1R - 2/66

Annual GW Mon. REPORTS

DATE:

OOO

Basin Environmental Consulting, LLC

2800 Plains Highway
P. O. Box 381
Lovington, New Mexico 88260
cjbryant@basin-consulting.com
Office: (575) 396-2378
Fax: (575) 396-1429

RECEIVED

2009 ANNUAL MONITORING REPORT APR - 1 2010 Environmental Bureau Oil Conservation Division

DCP PLANT TO LEA STATION 6-INCH SECTION 31
NE ¼ SW ¼ SECTION 31, TOWNSHIP 20 SOUTH, RANGE 37 EAST
LATITUDE 32.52733° NORTH, LONGITUDE 103.2906° WEST
LEA COUNTY, NEW MEXICO
PLAINS SRS NUMBER: 2009-084
NMOCD REF: 1RP-2166

PREPARED FOR:

PLAINS MARKETING, L.P. 333 CLAY STREET, SUITE 1600 HOUSTON, TEXAS 77002

PREPARED BY:

BASIN ENVIRONMENTAL CONSULTING, LLC

P. O. Box 381 Lovington, New Mexico 88260

March 2010

Project Manager

TABLE OF CONTENTS

INTRODUCTION1
SITE DESCRIPTION AND BACKGROUND INFORMATION
FIELD ACTIVITIES
LABORATORY RESULTS
SUMMARY6
ANTICIPATED ACTIONS
LIMITATIONS
DISTRIBUTION8
FIGURES Figure 1 — Site Location Map Figure 2A — Inferred Groundwater Gradient Map — September 29, 2009 Figure 2B — Inferred Groundwater Gradient Map — December 10, 2009 Figure 3A — Groundwater Concentration Map and Inferred PSH Extent Map — September 29, 2009 Figure 3B — Groundwater Concentration Map and Inferred PSH Extent Map — December 10, 2009
Table 1 – Groundwater Elevation Data Table 2 – Concentrations of Benzene and BTEX in Groundwater Table 3 – Concentrations of Poly Aromatic Hydrocarbons (Semi-Volatiles) in Groundwater Table 4 – Concentrations of Total Petroleum Hydrocarbons in Groundwater Table 5 – Concentrations of Volatile Organic Compounds in Groundwater Table 6 – Concentrations of RCRA Metals and NMWQCC Metals in Groundwater Table 7 – Concentrations of Anions/Cations in Groundwater
APPENDICES Appendix A – Laboratory Reports Appendix B – Monitor Well Logs Appendix C – Release Notification and Corrective Action (Form C-141)

RECEIVED

March 30, 2010

APD - 1 2010

Environmental Bureau Oil Conservation Division

Mr. Edward Hansen
New Mexico Oil Conservation Division
Environmental Bureau
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

Re:

Plains All American - 2009 Annual Monitoring Reports

4 Sites in Lea County, New Mexico 1 Site in Eddy County, New Mexico

Dear Mr. Hansen:

Plains All American is an operator of crude oil pipelines and terminal facilities in the state of New Mexico. Plains All American actively monitors certain historical release sites exhibiting groundwater impacts, consistent with assessments and work plans developed in consultation with the New Mexico Oil Conservation Division (NMOCD). In accordance with the rules and regulations of the NMOCD, Plains All American hereby submits our Annual Monitoring reports for the following sites:

Lovington Gathering WTI	1RP-838	Section 06, T17S, R37E, Lea County
Red Byrd #1	1R-0085	Section 01, T20S, R36E, Lea County
DCP Plant to Lea Sta. 6" #2	1R-2136	Section 31, T20S, R37E, Lea County
DCP Plant to Lea Sta. 6" Sec.31	1R-2166	Section 31, T20S, R37E, Lea County
Ballard Grayburg 5-Inch	2R-0053	Section 10, T18S, R29E, Eddy County

Basin Environmental Consulting, LLC (Basin) prepared these documents and has vouched for their accuracy and completeness, and on behalf of Plains All American, I have personally reviewed the documents and interviewed Basin personnel in order to verify the accuracy and completeness of these documents. It is based upon these inquiries and reviews that Plains All American submits the enclosed Annual Monitoring Reports for the above facilities.

If you have any questions or require further information, please contact me at (575) 441-1099.

Sincerely.

Jason Henry

Remediation Coordinator

Plains All American

CC: Larry Johnson, NMOCD, Hobbs, NM

Enclosures

INTRODUCTION

On behalf of Plains Marketing, L.P. (Plains), Basin Environmental Consulting, LLC (Basin) is pleased to submit this Annual Monitoring Report in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1 of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2009 only. For reference, a Site Location Map is provided as Figure 1.

Groundwater monitoring was conducted during the 3rd and 4th quarters of 2009 to assess the levels and extent of dissolved phase constituents and Phase Separated Hydrocarbon (PSH). The groundwater monitoring events consisted of measuring static water levels in the monitor wells, checking for the presence of PSH and purging and sampling each well exhibiting sufficient recharge. Monitor wells containing a thickness of PSH greater than 0.01 feet were not sampled.

SITE DESCRIPTION AND BACKGROUND INFORMATION

The legal description of the site is NE ¼, SW ¼ of Section 31, Township 20 South, Range 37 East, in Lea County. The site latitude is 32.52733° North and the site longitude is 103.2906° West. On April 2, 2009, Plains discovered a crude oil release from a six (6)-inch steel pipeline. During initial response activities, Plains installed a temporary pipeline clamp on the pipeline to mitigate the release. The crude oil release resulted in a surface stain measuring approximately six (6) feet in width and eight (8) feet in length. Plains initially classified the release as a "non-reportable" release, upon further investigation Plains reclassified the release to a reportable status. The C-141 indicated approximately twenty (20) barrels of crude oil was released from the pipeline, with no recovery.

On April 15, 2009, one (1) soil boring (SB-1) was advanced approximately ten (10) feet west of the release point to evaluate the vertical extent of soil impact. During advancement of the soil boring, groundwater was encountered at approximately seventy-seven (77) feet below ground surface (bgs). Temporary casing was installed in the boring to obtain a preliminary groundwater sample. On April 16, 2009, a groundwater sample (SB-1) was collected from the temporary casing and submitted to the laboratory for analysis. Following the collection of the groundwater sample, the temporary casing was removed from the soil boring and the soil boring was plugged with cement and bentonite, as required by the New Mexico Office of the State Engineer (NMOSE). Laboratory analytical results indicated a benzene concentration of 1.915 mg/L, a BTEX concentration of 4.7711 mg/L, a chloride concentration of 54.6 mg/L and a total dissolved solid (TDS) concentration of 788 mg/L. Based on the analytical results of the submitted groundwater sample, Plains notified New Mexico Oil Conservation Division (NMOCD) representatives at the Hobbs District Office and the Santa Fe Office of the laboratory confirmed impact to groundwater at the release site.

On June 2, 2009, following advancement of the soil boring, excavation of the impacted soil commenced. Excavated soil was stockpiled on-site on a plastic liner to mitigate the potential leaching of the contaminants into the vadose zone. Approximately 1,400 cubic yards (cy) of soil

was stockpiled on-site during excavation activities, pending final disposition. The final dimensions of the excavation were approximately seventy seven (77) feet in width, approximately eighty (80) feet in length and fifteen (15) feet in depth.

On September 21 through September 23, 2009, Plains installed and developed four (4) monitor wells (MW-1 through MW-4) at the release site, as approved by the NMOCD. Monitor well boring logs are provided as Appendix B. Soil samples were collected at five (5) foot drilling intervals and field screened using a Photo-Ionization Detector (PID). Selected soil samples were submitted to the laboratory for determination of concentrations of benzene, toluene, ethylbenzene and xylene (BTEX) and total petroleum hydrocarbons (TPH) using EPA SW-846 8021b and SW-846 8015M, respectively.

Monitor well MW-1 was installed on the floor of the excavation, at approximately fifteen (15) feet bgs, to a total depth of approximately eighty (86) feet bgs. Soil samples collected at twenty five (25) feet bgs, thirty five (35) feet bgs, forty five (45) feet bgs, fifty five (55) feet bgs, sixty five (65) feet bgs and seventy five (75) feet bgs were submitted to the laboratory for analysis. Laboratory analytical results indicated benzene concentrations were less than the appropriate laboratory method detection limit (MDL) for all the submitted soil samples. BTEX concentrations ranged from 0.0359 mg/Kg for the soil sample collected at twenty five (25) feet bgs to 13.444 mg/Kg for the soil sample collected at fifty five (55) feet bgs. The TPH concentrations ranged from 286 mg/Kg for the soil sample collected at twenty five (25) feet bgs to 1,538 mg/Kg for the soil sample collected at fifty five (55) feet bgs.

Monitor well MW-2 is located approximately seventy five (75) feet northwest of the release point, in an up gradient position. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs, forty five (45) feet bgs, sixty (60) feet bgs and seventy five (75) feet bgs were submitted to the laboratory for analysis. Laboratory analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory MDL for all the submitted soil samples.

Monitor well MW-3 is located approximately seventy five (75) feet to the southwest of the release point, in a cross gradient position. The monitor well was installed to a total depth of approximately ninety (90) feet bgs. Soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs, forty five (45) feet bgs and sixty (60) feet bgs were submitted to the laboratory for analysis. The laboratory analytical results indicated benzene concentrations ranged from less than the appropriate laboratory MDL for the soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs, forty five (45) feet bgs and sixty (60) feet bgs to 0.0025 mg/Kg in the soil sample collected at sixty (60) feet bgs. Analytical results indicated BTEX concentrations ranged from less than the appropriate laboratory MDL for the soil samples collected at fifteen (15) feet bgs, thirty (30) feet bgs and forty five (45) feet bgs to 0.0052 mg/Kg for the soil sample collected at sixty (60) feet bgs. TPH concentrations were less than the appropriate laboratory MDL for all the submitted soil samples.

Monitor well MW-4 is located approximately seventy five (75) feet to the southeast of the release point, in a down gradient position. The monitor well was installed to a total depth of approximately eighty nine (89) feet bgs. Soil samples collected at fifteen (15) feet bgs, thirty (30)

feet bgs, forty five (45) feet bgs and sixty (60) feet bgs were submitted to the laboratory for analysis. Laboratory analytical results indicated benzene, BTEX and TPH concentrations were less than the appropriate laboratory MDL for all the submitted soil samples.

Currently, a total of four (4) monitor wells are located on the DCP Plant to Lea Station 6-Inch Section 31 release site. Monitor wells MW-2, MW-3 and MW-4 are gauged and sampled on a quarterly schedule and monitor well MW-1 is monitored weekly. On September 29, 2009, during initial groundwater sampling activities, phase-separated hydrocarbons were observed in monitor well MW-1. Groundwater gauging and PSH recovery is conducted weekly at monitor well MW-1. During the reporting period, approximately fifty one (51) gallons (1.2 barrels) of PSH was recovered by manual recovery from monitor well MW-1.

FIELD ACTIVITIES

Product Recovery Efforts

A measurable thickness of PSH was detected in monitor well MW-1 during initial groundwater sampling activities. The average PSH thickness reported in monitor well MW-1 during the reporting period was 2.65 feet. The maximum PSH thickness was 4.16 feet on December 8, 2009. Currently, all recovered fluids are being disposed of at an NMOCD approved disposal.

The site monitor wells were gauged and sampled September 29 and December 10, 2009. During the sampling events, the monitor wells were purged of a minimum of three (3) well volumes of water or until the wells were dry using a PVC bailer or electrical Grundfos Pump. Groundwater was allowed to recharge and samples were obtained using disposable Teflon bailers. Water samples were stored in clean, glass containers provided by the laboratory and placed on ice in the field. Purge water was collected in a trailer mounted polystyrene tank and disposed at an NMOCD approved disposal in Monument, New Mexico.

Locations of the groundwater monitor wells and the inferred groundwater elevations, which were constructed from the measurements collected during the 2009 quarterly sampling events, are depicted on Figures 2A and 2B. The 2009 Groundwater Elevation Data is provided as Table 1.

The Groundwater Gradient Map, Figure 2B, indicates a general gradient of approximately 0.007 feet/foot to the south-southeast as measured between groundwater monitor wells MW-2 and MW-4. The corrected groundwater elevation ranged between 3,455.44 and 3,457.13 feet above mean sea level, in monitor well MW-4 on December 10, 2009 and in monitor well MW-2 on September 29, 2009, respectively.

LABORATORY RESULTS

Groundwater samples collected from the monitor wells during the quarterly monitoring events were delivered to Xenco Laboratories, formerly Environmental Laboratory of Texas, Odessa, Texas for determination of benzene, toluene, ethylbenzene and xylenes (BTEX) constituent concentrations by EPA Method SW846-8021b. Pursuant to an NMOCD request, the groundwater monitor wells were sampled annually for concentrations of Poly Aromatic

Hydrocarbons (PAH) utilizing EPA Method SW 8270C. A summary of Concentrations of Benzene and BTEX in Groundwater and Concentrations of Poly Aromatic Hydrocarbons (Semi-Volatiles) in Groundwater for 2009 are presented in Table 2 and Table 3, respectively. The laboratory reports are provided as Appendix A.

Monitor well MW-1 was not sampled during the 3rd quarter of 2009, due to the reported presence of PSH in the monitor well. Monitor well MW-1 was sampled during the 4th quarter of 2009 for BTEX, TPH and PAH concentrations. The analytical results of the groundwater collected from monitor well MW-1 indicated a benzene concentration of 19.0 mg/L, a toluene concentration of 13.09 mg/L, an ethylbenzene concentration of 0.812 mg/L and a total xylene concentration of 2.623 mg/L during the 4th quarter of 2009. BTEX constituent concentrations exceeded the NMOCD regulatory standard in monitor well MW-1 for the 4th quarter of 2009. Analytical results indicated a TPH concentration of 343 mg/L. Analytical results indicated PAH constituent concentrations were less than the appropriate laboratory MDL for each constituent during the 4th quarter of the reporting period. A summary of Concentrations of Total Petroleum Hydrocarbons in Groundwater is provided in Table 4.

Monitor well MW-2 was sampled during the 3rd and 4th quarters of 2009. Analytical results indicated benzene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Toluene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Ethylbenzene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Total xylene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. The analytical results indicated PAH constituent concentrations were less than the appropriate laboratory MDL for each constituent during the 3rd quarter of the reporting period.

The analytical results for volatile organic compounds using EPA Method 8260, indicted all reported constituent concentrations were less than the appropriate laboratory MDL, with the exception of methylene chloride which was less than the maximum contaminant level NMWQCC drinking water standards of 0.1 mg/L. Methylene chloride is a compound not routinely detected at crude oil contaminated groundwater sites and is likely the result of laboratory error. A summary of Concentrations of Volatile Organic Compounds in Groundwater is provided as Table 5.

The analytical results for RCRA and NMWQCC metals using EPA Method 7470A indicated all reported constituent concentrations were less than the maximum contaminant level NMWQCC drinking water standards, with the exception of iron, which exhibited a concentration of 2.1 mg/L. The maximum contaminant level NMWQCC drinking water standard for iron is 1.0 mg/L. A summary of Concentrations of RCRA Metals and NMWQCC Metals in Groundwater is provided as Table 6.

The analytical results for anions and cations using EPA SW375.4, 325.3, 310, 160.1 and SW846 6010B, indicated all NMWQCC regulatory constituent concentrations were less than the

maximum contaminant level NMWQCC drinking water standards, with the exception of fluoride, which exhibited a concentration of 6.31 mg/L. The maximum contaminant level NMWQCC drinking water standard for fluoride is 1.6 mg/L. A summary of Concentrations of Anions/Cations in Groundwater is provided as Table 7.

Monitor well MW-3 was sampled during the 3rd and 4th quarters of 2009. Analytical results indicated benzene concentrations ranged from less than the laboratory MDL during the 3rd quarter to 0.0031 mg/L during the 4th quarter of 2009. Benzene concentrations were less than the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Toluene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Ethylbenzene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Total xylene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. The analytical results indicated PAH constituent concentrations were less than the appropriate laboratory MDL for each constituent during the 3rd quarter of the reporting period.

The analytical results for volatile organic compounds indicated all reported constituent concentrations were less than the appropriate laboratory MDL, with the exception of methylene chloride which was less than the maximum contaminant level NMWQCC drinking water standards of 0.1 mg/L. Methylene chloride is a compound not routinely detected at crude oil contaminated groundwater sites and is likely the result of laboratory error.

The analytical results for RCRA and NMWQCC metals indicated all reported constituent concentrations were less than the maximum contaminant level NMWQCC drinking water standards, with the exception of aluminum and iron, which exhibited a concentration of 6.51 mg/L and 5.9 mg/L, respectively. The maximum contaminant level NMWQCC drinking water standard for aluminum is 5.0 mg/L and 1.0 mg/L for iron.

The analytical results for anions and cations indicated all NMWQCC regulatory constituent concentrations were less than the maximum contaminant level NMWQCC drinking water standards, with the exception of chloride and fluoride, which exhibited concentrations of 268 mg/L and 6.01 mg/L, respectively. The maximum contaminant level NMWQCC drinking water standard for chloride is 250 mg/L and 1.6 mg/L for fluoride.

Monitor well MW-4 was sampled during the 3rd and 4th quarters of 2009. Analytical results indicated benzene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Toluene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Ethylbenzene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. Total xylene concentrations were less than the appropriate laboratory MDL and the NMOCD regulatory standard during the 3rd and 4th quarters of the reporting period. The analytical results indicated PAH constituent concentrations were less

than the appropriate laboratory MDL for each constituent during the 3rd quarter of the reporting period.

The analytical results for volatile organic compounds indicted all reported constituent concentrations were less than the appropriate laboratory MDL, with the exception of methylene chloride which was less than the maximum contaminant level NMWQCC drinking water standards of 0.1 mg/L.

The analytical results for RCRA and NMWQCC metals indicated all reported constituent concentrations were less than the maximum contaminant level NMWQCC drinking water standards, with the exception of iron, which exhibited a concentration of 1.86 mg/L. The maximum contaminant level NMWQCC drinking water standard for iron is 1.0 mg/L.

The analytical results for anions and cations indicated all NMWQCC regulatory constituent concentrations were less than the maximum contaminant level NMWQCC drinking water standards, with the exception of chloride and flouride, which exhibited concentrations of 307 mg/L and 7.52 mg/L, respectively. The maximum contaminant level NMWQCC drinking water standard for chloride is 250 mg/L and 1.6 mg/L for flouride.

Groundwater Concentration and Inferred PSH Extent Maps are provided as Figures 3A and 3B.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.6.3103 of the New Mexico Administrative Code.

SUMMARY

This report presents the results of the monitoring activities for the 2009 annual monitoring period. Currently, there are four (4) groundwater monitor wells (MW-1, MW-2, MW-3 and MW-4) on-site.

The most recent Groundwater Gradient Map Figure 2B, indicates a general gradient of approximately 0.007 feet/foot to the south-southeast.

A measurable thickness of PSH was detected in monitor well MW-1 throughout the 2009 reporting period. The average PSH thickness reported in monitor well MW-1 during the reporting period was 2.65 feet. The maximum PSH thickness was 4.16 feet on December 8, 2009. During the reporting period approximately fifty one (51) gallons (1.2 barrels) of PSH was recovered by manual recovery, from monitor well MW-1.

Review of laboratory analytical results generated from analysis of the groundwater samples obtained during the 2009 monitoring period indicates benzene concentrations were less than the NMOCD regulatory standard in three (3) of the four (4) on-site monitor wells during both monitoring events conducted in the reporting period.

ANTICIPATED ACTIONS

PSH recovery will continue on a weekly schedule from monitor well MW-1. All fluids recovered from MW-1 will be disposed of at an NMOCD permitted disposal facility. Monitor wells MW-2, MW-3 and MW-4 will continue to be monitored and sampled quarterly. Results from the 2010 sampling events will be reported in the 2010 Annual Monitoring Report.

LIMITATIONS

Basin has prepared this Annual Monitoring Report to the best of its ability. No other warranty, expressed or implied, is made or intended.

Basin has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Basin has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Basin has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin and/or Plains.

DISTRIBUTION

Copy 1: Edward Hansen

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 edwardj.hansen@state.nm.us

Copy 2: Larry Johnson

New Mexico Oil Conservation Division

1625 N. French Drive Hobbs, New Mexico 88240 larry.johnson@state.nm.us

Copy 3: Jeff Dann

Plains Marketing, L.P.

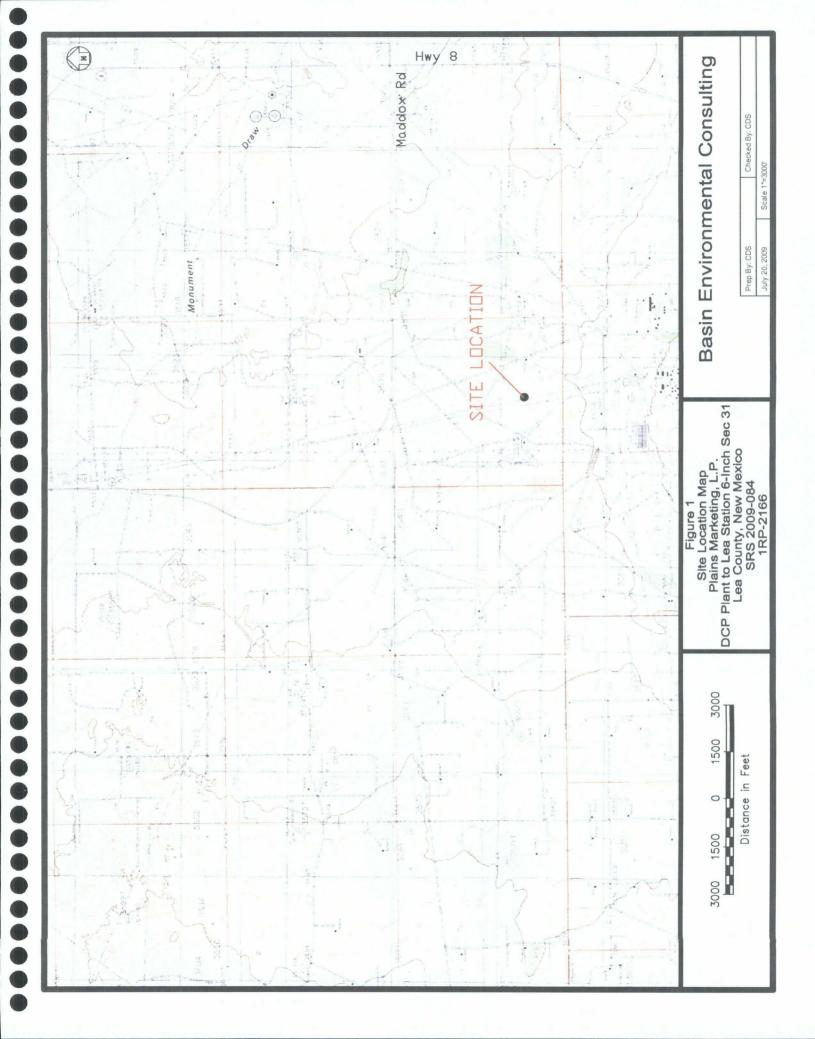
333 Clay Street Suite 1600

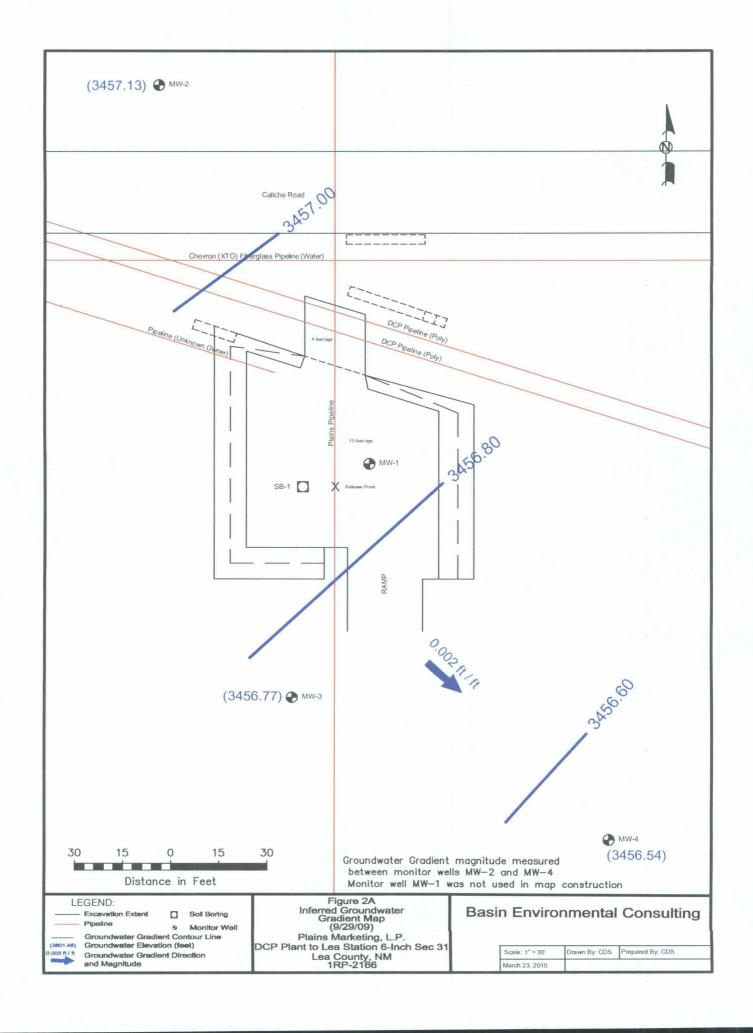
Houston, Texas 77002 jpdann@paalp.com

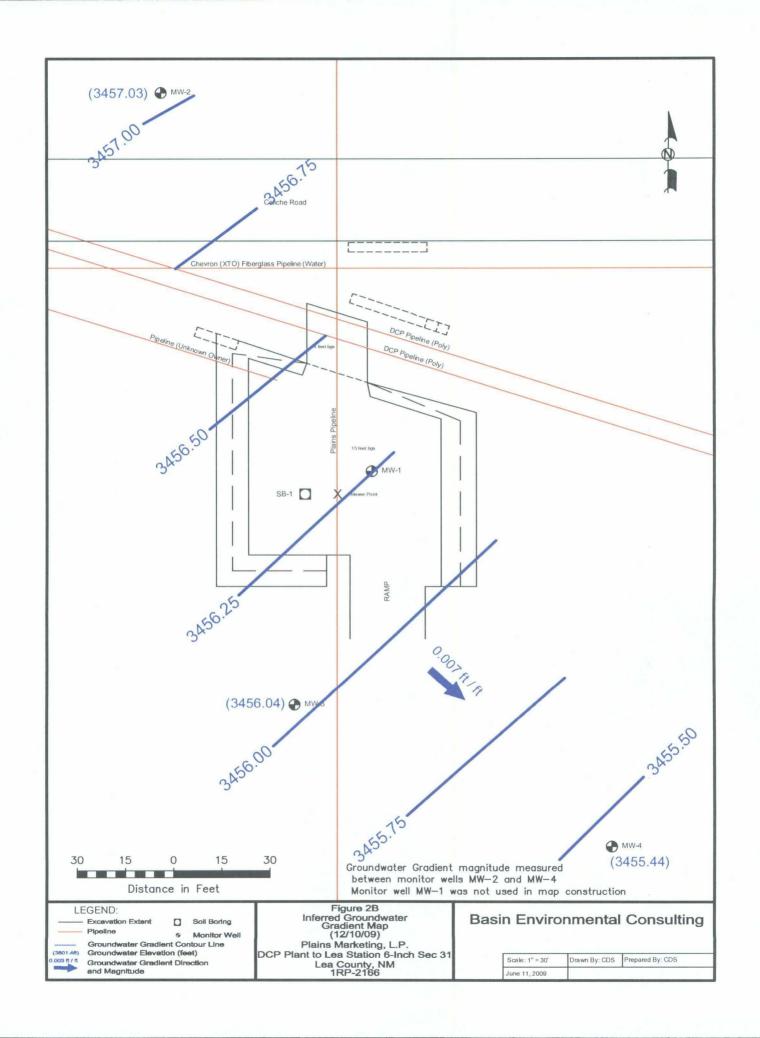
Copy 4: Jason Henry

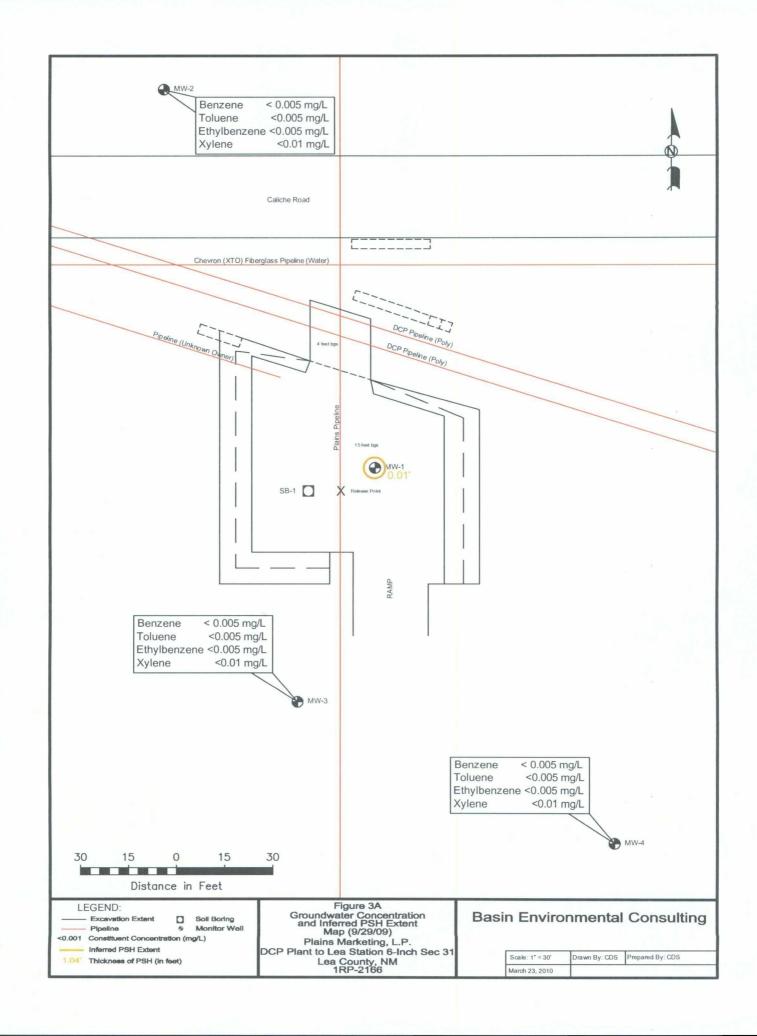
Plains Marketing, L.P. 2530 State Highway 214 Denver City, Texas 79323

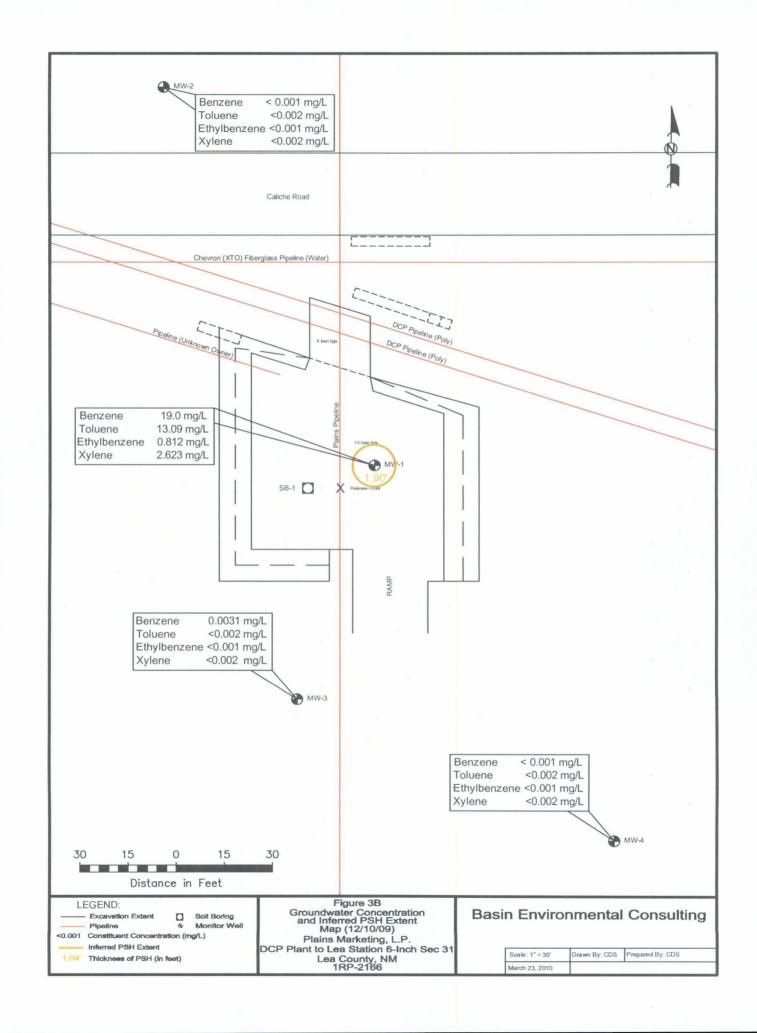
jhenry@paalp.com


Copy 5: Basin Environmental Consulting, LLC


P. O. Box 381


Lovington, New Mexico 88260 cjbryant@basin-consulting.com


Copy Number:


Figures

Tables

Appendices

TABLE 1

GROUNDWATER ELEVATION DATA

PLAINS MARKETING, L.P. DCP PLANT TO LEA STATION 6-INCH SEC. 31 LEA COUNTY, NEW MEXICO

0

PLAINS SRS NO: 2009-084 NMOCD REF NO: 1RP-2166

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	09/29/09	-	69.82	69.83	0.01	-
MW-1	10/06/09	-	69.87	70.13	0.26	-
MW-1	10/16/09	-	69.74	71.30	1.56	-
MW-1	10/21/09	-	69.31	71.41	2.10	-
MW-1	10/30/09	<u>-</u>	68.98	72.34	3.36	-
MW-1	11/05/09	-	69.07	72.16	3.09	-
MW-1	11/19/09	-	68.81	72.96	4.15	-
MW-1	11/24/09	-	69.25	72.11	2.86	-
MW-1	12/08/09		68.78	72.94	4.16	-
MW-1	12/10/09	-	69.51	71.41	1.90	-
MW-1	12/17/09	-	69.05	72.85	3.80	
MW-1	12/21/09	-	69.14	72.31	3.17	<u>-</u>
MW-1	12/28/09	-	68.91	72.96	4.05	-
MW-2	09/29/09	3,539.39	-	82.26	0.00	3,457.13
MW-2	12/10/09	3,539.39	-	82.36	0.00	3,457.03
MW-3	09/29/09	3,539.31	-	82.54	0.00	3,456.77
MW-3	12/10/09	3,539.31	-	82.67	0.00	3,456.64
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
MW-4	09/29/09	3,540.12	-	83.58	0.00	3,456.54
MW-4	12/10/09	3,540.12	-	84.68	0.00	3,455.44

TABLE 2

CONCENTRATIONS OF BENZENE AND BTEX IN GROUNDWATER

PLAINS MARKETING, L.P.
DCP PLANT TO LEA STATION 6-INCH SEC. 31
LEA COUNTY, NEW MEXICO
PLAINS SRS NO. 2009-084
NMOCD REFERENCE NO: 1R-2166

			M	ETHODS: E	METHODS: EPA SW 846-8260b	8260b	
SAMPLE	SAMPLE	BENZENE TOLUENE	TOLUENE	ETHYL-	M,P-	O-XYLENES	TOTAL
LOCATION	DATE	(I/pu/	(//ba/	BENZENE	XYLENES	()/bw/	BTEX
		/B\	(g/ = /	(mg/L)	(mg/L)	(-''B''')	(mg/L)
MW-1	12/10/09	19.0	13.09	0.812	1.894	0.729	35.525
\$	Hyve Fac		The state of		e de la companya de l		Burn Care
MW-2	60/62/60	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01
MW-2	12/10/09	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020
			S. C. 188				
MW-3	60/67/60	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01
MW-3	12/10/09	0.0031	<0.0020	<0.0010	<0.0020	<0.0010	0.0031
							\$ 1 Jan 17 18 18
MW-4	60/53/60	<0.005	<0.005	<0.005	<0.01	<0.005	<0.01
MW-4	12/10/09	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020
	The said of the said of the	574 B 843 3	18 18 18 18 18 18 18 18 18 18 18 18 18 1			The state of the s	
NMOCD CRITERIA		0.01	0.75	0.75	TOTAL XYI	TOTAL XYLENES 0.62	

TABLE 3
CONCENTRATIONS OF POLY AROMATIC HYDROCARBONS (SEML-VOLATILES) IN GROUNDWATER
PLAINS MARKETING, L.P.

DCP PLANT TO LEA STATION 6-INCH SEC 31 LEA COUNTY, NEW MEXICO NMOCD REFERENCE NUMBER 1RP-2166

All water concentrations are reported in mg/L

	Ругепе	<0.005	<0.005	<0.005		<0.05	
	Рћепапіћтеве	<0.005	<0.005	<0.005		-	
	Naphthalene	<0.005	<0.005	<0.005		<0.05	
	- Methylnaphthalene					<0.05	0.03
	enelkátidganlyáteM-1		•	-		<0.05	
	eneryq(b>-£,2,1 onebn1	<0.005	<0.005	<0.005		<0.05	
	Finorene	<0.005	<0.005	<0.005	1 11	<0.05	
1510	Fluoranthene	<0.005	<00.0>	<0.005		<0.05	
EPA SW846-8270C, 3510	eneorathing[h,g]xnediG	<0.005	<0.005	<0.005	3	<0.05	
A SW846	Chrysene	<0.005	<0.005	<0.005		<0.05	
EP	Benzo[k]fluorsanthene	<0.005	<0.005	<0.005	s.	<0.05	
	Benzolg,h,i perylene	<0.005	<0.005	<0.005		<0.05	
	Benzo[b]fluoranthene	<0.005	<0.005	<0.005		<0.05	
	Benzolalpyrene	<0.005	<0.005	<0.005		<0.05	0.0007
	Вепхо[а]апіпгасепе	<0.005	<0.005	<0.005		<0.05	
	эпээвтийлА	<0.005	<0.005	<0.005		<0.05	
	Acenaphthylene	<0.005	<0.005	<0.005	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<0.05	
	Acenaphthene	<0.005	<0.005	<0.005	, ,	<0.05	
	SAMPLE	60/67/60	60/67/60	60/67/60		12/10/09	
	SAMPLE SAMPLE LOCATION DATE	Z-MM	E-MM	4-WM		MW-1	Clean Criteria
				_			_

TABLE 4

0

CONCENTRATIONS OF TPH IN GROUNDWATER

PLAINS MARKETING, L.P.
DCP PLANT TO LEA STATION 6-INCH SEC. 31
LEA COUNTY, NEW MEXICO
PLAINS SRS NO: 2009-084
NMOCD REF NO: 1RP-2166

		METHOD: EPA SW 846-8015 Modified							
SAMPLE LOCATION	SAMPLE DATE	GRO	DRO	ORO	TOTAL TPH				
LOCATION	DATE	C ₆ -C ₁₂ (ma/L)	C ₁₂ -C ₂₈ (mg/L)	C ₂₈ -C ₃₅ (ma/L)	C ₆ -C ₃₅ (ma/L)				
MW-1	12/10/09	332	11	<1.50	343				
	Switch Review Co. 1	r right state .		Charles and an a billion in .					

Table 5
CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER
PLAINS MARKETING, LP

DCP PLANT TO LEA STATION 6-INCH SEC 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1RP-2166
All water concentrations are in mg/L

Chloroethane	<0.01	<0.01	<0.01	-
Chlorobenzene	<0.005	<0.005	<0.005	-
Sarbon Tetrachloride	<0.005	<0.005	<0.005	J\gm 10.0
Carbon Disulfide	<0.05	<0.05	<0.05	-
tert-Butylbenzene	<0.005	<0.005	<0.005	-
zec-Bnţylbenzene	<0.005	<0.005	<0.005	-
n-Butylbenzene	<0.005	<0.005	<0.005	-
	<0.005	<0.005	<0.005	•
Bromomethane	<0.005	<0.005	<0.005	-
тютопола	<0.005	<0.005	<0.005	-
Bromodichloromethane	<0.005	<0.005	<0.005	-
Bromochloromethane	<0.005	<0.005	<0.005	-
Bromobenzene	<0.005	<0.005	<0.005	-
Benzene	<0.005	<0.005	<0.005	J\gm t0.0
Sample	MW-2	MW-3	MW-4	ontarninant n NMWQCC er standards 31.UU and 3-
Date Sampled	09/23/09	09/53/09	09/53/09	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-

Page 2 of 4

Table 5
CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER
PLAINS MARKETING, LP
DCP PLANT TO LEA STATION 6-INCH SEC. 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1RP-2166
All water concentrations are in mg/L

		_			
s-1,2-Dichloroethene	၁	<0.005	<0.005	<0.005	1∖ይա1.0
1,1-Dichloroethene		<0.005	<0.005	<0.005	J\gm č 00.0
9nsd19orold3iG-2,f		<0.005	<0.005	<0.005	J\gm f0.0
1,1-Dichloroethane		<0.005	<0.005	<0.005	J\gm č 00.0
chlorodifluormethane	!a	<0.005	<0.005	<0.005	-
9neznedorold⊃iG-⊁,l	•	<0.005	<0.005	<0.005	-
9neznedoroldoiG-£,1	•	<0.005	<0.005	<0.005	•
9nəznədoroldəiQ-2,1		<0.005	<0.005	<0.005	-
Dibromomethane methylene bromide))	<0.005	<0.005	<0.005	-
-Dibromoethane (EDB)	Z'I	<0.005	<0.005	<0.005	J\gm 1000.0
1,2-Dibromo-3- chloropropane		<0.005	<0.005	<0.005	•
bromochloromethane	!a	<0.005	<0.005	<0.005	-
p-Cymene(p- lsopropyltoluene)		<0.005	<0.005	<0.005	-
4-Chlorotoluene		<0.005	<0.005	<0.005	-
2-Chlorotoluene		<0.005	<0.005	<0.005	-
Chloromethane		<0.01	<0.01	<0.01	-
Chloroform		<0.005	<0.005	<0.005	J\gm10
Sample Location		MW-2	MW-3	MW-4	ontaminant NMWQCC er standards 71.UU and 3.
Date Sampled		09/53/09	60/52/60	09/23/09	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-

Table 5

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER
PLAINS MARKETING, LP
DCP PLANT TO LEA STATION 6-INCH SEC. 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1RP-2166

All water concentrations are in mg/L

			,	
ansdrachloroethane	<0.005	<0.005	<0.005	-
Styrene	<0.005	<0.005	<0.005	-
n-Propylbenzene	<0.005	<0.005	<0.005	-
Naphthalene	<0.01	<0.01	<0.01	J\gm £0.0
Methylene chloride	900.0	900.0	0.006	-1/gm1.0
aobropylbenzene	<0.005	<0.005	<0.005	-
Hexachlorobutadiene	<0.005	<0.005	<0.005	-
Ethylbenzene	<0.005	<0.005	<0.005	J\gm č7.0
frans-1,3-Dichloropropene	<0.005	<0.005	<0.005	-
eis-1,3-Dichloropropene	<0.005	<0.005	<0.005	-
1,1-Dichloropropane	<0.005	<0.005	<0.005	-
2,2-Dichloropropane	<0.005	<0.005	<0.005	-
9nsqorqoroldɔid-ɛ,t	<0.005	<0.005	<0.005	-
1,2-Dichloropropane	<0.005	<0.005	<0.005	-
trans-1,2-Dichloroethene	<0.005	<0.005	<0.005	-
Sample	MW-2	MW-3	MW-4	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-
Date Sampled	60/52/60	09/53/09	60/52/60	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-

Table 5

0

CONCENTRATIONS OF VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER PLAINS MARKETING, LP

DCP PLANT TO LEA STATION 6-INCH SEC. 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1RP.2166
All water concentrations are in mg/L

			_	
Vinyl Chloride	<0.002	<0.002	<0.002	J∖gm 100.0
ənəlyX-q,m	<0.01	<0.01	<0.01	J\gm S3.0
o-Xylene	<0.005	<0.005	<0.005	Total Xylene
9-3-5-Trimethylbenzene	<0.005	<0.005	<0.005	•
9nəznədlyhləmi1T-4,2,1	<0.005	<0.005	<0.005	-
1,2,3-Trichloropropane	<0.005	<0.005	<0.005	•
Trichlorofluoromethane	<0.005	<0.005	<0.005	-
Trichloroethene (TCE)	<0.005	<0.005	<0.005	J \gm f0.0
۴.۱٫۲-۲ inchloroethane	<0.005	<0.005	<0.005	-
f.1,1-1 ichloroethane	<0.005	<0.005	<0.005	J\gm
9η-Σιζή-ΤήσηΙοιοbenzene	<0.005	<0.005	<0.005	1
1,2,3-Trìchlorobenzene	<0.005	<0.005	<0.005	-
Toluene	<0.005	<0.005	<0.005	J\քm &T.0
Tetrachloroethene (PCE)	<0.005	<0.005	<0.005	-
1,1,2,2-Tetrachloroethane	<0.005	<0.005	<0.005	J\gm S0.0
Sample Location	MW-2	MW-3	MW-4	ontaminant NMWQCC er standards 11.UU and 3-
Date Sampled	60/67/60	60/52/60	09/29/09	Maximum Contaminant Levels from NMWQCC Drinking water standards Sections 1-101.UU and 3-

TABLE 6
CONCENTRATIONS OF RCRA AND NAWQCC METALS IN GROUNDWATER
PLAINS MARKETING, L.P.
DCP PLANT TO LEA STATION 6-INCH SEC 31
LEA COUNTY, NEW MEXICO

All water concentrations are reported in mg/L

NMOCD REFERENCE NUMBER 1RP-2166

Метситу	0.0001	<0.0001	<0.0001	J\gm £00.0
əniZ	0.014	0.024	0.008	1\გლ 01
Silver	<0.002	<0.002	<0.002	J\gm 20.0
Selenium Selenium	0.028	0.008	900.0	ച\ൠՠ Հ0.0
Nickel	900.0	0.013	0.007	J\gm 2.0
munəbdyloM:	0.02	0.024	0.019	J\gm 0.1
SeanganeM	0.045	0.147	0.065	J\gm 2.0
pgə/J	<0.002	0.005	<0.002	J\gm 20.0
Iron	2.1	5.9	1.860	J\gm 0.1
Copper	800.0	0.014	10.0	.1\ցա 0.1
Cobalt	<0.005	900'0	<0.005	J\gm ≷0.0
Chromium	0.007	0.01	900'0	J\gm &0.0
muimbsO	<0.001	<0.001	<0.001	J\gm 10.0
Вогоп	0.317	0.224	0.184	J\gm &7.0
muira8	0.126	0.704	0.176	
Arsenic	610.0	0.024	0.04	. Մ.Ձm 1.0
munimulA	2.36	6.51	2.22	J\gm 0.2
SAMPLE DATE	60/57/60	60/57/60	60/52/60	ntaminant M WQCC r tions 1- 103.A.
SAMPLE LOCATION	MW-2	MW-3	MW-4	Maximum Contaminant Levels from NM WQCC Drinking water standards Sections 1- 101.UU and 3-103.A.
	Arsenic Barium Boron Cadmium Chromium Cobalt Copper Iron Iron Iron Iron Selenium Selenium Selenium	E. Aluminum Aluminum Arsenic Barium Barium Cobalt Copper Iron Lead Chromium Chromium Chromium Copper Iron Lead Chromium Chromium Chromium Chromium Chromium Chromium Chromium Cono Chromium Cono <tr< th=""><th>E min min m Barium Boron</th><th>E in in</th></tr<>	E min min m Barium Boron	E in

TABLE 7
CONCENTRATIONS OF ANIONS/CATIONS IN GROUNDWATER
PLAINS MARKETING, L.P.
DCP PLANT TO LEA STATION 6-INCH SEC 31
LEA COUNTY, NEW MEXICO
NMOCD REFERENCE NUMBER 1RP -2166

All water concentrations are reported in mg/L

	Flouride	6.31	6.01	7.52	J/gm ð.l
		6.	9	7.	
	Phosphate	<1.25	<1.25	<1.25	-
	Nitrate	86.9	3.66	2.25	J\gm 01
	Carbonate	200	196	204	-
SW846 6010B	Bicarbonate	192	260	180	-
25.3, 310, 160.1	Sulfate	204	119	93.5	J\gm 000
EPA \$W375.4,325.3,310,160.1 SW846 6010B	Chloride	164	268	307	J\gm 025
1	Sodium	125	661	203	•
	Potassium	<12.5	<12.5	<12.5	-
	Magnesium	39.8	20.2	22.2	-
	Calcium	58	19	69	-
SAMPLE SAMPLE	DATE LOCATION	MW-2	MW-3	MW-4	Maximum Contaminant Levels from NM WQCC Drinking water standards Sections 1- 101.UU and 3-103.A.
SAMPLE	DATE	6/26/2006	6/26/2006	6/26/2006	Maximum Contaminant Levels from NM WQCC Drinking water standards Sections 1- 101.UU and 3-103.A.

Appendix A Laboratory Reports

Analytical Report 346678

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station Sec. 31 2009-084

03-NOV-09

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-08-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00308), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87428), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-08-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-08-TX)
Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370-08-TX)
Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240),
South Carolina(96031001), Louisiana(04154), Georgia(917)

03-NOV-09

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 346678

DCP Plant to Lea Station Sec. 31 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 346678. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 346678 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

0

0

0

Sample Cross Reference 346678

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station Sec. 31

Sample 1d	Matrix	Date Collected Sample Depth	Lab Sample Id
MW-2	W	Sep-29-09 11:30	346678-001
MW-3	W	Sep-29-09 13:00	346678-002
MW-4	W	Sep-29-09 14:00	346678-003

Ver. 1.000 Page 3 of 41

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station Sec. 31

Project ID:

2009-084

Work Order Number: 346678

Report Date: 03-NOV-09

Date Received: 10/01/2009

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-775240 Inorganic Anions by EPA 300

E300MI

Batch 775240, Chloride, Fluoride, Sulfate recovered below QC limits in the Matrix Spike.

Samples affected are: 346678-003, -001, -002.

The Laboratory Control Sample for Chloride , Fluoride, Sulfate is within laboratory Control Limits

E300MI

Batch 775240, Nitrate as N RPD is outside the QC limit. This is most likely due to sample non-

homogeneity.

Samples affected are: 346678-003, -001, -002.

Batch: LBA-775584 Alkalinity by SM2320B

None

Batch: LBA-775620 VOAs by SW-846 8260B

None

Batch: LBA-775661 SVOAs by SW-846 8270C

SW8270C

Batch 775661, Hexachlorobutadiene, Hexachloroethane RPD was outside laboratory control

limits.

Samples affected are: 346678-003, -001, -002

Ver. 1.000

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station Sec. 31

Project ID:

2009-084

Work Order Number: 346678

Report Date: 03-NOV-09

Date Received: 10/01/2009

Batch: LBA-775780 Total Lead by SW6020A

SW6020

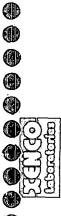
1

Batch 775780, Iron, Zinc recovered below QC limits in the Matrix Spike. Boron recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Barium, Iron, Manganese recovered above QC limits in the Matrix Spike Duplicate.

Samples affected are: 346678-003, -001, -002.

The Laboratory Control Sample for Iron, Manganese, Zinc, Barium, Boron is within laboratory

Control Limits


Batch: LBA-775998 Mercury, Total by EPA 245.1

None

Batch: LBA-776000 Metals per ICP by SW846 6010B

None

Ver. 1.000

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

1

1

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am Report Date: 03-NOV-09

Project Manager: Brent Barron, II

	Lab Id:	346678-001	346678-002	346678-003	
Action Daniel	Field Id:	MW-2	MW-3	MW-4	
Anaiysis Requesieu	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Sep-29-09 14:00	
Alkalinity by SM2320B	Extracted:				
	Analyzed:	Oct-02-09 14:00	Oct-02-09 14:00	Oct-02-09 14:00	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Alkalinity, Total (as CaCO3)		200 4.00	196 4.00	204 4.00	
Alkalinity, Carbonate (as CaCO3)		ND 4.00	ND 4.00	ND 4.00	
Alkalinity, Bicarbonate (as CaCO3)		200 4.00	196 4.00	204 4.00	
Anions by E300	Extracted:				
	Analyzed:	Oct-01-09 08:40	Oct-01-09 08:40	Oct-01-09 08:40	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Fluoride		6.31 1.00	6.01 1.00	7.52 1.00	
Chloride		164 2.50	268 2.50	307 2.50	
Sulfate		204 2.50	119 2.50	93.5 2.50	
Nitrate as N		6.98 0.250	3.66 0.250	2.25 0.250	
Ortho-Phosphate		ND 1.25	ND 1.25	ND 1.25	

This amilytical report, and the entire data package i represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout in this analytical report represent the best judgment of XENCO Laboratories. YENCO Laboratories assumes no responsibility and rankes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 6 of 41

Project Id: 2009-084

Contact: Jason Henry
Project Location: Lea County, NM

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

Project Manager: Brent Barron, II

					Holeet Manager. Dreit Danen, in
	Lab Id:	346678-001	346678-002	346678-003	
Acontrois December	Field Id:	MW-2	MW-3	MW-4	
Hariyas vequesien	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Sep-29-09 14:00	
ICP-MS Metals by SW 6020A	Extracted:	Oct-05-09 13:00	Oct-05-09 13:00	Oct-05-09 13:00	
	Analyzed:	Oct-06-09 12:03	Oct-06-09 12:08	Oct-06-09 12:12	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Aluminum		2.36 0.010	6.51 0.010	2.22 0.010	
Arsenic		0.019 0.002	0.024 0.002	0.040 0.002	
Barium		0.126 0.005	0.704 0.005	0.176 0.005	
Boron		0.317 0.010	0.224 0.010	0.184 0.010	
Cadmium		ND 0.001	ND 0.001	ND 0.001	
Chromium		0.007 0.003	0.010 0.003	0.006 0.003	
Cobalt		ND 0.005	0.006 0.005	ND 0.005	
Copper		0.008 0.003	0.014 0.003	0.010 0.003	
Iron		2.10 0.150	5.90 0.150	1.86 0.150	
Lead		ND 0.002	0.005 0.002	ND 0.002	
Manganese		0.045 0.003	0.147 0.003	0.065 0.003	
Molybdenum		0.020 0.004	0.024 0.004	0.019 0.004	
Nickel		0.006 0.005	0.013 0.005	0.007 0.005	
Selenium		0.028 0.003	0.008 0.003	0.006 0.003	
Silver		ND 0.002	ND 0.002	ND 0.002	
Zinc		0.014 0.003	0.024 0.003	0.008 0.003	
Mercury by EPA 7470A	Extracted:	Oct-05-09 11:00	Oct-05-09 11:00	Oct-05-09 11:00	
	Analyzed:	Oct-07-09 12:55	Oct-07-09 12:55	Oct-07-09 12:55	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Mercury		0.0001 0.0001	ND 0.0001	ND 0.0001	

This analytical roport, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout his analytical report represent his best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron, II
Odessa Laboratory Manager

Project Id: 2009-084
Contact: Jason Henry
Project Location: Lea County, NM

Secondario de Company Secondario de Company 346678

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

Project Manager: Brent Barron, II

	Lab Id:	346678-001	346678-002	346678-003	
Australia Daniactor	Field Id:	MW-2	MW-3	MW-4	
Anulysis Nequesieu	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Scp-29-09 14:00	
Metals per ICP by SW846 6010B	Extracted:				
	Analyzed:	Oct-07-09 10:27	Oct-07-09 10:27	Oct-07-09 10:27	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
Calcium		58.0 2.50	67.0 2.50	69.0 2.50	
Magnesium		39.8 0.250	20.2 0.250	22.2 0.250	
Potassium		ND 12.5	ND 12.5	ND 12.5	
Sodium		125 12.5	199 12.5	203 12.5	
				201	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed the back judgment of XENCO Laboratories. The interpretations and results are expressed the back judgment of XENCO Laboratories. XENCO Laboratories estumes no responsibility and makes no warranty to the end use of the data bretchy presented. Our liability is limited to the amount invoiced for this work order muses otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami · Latin America - Atlanta - Corpus Christi

Since 1990

Brent Barron, II Odessa Laboratory Manager

Page 8 of 41

Project Location: Lea County, NM

Contact: Jason Henry Project 1d: 2009-084

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am 03-NOV-09

Project Manager: Brent Barron, II Report Date:

0.005 0.030 0.010 0.010 0.010 0.010 0.010 0.010 0.0100.010 0.010 0.005 0.005 0.020 0.005 0.005 0.005 0.005 0.005 0.005 0.020 0.005 0.005 0.005 Oct-02-09 10:36 Scp-29-09 14:00 Oct-03-09 18:02 346678-003 WATER WW4 9 S S 2 S S S S. S 8 2 S ΩZ N Q 2 2 2 2 2 2 mg/L 0.010 0.030 0.010 0.010 0.010 0.010 0.005 0.005 0.020 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.010 0.005 0.010 0.020 0.005 0.010 Z 0.010 0.005 0.005 Sep-29-09 13:00 Oct-02-09 10:33 Oct-03-09 17:23 346678-002 WATER MW-3 ΩN S. 2 S S 9 S 2 S S 2 E S S S S S 9 2 mg/L 0.005 0.010 0.002 0.020 0.005 0.005 0.005 0.005 0.030 0.010 0.010 0.010 0.005 0.010 0.020 0.010 0.010 0.010 0.005 0.005 0.010 0.005 0.005 0.005 0.005 Z Oct-02-09 10:30 Oct-03-09 16:46 Scp-29-09 11:30 346678-00 WATER MW-2 2 8 S S S N Q S S S 2 R S. 2 2 N Q 2 2 9 S S 8 9 ND g ΔÑ mg/L Depth: Field Id: Lab Id: Matrix: Analyzed: Sampled: Extracted: Units/RL. SVOAs by EPA 8270C Aniline (Phenylamine, Aminobenzene) Analysis Requested 4-Chlorophenyl Phenyl Ether bis(2-chlorocthoxy) methane 4-Bromophenyl-phenylether bis(2-chloroisopropyl) ether bis(2-cthylhexyl) phthalate 4-chloro-3-methylphenol bis(2-chlorocthyl) ether Benzyl Butyl Phthalate Dibenz(a,h)Anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene

Benzo(g,h,i)perylene

Benzoic Acid

Benzo(a)anthracene

Anthracene

Benzo(a)pyrene

Acenaphthylene

Acenaphthene

2-Chloronaphthalene

2-Chlorophenol

4-Chloroaniline

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout it is analytical report express thin best independ of XENCO Laboratories. XENCO Laboratories segmes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is intried to the amount invoiced for this work order unioss otherwise agreed to in writing.

di-n-Butyl Phthalate

Dibenzofuran

Chrysene

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

Project Manager: Brent Barron, II

	Lab Id:	346678-001	346678-002	346678-003	
Analysis Reanested	Field Id:	MW-2	MW-3	4WM	
manage from the contract of	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Scp-29-09 14:00	
SVOAs by EPA 8270C	Extracted:	Oct-02-09 10:30	Oct-02-09 10:33	Oct-02-09 10:36	
	Analyzed:	Oct-03-09 16:46	Oct-03-09 17:23	Oct-03-09 18:02	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
1,2-Dichlorobenzene		۵	010.0 ON	ND 0.010	
1,3-Dichlorobenzene		ND 0.010	ND 0.010	ND 0.010	
1,4-Dichlorobenzene		ND 0.010	ND 0.010	ND 0.010	
3,3-Dichlorobenzidine		ND 0.010	ND 0.010	ND 0,010	
2,4-Dichlorophenol		ND 0.010	ND 0.010	ND 0.010	
Diethyl Phthalate		ND 0.005	ND 0.005	ND 0.005	
Dimethyl Phthalate		ND 0.005	ND 0.005	ND 0.005	
2,4-Dimethylphenol		ND 0.010	ND 0.010	ND 0.010	
4,6-dinitro-2-methyl phenol		ND 0.010	ND 0.010	ND 0.010	
2,4-Dinitrophenol		ND 0.010	ND 0.010	ND 0.010	
2,4-Dinitrotoluene		ND 0.010	ND 0.010	ND 0.010	
2,6-Dinitrotoluene		ND 0.010	010'0 QN	ND 0.010	
di-n-Octyl Phthalate				ND 0.005	
Fluoranthene		ND 0.005	ND 0.005	ND 0.005	
Fluorenc		ND 0.005	ND 0.005	ND 0.005	
Hexachlorobenzene		ND 0.010	ND 0.010	ND 0.010	
Hexachlorobutadiene		010'0 QN	ND 0.010	ND 0.010	
Hexachlorocyclopentadiene			ND 0.010	ND 0.010	
Hexachlorocthane		ND 0.010	ND 0.010	ND 0.010	
Indeno(1,2,3-c,d)Pyrenc		ND 0.005	ND 0.005	ND 0.005	
Isophorone		ND 0.010	ND 0.010	ND 0.010	
2-Methylnaphthalene		ND 0.005	ND 0.005	ND 0.005	
2-methylphenol		ND 0.010	ND 0.010	ND 0.010	
3&4-Methylphenol		ND 0.010	ND 0.010	010'0 QN	
Naphthalene		ND 0.005	ND 0.005	ND 0.005	

This malytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout ints analytical report represent the best judgment of XENCO Laboratories. YENCO Laboratories assumes no responsibility and raikes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 10 of 41

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am Report Date: 03-NOV-09

Project Manager: Brent Barron, II

Requested Field Id: MW-2 MW-3 MW-4 Depth: Depth: MW-2 MW-3 MW-3 MW-4 Matrix: Matrix: WATER WATER WATER WATER WATER Sampled: Scp-29-09 II:30 Scp-29-09 I3:00		Lab Id:	346678-001	346678-002	346678-003	
by EPA 8270C Extracted: Scp-29-09 11:30 Scp-29-09 13:00 Scp-29-09 1 by EPA 8270C Extracted: Scp-29-09 11:30 Scp-29-09 13:00 Scp-29-09 1 by EPA 8270C Extracted: Oct-02-09 10:30 Oct-02-09 10:30 Oct-02-09 10:30 Scp-29-09 1 by EPA 8270C Extracted: Oct-02-09 10:30 Oct-02-09 10:30 Oct-02-09 10:30 Scp-29-09 10:30 Scp-29-09 10:30 Analyzed: Oct-03-09 16:46 Oct-02-09 10:30 Oct-02-09 10:30 </th <th>Analysis Donnested</th> <th>Field Id:</th> <th>MW-2</th> <th>MW-3</th> <th>MW4</th> <th></th>	Analysis Donnested	Field Id:	MW-2	MW-3	MW4	
by EPA 8270C Extracted: Scp-29-09 11:30 Scp-29-09 13:30 Scp-29-09 13:00 Scp-29-09 10:30 by EPA 8270C Extracted: Oct-02-09 10:30 Oct-02-09 10:30 Oct-02-09 10:30 Oct-02-09 10:30 Scp-29-09 11:30 Scp-29-0	Antai Net desteu	Depth:				
by EPA 8270C Extracted: Scp-29-09 11:30 Scp-29-09 13:00 Scp-29-09 10:31 by EPA 8270C Extracted: Oct-02-09 10:30 Oct-02-09 10:33 Oct-02-09 10:33 Oct-02-09 10:33 Analyzed: Oct-03-09 16:46 Oct-03-09 17:23 Oct-03-09 11 MD Oct-03-09 11 Units/RL: mg/L RL mg/L RL mg/L MD ND 0.010 ND 0.010 ND Oct-03-09 11 ND 0.010 ND 0.010 ND Oct-03-09 11 ND 0.010 ND 0.010 ND ND 0.010 ND 0.010 ND<		Matrix:	WATER	WATER	WATER	
by EPA 8270C Extracted: Oct-02-09 10:30 Oct-02-09 10:33 Oct-02-09 10:34 Oct-02-09 10:35 Oct-02-09 11:23 Oct-03-09 11:23 <th></th> <th>Sampled:</th> <th>Sep-29-09 11:30</th> <th>Sep-29-09 13:00</th> <th>Sep-29-09 14:00</th> <th></th>		Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Sep-29-09 14:00	
Analyzed: Oct-03-09 16:46 Oct-03-09 17:23 Oct-03-09 11 Units/RL: mg/L	SVOAs by EPA 8270C	Extracted:	Oct-02-09 10:30	Oct-02-09 10:33	Oct-02-09 10:36	
Units/RL: mg/L RL mg/L RL mg/L RL mg/L MD 0.010 ND ND <th></th> <th>Analyzed:</th> <th>Oct-03-09 16:46</th> <th>Oct-03-09 17:23</th> <th>Oct-03-09 18:02</th> <th></th>		Analyzed:	Oct-03-09 16:46	Oct-03-09 17:23	Oct-03-09 18:02	
ND 0.010		Units/RL:				
ND 0.010 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.010	2-Nitroaniline			l		
ND 0.020	3-Nitroaniline					
nutine ND 0.010 ND 0.010 ND 0.005 ND 0.005 ND 0.006 ND 0.005 ND 0.007 ND 0.007 ND 0.0010 ND 0.007 ND 0.010 ND 0.010 ND 0	4-Nitroaniline					
nmine	Nitrobenzene					
nmine nc	2-Nitrophenol			l		
nnc nnine	4-Nitrophenol					
ND 0.010 ND 0.010 ND ND ND ND ND ND ND N	N-Nitrosodi-n-Propylamine					
DAN 010.0 DAN 010.0 DAN 010.0 DAN 010.0 DAN 010.0 DAN 010.0 DAN DAN 010.0 DAN	N-Nitrosodiphenylamine					
QN 500.0 QN 500.0 QN ON	Pentachlorophenol		i			
QN 010.0 QN 010.0 QN QN 00.0 QN 00.0 QN QN 010.0 QN 010.0 QN QN 010.0 QN 010.0 QN QN 010.0 QN 010.0 QN	Phenanthrene					
DA 0000 ON O	Phenol					
ON 0100 ON 0010 ND 0.010 ND 0.010 ND ND	Pyrene					
ND 0.010 ON 0.010 ON	Pyridinc					
QN 010.0 QN 010.0 QN	1,2,4-Trichlorobenzene					
QN 010'0 QN 010'0 QN	2,4,5-Trichlorophenol					
	2,4,6-Trichlorophenol		ND 0.010	ND 0.010	ND 0.010	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout lists analytical report represent the best alignment of XENCO Laboratories. YENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 . Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Page 11 of 41

Project Id: 2009-084

Contact: Jason Henry
Project Location: Lea County, NM

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

Project Manager: Brent Barron, II

Sis Requested Field Id: MW-2 MW-3 Pepth: Depth: Marrix: WATER WATER Sampled: Scp-29-09 II:30 Scp-29-09 II:30 Scp-29-09 II:30 S by SW-846 8260B Extracted: Oct-05-09 II:37 Oct-05-09 II:37 Individed ND 0.005 ND Individed ND 0.005 ND Ithane ND 0.005 ND Ithane ND 0.005 ND Indic ND 0.005 ND	MW-3 WATER WATER Sep-29-09 13:00 Oct-05-09 11:39 Oct-05-09 11:39 Oct-05-09 11:39 Oct-05-09 11:40 Oct-05-09 11:39 Oct-05-09 11:41 Oct-05-09 11:40 Oct-05-09 11:41 Oct	ER 9 14:00 9 13:18 RL 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005
Matrix: WATER WATER Matrix: WATER WATER Sampled: Scp-29-09 11:30 Scp-29-09 1 46 8260B Extracted: Oct-05-09 11:37 Oct-05-09 1 Analyzed: Oct-05-09 12:34 Oct-05-09 1 Units/RL: mg/L RL mg/L ND 0.005 ND	7. 20 20 20 20 20 20 20 20 20 20 20 20 20	FER 9 14:00 9 13:18 RL 0.005 0.005 0.005 0.005 0.005
Marrix: WATER WATER Sampled: Scp-29-09 11:30 Scp-29-09 1 46 8260B Extracted: Oct-05-09 11:37 Oct-05-09 1 Analyzed: Oct-05-09 11:37 Oct-05-09 1 Analyzed: Oct-05-09 12:34 Oct-05-09 1 ND 0.005 ND ND 0.005 ND <th< th=""><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th>EER 9 14:00 9 11:41 9 13:18 RL 0.005 0.005 0.005 0.005 0.005 0.0065</th></th<>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EER 9 14:00 9 11:41 9 13:18 RL 0.005 0.005 0.005 0.005 0.005 0.0065
46 8260B Extracted: Oct-05-09 11:37 Oct-05-09 1 46 8260B Extracted: Oct-05-09 11:37 Oct-05-09 1 Analyzed: Oct-05-09 11:37 Oct-05-09 1 Units/RL: mg/L RL mg/L ND 0.005 ND ND 0.005 ND <th>7. 20 20 20 20 20 20 20 20 20 20 20 20 20</th> <th>9 14:00 9 13:18 RL 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005</th>	7. 20 20 20 20 20 20 20 20 20 20 20 20 20	9 14:00 9 13:18 RL 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005
46 8260B Extracted: Oct-05-09 11:37 Oct-05-09 11:34 ND Oct-05-09 11:34 ND N	T. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	9 11:41 9 13:18 RL 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005 0 0.005
Analyzed: Oct-05-09 12:34	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 13:18 RL 0.005 0.005 0.005 0.005 0.005 0.005 0.005
Units/RL: mg/L RL mg/L ND 0.005 ND 0.	PL mg/l D 0.005	
QN 500.0 QN QN 500.0	0.005 0.005 0.005 0.005 0.005 0.005 0.005	
QN 50000 QN QN 5000 QN	0.005 0.005 0.005 0.005 0.005 0.005	
QN \$000.0 QN QN	0.005 0.005 0.005 0.005 0.005	
QN 50000 QN QN 5000 QN	0.005 0.005 0.005 0.005 0.005	
QN \$000.0 QN	0.005 0.005 0.005 0.005	
QN \$0000 QN QN \$000 QN	0.005	
QN \$0000 QN QN \$000 QN	0.005	
QN \$00.0 QN	0.005	
QN \$0000 QN QN \$000 QN	0.005	
QN 500.0 QN QN 0.05.0 QN QN 0.00.0 QN		
QN 0000 QN		
DA 500.0 DA DA 600.0 DA DA 0.00.0 DA DA 0.010 DA DA 0.000 DA <td></td> <td>0.050</td>		0.050
UN 500.0 UN UN 0.010 UN UN 0.00 UN		0.005
DA 010.0 DA DA 000.0 DA DA 0.00.0 DA DA 0.00.		
QN 500.0 QN QN 0.00.0 QN QN 0.00.0 QN QN 500.0 QN	0.010	
QN 010.0 QN QN 500.0 QN		
QN 500.0 QN		0.010
QN 0.000 QN		0.005
QN 0.000 QN QN 0.000 QN QN 0.000 QN QN 0.000 QN		0.005
ND 0.005 ND ropanc ND 0.005 ND ND 0.005 ND		0.003
Inforopropanc ND 0.005 ND 1c ND 0.005 ND		0.003
ne ND 0.005 ND		0.005
	ND 0.005 ND	0.005
1,2-Dichlorobenzene ND 0.005 ND 0.005		
L;3-Dichlorobenzene ND 0.005 ND 0.005		0.005

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and tesulis expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is finited to the amount invoiced for this vork order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron, II Odessa Laboratory Manager

Page 12 of 41

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-084

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am 03-NOV-09 Report Date:

Project Manager: Brent Barron, II

	Lab Id:	346678-001	346678-002	346678-003	
Analysis Poonostod	Field Id:	MW-2	MW-3	MW-4	
naisan hay sistinut	Depth:				
	Matrix:	WATER	WATER	WATER	
	Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Sep-29-09 14:00	
VOAs by SW-846 8260B	Extracted:	Oct-05-09 11:37	Oct-05-09 11:39	Oct-05-09 11:41	
	Analyzed:	Oct-05-09 12:34	Oct-05-09 12:56	Oct-05-09 13:18	
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	
1,4-Dichlorobenzene		ND 0.005	ND 0.005	ND 0.005	
Dichlorodifluoromethane		ND 0.005	ND 0.005	ND 0.005	
1,1-Dichloroethane	,	ND 0.005	ND 0.005	ND 0.005	
1,2-Dichloroethane		ND 0.005	ND 0.005	ND 0.005	
1,1-Dichloroethene		ND 0.005	ND 0.005	ND 0.005	
cis-1,2-Dichloroethene		ND 0.005	ND 0.005	ND 0.005,	
trans-1,2-dichloroethenc		ND 0.005	ND 0.005	ND 0.005	
1,2-Dichloropropanc		ND 0.005	ND 0.005	ND 0.005	
1,3-Dichloropropanc		ND 0.005	ND 0.005	ND 0.005	
2,2-Dichloropropane		ND 0.005	ND 0.005	ND 0.005	
1,1-Dichloropropene		ND 0.005	ND 0.005	ND 0.005	
cis-1,3-Dichloropropene		ND 0.005	ND 0.005	ND 0.005	
trans-1,3-dichloropropene		ND 0.005	ND 0.005	ND 0.005	
Ethylbenzene		ND 0.005	ND 0.005	ND 0.005	
Hexachlorobutadiene		ND 0.005	ND 0.005	ND 0.005	
isopropylbenzene		ND 0.005	ND 0.005	ND 0.005	
Methylene Chloride		0.006 0.005	0.006 0.005	0.006 0.005	
Naphthalene		010'0 QN	ND 0.010	010'0 QN	
n-Propylbenzene		ND 0.005	ND 0.005	ND 0.005	
Styrene		ND 0.005	ND 0.005	ND 0.005	
1,1,1,2-Tetrachloroethane		ND 0.005	ND 0.005	ND 0.005	
1,1,2,2-Tetrachloroethane		ND 0.005	ND 0.005	ND 0.005	
Tetrachloroethylene		ND 0.005			
Toluene		ND 0.005	ND 0.005	ND 0.005	
1,2,3-Trichlorobenzene		ND 0.005	ND 0.005	ND 0.005	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout his analytical report represent the best judgment of XENCO Laboratories. YENCO Laboratories assumes no responsibility and ratkes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 13 of 41

Project Id: 2009-084

Contact: Jason Henry
Project Location: Lea County, NM

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station Sec. 31

Date Received in Lab: Thu Oct-01-09 07:35 am

Report Date: 03-NOV-09

Project Manager: Brent Barron, II

Analysis Requested Field II; MW-2 MW-3 MW-4 Marix: Marix: WATER WATER MATER VOAs by SW-846 8260B Extracela: Scp-29-09 11:30 Scp-29-09 13:00 Scp-29-09 11:40 VOAs by SW-846 8260B Extracela: Oct-05-09 11:37 Oct-05-09 11:39 Oct-05-09 11:41 VOAs by SW-846 8260B Extracela: Oct-05-09 11:37 Oct-05-09 11:39 Oct-05-09 11:41 VOAs by SW-846 8260B Extracela: Oct-05-09 11:37 Oct-05-09 11:39 Oct-05-09 11:41 VOAs by SW-846 8260B Extracela: Oct-05-09 11:37 Oct-05-09 11:39 Oct-05-09 11:41 I.2.4-Trichlorobenzenc Indicated and a properties ND 0.005 ND 0.005 ND 0.005 I.1.1-Trichlorochlanc ND 0.005 ND 0.005 ND 0.005 ND 0.005 I.1.2-Trichlorochlanc ND 0.005 ND 0.005 ND 0.005 ND 0.005 I.2.3-Trichlorochlanc ND 0.005 ND 0.005 ND 0.005 ND 0.005 I.2.3-Trichlorochlanc ND 0.005 ND 0.005 ND 0.005 ND 0.005		Lab Id:	346678-001	346678-002	346678-003	
OAs by SW-846 8260B Extracted: Scp-29-09 11:30 Scp-29-09 13:00 Scp-29-09 1 OAs by SW-846 8260B Extracted: Scp-29-09 11:30 Oct-05-09 13:00 Scp-29-09 1 OAs by SW-846 8260B Extracted: Oct-05-09 11:37 Oct-05-09 12:36 Oct-05-09 1 Obenzenc Units/RL: mg/L RL mg/L mg/L rocthanc ND 0.005 ND 0.005 ND rocthance ND 0.005 ND 0.005 ND rocthopance ND 0.005 ND 0.005 ND rocthopance ND 0.005 ND 0.005 N	Annivers Dogwood	Field Id:	MW-2	MW-3	MW4	
OAs by SW-846 8260B Extracted: Extracted: Sep-29-09 11:30 Sep-29-09 13:00 Sep-29-09 13:00 Sep-29-09 13:00 OAs by SW-846 8260B Extracted: Oct-05-09 11:37 Oct-05-09 11:37 Oct-05-09 11:39 Oct-05-09 10:39 Obenizenc Units/RL: MIX MB/L MB/L MB/L MB/L rocthanc ND cocthanc ND 0.005 ND 0.005 ND 0.005 ND 0.005 rocthanc ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND 0.005 rocthanc ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND 0.005 rocthanc ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND 0.005 ropropanc ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND 0.005 rybbenzenc ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND 0.005 rockharce ND 0.005 ND 0.005 ND 0.005 ND 0.005 ND 0.005	naisanhau sistimuv	Depth:				
OAs by SW-846 8260B Extracted: Scp-29-09 11:37 Scp-29-09 13:00 Scp-29-09 1 OAs by SW-846 8260B Extracted: Oct-05-09 11:37 Oct-05-09 11:39 Oct-05-09 1 Oben Zene Units/RL: mg/L RL mg/L RL roben Zene ND 0.005 ND Oct-05-09 12:36 Oct-05-09 12:06 roben Zene ND 0.005 ND 0.005 ND Oct-05-09 12:06 roben Zene ND 0.005 ND 0.005 ND Oct-05-09 12:06 Oct-05-09 12:06 roben Zene ND 0.005 ND 0.005 ND Oct-05-09 12:06 ND rocthance ND 0.005 ND 0.005 ND ND romethance ND 0.005 ND 0.005 ND ND roptopance ND 0.005 ND 0.005 ND ND roptopance ND 0.005 ND 0.005 ND ND roptopance ND		Matrix:	WATER	WATER	WATER	
OAs by SW-846 8260B Extracted: Oct-05-09 11:37 Oct-05-09 11:39 Oct-05-09 11:36 Oct-05-09 11:39 Oct-05-09 1		Sampled:	Sep-29-09 11:30	Sep-29-09 13:00	Sep-29-09 14:00	
Analyzed: Oct-05-09 12:34 Oct-05-09 12:56 ND robenzene ND 0.005 ND 0.005 ND ND rocthanc ND 0.005 ND 0.005 ND nc ND 0.005 ND 0.005 ND rocthanc ND 0.005 ND ND ND rocthanc ND 0.005 ND ND ND rocthanc ND 0.005 ND ND ND ND rocthanc ND 0.005 ND ND ND ND ND rocthanc ND 0.005 ND 0.005 ND ND ND rocthance ND 0.005 ND 0.005 ND ND <t< th=""><th>VOAs by SW-846 8260B</th><th>Extracted:</th><th>Oct-05-09 11:37</th><th>Oct-05-09 11:39</th><th>Oct-05-09 11:41</th><th></th></t<>	VOAs by SW-846 8260B	Extracted:	Oct-05-09 11:37	Oct-05-09 11:39	Oct-05-09 11:41	
Obenzenc Units/RL: mg/L RL mg/L RL mg/L rocthanc ND 0.005 ND 0.005 ND rocthanc ND 0.005 ND 0.005 ND nc ND 0.005 ND 0.005 ND romcthanc ND 0.005 ND 0.005 ND ropropanc ND 0.005 ND 0.005 ND rylbenzenc		Analyzed:	Oct-05-09 12:34	Oct-05-09 12:56	Oct-05-09 13:18	
robenzene ND 0,005 ND 0,005 ND rocthane ND 0,005 ND 0,005 ND rocthane ND 0,005 ND 0,005 ND romethane ND 0,005 ND 0,005 ND ropropane ND 0,005 ND 0,005 ND rybenzene ND 0,		Units/RL:				
rocthanc ND 0.005 ND 0.005 ND rocthanc ND 0.005 ND 0.005 ND nc ND 0.005 ND 0.005 ND ropropanc ND 0.005 ND 0.005 ND rylbenzenc ND 0.005 ND 0.005 ND	1,2,4-Trichlorobenzene		0	ND 0.005		
rocthanc ND 0.005 ND 0.005 ND nc ND 0.005 ND 0.005 ND romcthanc ND 0.005 ND 0.005 ND ropropanc ND 0.005 ND 0.005 ND rybenzenc ND 0.005 ND ND ND ND rybenzenc ND 0.005 ND 0.005 ND ND ND	1,1,1-Trichloroethane		ND 0.005	ND 0.005	ND 0.005	A TOWN TO THE PROPERTY OF THE
ne ND 0.005 ND 0.005 ND romethane ND 0.005 ND 0.005 ND ropropanc ND 0.005 ND 0.005 ND rybbenzene ND 0.005 ND 0.005 ND rybenzene ND 0.005 ND 0.005 ND rybenzene ND 0.005 ND 0.005 ND rybenzene ND 0.010 ND 0.010 ND rybenzene ND 0.010 ND 0.010 ND	1,1,2-Trichloroethane		ND 0.005	ND 0.005	ND 0.005	I I
romethane ND 0.005 ND 0.005 ND ropropanc ND 0.005 ND 0.005 ND rylbenzene ND 0.010 ND 0.010 ND rylbenzene ND 0.010 ND 0.010 ND	Trichloroethene		1			
ropropanc ND 0.005 ND 0.005 ND ylbenzene ND 0.005 ND 0.005 ND ylbenzene ND 0.005 ND 0.005 ND ND 0.005 ND 0.005 ND ND 0.010 ND 0.010 ND Ic ND 0.002 ND 0.002 ND	Trichlorofluoromethane					
lylbenzenc ND 0.005 ND 0.005 ND hylbenzenc ND 0.005 ND 0.005 ND ND 0.005 ND 0.005 ND ND 0.010 ND 0.010 ND Ic ND 0.002 ND 0.002 ND	1,2,3-Trichloropropane					
Nylbenzenc ND 0.005 ND 0.005 ND ND 0.005 ND 0.005 ND ND 0.010 ND 0.010 ND Ic ND 0.002 ND 0.002 ND	1,2,4-Trimethylbenzene			ND 0.005		
ND 0.005 ND 0.005 ND O.005 ND O.010 ND O.010 ND O.010 ND O.010 ND O.005 O.005	1,3,5-Trimethylbenzene		ND 0.005	ND 0.005	ND 0.005	
ND 0.010 ND 0.010 ND 0.000 ND 0.000 ND 0.000 ND ND 0.000 ND ND 0.000 ND ND 0.000 ND ND ND 0.000 ND	o-Xylene		l			
ND 0.002 ND 0.002 ND	m,p-Xylenes				l	
_	Vinyl Chloride					

This matyrical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty in the end use of the data hereby presented. Our liability is lithid to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990 Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Brent Barron, II Odessa Laboratory Manager

Page 14 of 41

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(305) 823-8500	(305) 823-8555
(432) 563-1800	(432) 563-1713
(361) 884-0371	(361) 884-9116
	(214) 902 0300 (210) 509-3334 (813) 620-2000 (305) 823-8500 (432) 563-1800

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Orders: 346678,

Lab Batch #: 775661

Sample: 539448-1-BKS / BKS

Project ID: 2009-084

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 14:52	SU	RROGATE R	ECOVERY	STUDY	
SVOAs by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.045	0.050	90	43-116	
2-Fluorophenol	0.035	0.050	70	21-100	
Nitrobenzene-d5	0.045	0.050	90	35-114	
Phenol-d6	0.024	0.050	48	10-94	
Terphenyl-D14	0.046	0.050	92	33-141	
2,4,6-Tribromophenol	0.050	0.050	100	10-123	

Sample: 539448-1-BSD / BSD Lab Batch #: 775661 Matrix: Water Batch: 1

Units: mg/L Date Analyzed: 10/03/09 15:	30 SU	RROGATE R	ECOVERY	STUDY	
SVOAs by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.043	0.050	86	43-116	
2-Fluorophenol	0.036	0.050	72	21-100	_
Nitrobenzene-d5	0.047	0.050	94	35-114	
Phenol-d6	0.024	0.050	48	10-94	
Terphenyl-D14	0.047	0.050	94	33-141	
2,4,6-Tribromophenol	0.052	0.050	104	10-123	

Sample: 346678-001 / SMP Lab Batch #: 775661 Batch: Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 16:46	SU	RROGATE R	ECOVERY	STUDY	
SVOAs by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.043	0.050	86	43-116	
2-Fluorophenol	0.024	0.050	48	21-100	
Nitrobenzene-d5	0.042	0.050	84	35-114	:
Phenol-d6	0.013	0.050	26	10-94	
Terphenyl-D14	0.052	0.050	104	33-141	
2,4,6-Tribromophenol	0.045	0.050	90	10-123	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Orders: 346678,

Sample: 346678-002 / SMP

Project ID: 2009-084

Lab Batch #: 775661

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 17:23	SURROGATE RECOVERY STUDY					
SVOAs by EPA 8270C Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
2-Fluorobiphenyl	0.043	0.050	86	43-116		
2-Fluorophenol	0.021	0.050	42	21-100		
Nitrobenzene-d5	0.041	0.050	82	35-114		
Phenol-d6	0.011	0.050	22	10-94		
Terphenyl-D14	0.051	0.050	102	33-141		
2,4.6-Tribromophenol	0.044	0.050	88	10-123		

Lab Batch #: 775661

Sample: 346678-003 / SMP

Batch: 1

Matrix: Water

Units: mg/L Date Analyzed: 10/03/09 18:02	02 SURROGATE RECOVERY STUDY					
SVOAs by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
2-Fluorobiphenyl	0.041	0.050	82	43-116		
2-Fluorophenol	0.023	0.050	46	21-100		
Nitrobenzene-d5	0.039	0.050	78	35-114		
Phenol-d6	0.013	0.050	26	10-94		
Terphenyl-D14	0.052	0.050	104	33-141		
2,4,6-Tribromophenol	0.044	0.050	88	10-123		

Lab Batch #: 775661

Sample: 539448-1-BLK / BLK

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 10/06/09 14:37	SURROGATE RECOVERY STUDY					
SVOAs by EPA 8270C	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
2-Fluorobiphenyl	0.047	0.050	94	43-116		
2-Fluorophenol	0.035	0.050	70	21-100		
Nitrobenzene-d5	0.045	0.050	90	35-114		
Phenol-d6	0.023	0.050	46	10-94		
Terphenyl-D14	0.057	0.050	114	33-141		
2,4,6-Tribromophenol	0.039	0.050	78	10-123		

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Orders: 346678,

Sample: 539623-1-BKS / BKS

Project ID: 2009-084

Lab Batch #: 775620

Matrix: Water Batch: 1

Units: mg/L Date	Analyzed: 10/05/09 11:04	SURROGATE RECOVERY STUDY					
VOAs by SW-846 8260B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analyt	es			101			
4-Bromofluorobenzene		0.0474	0.0500	95	74-124		
Dibromofluoromethane		0.0476	0.0500	95	75-131		
1,2-Dichlorocthane-D4		0.0492	0.0500	98	63-144		
Toluene-D8		0.0502	0.0500	100	80-117		

Lab Batch #: 775620 **Sample:** 539623-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 10/05/09 1	1:47 SU	SURROGATE RECOVERY STUDY						
VOAs by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
4-Bromofluorobenzene	0.0475	0.0500	95	74-124				
Dibromofluoromethane	0.0468	0.0500	94	75-131				
1,2-Dichloroethane-D4	0.0505	0.0500	101	63-144				
Toluene-D8	0.0491	0.0500	98	80-117				

Lab Batch #: 775620 Sample: 346678-001 / SMP Batch: Matrix: Water

Units: mg/L Date Analyzed: 10/05/09 12:34 SURROGATE RECOVERY STUDY			STUDY			
VOAs I	oy SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
4-Bromofluorobenzene	Analytes	0.0468	0.0500	94	74-124	
Dibromofluoromethane		0.0453	0.0500	91	75-131	
1,2-Dichloroethane-D4		0.0479	0.0500	96	63-144	
Toluene-D8		0.0491	0.0500	98	80-117	

Lab Batch #: 775620 Sample: 346678-002 / SMP Matrix: Water Batch:

Units: mg/L Date Analyzed: 10/05/09 12:56	SU	RROGATE R	ECOVERY	STUDY	
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Analytes					
4-Bromofluorobenzene	0.0483	0.0500	97	74-124	
Dibromofluoromethane	0.0450	0.0500	90	75-131	
1,2-Dichloroethane-D4	0.0495	0.0500	99	63-144	
Toluene-D8	0.0493	0.0500	99	80-117	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: DCP Plant to Lea Station Sec. 31

Work Orders: 346678,

Sample: 346678-003 / SMP

Project ID: 2009-084

Lab Batch #: 775620

Matrix: Water Batch: 1

Units: mg/L	Date Analyzed: 10/05/09 13:18	SU	STUDY	-		
VOAs by SW-846 8260B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0480	0.0500	96	74-124	
Dibromofluoromethane		0.0472	0.0500	94	75-131	
1,2-Dichlorocthane-D4		0.0513	0.0500	103	63-144	
Toluene-D8		0.0482	0.0500	96	80-117	

Lab Batch #: 775620

Sample: 346678-003 S / MS

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 10/05/09 13:39	13:39 SURROGATE RECOVERY STU			STUDY	
VOAs by SW-846 8260B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
4-Bromofluorobenzene		0.0475	0.0500	95	74-124	
Dibromofluoromethane		0.0477	0.0500	95	75-131	
1,2-Dichloroethane-D4		0.0497	0.0500	99	63-144	
Toluene-D8		0.0491	0.0500	98	80-117	

Lab Batch #: 775620

Sample: 346678-003 SD / MSD

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 10/05/09 14:01	SURROGATE RECOVERY STUDY					
VOAs by SW-846 8260B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Ai	larytes			(~)			
4-Bromofluorobenzene		0.0485	0.0500	97	74-124		
Dibromofluoromethane		0.0466	0.0500	93	75-131		
1,2-Dichloroethane-D4		0.0481	0.0500	96	63-144		
Toluene-D8		0.0492	0.0500	98	80-117		

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Project ID:

2009-084

Lab Batch #: 775584

Sample: 775584-1-BKS

Matrix: Water

Date Analyzed: 10/02/2009

Date Prepared: 10/02/2009

Analyst: WRU

Reporting Units: mg/L

Ba	tch #: 1	BLANK/E
l l	Blank	Spike
	Result	Added
1	F A 1	l m

NK/E	BLANK SPI	KE REC	COVERY	STUDY
.0	Rlank	Rlank	Control	

Alkalinity by SM2320B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Alkalinity, Total (as CaCO3)	ND	200	172	86	80-120	

Lab Batch #: 775780 Date Analyzed: 10/06/2009

Sample: 539604-1-BKS **Date Prepared:** 10/05/2009

Matrix: Water Analyst: HAT

Reporting Units: mg/l

DI ANK /RI ANK SPIKE RECOVERY STUDY

Reporting Units: mg/L	Batch #:	BLANK /	BLANK SPI	KE REC	COVERYS	TUDY
ICP-MS Metals by SW 6020A Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Aluminum	ND	0.200	0.198	99	75-125	
Arsenic	ND	0.050	0.048	96	75-125	
Barium	ND	0.050	0.050	100	75-125	
Boron	ND	0.020	0.018	90	75-125	٠
Cadmium	ND	0.020	0.021	105	75-125	
Chromium	ND	0.050	0.050	100	75-125	
Cobalt	ND	0.050	0.049	98	75-125	
Copper	ND	0.050	0.049	98	75-125	
Iron	ND	0.200	0.200	100	75-125	
Lead	ND	0.050	0.047	94	75-125	
Manganese	ND	0.050	0.050	100	75-125	
Molybdenum	ND	0.050	0.049	98	75-125	
Nickel	ND	0.050	0.049	98	75-125	
Selenium	ND	0.050	0.050	100	75-125	
Silver	ND	0.020	0.021	105	75-125	
Zinc	ND	0.050	0.052	104	75-125	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Blank Spike Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Project ID:

2009-084

Lab Batch #: 775240

Sample: 775240-1-BKS

Matrix: Water

Date Analyzed: 10/01/2009

Date Prepared: 10/01/2009

Analyst: LATCOR

Reporting Units: mg/L	Batch #:	BLANK /	BLANK SP	IKE REC	COVERYS	STUDY
Anions by E300	Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R D	%R	
Fluoride	ND	2.70	2.76	102	90-110	
Chloride	ND	10.0	10.2	102	90-110	
Sulfate	ND	11.0	11.9	108	90-110	
Nitrate as N	ND	2.00	1.96	98	90-110	
Ortho-Phosphate	ND	1.70	1.75	103	90-110	

Blank Spike Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Project ID:

2009-084

Lab Batch #: 775620

Sample: 539623-1-BKS

Matrix: Water

Date Analyzed: 10/05/2009

Date Prepared: 10/05/2009

Analyst: KHM

Date Analyzeu. 10/03/2007	Date Frepared. 10/03/20	00)	Anatyst.	IXI IIVI		
Reporting Units: mg/L	Batch #: 1	BLANK /E	BLANK SPI	KE REC	COVERYS	STUDY
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Benzene	ND	0.050	0.046	92	66-142	
Bromobenzene	ND	0.050	0.049	98	60-130	
Bromochloromethane	ND	0.050	0.046	92	73-125	
Bromodichloromethane	ND	0.050	0.049	98	75-125	
Bromoform	ND	0.050	0.056	112	75-125	
Bromomethane	ND	0.050	0.047	94	70-130	
МТВЕ	ND	0.050	0.051	102	75-125	
n-Butylbenzene	ND	0.050	0.047	94	75-125	
See-Butylbenzene	ND	0.050	0.049	98	75-125	
tert-Butylbenzene	ND	0.050	0.050	100	75-125	
Carbon Disulfide	ND	0.500	0.467	93	60-140	
Carbon Tetrachloride	ND	0.050	0.048	96	62-125	
Chlorobenzene	ND	0.050	0.052	104	60-133	
Chloroethane	ND	0.050	0.041	82	70-130	
Chloroform	ND	0.050	0.045	90	74-125	
Chloromethane	ND	0.050	0.044	88	70-130	
2-Chlorotoluene	ND	0.050	0.049	98	73-125	
4-Chlorotolucne	ND	0.050	0.048	96	74-125	
p-Cymene (p-Isopropyltoluene)	ND	0.050	0.051	102	75-125	
Dibromochloromethane	ND	0.050	0.054	108	60-130	
1,2-Dibromo-3-Chloropropane	ND	0.050	0.043	86	59-125	
1,2-Dibromoethane	ND	0.050	0.047	94	73-125	
Dibromomethane	ND	0.050	0.043	86	69-127	
1,2-Dichlorobenzene	ND	0.050	0.049	98	75-125	
1,3-Dichlorobenzene	ND	0.050	0.049	98	75-125	
1,4-Dichlorobenzene	ND	0.050	0.049	98	75-125	
Dichlorodifluoromethane	ND	0.050	0.048	96	70-130	
1,1-Dichloroethane	ND	0.050	0.046	92	60-130	
1,2-Dichloroethane	ND	0.050	0.041	82	68-127	
1,1-Dichloroethene	ND	0.050	0.041	82	59-172	
cis-1,2-Dichloroethene	ND	0.050	0.043	86	60-130	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

trans-1,2-dichloroethene

1,2-Dichloropropane

Ver. 1.000

86

60-130

74-125

ND

ND

0.050

0.050

0.043

0.048

Blank Spike Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Project ID:

2009-084

Lab Batch #: 775620

Sample: 539623-1-BKS

Matrix: Water

Date Analyzed: 10/05/2009

Date Prepared: 10/05/2009

Analyst: KHM

Reporting Units: mg/L	Batch #:	BLANK /I	BLANK SPI	KE REC	OVERY S	STUDY
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
1,3-Dichloropropane	ND	0.050	0.046	92	75-125	
2,2-Dichloropropane	, ND	0.050	0.046	92	60-140	
1,1-Dichloropropene	ND	0.050	0.039	78	75-125	
cis-1,3-Dichloropropene	ND	0.050	0.051	102	60-140	
trans-1,3-dichloropropene	ND	0.050	0.050	100	66-125	
Ethylbenzene	ND	0.050	0.048	96	75-125	·
Hexachlorobutadiene	ND	0.050	0.052	104	75-125	
isopropylbenzene	ND	0.050	0.049	98	75-125	
Methylene Chloride	ND	0.050	0.041	82	75-125	
Naphthalene	ND	0.050	0.050	100	65-135	
n-Propylbenzene	ND	0.050	0.051	102	75-125	
Styrene	ND	0.050	0.049	98	60-130	
1,1,1,2-Tetrachloroethane	ND	0.050	0.052	104	75-125	
1,1,2,2-Tetrachloroethane	ND	0.050	0.048	96	50-130	·
Tetrachloroethylene	ND	0.050	0.050	100	60-130	
Toluene	ND	0.050	0.049	98	59-139	
1,2,3-Trichlorobenzene	ND	0.050	0.052	104	75-137	
1,2,4-Trichlorobenzene	ND	0.050	0.052	104	75-135	
1,1,1-Trichloroethane	ND	0.050	0.043	86	75-125	
1,1,2-Trichloroethane	ND	0.050	0.048	96	75-127	
Trichloroethene	ND	0.050	0.048	96	62-137	
Trichlorofluoromethane	ND	0.050	0.052	104	67-125	
1,2,3-Trichloropropane	ND	0.050	0.051	102	75-125	
1,2,4-Trimethylbenzene	ND	0.050	0.048	96	75-125	
1,3,5-Trimethylbenzene	ND	0.050	0.049	98	70-125	
o-Xylene	ND	0.050	0.052	104	75-125	
m,p-Xylenes	ND	0.100	0.101	101	75-125	
Vinyl Chloride	ND	0.050	0.043	86	75-125	

Blank Spike Recovery [D] = 100*[C]/[B]

All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678 Analyst: LATCOR Lab Batch ID: 775998

Sample: 539849-1-BKS

Date Prepared: 10/05/2009

Batch #: 1

Project ID: 2009-084 **Date Analyzed:** 10/07/2009

Matrix: Water

Units: mg/L		BLANI	K/BLANKS	PIKE / B	LANK S	BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE I	RECOVE	RY STUD	Ý	
Mercury by EPA 7470A	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Bik. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	(C)	[Q]	[E]	Result [F]	<u>[</u>				
Mercury	ND	0.000.0	0.0009	90	0.001	0.0010	100	11	75-125	20	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Page 24 of 41

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Lab Batch ID: 775661 Analyst: CLR

Sample: 539448-1-BKS

Date Prepared: 10/02/2009 Batch #: 1

Date Analyzed: 10/03/2009 **Project ID: 2009-084**

Matrix: Water

Units: mg/L		BLAN	K/BLANK S	PIKE / F	SLANK S	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE I	RECOVE	RY STUD	, A	
SVOAs by EPA 8270C	Blank Sampie Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	<u>e</u>	[3]	Result [F]	[2]				
Acenaphthene	QN	0.050	0.044	88	0.05	0.044	88	0	54-114	25	
Acenaphthylene	Q.	0.050	0.042	84	0.05	0.043	98	2	53-113	25	
Aniline (Phenylamine, Aminobenzene)	QN.	0.050	0.038	9/	0.05	0.038	9/	0	35-104	25	
Anthracene	QN.	0.050	0.045	06	0.05	0.048	96	9	911-95	25	
Benzo(a)anthracene	QN	0.050	0.041	82	0.05	0.043	98	5	911-65	25	
Benzo(a)pyrene	QN	0.050	0.046	92	0.05	0.049	86	9	58-118	25	
Benzo(b)fluoranthene	Q	0.050	0.047	94	0.05	0.051	102	8	54-123	25	
Benzo(k)fluoranthene	QN	0.050	0.048	96	0.05	0.050	001	4	52-122	25	
Benzo(g,h,i)perylene	QN	0.050	0.056	112	0.05	090.0	120	7	47-129	25	
Benzoic Acid	QN	0.150	0.033	22	0.15	0.030	20	01	4-113	25	
Benzyl Butyl Phthalate	QN	0.050	0.041	82	0.05	0.043	98	5	57-122	25	
bis(2-chlorocthoxy) methanc	QN	0.050	0.042	84	0.05	0.044	88	5	53-112	25	
bis(2-chloroethyl) ether	QN	0.050	0.040	08	0.05	0.041	82	2	801-75	25	
bis(2-chloroisopropyl) ether	ND	0.050	0.040	80	0.05	0.040	08	0	54-111	25	
bis(2-cthylhexyl) phthalate	ND	0.050	0.043	98	0.05	0.044	88	2	611-65	25	
4-Bromophenyl-phenylether	ND	0.050	0.044	88	0.05	0.047	94	7	58-112	25	
4-chloro-3-methylphenol	QN	0.050	0.044	88	0.05	0.046	65	4	911-85	25	
4-Chloroaniline	QN	0.050	0.047	94	0.05	0.049	86	4	2-123	25	
2-Chloronaphthalenc	ND	0.050	0.044	88	0.05	0.042	84	5	58-105	25	
2-Chlorophenol	ND	0.050	0.041	82	0.05	0.044	88	7	58-106	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678 Analyst: CLR

Lab Batch ID: 775661

Units: mg/L

Sample: 539448-1-BKS

Date Prepared: 10/02/2009

Batch #:]

Project ID: 2009-084 **Date Analyzed:** 10/03/2009

Matrix: Water

SVOAs by EPA 8270C	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[V]	[B]	Result [C]	%R [D]	[E]	Duplicate Result [F]	[G]	%	%R	%RPD)
4-Chlorophenyl Phenyl Ether	QN	0.050	0.043	98	0.05	0.045	06	5	601-69	25	
Chrysene	QN	0.050	0.046	92	0.05	0.048	96	4	58-116	25	
Dibenz(a,h)Anthracene	QN	0.050	0.056	112	0.05	090.0	120	7	46-131	25	
Dibenzofuran	QN	0.050	0.044	88	0.05	0.046	92	4	56-111	25	
di-n-Butyl Phthalate	QN	0.050	0.047	94	0.05	0.049	86	4	60-118	25	
1,2-Dichlorobenzene	QN	0.050	0.042	84	0.05	0.034	89	21	53-106	25	i
1,3-Dichlorobenzene	QN	0.050	0.042	84	0.05	0.034	89	21	52-105	25	
I,4-Dichlorobenzene	QN	0.050	0.042	84	0.05	0.034	89	21	54-105	25	
3,3-Dichlorobenzidine	QN	0.050	0.038	9/	0.05	0.041	82	∞	36-123	25	
2,4-Dichlorophenol	QN	0.050	0.045	06	0.05	0.046	92	2	60-110	25	
Diethyl Phthalate	QN	0.050	0.044	88	0.05	0.047	94	7	62-114	25	
Dimethyl Phthalatc	QN	0.050	0.043	98	0.05	0.046	92	7	59-113	25	
2,4-Dimethylphenol	QN	0.050	0.037	74	0.05	0.041	82	10	50-108	25	
4,6-dinitro-2-methyl phenol	ND	0.050	0.044	88	0.05	0.047	94	7	57-119	25	
2,4-Dinitrophenol	QN	0.050	0.042	84	0.05	0.044	88	S	52-111	25	
2,4-Dinitrotoluene	ND	0.050	0.043	98	0.05	0.047	94	6	911-09	25	
2,6-Dinitrotoluene	QN	0.050	0.043	98	0.05	0.046	95	7	60-115	25	
di-n-Octyl Phthalatc	QN	0.050	0.042	84	0.05	0.043	98	2	49-129	25	
Fluoranthene	ND	0.050	0.047	7 6	0.05	0.050	001	9	55-120	25	
Fluorene	ND	0.050	0.044	88	0.05	0.046	92	4	56-114	25	

Relative Percent Difference RPD = 200*(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Analyst: CLR

Lab Batch ID: 775661

Units: mg/L

Sample: 539448-1-BKS

Date Prepared: 10/02/2009

Batch #: 1

Date Analyzed: 10/03/2009 **Project ID: 2009-084**

Matrix: Water

SVOAs by EPA 8270C	Blank Sample Result	Spike Added	Blank Spike Poent	Blank Spike	Spike Added	Blank Spike	BIK. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	<u> </u>	<u>B</u>	lC]	<u>a</u>	<u> </u>	Result [F]	¥ 5	•	NB/		
Hexachlorobenzene	QN	0.050	0.047	94	0.05	0.050	100	9	601-09	25	
Hexachlorobutadiene	QN	0.050	0.046	92	0.05	0.035	70	27	52-107	25	Ŀ
Hexachlorocyclopentadiene	QN	0.050	0.045	06	0.05	0.048	96	9	32-115	25	
Hexachlorocthane	QN	0.050	0.042	84	0.05	0.032	64	27	46-115	25	<u>.</u>
Indeno(1,2,3-c,d)Pyrenc	QN	0.050	0.054	801	0.05	0.058	911	7	44-132	25	
Isophorone	QN	0.050	0.043	98	0.05	0.045	06	5	57-107	25	
2-Methylnaphthalene	QN	0.050	0.046	92	0.05	0.041	82	=	57-106	25	
2-methylphenol	QN	0.050	0.037	74	0.05	0.038	9/	3	52-106	25	
3&4-Methylphenol	QN	0.100	0.067	29	1.0	690.0	69	3	23-140	25	
Naphthalene	QN	0.050	0.043	98	0.05	0.038	92	12	53-110	25	
2-Nitroaniline	QN	0.050	0.044	88	0.05	0.048	96	6	55-120	25	
3-Nitroaniline	QN	0.050	0.049	86	0.05	0.051	102	4	49-120	25	
4-Nitroaniline	QN	0.050	0.054	801	0.05	0.057	114	5	52-118	25	
Nitrobenzene	QN	0.050	0.043	98	0.05	0.045	06	5	201-95	25	
2-Nitrophenol	QN	0.050	0.044	88	0.05	0.046	92	4	57-105	25	
4-Nitrophenol	ND	0.050	0.032	64	0.05	0.033	99	3	18-104	25	
N-Nitrosodi-n-Propylaminc	ND	0.050	0.041	82	0.05	0.041	82	0	21-137	25	
N-Nitrosodiphenylamine	QN	0.050	0.042	84	0.05	0.045	06	7	50-121	25	
Pentachlorophenol	QN	0.050	0.035	0.2	0.05	0.038	92	8	36-132	25	
Phenanthrene	ND	0.050	0.047	94	0.05	0.049	86	4	911-95	25	

Relative Percent Difference RPD = 200*(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

0

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Analyst: CLR

Lab Batch ID: 775661 Sample

Units: mg/L

Sample: 539448-1-BKS

Date Prepared: 10/02/2009

Batch #: 1

Project ID: 2009-084 **Date Analyzed:** 10/03/2009

Matrix: Water

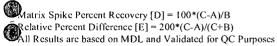
SVOAs by EPA 8270C	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike	Blank Spike	Bik. Spk Dub.	RPD	Control Limits	Control Limits	Flag
	[V]		Result	%R		Duplicate	%R	%	%R	%RPD	0
Analytes		<u>B</u>	[C]	[D]	(E)	Result [F]	[5]				
Phenol	QN	0.050	0.027	54	0.05	0.027	54	0	68-61	25	
Pyrene	QN	0.050	0.044	88	0.05	0.047	94	7	57-119	25	:
Pyridine	ND	0.050	0.021	42	0.05	0.020	40	5	5-94	25	
1,2,4-Trichlorobenzene	QN	0.050	0.044	88	0.05	0.037	74	17	56-104	25	
2,4,5-Trichlorophenol	ND	0.050	0.044	88	0.05	0.047	94	7	55-114	25	
2,4,6-Trichlorophenol	ND	0.050	0.043	98	0.05	0.046	92	7	57-113	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Work Order #: 346678

Lab Batch #: 775240

Date Analyzed: 10/01/2009 QC- Sample ID: 346505-001 S **Date Prepared: 10/01/2009**


Project ID: 2009-084

Analyst: LATCOR

Batch #:

Matrix: Water

Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Fluoride	9.20	27.0	30.7	80	90-110	Х
Chloride	154	100	240	86	90-110	х
Sulfate	71.1	100	159	88	90-110	х
Nitrate as N	3.75	20.0	23.9	101	90-110	
Ortho-Phosphate	ND	17.0	16.6	98	90-110	

RL - Below Reporting Limit

0

Project Name: DCP Plant to Lea Station Sec. 31

Project ID: 2009-084

Batch #: OC-Sample ID: 345663-002 S

Date Analyzed: 10/06/2009 Lab Batch ID: 775780 Work Order #: 346678

Matrix: Water HAT Analyst: 10/05/2009 Date Prepared:

Flag × × Control Limits %RPD 25 25 25 25 25 25 25 Control Limits %R 75-125 75-125 75-125 75-125 75-125 75-125 75-125 MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY RPD % 4 2 9 6 ∞ 00 Spiked Dup. %R [G] 112 230 118 130 124 8 85 Duplicate Spiked Sample Result [F] 0.358 0.017 0.059 0.290 0.057 0.523 0.062 0.051 Spike Added 0.050 0.200 0.050 0.020 0.020 0.050 0.050 Ξ Spiked Sample %R 901 140 801 ⊡ 102 14 82 80 Spiked Sample Result 0.279 0.509 0.340 910.0 0.054 0.047 0.057 Spike Added 0.200 0.050 0.020 0.020 0.050 0.050 0.050 <u>B</u> Parent Sample Result 0.312 0.458 0.067 900'0 ₹ $\frac{2}{3}$ 9 2 ICP-MS Metals by SW 6020A Analytes Reporting Units: mg/L Cadmium Chromium

Aluminum

Arsenic Barium

Boron

×

25 25 25 25 25 25 25 25 25

75-125 75-125 75-125 75-125 75-125 75-125

102 200

0.050

94 50

0.053

0.050 0.200 0.050 0.050

900.0

Copper Cobalt

Lead Iron

×

2

124

0.062

106

0.062

∞

011

0.081

36.5

0.200 0.050 0.050 0.050 0.050 0.050 0.020 0.050

180

3.07

001

3.03

86

0.075

0.026

36.1

2.98

36.2

112

0.056 0.058 0.038

0.050

S

Molybdenum Manganese

Nickel

Selenium

Silver

Zinc

86

0.050 0.050 0.020

0.009

ΩŽ ΩÑ

75-125

01 12 9

84 96 82

0.042 0.018

9/

890.0

74

0.064

0.050

0.027

80

910.0

75-125 75-125

Matrix Spike Percent Recovery [D] = $100^{*}(C-A)/B$ Relative Percent Difference RPD = $200^{*}((C-F)/(C+F))$

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 30 of 41

Project ID: 2009-084

Batch #: QC-Sample ID: 346432-016 S

Date Analyzed: 10/07/2009

Work Order #: 346678 Lab Batch ID: 775998

1 Matrix: Water LATCOR Analyst: Date Prepared: 10/05/2009

Reporting Units: mg/L		M	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	:/MAT	RIX SPIR	E DUPLICA	TE RECO	VERY S	TUDY		
Mercury by FPA 7470A	Parent		Spiked Sample Spiked	Spiked		Duplicate	Spiked		Control	Control	
world will be finally	Sample		Result	Sample	Spike	Spiked Sample		RPD	Limits		Flag
	Result	Added	<u>[C</u>	%R	Added	Result [F]	%R	%	%R	%RPD	
Analytes	₹	<u>B</u>		<u>a</u>	Ē		<u>5</u>				
Mcreury	0.0001	0100.0	0.0011	100	100 0.0010	0.0011	001	0	75-125	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*((C-F)/(C+F))

ND = Not Detected. J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 31 of 41

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Work Order #: 346678 Lab Batch ID: 775620

Date Analyzed: 10/05/2009

QC- Sample ID: 346678-003 S Date Prepared: 10/05/2009

Batch #:

Matrix: Water

Project ID: 2009-084

KHIM Analyst:

Reporting Units: mg/L	•	M	ATRIX SPIK	E/MAT	RIX SPII	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	TE REC	OVERY	STUDY		
											ſ
VOAs by SW-846 8260B	Parent Sample	Silvo	Spiked Sample	Spiked	Carillo	Duplicate	Spiked	000	Control	Control	Ē
	Result	Added	Nesuii [C]	Sample %R	Spire	Spirked Sample Result [F]	Zup. %R	875 3 %	%R	%RPD	7 2 20
Analytes	<u>V</u>	<u>8</u>		[a]	[E]		[6]				
Benzene	QN	0.050	0.045	8	0.050	0.046	92	2	66-142	21	
Bromobenzene	QN	0.050	0.047	94	0.050	0.049	86	4	60-130	20	
Bromochloromethane	ND	0.050	0.046	92	0.050	0.044	88	4	73-125	20	
Bromodichloromethane	NO	0.050	0.046	92	0.050	0.047	94	2	75-125	20	
Вготобогт	QN	0.050	0.048	96	0.050	0.052	104	8	75-125	20	
Bromomethane	QN	0.050	0.044	88	0.050	0.043	98	2	70-130	20	
MTBE	ND	0.050	0.051	102	0.050	0.052	104	2	75-125	20	,
n-Butylbenzene	ND	0.050	0.045	06	0.050	0.046	92	2	75-125	20	
Sec-Butylbenzene	ND	0.050	0.047	94	0.050	0.048	96	2	75-125	20	
tert-Butylbenzene	ND	0.050	0.049	86	0.050	0.049	86	0	75-125	20	
Carbon Disulfide	ND	0.500	0.454	16	0.500	0.448	06	-	60-140	20	
Carbon Tetrachloride	ND	0.050	0.045	06	0.050	0.047	94	4	62-125	20	
Chlorobenzene	ND	0.050	0.048	96	0.050	0.051	102	9	60-133	21	
Chloroethanc	ND	0.050	0.040	80	0.050	0.039	78	3	70-130	20	
Chloroform	ND	0.050	0.044	88	0.050	0.044	88	0	74-125	20	
Chloromethane	ND	0.050	0.042	84	0.050	0.040	08	5	70-130	20	
2-Chlorotoluene	ND	0.050	0.047	94	0.050	0.047	94	0	73-125	20	
4-Chlorotoluene	ND	0.050	0.046	95	0.050	0.047	94	2	74-125	20	
p-Cymene (p-Isopropyltoluene)	ND	0.050	0.049	86	0.050	0.050	100	2	75-125	20	
Dibromochloromethane	ND	0.050	0.048	96	0.050	0.051	102	9	60-130	20	
1,2-Dibromo-3-Chloropropane	ND	0.050	0.043	98	0.050	0.045	06	5	59-125	28	
1,2-Dibromocthane	ND	0.050	0.045	06	0.050	0.049	86	6	73-125	20	
Dibromomethane	ND	0.050	0.042	84	0.050	0.044	88	5	69-127	23	

Matrix Spike Percent Recovery [D] = $100^*(C-A)/B$ Relative Percent Difference RPD = $200^*((C-F)/(C+F))$

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 32 of 41

QC-Sample ID: 346678-003 S Date Analyzed: 10/05/2009 Lab Batch ID: 775620

Work Order #: 346678

Analyst: KHM Batch #: **Date Prepared:** 10/05/2009

084	
2009-	
ë	
oject	
Pro	

Matrix: Water

The course of th											
VOAs by SW-846 8260B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[2]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
1,2-Dichlorobenzene	QN	0.050	0.047	94	0.050	0.048	96	2	75-125	20	
I,3-Dichlorobenzene	QN	0.050	0.049	86	0.050	0.050	001	2	75-125	20	
I,4-Dichlorobenzene	QN	0.050	0.047	94	0.050	0.048	96	2	75-125	20	
Dichlorodifluoromethane	QX	0.050	0.048	96	0.050	0.044	88	6	70-130	23	
1,1-Dichloroethane	QX	0.050	0.045	06	0.050	0.045	06	0	60-130	20	
1,2-Dichloroethane	QX	0.050	0.041	82	0.050	0.042	84	2	68-127	20	
1,1-Dichlorocthene	QX	0.050	0.041	82	0.050	0.040	80	2	59-172	22	
cis-1,2-Dichloroethene	Q	0.050	0.042	84	0.050	0.043	98	2	60-130	20	
trans-1,2-dichlorocthene	QN	0.050	0.043	98	0.050	0.043	98	0	60-130	20	
1,2-Dichloropropanc	QV.	0.050	0.046	92	0.050	0.048	96	4	74-125	20	
I,3-Dichloropropanc	QN	0.050	0.043	98	0.050	0.047	94	6	75-125	20	
2,2-Dichloropropanc	QN	0.050	0.044	88	0.050	0.045	06	2	60-140	20	
I, I-Dichloropropene	QN	0.050	0.039	78	0.050	0.040	80	3	75-125	20	
cis-1,3-Dichloropropenc	QN	0.050	0.048	96	0.050	0.050	100	4	60-140	20	
trans-1,3-dichloropropene	QV	0.050	0.046	92	0.050	0.049	86	9	66-125	20	
Ethylbenzene	QN	0.050	0.045	06	0.050	0.047	94	4	75-125	20	
Hexachlorobutadiene	QV.	0.050	0.049	86	0.050	0.052	104	9	75-125	20	
isopropylbenzene	QN	0.050	0.046	92	0.050	0.048	96	4	75-125	20	
Methylene Chloride	900.0	0.050	0.045	78	0.050	0.045	78	0	75-125	35	
Naphthalene	QN	0.050	0.047	94	0.050	0.049	86	4	98-138	20	
n-Propylbenzene	QN	0.050	0.048	96	0.050	0.050	001	4	75-125	20	
Styrene	QN	0.050	0.046	92	0.050	0.048	96	4	021-09	51	
1,1,1,2-Tetrachloroethane	QN	0.050	0.048	96	0.050	0.050	001	4	75-125	20	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference $RPD = 200^{\circ}[(C-F)/(C+F)]$

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 33 of 41

Project ID: 2009-084

QC-Sample ID: 346678-003 S Lab Batch ID: 775620

Work Order #: 346678

Matrix: Water Analyst: KHM Batch #:

Date Prepared: 10/05/2009 Date Analyzed: 10/05/2009 Reporting Units: mg/L

VOAs by SW-846 8260B	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	<u>[]</u>	" [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
1,1,2,2-Tetrachloroethanc	ND	0.050	0.045	06	0.050	0.048	96	9	50-130	31	
Tetrachloroethylene	ND	0.050	0.048	96	0.050	0.050	001	4	60-130	20	
Toluene	ND	0.050	0.046	92	0.050	0.047	94	2	59-139	21	
1,2,3-Trichlorobenzene	QN	0.050	0.049	86	0.050	0.052	104	9	75-137	20	
1,2,4-Trichlorobenzene	ND	0.050	0.049	86	0.050	0.050	001	2	75-135	20	
1,1,1-Trichlorocthanc	ΩN	0.050	0.042	84	0.050	0.041	82	2	75-125	20	
1,1,2-Trichloroethane	ND	0.050	0.046	92	0.050	0.049	86	9	75-127	20	
Trichlorocthenc	ND	0.050	0.045	06	0.050	0.046	92	2	62-137	24	
Trichlorofluoromethane	QN	0.050	0.049	86	0.050	0.045	06	6	67-125	20	
1,2,3-Trichloropropane	QN	0.050	0.047	94	0.050	0.052	104	10	75-125	20	
1,2,4-Trimethylbenzene	QN	0.050	0.047	94	0.050	0.047	94	0	75-125	20	
1,3,5-Trimethylbenzene	QN	0.050	0.047	94	0.050	0.047	94	0	70-125	20	
o-Xylene	ND	0.050	0.048	96	0.050	0.049	86	2	75-125	20	
m,p-Xylenes	QN	0.100	0.097	62	0.100	0.100	100	3	75-125	20	
Vinyl Chloride	QN.	0.050	0.041	82	0.050	0.038	92	8	75-125	20	

Matrix Spike Percent Recovery [D] = 100*(C.A)/B Relative Percent Difference RPD = 200*(C.F)(C+F)

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 34 of 41

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Lab Batch #: 775240

Project ID: 2009-084

Date Analyzed: 10/01/2009

Date Prepared: 10/01/2009

Analyst: LATCOR

QC- Sample ID: 346505-001 D

Batch #:

Matrix: Water

Reporting Units: mg/L

Fluoride

Chloride

Sulfate

Nitrate as N

Ortho-Phosphate

SAMPLE / SAMPLE DUPLICATE RECOVERY Control Parent Sample Sample Duplicate RPD Limits Result Flag Result %RPD [A] B 9.20 9.26 1 20 154 145 6 20 71.1 58.6 19 20

2.42

ND

Lab Batch #: 775780

Date Analyzed: 10/06/2009

Date Prepared: 10/05/2009

3.75

ND

Analyst: HAT

QC- Sample ID: 345663-002 D

Anions by E300

Analyte

Batch #: 1

Matrix: Water

43

NC

20

20

F

Reporting Units: mg/L

SAMPLE / SAMPLE DUPLICATE RECOVERY

Reporting Outs. ing/E	SAMILLE	SAMILE	DOLLIC	ALE REC	OVEKI
ICP-MS Metals by SW 6020A Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Aluminum	0.067	0.069	3	25	
Arsenic	0.006	0.005	18	25	
Barium	0.458	0.466	2	25	
Boron	0.312	0.340	9	25	
Cadmium	ND	ND	NC	25	
Chromium	ND	ND	NC	25	
Cobalt	ND	ND	NC	25	
Copper	0.006	0.006	0	25	
Iron	36.1	37.1	3	25	
Manganese	2.98	3.08	3	25	
Molybdenum	ND	ND	NC	25	
Nickel	0.009	0.009	0	25	
Selenium	ND	ND	NC	25	
Silver	ND	ND	NC	25	
Zinc	0.027	0.029	7	25	

Spike Relative Difference RPD 200 * [(B-A)/(B+A)] All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Sample Duplicate Recovery

Project Name: DCP Plant to Lea Station Sec. 31

Work Order #: 346678

Lab Batch #: 775780

Project ID: 2009-084

Date Analyzed: 10/06/2009

ICP-MS Metals by SW 6020A

Analyte

Date Prepared: 10/05/2009

Analyst: HAT

QC- Sample 1D: 345663-002 D

Batch #:

Matrix: Water

Reporting Units: ug/L

Lead

SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
 25.5	24.5	4	25	

Lab Batch #: 776000

Date Analyzed: 10/07/2009

Date Prepared: 10/07/2009

Analyst: LATCOR

QC- Sample ID: 346678-001 D

Batch #: 1

Matrix: Water

Reporting Units: mg/L	SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Metals per ICP by SW846 6010B Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Calcium	58.0	57.3	i	25	
Magnesium	39.8	40.5	2	25	
Potassium	ND	ND	NC .	25	
Sodium	125	121	3	25	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

YACI & TAT brebness X NPDES THE TATE (PIE-Schedule) 24, 48, 17 hrs. 9999×9×# 3 Project Name: DCP Plant to Lea Station 6" ∏ reap CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST femperature Upon Receipt; 916X 805 (812030 Ot BLIEV 8500 PO #: PAA - J. Henry mat: X Standard Project Loc: Lea County, NM Project #: 2009-039 ODD / 489 / BV Report Formst: 9/51/09 1360 0 9001 XI Hd1 255 3870 cdstanley@basin-consulting.com S GW Po-c1-01 12600 Wast I-20 East Odessa, Texas 79765 (D;Bern (575) 386-1428 X X X 9 otal a of Cortaining proving pro e-mail: Fax No: 1130 1300 1400 Time Sampled teceived by ELOT: 09/28/09 09/29/09 09/23/03 Basin Environmental Service Technologies, LLC Date Sampled Gate Tring 89 25/2 uidan Buipu: Environmental Lab of Texas 100 Lavington, NM 83260 Company Address: P. C. Box 301 Curt Stanley FIELD CODE MW-3 MW4 Sampler Signature. Сотрату мате Telephone No: Chy. Store/Zip: Special instructions: ORDER #: 9

(1)

of 41

Ver. 1.000

Page 37 of 41

NMOCD - Analytical Parameters for Initial Groundwater Sampling (2-12-08) And Decements reducific constantion, of phil sumprissions depth to descer Gustant Chresista Calcium
Calcium
Potagium
Potagium
Potagium
Calcium
Cal 8038AMmh Arsense Hamon Cadminia Chromoun Lond Mercury Solmaum Silver Asimentana Mariante All compressed limited LEA ANGEMENT STREET, ST

Environmental Lab of Texas

0 0

0

Date/Time. 10-01-09 @ 013S Lab ID # 346678 Initials JMF				
Lab 10 # 340076 Initials JMF				
initials JMF				
THE STO				
Sample Receipt	Checklist			
#1 Temperature of container/ cooler?	(Yes)	No	1. V ° C	Client Initials
#2 Shipping container in good condition?	Yes 5	No	1	
#3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4 Custody Seas intaction sample bottles/ container?	(Yes)	No	Not Present	
#5 Chain of Custody present?	(Yes)	No	Tiot i Teasin	
#6 Sample instructions complete of Chalin of Gustody?	(Yes)	No		
#7 Chain of Custody signed when relinquished/ received?	(Yes)	No		1
#8 Chain of Custody agrees with sample label(s)?	TES	No	ID written on Cont./ Lid	
#9 Container label(s) legible and intact?	77985	No	Not Applicable	
#10 Sample matrix/ properties agree with Chain of Custody?	Yes)	No		
#11 Containers supplied by ELOT?	(Yes)	No		
#12 Samples in proper container/ bottle?	(Yes)	No	See Below	
#13 Samples properly preserved?	(Yes)	No	See Below	
#14 Sample bottles intact?	(Yes)	No		1
#15 Preservations documented on Chain of Custody?	(Yes-)	No		1
#16 Containers documented on Chain of Custody?	/Yes	No		
#17 Sufficient sample amount for indicated test(s)?	(Yes)	No	See Below	
#18 All samples received within sufficient hold time?	0000	No	See Below	
#19 Subcontract of sample(s)?	Yes	No	Not Applicable	Xenco
#20 VOC samples have zero headspace?	(Yes)	No	Not Applicable	
Variance Docu	mentation			
Contacted by.			Date/ Time:	
Regarding:				
Corrective Action Taken:				Miller Agray and a sequence of the service
Regarding:			Date/ Time:	

Jeanne Fitch

From: Jeanne Fitch [jeanne.fitch@xenco.com]
Sent: Thursday, October 01, 2009 11:50 AM

for 'Curt D. Stanley'

Subject: RE: MW samples DCP Plant (analysis question)

Thanks Curt. ..FYL...NO3 has a 48 hr TAT and MW-2 was sampled at 11:30 on 09/29/09.

Thank You,

Jeanne Fitch

Environmental Lab of Texas a Xenco Gampany 12600 West 1-20 East Odessa, TX 79765 (432) 563-1800

From: Curt D. Stanley [mailto:cstanley@basinenv.com] Sent: Thursday, October 01, 2009 11:46 AM To: Joanne Fltch Subject: Re: MW samples DCP Plant (analysis question)

Jeanne

Please run NO3, PO4 and F.,, and yes we need RCRA 8, plus 9 WQCC metals.,

Thanks,

----- Original Message -----From: <u>Jeanne Fitch</u> To: <u>'Curt D. Stanley</u> Sent: Thursday, October 01, 2009 7:14 AM Subject: Re: MW samples DCP Flant (analysis question)

Hi Curt.

I noticed on your additional into page for the MW samples that NO3,PO4,and F were listed under Gen Chem but not on the COC. Did you need them analyzed as well? And just to confirm....you would like the RCRA 8 Metals + the additional 9 WOCC Metals. Please let me know.

Thank You,

Jeanne Fitch

Emironmental Lab of Texas a Xenco Company 12600 West I-20 East Odesso, TX 79765 (432) 563-1800

Please consider the environment before printing this email.

10/1/2009

Jeanne Fitch

From: Curt D. Stanley (cstanley@basinenv.com)
Sent: Tuesday, November 03, 2009 2:23 PM

To: Jeanne Fitch

Subject: Re: REVISED WO#346678 DCP Plant to Lea Station 6" #2

Jeanne.

Please revise the site name on these reports to read DCP Plant to Lea Station Sec 31. The project number should be 2009-084. Sorry for the confusion at this end. Please revise and reissue.

Thanks,

---- Original Message ---From: <u>Jeanne Fitch</u>
To: '<u>Curt D. Stanley'</u>: '<u>Camille J. Bryant'</u>
Cc: <u>[henry@paalp.com</u>
Sent: Friday, October 09, 2009 7:24 AM
Subject: Re: REVISED WO#346678 DCP Plant to Lea Station 6" #2

Hello Curt,

I have attached a revised report WO#346678 for DCP Plant to Lea Station 6" #2. As per your request we have reported the VOC SW8260 as mg/L and broke down the Total Alkalinity into Carbonate/Bicarbonate and Total Alkalinity. Please let me know if I can help you with anything else

Thank You,

Jeanne Fitch

Environmental Lab of Texas a Xenco Company 12600 West I-20 East Odessa, TX 79765 (432) 563-1800

Pleaso consider the environment before printing this email.

11/3/2009

Analytical Report 355577

for

PLAINS ALL AMERICAN EH&S

Project Manager: Jason Henry

DCP Plant to Lea Station 6-Inch # 2 2009-039

22-DEC-09

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-08-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00308), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)
Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)
Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-08-TX)
Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-08-TX)
Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370-08-TX)
Xenco-Boca Raton (EPA Lab Code: FL00449): Florida(E86240),
South Carolina(96031001), Louisiana(04154), Georgia(917)

22-DEC-09

Project Manager: Jason Henry
PLAINS ALL AMERICAN EH&S
1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No: 355577

DCP Plant to Lea Station 6-Inch # 2 Project Address: Lea County, NM

Jason Henry:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 355577. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 355577 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

000000

PLAINS ALL AMERICAN EH&S, Midland, TX

DCP Plant to Lea Station 6-Inch # 2

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	Dec-10-09 12:45		355577-001
MW-3	W	Dec-10-09 13:30		355577-002
MW-4	W	Dec-10-09 14:15		355577-003
MW-1	W	Dec-10-09 15:00		355577-004

Client Name: PLAINS ALL AMERICAN EH&S Project Name: DCP Plant to Lea Station 6-Inch # 2

Project ID:

2009-039

Work Order Number: 355577

Report Date: 22-DEC-09

Date Received: 12/14/2009

Sample receipt non conformances and Comments:

None

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-786220 BTEX by EPA 8021

None

Batch: LBA-786316 TCLP SVOCs by SW-846 8270C

None

Batch: LBA-786690 TPH by SW8015 Mod

SW8015MOD NM

Batch 786690, C12-C28 Diesel Range Hydrocarbons recovered below QC limits in the Matrix

Spike.

Samples affected are: 355577-004.

The Laboratory Control Sample for C12-C28 Diesel Range Hydrocarbons is within laboratory

Control Limits

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6-Inch # 2

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-039

Brent Ramon 22-DEC-09 Report Date:

Date Received in Lab: Mon Dec-14-09 05:20 pm

					roject Manager: Brent Barron, II	Brent Barron, 11	
	Lab Id:	355577-001	355577-002	355577-003	355577-004		
Associate Dogwood	Field Id:	MW-2	MW-3	MW-4	MW-1		
Anaiysis nequesieu	Depth:						
	Matrix:	WATER	WATER	WATER	WATER		
	Sampled:	Dec-10-09 12:45	Dec-10-09 13:30	Dec-10-09 14:15	Dec-10-09 15:00		
BTEX by EPA 8021	Extracted:	Dec-17-09 13:00	Dec-17-09 13:00	Dec-17-09 13:00	Dec-17-09 13:00		
	Analyzed:	Dec-17-09 17:25	Dec-17-09 17:48	Dec-17-09 18:11	Dec-17-09 23:11		
	Units/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL		
Benzene		ND 0.0010	0.00069 0.0010	0.0015 0.0010	15.08 0.1000		
Toluce		ND 0.0020	0.0027 0.0020	ND 0.0020	12.29 0.2000		
Ethylbenzene		ND 0.0010	ND 0.0010	ND 0.0010	0.7900 0.1000		
m,p-Xylenes		ND 0.0020	ND 0.0020	ND 0.0020	1.776 0.2000		
o-Xylene		ND 0.0010	0100'0 QN	0100'0 QN	0.5690 0.1000		
Xylenes, Total		ND 0,0010	0100'0 QN	ND 0.0010	2.345 0.1000		
Total BTEX		ND 0.0010	0.0006 0.0010	0.0015 0.0010	30.51 0.1000		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this maniptical report represent the best judgmen of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of fine data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Since 1990

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi

Odessa Laboratory Manager Brent Barron, II

Page 5 of 20

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-039

TOTO Certificate of Analysis Summary 355577

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6-Inch # 2

Date Received in Lab: Mon Dec-14-09 05:20 pm

Brent Barron, II 22-DEC-09 Report Date: Project Manager:

					Danoit, in	L Dalloll, Is
	Lab Id:	355577-001	355577-002	355577-003	355577-004	
Analysis Pannastad	Field Id:	MW-2	MW-3	MW4	MW-1	
naisanhay sishinii U	Depth:					
	Matrix:	WATER	WATER	WATER	WATER	
	Sampled:	Dec-10-09 12:45	Dec-10-09 13:30	Dec-10-09 14:15	Dec-10-09 15:00	
SVOA PAHs List	Extracted:				Dec-17-09 11:58	
SUB: T104704215-08B-TX	Analyzed:				Dec-18-09 14:47	
	Units/RL:				mg/L RL	
Accnaphthene					ND 0.100	-
Acenaphthylene					ND 0.100	
Anthracene					ND 0.100	
Benzo(a)anthracene					ND 0.100	
Benzo(a)pyrene					00100 QN	
Benzo(b)fluoranthene					ND 0.100	
Benzo(k)fluoranthene					ND 0.100	
Benzo(g,h,i)perylene					ND 0.100	
Chrysene					001.00 ND	
Dibenz(a,h)anthracene					ND 0.100	
Fluoranthene					ND 0.100	
Fluorene		,			ND 0.100	
Indeno(1,2,3-c,d)Pyrene					ND 0.100	
1-Methylnaphthalene					ND 0.100	
2-Methylnaphthalene					ND 0.100	
Naphthalene					ND 0.100	
Phenanthrene					ND 0.100	
Pyrene					ND 0.100	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. YENCO Laboratories assumes no responsibility and radkes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 6 of 20

Project Location: Lea County, NM Contact: Jason Henry Project Id: 2009-039

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Name: DCP Plant to Lea Station 6-Inch # 2

Date Received in Lab: Mon Dec-14-09 05:20 pm 22-DEC-09 Report Date:

Brent Ramon Project Manager.

					Project Manager: Brent Barron, 11	, III
	Lab Id:	355577-001	355577-002	355577-003	35557-004	
Acontinity Demonstrat	Field Id:	MW-2	MW-3	MW-4	MW-1	
naisan hay sissinuv	Depth:					
	Matrix:	WATER	WATER	WATER	WATER	
	Sampled:	Dec-10-09 12:45	Dec-10-09 13:30	Dcc-10-09 14:15	Dec-10-09 15:00	
TPH by SW8015 Mod	Extracted:				Dec-21-09 10:00	
	Analyzed:				Dec-22-09 08:26	
	Units/RL:				mg/L RL	
C6-C12 Gasoline Range Hydrocarbons					582 7.50	
C12-C28 Diesel Range Hydrocarbons					30.9 7.50	
C28-C35 Oil Range Hydrocarbons					ND 7.50	
Total TPH					613 7.50	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout in this analytical report represent the basi indurent of XENCO Laboratories. XENCO Laboratories, SXENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Latin America - Atlanta - Corpus Christi Since 1990

Odessa Laboratory Manager Brent Barron, II

Page 7 of 20

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America
Phone Fax
4143 Greenbriar Dr, Stafford, Tx 77477 (281) 240-4200 (281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335

 5332 Blackberry Drive, San Antonio TX 78238
 (210) 509-3334
 (210) 509-3335

 2505 North Falkenburg Rd, Tampa, FL 33619
 (813) 620-2000
 (813) 620-2033

 5757 NW 158th St, Miami Lakes, FL 33014
 (305) 823-8500
 (305) 823-8555

 12600 West I-20 East, Odessa, TX 79765
 (432) 563-1800
 (432) 563-1713

842 Cantwell Lane, Corpus Christi, TX 78408 (361) 884-0371 (361) 884-9116

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Orders: 355577,

Project ID: 2009-039

Lab Batch #: 786220

Sample: 545803-1-BKS / BKS

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/17/09 11:50	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0315	0.0300	105	80-120	
4-Bromofluorobenzene	0.0309	0.0300	103	80-120	

Lab Batch #: 786220 Sample: 545803-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/17/09 12:13	SU	RROGATE R	ECOVERY	STUDY	
ВТЕ	CX by EPA 8021	Amount Found {A}	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0310	0.0300	103	80-120	
4-Bromofluorobenzene		0.0296	0.0300	99	80-120	

Lab Batch #: 786220 Sample: 545803-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/17/09 13:23	SU	RROGATE R	ECOVERY S	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	;		[D]		
1,4-Difluorobenzene	0.0265	0.0300	88	80-120	
4-Bromofluorobenzene	0.0308	0,0300	103	80-120	

Lab Batch #: 786220 Sample: 355577-001 / SMP Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/17/09 17:25	SU	RROGATE RE	ECOVERY S	STUDY	
BTE	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0262	0.0300	87	80-120	
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	

Lab Batch #: 786220 Sample: 355577-002 / SMP Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/17/09 17:48	SU	RROGATE RE	ECOVERY S	STUDY	
вті	EX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes		, ,	[D]		
1,4-Difluorobenzene		0.0271	0.0300	90	80-120	
4-Bromofluorobenzene		0.0309	0.0300	103	80-120	

Page 9 of 20

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Orders: 355577,

Project ID: 2009-039

Lab Batch #: 786220

Sample: 355577-003 / SMP

Batch: Matrix: Water

Units: mg/L Date Analyzed: 12/17/09 18:11	su	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0266	0.0300	89	80-120	
4-Bromofluorobenzene	0.0311	0.0300	104	80-120	

Lab Batch #: 786220

Sample: 355577-004 / SMP

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/17/09 23:1	1 SU	RROGATE R	ECOVERY	STUDY	
BTEX by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0278	0.0300	93	80-120	
4-Bromofluorobenzene	0.0243	0.0300	81	80-120	

Lab Batch #: 786220

Sample: 355467-002 S / MS

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 01:53	SUI	RROGATE RI	ECOVERY	STUDY	
вте	X by EPA 8021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0309	0.0300	103	80-120	
4-Bromofluorobenzene		0.0334	0.0300	111	80-120	

Lab Batch #: 786220

Sample: 355467-002 SD / MSD

Batch:

Matrix: Water

Units: mg/L Date Ana	lyzed: 12/18/09 02:16	SU	RROGATE RE	ECOVERY S	STUDY	
BTEX by EPA 8	021	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes				{D}		
1,4-Difluorobenzene		0.0282	0.0300	94	80-120	
4-Bromofluorobenzene		0.0313	0.0300	104	80-120	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Final Ver. 1.000 Page 10 of 20

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Orders: 355577, Lab Batch #: 786316

Sample: 545778-1-BLK / BLK

Project ID: 2009-039

Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 10:20	SU	RROGATE RI	ECOVERY	STUDY	
sv	OA PAHs List	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes					
2-Fluorobiphenyl		0.050	0.050	100	43-116	
2-Fluorophenol		0.041	0.050	82	21-100	
Nitrobenzene-d5		0.051	0.050	102	35-114	
Phenol-d6		0.026	0.050	52	10-94	
Terphenyl-D14		0.057	0.050	114	33-141	
2,4,6-Tribromophenol		0.052	0.050	104	10-123	

Lab Batch #: 786316

Sample: 545778-1-BKS / BKS

Batch: |

Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 10:58	SU	RROGATE R	ECOVERY S	STUDY	
	OA PAHs List	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
2-Fluorobiphenyl		0.044	0.050	88	43-116	
2-Fluorophenol		0.036	0.050	72	21-100	
Nitrobenzene-d5		0.045	0.050	90	35-114	
Phenol-d6		0.026	0.050	52	10-94	
Terphenyl-D14		0.047	0.050	94	33-141	
2,4,6-Tribromophenol		0.046	0.050	92	10-123	

Lab Batch #: 786316

Sample: 545778-1-BSD / BSD

Batch: 1

Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 11:36	SU	RROGATE RE	ECOVERY S	STUDY	
sv	OA PAHs List	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
2-Fluorobiphenyl		0.042	0.050	84	43-116	
2-Fluorophenol		0.034	0.050	68	21-100	
Nitrobenzene-d5		0.043	0.050	86	35-114	
Phenol-d6		0.025	0.050	50	10-94	
Terphenyl-D14		0.044	0.050	88	33-141	
2,4,6-Tribromophenol		0.044	0.050	88	10-123	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Orders: 355577,

Project ID: 2009-039

Lab Batch #: 786316

Sample: 355933-001 S / MS

Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/18/09 12:53	SU	RROGATE R	RECOVERY	STUDY	
SVOA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
2-Fluorobiphenyl	0.195	0.250	78	43-116	
2-Fluorophenol	0.147	0.250	59	21-100	
Nitrobenzene-d5	0.192	0.250	77	35-114	_
Phenol-d6	0.161	0.250	64	10-94	
Terphenyl-D14	0.204	0.250	82	33-141	
2,4,6-Tribromophenol	0.188	0.250	75	10-123	

Lab Batch #: 786316

Sample: 355577-004 / SMP

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 12/18/09 14:47	SU	RROGATE R	ECOVERY	STUDY	
sv	OA PAHs List Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes					_
2-Fluorobiphenyl		0.041	0.050	82	43-116	
2-Fluorophenol		0.033	0.050	66	21-100	
Nitrobenzene-d5		0.042	0.050	84 .	35-114	
Phenol-d6	1 - 10 - 20 - 20 - 20	0.017	0.050	34	10-94	
Terphenyl-D14		0.043	0.050	86	33-141	_
2,4,6-Tribromophenol		0.039	0.050	78	10-123	_

Lab Batch #: 786690

Sample: 546087-1-BKS / BKS

Batch:

Matrix: Water

Units: mg/L	Date Analyzed: 12/22/09 01:37	SU	RROGATE R	ECOVERY	STUDY	
ТРН І	by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		11.1	10.0	111	70-135	
o-Terphenyl		4.94	5.00	99	70-135	_

Lab Batch #: 786690

Sample: 546087-1-BSD / BSD

Batch:

Matrix: Water

Units: mg/L Date Analyzed: 12/22/09 02:04	SU	RROGATE R	ECOVERY	STUDY	
TPH by SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane	11.2	10.0	112	70-135	
o-Terphenyl	4.98	5.00	100	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Orders: 355577,

Project ID: 2009-039

Lab Batch #: 786690

Sample: 546087-1-BLK / BLK

Batch: | Matrix: Water

Units: mg/L Date Analyzed: 12/22/09 02:32	SU	RROGATE R	ECOVERY :	STUDY	
TPH by SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	7.89	10.0	79	70-135	
o-Terphenyl	4.55	5.00	91	70-135	

Lab Batch #: 786690

Sample: 355577-004 / SMP

Batch: 1

Matrix: Water

Units: mg/L Date Analyz	zed: 12/22/09 08:26	SU	RROGATE R	ECOVERY :	STUDY	
TPH by SW8015 M	lod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes				[D]		
1-Chlorooctane		11.5	10.0	115	70-135	
o-Terphenyl		5.44	5.00	109	70-135	

Lab Batch #: 786690

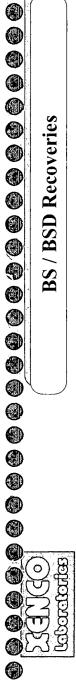
Sample: 355780-006 S / MS

Batch: |

Matrix: Water

Units: mg/L Date Analyze	d: 12/22/09 08:53	SU	RROGATE RE	COVERY	STUDY	
TPH by SW8015 Mo	d	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
I-Chlorooctane		11.1	10.0	111	70-135	
o-Terphenyl		5.01	5.00	100	70-135	,

Page 13 of 20


Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Order #: 355577

Analyst: BRB

Lab Batch ID: 786220

Sample: 545803-1-BKS

Date Prepared: 12/17/2009

Batch #: 1

Project ID: 2009-039

Date Analyzed: 12/17/2009 Matrix: Water

Units: mg/L		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / B	LANKS	PIKE DUPL	ICATE 1	RECOVE	RY STUD	Y	
BTEX by EPA 8021	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	BIK. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		<u>8</u>	[C]	<u>a</u>	<u> </u>	Result [F]	<u>5</u>				
Benzene	QN	0.1000	0.1001	100	0.1	0.1008	101	_	70-125	25	
Toluene	QN	0.1000	0.101.0	101	0.1	0.1010	101	0	70-125	25	
Ethylbenzene	QN	0.1000	0.1007	101	1.0	0.1011	101	0	71-129	25	
m,p-Xylenes	QN	0.2000	0.2082	104	0.2	0.2089	104	0	70-131	25	
o-Xylene	ND	0.1000	0.1068	107	0.1	0.1073	107	0	71-133	25	

Relative Percent Difference RPD = 200*[(C-F)/(C+F)]
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

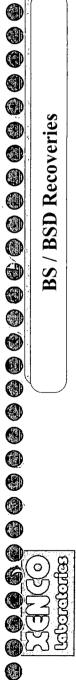
BS / BSD Recoveries

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Order #: 355577

Lab Batch ID: 786316 Analyst: KAN

Sample: 545778-1-BKS


Date Prepared: 12/17/2009 Batch #: 1

Project ID: 2009-039 **Date Analyzed:** 12/18/2009

Matrix: Water

Units: mg/L		BLAN	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	PIKE / E	SLANK S	PIKE DUPL	ICATE	RECOVE	RY STUD	λ	
SVOA PAHs List	Blank Sample Result	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		Œ	[C]	<u>a</u>	<u> </u>	Result [F]	<u>5</u>				
Acenaphthene	QN	0.050	0.046	92	0.05	0.045	06	2	27-132	31	
Acenaphthylene	QN	0.050	0.046	92	0.05	0.045	06	2	46-108	25	
Anthracenc	ΩN	0.050	0.047	94	0.05	0.046	92	2	47-145	25	
Benzo(a)anthracene	Q	0.050	0.048	96	0.05	0.047	94	2	33-143	25	
Benzo(a)pyrene	QN	0.050	0.048	96	0.05	0.047	94	2	65-135	25	
Benzo(b)fluoranthenc	ΩN	0.050	0.051	102	0.05	0.049	86	4	24-159	25	
Benzo(k)fluoranthene	QN	0.050	0.047	94	0.05	0.048	96	2	25-125	25	
Benzo(g,h,i)perylene	QN	0.050	0.047	94	0.05	0.045	06	4	65-135	25	
Chrysene	QN	0.050	0.045	06	0.05	0.044	88	2	65-135	25	
Dibenz(a,h)anthracene	QN	0.050	0.049	86	0.05	0.048	96	2	50-125	25	
Fluoranthene	ND	0.050	0.048	96	0.05	0.048	96	0	47-125	25	
Fluorene	QN	0.050	0.048	96	0.05	0.047	94	2	48-139	25	
Indeno(1,2,3-c,d)Pyrene	ΩN	0.050	0.049	86	0.05	0.048	96	2	27-160	25	
Naphthalenc	QN	0.050	0.044	88	0.05	0.044	88	0	26-175	25	
Phenanthrene	QN	0.050	0.046	65	0.05	0.046	76	0	65-135	25	
Pyrene	ΩN	0.050	0.047	94	0.05	0.046	92	2	23-152	31	

Relative Percent Difference RPD = 200*(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6-Inch # 2

Lab Batch ID: 786690 Analyst: BEV

Work Order #: 355577

Date Prepared: 12/21/2009 Sample: 546087-1-BKS

Batch #: 1

Project ID: 2009-039

Date Analyzed: 12/22/2009

Matrix: Water

Units: mg/L		BLAN	K/BLANKS	PIKE / E	LANK S	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY	ICATE I	RECOVE	RY STUD	Y	
TPH by SW8015 Mod	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Bik. Spk Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[<u>V</u>	[B]	Result [C]	%R [D]	[E]	Duplicate Result [F]	%R [G]	%	% R	%RPD	
C6-C12 Gasolinc Range Hydrocarbons	ND	100	104	104	001	104	104	0	70-135	25	
C12-C28 Diesel Range Hydrocarbons	ND	100	87.9	88	100	70.3	70	22	70-135	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Order #: 355577

Lab Batch #: 786316 Date Analyzed: 12/18/2009

Project ID: 2009-039

Date Prepared: 12/17/2009

Analyst: KAN

QC- Sample ID: 355933-001 S

Batch #: Matrix: Water

Reporting Units: mg/L	MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
SVOA PAHs List by SW-846 8270C Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Acenaphthene	ND	0.250	0.207	83	27-132	
Acenaphthylene	ND	0.250	0.210	84	46-108	
Anthracene	ND	0.250	0.207	83	47-145	
Benzo(a)anthracene	ND	0.250	0.209	84	33-143	
Benzo(a)pyrene	ND	0.250	0.208	83	65-135	
Benzo(b)fluoranthene	ND	0.250	0.239	96	24-159	
Benzo(k)fluoranthene	ND	0.250	0.220	88	25-125	
Benzo(g,n,n)peryiene	ND	0.250	0.215	86	65-135	
Chrysene	ND	0.250	0.199	80	65-135	
Dibenz(a,h)anthracene	ND	0.250	0.217	87	50-125	
Fluoranthene	ND	0.250	0.217	87	47-125	
ridorene	ND	0.250	0.222	89	48-139	
Indeno(1,2,3-c,d)Pyrene	ND	0.250	0.219	88	27-160	
Naphthalene	ND	0.250	0.191	76	26-175	
Phenanthrene	ND	0.250	0.205	82	65-135	
Pyrene	ND	0.250	0.210	84	23-152	-

Lab Batch #: 786690

Date Analyzed: 12/22/2009

Date Prepared: 12/21/2009

Analyst: BEV

QC- Sample ID: 355780-006 S

Batch #:

Matrix: Water

D	Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
	TPH by SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	%R	Control Limits	Flag
	Analytes	Result [A]	Added [B]	[C]	[D]	%R	
7	C6-C12 Gasoline Range Hydrocarbons	7.53	100	108	100	70-135	
	C12-C28 Diesel Range Hydrocarbons	5.84	100	72.0	66	70-135	Х

RL - Below Reporting Limit

Project Name: DCP Plant to Lea Station 6-Inch # 2

Work Order #: 355577

Lab Batch ID: 786220

Date Analyzed: 12/18/2009

Batch #: QC- Sample ID: 355467-002 S

Analyst: BRB

Matrix: Water

Project ID: 2009-039

Date Prepared: 12/17/2009

Reporting Units: mg/L		Σ	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY	E/MAT	RIX SPIF	KE DUPLICA'	TE REC	VERY S	STUDY		
BTEX by EPA 8021	Parent Sample	Spike	Spiked Sample Spiked Result Sample	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	(D)	Added [E]	Result [F]	-% <u>D</u>	%	%R	%RPD)
Benzene	QN	0.1000	0.1045	105	0.1000	0.0987	66	9	70-125	25	
Toluene	QN	0.1000	0.1052	501	0.1000	0.0975	86	8	70-125	25	
Ethylbenzene	ND	0.1000	0.1046	501	0.1000	6960'0	76	8	71-129	25	
m,p-Xylenes	ND	.0.2000	0.2121	901	0.2000	0.1997	100	9	70-131	25	
o-Xylene	ND	0.1000	0.1111	111	0.1000	0.1048	105	9	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*(C-F)/(C+F)

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Defected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Page 18 of 20

6666666666666666666666666 **Environmental Lab of Texas**

CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST

Phone: 432-563-1800 432-563-1713 Fax: 12600 West L20 East Odessa, Texas 79765

TAT bisbrist2 ☐ NPDES RUSH TAT (Pre-Schedule) 24, 48, 72 nrs ပူ Project Name: DCP Plant to Lea Station 6-Inch #2 CHLORIDES E 300 200 (DS (EPA METHOD SM 2540c) DYS8 HAY × TRRP M.R.O. 301 80218/\$030 or 8TEX 8260 Temperature Upon Receipt: Summer Comment Interests VOCs Free of Headspace? Project Loc: Lea County, NM PO #: PAA - J. Henry X Standard Project #: 2009-039 Metals: As Ag Ba Cd Cr Pb Hg Se TOP TOTAL SAR / ESP / CEC inlons (Cl. SO4, Alkalbrity) Cations (Ca, Mg, Na, K) Report Format: 8001 XT 3001 XT Hall コピ E E 8015M 89108 1.814 Нал × liter animaginess/new Homegines/After ĕ **₹** Š ₹5 CAA - CLORUQAASEEL 2-2015208 12-14-09 DW-Drinding Water SL-Sludge Oate Date Other (Specify) cstanley@basinenv.com BUON N9²2³O² HOPN 4 'os'H MAK ЮН (505) 396-1429 ONH × × 90 × × otal #, of Containers benetiiii ble かれる Fax No: e-naii: 1245 1415 1330 1500 Time Sampled 5 Red Legens Received by ELDT PAGE OF OF 12/10/2009 12/10/2009 12/10/2009 12/10/2009 Received by: Received by Basin Environmental Service Technologies, LLC Date Sampled Ending Depth ê Beginning Depth Lovington, NM 88280 Oate (505) 441-224 Company Address: P. 0. Box 301 Curt Stanley 255577 FIELD CODE MW-3 MW4 MW-1 Sampler Signature Project Manager: Company Name Telephone No: City/State/Zip: special Instructions Relinquished by lab use only ORDER #: 03 g ठ (Nino eeu del) # BAL ถ

Environmental Lab of Texas

Variance/ Corrective Action Report- Sample Log-In

0

Validation Contestive Action Nep	ort- Samp	ie Log-ii	.		
Client: Plains / Basin					
Date/ Time: 12-14-09 C 1720					
Lab ID#: 355577					
Initials: JME					
Sample Receipt (Checklist				
			(Client Initials	3
#1 Temperature of container/ cooler?	(es_	No	2.6 °C		
#2 Shipping container in good condition?	(Yes)	No			
#3 Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present		
#4 Custody Seals intact on sample bottles/ container? / label	(Yes	> No	Not Present		
#5 Chain of Custody present?	Yes	No			1
#6 Sample instructions complete of Chain of Custody?	(Yes	No]
#7 Chain of Custody signed when relinquished/ received?	(Yes	No			1
#8 Chain of Custody agrees with sample label(s)?	Yes	No	ID written on Cont./ Lid		1
#9 Container label(s) legible and intact?	(Yes)	No	Not Applicable		
#10 Sample matrix/ properties agree with Chain of Custody?	Yes	No			
#11 Containers supplied by ELOT?	(Yes)	No			1
#12 Samples in proper container/ bottle?	Tes	No	See Below		1
#13 Samples properly preserved?	Yes	No	See Below		1
#14 Sample bottles intact?	Yes	No			1
#15 Preservations documented on Chain of Custody?	(Yes)	No			1
#16 Containers documented on Chain of Custody?	(Yes)	No	T		1
#17 Sufficient sample amount for indicated test(s)?	Yes	No	See Below	 	1
#18 All samples received within sufficient hold time?	(Yes)	No	See Below		1
#19 Subcontract of sample(s)?	(Yes)	No	Not Applicable	PAH - Xe	Co Houste
#20 VOC samples have zero headspace?	(Yes	No	Not Applicable]
Variance Docum	nentation				
Contact: Contacted by:		-	Date/ Time:		
Regarding					
Corrective Action Taken:					
Check all that Apply: See attached e-mail/ fax			•		
Client understands and would					

Appendix B Monitor Well Logs

Monitor Well MW-1 Depth below Monitor Well MW-1 ground Drilling Soil PID Petroleum Petroleum Soil Description Stain surface Depth Columns Reading Odor Date Drilled September 24, 2009 Thickness of Bentonite Seal 57 Ft A CONTRACTOR AND A CONT Depth of Exploratory Boring __ 86 Ft bgs 0 - 5' - Sand, brown with caliche nodules Heavy Slight Depth to Groundwater 1836 Ground Water Elevation Very Heavy Slight (747) 5 - 18' - Caliche, grey, hard, dry, sandy W Indicates the PSH level measured Heavy None Indicates the groundwater level V 779 Indicates samples selected for Laboratory Analysis. Heavy None Head-space reading in ppm obtained with a photo-ionization detector. PID 848 18 - 25' - Sand, brown, very fine grained, dry with Heavy None 1449 Heavy None (1463) Heavy None 1078 Heavy None 936 Heavy None 1522 25 - 71' - Sand, brown, very fine grained, moist to Heavy None wet at approximately 70 feet. Monitor well was 1438 completed using water Heavy None Grout Surface Seal 1851 Heavy None Bentonite Pellet Seal (1550) Very Heavy None 863 Very Heavy None

Completion Notes

- 1.) The monitor well was advanced on date
- using air / water rotary drilling techniques.

 2.) The well was constructed with 4" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and compression cap.
- 4.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-1 DCP Plant to Lea Station 6-Inch Sec 31 Lea County, New Mexico Plains Pipeline, L.P.

Basin Environmental Consulting

Checked By: CDS Prep By: CDS October 7, 2009

Monitor Well MW-2

Soil Description 0 - 3' bgs - Sand, light brown

Drilling

Soil

Depth Columns

PID

Reading

0.3

0.2

20.5

16.8

39.7

(37.1)

46.6

46.9

(48.1)

35.4

47.9

(48.9)

46.2

45.4

(43.4)

44.3

Petroleum Petroleum

Stain

None

Odor

None

0 - 3' bgs - Sand, light brown, clayey with caliche nodules

2 - 14' bgs - Caliche, white, soft, dry, sandy

14 - 90' bgs - Sand, brown, very fine grained, dry, hard 18 - 23 feet. Lost circulation at 80 feet bgs and completed drilling with water

Monitor Well MW-2

Date Drilled	September 21, 2009
Thickness of Bentonite	Seal61Ft
Depth of Exploratory Bo	ring 90 Ft bgs
Depth to Groundwater	
Ground Water Elevation	

Indicates the PSH level measured

D Head-space reading in ppm obtained with a photo-ionization detector.

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Completion Notes

- The monitor well was advanced on date
 using air / water rotary drilling techniques
- The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-2
DCP Plant to Lea Station 6-Inch Sec 31
Lea County, New Mexico
Plains Pipeline, L.P.

Basin Environmental Consulting

Prep By: CDS	Checked By: CDS
October 7, 2009	

Monitor Well MW-3

Drilling PID Petroleum Petroleum Soil Soil Description Depth Columns Reading Odor Stain 0 - 5' bgs - Clay, light brown, sandy with caliche None None nodules, some organics 25 None None 5 - 12' bgs - Caliche, white, soft, dry, sandy 94 None None 12 - 18' bgs - Sand, light brown, very fine grained (10.5) with some caliche nodules None None 11.1 18 - 24' bgs - Caliche, white, soft, dry, sandy None None 15.1 24 - 33' bgs - Sand, light brown and Caliche, white, None None soft, dry (8.0) None None None None 4.9 None 9.1 None None 13.9 33 - 90' bgs - Sand, reddish brown, very fine None None grained, dry. Lost circulation at 60 feet bgs and completed drilling with water 86 None None (8.4)

Monitor Well MW-3

 Date Drilled
 September 22, 2009

 Thickness of Bentonite Seal
 61 Ft

 Depth of Exploratory Boring
 90 Ft bgs

 Depth to Groundwater
 Ground Water Elevation

V

Indicates the PSH level measured

_

O PID

Head-space reading in ppm obtained with a photo-ionization detector.

V

A STATE STATE OF STAT

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Screen

Completion Notes

- The monitor well was advanced on date using air / water rotary drilling techniques.
 The well was constructed with 2" ID, 0.020
- The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and compression cap.
- The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-3
DCP Plant to Lea Station 6-Inch Sec 31
Lea County, New Mexico
Plains Pipeline, L.P.

Basin Environmental Consulting

Prep By: CDS Checked By: CDS
October 7, 2009

Monitor Well MW-4

		DID			Monitor Well MW
Drilling Depth C	Soil Columns	PID Reading	Petroleum P Odor	Stain_	Soil Description
E 5		18.5	None	None	0 - 5' bgs - Sand, light brown, clayey with caliche nodules, some organics
E			None	None	5 - 10' bgs - Caliche, white, soft, dry, sandy
10 15	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	27.2	None	None	10 -15' bgs - Sand, light brown, very fine grained, dry
E 30		5.7	None	None	15 - 20' bgs - Sand, light brown, very fine grained, dry with some caliche nodules
E 25		25.0	None	None	20 - 28' bgs - Caliche, white, hard, dry, sandy
E 30		(26.2)	None	None	28 - 33' bgs - Sand, light brown, very fine grained,
E		41.1	None	None	dry with caliche nodules 33 - 35' bgs - Sand, reddish brown, very fine grained, dry with caliche nodules
E 40		31.4	None	None	g
-45		(27.9)	None	None	
E 50		30.4	None	None	
55		25.4	None	None	
60		33.9	None	None	33 - 89' bgs - Sand, reddish brown, very fine grained, dry. Lost circulation at 60 feet bgs and completed drilling with water
65					
E 75					
80					
E 85	TD				

Monitor Well MW-4

 Date Drilled
 September 22, 2009

 Thickness of Bentonite Seal
 60 Ft

 Depth of Exploratory Boring
 89 Ft bgs

 Depth to Groundwater
 Ground Water Elevation

V

Indicates the PSH level measured

•

PID Head-space reading in ppm obtained with a photo-ionization detector.

Prince Control Control

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Screen

Completion Notes

- The monitor well was advanced on date using air / water rotary drilling techniques.
- The well was constructed with 2" ID, 0.020 inch factory slotted, threaded joint, schedule 40 PVC pipe.
- The well is protected with a locked stick up steel cover and compression cap.
- 4.) The lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- The depths indicated are referenced from ground surface.

Monitor Well MW-4 DCP Plant to Lea Station 6-Inch Sec 31 Lea County, New Mexico Plains Pipeline, L.P.

Basin Environmental Consulting

Prep By: CDS

Checked By: CDS

October 7, 2009

Appendix C
Release Notification and Corrective Action
(Form C-141)

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 RECEIVED

Form C-141 Revised October 10, 2003

APR 2 9 2009
Submit 2 Copies to appropriate
HOBBSOCD vistrict Office in accordance
with Rule 116 on back
side of form

	Rele	ase Notificati	ion and Cor	rective Act	tion	
			OPERAT	OR	☐ Initial Report	Final Repo
Name of Company	Plains Pipeline, LP		Contact	Jason Henry		
Address	2530 Hwy 214 - Denve	r City, Tx 79323	Telephone No	. (575) 441-109	99	
Facility Name	DCP Plant to Lea Stati	on 6-inch Sec. 31	Facility Type	Pipeline		
Surface Owner NM	SLO	Mineral Owne	er		Lease No.	
		LOCATI	ON OF RELI	EASE NEEDER	18 WELL API # 30.025.	06300-00-00

Unit Letter Section 31 20S 37E Feet from the North/South Line Feet from the East/West Line County Lea

Latitude N 32.52	2733° Longitude W 103.2906°		1
NATUI	RE OF RELEASE		. 1
Type of Release Crude Oil	Volume of Release 20 bbls	Volume R	ecovered 0 bbls
Source of Release 6" Steel Pipeline	Date and Hour of Occurrence	Date and I	lour of Discovery
	Unknown	04/02/200	9 15:00
Was Immediate Notice Given? ☐ Yes ☐ No ☒ Not Requi	red Larry Johnson (initial estimate		sed on small surface stain)
By Whom? Jason Henry			to reportable on 04/29/2009)
Was a Watercourse Reached? ☐ Yes ☑ No	If YES, Volume Impacting the W		
If a Watercourse was Impacted, Describe Fully.*			\
Describe Cause of Problem and Remedial Action Taken.* External corrosion of 6" inch pipeline caused a release of crude of the subject line is 660 bbls/day and the operating pressure of the p2' bgs. The H2S concentration in the crude is less than 10 ppm and	pipeline is 45 psi. The depth of the pip	ne to mitigate peline at the re	the release. Throughput for lease point is approximately
Describe Area Affected and Cleanup Action Taken.* . The released crude resulted in a surface stain that measured appriguidelines.	oximately 6' x 8'. The impacted area	will be remed	iated per applicable
I hereby certify that the information given above is true and complete regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by should their operations have failed to adequately investigate and reme or the environment. In addition, NMOCD acceptance of a C-141 report federal, state, or local laws and/or regulations,	se notifications and perform corrective a y the NMOCD marked as "Final Report diate contamination that pose a threat to	ctions for release does not relies ground water,	ases which may endanger eve the operator of liability surface water, human health
Signature: Jason Dewy	OIL CONSER	VATION	DIVISION
Printed Name: Jason Henry	Approved by District Supply 1341:M	ENTAL EN	GINEER
Title: Remediation Coordinator	Approval Date: 4 . 79.09	Expiration D	Pate: 6.29.09
E-mail Address: jhenry@paalp.com	Conditions of Approval:		Attached
Date: 04/29/2009 Phone: (575) 441-1099			1RP# 09.4.2166
Attach Additional Sheets If Necessary			

FGRL0912057827