

August 18, 2010

Mr. Justin Wright ConocoPhillips HC60 Box 66 Lovington, NM 88260

RE: MCA 2A Header

Findings Report and Recommendations

Lea County, New Mexico Unit G, Sec. 29, T17S, R32E

1RP 2300

Dear Mr. Wright:

Tetra Tech submits this findings report for the subsurface investigations performed on November 4, 2009, May 21, 2010 and August 12-13, 2010, at ConocoPhillips' MCA 2A Header produced water release site. This work was performed in support of ConocoPhillips efforts to delineate and remediate a recent 878.4 barrel produced water release reported to the New Mexico Oil Conservation Division (NMOCD; C141 Attached). The Site is located below Mescalero Ridge, approximately 1.1 miles southwest of the ConocoPhillips MCA Unit office in Lea County, New Mexico (32.805893°N, 103.788380°W; Figure 1). The U.S. Bureau of Land Management (BLM) is the land administrator.

The Site is located in the Querecho Plains of eastern New Mexico. This area generally consists of a thin cover of Quaternary sand dunes overlying the undivided Triassic Upper Chinle Group¹. The Pyote-Kermit soil association at the Site is gently undulating deep sandy soil that is well drained, non-calcareous sands.²

The Site is heavily populated with oil field pipelines. Observations made by Tetra Tech during an initial site overview revealed that there are at least 5 pipelines running through the site.

Exposure Pathway Analysis

Depth to water in the vicinity of the Site is estimated to be approximately 76 feet below ground surface (fbgs). This interpretation is based on information gathered at monitoring well MW-20 that is described in ConocoPhillips' remediation project entitled "Maljamar Gas Plant GW-020"

¹ U.S. Department of Agriculture, Natural Resources Conservation Services. Web Soil Survey Database.

² Turner, M.T., D.N. Cox, B.C Mickelson, A.J. Roath, and C.D Wilson, 1973. Soil Survey Lea County, New Mexico. U.S. Depart of Agr Soil Conser Ser, 89p.

(log attached). The monitoring well is located approximately 3,515 feet northeast of the Site. The nearest playa is approximately 0.6 miles east-southeast of the Site.

Following the ranking criteria presented in "Guidelines for Remediation of Leaks, Spills, and Releases" promulgated on August 13, 1993, by the NMOCD, this Site has the following score:

<u>Criteria</u>		Ranking <u>Score</u>
Depth to groundwater	50 - 99 feet	10
Distance from water source	>1,000 feet	0
Distance from domestic water source	>200 feet	0
Distance from surface water body	>1,000 feet	_0
Total Ranking Score		10

The remediation action level for a ranking score of 10-19 is 10 parts per million (ppm) for benzene, 50 ppm for total benzene, toluene, ethylbenzene, and total xylenes (BTEX), and 1,000 ppm for total petroleum hydrocarbons (TPH).

In the event of oil/gas releases to the environment, the NMOCD uses the New Mexico Water Quality Control Commission's maximum contaminate level of 250 ppm for chloride (20.6.2.3103 NMAC, Subsection A) for delineation.

Scope of Work

The lateral extent of the release area is defined by soil discoloration (Figure 2). To delineate the vertical extent of the produced water affected area, a hand auger was utilized in November 2009, a backhoe in May 2010, and an air rotary boring unit in August 2010 to collect soil samples.

November 4, 2009 – Six hand auger locations were bored to describe subsurface conditions at the Site. A findings report, a laboratory report, and recommendations were submitted on December 2, 2009 to the BLM and NMOCD for approval.

February 8, 2010 - ConocoPhillips and Tetra Tech representatives met with NMOCD to discuss safety concerns surrounding the planned excavation work at the MCA 2A Header. Seventeen flowlines enter the header with numerous other lines in the vicinity of the produced water release. In addition, if the excavation were to go beyond 4 fbgs, a 2:1 sloped excavation would be performed to prevent caving, which would substantially increase the size of the excavation (moving into the sand dunes). Owing to the number of lines and the potential for an expanded excavation, ConocoPhillips agreed to dig one exploratory trench (collect a sample for chloride analysis), limit the depth of the proposed excavation to 4-feet, lay down a 40-mil geomembrane, and backfill. The BLM expressed disappointment at not being involved in the meeting. Since the meeting, the BLM has changed remediation strategies in sand dune lands under Federal control and now requires clay be used as a barrier to prevent water penetration into affected soils left in-place.

Mr. Justin Wright August 18, 2010 Page 3

May 21, 2010 – Tetra Tech returned to the Site to collect 8 backhoe samples. A brief findings report and laboratory report were submitted to the NMOCD and BLM for review on August 3, 2010.

July 20, 2010 – BLM issued a warning to ConocoPhillips concerning Site remediation and indicated that re-sampling was required to determine the depth and width of chloride impact. The agency requested that a sampling and remediation plan be submitted within 30 days.

August 2, 2010 – ConocoPhillips, NMOCD and BLM met to discuss implementation of remediation at the Site. The agencies set the following schedule: a soil boring sampling plan delivered by August 4, 2010; execution of the plan to begin no later than August 10, 2010 and soil laboratory analyses submitted to the agencies by August 13, 2010. An excavation work plan will be submitted to the agencies by August 18, 2010.

The BLM and NMOCD placed a tight schedule on collecting additional data, so ConocoPhillips hired a water well drilling company to provide an air rotary boring unit. ConocoPhillips informed NMOCD that the unit was not capable of collecting discrete depth samples (split spoon) and volatile organic compounds and petroleum hydrocarbons could volatize during the sampling process. The air rotary unit was used in August 2010 in the affected area to describe vertical and horizontal environmental conditions.

The 12 soil samples collected from the six hand auger borings in November 2009, and 8 soil samples collected from a backhoe trench in May 2010 were submitted to a laboratory for analyses. The NMOCD requested that the 50 soil cutting samples collected from the 7 borings in August 2010 be analyzed and these samples were submitted to a laboratory for analyses. All samples were placed into glass sample jars, sealed with Teflon-lined lids, and placed on ice for transportation with a chain-of-custody to an analytical laboratory where they were analyzed for diesel and gasoline range TPH (TPH_{DRO} and TPH_{GRO}, Method 8015), BTEX (Method 8021), and chloride (Method 300).

Findings

Soil encountered at the Site was moist yellowish brown sands from the surface to varying depths. Locally, the dune sands overlie red sandy clay.

TPH and BTEX laboratory analyses for the investigative events are presented in Table 1, 2 and 3. TPH concentrations were detected in all November 2009 auger samples and ranged from 265 to 7,510 milligrams per kilogram (mg/Kg). Benzene (0.069 mg/Kg) was detected in only one sample (HA-3 at 6 fbgs). BTEX concentrations ranged from non-detection to 40.77 mg/Kg.

Chloride concentrations were present in all hand auger boring locations and ranged from 293 to 25,000 mg/Kg (Table 1).

TPH concentrations were detected only in the upper 2 feet of the May 2010 backhoe samples and ranged from 8.7 to 534 mg/Kg (Table 2). Since the volatile organic compounds were below remedial action levels in the November 2009 sampling event, these hydrocarbon constituents

were excluded from the analyses. Chloride concentration attenuated with depth but showed a slight rise at the 12 to 14 fbgs sampling depths.

Tetra Tech returned to the Site on August 11, 2010 to clear each location for down-hole hazards before soil drilling ensued. Boring began August 12 and was completed on August 13, 2010. Laboratory analyses of the 50 soil cutting samples are presented in Table 3 and in the Appendix.

Total petroleum hydrocarbons exceeded the NMOCD remedial action level at only two boring locations (SB-1 0-0.5 ft and SB-6 0-0.05 ft) and concentrations ranged from non-detection to 3,023 mg/Kg. Neither benzene nor BTEX exceed the remedial action level in any of the boring locations.

Chloride concentrations decreased below 250 mg/Kg with depth (maximum depth 20 fbgs) in all borings except for soil boring SB-4. At SB-4, 24 fbgs, chloride concentration was 548 mg/Kg.

Conclusions

Exposure pathway analysis indicated a ranking score of "10." Therefore, the site-specific remediation levels are 1,000 mg/Kg for TPH, 50 mg/Kg for BTEX and 10 mg/Kg for benzene. Laboratory analyses of soils collected during this investigation indicate TPH above the remedial action level was only found in the shallow soil. Benzene and/or BTEX were found in 8 of the 50 sampling points and both constituents were below their remedial action levels. The occurrence of petroleum hydrocarbons at depth may be due to the method of sample capture rather than its actual presence. Down-hole material was blown to the surface, possibly dislodging sidewall material as it travels to the surface, where the cuttings were scrapped off the ground with a hand shovel and place into a sample container.

Laboratory analyses indicate the produced water (chloride) penetrated and migrated downward in the sandy soil and stayed generally within a swale located between the facility pad and sand dunes (Figure 2). With the exception of one location (SB-4) chloride decreased below 250 mg/Kg with depth.

Recommendations

Tetra Tech recommends the following actions be taken at the Site:

At a minimum, the area will be excavated to a depth of approximately 4 fbgs. The plan includes using a roustabout crew to complete two full length and four perpendicular hand-dug trenches in an attempt to identify any unknown pipelines crossing the Site. To reduce hazards to potential unforced releases, Tetra Tech requests any active pipeline to be de-pressurized before excavating within 4 feet of a line.

Every precaution to minimize stress to known pipelines crossing the Site will be used. Soil bridges will be used to cross remaining pipelines in the work zone, but owing to the fragile condition of the existing pipelines, it is hereby acknowledged upon acceptance and signature of

this proposal, ConocoPhillips will be responsible for repairing or replacing any pipelines rendered inoperable during remediation at the Site. These repair or replacement events will be considered normal activities that occur during line rehabilitation.

A trackhoe will be used to excavate most of the affected soil. A roustabout crew will be used to hand dig affected soil near the 2A Header. All exposed lines will be supported with cribbing blocks. A front-end loader will haul the material to a nearby pad (MCA 2A Header) to load dump trucks. Individual soil samples will be collected in a "W" pattern, and composited for each sidewall and floor in the excavations, and field analyzed using chloride titration to determine that remediation levels established by NMOCD have been achieved.

Confirmation soil samples will be collected and submitted to an analytical laboratory for analyses of chloride (Method 300), TPH (Method 8015), and BTEX (Method 8021) to confirm a clean sidewall excavation. The NMOCD will be notified 48 hours in advance of collection of confirmation samples to witness sample collection.

Approximately 1.5 feet of clay material will be used to partially backfill the excavation. The clay will be compacted utilizing the on-site equipment. The remainder of the excavation will be backfilled with sand. Natural wind erosion will re-sculpture the affected area and restore the habitat of the sand dune lizard, *Sceloporus arenicolus*. The BLM approved seed mix will be applied to the rough graded surface.

Tetra Tech will supervise and direct all subcontractor activities, and prepare a report describing and documenting activities at the Site, including a site map. This report on activities, laboratory results and recommendations will be submitted for BLM and NMOCD review and ultimate approval for closure.

Tetra Tech will commence work on this project immediately following BLM and NMOCD's approval of this work plan and receipt of ConocoPhillips notification to proceed.

Please contact me (432-686-8081), if you have any questions or require additional information.

Sincerely,

Tetra Tech

Charles Durrett DN. cn=Charles Durrett DN. cn=Charles Durrett DN. cn=Charles Durrett co=Tetra Tech, Inc., out Dn. cn=Charles Durrett Dn. cn=Charles Durrett Dn. cn=Charles Durrett Dn. cn=Charles Dn. cn=

Charles Durrett Senior Project Manager

Cc: Mr. John Gates, ConocoPhillips

Table 1 ConocoPhillips MCA 2A Header

Hand Auger Analytical Soil Analyses November 4, 2009

		Sample	Chloride	Petroleur	n Hydrocart	ons (mg/Kg)	Vo	latile Orga	nic Compo	unds (mg/k	(g)
-	Location	Depth (ft)	(mg/Kg)	DRO	GRO	Total	Benzene	Ethyl- benzene	Toluene	Xylenes Total	Total BTEX
	HA-1	2.5	5,170	5,400	460	5,860	ND	11	3.1	18.6	32.70
		5.5	2,190	1,300	130	1,430	ND	0.4	0.021	2.9	3.321
ဖြ	HA-2	3.0	4,290	6,600	910	7,510	ND	12	0.77	28.0	40.77
(HA) ations		6	1,410	160	1	161	ND	ND	ND	ND	ND
1 - 0	HA-3	4.0	2,220	ND	ND	2,220	ND	ND	ND	ND	ND
ge		6.0	25,000	4,500	350	4,850	0.069	6.4	3.8	13.1	23.369
Au	HA-4	6	4,520	ND	ND	4,520	ND	ND	ND	0.002	0.002
면		4	293	ND	ND	293	ND	ND	ND	ND	ND
Har	HA-5	3	1,990	ND	ND	1,990	ND	ND	ND	ND	ND
Sa		5.0	878	1,000	ND	1,000	ND	ND	ND	ND	ND
	HA-6	3	1,120	740.0	0.2	740	ND	ND	ND	ND	ND
		6.5	2,570	250	15.0	265	ND	0.0014	0.003	0.079	0.0838

TPH_{GRO} =Gasoline range petroleum hydrocarbons

TPH_{DRO} =Diesel range petroleum hydrocarbons

ft = Feet

mg/Kg = Milligrams per kilogram

ND = Analyte not detected at or above laboratory detection limits

Table 2 ConocoPhillips MCA 2A Header

Backhoe Analytical Soil Analyses May 21, 2010

	Sample		Petrole	eum Hydroc	carbons			
Sample	Depth	Chloride	GRO	DRO	Total			
Number	(ft)	(mg/Kg)	(mg/Kg)	mg/Kg	mg/Kg			
1	0-0.5	2660	14	520	534			
2	2	2460	ND	8.7	8.7			
3	4	966	ND	ND	ND			
4	6	241	ND	ND	ND			
5	8	233	ND	ND	ND			
6	10	58.2	ND	ND	ND			
7	12	270	ND	ND	ND			
8	14	321	ND	ND	ND			

TPH_{GRO} =Gasoline range petroleum hydrocarbons

TPH_{DRO} =Diesel range petroleum hydrocarbons

ft = Feet

mg/Kg = Milligrams per kilogram

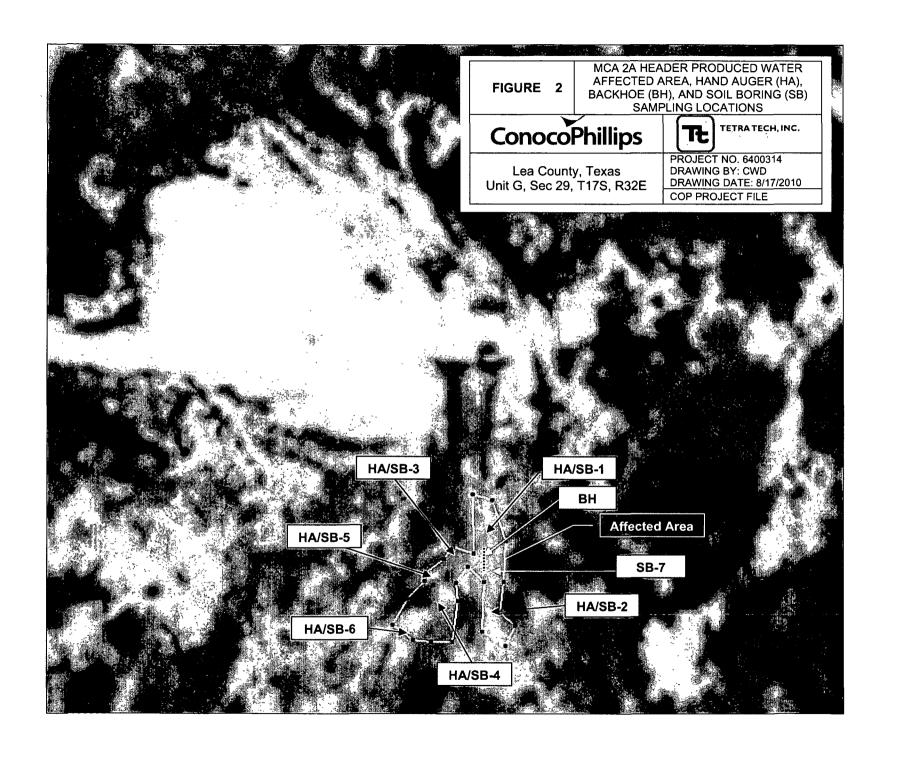
ND = Analyte not detected at or above laboratory detection limits

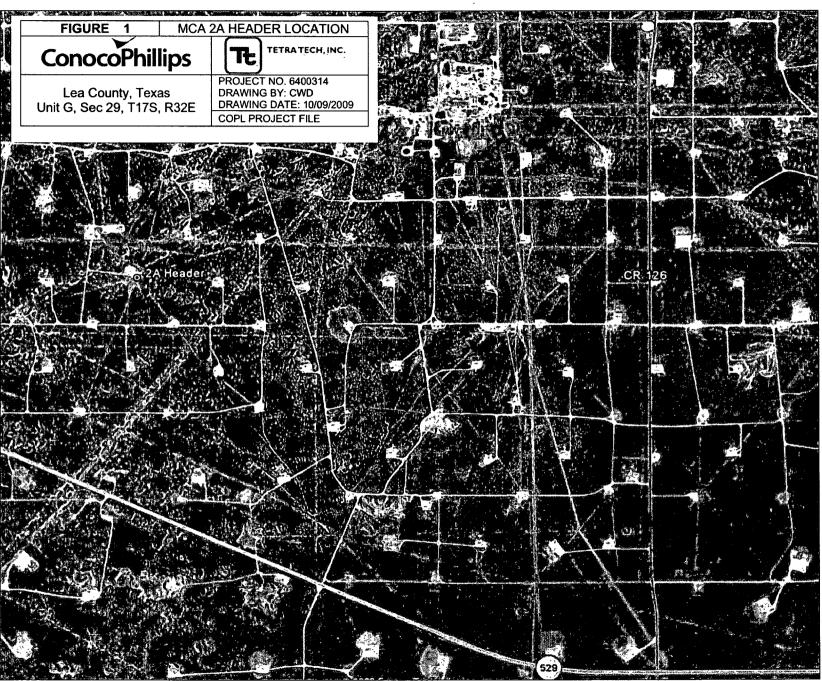
Table 3 ConocoPhillips MCA 2A Header

Air Rotary Boring Analytical Soil Analyses August 12-13, 2010

		Sample	Chloride	Petroleui	m Hydrocarb	ons (mg/Kg)	Vo		nic Compo		
Loca	ation	Depth (ft)	(mg/Kg)	DRO	GRO	Total	Benzene	Ethyl- benzene	Toluene	Xylenes Total	Total BTEX
Т	SB-1	0-0.5	75	ND	105	105	ND	ND	ND	ND	ND
		4.0	1,060	893	2,130	3,023	ND	0.3497	ND	1.806	2.126
	ŀ	8.0	46.6	74.2	330	404.2	ND	0.0606	0.0146	0.6858	0.7610
	ŀ	12.0	5.57	ND	29.9	29.9	ND	0.0019	ND	0.0013	0.0032
	ŀ	16.0	37.7	ND	39.2	39.2	0.0018	ND	ND	ND	0.0018
	ŀ	20.0	23.1	ND	21 2	21.2	ND	ND	ND	ND	ND
	ŀ	24.0	5.68	ND	33	33	ND	ND	ND	ND	ND
ŀ	SB-2	0-0.5	6.24	ND	ND	ND	ND	ND	ND	ND	ND
		4.0	1,420	ND	ND	ND	ND	ND	ND	ND	ND
	ŀ	8.0	361	ND	ND	ND	ND	ND	ND	ND	ND
- 1	ŀ	12.0	274	ND	ND	ND	ND	ND	ND	ND	ND
- 1	ŀ	16.0	304	15 5	ND	15.5	ND	ND	ND	ND	ND
- 1	ŀ	20.0	88.9	ND	21.4	21.4	ND	ND	ND	ND	ND
- 1	t	24.0	112	26.7	27.1	53.8	ND	ND	ND	ND	ND
اي	SB-3	0-0.5	216	ND	ND	ND	ND	ND	ND	ND	ND
اق	000	4.0	40.8	ND	ND	ND	ND	ND	ND	ND	ND
졌	ŀ	80	227	ND	30.3	30.3	ND	ND	ND	ND	ND
٩I	ł	12.0	22	ND	ND	ND	ND	ND	ND	ND	ND
Soil Boring (SB) Sampling Locations	ŀ	16.0	23	ND	ND	ND	ND ND	ND	ND	ND	ND
틀ㅣ	ŀ	20.0	19	ND	26.7	26.7	ND	ND ND	ND	ND	ND
뒽	ŀ	24 0	36	ND	48.4	48 4	ND	ND	ND	ND	ND
S -	SB-4	0-0.5	152	ND	ND	ND	ND	ND	ND ND	ND	ND
@ I	35-4	4.0	77.9	ND	ND	ND ND	ND ND	ND	ND	ND	ND
<u>s</u>	ŀ	8.0	245	ND	107	107	ND	ND	ND	ND	ND
5	ŀ	12.0	334	ND	65.5	65.5	ND	ND	ND	ND	ND
<u> </u>	ł	16.0	405	ND	23.7	23 7	ND	ND	ND	ND	ND
ď	ł	20.0	318	ND	19.6	19.6	ND	ND	ND	ND	ND
<u></u>	ŀ	24 0	548	ND	19.2	19.2	ND ND	ND	ND	ND	ND
თ ⊦	SB-5	0-0.5	131	ND	ND	ND	ND	ND	ND	ND	ND
- 1	30-3	4.0	386	46.2	80.3	126.5	ND	ND	ND	ND	ND
- 1	ŀ	8.0	363	75.4	599	674.4	0.8884	ND	1.296	0.5816	2.766
	ł	12.0	53 5	ND	26	26	ND	ND ND	0.0	ND	0.0014
	ŀ	16.0	98.5	ND	ND	ND	ND	ND	ND	0.0028	0.0014
	ł	20.0	119	ND	ND	ND ND	ND	ND	ND ND	ND	ND
	ł	24.0	192	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND
ŀ	SB-6	0-0.5	530	183	818	1,001	ND	ND	ND	0.0084	0.0084
	~ l	4.0	240	38.3	42.4	80.7	ND	ND	ND	ND	ND
	ŀ	80	939	ND	112	112	ND	ND	ND	ND	ND
	ŀ	12.0	138	ND	49.1	49.1	ND	ND	ND	ND	ND
-	ŀ	16.0	107.	ND	ND	ND	ND	ND	ND	ND	ND
1	-	20.0	136	ND	ND	ND	ND	ND	ND	ND	ND
	ŀ	24.0	231	ND	95.3	95.3	ND	ND	ND	ND	ND
ı	SB-7	0-0.5	20 5	ND	19 5	19.5	ND	ND	ND	ND	ND
		4.0	580	ND	ND	ND	ND	ND	ND	ND	ND
	ļ	80	588	20 6	ND	20.6	ND	ND	ND	ND	ND
	ľ	12.0	173	ND	27.2	27.2	ND	ND	ND	ND	ND
	ŀ	16.0	234	ND	ND	ND	ND	ND	ND	ND	ND
	ŀ	20.0	158	ND	ND	ND	ND	ND	ND	ND	ND
	ŀ	24.0	186	ND	ND	ND	ND	ND	ND	ND	ND
	ŀ	28.0	195	ND	ND	ND	ND	ND	ND	ND	ND

TPH_{GRO} = Gasoline range petroleum hydrocarbons


TPH_{DRO} = Diesel range petroleum hydrocarbons


ft = Feet

mg/Kg = Milligrams per kilogram

ND = Analyte not detected at or above laboratory detection limits

Source: Google Earth. 2009.

State of New Mexico

Form C-141 Revised October 10, 2003

 M_{\bullet}

District I 1625 N. French Dr., Hobbs, NM 88240

4

Submit 2 Copies to appropriate District Office in accordance with Rule 116 on back side of form

. .!

1220 S St Francis Dr , Santa Fe, NM 87505

District III
1000 Rio Brazos Road, Aztec, NM 874 GOBBSOCD
District IV

Oil Conservation Division
1220 South St. Francis Dr.

1320 S St. Francis Dr.

State of Trow Microbs

Minerals and Natural Resources
Oil Conservation Division
1220 South St. Francis Dr. Santa Fe. NM 87505

_
Final Report
)A
>0
ry
ccordance
rules and
endanger of liability
human health
iny other
1
a Dyri

Attach Additional Sheets If Necessary

9/21/09

Date:

Phone: 505.391.3158

BORING LOG

		AME: Maxim #2690032 Maljamar Gas Plant, Lea (MW-19) MW-19 MW-12 MW-12 MW-12 MW-19	And the same of th	FIELD LOGGE ELEVATION: GROUNDWA' DRILL TYPE:1 BORE HOLE I DRILLED BY:	GROUND SUR TER ELEVATIO Fruck Mounted DIAMETER: Scarborough D HOLE STARTE COMPLETED: bgs=Below Gr ND=Not Detect msl=mean sea FOG-First occ	Lichno FACE ON (ms Air Rot 5 rilling ED: cound Seted, NS level	9/18 9/18 9/19 9/19 9/19 9/19 9/19	3899.92 5/02 6/02 6/02	2	(ft) (ft) (in)
Meas Statio Well	suring Po Water L Develop	oint Elevation (msl): 3:	WELL COMPLETI op of Casing 976.92 sing): 77 ntil Visibly Free of Sediment	Type of Casing	SWL-Static W Casing: PVC Diameter: 2 ir ze: 0.010 in					
ELEVATION (msl) - ft	SAMPLE INTERVAL/ID#	COMPLETION DIAGRAM	CLASSIFICATION AND DESCRIPTION	USCS SYMBOL	BLOW COUNT	ANALYTICAL	TIME	% RECOVERY	PID RESULT (ppm)	DEPTH (bgs) - ft
3975.0- 3970.0- 3965.0- 3965.0- 3955.0- 3945.0- 3940.0-	1 2 3 4 5 6 7 8	ARGERINGERIERGERIE	Shale, red Caliche, white SAND, light red Shale, red	SP					0.6 2.2 4.2 2.5 2.1 1.9 2.2	0 - - - - - - - - - - - - - - - - - - -

Boring Terminated at 120' bgs

Bulk Sampling

MAXIM TECHNOLOGIES INC

GROUNDWATER ELEVATION (ms): 3899.92 (f) CRUIL TYPE-Truck Mounted Air Rotary CRUIL TYPE-Truck Mounted	PROJI	ECT N	AME: Maxim #	¥2690032				MON	ITORING	WELL NO. MY	N-20				
GROUNDWATER ELEVATION (ms): 3889.92 (f) DRILL TYPE-Truck Mounted Air Rotary BORE HOLE DIAMETER: 5 (f) DRILLTPRETTURE HOLE DIAMETER: 5 (f) DRILLTPRETTURE HOLE DIAMETER: 91902 DATETIME: OCCUMENTED: 91902 REMARKS: bggs-Below Ground Surface Measuring Point Description (ms): 3976.92 Confession Diameter: 2 in. Measuring Point Description (ms): 3976.92 Casing Diameter: 2 in. State Water Level (feet below Top of Casing): 77 Well Development: Water Extraction Until Visibly Free of Sadiment Well Cap: Locking Cap COMPLETION DIAGRAM AND DESCRIPTION DIAGRAM AND DESCRIPTION DIAGRAM AND DESCRIPTION Shale, gray, with light yellow asand 9 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LOCA	TION:_	Maljamar Ga	s Plant, Lea Co	ounty			1		.001					
DRILL TYPE Truck Mounted Air Rotary BORE HOLE DIAMETER: 5 (I) DRILLED BY: South-orough Drilling DATETIME: HOLE STATED: 918/02 DATETIME: HOLE STATED: 918/02 REMARKS: bgs-Below Ground Surface ND-hol Delected, NS-hol Sample mail-mean sale level FOG-First occurrence of groundwater SWL: Static Water Level Measuring Point Description (msi): 3976.92 Casing: T7 Well Development: Water Extraction Until Visibly Free of Sediment Well Cap: Locking Cap COMPLETION DIAGRAM AND DESCRIPTION DIAGRAM AND DESCRIPTION Shale, gray, with light yellow Shale, gray to grayfeh-green Series, gray, with light yellow Shale, gray to grayfeh-green Series, gray to grayfeh-green Series, gray to grayfeh-green Series, gray to grayfeh-green Seluk Sampling Bulk Sampling															<u>(ft)</u>
DATETIME: HOLE STARTED: 9/19/02 DATETIME: COMPLETED: 9/19/02 REMARKS: bgs=Below Ground Surface No-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No SW-Satic Water Level Well Development: Water Extraction Until Visibity Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION SS 30 NO 31 July 2 A 25 July 30	ΔĄ		-	MW-19.				GRO	TAWDNU	ER ELEVATIO	N (ms	l):3	<u> 3899.92</u>	<u> </u>	(ft)
DATETIME: HOLE STARTED: 9/19/02 DATETIME: COMPLETED: 9/19/02 REMARKS: bgs=Below Ground Surface No-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No SW-Satic Water Level Well Development: Water Extraction Until Visibity Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION SS 30 NO 31 July 2 A 25 July 30	Ž				•		*	DRIL	L TYPE:Ţ	ruck Mounted	Air Rot	ary			
DATETIME: HOLE STARTED: 9/19/02 DATETIME: COMPLETED: 9/19/02 REMARKS: bgs=Below Ground Surface No-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No SW-Satic Water Level Well Development: Water Extraction Until Visibity Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION SS 30 NO 31 July 2 A 25 July 30	δ		-	M W -12.											
DATETIME: HOLE STARTED: 9/19/02 DATETIME: COMPLETED: 9/19/02 REMARKS: bgs=Below Ground Surface No-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No SW-Satic Water Level Well Development: Water Extraction Until Visibity Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION SS 30 NO 31 July 2 A 25 July 30	ΑŢ			WW.	-13	yw-15	ĺ	BOR	HOLE E	DIAMETER:	5			•	(in)
DATETIME: HOLE STARTED: 9/19/02 DATETIME: COMPLETED: 9/19/02 REMARKS: bgs=Below Ground Surface No-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No Sample meli-mean sea level FOG-First occurrence of groundwater SW-No SW-Satic Water Level Well Development: Water Extraction Until Visibity Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION SS 30 NO 31 July 2 A 25 July 30	8		MW-11	MW LI	MW	13		DRIL	LED BY:	Scarborough Dr	illing				
DATE/TIME: COMPLETED: 9/19/02 REMARKS: bgs=Block Ground Surface ND=Not Detected, NS=No Sample mais-mean sea level profile profile (ms): Top of Casing: Top	-			· Www.	7		70		•			9/18	/02		
REMARKS: bgs=Below Ground Startee ND=No Detected, NS=No Sample msimmen soal lovel FOG-First occurrence of groundwater SWL-State: Water Level Measuring Point Description (msl): Top of Casing Top of Casing Type of Casing: PVC Measuring Point Elevation (msl): 3976.92 Casing Diameter: 2 in. Static Water Level (feet below Top of Casing): 77 Soil Size: 0.010 in. Well Development: Water Extraction Until Visibly Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION WAS COMPLETION TOP OF Casing Diameter: 2 in. Soil Size: 0.010 in. Water Level (feet below Top of Casing): 77 Soil Size: 0.010 in. Well Development: Water Extraction Until Visibly Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION WAS COMPLETION WAS COMPLETION TO DIAMETER OF THE WAS COMPLET			- MW-1	DE STATE		M W11	١٠.					9/19	/02		
Measuring Point Description (msl):	-		`	An as Malla	r~a. √W M ×ĕ			1			ound S				
Measuring Point Description (rist): Measuring Point Elevation (rist): Top of Casing Measuring Point Elevation (rist): Static Water Level (feet below Top of Casing): Top of Casing Measuring Point Elevation (rist): Static Water Level (feet below Top of Casing): Top of Casing: Well Completion Type of Casing: PVC Casing Diameter: Slot Size: 0.010 in Typ of Casing: Double Extraction Until Visibly Free of Sediment Well Cap: Locking Cap COMPLETION AND DESCRIPTION AND DESCRIPTION Top of Casing: PVC Casing Diameter: Slot Size: 0.010 in Well Cap: Locking Cap COMPLETION DIAGRAM AND DESCRIPTION Shale, gray, with light yellow sand Shale, gray, with light yellow sand Shale, gray to gray/sh-green Shale, gray/sh-green 9/17/02 SWL Boffing Terminated at 120' bgs Bulk Sampling Bulk Sampling						M W -17.							ample		
Measuring Point Description (msi): Top of Casing WELL COMPLETION INFORMATION Type of Casing: PVC Casing Diameter: 2 in. Static Water Level (feet below Top of Casing): 77 Slot Size: 0.010 in Well Development: Water Extraction Until Visibly Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION AND DESCRIPTION DIAGRAM AND DESCRIPTION DIAGRAM AND DESCRIPTION DIAGRAM AND DESCRIPTION DIAGRAM Search Diagraphy of Diagraphy			-	·		۹	_								
Measuring Point Description (msl): Top of Casing: WELL COMPLETION INFORMATION Measuring Point Elevation (msl): 3976.92 Static Water Level (feet below Top of Casing): 77 Well Development: Water Extraction Umil Visibly Free of Sediment Well Cap: Locking Cap COMPLETION CLASSIFICATION SO NO DIAGRAM AND DESCRIPTION SO NO DIAGRAM Shale, gray with light yellow sand, yellow 10 Shale, light yellowsh-green, sand, yellow 11 Shale, light yellowsh-green 12 Shale, gray to grayish-green 15 Diagraphic Shale, gray to grayish-green 16 Shale, gray to grayish-green 9/17/02 SWL Being Torminated at 120' bgs Bulk Sampling			, M W -2							FOG-First occ	urrence	of gro	undwa	ter	
Measuring Point Description (ms): Top of Casing Type of Casing: PVC Casing Diameter: 2 in. Static Water Level (feet below for pof Casing): T7 Well Development: Water Extraction Until Visibly Free of Sediment Well Cap: Locking Cap Locking Cap Locking Cap Locking Cap Lockin	-			MW-18						SWL-Static W	ater Le	vel			
Measuring Point Description (ms): Top of Casing Type of Casing: PVC Casing Diameter: 2 in. Static Water Level (feet below for pof Casing): T7 Well Development: Water Extraction Until Visibly Free of Sediment Well Cap: Locking Cap Locking Cap Locking Cap Locking Cap Lockin					· · · · ·	, ,,	23								
Measuring Point Elevation (msi): 3976.92 Casing Diameter: 2 in.				T	6 0 -	•	WELL COMPLETI	ON INFOR	RMATION						
Static Water Level (feet below Top of Casing): 77 Well Development: Water Extraction Until Visibly Free of Sediment Well Cap: Locking Cap COMPLETION DIAGRAM AND DESCRIPTION SO	Measu	ring Po	int Description	n (msi):	or Ca	ising			Type of	Casing: PVC					
Static Water Level (feet below Top of Casing): 77	Measu	iring Po	oint Elevation ((msl):397	6.92				Casing	Diameter: 2 ir	١.				
Well Development: Water Extraction Until Visibly Free of Sediment Well Cap: Locking Cap	Static	Water I	evel (feet bel	ow Top of Casi	na):	77									
Well Cap: Locking Cap Lock	1		•	•			of Sediment		OIOL OIZ			***			
Shale, gray, with light yellow sand 12 Shale, light yellow 13 Shale, light yellow 14 Shale, gray to grayish-green 15 17 Shale, gray to grayish-green 16 9/17/02 SWL Shale, gray to grayish-green 15 17 Shale, gray	1			EXHACTION ON	11 V 151D	y riee	or occurrent								
2.0 - 30.0 9 4 2 2 3 3 3 3 3 3 3 3	Well C	ap:	-ocking Cap												
2.0 - 30.0 9 4 2 2 3 3 3 3 3 3 3 3											1				Ī
2.0 - 30.0 9 4 2 2 3 3 3 3 3 3 3 3	_	#	i						占	5	١.		>	l g	
2.0 - 30.0 9 4 2 2 3 3 3 3 3 3 3 3	ایے ق	🚊	COMB	HETION	1		A A SCIEICATION		<u>®</u>	á	8		ER	<u>u</u>	DEPTH
2.0 - 30.0 9 4 2 2 3 3 3 3 3 3 3 3	E -	CLASSIFIC							S	\aleph	١Ě	ш	8	3	Ē
2.0 - 30.0 9 4 2 2 3 3 3 3 3 3 3 3	EV EV	AND DESCRI					ND DESCRIPTION	1	શ	Ac	¥	≧	ည္ဟ	ES	9
2.0 - 30.0 9 4 2 2 3 3 3 3 3 3 3 3	=								Š	BL(X	'	%	70	
Shale, grayish-green 9/17/02 SWL Shale, grayish-green 1.5 Boring Terminated at 120' bgs Bulk Sampling	25.0-	11 12 13		ENTONITE		Shale sand Shale Shale sand	e, gray, with light yel e, light yellow e, light yellowish-gre yellow	en,			Transfer of the state of the st			2.4 2.1 3.1 2.6	
Shale, grayish-green 9/17/02 SWL Shale, grayish-green 1.5 Boring Terminated at 120' bgs Bulk Sampling	1	'	□ □ SI	EAL							-		·	"."	H .
9/17/02 SWL 1.5	00.0			_	. 2	Shale	, grayish-green]		1				F 7
Boring Terminated at 120' bgs Bulk Sampling	11	1.	9/	17/02 SWI			_								-
Boring Terminated at 120' bgs Bulk Sampling	1	16	相用"											1.5	F
Boring Terminated at 120' bgs Bulk Sampling	95.0				*									-	⊢ 8
		•	1. 1(. (I marianta a						1	ı .		•	_
	Borin	a Term	inated at 120'	bas						TATAL D.	ılk San	nling			
					<i>**</i>										

		AME: Maxim #2690032 Maljamar Gas Plant, Lea	County	MONITOR	NG WELL NO. N	/W-20 . Lichno	vsky			
-	ATION:_	MW-i	1, 1, 2	ELEVATIO GROUND	N: GROUND SUR VATER ELEVATI E:Truck Mounted	RFACE ON (ms	(msl):			(ft)
Meas Statio	suring Po	int Description (msl): int Elevation (msl): evel (feet below Top of Ca	WELL COMP Fop of Casing	BORE HOI DRILLED E DATE/TIMI DATE/TIMI REMARKS PLETION INFORMAT Typ Cas	E DIAMETER: SY: Scarborough I HOLE START COMPLETED: bgs=Below G ND=Not Dete msl=mean se FOG-First oc SWL-Static V	5 Drilling ED: Ground Sicted, Note a level currence Vater Le	9/18 9/19 Surface S=No S	9/02 Sample	ter	(in)
Well	Cap: L	ocking Cap					T	1	T	
ELEVATION (msl) - ft	SAMPLE INTERVAL/ID#	COMPLETION DIAGRAM	CLASSIFICAT AND DESCRIF	6	BLOW COUNT	ANALYTICAL	TIME	% RECOVERY	PID RESULT (ppm)	DEPTH (bgs) - ft
8890.0-	17		Shale, gray, some of red shale	thin layers					1.5	- - - - 85
885.0	18	SAND PACK	Silate, led						1.4	- - - 90
8880.0	19								2.7	95
875.0	20		Shale, purplish-red	I					1.7	10
870.0	21								1.9	10
865.0	22								1.7	- - 11
860.0	23								1.3	- - 11
	24		2 2 3 4 5 5 7 7 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5						0.9	12

Boring Terminated at 120' bgs

Bulk Sampling

2690032

LABORATORY REPORTS

Xenco Laboratory Report Dated August 16, 2010 Xenco Laboratory Report Dated August 17, 2010

Analytical Report 385501

for

Tetra Tech- Midland

Project Manager: Charles Durrett

Conoco Phillips

114-6400314C0

16-AUG-10

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)

Xenco-Boca Raton (EPA Lab Code: FL00449):

Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917)

North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

16-AUG-10

Project Manager: Charles Durrett Tetra Tech- Midland 1910 N. Big Spring Midland, TX 79705

Reference: XENCO Report No: 385501

Conoco Phillips

Project Address: MCA 2A Header

Charles Durrett:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 385501. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 385501 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and OUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 385501

Tetra Tech- Midland, Midland, TX

Conoco Phillips

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-1 0-6"	S	Aug-11-10 09:34	0 - 6 In	385501-001
SB-1 4'	S	Aug-11-10 09:41	4 ft	385501-002
SB-2 0-6"	S	Aug-11-10 08:54	0 - 6 In	385501-003
SB-2 4'	S	Aug-11-10 09:00	4 ft	385501-004
SB-3 0-6"	S	Aug-11-10 11:13	0 - 6 In	385501-005
SB-3 4'	S	Aug-11-10 11:23	4 ft	385501-006
SB-4 0-6"	S	Aug-11-10 10:36	0 - 6 In	385501-007
SB-4 4'	S	Aug-11-10 10:43	4 ft	385501-008
SB-5 0-6"	S	Aug-11-10 10:51	0 - 6 In	385501-009
SB-5 4'	S	Aug-11-10 10:57	4 ft	385501-010
SB-6 0-6"	S	Aug-11-10 10:20	0 - 6 In	385501-011
SB-6 4'	S	Aug-11-10 10:25	4 ft	385501-012
SB-7 0-6"	S	Aug-11-10 10:08	0 - 6 In	385501-013
SB-7 4'	S	Aug-11-10 10:11	4 ft	385501-014
SB-2 8'	S	Aug-12-10 08:00	8 ft	385501-015
SB-2 12'	S	Aug-12-10 08:35	12 ft	385501-016
SB-2 16'	S	Aug-12-10 09:15	16 ft	385501-017
SB-2 20'	S	Aug-12-10 09:50	20 ft	385501-018
SB-2 24'	S	Aug-12-10 10:20	24 ft	385501-019
SB-7 8'	S	Aug-12-10 11:30	8 ft	385501-020
SB-7 12'	S	Aug-12-10 11:45	12 ft	385501-021
SB-7 16'	S	Aug-12-10 12:01	16 ft	385501-022
SB-7 20'	S	Aug-12-10 12:19	20 ft	385501-023
SB-7 24'	S	Aug-12-10 12:36	24 ft	385501-024
SB-7 28'	S	Aug-12-10 12:50	28 ft	385501-025
SB-3 8'	S	Aug-12-10 13:20	8 ft	385501-026
SB-3 12'	S	Aug-12-10 13:42	12 ft	385501-027
SB-3 16'	S	Aug-12-10 14:01	16 ft	385501-028
SB-3 20'	S	Aug-12-10 14:19	20 ft	385501-029
SB-3 24'	S	Aug-12-10 14:45	24 ft	385501-030
SB-4 8'	S	Aug-12-10 15:20	8 ft	385501-031
SB-4 12'	S	Aug-12-10 15:41	12 ft	385501-032
SB-4 16'	S	Aug-12-10 16:06	16 ft	385501-033
SB-4 20'	S	Aug-12-10 16:24	20 ft	385501-034
SB-4 24'	S	Aug-12-10 16:46	24 ft	385501-035
SB-6 8'	S	Aug-12-10 17:30	8 ft	385501-036
SB-6 12'	S	Aug-12-10 17:53	12 ft	385501-037
SB-6 16'	S	Aug-12-10 18:20	16 ft	385501-038
SB-6 20'	S	Aug-12-10 18:47	20 ft	385501-039
SB-6 24'	S	Aug-12-10 19:20	24 ft	385501-040

^{*} TRRP Tier I Comm/Indus Soils PCL's

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Conoco Phillips

Project ID:

114-6400314C0

Work Order Number: 385501

Report Date: 16-AUG-10 Date Received: 08/13/2010

Sample receipt non conformances and Comments:

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-818836 Percent Moisture

None

Batch: LBA-818837 Percent Moisture

None

Batch: LBA-818839 Percent Moisture

None

Batch: LBA-818873 Anions by E300

None

Batch: LBA-818878 TPH By SW8015 Mod

None

Batch: LBA-818880 TPH By SW8015 Mod

SW8015MOD NM

Batch 818880, C28-C35 Oil Range Hydrocarbons RPD was outside QC limits.

Samples affected are: 385501-023, -028, -040, -021, -022, -035, -024, -027, -032, -038, -026, -

039, -025, -029, -030, -034, -037, -033, -031, -036

Batch: LBA-818899 BTEX by EPA 8021B

SW8021BM

Batch 818899, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the

Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 385501-005, -006, -003, -012, -011, -017, -001, -013, -014, -016, -007, -

015, -019, -004, -010, -008, -009, -020.

The Laboratory Control Sample for Toluene, m,p-Xylenes, Ethylbenzene, o-Xylene is within

laboratory Control Limits

Draft 1.000

CASE NARRATIVE

Client Name: Tetra Tech- Midland Project Name: Conoco Phillips

Project ID:

114-6400314C0

Work Order Number: 385501

Report Date: 16-AUG-10 Date Received: 08/13/2010

Batch: LBA-818906 BTEX by EPA 8021B

SW8021BM

Batch 818906, Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate.

Samples affected are: 385501-023, -028, -040, -022, -035, -021, -024, -027, -032, -038, -026, -

039, -025, -029, -030, -034, -037, -033, -031, -036.

The Laboratory Control Sample for Toluene, m,p-Xylenes, Benzene, Ethylbenzene, o-Xylene is within laboratory Control Limits

Batch: LBA-819025 Anions by E300

None

Batch: LBA-819042 BTEX by EPA 8021B

None

Contact: Charles Durrett

Project Location: MCA 2A Header

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II

								I Toject Ma	mager.	Dient Barron,			
	Lab Id:	385501-0	001	385501-0	002	385501-0	03	385501-0	004	385501-0	005	385501-0	006
Analysis Requested	Field Id:	SB-1 0-6	6"	SB-1 4	r l	SB-2 0-6	5"	SB-2 4	r	SB-3 0-	6"	SB-3 4	ļ'
Anutysis Requesteu	Depth:	0-6 In		4- ft		0-6 In		4- ft		- 0-6 In		4- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-11-10	09:34	Aug-11-10	09:41	Aug-11-10	08:54	Aug-11-10	09:00	Aug-11-10	11:13	Aug-11-10	11:23
Anions by E300	Extracted:												
	Analyzed:	Aug-14-10	12:20	Aug-14-10	12:20	Aug-14-10	12·20	Aug-14-10	12:20	Aug-14-10	12:20	Aug-14-10	12:20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		75.0	4.34	1060	19.6	6.24	4.32	1420	23.9	21.6	4.67	40.8	5.38
BTEX by EPA 8021B	Extracted:	Aug-13-10	13:30	Aug-16-10	08:00	Aug-13-10	13:30	Aug-13-10	13:30	Aug-13-10	13:30	Aug-13-10	13:30
	Analyzed:	Aug-14-10	01:38	Aug-16-10	13:55	Aug-14-10 03:12		Aug-14-10 04:46		Aug-14-10 03:35		Aug-14-10 03:59	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.0010	ND	0.2914	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Toluene		ND	0.0020	ND	0.5828	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020
Ethylbenzene		ND	0.0010	0.3497	0.2914	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
m,p-Xylenes		ND	0.0020	1.168	0.5828	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020
o-Xylene		ND	0.0010	0.6381	0.2914	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Total Xylenes		ND	0 0010	1.806	0.2914	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Total BTEX		ND	0.0010	2.156	0.2914	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
TPH By SW8015 Mod	Extracted:	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45
	Analyzed:	Aug-13-10	14:59	Aug-13-10	15:20	Aug-13-10	15:40	Aug-13-10	16:01	Aug-13-10	16:21	Aug-13-10	16:42
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons		ND	15.0	893	75.2	ND	15.0	ND	15.1	ND	15.0	ND	14.9
Diesel Range Hydrocarbons		105	15.0	2130	75.2	ND	15.0	ND	15.1	ND	15.0	15.0 ND	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount involved for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Contact: Charles Durrett

Project Location: MCA 2A Header

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron,	Brent Barron, II
--------------------------------	------------------

								I Toject Mai	iagei.	iger. Dicht Barron, if			
	Lab Id:	385501-0	01	385501-0	02	385501-0	03	385501-0	04	385501-0	05	385501-0	06
Analysis Requested	Field Id:	SB-1 0-6	5"	SB-1 4'		SB-2 0-6	5"	SB-2 4' 4- ft		SB-3 0-6" 0-6 In		SB-3 4'	
Analysis Requested	Depth:	0-6 In		4- ft		0-6 In	,					4- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled: A		9:34	Aug-11-10 (9:41	Aug-11-10	08:54	Aug-11-10 (9:00	Aug-11-10	11:13	Aug-11-10 1	11:23
Percent Moisture	Extracted:						·						
	Analyzed:	Aug-13-10	15:18	Aug-13-10	5:18	Aug-13-10	15:18	Aug-13-10	15:18	Aug-13-10	15:18	Aug-13-10 1	15:18
Units/RI		%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		3.24	1 00	14.2	1.00	2.73	1.00	12.0	1.00	10.0	1.00	21.9	1.00

Page 7 of 57

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Draft 1.000

Contact: Charles Durrett

Project Location: MCA 2A Header

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager:	Brent Barron, II	
385501-010	385501-011	

								I roject Ma	nager.	brem barron,	11		
	Lab Id:	385501-0	007	385501-0	800	385501-0	009	385501-0	010	385501-0	011	385501-0	012
Analysis Requested	Field Id:	SB-4 0-	6"	SB-4 4	.	SB-5 0-	6"	SB-5 4	ľ	SB-6 0-	6"	SB-6 4	4'
Anutysis Requesteu	Depth:	0-6 In	:	4- ft		0-6 In		4- ft		0-6 In	ı	4- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	,
	Sampled:	Aug-11-10	10:36	Aug-11-10	10:43	Aug-11-10	10:51	Aug-11-10	10:57	Aug-11-10	10:20	Aug-11-10	10:25
Anions by E300	Extracted:												
	Analyzed:	Aug-14-10	12:20	Aug-14-10	12.20	Aug-14-10	12:20	Aug-14-10	12:20	Aug-14-10	12:20	Aug-14-10	12:20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		152	4.40	77.9	18.7	131	8.62	386	9.89	530	8.96	240	10.9
BTEX by EPA 8021B	Extracted:	Aug-13-10	13:30	Aug-13-10	13:30	Aug-13-10	13:30	Aug-13-10	13:30	Aug-13-10	13:30	Aug-13-10	13:30
	Analyzed:	Aug-14-10	04:22	Aug-14-10	05:09	Aug-14-10	05:32	Aug-14-10	06:19	Aug-14-10	07:29	Aug-14-10	05:56
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
Toluene		ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010
m,p-Xylenes		ND	0.0020	ND	0.0020	ND	0.0020	ND	0.0020	0.0072	0.0020	ND	0.0020
o-Xylene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	0.0012	0.0010	ND	0.0010
Total Xylenes		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	0.0084	0.0010	ND	0.0010
Total BTEX		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0010	0 0084	0.0010	ND	0.0010
TPH By SW8015 Mod	Extracted:	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45
	Analyzed:	Aug-13-10	17:02	Aug-13-10	17:22	Aug-13-10	17:42	Aug-13-10	18:02	Aug-13-10	18:42	Aug-13-10	19:02
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons		ND	15.1	ND	14.9	ND	15.1	46.2	15.0	183	75.0	38.3	15.0
Diesel Range Hydrocarbons		ND	15.1	ND	14.9	ND	15.1	80.3	15.0	818	75.0	42.4	15.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Contact: Charles Durrett

Project Location: MCA 2A Header

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II

								1 Toject Man	145	Brent Barron,			
	Lab Id:	385501-0	07	385501-0	08	385501-0	09	385501-0	10	385501-0	11	385501-0	12
Analysis Danusstad	Field Id:	SB-4 0-6	5"	SB-4 4'		SB-5 0-6	5"	SB-5 4'		SB-6 0-6	5"	SB-6 4'	
Analysis Requested	Depth:	0-6 In		4- ft		0-6 In		4- ft		0-6 In		4- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-11-10	10:36	Aug-11-10 1	0:43	Aug-11-10	10.51	Aug-11-10	10·57	Aug-11-10	10:20	Aug-11-10 1	0:25
Percent Moisture	Extracted:									, e			
	Analyzed:	Aug-13-10	15:18	Aug-13-10 1	5:18	Aug-13-10	15:18	Aug-13-10	15:18	Aug-13-10	15:18	Aug-13-10 1	5:18
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		4 52	1.00	10.4	1.00	2.52	1.00	15.1	1.00	6.23	1.00	22.8	1.00

Page 9 of 57

胡

Brent Barron, II Odessa Laboratory Manager

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latın America - Odessa - Corpus Christi

Draft 1.000

Dra

Contact: Charles Durrett

Project Location: MCA 2A Header

Diesel Range Hydrocarbons

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Draft

19.5

15.0

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II Lab Id: 385501-013 385501-017 385501-018 385501-014 385501-015 385501-016 Field Id: SB-7 0-6" SB-2 12' SB-2 16' SB-2 20' SB-7 4' SB-2 8' Analysis Requested 20- ft Depth: 0-6 In 4- ft 8- ft 12- ft 16- ft Matrix: SOIL SOIL SOIL SOIL SOIL SOIL Sampled: Aug-11-10 10:08 Aug-11-10 10:11 Aug-12-10 08:00 Aug-12-10 08:35 Aug-12-10 09:15 Aug-12-10 09:50 Anions by E300 Extracted: Analyzed: Aug-14-10 12:20 Aug-14-10 12:20 Aug-14-10 12:20 Aug-14-10 12:20 Aug-14-10 12:20 Aug-14-10 12:20 RL Units/RL: RL mg/kg RLRL mg/kg RLmg/kg mg/kg mg/kg mg/kg Chloride 88.9 10.2 20.5 5.19 580 9.29 361 10.6 274 8.99 304 8.88 BTEX by EPA 8021B Extracted: Aug-13-10 13:30 Aug-13-10 13:30 Aug-13-10 13:30 Aug-13-10 13:30 Aug-13-10 13:30 Aug-16-10 08:00 Aug-14-10 07:52 Analyzed: Aug-14-10 08:16 Aug-14-10 08:40 Aug-14-10 09:03 Aug-14-10 09:27 Aug-16-10 12:22 Units/RL: mg/kg RL mg/kg RL mg/kg RL mg/kg RL mg/kg RLmg/kg RLND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0012 Benzene ND 0.0020 ND 0.0020 ND 0.0024 Toluene ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0010 ND 0.0010 0.0012 Ethylbenzene ND 0.0010 ND 0.0010 ND 0.0010 ND m.p-Xylenes ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0020 ND 0.0024 o-Xvlene ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0012 Total Xylenes ND 0.0010 ND 0.0010 ND ND 0.0010 ND 0.0010 ND 0.0012 0.0010 Total BTEX ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0010 ND 0.0012 ND 0.0010 TPH By SW8015 Mod Aug-13-10 10:45 Aug-13-10 10:45 Aug-13-10 10:45 Extracted: Aug-13-10 10:45 Aug-13-10 10:45 Aug-13-10 10:45 Analyzed: Aug-13-10 19:22 Aug-13-10 19.42 Aug-13-10 20:02 Aug-13-10 20:21 Aug-13-10 20:41 Aug-14-10 09:10 RL mg/kg RL Units/RL: mg/kg RL mg/kg RLRL mg/kg RL mg/kg mg/kg ND 14.9 Gasoline Range Hydrocarbons ND 15.0 ND 15.0 ND 15.0 ND 15.0 15.5 14.9

15.0

ND

Page 10 of 57

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

ND

15.0

ND

14.9

Brent Barron, II Odessa Laboratory Manager

21.4

14.9

Draft 1.000

15.0

ND

Project Location: MCA 2A Header

Contact: Charles Durrett

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Draff

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron II

								I Toject Man	agei.	Dient Barron,	11		
	Lab Id:	385501-0	13	385501-0	14	385501-0	15	385501-0	16	385501-0	17	385501-01	18
Analysis Requested	Field Id:	SB-7 0-6	5"	SB-7 4'		SB-2 8'		SB-2 12	'	SB-2 16	'	SB-2 20'	
Anuiysis Kequesieu	Depth:	0-6 In		4- ft		8- ft		12- ft		16- ft		20- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-11-10	10:08	Aug-11-10 1	0:11	Aug-12-10 (08:00	Aug-12-10 0	8:35	Aug-12-10 (9:15	Aug-12-10 0	9:50
Percent Moisture	Extracted:												
	Analyzed:	Aug-13-10	15:18	Aug-13-10 1	5:18	Aug-13-10 1	5:18	Aug-13-10 1	5:18	Aug-13-10 1	5:18	Aug-13-10 1	5:18
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture	-	19.1	1.00	9.62	1.00	21.0	1.00	6.58	1.00	5.37	1.00	17.3	1.00

Page 11 of 57

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latın America - Odessa - Corpus Christi

Draft 1.000

Odessa Laboratory Manager

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Project Id: 114-6400314C0

Project Location: MCA 2A Header

Contact: Charles Durrett

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II

	·							1 Toject Ma	B		· · · · · · · · · · · · · · · · · · ·		
	Lab Id:	385501-0	19	385501-0	20	385501-0	021	385501-0	22	385501-	023	385501-	024
Analysis Requested	Field Id:	SB-2 24	ľ	SB-7 8	•	SB-7 12	2'	SB-7 10	5'	SB-7 2	:0'	SB-7 2	4'
Analysis Requested	Depth:	24- ft		8- ft		12- ft		16- ft		20- ft	:	24- ft	ī
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-12-10 1	10:20	Aug-12-10	11:30	Aug-12-10	11:45	Aug-12-10	12:01	Aug-12-10	12:19	Aug-12-10	12:36
Anions by E300	Extracted:	-											
	Analyzed:	Aug-14-10	12.20	Aug-14-10	12:20	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	08:05
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		112	8.99	588	18.4	173	8.62	234	8.81	158	8.82	186	8.86
BTEX by EPA 8021B	Extracted:	Aug-13-10	13:30	Aug-13-10	13:30	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45
	Analyzed:	Aug-14-10	10:14	Aug-14-10	10:37	Aug-15-10	21:23	Aug-14-10	14:09	Aug-14-10	14:32	Aug-14-10	16:05
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0011	ND	0.0011	ND	0.0011
Toluene		ND	0.0020	ND	0.0020	ND	0.0021	ND	0.0021	ND	0.0021	ND	0.0021
Ethylbenzene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0011	ND	0.0011	ND	0.0011
m,p-Xylenes		ND	0.0020	ND	0 0020	ND	0.0021	ND	0.0021	ND	0.0021	ND	0.0021
o-Xylene		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0011	ND	0.0011	ND	0.0011
Total Xylenes		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0011	ND	0.0011	ND	0.0011
Total BTEX		ND	0.0010	ND	0.0010	ND	0.0010	ND	0.0011	ND	0.0011	ND	0.0011
TPH By SW8015 Mod	Extracted:	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45
	Analyzed:	Aug-14-10	09:29	Aug-14-10	09:50	Aug-13-10	16:19	Aug-13-10	16:50	Aug-13-10	17:21	Aug-13-10	17:52
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons		26.7	15.0	20.6	15.0	ND	15.4	ND	15.8	ND	15.8	ND	15.8
Diesel Range Hydrocarbons		27.1	15.0	ND	15.0	27.2	15.4	ND	15.8	ND	15.8	ND	15.8

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager
Draft 1.000

Brent Barron, II

Contact: Charles Durrett

Project Location: MCA 2A Header

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II

								Froject Mai	ager.	Brent Barron,	11		
	Lab Id:	385501-0	19	385501-0	20	385501-0	21	385501-0	22	385501-0	23	385501-02	24
Analysis Requested	Field Id:	SB-2 24	ı	SB-7 8'		SB-7 12	•	SB-7 16	•	SB-7 20	"	SB-7 24'	·
Analysis Requesieu	Depth:	24- ft		8- ft		12- ft		16- ft		20- ft		24- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-12-10 1	0:20	Aug-12-10	1:30	Aug-12-10 1	11:45	Aug-12-10 1	2:01	Aug-12-10	12:19	Aug-12-10 1	2:36
Percent Moisture	Extracted:												
	Analyzed:	Aug-13-10	15:18	Aug-13-10	5:18	Aug-13-10	15:18	Aug-13-10 1	5:18	Aug-13-10	15:18	Aug-13-10 1	5:18
	Units/RL:	%	RL	%	RL	%	RL	%	` RL	%	RL	%	RL
Percent Moisture		6.53	1.00	8.61	1.00	2.53	1.00	4.69	1.00	4.74	1.00	5.24	1.00

Contact: Charles Durrett

Project Location: MCA 2A Header

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II

								Project Ma	nager:	Brent Barron,	, 11		
	Lab Id:	385501-0	125	385501-0	26	385501-0	27	385501-0	028	385501-0	029	385501-0	030
Analysis Dagwastad	Field Id:	SB-7 28	3'	SB-3 8	,	SB-3 12	2'	SB-3 1	6'	SB-3 2	0'	SB-3 2	4'
Analysis Requested	Depth:	28- ft		8- ft		12- ft		16- ft		20- ft		24- ft	:
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL	,	SOIL	
	Sampled:	Aug-12-10	12.50	Aug-12-10	13:20	Aug-12-10	13:42	Aug-12-10	14:01	Aug-12-10	14:19	Aug-12-10	14:45
Anions by E300	Extracted:												
	Analyzed:	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	Aug-16-10 08:05		08:05
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		195	8.88	227	9.30	22.4	9.68	23.2	8.94	18.8	8.92	35.6	8.90
BTEX by EPA 8021B	Extracted:	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45
	Analyzed:	Aug-14-10 16:29		Aug-15-10	14:46	Aug-15-10	15:10	Aug-15-10	15:33	Aug-15-10 15:57		Aug-15-10	16:20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0010
Toluene		ND	0.0021	ND	0.0022	ND	0 0023	ND	0.0021	ND	0.0021	ND	0 0021
Ethylbenzene		ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0010
m,p-Xylenes		ND	0.0021	ND	0.0022	ND	0 0023	ND	0.0021	ND	0.0021	ND	0.0021
o-Xylene		ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0010
Total Xylenes		ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0010
Total BTEX		ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0010
TPH By SW8015 Mod	Extracted:	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10.45	Aug-13-10	10:45
	Analyzed:	Aug-13-10	18:23	Aug-13-10	18:53	Aug-13-10	19:23	Aug-13-10	19:53	Aug-13-10	20:23	Aug-13-10	20:53
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons		ND	15.9	ND	16.5	ND	17.4	ND	15.9	ND	16.0	ND	15.9
Diesel Range Hydrocarbons		ND	15.9	30.3	16.5	ND	17.4	ND	15.9	26.7	16.0	48.4	15.9

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Draft 1.000

Project Location: MCA 2A Header

Contact: Charles Durrett

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II

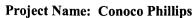
								Froject Mai	lager.	Brein Barron,	11		
	Lab Id:	385501-0	25	385501-0	26	385501-02	27	385501-0	28	385501-0	29	385501-03	30
Analysis Requested	Field Id:	SB-7 28	•	SB-3 8'		SB-3 12		SB-3 16	ı	SB-3 20	•	SB-3 24'	'
Analysis Requesieu	Depth:	28- ft		8- ft		12- ft		16- ft		20- ft		24- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-12-10 1	2:50	Aug-12-10 1	3:20	Aug-12-10 1	3:42	Aug-12-10 1	4:01	Aug-12-10	14:19	Aug-12-10 1	4:45
Percent Moisture	Extracted:												
	Analyzed:	Aug-13-10	15:18	Aug-13-10 1	5:18	Aug-13-10 1	5:18	Aug-13-10 1	5:18	Aug-13-10	15:18	Aug-13-10 1	5:18
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		5.41	1.00	9.72	1.00	13.2	1.00	6.07	1.00	5.79	1.00	5.65	1.00

Page 15 of 57

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Draft 1.000



Contact: Charles Durrett

Project Location: MCA 2A Header

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II

								Project Ma	nager:	Brent Barron,	, 11		
	Lab Id:	385501-0	31	385501-0	32	385501-0	33	385501-0	34	385501-0	035	385501-0	036
Analysis Requested	Field Id:	SB-4 8	'	SB-4 12	2'	SB-4 16	6'	SB-4 20	0'	SB-4 2	4'	SB-6 8	3'
Anuiysis Kequesieu	Depth:	8- ft		12- ft		16- ft		20- ft		24- ft		8- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	,
	Sampled:	Aug-12-10	15:20	Aug-12-10	15:41	Aug-12-10	16:06	Aug-12-10	16.24	Aug-12-10	16:46	Aug-12-10	17:30
Anions by E300	Extracted:												
	Analyzed:	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	08:05	Aug-16-10	08:05
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		245	24.1	334	18.6	405	9.01	318	9.15	548	8.96	939	23.8
BTEX by EPA 8021B	Extracted:	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45	Aug-13-10	13:45
	Analyzed:	Aug-15-10	16:43	Aug-15-10	17:53	Aug-15-10	18:16	Aug-15-10	18:40	Aug-15-10	19:03	Aug-15-10	19:27
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.0012	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011
Toluene		ND	0.0023	ND	0.0022	ND	0.0022	ND	0.0022	ND	0.0021	ND	0.0022
Ethylbenzene		ND	0.0012	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0 0011
m,p-Xylenes		ND	0.0023	ND	0.0022	ND	0.0022	ND	0.0022	ND	0.0021	ND	0.0022
o-Xylene		ND	0.0012	ND	0.0011	ND	0 0011	ND	0.0011	ND	0.0011	ND	0.0011
Total Xylenes		ND	0.0012	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011
Total BTEX		ND	0.0012	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011	ND	0.0011
TPH By SW8015 Mod	Extracted:	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45	Aug-13-10	10:45
	Analyzed:	Aug-13-10	21:53	Aug-13-10	22:22	Aug-13-10	22:52	Aug-13-10	23:22	Aug-13-10	23:51	Aug-14-10	00.20
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons		ND	17.3	ND	16.6	ND	16.1	ND	16.3	ND	15.9	ND	17.0
Diesel Range Hydrocarbons		107	17.3	65.5	16.6	23.7	16.1	19.6	16.3	19.2	15.9	112	17.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented Our liability is limited to the amount involved for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager

Project Location: MCA 2A Header

Contact: Charles Durrett

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager:	Brent Barron, II
I I O COU I I I I II II II I I I	Divine Durion, II

								I I O JECT MIAI	iagei.	Dicin Danon,	11		
	Lab Id:	385501-0	31	385501-0	32	385501-0	33	385501-0	34	385501-0	35	385501-03	36
Analysis Requested	Field Id:	SB-4 8'		SB-4 12	·	SB-4 16	•	SB-4 20	•	SB-4 24	•	SB-6 8'	
Analysis Requesieu	Depth:	8- ft		12- ft		16- ft		20- ft		24- ft		8- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-12-10 1	5:20	Aug-12-10	5:41	Aug-12-10 1	16:06	Aug-12-10	6:24	Aug-12-10	16:46	Aug-12-10 1	7:30
Percent Moisture	Extracted:												
	Analyzed:	Aug-13-10	5:18	Aug-13-10	5:18	Aug-13-10	15:18	Aug-13-10	5:18	Aug-13-10	15:18	Aug-13-10 1	5:18
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		12.7	1.00	9.74	1.00	6.79	1.00	8.21	1.00	6.20	1.00	11.7	1.00

Page 17 of 57

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Draft 1.000

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Project Id: 114-6400314C0
Contact: Charles Durrett

Project Location: MCA 2A Header

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

				<u>=</u>	
	·			Project Manager:	Brent Barron, II
Lab Id:	385501-037	385501-038	385501-039	385501-040	
Field Id:	SB-6 12'	SB-6 16'	SB-6 20'	SB-6 24'	
Depth:	12- ft	16- ft	20- ft	24- ft	
Matrix:	SOIL	SOIL	SOIL	SOIL	
Sampled:	Aug-12-10 17:53	Aug-12-10 18:20	Aug-12-10 18:47	Aug-12-10 19:20	
Extracted:					
Analyzed:	Aug-16-10 08:05	Aug-16-10 08:05	Aug-16-10 08:05	Aug-16-10 08:05	
Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
	138 9.08	107 8.86	136 8.89	231 9.08	
Extracted:	Aug-13-10 13:45	Aug-13-10 13:45	Aug-13-10 13:45	Aug-13-10 13:45	
Analyzed:	Aug-15-10 19.50	Aug-15-10 20:13	Aug-15-10 20:36	Aug-15-10 21:00	
Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
	ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0011	
	ND 0.0021	ND 0.0021	ND 0.0021	ND 0.0021	
	ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0011	
	ND 0.0021	ND 0.0021	ND 0.0021	ND 0.0021	
	ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0011	
	ND 0.0011	ND 0.0010	ND 0.0011	ND 0.0011	
	ND 0.0011	ND 0 0010	ND 0.0011	ND 0.0011	
Extracted:	Aug-13-10 10:45	Aug-13-10 10:45	Aug-13-10 10:45	Aug-13-10 10:45	
Analyzed:	Aug-14-10 00:49	Aug-14-10 01:19	Aug-14-10 01:50	Aug-14-10 02:20	
Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
	ND 16.3	ND 15.8	ND 15.9	ND 16.1	
	49.1 16.3	ND 15.8	ND 15.9	95.3 16.1	
	Field 1d: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Analyzed:	Field Id: SB-6 12' Depth: 12- ft Matrix: SOIL Sampled: Aug-12-10 17:53 Extracted: Analyzed: Muje-16-10 08:05 Units/RL: mg/kg RL 138 9.08 Extracted: Aug-13-10 13:45 Analyzed: Aug-15-10 19.50 Units/RL: mg/kg RL ND 0.0011 ND 0.0021 ND 0.0021 ND 0.0011 ND 0.0011	Field Id: SB-6 12' SB-6 16' Depth: 12- ft 16- ft Matrix: SOIL SOIL Sampled: Aug-12-10 17:53 Aug-12-10 18:20 Extracted: Aug-16-10 08:05 Aug-16-10 08:05 Units/RL: mg/kg RL mg/kg RL Lastracted: Aug-13-10 13:45 Aug-13-10 13:45 Aug-13-10 13:45 Aug-15-10 20:13 Mg/kg RL Munits/RL: mg/kg RL mg/kg RL ND 0.0011 ND 0.0010 ND 0.0021 ND 0.0021 ND 0.0011 ND 0.0010 ND 0.0011 ND 0.0010<	Field Id: SB-6 12' SB-6 16' SB-6 20' Depth: 12- ft 16- ft 20- ft Matrix: SOIL SOIL SOIL Sampled: Aug-12-10 17:53 Aug-12-10 18:20 Aug-12-10 18:47 Extracted: Aug-16-10 08:05 Aug-16-10 08:05 Aug-16-10 08:05 Aug-16-10 08:05 Units/RL: mg/kg RL mg/kg RL mg/kg RL Lastracted: Aug-13-10 13:45 Aug-13-10 13:45 Aug-13-10 13:45 Aug-13-10 13:45 Aug-15-10 20:36 Units/RL: mg/kg RL mg/kg RL mg/kg RL ND 0.0011 ND 0.0010 ND 0.0011 ND 0.0021 ND 0.0021 ND 0.0021 ND 0.0011 ND 0.0010 ND 0.0011 ND 0.0011 ND 0.0011 ND 0.0011 ND 0.0011 ND 0.0010 ND 0.0011 ND 0.0011	Field Id: SB-6 12' SB-6 16' SB-6 20' SB-6 24' Depth: 12- ft 16- ft 20- ft 24- ft Matrix: SOIL SOIL SOIL SOIL Sampled: Aug-12-10 17:53 Aug-12-10 18:20 Aug-12-10 18:47 Aug-12-10 19:20 Extracted: Aug-16-10 08:05 Aug-16-10

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager

Draft 1.000

Brent Barron, II

Contact: Charles Durrett

Project Location: MCA 2A Header

Certificate of Analysis Summary 385501

Tetra Tech- Midland, Midland, TX

Project Name: Conoco Phillips

Draft

Date Received in Lab: Fri Aug-13-10 09:10 am

Report Date: 16-AUG-10

Project Manager: Brent Barron, II

								I Toject Mai	iagei.	Dicit Darton,	11	
	Lab Id:	385501-0	37	385501-03	38	385501-0	39	385501-0	40			
Analysis Requested	Field Id:	SB-6 12	,	SB-6 16		SB-6 20	١	SB-6 24	'		1	
	Depth:	12- ft		16- ft		20- ft		24- ft				
	Matrix:	SOIL		SOIL		SOIL		SOIL				
	Sampled:	Aug-12-10 1	7:53	Aug-12-10 1	8:20	Aug-12-10 1	8:47	Aug-12-10 1	9:20		}	
Percent Moisture	Extracted:											
	Analyzed:	Aug-13-10	15:18	Aug-13-10 1	5:18	Aug-13-10 1	15:18	Aug-13-10	5:18			
	Units/RL:	%	RL	%	RL	%	RL	%	RL			
Percent Moisture		7.52	1.00	5.19	1.00	5.55	1.00	7.51	1.00			

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.

JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit

PQL Practical Quantitation Limit

* Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lane, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Form 2 - Surrogate Recoveries

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818899

Sample: 570643-1-BKS / BKS

Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/13/10 23:42	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0295	0.0300	98	80-120		
4-Bromofluorobenzene	0.0315	0.0300	105	80-120		

Lab Batch #: 818899

Sample: 570643-1-BSD / BSD

Batch: 1

Matrix: Solid

Units: mg/kg Date Analyzed: 08/14/10 00:05	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0278	0.0300	93	80-120		
4-Bromofluorobenzene	0.0289	0.0300	96	80-120		

Lab Batch #: 818899

Sample: 570643-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 08/14/10 01:15	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Analytes [.4-Difluorobenzene	0.0248	0.0300	83	80-120			
4-Bromofluorobenzene	0.0297	0.0300	99	80-120			

Lab Batch #: 818899

Sample: 385501-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 01:38	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Analytes	0.0250	0.000		00.400			
1,4-Difluorobenzene 4-Bromofluorobenzene	0.0259	0.0300	86	80-120 80-120			

Lab Batch #: 818899

Sample: 385501-001 S / MS_

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 02:02	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0296	0.0300	99	80-120			
4-Bromofluorobenzene	0.0298	0.0300	99	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits, data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501, Project ID: 114-6400314C0

Lab Batch #: 818899 Sample: 385501-001 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 02:25	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0293	0.0300	98	80-120		
4-Bromofluorobenzene	0.0293	0.0300	98	80-120		

Lab Batch #: 818899 Sample: 385501-003 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 03:12	Su	SURRUGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes	[, 4]	[2]	[D]	/ / /			
1,4-Difluorobenzene	0.0247	0.0300	82	80-120			
4-Bromofluorobenzene	0.0291	0.0300	97	80-120			

Lab Batch #: 818899 Sample: 385501-005 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 03:35	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0256	0.0300	85	80-120			
4-Bromofluorobenzene	0.0311	0.0300	104	80-120			

Lab Batch #: 818899 Sample: 385501-006 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 03:59	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0243	0.0300	81	80-120		
4-Bromofluorobenzene	0.0292	0.0300	97	80-120		

Lab Batch #: 818899 Sample: 385501-007 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	l su	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes	.,		[D]				
1,4-Dıfluorobenzene	0.0251	0.0300	84	80-120			
4-Bromofluorobenzene	0.0312	0.0300	104	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501, Project ID: 114-6400314C0

Lab Batch #: 818899 Sample: 385501-004 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 04:46	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0247	0.0300	82	80-120		
4-Bromofluorobenzene	0.0308	0.0300	103	80-120		

Lab Batch #: 818899 Sample: 385501-008 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 05:09	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0258	0.0300	86	80-120		
4-Bromofluorobenzene	0.0315	0.0300	105	80-120		

Lab Batch #: 818899 Sample: 385501-009 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 05:32	SU	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Dıfluorobenzene	0.0242	0.0300	81	80-120	-1: ··		
4-Bromofluorobenzene	0.0290	0.0300	97	80-120			

Lab Batch #: 818899 Sample: 385501-012 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 05:56	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		ĺ	{ D }			
1,4-Difluorobenzene	0.0254	0.0300	85	80-120	*****	
4-Bromofluorobenzene	0.0303	0.0300	101	80-120		

Lab Batch #; 818899 Sample: 385501-010 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 06:19	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0257	0.0300	86	80-120		
4-Bromofluorobenzene	0.0335	0.0300	112	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818899

Sample: 385501-011 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 07:29	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0285	0.0300	95	80-120		
4-Bromofluorobenzene	0.0296	0.0300	99	80-120		

Lab Batch #: 818899

Sample: 385501-013 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 07:52	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		, ,	[D]			
1,4-Difluorobenzene	0.0243	0.0300	81	80-120		
4-Bromofluorobenzene	0.0287	0.0300	96	80-120		

Lab Batch #: 818899

Sample: 385501-014 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 08:16	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0257	0.0300	86	80-120	_		
4-Bromofluorobenzene	0.0324	0.0300	108	80-120	<u> </u>		

Lab Batch #: 818899

Sample: 385501-015 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 08:40	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]	1		
1,4-Difluorobenzene	0.0240	0.0300	80	80-120		
4-Bromofluorobenzene	0.0289	0.0300	96	80-120		

Lab Batch #: 818899

Sample: 385501-016 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 09:03 BTEX by EPA 8021B Analytes	SURROGATE RECOVERY STUDY						
	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Dıfluorobenzene	0.0255	0.0300	85	80-120			
4-Bromofluorobenzene	0.0315	0.0300	105	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818899

Sample: 385501-017 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 09:27	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D] ·			
1,4-Difluorobenzene	0.0259	0.0300	86	80-120		
4-Bromofluorobenzene	0.0332	0.0300	111	80-120		

Lab Batch #: 818899

Sample: 385501-019 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 10:14	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]		i	
1,4-Difluorobenzene	0.0260	0.0300	87	80-120		
4-Bromofluorobenzene	0.0298	0.0300	99	80-120		

Lab Batch #: 818899

Sample: 385501-020 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 10:37	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0256	0.0300	85	80-120		
4-Bromofluorobenzene	0.0331	0.0300	110	80-120		

Lab Batch #: 818906

Sample: 570648-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 08/14/10 12:10	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0286	0.0300	95	80-120			
4-Bromofluorobenzene	0.0296	0.0300	99	80-120			

Lab Batch #: 818906

Sample: 570648-1-BSD / BSD

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 08/14/10 12:33	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Dıfluorobenzene	0.0291	0.0300	97	80-120		
4-Bromofluorobenzenc	0.0306	0.0300	102	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501, Project ID: 114-6400314C0

Lab Batch #: 818906 Sample: 570648-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/14/10 13:44	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0252	0.0300	84	80-120		
4-Bromofluorobenzene	0.0305	0.0300	102	80-120		

Lab Batch #: 818906 Sample: 385501-022 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 14:09	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0252	0.0300	84	80-120		
4-Bromofluorobenzene	0.0320	0.0300	107	80-120		

Lab Batch #: 818906 Sample: 385501-023 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 14:32	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			{D}				
1,4-Difluorobenzene	0.0256	0.0300	85	80-120			
4-Bromofluorobenzene	0.0323	0.0300	108	80-120			

Lab Batch #: 818906 Sample: 385501-023 S/MS Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 14:55	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0278	0.0300	93	80-120		
4-Bromofluorobenzene	0.0308	0.0300	103	80-120		

Lab Batch #: 818906 Sample: 385501-023 SD / MSD Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	()	[2]	[D]	, , ,		
1,4-Difluorobenzene	0.0288	0.0300	96	80-120		
4-Bromofluorobenzene	0.0336	0.0300	112	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501, Project ID: 114-6400314C0

Lab Batch #: 818906 Sample: 385501-024 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 16:05	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Dıfluorobenzene	0.0252	0.0300	84	80-120			
4-Bromofluorobenzene	0.0312	0.0300	104	80-120			

Lab Batch #: 818906 Sample: 385501-025 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 16:29		SURROGATE RECOVERY STUDY						
ВТЕ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	Mayes	0.0250	0.0300	83	80-120			
4-Bromofluorobenzene		0.0304	0.0300	101	80-120			

Lab Batch #: 818906 Sample: 385501-026 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 14:4	6 SU	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Dıfluorobenzene	0.0260	0.0300	87	80-120				
4-Bromofluorobenzene	0.0342	0.0300	114	80-120				

Lab Batch #: 818906 Sample: 385501-027 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 15:10	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[Đ]				
1,4-Difluorobenzene	0.0271	0.0300	90	80-120			
4-Bromofluorobenzene	0.0343	0.0300	114	80-120	_		

Lab Batch #: 818906 Sample: 385501-028 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes		[D]					
1,4-Difluorobenzene	0.0254	0.0300	85	80-120			
4-Bromofluorobenzene	0.0309	0.0300	103	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818906

Sample: 385501-029 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 15:57	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	. ,		[D]			
1,4-Difluorobenzene	0.0250	0.0300	83	80-120		
4-Bromofluorobenzene	0.0313	0.0300	104	80-120		

Lab Batch #: 818906

Sample: 385501-030 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 16:2	20 SU	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes		l 	{ D }	l				
1,4-Difluorobenzene	0.0254	0.0300	85	80-120				
4-Bromofluorobenzene	0.0314	0.0300	105	80-120				

Lab Batch #: 818906

Sample: 385501-031 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 16:43	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0257	0.0300	86	80-120			
4-Bromofluorobenzene	0.0303	0.0300	101	80-120			

Lab Batch #: 818906

Sample: 385501-032 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 17:53	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0247	0.0300	82	80-120			
4-Bromofluorobenzene	0.0322	0.0300	107	80-120			

Lab Batch #: 818906

Sample: 385501-033 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 18:16	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Dıfluorobenzene	0.0256	0.0300	85	80-120			
4-Bromofluorobenzene	0.0332	0.0300	111	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818906

Sample: 385501-034 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date	SURROGATE RECOVERY STUDY						
BTEX by EF	'A 8021B	Amount Found {A}	True Amount {B	Recovery %R	Control Limits %R	Flags	
Analy	ies			[D]			
1,4-Difluorobenzene		0.0256	0.0300	85	80-120		
4-Bromofluorobenzene		0.0313	0.0300	104	80-120	_	

Lab Batch #: 818906

Sample: 385501-035 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 19:03	SURRUGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0261	0.0300	87	80-120		
4-Bromofluorobenzene	0.0323	0.0300	108	80-120		

Lab Batch #: 818906

Sample: 385501-036 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 19:27	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes						
1,4-Difluorobenzene	0.0259	0.0300	86	80-120		
4-Bromofluorobenzenc	0.0318	0.0300	106	80-120		

Lab Batch #: 818906

Sample: 385501-037 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 19:50	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0261	0.0300	87	80-120			
4-Bromofluorobenzene	0.0343	0.0300	114	80-120			

Lab Batch #: 818906

Sample: 385501-038 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 20:13	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0247	0.0300	82	80-120		
4-Bromofluorobenzene	0.0310	0.0300	103	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501, **Project ID:** 114-6400314C0

Lab Batch #: 818906 Sample: 385501-039 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 20:36	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	,	(-)	[D]	,	
1,4-Difluorobenzene	0.0247	0.0300	82	80-120	
4-Bromofluorobenzene	0.0306	0.0300	102	80-120	

Units: mg/kg Date Analyzed: 08/15/10 21:00 SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	'		[D]		
1,4-Difluorobenzene	0.0249	0.0300	83	80-120	
4-Bromofluorobenzene	0.0298	0.0300	99	80-120	

Lab Batch #: 818906 Sample: 385501-021 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 21:23	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0246	0.0300	82	80-120	to	
4-Bromofluorobenzene	0.0321	0.0300	107	80-120		

Lab Batch #: 819042 Sample: 570718-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/16/10 09:29	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0292	0.0300	97	80-120		
4-Bromofluorobenzene	0.0312	0.0300	104	80-120		

Lab Batch #: 819042 Sample: 570718-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/16/10 11:59 SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	()	[2]	[D]	/410	
1,4-Difluorobenzene	0.0246	0.0300	82	80-120	
4-Bromofluorobenzene	0.0294	0.0300	98	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 819042

Sample: 385501-018 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0251	0.0300	84	80-120	
4-Bromofluorobenzene	0.0302	0.0300	101	80-120	

Lab Batch #: 819042

Sample: 385501-018 S / MS

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/16/10 12:45	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0270	0.0300	90	80-120		
4-Bromofluorobenzene	0.0283	0.0300	94	80-120		

Lab Batch #: 819042

Sample: 385501-018 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 08/16/10 13:08	SURROGATE RECOVERY STUDY					
ВТЕХ	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			[D]			
1,4-Dıfluorobenzene		0.0279	0.0300	93	80-120		
4-Bromofluorobenzene		0.0291	0.0300	97	80-120		

Lab Batch #: 819042

Sample: 385501-002 / SMP

Batch:

1 Matrix: Soil

Units: mg/kg Date Analyzed:	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes				[D]			
1,4-Difluorobenzene		0.0248	0.0300	83	80-120		
4-Bromofluorobenzene		0.0318	0.0300	106	80-120	·	

Lab Batch #: 818878

Sample: 570630-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg Date Analyzed: 08/13/10 13:58	SU	RROGATE RI	ECOVERY	STUDY	
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
· · · · · · · · · · · · · · · · · · ·					
1-Chlorooctane	83.8	100	84	70-135	
o-Terphenyl	42.6	50.2	85	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501, Project ID: 114-6400314C0

Lab Batch #: 818878 Sample: 570630-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/13/10 14:18	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	85.4	99.9	85	70-135			
o-Terphenyl	38.4	50.0	77	70-135			

Lab Batch #: 818878 Sample: 570630-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/13/10	14:39 SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	73 0	99.9	73	70-135	_		
o-Terphenyl	37.5	50.0	75	70-135			

Lab Batch #: 818878 Sample: 385501-001 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 14:59	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	70.6	100	71	70-135			
o-Terphenyl	35.1	50.2	70	70-135			

Lab Batch #: 818878 Sample: 385501-002 / SMP Batch: 1 Matrix: Soil

Units: mg/kg	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	89.4	100	89	70-135		
o-Terphenyl	57.7	50.2	115	70-135	_	

Lab Batch #: 818878 Sample: 385501-003 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 15:40	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	(· -3	[2]	[D]	/ ***		
1-Chlorooctane	70.7	100	71	70-135		
o-Terphenyl	38.5	50.2	77	70-135		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501, Project ID: 114-6400314C0

Lab Batch #: 818878 Sample: 385501-004 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 16:01	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes			1-7			
1-Chlorooctane	74.5	101	74	70-135		
o-Terphenyl	37.9	50.3	75	70-135		

Units: mg/kg Date Analyzed: 08/13/1	0 16:21 SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	70.8	100	71	70-135			
o-Terphenyl	36.5	50.2	73	70-135			

Lab Batch #: 818878 Sample: 385501-006 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 16:42	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	70.0	99.5	70	70-135		
o-Terphenyl	34.9	49.8	70	70-135		

Lab Batch #: 818878 Sample: 385501-007 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 17:02	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	72.4	100	72	70-135		
o-Terphenyl	35.4	50.2	71	70-135		

Lab Batch #: 818878 Sample: 385501-008 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 17:22	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	70.5	99.5	71	70-135			
o-Terphenyl	34.9	49.8	70	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818878

Sample: 385501-009 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 17:42	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	70.7	101	70	70-135		
o-Terphenyl	35.6	50.3	71	70-135		

Lab Batch #: 818878

Sample: 385501-010 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 18:02	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	70.7	100	71	70-135	
o-Terphenyl	36.2	50.1	72	70-135	

Lab Batch #: 818878

Sample: 385501-011 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 18:42 SURROGATE RECOVERY S					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	71.0	100	71	70-135	
o-Terphenyl	36.3	50.0	73	70-135	

Lab Batch #: 818878

Sample: 385501-012 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 19:02	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	80.5	100	81	70-135			
o-Terphenyl	40.9	50.0	82	70-135			

Lab Batch #: 818878

Sample: 385501-013 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 19:22	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctanc	72.8	99.9	73	70-135			
o-Terphenyl	37.3	50.0	75	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818878

Sample: 385501-014 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	Date Analyzed: 08/13/10 19:42	SURROGATE RECOVERY STUDY						
ТРН	By SW8015 Mod	Amount [*] Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes			[D]				
1-Chlorooctanc		73.2	100	73	70-135			
o-Terphenyl		36.9	50.1	74	70-135			

Lab Batch #: 818878

Sample: 385501-015 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 20:02	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
			`				
1-Chlorooctane	73.6	99.9	74	70-135			
o-Terphenyl	36.9	50.0	74	70-135			

Lab Batch #: 818878

Sample: 385501-016 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 20:21	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	71 3	100	71	70-135			
o-Terphenyl	35.3	50.0	71	70-135			

Lab Batch #: 818878

Sample: 385501-017 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 20:41	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	74.9	99.6	75	70-135		
o-Terphenyl	37.1	49.8	74	70-135		

Lab Batch #: 818878

Sample: 385501-018 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 09:10	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Analytes			(12)				
1-Chlorooctane	71.6	99.6	72	70-135			
o-Terphenyl	35.6	49.8	71	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits, data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818878

Sample: 385501-019 / SMP

Matrix: Soil Batch:

Units: mg/kg Date Analyzed: 08/14/10 09:29	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D] ·			
1-Chlorooctane	71.5	100	72	70-135		
o-Terphenyl	35.8	50.0	72	70-135		

Lab Batch #: 818878

Sample: 385501-020 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 09:50	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	, ,	, ,	[D]			
1-Chlorooctane	70.4	99.7	71	70-135		
o-Terphenyl	36.3	49.9	73	70-135		

Lab Batch #: 818878

Sample: 385501-003 S / MS

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 10:10 SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	71.8	100	72	70-135		
o-Terphenyl	39.1	50.1	78	70-135		

Lab Batch #: 818878

Sample: 385501-003 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 10:29	SU	RROGATE R	ECOVERY	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]	Ì	
1-Chlorooctane	71.1	99.5	71	70-135	
o-Tcrphenyl	38.5	49.8	77	70-135	

Lab Batch #: 818880

Sample: 570632-1-BKS / BKS

Batch: 1

Matrix: Solid

Units: mg/kg	Date Analyzed: 08/13/10 14:44	SURROGATE RECOVERY STUDY				
ТРН І	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		İ
1-Chlorooctane		105	100	105	70-135	
o-Terphenyl		47.4	50.2	94	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818880

Sample: 570632-1-BSD / BSD

Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/13/10 15:16	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	108	99.9	108	70-135	
o-Terphenyl	49.5	50.0	99	70-135	

Lab Batch #: 818880

Sample: 570632-1-BLK / BLK

Batch: 1

Matrix: Solid

Units: mg/kg Date Analyzed: 08/13/10 15:47 SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctanc	107	99.9	107	70-135		
o-Terphenyl	54.3	50.0	109	70-135		

Lab Batch #: 818880

Sample: 385501-021 / SMP

Batch:

Matrix: Soil

Units: mg/kg Da	te Analyzed: 08/13/10 16:19	SURROGATE RECOVERY STUDY					
TPH By SW		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane		86.8	99.9	87	70-135		
o-Terphenyl		42.7	50.0	85	70-135		

Lab Batch #: 818880

Sample: 385501-022 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 16:50	SU	RROGATE R	ECOVERY :	STUDY	
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	97.0	101	96	70-135	
o-Terphenyl	48.4	50.3	96	70-135	

Lab Batch #: 818880

Sample: 385501-023 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 17:21 SURROGATE RECOVER					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes	, ,		[D]		
1-Chlorooctane	83.5	100	84	70-135	
o-Terphenyl	41.7	50.1	83	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818880

Sample: 385501-024 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 17:52 SURROGATE RECOVERY STUDY						
ТРН В	sy SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		96.2	99.8	96	70-135	
o-Terphenyl		48.7	49.9	98	70-135	

Lab Batch #: 818880

Sample: 385501-025 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 18:23 SURROGATE RECOVERY STUDY							
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
	Analytes			l fot	<u> </u>		
1-Chlorooctane		99.9	101	99	70-135		
o-Terphenyl		50.3	50.3	100	70-135		

Lab Batch #: 818880

Sample: 385501-026 / SMP

Batch: 1

1 Matrix: Soil

Units: mg/kg	Date Analyzed: 08/13/10 18:53	SU	RROGATE R	RECOVERY STUDY				
ТРН	By SW8015 Mod	Amount Found ⁻ [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1 Chlamastana	Analytes	02.0	00.5		70.125			
1-Chlorooctane		92.9	99.5	93	70-135			
o-Terphenyl		47.3	49.8	95	70-135			

Lab Batch #: 818880

Sample: 385501-027 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Units: mg/kg Date Analyzed: 08/13/10 19:23 SURROGATE RECOVERY STU					
ТРН	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1-Chlorooctane		104	100	104	70-135	
o-Terphenyl		53.1	50.2	106	70-135	

Lab Batch #: 818880

Sample: 385501-028 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 08/13/10 19:53	SURROGATE RECOVERY STUDY						
	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		107	99.8	107	70-135			
o-Terphenyl		54.5	49.9	109	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818880

Sample: 385501-029 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 20:23	Su	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes		[-,	[D]					
1-Chlorooctane	117	101	116	70-135				
o-Terphenyl	59.7	50.3	119	70-135				

Lab Batch #: 818880

Sample: 385501-030 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	Date Analyzed: 08/13/10 20:53	SURROGATE RECOVERY STUDY					
TPH 1	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
	Analytes			{D}			
1-Chlorooctane		121	100	121	70-135		
o-Terphenyl		62.4	50.1	125	70-135		

Lab Batch #: 818880

Sample: 385501-031 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 21:53	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes	(,	(-1	[D]				
1-Chlorooctane	110	101	109	70-135			
o-Terphenyl	56.7	50.3	113	70-135			

Lab Batch #: 818880

Sample: 385501-032 / SMP

Batch: 1

Matrix: Soil

nt True d Amoun [B]	t Recovery	Control Limits %R	Flags
[2]	(D)	/014	
		1	
	100		100 110 70-135

Lab Batch #: 818880

Sample: 385501-033 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 22:52	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1-Chlorooctane	94.1	100	94	70-135	
o-Terphenyl	47.7	50.2	95	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818880

Sample: 385501-034 / SMP

Matrix: Soil Batch:

Units: mg/kg Date Analyzed: 08/13/10 23:22	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes	, ,	',	[D]			
1-Chlorooctane	101	99.5	102	70-135		
o-Terphenyl	51.3	49.8	103	70-135	* ***	

Lab Batch #: 818880

Sample: 385501-035 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/13/10 23:51	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	109	99.5	110	70-135		
o-Terphenyl	55.4	49.8	111	70-135		

Lab Batch #: 818880

Sample: 385501-036 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 08/14/10 00:20	SURROGATE RECOVERY STUDY						
TPH 1	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes			[D]				
1-Chlorooctane		111	100	111	70-135	<u> </u>		
o-Terphenyl		57.1	50.1	114	70-135			

Lab Batch #: 818880

Sample: 385501-037 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 00:49	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	111	101	110	70-135		
o-Terphenyl	56.8	50.3	113	70-135		

Lab Batch #: 818880

Sample: 385501-038 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 01:19	SURROGATE RECOVERY STUDY						
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	109	100	109	70-135			
o-Terphenyl	54.9	50.1	110	70-135	- 1.		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B
All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: Conoco Phillips

Work Orders: 385501,

Project ID: 114-6400314C0

Lab Batch #: 818880

Sample: 385501-039 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg	Date Analyzed: 08/14/10 01:50	SURROGATE RECOVERY STUDY						
ТРН 1	By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes	. ,		[D]				
1-Chlorooctane		98.5	100	99	70-135	,		
o-Terphenyl		49.4	50.0	99	70-135			

Lab Batch #: 818880

Sample: 385501-040 / SMP

Batch:

Matrix: Soil

Units: mg/kg	Date Analyzed: 08/14/10 02:20	SU	RROGATE R	RECOVERY	STUDY	
TPH By SW8015 Mod Analytes		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes				[D]		
1-Chlorooctane		117	99.5	118	70-135	
o-Terphenyl		59.6	49.8	120	70-135	

Lab Batch #: 818880

Sample: 385501-021 S / MS

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 02:49	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1-Chlorooctane	112	100	112	70-135					
o-Terphenyl	47.1	50.1	94	70-135					

Lab Batch #: 818880

Sample: 385501-021 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/14/10 03:18	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	114	100	114	70-135					
o-Terphenyl	47.7	50.2	95	70-135					

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: Conoco Phillips

Work Order #: 385501

Project ID:

114-6400314C0

Lab Batch #: 819042

Sample: 570718-1-BKS

Matrix: Solid

Date Analyzed: 08/16/2010

Date Prepared: 08/16/2010

Analyst: ASA

Ratch #

Reporting Units: mg/kg	Batch #: 1	BLANK/BLANK SPIKE RECOVERY STUDY								
BTEX by EPA 8021B	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags				
Analytes			[C]	[D]						
Benzene	ND	0.1000	0.1182	118	70-130					
Toluene	ND	0.1000	0.1104	110	70-130					
Ethylbenzene	ND	0.1000	0.1160	116	71-129					
m,p-Xylenes	ND	0.2000	0.2351	118	70-135					
o-Xylene	ND	0.1000	0.1163	116	71-133					

BS / BSD Recoveries

Project Name: Conoco Phillips

Work Order #: 385501

Units: mg/kg

Analyst: ASA

Date Prepared: 08/13/2010

Lab Batch ID: 818899

Sample: 570643-1-BKS

Batch #: 1

Date Analyzed: 08/13/2010

Matrix: Solid

Project ID: 114-6400314C0

BLANK /BLANK SPIKE	BLANK SPIKE DUPLICATE	RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[2]	(0)	101	in i	Result (1)	101				
Benzene	ND	0.1000	0.1051	105	0.1	0.0911	91	14	70-130	35	-
Toluene	ND	0.1000	0.0986	99	0.1	0.0853	85	14	70-130	35	
Ethylbenzene	ND	0.1000	0.1038	104	0.1	0.0894	89	15	71-129	35	
m,p-Xylenes	ND	0.2000	0.2094	105	0.2	0.1803	90	15	70-135	35	
o-Xylene	ND	0.1000	0.1045	105	0.1	0.0904	90	14	71-133	35	

Analyst: ASA

Date Prepared: 08/13/2010

Date Analyzed: 08/14/2010

Lab Batch ID: 818906

Sample: 570648-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	ICATE	RECOVERY STUD	Y							
BTEX by EPA 8021B	Blank	Spike	Blank	Blank	Spike	Blank	Blk. Spk	Control	Control	

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	ND	0.1000	0.1040	104	0.1	0.1060	106	2	70-130	35	
Toluene	ND	0.1000	0.0966	97	0.1	0.0991	99	3	70-130	35	
Ethylbenzene	ND	0.1000	0.1013	101	0.1	0.1047	105	3	71-129	35	
m,p-Xylenes	ND	0.2000	0.2030	102	0.2	0.2106	105	4	70-135	35	
o-Xylene	ND	0.1000	0.1016	102	0.1	0.1051	105	3	71-133	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Conoco Phillips

Work Order #: 385501

Analyst: LATCOR

Date Prepared: 08/14/2010

Project ID: 114-6400314C0

Date Analyzed: 08/14/2010

Lab Batch ID: 818873

Sample: 818873-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY									
Anions by E300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	ND	100	98.4	98	100	98.7	. 99	0	75-125	20	

Analyst: LATCOR

Date Prepared: 08/16/2010

Date Analyzed: 08/16/2010

Lab Batch ID: 819025

Sample: 819025-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY							Y				
Anions by E300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	ND	10.0	9.69	97	10	8.94	89	8	75-125	20	

Analyst: BEV

Date Prepared: 08/13/2010

Date Analyzed: 08/13/2010

Lab Batch ID: 818878

Sample: 570630-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result (F)	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes				1 .	ļ						
Gasoline Range Hydrocarbons	ND	1000	955	96	999	1000	100	5	70-135	35	
Diesel Range Hydrocarbons	ND	1000	818	82	999	858	86	5	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Conoco Phillips

Work Order #: 385501

Analyst: BEV

Date Prepared: 08/13/2010

Project ID: 114-6400314C0

Date Analyzed: 08/13/2010

Lab Batch ID: 818880

Sample: 570632-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
TPH By SW8015 Mod	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Gasoline Range Hydrocarbons	ND	1000	923	92	999	978	98	6	70-135	35	
Diesel Range Hydrocarbons	ND	1000	914	91	999	831	83	10	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Conoco Phillips

Work Order #: 385501

Lab Batch #: 818873

Project ID: 114-6400314C0

Date Analyzed: 08/14/2010

Date Prepared: 08/14/2010

Analyst: LATCOR

QC- Sample ID: 385501-001 S

Inorganic Anions by EPA 300

Analytes

Batch #:

Matrix: Soil

Reporting Units: mg/kg

Chloride

MATI	RIX / MA	TRIX SPIKE	RECOV	VERY STU	DY
Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag

172

Lab Batch #: 819025 Date Analyzed: 08/16/2010

Date Prepared: 08/16/2010

75.0

103

Analyst: LATCOR

75-125

QC- Sample ID: 385501-021 S

Batch #:

Matrix: Soil

Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]				
Chloride	173	205	333	78	75-125	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Draft 1.000

Form 3 - MS / MSD Recoveries

Project Name: Conoco Phillips

Work Order #: 385501

Project ID: 114-6400314C0

Lab Batch ID: 818899

QC-Sample ID: 385501-001 S

Matrix: Soil Batch #:

Date Analyzed: 08/14/2010

Date Prepared: 08/13/2010

ASA

Reporting Units: mg/kg

Analyst:

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

MATRIA STIRE / MATRIA STIRE DUFLICATE RECOVERT STUDI											
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	ND	0.1002	0.0790	79	0.1000	0.0716	72	10	70-130	35	
Toluene	ND	0.1002	0.0640	64	0.1000	0.0616	62	4	70-130	35	Х
Ethylbenzene	ND	0.1002	0.0544	54	0.1000	0.0575	58	6	71-129	35	X
m,p-Xylenes	ND	0.2004	0.0929	·46	0.2000	0.1022	51	10	70-135	35	X
o-Xylene	ND	0.1002	0.0475	47	0.1000	0.0505	51	6	71-133	35	X

Lab Batch ID: 818906

QC- Sample ID: 385501-023 S

Batch #:

Matrix: Soil

Date Analyzed: 08/14/2010

Date Prepared: 08/13/2010

ASA Analyst:

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B	Parent Sample Result	Spike	Spiked Sample Result	Sample	•	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	ND	0.1052	0.0661	63	0.1048	0.0638	61	4	70-130	35	Х
Toluene	ND	0.1052	0.0637	61	0.1048	0.0614	59	4	70-130	35	Х
Ethylbenzene	ND	0.1052	0.0677	64	0.1048	0.0666	64	2	71-129	35	X
m,p-Xylenes	ND	0.2104	0.1377	65	0.2095	0.1361	65	1	70-135	35	Х
o-Xylene	ND	0.1052	0.0659	63	0.1048	0.0649	62	2	71-133	35	X

Form 3 - MS / MSD Recoveries

Project Name: Conoco Phillips

Work Order #: 385501

Lab Batch ID: 819042

QC- Sample ID: 385501-018 S

Batch #:

Project ID: 114-6400314C0

Date Analyzed: 08/16/2010

Date Prepared: 08/16/2010

Matrix: Soil

Analyst: ASA

Deporting Unite: ma/kg

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	•	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	ND	0.1204	0.1065	88	0.1209	0.1068	88	0	70-130	35	
Toluene	ND	0.1204	0.1017	84	0.1209	0.1001	83	2	70-130	35	
Ethylbenzene	ND	0.1204	0.1083	90	0.1209	0.1048	87	3	71-129	35	
m,p-Xylenes	ND	0.2409	0.2206	92	0.2418	0.2138	88	3	70-135	35	
o-Xylene	ND	0.1204	0.1083	90	0.1209	0.1059	88	2	71-133	35	

Lab Batch ID: 818878

QC-Sample ID: 385501-003 S

Matrix: Soil

Date Analyzed: 08/14/2010

Date Prepared: 08/13/2010

Batch #: Analyst:

Departing United marka

BEV

Reporting Units: mg/kg		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range Hydrocarbons	ND	1000	979	98	995	963	97	2	70-135	35	
Diesel Range Hydrocarbons	ND	1000	785	79	995	781	78	1	70-135	35	

Lab Batch ID: 818880

QC-Sample ID: 385501-021 S

Batch #:

Matrix: Soil

Date Analyzed: 08/14/2010

Date Prepared: 08/13/2010

Analyst: BEV

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
TPH By SW8015 Mod	Parent Sample Result	Spike	Spiked Sample Result	Sample		Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R {D}	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Gasoline Range Hydrocarbons	ND	1030	922	90	1030	952	92	3	70-135	35	
Diesel Range Hydrocarbons	27.2	1030	746	70	1030	787	74	5	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*(C-F)/(C+F) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Duplicate Recovery

Project Name: Conoco Phillips

Work Order #: 385501

Project ID: 114-6400314C0 Lab Batch #: 818873

Date Analyzed: 08/14/2010 Date Prepared: 08/14/2010 Analyst: LATCOR QC-Sample ID: 385501-001 D Batch #: 1 Matrix: Soil

Reporting Units: mg/kg	SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Anions by E300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Chloride	75.0	72.7	3	20	

Lab Batch #: 819025

Date Analyzed: 08/16/2010 Date Prepared: 08/16/2010 Analyst: LATCOR QC- Sample ID: 385501-021 D Batch #: Matrix: Soil

Reporting Units: mg/kg SAMPLE / SAMPLE DUPLICATE RECOVERY Sample Control Anions by E300 Parent Sample Duplicate RPD Result Limits Flag Result %RPD [A] [B] **Analyte** Chloride 173 168 3 20

Lab Batch #: 818836

Date Prepared: 08/13/2010 Date Analyzed: 08/13/2010 Analyst: JLG Batch #: Matrix: Soil QC-Sample ID: 385501-001 D

Reporting Units: % SAMPLE / SAMPLE DUPLICATE RECOVERY

Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	3.24	3.96	20	20	

Lab Batch #: 818837

Date Prepared: 08/13/2010 **Date Analyzed:** 08/13/2010 Analyst: JLG Matrix: Soil Batch #: 1 QC- Sample ID: 385501-016 D

Reporting Units: % SAMPLE / SAMPLE DUPLICATE RECOVERY

	5241111 667	SINIVE EL	DUILIC	ATE REC	OVERI
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	6.58	6.48	2	20	

Page 49 of 57

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Draft 1.000

Sample Duplicate Recovery

Project Name: Conoco Phillips

Work Order #: 385501

Lab Batch #: 818839

Project ID: 114-6400314C0

Date Analyzed: 08/13/2010 **QC- Sample ID:** 385501-036 D

Date Prepared: 08/13/2010

Batch #: 1

Analyst: JLG Matrix: Soil

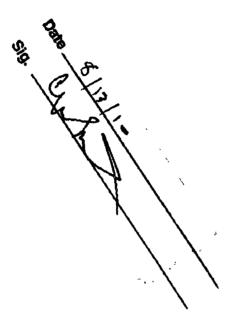
Reporting Units: %

SAMPLE / SAMPLE DUPLICATE RECOVERY

Reporting Units: 70	SAMPLE	SAMPLE	DUPLIC	AIL REC	OVERY
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte		[B]			
Percent Moisture	11.7	11.9	2	20	

Page 51 of 57

Analysis Request of Chain of Custody	Record	PAGE: OF: 1
	ANALYSIS REQUEST (Circle or Specify Method No.)	
TETRA TECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946	184	Cd Cr Pb Hg Se Cd Vr Pd Hg Se Cd Vr
CLIENT NAME: SITE MANAGER: Dwrett	PRESERVATIVE METHOD	As Ba Cd As
PROJECT NO : PROJECT NAME: 1/4-640314 CO MCA ZA Header	METHOD METHOD	B B als Ag As as a a a a a a a a a a a a a a a a a
LAB I.D. DATE TIME XX BY SAMPLE IDENTIFICATION	NUMBER OF CO FILTERED (Y/N) HCL HNO3 ICE NONE	BTEX 8021B TPH (8016 MOD) TX10 PAH 8270 RCRA Metals Ag As Ba C TCLP Votatiles TCLP Semi Volatiles TCLP Semi Volatiles RCi GC.MS Vol. 8240/8260/624 GC.MS Semi. Vol. 8270/622 PCB's 8080/608 Pest. 808/608 Chlorids Chlorids Gamma Spec. Alpha Beta (Air) PLM (Asbestos) Major Anions/Catbons, pH,
8/11/10 0434 S X 58-1 0-6"	2W X	
8/10 09/9 5 X SB-1 4'	2N Y	
8)11/10/08345 X 58-2 0-6"	2 N X	XX
8)410 09065 X 58-2 41	ZNX	XX I I I I X I I I I X
811110 1/13 S X S B - 3 O - L''	2 M X	
8 11/10 1/23 S X 58-3 4'	2N X	XX
8)11)10 10368 X 8B-4 0-6"	2 M X	XX
8/11/10/10435 X SB-4 41	2 N X	XX
8)1110102-15 X 58-5 0-61	2 N X	
411)010575 X 58-5, 4'	ע עב	XX XX XX
RELINDUIS HED BY: (Signature) Date: Time: Q 107 RECEIVED BY: (Signature)	Date:	Date: 0 1 31 Time: 2 2 2
RELINOUISHED BY: (Signature) Date: RECEIVED BY: (Signature) Time:	Date:	SAMPLE SHIPPED BY: (Circle) AIRBILL 4: FEDEX BUS
RELINQUISHED BY: (Signature) Date: RECEIVED BY: (Signature) Time:	Date:	HAND DELIVERED UPS OTHER: TETRA TECH CONTACT PERSON: Results by:
RECEIVING LABORATORY: RECEIVED BY: (Signature) ADDRESS:	M	
ADDRESS: CITY: CONTACT: PHONE: DATE: VI 3 1 / 0	TIME: 9:10	Rush Charges Authorized: (98) No
SAMPLE CONDITION WHEN RECEIVED: REMARKS: TPH 8015 NM LDRO, C		
Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetr	ra Tech - Project Mahage	r retains Pink copy - Accounting receives Gold copy.


Analysis Request of Chain of Custody Record TETRA TECH	
1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946 St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946 St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946 St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946 St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946 St. Midland, Texas 79705 St. Mi	
PROJECT NO.:	
PROJECT NO.: 1	
8)11/10 1020 5 X 58-6 0-6' 2 N X XX Ship 1020 5 X 58-6 0-6' 2 N X XX XX Ship 1008 5 X 58-7 6-6' 2 N X XX XX XX Ship 1008 5 X 58-7 9' 1 N X XX XX Ship 0835 5 X 58-2 8' E N X XX Ship 0835 5 X 58-2 12' 2 N X XX XX XX XX XX XX XX XX XX	
5/11/10 1025 8 X 58-L 4*1 ZM X XX X	
8/11/10 1008 S X SB-7 G-C" 2N X XX XX 8/11/10 1011 S X SB-7 4 1 8/12/10 68 00 S X SB-Z 8 1 E)12/10 68 00 S X SB-Z 8 1 E)12/10 68 35 S X SB-Z 12 2 2N X XX 8/12/10 09/5-S X SB-Z 2011/2 2N X XX	
8)11/10 0915 S X 5B-2 12' 8)11/10 0915 S X 5B-2 12' 8)11/10 0915 S X 5B-2 12' 2N X XX XX XX 8)11/10 0915 S X 5B-2 12' 2N X XX XX 8)11/10 0915 S X 5B-2 22/12' 2N X XX	
8/11/10 1011 S X 58-7 41 1N X XX XX XX XX SB-2 81 2M X XX	
8)12/10 09/5 5 X 5B-2 12' 2M X XX	1
8)12/10 09/5-5 X 5B-2 12' ZM X XX	
8/12/10 09/5 S X SB-2 2011' ZM X XX	
8/12/100950 \ X 58-Z 20' ZM X XX	T
8/12/10 1020 S X SB-Z. 24' /W X XX	
4/12/10/130 5 X 58-7, 8' AN X XX	
RELINQUIGHEORY: (Signature) Cate: C	
RELINQUISHED BY: (Signature) Date: RECEIVED BY: (Signature) Date: SAMPLE SHIPPED BY: (Circle) AIRBILL #: Time: SUS	
HELINQUISHED BY, (Signature) Date: HECEIVED BY: (Signature)	
RECEIVING LABORATORY: RECEIVED BY: (Starkfure) RECEIVED BY: (Starkfure) RECEIVED BY: (Starkfure) RUSH Charles	
CONTACT: PHONE DATE: 9/13/10 TIME: 9:10	
SAMPLE CONDITION WHEN RECEIVED: REMARKS: TPH SOK DQU-6QP Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.	

Analysis Request of Chain of Custody	ſ	₹,		20	rc	1	I							P	AGE	: 3	5		OI	:	+	
7 that your request of chair of oddicaly record												(Cir	AN.	ALYS					3			
TETRA TECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946 CLIENT NAME: SITE MANAGER:	<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \	PRESI	ERV			TX1005 (Ext. to C36)		Cd Cr Pb Hg Se										pH, TDS		
Conocothilles & Charles Durett	CONTAINERS		L	ME	TH	OD	_		1 1	88 88 88 88		8		8270V		ÌÌ		Ì			11	
PROJECT NO.: PROJECT NAME: 114-640031400 MCAZAHLILA	FCONT	Z E						5 MOL			ا]_	i Volatii		J. Vol.	909/0	80	8	Į.	stos)	ns/Cat		
LAB I.D. DATE TIME KELL SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION	NUMBERO	FILTERED (Y/N)	귳	HNO3	JCE TCE	NONE	BTEX 80218	TPH (8015 MOD	PAH 8270	TCLP Metals Ag	TCLP Votatiles	TCLP Semi Volatiles	PCI PCI	GC.MS Semi, Vol. 8270/825	PCB's 8080/608	Pest. 808/608	Chloride Gamma Soec	Alpha Beta	PLM (Asbe	Major Anions/Cations,		
8)12/10 1145 8 X SB-7 12'	1	μ	L		x		k	X									χL					
8/12/10/12015 X \$8-> 16	2	N			X		X	X								د	X					T
8/12/10/12/95 X 58-7 20'	1	N			X		X	X									X					T
8)121012365 X 58-7 24'	1	Ν			X		×	X									X					
8/12/10/1250 S x 58-7 28	,	2			k		X	×									X					T
8/2/1013205 X5B-3 &1	1	~			X		×	K									X			T		
8/12/10/1342 S XSB-3 12'	1	V			x		X	X									Y				П	
81216161 2 × 58-3 1C	1	N			X		X	بر								•	र					
8/12/10/14/9 5 X 5B-3 201	1	7	L	!	X		X	٧								J	X					
8/12/10 1445 5 X 5B-3 241	1	n	L		K		×	K								٧	4					
RED NOUIS/RED BY: (Signature) Pate: 7/me: 9: 10 RECEIVED BY: (Signature)	·			Dete: _ Time: _	_			_)k			rte: ne:	S)	2 2 lt.	
RELINQUISHED BY: (Signature) Data: RECEIVED BY: (Signature) Time: RECEIVED BY: (Signature)			•	Date: _ Time: _	_				FE	DEX				US				AIRB				_
Time:	ELINQUISHED BY: (Signature) Date: RECEIVED BY: (Signature) Date: Time: Time:						TETRA TECH CONTACT PERSON: Results by:							- Im	\equiv							
RECEIVING LABORATORY: ADDRESS: CITY: STATE: PHONE: DATE: DATE: TIME: 9100							RUSH their the Authorized:						Bijs,									
CONTACT: PHONE: DATE: VI310 SAMPLE CONDITION WHEN RECEIVED: REMARKS: TP# 8015 DRD . GR				***	<u>~</u>			- <u>-</u> _1]	(Yi	*/	Mo	

F109 54 of 57

Analysis Request of Chain	Request of Chain of Custody Record						PAGE: OF: U								}				
7 inalysis Hoquest Strains	<u> </u>	_					ANALYSIS REQUEST (Circle or Specify Method No.)												
TETRA TE 1910 N. Big Sprin Midland, Texas 78 (432) 682-4559 • Fax (4	ng St. 9705 432) 682-3946	7		0050	ERVAT	ris/E	Trems for the factory	1	8	B			10				adi	SOL 'HO	
Gonoco Milips Chales	Durch	INC.	Ľ		ETHOD				As Ba	, I		260/6	8270/62	ı				6	
PROJECT NO: PROJECT NAME: MCA 2 A Hender	Durch	200	(A/K)				80 4	2		tiles	i Volatile	. 8240/8	mi. Vol. 8	808/808	إ	(AIr)	stos)		
LAB I.D. DATE TIME WAS BUS SAMPLE IDEN	195	NUMBER OF CO	HE E	HNO3	ICE		BTEX 8021B	PAH 8270	RCRA Metals Ag	TCLP Volatiles	TCLP Semi Volatiles	GC.MS Vol. 8240/8260/624	GC.MS Semi. Vol.	PCB's 8080/608 Pest. 808/608	Chloride Gamma Spac	Alpha Beta (Air)	PLM (Asbestos)		
8121015205 X58-4 8'		1	4		X		×X								X				
8121015415 X5B-4 12		71	<u> </u>		χ		ן א	q							k				
8)12/1012065 X58-4 1C)	1	! ,	N_		X		(بر	×							X				
8/12/19/16245 X 5B-4 20'	1	1	4		X		צא								צ				
8)1210 16465 159-4 241	1	1/	1		k		עע	\prod					П		X	П			
8/1/017308 × 58-6 81	(1	ν		لا		עע	4							X				
8/12/10 1753 S X SB-L 12)	Į	1	$\sqrt{}$		X								\prod	\int	X	П			
5)12/10 1820 S X SB-2 1L'	l)	4		×		X	4			Ī				X				
\$ 1010 18475 X 58-6 20'		,	S		χ		א	4							K				
\$1210 19205 XSB-6 24	1)	4		X		برر						П		X				
RELINOUISHER ST. STreature Date: Time: RECENTION:	VED BY: (Signature))ate: Tme:				SA	Pyp	7	hint &	Witielly 2)	77		Da Tin	te:	光	Ala I
RELINQUISHED BY: (Signature) Date: RECENTRIES: RECENT	VED BY: (Signature)			Rate: Time:				SAM				: (Circl			7	AIRBI	LL#:_		
RELINQUISHED BY: (Signeture) Date: RECEN	VED BY: (Signature)			ate:				- н	ND D			ŲP:	s			OTHE			
ADDRESS:	RECEIVED BY: (Signature)						TETRA TECH CONTACT PERSON: Results by: RUSH Chary Authorized:						15						
CITY: STATE: ZIP: DATE: DATE:	8/13/10	пма	<u>. </u>	<u>q:</u>	10									_		ľ	Author Vic		No
SAMPLE CONDITION WHEN RECEIVED: REMARKS: TPH 819 Please fill out all copies - Laboratory retains Yellow copy	S DRO GRO		h -	Proje	ot Ma	19000	ment	ne Di	yk oo	- NOV -	Ac	CO14-	tine	most	ron C				

\$2,\$80e 55.of 57

Che Park

Draft 1.000

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010

Page 1 of 1

	Prelogin	/ None	conformance Rep	ort - Sample	Log-In		
Client: 12+/c	itech						
Date/Time: 8/13/	10						
Lab ID#: 3 8	550(
Initials:							
·		9	Sample Receipt Ch	ecklist			
1. Samples on ice?	·			Blue	Water	No	
2. Shipping container	in good condition	?			No	None	
3. Custody seals intac	t on shipping con	tainer (c	ooler) and bottles?	Yes	No	N/A	
4. Chain of Custody p	resent?			Yes	No		
5. Sample instruction	s complete on cha	in of cus	tody?	Kes	No		
6. Any missing / extra	samples?			Yes	(No		
7. Chain of custody s	gned when relinq	uished /	received?	(Yes)	No		
8. Chain of custody a	grees with sample	label(s)	?	(Tee	No		
9. Container labels le	gible and intact?			∀es	No		
10. Sample matrix / pr	operties agree wi	th chain	of custody?	1/95	No		
11. Samples in prope	container / bottle	?		(AS	No		
12. Samples properly	preserved?			(es)	No	N/A	
13. Sample container	intact?			(es)	No		
14. Sufficient sample	amount for indica	ted test(s	s)?	(fs)	No		
15. All samples receive	red within sufficie	nt hold ti	me?	Yes	No		
16. Subcontract of sa	mple(s)?				No	N/A	
17. VOC sample have	zero head space?			Yes	No	N/A	
18. Cooler 1 No.	Cooler 2 No.		Cooler 3 No.	Cooler 4 No	•	Cooler 5 No.	
lbs 5.6	°C lbs	<u>°c</u>	lbs	°C lbs	°C	lbs	°c
		None	conformance Docu	mentation			
Contact:	Cor	tacted b	y:		Date/Time:_	<u></u>	
Regarding:							
Corrective Action Tak	en:						
Check all that apply:	conditio □Initial and Bac	n accept kup Tem	egun shortly after samp able by NELAC 5.5.8.3.1 perature confirm out of I would like to proceed	.a.1. temperature con	•	ature	

Analytical Report 385678

for

Tetra Tech- Midland

Project Manager: Charles Durrett

MCA Header

114-6400314CO

17-AUG-10

Celebrating 20 Years of commitment to excellence in Environmental Testing Services

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0738), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102)

Xenco-Atlanta (EPA Lab Code: GA00046):

Florida (E87429), North Carolina (483), South Carolina (98015), Utah (AALI1), West Virginia (362), Kentucky (85) Louisiana (04176), USDA (P330-07-00105)

Xenco-Miami (EPA Lab code: FL01152): Florida (E86678), Maryland (330)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco-Corpus Christi (EPA Lab code: TX02613): Texas (T104704370)

Xenco-Boca Raton (EPA Lab Code: FL00449):

Florida(E86240), South Carolina(96031001), Louisiana(04154), Georgia(917) North Carolina(444), Texas(T104704468-TX), Illinois(002295), Florida(E86349)

17-AUG-10

Project Manager: Charles Durrett Tetra Tech- Midland 1910 N. Big Spring Midland, TX 79705

Reference: XENCO Report No: 385678

MCA Header Project Address:

Charles Durrett:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number 385678. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. Estimation of data uncertainty for this report is found in the quality control section of this report unless otherwise noted. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 385678 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Brent Barron, II

Odessa Laboratory Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Austin - Tampa - Miami - Atlanta - Corpus Christi - Latin America

Sample Cross Reference 385678

Tetra Tech- Midland, Midland, TX

MCA Header

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SB-1 8'	S	Aug-13-10 09:25	8 ft	385678-001
SB-1 12'	S	Aug-13-10 09:30	12 ft	385678-002
SB-1 16'	S	Aug-13-10 09:40	16 ft	385678-003
SB-1 20'	S	Aug-13-10 09:50	20 ft	385678-004
SB-1 24'	S	Aug-13-10 10:00	24 ft	385678-005
SB-5 8'	S	Aug-13-10 11:05	8 ft	385678-006
SB-5 12'	S	Aug-13-10 11:12	12 ft	385678-007
SB-5 16' .	S	Aug-13-10 11:20	16 ft	385678-008
SB-5 20'	S	Aug-13-10 11:28	20 ft	385678-009
SB-5 24'	S	Aug-13-10 11:40	24 ft	385678-010

CASE NARRATIVE

Client Name: Tetra Tech- Midland

Project Name: MCA Header

Project ID:

114-6400314CO

Work Order Number: 385678

Report Date: 17-AUG-10 Date Received: 08/13/2010

Sample receipt non conformances and Comments:

Sample receipt Non Conformances and Comments per Sample:

None

Analytical Non Conformances and Comments:

Batch: LBA-818841 Percent Moisture

None

Batch: LBA-818891 TPH By SW8015 Mod

None

Batch: LBA-819149 BTEX by EPA 8021B

None

Batch: LBA-819152 Anions by E300

None

Batch: LBA-819228 BTEX by EPA 8021B

SW8021BM

Batch 819228. 1,4-Difluorobenzene recovered below QC limits. Matrix interferences is

suspected; data confirmed by re-analysis

Samples affected are: 385678-001.

4-Bromofluorobenzene recovered above QC limits . Matrix interferences is suspected; data

confirmed by re-analysis

Samples affected are: 385678-001.

Final 1.000

Project Location:

Certificate of Analysis Summary 385678

Tetra Tech- Midland, Midland, TX

Project Name: MCA Header

Project Id: 114-6400314CO

Contact: Charles Durrett

Date Received in Lab: Fri Aug-13-10 04:00 pm

Report Date: 17-AUG-10

Project Manager: Brent Barron, II

								I Toject Ma	mager.	Dient Barron,			
	Lab Id:	385678-0	001	385678-0	002	385678-0	003	385678-	004	385678-0	005	385678-0	006
Analysis Daguastad	Field Id:	SB-1 8	'	SB-1 12	SB-1 12'		SB-1 16'		0'	SB-1 24'		SB-5 8'	
Analysis Requested	Depth:	8- ft		12- ft		16- ft		20- ft		24- ft		8- ft	
	Matrix:	SOIL		SOIL	SOIL SOIL			SOIL		SOIL		SOIL	
	Sampled:	Aug-13-10	09:25	Aug-13-10	09:30	Aug-13-10	09:40	Aug-13-10	09:50	Aug-13-10	10:00	Aug-13-10	11:05
Anions by E300	Extracted:												
	Analyzed:	Aug-17-10	08:29	Aug-17-10	08:29	Aug-17-10	08:29	Aug-17-10	08:29	Aug-17-10	08:29	Aug-17-10	08:29
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		46.6	5.19	5.57	4.67	37 7	2.81	23.1	2.89	5.68	4.68	363	5.02
BTEX by EPA 8021B	Extracted:	Aug-17-10	10:00	Aug-14-10	09:00	Aug-14-10	09:00	Aug-14-10	09:00	Aug-14-10	09:00	Aug-14-10	09:00
	Analyzed:	Aug-17-10	13:45	Aug-17-10	09:58	Aug-17-10	09:36	Aug-16-10	10:36	Aug-17-10	09.14	Aug-17-10	12:12
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		ND	0.0059	ND	0.0011	0.0018	0.0013	ND	0.0013	ND	0 0011	0.8884	0.2290
Toluene		0.0146	0.0118	ND	0.0021	ND	0.0026	ND	0.0026	ND	0.0021	1.296	0.4579
Ethylbenzene		0.0606	0.0059	0.0019	0.0011	ND	0.0013	ND	0.0013	ND	0.0011	ND	0.2290
m,p-Xylenes		0.3781	0.0118	ND	0.0021	ND	0.0026	ND	0.0026	ND	0 0021	0.5816	0.4579
o-Xylene		0.3077	0.0059	0.0013	0.0011	ND	0.0013	ND	0.0013	ND	0.0011	ND	0.2290
Total Xylenes		0.6858	0.0059	0.0013	0.0011	ND	0.0013	ND	0.0013	ND	0.0011	0 5816	0.2290
Total BTEX		0.7610	0.0059	0.0032	0.0011	0.0018	0.0013	ND	0.0013	ND	0.0011	2.766	0.2290
TPH By SW8015 Mod	Extracted:	Aug-13-10	16:45	Aug-13-10	16:45	Aug-13-10	16:45	Aug-13-10	16:45	Aug-13-10	16:45	Aug-13-10	16:45
	Analyzed:	Aug-15-10	18:19	Aug-15-10	18:50	Aug-15-10	19:53	Aug-15-10	20:24	Aug-15-10	20:54	Aug-15-10	21:24
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons		74.2	17.7	ND	16.0	ND	19.1	ND	19.6	ND	15.9	75.4	17.0
Diesel Range Hydrocarbons		330	17.7	29.9	16.0	39 2	19.1	21.2	19.6	33.0	15.9	599	17.0

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager

Final 1.000

Project Location:

Certificate of Analysis Summary 385678

Tetra Tech- Midland, Midland, TX

Project Name: MCA Header

Project Id: 114-6400314CO

Contact: Charles Durrett

Date Received in Lab: Fri Aug-13-10 04:00 pm

Report Date: 17-AUG-10

Project Manager: Brent Barron, II

								I i ojece mai	iager.	Divine Danion,	**		
	Lab Id:	385678-0	01	385678-002		385678-003		385678-004		385678-005		385678-0	06
Analysis Requested	Field Id:	SB-1 8'	SB-1 8'		SB-1 12'		SB-1 16'		SB-1 20'		SB-1 24'		
Analysis Requesieu	Depth:	8- ft	8- ft 12- ft		16- ft 20		20- ft	20- ft 24-		4- ft		8- ft	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Aug-13-10 (9:25	Aug-13-10 (9:30	Aug-13-10 (09:40	Aug-13-10 (9:50	Aug-13-10	10:00	Aug-13-10 1	1:05
Percent Moisture	Extracted:												
	Analyzed:	Aug-14-10 (9:37	Aug-14-10 (9:37	Aug-14-10 (09:37	Aug-14-10 (9:37	Aug-14-10	09:37	Aug-14-10 0	9:37
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		15.2	1.00	5.88	1.00	21.6	1.00	23.8	1.00	5.93	1.00	12.3	1.00

Odessa Laboratory Manager

Certificate of Analysis Summary 385678

Tetra Tech- Midland, Midland, TX

Project Name: MCA Header

Project Id: 114-6400314CO
Contact: Charles Durrett

Date Received in Lab: Fri Aug-13-10 04:00 pm

Project Location:

Report Date: 17-AUG-10
Project Manager: Brent Barron, II

Diesel Range Hydrocarbons		26.0 16.7	ND 16.3	ND 15.9	ND 16.1	
Gasoline Range Hydrocarbons		ND 16.7	ND 16.3	ND 15.9	ND 16.1	
	Units/RL:	mg/kg RL	mg/kg RL	mg/kg RL	mg/kg RL	
	Analyzed:	Aug-15-10 21:54	Aug-15-10 22:23	Aug-15-10 22:52	Aug-15-10 23.21	
TPH By SW8015 Mod	Extracted:	Aug-13-10 16:45	Aug-13-10 16:45	Aug-13-10 16:45	Aug-13-10 16:45	
Total BTEX		0.0014 0.0011	0.0028 0.0011	ND 0.0011	ND 0.0011	
Total Xylenes		ND 0.0011	0.0028 0.0011	ND 0.0011	ND 0.0011	
o-Xylene		ND 0.0011	0.0028 0 0011	ND 0.0011	ND 0.0011	
m,p-Xylenes		ND 0.0022	ND 0.0022	ND 0.0021	ND 0.0022	
Ethylbenzene		0.0014 0.0011	ND 0.0011	ND 0.0011	ND 0.0011	
Toluene		ND 0.0022	ND 0.0022	ND 0.0021	ND 0.0022	
Benzene	Units/KL:	mg/kg RL ND 0.0011	mg/kg RL ND 0.0011	mg/kg RL ND 0.0011	mg/kg RL ND 0.0011	
	Analyzed: Units/RL:	Aug-16-10 10:59 mg/kg RL	Aug-16-10 11:21 mg/kg RL	Aug-17-10 07.22 mg/kg RL	Aug-17-10 07:45 mg/kg RL	
DIEA by EFA 6021B	Extracted:	Aug-14-10 09:00	Aug-14-10 09:00	Aug-14-10 09:00	Aug-14-10 09:00	
BTEX by EPA 8021B	E-44-E					
Chloride	Units/RL:	mg/kg RL 53.5 4.87	mg/kg RL 98.5 4.79	mg/kg RL 119 4.67	mg/kg RL 192 4.71	
	Analyzed:	Aug-17-10 08:29	Aug-17-10 08:29	Aug-17-10 08:29	Aug-17-10 08:29	
Anions by E300	Extracted:	. 17 10 00 20			4 17 10 00 20	
Aniona by E200		7tug-13-10 11:12	Aug-15-10 11.20	Aug-15-10 11.20	7tug-15-10 11.40	
	Sampled:	Aug-13-10 11:12	Aug-13-10 11:20	Aug-13-10 11:28	Aug-13-10 11:40	
	Matrix:	SOIL	SOIL	SOIL	SOIL	
Analysis Requested	Depth:	12- ft	16- ft	20- ft	24- ft	
	Field Id:	SB-5 12'	. SB-5 16'	SB-5 20'	SB-5 24'	
	Lab Id:	385678-007	385678-008	385678-009	385678-010	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Odessa Laboratory Manager

Brent Barron, II

Certificate of Analysis Summary 385678

Tetra Tech- Midland, Midland, TX

Project Name: MCA Header

Project Id: 114-6400314CO Contact: Charles Durrett

Date Received in Lab: Fri Aug-13-10 04:00 pm

Project Location:

Report Date: 17-AUG-10

	,							Project Mai	ager:	Brent Barron, II	
	Lab Id:	385678-0	07	385678-0	08	385678-0	09	385678-0	10		
Analysis Requested	Field Id:	SB-5 12	•	SB-5 16		SB-5 20	•	SB-5 24	•		
Analysis Requesteu	Depth:	12- ft		16- ft		20- ft		24- ft			
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	Aug-13-10	1:12	Aug-13-10 1	1:20	Aug-13-10 1	1:28	Aug-13-10	1:40		
Percent Moisture	Extracted:										
	Analyzed:	Aug-14-10	09:37	Aug-14-10 0	9:37	Aug-14-10 (9:37	Aug-14-10 (9:37		
	Units/RL:	%	RL	%	RL	%	RL	%	RL		
Percent Moisture		9.59	1.00	8.22	1.00	5.79	1.00	6.54	1.00		

Brent Barron, II Odessa Laboratory Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to effect the recovery of the spike concentration. This condition could also effect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the MQL and above the SQL.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte.

 The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit
- **POL** Practical Quantitation Limit
- * Outside XENCO's scope of NELAC Accreditation.

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Corpus Christi - Midland/Odessa - Tampa - Miami - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, Tx 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd, Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
5757 NW 158th St, Miami Lakes, FL 33014	(305) 823-8500	(305) 823-8555
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
842 Cantwell Lanc, Corpus Christi, TX 78408	(361) 884-0371	(361) 884-9116

Project Name: MCA Header

Work Orders: 385678, **Project ID:** 114-6400314CO

Lab Batch #: 819149 Sample: 570783-1-BKS / BKS Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/16/10 08:45	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes		-	[D]					
1,4-Difluorobenzene	0.0300	0.0300	100	80-120				
4-Bromofluorobenzene	0.0300	0.0300	100	80-120				

Lab Batch #: 819149 Sample: 570783-1-BSD / BSD Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/16/10 09:07	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes	•		[D]					
1,4-Difluorobenzene	0.0311	0.0300	104	80-120				
4-Bromofluorobenzene	0.0323	0.0300	108	80-120				

Lab Batch #: 819149 Sample: 570783-1-BLK / BLK Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/16/10 10:14	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0280	0.0300	93	80-120				
4-Bromofluorobenzene	0.0328	0.0300	109	80-120				

Lab Batch #: 819149 Sample: 385678-004 / SMP Batch: 1 Matrix; Soil

Units: mg/kg Date Analyzed: 08/16/10 10:36	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0266	0.0300	89	80-120				
4-Bromofluorobenzene	0.0319	0.0300	106	80-120				

Lab Batch #: 819149 Sample: 385678-007 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/16/1	10 10:59 SU	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1,4-Difluorobenzene	0.0276	0.0300	92	80-120					
4-Bromofluorobenzene	0.0345	0.0300	115	80-120					

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: MCA Header

Work Orders: 385678,

Project ID: 114-6400314CO

Lab Batch #: 819149

Sample: 385678-008 / SMP

Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/16/10 11:21	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0268	0.0300	89	80-120				
4-Bromofluorobenzene	0.0305	0.0300	102	80-120				

Lab Batch #: 819149

Sample: 385678-009 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 07:22	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount {B}	Recovery %R	Control Limits %R	Flags	
Analytes	[17]	(10)	[D]	7410		
1,4-Difluorobenzene	0.0281	0.0300	94	80-120		
4-Bromofluorobenzene	0.0329	0.0300	110	80-120		

Lab Batch #: 819149

Sample: 385678-010 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 07:45	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0280	0.0300	93	80-120		
4-Bromofluorobenzene	0.0306	0.0300	102	80-120		

Lab Batch #: 819149

Sample: 385678-010 S / MS

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 08:07	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0304	0.0300	101	80-120		
4-Bromofluorobenzene	0.0313	0.0300	104	80-120		

Lab Batch #: 819149

Sample: 385678-010 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 08:29	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes			[2]			
1,4-Dıfluorobenzene	0.0302	0.0300	101	80-120		
4-Bromofluorobenzene	0.0340	0.0300	113	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: MCA Header

Work Orders: 385678,

Project ID: 114-6400314CO

Lab Batch #: 819149

Sample: 385678-005 / SMP

Matrix: Soil Batch: 1

Units: mg/kg Date Analyzed: 08/17/10 09:14	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0277	0.0300	92	80-120		
4-Bromofluorobenzene	0.0290	0.0300	97	80-120		

Lab Batch #: 819149

Sample: 385678-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 09:36	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0270	0.0300	90	80-120			
4-Bromofluorobenzene	0.0325	0.0300	108	80-120			

Lab Batch #: 819149

Sample: 385678-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 09:58	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]		,	
1,4-Difluorobenzene	0.0305	0.0300	102	80-120		
4-Bromofluorobenzene	0.0359	0.0300	120	80-120		

Lab Batch #: 819149

Sample: 385678-006 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 12:12	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0264	0.0300	88	80-120		
4-Bromofluorobenzene	0.0249	0.0300	83	80-120		

Lab Batch #: 819228

Sample: 570816-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 08/17/10 08:22	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Analytes			[2]			
1,4-Difluorobenzene	0.0273	0.0300	91	80-120		
4-Bromofluorobenzene	0.0302	0.0300	101	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B
All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: MCA Header

Work Orders: 385678,

Project ID: 114-6400314CO

Lab Batch #: 819228

Sample: 570816-1-BLK / BLK

Matrix: Solid

Units: mg/kg Date Analyzed: 08/17/10 09:33	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0251	0.0300	84	80-120		
4-Bromofluorobenzene	0.0295	0.0300	98	80-120		

Lab Batch #: 819228

Sample: 385631-001 S / MS

Batch: 1

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 11:24	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene	0.0281	0.0300	94	80-120			
4-Bromofluorobenzene	0.0340	0.0300	113	80-120			

Lab Batch #: 819228

Sample: 385631-001 SD / MSD

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 11:48	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0 0283	0.0300	94	80-120		
4-Bromofluorobenzene	0.0332	0.0300	111	80-120		

Lab Batch #: 819228

Sample: 385678-001 / SMP

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/17/10 13:45	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene	0.0237	0.0300	·79	80-120	**	
4-Bromofluorobenzene	0.0845	0.0300	282	80-120	**	

Lab Batch #: 818891

Sample: 570638-1-BKS / BKS

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 08/14/10 12:10	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	110	99.8	110	70-135		
o-Terphenyl	50.0	49.9	100	70-135		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: MCA Header

Work Orders: 385678,

Project ID: 114-6400314CO

Lab Batch #: 818891

Sample: 570638-1-BSD / BSD

Batch: 1 Matrix: Solid

Units: mg/kg Date Analyzed: 08/14/10 12:41	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]	:		
1-Chlorooctane	105	101	104	70-135		
o-Terphenyl	48.1	50.3	96	70-135		

Lab Batch #: 818891

Sample: 570638-1-BLK / BLK

Batch:

Matrix: Solid

Units: mg/kg Date Analyzed: 08/14/10 13:12	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1-Chlorooctane	103	99.9	103	70-135			
o-Terphenyl	52.7	50.0	105	70-135			

Lab Batch #: 818891

Sample: 385678-001 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 18:19	SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Allalytes							
1-Chlorooctane	107	99.9	107	70-135			
o-Terphenyl	53.5	50.0	107	70-135			

Lab Batch #: 818891

Sample: 385678-002 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 18:5	50 SU	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane	82.4	101	82	70-135			
o-Terphenyl	40.2	50.3	80	70-135			

Lab Batch #: 818891

Sample: 385678-003 / SMP

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 08/15/10 19:53	SURROGATE RECOVERY STUDY						
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1-Chlorooctane		108	99.7	108	70-135			
o-Terphenyl		54.6	49.9	109	70-135			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: MCA Header

Work Orders: 385678, Project ID: 114-6400314CO

Lab Batch #: 818891 Sample: 385678-004 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 20:24	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	105	99.8	105	70-135		
o-Terphenyl	54.1	49.9	108	70-135		

Lab Batch #: 818891 Sample: 385678-005 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 20:54	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes		1	[D]			
1-Chlorooctane	112	99.6	112	70-135		
o-Terphenyl	55.6	49.8	112	70-135		

Lab Batch #: 818891 Sample: 385678-006 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 21:24	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1-Chlorooctane	122	99.6	122	70-135		
o-Terphenyl	62.1	49.8	125	70-135		

Lab Batch #: 818891 Sample: 385678-007 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 21:54	SURROGATE RECOVERY STUDY					
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1-Chlorooctane	112	101	111	70-135		
o-Terphenyl	57.0	50.3	113	70-135		

Lab Batch #: 818891 · Sample: 385678-008 / SMP Batch: 1 Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 22:23	SURROGATE RECOVERY STUDY				
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1-Chlorooctane	124	99.5	125	70-135	
o-Terphenyl	62.0	49.8	124	70-135	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: MCA Header

Work Orders: 385678,

Project ID: 114-6400314CO

Lab Batch #: 818891

Sample: 385678-009 / SMP

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 22:52	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1-Chlorooctane	120	100	120	70-135					
o-Terphenyl	60.2	50.1	120	70-135					

Lab Batch #: 818891

Sample: 385678-010 / SMP

Batch:

Batch:

Matrix: Soil

Units: mg/kg Date Analyzed: 08/15/10 23:21	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1-Chlorooctane	125	101	124	70-135					
o-Terphenyl	63.7	50.3	127	70-135					

Lab Batch #: 818891

Sample: 385503-001 S / MS

Batch: 1

Matrix: Soil

Units: mg/kg	Date Analyzed: 08/15/10 23:51	SURROGATE RECOVERY STUDY									
ТРН	By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1-Chlorooctane		108	99.5	109	70-135						
o-Terphenyl		49.2	49.8	99	70-135						

Lab Batch #: 818891

Sample: 385503-001 SD / MSD

Batch: 1

Matrix: Soil

Units: mg/kg Date Analyzed: 08/16/10 00:20	SURROGATE RECOVERY STUDY								
TPH By SW8015 Mod Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1-Chlorooctane	108	99.7	108	70-135	-				
o-Terphenyl	49.5	49.9	99	70-135					

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: MCA Header

Work Order #: 385678

Project ID:

114-6400314CO

Lab Batch #: 819228

Sample: 570816-1-BKS

Matrix: Solid

Date Analyzed: 08/17/2010

Date Prepared: 08/17/2010

Analyst: ASA

Reporting Units: mg/kg

RLANK /RLANK SPIKE RECOVERY STUDY

Baten #:	BLANK BLANK SPIKE RECOVERY STUDY							
Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags			
	` '	[C]	[D]					
ND	0.1000	0.1046	105	70-130				
ND	0.1000	0.0988	99	70-130				
ND	0.1000	0.1042	104	71-129				
ND	0.2000	0.2133	107	70-135				
ND	0.1000	0.1040	104	71-133				
	Blank Result [A] ND ND ND ND ND	Blank Spike Added [A] [B]	Blank Result Added Spike Result [C]	Blank Spike Blank Spike Spike Spike Result C [D]	Blank Result Added Spike Result [A] Blank Spike Result %R Limits %R [C] [D]			

BS / BSD Recoveries

Project Name: MCA Header

Work Order #: 385678

Analyst: ASA Date Prepared: 08/14/2010

Project ID: 114-6400314CO

Date Analyzed: 08/16/2010

Lab Batch ID: 819149

Sample: 570783-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B].	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Benzene	ND	0.1000	0.0969	97	0.1	0.1011	101	4	70-130	35			
Toluene	ND	0.1000	0.0964	96	0.1	0.1016	102	5	70-130	35			
Ethylbenzene	ND	0 1000	0.1061	106	0.1	0.1124	112	6	71-129	35			
m,p-Xylenes	ND	0.2000	0.2086	104	0.2	0.2214	111	6	70-135	35			

Analyst: LATCOR

Date Prepared: 08/17/2010

0.1044

104

0.1

0.1100

Date Analyzed: 08/17/2010

110

Lab Batch ID: 819152

o-Xylene

Sample: 819152-1-BKS

ND

Batch #: 1

0.1000

Matrix: Solid

71-133

35

Units: mg/kg		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY									
Anions by E300	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	ND	10.0	8.73	87	10	8.75	88	0	75-125	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: MCA Header

Work Order #: 385678

Analyst: BEV

Date Prepared: 08/13/2010

Project ID: 114-6400314CO

Date Analyzed: 08/14/2010

Lab Batch ID: 818891

Sample: 570638-1-BKS

Batch #: 1

Matrix: Solid

Units: mg/kg	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY										
TPH By SW8015 Mod Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Gasoline Range Hydrocarbons	ND	998	937	94	1010	904	90	4	70-135	35	
Diesel Range Hydrocarbons	ND	998	804	81	1010	763	76	5	70-135	35	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: MCA Header

Work Order #: 385678

Lab Batch #: 819152

QC-Sample ID: 385617-001 S

Date Prepared: 08/17/2010

Project ID: 114-6400314CO

Date Analyzed: 08/17/2010

Analyst: LATCOR

Reporting Units: mg/kg

Batch #: 1 Matrix: Soil MATRIX / MATRIX SPIKE RECOVERY STUDY

Reporting Units: mg/kg	MAIR	MAIRIA / MAIRIA SPIRE RECOVERT STUDI								
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag				
Analytes	[A]	[B]		(L)	/ U IX					
Chloride	1250	532	1750	94	75-125					

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)
All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: MCA Header

Work Order #: 385678

Project ID: 114-6400314CO

Lab Batch ID: 819149

QC-Sample ID: 385678-010 S

Batch #:

Matrix: Soil

Date Analyzed: 08/17/2010

Date Prepared: 08/14/2010

Analyst: ASA

Reporting Units: mg/kg MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	ND	0.1059	0.0957	90	0.1068	0.1024	96	7	70-130	35	
Toluene	ND	0.1059	0.0928	88	0.1068	0.0998	93	7	70-130	35	
Ethylbenzene	ND	0.1059	0.0979	92	0.1068	0.1059	99	8	71-129	35	
m,p-Xylenes	ND	0.2119	0.1920	91	0.2136	0.2081	97	8	70-135	35	
o-Xylene	ND	0.1059	0 0951	90	0.1068	0.1049	98	10	71-133	35	

Lab Batch ID: 819228

QC-Sample ID: 385631-001 S

Batch #:

Matrix: Soil

Date Analyzed: 08/17/2010

Date Prepared: 08/17/2010

Analyst: ASA

Reporting Units: mg/kg	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	. Flag
Analytes	[A]	[B]	101	[D]	(E)	incount [1]	[G]	~	/610	701112	
Benzene	ND	0.1095	0.0845	77	0.1095	0.0927	85	9	70-130	35	
Toluene	ND	0.1095	0.0807	74	0.1095	0.0877	80	8	70-130	35	
Ethylbenzene	ND	0.1095	0.0854	78	0.1095	0.0921	84	8	71-129	35	
m,p-Xylenes	ND	0.2190	0 1761	80	0.2190	0.1883	86	7	70-135	35	
o-Xylene	ND	0.1095	0.0839	77	0.1095	0.0903	82	7	71-133	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Form 3 - MS / MSD Recoveries

Project Name: MCA Header

Work Order #: 385678

Project ID: 114-6400314CO

Lab Batch ID: 818891

QC-Sample ID: 385503-001 S

Batch #:

Matrix: Soil

Date Analyzed: 08/15/2010

Date Prepared: 08/13/2010

Reporting Units: ma/kg

BEV Analyst:

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
TPH By SW8015 Mod	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits %RPD	Flag
Analytes	[A]	Result Added [C] %R Added Result [F] %R %R %R [A] [B] [D] [E] [G]									
Gasoline Range Hydrocarbons	ND	1090	1030	94	1090	1020	94	1	70-135	35	
Diesel Range Hydrocarbons	ND ·	1090	852	78	1090	860	79	1	70-135	35	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*[(C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Sample Duplicate Recovery

Project Name: MCA Header

Work Order #: 385678

Lab Batch #: 819152

Date Analyzed: 08/17/2010

Project ID: 114-6400314CO

Date Prepared: 08/17/2010 Analyst: LATCOR

QC-Sample ID: 385617-001 D
Reporting Units: mg/kg

Batch #: 1 Matrix: Soil

Reporting Units: mg/kg	SAMPLE	SAMPLE / SAMPLE DUPLICATE RECOVERY					
Anions by E300	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag		
Analyte		[B]					
Chloride	1250	1170	7	20			

Lab Batch #: 818841

Date Analyzed: 08/14/2010

Date Prepared: 08/14/2010

Analyst: JLG

QC- Sample ID: 385631-013 D

Batch #: 1

Matrix: Soil

Reporting Units: %	SAMPLE / SAMPLE DUPLICATE RECOVERY					
Percent Moisture	Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag	
Analyte		{B}				
Percent Moisture	15.2	16.0	5	20		

Final 1.000

Analysis Request of Chain of Custody Record TETRATECH 1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946 CUENT NAME: CARROLL D. MARCER: CARROLL D. MARC	OF: /						
1910 N. Big Spring St. Midland, Texas 79705 (432) 682-4559 • Fax (432) 682-3946 CLIENT NAME: PROJECT NO: IN H. H. H. B. D. DATE TIME SME MANAGER: PROJECT NAME: NOW LAB I.D. DATE TIME SME NO CO WAS NOT 858008080 DATE TO CO WAS NOT 85800							
PROJECT NO: 1							
-001 8/3/10 425 5 × 58-1 8' /N X XX / V / N -007 8/13/10 0730 5 × 58-1 12' /N X XX / X X X X X X X X X X X X X X X	pna, pH						
-001 8/3/10 425 5 × 58-1 8' /N X XX / V / N -007 8/13/10 0730 5 × 58-1 12' /N X XX / X X X X X X X X X X X X X X X	stos)						
-001 8/3/10 425 5 × 58-1 8' /N X XX / V / N -007 8/13/10 0730 5 × 58-1 12' /N X XX / X X X X X X X X X X X X X X X	PLM (Asbe Major Anio						
-003 \$11370440 S X 58-1 16' IM X XX							
\sim 1/13/0/14 \sim 1/1							
-004 5/13/10/09505 X 5B-1 20' W X KX							
-005 5/13/1000 S X SB-1 24' /N X XX XX							
-906 8)1)10105 S X SB-5 8' IN X XX							
-007 5/13/10/11/2 S X 5B-5 12' 1 M X XX XX X X X X X X X							
-ax8 (13)0 /120 5 x 58-5 1L' 1N X XX III X							
-009 5/15/10 1728 5 × 58-5 201 /M & XX							
-010 8/3/01/40 5 K 56-5 24 JA X X X X X X X X X X X X X X X X X X							
Time: 1600 Time: Dest knowled (JK) Time: 1600	Time: 1600						
Time: FEDEX BUS							
RELINGUI(SHED BY: (Signature) Date: HAND DELIVERED UPS Time: Tetra TECH CONTACT PERSON: RECEIVED BY: (Signature)							
BUSH Codense	RUSH Charges						
CITY: STATE: ZIP: DATE: 8/13/10 TIME: 1600 CCC (23) WOULD Authorized:	Authorized:						
SAMPLE CONDITION WHEN RECEIVED: REMARKS: TPA FOOLS TPA 6RO DQD Please fill out all copies - Laboratory retains Yellow copy - Return Orginal copy to Tetra Tech - Project Manager retains Pink copy - Accounting receives Gold copy.							

Date 8/11/10

Sìg.

Page 25 of 26

Final 1.000

XENCO Laboratories

Atlanta, Boca Raton, Corpus Christi, Dallas

Houston, Miami, Odessa, Philadelphia

Phoenix, San Antonio, Tampa

Document Title: Sample Receipt Checklist

Document No.: SYS-SRC

Revision/Date: No. 01, 5/27/2010

Effective Date: 6/1/2010

Page 1 of 1

	Prelogi	n / None	conformat	nce Report	- Sampl	e Log-In		
Client: Terro	Tech							
Date/Time: 3/13/	10							
Lab ID#: 3 85	618							
Initials:								
		S	ample Rec	eipt Check	list			
1 Samples on ico?					Blue	Water	No	
Samples on ice? Shipping container in good condition?					(Yes)	No	None	
3. Custody seals intac			poler) and bot	tles?	(FES)	No	N/A	
4. Chain of Custody p					Ves	No		
5. Sample instructions		nain of cus	tody?		Yes	No		
6. Any missing / extra					Yes	No		
7. Chain of custody signed when relinquished / received?				Yes	No			
8. Chain of custody agrees with sample label(s)?				(Fes)	No			
9. Container labels legible and intact?				Yes	No			
10. Sample matrix / properties agree with chain of custody?				Yes	No			
11. Samples in proper container / bottle?				Yes	No			
12. Samples properly preserved?				Yes	No	N/A		
13. Sample container intact?				Yes	No			
14. Sufficient sample amount for indicated test(s)?				Yes	No			
15. All samples received within sufficient hold time?				Yes	No			
16. Subcontract of sample(s)?				Yes	No	N/A		
17. VOC sample have zero head space?				Yes	No	N/A		
18. Cooler 1 No.	Cooler 2 No.		Cooler 3 No.		Cooler 4 No).	Cooler 5 No.	
lbs [1]	°C lbs	ე°		lbs °C	lbs	°	lbs	°C
		None	onforman	ce Docume	ntation			
Contact:	c	ontacted by	/ :			Date/Time:_		
Regarding:								
Corrective Action Take	en:							
Check all that apply:	□ Cooling proc condition	on accepta	ble by NELA	C 5.5.8.3.1.a.1.		-	ature	

☐ Client understands and would like to proceed with analysis