------------------------------------------|--------------|---------------|----------------------|
| Date and Time Received: 4/10/2009 10:00:00 AM                |              | Carrier name: | FedEx                |
| Temperature: 3.0°C                                           |              | Chilled by:   | Water Ice            |
| 1. Shipping container/cooler in good condition?              | Yes 🗸        | No 🗌          | Not Present          |
| 2. Custody seals intact on shippping container/cooler?       | Yes 🔽        | No 🗆          | Not Present          |
| 3. Custody seals intact on sample bottles?                   | Yes          | No 🗌          | Not Present 🗹        |
| 4. Chain of custody present?                                 | Yes 🔽        | No 🗌          |                      |
| 5. Chain of custody signed when relinquished and received?   | Yes 🔽        | No 🗌          |                      |
| 6. Chain of custody agrees with sample labels?               | Yes 🔽        | No 🗌          |                      |
| 7. Samples in proper container/bottle?                       | Yes 🔽        | No 🗌          |                      |
| 8. Sample containers intact?                                 | Yes 🔽        | No 🗆          |                      |
| 9. Sufficient sample volume for indicated test?              | Yes 🔽        | No 🗌          |                      |
| 10. All samples received within holding time?                | Yes 🗸        | No 🗌          |                      |
| 11. Container/Temp Blank temperature in compliance?          | Yes 🗹        | No 🗆          |                      |
| 12. Water - VOA vials have zero headspace?                   | Yes 🗌        | No 🗌 V        | OA Vials Not Present |
| 13. Water - Preservation checked upon receipt (except VOA*)? | Yes          | No 🗆          | Not Applicable 🗹     |
| *VOA Preservation Checked After Sample Analysis              |              |               |                      |
| SPL Representative:                                          | Contact Date | & Time:       |                      |
| Client Name Contacted:                                       |              |               |                      |
| Non Conformance<br>Issues:                                   |              |               |                      |
| Client Instructions:                                         |              |               |                      |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |                                       |            |                      | SP                                            | . Worko         | SPL Workorder No. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (5)                      | 322333        | 33              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------|---------------------------------------|------------|----------------------|-----------------------------------------------|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|-----------------|
| SP<br>Analysis Request &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SPL, Inc.<br>Analysis Request & Chain of Custody Record | p              |                                       |            |                      |                                               | 2664            | 6504030           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dage                     | -\            | _               |
| Dient Name: 75 COL. 24 11 all (4/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mouldi                                                  |                |                                       | matrix     | bottle si            | size pres.                                    |                 |                   | Requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | Analysis      |                 |
| 16 180 5:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | # 2500                                                  |                |                                       |            |                      |                                               | <u>.l.</u> _    | -                 | (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | ·<br> -       |                 |
| Howton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | State /X                                                | LL diz         | 200                                   | 0=>        | lass<br>ther<br>tial | er                                            |                 |                   | 5)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |               |                 |
| e/Fax: 7/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17-308                                                  | 3840           |                                       |            |                      |                                               | SIS             | <u>((</u>         | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |               |                 |
| act: K. Rexroad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                       | exroadoBru     | Bruncold, com                         | oou:       |                      | 19410<br>ONI<br>X<br>7 Ze                     | ənisi           | 32                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |               |                 |
| Project Name/No.: 128125 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Services                                                | ,              |                                       |            |                      |                                               | uoj             | 728               | w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |               |                 |
| Site Name: FRACMASTEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |                |                                       |            |                      |                                               | ) îo            | ار<br>درو         | 5/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |               |                 |
| Site Location: HOD55, NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | 1              | - 1                                   |            |                      |                                               |                 | 4                 | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |               |                 |
| Invoice To: A. Lexcoal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                         | Ph: 115-646-   | 3                                     | ν=ν<br>V=Σ | d=<br> a= <br>  [=   |                                               |                 | 201<br>201        | Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·                        |               |                 |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE                                                    | TIME           | comp grab                             | S          |                      |                                               | الحد            | ><br>1            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                        | -             | _               |
| 5RB-4-8-B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60-8-4                                                  | (203           | ×                                     | 3          | JA 401               | JI [Jul                                       | 0/              | メメ                | 人                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |               |                 |
| 864-4-9-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4-9-09                                                  | 9/01           | ×                                     | 3          | VA 80                | 1 1/2°                                        | _               | X<br>X            | χ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |               |                 |
| (6) 1-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |                |                                       |            | -                    | 1                                             |                 |                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | _             | _               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                | +                                     |            |                      |                                               |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |                                       |            |                      |                                               |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |                                       |            |                      |                                               |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |               | Q               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                | · · · · · · · · · · · · · · · · · · · |            |                      |                                               |                 | Berg.             | ESTATE OF THE PARTY OF THE PART |                          | +             |                 |
| The second secon |                                                         |                |                                       |            |                      |                                               |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |                                       |            |                      |                                               |                 | 1                 | )<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | à                        | 17 <b>3</b> 2 |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |                                       |            |                      |                                               |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |                |                                       |            |                      | <del></del>                                   |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |               |                 |
| Nient/Consultant Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                         | Laborato       | Laboratory remarks:                   |            |                      |                                               |                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intact?<br>Ice?<br>Temp: | 。<br>子子ら      | 2 Z Z           |
| Remiested TAT Special F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Special Reporting Requirements Results:                 | s Results: Fax |                                       |            | Specia               | Email PDI Special Detection Limits (specify): | Limits          | (specify)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | PM            | view (initial): |
| 1 Business Day Contract Standard Ock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Oxt Level 3 9c                                          | Verent QC TX   | TX TRRP 🔲 LA                          | LA REÇAP   | ,                    |                                               |                 |                   | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |               |                 |
| 2 Business Days Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1. Relinquished of Sampler:                             | 1              | date 4                                | 69/6/      | time                 | 186                                           | 2. Received by: | ed by:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | •             |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         | •              | date                                  |            | time                 | -                                             | 4. Received by: | ed by:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |               |                 |
| Other 5. Relino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5. Relinguished by:                                     |                | date                                  |            | Ę.                   |                                               | 18 E.E.         | d by La           | Received by Laboratory:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                        |               |                 |
| Rush TAT requires prior notice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                | 4                                     | 110/01     |                      | 1000                                          | B               | 7                 | The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V<br>V                   | A             |                 |
| ☐ 8880 Interchange Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         | ☐ 500 Amb      | 500 Ambassador Caffery Parkway        | iffery Pa  | ırkway               |                                               | 1               |                   | 459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 459 Hughes Drive         | Drive         | ,  <br>,        |
| Houston, TX 77054 (713) 660-0901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 106                                                     | Scott, LA      | 70583 (337                            | 7 237-47   | 775                  |                                               |                 | <b>Fravers</b>    | Traverse City, MI 49686 (231) 947-5777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 49686                 | (231)94       | 7-5777          |

٠.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

# Certificate of Analysis Number: 09050091

| Report To:              | Project Name: BJ-Fracmaster 128125 |
|-------------------------|------------------------------------|
| Brown & Caldwell        | <u>Site:</u> Hobbs, NM             |
| Rick Rexroad            | Site Address:                      |
| 1415 Louisiana          |                                    |
| Suite 2500              | PO Number:                         |
| Houston                 |                                    |
| TX                      | State: New Mexico                  |
| 77002-                  | State Cert. No.:                   |
| ph: (713) 759-0999 fax: | Date Reported: 6/12/2009           |

This Report Contains A Total Of 67 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Case Narrative for: Brown & Caldwell

# Certificate of Analysis Number: 09050091

| Report To:              | Project Name: BJ-Fracmaster 128125 |
|-------------------------|------------------------------------|
| Brown & Caldwell        | Site: Hobbs, NM                    |
| Rick Rexroad            | Site Address:                      |
| 1415 Louisiana          |                                    |
| Suite 2500              | PO Number:                         |
| Houston                 |                                    |
| тх                      | State: New Mexico                  |
| 77002-                  | State Cert. No.:                   |
| ph: (713) 759-0999 fax: | Date Reported: 6/12/2009           |

REVISED REPORT: This report is revised to include Mineral Spiris by Method 8015B per your request.

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID: 89962 for the Semivolatile hydrocarbons analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met. Volatile Organics:

Your sample ID "MW-4-52-55" (SPL ID:09050091-01) was randomly selected for use in SPL's quality control program for the Semivolatile Organics analysis by SW 846 Method 8270C (Batch ID:90048). The Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) recoveries were outside of the advisable quality control limits due to possible matrix interference for the following analytes:

2,4,5-Trichlorophenol
2,4-Dichlorophenol
2,4-Dichlorophenol
2,4-Dinitrophenol
4,6-Dinitro-2-methylphenol
Benzoic Acid
Cxarbazole
Dibenzofuran
Di-n-butyl phthalate
Fluorene
Pentachlorophenol
Phenanthrene
Phenol
3 & 4-Methylphenol

A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits

sous V. Vickeaire

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

09050091 Page 1

6/12/2009

Agnes V. Vicknair

Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.

Date



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Case Narrative for: Brown & Caldwell

# Certificate of Analysis Number: 09050091

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Agnes V. Vickeaire

09050091 Page 2 6/12/2009



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

## **Certificate of Analysis Number:**

# 09050091

Report To:

Fax To:

**Brown & Caldwell** 

Rick Rexroad

1415 Louisiana Suite 2500

Houston

TX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

**Project Name:** 

BJ-Fracmaster 128125

Site:

Hobbs, NM

Site Address:

PO Number: State:

**New Mexico** 

State Cert. No.:

Date Reported:

6/12/2009

| Client Sample ID | Lab Sample ID | Matrix | Date Collected       | Date Received       | COCID  | HOLD |
|------------------|---------------|--------|----------------------|---------------------|--------|------|
| MW-4-52-55       | 09050091-01   | Soil   | 5/2/2009 7:15:00 AM  | 5/4/2009 9:30:00 AM | 322327 |      |
| MVV-4            | 09050091-02   | Water  | 5/2/2009 12:00:00 PM | 5/4/2009 9:30:00 AM | 322327 |      |
| RB-050209-1      | 09050091-03   | Water  | 5/2/2009 12:10:00 PM | 5/4/2009 9:30:00 AM | 322326 |      |
| FB-050209-1      | 09050091-04   | Water  | 5/2/2009 12:15:00 PM | 5/4/2009 9:30:00 AM | 322326 |      |
| TB-050209-1      | 09050091-05   | Water  | 5/2/2009 12:15:00 PM | 5/4/2009 9:30:00 AM | 322326 |      |

Ignes V. Vichiaire Agnes V. Vicknair

Project Manager

6/12/2009

Date

Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

> Ted Yen Quality Assurance Officer



Surr: n-Pentacosane

#### **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

05/12/09 23:44 AM

5063334

Client Sample ID: MW-4-52-55 Collected: 05/02/2009 7:15 SPL Sample ID: 09050091-01

| Analyses/Method         |                  | Result | QUAL          | Rep    | o.Limit | D   | il. Facto | r Date Anaiy | zed   | Analyst     | Seq.#   |
|-------------------------|------------------|--------|---------------|--------|---------|-----|-----------|--------------|-------|-------------|---------|
| DIESEL RANGE ORG        | ANICS            |        |               |        |         | MCL | s         | W8015B       | Ur    | its: mg/Kg  |         |
| Diesel Range Organics ( | C10-C28)         | 6.3    |               |        | 5       |     | 1         | 05/12/09 2   | 3:44  | NW          | 5017047 |
| Surr: n-Pentacosane     |                  | 100    |               | %      | 20-154  |     | 1         | 05/12/09 2   | 3:44  | NW          | 5017047 |
| Prep Method             | Prep Date        |        | Prep Initials | Prep F | actor   |     |           |              |       |             |         |
| SW3550B                 | 05/05/2009 11:45 | 5      | FAK           | 1.00   |         |     |           |              |       |             |         |
| GASOLINE RANGE C        | RGANICS          |        |               |        |         | MCL | S         | W8015B       | Ur    | nits: mg/Kg |         |
| Gasoline Range Organic  | S                | ND     |               |        | 0.1     |     | 1         | 05/08/09 2   | 3:24  | EMB         | 5012654 |
| Surr: 1,4-Difluorobenz  | ene              | 102    |               | %      | 63-142  |     | 1         | 05/08/09 2   | 23:24 | EMB         | 5012654 |
| Surr: 4-Bromofluorobe   | enzene           | 104    |               | %      | 50-159  |     | 1         | 05/08/09 2   | 3:24  | EMB         | 5012654 |
| Prep Method             | Prep Date        |        | Prep Initials | Prep f | Factor  |     |           |              |       |             |         |
| SW5030B                 | 05/07/2009 11:05 | 5      | XML           | 1.00   |         |     |           |              |       |             |         |
| SEMIVOLATILE HYD        | ROCARBONS        |        |               |        |         | MCL | S         | W8015B       | Ur    | nits: mg/kg |         |
| Mineral Spirits Range O | rganics          | ND     |               |        | 10      |     | 1         | 05/12/09 2   | 3.44  | AM          | 5063334 |

% 20-154

1

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3550B     | 05/05/2009 11:45 |               | 1.00        |

100

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050091 Page 4 6/12/2009 4:23:24 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-4-52-55

Collected: 05/02/2009 7:15

SPL Sample ID:

09050091-01

| Site: I | Hobbs, | MM |
|---------|--------|----|
|---------|--------|----|

| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq. #  |
|-----------------------------|----------------|-----------|-------------|----------------|------------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C Un      | its: ug/kg |         |
| 1,2,4-Trichlorobenzene      | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 1,2-Dichlorobenzene         | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 1,2-Diphenylhydrazine       | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 1,3-Dichlorobenzene         | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 1,4-Dichlorobenzene         | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2,4,5-Trichlorophenol       | ND             | 800       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2,4,6-Trichlorophenol       | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2,4-Dichlorophenol          | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2,4-Dimethylphenol          | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2,4-Dinitrophenol           | ND             | 800       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2,4-Dinitrotoluene          | ND             | 800       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2,6-Dinitrotoluene          | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2-Chloronaphthalene         | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2-Chlorophenol              | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2-Methylnaphthalene         | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2-Nitroaniline              | ND             | 800       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 2-Nitrophenol               | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 3,3'-Dichlorobenzidine      | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 3-Nitroaniline              | ND             | 800       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 4,6-Dinitro-2-methylphenol  | ND             | 800       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 4-Bromophenyl phenyl ether  | ND             | . 330     | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 4-Chloro-3-methylphenol     | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 4-Chloroaniline             | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 4-Chlorophenyl phenyl ether | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 4-Nitroaniline              | ND             | 800       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| 4-Nitrophenol               | ND             | 800       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Acenaphthene                | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Acenaphthylene              | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Aniline                     | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Anthracene                  | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Benz(a)anthracene           | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Benzo(a)pyrene              | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Benzo(b)fluoranthene        | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 501790  |
| Benzo(g,h,i)perylene        | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Benzo(k)fluoranthene        | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Benzoic acid                | ND             | 1600      | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Benzyl alcohol              | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |
| Bis(2-chloroethoxy)methane  | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 501790  |
| Bis(2-chloroethyl)ether     | ND             | 330       | 1           | 05/08/09 19:45 | GY         | 5017904 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050091 Page 5 6/12/2009 4:23:24 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-4-52-55

Collected: 05/02/2009 7:15

SPL Sample ID:

09050091-01

| Site: Hobbs, NN |  |
|-----------------|--|
|                 |  |
|                 |  |
|                 |  |

|                             |        | 01101 | Site. Hobbs, N |        |    | Bata Analysis of | A l           |                   |
|-----------------------------|--------|-------|----------------|--------|----|------------------|---------------|-------------------|
| Analyses/Method             | Result | QUAL  | Kep            | .Limit |    | 05/08/09 19:45   | Analyst<br>GY | Seq. #<br>5017904 |
| Bis(2-chloroisopropyl)ether | ND     |       |                | 330    | 1  |                  |               |                   |
| Bis(2-ethylhexyl)phthalate  | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Butyl benzyl phthalate      | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Carbazole                   | ND ND  |       |                | 330    | 11 | 05/08/09 19:45   | GY            | 5017904           |
| Chrysene                    | ND     |       |                | 330    | 11 | 05/08/09 19:45   | GY            | 5017904           |
| Dibenz(a,h)anthracene       | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Dibenzofuran                | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Diethyl phthalate           | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Dimethyl phthalate          | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Di-n-butyl phthalate        | ND     |       |                | 330    | 11 | 05/08/09 19:45   | GY            | 5017904           |
| Di-n-octyl phthalate        | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Fluoranthene                | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Fluorene                    | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Hexachlorobenzene           | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Hexachlorobutadiene         | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Hexachlorocyclopentadiene   | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Hexachloroethane            | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Indeno(1,2,3-cd)pyrene      | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Isophorone                  | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Naphthalene                 | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Nitrobenzene                | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| N-Nitrosodi-n-propylamine   | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| N-Nitrosodiphenylamine      | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Pentachlorophenol           | ND     |       |                | 800    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Phenanthrene                | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Phenol                      | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Pyrene                      | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Pyridine                    | ND     |       | -              | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| 2-Methylphenol              | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| 3 & 4-Methylphenol          | ND     |       |                | 330    | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Surr: 2,4,6-Tribromophenol  | 79.2   |       | %              | 19-135 | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Surr: 2-Fluorobiphenyl      | 55.5   |       | %              | 15-140 | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Surr: 2-Fluorophenol        | 71.6   |       | %              | 15-122 | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Surr: Nitrobenzene-d5       | 56.9   |       | %              | 10-134 | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Surr: Phenol-d5             | 76.8   |       | %              | 10-123 | 1  | 05/08/09 19:45   | GY            | 5017904           |
| Surr: Terphenyl-d14         | 58.2   |       | %              | 18-166 | 1  | 05/08/09 19:45   | GY            | 5017904           |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |  |
|-------------|------------------|---------------|-------------|--|
| SW3550C     | 05/06/2009 15:27 | QMT           | 1.00        |  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-4-52-55

Collected: 05/02/2009 7:15

SPL Sample ID:

09050091-01

Site: Hobbs, NM

| Analyses/Method                   | Result QUAL | Rep.Limit | Dil. Factor | Date Analyzed       | Analyst | Seq. #  |
|-----------------------------------|-------------|-----------|-------------|---------------------|---------|---------|
| VOLATILE ORGANICS BY METHOD 8260B |             |           | MCL SV      | W8260B Units: ug/kg |         |         |
| 1,1,1,2-Tetrachloroethane         | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,1,1-Trichloroethane             | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,1,2,2-Tetrachloroethane         | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,1,2-Trichloroethane             | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,1-Dichloroethane                | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,1-Dichloroethene                | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,1-Dichloropropene               | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2,3-Trichlorobenzene            | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2,3-Trichloropropane            | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2,4-Trichlorobenzene            | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2,4-Trimethylbenzene            | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2-Dibromo-3-chloropropane       | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2-Dibromoethane                 | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2-Dichlorobenzene               | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2-Dichloroethane                | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,2-Dichloropropane               | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,3,5-Trimethylbenzene            | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,3-Dichlorobenzene               | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,3-Dichloropropane               | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 1,4-Dichlorobenzene               | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 2,2-Dichloropropane               | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 2-Butanone                        | ND          | 20        | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 2-Chloroethyl vinyl ether         | ND          | 10        | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 2-Chlorotoluene                   | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 2-Hexanone                        | ND          | 10        | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 4-Chlorotoluene                   | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 4-Isopropyltoluene                | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| 4-Methyl-2-pentanone              | ND          | 10        | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Acetone                           | ND          | 100       | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Acrylonitrile                     | ND          | 50        | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Benzene                           | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Bromobenzene                      | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Bromochloromethane                | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Bromodichloromethane              | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Bromoform                         | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Bromomethane                      | ND          | 10        | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Carbon disulfide                  | ND          | 5         | 1           | 05/07/09 21:34      |         | 5012049 |
| Carbon tetrachloride              | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
| Chlorobenzene                     | ND          | 5         | 1           | 05/07/09 21:34      | TLE     | 5012049 |
|                                   |             |           |             |                     |         |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

|                             |        |      | Site | Hobbs, | NM          |                |         |         |
|-----------------------------|--------|------|------|--------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep  | .Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |      |      | 10     | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Chloroform                  | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Chloromethane               | ND     |      |      | 10     | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Dibromochloromethane        | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Dibromomethane              | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Dichlorodifluoromethane     | ND     |      |      | 10     | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Ethylbenzene                | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Hexachlorobutadiene         | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Isopropylbenzene            | ND     | , ,  |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Methyl tert-butyl ether     | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Methylene chloride          | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Naphthalene                 | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| n-Butylbenzene              | ND     |      | -    | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| n-Propylbenzene             | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| sec-Butylbenzene            | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Styrene                     | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| tert-Butylbenzene           | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Tetrachloroethene           | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Toluene                     | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Trichloroethene             | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Trichlorofluoromethane      | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Vinyl acetate               | ND     |      | _    | 10     | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Vinyl chloride              | ND     |      |      | 10     | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| cis-1,2-Dichloroethene      | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| cis-1,3-Dichloropropene     | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| m,p-Xylene                  | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| o-Xylene                    | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| trans-1,2-Dichloroethene    | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| trans-1,3-Dichloropropene   | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Xylenes,Total               | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| 1,2-Dichloroethene (total)  | ND     |      |      | 5      | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Surr: 1,2-Dichloroethane-d4 | 97.4   |      | %    | 64-115 | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Surr: 4-Bromofluorobenzene  | 113    |      | %    | 65-131 | 1           | 05/07/09 21:34 | TLE     | 5012049 |
| Surr: Toluene-d8            | 90.8   |      | %    | 75-136 | 1           | 05/07/09 21:34 | TLE     | 5012049 |
|                             |        |      |      |        |             |                |         |         |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW5030B     | 05/05/2009 18:04 | XML           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

05/04/09 11:59 BDG

| Client Sample ID:MW-4           |        |               | Colle  | cted: 05 | 5/02/2009 | 9 12:00    | SPL Sar  | nple  | I <b>D</b> : 09050 | 0091-02 |
|---------------------------------|--------|---------------|--------|----------|-----------|------------|----------|-------|--------------------|---------|
|                                 |        |               | Site:  | Hobi     | bs, NM    |            |          |       |                    |         |
| Analyses/Method                 | Result | QUAL          | Rep    | .Limit   |           | il. Factor | Date Ana | lyzed | Analyst            | Seq.#   |
| ALKALINITY (AS CACO3), TOTAL    |        |               |        |          | MCL       |            | E310.1   | Ur    | nits: mg/L         |         |
| Alkalinity, Total (As CaCO3)    | 477    |               |        | 2        |           | 1          | 06/10/09 | 16:00 | PAC                | 5061242 |
| DIESEL RANGE ORGANICS           |        |               |        |          | MCL       | SI         | W8015B   | Uı    | nits: mg/L         |         |
| Diesel Range Organics (C10-C28) | 2.4    |               |        | 0.1      |           | 1          | 05/06/09 | 22:45 | NW                 | 5014281 |
| Surr: n-Pentacosane             | 50.4   |               | % 2    | 20-150   |           | 1          | 05/06/09 | 22:45 | NW                 | 5014281 |
| Prep Method Prep Date           |        | Prep Initials | Prep F | actor    |           |            |          |       |                    |         |
| SW3510C 05/04/2009 1            | 4:15   | N_M           | 1.00   |          |           |            |          |       |                    |         |
| GASOLINE RANGE ORGANICS         |        |               |        |          | MCL       | S          | W8015B   | Uı    | nits: mg/L         |         |
| Gasoline Range Organics         | 4.7    |               | -      | 0.5      |           | 5          | 05/08/09 | 11:48 | CLJ                | 5014443 |
| Surr: 1,4-Difluorobenzene       | 89.4   |               | % (    | 60-155   |           | 5          | 05/08/09 | 11:48 | CLJ                | 5014443 |
| Surr: 4-Bromofluorobenzene      | 114    |               | % !    | 50-158   |           | 5          | 05/08/09 | 11:48 | CLJ                | 5014443 |
| HEADSPACE GAS ANALYSIS          |        |               |        |          | MCL       |            | RSK147   | Uı    | nits: mg/L         |         |
| Methane                         | ND     |               | (      | 0.0012   |           | 1          | 05/07/09 | 10:33 | V_L                | 5009411 |
| ION CHROMATOGRAPHY              |        |               |        |          | MCL       |            | E300.0   | Uı    | nits: mg/L         |         |
| Chloride                        | 218    |               |        | 25       |           | 50         | 05/15/09 | 12:11 | BDG                | 5022191 |
| Sulfate                         | 46.4   |               |        | 25       |           | 50         | 05/15/09 | 12:11 | BDG                | 5022191 |

0.5

Qualifiers:

Nitrogen, Nitrate (As N)

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

0.553

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

5008121



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-4

**Collected:** 05/02/2009 12:00 **SPL Sample ID:** 

09050091-02

| Site: H | obbs, | NM |
|---------|-------|----|
|---------|-------|----|

|                             |               | Site: Hobi    | os, ivivi   |                |            |         |
|-----------------------------|---------------|---------------|-------------|----------------|------------|---------|
| Analyses/Method             | Result QU     | JAL Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq. #  |
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270 | С             | MCL SV      | V8270C Ur      | nits: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 1,2-Dichlorobenzene         | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 1,2-Diphenylhydrazine       | ND            | 10            | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 1,3-Dichlorobenzene         | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 1,4-Dichlorobenzene         | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 2,4,5-Trichlorophenol       | ND            | 10            | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 2,4,6-Trichlorophenol       | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 2,4-Dichlorophenol          | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 2,4-Dimethylphenol          | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 2,4-Dinitrophenol           | ND            | 25            | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 2,4-Dinitrotoluene          | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 2,6-Dinitrotoluene          | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 2-Chloronaphthalene         | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 2-Chlorophenol              | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 2-Methylnaphthalene         | 27            | 5             | 1           | 05/11/09 17:47 | E_R        | 5015639 |
| 2-Nitroaniline              | ND            | 25            | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 2-Nitrophenol               | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 3,3'-Dichlorobenzidine      | ND            | 10            | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 3-Nitroaniline              | ND            | 25            | 1           | 05/11/09 17:47 | ER         | 501563  |
| 4,6-Dinitro-2-methylphenol  | ND            | 25            | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 4-Bromophenyl phenyl ether  | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 4-Chloro-3-methylphenol     | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 4-Chloroaniline             | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 4-Chlorophenyl phenyl ether | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 4-Nitroaniline              | ND            | 25            | 1           | 05/11/09 17:47 | E_R        | 501563  |
| 4-Nitrophenol               | ND            | 25            | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Acenaphthene                | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Acenaphthylene              | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Aniline                     | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Anthracene                  | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Benz(a)anthracene           | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Benzo(a)pyrene              | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Benzo(b)fluoranthene        | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Benzo(g,h,i)perylene        | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Benzo(k)fluoranthene        | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Benzoic acid                | ND            | 25            | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Benzyl alcohol              | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Bis(2-chloroethoxy)methane  | ND            | 5             | 1           | 05/11/09 17:47 | E_R        | 501563  |
| Bis(2-chloroethyl)ether     | ND            | 5             | 1           | 05/11/09 17:47 | ER         | 501563  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-4 Collected: 05/02/2009 12:00 SPL Sample ID: 09050091-02

|                             |        |      | Site: | Hobbs, | , NM        |                |         |         |
|-----------------------------|--------|------|-------|--------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep.l | _imit  | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Bis(2-chloroisopropyl)ether | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Butyl benzyl phthalate      | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Carbazole                   | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Chrysene                    | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Dibenz(a,h)anthracene       | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Dibenzofuran                | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Diethyl phthalate           | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Dimethyl phthalate          | ND     | _    |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Di-n-butyl phthalate        | 8.3    |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Di-n-octyl phthalate        | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Fluoranthene                | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Fluorene                    | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Hexachlorobenzene           | ND     |      | _     | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Hexachlorobutadiene         | ND     |      | -     | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Hexachlorocyclopentadiene   | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Hexachloroethane            | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Isophorone                  | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Naphthalene                 | 44     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Nitrobenzene                | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| N-Nitrosodi-n-propylamine   | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| N-Nitrosodiphenylamine      | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Pentachlorophenol           | ND     |      |       | 25     | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Phenanthrene                | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Phenol                      | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Pyrene                      | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Pyridine                    | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| 2-Methylphenol              | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| 3 & 4-Methylphenol          | ND     |      |       | 5      | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Surr: 2,4,6-Tribromophenol  | 95.7   |      | % 10  | 0-123  | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Surr: 2-Fluorobiphenyl      | 59.4   |      | % 2   | 3-116  | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Surr: 2-Fluorophenol        | 66.5   |      | % 10  | 6-110  | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Surr: Nitrobenzene-d5       | 52.0   |      | % 2   | 1-114  | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Surr: Phenol-d5             | 54.1   |      | % 1   | 0-110  | 1           | 05/11/09 17:47 | E_R     | 5015639 |
| Surr: Terphenyl-d14         | 60.4   |      | % 2   | 2-141  | 1           | 05/11/09 17:47 | E_R     | 5015639 |
|                             |        |      |       | •      |             |                |         |         |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 15:05 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-4

Collected: 05/02/2009 12:00

SPL Sample ID:

09050091-02

| Site: H | lobbs, | MM |
|---------|--------|----|
|---------|--------|----|

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyz | zed Analyst | Seq. #  |
|-----------------------------|------------|------|-----------|-------------|-------------|-------------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B |      |           | MCL SV      | V8260B      | Units: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/11/09 18 |             | 5015579 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/11/09 18 | 3:54 JC     | 5015579 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 05/11/09 18 | B:54 JC     | 5015579 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 05/11/09 18 | 3:54 JC     | 5015579 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 05/11/09 18 | 3:54 JC     | 5015579 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 05/11/09 18 | 3:54 JC     | 5015579 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,2,4-Trimethylbenzene      | 440        |      | 25        | 5           | 05/12/09 13 | 3:29 JC     | 5018930 |
| 1,2-Dibromo-3-chloropropane | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,3,5-Trimethylbenzene      | 19         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 2-Butanone                  | ND         |      | 20        | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 2-Hexanone                  | ND         |      | 10        | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 4-Isopropyltoluene          | 9.6        |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Acetone                     | ND         |      | 20        | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Acrylonitrile               | ND         |      | 10        | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Benzene                     | 81         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Bromobenzene                | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Bromochloromethane          | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Bromodichloromethane        | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Bromoform                   | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Bromomethane                | ND         |      | 10        | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Carbon disulfide            | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |
| Chlorobenzene               | ND         |      | 5         | 1           | 05/11/09 18 | 8:54 JC     | 5015579 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: MW-4 Collected: 05/02/2009 12:00 SPL Sample ID: 09050091-02

|                             |        |      | Site | e: <b> </b> - | lobbs, NN | <u> </u>    |                |         |         |
|-----------------------------|--------|------|------|---------------|-----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re   | p.Limi        | t         | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |      | 1             | 0         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Chloroform                  | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Chloromethane               | ND     |      |      | 1             | 0         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Dibromochloromethane        | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Dibromomethane              | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Dichlorodifluoromethane     | ND     |      |      | 1             | 0         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Ethylbenzene                | 530    |      |      | 2             | 5         | 5           | 05/12/09 13:29 | JC      | 5018930 |
| Hexachlorobutadiene         | ND     |      |      | •             | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Isopropylbenzene            | 41     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Methyl tert-butyl ether     | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Methylene chloride          | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Naphthalene                 | 86     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| n-Butylbenzene              | 28     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| n-Propyibenzene             | 45     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| sec-Butylbenzene            | 18     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Styrene                     | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| tert-Butylbenzene           | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Tetrachloroethene           | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Toluene                     | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Trichloroethene             | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Trichlorofluoromethane      | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Vinyl acetate               | ND     |      |      | 1             | 0         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Vinyl chloride              | ND     |      |      |               | 2         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| cis-1,2-Dichloroethene      | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| cis-1,3-Dichloropropene     | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| m,p-Xylene                  | 730    |      |      | 2             | 5         | 5           | 05/12/09 13:29 | JC      | 5018930 |
| o-Xylene                    | 220    |      | _    | 2             | 5         | 5           | 05/12/09 13:29 | JC      | 5018930 |
| trans-1,2-Dichloroethene    | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| trans-1,3-Dichloropropene   | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| 1,2-Dichloroethene (total)  | ND     |      |      |               | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Xylenes,Total               | 950    |      |      | 2             | 5         | 5           | 05/12/09 13:29 | JC      | 5018930 |
| Surr: 1,2-Dichloroethane-d4 | 92.4   |      | %    | 78-11         | 6         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Surr: 1,2-Dichloroethane-d4 | 102    |      | %    | 78-11         | 6         | 5           | 05/12/09 13:29 | JC      | 5018930 |
| Surr: 4-Bromofluorobenzene  | 114    |      | %    | 74-12         | 5         | 1           | 05/11/09 18:54 | JC      | 5015579 |
| Surr: 4-Bromofluorobenzene  | 102    |      | %    | 74-12         | 5         | 5           | 05/12/09 13:29 | JC      | 5018930 |

% 82-118

82-118

%

Qualifiers:

Surr: Toluene-d8

Surr: Toluene-d8

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

99.3

99.0

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

05/12/09 13:29

05/11/09 18:54

JC

JC

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050091 Page 13 6/12/2009 4:23:29 PM

5018930

5015579



Surr: 4-Bromofluorobenzene

### **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

05/08/09 12:16 CLJ

5014444

Client Sample ID: RB-050209-1 Collected: 05/02/2009 12:10 09050091-03 SPL Sample ID:

| Site: Hobbs NM |     |      |
|----------------|-----|------|
|                | 0:4 | <br> |
|                |     |      |

|                       |                 |        |               | Site | : Hobl  | os, NM   |           |           |       |           |         |
|-----------------------|-----------------|--------|---------------|------|---------|----------|-----------|-----------|-------|-----------|---------|
| Analyses/Method       |                 | Result | QUAL          | Re   | p.Limit | Di       | l. Factor | Date Anal | yzed  | Analyst   | Seq. #  |
| DIESEL RANGE OR       | GANICS          |        |               |      |         | MCL      | S         | W8015B    | Un    | its: mg/L |         |
| Diesel Range Organics | (C10-C28)       | ND     |               |      | 0.1     | <u> </u> | 1         | 05/06/09  | 23:05 | NW        | 5014282 |
| Surr: n-Pentacosane   | •               | 77.2   |               | %    | 20-150  |          | 1         | 05/06/09  | 23:05 | NW        | 5014282 |
| Prep Method           | Prep Date       |        | Prep Initials | Prep | Factor  |          |           |           |       |           |         |
| SW3510C               | 05/04/2009 14:1 | 5      | N_M           | 1.00 |         |          |           |           |       |           |         |
| GASOLINE RANGE        | ORGANICS        |        |               |      |         | MCL      | S'        | W8015B    | Un    | its: mg/L |         |
| Gasoline Range Organ  | ics             | ND     |               |      | 0.1     |          | 1         | 05/08/09  | 12:16 | CLJ       | 5014444 |
| Surr: 1,4-Difluorober | nzene           | 90.2   |               | %    | 60-155  | -        | 1         | 05/08/09  | 12:16 | CLJ       | 5014444 |

% 50-158

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

104

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050091 Page 14 6/12/2009 4:23:29 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:RB-050209-1

Collected: 05/02/2009 12:10 SPL Sample ID:

09050091-03

| Site: Hobbs, NI | VI. |
|-----------------|-----|
|-----------------|-----|

| Analyses/Method                       | Result QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |  |
|---------------------------------------|-------------|-----------|-------------|----------------|-----------|---------|--|
| SEMIVOLATILE ORGANICS BY METHOD 8270C |             |           | MCL SV      | V8270C Un      | its: ug/L |         |  |
| 1,2,4-Trichlorobenzene                | ND ·        | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 1,2-Dichlorobenzene                   | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 1,2-Diphenylhydrazine                 | ND          | 10        | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 1,3-Dichlorobenzene                   | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 1,4-Dichlorobenzene                   | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2,4,5-Trichlorophenol                 | ND          | 10        | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2,4,6-Trichlorophenol                 | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2,4-Dichlorophenol                    | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2,4-Dimethylphenol                    | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2,4-Dinitrophenol                     | ND          | 25        | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2,4-Dinitrotoluene                    | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2,6-Dinitrotoluene                    | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2-Chloronaphthalene                   | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 2-Chlorophenol                        | ND          | 5         | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| 2-Methylnaphthalene                   | ND          | 5         | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| 2-Nitroaniline                        | ND          | 25        | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| 2-Nitrophenol                         | ND          | . 5       | 1           | 05/11/09 18:22 | E R       | 5015640 |  |
| 3,3'-Dichlorobenzidine                | ND          | 10        | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| 3-Nitroaniline                        | ND          | 25        | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| 4,6-Dinitro-2-methylphenol            | ND          | 25        | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 4-Bromophenyl phenyl ether            | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 4-Chloro-3-methylphenol               | ND          | 5         | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| 4-Chloroaniline                       | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 4-Chlorophenyl phenyl ether           | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| 4-Nitroaniline                        | ND          | 25        | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| 4-Nitrophenol                         | ND          | 25        | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| Acenaphthene                          | ND          | 5         | 1           | 05/11/09 18:22 | E.R       | 5015640 |  |
| Acenaphthylene                        | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| Aniline                               | ND          | 5         | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| Anthracene                            | ND          | 5         | 1           | 05/11/09 18:22 | ER        | 5015640 |  |
| Benz(a)anthracene                     | ND          | 5         | 1           | 05/11/09 18:22 | E R       | 5015640 |  |
| Benzo(a)pyrene                        | ND          | 5         | 1           | 05/11/09 18:22 | <br>E_R   | 5015640 |  |
| Benzo(b)fluoranthene                  | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| Benzo(g,h,i)perylene                  | ND          | 5         | 1           | 05/11/09 18:22 | E_R       | 501564  |  |
| Benzo(k)fluoranthene                  | ND          | 5         | 1           | 05/11/09 18:22 |           | 5015640 |  |
| Benzoic acid                          | ND          | 25        | 1           | 05/11/09 18:22 | E_R       | 5015640 |  |
| Benzyl alcohol                        | ND          | 5         | 1           | 05/11/09 18:22 | ER        | 501564  |  |
| Bis(2-chloroethoxy)methane            | ND          | 5         | 1           | 05/11/09 18:22 |           | 501564  |  |
| Bis(2-chloroethyl)ether               | ND          | 5         | 1           | 05/11/09 18:22 | E R       | 5015640 |  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

 $\ensuremath{\mathsf{B/\!V}}$  - Analyte detected in the associated Method Blank

- \* Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:RB-050209-1

Collected: 05/02/2009 12:10 SPL Sample ID:

09050091-03

| OILE. HODDOS, MIN | Site: | Hobbs, | NΜ |
|-------------------|-------|--------|----|
|-------------------|-------|--------|----|

|                             |        |      | Site | . nobbs, | IAIAI       | ·              |         |         |
|-----------------------------|--------|------|------|----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re   | p.Limit  | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Bis(2-chloroisopropyl)ether | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Butyl benzyl phthalate      | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Carbazole                   | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Chrysene                    | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Dibenz(a,h)anthracene       | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Dibenzofuran                | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Diethyl phthalate           | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Dimethyl phthalate          | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Di-n-butyl phthalate        | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Di-n-octyl phthalate        | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Fluoranthene                | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Fluorene                    | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Hexachlorobenzene           | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Hexachlorobutadiene         | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Hexachlorocyclopentadiene   | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 501564  |
| Hexachloroethane            | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Isophorone                  | ND     | -    |      | 5        | 1           | 05/11/09 18:22 | E_R     | 501564  |
| Naphthalene                 | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Nitrobenzene                | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 501564  |
| N-Nitrosodi-n-propylamine   | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 501564  |
| N-Nitrosodiphenylamine      | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Pentachlorophenol           | ND     |      |      | 25       | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Phenanthrene                | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Phenol                      | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Pyrene                      | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Pyridine                    | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| 2-Methylphenol              | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| 3 & 4-Methylphenol          | ND     |      |      | 5        | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Surr: 2,4,6-Tribromophenol  | 80.8   |      | %    | 10-123   | 1           | 05/11/09 18:22 | E_R     | 5015640 |
| Surr: 2-Fluorobiphenyl      | 57.4   |      | %    | 23-116   | 1           | 05/11/09 18:22 | E_R     | 501564  |
| Surr: 2-Fluorophenol        | 61.9   |      | %    | 16-110   | 1           | 05/11/09 18:22 | E_R     | 501564  |
| Surr: Nitrobenzene-d5       | 50.2   |      | %    | 21-114   | 1           | 05/11/09 18:22 | E_R     | 501564  |
| Surr: Phenol-d5             | 52.3   |      | %    | 10-110   | 1           | 05/11/09 18:22 | E_R     | 501564  |
| Surr: Terphenyl-d14         | 66.2   |      | %    | 22-141   | 1           | 05/11/09 18:22 | E_R     | 5015640 |
|                             |        |      |      |          |             |                |         |         |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 15:05 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: RB-050209-1

Collected: 05/02/2009 12:10 SPL Sample ID:

09050091-03

| Site: | Hobbs, | ММ    |
|-------|--------|-------|
| Jile. | nopps, | LAIAI |

| Analyses/Method             | Result     | QUAL     | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |
|-----------------------------|------------|----------|-----------|-------------|----------------|-----------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B |          |           | MCL SV      | V8260B Un      | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,1,1-Trichloroethane       | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,1,2,2-Tetrachloroethane   | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,1,2-Trichloroethane       | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,1-Dichloroethane          | ND         |          | . 5       | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,1-Dichloroethene          | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,1-Dichloropropene         | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2,3-Trichlorobenzene      | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2,3-Trichloropropane      | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2,4-Trichlorobenzene      | ND         | *        | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2,4-Trimethylbenzene      | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2-Dibromo-3-chloropropane | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2-Dibromoethane           | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2-Dichlorobenzene         | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2-Dichloroethane          | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,2-Dichloropropane         | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,3,5-Trimethylbenzene      | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,3-Dichlorobenzene         | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,3-Dichloropropane         | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 1,4-Dichlorobenzene         | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 2,2-Dichloropropane         | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 2-Butanone                  | ND         |          | 20        | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 2-Chloroethyl vinyl ether   | ND J       |          | 10        | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 2-Chlorotoluene             | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 2-Hexanone                  | ND         | <u> </u> | 10        | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 4-Chlorotoluene             | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 4-Isopropyltoluene          | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| 4-Methyl-2-pentanone        | ND         |          | 10        | 1           | 05/12/09 13:00 | JC        | 5018929 |
| Acetone                     | ND         |          | 20        | 1           | 05/12/09 13:00 | JC        | 5018929 |
| Acrylonitrile               | ND         |          | 10        | 1           | 05/12/09 13:00 | JC        | 5018929 |
| Benzene                     | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| Bromobenzene                | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 5018929 |
| Bromochloromethane          | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 501892  |
| Bromodichloromethane        | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 501892  |
| Bromoform                   | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 501892  |
| Bromomethane                | ND         |          | 10        | 1           | 05/12/09 13:00 | JC        | 501892  |
| Carbon disulfide            | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 501892  |
| Carbon tetrachloride        | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 501892  |
| Chlorobenzene               | ND         |          | 5         | 1           | 05/12/09 13:00 | JC        | 501892  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:RB-050209-1

**Collected:** 05/02/2009 12:10 **SPL Sample ID:** 

09050091-03

| Site: | Hobbs, | NM |
|-------|--------|----|
|-------|--------|----|

|                             |        |      | - Onto | · 110005, | IAIAI       |                |         |         |
|-----------------------------|--------|------|--------|-----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re     | p.Limit   | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |        | 10        | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Chloroform                  | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Chloromethane               | ND     |      |        | 10        | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Dibromochloromethane        | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Dibromomethane              | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Dichlorodifluoromethane     | ND     |      |        | 10        | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Ethylbenzene                | ND     | _    |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Hexachlorobutadiene         | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Isopropylbenzene            | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Methyl tert-butyl ether     | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Methylene chloride          | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Naphthalene                 | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| n-Butylbenzene              | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| n-Propylbenzene             | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| sec-Butylbenzene            | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Styrene                     | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| tert-Butylbenzene           | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Tetrachloroethene           | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Toluene                     | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Trichloroethene             | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Trichlorofluoromethane      | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Vinyl acetate               | ND     |      |        | 10        | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Vinyl chloride              | ND     |      |        | 2         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| cis-1,2-Dichloroethene      | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| cis-1,3-Dichloropropene     | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| m,p-Xylene                  | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| o-Xylene                    | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| trans-1,2-Dichloroethene    | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| trans-1,3-Dichloropropene   | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| 1,2-Dichloroethene (total)  | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Xylenes,Total               | ND     |      |        | 5         | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Surr: 1,2-Dichloroethane-d4 | 105    |      | %      | 78-116    | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Surr: 4-Bromofluorobenzene  | 100    |      | %      | 74-125    | 1           | 05/12/09 13:00 | JC      | 5018929 |
| Surr: Toluene-d8            | 97.1   |      | %      | 82-118    | 1           | 05/12/09 13:00 | JC      | 5018929 |
|                             |        |      |        |           |             |                |         |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-050209-1

**Collected:** 05/02/2009 12:15 **SPL Sample ID:** 

09050091-04

| Site: | Hobbs, | NM |
|-------|--------|----|
|       |        |    |

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq. #  |
|-----------------------------|------------|------|-----------|-------------|----------------|------------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B |      |           | MCL SV      | V8260B Ui      | nits: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,1,1-Trichlorœthane        | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2,4-Trimethylbenzene      | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2-Dibromo-3-chloropropane | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 2-Butanone                  | ND         |      | 20        | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 2-Hexanone                  | ND         |      | 10        | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 05/11/09 19:53 | JC         | 5015580 |
| Acetone                     | ND         |      | 20        | 1           | 05/11/09 19:53 | JC         | 5015580 |
| Acrylonitrile               | ND         |      | 10        | 1           | 05/11/09 19:53 | JC         | 5015580 |
| Benzene                     | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| Bromobenzene                | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| Bromochloromethane          | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 5015580 |
| Bromodichloromethane        | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 501558  |
| Bromoform                   | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 501558  |
| Bromomethane                | ND         |      | 10        | 1           | 05/11/09 19:53 | JC         | 501558  |
| Carbon disulfide            | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 501558  |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 501558  |
| Chlorobenzene               | ND         |      | 5         | 1           | 05/11/09 19:53 | JC         | 501558  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050091 Page 19 6/12/2009 4:23:33 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:FB-050209-1 Collected: 05/02/2009 12:15 SPL Sample ID: 09050091-04

|                             |        |      | Site | : Hobb  | s, NM       |                |         |         |
|-----------------------------|--------|------|------|---------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep  | o.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |      | 10      | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Chloroform                  | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Chloromethane               | ND     |      |      | 10      | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Dibromochloromethane        | ND     |      | _    | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Dibromomethane              | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Dichlorodifluoromethane     | ND     |      |      | 10      | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Ethylbenzene                | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Hexachlorobutadiene         | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Isopropylbenzene            | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Methyl tert-butyl ether     | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Methylene chloride          | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Naphthalene                 | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| n-Butylbenzene              | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| n-Propylbenzene             | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| sec-Butylbenzene            | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Styrene                     | ND     |      | 5    |         | 1           | 05/11/09 19:53 | JC      | 5015580 |
| tert-Butylbenzene           | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Tetrachloroethene           | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Toluene                     | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Trichloroethene             | ND     | ,    |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Trichlorofluoromethane      | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Vinyl acetate               | ND     |      |      | 10      | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Vinyl chloride              | ND     |      |      | 2       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| cis-1,2-Dichloroethene      | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| cis-1,3-Dichloropropene     | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| m,p-Xylene                  | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| o-Xylene                    | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| trans-1,2-Dichloroethene    | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| trans-1,3-Dichloropropene   | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| 1,2-Dichloroethene (total)  | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Xylenes,Total               | ND     |      |      | 5       | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Surr: 1,2-Dichloroethane-d4 | 89.6   |      | %    | 78-116  | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Surr: 4-Bromofluorobenzene  | 106    |      |      | 74-125  | 1           | 05/11/09 19:53 | JC      | 5015580 |
| Surr: Toluene-d8            | 97.4   |      | %    | 82-118  | 1           | 05/11/09 19:53 | JC      | 5015580 |
|                             |        |      |      |         |             |                |         |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID: TB-050209-1 Collected: 05/02/2009 12:15 SPL Sample ID: 09050091-05

Site: Hobbs, NM

|                                |            |      |           | DS, INIVI   |                |           |         |
|--------------------------------|------------|------|-----------|-------------|----------------|-----------|---------|
| Analyses/Method                | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq. #  |
| <b>VOLATILE ORGANICS BY ME</b> | THOD 8260B |      |           | MCL SV      |                | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane      | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,1,1-Trichloroethane          | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,1,2,2-Tetrachloroethane      | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,1,2-Trichloroethane          | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,1-Dichloroethane             | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,1-Dichloroethene             | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,1-Dichloropropene            | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2,3-Trichlorobenzene         | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2,3-Trichloropropane         | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2,4-Trichlorobenzene         | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2,4-Trimethylbenzene         | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2-Dibromo-3-chloropropane    | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2-Dibromoethane              | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2-Dichlorobenzene            | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2-Dichloroethane             | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,2-Dichloropropane            | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,3,5-Trimethylbenzene         | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,3-Dichlorobenzene            | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,3-Dichloropropane            | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 1,4-Dichlorobenzene            | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 2,2-Dichloropropane            | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 2-Butanone                     | ND         |      | 20        | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 2-Chloroethyl vinyl ether      | ND J       |      | 10        | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 2-Chlorotoluene                | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 2-Hexanone                     | ND         |      | 10        | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 4-Chlorotoluene                | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 4-Isopropyltoluene             | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| 4-Methyl-2-pentanone           | ND         |      | 10        | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Acetone                        | ND         |      | 20        | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Acrylonitrile                  | ND         |      | 10        | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Benzene                        | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Bromobenzene                   | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Bromochloromethane             | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Bromodichloromethane           | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Bromoform                      | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Bromomethane                   | ND         |      | 10        | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Carbon disulfide               | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Carbon tetrachloride           | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
| Chlorobenzene                  | ND         |      | 5         | 1           | 05/11/09 20:22 | JC        | 5015581 |
|                                |            |      |           |             |                |           |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

- \* Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050091 Page 21 6/12/2009 4:23:33 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:TB-050209-1

**Collected:** 05/02/2009 12:15 **SPL Sample ID:** 09050091-05

Site: Hobbs, NM

|                             |        |      | Site | : Hopps | , INIVI     | <del></del>    |         |         |
|-----------------------------|--------|------|------|---------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re   | p.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq. #  |
| Chloroethane                | ND     |      |      | 10      | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Chloroform                  | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Chloromethane               | ND     |      |      | 10      | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Dibromochloromethane        | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Dibromomethane              | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Dichlorodifluoromethane     | ND     |      |      | 10      | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Ethylbenzene                | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Hexachlorobutadiene         | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Isopropylbenzene            | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Methyl tert-butyl ether     | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Methylene chloride          | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Naphthalene                 | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| n-Butylbenzene              | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| n-Propylbenzene             | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| sec-Butylbenzene            | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Styrene                     | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| tert-Butylbenzene           | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| Tetrachloroethene           | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| Toluene                     | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| Trichloroethene             | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Trichlorofluoromethane      | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Vinyl acetate               | ND     |      |      | 10      | 1           | 05/11/09 20:22 | JC      | 5015581 |
| Vinyl chloride              | ND     |      |      | 2       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| cis-1,2-Dichloroethene      | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| cis-1,3-Dichloropropene     | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| m,p-Xylene                  | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 5015581 |
| o-Xylene                    | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| trans-1,2-Dichloroethene    | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| trans-1,3-Dichloropropene   | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| 1,2-Dichloroethene (total)  | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| Xylenes,Total               | ND     |      |      | 5       | 1           | 05/11/09 20:22 | JC      | 501558  |
| Surr: 1,2-Dichloroethane-d4 | 94.2   |      | %    | 78-116  | 1           | 05/11/09 20:22 | JC      | 501558  |
| Surr: 4-Bromofluorobenzene  | 104    |      | %    | 74-125  | 1           | 05/11/09 20:22 | JC      | 501558  |
| Surr: Toluene-d8            | 96.7   |      | %    | 82-118  | 1           | 05/11/09 20:22 | JC      | 5015581 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

# **Quality Control Documentation**



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

RunID:

**Diesel Range Organics** 

Method: SW8015B

Samples in Analytical Batch:

09050091

WorkOrder: Lab Batch ID:

89962

Method Blank

Units:

mg/L Lab Sample ID Client Sample ID

Analysis Date:

HP\_V\_090506B-5014268

09050091-02C

MW-4

05/06/2009 16:19

Analyst: NW

09050091-03C

Preparation Date:

05/04/2009 12:29

Prep By:

N\_M Method SW3510C

RB-050209-1

| Analyte                         | Result | Rep Limit |
|---------------------------------|--------|-----------|
| Diesel Range Organics (C10-C28) | ND     | 0.10      |
| Surr: n-Pentacosane             | 40.2   | 20-150    |

## Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP\_V\_090506B-5014269

Units:

Analysis Date:

05/06/2009 16:39

Analyst: NW

Preparation Date: 05/04/2009 12:29 Prep By: N\_M Method SW3510C

mg/L

| Analyte                         | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|---------------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| Diesel Range Organics (C10-C28) | 1.00                  | 0.792         | 79.2                       | 1.00                   | 0.802          | 80.2                        | 1.3 | 20           | 21             | 130            |
| Surr: n-Pentacosane             | 0.0500                | 0.0334        | 66.8                       | 0.0500                 | 0.0321         | 64.2                        | 4.0 | 30           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply. TNTC - Too numerous to count

09050091 Page 24

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Semivolatile Hydrocarbons

Method:

SW8015B

WorkOrder:

09050091

Lab Batch ID:

89983

### Method Blank

RunID:

HP\_V\_090611B-5063332

Units:

mg/kg

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

05/12/2009 23:03

Analyst: AM 09050091-01D

MW-4-52-55

Preparation Date: 05/05/2009 11:45 Prep By:

FAK Method SW3550B

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Mineral Spirits Range Organics | ND     | 10        |
| Surr: n-Pentacosane            | 69.4   | 20-154    |

### **Laboratory Control Sample (LCS)**

RunID:

HP V\_090611B-5063333

Units:

mg/kg

Analysis Date:

05/12/2009 23:23

Analyst: ΑM

Preparation Date: 05/05/2009 11:45 Prep By: FAK Method SW3550B

| Analyte                        | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|--------------------------------|----------------|--------|---------------------|----------------|----------------|
| Mineral Spirits Range Organics | 33.3           | 27.4   | 82.1                | 50             | 150            |
| Surr: n-Pentacosane            | 1.66           | 1.34   | 81.0                | 20             | 154            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: RunID:

09050091-01

HP\_V\_090611B-5063335

Units:

mg/kg

Analysis Date: Preparation Date: 05/13/2009 0:04 05/05/2009 11:45 Analyst: AM

Prep By:

Method SW3550B

| Analyte                        | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|--------------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Mineral Spirits Range Organics | ND               | 33.3                 | 27.8         | 83.4             | 33.3                  | 28.0          | 84.2              | 0.908 | 50           | 50           | 150           |
| Surr: n-Pentacosane            | ND               | 1.66                 | 1.54         | 92.7             | 1.66                  | 1.32          | 79.6              | 15.1  | 30           | 20           | 154           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply. 09050091 Page 25

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

6/12/2009 4:23:39 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Semivolatile Hydrocarbons

Method:

RunID:

SW8015B

WorkOrder:

09050091

Lab Batch ID:

89983

Method Blank

HP\_V\_090512B-5017045

Units:

mg/Kg

Lab Sample ID

Client Sample ID

Analysis Date:

NW

09050091-01C

Samples in Analytical Batch:

Preparation Date:

05/12/2009 23:03 05/05/2009 11:45 Analyst: Prep By:

FAK Method SW3550B

MW-4-52-55

| Analyte                         | Result | Rep Limit |
|---------------------------------|--------|-----------|
| Diesel Range Organics (C10-C28) | ND     | 5.0       |
| Surr: n-Pentacosane             | 69.4   | 20-154    |

## Laboratory Control Sample (LCS)

RunID:

HP V 090512B-5017046

Units:

mg/Kg

Analysis Date: Preparation Date: 05/12/2009 23:23

NW Analyst:

05/05/2009 11:45

Prep By: FAK Method SW3550B

| Analyte                         | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------------|----------------|--------|---------------------|----------------|----------------|
| Diesel Range Organics (C10-C28) | 33.3           | 27.4   | 82.1                | 57             | 150            |
| Surr: n-Pentacosane             | 1.66           | 1.34   | 81.0                | 20             | 154            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050091-01

HP\_V\_090512B-5017048

Units:

mg/Kg

RuniD: Analysis Date:

05/13/2009 0:04

Analyst: NW

Preparation Date:

05/05/2009 11:45

Prep By: FAK Method SW3550B

| Analyte                         | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|---------------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Diesel Range Organics (C10-C28) | 6.26             | 33.3                 | 27.8         | 64.6             | 33.3                  | 28.0          | 65.4              | 0.908 | 50           | 21           | 175           |
| Surr: n-Pentacosane             | ND               | 1.66                 | 1.54         | 92.7             | 1.66                  | 1.32          | 79.6              | 15.1  | 30           | 20           | 154           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 26

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Headspace Gas Analysis

Method:

RunID:

**RSK147** 

.. ,20,20

WorkOrder:

09050091

Lab Batch ID:

R272023

Method Blank

VARC\_090507A-5009408

Units:

mg/L V\_L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

05/07/2009 9:46

Analyst:

09050091-02F

MW -4

| Analyte | Result | Rep Limit |
|---------|--------|-----------|
| Methane | ND     | 0.0012    |

## Sample Duplicate

Original Sample:

09050065-04

VARC\_090507A-5009409

Units:

mg/L

Analysis Date:

RunID:

05/07/2009 10:08

Analyst: V\_L

| Analyte | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|---------|------------------|---------------|-----|--------------|
| Methane | ND               | ND            | 0   | 50           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 27

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

6/12/2009 4:23:39 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

**Gasoline Range Organics** 

Method:

SW8015B

WorkOrder:

Samples in Analytical Batch:

09050091

Lab Batch ID:

R272171

## Method Blank

RunID: HP.

HP\_S\_090508A-5011642

Units:

mg/Kg

Lab Sample ID

Client Sample ID

Analysis Date:

05/08/2009 8:55

Analyst: I

EMB

09050091-01B

MW-4-52-55

Preparation Date:

05/08/2009 8:55

Prep By:

Method SW5030B

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 100.3  | 63-142    |
| Surr: 4-Bromofluorobenzene | 101.6  | 50-159    |

## Laboratory Control Sample (LCS)

RunID:

HP\_S\_090508A-5011643

Units:

mg/Kg

Analysis Date: Preparation Date: 05/08/2009 9:52 05/08/2009 9:52 Analyst:

t: EMB

Prep By: Method SW5030B

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.962  | 96.2                | 70             | 130            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.102  | 102                 | 63             | 142            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.108  | 108                 | 50             | 159            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050292-01

RunID:

HP\_S\_090508A-5012651

Units:

mg/kg-dry

Analysis Date:

05/08/2009 21:58

Analyst: (

EMB

Preparation Date:

05/08/2009 9:19

Prep By:

by: XML Method SW5030B

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Gasoline Range Organics    | ND               | 1.98                 | 0.762        | 38.4             | 1.98                  | 0.668         | 33.7              | 13.3  | 50           | 26           | 147           |
| Surr: 1,4-Difluorobenzene  | ND               | 0.198                | 0.214        | 108              | 0.198                 | 0.211         | 106               | 1.59  | 30           | 63           | 142           |
| Surr: 4-Bromoffuorobenzene | ND               | 0.198                | 0.205        | 103              | 0.198                 | 0.206         | 104               | 0.483 | 30           | 50           | 159           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 28

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

6/12/2009 4:23:39 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell

Analysis:

**Gasoline Range Organics** 

Method:

RunID:

Analysis Date:

SW8015B

05/08/2009 5:40

BJ-Fracmaster 128125

WorkOrder:

09050091

Lab Batch ID:

R272349

Method Blank

HP\_P\_090508A-5014432

Units: Analyst: mg/L CLJ

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

09050091-02B

MW-4

09050091-03B

RB-050209-1

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 90.2   | 60-155    |
| Surr: 4-Bromofluorobenzene | 103.9  | 50-158    |

## Laboratory Control Sample (LCS)

RunID:

HP\_P\_090508A-5014430

Units:

mg/L

Analysis Date:

05/08/2009 4:43

Analyst: CLJ

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 1.03   | 103                 | 42             | 136            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.101  | 101                 | 60             | 155            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.107  | 107                 | 50             | 158            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050042-26

RunID:

HP\_P\_090508A-5014436

Units:

Analysis Date:

05/08/2009 8:30

Analyst: (

mg/L CLJ

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Gasoline Range Organics    | 4.30             | 10                   | 11.9         | 75.9             | 10                    | 12.2          | 79.4              | 2.90  | 36           | 22           | 174           |
| Surr: 1,4-Difluorobenzene  | ND               | 1                    | 0.983        | 98.3             | 1                     | 0.986         | 98.6              | 0.274 | 30           | 60           | 155           |
| Surr: 4-Bromofluorobenzene | ND               | 1                    | 1.07         | 107              | 1                     | 1.06          | 106               | 1.08  | 30           | 50           | 158           |

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

09050091 Page 29

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

RunID:

Semivolatile Organics by Method 8270C

Method: SW8270C

WorkOrder:

09050091

Lab Batch ID:

89968

## Method Blank

R\_090508B-5011969

Units:

ug/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

05/08/2009 10:32

Analyst:

E\_R

09050091-02D

MW-4

Preparation Date:

05/04/2009 15:05

Prep By: N\_M Method SW3510C

09050091-03D

RB-050209-1

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1,2,4-Trichlorobenzene      | ND     | 5.0       |
| 1,2-Dichlorobenzene         | ND     | 5.0       |
| 1,2-Diphenylhydrazine       | ND     | 10        |
| 1,3-Dichlorobenzene         | ND     | 5.0       |
| 1.4-Dichlorobenzene         | ND     | 5.0       |
| 2,4,5-Trichlorophenol       | ND     | 10        |
| 2,4,6-Trichlorophenol       | ND     | 5.0       |
| 2,4-Dichlorophenol          | ND     | 5.0       |
| 2,4-Dimethylphenol          | ND     | 5.0       |
| 2,4-Dinitrophenol           | ND     | 25        |
| 2.4-Dinitrotoluene          | ND     | 5.0       |
| 2,6-Dinitrotoluene          | ND     | 5.0       |
| 2-Chloronaphthalene         | ND     | 5.0       |
| 2-Chlorophenol              | ND     | 5.0       |
| 2-Methylnaphthalene         | ND     | 5.0       |
| 2-Nitroaniline              | ND     | 25        |
| 2-Nitrophenol               | ND     | 5.0       |
| 3,3'-Dichlorobenzidine      | ND     | 11        |
| 3-Nitroaniline              | ND     | 2         |
| 4,6-Dinitro-2-methylphenol  | ND     | 25        |
| 4-Bromophenyl phenyl ether  | ND     | 5.0       |
| 4-Chloro-3-methylphenoi     | ND ND  | 5.0       |
| 4-Chloroaniline             | ND     | 5.0       |
| 4-Chlorophenyl phenyl ether | ND     | 5.0       |
| 4-Nitroaniline              | ND     | 2:        |
| 4-Nitrophenol               | ND     | 2         |
| Acenaphthene                | ND     | 5.0       |
| Acenaphthylene              | ND     | 5.0       |
| Aniline                     | ND     | 5.0       |
| Anthracene                  | ND     | 5.0       |
| Benz(a)anthracene           | ND     |           |
| Benzo(a)pyrene              | ND     |           |
| Benzo(b)fluoranthene        | ND     |           |
| Benzo(g,h,i)perylene        | ND     |           |
| Benzo(k)fluoranthene        | ND     | 5.0       |
| Benzoic acid                | ND     | 2:        |
| Benzyl alcohol              | ND     | 5.        |
| Bis(2-chloroethoxy)methane  | ND     |           |
| Bis(2-chloroethyl)ether     | ND     | 5.        |
| Bis(2-chloroisopropyl)ether | ND     |           |
| Bis(2-ethylhexyl)phthalate  | ND     |           |
| Butyl benzyl phthalate      | ND     | 5.        |
| Carbazole                   | ND     |           |
| Chrysene                    | ND     |           |
| Dibenz(a,h)anthracene       | ND     |           |
| Dibenzofuran                | ND     |           |
| Dibenzoldiali               |        |           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 30

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09050091

Lab Batch ID:

89968

### Method Blank

RunID:

R\_090508B-5011969

Units:

ug/L

Analysis Date:

05/08/2009 10:32

Analyst:

 $E_R$ 

Preparation Date: 05/04/2009 15:05

Prep By: N\_M Method SW3510C

| Analyte                    | Result | Rep Limit   |
|----------------------------|--------|-------------|
| Diethyl phthalate          | ND     | 5.0         |
| Dimethyl phthalate         | ND     | 5.0         |
| Di-n-butyl phthalate       | ND     | 5.0         |
| Di-n-octyl phthalate       | ND     | 5.0         |
| Fluoranthene               | ND     | <u>5</u> .0 |
| Fluorene                   | ND.    | 5.0         |
| Hexachlorobenzene          | ND     | 5.0         |
| Hexachlorobutadiene        | ND     | 5.0         |
| Hexachlorocyclopentadiene  | ND     | 5.0         |
| Hexachloroethane           | ND     | 5.0         |
| Indeno(1,2,3-cd)pyrene     | ND     | 5.0         |
| Isophorone                 | ND.    | 5.0         |
| Naphthalene                | ND     | 5.0         |
| Nitrobenzene               | ND     | 5.0         |
| N-Nitrosodi-n-propylamine  | ND     | 5.0         |
| N-Nitrosodiphenylamine     | ND_ND  | 5.0         |
| Pentachlorophenol          | ND     | 25          |
| Phenanthrene               | ND.    | 5.0         |
| Phenol                     | ND.    | 5.0         |
| Pyrene                     | ND     | 5.0         |
| Pyridine                   | ND     | 5.0         |
| 2-Methylphenoi             | ND     | 5.0         |
| 3 & 4-Methylphenol         | ND     | 5.0         |
| Surr: 2,4,6-Tribromophenol | 111.6  | 10-123      |
| Surr: 2-Fluorobiphenyl     | 78.2   | 23-116      |
| Surr: 2-Fluorophenol       | 98.7   | 16-110      |
| Surr: Nitrobenzene-d5      | 68.6   | 21-114      |
| Surr: Phenol-d5            | 104.4  | 10-110      |
| Surr: Terphenyl-d14        | 88.4   | 22-141      |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09041007-02

RuniD:

R\_090508B-5011971

Units:

05/08/2009 14:03

ug/L  $E_R$ Analyst:

Analysis Date: Preparation Date:

05/04/2009 15:05

Prep By: N M Method SW3510C

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 31

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

Method: SW8270C

WorkOrder: 0
Lab Batch ID: 8

09050091 89968

| Metrica. 51102700           | Edu Batch ID. 09900 |                      |              |                  |                       |               |                   |        |              |              |               |
|-----------------------------|---------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Analyte                     | Sample<br>Result    | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
| 1,2,4-Trichlorobenzene      | ND                  | 25                   | 19.3         | 77.2             | 25                    | 19.3          | 77.2              | 0      | 39           | 10           | 142           |
| 1,2-Dichlorobenzene         | ND                  | 25                   | 19.3         | 77.2             | 25                    | 19.2          | 76.8              | 0.519  | 50           | 20           | 150           |
| 1,2-Diphenylhydrazine       | ND                  | 25                   | 18.7         | 74.8             | 25                    | 18.9          | 75.6              | 1.06   | 50           | 10           | 251           |
| 1,3-Dichlorobenzene         | ND                  | 25                   | 18.3         | 73.2             | 25                    | 18.6          | 74.4              | 1.63   | 50           | 20           | 150           |
| 1,4-Dichlorobenzene         | ND                  | 25                   | 18.4         | 73.6             | 25                    | 18.6          | 74.4              | 1.08   | 45           | 20           | 150           |
| 2,4,5-Trichlorophenol       | ND                  | 25                   | 19.8         | 79.2             | 25                    | 19.4          | 77.6              | 2.04   | 50           | 30           | 150           |
| 2,4,6-Trichlorophenol       | ND                  | 25                   | 21.5         | 86.0             | 25                    | 21.0          | 84.0              | 2.35   | 50           | 30           | 150           |
| 2,4-Dichlorophenol          | ND                  | 25                   | 19.8         | 79.2             | 25                    | 19.0          | 76.0              | 4.12   | 50           | 30           | 150           |
| 2,4-Dimethylphenol          | ND                  | 25                   | 19.0         | 76.0             | 25                    | 18.3          | 73.2              | 3.75   | 50           | 32           | 140           |
| 2,4-Dinitrophenol           | ND                  | 25                   | 19.9         | 79.6             | 25                    | 17.5          | 70.0              | 12.8   | 50           | 10           | 160           |
| 2,4-Dinitrotoluene          | ND                  | 25                   | 21.4         | 85.6             | 25                    | 20.8          | 83.2              | 2.84   | 50           | 30           | 150           |
| 2,6-Dinitrotoluene          | ND                  | 25                   | 20.6         | 82.4             | 25                    | 20.4          | 81.6              | 0.976  | 50           | 30           | 150           |
| 2-Chloronaphthalene         | ND                  | 25                   | 20.5         | 82.0             | 25                    | 20.4          | 81.6              | 0.489  | 50           | 30           | 150           |
| 2-Chlorophenol              | ND                  | 25                   | 19.8         | 79.2             | 25                    | 20.2          | 80.8              | 2.00   | 40           | 23           | 134           |
| 2-Methylnaphthalene         | ND                  | 25                   | 19.9         | 79.6             | 25                    | 19.9          | 79.6              | 0      | 50           | 20           | 170           |
| 2-Nitroaniline              | ND                  | 25                   | 19.3         | 77.2             | 25                    | 18.8          | 75.2              | 2.62   | 50           | 20           | 160           |
| 2-Nitrophenol               | ND                  | 25                   | 20.3         | 81.2             | 25                    | 19.9          | 79.6              | 1.99   | 50           | 29           | 182           |
| 3,3'-Dichlorobenzidine      | ND                  | 25                   | 18.8         | 75.2             | 25                    | 18.8          | 75.2              | 0      | 50           | 30           | 200           |
| 3-Nitroaniline              | ND                  | 25                   | 16.9         | 67.6             | 25                    | 17.0          | 68.0              | 0.590  | 50           | 20           | 160           |
| 4,6-Dinitro-2-methylphenol  | ND                  | 25                   | 18.4         | 73.6             | 25                    | 18.2          | 72.8              | 1.09   | 50           | 10           | 160           |
| 4-Bromophenyl phenyl ether  | ND                  | 25                   | 19.3         | 77.2             | 25                    | 19.2          | 76.8              | 0.519  | 50           | 30           | 150           |
| 4-Chloro-3-methylphenol     | ND                  | 25                   | 20.9         | 83.6             | 25                    | 20.5          | 82.0              | 1.93   | 42           | 25           | 160           |
| 4-Chloroaniline             | ND                  | 25                   | 14.0         | 56.0             | 25                    | 13.1          | 52.4              | 6.64   | 50           | 20           | 160           |
| 4-Chlorophenyl phenyl ether | ND                  | 25                   | 20.4         | 81.6             | 25                    | 20.3          | 81.2              | 0.491  | 50           | 25           | 158           |
| 4-Nitroaniline              | ND                  | 25                   | 18.9         | 75.6             | 25                    | 18.7          | 74.8              | 1.06   | 50           | 20           | 160           |
| 4-Nitrophenol               | ND                  | 25                   | 10.2         | 40.8             | 25                    | 10.3          | 41.2              | 0.976  | 50           | 10           | 132           |
| Acenaphthene                | ND                  | 25                   | 19.6         | 78.4             | 25                    | 19.8          | 79.2              | 1.02   | 31           | 30           | 150           |
| Acenaphthylene              | ND                  | 25                   | 20.5         | 82.0             | 25                    | 20.4          | 81.6              | 0.489  | 50           | 33           | 250           |
| Aniline                     | ND                  | 50                   | 0            | 0 *              | 50                    | 0             | 0 *               | 0      | 50           | 10           | 135           |
| Anthracene                  | ND                  | 25                   | 20.0         | 80.0             | 25                    | 20.3          | 81.2              | 1.49   | 50           | 27           | 133           |
| Benz(a)anthracene           | ND                  | 25                   | 19.1         | 76.4             | 25                    | 18.9          | 75.6              | 1.05   | 50           | 33           | 143           |
| Benzo(a)pyrene              | ND                  | 25                   | 16.5         | 66.0             | 25                    | 16.3          | 65.2              | 1.22   | 50           | 17           | 163           |
| Benzo(b)fluoranthene        | ND                  | 25                   | 18.2         | 72.8             | 25                    | 17.0          | 68.0              | 6.82   | 50           | 24           | 159           |
| Benzo(g,h,i)perylene        | ND                  | 25                   | 18.1         | 72.4             | 25                    | 18.2          | 72.8              | 0.551  | 50           | 30           | 160           |
| Benzo(k)fluoranthene        | ND                  | 25                   | 16.7         | 66.8             | 25                    | 17.8          | 71.2              | · 6.38 | 50           | 11           | 162           |
| Benzoic acid                | ND                  | 25                   | 22.8         | 91.2             | 25                    | 21.7          | 86.8              | 4.94   | 50           | 10           | 400           |
| Benzył alcohol              | ND                  | 25                   | 17.0         | 68.0             | 25                    | 15.5          | 62.0              | 9.23   | 50           | 30           | 160           |
| Bis (2-chloroethoxy)methane | ND                  | 25                   | 19.0         | 76.0             | 25                    | 18.4          | 73.6              | 3.21   | 50           | 33           | 184           |
| Bis (2-chloroethyl)ether    | ND                  | 25                   | 19.3         | 77.2             | 25                    | 19.3          | 77.2              | 0      | 50           | 12           | 158           |
|                             |                     |                      |              |                  |                       |               |                   |        |              |              |               |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 32

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell BJ-Fracmaster 128125**

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09050091

Lab Batch ID:

89968

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09041007-02

RunID:

R\_090508B-5011971

Units:

ug/L

Analysis Date:

05/08/2009 14:03

ΕR Analyst:

Preparation Date: 05/04/2009 15:05 Prep By: N\_M Method SW3510C

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Bis(2-chloroisopropyl)ether | ND               | 25                   | 20.2         | 80.8             | 25                    | 20.3          | 81.2              | 0.494 | 50           | 20           | 160           |
| Bis (2-ethylhexyl)phthalate | ND               | 25                   | 16.7         | 66.8             | 25                    | 16.3          | 65.2              | 2.42  | 50           | 10           | 158           |
| Butyl benzyl phthalate      | ND               | 25                   | 17.6         | 70.4             | 25                    | 17.5          | 70.0              | 0.570 | 50           | 30           | 160           |
| Carbazole                   | ND               | 25                   | 19.9         | 79.6             | 25                    | 19.9          | 79.6              | 0     | 50           | 30           | 150           |
| Chrysene                    | ND               | 25                   | 19.0         | 76.0             | 25                    | 19.0          | 76.0              | 0     | 50           | 17           | 168           |
| Dibenz(a,h)anthracene       | ND               | 25                   | 17.6         | 70.4             | 25                    | 18.6          | 74.4              | 5.52  | 50           | 30           | 160           |
| Dibenzofuran                | ND               | 25                   | 20.7         | 82.8             | 25                    | 20.6          | 82.4              | 0.484 | 50           | 30           | 150           |
| Diethyl phthalate           | ND               | 25                   | 19.4         | 77.6             | 25                    | 19.4          | 77.6              | 0     | 50           | 30           | 160           |
| Dimethyl phthalate          | ND               | 25                   | 20.0         | 80.0             | 25                    | 20.0          | 80.0              | 0     | 50           | 30           | 160           |
| Di-n-butyl phthalate        | ND               | 25                   | 19.1         | 76.4             | 25                    | 18.7          | 74.8              | 2.12  | 50           | 30           | 160           |
| Di-n-octyl phthalate        | ND               | 25                   | 16.8         | 67.2             | 25                    | 17.1          | 68.4              | 1.77  | 50           | 20           | 150           |
| Fluoranthene                | ND               | 25                   | 20.5         | 82.0             | 25                    | 21.0          | 84.0              | 2.41  | 50           | 26           | 137           |
| Fluorene                    | ND               | 25                   | 20.0         | 80.0             | 25                    | 20.2          | 80.8              | 0.995 | 50           | 30           | 150           |
| Hexachlorobenzene           | ND               | 25                   | 19.8         | 79.2             | 25                    | 19.7          | 78.8              | 0.506 | 50           | 20           | 150           |
| Hexachlorobutadiene         | ND               | 25                   | 18.0         | 72.0             | 25                    | 17.7          | 70.8              | 1.68  | 50           | 20           | 140           |
| Hexachlorocyclopentadiene   | ND               | 25                   | 24.8         | 99.2             | 25                    | 24.4          | 97.6              | 1.63  | 50           | 10           | 150           |
| Hexachloroethane            | ND               | 25                   | 16.7         | 66.8             | 25                    | 17.0          | 68.0              | 1.78  | 50           | 10           | 140           |
| Indeno(1,2,3-cd)pyrene      | ND               | 25                   | 20.6         | 82.4             | 25                    | 20.3          | 81.2              | 1.47  | 50           | 30           | 160           |
| Isophorone                  | ND               | 25                   | 19.8         | 79.2             | 25                    | 19.6          | 78.4              | 1.02  | 50           | 21           | 196           |
| Naphthalene                 | ND               | 25                   | 20.3         | 81.2             | 25                    | 20.2          | 80.8              | 0.494 | 50           | 21           | 133           |
| Nitrobenzene                | ND               | 25                   | 18.2         | 72.8             | 25                    | 17.9          | 71.6              | 1.66  | 50           | 20           | 160           |
| N-Nitrosodi-n-propylamine   | ND               | 25                   | 18.3         | 73.2             | 25                    | 18.4          | 73.6              | 0.545 | 38           | 30           | 160           |
| N-Nitrosodiphenylamine      | ND               | 50                   | 47.8         | 95.6             | 50                    | 48.2          | 96.4              | 0.833 | 50           | 30           | 150           |
| Pentachlorophenol           | ND               | 25                   | 19.9         | 79.6             | 25                    | 19.3          | 77.2              | 3.06  | 50           | 14           | 176           |
| Phenanthrene                | ND               | 25                   | 19.8         | 79.2             | 25                    | 19.9          | 79.6              | 0.504 | 50           | 10           | 140           |
| Phenol                      | ND               | 25                   | 11.2         | 44.8             | 25                    | 11.2          | 44.8              | 0     | 42           | 40           | 132           |
| Pyrene                      | ND               | 25                   | 19.0         | 76.0             | 25                    | 18.6          | 74.4              | 2.13  | 38           | 30           | 150           |
| Pyridine                    | ND               | 50                   | 6.26         | 12.5             | 50                    | 5.96          | 11.9              | 4.91  | 50           | 10           | 150           |
| 2-Methylphenol              | ND               | 25                   | 19.2         | 76.8             | 25                    | 19.1          | 76.4              | 0.522 | 50           | 30           | 160           |
| 3 & 4-Methylphenol          | ND               | 25                   | 16.5         | 66.0             | 25                    | 16.0          | 64.0              | 3.08  | 50           | 10           | 160           |
| Surr: 2,4,6-Tribromophenol  | ND               | 75                   | 77           | 103              | 75                    | 75.0          | 100               | 2.63  | 30           | 10           | 123           |
| Surr: 2-Fluorobiphenyl      | ND               | 50                   | 35           | 70.0             | 50                    | 34.9          | 69.8              | 0.286 | 30           | 23           | 116           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 33

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09050091

Lab Batch ID:

89968

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09041007-02

RunID:

R\_090508B-5011971

Units:

ug/L

Analysis Date: Preparation Date: 05/08/2009 14:03 05/04/2009 15:05

Analyst:  $E_R$ 

Prep By: N\_M Method SW3510C

| Analyte               | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Surr: 2-Fluorophenol  | ND               | 75                   | 49.5         | 66.0             | 75                    | 48.6          | 64.8              | 1.83  | 30           | 16           | 110           |
| Surr: Nitrobenzene-d5 | ND               | 50                   | 32           | 64.0             | 50                    | 32.2          | 64.4              | 0.623 | 30           | 21           | 114           |
| Surr: Phenol-d5       | ND               | 75                   | 39.4         | 52.5             | 75                    | 39.4          | 52.5              | 0     | 30           | 10           | 110           |
| Surr: Terphenyl-d14   | ND               | 50                   | 29.9         | 59.8             | 50                    | 29.6          | 59.2              | 1.01  | 30           | 22           | 141           |



Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 34

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09050091

Lab Batch ID:

90048

## Method Blank

RunID:

H\_090513B-5017953

Units:

ug/kg

Lab Sample ID 09050091-01C

Samples in Analytical Batch:

Client Sample ID

MW-4-52-55

Analysis Date: Preparation Date:

05/13/2009 10:00 05/06/2009 15:27 Analyst: GY

Prep By: QMT Method SW3550C

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1,2,4-Trichlorobenzene      | ND     | 330       |
| 1,2-Dichlorobenzene         | ND     | 330       |
| 1,2-Diphenylhydrazine       | ND     | 330       |
| 1,3-Dichlorobenzene         | ND     | 330       |
| 1,4-Dichlorobenzene         | ND     | 330       |
| 2,4,5-Trichlorophenol       | ND     | 800       |
| 2,4,6-Trichlorophenol       | ND     | 330       |
| 2,4-Dichlorophenol          | ND     | 330       |
| 2,4-Dimethylphenol          | ND     | 330       |
| 2,4-Dinitrophenol           | ND     | 800       |
| 2,4-Dinitrotoluene          | ND     | 800       |
| 2,6-Dinitrotoluene          | ND     | 330       |
| 2-Chloronaphthalene         | ND     | 330       |
| 2-Chlorophenol              | ND     | 330       |
| 2-Methylnaphthalene         | ND     | 330       |
| 2-Nitroaniline              | ND     | 80        |
| 2-Nitrophenol               | ND     | 330       |
| 3,3'-Dichlorobenzidine      | ND     | 33        |
| 3-Nitroaniline              | ND     | 80        |
| 4,6-Dinitro-2-methylphenol  | ND     | 80        |
| 4-Bromophenyl phenyl ether  | ND     | 330       |
| 4-Chloro-3-methylphenol     | ND     | 330       |
| 4-Chloroaniline             | ND     | 330       |
| 4-Chlorophenyl phenyl ether | ND     | 330       |
| 4-Nitroaniline              | ND     | 80        |
| 4-Nitrophenol               | ND     | 800       |
| Acenaphthene                | ND     | 331       |
| Acenaphthylene              | ND     | 330       |
| Aniline                     | ND     | 330       |
| Anthracene                  | ND     | 33        |
| Benz(a)anthracene           | ND     | 33        |
| Benzo(a)pyrene              | ND     | 330       |
| Benzo(b)fluoranthene        | ND     | 33        |
| Benzo(g,h,i)perylene        | ND     | 330       |
| Benzo(k)fluoranthene        | ND     | 331       |
| Benzoic acid                | ND     | 160       |
| Benzyl alcohol              | ND     | 330       |
| Bis(2-chloroethoxy)methane  | ND     | 331       |
| Bis(2-chloroethyl)ether     | ND     | 33        |
| Bis(2-chloroisopropyl)ether | ND     | 33        |
| Bis(2-ethylhexyl)phthalate  | ND     | 330       |
| Butyl benzyl phthalate      | ND     | 33        |
| Carbazole                   | ND     | 33        |
| Chrysene                    | ND     | 33        |
| Dibenz(a,h)anthracene       | ND     | 330       |
| =                           | ND     | 330       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 35

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09050091

Lab Batch ID:

90048

## Method\_Blank

RunID:

H\_090513B-5017953

Units:

ug/kg

Analysis Date:

05/13/2009 10:00

Analyst:

GY

05/06/2009 15:27 Preparation Date:

Prep By: QMT Method SW3550C

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 330       |
| Dimethyl phthalate         | ND     | 330       |
| Di-n-butyl phthalate       | ND     | 330       |
| Di-n-octyl phthalate       | ND     | 330       |
| Fluoranthene               | ND     | 330       |
| Fluorene                   | ND     | 330       |
| Hexachiorobenzene          | ND     | 330       |
| Hexachlorobutadiene        | ND.    | 330       |
| Hexachlorocyclopentadiene  | ND     | 330       |
| Hexachloroethane           | ND     | 330       |
| Indeno(1,2,3-cd)pyrene     | ND     | 330       |
| Isophorone                 | ND     | 330       |
| Naphthalene                | ND     | 330       |
| Nitrobenzene               | ND     | 330       |
| N-Nitrosodi-n-propylamine  | ND     | 330       |
| N-Nitrosodiphenylamine     | ND     | 330       |
| Pentachlorophenol          | ND     | 800       |
| Phenanthrene               | ND     | 330       |
| Phenol                     | ND.    | 330       |
| Pyrene                     | ND     | 330       |
| Pyridine                   | ND     | 330       |
| 2-Methylphenol             | ND.    | 330       |
| 3 & 4-Methylphenol         | ND     | 330       |
| Surr: 2,4,6-Tribromophenol | 90.4   | 19-135    |
| Surr: 2-Fluorobiphenyl     | 67.1   | 15-140    |
| Surr: 2-Fluorophenol       | 8.88   | 15-122    |
| Surr: Nitrobenzene-d5      | 69.4   | 10-134    |
| Surr: Phenol-d5            | 94.4   | 10-123    |
| Surr: Terphenyl-d14        | 70.6   | 18-166    |

## Laboratory Control Sample (LCS)

RunID:

H\_090513B-5017954

Units:

ug/kg

Analysis Date:

05/13/2009 10:29

Analyst: GΥ

Preparation Date: 05/06/2009 15:27

Prep By: QMT Method SW3550C

| Analyte                | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 850            | 384    | 45.2                | 34             | 116            |
| 1,2-Dichlorobenzene    | 850            | 402    | 47.3                | 32             | 129            |
| 1,2-Diphenylhydrazine  | 850            | 464    | 54.6                | 10             | 256            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference D - Recovery Unreportable due to Dilution

B/V - Analyte detected in the associated Method Blank J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 36

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09050091

Lab Batch ID:

90048

## **Laboratory Control Sample (LCS)**

RunID:

H\_090513B-5017954

Units:

Analysis Date:

05/13/2009 10:29

Analyst: GΥ

ug/kg

Preparation Date: 05/06/2009 15:27

Prep By: QMT Method SW3550C

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,3-Dichlorobenzene         | 850            | 393    | 46.2                | 10             | 172            |
| 1,4-Dichlorobenzene         | 850            | 398    | 46.8                | 20             | 124            |
| 2,4,5-Trichlorophenol       | 850            | 391    | 46.0                | 40             | 150            |
| 2,4,6-Trichlorophenol       | 850            | 382    | 44.9                | 37             | 144            |
| 2,4-Dichlorophenol          | 850            | 373    | 43.9                | 39             | 135            |
| 2,4-Dimethylphenol          | 850            | 413    | 48.6                | 32             | 119            |
| 2,4-Dinitrophenol           | 850            | 266    | 31.3                | 10             | 191            |
| 2,4-Dinitrotoluene          | 850            | 404    | 47.5                | 30             | 150            |
| 2,6-Dinitrotoluene          | 850            | 413    | 48.6                | 30             | 150            |
| 2-Chloronaphthalene         | 850            | 506    | 59.5                | 20             | 175            |
| 2-Chlorophenol              | 850            | 416    | 48.9                | 23             | 134            |
| 2-Methylnaphthalene         | 850            | 410    | 48.2                | 30             | 135            |
| 2-Nitroaniline              | 850            | 417    | 49.1                | 20             | 175            |
| 2-Nitrophenol               | 850            | 395    | 46.5                | 29             | 182            |
| 3,3'-Dichlorobenzidine      | 850            | 338    | 39.8                | 10             | 261            |
| 3-Nitroaniline              | 850            | 406    | 47.8                | 20             | 175            |
| 4,6-Dinitro-2-methylphenol  | 850            | 310    | 36.5                | 10             | 181            |
| 4-Bromophenyl phenyl ether  | 850            | 423    | 49.8                | 20             | 175            |
| 4-Chloro-3-methylphenol     | 850            | 413    | 48.6                | 22             | 147            |
| 4-Chloroaniline             | 850            | 533    | 62.7                | 20             | 175            |
| 4-Chlorophenyl phenyl ether | 850            | 399    | 46.9                | 25             | 158            |
| 4-Nitroaniline              | 850            | 376    | 44.2                | 20             | 175            |
| 4-Nitrophenol               | 850            | 312    | 36.7                | 10             | 132            |
| Acenaphthene                | 850            | 401    | 47.2                | 30             | 160            |
| Acenaphthylene              | 850            | 413    | 48.6                | 10             | 150            |
| Aniline                     | 1700           | 860    | 50.6                | 10             | 160            |
| Anthracene                  | 850            | 435    | 51.2                | 27             | 133            |
| Benz(a)anthracene           | 850            | 414    | 48.7                | 33             | 143            |
| Benzo(a)pyrene              | 850            | 362    | 42.6                | 17             | 163            |
| Benzo(b)fluoranthene        | 850            | 409    | 48.1                | 24             | 159            |
| Benzo(g,h,i)perylene        | 850            | 421    | 49.5                | 10             | 219            |
| Benzo(k)fluoranthene        | 850            | 413    | 48.6                | 11             | 162            |
| Benzoic acid                | 850            | 471    | 55.4                | 10             | 450            |
| Benzyl alcohol              | 850            | 458    | 53.9                | 30             | 160            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 37

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

Method: SW8270C WorkOrder:

09050091

Lab Batch ID:

90048

## Laboratory Control Sample (LCS)

RunID:

H\_090513B-5017954

Units:

Analysis Date:

05/13/2009 10:29

ug/kg

GY Analyst:

Preparation Date:

05/06/2009 15:27

Prep By:

QMT Method SW3550C

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Bis(2-chloroethoxy)methane  | 850            | 408    | 48.0                | 33             | 184            |
| Bis(2-chloroethyl)ether     | 850            | 434    | 51.1                | 28             | 158            |
| Bis(2-chloroisopropyl)ether | 850            | 447    | 52.6                | 36             | 166            |
| Bis(2-ethylhexyl)phthalate  | 850            | 374    | 44.0                | 10             | 158            |
| Butyl benzyl phthalate      | 850            | 408    | 48.0                | 10             | 152            |
| Carbazole                   | 850            | 413    | 48.6                | 45             | 135            |
| Chrysene                    | 850            | 411    | 48.4                | 17             | 168            |
| Dibenz(a,h)anthracene       | 850            | 397    | 46.7                | 10             | 227            |
| Dibenzofuran                | 850            | 415    | 48.8                | 30             | 160            |
| Diethyl phthalate           | 850            | 397    | 46.7                | 10             | 160            |
| Dimethyl phthalate          | 850            | 402    | 47.3                | 10             | 112            |
| Di-n-butyl phthalate        | 850            | 401    | 47.2                | 40             | 132            |
| Di-n-octyl phthalate        | 850            | 360    | 42.4                | 10             | 140            |
| Fluoranthene                | 850            | 431    | 50.7                | 26             | 13             |
| Fluorene                    | 850            | 399    | 46.9                | 35             | 13             |
| Hexachlorobenzene           | 850            | 425    | 50.0                | 10             | 152            |
| Hexachlorobutadiene         | 850            | 365    | 42.9                | 20             | 140            |
| Hexachlorocyclopentadiene   | 850            | 578    | 68.0                | 10             | 152            |
| Hexachloroethane            | 850            | 389    | 45.8                | 25             | 118            |
| Indeno(1,2,3-cd)pyrene      | 850            | 412    | 48.5                | 10             | 17             |
| Isophorone                  | 850            | 440    | 51.8                | 21             | 190            |
| Naphthalene                 | 850            | 416    | 48.9                | 21             | 133            |
| Nitrobenzene                | 850            | 404    | 47.5                | 35             | 180            |
| N-Nitrosodi-n-propylamine   | 850            | 396    | 46.6                | 10             | 230            |
| N-Nitrosodiphenylamine      | 1700           | 1040   | 61.2                | 30             | 160            |
| Pentachlorophenol           | 850            | 147    | 17.3                | 14             | 170            |
| Phenanthrene                | 850            | 420    | 49.4                | 35             | 13             |
| Phenol                      | 850            | 455    | 53.5                | 44             | 12             |
| Pyrene                      | 850            | 438    | 51.5                | 34             | 13             |
| Pyridine                    | 1700           | 741    | 43.6                | 10             | 15             |
| 2-Methylphenol              | 850            | 436    | 51.3                | 40             | 16             |
| 3 & 4-Methylphenol          | 850            | 396    | 46.6                | 40             | 16             |
| Surr: 2,4,6-Tribromophenol  | 2500           | 1580   | 63.2                | 19             | 13             |
| Surr: 2-Fluorobiphenyl      | 1700           | 807    | 47.5                | 15             | 14             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 38

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

Method: SW8270C

WorkOrder:

09050091

Lab Batch ID:

90048

### Laboratory Control Sample (LCS)

RunID:

H\_090513B-5017954

Units:

\_

Analysis Date:
Preparation Date:

05/13/2009 10:29 05/06/2009 15:27 Analyst: GY

Analyst. C

Prep By: QMT Method SW3550C

ug/kg

| Analyte               | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------|----------------|--------|---------------------|----------------|----------------|
| Surr: 2-Fluorophenol  | 2500           | 1660   | 66.4                | 15             | 122            |
| Surr: Nitrobenzene-d5 | 1700           | 837    | 49.2                | 32             | 153            |
| Surr: Phenol-d5       | 2500           | 1720   | 68.8                | 10             | 123            |
| Surr: Terphenyl-d14   | 1700           | 816    | 48.0                | 18             | 166            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09050091-01

H\_090508E-5017905 Ur

Units:

ug/kg

Analysis Date:

05/08/2009 20:15

Analyst: GY

Preparation Date: 05/06/2009 15:27

Prep By: QMT Method SW3550C

| Analyte                | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| 1,2,4-Trichlorobenzene | ND               | 850                  | 437          | 51.4             | 850                   | 292           | 34.4              | 39.8 * | 28           | 34           | 116           |
| 1,2-Dichlorobenzene    | ND               | 850                  | 443          | 52.1             | 850                   | 329           | 38.7              | 29.5   | 60           | 32           | 129           |
| 1,2-Diphenylhydrazine  | ND               | 850                  | 500          | 58.8             | 850                   | 326           | 38.4              | 42.1   | 60           | 10           | 256           |
| 1,3-Dichlorobenzene    | ND               | 850                  | 417          | 49.1             | 850                   | 318           | 37.4              | 26.9   | 60           | 10           | 172           |
| 1,4-Dichlorobenzene    | ND               | 850                  | 425          | 50.0             | 850                   | 314           | 36.9              | 30.0 * | 28           | 20           | 124           |
| 2,4,5-Trichlorophenol  | ND               | 850                  | 477          | 56.1             | 850                   | 297           | 34.9 *            | 46.5   | 60           | 40           | 150           |
| 2,4,6-Trichlorophenol  | ND               | 850                  | 448          | 52.7             | 850                   | 303           | 35.6 *            | 38.6   | 60           | 37           | 144           |
| 2,4-Dichlorophenol     | ND               | 850                  | 429          | 50.5             | 850                   | 283           | 33.3 *            | 41.0   | 60           | 39           | 135           |
| 2,4-Dimethylphenol     | ND               | 850                  | 458          | 53.9             | 850                   | 303           | 35.6              | 40.7   | 60           | 32           | 119           |
| 2,4-Dinitrophenol      | ND               | 850                  | 0            | 0 *              | 850                   | 0             | 0 *               | 0      | 60           | 10           | 191           |
| 2,4-Dinitrotoluene     | ND               | 850                  | 485          | 57.1             | 850                   | 301           | 35.4              | 46.8   | 50           | 30           | 150           |
| 2,6-Dinitrotoluene     | ND               | 850                  | 470          | 55.3             | 850                   | 292           | 34.4              | 46.7   | 60           | 30           | 150           |
| 2-Chloronaphthalene    | ND               | 850                  | 486          | 57.2             | 850                   | 335           | 39.4              | 36.8   | 60           | 20           | 175           |
| 2-Chlorophenol         | ND               | 850                  | 465          | 54.7             | 850                   | 327           | 38.5              | 34.8   | 40           | 23           | 134           |
| 2-Methylnaphthalene    | ND               | 850                  | 476          | 56.0             | 850                   | 318           | 37.4              | 39.8   | 60           | 30           | 135           |
| 2-Nitroaniline         | ND               | 850                  | 478          | 56.2             | 850                   | 307           | 36.1              | 43.6   | 60           | 20           | 175           |
| 2-Nitrophenol          | ND               | 850                  | 434          | 51.1             | 850                   | 296           | 34.8              | 37.8   | 60           | 29           | 182           |
| 3,3'-Dichlorobenzidine | ND               | 850                  | 451          | 53.1             | 850                   | 271           | 31.9              | 49.9   | 60           | 10           | 261           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

 $\ensuremath{\mathsf{B/\!V}}$  - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 39

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

Method: SW8270C WorkOrder:

09050091

Lab Batch ID:

90048

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050091-01

RunID:

H\_090508E-5017905

Units:

ug/kg Analyst:

Analysis Date: Preparation Date:

05/08/2009 20:15 05/06/2009 15:27 GΥ

Prep By: QMT Method SW3550C

| Analyte                      | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|------------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| 3-Nitroaniline               | ND               | 850                  | 441          | 51.9             | 850                   | 267           | 31.4              | 49.2   | 60           | 20           | 175           |
| 4,6-Dinitro-2-methylphenol   | ND               | 850                  | 43.9         | 5.16 *           | 850                   | 27.8          | 3.27 *            | 44.9   | 60           | 10           | 181           |
| 4-Bromophenyl phenyl ether   | ND               | 850                  | 459          | 54.0             | 850                   | 298           | 35.1              | 42.5   | 60           | 20           | 175           |
| 4-Chloro-3-methylphenol      | ND               | 850                  | 501          | 58.9             | 850                   | 311           | 36.6              | 46.8 * | 42           | 22           | 147           |
| 4-Chloroaniline              | ND               | 850                  | 561          | 66.0             | 850                   | 353           | 41.5              | 45.5   | 60           | 20           | 175           |
| 4-Chlorophenyl phenyl ether  | ND               | 850                  | 447          | 52.6             | 850                   | 305           | 35.9              | 37.8   | 60           | 25.          | 158           |
| 4-Nitroaniline               | ND               | 850                  | 448          | 52.7             | 850                   | 274           | 32.2              | 48.2   | 60           | 20           | 175           |
| 4-Nitrophenol                | ND               | 850                  | 480          | 56.5             | 850                   | 243           | 28.6              | 65.6 * | 50           | 10           | 132           |
| Acenaphthene                 | ND               | 850                  | 459          | 54.0             | 850                   | 303           | 35.6              | 40.9 * | 31           | 30           | 160           |
| Acenaphthylene               | ND               | 850                  | 464          | 54.6             | 850                   | 312           | 36.7              | 39.2   | 50           | 10           | 150           |
| Aniline                      | ND               | 1700                 | 911          | 53.6             | 1700                  | 631           | 37.1              | 36.3   | 60           | 10           | 160           |
| Anthracene                   | ND               | 850                  | 493          | 58.0             | 850                   | 303           | 35.6              | 47.7   | 50           | 27           | 133           |
| Benz(a)anthracene            | ND               | 850                  | 522          | 61.4             | 850                   | 321           | 37.8              | 47.7   | 50           | 33           | 143           |
| Benzo(a)pyrene               | ND               | 850                  | 452          | 53.2             | 850                   | 282           | 33.2              | 46.3   | 60           | 17           | 163           |
| Benzo(b)fluoranthene         | ND               | 850                  | 479          | 56.4             | 850                   | 304           | 35.8              | 44.7   | 60           | 24           | 159           |
| Benzo(g,h,i)perylene         | ND               | 850                  | 468          | 55.1             | 850                   | 286           | 33.6              | 48.3   | 60           | 10           | 219           |
| Benzo(k)fluoranthene         | ND               | 850                  | 514          | 60.5             | 850                   | 310           | 36.5              | 49.5   | 60           | 11           | 162           |
| Benzoic acid                 | ND               | 850                  | 0            | 0 *              | 850                   | 0             | 0 *               | 0      | 60           | 10           | 450           |
| Benzyl alcohol               | ND               | 850                  | 453          | 53.3             | 850                   | 290           | 34.1              | 43.9   | 60           | 30           | 160           |
| Bis (2-chloroethoxy)methane  | ND               | 850                  | 461          | 54.2             | 850                   | 302           | 35.5              | 41.7   | 60           | 33           | 184           |
| Bis (2-chloroethyl)ether     | ND               | 850                  | 474          | 55.8             | 850                   | 323           | 38.0              | 37.9   | 60           | 28           | 158           |
| Bis (2-chloroisopropyl)ether | ND               | 850                  | 484          | 56.9             | 850                   | 346           | 40.7              | 33.3   | 60           | 36           | 166           |
| Bis (2-ethylhexyl)phthalate  | ND               | 850                  | 534          | 62.8             | 850                   | 317           | 37.3              | 51.0   | 60           | 10           | 158           |
| Butyl benzyl phthalate       | ND               | 850                  | 529          | 62.2             | 850                   | 326           | 38.4              | 47.5   | 60           | 10           | 152           |
| Carbazole                    | ND               | 850                  | 491          | 57.8             | 850                   | 301           | 35.4 *            | 48.0   | 60           | 45           | 135           |
| Chrysene                     | ND               | 850                  | 508          | 59.8             | 850                   | 318           | 37.4              | 46.0   | 60           | 17           | 168           |
| Dibenz(a,h)anthracene        | ND               | 850                  | 479          | 56.4             | 850                   | 278           | 32.7              | 53.1   | 60           | 10           | 227           |
| Dibenzofuran                 | ND               | 850                  | 462          | 54.4             | 850                   | 309           | 36.4 *            | 39.7   | 60           | 45           | 135           |
| Diethyl phthalate            | ND               | 850                  | 466          | 54.8             | 850                   | 299           | 35.2              | 43.7   | 60           | 10           | 160           |
| Dimethyl phthalate           | ND               | 850                  | . 471        | 55.4             | 850                   | 306           | 36.0              | 42.5   | 60           | 10           | 112           |
| Di-n-butyl phthalate         | ND               | 850                  | 516          | 60.7             | 850                   | 304           | 35.8 *            | 51.7   | 60           | 40           | 132           |
| Di-n-octyl phthalate         | ND               | 850                  | 518          | 60.9             | 850                   | 313           | 36.8              | 49.3   | 60           | <del></del>  | ļ             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 40

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Semivolatile Organics by Method 8270C

RunID:

Method:

SW8270C

WorkOrder:

09050091

Lab Batch ID:

90048

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050091-01

H\_090508E-5017905

Units:

Analyst:

ug/kg GΥ

Analysis Date: Preparation Date:

05/08/2009 20:15 05/06/2009 15:27

Prep By:

QMT Method SW3550C

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Fluoranthene               | ND               | 850                  | 521          | 61.3             | 850                   | 328           | 38.6              | 45.5   | 60           | 26           | 137           |
| Fluorene                   | ND               | 850                  | 455          | 53.5             | 850                   | 304           | 35.8 *            | 39.8   | 60           | 45           | 135           |
| Hexachlorobenzene          | ND               | 850                  | 468          | 55.1             | 850                   | 292           | 34.4              | 46.3   | 60           | 10           | 152           |
| Hexachlorobutadiene        | ND               | 850                  | 424          | 49.9             | 850                   | 278           | 32.7              | 41.6   | 60           | 20           | 140           |
| Hexachlorocyclopentadiene  | ND               | 850                  | 460          | 54.1             | 850                   | 321           | 37.8              | 35.6   | 60           | 10           | 152           |
| Hexachloroethane           | ND               | 850                  | 433          | 50.9             | 850                   | 308           | 36.2              | 33.7   | 60           | 25           | 118           |
| Indeno(1,2,3-cd)pyrene     | ND               | 850                  | 466          | 54.8             | 850                   | 287           | 33.8              | 47.5   | 60           | 10           | 171           |
| Isophorone                 | ND               | 850                  | 505          | 59.4             | 850                   | 316           | 37.2              | 46.0   | 60           | 21           | 196           |
| Naphthalene                | ND               | 850                  | 461          | 54.2             | 850                   | 316           | 37.2              | 37.3   | 60           | 21           | 133           |
| Nitrobenzene               | ND               | 850                  | 436          | 51.3             | 850                   | 305           | 35.9              | 35.4   | 60           | 35           | 180           |
| N-Nitrosodi-n-propylamine  | ND               | 850                  | 483          | 56.8             | 850                   | 338           | 39.8              | 35.3   | 38           | 10           | 230           |
| N-Nitrosodiphenylamine     | ND               | 1700                 | 1160         | 68.2             | 1700                  | 739           | 43.5              | 44.3   | 60           | 30           | 160           |
| Pentachlorophenol          | ND               | 850                  | 219          | 25.8             | 850                   | 103           | 12.1 *            | 72.0 * | 50           | 14           | 176           |
| Phenanthrene               | ND               | 850                  | 476          | 56.0             | 850                   | 303           | 35.6 *            | 44.4   | 60           | 45           | 135           |
| Phenol                     | ND               | 850                  | 492          | 57.9             | 850                   | 350           | 41.2 *            | 33.7   | 42           | 44           | 120           |
| Pyrene                     | ND               | 850                  | 530          | 62.4             | 850                   | 325           | 38.2              | 48.0 * | 31           | 26           | 127           |
| Pyridine                   | ND               | 1700                 | 685          | 40.3             | 1700                  | 492           | 28.9              | 32.8   | 60           | 10           | 150           |
| 2-Methylphenol             | ND               | 850                  | 490          | 57.6             | 850                   | 349           | 41.1              | 33.6   | 60           | 40           | 160           |
| 3 & 4-Methylphenol         | ND               | 850                  | 445          | 52.4             | 850                   | ND            | 35.3 *            | 38.9   | 60           | 40           | 160           |
| Surr: 2,4,6-Tribromophenol | ND               | 2500                 | 1860         | 74.4             | 2500                  | 1140          | 45.6              | 48.0 * | 30           | 19           | 135           |
| Surr: 2-Fluorobiphenyl     | ND               | 1700                 | 884          | 52.0             | 1700                  | 599           | 35.2              | 38.4 * | 30           | 15           | 140           |
| Surr: 2-Fluorophenol       | ND               | 2500                 | 1700         | 68.0             | 2500                  | 1200          | 48.0              | 34.5 * | 30           | 15           | 122           |
| Surr: Nitrobenzene-d5      | ND               | 1700                 | 901          | 53.0             | 1700                  | 597           | 35.1              | 40.6 * | 30           | 10           | 134           |
| Surr: Phenol-d5            | ND               | 2500                 | 1860         | 74.4             | 2500                  | 1260          | 50.4              | 38.5 * | 30           | 10           | 123           |
| Surr: Terphenyl-d14        | ND               | 1700                 | 959          | 56.4             | 1700                  | 577           | 33.9              | 49.7 * | 30           | 18           | 166           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 41

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

-Fracmaster 128125

WorkOrder:

09050091

Lab Batch ID:

R272205

## Method Blank

RunID:

Analysis Date:

M 090507E-5012044

Units:

ug/kg TLE

Lab Sample ID

Client Sample ID

05/07/2009 14:32

Analyst:

09050091-01A

Samples in Analytical Batch:

MW-4-52-55

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0       |
| 1,1,1-Trichloroethane       | ND     | 5.0       |
| 1,1,2,2-Tetrachloroethane   | ND     | 5.0       |
| 1,1,2-Trichloroethane       | ND     | 5.0       |
| 1,1-Dichloroethane          | ND     | 5.0       |
| 1,1-Dichloroethene          | ND     | 5.0       |
| 1,1-Dichloropropene         | ND     | 5.0       |
| 1,2,3-Trichlorobenzene      | ND     | 5.0       |
| 1,2,3-Trichloropropane      | ND     | 5.0       |
| 1,2,4-Trichlorobenzene      | ND     | 5.0       |
| 1,2,4-Trimethylbenzene      | ND     | 5.0       |
| 1,2-Dibromo-3-chloropropane | ND     | 5.0       |
| 1,2-Dibromoethane           | ND     | 5.0       |
| 1,2-Dichlorobenzene         | ND     | 5.0       |
| 1,2-Dichloroethane          | ND     | 5.0       |
| 1,2-Dichloropropane         | ND     | 5.0       |
| 1,3,5-Trimethylbenzene      | ND     |           |
| 1,3-Dichlorobenzene         | ND     |           |
|                             | ND     |           |
| 1,3-Dichloropropane         |        |           |
| 1,4-Dichlorobenzene         | ND     |           |
| 2,2-Dichloropropane         | ND     |           |
| 2-Butanone                  | ND     | 20        |
| 2-Chloroethyl vinyl ether   | ND ND  |           |
| 2-Chlorotoluene             | ND     |           |
| 2-Hexanone                  | ND     |           |
| 4-Chlorotoluene             | ND     |           |
| 4-Isopropyltoluene          | ND ND  |           |
| 4-Methyl-2-pentanone        | ND     |           |
| Acetone                     | ND     |           |
| Acrylonitrile               | ND     |           |
| Benzene                     | ND     | 1         |
| Bromobenzene                | ND     | 5.0       |
| Bromochloromethane          | ND     | 5.0       |
| Bromodichloromethane        | ND     |           |
| Bromoform                   | ND     | 5.0       |
| Bromomethane                | ND     | 10        |
| Carbon disulfide            | ND.    | 5.0       |
| Carbon tetrachloride        | ND     | 5.0       |
| Chlorobenzene               | ND     | 5.0       |
| Chloroethane                | ND     | 10        |
| Chloroform                  | ND     | 5.0       |
| Chloromethane               | ND     | 10        |
| Dibromochloromethane        | ND     |           |
| Dibromomethane              | ND     |           |
| Dichlorodifluoromethane     | ND     |           |
| Ethylbenzene                | ND     |           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 42

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272205

## Method Blank

RunID: N

M\_090507E-5012044

Units:

ug/kg

Analysis Date:

05/07/2009 14:32

Analyst:

TLE

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | _5.0      |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND     | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | 10        |
| Vinyl chloride              | ND     | 10        |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND     | 5.0       |
| m,p-Xylene                  | ND ND  | 5.0       |
| o-Xylene                    | ND     | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes,Total               | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 87.4   | 64-115    |
| Surr: 4-Bromofluorobenzene  | 106.5  | 65-131    |
| Surr: Toluene-d8            | 95.5   | 75-136    |

## Laboratory Control Sample (LCS)

RuniD:

M\_090507E-5012043

Units:

ug/kg

Analysis Date:

05/07/2009 12:31

Analyst: TLE

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 20.3   | 102                 | 56             | 140            |
| 1,1,1-Trichloroethane     | 20.0           | 21.2   | 106                 | 58             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 19.9   | 99.3                | 52             | 139            |
| 1,1,2-Trichloroethane     | 20.0           | 20.2   | 101                 | 81             | 138            |
| 1,1-Dichloroethane        | 20.0           | 20.1   | 101                 | 56             | 137            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 43

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B

radillaster 120120

WorkOrder:

09050091

Lab Batch ID:

R272205

#### Laboratory Control Sample (LCS)

RunID:

M\_090507E-5012043

Units:

1/2:220

Analysis Date:

05/07/2009 12:31

Ullito.

ug/kg

Analyst: TLE

| Analyte                           | Spike<br>Added | Result     | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------------|----------------|------------|---------------------|----------------|----------------|
| 1,1-Dichloroethene                | 20.0           | 16.2       | 81.0                | 56             | 135            |
| 1,1-Dichloropropene               | 20.0           | 21.2       | 106                 | 62             | 132            |
| 1,2,3-Trichlorobenzene            | 20.0           | 22.9       | 115                 | 53             | 144            |
| 1,2,3-Trichloropropane            | 20.0           | 19.9       | 99.3                | 44             | 141            |
| 1,2,4-Trichlorobenzene            | 20.0           | 21.9       | 109                 | 51             | 143            |
| 1,2,4-Trimethylbenzene            | 20.0           | 18.8       | 94.0                | 59             | 148            |
| 1,2-Dibromo-3-chloropropane       | 20.0           | 19.2       | 96.2                | 53             | 144            |
| 1,2-Dibromoethane                 | 20.0           | 20.8       | 104                 | 55             | 138            |
| 1,2-Dichlorobenzene               | 20.0           | 20.1       | 101                 | 63             | 137            |
| 1,2-Dichloroethane                | 20.0           | 20.5       | 103                 | 56             | 135            |
| 1,2-Dichloropropane               | 20.0           | 21.1       | 106                 | 62             | 132            |
| 1,3,5-Trimethylbenzene            | 20.0           | 18.4       | 91.8                | 54             | 145            |
| 1,3-Dichlorobenzene               | 20.0           | 20.1       | 101                 | 66             | 137            |
| 1,3-Dichloropropane               | 20.0           | 19.6       | 98.0                | 59             | 138            |
| 1,4-Dichlorobenzene               | 20.0           | 19.9       | 99.5                | 61             | 142            |
| 2,2-Dichloropropane               | 20.0           | 19.4       | 97.2                | 55             | 138            |
| 2-Butanone                        | 20.0           | 25.0       | 125                 | 10             | 191            |
| 2-Chloroethyl vinyl ether         | 20.0           | 25.9       | 129                 | 10             | 181            |
| 2-Chlorotoluene                   | 20.0           | 19.5       | 97.6                | 64             | 139            |
| 2-Hexanone                        | 20.0           | 19.8       | 98.8                | 18             | 182            |
| 4-Chlorotoluene                   | 20.0           | 19.0       | 95.0                | 63             | 138            |
| 4-Isopropyltoluene                | 20.0           | 19.4       | 97.0                | 59             | 156            |
| 4-Methyl-2-pentanone              | 20.0           | 20.3       | 102                 | 10             | 166            |
| Acetone                           | 20.0           | 25.5       | 128                 | 10             | 200            |
| Acrylonitrile                     | 20.0           | 19.8       | 98.9                | 38             | 169            |
| Benzene                           | 20.0           | 20.8       | 104                 | 64             | 130            |
| Bromobenzene                      | 20.0           | 19.0       | 95.0                | 58             | 139            |
| Bromochloromethane                | 20.0           | 24.4       | 122                 | 66             | 127            |
| Bromodichloromethane              | 20.0           | 21.5       | 108                 | 59             | 134            |
| Bromoform                         | 20.0           | 19.5       | 97.3                | 65             | 135            |
| Bromomethane                      | 20.0           | 20.3       | 101                 | 40             | 134            |
| Carbon disulfide                  | 20.0           | 18.1       | 90.4                | 53             | 130            |
| Carbon tetrachloride              | 20.0           | 19.2       | 96.1                | 61             | 132            |
| Chlorobenzene                     | 20.0           | 21.2       | 106                 | 60             | 140            |
| t Detected at the Reporting Limit |                | Matrix Int |                     |                |                |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 44



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

09050091

Lab Batch ID:

R272205

#### Laboratory Control Sample (LCS)

RunID:

M 090507E-5012043

Units:

Analysis Date:

05/07/2009 12:31

Ar

ug/kg

| nalyst: TLI |  |
|-------------|--|
|-------------|--|

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 16.9   | 84.7                | 45             | 140            |
| Chloroform                  | 20.0           | 21.2   | 106                 | 64             | 131            |
| Chloromethane               | 20.0           | 18.3   | 91.5                | 39             | 140            |
| Dibromochloromethane        | 20.0           | 19.4   | 97.1                | 54             | 138            |
| Dibromomethane              | 20.0           | 23.1   | 115                 | 64             | 131            |
| Dichlorodifluoromethane     | 20.0           | 15.1   | 75.3                | 35             | 133            |
| Ethylbenzene                | 20.0           | 20.9   | 104                 | 58             | 143            |
| Hexachlorobutadiene         | 20.0           | 25.0   | 125                 | 56             | 166            |
| Isopropylbenzene            | 20.0           | 18.5   | 92.3                | 58             | 133            |
| Methyl tert-butyl ether     | 40.0           | 41.8   | 104                 | 50             | 132            |
| Methylene chloride          | 20.0           | 18.9   | 94.6                | 52             | 144            |
| Naphthalene                 | 20.0           | 20.5   | 103                 | 51             | 13             |
| n-Butylbenzene              | 20.0           | 19.3   | 96.5                | 59             | 16             |
| n-Propylbenzene             | 20.0           | 18.7   | 93.6                | 57             | 14             |
| sec-Butylbenzene            | 20.0           | 19.2   | 95.9                | 63             | 140            |
| Styrene                     | 20.0           | 21.1   | 105                 | 57             | 13             |
| tert-Butylbenzene           | 20.0           | 18.6   | 93.2                | 57             | 14             |
| Tetrachloroethene           | 20.0           | 22.5   | 113                 | 41             | 15             |
| Toluene                     | 20.0           | 20.2   | 101                 | 63             | 13             |
| Trichloroethene             | 20.0           | 23.6   | 118                 | 62             | 13             |
| Trichlorofluoromethane      | 20.0           | 17.2   | 85.9                | 53             | 14             |
| Vinyl acetate               | 20.0           | 19.2   | 96.2                | 17             | 16             |
| Vinyl chloride              | 20.0           | 19.3   | 96.6                | 45             | 14             |
| cis-1,2-Dichloroethene      | 20.0           | 23.4   | 117                 | 70             | 12             |
| cis-1,3-Dichloropropene     | 20.0           | 22.0   | 110                 | 58             | 13             |
| m,p-Xylene                  | 40.0           | 42.5   | 106                 | 64             | 13             |
| o-Xylene                    | 20.0           | 21.6   | 108                 | 64             | 14             |
| trans-1,2-Dichloroethene    | 20.0           | 22.8   | 114                 | 63             | 13             |
| trans-1,3-Dichloropropene   | 20.0           | 21.1   | 105                 | 58             | 12             |
| 1,2-Dichloroethene (total)  | 40.0           | 46.2   | 116                 | 63             | 13             |
| Xylenes,Total               | 60.0           | 64.1   | 107                 | 64             | 14             |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 46.1   | 92.3                | 64             | 11             |
| Surr: 4-Bromofluorobenzene  | 50.0           | 52.8   | 106                 | 65             | 13             |
| Surr: Toluene-d8            | 50.0           | 47     | 94.0                | 75             | 13             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 45

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272205

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09050250-03

M\_090507E-5012046

Units: ug/kg-dry

Analysis Date:

05/07/2009 16:03

Analyst: TLE

Preparation Date:

05/07/2009 11:01

Prep By: E G Method SW5030B

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 25.3                 | 20.6         | 81.5             | 25.3                  | 20.8          | 82.1              | 0.679 | 30           | 38           | 129           |
| 1,1,1-Trichloroethane       | ND               | 25.3                 | 27.7         | 109              | 25.3                  | 28.5          | 112               | 2.79  | 30           | 44           | 154           |
| 1,1,2,2-Tetrachloroethane   | ND               | 25.3                 | 14.6         | 57.8             | 25.3                  | 15.1          | 59.8              | 3.39  | 30           | 14           | 143           |
| 1,1,2-Trichloroethane       | ND               | 25.3                 | 17.0         | 67.1             | 25.3                  | 17.2          | 68.0              | 1.21  | 30           | 34           | 135           |
| 1,1-Dichloroethane          | ND               | 25.3                 | 24.8         | 98.1             | 25.3                  | 24.7          | 97.4              | 0.696 | 30           | 42           | 146           |
| 1,1-Dichloroethene          | ND               | 25.3                 | 20.5         | 80.8             | 25.3                  | 18.7          | 73.7              | 9.15  | 22           | 39           | 168           |
| 1,1-Dichloropropene         | ND               | 25.3                 | 28.7         | 113              | 25.3                  | 29.0          | 115               | 1.12  | 30           | 42           | 156           |
| 1,2,3-Trichlorobenzene      | ND               | 25.3                 | 16.9         | 66.9             | 25.3                  | 17.6          | 69.4              | 3.68  | 30           | 10           | 125           |
| 1,2,3-Trichloropropane      | ND               | 25.3                 | 14.9         | 58.8             | 25.3                  | 15.5          | 61.4              | 4.39  | 30           | 10           | 154           |
| 1,2,4-Trichlorobenzene      | ND               | 25.3                 | 17.4         | 68.7             | 25.3                  | 18.0          | 71.1              | 3.55  | 30           | 10           | 128           |
| 1,2,4-Trimethylbenzene      | ND               | 25.3                 | 19.4         | 76.6             | 25.3                  | 19.6          | 77.6              | 1.25  | 30           | 22           | 139           |
| 1,2-Dibromo-3-chloropropane | ND               | 25.3                 | 14.1         | 55.8             | 25.3                  | 15.8          | 62.6              | 11.5  | 30           | 23           | 139           |
| 1,2-Dibromoethane           | ND               | 25.3                 | 16.3         | 64.4             | 25.3                  | 16.5          | 65.0              | 0.897 | 30           | 32           | 129           |
| 1,2-Dichlorobenzene         | ND               | 25.3                 | 17.4         | 68.6             | 25.3                  | 17.9          | 70.7              | 3.10  | 30           | 17           | 130           |
| 1,2-Dichloroethane          | ND               | 25.3                 | 19.3         | 76.1             | 25.3                  | 19.7          | 77.9              | 2.39  | 30           | 15           | 158           |
| 1,2-Dichloropropane         | ND               | 25.3                 | 23.1         | 91.1             | 25.3                  | 22.6          | 89.2              | 2.10  | 30           | 42           | 133           |
| 1,3,5-Trimethylbenzene      | ND               | 25.3                 | 20.2         | 79.7             | 25.3                  | 20.5          | 80.9              | 1.41  | 30           | 22           | 135           |
| 1,3-Dichlorobenzene         | ND               | 25.3                 | 19.2         | 75.8             | 25.3                  | 19.3          | 76.1              | 0.362 | 30           | 22           | 130           |
| 1,3-Dichloropropane         | ND               | 25.3                 | 16.4         | 64.7             | 25.3                  | 16.4          | 64.8              | 0.193 | 30           | 37           | 131           |
| 1,4-Dichlorobenzene         | ND               | 25.3                 | 18.2         | 71.8             | 25.3                  | 18.4          | 72.8              | 1.35  | 30           | 20           | 129           |
| 2,2-Dichloropropane         | ND               | 25.3                 | 25.0         | 98.8             | 25.3                  | 25.6          | 101               | 2.35  | 30           | 39           | 155           |
| 2-Butanone                  | ND               | 25.3                 | 25.5         | 101              | 25.3                  | 26.2          | 103               | 2.64  | 30           | 10           | 200           |
| 2-Chloroethyl vinyl ether   | ND               | 25.3                 | 15.3         | 60.5             | 25.3                  | 16.7          | 66.0              | 8.69  | 30           | 10           | 168           |
| 2-Chlorotoluene             | ND               | 25.3                 | 20.2         | 79.8             | 25.3                  | 20.5          | 80.9              | 1.47  | 30           | 30           | 133           |
| 2-Hexanone                  | ND               | 25.3                 | 14.6         | 57.6             | 25.3                  | 16.1          | 63.8              | 10.1  | 30           | 14           | 151           |
| 4-Chlorotoluene             | ND               | 25.3                 | 18.8         | 74.4             | 25.3                  | 19.0          | 75.0              | 0.870 | 30           | 24           | 133           |
| 4-Isopropyltoluene          | ND               | 25.3                 | 21.8         | 86.1             | 25.3                  | 22.1          | 87.4              | 1.50  | 30           | 17           | 143           |
| 4-Methyl-2-pentanone        | ND               | 25.3                 | 15.6         | 61.6             |                       | 16.9          | 66.9              | 8.20  | 30           | 10           | 176           |
| Acetone                     | ND               | 25.3                 | 26.9         | 106              | 25.3                  | 30.1          | 119               | 11.2  | 30           | 10           | 200           |
| Acrylonitrile               | ND               | 25.3                 | 17.8         | 70.4             | 25.3                  | 19.8          | 78.3              | 10.6  | 30           | 10           | 200           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 46

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

09050091

Lab Batch ID:

R272205

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050250-03

RunID:

M\_090507E-5012046

Units: ug/kg-dry

Analysis Date:

05/07/2009 16:03

Analyst: TLE

Preparation Date: 05/07/2009 11:01 Prep By: E\_G Method SW5030B

| Analyte                 | Sample | MS             | MS     | MS %     | MSD            | MSD    | MSD %    | RPD   | RPD   | Low   | High  |
|-------------------------|--------|----------------|--------|----------|----------------|--------|----------|-------|-------|-------|-------|
|                         | Result | Spike<br>Added | Result | Recovery | Spike<br>Added | Result | Recovery |       | Limit | Limit | Limit |
| Benzene                 | ND     | 25.3           | 25.3   | 99.8     | 25.3           | 25.3   | 99.9     | 0.110 | 21    | 49    | 135   |
| Bromobenzene            | ND     | 25.3           | 17.3   | 68.5     | 25.3           | 17.5   | 69.0     | 0.829 | 30    | 29    | 127   |
| Bromochloromethane      | ND     | 25.3           | 20.8   | 82.3     | 25.3           | 21.3   | 83.9     | 2.02  | 30    | 27    | 147   |
| Bromodichloromethane    | ND     | 25.3           | 21.4   | 84.4     | 25.3           | 21.0   | 83.1     | 1.61  | 30    | 32    | 138   |
| Bromoform               | ND     | 25.3           | 15.3   | 60.3     | 25.3           | 15.7   | 62.0     | 2.85  | 30    | 27    | 129   |
| Bromomethane            | ND     | 25.3           | 24.2   | 95.6     | 25.3           | 23.6   | 93.2     | 2.64  | 30    | 32    | 142   |
| Carbon disulfide        | ND     | 25.3           | 24.6   | 97.3     | 25.3           | 24.2   | 95.4     | 1.96  | 30    | 25    | 168   |
| Carbon tetrachloride    | ND     | 25.3           | 26.4   | 104      | 25.3           | 26.4   | 104      | 0.216 | 30    | 48    | 151   |
| Chlorobenzene           | ND     | 25.3           | 23.0   | 90.7     | 25.3           | 22.6   | 89.3     | 1.54  | 21    | 38    | 130   |
| Chloroethane            | ND     | 25.3           | 19.4   | 76.7     | 25.3           | 21.2   | 83.8     | 8.88  | 30    | 29    | 161   |
| Chloroform              | ND     | 25.3           | 23.9   | 94.3     | 25.3           | 24.4   | 96.5     | 2.27  | 30    | 34    | 153   |
| Chloromethane           | ND     | 25.3           | 22.4   | 88.7     | 25.3           | 23.4   | 92.6     | 4.34  | 30    | 31    | 151   |
| Dibromochloromethane    | ND     | 25.3           | 17.1   | 67.6     | 25.3           | 17.1   | 67.5     | 0.155 | 30    | 31    | 127   |
| Dibromomethane          | ND     | 25.3           | 19.6   | 77.3     | 25.3           | 20.3   | 80.2     | 3.69  | 30    | 30    | 141   |
| Dichlorodifluoromethane | ND     | 25.3           | 20.9   | 82.4     | 25.3           | 21.4   | 84.4     | 2.36  | 30    | 15    | 167   |
| Ethylbenzene            | ND     | 25.3           | 25.2   | 99.3     | 25.3           | 24.7   | 97.7     | 1.71  | 30    | 39    | 135   |
| Hexachlorobutadiene     | ND     | 25.3           | 27.1   | 107      | 25.3           | 27.9   | 110      | 2.92  | 30    | 10    | 149   |
| Isopropylbenzene        | ND     | 25.3           | 23.0   | 90.7     | 25.3           | 22.7   | 89.6     | 1.25  | 30    | 25    | 142   |
| Methyl tert-butyl ether | ND     | 50.6           | 35.3   | 69.7     | 50.6           | 36.6   | 72.3     | 3.71  | 30    | 19    | 142   |
| Methylene chloride      | ND     | 25.3           | 15.7   | 61.9     | 25.3           | 17.9   | 70.6     | 13.0  | 30    | 13    | 170   |
| Naphthalene             | ND     | 25.3           | 13.1   | 51.8     | 25.3           | 14.4   | 57.0     | 9.56  | 30    | 10    | 124   |
| n-Butylbenzene          | ND     | 25.3           | 21.8   | 86.1     | 25.3           | 22.1   | 87.1     | 1.14  | 30    | 10    | 156   |
| n-Propylbenzene         | ND     | 25.3           | 21.7   | 85.6     | 25.3           | 21.4   | 84.7     | 1.07  | 30    | 20    | 141   |
| sec-Butylbenzene        | ND     | 25.3           | 22.2   | 87.8     | 25.3           | 22.6   | 89.4     | 1.83  | 30    | 29    | 142   |
| Styrene                 | ND     | 25.3           | 21.8   | 86.2     | 25.3           | 21.5   | 85.0     | 1.37  | 30    | 28    | 133   |
| tert-Butylbenzene       | ND     | 25.3           | 21.7   | 85.9     | 25.3           | 22.0   | 87.0     | 1.29  | 30    | 26    | 141   |
| Tetrachloroethene       | ND     | 25.3           | 27.5   | 109      | 25.3           | 27.6   | 109      | 0.487 | 30    | 33    | 149   |
| Toluene                 | ND     | 25.3           | 24.1   | 95.1     | 25.3           | 24.2   | 95.5     | 0.435 | 21    | 49    | 133   |
| Trichloroethene         | ND     | 25.3           | 30.3   | 120      | 25.3           | 30.2   | 119      | 0.494 | _ 24  | 51    | 142   |
| Trichlorofluoromethane  | ND     | 25.3           | 23.4   | 92.4     | 25.3           | 22.1   | 87.2     | 5.77  | 30    | 24    | 184   |
| Vinyl acetate           | ND     | 25.3           | 14.3   | 56.4     | 25.3           | 14.7   | 57.9     | 2.61  | 30    | 10    | 174   |
| Vinyl chloride          | ND     | 25.3           | 27.6   | 109      | 25.3           | 27.8   | 110      | 0.978 | 30    | 29    | 177   |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 47

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

-Fracmaster 128125

WorkOrder:

09050091

Lab Batch ID:

R272205

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050250-03

M\_090507E-5012046

Units:

ug/kg-dry

Analysis Date:

RunID:

05/07/2009 16:03

Analyst: TLE

Preparation Date: 05/07/2009 11:01 Prep By: E\_G Method SW5030B

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 25.3                 | 25.2         | 99.5             | 25.3                  | 23.5          | 92.7              | 7.12  | 30           | 38           | 151           |
| cis-1,3-Dichloropropene     | ND               | 25.3                 | 21.5         | 85.0             | 25.3                  | 21.7          | 85.6              | 0.663 | 30           | 31           | 131           |
| m,p-Xylene                  | ND               | 50.6                 | 50.1         | 99.0             | 50.6                  | 49.6          | 98.0              | 1.02  | 30           | 32           | 140           |
| o-Xylene                    | ND               | 25.3                 | 24.8         | 97.8             | 25.3                  | 24.0          | 94.7              | 3.19  | 30           | 36           | 142           |
| trans-1,2-Dichloroethene    | ND               | 25.3                 | 29.1         | 115              | 25.3                  | 29.2          | 115               | 0.152 | 30           | 41           | 153           |
| trans-1,3-Dichloropropene   | ND               | 25.3                 | 19.1         | 75.5             | 25.3                  | 19.2          | 75.7              | 0.271 | 30           | 27           | 128           |
| 1,2-Dichloroethene (total)  | ND               | 50.6                 | 54.3         | 107              | 50.6                  | 52.7          | 104               | 3.16  | 30           | 38           | 153           |
| Xylenes,Total               | ND               | 75.9                 | 74.9         | 98.6             | 75.9                  | 73.6          | 96.9              | 1.73  | 30           | 32           | 142           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 63.3                 | 57.8         | 91.3             | 63.3                  | 55.4          | 87.6              | 4.16  | 30           | 64           | 115           |
| Surr: 4-Bromofluorobenzene  | ND               | 63.3                 | 70.7         | 112              | 63.3                  | 69.1          | 109               | 2.28  | 30           | 65           | 131           |
| Surr: Toluene-d8            | ND               | 63.3                 | 59.1         | 93.4             | 63.3                  | 58.3          | 92.2              | 1.29  | 30           | 75           | 136           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 48

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Analysis Date:

Preparation Date:

Volatile Organics by Method 8260B

Method:

SW8260B

05/11/2009 10:29

05/11/2009 10:29

WorkOrder:

09050091

Lab Batch ID:

R272416

#### Method Blank

K\_090511A-5015562 RunID:

Units: Analyst:

Prep By:

ug/L JC

09050091-02A

Client Sample ID

Lab Sample ID 09050091-04A

Samples in Analytical Batch:

MW-4

09050091-05A

FB-050209-1 TB-050209-1

| ıcı | IIOO |  |
|-----|------|--|
|     |      |  |
|     |      |  |

| Analyte                     | Result   | Rep Limit   |
|-----------------------------|----------|-------------|
| 1,1,1,2-Tetrachloroethane   | ND       | 5.0         |
| 1,1,1-Trichloroethane       | ND       | 5.0         |
| 1,1,2,2-Tetrachloroethane   | ND       | 5.0         |
| 1,1,2-Trichloroethane       | ND       | 5.0         |
| 1,1-Dichloroethane          | ND       | 5.0         |
| 1,1-Dichloroethene          | ND       | 5.0         |
| 1,1-Dichloropropene         | ND       | 5.0         |
| 1,2,3-Trichlorobenzene      | ND       | 5.0         |
| 1,2,3-Trichloropropane      | ND       | 5.0         |
| 1,2,4-Trichlorobenzene      | ND       | 5.0         |
| 1,2,4-Trimethylbenzene      | ND       | 5.0         |
| 1,2-Dibromo-3-chloropropane | ND       | 5.0         |
| 1,2-Dibromoethane           | ИD       | 5.0         |
| 1,2-Dichlorobenzene         | ND       | _ 5.0       |
| 1,2-Dichloroethane          | ND       | 5.0         |
| 1,2-Dichloropropane         | ND       | 5.0         |
| 1,3,5-Trimethylbenzene      | ND       | 5.0         |
| 1,3-Dichlorobenzene         | ND       | 5.0         |
| 1,3-Dichloropropane         | ND       | 5.0         |
| 1,4-Dichlorobenzene         | ND       | 5.0         |
| 2,2-Dichloropropane         | ND       | 5.0         |
| 2-Butanone                  | ND       | 20          |
| 2-Chloroethyl vinyl ether   | ND       | 10          |
| 2-Chlorotoluene             | ND       | 5.0         |
| 2-Hexanone                  | ND       | 10          |
| 4-Chlorotoluene             | ND       | 5.0         |
| 4-Isopropyltoluene          | ND       | 5.0         |
| 4-Methyl-2-pentanone        | ND       | 10          |
| Acetone                     | ND       | 20          |
| Acrylonitrile               | ND       |             |
| Benzene                     | ND       |             |
| Bromobenzene                | ND       |             |
| Bromochloromethane          | ND.      |             |
| Bromodichloromethane        | ND       |             |
| Bromoform                   | ND.      |             |
| Bromomethane                | ND       |             |
| Carbon disulfide            | ND       |             |
| Carbon tetrachloride        | ND       | -           |
| Chlorobenzene               | ND       |             |
| Chloroethane                | ND       | <del></del> |
| Chloroform                  | ND       | +           |
| Chloromethane               | ND<br>ND |             |
| Dibromochloromethane        | ND       |             |
| Dibromomethane              | ND       | 1           |
| Dichlorodifluoromethane     | ND.      |             |
| Ethylbenzene                | ND       | 5.0         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 49

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272416

#### Method Blank

RunID:

K\_090511A-5015562

Units:

ug/L

Analysis Date:

05/11/2009 10:29

Analyst:

st: JC

Preparation Date:

05/11/2009 10:29

Prep By:

Method

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachiorobutadiene         | ND     | 5.0       |
| Isopropyibenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND     | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | 10        |
| Vinyl chloride              | ND     | 2.0       |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND     | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND.    | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes, Total              | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 90.5   | 78-116    |
| Surr: 4-Bromofluorobenzene  | 105.5  | 74-125    |
| Surr: Toluene-d8            | 96.5   | 82-118    |

#### Laboratory Control Sample (LCS)

RunID:

K\_090511A-5015561

Units:

Analyst: JC

ug/L

Analysis Date: Preparation Date:

05/11/2009 9:59 05/11/2009 9:59

Prep By:

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 18.3   | 91.4                | 71             | 128            |
| 1,1,1-Trichloroethane     | 20.0           | 22.0   | 110                 | 61             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 16.1   | 80.6                | 60             | 133            |
| 1,1,2-Trichloroethane     | 20.0           | 17.1   | 85.4                | 77             | 127            |
| 1,1-Dichloroethane        | 20.0           | 17.0   | 85.2                | 68             | 132            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 50

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272416

#### Laboratory Control Sample (LCS)

RuniD:

K\_090511A-5015561

Units:

Analysis Date:

05/11/2009 9:59

ug/L JC

Analyst:

Preparation Date: 05/11/2009 9:59 Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 17.8   | 88.8                | 65             | 134            |
| 1,1-Dichloropropene         | 20.0           | 19.4   | 97.0                | 68             | 126            |
| 1,2,3-Trichlorobenzene      | 20.0           | 18.1   | 90.5                | 36             | 154            |
| 1,2,3-Trichloropropane      | 20.0           | 17.6   | 88.2                | 38             | 153            |
| 1,2,4-Trichlorobenzene      | 20.0           | 17.1   | 85.4                | 69             | 144            |
| 1,2,4-Trimethylbenzene      | 20.0           | 18.5   | 92.7                | 64             | 128            |
| 1,2-Dibromo-3-chloropropane | 20.0           | 23.5   | 118                 | 44             | 14             |
| 1,2-Dibromoethane           | 20.0           | 17.6   | 87.8                | 75             | 124            |
| 1,2-Dichlorobenzene         | 20.0           | 17.9   | 89.6                | 68             | 124            |
| 1,2-Dichloroethane          | 20.0           | 21.8   | 109                 | 61             | 138            |
| 1,2-Dichloropropane         | 20.0           | 18.0   | 90.1                | 76             | 123            |
| 1,3,5-Trimethylbenzene      | 20.0           | 18.8   | 94.2                | 61             | 12             |
| 1,3-Dichlorobenzene         | 20.0           | 17.9   | 89.7                | 68             | 12             |
| 1,3-Dichloropropane         | 20.0           | 16.6   | 82.8                | 76             | 12             |
| 1,4-Dichlorobenzene         | 20.0           | 17.8   | 89.2                | 68             | 124            |
| 2,2-Dichloropropane         | 20.0           | 21.8   | 109                 | 42             | 14:            |
| 2-Butanone                  | 20.0           | 17.1   | 85.7                | 22             | 183            |
| 2-Chloroethyl vinyl ether   | 20.0           | 17.4   | 87.0                | 10             | 179            |
| 2-Chlorotoluene             | 20.0           | 18.2   | 91.1                | 64             | 132            |
| 2-Hexanone                  | 20.0           | 15.6   | 77.8                | 31             | 178            |
| 4-Chlorotoluene             | 20.0           | 17.9   | 89.4                | 61             | 133            |
| 4-Isopropyltoluene          | 20.0           | 19.3   | 96.7                | 63             | 136            |
| 4-Methyl-2-pentanone        | 20.0           | 15.7   | 78.7                | 10             | 159            |
| Acetone                     | 20.0           | 16.5   | 82.6                | 10             | 200            |
| Acrylonitrile               | 20.0           | 14.3   | 71.4                | 54             | 15             |
| Benzene                     | 20.0           | 17.6   | 88.1                | 74             | 12:            |
| Bromobenzene                | 20.0           | 17.4   | 87.0                | 68             | 12:            |
| Bromochloromethane          | 20.0           | 17.5   | 87.7                | 71             | 12             |
| Bromodichloromethane        | 20.0           | 21.0   | 105                 | 72             | 128            |
| Bromoform                   | 20.0           | 18.7   | 93.5                | 81             | 13:            |
| Bromomethane                | 20.0           | 13.8   | 69.1                | 53             | 13             |
| Carbon disulfide            | 20.0           | 16.0   | 79.8                | 41             | 14:            |
| Carbon tetrachloride        | 20.0           | 24.6   | 123                 | 59             | 14:            |
| Chlorobenzene               | 20.0           | 16.7   | 83.4                | 75             | 12             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 51

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B

Fracillaster 120125

WorkOrder:

09050091

Lab Batch ID:

R272416

#### Laboratory Control Sample (LCS)

RunID:

K\_090511A-5015561

Units:

ug/L

Analysis Date:

05/11/2009 9:59

Analyst: JC

Preparation Date: 05/11/2009 9:59

Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 13.7   | 68.7                | 60             | 134            |
| Chloroform                  | 20.0           | 18.4   | 91.8                | 71             | 127            |
| Chloromethane               | 20.0           | 15.3   | 76.3                | 50             | 139            |
| Dibromochloromethane        | 20.0           | 18.2   | 91.1                | 65             | 130            |
| Dibromomethane              | 20.0           | 20.6   | 103                 | 79             | 124            |
| Dichlorodifluoromethane     | 20.0           | 27.4   | 137                 | 22             | 162            |
| Ethylbenzene                | 20.0           | 17.0   | 85.0                | 72             | 127            |
| Hexachlorobutadiene         | 20.0           | 21.5   | 107                 | 45             | 152            |
| Isopropylbenzene            | 20.0           | 15.4   | 77.2                | 58             | 130            |
| Methyl tert-butyl ether     | 40.0           | 38.8   | 97.0                | 63             | 123            |
| Methylene chloride          | 20.0           | 16.4   | 81.8                | 61             | 135            |
| Naphthalene                 | 20.0           | 16.4   | 81.8                | 33             | 148            |
| n-Butylbenzene              | 20.0           | 19.7   | 98.6                | 62             | 136            |
| n-Propylbenzene             | 20.0           | 17.4   | 87.0                | 57             | 13             |
| sec-Butylbenzene            | 20.0           | 19.1   | 95.4                | 63             | 13             |
| Styrene                     | 20.0           | 16.1   | 80.7                | 69             | 120            |
| tert-Butylbenzene           | 20.0           | 21.6   | 108                 | 59             | 131            |
| Tetrachloroethene           | 20.0           | 17.7   | 88.6                | 45             | 173            |
| Toluene                     | 20.0           | 16.6   | 83.1                | 74             | 126            |
| Trichloroethene             | 20.0           | 19.6   | 98.1                | 79             | 13             |
| Trichlorofluoromethane      | 20.0           | 23.2   | 116                 | 49             | 150            |
| Vinyl acetate               | 20.0           | 12.0   | 60.1                | 10             | 167            |
| Vinyl chloride              | 20.0           | 16.9   | 84.4                | 51             | 148            |
| cis-1,2-Dichloroethene      | 20.0           | 17.0   | 85.1                | 71             | 128            |
| cis-1,3-Dichloropropene     | 20.0           | 19.9   | 99.7                | 67             | 128            |
| m,p-Xylene                  | 40.0           | 33.5   | 83.8                | 71             | 129            |
| o-Xylene                    | 20.0           | 17.1   | 85.4                | 74             | 130            |
| trans-1,2-Dichloroethene    | 20.0           | 17.6   | 87.9                | 66             | 128            |
| trans-1,3-Dichloropropene   | 20.0           | 20.7   | 103                 | 60             | 128            |
| 1,2-Dichloroethene (total)  | 40.0           | 34.6   | 86.5                | 66             | 128            |
| Xylenes,Total               | 60.0           | 50.6   | 84.3                | 71             | 13             |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 47.6   | 95.2                | 78             | 11             |
| Surr: 4-Bromofluorobenzene  | 50.0           | 52     | 104                 | 74             | 12             |
| Surr: Toluene-d8            | 50.0           | 47.5   | 95.0                | 82             | 11             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 52

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell BJ-Fracmaster 128125**

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

09050091

Lab Batch ID:

R272416

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050028-17

RunID:

K\_090511A-5015573

Units:

ug/L

Analysis Date:

05/11/2009 15:56

Analyst:

JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 20                   | 20.7         | 104              | 20                    | 19.5          | 97.4              | 6.31   | 20           | 68           | 124           |
| 1,1,1-Trichloroethane       | ND               | 20                   | 22.9         | 115              | 20                    | 22.7          | 113               | 1.14   | 20           | 69           | 123           |
| 1,1,2,2-Tetrachloroethane   | ND               | 20                   | 19.4         | 96.8             | 20                    | 17.4          | 87.1              | 10.5   | 20           | 69           | 130           |
| 1,1,2-Trichloroethane       | ND               | 20                   | 18.4         | 92.0             | 20                    | 18.8          | 94.0              | 2.13   | 20           | 75           | 126           |
| 1,1-Dichloroethane          | ND               | 20                   | 20.2         | 101              | 20                    | 19.9          | 99.6              | 1.20   | 20           | 65           | 129           |
| 1,1-Dichloroethene          | ND               | 20                   | 20.0         | 99.8             | 20                    | 19.3          | 96.7              | 3.17   | 22           | 61           | 139           |
| 1,1-Dichloropropene         | ND               | 20                   | 20.1         | 100              | 20                    | 20.5          | 103               | 2.07   | 20           | 69           | 121           |
| 1,2,3-Trichlorobenzene      | ND               | 20                   | 16.6         | 83.1             | 20                    | 17.2          | 85.9              | 3.30   | 20           | 53           | 127           |
| 1,2,3-Trichloropropane      | ND               | 20                   | 18.8         | 94.0             | 20                    | 18.9          | 94.7              | 0.742  | 20           | 79           | 124           |
| 1,2,4-Trichlorobenzene      | ND               | 20                   | 15.5         | 77.3             | 20                    | 14.9          | 74.7              | 3.49   | 20           | 58           | 118           |
| 1,2,4-Trimethylbenzene      | ND               | 20                   | 17.5         | 87.7             | 20                    | 15.9          | 79.7              | 9.56   | 20           | 43           | 132           |
| 1,2-Dibromo-3-chloropropane | ND               | 20                   | 21.0         | 105              | 20                    | 18.6          | 92.8              | 12.4   | 20           | 46           | 131           |
| 1,2-Dibromoethane           | ND               | 20                   | 19.7         | 98.4             | 20                    | 18.2          | 91.1              | 7.71   | 20           | 76           | 122           |
| 1,2-Dichlorobenzene         | ND               | 20                   | 17.8         | 88.9             | 20                    | 17.6          | 88.1              | 0.899  | 20           | 74           | 110           |
| 1,2-Dichloroethane          | ND               | 20                   | 22.5         | 112              | 20                    | 24.0          | 120               | 6.45   | 20           | 60           | 129           |
| 1,2-Dichloropropane         | ND               | 20                   | 19.0         | 94.8             | 20                    | 19.4          | 97.0              | 2.27   | 20           | 76           | 116           |
| 1,3,5-Trimethylbenzene      | ND               | 20                   | 18.1         | 90.4             | 20                    | 16.7          | 83.5              | 7.95   | 20           | 51           | 121           |
| 1,3-Dichlorobenzene         | ND               | 20                   | 18.4         | 92.2             | 20                    | 17.4          | 87.1              | 5.68   | 20           | 71           | 110           |
| 1,3-Dichloropropane         | ND               | 20                   | 18.8         | 94.2             | 20                    | 18.8          | 94.1              | 0.106  | 20           | 80           | 119           |
| 1,4-Dichlorobenzene         | ND               | 20                   | 18.8         | 94.1             | 20                    | 17.1          | 85.6              | 9.53   | 20           | 69           | 110           |
| 2,2-Dichloropropane         | ND               | 20                   | 23.2         | 116              | 20                    | 22.8          | 114               | 1.86   | 20           | 52           | 122           |
| 2-Butanone                  | ND               | 20                   | 20.2         | 101              | 20                    | 19.1          | 95.4              | 5.64   | 20           | 10           | 133           |
| 2-Chloroethyl vinyl ether   | ND               | 20                   | 0.817        | 4.09 *           | 20                    | 0             | 0 *               | 200 *  | 20           | 10           | 182           |
| 2-Chlorotoluene             | ND               | 20                   | 18.2         | 91.0             | 20                    | 17.4          | 87.0              | 4.45   | 20           | 69           | 112           |
| 2-Hexanone                  | ND               | 20                   | 17.5         | 87.4             | 20                    | 17.5          | 87.4              | 0.0400 | 20           | 10           | 163           |
| 4-Chlorotoluene             | ND               | 20                   | 16.6         | 82.8             | 20                    | 17.2          | 85.8              | 3.58   | 20           | 37           | 110           |
| 4-Isopropyltoluene          | ND               | 20                   | 18.7         | 93.6             | 20                    | 16.2          | 80.9              | 14.6   | 20           | 65           | 116           |
| 4-Methyl-2-pentanone        | ND               | 20                   | 16.5         | 82.7             | 20                    | 18.0          | 90.2              | 8.66   | 20           | 10           | 103           |
| Acetone                     | ND               | 20                   | 18.5         | 92.7             | 20                    | 17.5          | 87.7              | 5.51   | 20           | 10           | 160           |
| Acrylonitrile               | ND               | 20                   | 18.1         | 90.5             | 20                    | 19.6          | 98.0              | 8.04   | 20           | 45           | 155           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 53

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272416

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050028-17

RunID:

K\_090511A-5015573

Units: ug/L

Analysis Date:

05/11/2009 15:56

Analyst: JC

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Benzene                 | ND               | 20                   | 19.7         | 98.3             | 20                    | 18.7          | 93.5              | 4.95  | 22           | 70           | 124           |
| Bromobenzene            | ND               | 20                   | 18.2         | 90.8             | 20                    | 17.0          | 84.8              | 6.88  | 20           | 72           | 111           |
| Bromochloromethane      | ND               | 20                   | 19.6         | 97.9             | 20                    | 18.4          | 92.2              | 6.07  | 20           | 73           | 126           |
| Bromodichloromethane    | ND               | 20                   | 22.6         | 113              | 20                    | 20.9          | 104               | 8.07  | 20           | 68           | 125           |
| Bromoform               | ND               | 20                   | 18.5         | 92.6             | 20                    | 17.4          | 86.9              | 6.33  | 20           | 44           | 132           |
| Bromomethane            | ND               | 20                   | 16.4         | 82.2             | 20                    | 15.4          | 77.0              | 6.50  | 20           | 50           | 140           |
| Carbon disulfide        | ND               | 20                   | 18.0         | 89.9             | 20                    | 17.5          | 87.6              | 2.57  | 20           | 46           | 143           |
| Carbon tetrachloride    | ND               | 20                   | 24.8         | 124              | 20                    | 23.2          | 116               | 6.82  | 20           | 66           | 126           |
| Chlorobenzene           | ND               | 20                   | 19.0         | 94.8             | 20                    | 18.1          | 90.6              | 4.56  | 21           | 68           | 123           |
| Chloroethane            | ND               | 20                   | 14.9         | 74.7             | 20                    | 15.9          | 79.5              | 6.31  | 20           | 59           | 134           |
| Chloroform              | ND               | 20                   | 20.3         | 102              | 20                    | 20.7          | 103               | 1.56  | 20           | 68           | 127           |
| Chloromethane           | ND               | 20                   | 17.1         | 85.7             | 20                    | 16.6          | 83.1              | 3.12  | 20           | 51           | 137           |
| Dibromochloromethane    | ND               | 20                   | 19.0         | 94.8             | 20                    | 18.7          | 93.7              | 1.12  | 20           | 58           | 131           |
| Dibromomethane          | ND               | 20                   | 21.6         | 108              | 20                    | 21.2          | 106               | 2.28  | 20           | 82           | 123           |
| Dichlorodifluoromethane | ND               | 20                   | 24.1         | 120              | 20                    | 22.7          | 114               | 5.78  | 20           | 35           | 143           |
| Ethylbenzene            | ND               | 20                   | 18.5         | 92.5             | 20                    | 17.5          | 87.6              | 5.36  | 20           | 76           | 122           |
| Hexachlorobutadiene     | ND               | 20                   | 21.5         | 108              | 20                    | 21.1          | 105               | 2.09  | 20           | 43           | 137           |
| Isopropylbenzene        | ND               | 20                   | 17.0         | 84.8             | 20                    | 15.5          | 77.5              | 8.92  | 20           | 57           | 124           |
| Methyl tert-butyl ether | ND               | 40                   | 43.7         | 109              | 40                    | 44.3          | 111               | 1.36  | 20           | 10           | 200           |
| Methylene chloride      | ND               | 20                   | 18.9         | 94.7             | 20                    | 17.1          | 85.3              | 10.4  | 20           | 70           | 134           |
| Naphthalene             | ND               | 20                   | 16.1         | 80.4             | 20                    | 15.7          | 78.4              | 2.44  | 20           | 42           | 140           |
| n-Butylbenzene          | ND               | 20                   | 20.6         | 103              | 20                    | 17.9          | 89.5              | 13.9  | 20           | 82           | 112           |
| n-Propylbenzene         | ND               | 20                   | 18.6         | 93.1             | 20                    | 16.3          | 81.4              | 13.5  | 20           | 73           | 108           |
| sec-Butylbenzene        | ND               | 20                   | 19.6         | 97.9             | 20                    | 17.7          | 88.5              | 10.1  | 20           | 76           | 110           |
| Styrene                 | ND               | 20                   | 16.9         | 84.5             | 20                    | 16.8          | 84.2              | 0.243 | 20           | 58           | 152           |
| tert-Butylbenzene       | ND               | 20                   | 21.8         | 109              | 20                    | 19.0          | 94.9              | 13.6  | 20           | 66           | 120           |
| Tetrachloroethene       | ND               | 20                   | 19.3         | 96.3             | 20                    | 18.6          | 93.2              | 3.20  | 20           | 71           | 130           |
| Toluene                 | ND               | 20                   | 18.6         | 93.0             | 20                    | 18.2          | 90.9              | 2.31  | 24           | 80           | 117           |
| Trichloroethene         | ND               | 20                   | 20.7         | 104              | 20                    | 19.0          | 95.2              | 8.49  | 21           | 82           | 121           |
| Trichlorofluoromethane  | ND               | 20                   | 22.8         | 114              | 20                    | 22.5          | 113               | 1.49  | 20           | 74           | 138           |
| Vinyl acetate           | ND               | 20                   | 16.5         | 82.7             | 20                    | 17.3          | 86.7              | 4.67  | 20           | 66           | 135           |
| Vinyl chloride          | ND               | 20                   | 19.7         | 98.3             | 20                    | 17.8          | 89.0              | 9.86  | 20           | 45           | 143           |
|                         |                  |                      |              |                  |                       |               |                   |       |              |              |               |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

 $\ensuremath{\mathsf{B}}\ensuremath{\mathcal{N}}$  - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 54

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell BJ-Fracmaster 128125**

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272416

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09050028-17

K\_090511A-5015573

Units:

ug/L

Analysis Date:

05/11/2009 15:56

Analyst:

JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 20                   | 19.4         | 97.2             | 20                    | 19.9          | 99.3              | 2.12  | 20           | 67           | 132           |
| cis-1,3-Dichloropropene     | ND               | 20                   | 20.9         | 105              | 20                    | 19.9          | 99.6              | 4.77  | 20           | 67           | 116           |
| m,p-Xylene                  | ND               | 40                   | 36.1         | 90.3             | 40                    | 35.9          | 89.7              | 0.658 | 20           | 69           | 127           |
| o-Xylene                    | ND               | 20                   | 19.2         | 95.9             | 20                    | 19.1          | 95.4              | 0.512 | 20           | 84           | 114           |
| trans-1,2-Dichloroethene    | ND               | 20                   | 19.3         | 96.6             | 20                    | 21.0          | 105               | 8.22  | 20           | 68           | 131           |
| trans-1,3-Dichloropropene   | ND               | 20                   | 21.4         | 107              | 20                    | 21.6          | 108               | 0.818 | 20           | 56           | 131           |
| 1,2-Dichloroethene (total)  | ND               | 40                   | 38.7         | 96.9             | 40                    | 40.9          | 102               | 5.21  | 20           | 67           | 132           |
| Xylenes,Total               | ND               | 60                   | 55.3         | 92.2             | 60                    | 55.0          | 91.6              | 0.607 | 20           | 69           | 127           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50                   | 48           | 96.1             | 50                    | 49.2          | 98.4              | 2.35  | 30           | 78           | 116           |
| Surr: 4-Bromofluorobenzene  | ND               | 50                   | 55.3         | 111              | 50                    | 53.9          | 108               | 2.57  | 30           | 74           | 125           |
| Surr: Toluene-d8            | ND               | 50                   | 48.4         | 96.8             | 50                    | 47.0          | 94.0              | 2.91  | 30           | 82           | 118           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

TNTC - Too numerous to count

09050091 Page 55

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

05/12/2009 12:04

05/12/2009 12:04

Samples in Analytical Batch:

09050091

WorkOrder: Lab Batch ID:

R272496

#### Method Blank

RuniD: Analysis Date:

Preparation Date:

Q\_090512A-5018927

Units: Analyst:

Prep By:

ug/L JC

Method

Lab Sample ID

Client Sample ID

09050091-02A

MW-4

09050091-03A

RB-050209-1

| Analyte                     | Result   | Rep Limit   |
|-----------------------------|----------|-------------|
| 1,1,1,2-Tetrachloroethane   | ND       | 5.0         |
| 1,1,1-Trichloroethane       | ND       | 5.0         |
| 1,1,2,2-Tetrachloroethane   | ND       | 5.0         |
| 1,1,2-Trichloroethane       | ND       | 5.0         |
| 1,1-Dichloroethane          | ND       | 5.0         |
| 1,1-Dichloroethene          | ND       | 5.0         |
| 1,1-Dichloropropene         | ND ND    | 5.0         |
| 1,2,3-Trichlorobenzene      | ND       | 5.0         |
| 1,2,3-Trichloropropane      | ND       | 5.0         |
| 1,2,4-Trichlorobenzene      | ND       | 5.0         |
| 1,2,4-Trimethylbenzene      | ND.      | 5.0         |
| 1,2-Dibromo-3-chloropropane | ND       | 5.0         |
| 1,2-Dibromoethane           | ND       | 5.0         |
| 1.2-Dichlorobenzene         | ND       | 5.0         |
| 1,2-Dichloroethane          | ND       | 5.0         |
| 1,2-Dichloropropane         | ND       |             |
| 1,3,5-Trimethylbenzene      | ND       |             |
|                             | ND       | 5.0         |
| 1,3-Dichlorobenzene         | ND       | 5.0         |
| 1,3-Dichloropropane         |          |             |
| 1,4-Dichlorobenzene         | ND<br>ND |             |
| 2,2-Dichloropropane         | ND       | 5.0         |
| 2-Butanone                  | ND ND    | 20          |
| 2-Chloroethyl vinyl ether   | ND ND    | 10          |
| 2-Chlorotoluene             | ND.      | 5.0         |
| 2-Hexanone                  | ND       | 10          |
| 4-Chlorotoluene             | ND       | 5.0         |
| 4-Isopropyltoluene          | ND       | 5.0         |
| 4-Methyl-2-pentanone        | ND_      | 10          |
| Acetone                     | ND.      | 20          |
| Acrylonitrile               | ND       | 10          |
| Benzene                     | ND ND    | 5.0         |
| Bromobenzene                | ND       |             |
| Bromochloromethane          | ND ND    | 5.0         |
| Bromodichloromethane        | ND       |             |
| Bromoform                   | ND ND    |             |
| Bromomethane                | ND ND    | 10          |
| Carbon disulfide            | ND ND    |             |
| Carbon tetrachloride        | ND       |             |
| Chlorobenzene               | ND       | 5.0         |
| Chloroethane                | ND       |             |
| Chloroform                  | ND.      |             |
| Chloromethane               | ND       |             |
| Dibromochloromethane        | ND       |             |
| Dibromomethane              | ND       | <del></del> |
| Dichlorodifluoromethane     | ND       | 10          |
| Ethylbenzene                | ND       | 5.0         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 56

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

J-Fracmaster 128125

WorkOrder:

09050091

Lab Batch ID:

R272496

#### Method Blank

RuniD: Q\_09

Q\_090512A-5018927

Units:

ug/L

Analysis Date:

05/12/2009 12:04

Analyst:

JC

\_

Preparation Date:

05/12/2009 12:04

Prep By:

Method

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND     | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | 10        |
| Vinyl chloride              | ND     | 2.0       |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND     | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND     | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes,Total               | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 101.5  | 78-116    |
| Surr: 4-Bromofluorobenzene  | 101.8  | 74-125    |
| Surr: Toluene-d8            | 102.1  | 82-118    |

#### Laboratory Control Sample (LCS)

RunID:

Q\_090512A-5018926

Units:

ug/L st: JC

Analysis Date: Preparation Date: 05/12/2009 11:36 05/12/2009 11:36 Analyst: Prep By:

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 16.7   | 83.6                | 71             | 128            |
| 1,1,1-Trichloroethane     | 20.0           | 20.4   | 102                 | 61             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 19.9   | 99.5                | 60             | 133            |
| 1,1,2-Trichloroethane     | 20.0           | 20.1   | 100                 | 77             | 127            |
| 1,1-Dichloroethane        | 20.0           | 21.2   | 106                 | 68             | 132            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 57

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272496

#### Laboratory Control Sample (LCS)

RunID:

Q\_090512A-5018926

Units:

ug/L

Analysis Date:

05/12/2009 11:36

Analyst: JC

Method

Preparation Date: 05/12/2009 11:36

Prep By:

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 21.4   | 107                 | 65             | 134            |
| 1,1-Dichloropropene         | 20.0           | 19.1   | 95.4                | 68             | 126            |
| 1,2,3-Trichlorobenzene      | 20.0           | 17.2   | 85.8                | 36             | 154            |
| 1,2,3-Trichloropropane      | 20.0           | 19.0   | 94.9                | 38             | 153            |
| 1,2,4-Trichlorobenzene      | 20.0           | 16.2   | 81.2                | 69             | 144            |
| 1,2,4-Trimethylbenzene      | 20.0           | 17.1   | 85.6                | 64             | 128            |
| 1,2-Dibromo-3-chloropropane | 20.0           | 17.0   | 85.1                | 44             | 14             |
| 1,2-Dibromoethane           | 20.0           | 18.8   | 93.8                | 75             | 124            |
| 1,2-Dichlorobenzene         | 20.0           | 18.4   | 91.8                | 68             | 124            |
| 1,2-Dichloroethane          | 20.0           | 20.2   | 101                 | 61             | 138            |
| 1,2-Dichloropropane         | 20.0           | 19.9   | 99.6                | 76             | 123            |
| 1,3,5-Trimethylbenzene      | 20.0           | 16.5   | 82.4                | 61             | 12             |
| 1,3-Dichlorobenzene         | 20.0           | 16.7   | 83.6                | 68             | 12             |
| 1,3-Dichloropropane         | 20.0           | 19.5   | 97.4                | 76             | 12             |
| 1,4-Dichlorobenzene         | 20.0           | 18.0   | 89.8                | 68             | 12-            |
| 2,2-Dichloropropane         | 20.0           | 19.0   | 95.2                | 42             | 14:            |
| 2-Butanone                  | 20.0           | 20.2   | 101                 | 22             | 18             |
| 2-Chloroethyl vinyl ether   | 20.0           | 21.1   | 106                 | 10             | 17             |
| 2-Chlorotoluene             | 20.0           | 17.4   | 87.0                | 64             | 13.            |
| 2-Hexanone                  | 20.0           | 22.1   | 110                 | 31             | 17             |
| 4-Chlorotoluene             | 20.0           | 16.9   | 84.7                | 61             | 13             |
| 4-isopropyltoluene          | 20.0           | 16.9   | 84.7                | 63             | 13             |
| 4-Methyl-2-pentanone        | 20.0           | 20.0   | 100                 | 10             | 15             |
| Acetone                     | 20.0           | 21.3   | 106                 | 10             | 20             |
| Acrylonitrile               | 20.0           | 21.9   | 110                 | 54             | 15             |
| Benzene                     | 20.0           | 18.9   | 94.4                | 74             | 12             |
| Bromobenzene                | 20.0           | 16.7   | 83.6                | 68             | 12             |
| Bromochloromethane          | 20.0           | 20.6   | 103                 | 71             | 12             |
| Bromodichloromethane        | 20.0           | 18.0   | 90.0                | 72             | 12             |
| Bromoform                   | 20.0           | 17.6   | 88.0                | 81             | 13             |
| Bromomethane                | 20.0           | 17.0   | 84.9                | 53             | 13             |
| Carbon disulfide            | 20.0           | 19.0   | 95.1                | 41             | 14             |
| Carbon tetrachloride        | 20.0           | 16.8   | 83.9                | 59             | 14             |
| Chlorobenzene               | 20.0           | 18.0   | 90.1                | 75             | 12             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

BN - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 58

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

09050091

Lab Batch ID:

R272496

#### Laboratory Control Sample (LCS)

RunID:

Q\_090512A-5018926

Units:

ug/L

JC

Analysis Date:

05/12/2009 11:36

Analyst:

Preparation Date: 05/12/2009 11:36 Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Chloroethane                | 20.0           | 18.4   | 92.0                | 60             | 134            |
| Chloroform                  | 20.0           | 18.9   | 94.6                | 71             | 127            |
| Chloromethane               | 20.0           | 20.5   | 103                 | 50             | 139            |
| Dibromochloromethane        | 20.0           | 15.7   | 78.4                | 65             | 130            |
| Dibromomethane              | 20.0           | 18.5   | 92.6                | 79             | 124            |
| Dichlorodifluoromethane     | 20.0           | 21.8   | 109                 | 22             | 162            |
| Ethylbenzene                | 20.0           | 17.8   | 89.2                | 72             | 127            |
| Hexachlorobutadiene         | 20.0           | 16.1   | 80.7                | 45             | 152            |
| Isopropylbenzene            | 20.0           | 15.2   | 76.0                | 58             | 130            |
| Methyl tert-butyl ether     | 40.0           | 36.9   | 92.3                | 63             | 123            |
| Methylene chloride          | 20.0           | 21.0   | 105                 | 61             | 13             |
| Naphthalene                 | 20.0           | 17.6   | 87.8                | 33             | 148            |
| n-Butylbenzene              | 20.0           | 17.6   | 87.9                | 62             | 136            |
| n-Propylbenzene             | 20.0           | 17.7   | 88.4                | 57             | 13             |
| sec-Butylbenzene            | 20.0           | 17.9   | 89.5                | 63             | 13             |
| Styrene                     | 20.0           | 17.6   | 88.1                | 69             | 120            |
| tert-Butylbenzene           | 20.0           | 17.4   | 86.8                | 59             | 13             |
| Tetrachloroethene           | 20.0           | 18.9   | 94.3                | 45             | 173            |
| Toluene                     | 20.0           | 18.2   | 91.1                | 74             | 120            |
| Trichloroethene             | 20.0           | 18.8   | 93.9                | 79             | 13             |
| Trichlorofluoromethane      | 20.0           | 18.2   | 91.1                | 49             | 15             |
| Vinyl acetate               | 20.0           | 13.1   | 65.4                | 10             | 16             |
| Vinyl chloride              | 20.0           | 22.2   | 111                 | 51             | 14             |
| cis-1,2-Dichloroethene      | 20.0           | 20.3   | 102                 | 71             | 12             |
| cis-1,3-Dichloropropene     | 20.0           | 19.3   | 96.4                | 67             | 12             |
| m,p-Xylene                  | 40.0           | 37.0   | 92.4                | 71             | 12             |
| o-Xylene                    | 20.0           | 18.0   | 90.0                | 74             | 13             |
| trans-1,2-Dichloroethene    | 20.0           | 20.1   | 100                 | 66             | 12             |
| trans-1,3-Dichloropropene   | 20.0           | 18.5   | 92.6                | 60             | 12             |
| 1,2-Dichloroethene (total)  | 40.0           | 40.4   | 101                 | 66             | 12             |
| Xylenes,Total               | 60             | 55     | 92                  | 71             | 13             |
| Surr: 1,2-Dichloroethane-d4 | 50.0           | 52.1   | 104                 | 78             | 11             |
| Surr: 4-Bromofluorobenzene  | 50.0           | 49.2   | 98.3                | 74             | 12             |
| Surr: Toluene-d8            | 50.0           | 49.4   | 98.9                | 82             | 11             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

MI - Matrix Interference

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 59

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272496

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050393-10

RunID:

Q\_090512A-5018933

Units: ug

ug/L

Analysis Date:

05/12/2009 16:11

Analyst: JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 100                  | 103          | 103              | 100                   | 102           | 102               | 0.677  | 20           | 68           | 124           |
| 1,1,1-Trichloroethane       | ND               | 100                  | 110          | 110              | 100                   | 114           | 114               | 3.65   | 20           | 69           | 123           |
| 1,1,2,2-Tetrachloroethane   | ND               | 100                  | 117          | 117              | 100                   | 113           | 113               | 3.27   | 20           | 69           | 130           |
| 1,1,2-Trichloroethane       | ND               | 100                  | 115          | 115              | 100                   | 120           | 120               | 4.53   | 20           | 75           | 126           |
| 1,1-Dichloroethane          | ND               | 100                  | 113          | 113              | 100                   | 118           | 118               | 4.51   | 20           | 65           | 129           |
| 1,1-Dichloroethene          | ND               | 100                  | 110          | 110              | 100                   | 114           | 114               | 3.56   | 22           | 61           | 139           |
| 1,1-Dichloropropene         | ND               | 100                  | 108          | 108              | 100                   | 111           | 111               | 3.32   | 20           | 69           | 121           |
| 1,2,3-Trichlorobenzene      | ND               | 100                  | 93.2         | 93.2             | 100                   | 92.1          | 92.1              | 1.23   | 20           | 53           | 127           |
| 1,2,3-Trichloropropane      | ND               | 100                  | 108          | 108              | 100                   | 112           | 112               | 3.43   | 20           | 79           | 124           |
| 1,2,4-Trichlorobenzene      | ND               | 100                  | 87.6         | 87.6             | 100                   | 87.9          | 87.9              | 0.324  | 20           | 58           | 118           |
| 1,2,4-Trimethylbenzene      | 66.8             | 100                  | 168          | 101              | 100                   | 167           | 101               | 0.533  | 20           | 43           | 132           |
| 1,2-Dibromo-3-chloropropane | ND               | 100                  | 110          | 110              | 100                   | 114           | 114               | 3.52   | 20           | 46           | 131           |
| 1,2-Dibromoethane           | ND               | 100                  | 109          | 109              | 100                   | 108           | 108               | 1.44   | 20           | 76           | 122           |
| 1,2-Dichlorobenzene         | ND               | 100                  | 103          | 103              | 100                   | 105           | 105               | 1.93   | 20           | 74           | 110           |
| 1,2-Dichloroethane          | 27.8             | 100                  | 131          | 103              | 100                   | 141           | 113               | 7.38   | 20           | 60           | 129           |
| 1,2-Dichloropropane         | ND               | 100                  | 105          | 105              | 100                   | 108           | 108               | 2.87   | 20           | 76           | 116           |
| 1,3,5-Trimethylbenzene      | ND               | 100                  | 98.1         | 92.3             | 100                   | 98.2          | 92.3              | 0.0367 | 20           | 51           | 121           |
| 1,3-Dichlorobenzene         | ND               | 100                  | 97.5         | 97.5             | 100                   | 95.9          | 95.9              | 1.70   | 20           | 71           | 110           |
| 1,3-Dichloropropane         | ND               | 100                  | 106          | 106              | 100                   | 108           | 108               | 1.23   | 20           | 80           | 119           |
| 1,4-Dichlorobenzene         | ND               | 100                  | 101          | 101              | 100                   | 103           | 103               | 2.50   | 20           | 69           | 110           |
| 2,2-Dichloropropane         | ND               | 100                  | 110          | 110              | 100                   | 114           | 114               | 3.39   | 20           | 52           | 122           |
| 2-Butanone                  | ND               | 100                  | 97.0         | 97.0             | 100                   | 118           | 118               | 19.1   | 20           | 10           | 133           |
| 2-Chloroethyl vinyl ether   | ND               | 100                  | 8.06         | 8.06 *           | 100                   | 0             | 0 *               | 200 *  | 20           | 10           | 182           |
| 2-Chlorotoluene             | ND               | 100                  | 103          | 103              | 100                   | 99.9          | 99.9              | 3.00   | 20           | 69           | 112           |
| 2-Hexanone                  | ND               | 100                  | 105          | 105              | 100                   | 115           | 115               | 8.70   | 20           | 10           | 163           |
| 4-Chlorotoluene             | ND               | 100                  | 94.1         | 94.1             | 100                   | 99.4          | 99.4              | 5.53   | 20           | 37           | 110           |
| 4-Isopropyltoluene          | ND               | 100                  | 88.5         | 88.5             | 100                   | 90.9          | 90.9              | 2.66   | 20           | 65           | 116           |
| 4-Methyl-2-pentanone        | ND               | 100                  | 109          | 109 *            | 100                   | 114           | 114 *             | 4.77   | 20           | 10           | 103           |
| Acetone                     | ND               | 100                  | 94.5         | 94.5             | 100                   | 118           | 118               | 22.1 * | 20           | 10           | 160           |
| Acrylonitrile               | ND               | 100                  | 128          | 128              | 100                   | 130           | 130               | 1.43   | 20           | 45           | 155           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution
\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 60

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272496

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050393-10

RunID:

Q\_090512A-5018933

Units:

ug/L

Analysis Date:

05/12/2009 16:11

Analyst:

JC

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Benzene                 | 1230             | 100                  | 1300         | N/C              | 100                   | 1310          | N/C               | N/C    | 22           | 70           | 124           |
| Bromobenzene            | ND               | 100                  | 96.1         | 96.1             | 100                   | 99.4          | 99.4              | 3.35   | 20           | 72           | 111           |
| Bromochloromethane      | ND               | 100                  | 111          | 111              | 100                   | 111           | 111               | 0.148  | 20           | 73           | 126           |
| Bromodichloromethane    | ND               | 100                  | 102          | 102              | 100                   | 104           | 104               | 2.36   | 20           | 68           | 125           |
| Bromoform               | ND               | 100                  | 93.2         | 93.2             | 100                   | 96.1          | 96.1              | 3.05   | 20           | 44           | 132           |
| Bromomethane            | ND               | 100                  | 101          | 101              | 100                   | 109           | 109               | 7.80   | 20           | 50           | 140           |
| Carbon disulfide        | ND               | 100                  | 140          | 140              | 100                   | 125           | 125               | 11.2   | 20           | 46           | 143           |
| Carbon tetrachloride    | ND               | 100                  | 95.2         | 95.2             | 100                   | 99.9          | 99.9              | 4.82   | 20           | 66           | 126           |
| Chlorobenzene           | ND               | 100                  | 101          | 101              | 100                   | 102           | 102               | 0.807  | 21           | 68           | 123           |
| Chloroethane            | ND               | 100                  | 103          | 103              | 100                   | 112           | 112               | 8.53   | 20           | 59           | 134           |
| Chloroform              | ND               | 100                  | 108          | 108              | 100                   | 110           | 110               | 1.46   | 20           | 68           | 127           |
| Chloromethane           | ND               | 100                  | 112          | 112              | 100                   | 118           | 118               | 5.58   | 20           | 51           | 137           |
| Dibromochloromethane    | ND               | 100                  | 96.6         | 96.6             | 100                   | 100           | 100               | 3.50   | 20           | 58           | 131           |
| Dibromomethane          | ND               | 100                  | 106          | 106              | 100                   | 107           | 107               | 0.570  | 20           | 82           | 123           |
| Dichlorodifluoromethane | ND               | 100                  | 108          | 108              | 100                   | 118           | 118               | 9.06   | 20           | 35           | 143           |
| Ethylbenzene            | 107              | 100                  | 205          | 98.1             | 100                   | 213           | 106               | 3.92   | 20           | 76           | 122           |
| Hexachlorobutadiene     | ND               | 100                  | 85.8         | 85.8             | 100                   | 86.5          | 86.5              | 0.788  | 20           | 43           | 137           |
| Isopropylbenzene        | ND               | 100                  | 85.2         | 80.1             | 100                   | 85.6          | 80.4              | 0.458  | 20           | 57           | 124           |
| Methyl tert-butyl ether | ND               | 200                  | 210          | 105              | 200                   | 222           | 111               | 5.31   | 20           | 10           | 200           |
| Methylene chloride      | ND               | 100                  | 116          | 116              | 100                   | 117           | 117               | 0.963  | 20           | 70           | 134           |
| Naphthalene             | ND               | 100                  | 118          | 97.4             | 100                   | 122           | 102               | 3.66   | 20           | 42           | 140           |
| n-Butylbenzene          | ND               | 100                  | 93.9         | 93.9             | 100                   | 93.9          | 93.9              | 0.0128 | 20           | 82           | 112           |
| n-Propylbenzene         | ND               | 100                  | 104          | 90.6             | 100                   | 106           | 92.6              | 1.91   | 20           | 73           | 108           |
| sec-Butylbenzene        | ND               | 100                  | 94.7         | 94.7             | 100                   | 95.8          | 95.8              | 1.14   | 20           | 76           | 110           |
| Styrene                 | ND               | 100                  | 100          | 100              | 100                   | 99.2          | 99.2              | 0.803  | 20           | 58           | 152           |
| tert-Butylbenzene       | ND               | 100                  | 91.5         | 91.5             | 100                   | 92.8          | 92.8              | 1.40   | 20           | 66           | 120           |
| Tetrachloroethene       | ND               | 100                  | 95.6         | 95.6             | 100                   | 93.6          | 93.6              | 2.17   | 20           | 71           | 130           |
| Toluene                 | 159              | 100                  | 263          | 104              | 100                   | 261           | 102               | 0.706  | 24           | 80           | 117           |
| Trichloroethene         | ND               | 100                  | 101          | 101              | 100                   | 102           | 102               | 1.01   | 21           | 82           | 121           |
| Trichlorofluoromethane  | ND               | 100                  | 96.8         | 96.8             | 100                   | 104           | 104               | 7.09   | 20           | 74           | 138           |
| Vinyl acetate           | ND               | 100                  | 68.8         | 68.8             | 100                   | 68.5          | 68.5              | 0.501  | 20           | 66           | 135           |
| Vinyl chloride          | ND               | 100                  | 122          | 122              | 100                   | 124           | 124               | 2.21   | 20           | 45           | 143           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

09050091 Page 61

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050091

Lab Batch ID:

R272496

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050393-10

Q\_090512A-5018933

Units:

ug/L

Analysis Date:

RunID: 05/12/2009 16:11 Analyst: JC

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 100                  | 118          | 118              | 100                   | 118           | 118               | 0.407 | 20           | 67           | 132           |
| cis-1,3-Dichloropropene     | ND               | 100                  | 102          | 102              | 100                   | 106           | 106               | 3.25  | 20           | 67           | 116           |
| m,p-Xylene                  | 167              | 200                  | 372          | 102              | 200                   | 364           | 98.4              | 2.08  | 20           | 69           | 127           |
| o-Xylene                    | 43.2             | 100                  | 146          | 102              | 100                   | 147           | 104               | 0.848 | 20           | 84           | 114           |
| trans-1,2-Dichloroethene    | ND               | 100                  | 111          | 111              | 100                   | 116           | 116               | 4.00  | 20           | 68           | 131           |
| trans-1,3-Dichloropropene   | ND               | 100                  | 89.7         | 89.7             | 100                   | 94.3          | 94.3              | 4.93  | 20           | 56           | 131           |
| 1,2-Dichloroethene (total)  | ND               | 200                  | 229          | 114              | 200                   | 234           | 117               | 2.17  | 20           | 67           | 132           |
| Xylenes,Total               | 210              | 300                  | 518          | 102              | 300                   | 511           | 100               | 1.25  | 20           | 69           | 127           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 250                  | 260          | 104              | 250                   | 254           | 102               | 1.98  | 30           | 78           | 116           |
| Surr: 4-Bromofluorobenzene  | ND               | 250                  | 242          | 96.8             | 250                   | 236           | 94.2              | 2.70  | 30           | 74           | 125           |
| Surr: Toluene-d8            | ND               | 250                  | 238          | 95.1             | 250                   | 233           | 93.3              | 1.85  | 30           | 82           | 118           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 62

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

### Brown & Caldwell

Analysis:

Ion Chromatography

05/05/2009 17:36

Method:

RunID:

E300.0

BJ-Fracmaster 128125

WorkOrder:

09050091

Lab Batch ID:

R271927

Method Blank

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

IC2\_090504B-5008113

Analyst:

mg/L

BDG

09050091-02E

Samples in Analytical Batch:

MW-4

| Analyte                  | Result | Rep Limit |
|--------------------------|--------|-----------|
| Nitrogen Nitrate (As NI) | ND     | 0.50      |

#### Laboratory Control Sample (LCS)

RunID:

IC2 090504B-5008114

Units: m

mg/L

Analysis Date:

05/05/2009 17:54

Analyst: B

BDG

| Analyte                  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|--------------------------|----------------|--------|---------------------|----------------|----------------|
| Nitrogen, Nitrate (As N) | 10.00          | 9.496  | 94.96               | 90             | 110            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050142-01

IC2\_090504B-5008125 Units:

mg/L

Analysis Date:

RunID:

05/05/2009 14:02

Analyst: BDG

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Nitrogen,Nitrate (As N) | ND               | 10                   | 9.318        | 93.18            | 10                    | 9.599         | 95.99             | 2.971 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 63

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Ion Chromatography

Method:

RunID:

E300.0

J-Fracmaster 120125

WorkOrder:

09050091

Lab Batch ID:

R272827

Method Blank

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

: 05/15/2009 10:16

IC1\_090515A-5022185

Analyst:

BDG

09050091-02E

MW-4

| Ana      | alyte | Result | Rep Limit |
|----------|-------|--------|-----------|
| Chloride |       | ND     | 0.50      |
| Sulfate  |       | ND     | 0.50      |

#### Laboratory Control Sample (LCS)

RunID:

IC1\_090515A-5022186

Units:

mg/L

Analysis Date:

05/15/2009 10:35

Analyst:

BDG

| Analyte  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------|----------------|--------|---------------------|----------------|----------------|
| Chloride | 10.00          | 9.517  | 95.17               | 85             | 115            |
| Sulfate  | 10.00          | 10.01  | 100.1               | 85             | 115            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

RunID:

09050091-02

IC1 090515A-5022192

Units:

mg/L

Analysis Date:

05/15/2009 14:35

Analyst: BDG

| Analyte  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Chloride | 217.7            | 500                  | 736.0        | 103.7            | 500                   | 741.5         | 104.8             | 0.7419 | 20           | 80           | 120           |
| Sulfate  | 46.39            | 500                  | 576.5        | 106.0            | 500                   | 582.7         | 107.3             | 1.067  | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 64

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell

Analysis:

Alkalinity (as CaCO3), Total

Method:

E310.1

BJ-Fracmaster 128125

WorkOrder:

09050091

Lab Batch ID:

R275095

Method Blank

WET\_090610U-5061236

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

06/10/2009 12:30

Analyst: PAC

09050091-02E

MW-4

| Analyte                      | Result | Rep Limit |
|------------------------------|--------|-----------|
| Alkalinity, Total (As CaCO3) | ND     | 2.0       |

#### **Laboratory Control Sample (LCS)**

RuniD:

WET\_090610U-5061238

Units:

mg/L

Analysis Date:

06/10/2009 12:30

Analyst:

PAC

| Analyte                      | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|------------------------------|----------------|--------|---------------------|----------------|----------------|
| Alkalinity, Total (As CaCO3) | 38.70          | 38.00  | 98.19               | 90             | 110            |

#### Sample Duplicate

Original Sample:

09050091-02

WET\_090610U-5061242

Units:

mg/L

Analysis Date:

RunID:

06/10/2009 16:00

Analyst:

PAC

| Analyte                      | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|------------------------------|------------------|---------------|-----|--------------|
| Alkalinity, Total (As CaCO3) | 477              | 477           | 0   | 20           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

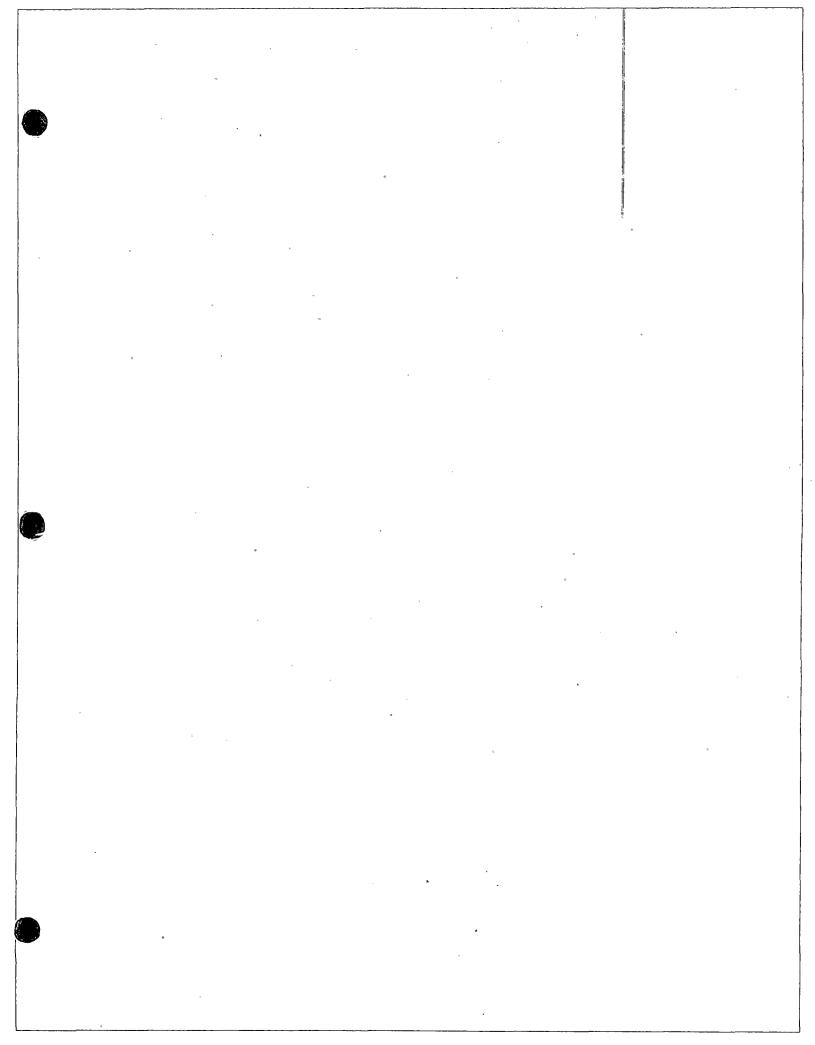
N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050091 Page 65

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

# Sample Receipt Checklist And Chain of Custody




8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### Sample Receipt Checklist

| Date | korder:<br>and Time Received: | 09050091<br>5/4/2009 9:30:00 AM                                         |       |               | Received By |        | RE<br>SPL       |              |
|------|-------------------------------|-------------------------------------------------------------------------|-------|---------------|-------------|--------|-----------------|--------------|
| Tem  | perature:                     | 2.0°C                                                                   |       |               | Chilled by: |        | Water Ice       |              |
| 1.   | Shipping container/co         | oler in good condition?                                                 | Yes   | ✓             | No 🗌        |        | Not Present     |              |
| 2.   | Custody seals intact o        | on shippping container/cooler?                                          | Yes   | <b>✓</b>      | No 🗌        |        | Not Present     |              |
| 3.   | Custody seals intact o        | on sample bottles?                                                      | Yes   |               | No 🗌        |        | Not Present     | $\checkmark$ |
| 4.   | Chain of custody pres         | sent?                                                                   | Yes   | •             | No 🗌        |        |                 |              |
| 5.   | Chain of custody sign         | ed when relinquished and received?                                      | Yes   | <b>✓</b>      | No 🗌        |        |                 |              |
| 6.   |                               | ees with sample labels?<br>written on chain of custody for all received | Yes   |               | No 🗹        |        |                 |              |
| 7.   | Samples in proper co          | ntainer/bottle?                                                         | Yes   | <b>✓</b>      | No 🗌        |        |                 |              |
| 8.   | Sample containers int         | act?                                                                    | Yes   | <b>✓</b>      | No 🗌        |        |                 |              |
| 9.   | Sufficient sample volu        | ume for indicated test?                                                 | Yes   | <b>✓</b>      | No 🗌        |        |                 |              |
| 10.  | All samples received          | within holding time?                                                    | Yes   | <b>✓</b>      | No 🗌        |        |                 |              |
| 11.  | Container/Temp Blanl          | k temperature in compliance?                                            | Yes   | <b>V</b>      | No 🗌        |        |                 |              |
| 12.  | Water - VOA vials hav         | e zero headspace?                                                       | Yes   |               | No 🗌        | VOA Vi | als Not Present | $\checkmark$ |
| 13.  | Water - Preservation          | checked upon receipt (except VOA*)?                                     | Yes   | <b>~</b>      | No 🗆        |        | Not Applicable  |              |
|      | *VOA Preservation Ch          | necked After Sample Analysis                                            |       |               |             |        |                 |              |
|      | SPL Representati              | ve:                                                                     | Con   | tact Date & 1 | fime:       |        |                 |              |
|      | Client Name Contact           | ed:                                                                     |       |               |             |        |                 |              |
|      | Non Conformance Issues:       | Recorded all collected times from container la                          | abels |               |             |        |                 |              |
|      | Client Instructions:          |                                                                         |       |               |             |        |                 |              |

|                                                                |                                           |                                                                  |                      |                   |              |          | SPL W                                    | SPL Workorder No.                   | r No.   |        |                              | 200                     | 322326         | 26                      |         |
|----------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|----------------------|-------------------|--------------|----------|------------------------------------------|-------------------------------------|---------|--------|------------------------------|-------------------------|----------------|-------------------------|---------|
| SPL, Inc. Analysis Remest & Chain of Custody                   | SPL, Inc.<br>st & Chain of Custody Record |                                                                  |                      |                   |              |          | 00                                       | nan to And                          | AAC     | _      | -                            |                         | ,              | -                       |         |
|                                                                |                                           |                                                                  |                      | 1                 | L            | -        | >                                        | 3                                   | 3       | -      | page                         | ·  ,                    | °∏`.           | ы.<br>По                |         |
| Client Name: Brown and (4/dwell                                |                                           |                                                                  |                      | matrix            | bottle       | size pr  | pres.                                    |                                     |         | Red    | Requested Analysis           | d An                    | alysi          | S                       |         |
| Address: 1715 Louisiann Ste. 2500                              | 0                                         | i                                                                |                      |                   | 1            |          |                                          |                                     |         |        |                              | إمالة                   | L              |                         |         |
|                                                                | State TX                                  | Zip 7700.                                                        |                      |                   |              | GI.      |                                          |                                     |         |        |                              | ا رما                   |                |                         |         |
| c/Fa                                                           | 713-303-388                               | So Fex                                                           |                      |                   |              | ц10=     |                                          | C I                                 |         | -      |                              | 12/                     |                |                         |         |
| nct: RICK R                                                    | Email: Vrexrox                            | 2                                                                | et.com               | ucoi<br>I O       | y Z<br>Qwr   | ON<br>X  | ther<br>aine                             |                                     |         | 73/    | 07                           | الا:                    |                |                         |         |
| Project Name No .: BJ - Of Frac Master                         | 128                                       | 7                                                                |                      |                   |              | z09      | 0= <u>}</u>                              | J.                                  | 50      |        | 778                          | ¥/                      | ) v l          |                         |         |
| Site Name: BJ Frac Master                                      |                                           |                                                                  |                      |                   |              | 1=9      | 7                                        |                                     |         |        |                              | ان.<br>ان.ا             | -41            |                         |         |
| Site Location: Hobbs NM                                        |                                           |                                                                  |                      |                   | SSE          | 1 2      | OS                                       |                                     |         |        | <u>_</u>                     | 5/<br>5/                | 16             |                         |         |
| Invoice To: Same                                               | <i>p</i>                                  | Ph:                                                              |                      | _                 | elq=<br>:[3= | OH:      | 7H:                                      | <u>d</u> _                          |         |        | 71                           | £ 01                    | J              | ·                       |         |
| SAMPLE ID                                                      | DATE                                      | TIME comp                                                        | ηρ grab              |                   | $\Omega$     | =8       | <u>=</u> £                               |                                     |         |        |                              | 7                       |                |                         |         |
| MW-4-52-55                                                     | 5/2/04                                    |                                                                  | ×                    | S                 | 7 5          | X 8.     | ( 3                                      | X                                   | X       | X      | ×                            |                         |                |                         |         |
|                                                                | 12/                                       |                                                                  | X                    | 3                 | VAP 1,40     | <u> </u> | 75                                       | $\times$                            | X       | X      | X                            | X                       | _              |                         |         |
| R R-0502 09 -1                                                 | 5/2/29                                    |                                                                  | ×                    | _                 | \<br>₩       | 000      | 0 <i>1</i>                               | ×                                   | ×       | ×      | ×                            |                         |                |                         |         |
| TR-080204-1                                                    | 5/2/09                                    |                                                                  | <u>&gt;</u>          |                   | +            | _        |                                          |                                     |         |        | ×                            | -                       | -              |                         |         |
|                                                                | 1.1.1.                                    |                                                                  | <   >                | 3                 | -            | , -      | -                                        |                                     |         |        | <br> >                       | -                       | -              |                         |         |
| 1-201050-01                                                    | 7/1/24                                    |                                                                  | <                    |                   | +            | >        | +                                        | +                                   |         |        | 1                            | +                       | 1              | -                       | $\prod$ |
|                                                                |                                           |                                                                  |                      |                   |              |          |                                          |                                     |         |        |                              |                         |                |                         |         |
|                                                                |                                           |                                                                  |                      |                   |              |          |                                          |                                     |         |        |                              | <del>-</del>            |                |                         |         |
|                                                                |                                           |                                                                  |                      |                   |              |          |                                          | <b>1</b>                            |         |        | 725                          |                         |                |                         |         |
|                                                                |                                           |                                                                  |                      |                   |              |          | 100                                      | Page                                | J,      |        |                              |                         |                |                         |         |
|                                                                |                                           |                                                                  |                      |                   |              |          | 318                                      |                                     |         |        |                              |                         | -              |                         |         |
| Client/Consultant Remarks:                                     |                                           | Laboratory remarks:                                              | emarks:              |                   |              |          | -                                        |                                     |         |        | In 35                        | Intact?<br>Ice?<br>Temn | þó             | <u> </u>                | ZZ      |
| Dogwood TAT Special Repo                                       | Special Reporting Requirements Results:   | Results: Fax                                                     | Email 🗖              | PDF               | Specia       | il Detec | tion Li                                  | Special Detection Limits (specify): | ecify): |        |                              | E E                     | M revie        | PM review (initial):    |         |
| tract                                                          | Standard QC Level 3 QC Level 4 QC         |                                                                  | TX TRRP LA RECAP     | ECAP [            |              |          |                                          |                                     |         |        |                              |                         |                |                         | - 1     |
| X Standard                                                     | 1. Relinquished by Sampler:               | 2                                                                | date                 | 50/2              | time         |          | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 2. Received by                      | by:     | Q.     |                              |                         |                |                         |         |
| ness Days                                                      | hed by:                                   |                                                                  | date                 | 14/09             | Cim Co       | 51       |                                          | P.                                  | +       | 13     | / è                          |                         |                |                         |         |
| Rush TAT requires prior notice                                 |                                           |                                                                  | 100                  | 691               |              | Q        | EZ                                       |                                     | 1 c     | atory  |                              |                         |                |                         |         |
| (X) 8880 Interchange Drive<br>Houston, TX 77054 (713) 660-0901 |                                           | 500 Ambassador Caffery Parkway<br>Scott, LA 70583 (337) 237-4775 | ador Cal<br>583 (337 | fery Pa<br>237-47 | rkway<br>75  |          |                                          | Tra                                 | verse   | City ] | Traverse City MI 49686 (231) | hes D <sub>1</sub>      | rive<br>(31) 9 | Drive<br>(231) 947-5777 | 7.7     |





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### **Certificate of Analysis Number:** 09060382

Report To: **Brown & Caldwell** Rick Rexroad 1415 Louisiana **Suite 2500** 

Houston ΤX

77002-

ph: (713) 759-0999

fax: (713) 308-3886

Project Name:

BJ-Fracmaster 128125

Site Address:

PO Number:

State:

Site:

**New Mexico** 

Hobbs, NM

State Cert. No.:

**Date Reported:** 

This Report Contains A Total Of 7 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Case Narrative for: Brown & Caldwell

# Certificate of Analysis Number: 09060382

BJ-Fracmaster 128125 Report To: **Project Name:** Hobbs, NM Site: **Brown & Caldwell** Rick Reyroad Site Address: 1415 Louisiana Suite 2500 PO Number: Houston **New Mexico** State: ΤX 77002-State Cert. No.: ph: (713) 759-0999 fax: (713) 308-3886 **Date Reported:** 

Per your request, Mineral Spirits has been added to your sample ID: "MW-4" (SPL ID: 09050091-02) and reported on this separate Workorder.

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Agnes V. Vicheaire

09060382 Page 1

6/8/2009



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Certificate of Analysis Number:

#### 09060382

Report To:

Fax To:

Brown & Caldwell

Rick Rexroad 1415 Louisiana

Suite 2500 Houston

TX 77002-

ph: (713) 759-0999

fax: (713) 308-3886

Brown & Caldwell

Rick Rexroad fax: (713) 308-3886

Ignes V. Vickeaire

Project Name:

BJ-Fracmaster 128125

Site:

Hobbs, NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

| Client Sample ID | Lab Sample ID | Matrix | Date Collected       | Date Received       | COC ID | HOLD |
|------------------|---------------|--------|----------------------|---------------------|--------|------|
| MW-4             | 09060382-01   | Water  | 5/2/2009 12:00:00 PM | 5/4/2009 9:30:00 AM |        |      |

Agnes V. Vicknair Project Manager 6/8/2009

Date

Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

Ted Yen
Quality Assurance Officer



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID:MW-4

Collected: 05/02/2009 12:00

SPL Sample ID:

09060382-01

Site: Hobbs, NM

| Analyses/Method                | Result | QUAL | Re | p,Limit | Di  | I. Fact | or Date Ana | lyzed | Analyst   | Seq. #  |
|--------------------------------|--------|------|----|---------|-----|---------|-------------|-------|-----------|---------|
| SEMIVOLATILE HYDROCARBON       | IS     |      |    |         | MCL |         | SW8015B     | Un    | its: mg/L |         |
| Mineral Spirits Range Organics | 2.1    |      |    | 0.1     |     | 1       | 05/06/09    | 22:45 | NW        | 5056907 |
| Surr: n-Pentacosane            | 50.4   |      | %  | 20-150  |     | 1       | 05/06/09    | 22:45 | NW        | 5056907 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |   |
|-------------|------------------|---------------|-------------|---|
| SW3510C     | 05/04/2009 14:15 | N_M           | 1.00        | i |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

- \* Surrogate Recovery Outside Advisable QC Limits
- J Estimated Value between MDL and PQL
- E Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

# **Quality Control Documentation**



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell** BJ-Fracmaster 128125

Analysis:

RunID:

Semivolatile Hydrocarbons

Method:

SW8015B

WorkOrder:

09060382

Lab Batch ID:

89962

#### Method Blank

HP V 090506E-5056903

Units:

mg/L

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

05/06/2009 16:19

Analyst: NW 09060382-01A

MW-4

Preparation Date:

05/04/2009 12:29

Prep By: N\_M Method SW3510C

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Mineral Spirits Range Organics | ND     | 0.10      |
| Surr: n-Pentacosane            | 40.2   | 20-150    |

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP\_V\_090506E-5056904

Units:

mg/L

Analysis Date:

05/06/2009 16:39

Analyst: NW

Preparation Date: 05/04/2009 12:29

Prep By: N M Method SW3510C

| Analyte                        | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|--------------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| Mineral Spirits Range Organics | 1.00                  | 0.792         | 79.2                       | 1.00                   | 0.802          | 80.2                        | 1.3 | 40           | 21             | 150            |
| Surr: n-Pentacosane            | 0.0500                | 0.0334        | 66.8                       | 0.0500                 | 0.0321         | 64.2                        | 4.0 | 30           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

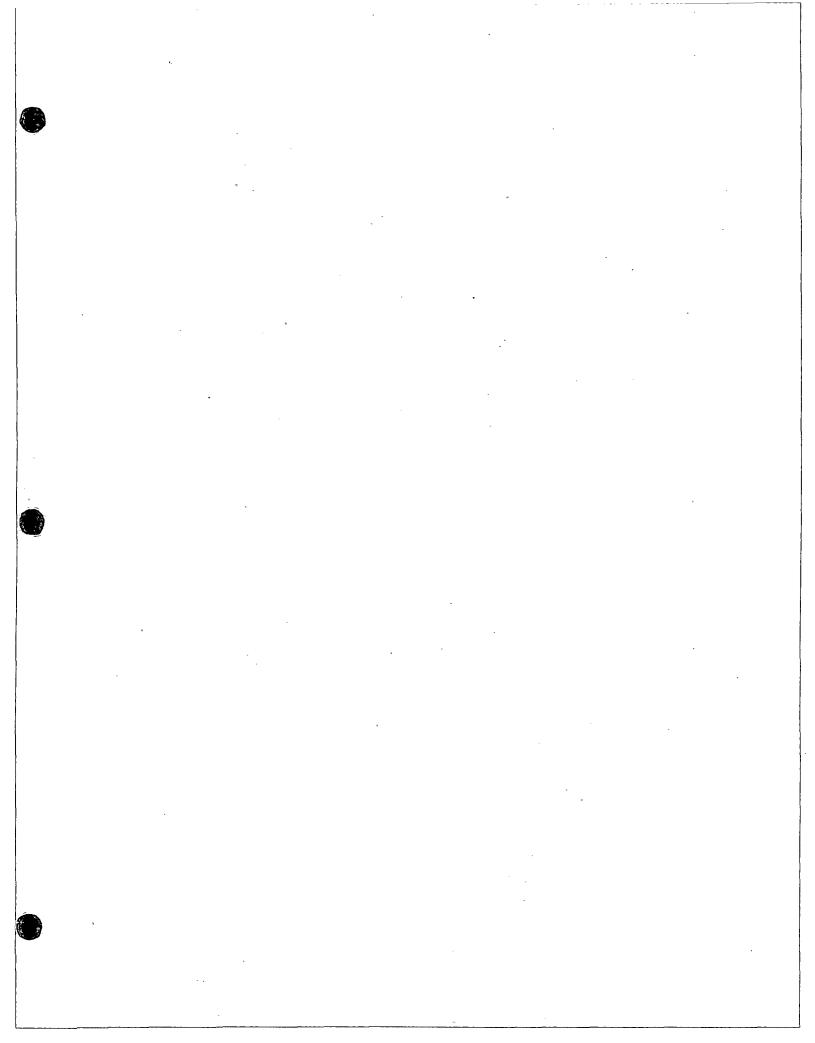
N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09060382 Page 5

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

6/8/2009 5:23:48 PM


# Sample Receipt Checklist And Chain of Custody



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### Sample Receipt Checklist

|     | korder:                                                          | 09060382                                                            |       | Received By:  | CAW                 |
|-----|------------------------------------------------------------------|---------------------------------------------------------------------|-------|---------------|---------------------|
|     | e and Time Received:                                             | 5/4/2009 9:30:00 AM                                                 |       | Carrier name: | SPL                 |
| Ten | nperature:                                                       | 2.0°C                                                               |       | Chilled by:   | Water Ice           |
| 1.  | Shipping container/co                                            | oler in good condition?                                             | Yes 🔽 | No 🗔          | Not Present         |
| 2.  | Custody seals intact o                                           | n shippping container/cooler?                                       | Yes   | No 🗌          | Not Present ✓       |
| 3.  | Custody seals intact o                                           | n sample bottles?                                                   | Yes 🗌 | . No 🗌        | Not Present 🗹       |
| 4.  | Chain of custody pres                                            | ent?                                                                | Yes 🗹 | No 🗌          |                     |
| 5.  | Chain of custody sign                                            | ed when relinquished and received?                                  | Yes 🗸 | No 🗌          |                     |
| 6.  |                                                                  | es with sample labels? vritten on chain of custody for all received | Yes 🗌 | No 🗹          |                     |
| 7.  | Samples in proper cor                                            | ntainer/bottle?                                                     | Yes 🗸 | No 🗆          |                     |
| 8.  | Sample containers int                                            | act?                                                                | Yes 🗸 | No 🗌          |                     |
| 9.  | Sufficient sample volu                                           | me for indicated test?                                              | Yes 🗹 | No 🗌          |                     |
| 10. | All samples received v                                           | within holding time?                                                | Yes 🗹 | No 🗌          |                     |
| 11. | Container/Temp Blank                                             | temperature in compliance?                                          | Yes 🗹 | No 🗌          |                     |
| 12. | Water - VOA vials hav                                            | e zero headspace?                                                   | Yes 🗌 | No 🗌 VO       | A Vials Not Present |
| 13. | Water - Preservation of                                          | checked upon receipt (except VOA*)?                                 | Yes 🗌 | No 🗌          | Not Applicable      |
|     | *VOA Preservation Ch                                             | ecked After Sample Analysis                                         |       |               |                     |
|     | SPL Representative: Contact Date & Time:  Client Name Contacted: |                                                                     |       |               |                     |
|     | Non Conformance<br>Issues:                                       |                                                                     |       |               |                     |
|     | Client Instructions:                                             |                                                                     |       |               |                     |





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Certificate of Analysis Number: 09050065

Report To: **Brown & Caldwell** Rick Rexroad 1415 Louisiana **Suite 2500** 

Houston ΤX

77002-

ph (713) 759-0999

fax:

Project Name:

BJ-Fracmaster 128125

Site:

Hobbs, NM

Site Address:

PO Number:

State:

**New Mexico** 

State Cert. No.: **Date Reported:** 

This Report Contains A Total Of 76 Pages

Excluding This Page, Chain Of Custody

And

Any Attachments



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Case Narrative for: Brown & Caldwell

## Certificate of Analysis Number: 09050065

Report To: BJ-Fracmaster 128125 **Project Name:** Site: Hobbs, NM Brown & Caldwell Rick Rexroad Site Address: 1415 Louisiana **Suite 2500** PO Number: Houston **New Mexico** State: ΤX 77002-State Cert. No .: ph (713) 759-0999 fax: Date Reported:

REVISED REPORT. Mineral Spirits analysis for your sample ID: "MW-6" (SPL ID: 09050065-04) has been added per your request.

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

For Volatile Organics analysis (8260B), the results for 2-chloroethyl vinyl ether are estimated due to sample preservation. The result for this compound is reported as "ND J" for all samples in the report.

Due to limited sample volume, a Matrix Spike (MS) or Matrix Spike Duplicate (MSD) was not extracted with Batch ID: 89962 for the Semivolatile hydrocarbons analysis by Method 8015B. A Laboratory Control Sample (LCS) and a Laboratory Control Sample Duplicate (LCSD) were extracted with the analytical batch and serve as the batch quality control (QC). The LCS and LCSD recovered acceptably and precision criteria were met.

Your sample ID "MW-6" (SPL ID:090050065-04) was randomly selected for use in SPL's quality control program for the Volatile Organics analysis by SW846 Method 8260B (Batch ID:R272244). The Matrix Spike (MS) and/or Matrix Spike Duplicate (MSD) recoveries were outside of the advisable quality control limits due to possible matrix interference for the following analytes:

1,2,4-Trichlorobenzene 2-Chloroethyl vinyl ether 4-Methyl-2-pentanone Acetone o-Xylene

A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits.

Your sample ID "MW-6" (SPL ID:090050065-04) was randomly selected for use in SPL's quality control program for the Ion Chromatography analysis by EPA Method300.0 (Batch ID:R272251). The Matrix Spike Duplicate (MSD) recovery was outside of the advisable quality control limits due to possible matrix interference for the following analytes:

Nitrogen, Nitrate (As N)

A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits.

Ignes V. Vickaire

09050065 Page 1

6/16/2009

Agnes V. Vicknair

Project Manager

Test results meet all requirements of NELAC, unless specified in the narrative.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Case Narrative for: Brown & Caldwell

# Certificate of Analysis Number: 09050065

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.

Agnes V. Vichaire

09050065 Page 2 6/16/2009

Agnes V. Vicknair Project Manager



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

#### Certificate of Analysis Number:

### 09050065

Report To:

Fax To:

**Brown & Caldwell** 

Rick Rexroad

1415 Louisiana

Suite 2500 Houston

TX

77002-

ph (713) 759-0999

fax: (713) 308-3886

Isnes V. Vicheave

**Project Name:** 

BJ-Fracmaster 128125

Site:

Hobbs, NM

Site Address:

PO Number:

State:

New Mexico

State Cert. No.:

Date Reported:

| Client Sample ID | Lab Sample ID | Matrix | Date Collected       | Date Received        | COC ID | HOLD |
|------------------|---------------|--------|----------------------|----------------------|--------|------|
| MW-6-54-55'      | 09050065-01   | Soil   | 4/30/2009 3:00:00 PM | 5/2/2009 10:00:00 AM | 322327 |      |
| FB-043009-1      | 09050065-02   | Water  | 4/30/2009 3:40:00 PM | 5/2/2009 10:00:00 AM | 322327 |      |
| MW-6             | 09050065-03   | Water  | 5/1/2009 7:05:00 AM  | 5/2/2009 10:00:00 AM | 322327 | ~    |
| MW-6             | 09050065-03   | Water  | 5/1/2009 7:05:00 AM  | 5/2/2009 10:00:00 AM | 322327 |      |
| RB-043009-1      | 09050065-03   | Water  | 5/1/2009 7:05:00 AM  | 5/2/2009 10:00:00 AM | 322327 |      |
| MW-6             | 09050065-04   | Water  | 5/1/2009 12:00:00 PM | 5/2/2009 10:00:00 AM | 322327 |      |
| RB-050109-1      | 09050065-05   | Water  | 5/1/2009 1:30:00 PM  | 5/2/2009 10:00:00 AM | 322327 |      |
| FB-050109-1      | 09050065-06   | Water  | 5/1/2009 1:40:00 PM  | 5/2/2009 10:00:00 AM | 322327 |      |
| 3-043009-1       | 09050065-07   | Water  | 4/30/2009            | 5/2/2009 10:00:00 AM | 322327 |      |

Agnes V. Vicknair Project Manager 6/16/2009

Date

Kesavalu M. Bagawandoss Ph.D., J.D. Laboratory Director

Ted Yen
Quality Assurance Officer



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-6-54-55'

**Collected:** 04/30/2009 15:00 **SPL Sample ID:** 

09050065-01

| Site: | Hobbs, | NM |
|-------|--------|----|
|-------|--------|----|

| Analyses/Method         |                 | Result | QUAL          | Rep.L       | _imit | Dil. | Facto | or Date Ana | lyzed   | Analyst  | Seq.#   |
|-------------------------|-----------------|--------|---------------|-------------|-------|------|-------|-------------|---------|----------|---------|
| ALKALINITY, BICARE      | BONATE          |        |               | <del></del> |       | MCL  | ===   | SM2320B     | Unit    | s: mg/Kg |         |
| Alkalinity, Bicarbonate |                 | 190    |               |             | 20    |      | 1     | 05/18/09    | 16:45 P | 'AC      | 5025315 |
| ALKALINITY, CARBO       | NATE            |        |               |             |       | MCL  |       | M2320 B     | Unit    | s: mg/kg |         |
| Alkalinity, Carbonate   |                 | ND     |               |             | 20    |      | 1     | 05/18/09    | 16:45 P | AC       | 5025321 |
| DIESEL RANGE ORG        | ANICS           |        |               |             |       | MCL  |       | SW8015B     | Unit    | s: mg/Kg |         |
| Diesel Range Organics ( | C10-C28)        | 12     |               |             | 5     |      | 1     | 05/09/09    | 23:01 N | 1W       | 5017626 |
| Surr: n-Pentacosane     |                 | 56.7   |               | % 20        | )-154 |      | 1     | 05/09/09    | 23:01 N | 1W       | 5017626 |
| Prep Method             | Prep Date       |        | Prep Initials | Prep Fa     | ictor |      |       |             |         |          |         |
| SW3550B                 | 05/04/2009 16:4 | 1      | FAK           | 1.00        |       |      |       |             |         |          |         |
| GASOLINE RANGE O        | RGANICS         |        | <del></del>   |             |       | MCL  |       | SW8015B     | Unit    | s: mg/Kg |         |

| ND  | 0.1      | 1            | 05/08/09 22:56 EMB | 5012653                           |
|-----|----------|--------------|--------------------|-----------------------------------|
| 102 | % 63-142 | 1            | 05/08/09 22:56 EMB | 5012653                           |
| 104 | % 50-159 | 1            | 05/08/09 22:56 EMB | 5012653                           |
|     | 102      | 102 % 63-142 | 102 % 63-142 1     | 102 % 63-142 1 05/08/09 22:56 EMB |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW5030B     | 05/07/2009 10:57 | XML           | 1.00        |

| ION CHROMATOGRAPHY       |      |      | MCL | E30 | 00.0 MOD   | Units    | : mg/kg   |
|--------------------------|------|------|-----|-----|------------|----------|-----------|
| Chloride                 | 61.1 | 5    |     | 1   | 05/15/09 1 | 19:52 BD | G 5023017 |
| Fluoride                 | ND   | 5    |     | 1   | 05/15/09 1 | 19:52 BD | G 5023017 |
| Sulfate                  | 20.2 | 5    |     | 1   | 05/15/09   | 19:52 BD | G 5023017 |
| Nitrogen, Nitrate (As N) | ND   | 5    |     | 1   | 05/15/09   | 19:52 BD | G 5022979 |
| Nitrogen, Nitrite (As N) | ND   | 5    |     | 11  | 05/15/09 1 | 19:52 BD | G 5022979 |
| MERCURY, TOTAL           |      |      | MCL |     | SW7471A    | Units    | : mg/Kg   |
| Mercury                  | ND   | 0.03 |     | 1   | 05/05/09 1 | 14:46 F_ | S 5007427 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW7471A     | 05/05/2009 12:00 | F_S           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050065 Page 4 6/16/2009 4:36:13 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-6-54-55'

Collected: 04/30/2009 15:00

SPL Sample ID:

09050065-01

| Site. Houss, MM | Site: | Hobbs, | NM |
|-----------------|-------|--------|----|
|-----------------|-------|--------|----|

| Analyses/Method     | Result QUAI | L Rep.Limit | Dil. Facto | or Date Analyzed | Analyst    | Seq.#   |
|---------------------|-------------|-------------|------------|------------------|------------|---------|
| METALS BY METHOD 60 | 10B, TOTAL  |             | MCL S      | SW6010B U        | nits: mg/K | <br>g   |
| Arsenic             | 1.2         | 0.5         | 1          | 05/17/09 0:29    | EG .       | 5023417 |
| Barium              | 85.7        | 0.5         | 1          | 05/17/09 0:29    | EG         | 5023417 |
| Cadmium             | ND          | 0.5         | 1          | 05/17/09 0:29    | EG .       | 5023417 |
| Calcium             | 39600       | 1000        | 100        | 05/17/09 0:37    | ' EG       | 5023419 |
| Chromium            | 4.03        | 0.5         | 1          | 05/17/09 0:29    | EG .       | 5023417 |
| Lead                | 1.51        | 0.5         | 1          | 05/17/09 0:29    | EG         | 5023417 |
| Magnesium           | 1520        | 100         | 10         | 05/17/09 0:34    | EG         | 5023418 |
| Potassium           | 454         | 50          | 1          | 05/17/09 0:29    | EG         | 5023417 |
| Selenium            | ND          | 0.5         | 1          | 05/17/09 0:29    | ) EG       | 5023417 |
| Silver              | ND          | 0.5         | 1          | 05/17/09 0:29    | ) EG       | 5023417 |
| Sodium              | 125         | 10          | 1          | 05/17/09 0:29    | ) EG       | 5023417 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3050B     | 05/08/2009 10:00 | AB1           | 1.00        |

| SEMIVOLATILE HYDROCA | ARBONS |          | MCL | S | W8015B L      | nits: m | ıg/kg   |
|----------------------|--------|----------|-----|---|---------------|---------|---------|
| Mineral Spirits      | ND     | 10       |     | 1 | 05/09/09 23:0 | 1 AM    | 5063306 |
| Surr: n-Pentacosane  | 56.7   | % 20-154 |     | 1 | 05/09/09 23:0 | 1 AM    | 5063306 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3550B     | 05/04/2009 16:41 | FAK           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050065 Page 5 6/16/2009 4:36:13 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID MW-6-54-55'

Collected: 04/30/2009 15:00

SPL Sample ID:

09050065-01

Site: Hobbs, NM

| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq.#   |
|-----------------------------|----------------|-----------|-------------|----------------|------------|---------|
| SEMIVOLATILE ORGANICS E     | Y METHOD 8270C |           | MCL SI      | W8270C Un      | its: ug/kg |         |
| 1,2,4-Trichlorobenzene      | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 1,2-Dichlorobenzene         | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 1,2-Diphenylhydrazine       | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 1,3-Dichlorobenzene         | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 1,4-Dichlorobenzene         | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2,4,5-Trichlorophenol       | ND             | 800       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2,4,6-Trichlorophenol       | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2,4-Dichlorophenol          | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2,4-Dimethylphenol          | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2,4-Dinitrophenol           | ND             | 800       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2,4-Dinitrotoluene          | ND             | 800       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2,6-Dinitrotoluene          | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2-Chloronaphthalene         | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2-Chlorophenol              | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2-Methylnaphthalene         | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2-Nitroaniline              | ND             | 800       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 2-Nitrophenol               | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 3,3'-Dichlorobenzidine      | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 3-Nitroaniline              | ND             | 800       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 4,6-Dinitro-2-methylphenol  | ND             | 800       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 4-Bromophenyl phenyl ether  | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 4-Chloro-3-methylphenol     | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 4-Chloroaniline             | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 4-Chlorophenyl phenyl ether | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 4-Nitroaniline              | ND             | 800       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| 4-Nitrophenol               | ND             | 800       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Acenaphthene                | ND             | 330       | 1 ·         | 05/08/09 19:15 | GY         | 5017903 |
| Acenaphthylene              | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Aniline                     | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Anthracene                  | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Benz(a)anthracene           | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Benzo(a)pyrene              | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Benzo(b)fluoranthene        | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Benzo(g,h,i)perylene        | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Benzo(k)fluoranthene        | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Benzoic acid                | ND             | 1600      | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Benzyl alcohol              | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Bis(2-chloroethoxy)methane  | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
| Bis(2-chloroethyl)ether     | ND             | 330       | 1           | 05/08/09 19:15 | GY         | 5017903 |
|                             |                |           |             |                |            |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-6-54-55'

Collected: 04/30/2009 15:00

SPL Sample ID:

09050065-01

| Site: | Hobbs.  | NM    |
|-------|---------|-------|
| UILE. | HUUUUS. | 14141 |

| Analyses/Method             | Result | QUAL | Rep | .Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
|-----------------------------|--------|------|-----|--------|-------------|----------------|---------|---------|
| Bis(2-chloroisopropyl)ether | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Butyl benzyl phthalate      | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Carbazole                   | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Chrysene                    | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Dibenz(a,h)anthracene       | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Dibenzofuran                | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Diethyl phthalate           | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Dimethyl phthalate          | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Di-n-butyl phthalate        | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Di-n-octyl phthalate        | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Fluoranthene                | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Fluorene                    | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Hexachlorobenzene           | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Hexachlorobutadiene         | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Hexachlorocyclopentadiene   | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Hexachloroethane            | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Isophorone                  | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Naphthalene                 | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Nitrobenzene                | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| N-Nitrosodi-n-propylamine   | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| N-Nitrosodiphenylamine      | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Pentachlorophenol           | ND     |      |     | 800    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Phenanthrene                | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Phenol                      | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Pyrene                      | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Pyridine                    | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| 2-Methylphenol              | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| 3 & 4-Methylphenol          | ND     |      |     | 330    | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Surr: 2,4,6-Tribromophenol  | 59.6   |      | %   | 19-135 | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Surr: 2-Fluorobiphenyl      | 40.9   |      | %   | 15-140 | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Surr: 2-Fluorophenol        | 54.8   |      | %   | 15-122 | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Surr: Nitrobenzene-d5       | 42.5   |      | %   | 10-134 | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Surr: Phenol-d5             | 57.2   |      |     | 10-123 | 1           | 05/08/09 19:15 | GY      | 5017903 |
| Surr: Terphenyl-d14         | 44.4   |      | %   | 18-166 | 1           | 05/08/09 19:15 | GY      | 5017903 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3550C     | 05/06/2009 15:27 | QMT           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-6-54-55'

Collected: 04/30/2009 15:00 SPL

SPL Sample ID:

09050065-01

| Site: | Hobbs. | NM |
|-------|--------|----|
|-------|--------|----|

| Analyses/Method             | Result QU  | AL Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq.#   |
|-----------------------------|------------|--------------|-------------|----------------|------------|---------|
| VOLATILE ORGANICS BY MET    | THOD 8260B |              | MCL SV      | V8260B Ur      | its: ug/kg |         |
| 1,1,1,2-Tetrachloroethane   | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,1,1-Trichloroethane       | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,1,2,2-Tetrachloroethane   | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,1,2-Trichloroethane       | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,1-Dichloroethane          | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,1-Dichloroethene          | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,1-Dichloropropene         | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2,3-Trichlorobenzene      | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2,3-Trichloropropane      | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2,4-Trichlorobenzene      | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2,4-Trimethylbenzene      | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2-Dibromo-3-chloropropane | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2-Dibromoethane           | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2-Dichlorobenzene         | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2-Dichloroethane          | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,2-Dichloropropane         | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,3,5-Trimethylbenzene      | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,3-Dichlorobenzene         | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,3-Dichloropropane         | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 1,4-Dichlorobenzene         | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 2,2-Dichloropropane         | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 2-Butanone                  | ND         | 20           | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 2-Chloroethyl vinyl ether   | ND         | 10           | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 2-Chlorotoluene             | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 2-Hexanone                  | ND         | 10           | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 4-Chlorotoluene             | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 4-Isopropyltoluene          | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| 4-Methyl-2-pentanone        | ND         | 10           | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Acetone                     | ND         | 100          | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Acrylonitrile               | ND         | 50           | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Benzene                     | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Bromobenzene                | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Bromochloromethane          | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Bromodichloromethane        | ND _       | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Bromoform                   | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Bromomethane                | ND         | 10           | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Carbon disulfide            | ND         | 5            | 11_         | 05/07/09 21:04 | TLE        | 5012048 |
| Carbon tetrachloride        | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |
| Chlorobenzene               | ND         | 5            | 1           | 05/07/09 21:04 | TLE        | 5012048 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

09050065-01

Client Sample ID MW-6-54-55'

**Collected:** 04/30/2009 15:00 **SPL Sample ID:** 

Site: Hobbs, NM

|                             |        |      | - 510 | e. Honns, | , (VIVI     |                |         |         |
|-----------------------------|--------|------|-------|-----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re    | ep.Limit  | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |      |       | 10        | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Chloroform                  | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Chloromethane               | ND     |      |       | 10        | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Dibromochloromethane        | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Dibromomethane              | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Dichlorodifluoromethane     | ND     |      |       | 10        | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Ethylbenzene                | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Hexachlorobutadiene         | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Isopropylbenzene            | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Methyl tert-butyl ether     | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Methylene chloride          | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Naphthalene                 | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| n-Butylbenzene              | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| n-Propylbenzene             | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| sec-Butylbenzene            | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Styrene                     | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| tert-Butylbenzene           | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Tetrachloroethene           | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Toluene                     | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Trichloroethene             | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Trichlorofluoromethane      | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Vinyl acetate               | ND     |      |       | 10        | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Vinyl chloride              | ND     |      |       | 10        | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| cis-1,2-Dichloroethene      | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| cis-1,3-Dichloropropene     | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| m,p-Xylene                  | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| o-Xylene                    | ND     |      | •     | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| trans-1,2-Dichloroethene    | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| trans-1,3-Dichloropropene   | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Xylenes,Total               | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| 1,2-Dichloroethene (total)  | ND     |      |       | 5         | 1           | 05/07/09 21:04 | TLÉ     | 5012048 |
| Surr: 1,2-Dichloroethane-d4 | 94.0   |      | %     | 64-115    | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Surr: 4-Bromofluorobenzene  | 112    |      | %     | 65-131    | 1           | 05/07/09 21:04 | TLE     | 5012048 |
| Surr: Toluene-d8            | 91.7   |      | %     | 75-136    | 1           | 05/07/09 21:04 | TLE     | 5012048 |
|                             |        |      |       |           |             |                |         |         |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW5030B     | 05/05/2009 18:03 | XML           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID FB-043009-1

Collected: 04/30/2009 15:40 SPL Sa

SPL Sample ID:

09050065-02

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq. #  |
|-----------------------------|------------|------|-----------|-------------|----------------|------------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B |      |           | MCL SV      | /8260B Ur      | nits: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 5012601 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 5012601 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 5012601 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 5012601 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 5012601 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 5012601 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,2,4-Trimethylbenzene      | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,2-Dibromo-3-chloropropane | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,2-Dichlorobenzene         | ND         |      | - 5       | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 2-Butanone                  | ND         |      | 20        | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 2-Hexanone                  | ND         |      | 10        | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Acetone                     | ND         |      | 20        | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Acrylonitrile               | ND         |      | 10        | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Benzene                     | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Bromobenzene                | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Bromochloromethane          | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Bromodichloromethane        | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Bromoform                   | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Bromomethane                | ND         |      | 10        | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Carbon disulfide            | ND         |      | 5         | 1           | 05/08/09 12:56 | =          | 501260  |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |
| Chlorobenzene               | ND         |      | 5         | 1           | 05/08/09 12:56 | E_G        | 501260  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID FB-043009-1

Collected: 04/30/2009 15:40

SPL Sample ID:

09050065-02

| Site: | Hobbs | . NM |
|-------|-------|------|
|-------|-------|------|

| Analyses/Method             | Result | QUAL | Re | p.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |  |
|-----------------------------|--------|------|----|---------|-------------|----------------|---------|---------|--|
| Chloroethane                | ND     |      |    | 10      | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Chloroform                  | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Chloromethane               | ND     |      |    | 10      | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Dibromochloromethane        | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Dibromomethane              | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Dichlorodifluoromethane     | ND     |      |    | 10      | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Ethylbenzene                | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Hexachlorobutadiene         | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Isopropylbenzene            | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Methyl tert-butyl ether     | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Methylene chloride          | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Naphthalene                 | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| n-Butylbenzene              | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| n-Propylbenzene             | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| sec-Butylbenzene            | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Styrene                     | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| tert-Butylbenzene           | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| Tetrachloroethene           | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Toluene                     | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Trichloroethene             | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Trichlorofluoromethane      | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Vinyl acetate               | ND     |      |    | 10      | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Vinyl chloride              | ND     |      |    | 2       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| cis-1,2-Dichloroethene      | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| cis-1,3-Dichloropropene     | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| m,p-Xylene                  | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| o-Xylene                    | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| trans-1,2-Dichloroethene    | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 5012601 |  |
| trans-1,3-Dichloropropene   | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| 1,2-Dichloroethene (total)  | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Xylenes,Total               | ND     |      |    | 5       | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Surr: 1,2-Dichloroethane-d4 | 107    |      | %  | 78-116  | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Surr: 4-Bromofluorobenzene  | 104    |      | %  | 74-125  | 1           | 05/08/09 12:56 | E_G     | 501260  |  |
| Surr: Toluene-d8            | 107    |      | %  | 82-118  | 1           | 05/08/09 12:56 | E G     | 501260  |  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

SPL Sample ID:

09050065-03

Client Sample ID RB-043009-1

Collected: 05/01/2009 7:05

Site: Hobbs, NM

| Analyses/Method                 | Result QUAL | ult QUAL Rep.Limit |     | Dil. Factor Date Analyzed Analys |          |             | Seq.#   |
|---------------------------------|-------------|--------------------|-----|----------------------------------|----------|-------------|---------|
| DIESEL RANGE ORGANICS           |             |                    | MCL | SV                               | V8015B   | Units: mg/L |         |
| Diesel Range Organics (C10-C28) | ND          | 0.1                |     | 1                                | 05/06/09 | 21:44 NW    | 5014278 |
| Surr: n-Pentacosane             | 27.4        | % 20-150           |     | 1                                | 05/06/09 | 21:44 NW    | 5014278 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 12:29 | N_M           | 1.00        |

| GASOLINE RANGE ORGANICS    |      |   |        | MCL | S | W8015B   | Un    | its: mg/L |         |
|----------------------------|------|---|--------|-----|---|----------|-------|-----------|---------|
| Gasoline Range Organics    | ND   |   | 0.1    |     | 1 | 05/08/09 | 12:44 | CLJ       | 5014445 |
| Surr: 1,4-Difluorobenzene  | 89.5 | % | 60-155 |     | 1 | 05/08/09 | 12:44 | CLJ       | 5014445 |
| Surr: 4-Bromofluorobenzene | 105  | % | 50-158 |     | 1 | 05/08/09 | 12:44 | CLJ       | 5014445 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050065 Page 12 6/16/2009 4:36:15 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-043009-1

Collected: 05/01/2009 7:05

SPL Sample ID:

09050065-03

| Site: | Hobbs, | NM |
|-------|--------|----|
|-------|--------|----|

| Analyses/Method             | Result QU      | AL Rep.Limit | Dil. Factor | Date Analyzed Analy | st Seq.# |
|-----------------------------|----------------|--------------|-------------|---------------------|----------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 82700 | <b>.</b>     | MCL SV      | V8270C Units: ug    | /L       |
| 1,2,4-Trichlorobenzene      | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 1,2-Dichlorobenzene         | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 1,2-Diphenylhydrazine       | ND             | 10           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 1,3-Dichlorobenzene         | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 1,4-Dichlorobenzene         | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2,4,5-Trichlorophenol       | ND             | 10           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2,4,6-Trichlorophenol       | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2,4-Dichlorophenol          | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2,4-Dimethylphenol          | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2,4-Dinitrophenol           | ND             | 25           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2,4-Dinitrotoluene          | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2,6-Dinitrotoluene          | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2-Chloronaphthalene         | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2-Chlorophenol              | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2-Methylnaphthalene         | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2-Nitroaniline              | ND             | 25           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 2-Nitrophenol               | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 3,3'-Dichlorobenzidine      | ND             | 10           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 3-Nitroaniline              | ND             | 25           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 4,6-Dinitro-2-methylphenol  | ND             | 25           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 4-Bromophenyl phenyl ether  | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 4-Chloro-3-methylphenol     | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 4-Chloroaniline             | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 4-Chlorophenyl phenyl ether | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 4-Nitroaniline              | ND             | 25           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| 4-Nitrophenol               | ND             | 25           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Acenaphthene                | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Acenaphthylene              | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Aniline                     | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Anthracene                  | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Benz(a)anthracene           | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Benzo(a)pyrene              | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Benzo(b)fluoranthene        | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Benzo(g,h,i)perylene        | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Benzo(k)fluoranthene        | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Benzoic acid                | ND             | 25           | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Benzyl alcohol              | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Bis(2-chloroethoxy)methane  | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
| Bis(2-chloroethyl)ether     | ND             | 5            | 1           | 05/11/09 18:57 E_R  | 5015643  |
|                             |                |              |             |                     |          |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-043009-1

Collected: 05/01/2009 7:05

SPL Sample ID:

09050065-03

| Site: | Ho | hhs | . NM |
|-------|----|-----|------|
|       |    |     |      |

| Analyses/Method             | Result | QUAL | Re | p.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
|-----------------------------|--------|------|----|---------|-------------|----------------|---------|---------|
| Bis(2-chloroisopropyl)ether | ND     |      | -  | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Bis(2-ethylhexyl)phthalate  | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Butyl benzyl phthalate      | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Carbazole                   | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Chrysene                    | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Dibenz(a,h)anthracene       | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Dibenzofuran                | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Diethyl phthalate           | . ND   |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Dimethyl phthalate          | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Di-n-butyl phthalate        | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Di-n-octyl phthalate        | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Fluoranthene                | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Fluorene                    | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Hexachlorobenzene           | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Hexachlorobutadiene         | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Hexachlorocyclopentadiene   | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Hexachloroethane            | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Indeno(1,2,3-cd)pyrene      | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Isophorone                  | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Naphthalene                 | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Nitrobenzene                | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| N-Nitrosodi-n-propylamine   | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| N-Nitrosodiphenylamine      | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Pentachlorophenol           | ND     |      |    | 25      | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Phenanthrene                | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Phenol                      | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Pyrene                      | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Pyridine                    | ND     | _    |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| 2-Methylphenol              | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| 3 & 4-Methylphenol          | ND     |      |    | 5       | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Surr: 2,4,6-Tribromophenol  | 82.3   |      | %  | 10-123  | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Surr: 2-Fluorobiphenyl      | 62.4   |      | %  | 23-116  | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Surr: 2-Fluorophenol        | 69.3   |      | %  | 16-110  | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Surr: Nitrobenzene-d5       | 56.4   |      | %  | 21-114  | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Surr: Phenol-d5             | 57.5   |      | %  | 10-110  | 1           | 05/11/09 18:57 | E_R     | 5015643 |
| Surr: Terphenyl-d14         | 63.2   |      | %  | 22-141  | 1           | 05/11/09 18:57 | E_R     | 5015643 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 15:05 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-043009-1

Collected: 05/01/2009 7:05

SPL Sample ID:

09050065-03

| Analyses/Method             | Result    | QUAL | Rep.Limit | Dil. Factor | Date Analyze  | ed Analyst  | Seq. #  |
|-----------------------------|-----------|------|-----------|-------------|---------------|-------------|---------|
| OLATILE ORGANICS BY MET     | HOD 8260B |      |           | MCL SV      | V8260B        | Units: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,1,1-Trichloroethane       | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,1,2,2-Tetrachloroethane   | ND        |      | 5         | 1           | 05/08/09 13:: | 22 E_G      | 5012602 |
| 1,1,2-Trichloroethane       | ND        |      | 5         | 1           | 05/08/09 13:: | 22 E_G      | 5012602 |
| 1,1-Dichloroethane          | ND        |      | 5         | 1           | 05/08/09 13:: | 22 E_G      | 5012602 |
| 1,1-Dichloroethene          | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,1-Dichloropropene         | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2,3-Trichlorobenzene      | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2,3-Trichloropropane      | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2,4-Trichlorobenzene      | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2,4-Trimethylbenzene      | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2-Dibromo-3-chloropropane | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2-Dibromoethane           | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2-Dichlorobenzene         | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2-Dichloroethane          | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,2-Dichloropropane         | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| 1,3,5-Trimethylbenzene      | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,3-Dichlorobenzene         | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,3-Dichloropropane         | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 1,4-Dichlorobenzene         | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| 2,2-Dichloropropane         | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 2-Butanone                  | ND        |      | 20        | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 2-Chloroethyl vinyl ether   | ND J      | ·    | 10        | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 2-Chlorotoluene             | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 2-Hexanone                  | ND        |      | 10        | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 4-Chlorotoluene             | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 4-Isopropyltoluene          | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| 4-Methyl-2-pentanone        | ND        |      | 10        | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| Acetone                     | ND        |      | 20        | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| Acrylonitrile               | ND        |      | 10        | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| Benzene                     | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| Bromobenzene                | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| Bromochloromethane          | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 5012602 |
| Bromodichloromethane        | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| Bromoform                   | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| Bromomethane                | ND        |      | 10        | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| Carbon disulfide            | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| Carbon tetrachloride        | ND        |      | 5         | 1           | 05/08/09 13:  | 22 E_G      | 501260  |
| Chlorobenzene               | ND        |      | 5         | 1           | 05/08/09 13:  | 22 F G      | 501260  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-043009-1

Collected: 05/01/2009 7:05

SPL Sample ID:

09050065-03

|                             | Site. Flobbs, NW |      |     |        |             |                |         |         |  |  |
|-----------------------------|------------------|------|-----|--------|-------------|----------------|---------|---------|--|--|
| Analyses/Method             | Result           | QUAL | Rep | .Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |  |  |
| Chloroethane                | ND               |      |     | 10     | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Chloroform                  | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Chloromethane               | ND               |      |     | 10     | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Dibromochloromethane        | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Dibromomethane              | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Dichlorodifluoromethane     | ND               |      |     | 10     | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Ethylbenzene                | ND               | _    | _   | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Hexachlorobutadiene         | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Isopropylbenzene            | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Methyl tert-butyl ether     | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Methylene chloride          | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Naphthalene                 | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| n-Butylbenzene              | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| n-Propylbenzene             | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| sec-Butylbenzene            | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Styrene                     | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| tert-Butylbenzene           | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Tetrachloroethene           | ND               | -    |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Toluene                     | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Trichloroethene             | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Trichlorofluoromethane      | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Vinyl acetate               | ND               |      |     | 10     | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Vinyl chloride              | ND               |      |     | 2      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| cis-1,2-Dichloroethene      | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| cis-1,3-Dichloropropene     | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| m,p-Xylene                  | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| o-Xylene                    | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| trans-1,2-Dichloroethene    | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| trans-1,3-Dichloropropene   | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| 1,2-Dichloroethene (total)  | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Xylenes,Total               | ND               |      |     | 5      | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Surr: 1,2-Dichloroethane-d4 | 107              |      | %   | 78-116 | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Surr: 4-Bromofluorobenzene  | 104              |      | %   | 74-125 | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |
| Surr: Toluene-d8            | 108              |      | % 1 | 82-118 | 1           | 05/08/09 13:22 | E_G     | 5012602 |  |  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-6

Collected: 05/01/2009 12:00

SPL Sample ID:

09050065-04

| Analyses/Method                 | Result      | QUAL | Re       | ep.Limit | Di  | I. Facto | r Date Ana | lyzed | Analyst   | Seq.#   |
|---------------------------------|-------------|------|----------|----------|-----|----------|------------|-------|-----------|---------|
| ALKALINITY (AS CACO3), TOTAL    | <del></del> |      |          |          | MCL |          | E310.1     | Un    | its: mg/L |         |
| Alkalinity, Total (As CaCO3)    | 192         |      |          | 2        |     | 1        | 06/10/09   | 16:00 | PAC       | 5061241 |
| DIESEL RANGE ORGANICS           |             |      | <u> </u> |          | MCL | S        | W8015B     | Un    | its: mg/L |         |
| Diesel Range Organics (C10-C28) | 0.21        |      |          | 0.1      |     | 1        | 05/06/09   | 22:04 | NW        | 5014279 |
| Surr: n-Pentacosane             | 38.6        |      | %        | 20-150   |     | 1        | 05/06/09   | 22:04 | NW        | 5014279 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 12:29 | N_M           | 1.00        |

| GASOLINE RANGE ORGANICS    |      |   |        | MCL |     | SW8015B  | Units: mg/L |             |
|----------------------------|------|---|--------|-----|-----|----------|-------------|-------------|
| Gasoline Range Organics    | ND   |   | 0.1    |     | 1   | 05/08/09 | 13:13 CLJ   | 5014446     |
| Surr: 1,4-Difluorobenzene  | 89.1 | % | 60-155 |     | 1   | 05/08/09 | 13:13 CLJ   | 5014446     |
| Surr: 4-Bromofluorobenzene | 103  | % | 50-158 |     | 1   | 05/08/09 | 13:13 CLJ   | 5014446     |
| HEADSPACE GAS ANALYSIS     |      |   |        | MCL |     | RSK147   | Units: mg/L |             |
| Methane                    | ND   |   | 0.0012 |     | 1   | 05/07/09 | 10:08 V_L   | 5009409     |
| ION CHROMATOGRAPHY         |      |   |        | MCL |     | E300.0   | Units: mg/L | <del></del> |
| Chloride                   | 624  |   | 50     |     | 100 | 05/12/09 | 21:37 BDG   | 5019642     |
| Sulfate                    | 91.9 |   | 5      |     | 10  | 05/12/09 | 21:55 BDG   | 5019643     |

| Nitrogen,Nitrate (As N)        | ND   | 0.5      |     | 1 | 05/02/09 | 19:52 BDG   | 5012732 |
|--------------------------------|------|----------|-----|---|----------|-------------|---------|
| SEMIVOLATILE HYDROCARBOI       | NS   |          | MCL | S | W8015B   | Units: mg/L |         |
| Mineral Spirits Range Organics | ND   | 0.1      |     | 1 | 05/06/09 | 22:04 NW    | 5056832 |
| Surr: n-Pentacosane            | 38.6 | % 20-150 |     | 1 | 05/06/09 | 22:04 NW    | 5056832 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 12:29 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



Client Sample ID MW-6

#### **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Collected: 05/01/2009 12:00

SPL Sample ID:

09050065-04

Site: Hobbs, NM

| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq.#   |
|-----------------------------|----------------|-----------|-------------|----------------|-----------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C Un      | its: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 1,2-Dichlorobenzene         | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 1,2-Diphenylhydrazine       | ND             | 10        | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 1,3-Dichlorobenzene         | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 1,4-Dichlorobenzene         | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2,4,5-Trichlorophenol       | ND             | 10        | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2,4,6-Trichlorophenol       | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2,4-Dichlorophenol          | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2,4-Dimethylphenol          | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2,4-Dinitrophenol           | ND             | 25        | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2,4-Dinitrotoluene          | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2,6-Dinitrotoluene          | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2-Chloronaphthalene         | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2-Chlorophenol              | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2-Methylnaphthalene         | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 2-Nitroaniline              | ND             | 25        | 1           | 05/11/09 19:32 | E_R       | 501564  |
| 2-Nitrophenol               | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| 3,3'-Dichlorobenzidine      | ND             | 10        | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 3-Nitroaniline              | ND             | 25        | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| 4,6-Dinitro-2-methylphenol  | ND             | 25        | 1           | 05/11/09 19:32 | E_R       | 501564  |
| 4-Bromophenyl phenyl ether  | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| 4-Chioro-3-methylphenol     | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| 4-Chloroaniline             | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| 4-Chlorophenyl phenyl ether | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| 4-Nitroanitine              | ND             | 25        | 1           | 05/11/09 19:32 | E_R       | 501564  |
| 4-Nitrophenol               | ND             | 25        | 1           | 05/11/09 19:32 | E_R       | 5015644 |
| Acenaphthene                | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Acenaphthylene              | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Aniline                     | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Anthracene                  | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Benz(a)anthracene           | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Benzo(a)pyrene              | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Benzo(b)fluoranthene        | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Benzo(g,h,i)perylene        | ND ND          | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Benzo(k)fluoranthene        | ND             | 5         | 1           | 05/11/09 19:32 |           | 501564  |
| Benzoic acid                | ND             | 25        | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Benzyl alcohol              | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Bis(2-chloroethoxy)methane  | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |
| Bis(2-chloroethyl)ether     | ND             | 5         | 1           | 05/11/09 19:32 | E_R       | 501564  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

Client Sample ID MW-6

Collected: 05/01/2009 12:00

SPL Sample ID:

09050065-04

| Site: | Hobbs. | NM |
|-------|--------|----|
|-------|--------|----|

| Analyses/Method             | Result | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
|-----------------------------|--------|------|-----------|-------------|----------------|---------|---------|
| Bis(2-chloroisopropyl)ether | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Bis(2-ethylhexyl)phthalate  | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Butyl benzyl phthalate      | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Carbazole                   | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Chrysene                    | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Dibenz(a,h)anthracene       | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Dibenzofuran                | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Diethyl phthalate           | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Dimethyl phthalate          | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Di-n-butyl phthalate        | 11     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Di-n-octyl phthalate        | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Fluoranthene                | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Fluorene                    | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Hexachlorobenzene           | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Hexachlorobutadiene         | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Hexachlorocyclopentadiene   | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Hexachloroethane            | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Indeno(1,2,3-cd)pyrene      | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Isophorone                  | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Naphthalene                 | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Nitrobenzene                | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| N-Nitrosodi-n-propylamine   | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| N-Nitrosodiphenylamine      | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Pentachlorophenol           | ND     |      | 25        | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Phenanthrene                | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Phenol                      | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Pyrene                      | ND     | _    | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Pyridine                    | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| 2-Methylphenol              | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| 3 & 4-Methylphenol          | ND     |      | 5         | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Surr: 2,4,6-Tribromophenol  | 76.1   |      | % 10-123  | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Surr: 2-Fluorobiphenyl      | 55.8   |      | % 23-116  | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Surr: 2-Fluorophenol        | 62.0   |      | % 16-110  | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Surr: Nitrobenzene-d5       | 49.6   |      | % 21-114  | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Surr: Phenol-d5             | 50.7   |      | % 10-110  | 1           | 05/11/09 19:32 | E_R     | 5015644 |
| Surr: Terphenyl-d14         | 54.0   |      | % 22-141  | 1           | 05/11/09 19:32 | E_R     | 5015644 |
|                             |        |      |           |             |                |         |         |

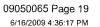
| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 15:05 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits


J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-6

**Collected:** 05/01/2009 12:00 **SPL Sample ID:** 

09050065-04

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst   | Seq.#   |
|-----------------------------|------------|------|-----------|-------------|----------------|-----------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B |      |           | MCL SV      | W8260B Un      | its: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,2,4-Trimethylbenzene      | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,2-Dibromo-3-chloropropane | ND         |      | 5         | 1           | 05/08/09 15:03 | É_G       | 5012606 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 2-Butanone                  | ND         |      | 20        | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 05/08/09 15:03 | É_G       | 5012606 |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 2-Hexanone                  | ND         |      | 10        | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Acetone                     | ND         |      | 20        | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Acrylonitrile               | ND         |      | 10        | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Benzene                     | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Bromobenzene                | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Bromochloromethane          | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Bromodichloromethane        | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Bromoform                   | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Bromomethane                | ND         |      | 10        | 111         | 05/08/09 15:03 | E_G       | 5012606 |
| Carbon disulfide            | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 501260  |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |
| Chlorobenzene               | ND         |      | 5         | 1           | 05/08/09 15:03 | E_G       | 5012606 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID MW-6

Collected: 05/01/2009 12:00

SPL Sample ID:

09050065-04

| Site: | Hobbs, | N | M |
|-------|--------|---|---|
|-------|--------|---|---|

| Site: Hobbs, NW             |        |      |           |             |                |         |         |  |
|-----------------------------|--------|------|-----------|-------------|----------------|---------|---------|--|
| Analyses/Method             | Result | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |  |
| Chloroethane                | ND     |      | 10        | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Chloroform                  | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Chloromethane               | ND     |      | 10        | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Dibromochloromethane        | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Dibromomethane              | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Dichlorodifluoromethane     | ND     |      | 10        | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Ethylbenzene                | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Hexachlorobutadiene         | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Isopropylbenzene            | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Methyl tert-butyl ether     | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Methylene chloride          | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Naphthalene                 | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| n-Butylbenzene              | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| n-Propylbenzene             | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| sec-Butylbenzene            | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Styrene                     | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| tert-Butylbenzene           | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Tetrachloroethene           | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Toluene                     | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Trichloroethene             | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Trichlorofluoromethane      | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Vinyl acetate               | ND     |      | 10        | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Vinyl chloride              | ND     |      | 2         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| cis-1,2-Dichloroethene      | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| cis-1,3-Dichloropropene     | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| m,p-Xylene                  | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| o-Xylene                    | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| trans-1,2-Dichloroethene    | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| trans-1,3-Dichloropropene   | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| 1,2-Dichloroethene (total)  | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Xylenes,Total               | ND     |      | 5         | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Surr: 1,2-Dichloroethane-d4 | 107    |      | % 78-116  | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Surr: 4-Bromofluorobenzene  | 104    |      | % 74-125  | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |
| Surr: Toluene-d8            | 108    |      | % 82-118  | 1           | 05/08/09 15:03 | E_G     | 5012606 |  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-050109-1

Collected: 05/01/2009 13:30 SPL Sample ID:

09050065-05

| Site: | Hobbs. | NM |
|-------|--------|----|
|-------|--------|----|

| Analyses/Method                 | Result | QUAL | Re | ep.Limit | Dil. | Fac | tor Date Analy | yzed Analys | t Seq.# |
|---------------------------------|--------|------|----|----------|------|-----|----------------|-------------|---------|
| DIESEL RANGE ORGANICS           |        |      |    |          | MCL  |     | SW8015B        | Units: mg/  | L       |
| Diesel Range Organics (C10-C28) | ND     |      |    | 0.1      |      | 1   | 05/06/09 2     | 22:25 NW    | 5014280 |
| Surr: n-Pentacosane             | 59.4   |      | %  | 20-150   |      | 1   | 05/06/09 2     | 22:25 NW    | 5014280 |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 12:29 | N_M           | 1.00        |

| GASOLINE RANGE ORGANICS    |      |   |        | MCL |   | SW8015B  | Un    | its: mg/L |         |
|----------------------------|------|---|--------|-----|---|----------|-------|-----------|---------|
| Gasoline Range Organics    | ND   |   | 0.1    |     | 1 | 05/08/09 | 13:41 | CLJ       | 5014447 |
| Surr: 1,4-Difluorobenzene  | 89.8 | % | 60-155 |     | 1 | 05/08/09 | 13:41 | CLJ       | 5014447 |
| Surr: 4-Bromofluorobenzene | 103  | % | 50-158 |     | 1 | 05/08/09 | 13:41 | CLJ       | 5014447 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050065 Page 22 6/16/2009 4:36:17 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-050109-1

Collected: 05/01/2009 13:30

SPL Sample ID:

09050065-05

| Site: | Hobbs. | NM     |
|-------|--------|--------|
| OILC. | HODOS. | 1 4141 |

| Analyses/Method             | Result QUAL    | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq. #  |
|-----------------------------|----------------|-----------|-------------|----------------|------------|---------|
| SEMIVOLATILE ORGANICS B     | Y METHOD 8270C |           | MCL SV      | V8270C Ur      | nits: ug/L |         |
| 1,2,4-Trichlorobenzene      | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 5015645 |
| 1,2-Dichlorobenzene         | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 1,2-Diphenylhydrazine       | ND             | 10        | 1           | 05/11/09 20:07 | E_R        | 5015645 |
| 1,3-Dichlorobenzene         | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 1,4-Dichlorobenzene         | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2,4,5-Trichlorophenol       | ND             | 10        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2,4,6-Trichlorophenol       | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2,4-Dichlorophenol          | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2,4-Dimethylphenol          | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2,4-Dinitrophenol           | ND             | 25        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2,4-Dinitrotoluene          | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2,6-Dinitrotoluene          | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2-Chloronaphthalene         | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2-Chlorophenol              | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2-Methylnaphthalene         | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2-Nitroaniline              | ND             | 25        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 2-Nitrophenol               | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 3,3'-Dichlorobenzidine      | ND             | 10        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 3-Nitroaniline              | ND             | 25        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 4,6-Dinitro-2-methylphenol  | ND             | 25        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 4-Bromophenyl phenyl ether  | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 4-Chloro-3-methylphenol     | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 4-Chloroaniline             | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 4-Chlorophenyl phenyl ether | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 4-Nitroaniline              | ND             | 25        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| 4-Nitrophenol               | ND             | 25        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Acenaphthene                | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Acenaphthylene              | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Aniline                     | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Anthracene                  | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Benz(a)anthracene           | ND             | 5         | 11          | 05/11/09 20:07 | E_R        | 501564  |
| Benzo(a)pyrene              | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Benzo(b)fluoranthene        | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Benzo(g,h,i)perylene        | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Benzo(k)fluoranthene        | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Benzoic acid                | ND             | 25        | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Benzyl alcohol              | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |
| Bis(2-chloroethoxy)methane  | ND             | 5         | 1           | 05/11/09 20:07 |            | 501564  |
| Bis(2-chloroethyl)ether     | ND             | 5         | 1           | 05/11/09 20:07 | E_R        | 501564  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-050109-1

Collected: 05/01/2009 13:30

SPL Sample ID:

09050065-05

| Site: | Hobbs | NIR/   |
|-------|-------|--------|
| JILE. | ทบบบร | . INIV |

|                             |        |      | oite. Hobbs, |             |                |         |         |
|-----------------------------|--------|------|--------------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep.Limit    | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Bis(2-chloroisopropyl)ether | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 5015645 |
| Bis(2-ethylhexyl)phthalate  | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 5015645 |
| Butyl benzyl phthalate      | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 5015645 |
| Carbazole                   | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Chrysene                    | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Dibenz(a,h)anthracene       | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Dibenzofuran                | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Diethyl phthalate           | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Dimethyl phthalate          | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Di-n-butyl phthalate        | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Di-n-octyl phthalate        | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Fluoranthene                | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Fluorene                    | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Hexachlorobenzene           | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Hexachlorobutadiene         | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Hexachlorocyclopentadiene   | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Hexachloroethane            | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Indeno(1,2,3-cd)pyrene      | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Isophorone                  | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Naphthalene                 | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Nitrobenzene                | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| N-Nitrosodi-n-propylamine   | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| N-Nitrosodiphenylamine      | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Pentachlorophenol           | ND     |      | 25           | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Phenanthrene                | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Phenol                      | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Pyrene                      | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Pyridine                    | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| 2-Methylphenol              | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| 3 & 4-Methylphenol          | ND     |      | 5            | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Surr: 2,4,6-Tribromophenol  | 97.5   |      | % 10-123     | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Surr: 2-Fluorobiphenyl      | 73.6   |      | % 23-116     | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Surr: 2-Fluorophenol        | 81.6   |      | % 16-110     | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Surr: Nitrobenzene-d5       | 65.6   |      | % 21-114     | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Surr: Phenol-d5             | 70.0   |      | % 10-110     | 1           | 05/11/09 20:07 | E_R     | 501564  |
| Surr: Terphenyl-d14         | 75.6   |      | % 22-141     | 1           | 05/11/09 20:07 | E_R     | 501564  |

| Prep Method | Prep Date        | Prep Initials | Prep Factor |
|-------------|------------------|---------------|-------------|
| SW3510C     | 05/04/2009 15:05 | N_M           | 1.00        |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-050109-1

Collected: 05/01/2009 13:30

SPL Sample ID:

09050065-05

Site: Hobbs, NM

| Analyses/Method             | Result    | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq.#   |
|-----------------------------|-----------|------|-----------|-------------|----------------|------------|---------|
| OLATILE ORGANICS BY MET     | HOD 8260B |      |           | MCL SV      | V8260B Ur      | nits: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,1,1-Trichloroethane       | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,1,2,2-Tetrachloroethane   | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,1,2-Trichloroethane       | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,1-Dichloroethane          | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,1-Dichloroethene          | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,1-Dichloropropene         | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,2,3-Trichlorobenzene      | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,2,3-Trichloropropane      | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,2,4-Trichlorobenzene      | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,2,4-Trimethylbenzene      | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,2-Dibromo-3-chloropropane | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,2-Dibromoethane           | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012600 |
| 1,2-Dichlorobenzene         | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,2-Dichloroethane          | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,2-Dichloropropane         | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
| 1,3,5-Trimethylbenzene      | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,3-Dichlorobenzene         | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 1,3-Dichloropropane         | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012600 |
| 1,4-Dichlorobenzene         | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
| 2,2-Dichloropropane         | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
| 2-Butanone                  | ND        |      | 20        | 1           | 05/08/09 13:47 | E_G        | 501260  |
| 2-Chloroethyl vinyl ether   | ND J      |      | 10        | 1           | 05/08/09 13:47 | E_G        | 501260  |
| 2-Chlorotoluene             | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 2-Hexanone                  | ND        |      | 10        | 1           | 05/08/09 13:47 | E_G        | 501260  |
| 4-Chlorotoluene             | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 4-Isopropyltoluene          | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 5012603 |
| 4-Methyl-2-pentanone        | ND        |      | 10        | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Acetone                     | ND        |      | 20        | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Acrylonitrile               | ND        |      | 10        | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Benzene                     | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Bromobenzene                | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Bromochloromethane          | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Bromodichloromethane        | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Bromoform                   | ND        |      | 5         | _ 1         | 05/08/09 13:47 | E_G        | 501260  |
| Bromomethane                | ND        |      | 10        | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Carbon disulfide            | ИD        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
| Carbon tetrachloride        | ND        |      | 5         | 1           | 05/08/09 13:47 | E_G        | 501260  |
|                             |           |      |           |             |                |            |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution

MI - Matrix Interference

09050065 Page 25 6/16/2009 4:36:18 PM



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID RB-050109-1

Collected: 05/01/2009 13:30

SPL Sample ID:

09050065-05

| Site: I | Hobbs. | NM |
|---------|--------|----|
|---------|--------|----|

|                             |        |      |    | <u> </u> |             |                |         |         |
|-----------------------------|--------|------|----|----------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Re | p.Limit  | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |      |    | 10       | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Chloroform                  | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Chloromethane               | ND     |      |    | 10       | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Dibromochloromethane        | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Dibromomethane              | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Dichlorodifluoromethane     | ND     |      |    | 10       | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Ethylbenzene                | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Hexachlorobutadiene         | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Isopropylbenzene            | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Methyl tert-butyl ether     | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Methylene chloride          | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Naphthalene                 | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| n-Butylbenzene              | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| n-Propylbenzene             | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| sec-Butylbenzene            | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Styrene                     | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| tert-Butylbenzene           | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Tetrachloroethene           | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Toluene                     | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Trichloroethene             | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Trichlorofluoromethane      | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Vinyl acetate               | ND     |      |    | 10       | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Vinyl chloride              | ND     |      |    | 2        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| cis-1,2-Dichloroethene      | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| cis-1,3-Dichloropropene     | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| m,p-Xylene                  | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| o-Xylene                    | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| trans-1,2-Dichloroethene    | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| trans-1,3-Dichloropropene   | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| 1,2-Dichloroethene (total)  | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Xylenes,Total               | ND     |      |    | 5        | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Surr: 1,2-Dichloroethane-d4 | 106    |      | %  | 78-116   | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Surr: 4-Bromofluorobenzene  | 104    |      | %  | 74-125   | 1           | 05/08/09 13:47 | E_G     | 5012603 |
| Surr: Toluene-d8            | 108    |      | %  | 82-118   | 11          | 05/08/09 13:47 | E_G     | 5012603 |
|                             |        |      |    |          |             |                |         |         |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

SPL Sample ID:

09050065-06

Client Sample ID FB-050109-1

Site: Hobbs, NM

Collected: 05/01/2009 13:40

| Analyses/Method             | Result     | QUAL | Rep.Limit | Dil. Factor | Date Analyzed  | Analyst    | Seq. #  |
|-----------------------------|------------|------|-----------|-------------|----------------|------------|---------|
| VOLATILE ORGANICS BY ME     | THOD 8260B |      |           | MCL SV      | V8260B Ur      | nits: ug/L |         |
| 1,1,1,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/08/09 14:12 |            | 5012604 |
| 1,1,1-Trichloroethane       | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,1,2,2-Tetrachloroethane   | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,1,2-Trichloroethane       | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,1-Dichloroethane          | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,1-Dichloroethene          | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,1-Dichloropropene         | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2,3-Trichlorobenzene      | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2,3-Trichloropropane      | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2,4-Trichlorobenzene      | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2,4-Trimethylbenzene      | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2-Dibromo-3-chloropropane | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2-Dibromoethane           | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2-Dichlorobenzene         | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2-Dichloroethane          | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,2-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,3,5-Trimethylbenzene      | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,3-Dichlorobenzene         | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,3-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 1,4-Dichlorobenzene         | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 2,2-Dichloropropane         | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 2-Butanone                  | ND         |      | 20        | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 2-Chloroethyl vinyl ether   | ND J       |      | 10        | 1           | 05/08/09 14:12 | E G        | 5012604 |
| 2-Chlorotoluene             | ND         |      | 5         | 1           | 05/08/09 14:12 |            | 5012604 |
| 2-Hexanone                  | ND         |      | 10        | 1           | 05/08/09 14:12 |            | 5012604 |
| 4-Chlorotoluene             | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 4-Isopropyltoluene          | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| 4-Methyl-2-pentanone        | ND         |      | 10        | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| Acetone                     | ND         |      | 20        | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| Acrylonitrile               | ND         |      | 10        | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| Benzene                     | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| Bromobenzene                | ND         |      | 5         | . 1         | 05/08/09 14:12 | E_G        | 5012604 |
| Bromochloromethane          | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| Bromodichloromethane        | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| Bromoform                   | ND         |      | 5         | 1           | 05/08/09 14:12 |            | 5012604 |
| Bromomethane                | ND         |      | 10        | 1           | 05/08/09 14:12 |            | 5012604 |
| Carbon disulfide            | ND         |      | 5         | 1           | 05/08/09 14:12 | E_G        | 5012604 |
| Carbon tetrachloride        | ND         |      | 5         | 1           | 05/08/09 14:12 |            | 5012604 |
| Chlorobenzene               | ND         |      | 5         | 1           | 05/08/09 14:12 |            | 5012604 |



ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count



D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID FB-050109-1

Collected: 05/01/2009 13:40

SPL Sample ID:

09050065-06

Site: Hobbs, NM

|                             |        |      | Oite. Hobbs, |             |                       |         |
|-----------------------------|--------|------|--------------|-------------|-----------------------|---------|
| Analyses/Method             | Result | QUAL | Rep.Limit    | Dil. Factor | Date Analyzed Analyst | Seq.#   |
| Chloroethane                | ND     |      | 10           | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Chloroform                  | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Chloromethane               | ND     |      | 10           | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Dibromochloromethane        | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Dibromomethane              | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Dichlorodifluoromethane     | ND     |      | 10           | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Ethylbenzene                | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Hexachlorobutadiene         | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Isopropylbenzene            | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Methyl tert-butyl ether     | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Methylene chloride          | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Naphthalene                 | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| n-Butylbenzene              | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| n-Propylbenzene             | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| sec-Butylbenzene            | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Styrene                     | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| tert-Butylbenzene           | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Tetrachloroethene           | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Toluene                     | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Trichloroethene             | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Trichlorofluoromethane      | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Vinyl acetate               | ND     |      | 10           | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Vinyl chloride              | ND     |      | 2            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| cis-1,2-Dichloroethene      | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| cis-1,3-Dichloropropene     | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| m,p-Xylene                  | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| o-Xylene                    | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| trans-1,2-Dichloroethene    | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| trans-1,3-Dichloropropene   | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| 1,2-Dichloroethene (total)  | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Xylenes,Total               | ND     |      | 5            | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Surr: 1,2-Dichloroethane-d4 | 105    |      | % 78-116     | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Surr: 4-Bromofluorobenzene  | 104    |      | % 74-125     | 1           | 05/08/09 14:12 E_G    | 5012604 |
| Surr: Toluene-d8            | 107    |      | % 82-118     | 1           | 05/08/09 14:12 E_G    | 5012604 |



ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

(713) 660-0901 SPL Sample ID:

09050065-07

Client Sample ID TB-043009-1

Site: Hobbs, NM

Collected: 04/30/2009 0:00

| nalyses/Method              | Result QUAL | Rep.Limit | Dil. Factor | Date Analyze  | d Analyst | Seq.#   |
|-----------------------------|-------------|-----------|-------------|---------------|-----------|---------|
| OLATILE ORGANICS BY MET     |             | MCL SV    | V8260B L    | Inits: ug/L   |           |         |
| 1,1,1,2-Tetrachloroethane   | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,1,1-Trichloroethane       | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,1,2,2-Tetrachloroethane   | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,1,2-Trichloroethane       | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,1-Dichloroethane          | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,1-Dichloroethene          | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,1-Dichloropropene         | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,2,3-Trichlorobenzene      | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,2,3-Trichloropropane      | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,2,4-Trichlorobenzene      | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,2,4-Trimethylbenzene      | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,2-Dibromo-3-chloropropane | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,2-Dibromoethane           | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,2-Dichlorobenzene         | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,2-Dichloroethane          | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 1,2-Dichloropropane         | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 1,3,5-Trimethylbenzene      | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 1,3-Dichlorobenzene         | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 1,3-Dichloropropane         | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 1,4-Dichlorobenzene         | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 2,2-Dichloropropane         | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 2-Butanone                  | ND          | 20        | 1           | 05/08/09 14:3 | 7 E_G     | 5012605 |
| 2-Chloroethyl vinyl ether   | ND J        | 10        | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 2-Chlorotoluene             | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 2-Hexanone                  | ND          | 10        | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 4-Chlorotoluene             | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 4-Isopropyltoluene          | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| 4-Methyl-2-pentanone        | ND          | 10        | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Acetone                     | ND          | 20        | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Acrylonitrile               | ND          | 10        | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Benzene                     | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Bromobenzene                | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Bromochloromethane          | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Bromodichloromethane        | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Bromoform                   | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Bromomethane                | ND          | 10        | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Carbon disulfide            | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Carbon tetrachloride        | ND          | 5         | 1           | 05/08/09 14:3 | 7 E_G     | 501260  |
| Chlorobenzene               | ND          | 5         | 1           | 05/08/09 14:3 | 7 F G     | 501260  |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

Client Sample ID TB-043009-1

Collected: 04/30/2009 0:00

SPL Sample ID:

09050065-07

|                             |        |      | Site | nobbs, | I STAL      |                |         |         |
|-----------------------------|--------|------|------|--------|-------------|----------------|---------|---------|
| Analyses/Method             | Result | QUAL | Rep  | .Limit | Dil. Factor | Date Analyzed  | Analyst | Seq.#   |
| Chloroethane                | ND     |      |      | 10     | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Chloroform                  | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Chloromethane               | ND     |      |      | 10     | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Dibromochloromethane        | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Dibromomethane              | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Dichlorodifluoromethane     | ND     |      |      | 10     | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Ethylbenzene                | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Hexachlorobutadiene         | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Isopropylbenzene            | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Methyl tert-butyl ether     | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Methylene chloride          | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Naphthalene                 | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| n-Butylbenzene              | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| n-Propylbenzene             | .ND    |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| sec-Butylbenzene            | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Styrene                     | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| tert-Butylbenzene           | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Tetrachloroethene           | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Toluene                     | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Trichloroethene             | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Trichlorofluoromethane      | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Vinyl acetate               | ND     |      |      | 10     | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Vinyl chloride              | ND     |      |      | 2      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| cis-1,2-Dichloroethene      | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| cis-1,3-Dichloropropene     | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| m,p-Xylene                  | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| o-Xylene                    | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| trans-1,2-Dichloroethene    | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| trans-1,3-Dichloropropene   | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| 1,2-Dichloroethene (total)  | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Xylenes,Total               | ND     |      |      | 5      | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Surr: 1,2-Dichloroethane-d4 | 106    |      | %    | 78-116 | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Surr: 4-Bromofluorobenzene  | 104    |      | %    | 74-125 | 1           | 05/08/09 14:37 | E_G     | 5012605 |
| Surr: Toluene-d8            | 107    |      | %    | 82-118 | 1           | 05/08/09 14:37 | E_G     | 5012605 |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

\* - Surrogate Recovery Outside Advisable QC Limits

J - Estimated Value between MDL and PQL

E - Estimated Value exceeds calibration curve

TNTC - Too numerous to count

>MCL - Result Over Maximum Contamination Limit(MCL)

D - Surrogate Recovery Unreportable due to Dilution



# Quality Control Documentation



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

#### **Brown & Caldwell BJ-Fracmaster 128125**

Analysis:

RuniD:

Semivolatile Hydrocarbons

Method:

SW8015B

WorkOrder:

09050065

Lab Batch ID:

89962

Method Blank

HP\_V\_090506D-5056828

Units:

mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

05/06/2009 16:19

Analyst:

NW

09050065-04G

Samples in Analytical Batch:

MW-6

Preparation Date:

05/04/2009 12:29

Prep By:

N M Method SW3510C

| Analyte                        | Result | Rep Limit |
|--------------------------------|--------|-----------|
| Mineral Spirits Range Organics | ND     | 0.10      |
| Surr: n-Pentacosane            | 40.2   | 20-150    |

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP\_V\_090506D-5056829

Units:

Analysis Date:

05/06/2009 16:39

Analyst: NW

mg/L

Preparation Date:

05/04/2009 12:29

Prep By:

N\_M Method SW3510C

| Analyte                        | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|--------------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| Mineral Spirits Range Organics | 1.00                  | 0.792         | 79.2                       | 1.00                   | 0.802          | 80.2                        | 1.3 | 40           | 21             | 150            |
| Surr: n-Pentacosane            | 0.0500                | 0.0334        | 66.8                       | 0.0500                 | 0.0321         | 64.2                        | 4.0 | 30           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 32

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

**Brown & Caldwell** 

Samples in Analytical Batch:

Analysis:

RunID:

Semivolatile Hydrocarbons

Method: SW8015B BJ-Fracmaster 128125

WorkOrder:

09050065

Lab Batch ID:

89962

Method Blank

Units: mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

HP V 090506B-5014268

NW

09050065-03C

RB-043009-1

05/06/2009 16:19

Analyst:

09050065-04C

MW-6

05/04/2009 12:29 Preparation Date:

Prep By:

N\_M Method SW3510C

09050065-05C

RB-050109-1

| Analyte                         | Result | Rep Limit |
|---------------------------------|--------|-----------|
| Diesel Range Organics (C10-C28) | ND     | 0.10      |
| Surr: n-Pentacosane             | 40.2   | 20-150    |

#### Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)

RunID:

HP V 090506B-5014269

Units:

Analysis Date:

05/06/2009 16:39

mg/L Analyst: NW

Preparation Date:

05/04/2009 12:29

Prep By:

N\_M Method SW3510C

| Analyte                         | LCS<br>Spike<br>Added | LCS<br>Result | LCS<br>Percent<br>Recovery | LCSD<br>Spike<br>Added | LCSD<br>Result | LCSD<br>Percent<br>Recovery | RPD | RPD<br>Limit | Lower<br>Limit | Upper<br>Limit |
|---------------------------------|-----------------------|---------------|----------------------------|------------------------|----------------|-----------------------------|-----|--------------|----------------|----------------|
| Diesel Range Organics (C10-C28) | 1.00                  | 0.792         | 79.2                       | 1.00                   | 0.802          | 80.2                        | 1.3 | 20           | 21             | 130            |
| Surr: n-Pentacosane             | 0.0500                | 0.0334        | 66.8                       | 0.0500                 | 0.0321         | 64.2                        | 4.0 | 30           | 20             | 150            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 33

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

**Brown & Caldwell** 

Analysis:

Semivolatile Hydrocarbons

SW8015B Method:

BJ-Fracmaster 128125

WorkOrder:

09050065

Lab Batch ID:

89972

Method Blank

Samples in Analytical Batch:

RuniD:

HP\_V 090509A-5017621

Units:

mg/Kg

Lab Sample ID

Client Sample ID

Analysis Date:

05/09/2009 20:39

Analyst:

NW

09050065-01E

MW-6-54-55'

Preparation Date:

05/04/2009 16:41

Prep By:

FAK Method SW3550B

| Analyte                         | Result | Rep Limit |
|---------------------------------|--------|-----------|
| Diesel Range Organics (C10-C28) | ND     | 5.0       |
| Surr: n-Pentacosane             | 79.7   | 20-154    |

#### **Laboratory Control Sample (LCS)**

RunID:

HP V 090509A-5017622

Units:

mg/Kg

Analysis Date:

05/09/2009 20:59

NW Analyst:

Preparation Date: 05/04/2009 16:41

FAK Method SW3550B Prep By:

| Analyte                         | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------------|----------------|--------|---------------------|----------------|----------------|
| Diesel Range Organics (C10-C28) | 33.3           | 24.7   | 74.3                | 57             | 150            |
| Surr: n-Pentacosane             | 1.66           | 1.25   | 75.3                | 20             | 154            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050059-01

RunID:

HP\_V\_090509A-5017624

Units:

mg/Kg

Analysis Date:

05/09/2009 22:20

NW Analyst:

Preparation Date:

05/04/2009 16:41

Prep By:

FAK Method SW3550B

| Analyte                         | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|---------------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-----|--------------|--------------|---------------|
| Diesel Range Organics (C10-C28) | 1750             | 33.3                 | 2210         | N/C              | 33.3                  | 1340          | N/C               | N/C | 50           | 21           | 175           |
| Surr: n-Pentacosane             | ND               | 1.66                 | D            | D                | 1.66                  | D             | D                 | D   | 30           | 20           | 154           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 34

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell BJ-Fracmaster 128125**

Analysis: Method:

RunID:

Semivolatile Hydrocarbons

SW8015B

WorkOrder:

09050065

Lab Batch ID:

89972

Method Blank

HP\_V\_090611A-5063301

Units:

mg/kg

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

05/09/2009 20:39

Analyst:

AM

09050065-01F

MW-6-54-55'

Preparation Date:

05/04/2009 16:41

Prep By: FAK Method SW3550B

| Analyte             | Result | Rep Limit |
|---------------------|--------|-----------|
| Mineral Spirits     | ND     | 10        |
| Surr: n-Pentacosane | 79.7   | 20-154    |

#### Laboratory Control Sample (LCS)

RuniD:

HP\_V\_090611A-5063302

Units:

mg/kg

Analysis Date:

Preparation Date:

05/09/2009 20:59 05/04/2009 16:41

AM Analyst: Prep By:

FAK Method SW3550B

| Analyte             | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |  |
|---------------------|----------------|--------|---------------------|----------------|----------------|--|
| Mineral Spirits     | 33.3           | 24.7   | 74.3                | 50             | 150            |  |
| Surr: n-Pentacosane | 1.66           | 1.25   | 75.3                | 20             | 154            |  |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050059-01

RunID:

HP\_V\_090611A-5063304

Units:

mg/kg

Analysis Date:

05/09/2009 22:20

Analyst: AM

| Analyte             | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|---------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-----|--------------|--------------|---------------|
| Mineral Spirits     | 2360             | 66.6                 | 2840         | N/C              | 66.6                  | 1750          | N/C               | N/C | 50           | 50           | 150           |
| Surr: n-Pentacosane | ND ND            | 1.66                 | D            | D                | 1.66                  | D             | D                 | D   | 30           | 20           | 154           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 35



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

BJ-Fracmaster 128125

Analysis: Method:

RunID:

Headspace Gas Analysis

**RSK147** 

WorkOrder:

09050065

Lab Batch ID:

Method Blank

Samples in Analytical Batch:

R272023

Units: mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

05/07/2009 9:46

VARC 090507A-5009408

Analyst:

09050065-04F

MW-6

|         |         | <br>   |           |
|---------|---------|--------|-----------|
|         | Analyte | Result | Rep Limit |
| Methane |         | <br>ND | 0.0012    |

#### Sample Duplicate

Original Sample:

09050065-04

RunID:

VARC 090507A-5009409

Units:

mg/L

Analysis Date:

05/07/2009 10:08

Analyst: V L

| Analyte | Sample | DUP    | RPD | RPD   |
|---------|--------|--------|-----|-------|
|         | Result | Result |     | Limit |
| Methane | ND     | ND     | 0   | 50    |



ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits





N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 36

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

## **Brown & Caldwell BJ-Fracmaster 128125**

Analysis:

RunID:

**Gasoline Range Organics** 

Method: SW8015B WorkOrder:

09050065

Lab Batch ID:

R272171

#### Method Blank

HP S 090508A-5011642

Units:

mg/Kg

Lab Sample ID

Client Sample ID

Analysis Date:

05/08/2009 8:55

Analyst:

**EMB** 

09050065-01B

MW-6-54-55'

Preparation Date:

05/08/2009 8:55

Prep By:

Method SW5030B

Samples in Analytical Batch:

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 100.3  | 63-142    |
| Surr: 4-Bromofluorobenzene | 101.6  | 50-159    |

#### Laboratory Control Sample (LCS)

RuniD:

HP\_S\_090508A-5011643

Units:

mg/Kg **EMB** 

Analysis Date: Preparation Date: 05/08/2009 9:52 05/08/2009 9:52 Analyst: Prep By:

Method SW5030B

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 0.962  | 96.2                | 70             | 130            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.102  | 102                 | 63             | 142            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.108  | 108                 | 50             | 159            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050292-01

HP\_S\_090508A-5012651

Units:

mg/kg-dry

Analysis Date:

RunID:

05/08/2009 21:58

**EMB** Analyst:

Preparation Date:

05/08/2009 9:19

XML Method SW5030B Prep By:

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Gasoline Range Organics    | ND               | 1.98                 | 0.762        | 38.4             | 1.98                  | 0.668         | 33.7              | 13.3  | 50           | 26           | 147           |
| Surr: 1,4-Difluorobenzene  | ND               | 0.198                | 0.214        | 108              | 0.198                 | 0.211         | 106               | 1.59  | 30           | 63           | 142           |
| Surr: 4-Bromofluorobenzene | ND               | 0.198                | 0.205        | 103              | 0.198                 | 0.206         | 104               | 0.483 | 30           | 50           | 159           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 37



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Analysis Date:

RunID:

**Gasoline Range Organics** 

Method: SW8015B

WorkOrder:

Samples in Analytical Batch:

09050065

Lab Batch ID:

R272349

Method Blank

HP\_P\_090508A-5014432

05/08/2009 5:40

Units: Analyst: mg/L CLJ

Lab Sample ID

Client Sample ID

09050065-03B

RB-043009-1

09050065-04B

MW-6

09050065-05B

RB-050109-1

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Gasoline Range Organics    | ND     | 0.10      |
| Surr: 1,4-Difluorobenzene  | 90.2   | 60-155    |
| Surr: 4-Bromofluorobenzene | 103.9  | 50-158    |

### **Laboratory Control Sample (LCS)**

RunID:

HP P 090508A-5014430

Units:

mg/L

Analysis Date:

05/08/2009 4:43

Analyst:

: CLJ

| Analyte                    | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------------------------|----------------|--------|---------------------|----------------|----------------|
| Gasoline Range Organics    | 1.00           | 1.03   | 103                 | 42             | 136            |
| Surr: 1,4-Difluorobenzene  | 0.100          | 0.101  | 101                 | 60             | 155            |
| Surr: 4-Bromofluorobenzene | 0.100          | 0.107  | 107                 | 50             | 158            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050042-26

RunID:

HP\_P\_090508A-5014436

Units:

mg/L

Analysis Date:

05/08/2009 8:30

Analyst:

CLJ

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Gasoline Range Organics    | 4.30             | 10                   | 11.9         | 75.9             | 10                    | 12.2          | 79.4              | 2.90  | 36           | 22           | 174           |
| Surr: 1,4-Difluorobenzene  | ND               | 1                    | 0.983        | 98.3             | 1                     | 0.986         | 98.6              | 0.274 | 30           | 60           | 155           |
| Surr: 4-Bromofluorobenzene | ND               | 1                    | 1.07         | 107              | 1                     | 1.06          | 106               | 1.08  | 30           | 50           | 158           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 38



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

**Brown & Caldwell** 

Analysis: Method:

RunID:

Mercury, Total SW7471A

BJ-Fracmaster 128125

WorkOrder:

09050065

Lab Batch ID:

90001

Method Blank

Units:

mg/Kg

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

HGLD\_090505A-5007425

05/05/2009 14:38

Analyst: F\_S 09050065-01C

MW-6-54-55'

Preparation Date:

05/05/2009 12:00

Prep By: F\_S Method SW7471A

| Analyte | Result | Rep Limit |
|---------|--------|-----------|
| Mercury | ND     | 0.03      |

#### Laboratory Control Sample (LCS)

RunID:

HGLD 090505A-5007426

Units:

mg/Kg

Analysis Date:

05/05/2009 14:40

F S Analyst:

Preparation Date: 05/05/2009 12:00 Prep By: F\_S Method SW7471A

| Analyte | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------|----------------|--------|---------------------|----------------|----------------|
| Mercury | 3.600          | 3.815  | 106.0               | 68             | 132            |

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050065-01

RunID:

HGLD\_090505A-5007428

Units:

mg/Kg

Analysis Date:

05/05/2009 14:49

Analyst: F\_S

Preparation Date:

05/05/2009 12:00

Prep By: F\_S Method SW7471A

| Analyte | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|---------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Mercury | ND               | 0.3                  | 0.3355       | 111.8            | 0.3                   | 0.3237        | 107.9             | 3.597 | 20           | 75           | 125           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 39

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

RunID:

Metals by Method 6010B, Total

SW6010B

WorkOrder:

09050065

Lab Batch ID:

90112a

Method Blank

Units:

Lab Sample ID

Client Sample ID

Analysis Date:

ICP2\_090516A-5023407

05/16/2009 23:49

Analyst:

EG

09050065-01C

Samples in Analytical Batch:

MW-6-54-55'

Preparation Date:

05/08/2009 10:00

AB1 Method SW3050B Ргер Ву:

mg/Kg

| Analyte   | Result | Rep Limit |
|-----------|--------|-----------|
| Arsenic   | ND     | 0.5       |
| Barium    | ND     | 0.5       |
| Cadmium   | ND     | 0.5       |
| Calcium   | ND     | 10        |
| Chromium  | ND     | 0.5       |
| Lead      | ND     | 0.5       |
| Magnesium | ND     | 10        |
| Potassium | ND     | 50        |
| Selenium  | ND     | 0.5       |
| Silver    | _ ND   | 0.5       |
| Sodium    | ND     | 10        |

#### Laboratory Control Sample (LCS)

RunID:

ICP2\_090516A-5023408

Units:

mg/Kg

Analysis Date:

05/16/2009 23:53

EG Analyst:

Preparation Date:

05/08/2009 10:00

Prep By: AB1 Method SW3050B

| Analyte   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------|----------------|--------|---------------------|----------------|----------------|
| Arsenic   | 80.90          | 78.58  | 97.13               | 79             | 121            |
| Barium    | 156.0          | 157.4  | 100.9               | 82             | 119            |
| Cadmium   | 233.0          | 211.6  | 90.82               | 81             | 119            |
| Calcium   | 4320           | 4141   | 95.86               | 79             | 121            |
| Chromium  | 60.80          | 61.67  | 101.4               | 78             | 121            |
| Lead      | 76.80          | 71.12  | 92.60               | 81             | 120            |
| Magnesium | 2220           | 2122   | 95.59               | 77             | 123            |
| Potassium | 2380           | 2293   | 96.34               | 71             | 129            |
| Selenium  | 82.90          | 76.84  | 92.69               | 76             | 124            |
| Silver    | 80.00          | 79.17  | 98.96               | 61             | 139            |
| Sodium    | 456.0          | 470.5  | 103.2               | 56             | 144            |

## Post Digestion Spike (PDS) / Post Digestion Spike Duplicate (PDSD)

Sample Spiked:

09050317-01

RunID:

ICP2\_090516A-5023413

Units:

mg/kg-dry

EG

Analysis Date: Qualifiers:

05/17/2009 0:13

Analyst:

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

ND/U - Not Detected at the Reporting Limit

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 40

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

Metals by Method 6010B, Total

Method:

SW6010B

WorkOrder:

09050065

Lab Batch ID:

90112a

| Analyte   | Sample<br>Result | PDS<br>Spike<br>Added | PDS<br>Result | PDS %<br>Recovery | PDSD<br>Spike<br>Added | PDSD<br>Result | PDSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------|------------------|-----------------------|---------------|-------------------|------------------------|----------------|--------------------|--------|--------------|--------------|---------------|
| Barium    | 57.7             | 2123.4                | 2423          | 111.4             | 2123.4                 | 2438           | 112.1              | 0.6116 | 20           | 75           | 125           |
| Potassium | ND               | 21234                 | 23540         | 107.3             | 21234                  | 23470          | 107.0              | 0.2710 | 20           | 75           | 125           |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050317-01

ICP2 090516A-5023410

Units:

mg/kg-dry

Analysis Date:

RunID:

05/17/2009 0:01

Analyst: EG

Preparation Date: 05/08/2009 10:00

Prep By: AB1 Method SW3050B

| Analyte           | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Arsenic           | ND               | 106.2                | 126.7        | 110.8            | 106.2                 | 124.4         | 108.7             | 1.776 | 20           | 75           | 125           |
| Barium            | 57.70            | 106.2                | 201.7        | 135.6 *          | 106.2                 | 197.3         | 131.4 *           | 2.235 | 20           | 75           | 125           |
| Cadmium           | ND               | 106.2                | 122.1        | 115.0            | 106.2                 | 119.2         | 112.3             | 2.376 | 20           | 75           | 125           |
| lcium             | 962.5            | 106.2                | 1101         | N/C              | 106.2                 | 1072          | N/C               | N/C   | 20           | 75           | 125           |
| salcium<br>romium | 38.77            | 106.2                | 158.4        | 112.7            | 106.2                 | 155.1         | 109.6             | 2.100 | 20           | 75           | 125           |
| Lead              | 63.50            | 106.2                | 191.1        | 120.2            | 106.2                 | 185.6         | 115.0             | 2.931 | 20           | 75           | 125           |
| Magnesium         | 2348             | 106.2                | 3214         | N/C              | 106.2                 | 3114          | N/C               | N/C   | 20           | 75           | 125           |
| Potassium         | ND               | 1062                 | 2336         | 149.8 *          | 1062                  | 2297          | 146.2 *           | 1.650 | 20           | 75           | 125           |
| Selenium          | ND               | 106.2                | 120.3        | 113.3            | 106.2                 | 117.3         | 110.5             | 2.502 | 20           | 75           | 125           |
| Silver            | ND               | 106.2                | 125.0        | 117.7            | 106.2                 | 122.3         | 115.2             | 2.147 | 20           | 75           | 125           |
| Sodium            | 490.0            | 106.2                | 606.6        | N/C              | 106.2                 | 575.8         | N/C               | N/C   | 20           | 75           | 125           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 41

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



05/08/2009 10:32

#### HOUSTON LABORATORY

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

BJ-Fracmaster 128125

Analysis:

RuniD:

Analysis Date:

Semivolatile Organics by Method 8270C

Method: SW8270C WorkOrder:

09050065

Lab Batch ID:

89968

Method Blank

R\_090508B-5011969

Units: Analyst:

Prep By:

ug/L E\_R

N M Method SW3510C

Lab Sample ID 09050065-03D

Samples in Analytical Batch:

Client Sample ID RB-043009-1

09050065-04D

09050065-05D

MW-6 RB-050109-1

| Preparation Date: | 05/04/2009 15:05 |
|-------------------|------------------|
| <del></del>       | Analyte          |

| Analyte                     | Result     | Rep Limit |
|-----------------------------|------------|-----------|
| 1,2,4-Trichlorobenzene      | ND         | 5.0       |
| 1,2-Dichlorobenzene         | ND         | 5.0       |
| 1,2-Diphenylhydrazine       | ND         | 10        |
| 1,3-Dichlorobenzene         | ND         | 5.0       |
| 1,4-Dichlorobenzene         | ND         | 5.0       |
| 2,4,5-Trichlorophenol       | ND         | 10        |
| 2,4,6-Trichlorophenol       | ND         | 5.0       |
| 2,4-Dichlorophenol          | ND         | 5.0       |
| 2,4-Dimethylphenol          | ND         | 5.0       |
| 2,4-Dinitrophenol           | ND         | 25        |
| 2,4-Dinitrotoluene          | ND         | 5.0       |
| 2,6-Dinitrotoluene          | ND         | 5.0       |
| 2-Chloronaphthalene         | ND         | 5.0       |
| 2-Chlorophenol              | ND         | 5.0       |
| 2-Methylnaphthalene         | ND         | 5.0       |
| 2-Nitroaniline              | ND         | 25        |
| 2-Nitrophenol               | ND         | 5.0       |
| 3,3'-Dichlorobenzidine      | ND         | 10        |
| 3-Nitroaniline              | ND         | 25        |
| 4,6-Dinitro-2-methylphenol  | ND         | 25        |
| 4-Bromophenyl phenyl ether  | ND         | 5.0       |
| 4-Chloro-3-methylphenol     | ND         | 5.0       |
| 4-Chloroaniline             | ND         | 5.0       |
| 4-Chlorophenyl phenyl ether | ND         | 5.0       |
| 4-Nitroaniline              | ND         | 25        |
| 4-Nitrophenol               | ND         | 25        |
| Acenaphthene                | ND         | 5.0       |
| Acenaphthylene              | ND         | 5.0       |
| Aniline                     | ND         | 5.0       |
| Anthracene                  | ND         | 5.0       |
| Benz(a)anthracene           | ND         | 5.0       |
| Benzo(a)pyrene              | ND         | 5.0       |
| Benzo(b)fluoranthene        | ND         | 5.0       |
| Benzo(g,h,i)perylene        | ND         | 5.0       |
| Benzo(k)fluoranthene        | ND         | 5.0       |
| Benzoic acid                | ND         | 25        |
| Benzyl alcohol              | ND         | 5.0       |
| Bis(2-chloroethoxy)methane  | <u>N</u> D | 5.0       |
| Bis(2-chloroethyl)ether     | ND         |           |
| Bis(2-chloroisopropyl)ether | ND         |           |
| Bis(2-ethylhexyl)phthalate  | ND         | 5.0       |
| Butyl benzyl phthalate      | ND         | 5.0       |
| Carbazole                   | ND         | 5.0       |
| Chrysene                    | ND ND      | 5.0       |
| Dibenz(a,h)anthracene       | ND         | 5.0       |
| Dibenzofuran                | ND         | 5.0       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

MI - Matrix Interference

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 42

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

Semivolatile Organics by Method 8270C

Method:

SW8270C

WorkOrder:

09050065

Lab Batch ID:

89968

#### Method Blank

RuniD:

R\_090508B-5011969

Units:

ug/L

Analysis Date:

05/08/2009 10:32

Analyst:

 $E_R$ 

Preparation Date:

05/04/2009 15:05

Prep By: N\_M Method SW3510C

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 5.0       |
| Dimethyl phthalate         | ND     | 5.0       |
| Di-n-butyl phthalate       | ND     | 5.0       |
| Di-n-octyl phthalate       | ND     | 5.0       |
| Fluoranthene               | ND.    | 5.0       |
| Fluorene                   | ND     | 5.0       |
| Hexachlorobenzene          | ND     | 5.0       |
| Hexachlorobutadiene        | ND     | 5.0       |
| Hexachlorocyclopentadiene  | ND     | 5.0       |
| Hexachloroethane           | ND     | 5.0       |
| Indeno(1,2,3-cd)pyrene     | ND     | 5.0       |
| Isophorone                 | ND     | 5.0       |
| Naphthalene                | ND     | 5.0       |
| Nitrobenzene               | ND.    | 5.0       |
| N-Nitrosodi-n-propylamine  | ND     | 5.0       |
| N-Nitrosodiphenylamine     | ND     | 5.0       |
| Pentachlorophenol          | ND     | 25        |
| Phenanthrene               | ND     | 5.0       |
| Phenol                     | ND     | 5.0       |
| Pyrene                     | ND     | 5.0       |
| Pyridine                   | ND.    | 5.0       |
| 2-Methylphenol             | ND.    | 5.0       |
| 3 & 4-Methylphenol         | ND     | 5.0       |
| Surr: 2,4,6-Tribromophenol | 111.6  | 10-123    |
| Surr: 2-Fluorobiphenyl     | 78.2   | 23-116    |
| Surr: 2-Fluorophenol       | 98.7   | 16-110    |
| Surr: Nitrobenzene-d5      | 68.6   | 21-114    |
| Surr: Phenol-d5            | 104.4  | 10-110    |
| Surr: Terphenyl-d14        | 88.4   | 22-141    |

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09041007-02

R\_090508B-5011971

Units:

Analysis Date:

RunID:

05/08/2009 14:03

Analyst:

E R

Preparation Date:

05/04/2009 15:05

Prep By: N\_M Method SW3510C

ug/L

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 43

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.







8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

Semivolatile Organics by Method 8270C

WorkOrder:

09050065

Lab Batch ID:

89968

| Method: SW8270C             |                  |                      |              |                  |                       |               | Lab Batch II      | D: 899 | 89           |              |               |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
| 1,2,4-Trichlorobenzene      | ND               | 25                   | 19.3         | 77.2             | 25                    | 19.3          | 77.2              | 0      | 39           | 10           | 142           |
| 1,2-Dichlorobenzene         | ND               | 25                   | 19.3         | 77.2             | 25                    | 19.2          | 76.8              | 0.519  | 50           | 20           | 150           |
| 1,2-Diphenylhydrazine       | ND               | 25                   | 18.7         | 74.8             | 25                    | 18.9          | 75.6              | 1.06   | 50           | 10           | 251           |
| 1,3-Dichlorobenzene         | ND               | 25                   | 18.3         | 73.2             | 25                    | 18.6          | 74.4              | 1.63   | 50           | 20           | 150           |
| 1,4-Dichlorobenzene         | ND               | 25                   | 18.4         | 73.6             | 25                    | 18.6          | 74.4              | 1.08   | 45           | 20           | 150           |
| 2,4,5-Trichlorophenol       | ND               | 25.                  | 19.8         | 79.2             | 25                    | 19.4          | 77.6              | 2.04   | 50           | 30           | 150           |
| 2,4,6-Trichlorophenol       | ND               | 25                   | 21.5         | 86.0             | 25                    | 21.0          | 84.0              | 2.35   | 50           | 30           | 150           |
| 2,4-Dichlorophenol          | ND               | 25                   | 19.8         | 79.2             | 25                    | 19.0          | 76.0              | 4.12   | 50           | 30           | 150           |
| 2,4-Dimethylphenol          | ND               | 25                   | 19.0         | 76.0             | 25                    | 18.3          | 73.2              | 3.75   | 50           | 32           | 140           |
| 2,4-Dinitrophenol           | ND               | 25                   | 19.9         | 79.6             | 25                    | 17.5          | 70.0              | 12.8   | 50           | 10           | 160           |
| 2,4-Dinitrotoluene          | ND               | 25                   | 21.4         | 85.6             | 25                    | 20.8          | 83.2              | 2.84   | 50           | 30           | 150           |
| 2,6-Dinitrotoluene          | ND               | 25                   | 20.6         | 82.4             | 25                    | 20.4          | 81.6              | 0.976  | 50           | 30           | 150           |
| 2-Chloronaphthalene         | ND               | 25                   | 20.5         | 82.0             | 25                    | 20.4          | 81.6              | 0.489  | 50           | 30           | 150           |
| 2-Chlorophenol              | ND               | 25                   | 19.8         | 79.2             | 25                    | 20.2          | 80.8              | 2.00   | 40           | 23           | 134           |
| 2-Methylnaphthalene         | ND               | 25                   | 19.9         | 79.6             | 25                    | 19.9          | 79.6              | 0      | 50           | 20           | 170           |
| 2-Nitroaniline              | ND               | 25                   | 19.3         | 77.2             | 25                    | 18.8          | 75.2              | 2.62   | 50           | 20           | 160           |
| 2-Nitrophenol               | ND               | 25                   | 20.3         | 81.2             | 25                    | 19.9          | 79.6              | 1.99   | 50           | 29           | 182           |
| 3'-Dichlorobenzidine        | ND               | 25                   | 18.8         | 75.2             | 25                    | 18.8          | 75.2              | 0      | 50           | 30           | 200           |
| Nitroaniline                | ND               | 25                   | 16.9         | 67.6             | 25                    | 17.0          | 68.0              | 0.590  | 50           | 20           | 160           |
| 4,6-Dinitro-2-methylphenol  | ND               | 25                   | 18.4         | 73.6             | 25                    | 18.2          | 72.8              | 1.09   | 50           | 10           | 160           |
| 4-Bromophenyl phenyl ether  | ND               | 25                   | 19.3         | 77.2             | 25                    | 19.2          | 76.8              | 0.519  | 50           | 30           | 150           |
| 4-Chloro-3-methylphenol     | ND               | 25                   | 20.9         | 83.6             | 25                    | 20.5          | 82.0              | 1.93   | 42           | 25           | 160           |
| 4-Chloroaniline             | ND               | 25                   | 14.0         | 56.0             | 25                    | 13.1          | 52.4              | 6.64   | 50           | 20           | 160           |
| 4-Chlorophenyl phenyl ether | ND               | 25                   | 20.4         | 81.6             | 25                    | 20.3          | 81.2              | 0.491  | 50           | 25           | 158           |
| 4-Nitroaniline              | ND               | 25                   | 18.9         | 75.6             | 25                    | 18.7          | 74.8              | 1.06   | 50           | 20           | 160           |
| 4-Nitrophenol               | ND               | 25                   | 10.2         | 40.8             | 25                    | 10.3          | 41.2              | 0.976  | 50           | 10           | 132           |
| Acenaphthene                | ND               | 25                   | 19.6         | 78.4             | 25                    | 19.8          | 79.2              | 1.02   | 31           | 30           | 150           |
| Acenaphthylene              | ND               | 25                   | 20.5         | 82.0             | 25                    | 20.4          | 81.6              | 0.489  | 50           | 33           | 250           |
| Aniline                     | ND               | 50                   | 0            | 0 *              | 50                    | 0             | 0 *               | 0      | 50           | 10           | 135           |
| Anthracene                  | ND               | 25                   | 20.0         | 80.0             | 25                    | 20.3          | 81.2              | 1.49   | 50           | 27           | 133           |
| Benz(a)anthracene           | ND               | 25                   | 19.1         | 76.4             | 25                    | 18.9          | 75.6              | 1.05   | 50           | 33           | 143           |
| Benzo(a)pyrene              | ND               | 25                   | 16.5         | 66.0             | 25                    | 16.3          | 65.2              | 1.22   | 50           | 17           | 163           |
| Benzo(b)fluoranthene        | ND               | 25                   | 18.2         | 72.8             | 25                    | 17.0          | 68.0              | 6.82   | 50           | 24           | 159           |
| Benzo(g,h,i)perylene        | ND               | 25                   | 18.1         | 72.4             | 25                    | 18.2          | 72.8              | 0.551  | 50           | 30           | 160           |
| Benzo(k)fluoranthene        | ND               | 25                   | 16.7         | 66.8             |                       | 17.8          | 71.2              | 6.38   | 50           | 11           | 162           |
| Benzoic acid                | ND               | 25                   | 22.8         | 91.2             | 25                    | 21.7          | 86.8              | 4.94   | 50           | 10           | 400           |
| Benzyl alcohol              | ND               | 25                   | 17.0         | 68.0             | 25                    | 15.5          | 62.0              | 9.23   | 50           | 30           | 160           |
| Bis(2-chloroethoxy)methane  | ND               | 25                   | 19.0         | 76.0             | 25                    | 18.4          | 73.6              | 3.21   | 50           | 33           | 184           |
| Bis(2-chloroethyl)ether     | ND               | 25                   | 19.3         | 77.2             | 25                    | 19.3          | 77.2              | 0      | 50           | 12           | 158           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 44

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

Semivolatile Organics by Method 8270C

RunID:

SW8270C Method:

WorkOrder:

09050065

Lab Batch ID:

89968

### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09041007-02

R\_090508B-5011971

Units:

ug/L

Analysis Date:

05/08/2009 14:03

Analyst: E\_R

Preparation Date:

05/04/2009 15:05

Prep By: N M Method SW3510C

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limi |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|--------------|
| Bis(2-chloroisopropyl)ether | ND               | 25                   | 20.2         | 80.8             | 25                    | 20.3          | 81.2              | 0.494 | 50           | 20           | 16           |
| Bis (2-ethylhexyl)phthalate | ND               | 25                   | 16.7         | 66.8             | 25                    | 16.3          | 65.2              | 2.42  | 50           | 10           | 15           |
| Butyl benzyl phthalate      | ND               | 25                   | 17.6         | 70.4             | 25                    | 17.5          | 70.0              | 0.570 | 50           | 30           | 16           |
| Carbazole                   | ND               | 25                   | 19.9         | 79.6             | 25                    | 19.9          | 79.6              | 0     | 50           | 30           | 15           |
| Chrysene                    | ND               | 25                   | 19.0         | 76.0             | 25                    | 19.0          | 76.0              | 0     | 50           | 17           | 16           |
| Dibenz(a,h)anthracene       | ND               | 25                   | 17.6         | 70.4             | 25                    | 18.6          | 74.4              | 5.52  | 50           | 30           | 16           |
| Dibenzofuran                | ND               | 25                   | 20.7         | 82.8             | 25                    | 20.6          | 82.4              | 0.484 | 50           | 30           | 15           |
| Diethyl phthalate           | ND               | 25                   | 19.4         | 77.6             | 25                    | 19.4          | 77.6              | 0     | 50           | 30           | 16           |
| Dimethyl phthalate          | ND               | 25                   | 20.0         | 80.0             | 25                    | 20.0          | 80.0              | 0     | 50           | 30           | 10           |
| Di-n-butyl phthalate        | ND               | 25                   | 19.1         | 76.4             | 25                    | 18.7          | 74.8              | 2.12  | 50           | 30           | 16           |
| -n-octyl phthalate          | ND               | 25                   | 16.8         | 67.2             | 25                    | 17.1          | 68.4              | 1.77  | 50           | . 20         | 1            |
| Joranthene                  | ND               | 25                   | 20.5         | 82.0             | 25                    | 21.0          | 84.0              | 2.41  | 50           | 26           | 1            |
| Fluorene                    | ND               | 25                   | 20.0         | 80.0             | 25                    | 20.2          | 80.8              | 0.995 | 50           | 30           | 1            |
| Hexachlorobenzene           | ND               | 25                   | 19.8         | 79.2             | 25                    | 19.7          | 78.8              | 0.506 | 50           | 20           | 1            |
| Hexachlorobutadiene         | ND               | 25                   | 18.0         | 72.0             | 25                    | 17.7          | 70.8              | 1.68  | 50           | 20           | 1            |
| Hexachlorocyclopentadiene   | ND               | 25                   | 24.8         | 99.2             | 25                    | 24.4          | 97.6              | 1.63  | 50           | 10           | 1            |
| Hexachloroethane            | ND               | 25                   | 16.7         | 66.8             | 25                    | 17.0          | 68.0              | 1.78  | 50           | 10           | 1            |
| Indeno(1,2,3-cd)pyrene      | ND               | 25                   | 20.6         | 82.4             | 25                    | 20.3          | 81.2              | 1.47  | 50           | 30           | 1            |
| Isophorone                  | ND               | 25                   | 19.8         | 79.2             | 25                    | 19.6          | 78.4              | 1.02  | 50           | 21           | 1            |
| Naphthalene                 | ND               | 25                   | 20.3         | 81.2             | 25                    | 20.2          | 80.8              | 0.494 | 50           | 21           | 1            |
| Nitrobenzene                | ND               | 25                   | 18.2         | 72.8             | 25                    | 17.9          | 71.6              | 1.66  | 50           | 20           | _ 1          |
| N-Nitrosodi-n-propylamine   | ND               | 25                   | 18.3         | 73.2             | 25                    | 18.4          | 73.6              | 0.545 | 38           | 30           | 1            |
| N-Nitrosodiphenylamine      | ND               | 50                   | 47.8         | 95.6             | 50                    | 48.2          | 96.4              | 0.833 | 50           | 30           | 1            |
| Pentachlorophenol           | ND               | 25                   | 19.9         | 79.6             | 25                    | 19.3          | 77.2              | 3.06  | 50           | 14           | 1            |
| Phenanthrene                | ND               | 25                   | 19.8         | 79.2             | 25                    | 19.9          | 79.6              | 0.504 | 50           | 10           | 1            |
| Phenol                      | ND               | 25                   | 11.2         | 44.8             | 25                    | 11.2          | 44.8              | 0     | <u> </u>     |              | 1            |
| Pyrene                      | ND               | 25                   | 19.0         | ļ                | 25                    | 18.6          | 74.4              | 2.13  | <u> </u>     |              | 1            |
| Pyridine                    | ND               | 50                   | 6.26         | . 12.5           | 50                    | 5.96          | 11.9              | 4.91  | 50           | 10           | 1            |
| 2-Methylphenol              | ND               | 25                   | 19.2         | 76.8             | 25                    | 19.1          | 76.4              | 0.522 | 50           | 30           | 1            |
| 3 & 4-Methylphenol          | ND               | 25                   | 16.5         | 66.0             | 25                    | 16.0          | 64.0              | 3.08  | 50           | 10           | 1            |
| Surr: 2,4,6-Tribromophenol  | ND               | 75                   | 77           | 103              | 75                    | <b>7</b> 5.0  | 100               | 2.63  | 30           | 10           | 1            |
| Surr: 2-Fluorobiphenyl      | ND               | 50                   | 35           | 70.0             | 50                    | 34.9          | 69.8              | 0.286 | 30           | 23           | 1            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 45

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

## **Brown & Caldwell BJ-Fracmaster 128125**

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09050065

Lab Batch ID:

89968

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09041007-02

RunID:

R 090508B-5011971

Units:

ug/L

Analysis Date:

05/08/2009 14:03

Analyst:

E\_R

Preparation Date:

05/04/2009 15:05

Prep By: N M Method SW3510C

| Analyte               | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Surr: 2-Fluorophenol  | ND               | 75                   | 49.5         | 66.0             | 75                    | 48.6          | 64.8              | 1.83  | 30           | 16           | 110           |
| Surr: Nitrobenzene-d5 | ND               | 50                   | 32           | 64.0             | 50                    | 32.2          | 64.4              | 0.623 | 30           | 21           | 114           |
| Surr: Phenol-d5       | ND               | 75                   | 39.4         | 52.5             | 75                    | 39.4          | 52.5              | 0     | 30           | 10           | 110           |
| Surr: Terphenyl-d14   | ND               | 50                   | 29.9         | 59.8             | 50                    | 29.6          | 59.2              | 1.01  | 30           | 22           | 141           |



Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution \* - Recovery Outside Advisable QC Limits

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 46

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901



## **Brown & Caldwell**

Analysis:

RunID:

Semivolatile Organics by Method 8270C

Method:

SW8270C

05/06/2009 15:27

BJ-Fracmaster 128125

WorkOrder:

09050065

Lab Batch ID:

90048

## Method Blank

ug/kg

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date: Preparation Date:

H\_090513B-5017953

05/13/2009 10:00

GY Analyst: Prep By:

Units:

09050065-01E QMT Method SW3550C

MW-6-54-55'

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| 1,2,4-Trichlorobenzene      | ND     | 330       |
| 1,2-Dichlorobenzene         | ND     | 330       |
| 1,2-Diphenylhydrazine       | ND     | 330       |
| 1,3-Dichlorobenzene         | ND     | 330       |
| 1,4-Dichlorobenzene         | ND     | 330       |
| 2,4,5-Trichlorophenol       | ND     | 800       |
| 2,4,6-Trichlorophenol       | ND     | 330       |
| 2,4-Dichlorophenol          | ND     | 330       |
| 2,4-Dimethylphenol          | ND     | 330       |
| 2,4-Dinitrophenol           | ND     | 800       |
| 2,4-Dinitrotoluene          | ND     | 800       |
| 2,6-Dinitrotoluene          | ND     | 330       |
| 2-Chloronaphthalene         | ND     | 330       |
| 2-Chlorophenol              | ND     | 330       |
| 2-Methylnaphthalene         | ND     | 330       |
| 2-Nitroaniline              | ND     | 800       |
| 2-Nitrophenol               | ND     | 330       |
| 3,3'-Dichlorobenzidine      | ND     | 330       |
| 3-Nitroaniline              | ND     | 800       |
| 4,6-Dinitro-2-methylphenol  | ND     | 800       |
| 4-Bromophenyl phenyl ether  | ND     | 330       |
| 4-Chloro-3-methylphenol     | ND     | 330       |
| 4-Chloroaniline             | ND     | 330       |
| 4-Chlorophenyl phenyl ether | ND     | 330       |
| 4-Nitroaniline              | ND     | 800       |
| 4-Nitrophenol               | ND     | 800       |
| Acenaphthene                | ND     | 330       |
| Acenaphthylene              | ND     | 330       |
| Aniline                     | ND     | 330       |
| Anthracene                  | ND     | 330       |
| Benz(a)anthracene           | ND     | 330       |
| Benzo(a)pyrene              | ND     | 330       |
| Benzo(b)fluoranthene        | ND     | 330       |
| Benzo(g,h,i)perylene        | ND     | 330       |
| Benzo(k)fluoranthene        | ND.    | 330       |
| Benzoic acid                | ND     | 1600      |
| Benzyl alcohol              | ND ND  | 330       |
| Bis(2-chloroethoxy)methane  | ND     | 330       |
| Bis(2-chloroethyl)ether     | ND     | 330       |
|                             |        |           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

ND

ND

ND

ND

ND

ND

ND

330

330

330

330

330

330

330

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

Bis(2-chloroisopropyl)ether

Bis(2-ethylhexyl)phthalate

Butyl benzyl phthalate

Dibenz(a,h)anthracene

Carbazole

Chrysene

Dibenzofuran

09050065 Page 47

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

BJ-Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09050065

Lab Batch ID:

90048

#### Method Blank

H\_090513B-5017953 RunID:

Units:

ug/kg

Analysis Date:

05/13/2009 10:00

Analyst:

GY

Preparation Date:

05/06/2009 15:27

Prep By:

QMT Method SW3550C

| Analyte                    | Result | Rep Limit |
|----------------------------|--------|-----------|
| Diethyl phthalate          | ND     | 330       |
| Dimethyl phthalate         | ND     | 330       |
| Di-n-butyl phthalate       | ND ND  | 330       |
| Di-n-octyl phthalate       | ND     | 330       |
| Fluoranthene               | ND     | 330       |
| Fluorene                   | ND     | 330       |
| Hexachlorobenzene          | ND     | 330       |
| Hexachlorobutadiene        | ND.    | 330       |
| Hexachlorocyclopentadiene  | ND     | 330       |
| Hexachloroethane           | ND.    | 330       |
| Indeno(1,2,3-cd)pyrene     | ND     | 330       |
| Isophorone                 | ND     | 330       |
| Naphthalene                | ND.    | 330       |
| Nitrobenzene               | ND     | 330       |
| N-Nitrosodi-n-propylamine  | ND     | 330       |
| N-Nitrosodiphenylamine     | ND     | 330       |
| Pentachlorophenol          | ND     | 800       |
| Phenanthrene               | ND     | 330       |
| Phenol                     | ND     | 330       |
| Pyrene                     | ND     | 330       |
| Pyridine                   | ND ND  | 330       |
| 2-Methylphenol             | ND     | 330       |
| 3 & 4-Methylphenol         | ND     | 330       |
| Surr: 2,4,6-Tribromophenol | 90.4   | 19-135    |
| Surr: 2-Fluorobiphenyl     | 67.1   | 15-140    |
| Surr: 2-Fluorophenol       | 88.8   | 15-122    |
| Surr: Nitrobenzene-d5      | 69.4   | 10-134    |
| Surr: Phenol-d5            | 94.4   | 10-123    |
| Surr: Terphenyl-d14        | 70.6   | 18-166    |

#### Laboratory Control Sample (LCS)

RunID:

H\_090513B-5017954

Units:

ug/kg

Analysis Date:

05/13/2009 10:29

GY Analyst:

Preparation Date: 05/06/2009 15:27 Prep By: QMT Method SW3550C

| Analyte                | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,2,4-Trichlorobenzene | 850            | 384    | 45.2                | 34             | 116            |
| 1,2-Dichlorobenzene    | 850            | 402    | 47.3                | 32             | 129            |
| 1,2-Diphenylhydrazine  | 850            | 464    | 54.6                | 10             | 256            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 48

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09050065

Lab Batch ID:

90048

#### **Laboratory Control Sample (LCS)**

RunID:

H\_090513B-5017954

Units:

ug/kg

Analysis Date:

05/13/2009 10:29

Analyst: GΥ

Preparation Date:

05/06/2009 15:27

Prep By: QMT Method SW3550C

| Analyte                         | Spike<br>Added | Result       | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------------|----------------|--------------|---------------------|----------------|----------------|
| 1,3-Dichlorobenzene             | 850            | 393          | 46.2                | 10             | 172            |
| 1,4-Dichlorobenzene             | 850            | 398          | 46.8                | 20             | 124            |
| 2,4,5-Trichlorophenol           | 850            | 391          | 46.0                | 40             | 150            |
| 2,4,6-Trichlorophenol           | 850            | 382          | 44.9                | 37             | 144            |
| 2,4-Dichlorophenol              | 850            | 373          | 43.9                | 39             | 13             |
| 2,4-Dimethylphenol              | 850            | 413          | 48.6                | 32             | 119            |
| 2,4-Dinitrophenol               | 850            | 266          | 31.3                | 10             | 19             |
| 2,4-Dinitrotoluene              | 850            | 404          | 47.5                | 30             | 150            |
| 2,6-Dinitrotoluene              | 850            | 413          | 48.6                | 30             | 150            |
| 2-Chloronaphthalene             | 850            | 506          | 59.5                | 20             | 17:            |
| 2-Chlorophenol                  | 850            | 416          | 48.9                | 23             | 134            |
| 2-Methylnaphthalene             | 850            | 410          | 48.2                | 30             | 13:            |
| 2-Nitroaniline                  | 850            | 417          | 49.1                | 20             | 17             |
| 2-Nitrophenol                   | 850            | 395          | 46.5                | 29             | 18             |
| 3,3'-Dichlorobenzidine          | 850            | 338          | 39.8                | 10             | 26             |
| 3-Nitroaniline                  | 850            | 406          | 47.8                | 20             | 17             |
| 4,6-Dinitro-2-methylphenol      | 850            | 310          | 36.5                | 10             | 18             |
| 4-Bromophenyl phenyl ether      | 850            | 423          | 49.8                | 20             | 17             |
| 4-Chloro-3-methylphenol         | 850            | 413          | 48.6                | 22             | 14             |
| 4-Chloroaniline                 | 850            | 533          | 62.7                | 20             | 17             |
| 4-Chlorophenyl phenyl ether     | 850            | 399          | 46.9                | 25             | 15             |
| 4-Nitroaniline                  | 850            | 376          | 44.2                | 20             | 17             |
| 4-Nitrophenol                   | 850            | 312          | 36.7                | 10             | 13             |
| Acenaphthene                    | 850            | 401          | 47.2                | 30             | 16             |
| Acenaphthylene                  | 850            | 413          | 48.6                | 10             | 15             |
| Aniline                         | 1700           | 860          | 50.6                | 10             | 16             |
| Anthracene                      | 850            | 435          | 51.2                | 27             | 13             |
| Benz(a)anthracene               | 850            | 414          | 48.7                | 33             | 14             |
| Benzo(a)pyrene                  | 850            | 362          | 42.6                | 17             | 16             |
| Benzo(b)fluoranthene            | 850            | 409          | 48.1                | 24             | 15             |
| Benzo(g,h,i)perylene            | 850            | 421          | 49.5                | 10             | 21             |
| Benzo(k)fluoranthene            | 850            | 413          | 48.6                | 11             | 16             |
| Benzoic acid                    | 850            | 471          | 55.4                | 10             | 45             |
| Benzyl alcohol                  | 850            | 458          | 53.9                | 30             | 16             |
| Detected at the Reporting Limit | N.A.I          | - Matrix Int | orforonno           |                |                |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 49

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09050065

Lab Batch ID:

90048

#### **Laboratory Control Sample (LCS)**

RunID:

H\_090513B-5017954

Units:

ug/kg Analyst: GΥ

Analysis Date: Preparation Date:

05/13/2009 10:29 05/06/2009 15:27

Prep By: QMT Method SW3550C

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| Bis(2-chloroethoxy)methane  | 850            | 408    | 48.0                | 33             | 184            |
| Bis(2-chloroethyl)ether     | 850            | 434    | 51.1                | 28             | 158            |
| Bis(2-chloroisopropyl)ether | 850            | 447    | 52.6                | 36             | 166            |
| Bis(2-ethylhexyl)phthalate  | 850            | 374    | 44.0                | 10             | 158            |
| Butyl benzyl phthalate      | 850            | 408    | 48.0                | 10             | 152            |
| Carbazole                   | 850            | 413    | 48.6                | 45             | 135            |
| Chrysene                    | 850            | 411    | 48.4                | 17             | 168            |
| Dibenz(a,h)anthracene       | 850            | 397    | 46.7                | 10             | 227            |
| Dibenzofuran                | 850            | 415    | 48.8                | 30             | 160            |
| Diethyl phthalate           | 850            | 397    | 46.7                | 10             | 160            |
| Dimethyl phthalate          | 850            | 402    | 47.3                | 10             | 112            |
| Di-n-butyl phthalate        | 850            | 401    | 47.2                | 40             | 132            |
| Di-n-octyl phthalate        | 850            | 360    | 42.4                | 10             | 146            |
| Fluoranthene                | 850            | 431    | 50.7                | 26             | 137            |
| Fluorene                    | 850            | 399    | 46.9                | 35             | 135            |
| Hexachlorobenzene           | 850            | 425    | 50.0                | 10             | 152            |
| Hexachlorobutadiene         | 850            | 365    | 42.9                | 20             | 140            |
| Hexachlorocyclopentadiene   | 850            | 578    | 68.0                | 10             | 152            |
| Hexachloroethane            | 850            | 389    | 45.8                | 25             | 118            |
| Indeno(1,2,3-cd)pyrene      | 850            | 412    | 48.5                | 10             | 171            |
| Isophorone                  | 850            | 440    | 51.8                | 21             | 196            |
| Naphthalene                 | 850            | 416    | 48.9                | 21             | 133            |
| Nitrobenzene                | 850            | 404    | 47.5                | 35             | 180            |
| N-Nitrosodi-n-propylamine   | 850            | 396    | 46.6                | 10             | 230            |
| N-Nitrosodiphenylamine      | 1700           | 1040   | 61.2                | 30             | 160            |
| Pentachlorophenol           | 850            | 147    | 17.3                | 14             | 176            |
| Phenanthrene                | 850            | 420    | 49.4                | 35             | 135            |
| Phenol                      | 850            | 455    | 53.5                | 44             | 120            |
| Pyrene                      | 850            | 438    | 51.5                | 34             | 138            |
| Pyridine                    | 1700           | 741    | 43.6                | 10             | 150            |
| 2-Methylphenol              | 850            | 436    | 51.3                | 40             | 160            |
| 3 & 4-Methylphenol          | 850            | 396    | 46.6                | 40             | 160            |
| Surr: 2,4,6-Tribromophenol  | 2500           | 1580   | 63.2                | 19             | 135            |
| Surr: 2-Fluorobiphenyl      | 1700           | 807    | 47.5                | 15             | 140            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 50

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

Semivolatile Organics by Method 8270C

Method: SW8270C WorkOrder:

09050065

Lab Batch ID:

90048

#### **Laboratory Control Sample (LCS)**

RunID:

H\_090513B-5017954

Units:

Analysis Date:

05/13/2009 10:29

GΥ Analyst:

ug/kg

Preparation Date: 05/06/2009 15:27 Prep By:

QMT Method SW3550C

| Analyte               | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------|----------------|--------|---------------------|----------------|----------------|
| Surr: 2-Fluorophenol  | 2500           | 1660   | 66.4                | 15             | 122            |
| Surr: Nitrobenzene-d5 | 1700           | 837    | 49.2                | 32             | 153            |
| Surr: Phenol-d5       | 2500           | 1720   | 68.8                | 10             | 123            |
| Surr: Terphenyl-d14   | 1700           | 816    | 48.0                | 18             | 166            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050091-01

RunID:

H 090508E-5017905

Units:

ug/kg

Analysis Date:

05/08/2009 20:15

Analyst: GΥ

Preparation Date: 05/06/2009 15:27

QMT Method SW3550C Prep By:

| Analyte                | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| 1,2,4-Trichlorobenzene | ND               | 850                  | 437          | 51.4             | 850                   | 292           | 34.4              | 39.8 * | 28           | 34           | 116           |
| 1,2-Dichlorobenzene    | ND               | 850                  | 443          | 52.1             | 850                   | 329           | 38.7              | 29.5   | 60           | 32           | 129           |
| 1,2-Diphenylhydrazine  | ND               | 850                  | 500          | 58.8             | 850                   | 326           | 38.4              | 42.1   | 60           | 10           | 256           |
| 1,3-Dichlorobenzene    | ND               | 850                  | 417          | 49.1             | 850                   | 318           | 37.4              | 26.9   | 60           | 10           | 17:           |
| 1,4-Dichlorobenzene    | ND               | 850                  | 425          | 50.0             | 850                   | 314           | 36.9              | 30.0 * | 28           | 20           | 124           |
| 2,4,5-Trichlorophenol  | ND               | 850                  | 477          | 56.1             | 850                   | 297           | 34.9 *            | 46.5   | 60           | 40           | 150           |
| 2,4,6-Trichlorophenol  | ND               | 850                  | 448          | 52.7             | 850                   | 303           | 35.6 *            | 38.6   | 60           | 37           | 144           |
| 2,4-Dichlorophenol     | ND               | 850                  | 429          | 50.5             | 850                   | 283           | 33.3 *            | 41.0   | 60           | 39           | 13            |
| 2,4-Dimethylphenol     | ND               | 850                  | 458          | 53.9             | 850                   | 303           | 35.6              | 40.7   | 60           | 32           | 119           |
| 2,4-Dinitrophenol      | ND               | 850                  | 0            | 0 *              | 850                   | 0             | 0 *               | 0      | 60           | 10           | 19            |
| 2,4-Dinitrotoluene     | ND               | 850                  | 485          | 57.1             | 850                   | 301           | 35.4              | 46.8   | 50           | 30           | 150           |
| 2,6-Dinitrotoluene     | ND               | 850                  | 470          | 55.3             | 850                   | 292           | 34.4              | 46.7   | 60           | 30           | 15            |
| 2-Chloronaphthalene    | ND               | 850                  | 486          | 57.2             | 850                   | 335           | 39.4              | 36.8   | 60           | 20           | 17:           |
| 2-Chlorophenol         | ND               | 850                  | 465          | 54.7             | 850                   | 327           | 38.5              | 34.8   | 40           | 23           | 13            |
| 2-Methylnaphthalene    | ND               | 850                  | 476          | 56.0             | 850                   | 318           | 37.4              | 39.8   | 60           | 30           | 13            |
| 2-Nitroaniline         | ND               | 850                  | 478          | 56.2             | 850                   | 307           | 36.1              | 43.6   | 60           | 20           | 17            |
| 2-Nitrophenol          | ND               | 850                  | 434          | 51.1             | 850                   | 296           | 34.8              | 37.8   | 60           | 29           | 18            |
| 3,3'-Dichlorobenzidine | ND               | 850                  | 451          | 53.1             | 850                   | 271           | 31.9              | 49.9   | 60           | 10           | 26            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 51

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Semivolatile Organics by Method 8270C

RunID:

SW8270C

WorkOrder:

09050065

Lab Batch ID:

90048

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050091-01

H\_090508E-5017905 Units:

ug/kg

Analysis Date: Preparation Date:

05/08/2009 20:15 05/06/2009 15:27

GΥ Analyst:

Prep By: QMT Method SW3550C

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| 3-Nitroaniline              | ND               | 850                  | 441          | 51.9             | 850                   | 267           | 31.4              | 49.2   | 60           | 20           | 17            |
| 4,6-Dinitro-2-methylphenol  | ND               | 850                  | 43.9         | 5.16 *           | 850                   | 27.8          | 3.27 *            | 44.9   | 60           | 10           | 18            |
| 4-Bromophenyl phenyl ether  | ND               | 850                  | 459          | 54.0             | 850                   | 298           | 35.1              | 42.5   | 60           | 20           | 17            |
| 4-Chloro-3-methylphenol     | ND               | 850                  | 501          | 58.9             | 850                   | 311           | 36.6              | 46.8 * | 42           | 22           | 14            |
| 4-Chloroaniline             | ND               | 850                  | 561          | 66.0             | 850                   | 353           | 41.5              | 45.5   | 60           | 20           | 17            |
| 4-Chlorophenyl phenyl ether | ND               | 850                  | 447          | 52.6             | 850                   | 305           | 35.9              | 37.8   | 60           | 25           | 15            |
| 4-Nitroaniline              | ND               | 850                  | 448          | 52.7             | 850                   | 274           | 32.2              | 48.2   | 60           | 20           | 17            |
| 4-Nitrophenol               | ND               | 850                  | 480          | 56.5             | 850                   | 243           | 28.6              | 65.6 * | 50           | 10           | 13            |
| Acenaphthene                | ND               | 850                  | 459          | 54.0             | 850                   | 303           | 35.6              | 40.9 * | 31           | 30           | 16            |
| Acenaphthylene              | ND               | 850                  | 464          | 54.6             | 850                   | 312           | 36.7              | 39.2   | 50           | 10           | 15            |
| Spiline                     | ND               | 1700                 | 911          | 53.6             | 1700                  | 631           | 37.1              | 36.3   | 60           | 10           | 16            |
| thracene                    | ND               | 850                  | 493          | 58.0             | 850                   | 303           | 35.6              | 47.7   | 50           | 27           | 1:            |
| Benz(a)anthracene           | ND               | 850                  | 522          | 61.4             | 850                   | 321           | 37.8              | 47.7   | 50           | 33           | 1.            |
| Benzo(a)pyrene              | ND               | 850                  | 452          | 53.2             | 850                   | 282           | 33.2              | 46.3   | 60           | 17           | 1             |
| Benzo(b)fluoranthene        | ND               | 850                  | 479          | 56.4             | 850                   | 304           | 35.8              | 44.7   | 60           | 24           | 1             |
| Benzo(g,h,i)perylene        | ND               | 850                  | 468          | 55.1             | 850                   | 286           | 33.6              | 48.3   | 60           | 10           | 2             |
| Benzo(k)fluoranthene        | ND               | 850                  | 514          | 60.5             | 850                   | 310           | 36.5              | 49.5   | 60           | 11           | 10            |
| Benzoic acid                | ND               | 850                  | 0            | 0 *              | 850                   | 0             | 0 *               | 0      | 60           | 10           | 4:            |
| Benzyl alcohol              | ND               | 850                  | 453          | 53.3             | 850                   | 290           | 34.1              | 43.9   | 60           | 30           | 1             |
| Bis(2-chloroethoxy)methane  | ND               | 850                  | 461          | 54.2             | 850                   | 302           | 35.5              | 41.7   | 60           | 33           | 1             |
| Bis(2-chloroethyl)ether     | ND               | 850                  | 474          | 55.8             | 850                   | 323           | 38.0              | 37.9   | 60           | 28           | 1:            |
| Bis(2-chloroisopropyl)ether | ND               | 850                  | 484          | 56.9             | 850                   | 346           | 40.7              | 33.3   | 60           | 36           | 1             |
| Bis(2-ethylhexyl)phthalate  | ND               | 850                  | 534          | 62.8             | 850                   | 317           | 37.3              | 51.0   | 60           | 10           | 1             |
| Butyl benzyl phthalate      | ND               | 850                  | 529          | 62.2             | 850                   | 326           | 38.4              | 47.5   | 60           | 10           | 1             |
| Carbazole                   | ND               | 850                  | 491          | 57.8             | 850                   | 301           | 35.4 *            | 48.0   | 60           | 45           | 1             |
| Chrysene                    | ND               | 850                  | 508          | 59.8             | 850                   | 318           | 37.4              | 46.0   | 60           | 17           | 1             |
| Dibenz(a,h)anthracene       | ND               | 850                  | 479          | 56.4             | 850                   | 278           | 32.7              | 53.1   | 60           | 10           | 2             |
| Dibenzofuran                | ND               | 850                  | 462          | 54.4             | 850                   | 309           | 36.4 *            | 39.7   | 60           | 45           | 1             |
| Diethyl phthalate           | ND               | 850                  | 466          | 54.8             | 850                   | 299           | 35.2              | 43.7   | 60           | 10           | 1             |
| Dimethyl phthalate          | ND               | 850                  | 471          | 55.4             | 850                   | 306           | 36.0              | 42.5   | 60           | 10           | 1             |
| Di-n-butyl phthalate        | ND               | 850                  | 516          | 60.7             | 850                   | 304           | 35.8 *            | 51.7   | 60           | 40           | 1             |
| Di-n-octyl phthalate        | ND               | 850                  | 518          | 60.9             | 850                   | 313           | 36.8              | 49.3   | 60           | 10           | 1             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 52

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis: Method:

Semivolatile Organics by Method 8270C

SW8270C

WorkOrder:

09050065

Lab Batch ID:

90048

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050091-01

RunID:

H\_090508E-5017905

Units:

ug/kg

Analysis Date:

05/08/2009 20:15

Analyst:

GY

Preparation Date: 05/06/2009 15:27

Prep By: QMT Method SW3550C

| Analyte                    | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Fluoranthene               | ND               | 850                  | 521          | 61.3             | 850                   | 328           | 38.6              | 45.5   | 60           | 26           | 137           |
| Fluorene                   | ND               | 850                  | 455          | 53.5             | 850                   | 304           | 35.8 *            | 39.8   | 60           | 45           | 135           |
| Hexachlorobenzene          | ND               | 850                  | 468          | 55.1             | 850                   | 292           | 34.4              | 46.3   | 60           | 10           | 152           |
| Hexachlorobutadiene        | ND               | 850                  | 424          | 49.9             | 850                   | 278           | 32.7              | 41.6   | 60           | 20           | 140           |
| Hexachlorocyclopentadiene  | ND               | 850                  | 460          | 54.1             | 850                   | 321           | 37.8              | 35.6   | 60           | 10           | 152           |
| Hexachloroethane           | ND               | 850                  | 433          | 50.9             | 850                   | 308           | 36.2              | 33.7   | 60           | 25           | 118           |
| Indeno(1,2,3-cd)pyrene     | ND               | 850                  | 466          | 54.8             | 850                   | 287           | 33.8              | 47.5   | 60           | 10           | 171           |
| Isophorone                 | ND               | 850                  | 505          | 59.4             | 850                   | 316           | 37.2              | 46.0   | 60           | 21           | 196           |
| Naphthalene                | ND               | 850                  | 461          | 54.2             | 850                   | 316           | 37.2              | 37.3   | 60           | 21           | 133           |
| Nitrobenzene               | ND               | 850                  | 436          | 51.3             | 850                   | 305           | 35.9              | 35.4   | 60           | 35           | 180           |
| Nitrosodi-n-propylamine    | ND               | 850                  | 483          | 56.8             | 850                   | 338           | 39.8              | 35.3   | 38           | 10           | 230           |
| Vitrosodiphenylamine       | ND               | 1700                 | 1160         | 68.2             | 1700                  | 739           | 43.5              | 44.3   | 60           | 30           | 160           |
| Pentachlorophenol          | ND               | 850                  | 219          | 25.8             | 850                   | 103           | 12.1 *            | 72.0 * | 50           | 14           | 176           |
| Phenanthrene               | ND               | 850                  | 476          | 56.0             | 850                   | 303           | 35.6 *            | 44.4   | 60           | 45           | 135           |
| Phenol                     | ND               | 850                  | 492          | 57.9             | 850                   | 350           | 41.2 *            | 33.7   | 42           | 44           | 120           |
| Pyrene                     | ND               | 850                  | 530          | 62.4             | 850                   | 325           | 38.2              | 48.0 * | 31           | 26           | 127           |
| Pyridine                   | ND               | 1700                 | 685          | 40.3             | 1700                  | 492           | 28.9              | 32.8   | 60           | 10           | 150           |
| 2-Methylphenol             | ND               | 850                  | 490          | 57.6             | 850                   | 349           | 41.1              | 33.6   | 60           | 40           | 160           |
| 3 & 4-Methylphenol         | ND               | 850                  | 445          | 52.4             | 850                   | ND            | 35.3 *            | 38.9   | 60           | 40           | 160           |
| Surr: 2,4,6-Tribromophenol | ND               | 2500                 | 1860         | 74.4             | 2500                  | 1140          | 45.6              | 48.0 * | 30           | 19           | 135           |
| Surr: 2-Fluorobiphenyl     | ND               | 1700                 | 884          | 52.0             | 1700                  | 599           | 35.2              | 38.4 * | 30           | 15           | 140           |
| Surr: 2-Fluorophenol       | ND               | 2500                 | 1700         | 68.0             | 2500                  | 1200          | 48.0              | 34.5 * | 30           | 15           | 122           |
| Surr: Nitrobenzene-d5      | ND               | 1700                 | 901          | 53.0             | 1700                  | 597           | 35.1              | 40.6 * | 30           | 10           | 134           |
| Surr: Phenol-d5            | ND               | 2500                 | 1860         | 74.4             | 2500                  | 1260          | 50.4              | 38.5 * | 30           | 10           | 123           |
| Surr: Terphenyl-d14        | ND               | 1700                 | 959          | 56.4             | 1700                  | 577           | 33.9              | 49.7 * | 30           | 18           | 166           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 53

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09050065

Lab Batch ID:

R272205

Method Blank

Units:

Analyst:

Samples in Analytical Batch:

RunID:

Analysis Date:

M\_090507E-5012044

05/07/2009 14:32

ug/kg :: TLE

Lab Sample ID

Client Sample ID

09050065-01A

MW-6-54-55'

| Analyte                     | Result | Rep Limi |
|-----------------------------|--------|----------|
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0      |
| 1,1,1-Trichloroethane       | ND     | 5.0      |
| 1,1,2,2-Tetrachloroethane   | ND     | 5.6      |
| 1,1,2-Trichloroethane       | ND     |          |
| 1,1-Dichloroethane          | ND     | 5.0      |
| 1,1-Dichloroethene          | ND     | 5.0      |
| 1,1-Dichloropropene         | ND     | 5.6      |
| 1,2,3-Trichlorobenzene      | ND     | 5.0      |
| 1,2,3-Trichloropropane      | ND     | 5.0      |
| 1,2,4-Trichlorobenzene      | ND     | 5.0      |
| 1,2,4-Trimethylbenzene      | ND     | 5.0      |
| 1,2-Dibromo-3-chloropropane | ND     | 5.0      |
| 1,2-Dibromoethane           | ND     | 5.4      |
| 1,2-Dichlorobenzene         | ND     | 5.0      |
| 1,2-Dichloroethane          | ND     |          |
| 1,2-Dichloropropane         | ND     |          |
| 1,3,5-Trimethylbenzene      | ND     |          |
| 1,3-Dichlorobenzene         | ND     |          |
| 1,3-Dichloropropane         | ND     |          |
| 1,4-Dichlorobenzene         | ND     |          |
| 2,2-Dichloropropane         | ND     |          |
| 2-Butanone                  | ND     |          |
| 2-Chloroethyl vinyl ether   | ND     | 19       |
| 2-Chlorotoluene             | ND     | 5.0      |
| 2-Hexanone                  | ND     | 1        |
| 4-Chlorotoluene             | ND     |          |
| 4-Isopropyltoluene          | ND     | 5.       |
| 4-Methyl-2-pentanone        | ND     |          |
| Acetone                     | ND     | 10       |
| Acrylonitrile               | ND     |          |
| Benzene                     | ND     | 5.       |
| Bromobenzene                | ND     |          |
| Bromochloromethane          | ND     |          |
| Bromodichloromethane        | ND     | 5.       |
| Bromoform                   | ND     | 5.       |
| Bromomethane                | ND     | 1        |
| Carbon disulfide            | ND     | 5.       |
| Carbon tetrachloride        | ND.    | 5.       |
| Chlorobenzene               | ND     | 5.       |
| Chloroethane                | ND ND  | 1        |
| Chloroform                  | ND     | 5.       |
| Chloromethane               | ND     | 1        |
| <u>Dibromochloromethane</u> | ND.    |          |
| Dibromomethane              | ND     | 5.       |
| Dichlorodifluoromethane     | ND     |          |
| Ethylbenzene                | ND     | 5.       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 54

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

09050065

Lab Batch ID:

R272205

#### Method Blank

RuniD: M\_090507E-5012044

Units:

ug/kg

Analysis Date:

05/07/2009 14:32

Analyst:

TLE

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND     | 5.0       |
| Toluene                     | ND.    | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | 10        |
| Vinyl chloride              | ND     | 10        |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND     | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND     | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5.0       |
| trans-1,3-Dichloropropene   | ND     | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes,Total               | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 87.4   | 64-115    |
| Surr: 4-Bromofluorobenzene  | 106.5  | 65-13     |
| Surr: Toluene-d8            | 95.5   | 75-136    |

## **Laboratory Control Sample (LCS)**

RunID:

Analysis Date:

M\_090507E-5012043 05/07/2009 12:31

Units: Analyst:

ug/kg TLE

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 20.3   | 102                 | 56             | 140            |
| 1,1,1-Trichloroethane     | 20.0           | 21.2   | 106                 | 58             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 19.9   | 99.3                | 52             | 139            |
| 1,1,2-Trichloroethane     | 20.0           | 20.2   | 101                 | 81             | 138            |
| 1,1-Dichloroethane        | 20.0           | 20.1   | 101                 | 56             | 137            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 55

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050065

Lab Batch ID:

### **Laboratory Control Sample (LCS)**

RunID:

M\_090507E-5012043

Units:

R272205

Analysis Date:

05/07/2009 12:31

Analysi

ug/kg

| t: TLE | _ | _  |    |
|--------|---|----|----|
|        | E | TL | t: |

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 16.2   | 81.0                | 56             | 13             |
| 1,1-Dichloropropene         | 20.0           | 21.2   | 106                 | 62             | 13             |
| 1,2,3-Trichlorobenzene      | 20.0           | 22.9   | 115                 | 53             | 14             |
| 1,2,3-Trichloropropane      | 20.0           | 19.9   | 99.3                | 44             | 14             |
| 1,2,4-Trichlorobenzene      | 20.0           | 21.9   | 109                 | 51             | 14             |
| 1,2,4-Trimethylbenzene      | 20.0           | 18.8   | 94.0                | 59             | 14             |
| 1,2-Dibromo-3-chloropropane | 20.0           | 19.2   | 96.2                | 53             | 14             |
| 1,2-Dibromoethane           | 20.0           | 20.8   | 104                 | 55)            | 13             |
| 1,2-Dichlorobenzene         | 20.0           | 20.1   | 101                 | 63             | 13             |
| 1,2-Dichloroethane          | 20.0           | 20.5   | 103                 | 56             | 13             |
| 1,2-Dichloropropane         | 20.0           | 21.1   | 106                 | 62             | 13             |
| 1,3,5-Trimethylbenzene      | 20.0           | 18.4   | 91.8                | 54             | 14             |
| 1,3-Dichlorobenzene         | 20.0           | 20.1   | 101                 | 66             | 13             |
| 1,3-Dichloropropane         | 20.0           | 19.6   | 98.0                | 59             | 13             |
| 1,4-Dichlorobenzene         | 20.0           | 19.9   | 99.5                | 61             | 14             |
| 2,2-Dichloropropane         | 20.0           | 19.4   | 97.2                | 55             | 13             |
| 2-Butanone                  | 20.0           | 25.0   | 125                 | 10             | 19             |
| 2-Chloroethyl vinyl ether   | 20.0           | 25.9   | 129                 | 10             | 18             |
| 2-Chlorotoluene             | 20.0           | 19.5   | 97.6                | 64             | 13             |
| 2-Hexanone                  | 20.0           | 19.8   | 98.8                | 18             | 18             |
| 4-Chlorotoluene             | 20.0           | 19.0   | 95.0                | 63             | 13             |
| 4-Isopropyltoluene          | 20.0           | 19.4   | 97.0                | 59             | 15             |
| 4-Methyl-2-pentanone        | 20.0           | 20.3   | 102                 | 10             | 16             |
| Acetone                     | 20.0           | 25.5   | 128                 | 10             | 20             |
| Acrylonitrile               | 20.0           | 19.8   | 98.9                | 38             | 16             |
| Benzene                     | 20.0           | 20.8   | 104                 | 64             | 13             |
| Bromobenzene                | 20.0           | 19.0   | 95.0                | 58             | 13             |
| Bromochloromethane          | 20.0           | 24.4   | 122                 | 66             | 12             |
| Bromodichloromethane        | 20.0           | 21.5   | 108                 | 59             | 1:             |
| Bromoform                   | 20.0           | 19.5   | 97.3                | 65             | 13             |
| Bromomethane                | 20.0           | 20.3   | 101                 | 40             | 13             |
| Carbon disulfide            | 20.0           | 18.1   | 90.4                | 53             | 13             |
| Carbon tetrachloride        | 20.0           | 19.2   | 96.1                | 61             | 13             |
| Chlorobenzene               | 20.0           | 21.2   | 106                 | 60             | 14             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 56

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050065

Lab Batch ID:

R272205

#### Laboratory Control Sample (LCS)

RunID:

M\_090507E-5012043

Units:

Analysis Date:

05/07/2009 12:31

Analyst:

ug/kg TLE

| Analyte                         | Spike<br>Added | Result       | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------------|----------------|--------------|---------------------|----------------|----------------|
| Chloroethane                    | 20.0           | 16.9         | 84.7                | 45             | 140            |
| Chloroform                      | 20.0           | 21.2         | 106                 | 64             | 131            |
| Chloromethane                   | 20.0           | 18.3         | 91.5                | 39             | 140            |
| Dibromochloromethane            | 20.0           | 19.4         | 97.1                | 54             | 138            |
| Dibromomethane                  | 20.0           | 23.1         | 115                 | 64             | 131            |
| Dichlorodifluoromethane         | 20.0           | 15.1         | 75.3                | 35             | 133            |
| Ethylbenzene                    | 20.0           | 20.9         | 104                 | 58             | 143            |
| Hexachlorobutadiene             | 20.0           | 25.0         | 125                 | 56             | 166            |
| Isopropylbenzene                | 20.0           | 18.5         | 92.3                | 58             | 133            |
| Methyl tert-butyl ether         | 40.0           | 41.8         | 104                 | 50             | 132            |
| Methylene chloride              | 20.0           | 18.9         | 94.6                | 52             | 144            |
| Naphthalene                     | 20.0           | 20.5         | 103                 | 51             | 139            |
| n-Butylbenzene                  | 20.0           | 19.3         | 96.5                | 59             | 164            |
| n-Propylbenzene                 | 20.0           | 18.7         | 93.6                | 57             | 140            |
| sec-Butylbenzene                | 20.0           | 19.2         | 95.9                | 63             | 146            |
| Styrene                         | 20.0           | 21.1         | 105                 | 57             | 134            |
| tert-Butylbenzene               | 20.0           | 18.6         | 93.2                | 57             | 144            |
| Tetrachloroethene               | 20.0           | 22.5         | 113                 | 41             | 156            |
| Toluene                         | 20.0           | 20.2         | 101                 | 63             | 139            |
| Trichloroethene                 | 20.0           | 23.6         | 118                 | 62             | 135            |
| Trichlorofluoromethane          | 20.0           | 17.2         | 85.9                | 53             | 140            |
| Vinyl acetate                   | 20.0           | 19.2         | 96.2                | 17             | 163            |
| Vinyl chloride                  | 20.0           | 19.3         | 96.6                | 45             | 148            |
| cis-1,2-Dichloroethene          | 20.0           | 23.4         | 117                 | 70             | 129            |
| cis-1,3-Dichloropropene         | 20.0           | 22.0         | 110                 | 58             | 132            |
| m,p-Xylene                      | 40.0           | 42.5         | 106                 | 64             | 137            |
| o-Xylene                        | 20.0           | 21.6         | 108                 | 64             | 143            |
| trans-1,2-Dichloroethene        | 20.0           | 22.8         | 114                 | 63             | 130            |
| trans-1,3-Dichloropropene       | 20.0           | 21.1         | 105                 | 58             | 128            |
| 1,2-Dichloroethene (total)      | 40.0           | 46.2         | 116                 | 63             | 130            |
| Xylenes,Total                   | 60.0           | 64.1         | 107                 | 64             | 143            |
| Surr: 1,2-Dichloroethane-d4     | 50.0           | 46.1         | 92.3                | 64             | 115            |
| Surr: 4-Bromofluorobenzene      | 50.0           | 52.8         | 106                 | 65             | 131            |
| Surr: Toluene-d8                | 50.0           | 47           | 94.0                | 75             | 136            |
| Detected at the Reporting Limit | MI             | - Matrix Int | erference           |                |                |

Qualifiers:

ND/U - No

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 57

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell BJ-Fracmaster 128125**

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

09050065

Lab Batch ID:

R272205

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050250-03

RunID:

M\_090507E-5012046

Units: ug/kg-dry

05/07/2009 16:03

TLE

Analysis Date: Preparation Date:

05/07/2009 11:01

Analyst:

E G Method SW5030B Prep By:

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 25.3                 | 20.6         | 81.5             | 25.3                  | 20.8          | 82.1              | 0.679 | 30           | 38           | 129           |
| 1,1,1-Trichloroethane       | ND               | 25.3                 | 27.7         | 109              | 25.3                  | 28.5          | 112               | 2.79  | 30           | 44           | 154           |
| 1,1,2,2-Tetrachloroethane   | ND               | 25.3                 | 14.6         | 57.8             | 25.3                  | 15.1          | 59.8              | 3.39  | 30           | 14           | 143           |
| 1,1,2-Trichloroethane       | ND               | 25.3                 | 17.0         | 67.1             | 25.3                  | 17.2          | 68.0              | 1.21  | 30           | 34           | 135           |
| 1,1-Dichloroethane          | ND               | 25.3                 | 24.8         | 98.1             | 25.3                  | 24.7          | 97.4              | 0.696 | 30           | 42           | 146           |
| 1,1-Dichloroethene          | . ND             | 25.3                 | 20.5         | 80.8             | 25.3                  | 18.7          | 73.7              | 9.15  | 22           | 39           | 168           |
| 1,1-Dichloropropene         | ND               | 25.3                 | 28.7         | 113              | 25.3                  | 29.0          | 115               | 1.12  | 30           | 42           | 156           |
| 1,2,3-Trichlorobenzene      | ND               | 25.3                 | 16.9         | 66.9             | 25.3                  | 17.6          | 69.4              | 3.68  | 30           | 10           | 125           |
| 3,3-Trichloropropane        | ND               | 25.3                 | 14.9         | 58.8             | 25.3                  | 15.5          | 61.4              | 4.39  | 30           | 10           | 154           |
| 4-Trichlorobenzene          | ND               | 25.3                 | 17.4         | 68.7             | 25.3                  | 18.0          | 71.1              | 3.55  | 30           | 10           | 128           |
| 1,2,4-Trimethylbenzene      | ND               | 25.3                 | 19.4         | 76.6             | 25.3                  | 19.6          | 77.6              | 1.25  | 30           | 22           | 139           |
| 1,2-Dibromo-3-chloropropane | ND               | 25.3                 | 14.1         | 55.8             | 25.3                  | 15.8          | 62.6              | 11.5  | 30           | 23           | 139           |
| 1,2-Dibromoethane           | ND               | 25.3                 | 16.3         | 64.4             | 25.3                  | 16.5          | 65.0              | 0.897 | 30           | 32           | 129           |
| 1,2-Dichlorobenzene         | ND               | 25.3                 | 17.4         | 68.6             | 25.3                  | 17.9          | 70.7              | 3.10  | 30           | 17           | 130           |
| 1,2-Dichloroethane          | ND               | 25.3                 | 19.3         | 76.1             | 25.3                  | 19.7          | 77.9              | 2.39  | 30           | 15           | 158           |
| 1,2-Dichloropropane         | ND               | 25.3                 | 23.1         | 91.1             | 25.3                  | 22.6          | 89.2              | 2.10  | 30           | 42           | 133           |
| 1,3,5-Trimethylbenzene      | ND               | 25.3                 | 20.2         | 79.7             | 25.3                  | 20.5          | 80.9              | 1.41  | 30           | 22           | 135           |
| 1,3-Dichlorobenzene         | ND               | 25.3                 | 19.2         | 75.8             | 25.3                  | 19.3          | 76.1              | 0.362 | 30           | 22           | 130           |
| 1,3-Dichloropropane         | ND               | 25.3                 | 16.4         | 64.7             | 25.3                  | 16.4          | 64.8              | 0.193 | 30           | 37           | 131           |
| 1,4-Dichlorobenzene         | ND               | 25.3                 | 18.2         | 71.8             | 25.3                  | 18.4          | 72.8              | 1.35  | 30           | 20           | 129           |
| 2,2-Dichloropropane         | ND               | 25.3                 | 25.0         | 98.8             | 25.3                  | 25.6          | 101               | 2.35  | 30           | 39           | 155           |
| 2-Butanone                  | ND               | 25.3                 | 25.5         | 101              | 25.3                  | 26.2          | 103               | 2.64  | 30           | 10           | 200           |
| 2-Chloroethyl vinyl ether   | ND               | 25.3                 | 15.3         | 60.5             | 25.3                  | 16.7          | 66.0              | 8.69  | 30           | 10           | 168           |
| 2-Chlorotoluene             | ND               | 25.3                 | 20.2         | 79.8             | 25.3                  | 20.5          | 80.9              | 1.47  | 30           | 30           | 133           |
| 2-Hexanone                  | ND               | 25.3                 | 14.6         | 57.6             | 25.3                  | 16.1          | 63.8              | 10.1  | 30           | 14           | 151           |
| 4-Chlorotoluene             | ND               | 25.3                 | 18.8         | 74.4             | 25.3                  | 19.0          | 75.0              | 0.870 | 30           | 24           | 133           |
| 4-Isopropyltoluene          | ND               | 25.3                 | 21.8         | 86.1             | 25.3                  | 22.1          | 87.4              | 1.50  | 30           | 17           | 143           |
| 4-Methyl-2-pentanone        | ND               | 25.3                 | 15.6         | 61.6             | 25.3                  | 16.9          | 66.9              | 8.20  | 30           | 10           | 176           |
| Acetone                     | ND               | 25.3                 | 26.9         | 106              | 25.3                  | 30.1          | 119               | 11.2  | 30           | 10           | 200           |
| Acrylonitrile               | ND               | 25.3                 | 17.8         | 70.4             | 25.3                  | 19.8          | 78.3              | 10.6  | 30           | 10           | 200           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 58

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054

(713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050065

Lab Batch ID:

R272205

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050250-03

RunID:

M\_090507E-5012046

Units:

ug/kg-dry

Analysis Date:

05/07/2009 16:03

Analyst:

TLE

Preparation Date: 05/07/2009 11:01

Prep By: E\_G Method SW5030B

| Analyte                 | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Benzene                 | ND               | 25.3                 | 25.3         | 99.8             | 25.3                  | 25.3          | 99.9              | 0.110 | 21           | 49           | 13            |
| Bromobenzene            | ND               | 25.3                 | 17.3         | 68.5             | 25.3                  | 17.5          | 69.0              | 0.829 | 30           | 29           | 12            |
| Bromochloromethane      | ND               | 25.3                 | 20.8         | 82.3             | 25.3                  | 21.3          | 83.9              | 2.02  | 30           | 27           | 14            |
| Bromodichloromethane    | ND               | 25.3                 | 21.4         | 84.4             | 25.3                  | 21.0          | 83.1              | 1.61  | 30           | 32           | 13            |
| Bromoform               | ND               | 25.3                 | 15.3         | 60.3             | 25.3                  | 15.7          | 62.0              | 2.85  | 30           | 27           | 12            |
| Bromomethane            | ND               | 25.3                 | 24.2         | 95.6             | 25.3                  | 23.6          | 93.2              | 2.64  | 30           | 32           | 14            |
| Carbon disulfide        | ND               | 25.3                 | 24.6         | 97.3             | 25.3                  | 24.2          | 95.4              | 1.96  | 30           | 25           | 16            |
| Carbon tetrachloride    | ND               | 25.3                 | 26.4         | 104              | 25.3                  | 26.4          | 104               | 0.216 | 30           | 48           | 15            |
| Chlorobenzene           | ND               | 25.3                 | 23.0         | 90.7             | 25.3                  | 22.6          | 89.3              | 1.54  | 21           | 38           | 13            |
| Chloroethane            | ND               | 25.3                 | 19.4         | 76.7             | 25.3                  | 21.2          | 83.8              | 8.88  | 30           | 29           | 16            |
| Noroform                | ND               | 25.3                 | 23.9         | 94.3             | 25.3                  | 24.4          | 96.5              | 2.27  | 30           | 34           | 15            |
| loromethane             | ND               | 25.3                 | 22.4         | 88.7             | 25.3                  | 23.4          | 92.6              | 4.34  | 30           | 31           | 15            |
| Dibromochloromethane    | ND               | 25.3                 | 17.1         | 67.6             | 25.3                  | 17.1          | 67.5              | 0.155 | 30           | 31           | 12            |
| Dibromomethane          | ND               | 25.3                 | 19.6         | 77.3             | 25.3                  | 20.3          | 80.2              | 3.69  | 30           | 30           | 14            |
| Dichlorodifluoromethane | ND               | 25.3                 | 20.9         | 82.4             | 25.3                  | 21.4          | 84.4              | 2.36  | 30           | 15           | 16            |
| Ethylbenzene            | ND               | 25.3                 | 25.2         | 99.3             | 25.3                  | 24.7          | 97.7              | 1.71  | 30           | 39           | 13            |
| Hexachlorobutadiene     | ND               | 25.3                 | 27.1         | 107              | 25.3                  | 27.9          | 110               | 2.92  | 30           | 10           | 14            |
| Isopropylbenzene        | ND               | 25.3                 | 23.0         | 90.7             | 25.3                  | 22.7          | 89.6              | 1.25  | 30           | 25           | 14            |
| Methyl tert-butyl ether | ND               | 50.6                 | 35.3         | 69.7             | 50.6                  | 36.6          | 72.3              | 3.71  | 30           | 19           | 14            |
| Methylene chloride      | ND               | 25.3                 | 15.7         | 61.9             | 25.3                  | 17.9          | 70.6              | 13.0  | 30           | 13           | 17            |
| Naphthalene             | ND               | 25.3                 | 13.1         | 51.8             | 25.3                  | 14.4          | 57.0              | 9.56  | 30           | 10           | 12            |
| n-Butylbenzene          | ND               | 25.3                 | 21.8         | 86.1             | 25.3                  | 22.1          | 87.1              | 1.14  | 30           | 10           | 15            |
| n-Propylbenzene         | ND               | 25.3                 | 21.7         | 85.6             | 25.3                  | 21.4          | 84.7              | 1.07  | 30           | 20           | 14            |
| sec-Butylbenzene        | ND               | 25.3                 | 22.2         | 87.8             | 25.3                  | 22.6          | 89.4              | 1.83  | 30           | 29           | 14            |
| Styrene                 | ND               | 25.3                 | 21.8         | 86.2             | 25.3                  | 21.5          | 85.0              | 1.37  | 30           | 28           | 13            |
| tert-Butylbenzene       | ND               | 25.3                 | 21.7         | 85.9             | 25.3                  | 22.0          | 87.0              | 1.29  | 30           | 26           | 14            |
| Tetrachloroethene       | ND               | 25.3                 | 27.5         | 109              | 25.3                  | 27.6          | 109               | 0.487 | 30           | 33           | 14            |
| Toluene                 | ND               | 25.3                 | 24.1         | 95.1             | 25.3                  | 24.2          | 95.5              | 0.435 | 21           | 49           | 1:            |
| Trichloroethene         | ND               | 25.3                 | 30.3         | 120              | 25.3                  | 30.2          | 119               | 0.494 | 24           | 51           | 14            |
| Trichlorofluoromethane  | ND               | 25.3                 | 23.4         | 92.4             | 25.3                  | 22.1          | 87.2              | 5.77  | 30           | 24           | 18            |
| Vinyl acetate           | ND               | 25.3                 | 14.3         | 56.4             | 25.3                  | 14.7          | 57.9              | 2.61  | 30           | 10           | 17            |
| Vinyl chloride          | ND               | 25.3                 | 27.6         | 109              | 25.3                  | 27.8          | 110               | 0.978 | 30           | 29           | 1             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 59

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

Volatile Organics by Method 8260B

Method: SW8260B WorkOrder:

09050065

Lab Batch ID:

R272205

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050250-03

RunID:

M\_090507E-5012046

Units:

ug/kg-dry

Analysis Date:

05/07/2009 16:03

Analyst: TLE

Preparation Date: 05/07/2009 11:01

Prep By: E G Method SW5030B

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| cis-1,2-Dichloroethene      | ND               | 25.3                 | 25.2         | 99.5             | 25.3                  | 23.5          | 92.7              | 7.12  | 30           | 38           | 151           |
| cis-1,3-Dichloropropene     | ND               | 25.3                 | 21.5         | 85.0             | 25.3                  | 21.7          | 85.6              | 0.663 | 30           | 31           | 13            |
| m,p-Xylene                  | ND               | 50.6                 | 50.1         | 99.0             | 50.6                  | 49.6          | 98.0              | 1.02  | 30           | 32           | 140           |
| o-Xylene                    | ND               | 25.3                 | 24.8         | 97.8             | 25.3                  | 24.0          | 94.7              | 3.19  | 30           | 36           | 142           |
| trans-1,2-Dichloroethene    | ND               | 25.3                 | 29.1         | 115              | 25.3                  | 29.2          | 115               | 0.152 | 30           | 41           | 153           |
| trans-1,3-Dichloropropene   | ND               | 25.3                 | 19.1         | 75.5             | 25.3                  | 19.2          | 75.7              | 0.271 | 30           | 27           | 128           |
| 1,2-Dichloroethene (total)  | ND               | 50.6                 | 54.3         | 107              | 50.6                  | 52.7          | 104               | 3.16  | 30           | 38           | 153           |
| Xylenes,Total               | ND               | 75.9                 | 74.9         | 98.6             | 75.9                  | 73.6          | 96.9              | 1.73  | 30           | 32           | 142           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 63.3                 | 57.8         | 91.3             | 63.3                  | 55.4          | 87.6              | 4.16  | 30           | 64           | 11:           |
| Surr: 4-Bromofluorobenzene  | ND               | 63.3                 | 70.7         | 112              | 63.3                  | 69.1          | 109               | 2.28  | 30           | 65           | 13            |
| Surr: Toluene-d8            | ND               | 63.3                 | 59.1         | 93.4             | 63.3                  | 58.3          | 92.2              | 1.29  | 30           | 75           | 130           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 60

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Volatile Organics by Method 8260B

05/08/2009 11:16

Method: SW8260B WorkOrder:

09050065

Lab Batch ID:

R272244

#### Method Blank

L\_090508A-5012600

Units: ug/L

Samples in Analytical Batch:

RunID: Analysis Date:

Preparation Date:

05/08/2009 11:16

Analyst: E G Prep By:

Method

09050065-03A 09050065-04A

Lab Sample ID

09050065-02A

FB-043009-1 RB-043009-1 MW-6

09050065-05A

RB-050109-1

Client Sample ID

09050065-06A 09050065-07A FB-050109-1 TB-043009-1

| Analyte                     | Result | Rep Limit                             |
|-----------------------------|--------|---------------------------------------|
| 1,1,1,2-Tetrachloroethane   | ND     | 5.0                                   |
| 1,1,1-Trichloroethane       | ND     | 5.0                                   |
| 1,1,2,2-Tetrachloroethane   | ND     | 5.0                                   |
| 1,1,2-Trichloroethane       | ND     | 5.0                                   |
| 1.1-Dichloroethane          | ND     |                                       |
| 1,1-Dichloroethene          | ND     | 5.0                                   |
| 1,1-Dichloropropene         | ND     |                                       |
| 1,2,3-Trichlorobenzene      | ND     | <del></del>                           |
| 1,2,3-Trichloropropane      | ND     | 5.0                                   |
| 1,2,4-Trichlorobenzene      | ND     | 5.0                                   |
| 1,2,4-Trimethylbenzene      | ND     | 5.0                                   |
| 1,2-Dibromo-3-chloropropane | ND     |                                       |
| 1,2-Dibromoethane           | ND     | · · · · · · · · · · · · · · · · · · · |
| 1,2-Dichlorobenzene         | ND     |                                       |
| 1.2-Dichloroethane          | ND     |                                       |
| 1,2-Dichloropropane         | ND     |                                       |
| 1,3,5-Trimethylbenzene      | ND     |                                       |
| 1,3-Dichlorobenzene         | ND     |                                       |
| 1,3-Dichloropropane         | ND     |                                       |
| 1,4-Dichlorobenzene         | ND     |                                       |
| 2,2-Dichloropropane         | ND     |                                       |
| 2-Butanone                  | ND     |                                       |
| 2-Chloroethyl vinyl ether   | ND     |                                       |
| 2-Chlorotoluene             | ND     |                                       |
| 2-Hexanone                  | ND     |                                       |
| 4-Chlorotoluene             | ND     |                                       |
| 4-Isopropyltoluene          | ND     |                                       |
| 4-Methyl-2-pentanone        | ND ND  |                                       |
| Acetone                     | ND     |                                       |
| Acrylonitrile               | ND     |                                       |
| Benzene                     | ND     |                                       |
| Bromobenzene                | ND ND  |                                       |
| Bromochloromethane          | ND     |                                       |
| Bromodichloromethane        | ND     |                                       |
| Bromoform                   | ND     |                                       |
| Bromomethane                | ND     | <del></del>                           |
| Carbon disulfide            | ND     |                                       |
| Carbon tetrachloride        | ND     |                                       |
| Chlorobenzene               | ND     |                                       |
| Chloroethane                | ND     | <del></del>                           |
| Chloroform                  | ND     |                                       |
| Chloromethane               | ND     |                                       |
| Dibromochloromethane        | ND     |                                       |
| Dibromomethane              | ND     | ·                                     |
| Dichlorodifluoromethane     | ND     |                                       |
| Ethylbenzene                | ND     |                                       |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

B/V - Analyte detected in the associated Method Blank

J - Estimated value between MDL and PQL

E - Estimated Value exceeds calibration curve

MI - Matrix Interference

D - Recovery Unreportable due to Dilution

\* - Recovery Outside Advisable QC Limits

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 61

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method:

SW8260B

WorkOrder:

09050065

Lab Batch ID:

R272244

#### Method Blank

RunID: L\_0905

L\_090508A-5012600

Units:

ug/L

Analysis Date:

e: 05/08/2009 11:16

Analyst:

 $E_G$ 

Preparation Date:

05/08/2009 11:16

Prep By:

Method

| Analyte                     | Result | Rep Limit |
|-----------------------------|--------|-----------|
| Hexachlorobutadiene         | ND     | 5.0       |
| Isopropylbenzene            | ND     | 5.0       |
| Methyl tert-butyl ether     | ND     | 5.0       |
| Methylene chloride          | ND     | 5.0       |
| Naphthalene                 | ND     | 5.0       |
| n-Butylbenzene              | ND     | 5.0       |
| n-Propylbenzene             | ND     | 5.0       |
| sec-Butylbenzene            | ND     | 5.0       |
| Styrene                     | ND     | 5.0       |
| tert-Butylbenzene           | ND     | 5.0       |
| Tetrachloroethene           | ND     | 5.0       |
| Toluene                     | ND     | 5.0       |
| Trichloroethene             | ND     | 5.0       |
| Trichlorofluoromethane      | ND     | 5.0       |
| Vinyl acetate               | ND     | 10        |
| Vinyl chloride              | ND     | 2.0       |
| cis-1,2-Dichloroethene      | ND     | 5.0       |
| cis-1,3-Dichloropropene     | ND ND  | 5.0       |
| m,p-Xylene                  | ND     | 5.0       |
| o-Xylene                    | ND     | 5.0       |
| trans-1,2-Dichloroethene    | ND     | 5,0       |
| trans-1,3-Dichloropropene   | ND.    | 5.0       |
| 1,2-Dichloroethene (total)  | ND     | 5.0       |
| Xylenes,Total               | ND     | 5.0       |
| Surr: 1,2-Dichloroethane-d4 | 107.8  | 78-116    |
| Surr: 4-Bromofluorobenzene  | 104.7  | 74-125    |
| Surr: Toluene-d8            | 108.1  | 82-118    |

## Laboratory Control Sample (LCS)

RunID:

L\_090508A-5012599

Units:

ug/L E G

Analysis Date:

Preparation Date:

05/08/2009 10:36 05/08/2009 10:36 Analyst:

Prep By:

Method

| Analyte                   | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1,1,2-Tetrachloroethane | 20.0           | 15.2   | 75.8                | 71             | 128            |
| 1,1,1-Trichloroethane     | 20.0           | 18.1   | 90.4                | 61             | 135            |
| 1,1,2,2-Tetrachloroethane | 20.0           | 19.4   | 96.9                | 60             | 133            |
| 1,1,2-Trichloroethane     | 20.0           | 19.5   | 97.5                | 77             | 127            |
| 1,1-Dichloroethane        | 20.0           | 20.3   | 101                 | 68             | 132            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 62

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.





8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell BJ-Fracmaster 128125**

Analysis: Method:

Volatile Organics by Method 8260B

SW8260B

WorkOrder: Lab Batch ID: 09050065

R272244

#### Laboratory Control Sample (LCS)

RunID:

L 090508A-5012599

Units:

ug/L

Analysis Date:

05/08/2009 10:36

Analyst:

E G

Preparation Date:

05/08/2009 10:36

Prep By:

Method

| Analyte                     | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------------|----------------|--------|---------------------|----------------|----------------|
| 1,1-Dichloroethene          | 20.0           | 20.0   | 100                 | 65             | 134            |
| 1,1-Dichloropropene         | 20.0           | 20.0   | 100                 | 68             | 126            |
| 1,2,3-Trichlorobenzene      | 20.0           | 16.3   | 81.4                | 36             | 154            |
| 1,2,3-Trichloropropane      | 20.0           | 18.3   | 91.4                | 38             | 153            |
| 1,2,4-Trichlorobenzene      | 20.0           | 15.4   | 77.0                | 69             | 144            |
| 1,2,4-Trimethylbenzene      | 20.0           | 17.7   | 88.7                | 64             | 128            |
| 1,2-Dibromo-3-chloropropane | 20.0           | 17.4   | 87.2                | 44             | 141            |
| 1,2-Dibromoethane           | 20.0           | 17.2   | 86.1                | 75             | 124            |
| 1,2-Dichlorobenzene .       | 20.0           | 16.7   | 83.4                | 68             | 124            |
| 1,2-Dichloroethane          | 20.0           | 18.1   | 90.6                | 61             | 138            |
| 1,2-Dichloropropane         | 20.0           | 20.3   | 102                 | 76             | 123            |
| 1,3,5-Trimethylbenzene      | 20.0           | 17.1   | 85.5                | 61             | 127            |
| 1,3-Dichlorobenzene         | 20.0           | 17.1   | 85.3                | 68             | 127            |
| 1,3-Dichloropropane         | 20.0           | 18.7   | 93.7                | 76             | 125            |
| 1,4-Dichlorobenzene         | 20.0           | 16.8   | 83.8                | 68             | 124            |
| 2,2-Dichloropropane         | 20.0           | 18.3   | 91.3                | 42             | 142            |
| 2-Butanone                  | 20.0           | 20.3   | 101                 | 22             | 183            |
| 2-Chloroethyl vinyl ether   | 20.0           | 23.6   | 118                 | 10             | 179            |
| 2-Chlorotoluene             | 20.0           | 18.3   | 91.4                | 64             | 132            |
| 2-Hexanone                  | 20.0           | 21.2   | 106                 | 31             | 178            |
| 4-Chlorotoluene             | 20.0           | 17.8   | 88.8                | 61             | 132            |
| 4-Isopropyltoluene          | 20.0           | 17.4   | 87.2                | 63             | 136            |
| 4-Methyl-2-pentanone        | 20.0           | 21.2   | 106                 | 10             | 159            |
| Acetone                     | 20.0           | 24.2   | 121                 | 10             | 200            |
| Acrylonitrile               | 20.0           | 24.8   | 124                 | 54             | 155            |
| Benzene                     | 20.0           | 18.6   | 93.2                | 74             | 123            |
| Bromobenzene                | 20.0           | 16.3   | 81.3                | 68             | 125            |
| Bromochloromethane          | 20.0           | 19.4   | 97.0                | 71             | 124            |
| Bromodichloromethane        | 20.0           | 16.8   | 84.1                | 72             | 128            |
| Bromoform                   | 20.0           | 24.1   | 121                 | 81             | 135            |
| Bromomethane                | 20.0           | 18.7   | 93.5                | 53             | 130            |
| Carbon disulfide            | 20.0           | 20.4   | 102                 | 41             | 143            |
| Carbon tetrachloride        | 20.0           | 14.4   | 71.9                | 59             | 142            |
| Chlorobenzene               | 20.0           | 16.9   | 84.4                | 75             | 125            |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 63

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell BJ-Fracmaster 128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050065

Lab Batch ID:

R272244

#### **Laboratory Control Sample (LCS)**

RunID:

L\_090508A-5012599

Units:

ug/L

Analysis Date:

05/08/2009 10:36

Analyst:

E\_G

Preparation Date:

05/08/2009 10:36

Prep By:

Method

| Analyte                         | Spike<br>Added | Result       | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|---------------------------------|----------------|--------------|---------------------|----------------|----------------|
| Chloroethane                    | 20.0           | 20.4         | 102                 | 60             | 134            |
| Chloroform                      | 20.0           | 19.2         | 95.8                | 71             | 127            |
| Chloromethane                   | 20.0           | 14.5         | 72.4                | 50             | 139            |
| Dibromochloromethane            | 20.0           | 14.7         | 73.5                | 65             | 130            |
| Dibromomethane                  | 20.0           | 18.6         | 92.8                | 79             | 124            |
| Dichlorodifluoromethane         | 20.0           | 14.0         | 69.8                | 22             | 162            |
| Ethylbenzene                    | 20.0           | 16.7         | 83.6                | 72             | 127            |
| Hexachlorobutadiene             | 20.0           | 14.9         | 74.5                | 45             | 152            |
| Isopropylbenzene                | 20.0           | 14.6         | 73.0                | 58             | 130            |
| Methyl tert-butyl ether         | 40.0           | 38.9         | 97.3                | 63             | 123            |
| Methylene chloride              | 20.0           | 20.4         | 102                 | 61             | 135            |
| Naphthalene                     | 20.0           | 17.8         | 88.9                | 33             | 148            |
| n-Butylbenzene                  | 20.0           | 19.9         | 99.3                | 62             | 136            |
| n-Propylbenzene                 | 20.0           | 17.1         | 85.5                | 57             | 131            |
| sec-Butylbenzene                | 20.0           | 18.8         | 94.0                | 63             | 131            |
| Styrene                         | 20.0           | 17.0         | 85.0                | 69             | 120            |
| tert-Butylbenzene               | 20.0           | 17.6         | 88.1                | 59             | 131            |
| Tetrachloroethene               | 20.0           | 17.3         | 86.3                | 45             | 173            |
| Toluene                         | 20.0           | 18.1         | 90.7                | 74             | 126            |
| Trichloroethene                 | 20.0           | 17.4         | 87.2                | 79             | 131            |
| Trichlorofluoromethane          | 20.0           | 17.1         | 85.3                | 49             | 153            |
| Vinyl acetate                   | 20.0           | 22.7         | 114                 | 10             | 167            |
| Vinyl chloride                  | 20.0           | 16.9         | 84.7                | 51             | 148            |
| cis-1,2-Dichloroethene          | 20.0           | 20.8         | 104                 | 71             | 128            |
| cis-1,3-Dichloropropene         | 20.0           | 17.4         | 86.9                | 67             | 128            |
| m,p-Xylene                      | 40.0           | 33.9         | 84.7                | 71             | 129            |
| o-Xylene                        | 20.0           | 17.2         | 86.0                | 74             | 130            |
| trans-1,2-Dichloroethene        | 20.0           | 19.9         | 99.7                | 66             | 128            |
| trans-1,3-Dichloropropene       | 20.0           | 15.5         | 77.7                | 60             | 128            |
| 1,2-Dichloroethene (total)      | 40.0           | 40.7         | 102                 | 66             | 128            |
| Xylenes,Total                   | 60.0           | 51.1         | 85.2                | 71             | 130            |
| Surr: 1,2-Dichloroethane-d4     | 50.0           | 53.2         | 106                 | 78             | 116            |
| Surr: 4-Bromofluorobenzene      | 50.0           | 52.4         | 105                 | 74             | 125            |
| Surr: Toluene-d8                | 50.0           | 53.5         | 107                 | 82             | 118            |
| Detected at the Reporting Limit | NAL            | - Matrix Int | erference           |                |                |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 64

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell BJ-Fracmaster 128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050065

Lab Batch ID:

R272244

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050065-04

RunID:

L 090508A-5012607

Units:

ug/L

Analysis Date:

05/08/2009 15:28

Analyst:

 $E_G$ 

| Analyte                     | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|-----------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| 1,1,1,2-Tetrachloroethane   | ND               | 20                   | 14.5         | 72.5             | 20                    | 14.8          | 74.0              | 2.08   | 20           | 68           | 12            |
| 1,1,1-Trichloroethane       | ND               | 20                   | 17.6         | 87.9             | 20                    | 17.5          | 87.7              | 0.290  | 20           | 69           | 12            |
| 1,1,2,2-Tetrachloroethane   | ND               | 20                   | 18.8         | 94.0             | 20                    | 19.6          | 98.2              | 4.33   | 20           | 69           | 13            |
| 1,1,2-Trichloroethane       | ND               | 20                   | 19.4         | 96.8             | 20                    | 19.4          | 97.0              | 0.232  | 20           | 75           | 12            |
| 1,1-Dichloroethane          | ND               | 20                   | 21.0         | 105              | 20                    | 20.8          | 104               | 1.29   | 20           | 65           | 12            |
| 1,1-Dichloroethene          | ND               | 20                   | 20.1         | 101              | 20                    | 19.7          | 98.7              | 1.92   | 22           | 61           | 13            |
| 1,1-Dichloropropene         | ND               | 20                   | 19.7         | 98.6             | 20                    | 19.5          | 97.4              | 1.24   | 20           | 69           | 12            |
| 1,2,3-Trichlorobenzene      | ND               | 20                   | 11.7         | 58.5             | 20                    | 14.0          | 69.9              | 17.8   | 20           | 53           | 12            |
| 2,3-Trichloropropane        | ND               | 20                   | 17.7         | 88.7             | 20                    | 18.2          | 91.0              | 2.54   | 20           | 79           | 12            |
| ,4-Trichlorobenzene         | ND               | 20                   | 11.6         | 57.8 *           | 20                    | 13.3          | 66.3              | 13.6   | 20           | 58           | 1             |
| 1,2,4-Trimethylbenzene      | ND               | 20                   | 16.3         | 81.7             | 20                    | 16.1          | 80.7              | 1.26   | 20           | 43           | 13            |
| 1,2-Dibromo-3-chloropropane | ND               | 20                   | 15.5         | 77.3             | 20                    | 17.3          | 86.7              | 11.4   | 20           | 46           | 1:            |
| 1,2-Dibromoethane           | ND               | 20                   | 17.0         | 85.0             | 20                    | 16.8          | 83.9              | 1.32   | 20           | 76           | 12            |
| 1,2-Dichlorobenzene         | ND               | 20                   | 15.7         | 78.4             | 20                    | 15.6          | 78.0              | 0.537  | 20           | 74           | 1             |
| 1,2-Dichloroethane          | ND               | 20                   | 18.6         | 93.2             | 20                    | 18.6          | 93.0              | 0.225  | 20           | 60           | 12            |
| 1,2-Dichloropropane         | ND               | 20                   | 20.3         | 101              | 20                    | 20.2          | 101               | 0.435  | 20           | 76           | 1             |
| 1,3,5-Trimethylbenzene      | ND               | 20                   | 16.3         | 81.5             | 20                    | 15.9          | 79.3              | 2.76   | 20           | 51           | 12            |
| 1,3-Dichlorobenzene         | ND               | 20                   | 16.1         | 80.7             | 20                    | 16.2          | 81.1              | 0.544  | 20           | 71           | 1             |
| 1,3-Dichloropropane         | ND               | 20                   | 18.6         | 93.0             | 20                    | 18.5          | 92.5              | 0.598  | 20           | 80           | 1             |
| 1,4-Dichlorobenzene         | ND               | 20                   | 15.9         | 79.7             | 20                    | 15.6          | 77.8              | 2.38   | 20           | 69           | 1             |
| 2,2-Dichloropropane         | ND               | 20                   | 16.5         | 82.7             | 20                    | 16.8          | 83.9              | 1.46   | 20           | 52           | 12            |
| 2-Butanone                  | ND               | 20                   | 21.8         | 109              | 20                    | 25.7          | 129               | 16.5   | 20           | 10           | 1:            |
| 2-Chloroethyl vinyl ether   | ND               | 20                   | 0            | 0 *              | 20                    | 0             | 0 *               | 0      | 20           | 10           | 18            |
| 2-Chlorotoluene             | ND               | 20                   | 17.8         | 88.8             | 20                    | 17.1          | 85.5              | 3.77   | 20           | 69           | 1             |
| 2-Hexanone                  | ND               | 20                   | 24.0         | 120              | 20                    | 25.0          | 125               | 3.89   | 20           | 10           | 1             |
| 4-Chlorotoluene             | ND               | 20                   | 17.2         | 85.9             | 20                    | 16.6          | 83.1              | 3.25   | 20           | 37           | 1             |
| 4-Isopropyltoluene          | ND               | 20                   | 15.3         | 76.7             | 20                    | 15.4          | 77.2              | 0.650  | 20           | 65           | 1             |
| 4-Methyl-2-pentanone        | ND               | 20                   | 21.7         | 108 *            | 20                    | 22.6          | 113 *             | 4.08   | 20           | 10           | 1             |
| Acetone                     | ND               | 20                   | 28.2         | 141              | 20                    | 39.0          | 195 *             | 32.0 * | 20           | 10           | 11            |
| Acrylonitrile               | ND               | 20                   | 22.4         | 112              | 20                    | 26.2          | 131               | 15.9   | 20           | 45           | 1             |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 65

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## Brown & Caldwell BJ-Fracmaster 128125

Analysis:

Volatile Organics by Method 8260B

Method: SW8260B

WorkOrder:

09050065

Lab Batch ID:

R272244

0.0297

1.39

15.1

2.77

2.63

1.16

0.472

2.78

1.87

1.27

1.90

1.76

1.60

16.2

0.945

67.3

99.9

104

81.8

86.7

77.6

83.2

78.3

79.9

74.0

86.2

82.0

83.7

116

88.4

20

20

20

20

20

20

20

20

20

20

24

21

20

20

20

57

10

70

42

82

73

76

58

66

71

80

82

74

66

45

124

200

134

140

112

108

110

152

120

130

117

121

138

135

143

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050065-04

RunID:

L\_090508A-5012607

Units:

ug/L

Analysis Date:

05/08/2009 15:28

Analyst: E G

Analyte Sample MS MS MS % MSD MSD MSD % **RPD** Low High RPD Result Spike Result Recovery Spike Result Recovery Limit Limit Added Added ND 20 18.3 0.510 70 91.5 20 18.2 91.0 22 124 Benzene ND 20 15.9 20 20 72 Bromobenzene 79.6 15.6 78.1 1.86 111 ND 20 17.2 20 Bromochloromethane 85.9 20 17.6 87.8 2.16 73 126 Bromodichloromethane ND 20 16.6 82.9 20 16.8 83.8 0.996 20 68 125 ND 20 21.4 20 44 Bromoform 107 20 22.1 111 3.37 132 Bromomethane ND 20 18.1 90.4 20 19.2 95.8 5.77 20 50 140 20 19.4 20 Carbon disulfide ND 96.8 20 19.4 97.2 0.443 46 143 ND 20 14.0 69.9 20 13.7 1.79 20 66 Carbon tetrachloride 68.7 126 20 Chlorobenzene ND 16.2 81.1 20 16.2 80.8 0.389 21 68 123 Chloroethane ND 20 20.2 101 20 21.1 106 4.24 20 59 134 ND 20 18.5 20 20 loroform 92.3 18.4 92.2 0.135 68 127 20 ND 16.9 20 20 51 oromethane 84.7 15.3 76.3 10.5 137 Dibromochloromethane ND 20 13.7 68.7 20 13.8 69.1 0.501 20 58 131 20 Dibromomethane ND 18.2 91.2 20 18.6 93.0 2.00 20 82 123 Dichlorodifluoromethane ND 20 13.7 68.3 20 20 35 13.5 67.3 1.45 143 Ethylbenzene ND 20 15.8 78.8 20 0.311 20 122 15.8 79.0 76 20 Hexachlorobutadiene ND 9.81 49.1 20 11.3 20 11.0 54.9 43 137

13.5

39.4

20.5

14.0

16.9

15.9

16.8

15.7

16.4

15.1

17.5

16.7

17.0

22.9

20.8

Vinyl chloride
Qualifiers:

Vinyl acetate

lsopropylbenzene

Methylene chloride

Naphthalene

Styrene

Toluene

n-Butylbenzene

n-Propylbenzene

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Trichlorofluoromethane

Methyl tert-butyl ether

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

20

40

20

20

20

20

20

20

20

20

20

20

20

20

20

13.5

40.0

20.7

16.4

17.3

15.5

16.6

15.7

16.0

14.8

17.2

16,4

16.7

23.3

17.7

67.3

98.6

103

70.2

84.3

79.7

84.2

78.6

82.2

75.4

87.3

83.6

85.2

114

104

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 66

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

ND

ND

ND

ND

NΩ

ND

ND

ND

ND

NΩ

ND

ND

NΓ

ND

ND

20

40

20

20

20

20

20

20

20

20

20

20

20

20

20



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

# Brown & Caldwell BJ-Fracmaster 128125

Analysis: Method: Volatile Organics by Method 8260B

SW8260B

WorkOrder:

09050065

Lab Batch ID:

R272244

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050065-04

RunID:

L\_090508A-5012607

12607 Units:

ug/L

Analysis Date:

05/08/2009 15:28

Analyst:

E\_G

| Analyte                     | Sample<br>Result | MS<br>Spike | MS<br>Result | MS %<br>Recovery | MSD<br>Spike | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD   | Low | High<br>Limit |
|-----------------------------|------------------|-------------|--------------|------------------|--------------|---------------|-------------------|--------|-------|-----|---------------|
|                             | Nesuit           | Added       | rvesuit      | Recovery         | Added        | Result        | Recovery          |        | Limit |     | LITTIK        |
| cis-1,2-Dichloroethene      | ND               | 20          | 19.8         | 99.2             | 20           | 19.9          | 99.4              | 0.156  | 20    | 67  | 132           |
| cis-1,3-Dichloropropene     | ND               | 20          | 16.0         | 79.8             | 20           | 16.5          | 82.7              | 3.61   | 20    | 67  | 116           |
| m,p-Xylene                  | ND               | 40          | 32.1         | 80.3             | 40           | 31.8          | 79.6              | 0.813  | 20    | 69  | 127           |
| o-Xylene                    | ND               | 20          | 16.5         | 82.3 *           | 20           | 16.4          | 82.2 *            | 0.0912 | 20    | 84  | 114           |
| trans-1,2-Dichloroethene    | ND               | 20          | 20.2         | 101              | 20           | 19.9          | 99.4              | 1.45   | 20    | 68  | 131           |
| trans-1,3-Dichloropropene   | ND               | 20          | 14.2         | 70.8             | 20           | 14.7          | 73.4              | 3.62   | 20    | 56  | 131           |
| 1,2-Dichloroethene (total)  | ND               | 40          | 40           | 100              | 40           | 40            | 99                | 0.65   | 20    | 67  | 132           |
| Xylenes, Total              | ND               | 60          | 48.6         | 80.9             | 60           | 48.2          | 80.5              | 0.568  | 20    | 69  | 127           |
| Surr: 1,2-Dichloroethane-d4 | ND               | 50          | 52.2         | 104              | 50           | 53.4          | 107               | 2.15   | 30    | 78  | 116           |
| Surr: 4-Bromofluorobenzene  | ND               | 50          | 51.6         | 103              | 50           | 52.6          | 105               | 1.80   | 30    | 74  | 125           |
| Surr: Toluene-d8            | ND               | 50          | 53.3         | 107              | 50           | 52.7          | 105               | 1.07   | 30    | 82  | 118           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

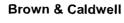
D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.


TNTC - Too numerous to count

09050065 Page 67

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

ion Chromatography

Method:

E300.0

BJ-Fracmaster 128125

WorkOrder:

09050065

Lab Batch ID:

R272251

Method Blank

Samples in Analytical Batch:

RunID:

IC2\_090502A-5012729

Units: mg/L

Lab Sample ID

Client Sample ID

Analysis Date:

05/02/2009 18:24

BDG Analyst:

09050065-04E

MW-6

| Analyte                  | Result | Rep Limit |
|--------------------------|--------|-----------|
| Nitrogen, Nitrate (As N) | ND     | 0.50      |

#### Laboratory Control Sample (LCS)

RunID:

IC2\_090502A-5012735

Units:

mg/L

Analysis Date:

05/02/2009 20:44

Analyst:

BDG

| Analyte                  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|--------------------------|----------------|--------|---------------------|----------------|----------------|
| Nitrogen, Nitrate (As N) | 10.00          | 10.92  | 109.2               | 90             | 110            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050065-04

RuniD:

IC2 090502A-5012733

Units:

mg/L

Analysis Date:

05/02/2009 20:09

Analyst:

BDG

| Analyte                  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD   | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|--------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|-------|--------------|--------------|---------------|
| Nitrogen, Nitrate (As N) | ND               | 10                   | 11.42        | 113.4            | 10                    | 12.60         | 125.2 *           | 9.852 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

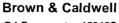
D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.


TNTC - Too numerous to count

09050065 Page 68

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

Ion Chromatography

05/12/2009 19:11

Method:

RunID:

E300.0

BJ-Fracmaster 128125

WorkOrder:

09050065

Lab Batch ID:

R272670

## Method Blank

Lab Sample ID

Client Sample ID

Analysis Date:

IC2\_090512A-5019634

Units: Analyst: mg/L BDG

09050065-04E

Samples in Analytical Batch:

MW-6

| Analyte  | Result | Rep Limit |
|----------|--------|-----------|
| Chloride | ND     | 0.50      |
| Sulfate  | ND     | 0.50      |

#### Laboratory Control Sample (LCS)

RunID:

IC2 090512A-5019635

Units:

mg/L

Analysis Date:

05/12/2009 19:29

Analyst:

BDG

| Analyte  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------|----------------|--------|---------------------|----------------|----------------|
| Chloride | 10.00          | 9.006  | 90.06               | 85             | 115            |
| Sulfate  | 10.00          | 9.169  | 91.69               | 85             | 115            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050283-09

RunID:

IC2\_090512A-5019657

Units:

mg/L

Analysis Date:

05/13/2009 2:29

Analyst:

BDG

| Analyte  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Chloride | 557.3            | 1000                 | 1579         | 102.2            | 1000                  | 1637          | 108.0             | 3.609  | 20           | 80           | 120           |
| Sulfate  | ND               | 1000                 | 954.9        | 92.57            | 1000                  | 949.9         | 92.06             | 0.5299 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 69

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

RunID:

Ion Chromatography

E300.0 MOD

05/15/2009 21:27

WorkOrder:

09050065

Lab Batch ID:

R272873

Method Blank

Samples in Analytical Batch:

Lab Sample ID

Client Sample ID

Analysis Date:

IC1 090515C-5022984

Units: Analyst: mg/kg BDG

09050065-01D

MW-6-54-55'

| Analyte                  | Result | Rep Limit |
|--------------------------|--------|-----------|
| Nitrogen, Nitrate (As N) | ND     | 5.0       |
| Nitrogen, Nitrite (As N) | ND     | 5.0       |

#### **Laboratory Control Sample (LCS)**

RunID:

IC1 090515C-5022985

Units:

mg/kg

Analysis Date:

05/15/2009 21:47

Analyst:

BDG

| Analyte                  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|--------------------------|----------------|--------|---------------------|----------------|----------------|
| Nitrogen, Nitrate (As N) | 100.0          | 97.37  | 97.37               | 90             | 110            |
| Nitrogen, Nitrite (As N) | 100.0          | 104.0  | 104.0               | 90             | 110            |

## Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

Analysis Date:

09050065-01

RunID:

IC1\_090515C-5022982

Units:

mg/kg

05/15/2009 20:49 BDG Analyst:

| Analyte                  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD    | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|--------------------------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|--------|--------------|--------------|---------------|
| Nitrogen, Nitrate (As N) | ND               | 100                  | 97.25        | 97.25            | 100                   | 96.47         | 96.47             | 0.8053 | 20           | 80           | 120           |
| Nitrogen, Nitrite (As N) | ND               | 100                  | 103.7        | 103.7            | 100                   | 103.1         | 103.1             | 0.5319 | 20           | 80           | 120           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 70

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



## **Brown & Caldwell** BJ-Fracmaster 128125

Analysis: Method:

RuniD:

Ion Chromatography

E300.0 MOD

WorkOrder:

Samples in Analytical Batch:

09050065

Lab Batch ID:

R272875

## Method Blank

Units:

mg/kg

Lab Sample ID

Client Sample ID

Analysis Date:

IC1\_090515E-5023022 05/15/2009 21:27

**BDG** Analyst:

09050065-01D

MW-6-54-55'

| Analy    | te | Result | Rep Limit |
|----------|----|--------|-----------|
| Chloride |    | ND     | 5.0       |
| Fluoride |    | ND     | 5.0       |
| Sulfate  |    | ND     | 5.0       |

#### Laboratory Control Sample (LCS)

RunID:

IC1\_090515E-5023023

Units:

mg/kg

Analysis Date:

05/15/2009 21:47

Analyst:

BDG

| Analyte  | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|----------|----------------|--------|---------------------|----------------|----------------|
| Chloride | 100.0          | 98.88  | 98.88               | 80             | 120            |
| Fluoride | 100.0          | 103.3  | 103.3               | 80             | 120            |
| Sulfate  | 100.0          | 106.4  | 106.4               | 80             | 120            |

#### Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked:

09050065-01

RunID:

IC1 090515E-5023020

Units:

mg/kg

Analysis Date:

05/15/2009 20:49

Analyst:

BDG

| Analyte  | Sample<br>Result | MS<br>Spike<br>Added | MS<br>Result | MS %<br>Recovery | MSD<br>Spike<br>Added | MSD<br>Result | MSD %<br>Recovery | RPD     | RPD<br>Limit | Low<br>Limit | High<br>Limit |
|----------|------------------|----------------------|--------------|------------------|-----------------------|---------------|-------------------|---------|--------------|--------------|---------------|
| Chloride | 61.13            | 100                  | 168.6        | 107.4            | 100                   | 168.6         | 107.5             | 0.04745 | 20           | 75           | 125           |
| Fluoride | ND               | 100                  | 105.5        | 104.3            | 100                   | 104.0         | 102.8             | 1.461   | 20           | 75           | 125           |
| Sulfate  | 20.25            | 100                  | 129.3        | 109.0            | 100                   | 128.0         | 107.7             | 1.003   | 20           | 75           | 125           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 71

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

## **Brown & Caldwell**

BJ-Fracmaster 128125

Analysis: Method:

Alkalinity, Bicarbonate

SM2320B

WorkOrder:

09050065

Lab Batch ID:

R273005

Method Blank

Units:

Samples in Analytical Batch:

RunID: WET 090518X-5025312

mg/Kg

Lab Sample ID

Client Sample ID

Analysis Date:

05/18/2009 16:45

Analyst:

PAC

09050065-01D

MW-6-54-55'

| Analyte                 | Result | Rep Limit |
|-------------------------|--------|-----------|
| Alkalinity, Bicarbonate | ND     | 20        |

#### Laboratory Control Sample (LCS)

RunID:

WET 090518X-5025314

Units:

mg/Kg

Analysis Date:

05/18/2009 16:45

Analyst:

PAC

| Analyte                 | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-------------------------|----------------|--------|---------------------|----------------|----------------|
| Alkalinity, Bicarbonate | 387            | 390    | 101                 | 90             | 110            |

#### Sample Duplicate

Original Sample:

09050065-01

WET\_090518X-5025315

Units:

mg/Kg

Analysis Date:

RunID:

05/18/2009 16:45

Analyst: PAC

| Analyte                 | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|-------------------------|------------------|---------------|-----|--------------|
| Alkalinity, Bicarbonate | 190              | 190           | 0   | 20           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 72

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.



#### **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### **Brown & Caldwell**

BJ-Fracmaster 128125

Analysis:

RunID:

Alkalinity, Carbonate

Method: M2320 B WorkOrder:

09050065

Lab Batch ID:

R273007

Method Blank

Lab Sample ID

Client Sample ID

Analysis Date:

WET 090518Y-5025318

Units:

mg/kg PAC

09050065-01D

Samples in Analytical Batch:

05/18/2009 16:45

Analyst:

MW-6-54-55'

| Analyte               | Result | Rep Limit |
|-----------------------|--------|-----------|
| Alkalinity, Carbonate | ND     | 20        |

#### **Laboratory Control Sample (LCS)**

RunID:

WET\_090518Y-5025320

Units:

mg/kg

Analysis Date:

05/18/2009 16:45

Analyst:

PAC

| Analyte               | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|-----------------------|----------------|--------|---------------------|----------------|----------------|
| Alkalinity, Carbonate | 387.0          | 390.0  | 100.8               | 90             | 110            |

#### Sample Duplicate

Original Sample:

09050065-01

WET\_090518Y-5025321

Units:

mg/kg

Analysis Date:

RuntD:

05/18/2009 16:45

Analyst: PAC

| Analyte               | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|-----------------------|------------------|---------------|-----|--------------|
| Alkalinity, Carbonate | ND               | ND            | 0   | 20           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 73

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

6/16/2009 4:36:27 PM



#### **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901



Analysis:

RunID:

Alkalinity (as CaCO3), Total

Method:

E310.1

WET\_090610U-5061236

WorkOrder:

09050065

Lab Batch ID:

R275095

**Method Blank** 

Units:

mg/L

PAC

Lab Sample ID

Samples in Analytical Batch:

Client Sample ID

Analysis Date:

06/10/2009 12:30

Analyst:

09050065-04D

MW-6

| Analyte                      | Result | Rep Limit |
|------------------------------|--------|-----------|
| Alkalinity, Total (As CaCO3) | ND     | 2.0       |

#### Laboratory Control Sample (LCS)

RunID:

WET\_090610U-5061238

Units:

mg/L

Analysis Date:

06/10/2009 12:30

Analyst:

PAC

| Analyte                      | Spike<br>Added | Result | Percent<br>Recovery | Lower<br>Limit | Upper<br>Limit |
|------------------------------|----------------|--------|---------------------|----------------|----------------|
| Alkalinity, Total (As CaCO3) | 38.70          | 38.00  | 98.19               | 90             | 110            |

#### Sample Duplicate

Original Sample:

09050091-02

WET\_090610U-5061242

Units:

mg/L

Analysis Date:

RunID:

06/10/2009 16:00

PAC Analyst:

| Analyte                      | Sample<br>Result | DUP<br>Result | RPD | RPD<br>Limit |
|------------------------------|------------------|---------------|-----|--------------|
| Alkalinity, Total (As CaCO3) | 477              | 477           | 0   | 20           |

Qualifiers:

ND/U - Not Detected at the Reporting Limit

MI - Matrix Interference

B/V - Analyte detected in the associated Method Blank

D - Recovery Unreportable due to Dilution

J - Estimated value between MDL and PQL

\* - Recovery Outside Advisable QC Limits

E - Estimated Value exceeds calibration curve

N/C - Not Calculated - Sample concentration is greater than 4 times the amount of spike added. Control limits do not apply.

TNTC - Too numerous to count

09050065 Page 74

QC results presented on the QC Summary Report have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules.

6/16/2009 4:36:27 PM

# Sample Receipt Checklist And Chain of Custody



#### **HOUSTON LABORATORY**

8880 INTERCHANGE DRIVE HOUSTON, TX 77054 (713) 660-0901

#### Sample Receipt Checklist

| Workorder:  Date and Time Received:  Temperature: | 09050065<br>5/2/2009 10:00:00 AM<br>3.0°C |                | Received By: Carrier name: Chilled by: | RE<br>Fedex-Priority<br>Water Ice |
|---------------------------------------------------|-------------------------------------------|----------------|----------------------------------------|-----------------------------------|
| 1. Shipping container/co                          | poler in good condition?                  | Yes 🔽          | No 🗌                                   | Not Present                       |
| 2. Custody seals intact                           | on shippping container/cooler?            | Yes 🔽          | No 🗌                                   | Not Present                       |
| 3. Custody seals intact                           | on sample bottles?                        | Yes            | No 🗆                                   | Not Present <b>⊻</b>              |
| 4. Chain of custody pres                          | sent?                                     | Yes 🔽          | No 🗆                                   |                                   |
| 5. Chain of custody sign                          | ned when relinquished and received?       | Yes 🗹          | No 🗌                                   |                                   |
| 6. Chain of custody agr                           | ees with sample labels?                   | Yes 🗹          | No 🗀                                   |                                   |
| 7. Samples in proper co                           | entainer/bottle?                          | Yes 🗹          | No 🗌                                   |                                   |
| 8. Sample containers in                           | tact?                                     | Yes 🗹          | No 🗌                                   |                                   |
| <b>9.</b> Sufficient sample vol                   | ume for indicated test?                   | Yes 🗸          | No 🗌                                   |                                   |
| 10. All samples received                          | within holding time?                      | Yes 🗹          | No 🗌                                   |                                   |
| 11. Container/Temp Blan                           | k temperature in compliance?              | Yes 🗹          | No 🗌                                   |                                   |
| 12. Water - VOA vials have                        | ve zero headspace?                        | Yes            | No 🗌 VO                                | A Vials Not Present 🗹             |
| 13. Water - Preservation                          | checked upon receipt (except VOA*)?       | Yes 🗌          | No 🗌                                   | Not Applicable 🗹                  |
| *VOA Preservation C                               | hecked After Sample Analysis              |                |                                        |                                   |
| SPL Representat                                   |                                           | Contact Date & | Time:                                  |                                   |
| Non Conformance                                   | <u> </u>                                  |                |                                        |                                   |
| Issues: Client Instructions:                      |                                           |                |                                        |                                   |
|                                                   |                                           |                |                                        |                                   |



Methane Temp: S.O.C. Initial): zzAIL CLIONA 322327 Requested Analysis ğ Intact? Ice? 50 KB page 0978 201 2015 70/0L28 TPH-DRO Special Detection Limits (specify): SFL Workorder No. 2. Received by: 4. Received by: 1-049-HOI 2 ٥ Number of Containers 3 3=H2SO4 pres. time 23 z091=91 z08=8 <del>کر</del> 3 0 size O 163 ZO+=+ liter time time VAP A=amber glass V=vial X=other P=plastic G=glass matrix bottle \$ **₹** > J "> >Email 🔲 PDF 📋 Standard QC Level 3 QC Level 4 QC TX TRRP LA RECAP 60/2 W=water S=soil O=oil A=air SL=sludge E=encore X=other 3 3 50)1 3 3 Sate grab date 5 date S پلا Laboratory remarks: comp X Zip 7/7002 Email: rrexroad@ brunca Fax TIME 1540 Special Reporting Requirements Results: 500 200 50 330 1340 Analysis Request & Chain of Custody Record 713-308-3886 1. Relinquished by Sampler: 52/82/ 50/08/5 133/09 4/30/24 5/11/5 5/1/09 5/1/34 DATE 3. Relinquished by: 5. Relinquished by: ٥ SPL, Inc. - Frac Mas to **☑** 8880 Interchange Drive Houston, TX 77054 (713) 660-0901 下いったろれて - 759.0999 2 Rexroad Contract Standard į Rush TAT requires prior notice į RB-050109-1 FB-050109-RB-0430 09-18-043009 SAMPLE ID 40665 MW-6-54-55 FB-043209 Requested TAT Client/Consultant Remarks: Srows ME.G Same 2 coolers 2 Business Days 1 Business Day 3 Business Days Project Name/No.: Client Contact: Site Location: Client Name: Phone/Fax: Invoice To: Site Name: Other Address:

Traverse City MI 49686 (231) 947-5777 459 Hughes Drive

500 Ambassador Caffery Parkway Scott, LA 70583 (337) 237-4775

## APPENDIX C

**Groundwater Sampling Forms** 

# **GROUNDWATER SAMPLING FIELD DATA SHEET**

WELL ID: MW-1

|                              | Project Lo  2. WELL  Casing D  Screen D | iameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) inch                                | (Fr                                                    | Type: PPV                                                     | C Stainle                     | Weather:ss □ Galv. St                               | eel 🗆 Tefloni               | ® D Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | prese from Soul                                |
|------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                              | Depth to<br>Length of<br>Pump int       | Static Water: Product: f Water Colum ake depth GE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet<br>n:_/ <b>2.99</b>              |                                                        |                                                               | op of Well Cas                | ing (TOC)                                           | Top of Prote<br>Screened In | ective Casing Control Casing Control Casing Control Casing Control Casing Control Casing Control Casing Cas | Other:                                         |
| 12.99<br>194<br>199<br>10784 | Materials<br>Materials<br>Was well      | ethod: Bailer  Bailer  Rope Tubing  purged dry?  Cum. Liters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ☐ Stainle ☐ Dedica ☐ Polyett ☐ Dedica | ess PVC<br>ated Prep<br>hylene Prep<br>ated Prep<br>No | Teflon®<br>pared Off-Site<br>Polypropylene<br>epared Off-Site | Other:                        | ned Dispo                                           | osable<br>ers/min           | 1. Mous<br>2. 1/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Equipment Model(s)  Toon pump  Light furbidity |
|                              | 7410<br>1412<br>1414<br>1414<br>1416    | Removed  D  J  L  Graph Control of the control of t | 6.23<br>7.66<br>7.46<br>7.30          | 19-48<br>19-40<br>19-40<br>19-41<br>19-41              | 1.761<br>1.961<br>2.012<br>2.056                              | -15.0<br>-8.6<br>-6.4<br>-5.5 | Dissolved<br>Oxygen<br>6.18<br>5.09<br>4.92<br>4.41 | *Turbidity                  | (TOC)<br>55.31<br>44.61<br>55.64<br>55.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | comments  Jight bru.  Churbidi  Jess hurbid    |
|                              | 1410                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7-15                                  | 13.53                                                  | 2.099                                                         | -4.7                          | 4.73                                                | ***                         | 55.64<br>Anstru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | must mattinch                                  |
|                              | 4. SAMPLING DATA                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                                        |                                                               |                               |                                                     |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |
|                              | I                                       | ID: MW~/<br>te Sample Coll                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ected?                                | Sample Tes                                             | *                                                             | 504                           | # of Contain                                        | ners: <b>/ 4</b>            | Alkal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inity: mg/L                                    |

17

FORM GW-1 (Rev 2/26/02 - dg)

## **GROUNDWATER SAMPLING FIELD DATA SHEET**

WELL ID: MW-2

| 2. V     | Casing Di<br>Screen Di         | BS Serv<br>cation:<br>DATA |                  | rroc         | MASKE)          | _                 |                    |                | -                                        |                |
|----------|--------------------------------|----------------------------|------------------|--------------|-----------------|-------------------|--------------------|----------------|------------------------------------------|----------------|
| 2. \     | WELL<br>Casing Di<br>Screen Di |                            | i-40             |              | ( ##            |                   |                    |                |                                          | in mak harre   |
|          | Casing Di<br>Screen Di         | DATA                       |                  | 164,1        | <u> </u>        | V                 | Veather:           | lear,          | _                                        | 10 Mple brees  |
|          | Screen Di                      |                            | 2                |              | Type: of my     |                   |                    |                |                                          | goven          |
|          |                                |                            | inche            |              | Type: ptpv      |                   |                    |                |                                          |                |
|          |                                |                            | inche            |              | Type: Apv       |                   |                    |                |                                          |                |
| -        |                                | th of Well: 67             | al ul            |              |                 |                   |                    |                | ctive Casing 🚨 C                         |                |
|          | Depth to                       | Static Water:              | 7776             | eet          |                 |                   |                    |                | tive Casing U C                          |                |
|          | Depth to                       |                            | feet             | ,            |                 |                   |                    | Top of Prote   | ctive Casing 🚨 (                         | Other:         |
| 1        |                                | Water Column               |                  |              | Well Volume     | : ac . U.C        | gal                |                | terval (from GS)<br>-inch well = 0.16 g. |                |
| _        | بمينفسن                        | ake depth                  | (fror            | m GS)        |                 |                   |                    | riole. 2       | -nen wen - 0.70 g                        | THE THE TEN    |
| 1        |                                | SE DATA                    | r Size           | □ Bladd      | er Pump 🔏 2"    | ' Suhmersible F   | 2ump (1 4* 4       | Submersible Pr | umr                                      |                |
| l        | Purge Me                       | ethod: Centr               | rifugal Pump     | Q Perista    | altic Pump 🚨 Ir | nertial Lift Pump | Other:             |                |                                          | Equipment Mode |
|          |                                | : ump/Bailer               | Stainle:         | ss OPV       | C               | Q Other:          |                    |                | 1                                        | •              |
|          | Materials                      | : Rope/Tubing              | <b>≰</b> Polyeth | nylene 🖸     | Polypropylene   | ☐ Teflon® ☐       | Other:             |                | ,                                        |                |
|          |                                |                            | Q Dedica         | ted DPn      | epared Off-Site | ☐ Field Clea      | ined <b>D</b> Disp | oosable        | 2                                        |                |
| L        | Was wel                        | l purged dry?              | Cl Yes           | Q No         | Pumpir          | ng Rate:          |                    | ers/min        | 3                                        | :              |
|          | Time                           | Cum. Liters<br>Removed     | рН               | Temp         | Spec.<br>Cond,  | Eh                | Dissolved          | Turbidity      | Depth to Water                           | Comments       |
| <b> </b> | , 09                           | O                          | 1.02             | 18.LA        | Cond.           | -191              | Oxygen '           |                | 54.44                                    | //6//          |
| <u> </u> | 119                            | 1                          | 6.80             | 449          | 2.096           | -19 6             | 2 21               | 1              | 24:60                                    | 1.46+ brow     |
| L        | 717                            | • 2                        | 6.73             | 19.01        | 3.080           | -70.8             | 3.29               | 1              | 54.11                                    | 1295 fuit      |
| <u> </u> | 012                            | 3                          | 1                | 9 14         |                 | -71.6             |                    | -              | 54.75                                    | 1247 9011      |
| J        |                                | 12                         | 6.71             | 19.00        |                 | -                 | 3.69               | 100            | 54.18                                    | <del> </del>   |
| $\mu$    | 217                            | 7                          | 10.0             | 19.03        | K .02 /         | -72.1             | 3.18               | 544            | 74.19                                    | <u> </u>       |
| _        | <del></del>                    | <u> </u>                   | <del> </del>     | <u> </u>     | +               | <del> </del>      |                    | -              |                                          | <del> </del>   |
| -        |                                |                            | -                |              | <del> </del>    | -                 |                    | <del> </del>   | <del> </del>                             |                |
| _        |                                | <del> </del>               | <del></del>      | <del> </del> | <del></del>     |                   | 0                  | -              | <del> </del>                             | <del> </del>   |
| L        |                                | PLING DA                   |                  |              |                 | 4                 | ω                  |                |                                          |                |

## **GROUNDWATER SAMPLING FIELD DATA SHEET**

WELL ID: MW 3

|          |              | mber: 128                       | RMATION  125 Task Nur                         | nber:                                            | 11                  | ate:           | 18/09           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ime: 0715          |
|----------|--------------|---------------------------------|-----------------------------------------------|--------------------------------------------------|---------------------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|          | Client:      |                                 | Services                                      | <del></del> ,                                    |                     | _              | KICK!           | Rexroad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (. (.) []          |
|          | Project Lo   |                                 | obbs - Fi                                     | ac magte                                         | V                   | /eather:       | 40              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s, light to no     |
| 1        | 2. WELL      |                                 | )_ inches                                     | T V                                              |                     |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Car                |
| , I      | Casing Dia   | ameter                          | 1                                             | 1                                                |                     |                | el 🛘 Teflon®    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| 9        | Screen Di    |                                 | inches                                        | Type: Pvo                                        |                     |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| -        |              |                                 | (g.50 feet                                    | From: ExTor                                      |                     |                |                 | tive Casing Od                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| 61       |              | Static Water:                   |                                               |                                                  |                     |                |                 | tive Casing DOt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| 16       | Depth to I   | Product:<br>Water Column        | feet                                          | Well Volume                                      |                     |                |                 | ctive Casing O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|          |              | water Column<br>ake depth       | (from GS)                                     | vven volume                                      | 1. 60               | _gal (         |                 | erval (from GS):<br>inch well = 0.16 ga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| 66       | 3. PURG      |                                 | (IIOII G3)                                    |                                                  |                     |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
| او       |              | D Bailer                        | , Size: D Blac                                | ider Pump \$\frac{1}{2}"                         | Submersible F       | ump Di4"S      | iubmersible Pu  | ımp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 516      | Purge Me     | etnod: 🖸 Centr                  | ifugal Pump D Peris                           | taltic Pump 🖸 In                                 | ertial Lift Pump    | Other:         |                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Equipment Model(s) |
| 516      | Materials    | : (Fumo/Bailer                  | ☐ Stainless ☐ P <sup>1</sup> ☐ Dedicated ☐ Pr | /C <b>30</b> Teflon®<br>epared Off-Site <b>√</b> | Other.  Field Clean | ed D Dispo     | sable           | 1. YS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E                  |
|          | Materials    | : Rope Tubing                   | Polyethylene C                                | 2 Polypropylene                                  | ☐ Teffon® ☐         | Other          |                 | Monse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on bamb            |
|          | Was well     | I purged dry?                   | ☐ Yes X No                                    | •                                                |                     |                |                 | flach to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.89 RA4/8/0       |
|          | Time         | Cum. Liters                     |                                               | Spec.                                            | ng Rate:            | Dissolved      | ers/min         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|          | rime         | Removed                         | pH Temp                                       | Cond.                                            | Eh                  | Oxygen         | an urbidity     | (foc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Comments           |
|          | 137          | 0                               | 8.77 11.6                                     | 1 0.584                                          | 10.5                | 3.61           | NN              | 106136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Light Broken       |
| ما . مقد | 777          | (                               | 8.30 18.3                                     | 00.582                                           | 8.3                 | 2.39           | 4 2             | 54.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>           |
| 4.4      | <b>4</b> 013 | レ                               | 8.19 17.7                                     | 4 0.566                                          | 1.7                 | 2.14           | 2 2             | 57.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|          | 0139         | 2.5                             | 8.03 11.69                                    | - 0.467                                          | 11.8                | 2.02           | \$ 5            | 54.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | less turbid        |
|          | 0742         | 3                               | 1.68 17.77                                    | 0.551                                            | 13.6                | 1.93           | 53              | 54.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|          | 0744         | 3.5                             | 7.84 11-                                      | 0.549                                            | 13.9                | 1.94           | 10 2            | 54.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|          | 0746         | 4                               | 1.80 17.                                      | 80.547                                           | 14.0                | 1.92           | 13.5            | 54.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|          |              | ļ                               |                                               |                                                  |                     |                |                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|          |              |                                 |                                               |                                                  |                     |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          | 4. SAM       |                                 | TA * UM                                       |                                                  | mgil                | * * *          | s owed          | Geoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | hemical Analyses   |
|          | Method       | (s): D Bailer, S<br>D Peristalt | ize: D Bladde                                 | erPumip <b>27•2</b> °Su<br>ftPumip □ Other       | ubmersible Pur<br>: | np □ 4"Sub     | mersible Pump   | Ferro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ous Iron: mg/L     |
|          | Materia      | ıls: Pumo/Bailei                | □ Stainless □                                 |                                                  | ® D Other           |                | <del></del>     | DO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,6 mg/L           |
|          | Materia      | alay Tubin Than                 | Polyathylana                                  | Prepared Off-Site  O Polypropylene               |                     |                | osable          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1 04             |
|          | 1            | als: Tubing/Rop                 | D Dedicated D                                 | Prepared Off-Sit                                 | e 🔾 Field Cle       | eaned 🔏 Dis    | •               | - Nitra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | te: My mg/L        |
|          | 0            |                                 | e of Sampling:                                | 24.78                                            | •                   | ed? 🖸 Yes      | 1,1             | Sulfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ite:mg/L           |
|          | 1            | 9 ID: MW-                       |                                               | le Time: <u>06</u>                               |                     | # of Contai    | iners:          | - Alkai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | linity:            |
|          | Duplica      | ate Sample Col                  | lected? DV Yes                                | D No ID:                                         | 1W-99               |                |                 | A series and the series are the series and the series are the series and the series and the series are the seri |                    |
|          | 5. CON       | MENTS                           |                                               |                                                  |                     |                |                 | Anna Calantina Caratan, a Calan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |              |                                 | <del></del>                                   |                                                  | <del></del>         |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          |              | *                               |                                               |                                                  |                     | -              | ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          | Note: Includ | de comments suci                | as well condition, oc                         | lor, presence of N                               | IAPL, or other i    | tems not on th | e field data sh | eel 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Delta$           |
|          | Gen\         | non-proj\fo                     | rms\Field Data                                | Sheet.xis\                                       | BC-liters           |                | /               | 106m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ud)                |

## **GROUNDWATER SAMPLING FIELD DATA SHEET**

WELL ID: MW-4

| . PROJE                                                                                                                                                                                    | CT INFO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RMATI              | ON         |                                        |                     |                            |                 |                         |                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|----------------------------------------|---------------------|----------------------------|-----------------|-------------------------|---------------------------------|--|
|                                                                                                                                                                                            | mber: 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |            | er:                                    | [                   | Date:                      | /2/09           |                         | ime: //00                       |  |
| Client:                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | rac boast  |                                        | <br>. F             | Personnel:                 | RIBA            | inda                    |                                 |  |
| Project Lo                                                                                                                                                                                 | cation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6665               | NM         |                                        |                     | Weather:                   | Cloudy          | 70° F 5-1               | ough winds from N               |  |
| . WELL                                                                                                                                                                                     | DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |            |                                        |                     |                            |                 |                         |                                 |  |
| Casing Di                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inche              | es         | Туре: фру                              | □ Stainles          | s Q Galv. Ste              | eel 🗆 Teflon@   | Other:                  |                                 |  |
| Screen D                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HICH!              |            | Type: dipvo                            | C Stainles          | s 🔾 Galv. Ste              | el 🗆 Teflon(    | Other:                  |                                 |  |
|                                                                                                                                                                                            | ith of Well: <u>6</u> 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |            | From: D To                             | p of Well Casi      | ng (TOC)                   | Top of Protec   | ctive Casing 🚨 Ot       | ther:                           |  |
| Depth to                                                                                                                                                                                   | Static Water: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.26               | feet       | From: C To                             | p of Well Casi      | ng (TOC)                   | Top of Protec   | ctive Casing DOI        | ther                            |  |
| Depth to                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet               |            |                                        |                     |                            |                 | ctive Casing Q O        |                                 |  |
| Length of Water Column: 4.47 feet Well Volume: 1.52 gal Screened Interval (from GS): 45-60  Pump intake depth 56 (from GS) 8764  Note: 2-inch well = 0.16 gal/ft 4-inch well = 0.65 gal/ft |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                                        |                     |                            |                 |                         |                                 |  |
|                                                                                                                                                                                            | the second secon | <u> (fro</u>       | m GS) B    | 166                                    |                     |                            | Note: 2         | inch well = 0.16 ga     | nl/ft 4-inch well = 0.65 gal/ft |  |
| 3. PURG                                                                                                                                                                                    | SE DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · Cima-            | D 101-3-3  | as Duma Mar                            | Cubancasis          | Pump 🗓 4" S                |                 |                         |                                 |  |
| Purge Me                                                                                                                                                                                   | ethod: Centr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ifugal Pump        | 🔾 Perista  | ltic Pump 👊 Ir                         | ertial Lift Pum     | Pump U 4" S<br>ip U Other: | ouomersible Pi  | ump                     | Equipment Model(s)              |  |
| Materials                                                                                                                                                                                  | s: Pump/Bailer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |            | Content Teffon®                        |                     | ned D Dison                | sable           | 1 Mex                   | a Manson                        |  |
| Materials: Purph/Bailer                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                                        |                     |                            |                 |                         |                                 |  |
|                                                                                                                                                                                            | purged dry?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |            |                                        |                     | -                          |                 | Į.                      |                                 |  |
| was wei                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U Yes              | Ø №        |                                        | ng Rate: <u>ℚ</u>   |                            | ers/min         |                         | LH Turbidity motor              |  |
| Time                                                                                                                                                                                       | Cum, Liters<br>Removed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pH                 | Temp       | Spec.<br>Cond.                         | Eh                  | Dissolved<br>Oxygen        | Turbidity       | Depth to Water<br>(TOC) | Comments                        |  |
| 1104                                                                                                                                                                                       | L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 0(         | MS/cm                                  | mV.                 | mg/L                       | NT4             | f+                      |                                 |  |
| 1108                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.75               | 23.40      | 1.914                                  | -152                | 0.67                       | 3.64            | 54.72                   |                                 |  |
| 1112                                                                                                                                                                                       | [.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.74               | 23.53      | 1.927                                  | 147                 | 8.54                       | 2.23            | 54.75                   |                                 |  |
| 1116                                                                                                                                                                                       | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 672                | 23.35      | 1.941                                  | -136                | 0.51                       | 1.52            | 54.68                   |                                 |  |
| 1120                                                                                                                                                                                       | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.72               | 23.71      | 1.939                                  | -129                | 0.53                       | 1.50            | 54.60                   |                                 |  |
| 1124                                                                                                                                                                                       | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.72               | 23.75      | 1.938                                  | -128                | D-54                       |                 | 54.58                   |                                 |  |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -          |                                        |                     |                            |                 |                         |                                 |  |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                                        | <u> </u>            |                            |                 |                         |                                 |  |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                                        |                     |                            |                 |                         |                                 |  |
| 4. SAM                                                                                                                                                                                     | PLING DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |            | a                                      |                     |                            |                 |                         | hemical Analyses                |  |
| Method                                                                                                                                                                                     | l(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |            | Pump 1 <b>40</b> /2"Si<br>Pump CIOthei |                     | mp 🛚 4" Sub                | mersible Pum    | P Ferro                 | ous Iron: <u>0.0</u> mg/L       |  |
| Materia                                                                                                                                                                                    | ils: Rump/Bailer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | less PV    |                                        | ® D Other           |                            |                 | DO:                     | 0.4 mg/L                        |  |
| }                                                                                                                                                                                          | als: Tubing/Rop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _ Dediv<br>L Polye | ethylene 🗆 | epared Off-Site<br>Polypropylene       | @Teffon®            | Other:                     | osable          |                         | R                               |  |
|                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D Dedi             | cated DP   | repared Off-Sit                        | e D Field Cl        | eaned Dis                  | sposable        | - Nitra                 | te:mg/L                         |  |
|                                                                                                                                                                                            | to Water at Tim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                  |            |                                        | Field Filter<br>しりる | ed? 🔾 Yes                  | , ~             | Sulfa                   | ate: mg/L                       |  |
| X .                                                                                                                                                                                        | e ID: <u>MW-<sup>C</sup></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | Sample     |                                        |                     | # of Contai                | iners:(         | Alka                    | linity: mg/L                    |  |
| Duplic                                                                                                                                                                                     | ate Sample Coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ected?             | ☐ Yes [    | 0/No ID:                               |                     |                            |                 |                         |                                 |  |
| 5. CON                                                                                                                                                                                     | MENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |            |                                        |                     |                            |                 |                         |                                 |  |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |            |                                        |                     |                            |                 |                         |                                 |  |
| Material Control                                                                                                                                                                           | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | (v.        | <del></del>                            | 45                  |                            |                 |                         |                                 |  |
|                                                                                                                                                                                            | de comments such                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |            |                                        |                     | items not on th            | e field data sh | eet.                    |                                 |  |
| Gen\                                                                                                                                                                                       | non-proj\fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rms\Fie            | d Data S   | sneet.xis\                             | BC-liters           |                            |                 | F ( 12 E                |                                 |  |

FORM GW-1 (Rev 2/26/02 - dg)

Signature V

## **GROUNDWATER SAMPLING FIELD DATA SHEET**

WELL ID: MW-5

| •     |      |                        |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                   |                 |                  |                     |                           |  |  |
|-------|------|------------------------|-------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|-----------------|------------------|---------------------|---------------------------|--|--|
|       | 1. F | PROJE                  | ECT INFO          | RMATI                                 | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                      |                                                   |                 | _                |                     | 7725                      |  |  |
|       |      |                        | umber: /28 /      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ber: 00 4                                                            |                                                   | ate: 4-         | 9-09             |                     | ime: 0 +0                 |  |  |
|       | (    | Client:                | BJ 54             | SLAIC                                 | <i>e</i> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | P                                                 | Personnel:      | Rexra            | ad                  |                           |  |  |
|       | F    | <sup>2</sup> roject Lo | ocation: Fro      | CMAST                                 | er: H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | obbs, 1                                                              | VM V                                              | Veather:        | ear, ±5          | o, wind-            | me:_0725<br>Man NN@240 m/ |  |  |
|       |      |                        |                   | (Strck                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | 7                                                 |                 |                  |                     |                           |  |  |
|       | ,    | Casing Di              |                   | 2_inche                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Type: X PV                                                           | C Stainless                                       | s 🖸 Galv. Ste   | el 🗆 Teflon®     | Other               |                           |  |  |
|       |      | Screen D               | iameter:          | 2inchi                                | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type: pro                                                            | C 🚨 Stainles:                                     | s 🔾 Galv. Ste   | el 🛛 Teflon®     | Other               |                           |  |  |
| 63.80 |      | Total Der              | oth of Well: 6.   | 5.86 fee                              | et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | From: 🙇 To                                                           | p of Well Casir                                   | ng (TOC) 🗓      | Top of Protect   | ive Casing 🔲 Ot     | her:                      |  |  |
| 54.98 |      |                        | Static Water:_    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | From: KTop of Well Casing (TOC)                                      |                                                   |                 |                  |                     |                           |  |  |
| 8.82  |      |                        | Product:          | feet                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | From: K Top of Well Casing (TOC) D Top of Protective Casing D Other. |                                                   |                 |                  |                     |                           |  |  |
| .16   |      |                        | f Water Column    | 8.82                                  | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Well Volume: 1. 41 gal Screened Interval (from GS): 60 - 45          |                                                   |                 |                  |                     |                           |  |  |
| 5292  |      | Pump int               | ake depth         | (fro                                  | m GS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | Note: 2-inch well = 0.16 gal/ft 4-inch well = 0.6 |                 |                  |                     |                           |  |  |
| 882   | 3.   | PURC                   | SE DATA           |                                       | THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED I | <u></u>                                                              |                                                   |                 |                  |                     |                           |  |  |
| 14/12 | -    | Purge M                | ethod: D Saile    | r, Síze:                              | ☐ Bladd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ler Pump 🔘 2"                                                        | Submersible F                                     | omp Q14"S       | ubmersible Pu    | mp                  |                           |  |  |
| 177   |      |                        | ethod: Cent       | nrugai Pump<br>Stainle □              | ss OPV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aluc Pump u li<br>C                                                  | entar Lint Pum <br>□ Other:                       | p G Other:      |                  |                     | Equipment Model(s)        |  |  |
|       |      | Materials              | s: Pump/Bailer    | Dedica Dedica                         | ited 🗅 Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pared Off-Site                                                       | Wield Clean                                       | ed Dispo        | sable            | 1. MOOR             | soon pump                 |  |  |
|       |      | Materials              | s: Rope/Tubing    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Polypropylene<br>epared Off-Site                                     |                                                   |                 | osable           | 2. <b>YSI</b>       | -                         |  |  |
|       |      | Was wel                | Il purged dry?    |                                       | X No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                    | ng Rate:                                          | •               | rs/min           |                     |                           |  |  |
|       | -    |                        | Cum. Liters       | T                                     | · -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spec                                                                 |                                                   |                 | <del></del>      | 3<br>Depth to Water |                           |  |  |
|       |      | Time                   | Removed           | pН                                    | Temp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cond.                                                                | Eh                                                | Oxygen Oxygen   | Turbidity        | · (TOC)             | Comments                  |  |  |
|       | 1    | 843                    | $\partial$        | 9,24                                  | 18.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-597                                                                | -5.9                                              | 4.91            | NM               | 54.78               | sighty douth              |  |  |
|       |      | 1845                   |                   | 8.55                                  | 16.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05%                                                                  | -26.5                                             | 4.42            |                  | ***                 | clear                     |  |  |
|       |      | 647                    | 2                 | 8.38                                  | 19.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.594                                                                | -38.8                                             | 3.94            |                  | ***                 |                           |  |  |
|       | Ĭ    | 0848                   | "3                | 8.16                                  | 19.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.691                                                                | 47.1                                              | 3.81            |                  | 米米米                 |                           |  |  |
|       | A    | 150                    | 4                 | 8.1L                                  | 19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.481                                                                | -52.0                                             | 3.76            | }                | 59.13               |                           |  |  |
|       | 7    | 852                    | 5                 | 8.08                                  | 19-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.684                                                                | -56.4                                             | 3 61            |                  | ***                 |                           |  |  |
|       | -    | 7654                   | 6                 | 8.04                                  | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.583                                                                | -5/0 9                                            | 3.46            |                  | ***                 |                           |  |  |
|       | r    |                        | -                 |                                       | 12.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                 |                                                   | - 10            |                  | A                   |                           |  |  |
|       |      |                        |                   |                                       | <b>†</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                                                   |                 |                  |                     |                           |  |  |
|       | 4    | SAM                    | PLING DA          | X AT                                  | um/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×*-                                                                  | MATL                                              | 7998 - N        | - Readia         | 4.4 Geoc            | hemical Analyses          |  |  |
|       | •    | Method                 | t/e). □ Bailer, S | Size:                                 | ☐ Bladder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pump 2 S                                                             | ubmersible Pur                                    | -               | C. B. D. L       | nit                 |                           |  |  |
|       | 1    | Medico                 | Peristal          | tic Pump 🚨                            | Inertial Lift                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pump DOthe                                                           | <del>r.</del>                                     |                 |                  | -епо                | us Iran: mg/L             |  |  |
|       |      | Materia                | als: (Pump)Baile  |                                       | less QP<br>cated QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | repared Off-Site                                                     | ® Other                                           | ned 🖸 Disp      | osable           | DO:                 | Omg/L                     |  |  |
|       |      | Materia                | als: (Tubing/Rop  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Delypropytene<br>Prepared, Off-Sij                                   |                                                   |                 | posable          | Nitrat              | e:mg/L                    |  |  |
|       | 1    | Denth                  | to Water at Tim   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N54.98                                                               | 7                                                 | ed? D Yes       | No.              | 0.15                |                           |  |  |
|       |      |                        | e ID: MW-         |                                       | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time: O                                                              | 245                                               | # of Contai     | ners: 14         | Sulfa               | te:mg/L                   |  |  |
|       |      |                        | ate Sample Co     |                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No ID:                                                               | 91-                                               | # Of Contain    | ileis            | _ Alkal             | inity:mg/L                |  |  |
|       | Ļ    |                        |                   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                   |                 |                  |                     |                           |  |  |
|       | 1    | 5. CON                 | MENTS             | All para                              | meter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s stable                                                             | at 6 144                                          | en purc         | ie, bot          | -Doy Z.             | 5; will collee            |  |  |
| ,     | 4    | diquo                  | t to the          | ch_fee                                | 4 Kit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aca su                                                               | remen                                             | ut:             | <i>,</i>         |                     |                           |  |  |
|       |      |                        |                   | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |                                                   |                 |                  |                     |                           |  |  |
|       |      | vote: Includ           | de comments suc   | h as well cor                         | ndition, odo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r, presence of N                                                     | IAPL, or other i                                  | tems not on the | e field data she | el.,                |                           |  |  |

Gen\non-proj\forms\Field Data Sheet.xls\BC-liters FORM GW-1 (Rev 2/26/02 - dg)

# B R O W N A N D C A L D W E L L

### **GROUNDWATER SAMPLING FIELD DATA SHEET**

WELL ID: Jalu-6

| . PROJECT INFORMAT                                                                                                                     | TON                                     |                                                                  |                     |                 |                         |                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------|---------------------|-----------------|-------------------------|--------------------|--|
| Project Number: 128125                                                                                                                 | Task Number:                            |                                                                  | Date:5              | 11/09           | 1                       | Firme: 100         |  |
| Client: B) Service                                                                                                                     | Frachaster sit                          | <u> </u>                                                         | Personnel:          | R.Ban           | l a                     |                    |  |
| Project Location: Hobbs                                                                                                                |                                         |                                                                  | Weather:            | Sunny           | 90°F                    |                    |  |
| . WELL DATA                                                                                                                            |                                         |                                                                  |                     |                 |                         |                    |  |
| Casing Diameter: 2 inches Type: 1 PVC Stainless Galv. Steel Teflon® Other:                                                             |                                         |                                                                  |                     |                 |                         |                    |  |
| Screen Diameter: 2 inches Type: 2 PVC Stainless Galv Steel Teffon® D Other.                                                            |                                         |                                                                  |                     |                 |                         |                    |  |
| Total Depth of Well: 62.92 feet From: D Top of Well Casing (TOC) D Top of Protective Casing D Other.                                   |                                         |                                                                  |                     |                 |                         | ther:              |  |
| Depth to Static Water: 53.69                                                                                                           | feet From:                              | From:  Top of Well Casing (TOC)  Top of Protective Casing  Other |                     |                 |                         |                    |  |
| Depth to Product: feet From: Top of Well Casing (TOC) D Top of Protective Casing D Other.                                              |                                         |                                                                  |                     |                 |                         |                    |  |
| Length of Water Column: 9.23 feet Well Volume: 1.48 gal Screened Interval (from GS): 45-60                                             |                                         |                                                                  |                     |                 |                         |                    |  |
| Pump intake depth 53.5 (from GS)  Note: 2-inch well = 0.16 gal/ft 4-inch well = 0.65 gal/ft                                            |                                         |                                                                  |                     |                 |                         |                    |  |
| 3. PURGE DATA                                                                                                                          |                                         | 4                                                                |                     |                 |                         |                    |  |
| Purge Method: D Bailer, Size:  Centrifugal Puri                                                                                        | □ Bladder Pump<br>np □ Peristaltic Pump | 2" Submersible Inertial Lift Pur                                 | Pump 🚨 4° 5         | Submersible Pu  | dur                     | Equipment Model(s) |  |
| Commission of Chicago Co. Co. Co. Co. Co. Co. Co. Co. Co. Co                                                                           |                                         |                                                                  |                     |                 |                         |                    |  |
| A Polymorphytaga D Polymorphytaga D Tafford D Other                                                                                    |                                         |                                                                  |                     |                 |                         |                    |  |
| Materials: Rope/Tubing Polyethylene D Polypropylene D Teflon® D Other.  D Dedicated D Prepared Off-Site D Field Cleaned D Disposable 2 |                                         |                                                                  |                     |                 |                         |                    |  |
| Was well purged dry?   Ye                                                                                                              | s 🎾 No Pu                               | mping Rate:_ర                                                    | .125 lite           | ers/min         | 3. HAC                  | H Turbidity meter  |  |
| Time Cum. Liters pH                                                                                                                    | Temp Spec                               | . En                                                             | Dissolved<br>Oxygen | Turbidity       | Depth to Water<br>(TOC) |                    |  |
| 1105 L                                                                                                                                 | °( m5/c.                                | n in V                                                           | mg/L                | NTUS            | f.t.                    | start purge        |  |
| 1109 0.5 6.76                                                                                                                          | 22.16 2.29                              | 2 64                                                             | 9.27                | 20.6            | 54.15°                  |                    |  |
| 1113 1.0 6.76                                                                                                                          | 22.51 2.29                              | 4 67                                                             | 9.06                | 15.8            | 54.13                   |                    |  |
| 1117 15 6.76                                                                                                                           | 22.43 2.3                               | 21 71                                                            | 2,94                | 19.2            | 54-09                   |                    |  |
| 1121 20 6.77                                                                                                                           | (                                       | 1 -                                                              | 8.90                | 10.8            | 54.05                   |                    |  |
| 1125 2-5 6.7                                                                                                                           | 1 23.08 2-33                            | 0 72                                                             | 8.79                | 9.57            | 54.02                   |                    |  |
|                                                                                                                                        |                                         |                                                                  |                     |                 |                         |                    |  |
|                                                                                                                                        |                                         |                                                                  |                     |                 |                         |                    |  |
|                                                                                                                                        |                                         |                                                                  |                     |                 |                         |                    |  |
| 4. SAMPLING DATA                                                                                                                       |                                         |                                                                  |                     |                 | Geo                     | chemical Analyses  |  |
| Method(s): 🗅 Bailer, Size: 🔲 🖸 Bladder Pump 🎁 2" Submersible Pump 🚨 4" Submersible Pump                                                |                                         |                                                                  |                     |                 |                         |                    |  |
| Stainless ADVC Difeform Di Other                                                                                                       |                                         |                                                                  |                     |                 |                         |                    |  |
| D Dedicated D Prepared Off-Site D Field Cleaned D Disposable                                                                           |                                         |                                                                  |                     |                 |                         |                    |  |
| Materials: Tubing/Rope                                                                                                                 |                                         |                                                                  |                     |                 |                         |                    |  |
| Depth to Water at Time of Sampling: 54.52 Field Filtered? a Yes No Sulfate: mg/L                                                       |                                         |                                                                  |                     |                 |                         |                    |  |
| Sample ID: MW-6 Sample Time: 1200 # of Containers: 15                                                                                  |                                         |                                                                  |                     |                 |                         |                    |  |
| Duplicate Sample Collected?   Yes M No ID:  Alkalinity: mg/L                                                                           |                                         |                                                                  |                     |                 |                         |                    |  |
| 5. COMMENTS                                                                                                                            |                                         |                                                                  | ( ) ( )             | م ۱۸۱۱ م        |                         |                    |  |
| 5. COMMENTS used bailer to collect VOCE, TPHG and Mothage.  Used pump for all other bottles                                            |                                         |                                                                  |                     |                 |                         |                    |  |
| Used pump                                                                                                                              | for all other b                         | ottlos,                                                          |                     |                 |                         |                    |  |
| Note: Include comments such as well c                                                                                                  | ondition, odor, presence                | of NAPL, or other                                                | items not on th     | e field data sh | eet. ,                  |                    |  |
| Gen\non-proj\forms\Fig                                                                                                                 |                                         |                                                                  |                     | /               | 1056                    |                    |  |
| FORM GW-1 (Rev 2/26/02 - dg) Signature                                                                                                 |                                         |                                                                  |                     |                 |                         |                    |  |

