3RP-340

QTR Groundwater Report

DATE: AUG 2010

August 19, 2010

Mr. Glen von Gonten
State of New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

RE: ConocoPhillips Company Randleman #1 - Groundwater Monitoring Report, Aztec, New Mexico

Dear Mr. von Gonten:

Enclosed please find one copy of the above-referenced document as compiled by Tetra Tech, Inc., for this Aztec-area site.

Please do not hesitate to contact me at (505) 237-8440 if you have any questions or require additional information.

Sincerely,

Kelly E. Blanchard

Project Manager/Geologist

Cc: Brandon Powell, NMOCD

Kelly E. Blanchard

Enclosures (1)

QUARTERLY GROUNDWATER MONITORING REPORT

CONOCOPHILLIPS COMPANY RANDLEMAN No.1 PRODUCTION FACILITY SAN JUAN COUNTY, NEW MEXICO

OCD # 3RP-340-0 API # 30-045-10698

Prepared for:

Risk Management and Remediation 420 South Keeler Avenue Bartlesville, OK 74004

Prepared by:

TETRATECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 1158690090

August 2010

TABLE OF CONTENTS

1.0	INT	RODUCTION	I
	1.1	Site Background	I
2.0	МО	NITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS	2
	2.1	Monitoring Summary	2
	2.2	Groundwater Sampling Methodology	3
	2.3	Groundwater Sampling Analytical Results	3
3.0	СО	NCLUSIONS AND RECOMMENDATIONS	4
4.0	REF	ERENCES	4

FIGURES

- 1. Site Location Map
- 2. Site Detail Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Map June 2010
- 5. BTEX Groundwater Concentration Map June 2010

TABLES

- 1. Site History Timeline
- 2. Groundwater Elevation Data Summary (June 2009 June 2010)
- 3. Groundwater Laboratory Analytical Results Summary, Baseline Parameters (June 2009)
- 4. Groundwater Laboratory Analytical Results Summary, Quarterly Parameters (June 2009 June 2010)

APPENDICES

- Appendix A Groundwater Sampling Field Forms
- Appendix B Groundwater Laboratory Analytical Report

QUARTERLY GROUNDWATER MONITORING REPORT RANDLEMAN NO.1, SAN JUAN COUNTY, NEW MEXICO APRIL 2010

I.0 INTRODUCTION

This report discusses the groundwater sampling event performed by Tetra Tech, Inc. (Tetra Tech) on June 9, 2010 at the ConocoPhillips Company Randleman No. I site located outside of Aztec, New Mexico (Site). The Site is situated on private land in Section 13, Township 31N, Range 11W, of San Juan County, New Mexico. A site location map and detail map are included as **Figures 1** and **2**, respectively.

I.I Site Background

The historical timeline for the Site is summarized below, and is also presented in **Table 1**.

In April 1997, an unlined surface impoundment (**Figure 2**) was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman No. 3 site (Williams 2002). Three monitor wells were installed at the Site on May 14, 1997, and quarterly groundwater monitoring was conducted through March 1998. Evaluation of groundwater monitoring results initiated another excavation in April 1998 of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002). Quarterly groundwater monitoring was continued through September 2000, and after 4 consecutive quarters of groundwater monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status to the Site. In June 2002, OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitor wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in **Figure 2**.

On February 23, 2009, a release of approximately 60 barrels of condensate occurred as a result of a hole in an on-Site production tank. Envirotech Inc. of Farmington, NM (Envirotech) excavated an area of approximately 42 ft. x 51 ft. x 7 ft. deep on February 26, 2009. Seven composite soil samples were collected during excavation activities and were field analyzed for total petroleum hydrocarbons (TPH) using Environmental Protection Agency (EPA) Method 418.1. Additionally, samples were field analyzed for organic vapors using a photoionization detector (PID) and heated headspace techniques. TPH results ranged from 8 to 1,080 parts per million (ppm) in the walls of the excavation. Organic vapor concentrations ranged from 6.8 ppm to 898 ppm. Due to levels of TPH and organic vapors above OCD action levels, the excavation was continued on February 27, 2009 (Envirotech, 2009). The total area of excavation measured 81 ft x 43 ft x 20 ft. deep. The excavation area is depicted in **Figure 2**.

On March 2, 2009, groundwater was found seeping into the southeast corner of the excavation at a depth of approximately 20 feet bgs. A vacuum truck operated by Rock Springs was contracted by Envirotech to collect groundwater from the excavation; approximately 10 gallons of water were removed. After removal of collected groundwater, Envirotech obtained a soil sample from the southeast corner of the excavation at a depth of 20 feet bgs. TPH and organic vapor results were found to be above OCD action levels. During field analysis of the soil sample, groundwater continued to seep into the excavation. Groundwater was again removed from the excavation, and additional excavation was performed to obtain a soil sample below OCD action levels. A groundwater sample was collected and sent for laboratory analysis of volatile organic compounds by EPA Method 8260. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above NMWQCC groundwater quality standards. Soon after the groundwater sample was taken, the excavation caved in making further water removal via the vacuum truck impossible (Envirotech, 2009). The excavation area is depicted in **Figure 2**.

A total of 611 cubic yards of soil were removed from the Site and were transported to an OCD-permitted facility; clean fill was obtained from the landowner to backfill the excavation. Envirotech recommended the installation of groundwater monitor wells at the Site under OCD guidelines (Envirotech, 2009).

Tetra Tech installed four groundwater monitor wells at the Site between June 9, 2009 and June 10, 2009. A generalized geologic cross section was produced using soil boring data collected during monitoring well installation (**Figure 3**). Following drilling activities in June 2009, the casings for Site monitor wells were surveyed using an arbitrary reference-elevation of 100 feet above mean sea level (amsl). Data obtained from the Site survey is used in conjunction with quarterly monitoring data to produce groundwater elevation maps for the Site (**Figure 4**). Groundwater flow direction at the Site is to the east/southeast.

Tetra Tech began conducting groundwater monitoring events at the Site on June 12, 2009. Hydrocarbon absorbent socks were placed in Monitor Wells MW-2 and MW-3 on June 18, 2009 due to the presence of a spotty, discontinuous light non-aqueous phase liquid (LNAPL) sheen present in purge water during sampling. The absorbent socks will be monitored and replaced as necessary during subsequent monitoring events. Soil and groundwater samples were also collected from the Kiffen Canyon Wash on October 21, 2009 and analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX). In both the soil and groundwater collected from Kiffen Canyon Wash, BTEX constituents were found to be below standards.

2.0 MONITORING SUMMARY, SAMPLING METHODOLOGY AND RESULTS

2.1 Monitoring Summary

A groundwater sampling event was conducted at the Site on June 9, 2010. Prior to collection of groundwater samples from Monitor Wells MW-1, MW-2, MW-3 and MW-4, depth to groundwater in each well was measured using a dual interface probe (**Table 2**). A groundwater elevation contour map reflecting June 9, 2010 groundwater elevation is presented as **Figure 4**.

Tetra Tech, Inc. 2 August 19, 2010

2.2 Groundwater Sampling Methodology

During the June 9, 2010 groundwater monitoring event, Site monitor wells were purged of at least 3 casing volumes of groundwater using a 1.5-inch diameter, polyethylene dedicated bailer. While bailing each well, groundwater parameters were collected using a YSI 556 multi-parameter sonde and results were recorded on a Tetra Tech Water Sampling Field Form (**Appendix A**). Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Southern Petroleum Laboratory (SPL) of Houston, Texas.

June 2010 groundwater samples were analyzed for BTEX by EPA Method 8260B; sulfate and chloride by EPA Method E300.0; TDS by EPA Method 2540C; and dissolved manganese by EPA Method 6010B (**Table 3**). A summary of analytical results from the June 9, 2010 sampling event is displayed in **Table 4**. Tetra Tech has prepared **Table 4** as a historical analytical results table to include all quarterly analytical parameters to help document trends in constituent concentrations over time. Results from future groundwater monitoring events at the Site will be compiled in this table.

2.3 Groundwater Sampling Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitoring wells are discussed below.

Chloride

o The NMWQCC domestic water supply groundwater quality standard for chloride is 250 milligrams per liter (mg/L); the groundwater sample collected from MW-4, the up-gradient monitoring well, was found to contain chloride at concentration of 2,190 mg/L.

Sulfate

The NMWQCC domestic water supply groundwater quality standard for sulfate is 600 mg/L; groundwater samples collected from Monitor Well MW-1, MW-2, MW-3 and MW-4 were found to contain sulfate at concentrations of 1,450 mg/L, 1,280 mg/L, 989 mg/L, and 2,710 mg/L, respectively.

Manganese

The NMWQCC domestic water supply groundwater quality standard for manganese is 0.2 milligrams per liter (mg/L). Groundwater samples collected from Monitor Wells MW-2 and MW-4 were found to contain concentrations of manganese above the standard at 3.24 mg/L, and 1.06 mg/L, respectively.

Benzene

 $_{\odot}$ The human health NMWQCC groundwater quality standard for benzene is 10 μg/L. Groundwater samples collected from Monitor Well MW-3 was above the standard with a concentration of 12 μg/L.

Total Xylenes

 $_{\odot}$ The human health NMWQCC groundwater quality standard for total xylenes is 620 $\mu g/L$. The groundwater samples collected from all Monitor Wells were below the NMWQCC standard for total xylenes; representing the second quarter of NMWQCC compliance for total xylenes at the Site.

Total Dissolved Solids

The human health NMWQCC groundwater quality standard for total dissolved solids is 1,000 mg/L. Groundwater samples collected from Monitor Wells MW-1, MW-2, MW-3 and MW-4 were above the standard with concentrations of 3,340 μ g/L; 2,590 μ g/L; 2,200 μ g/L and 4,720 μ g/L, respectively.

The corresponding laboratory analytical report for the June 2010 groundwater sampling event, including quality control summaries, is included in **Appendix B**. A map showing BTEX concentrations in groundwater from Site monitoring wells during the April 2010 groundwater sampling event is included as **Figure 5**.

3.0 CONCLUSIONS AND RECOMMENDATIONS

Tetra Tech recommends continued quarterly groundwater sampling at the Site in order to provide sufficient data for Site closure. Site closure will be requested when groundwater analytical results indicate that all constituents of concern are consistently below NMWQCC groundwater quality standards. Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

4.0 REFERENCES

Envirotech Incorporated (2009). Spill Cleanup Report, Located at: Burlington Resources [sic] Randleman #1 Well Site, Section 13, Township 31N, Range 11W, San Juan County, New Mexico. Prepared for ConocoPhillips. Report Dated February 2009. 3 pp (not including Figures, Tables, and Appendices).

New Mexico Energy, Minerals and Natural Resources Department (2002). Case # 3R0-340, Randleman #1

Dehy Pit, San Juan County [sic], New Mexico. Letter from NMEMNRD to Williams Field Services.

Dated June 14, 2002. 6 pp.

Williams Environmental Services (2002). Randleman #1 Pit Remediation and Closure Report. Prepared for the New Mexico Oil Conservation Division. Report Dated February 11, 2002. 3 pp (not including Figures, Tables, and Appendices).


FIGURES

- I. Site Location Map
 - 2. Site Detail Map
- 3. Generalized Geologic Cross Section
- 4. Groundwater Elevation Map June 2010
- 5. BTEX Groundwater Concentration Map June 2010

FIGURE 1.

Site Location Map ConocoPhillips Randleman No. 1 Aztec, NM

ConocoPhillips
Randleman No.1 Site Location

TETRA TECH, INC.

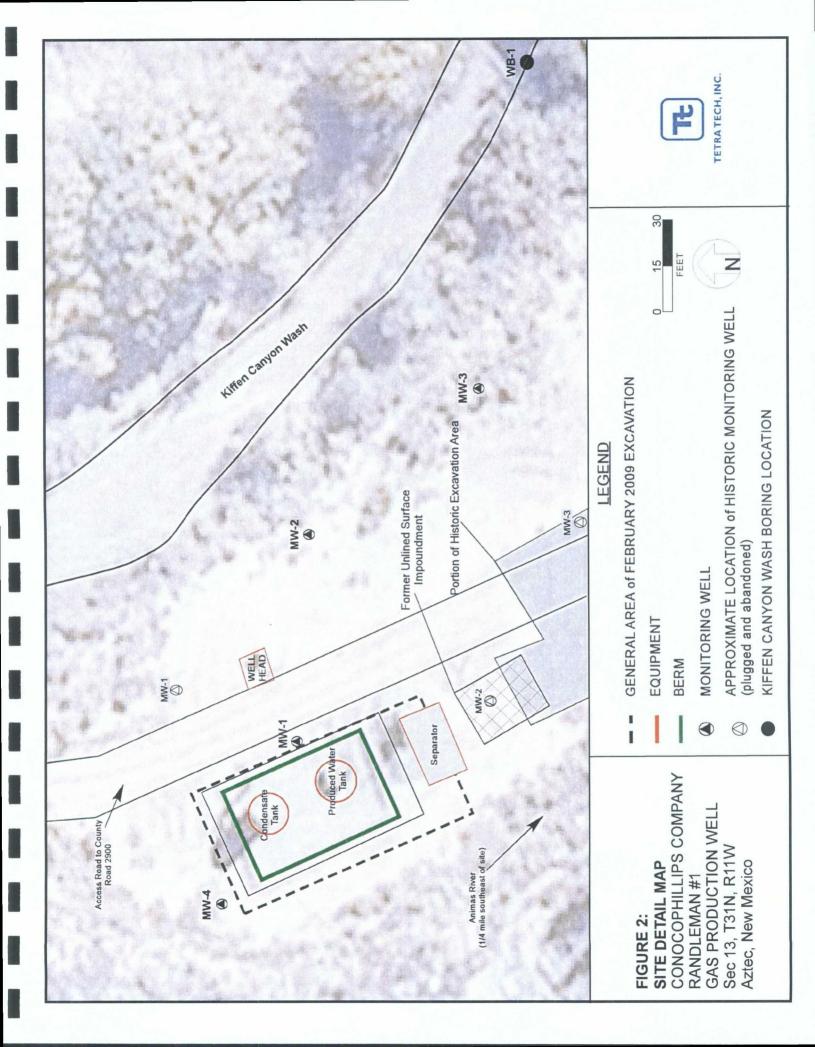
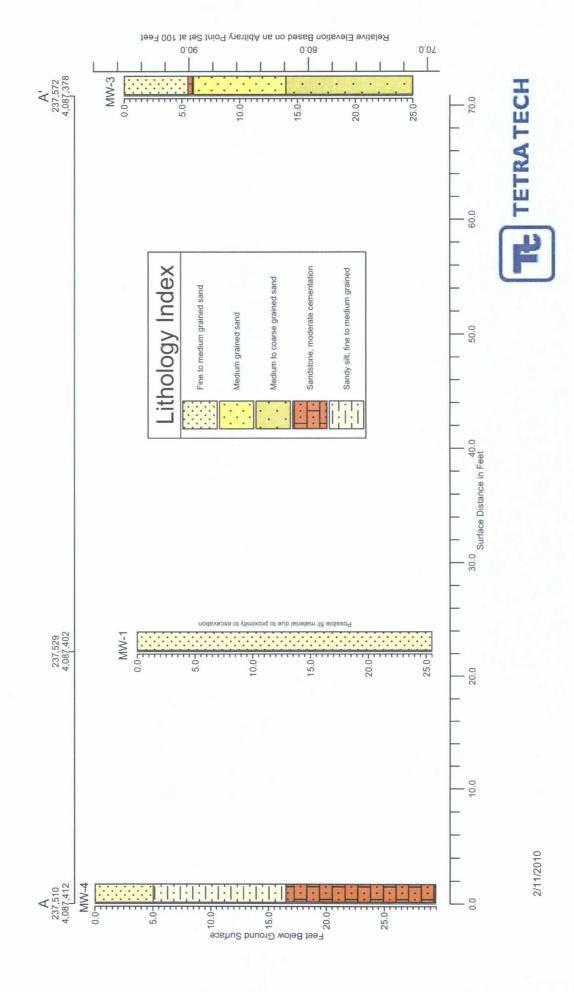
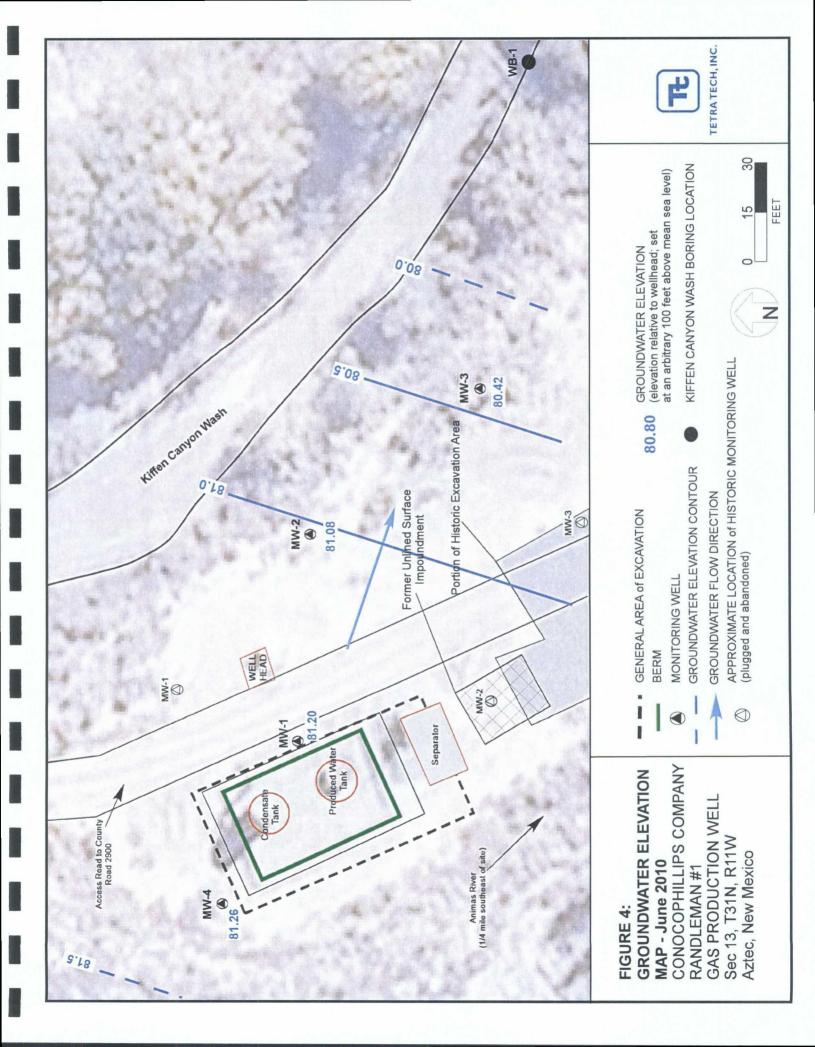
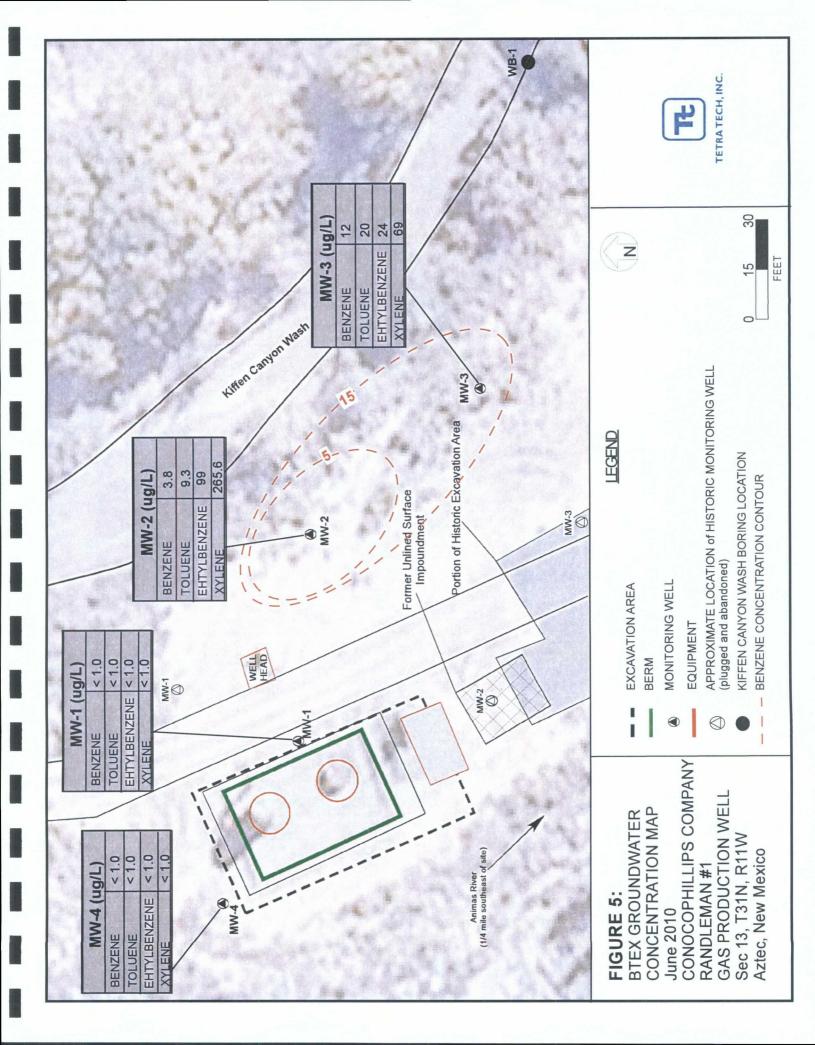





Figure 3. Randleman #1 - Cross-Section A-A'

TABLES

- 1. Site History Timeline
- 2. Groundwater Elevation Data Summary (June 2009 June 2010)
- 3. Groundwater Laboratory Analytical Results Summary, Baseline Parameters (June 2009)
 - 4. Groundwater Laboratory Analytical Results Summary, Quarterly Parameters (June 2009 June 2010)

DATE	ACTIVITY
September 20, 1951	Well spudded by Southern Union Gas Company.
August 1, 1952	Well acquired by Aztec Oil and Gas Company.
December 1, 1976	Southland Royalty Company acquired Aztec Oil and Gas Company.
November 22, 1985	Southland Royalty Company acquired by Burlington Resources.
April 1, 1997	An unlined surface impoundment was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman #3 site.
May 14, 1997	Three groundwater monitor wells were installed at the Site. Groundwater monitoring was initiated on a quarterly basis through March 1998.
April 1, 1998	Evaluation of groundwater monitoring results initiated another excavation of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002).
February 1, 2002	Quarterly groundwater monitoring was continued through September 2000, and after 4 consecutive quarters of groundwater quality monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status to the Site.
June 1, 2002	OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitoring wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in Figure 2.
March 31, 2006	ConocoPhillips Company acquired Burlington Resources and all assets.
February 23, 2009	Approximately 60 barrels of condensate were found to have spilled from a hole located on the back side of an on-Site condensate tank into the bermed area. The spilled fluids remained in the berm and none of the condensate was recovered. Form C-141 stated that the spill impacted the soil on the ground surface around the tank, that the production tank was to be removed, and that the affected soils were to be excavated.
February 26, 2009	Envirotech Inc. of Farmington, NM (Envirotech) performed the soil excavation and collected soil samples for analysis. The area of release was excavated to approximately 42 feet by 51 feet by 7 feet deep. 7 composite soil samples were collected from the excavation and were analyzed for total petroleum hydrocarbons (TPH) using EPA Method 418.1. Additionally, organic vapors were measured using a Photoionization Detector (PID). TPH results ranged from 8 parts per million (ppm) in the north wall sample to 1,080 ppm in the south wall sample. The OCD recommended action level for TPH at the Site was determined to be 100 ppm. Organic vapor concentrations ranged from 6.8 ppm from the north wall sample, to 898 ppm in the south wall sample. Due to high levels of TPH and organic vapors, the excavation was continued on February 27, 2009.
February 27, 2009	Envirotech continue the excavation and sampling activities. Samples collected from the north, west, and east ends of the excavation on February 26, 2009 were found to be below OCD action levels for TPH, the focus of the excavation on February 27, 2009 was the south wall, the southeast wall, and the bottom of the southeast corner. At the end of the day, the excavation measured 81 feet by 43 feet by 20 feet deep (total depth is given for the deepest part of the excavation; other areas determined to be below OCD action levels went to approximately 8 feet bgs). Eight soil samples were collected and analyzed in the field for TPH and organic vapors. Excavation continued until all samples were found to be below100 ppm for both TPH and organic vapors.
March 2, 2009	Groundwater began to seep into the southeast corner of the excavation at 20 feet bgs. A vacuum truck was contracted to remove groundwater from the excavation; approximately 10 gallons of water were removed. After removal of groundwater, a soil sample from the southeast corner of the excavation was collected. TPH and organic vapor results were found to be above OCD action levels. More water was then removed from the excavation, and additional soil removal was performed. A groundwater sample was collected from the area where water continued to seep into the excavation, and was analyzed for volatile organic compounds by EPA Method 8260. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Once this sample had been obtained, the excavation caved in, making further water removal impossible (Envirotech, 2009). A total of 611 cubic yards of soil were romoved from the Site. Clean fill was used to backfill the excavation.
June 9 through 11, 2009	Tetra Tech installs 4 groundwater monitor wells at the Site; MW-1, MW-2, MW-3 and MW-4.
June 12, 2009	Tetra Tech conducts the first groundwater monitoring event at the Site.
June 17, 2009	Depth to water measurements were taken by Tetra Tech in Site monitor wells to determine if hydrocarbons were accumulating in the water column. Hydrocarbon sheen was detected in MW-2 and MW-3.

Table 1. Randleman No. 1 Site History Timeline

June 18, 2009	Hydrocarbon-absorbent socks were placed in monitor wells MW-2 and MW-3 by Tetra Tech.
September 23, 2009	Second quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
October 1, 2009	Tetra Tech on Site to hand auger one boring near the Kiffen Canyon Wash, which is located downgradient and east of the Site. Groundwater and soil samples collected from boring.
December 16, 2009	Third quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
April 1, 2010	Fourth quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
June 9, 2010	Fifth quarterly groundwater monitoring event at the Site conducted by Tetra Tech.

Table 2. Groundwater Elevation Data Summary - ConocoPhillips Company Randleman No. 1

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				6/12/2009	13.98	81.21
				6/14/2009	13.96	81.23
MW_1	ა უ უ	0 - 2/	05 10	9/23/2009	13.97	81.22
14141		0 - C+		12/16/2009	14.30	80.89
				4/1/2010	14.39	80.80
				6/9/2010	13.99	81.20
				6/12/2009	15.57	81.22
				6/14/2009	15.63	81.16
MW_2	23 80	80-238	96 79	9/23/2009	15.67	81.12
	0.00	0.0		12/16/2009	16.41	80.38
				4/1/2010	16.75	80.04
				6/9/2010	15.71	81.08
				6/12/2009	16.00	80.31
				6/14/2009	15.97	80.34
MW-3	>> 00	6 A - 21 A	06.33	9/23/2009	15.78	80.53
414	19	. 1		12/16/2009	16.77	79.54
				4/1/2010	16.79	79.52
			:	6/9/2010	15.89	80.42
				6/12/2009	17.68	81.15
		-	.	6/14/2009	17.52	81.31
MW_2) o 50	11 - 26	08 83	9/23/2009	17.56	81.27
14144	0	-	0	12/16/2009	17.86	80.97
				4/1/2010	17.94	80.89
				6/9/2010	17.57	81.26

4

1

1

ALL STATES

1 To 1 To 1

1

- P. T.

ft = Feet
TOC = Top of casing
bgs = below ground surface
* Elevation relative to an arbitrary data point of 100 feet

Tetra Tech, Inc.

Table 3. ConocoPhillips Company - Randleman No. 1 - GroundwaterBaseline Analytical Results Summary - June 2009

Constituent			Sample	ID (samp	les collect	ed on June	12, 2009)	
	1						,	NMWQCC Groundwater
lons	Method	Units	MW-1	MW-2	MW-3	Duplicate	MW-4	Quality Standard
Bromide	E300.0	mg/L	< 0.5	<0.5	<0.5	NA	< 0.5	NE
Chloride	E300.0	mg/L	119	40.1	40.3	NA	2,310	250
Fluoride	E300.0	mg/L	0.518	0.621	<0.5	NA	0.652	1.6
Orthophospate (as P)	E300.0	mg/L	< 0.5	< 0.5	<0.5	NA	< 0.5	NE
Sulfate	E300.0	mg/L	1,690	1,360	1,510	NA	4,190	600
Nitrate (as N)	E300.0	mg/L	0.78	0.52	< 0.5	NA	< 0.5	10
Nitrite (as N)	E300.0	mg/L	< 0.5	< 0.5	< 0.5	NA	< 0.5	NE
								NMWQCC Groundwater
Metals, Total	Method	<u>Units</u>	MW-1	MW-2	MW-3	Duplicate	MW-4	Quality Standard
Mercury	SW7470A	mg/L	<0.0002	<0.0002	<0.0002	NA	< 0.0002	NE
Aluminum	SW6010B	mg/L	9.22*	2.99*	1.1*	NA	13.6*	NE
Boron	SW6010B	mg/L	0.135	<0.1	0.107	NA	0.523	NE
Calcium	SW6010B	mg/L	473	528	527	NA	496	NE
Iron	SW6010B	mg/L	6.81*	3.7*	1.65*	NA	20*	NE NE
Magnesium	SW6010B	mg/L	27.1	19.7	23.9	NA	32.2	NE .
Potassium	SW6010B	mg/L	7.31	7.53	6	NA	19.1	NE
Sodium	SW6010B	mg/L	454	196	242	NA	2720	NE_
Strontium	SW6010B	mg/L	8.51	8.54	10.5	NA	11.6	NE.
Tin	SW6010B	mg/L	<0.005	<0.005	0.0061	NA	<0.005	NE
Antimony	SW6020A	mg/L	< 0.005	<0.005	<0.005	NA ·	< 0.005	NE
Arsenic	SW6020A	mg/L	< 0.005	0.00759	< 0.005	NA	<0.005	NE.
Barium	SW6020A	mg/L	0.0857	0.107	0.0537	NA	0.131	NE
Beryllium	SW6020A	mg/L	< 0.004	<0.004	· <0.004	NA	0.00468	NE
Cadmium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	<0.005	NE ·
Chromium	SW6020A	mg/L	0.00601	< 0.005	< 0.005	NA	0.117*	NE
Cobalt	SW6020A	mg/L	0.0157	< 0.005	< 0.005	NA	0.0312	NE
Copper	SW6020A	mg/L	0.022	0.00699	< 0.005	NA	0.041	NE
Lead	SW6020A	mg/L	0.0124	0.00561	< 0.005	NA	0.0418	NE NE
Manganese	SW6020A	mg/L	4.79*	3.56*	3*	NA	4.92*	NE NE
Molybdenum	SW6020A	mg/L	< 0.01	<0.01	<0.01	NA	0.0146	NE
Nickel	SW6020A	mg/L	0.0185	0.0107	0.00971	NA	0.0372	NE NE
Selenium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA	0.00558	NE.
Silver	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA NA	< 0.005	NE.
Thallium	SW6020A	mg/L	< 0.005	< 0.005	< 0.005	NA NA	< 0.005	NE NE
Vanadium	SW6020A	mg/L	0.012	0.00592	< 0.005	NA NA	0.0269	NE NE
Zinc	SW6020A	mg/L	0.0322	0.0152	<0.01	NA NA	0.103	NE NE
		1.1.3-2	0.000	0.0.02	0.07	1		NMWQCC Groundwater
SVOCS (detections only)	Method	Units	MW-1	MW-2	MW-3	Duplicate	MW-4	Quality Standard
2,4-Dimethylphenol	8270C	μg/L	<5	<5	18	NA	<5	NE NE
2-Methylnaphthalene	8270C	μg/L	<5	13	12	NA NA	<5	see
Naphthalene	8270C	μg/L μg/L	<5	14	20	NA NA		below
Sum of 2-Methylnaphthalene & Naphthalene	8270C	μg/L μg/L		27	32	NA NA		30
Benzyl alcohol	8270C		<5			INA		
		μg/L		6.8	<5 7.0	NA	<5 	NE NE
2-Methylphenol 3&4-Methylphenol	8270C 8270C	μg/L μg/L	<5 <5	<5	7.2	NA NA	<5 <5	NE NE
								NE I
эан-мешурпено	02700	дуль	\ \5	<5	8.3	INA		
								NMWQCC Groundwater
VOCs (detections and BTEX only)	Method	<u>Units</u>	<u>MW-1</u>	MW-2	MW-3	Duplicate	<u>MW-4</u>	Quality Standard
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene	Method 8260B	<u>Units</u> μg/L	<u>MW-1</u> < 5	MW-2 300	<u>MW-3</u> 440	Duplicate NA	<u>MW-4</u> < 5	Quality Standard NE
VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene	Method 8260B 8260B	<u>Units</u> μg/L μg/L	MW-1 < 5 < 5	MW-2 300 96	MW-3 440 140	Duplicate NA NA	MW-4 < 5 < 5	Quality Standard NE NE
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene	Method 8260B 8260B 8260B	<u>Units</u> μg/L μg/L μg/L	MW-1 < 5 < 5 < 5	MW-2 300 96 7.2	MW-3 440 140 6.3	Duplicate NA NA NA	MW-4 < 5 < 5 < 5	Quality Standard NE NE NE NE
VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropyltenzene	Method 8260B 8260B 8260B 8260B	Units μg/L μg/L μg/L μg/L	MW-1 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24	MW-3 440 140 6.3 46	Duplicate NA NA NA NA	MW-4 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE
VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropyltonzene Naphthalene	Method 8260B 8260B 8260B 8260B 8260B	Units μg/L μg/L μg/L μg/L μg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24 21	MW-3 440 140 6.3 46 36	Duplicate NA NA NA NA NA	MW-4 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE 30
VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B	<u>Units</u> μg/L μg/L μg/L μg/L μg/L μg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24 21 5.2	MW-3 440 140 6.3 46 36 < 5	Duplicate NA NA NA NA NA NA	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24 21 5.2 25	MW-3 440 140 6.3 46 36 < 5	Duplicate NA	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE NE NE NE N
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24 21 5.2 25 6.6	MW-3 440 140 6.3 46 36 < 5 48 6.1	Duplicate NA	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE NE NE NE N
VOCs (detections and BTEX only) 1.2.4-Trimethylbenzene 1.3.5-Trimethylbenzene 4-Isopropyltoluene Isopropyltonzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene Benzene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24 21 5.2 25 6.6 9.4	MW-3 440 140 6.3 46 36 < 5 48 6.1	Duplicate NA	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE NE NE 30 NE NE NE 10
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene Toluene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7	MW-2 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100	MW-3 440 140 6.3 46 36 < 5 48 6.1 10	Duplicate NA NA NA NA NA NA NA NA 10 1,400	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE NE NE 10 750
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene Toluene Ethylbenzene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100	MW-3 440 140 6.3 46 36 < 5 48 6.1 10 1,400	Duplicate	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE NE NE 10 750
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene Toluene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7 < 7	MW-2 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100	MW-3 440 140 6.3 46 36 < 5 48 6.1 10	Duplicate NA NA NA NA NA NA NA NA 10 1,400	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE NE NE 10 750
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene Toluene Ethylbenzene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100	MW-3 440 140 6.3 46 36 < 5 48 6.1 10 1,400	Duplicate	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE NE NE 10 750
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene Toluene Ethylbenzene	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	MW-2 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100	MW-3 440 140 6.3 46 36 < 5 48 6.1 10 1,400	Duplicate	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE NE 10 750 750 620
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene Toluene Ethylbenzene Total Xylenes Other Alkalinity (as Calcium Carbonate)	Method 8260B	Units µg/L µg/L	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 7 < 5 < 7 < 7 < 7	MW-2 300 96 7.2 24 21 25 6.6 9.4 1,100 180 2,280	MW-3 440 6.3 46 36 < 5 48 6.1 10 490 4,050 MW-3	Duplicate	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE 10 750 620 MMWQCC Groundwater
VOCs (detections and BTEX only) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 4-Isopropyltoluene Isopropylbenzene Naphthalene n-Butylbenzene n-Propylbenzene sec-Butylbenzene Benzene Toluene Ethylbenzene Total Xylenes	Method 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B 8260B	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/	MW-1 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	MW-2 300 96 7.2 24 21 5.2 25 6.6 9.4 1,100 180 2,280	MW-3 440 140 6.3 46 36 < 5 48 6.1 10 1,400 490 4,050	Duplicate	MW-4 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	Quality Standard NE NE NE NE NE NE 10 750 750 620 MMWQCC Groundwater Quality Standard

Notes:

MW = monitoring well

NMWQCC = New Mexico Water Quality Control Commission

Constituents in BOLD are in excess of NMWQCC groundwater quality standards

SVOCs = semi-volatile organic compounds

VOCs = self-involatile organic compounds
mg/L = milligrams per liter
µg/L = micrograms per liter
P = phosphate
N = nitrogen

NE = not established

NA = not analyzed

^{* =} Concentration of total metals. Cannot be compared directly to the NMWQCC standard for dissolved metals; but were used to determine which metals to use dissolved metals analyses for during future quarterly sampling events.

فسالسها ستأثثث ألو

- Contract of the Contract of

President of the Presid

3

28 . 8

37.58

はない

4.00

Table 4. ConocoPhillips Randleman No. 1 - Quarterly Groundwater Analytical Results Summary

			3		<u> </u>	ľ		-					3			Γ					¥
NMWQCC			MW-4					MW-3					MW-2		,			MW-1		_	Well ID
NMWQCC Standards	6/9/2010	4/1/2010	12/16/2009	9/23/2009	6/14/2009	6/9/2010	4/1/2010	12/16/2009	9/23/2009	6/14/2009	6/9/2010	4/1/2010	12/16/2009	9/23/2009	6/14/2009	6/9/2010	4/1/2010	12/16/2009	9/23/2009	6/14/2009	Date
10 (µg/L)	^1	<u>^</u>	^-	^	^ 5	12	18	18	13	10	3.8	9	20	7.7	9.4	^1	^1	^1	18	5.1	Benzene (µg/L)
750 (µg/L)	^1	<u>^</u>	^1	<u>^</u>	^ 5	20	76	17	8.5	1400	9.3	27	7.9	^_	1100	. ^1	^1	^1	5.4	7.6	Totuene (µg/L)
750 (µg/L)	<1	<u>^</u>	^1	^1	^ 5	24	190	96	89	490	99	180	240	110	180	4	^1	^1	1.3	۸ (۲)	Ethylbenzene (μg/L)
620 (µg/L)	^1	^1	^_	^1	٨	69	590	280	320	4050	265.6	547	777.8	720	2280	^1	^1	^1	11.6	9.7	Xylenes (μg/L)
30 (µg/L)	NA	NA	NA	^1	۸ (۲)	NA	NA	NA	3.9	36	NA	NA	NA	16	21	NA	NA	N _A	<u>^</u>	^ 5i	Naphthalene (μg/L)
250 (mg/L)	2190	2350	3430	2130	2310	30.8	5.34	99.1	64.5	40.3	48.7	56.5	63.3	39.4	40.1	83.8	72.3	127	80.5	119	Chloride (mg/L)
600 (mg/L)	2710	3110	4110	3320	4190	989	796	1920	1500	1510	1280	1170	1510	1390	1360	1450	1440	1960	1640	1690	Sulfate (mg/L)
5 (mg/L)	NA	NA	NA	< 0.1	13.9*	NA	NA	NA	< 0.1	1.1*	NA	NA	NA	< 0.1	2.99*	NA	NA	NA	< 0.1	9.22*	Aluminum (mg/L)
1 (mg/L)	NA	NA	NA	0.0308	20*	NA	NA	NA	0.0486	1.65*	NA	NA	NA	0.0239	3.7*	NA	NA	NA	< 0.02	6.81*	lron (mg/L)
0.05 (mg/L)	NA	NA	NA	< 0.005	0.117*	NA	NA	NA	< 0.005	< 0.005*	NA	NA	NA	< 0.005	< 0.005*	NA	NA.	NA	< 0.005	.00601*	Chromium (mg/L)
0.2 (mg/L)	1.06	1.52	1.8	2.73	4.92*	0.193	1.04	0.932	1.11	ယ္	3.24	4.1	5.26	6.82	3.56*	0.114	0.0849	0.108	0.17	4.79*	Manganese (mg/L)
1000 (mg/L)	4720	8560	9600	8600	NA	2200	1650	2560	2720	NA	2590	2460	2390	2480	NA	3340	2850	3140	2880	NA	Dissolved Solids (mg/L)

Explanation

ND = Not Detected

NMWQCC = New Mexico Water Quality Control Commission

mg/L = miltigrams per liter (parts per miltion)

µg/L = micrograms per liter (parts per miltion)

NA = Not Analyzed

40.7 = Below laboratory detection limit of 0.7 ug/L

Bold = concentrations that exceed the NMWQCC limits

* = Results reported for total metals analysis, results cannot be compared to NMWQCC Standards for dissolved metals

APPENDICES

APPENDIX A

Groundwater Sampling Field Forms

Project Name Randleman 1 .				Page	1	_ of	4
ect No.							
Site Location Aztec, NM							
Site/Well No. MW-1	Coded/ Replicate	∍No.	140	Date (-9-12)	
A. Maria I. I.	Time Sa			Time Samplin	9	11124	7
Weather JUNN hot	Began	1710		Completed		140	
Fit -		EVACUATI	ON DATA				
Description of Measuring Point (MP)	Top of Casing						
leight of MP Above/Below Land Surfa	ace		MP Elevation				
Total Sounded Depth of Well Below N	1P - 25. 5	<u>-23,17</u>	Water-Level Ele	evation			
Held Depth to Water Belo	w MP 13,	99	Diameter of Cas	sing (3) 2"			
Wet Water Column in	<u></u>	79.	Gallons Pumpe Prior to Samplin	d Bailed	4.	75	
	<u> 12.12</u>	0.16	, the to our pin	<u> </u>			
Gallons pe		Le v3=	Sampling Pump	Intake Setting	-		
Gallons in	A	45-	(feet below land	surface)			
Purging Equipment Purge pump(Bailer)	109					
Time Temperature (°C)		SAMPLING DATA/FII		S DO (mg/L)	DO %		Volume (gal.
Time Temperature (°C)	7.21.	3,505	1) 103 (9/L)	2,13	19.7	1/-4.2	3,75
1499 12,32	7.04	3,4910		1, 41	11, 93	113.10	4.
1432 12,1h	(0.8)	3,409		1.41	13,2	16.6	4-75
			* *				
Sampling Equipment	Purge Pump	Bailer)	····				
Constituents Sampled	(Container Descript	<u>ion</u>		Prese	rvative	
	3 40mL	VOAs		HCI			
BIEX							
BTEXChloride, Sulfate, TDS	32 oz Pl	astic		None			

Well Casing Volumes

Gal./ft. $1 \frac{1}{4}$ " = 0.077

Sampling Personnel

2" = 0.16

3" = 0.37

4" = 0.65

1 ½" = 0.10

2 1/2" = 0.24

3" ½ = 0.50

6" = 1.46

TE TETRA	TECH, INC.	WATER	SAMPLING	FIELD FORM
Project Name	Randleman 1			Page 2 of 4
,ect No.	17 5			
Site Location	Aztec, NM			
Site/Well No.	MW-2	Coded/ Replicate No.		Date 0-9-10
Weather	Gunnyhot	Time Sampling Began	145	Time Sampling Completed
	940	EVAÇUA'	TION DATA	
Description of	Measuring Point (MP)	op of Casing		
Height of MP	Above/Below Land Surface	·	MP Elevation	on
Fotal Sounded	d Depth of Well Below MP	23.8 26,7	Water-Leve	el Elevation
Held	_ Depth to Water Below	- 0.0		mped(Bailed)
Wet	_ Water Column in V	Vell 10199	Prior to San	npling
	Gallons per F Gallons in V	17/ 3	Sampling P (feet below	
Purging Equip	ment Purge pump / B	(ailer) 5124		····
77:	T (80)	SAMPLING DATA/F		
Time	Temperature (°C)	pH Conductivity (µS/	cm³) TDS (g/L	_) DO (mg/L) DO % ORP (mV) Volume (ga
1465	10,16	1,75 7,760		- 6,05 19,3 -2115 4,5
1468	10,23	7,26 2,754	1 -	- 1,23 10,9-215,8 5,0
Sampling Equi	ioment P	urge Pump/Bailer		
	ituents Sampled	Container Descri	otion	<u>Preservative</u>
CONST.	idents campied	3 40mL VOAs	puon	HCI
Chloride, Sulfa	ate TDS	32 oz Plastic		None
Dissolved MN		16 oz Plastic		None
Remarks	the is hi	ght gray with 6	frong gal	fer lip oder - switched to
Sampling Pers	sonnel 1H BU	CR & Moru Alast	Sattu	Alen / dall aray a ~ 2,75 a

Well Casing Volumes

Gal./ft. 1 ¼" = 0.077 2" = 0.16 3" = 0.37 4" = 0.65 1 ½" = 0.10 2 ½" = 0.24 3" ½ = 0.50 6" = 1.46

TETRA TECH, INC.	WATER SA	AMPLING F	ELD FORM	
Project Name Randleman 1			Page 3 of	f4
ect No.				
Site Location Aztec, NM				
Site/Well No. MW-3	Coded/ Replicate No.		Date <u>6-9-10</u>	
Washan Bunn I.d.	Time Sampling		Time Sampling Completed	125
Weather Anny, had	Began EVACUATION	N DATA	Completed	
Description of Measuring Point (MP) Top	of Casing			· · · · · · · · · · · · · · · · · · ·
Height of MP Above/Below Land Surface	<u></u>	MP Elevation		
Total Sounded Depth of Well Below MP	21 24 BE	Water-Level Ele	evation	
Held Depth to Water Below MF Wet Water Column in Wel	()	Diameter of Cas Gallons Pumpe Prior to Samplir	d/Railed /	
Gallons in Wel Purging Equipment Purge pump / Sail	7 421	Sampling Pump (feet below land	Intake Setting surface)	
Time Temperature (°C)	pH Conductivity (µS/cm³)			(mV) Volume (gal.)
Time Temperature (°C)	7,07, 2,23,2) 103 (g/L)	4,46 31,0 -145	- 4 -
522 10.36	1.05 2.282		4.49 40.2 - 162	25 3.25
524 10.28	1,06 2,780		4.55 40.7-16	1.23,50
1525 10.30	7.07 2.281		14,52 40,5 -175	0 3.75
Sampling Equipment Purg	ge Pump//8ailer		1	
Constituents Sampled	Container Description	n	Preservative	· ·
BTEX	3 40mL VOAs	<u></u>	HCI	
Chloride, Sulfate, TDS	32 oz Plastic		None	
Dissolved MN	16 oz Plastic		None	
Remarks Holis de	ark may wit	h organ	nic particulate r	natter
Sampling Personnel AM B	19 J T		1	

Well Casing Volumes

= 0.37

3" 1/2 = 0.50

4" = 0.65

6" = 1.46

= 0.16

2 1/2" = 0.24

Gal./ft.

1 1/4" = 0.077

1 1/2" = 0.10

TETRA TECH, INC.	WATER	SAMPLING	FIELD FORI	И		
Project Name Randleman 1			Page	4	of	4
ect No.						
Site Location Aztec, NM						
Site/Well No. MW-4 Weather	Coded/ Replicate No. Time Sampling Began		Date <u>U</u> Time Samplin Completed	-9-10 9 142) 	
	EVACUA	TION DATA				
Description of Measuring Point (MP)	Top of Casing					
Height of MP Above/Below Land Sur	face	MP Elevation	n			
Total Sounded Depth of Well Below	MP 29.5 28,51	Water-Level	Elevation			·
Held Depth to Water Bel	ow MP 17157	Diameter of	Casing 2"			
Wet Water Column	in Well 10,94	Gallons Purr Prior to Sam	pling	5.25		
Gallons po Gallons Purging Equipment <u>Purge pump</u>	in Well 1:75y3	Sampling Pu (feet below l	imp Intake Setting and surface)		/	
	SAMPLING DATA/				· · · · · · · · · · · · · · · · · · ·	4
Time Temperature (°C)	pH Conductivity (μ S/ 1	cm³) TDS (g/L) DO (mg/L) 0.910	DO %	-917	Volume (gal
1421 13,11	7,09 12,39		1,32	13.3	-12,0	4,5
1422 13.10		2,35	1,35	13,4	-3,9	5
Sampling Equipment	Purge Pump/Bailer					
Constituents Sampled	Container Descr	<u>iption</u>		Prese	ervative	
BTEX	3 40mL VOAs		HCI			
Chloride, Sulfate, TDS	32 oz Plastic	w	None	· · · · · · · · · · · · · · · · · · ·		
Dissolved MN	16 oz Plastic		None			
Remarks 15	clear one to li	ght bro	un, no	oda	<u> </u>	sheer

		Well Casing \	/olumes	
Gal./ft.	1 ½" = 0.077 1 ½" = 0.10	2'' = 0.16 $2\frac{1}{2}'' = 0.24$	3" = 0.37 3" ½ = 0.50	4" = 0.65 6" = 1.46
			C C	••

APPENDIX B

Groundwater Laboratory Analysis Report

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 24, 2010

Workorder: H10060283

Cassandre Brown Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110

Project: Randleman No. 1

Project Number: Randleman No. 1

Site: Aztec, NM

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

This Report Contains A Total Of 23 Pages

Excluding Any Attachments

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 24, 2010

Workorder: H10060283

Cassandre Brown Tetra Tech, Inc. 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110 Project: Randleman No. 1

Project Number: Randleman No. 1

Site: Aztec, NM

PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

I. SAMPLE RECEIPT:

All samples were received intact. The internal ice chest temperatures were measured on receipt and are recorded on the attached Sample Receipt Checklist.

II: ANALYSES AND EXCEPTIONS:

Per the Conoco Phillips TSM Revision 0, a copy of the internal chain of custody is to be included in final data package. However, due to LIMS limitations, this cannot be provided at this time.

Ion Chromatography, Method 300:

Your sample ID "MW-1" (SPL ID: H10060283001) was randomly selected for use in SPL's quality control program for Batch ID IC/1330 The Matrix Spike Duplicate (MSD) recovery was outside of the advisable quality control limits for Sulfate due to matrix interference. A Laboratory Control Sample (LCS) was analyzed as a quality control check for the analytical batch and all recoveries were within acceptable limits

III. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report (" mg\kg-dry " or " ug\kg-dry ").

Matrix spike (MS) and matrix spike duplicate (MSD) samples are chosen and tested at random from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. Since the MS and MSD are chosen at random from an analytical batch, the sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The Laboratory Control Sample (LCS) and the Method Blank (MB) are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

Some of the percent recoveries and RPD's on the QC report for the MS/MSD may be different than the calculated recoveries and RPD's using the sample result and the MS/MSD results that appear on the report because, the actual raw result is used to perform the calculations for percent recovery and RPD.

Any other exceptions associated with this report will be footnoted in the analytical result page(s) or the quality control summary page(s).

Report ID: H10060283_6125

Page 2 of 23

Printed: 06/24/2010 19:57

Phone: (713) 660-0901 Fax: (713) 660-8975

Certificate of Analysis

June 24, 2010

Cassandre Brown Tetra Tech, Inc. 6121 Indian School Road NE Suite 200

Albuquerque, NM 87110

Workorder: H10060283

Project: Randleman No. 1

Project Number: Randleman No. 1

Site: Aztec, NM

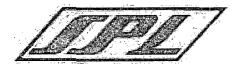
PO Number: ENFOS

NELAC Cert. No.: T104704205-09-1

Please do not hesitate to contact us if you have any questions or comments pertaining to this data report. Please reference the above Certificate of Analysis Number.

This report shall not be reproduced except in full, without the written approval of the laboratory. The reported results are only representative of the samples submitted for testing.

SPL, Inc. is pleased to be of service to you. We anticipate working with you in fulfilling all your current and future analytical needs.


I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager or by his designee, as verified by the following signature.

Erica Cardenas, Senior Project Manager

Enclosures

Report ID: H10060283_6125

Printed: 06/24/2010 19:57

Phone: (713) 660-0901 Fax: (713) 660-8975

SAMPLE SUMMARY

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

Lab ID	Sample ID	Matrix	COC ID	Date/Time Collected	Date/Time Received
H10060283001	MW-1	Water		6/9/2010 14:35	6/11/2010 09:15
H10060283002	MW-2	Water		6/9/2010 15:00	6/11/2010 09:15
H10060283003	MW-3	Water		6/9/2010 15:25	6/11/2010 09:15
H10060283004	MW-4	Water		6/9/2010 14:25	6/11/2010 09:15
H10060283005	Duplicate	Water		6/9/2010 14:40	6/11/2010 09:15

Report ID: H10060283_6125
Printed: 06/24/2010 19:57

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

Lab ID:

H10060283001

Date/Time Received: 6/11/2010 09:15

Matrix:

Water

Sample ID: MW-1

Date/Time Collected: 6/9/2010 14:35

WET	CHEMISTR	v
AACI	CLICIANOTL	N I

Analysis Desc: EPA 300.0

Sulfate	1450	50.0	4.35	100	1330
Chloride	83.8	5.00	1.26	10	1333
Parameters	CONTRACTOR OF THE PROPERTY OF	Report Limit	MDL	DF I	RegLmt Prep Analysis
A STATE OF THE STA	Results	20,2019			Batch Information
	Batch: 1333 EPA 300:0 on 06		Silva da Santa		
Original American Company of the Com	Batch: 1330 EPA 300.0 on 06	6/11/2010 18:35 b	y CFS_DF	= 100.	

Analytical Batches:

Analysis Desc; SM 2540 C	Analytical Batches: Batch: 1651 SM 2540 C on Results				Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF R	egLmt Prep Analysis
Residue, Filterable (TDS)	3340	, 20.0	7.88	2	1651

ICP DISSOLVED METALS

Manganese	0.114	0.00500	0.000300	1	1822	1461
Parameters	mg/l Qual	Report Limit	MDL	DF Re	gĽmt Prep .	Analysis
	Results	Danadi izik	MDI	DE De	Batch Info	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
					D. () ()	41
and the state of t					Secretary Market	
E E	Batch: 1461 SW-846 601	0B on 06/22/2010	0 22:48 by EBG			
	nalytical Batches:					
E Company of the Comp	Batch: 1822 SW-846 301	0A on 06/11/2010	13:30 by R_V			
	reparation Batches:					

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	itches:	10.000	100000000000000000000000000000000000000	a de la companya dela companya dela companya dela companya de la companya de la companya de la companya dela companya de la companya de la companya de la companya dela comp
	Batch: 2057 SW-846 826	0B on 06/18/2010 1	3:35 by JM0)	
Parameters	Results ug/I Qual	Report Limit	MDL	DF R	Batch Information agLmt Prep Analysis
Benzene	ND	1.0	0.10	1	2057
Ethylbenzene	. ND	1.0	0.15	1	2057
Toluene	ND	1.0	0.29	1	2057
m,p-Xylene	ND	1.0	0.18	1	2057
o-Xylene	ND	1.0	0.13	1	2057
Xylenes, Total	ND	1.0	0.13	1	2057
4-Bromofluorobenzene (S)	88.9 %	74-125		1	2057
1,2-Dichloroethane-d4 (S)	83.3 %	70-130		1	2057

Report ID: H10060283_6125

Page 5 of 23

Printed: 06/24/2010 19:57

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

Lab ID:

H10060283001

Date/Time Received: 6/11/2010 09:15

Matrix:

Water

Sample ID: MW-1

Date/Time Collected: 6/9/2010 14:35

Results

Batch Information

Parameters

Qual

Report Limit

MDL

RegLmt Prep Analysis

2057

Toluene-d8 (S)

102 %

82-118

DF 1

Report ID: H10060283_6125

Printed: 06/24/2010 19:57

Phone: (713) 660-0901 Fax: (713) 660-8975

1330

ANALYTICAL RESULTS

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

Lab ID:

H10060283002

Date/Time Received: 6/11/2010 09:15

Matrix: Water

Sample ID: MW-2

MW-2

Date/Time Collected: 6/9/2010 15:00

/ater

WET CHEMISTRY

Parameters

Chloride

Sulfate

Analysis Desc: EPA 300.0

Analytical Batches:

Batch: 1330 EPA 300.0 on 06/11/2010 20:12 by CFS DF = 100.

Batch: 1333 EPA 300.0 on 06/14/2010 10:59 by CFS DF = 10.

Results Batch Information
mg/I Qual Report Limit MDL DF RegLmt Prep Analysis

48.7 5.00 1.26 10 1333

4.35

100

50.0

Analysis Desc: SM 2540 C

Analytical Batches:

1280

Batch: 1651 SM 2540 C on 06/14/2010 13:00 by CFS Batch Information Results MDL DF ReaLmt Prep Analysis mg/l Qual Report Limit **Parameters** 7.88 1651 Residue, Filterable (TDS) 2590 20.0 2

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B

Preparation Batches:

Batch: 1822 SW-846 3010A on 06/11/2010 13:30 by R V

Analytical Batches:

Batch: 1461 SW-846 6010B on 06/22/2010 22:55 by EBG

Results Batch Information MDL Prep Analysis Parameters DF RegLmt Qual Report Limit mg/l Manganese 3.24 0.00500 0.000300 1822 1461

VOLATILES

Analysis Desc: SW-846 8260B

SW-846 5030Analytical Batches:

Batch: 2057 SW-846 8260B on 06/18/2010 14:02 by JMC

Results Batch Information ug/l Qual Report Limit MDL DF RegLmt Prep Analysis Parameters Benzene 3.8 1.0 0.10 2057 Ethylbenzene 99 1.0 0.15 2057 9.3 1.0 0.29 2057 Toluene m,p-Xylene 260 1.0 0.18 2057 0.13 2057 o-Xylene 5.6 1.0 Xylenes, Total 265.6 1.0 0.13 2057 4-Bromofluorobenzene (S) 96.7 % 74-125 2057 1,2-Dichloroethane-d4 (S) 84.3 % 70-130 2057

Report ID: H10060283_6125

Printed: 06/24/2010 19:57

Page 7 of 23

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

Lab ID:

Sample ID: MW-2

H10060283002

Date/Time Received: 6/11/2010 09:15

Water

Matrix:

Date/Time Collected: 6/9/2010 15:00

	Results						Batch Ir	formation
Parameters	Qu	ual	Report Limit	MDL	DF	RegLmt	Prep	Analysis
Toluene-d8 (S)	104 %		82-118	1-1-1-1	1			2057

Report ID: H10060283_6125

Printed: 06/24/2010 19:57

Page 8 of 23

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

Lab ID:

H10060283003

Date/Time Received: 6/11/2010 09:15

Matrix: Water

Date/Time Collected: 6/9/2010 15:25

Sample ID: MW-3
WET CHEMISTRY

*M	ialysis D	esc. EPA	. JUU.U			Allai	/lical ba	ICHES.		100	224 200 000		
380 ···		Y								0.000			
37000	######################################	SABRO77115	AND RESERVED.		\$200.000 per	C- 30.6600000				\$28,08(000+****		2	
W ##				2752	XXX XXXXXXXX	C D ot ol	1220	EDV 300	0 on 06/11	/2010 20:2	g hv CFS	~DE	100
XXXX	7777 85 20000				XXXXXXX /	Daw	1. 1000	LITA JUU		12010 20.2	o by Oi G		100.
883511	1.0000000000000000000000000000000000000		9098 C. X (LUDS)								242		900 m
SSE.X	350000000000000000000000000000000000000				35. · · · · · · · · · · · · · · · · · · ·	SEC. 1997	AND SERVICE	P. T. P.			\$\$0\$\$\$\$\$\$\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$200000ans200.11	N.2 10000
223						‱Rat∩l	า 1222	EPA∜300 €	D:on:06/14	1/2010 11:1	5 by CES	% DE:=	100
C- 328			D.L. 17.5720388	276-28000000 ***************	CCC A 1 6 YO RESCUENCE SON		1. 1000	LI JAOOO.	0 011 001		J.D.J. J., J.	St. 100 (800)	. • • • • • • • • • • • • • • • • • • •

Parameters	Results mg/I Qual I	Report Limit	MDL	DF	Batch Information RegLmt Prep Analysis
Chloride	30.8	5.00	1.26	10	1333
Sulfate	989	50.0	4.35	100	1330

	Analytical Batches: Batch: 1651 SM 2540 C on Results mg/l Qual	06/14/2010 13:00 E Report Limit	y CFS MDL	DF Reg	Batch Information Lmt Prep Analysis
Residue, Filterable (TDS)	2200	20.0	7.88	2	1651

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	Preparation Batches:					
muses and a submission of the	Batch: 1822 SW-846 3010	A on 06/11/2010	13:30 by R_V			
	Analytical Batches:		a Maria San			
	Batch: 1461, SW-846 6010	B on 06/22/2010	23:01 by EBC	9	Page 2	
					D-1.51-6	
Parameters	Results mg/l Qual	Report Limit	MDL	DF Red	Batch Info Lmt Prep	ormation Analysis
and the second s				4.3		
Manganese	0.193	0.00500	0.000300	1	1822	1461

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical Ba	atches:			in the state of th
	Batch: 2057 SW-846 826	0B on 06/18/2010	14:30 by JM	IC .	Sample Property of the Control of th
		1987 <u>- 1</u> 187 - 1			
	Results	ALC: U.S.			Batch Information
Parameters	ug/l ^{Qual}	Report Limit	MDL	DF RegLmt	Prep Analysis
Benzene	12	1.0	0.10	1	2057
Ethylbenzene	24	1.0	0.15	1	2057
Toluene	20	1.0	0.29	1	2057
m,p-Xylene	49	1.0	0.18	1	2057
o-Xylene	20	1.0	0.13	1	2057
Xylenes, Total	69	1.0	0.13	1	2057
4-Bromofluorobenzene (S)	98.9 %	74-125		1	2057
1,2-Dichloroethane-d4 (S)	80.6 %	70-130		1 .	2057

Report ID: H10060283_6125

Printed: 06/24/2010 19:57

Page 9 of 23

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060283; Randleman No. 1

Project Number: Randleman No. 1

Lab ID:

H10060283003

Date/Time Received: 6/11/2010 09:15

Matrix: Water

Sample ID: MW-3

Date/Time Collected: 6/9/2010 15:25

Report Limit

Results

Qual

MDL

RegLmt

Batch Information Prep Analysis

Parameters Toluene-d8 (S)

103 %

82-118

DF

2057

Report ID: H10060283_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

Lab ID:

H10060283004

Date/Time Received: 6/11/2010 09:15

Water

Matrix:

Sample ID: MW-4

Date/Time Collected: 6/9/2010 14:25

WET	CHEMISTRY	•
VVEI	CHEIMISIKI	

WET CHEMISTRY		SSS-27538277771272538	yo r 's interpretation		MARINA DE LA COMPANSIÓN D	
Analysis Desc: EPA 300.0	Analytical Batches:					
	Batch: 1330 EPA 300.0 or	06/11/2010 20:44	by CFS			
The second secon						
11 Section 1 and 1	Results					Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis
	(A. Albarea)	100	05.0	200		4220
Chloride	2190	100	25.2	200		1330
Sulfate	2710	100	8.70	200		1330
Analysis Desc: SM 2540 C	Analytical Batches:		Que la Richard	1.6%		
	Batch: 1651 SM 2540 C o	n 06/14/2010 13:00) by CES			
	Datch: 1001 SW 2040 C 0	11.00/14/2010 15.00	, by Ol S			
		444				
Section 1	Results					Batch Information
Parameters	mg/l Qual	Report Limit	MDL	DF	RegLmt	Prep Analysis
Residue, Filterable (TDS)	4720	40.0	15.8	4	ON CONTRACTOR OF	1651

ICP DISSOLVED METALS

Analysis Desc: SW-846 6010B	eparation Batches:				S. (1995)	
Ba	atch: 1822 SW-846 3010	A on 06/11/2010	13:30 by R_V		### E	
Ar	nalytical Batches:					
Be	atch: 1461 SW-846 6010	B on 06/21/2010) 16:34 by EBG		and dis	
Z-			200 A			
Parameters (1997)	Results ma/l Qual	Report Limit	MDL	DF F	Batch RegLmt Prep	Information Analysis
	mg/i			<u></u>		
Manganese	1.06	0.00500	0.000300	1	1822	1461

VOLATILES

Analysis Desc: SW-846 8260B	SW-846 5030Analytical E	Batches:			10 Sec. 15
	Batch: 2057 SW-846 82	60B on 06/18/2010	14:57 by JM	C	John Production
	Results		(100)		Batch Information
Parameters	ug/I Qual	Report Limit	MDL	DF R	egLmt Prep Analysis
Benzene	ND	1.0	0.10	1	2057
Ethylbenzene	ND	1.0	0.15	1	2057
Toluene	ND	1.0	0.29	1	2057
m,p-Xylene	ND	1.0	0.18	1	2057
o-Xylene	ND	1.0	0.13	1	2057
Xylenes, Total	ND	1.0	0.13	1	2057
4-Bromofluorobenzene (S)	93 %	74-125		1	2057
1,2-Dichloroethane-d4 (S)	82.9 %	70-130		1	2057
Toluene-d8 (S)	100 %	82-118		1	2057

Report ID: H10060283_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

ANALYTICAL RESULTS

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

Lab ID: H10060283005 Date/Time Received: 6/11/2010 09:15

Water

Matrix:

Sample ID: Duplicate

Date/Time Collected: 6/9/2010 14:40

VOLATILES

· · · · · · · · · · · · · · · · · · ·					2° AUT O COMMON MARCHANIA	
Analysis Desc: SW-846 8260B	SW-846 5030Ana	lytical Batches:		zasziekski.		
	Batch: 2057 SW-	846 8260B on 06/18/201	0 15:25 by JN	ИC		
				aloresio altiba		
	.		CONTROL OF	1078		D 1117
	Results					Batch Information
Parameters	üg/l	Qual Report Limit	MDL	DF	RegLmt	Prep Analysis
Benzene	ND	1.0	0.10	1		2057
Ethylbenzene	ND	1.0	0.15	1		2057
Toluene	ND	1.0	0.29	1		2057
m,p-Xylene	ND	1.0	0.18	1		2057
o-Xylene	ND	1.0	0.13	1		2057
Xylenes, Total	ND	1.0	0.13	1		2057
4-Bromofluorobenzene (S)	92.6 %	74-125		1		2057
1,2-Dichloroethane-d4 (S)	85.8 %	70-130		1		2057
Toluene-d8 (S)	102 %	82-118		1		2057

Report ID: H10060283_6125

Printed: 06/24/2010 19:57

Page 12 of 23

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

QC Batch:

DIGM/1822

Analysis Method:

SW-846 6010B

QC Batch Method:

SW-846 3010A

Preparation:

06/11/2010 13:30 by R_V

Associated Lab Samples:

H10060283001 H10060284003

H10060283003 H10060283002 H10060286001 H10060286002

H10060283004 H10060286003

H10060284001 H10060286006 H10060284002

METHOD BLANK: 50489

Analysis Date/Time Analyst:

06/21/2010 16:22 EBG

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Manganese

mg/l

ND

0.00500

LABORATORY CONTROL SAMPLE: 50490

Analysis Date/Time Analyst:

06/21/2010 16:28 EBG

Parameter

Units

Spike

LCS

LCS % Rec % Rec

Conc. 0.10

Result 0.0963

96.3

Limits 80-120

Manganese mg/l

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 50491

50492

Original: H10060283004

MS Analysis Date/Time Analyst:

06/21/2010 16:40 EBG

MSD Analysis Date/Time Analyst:

06/21/2010 16:46 EBG

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	
Manganese	mg/l	1.06	0.10	1.11	1.115	NC	NC	75-125	NC	20	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060283_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

QC Batch:

Parameter

Sulfate

Chloride

IC/1330

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples:

H10060241001 H10060243004

H10060269001

Units

mg/l

mg/l

H10060241002 H10060247001 H10060275001

H10060241003 H10060247002 H10060283001

H10060243001 H10060247003 H10060283002 H10060243002 H10060247005 H10060283003

H10060243003 H10060262001 H10060283004

METHOD BLANK: 50605

Analysis Date/Time Analyst:

06/11/2010 09:09 CFS

Blank

Reporting Limit

ND ND

Result Qualifiers

0.500 0.500

LABORATORY CONTROL SAMPLE & LCSD: 50606

50607

LCS Analysis Date/Time Analyst: 06/11/2010 09:25 CFS 06/11/2010 21:00 CFS

LCSD Analysis Date/Time

LCS LCSD Spike LCS LCSD % Rec Max Parameter Units Result Result % Rec % Rec Limit **RPD RPD** Conc. Sulfate mg/l 10 9.469 10.14 94.7 101 85-115 6.8 20 Chloride mg/l 10 9.183 9.246 91.8 92.5 85-115 0.7 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 50612

50613

Original: H10060283001

MS Analysis Date/Time Analyst:

06/11/2010 18:51 CFS

MSD Analysis Date/Time Analyst:

06/11/2010 19:07 CFS

		Original	Spike	MS	MSD	MS	MSD	% Rec	Max
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit RPD	RPD
Sulfate	mg/l	1450	1000	2430	2119	98.2	67.2 *	80-120 13.7	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060283 6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

QC Batch:

WETS/1651

Analysis Method:

SM 2540 C

QC Batch Method:

SM 2540 C

Associated Lab Samples:

H10060258001

H10060266004

H10060283001

H10060283002

H10060283003

H10060283004

METHOD BLANK: 50784

Analysis Date/Time Analyst:

06/14/2010 13:00 CFS

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Residue, Filterable (TDS)

mg/l

ND

10.0

LABORATORY CONTROL SAMPLE & LCSD:

LCS Analysis Date/Time Analyst: 06/14/2010 13:00 CFS

50786

LCSD Analysis Date/Time

Residue, Filterable (TDS)

06/14/2010 13:00 CFS

Spike

Parameter

Units

mg/l

LCS Result

202.0

Conc.

200

LCSD LCS Result % Rec

101

LCSD % Rec

99.0

% Rec Limit

95-107

RPD

Max **RPD**

2.0

10

SAMPLE DUPLICATE: 50787

Original: H10060283001

198.0

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	DF	
WET CHEMISTRY Residue, Filterable (TDS)	mg/l	3340	3340	0.1	10	2 2	-

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060283_6125

06/24/2010 19:57 Printed:

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

QC Batch:

IC/1333

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

H10060283001 H10060283002 H10060283003

Associated Lab Samples: METHOD BLANK: 50901

Analysis Date/Time Analyst:

06/14/2010 09:06 CFS

Blank

Reporting

Parameter

Units

Result Qualifiers

Limit

Chloride

mg/l

ND

0.500

LABORATORY CONTROL SAMPLE: 50902

Analysis Date/Time Analyst:

06/14/2010 09:22 CFS

Parameter

Spike

LCS

LCS

% Rec

Units

Conc.

Result

% Rec

Limits

Chloride

mg/l

10

9.857

98.6

85-115

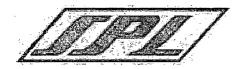
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 50903

50904 :

Original: H10060283001

MS Analysis Date/Time Analyst:

06/14/2010 10:27 CFS


MSD Analysis Date/Time Analyst:

06/14/2010 10:43 CFS

		Original	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	
Chloride	mg/l	83.8	100	191.0	182.5	107	98.7	80-120	4.5	20	

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060283_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

QC Batch:

MSV/2056

Analysis Method:

H10060286006

SW-846 8260B

QC Batch Method:

SW-846 5030

Preparation:

06/18/2010 00:00 by JMC

H10060430001

Associated Lab Samples:

H10060283001 H10060284004 H10060283002 H10060286005 H10060283003 H10060283004

H10060283005

H10060284003

METHOD BLANK: 51942

Analysis Date/Time Analyst:

06/18/2010 11:15 JMC

Parameter	Units	Blank Result Qualifiers	Reporting Limit
Benzene	ug/l	ND	1.0
Ethylbenzene	ug/l	ND	1.0
Toluene	ug/l	ND	1.0
m,p-Xylene	ug/l	ND	1.0
o-Xylene	ug/l	ND	1.0
Xylenes, Total	ug/l	ND	1.0
4-Bromofluorobenzene (S)	%	90.6	74-125
1,2-Dichloroethane-d4 (S)	%	83.1	70-130
Toluene-d8 (S)	%	103	82-118

LABORATORY CONTROL SAMPLE: 51943

Analysis Date/Time Analyst:

06/18/2010 10:48 JMC

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	
Benzene	ug/l	20	16.7	83.6	74-123	
Ethylbenzene	ug/l	20	20.1	101	72-127	•
Toluene	ug/l	20	21.5	107	74-126	
m,p-Xylene	ug/l	40	40.4	101	71-129	
o-Xylene	ug/l	20	20.9	104	74-130	
Xylenes, Total	ug/l	60	61.34	102	71-130	
4-Bromofluorobenzene (S)	%			98.1	74-125	
1,2-Dichloroethane-d4 (S)	%			81.3	70-130	
Toluene-d8 (S)	%			103	82-118	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51944

51945

Original: H10060283005

MS Analysis Date/Time Analyst:

06/18/2010 15:52 JMC

MSD Analysis Date/Time Analyst:

06/18/2010 16:20 JMC

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
Benzene	ug/l	ND	20	17.3	16.6	86.3	82.8	70-124	4.1	20
Ethylbenzene	ug/l	ND	20	19.6	19.5	97.9	97.7	35-175	0.3	20
Toluene	ug/l	ND	20	21.9	21.7	109	108	70-131	1.1	20

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060283_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

QUALITY CONTROL DATA

Workorder: H10060283: Randleman No. 1

Project Number: Randleman No. 1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 51944

51945

Original: H10060283005

MS Analysis Date/Time Analyst:

06/18/2010 15:52 JMC

MSD Analysis Date/Time Analyst:

06/18/2010 16:20 JMC

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD
m,p-Xylene	ug/l	ND	40	39.3	39.4	98.2	98.6	35-175	0.3	20
o-Xylene	ug/l	ND	20	20.1	19.8	101	98.8	35-175	1.8	20
Xylenes, Total	ug/l	ND	60	59.42	59.19	99.0	98.6	35-175	0.4	20
4-Bromofluorobenzene (S)	%	92.6				97.8	96.5	74-125		30
1,2-Dichloroethane-d4 (S)	%	85.8				81.1	82.2	70-130		30
Toluene-d8 (S)	%	102				103	103	82-118		30

QC results presented in the QC Control Data have been rounded. RPD and percent recovery values calculated by the SPL LIMS system are derived from QC data prior to the application of rounding rules. Also, MS/MSD % recoveries are calculated by the SPL LIMS using any detected value greater than the MDL.

Report ID: H10060283_6125

Phone: (713) 660-0901 Fax: (713) 660-8975

Legend

(S) - Indicates analyte is a surrogate

Qualifier	Qualifier Description
MI	Matrix Interference
l	Estimated value, between MDL and PQL (Florida)
JN	The analysis indicates the presence of an analyte
С	MTBE results were not confirmed by GCMS
NC	Not Calculated - Sample concentration > 4 times the spike
*	Recovery/RPD value outside QC limits
Е	Results exceed calibration range
Н	Exceeds holding time
J	Estimated value
Q	Received past holding time
В	Analyte detected in the Method Blank
N	Recovery outside of control limits
D	Recovery out of range due to dilution
NC	Not Calculable (Sample Duplicate)
Р	Pesticide dual column results, greater then 25%
TNTC	Too numerous to count

Phone: (713) 660-0901 Fax: (713) 660-8975

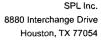
QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: H10060283: Randleman No. 1

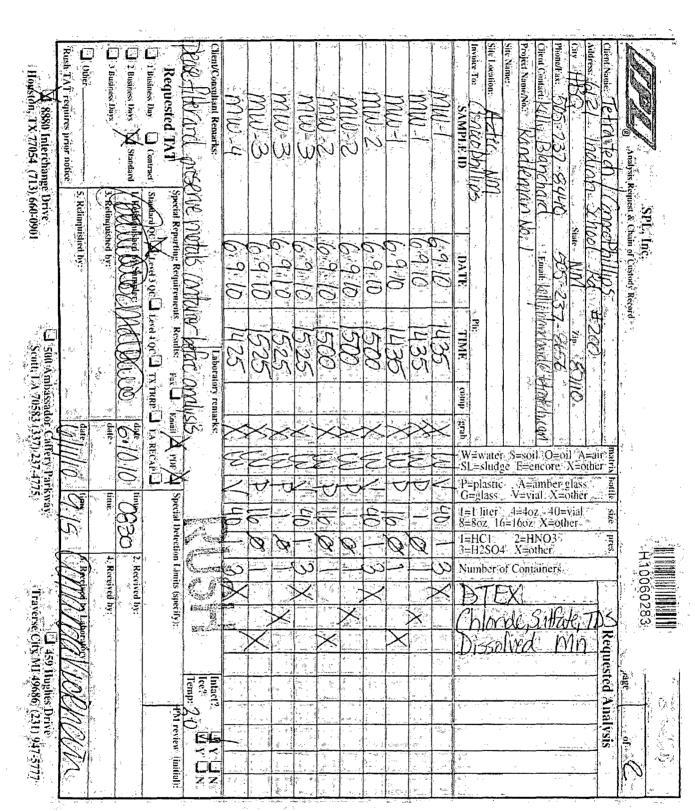
Project Number: Randleman No. 1

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
H10060283001	MW-1	SW-846 3010A	DIGM/1822	SW-846 6010B	ICP/1461
H10060283002	MW-2	SW-846 3010A	DIGM/1822	SW-846 6010B	ICP/1461
H10060283003	MW-3	SW-846 3010A	DIGM/1822	SW-846 6010B	ICP/1461
H10060283004	MW-4	SW-846 3010A	DIGM/1822	SW-846 6010B	ICP/1461
H10060283001	MW-1	EPA 300.0	IC/1330		
H10060283002	MW-2	EPA 300.0	IC/1330		
110060283003	MW-3	EPA 300.0	IC/1330		
H10060283004	MW-4	EPA 300.0	IC/1330		
H10060283001	MW-1	SM 2540 C	WETS/1651		
110060283002	MW-2	SM 2540 C	WETS/1651		
110060283003	MW-3	SM 2540 C	WETS/1651		
H10060283004	MW-4	SM 2540 C	WETS/1651		
H10060283001	MW-1	EPA 300.0	IC/1333		
H10060283002	MW-2	EPA 300.0	IC/1333		
H10060283003	MW-3	EPA 300.0	IC/1333		
H10060283001	MW-1	SW-846 5030	MSV/2056	SW-846 8260B	MSV/2057
H10060283002	MW-2	SW-846 5030	MSV/2056	SW-846 8260B	MSV/2057
110060283003	MW-3	SW-846 5030	MSV/2056	SW-846 8260B	MSV/2057
110060283004	MW-4	SW-846 5030	MSV/2056	SW-846 8260B	MSV/2057
110060283005	Duplicate	SW-846 5030	MSV/2056	SW-846 8260B	MSV/2057

Report ID: H10060283_6125


Phone: (713) 660-0901 Fax: (713) 660-8975

Sample Receipt Checklist


WorkOrder:	H10060283	Received By	LOG
Date and Time	06/11/2010 09:15	Carrier Name:	FEDEXS
Temperature:	3.0°C	Chilled By:	Water Ice
1. Shipping container/coo	oler in good condition?		YES
2. Custody seals intact or	n shipping container/cooler?		YES
3. Custody seals intact or	n sample bottles?		Not Present
4. Chain of custody prese	ent?		YES
5. Chain of custody signe	ed when relinquished and received?		YES
6. Chain of custody agree	es with sample labels?	*	YES
7. Samples in proper con	tainer/bottle?		YES
8. Samples containers int	tact?		YES
9. Sufficient sample volur	ne for indicated test?		YES
10. All samples received w	vithin holding time?		YES
11. Container/Temp Blank	temperature in compliance?		YES
12. Water - VOA vials have	e zero headspace?		YES
13. Water - Preservation cl	hecked upon receipt(except VOA*)?		Not Applicable
*VOA Preservation Che	ecked After Sample Analysis		
SPL Representative:		Contact Date & Time:	
Client Name Contacted	d:		

Report ID: H10060283_6125

Client Instructions:

Phone: (713) 660-0901 Fax: (713) 660-8975

Phone: (713) 660-0901 Fax: (713) 660-8975

Rush TAT requires prior notice 5. Relinquished by:	3 Business Days 3 3 Newinquished by:	Standard V. Rott and White Shiphet M. M. W.		Olient Consultant Remarks: 1) 1956 All M. M. M. 1907 Walls (M. 1974) Grays Formarks:						Solvate 69 10 1440 X 11	1 X 1 2 1 0 6 9 1 1 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1	W X 7 92 h 01 6 9 1	Invoice To CAMPLE ID DATE TIME comp grab 5	Sile Location: 12 Tr. MY	iono KAMUMUN No. 1	wee the Mily Merry Email Kally Arrobarde Hattibu	City FED State NOT Sip 87110	Addition Nation 10477 1965 1000 1000 1000 1000 1000 1000 1000 10	Analysis Request & Chain of Custody Record
lime	ime	7527 CI				The state of the s		2.35		(A) (A)	8	9 3	P=pl G=g 'L=1 8=80	astic lass iter z 16	A= V=v 4=4c =16oz	ambe rial. X	er glas (=othe 0=vial other	s, š r√∝ š	
6. Received by Laboratory?	4. Received by:	2. Received by:	Special Detection Limits (specify):	Intact?			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		No see a constant of the const	13 X		X	3=H. Num	2504	Con	other tainer	rs _r	, , , , , , , , , , , , , , , , , , ,	
Lahoratory:	М Радин да «Монанда на на предостава постава постав		PM review (initial):		4		3			 2	magnetic section of the section of t							Analysis	2 = 2