GW-175

1st QTR 2010 GW monitoring results

DATE: August 18, 2010

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

August 18, 2010

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 1st Quarter 2010 Groundwater Monitoring Results DCP Hobbs Gas Plant (GW-175) Unit G, Section 36, Township 18 South, Range 36 East Lea County, New Mexico

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 1st Quarter 2010 Groundwater Monitoring Results for the DCP Hobbs Gas Plant located in Lea County, New Mexico (Unit G, Section 36, Township 18 South, Range 36 East).

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me swweathers@dcpmidstream.com.

Sincerely

DCP Midstream, LP

Stephen Weathers, P.G. Principal Environmental Specialist

cc: Larry Johnson, OCD Hobbs District Office (Copy on CD) Environmental Files

FIRST QUARTER 2010 GROUNDWATER MONITORING REPORT

DCP HOBBS GAS PLANT GW-175 LATITUDE: N 32.70533° LONGITUDE: W 103.3066° LEA COUNTY, NEW MEXICO

Prepared For: Mr. Steve Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, Colorado 80202

Siobhan Fackelman Senior Staff Geologist

For

John Riggi, P.G. Senior Project Geologist

Prepared by: Conestoga-Rovers & Associates

2420 West 26th Ave, Suite 450-D Denver, CO 80211

Office: 7209759120 Fax: 7209759150

AUGUST 2, 2010 REF. NO. 059097(4) This report is printed on recycled paper.

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	.1
2.0	GROUNDWATER MONITORING AND SAMPLING	.1
3.0	ANALYTICAL RESULTS	.2
4.0	CONCLUSIONS	.3

LIST OF FIGURES (Following Text)

- FIGURE 1 VICINITY MAP
- FIGURE 2 GROUNDWATER ELEVATION CONTOUR MAP
- FIGURE 3 GROUNDWATER BTEX ANALYTICAL RESULTS

LIST OF TABLES (Following Text)

TABLE 1GROUNDWATER ANALYTICAL RESULTS

LIST OF APPENDICES

- APPENDIX A WELL SAMPLING FORMS
- APPENDIX B STANDARD OPERATING PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING
- APPENDIX C LABORATORY ANALYTICAL REPORT

059097 (4)

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) is submitting this *First Quarter 2010 Groundwater Monitoring Report* to DCP Midstream, LP (DCP) for the Hobbs Gas Plant in Lea County, New Mexico. This report summarizes the March 24 and 25, 2010 groundwater sampling event. Groundwater monitoring and sampling details, analytical results and conclusions are presented below.

Site Background

The site is a cryogenic processing plant located in Lea County, New Mexico approximately nine miles west of Hobbs, New Mexico (Figure 1). The site occupies approximately 3.5 acres in an undeveloped area. Facilities include a laboratory, an amine unit, compressors, sumps, mol sieve dehydration, tank batteries and an onsite water production well used for non-potable water. The Apex Compressor Station is located approximately 750 feet (ft) north of the Hobbs Gas Plant. There are six groundwater monitoring wells onsite.

Hydrogeology

Historical static groundwater depths have ranged between 60.18 (MW-A) and 62.44 ft below ground surface (bgs)(MW-F). Static groundwater depths ranged from 60.40 (MW-A) to 62.02 ft bgs (MW-F) on March 24, 2010. Groundwater flow was to the southeast with a gradient of 0.0043 ft/ft (Figure 2).

2.0 GROUNDWATER MONITORING AND SAMPLING

CRA gauged groundwater monitoring wells MW-A through MW-F on March 24, 2010 and collected samples from MW-A through MW-F on March 25, 2010. Each well cap was removed to allow groundwater levels to stabilize and equilibrate prior to gauging. All sampled groundwater monitoring wells were purged of approximately three well-casing volumes while temperature, pH, and conductivity were measured. Groundwater samples, including a duplicate sample, were collected using clean disposable bailers and decanted into clean containers supplied by the analytical laboratory. Groundwater samples were submitted under chain-of-custody to Accutest Laboratories of Texas. CRA well sampling forms are presented as Appendix A. CRA's standard operating procedures for groundwater monitoring and sampling are presented as Appendix B. Groundwater data and field parameters are summarized in Table 1.

Purged Groundwater

Purged groundwater from all site monitoring wells was stored in a sealed United States Department of Transportation polydrum. The drum was transported to the DCP Linam Ranch Facility; where purged groundwater was disposed in the onsite sump. The drum was labeled with contents, date of generation, generator identification and consultant contact information.

3.0 ANALYTICAL RESULTS

Groundwater Analytical Methods

Groundwater samples collected from MW-A through MW-F were analyzed for the following:

• Benzene, toluene, ethylbenzene, and xylenes (BTEX) by SW-846 8260B.

Constituents of Concern and Cleanup Levels

The New Mexico Oil Conservation Division (NMOCD) guidelines require groundwater to be analyzed for potential constituents of concern (COC) as defined by the New Mexico Water Quality Control Commission (NMWQCC) regulations. The COC in site groundwater is benzene. NMWQCC human heath standards for groundwater (*Title 20, Chapter 6, Part 2, Subsection A*) are:

Analyte	NMWQCC Standard for Groundwater micrograms per liter (μg/l)
Benzene	10
Toluene	750
Ethylbenzene	750
Total Xylenes	620

Groundwater Sampling Results: No BTEX was detected above NMWQCC standards in groundwater samples collected from wells MW-A, MW-D, MW-E, and MW-F. Benzene was detected at 199 micrograms per liter (μ g/l) in sample MW-B and 48.2 μ g/l in sample MW-C (Figure 3). Groundwater analytical results are summarized in Table 1. The laboratory analytical report is presented as Appendix C.

4.0 <u>CONCLUSIONS</u>

No petroleum hydrocarbons have been detected in quarterly groundwater samples collected from wells MW-A, MW-D, MW-E and MW-F since June 2008. DCP will continue quarterly monitoring and sampling during 2010 to evaluate site groundwater conditions.

FIGURES

FIGURE 1: VICINITY MAP

FIGURE 2: GROUNDWATER ELEVATION CONTOUR MAP FIGURE 3: GROUNDWATER BTEX ANALYTICAL RESULTS

059097-10(010)GN-MD001 FEB 09/2010

TABLES

TABLE 1: GROUNDWATER ANALYTICAL RESULTS

.

CONESTOGA-ROVERS & ASSOCIATES

100

5 . S. -

4

* ; 4 4

× .

Table 1.	Groundwater A	nalytical Rest	ults - Hobbs (Cas Plant, Lea (County, Ne	w Mexico							
Weli ID	Date	TOC	DTW	CWE	Hq	Conductivitiy	Temperature	8	ORP	Benzene	Toluene	Ethyl - benzene	Total Xylenes
		(ft msl)	(ft bgs)	(ft msl)	5.U.	μS/cm	ŝ	mg/l	мV		Concentratio	ns in µg/l	t
MW-A	3/5/2008	3755.87	60.18	3695.69	7.20	431	17.46	11.42	21.3	11	<5.0	3.8	15.0
MW-A	6/2/2008	3755.87	60.19	3695.68	7.31	573	20.57	5.49	31.1	< 0.46	< 0.48	< 0.45	< 1.4
NIW-A	9/15/2008	3755.87	60.58	3695.29	6.81	533	19.27	4.96	238.7	< 0.46	< 0.48	< 0.45	< 1.4
MW-A	12/3/2008	3755.87	60.41	3695.46	7.37	505	18.20	7.17	183.9	< 0.46	< 0.48	< 0.45	< 1.4
MW-A	2/27/2009	3755.87	60.18	3695.69	7.29	505	19.34	8.15	64.1	< 0.46	< 0.48	< 0.45	< 1.4
MW-A	6/25/2009	3755.87	60.21	3695.66	6.90	660	19.80	8.20	145.0	< 2.0	< 2.0	< 2.0	< 6.0
MW-A	9/1/2009	3755.87	60.37	3695.50	7.07	670	19.86	8.11	69.0	< 2.0	< 2.0	< 2.0	< 6.0
MW-A	11/17/2009	3755.87	60.40	3695.47	7.82	576	17.67	1	ı	< 2.0	< 2.0	< 2.0	< 6.0
MW-A	3/25/2010	3755.87	60.40	3695.47	7.51	567	21.70	I	I	< 2.0	< 2.0	< 2.0	< 6.0
MW-B	3/5/2008	3755.94	61.66	3694.28	6.67	836	16.99	2.49	-214.1	550	64	130	730
MW-B	6/2/2008	3755.94	61.69	3694.25	7.08	868	19.99	1.09	-150.1	444	86.5	155	716
MW-B	9/15/2008	3755.94	62.04	3693.90	6.60	902	19.63	0.56	-151.6	398	36.6	157	947
MW-B(d)	9/15/2008	3755.94	62.04	3693.90	6.60	902	19.63	0.56	-151.6	488	46.0	200	1,210
MW-B	12/3/2008	3755.94	61.93	3694.01	6.93	. 688	18.39	1.57	-161.4	25.6	0.56 J	7.1	29.2
MW-B	2/27/2009	3755.94	61.68	3694.26	6.87	921	18.83	0.96	-115.7	592	86.3	176	1,230
MW-B	6/25/2009	3755.94	61.63	3694.31	6.60	130	19.80	2.50	-131.0	1,490	270	411	2,750
MW-B	9/1/2009	3755.94	61.81	3694.13	6.60	130	20.36	1.92	-206.0	1,420	195	380	2,930
MW-B	11/17/2009	3755.94	61.85	3694.09	6.99	822	17.50	١	ł	199	2.9	68.5	159
NW-B	3/25/2010	3755.94	61.70	3694.24	6.99	1007	20.80	1	1	199	7.8	112	375
MW-C	3/5/2008	3755.59	61.18	3694.41	6.91	535	17.46	6.50	-104.1	19	5.3	19.0	78.0
MW-C(d)	3/5/2008	3755.59	61.18	3694.41	6.91	535	17.46	6.50	-104.1	160	< 25	160	140
MW-C	6/2/2008	3755.59	61.22	3694.37	6.90	781	20.00	2.64	-121.2	75.4	4.9	26.3	121
MW-C(d)	6/2/2008	3755.59	61.22	3694.37	6.90	781	20.00	2.64	-121.2	103	8.1	36.9	170
MW-C	9/15/2008	3755.59	61.54	3694.05	6.51	679	18.99	1.97	160.3	130	5.7	47.3	222
MW-C	12/3/2008	3755.59	61.48	3694.11	6.88	621	18.24	2.31	-17.8	39.0	< 0.48	10.5	33.3
MW-C(d)	12/3/2008	3755.59	61.48	3694.11	6.88	621	18.24	2.31	-17.8	50.6	< 0.48	13.6	44.5
MW-C	2/27/2009	3755.59	61.15	3694.44	6.90	614	18.56	1.96	-8.7	69.9	0.78 J	20.1	86.8
MW-C(d)	2/27/2009	3755.59	61.15	3694.44	6.90	614	18.56	1.96	-8.7	36.6	< 0.48	10.0	43.3
MW-C	6/25/2009	3755.59	61.16	3694.43	6.60	760	19.60	4.42	54.0	54.3	0.72]	11.9	53.0
MW-C(d)	6/25/2009	3755.59	61.16	3694.43	6.60	760	19.60	4.42	54.0	64.2	0.87 J	19.0	82.4
MW-C	9/1/2009	3755.59	61.35	3694.24	6.78	066	19.27	2.66	40.0	82.8	1.3]	23.1	132
MW-C(d)	9/1/2009	3755.59	61.35	3694.24	6.78	066	19.27	2.66	40.0	71.5	1.0 J	19.8	110
MW-C	11/17/2009	3755.59	61.37	3694.22	7.26	631	17.17	۱	1	30	< 2.0	9.3	53
MW-C(d)	11/17/2009	3755.59	61.37	3694.22	7.26	631	17.17	١	1	25.7	< 2.0	7.7	44.3
MW-C	3/25/2010	3755.59	61.27	3694.32	7.13	686	19.2	1	ł	48.2	3.0	16.9	141
MW-C(d)	3/25/2010	3755.59	61.27	3694.32	7.13	686	19.2	1	1	52.2	2.9	20.3	123
NMOCD Clei	anup Levels									10	750	750	620

Į

CONESTOGA-ROVERS & ASSOCIATES

- **9**1-1

Table 1.	Groundwater A	nalytical Rest	ults - Hobbs (Gas Plant, Lea (County, Ne	w Mexico							
Well ID	Date	TOC	DTW	GWE	Hq	Conductivitiy	Temperature	8	ORP	Benzene	Toluene	Ethyl - henzene	Total Xylenes
		(ft msl)	(ft bgs)	(ft msl)	s.u.	µS/cm	ç	mg/l	٨		Concentrat	ions in µg/1	ţ
D-WM	3/5/2008	3755.43	60.77	3694.66	6.85	507	17.23	9,66	22.5	< 1.0	< 5.0	< 1.0	< 3.0
MW-D	6/2/2008	3755.43	60.77	3694.66	7.13	668	19.99	5.39	29.2	< 0.46	< 0.48	< 0.45	< 1.4
MW-D	9/15/2008	3755.43	61.10	3694.33	6.64	646	19.42	3.65	233.1	< 0.46	< 0.48	< 0.45	< 1.4
D-WM	12/3/2008	3755.43	61.08	3694.35	7.09	587	17.95	5.46	175.5	< 0.46	< 0.48	< 0.45	< 1.4
MW-D	2/27/2009	3755.43	60.79	3694.64	7.01	589	19.59	7.22	77.1	< 0.46	< 0,48	< 0.45	< 1.4
D-WM	6/25/2009	3755.43	60.77	3694.66	6.70	820	20.10	6.38	177.0	< 2.0	< 2.0	< 2.0	< 6.0
D-WM	9/1/2009	3755.43	60.96	3694.47	6.81	860	19.90	6.11	118.0	< 2.0	< 2.0	< 2.0	< 6.0
MW-D	11/17/2009	3755.43	60.96	3694.47	7.67	658	16.67	ţ	1	< 2.0	< 2.0	< 2.0	< 6.0
D-WM	3/25/2010	3755.43	60.89	3694.54	7.18	706	19.50	١	1	< 2.0	< 2.0	< 2.0	< 6.0
MW-E	3/5/2008	3754.36	60.75	3693.61	6.89	487	17.29	8.99	38.4	14	< 5.0	3.9	14
MW-E	6/2/2008	3754.36	60.78	3693.58	2.07	633	19.91	3.72	9.4	< 0.46	< 0.48	< 0.45	< 1.4
NW-E	9/15/2008	3754 36	61.21	3693.15	6.74	<u>601</u>	19.27	4.02	228.3	< 0.46	< 0.48	< 0.45	< 1.4
MW-E	12/3/2008	3754.36	61.13	3693.23	7.03	592	18.58	5.25	186.2	< 0.46	< 0.48	< 0.45	< 1.4
MW-E	2/27/2009	3754.36	60.81	3693.55	1.01	590	19.10	6.29	91.2	< 0.46	< 0.48	< 0.45	<1.4
MW-E	6/25/2009	3754.36	60.74	3693.62	6.80	270	20.10	5.19	60.0	< 2.0	< 2.0	< 2.0	< 6.0
MW-E	9/1/2009	3754.36	60.93	3693.43	6.84	780	20.94	5.95	16.0	< 2.0	< 2.0	< 2.0	< 6.0
MW-E	11/17/2009	3754.36	60.94	3693.47	7.32	610	17.06	;	1	< 2.0	< 2.0	< 2.0	< 6.0
MW-E	3/25/2010	3754.36	60.82	3693.54	7.14	654	19.50	I	1	< 2.0	< 2.0	< 2.0	< 6.0
1 11 1 1					ì	Ē			č	c 7		0 7	C
NIVV-F	3/5/2008	3/56.13	62.01	3694.12	9.79	769 700	10.71	1/.6	0 70 70 70	L.9	0,0.2	1.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.01.0<l< td=""><td>8.5 2 t 1</td></l<>	8.5 2 t 1
MIVV-F	9/12/2000	3/30.13	97.06	3694.07	0./0	6/10	19.UU	2.02 0.5	21.4	46.0	 0.48 0.40 	0.450 1.40	1.4
MW-F	9007/CT/6	3/36.13	67.44	3093.69	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0/12 011	/1/1	767	254.5	C 0.40	0.450.45	0.4510.45	 1.4 1.4
7-WIM	9,02/2/71	51.00/5	7779	16.5605	9.9	716	L/./9	3.79	188.4	< 0.46	 0.48 10.48 	0.4.U <	1.4
NIW-F	2/ 2/ 2009	3756.13	61.97	3694.16	6.77	857	18.61	0.80 1	43.4	< 0.46	< 0.48	< 0.4.0 <	4.1 >
A-WIN	6007/c7/9	3/56.13	61.96	3694.17	6.20	100	19.80	5.50	0.122	< 2.0	< 2.0	< 2.0	< 6.U
MW-F	6002/1/6	3756.13	62.18	3693.95	6.51	110	19.25	5.27	108.0	< 2.0	< 2.0	< 2.0	< 6.0
MW-F	11/17/2009	3756.13	62.13	3694.00	6.93	1030	18.67	۱	1	< 2.0	< 2.0	< 2.0	< 6.0
MW-F	3/25/2010	3756.13	62.02	3694.11	6.94	1053	19.00	1	+	< 2.0	< 2.0	< 2.0	< 6.0
NMOCD CI	eanup Levels									10	750	750	620
Notes and Abbt 1D = Identification TUC = Top of ca ORT = Orphote GWE = Groundin ORT = Orbisolved ORT = Orbisolved ORT = Orbisolved ORT = Orbisolved In the Feet abo If they = Bencient If they = Be	eriations: an o vater elevation vater elevation oxygen attention potential oxygen a relevation or mean sea leval or mean sea leval or mean sea leval itius or mean sea leval or mean sea of the sea sea of non analyzed ample- ample- mean sea consection of the sea of the sea sea sea sea sea sea of the sea sea sea sea sea sea of the sea sea sea sea sea sea sea of the sea sea sea sea sea sea sea sea of the sea sea sea sea sea sea sea sea sea se	ne, and total xy ¹	trus by SW-8.	16 8021 vr 8260B									
//Den-s1/shared/	\Project Files\0590\059	097-HOBBS\059	97-REPORTS/I	359097-RPT 4-1Q GV	VM AND O&	M REPORT\ [059097-4	-Tl.xls]Groundwater ,	Analytical Res					

2

APPENDIX A

WELL SAMPLING FORMS

.

ł

4.4

۰.» الارد

4

E

5

- - 44 - 1 - 1

а. 464 1

Ç.,

Groundwater Monitoring Field Sheet

					01					
		×			325.					
omments					Dup	•				
Casing C Diam.	2 "	2 //	2"	2′′	2"	2"				
of C tt I ed						· 1		 		
Amount Produc Remove										
Product Chickness										
in to	SS	80	00	0	50	101	 			
Depth Botto	69,5	73.	70.1	71.2	73,1	70.				
DTW	60.89	62.02	60,40	10.82	61.27	0L.107				
DTP										
Time	1210	12 18	1226	1235	1842	1250				
Well ID	d-wM	MW-F	MW-A	MW-E	MW-C	MW-B				

Project Name: HOBBS GAS PLANT

Field Staff: Joe lewandonaly / Joe Mireles

Project Number/Task: 059097-11-02

Date: 3-24-10

I: Projects_In_Progress/6-chars/05----/0590-/059097/059097 Field Data/GW Sampling/March 2010/GW Monitoring Gauging Form.doc

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-A
Project Number: 059097	Date: 3-25-10	Well Yield:
Site Address:	Sampling Method: Hand Bailing	Well Diameter $2^{\ell\ell}$
		Field Staff: JM JC
Initial Depth to Water: 60.40	Total Well Depth: 70.60	Water Column Height: 10,2
Volume/ft: D16	1 Casing Volume: 1,632	3 Casing Volumes: 4,99
Purging Device: $\mathcal{D}_{\mathcal{Q}_i} _{\ell}$	Did Well Dewater?: NO	Total Gallons Purged: 6
Start Purge Time: 1225	Stop Purge Time: 1245	Total Time: 02,25 m;4

I Casing Volume = Water column height x Volume/ ft.

(

Well Diam. Volume/ft (gallons) 2" 4" 6"

0.16 0.65 1.47

Time	Volume Purged (gallons)	Temp. (%)	рН	Cond. (uS)	Comments
1237	D.25	74.4	7,46	573	
TRUD	0.25	70.3	7.57	540	
12.12	0.25	70 10/	7.51	567	
				·	
		. <u></u>	, <u></u>		

	Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
	MW.A	3-25-10	1245	VOA	HC1	VBC S	8260B 56 84
4						, 	
				· · · · · · · · · · · · · · · · · · ·			

I:\Projects_In_Progress\6-chars\05----\059097\059097\059097\059097 Field Data\GW Sampling\March 2010\GW Sampling Form MW-A.doc

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-B
Project Number: 059097	Date: 03-25-10	Well Yield: 5.25
Site Address:	Sampling Method: Hand Bailing	Well Diameter 2"
		Field Staff: JL , JM
Initial Depth to Water: 61.70	Total Well Depth: 70.61	Water Column Height: 8,91
Volume/ft:	1 Casing Volume: 1,43	3 Casing Volumes: 4], 28
Purging Device: Bailer	Did Well Dewater?: NO	Total Gallons Purged: 5.25
Start Purge Time: 14 17	Stop Purge Time:	Total Time:

1 Casing Volume = Water column height x Volume/ ft.

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

j (Time	Volume Purged (gallons)	Temp. (°C)	рН	Cond. (uS)	Comments
	1425	125	76.6	6.95	936	
i	1427	025	72.6	6.96	973	
	ľ429	. 25	69.4	6.99	1007	
						· .

	Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
	mw-B	3/25/10	1435	40 mL VOA	Hei	VOC'S	8260 B
(1			

I:\Projects_In_Progress\6-chars\05----\0590--\059097\059097\059097 Field Data\GW Sampling\March 2010\GW Sampling Form MW-B.doc

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-C - DUP32510	
Project Number: 059097	Date: 3-25-10	Well Yield: 7 50/5	
Site Address:	Sampling Method: Hand Bailing	Well Diameter \mathcal{L}^{ll}	
		Field Staff: J,L, $\mathcal{J}M_{i}$	
Initial Depth to Water: 61,27	Total Well Depth: 73.65	Water Column Height: 12.38	
Volume/ft: 0 14	1 Casing Volume: 1, 98	3 Casing Volumes: 5, 94	
Purging Device: Bailur	Did Well Dewater?: N()	Total Gallons Purged: 7	
Start Purge Time: 1340	Stop Purge Time: 1402	Total Time: 22 min	

l Casing Volume = Water column height x Volume/ ft.

Ç

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Volume Purged (gallons)	Temp. (°₡) ₣	рН	Cond. (uS)	Comments
1355	0.25	73.4	7.05	717	
1357	0.25	67.6	7.15	671	
1400	0.25	66.5	7:13	686	
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
					_ ·

	Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
	MW-C	3.25-10	1402	VOA	# []	Voc 's	8260 B SW 846
[OUP	3 - 25 - 10	1402	VOA	HCI	Vocs	8260 B 5 ex 846
l							

I:\Projects_In_Progress\6-chars\05----\059097\059097\059097\059097 Field Data\GW Sampling\March 2010\GW Sampling Form MW-C.doc

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-D	
Project Number: 059097	Date: 3-25-10	Well Yield: Well Yield: 4,25	
Site Address:	Sampling Method: Hand Bailing	Well Diameter 2 '(
		Field Staff: J. M. JL,	
Initial Depth to Water: 60.89	Total Well Depth: 69.55	Water Column Height: 8,66	
Volume/ft: 0.16	1 Casing Volume: 1,386	3 Casing Volumes: 4,2	
Purging Device: Bajler	Did Well Dewater?: ND	Total Gallons Purged: 🐠 5	
Start Purge Time: 1105	Stop Purge Time: 1/30	Total Time: 25 n. 1	

1 Casing Volume = Water column height x Volume/ ft.

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

pН **Volume Purged** Temp. Cond. Time **Comments** (gallons) (°C) (uS) OF 738 3 7019 5 71.0 0.25 780 -0 67.8 11 -18 706 1.15 U 7

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-D	3-25	35	VOA	HCL	VOCS	SW 84/6 8260

I:\Projects_In_Progress\6-chars\05----\0590--\059097\059097\059097 Field Data\GW Sampling\March 2010\GW Sampling Form MW-D.doc

Project Name: Hobbs Gas Plant	CRA Mgr: John Riggi	Well ID: MW-E
Project Number: 059097	Date: 3-25-10	Well Yield:
Site Address:	Sampling Method: Hand Bailing	Well Diameter 2"
		Field Staff: JL , JM
Initial Depth to Water: 60.82	Total Well Depth: 71.30	Water Column Height: 10,48
Volume/ft: 16	1 Casing Volume: 1.68	3 Casing Volumes: 5,03
Purging Device: Bailer	Did Well Dewater?: NO	Total Gallons Purged: 6
Start Purge Time: 12 58	Stop Purge Time: 1314	Total Time:

I Casing Volume = Water column height x Volume/ ft.

.

Ç

 Well Diam.
 Volume/ft (gallons)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Ś	Time	Volume Purged (gallons)	Temp. (°C)	рН	Cond. (uS)	Comments
	13 08	.25	71.4	7.24	628	
	13 11	.25	68.5	7.27	645	
ĺ	13 14	.25	67.1	7,14	654	
				-		
	1					

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-E	3/25/10	1318	40ml VOA	HCI	VOC'S	8260 B

,

1:\Projects_ln_Progress\6-chars\05----\059097\059097\059097\059097 Field Data\GW Sampling\March 2010\GW Sampling Form MW-E.doc

į

WELL SAMPLING FORM

Project Name: Hobbs Gas Plant CRA Mgr: John Riggi		Well ID: MW-F
Project Number: 059097	Date: 03-25-10	Well Yield: 5.65
Site Address:	Sampling Method: Hand Bailing	Well Diameter 2 "
		Field Staff: JL JM
Initial Depth to Water: \$2.02	Total Well Depth: 73.80	Water Column Height: 11.78
Volume/ft:	1 Casing Volume: 1.88	3 Casing Volumes: 5.65
Purging Device: Bauler	Did Well Dewater?: NO	Total Gallons Purged: 6,25
Start Purge Time: 1147	Stop Purge Time: 1204	Total Time:

1 Casing Volume = Water column height x Volume/ ft.

1

 Diam.
 Volume/ft (gallous)

 2"
 0.16

 4"
 0.65

 6"
 1.47

Time	Volume Purged (gailons)	Temp. ∰ °⊢	рН	Cond. (uS)	Comments
11:59	. 25	68.5	6.89	1057	
12:02	. 25	66.3	7.01	1056	
12 04	-25	66.2	6.94	1053	

Sample ID	Date	Time	Container Type	Preservative	Analytes	Analytic Method
MW-F	3-25-10	1210	40ml VOA	HCI	VOC's	8260B
/ 						

I:\Projects_In_Progress\6-chars\05----\059097\059097\059097\059097 Field Data\GW Sampling\March 2010\GW Sampling Form MW-F.doc

<u>Well Diam.</u> 2" 4" 6"

APPENDIX B

STANDARD OPERATING PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

STANDARD FIELD PROCEDURES FOR GROUNDWATER MONITORING AND SAMPLING

This document presents standard field methods for groundwater monitoring, purging and sampling, and well development. These procedures are designed to comply with Federal, State and local regulatory guidelines. Conestoga-Rovers & Associates' specific field procedures are summarized below.

Groundwater Monitoring

Prior to performing monitoring activities, the historical monitoring and analytical data of each monitoring well shall be reviewed to determine if any of the wells are likely to contain separate phase hydrocarbons (SPH) and to determine the order in which the wells will be monitored (i.e. cleanest to dirtiest). Groundwater monitoring should not be performed when the potential exists for surface water to enter the well (i.e. flooding during a rainstorm).

Prior to monitoring, each well shall be opened and the well cap removed to allow water levels to stabilize and equilibrate. The condition of the well box and well cap shall be observed and recommended repairs noted. Any surface water that may have entered and flooded the well box should be evacuated prior to removing the well cap. In wells with no history of SPH, the static water level and total well depth shall be measured to the nearest 0.01 foot with an electronic water level meter. Wells with the highest contaminant concentrations shall be measured to the nearest 0.01 foot using an electronic interface probe. The water level shall be measured to the nearest 0.01 foot using an electronic interface probe. The water level meter and/or interface probe shall be thoroughly cleaned and decontaminated at the beginning of the monitoring event and between each well. Monitoring equipment shall be washed using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water.

Groundwater Purging and Sampling

Prior to groundwater purging and sampling, the historical analytical data of each monitoring well shall be reviewed to determine the order in which the wells should be purged and sampled (i.e. cleanest to dirtiest). No purging or groundwater sampling shall be performed on wells with a measurable thickness of SPH or floating SPH globules. If a sheen is observed, the well should be purged and a groundwater sample collected only if no SPH is present. Wells shall be purged either by hand using a disposal or PVC bailer or by using an aboveground pump (e.g. peristaltic or WatteraTM) or down-hole pump (e.g. GrundfosTM or DC Purger pump).

Groundwater wells shall be purged approximately three to ten well-casing volumes (depending on the regulatory agency requirements) or until groundwater parameters of temperature, pH, and conductivity have stabilized to within 10% for three consecutive readings. Temperature, pH, and conductivity shall be measured and recorded at the start of purging, once per well casing volume removed, and at the completion of purging. The total volume of groundwater removed shall be recorded along with any other notable physical characteristic such as color and odor. If required, field parameters such as turbidity, dissolved oxygen (DO), and oxidation-reduction potential (ORP) shall be measured prior to collection of each groundwater sample.

Groundwater samples shall be collected after the well has been purged and allowed to recharge to 80% of the pre-purging static water level, or if the well is slow to recharge, after waiting a minimum of 2 hours. Groundwater samples shall be collected using clean disposable bailers or

pumps (if an operating remediation system exists on site and the project manager approves of its use for sampling) and shall be decanted into clean containers supplied by the analytical laboratory. New latex gloves and disposable tubing or bailers shall be used for sampling each well. If a PVC bailer or down-hole pump is used for groundwater purging, it shall be decontaminated before purging each well by using soapy water consisting of Liqui-noxTM or AlconoxTM followed by one rinse of clean tap water and then two rinses of distilled water. If a submersible pump with non-dedicated discharge tubing is used for groundwater purging, both the inside and outside of pump and discharge tubing shall be decontaminated as described above.

Sample Handling

Except for samples that will be tested in the field, or that require special handling or preservation, samples shall be stored in coolers chilled to 4° C for shipment to the analytical laboratory. Samples shall be labeled, placed in protective foam sleeves or bubble wrap as needed, stored on crushed ice at or below 4° C, and submitted under chain-of-custody (COC) to the laboratory. The laboratory shall be notified of the sample shipment schedule and arrival time. Samples shall be shipped to the laboratory within a time frame to allow for extraction and analysis to be performed within the standard sample holding times.

Sample labels shall be filled out using indelible ink and must contain the site name; field identification number; the date, time, and location of sample collection; notation of the type of sample; identification of preservatives used; remarks; and the signature of the sampler. Field identification must be sufficient to allow easy cross-reference with the field datasheet.

All samples submitted to the laboratory shall be accompanied by a COC record to ensure adequate documentation. One copy of the COC shall be kept in the QA/QC file and another copy shall be retained in the project file. Information on the COC shall consist of the project name and number; project location; sample numbers; sampler/recorder's signature; date and time of collection of each sample; sample type; analyses requested; name of person receiving the sample; and date of receipt of sample.

Laboratory-supplied trip blanks shall accompany the samples and be analyzed to check for crosscontamination, if requested by the project manager.

Well Development

Wells shall be developed using a combination of groundwater surging and extraction. A surge block shall be used to swab the well and agitate the groundwater in order to dislodge any fine sediment from the sand pack. After approximately ten minutes of swabbing the well, groundwater shall be extracted from the well using a bailer, pump and/or reverse air-lifting through a pipe to remove the sediments from the well. Alternating surging and extraction shall continue until the sediment volume in the groundwater (i.e. turbidity) is negligible, which typically requires extraction of approximately ten well-casing volumes of groundwater. Preliminary well development usually is performed during well installation prior to placing the sanitary surface seal to ensure sand pack stabilization. Well development that is performed after surface seal installation, should occur 72 hours after seal installation to ensure that the cement has had adequate time to set.

Waste Handling and Disposal

Groundwater extracted during development and sampling shall be stored onsite in sealed U.S. DOT H17 55-gallon drums. Each drum shall be labeled with the contents, date of generation, generator identification and consultant contact. If hydrocarbon concentrations in the purged groundwater are below ADEC cleanup levels or the site is in a remote area (pending ADEC approval) groundwater will be discharged to the ground surface, at least 100 feet from the nearest surface water body.

\\DEN-S1\Shared\Denver\Alaska\AK SOP\CRA Alaska SOP\AK Groundwater Monitoring and Sampling SOP - CRA.doc

APPENDIX C

LABORATORY ANALYTICAL REPORT

.

٠

-

04/06/10

Technical Report for

8 1 1

DCP Midstream, LLC

CRA: Hobbs

Accutest Job Number: T49985

Sampling Date: 03/25/10

Report to:

DCP Midstream, L.P. 370 17th Street Suite 2500 Denver, CO 80202 SWWeathers@dcpmidstream.com; rbaca@craworld.com

5 H P M .

1.64 1.5-

ATTN: Mr. Steve Weathers

Total number of pages in report: 25

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul K Carevaro

Paul Canevaro Laboratory Director

Client Service contact: Georgia Jones 713-271-4700

Certifications: TX (T104704220-09C-TX) AR (88-0756) FL (E87628) KS (E-10366) LA (85695/04004) OK (9103) UT(7132714700)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Gulf Coast • 10165 Harwin Drive • Suite 150 • Houston, TX 77036 • tel: 713-271-4700 • fax: 713-271-4770 • http://www.accutest.com

Table of Contents

er je

L.

ષ્ટ

66)

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: T49985-1: MW-A	5
2.2: T49985-2: MW-B	6
2.3: T49985-3: MW-C	7
2.4: T49985-4: MW-D	8
2.5: T49985-5: MW-E	9
2.6: T49985-6: MW-F	10
2.7: T49985-7: DUPLICATE	11
2.8: T49985-8: TRIP BLANK	12
Section 3: Misc. Forms	13
3.1: Chain of Custody	14
Section 4: GC/MS Volatiles - QC Data Summaries	17
4.1: Method Blank Summary	18
4.2: Blank Spike Summary	20
4.3: Matrix Spike/Matrix Spike Duplicate Summary	23

ъ. њ.

i and

DCP Midstream, LLC

CRA: Hobbs

Job No: T49985

Sample Number	Collected Date	Time By	Received	Matri Code	ix Туре	Client Sample ID
T49985-1	03/25/10	12:45 JM	03/30/10	AQ	Ground Water	MW-A
T49985-2	03/25/10	14:35 JM	03/30/10	AQ	Ground Water	MW-B
T49985-3	03/25/10	14:02 JM	03/30/10	AQ	Ground Water	/MW-C
T49985-4	03/25/10	11:35 JM	03/30/10	AQ	Ground Water	MW-D
T49985-5	03/25/10	13:18 JM	03/30/10	AQ	Ground Water	MW-E
T49985-6	03/25/10	12:10 JM	03/30/10	AQ	Ground Water	MW-F
T49985=7	03/25/10	00:00 JM	03/30/10	AQ	Ground Water	DUPLICATE
T49985-8	03/25/10	00:00 JM	03/30/10	AQ	Trip Blank Water	TRIP BLANK

Sample Results

Report of Analysis

6

1. A.A.

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-A e ID: T49985- AQ - Gr SW846 8 CRA: H	1 ound Water 8260B obbs			Date Sa Date R Percent	ampled: eceived: t Solids:	03/25/10 03/30/10 n/a	
	File ID	DF	Analyzed	By	Prep Da	te	Prep Batch	Analytical Batch
Run #1 Run #2	C0007931.D	I 	04/04/10	KK	n/a		n/a	VC308
	Purge Volume				-			
Run #1 Run #2	5.0 ml							
Purgeable	Aromatics							
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2	Benzene		ND	0.0020	0.00050	mg/l		
108-88-3	Toluene		ND	0.0020	0.00043	mg/l		
100-41-4	Ethylbenzene		ND	0.0020	0.00055	mg/l		
1330-20-7	Xylene (total)		ND	0.0060	0.0017	mg/l		
CAS No.	Surrogate Reco	overies	Run# 1	Run# 2	Limit	ts		
1868-53-7	Dibromofluoron	nethane	111%	14	79-12	2%		
17060-07-0	1,2-Dichloroeth	ane-D4	102%		75-12	21%		
2037-26-5	Toluene-D8		94%		87-11	.9%		
460-00-4	4-Bromofluorob	enzene	83%	2	80-13	3%		

ND = Not detected MDL - Method Detection Limit $RL \approx$ Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

2<u>.</u> 2

Page 1 of 1

Report of Analysis

	· · · · · · · · · · · · · · · · · · ·					
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-B e ID: T49985-2 AQ - Ground Wate SW846 8260B CRA: Hobbs	21		Date Sampled Date Received Percent Solids	: 03/25/10 : 03/30/10 : n/a	
Run #1 Run #2	File ID DF C0007947.D 1 C0007949.D 10	Analyzed 04/05/10 04/05/10	By RR RR	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VC369 VC369
Run #1 Run #2	Purge Volume 5.0 ml 5.0 ml	· .				
Purgeable	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.199 ^{°a} 0.0078 0.112 0.375	0.020 0.0020 0.0020 0.0060	0.0050 mg/l 0.00043 mg/l 0.00055 mg/l 0.0017 mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	94% 90% 107% 84%	99% 90% 99% 94%	79-122% 75-121% 87-119% 80-133%		

(a) Result is from Run# 2

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

.

Report	of	Analysis	
TCOD OT C	U I	I MAGIN DID	

Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW- e ID: T499 AQ - SW84 CRA	C 85-3 Ground Water 46 8260B : Hobbs	r		Date Sa Date R Percen	ampled: eceived t Solids	: 03/25/10 : 03/30/10 : n/a	
Run #1 Run #2	File ID C0007932.D	DF 1	Analyzed 04/04/10	By RR	Prep Da n/a	te	Prep Batch n/a	Analytical Batch VC368
Run #1 Run #2	Purge Volum 5.0 ml	e						
Purgeable A	Aromatics							
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total	e)	0.0482 0.0030 0.0169 0.141	0.0020 0.0020 0.0020 0.0060	0.00050 0.00043 0.00055 0.0017	mg/l mg/l mg/l mg/l		
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Limit	S		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluo 1,2-Dichloro Toluene-D8 4-Bromofluor	romethane ethane-D4 robenzene	98% 98% 106% 77% ª		79-12 75-12 87-11 80-13	2% 1% 9% 3%		

(a) Outside control limits biased low. There are no target compounds associated with this surrogate.

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

460-00-4

-	~		•
Renort	of.	Anal	VSIS
TOPOIL		C TTTM	y DID

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-D e ID: T49985-4 AQ - Ground Wat SW846 8260B CRA: Hobbs	er		Date Sampled Date Received Percent Solid	l: 03/25/10 l: 03/30/10 s: n/a	
Run #1 Run #2	File ID DF C0007933.D 1	Analyzed 04/04/10	By RR	Prep Date n/a	Prep Batch n/a	Analytical Batch VC368
Run #1 Run #2	Purge Volume 5.0 ml					
Purgeable	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2	Benzene	ND	0.0020	0.00050 mg/l		
108-88-3	Toluene	ND	0.0020	0.00043 mg/l		
100-41-4	Ethylbenzene	ND	0.0020	0.00055 mg/l		
1330-20-7	Xylene (total)	ND	0.0060	0.0017 mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
1868-53-7	Dibromofluoromethane	110%		79-122%		
17060-07-0	1,2-Dichloroethane-D4	100%		75-121%		
2037-26-5	Toluene-D8	95%		87-119%		

83%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

4-Bromofluorobenzene

J = Indicates an estimated value

80-133%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

.4

2037-26-5

460-00-4

Toluene-D8

4-Bromofluorobenzene

Report	of	Analysis
--------	----	----------

Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-E e ID: T49985-5 AQ - Grou SW846 82 CRA: Hol	und Water 260B bbs			Date Sa Date R Percent	ampled: eceived: t Solids:	03/25/10 03/30/10 n/a	
Run #1 Run #2	File ID 1 C0007934.D	DF 1	Analyzed 04/04/10	By RR	Prep Da n/a	ite	Prep Batch n/a	Analytical Batch VC368
Run #1 Run #2	Purge Volume 5.0 ml							
Purgeable	Aromatics							
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)		ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00050 0.00043 0.00055 0.0017	mg/l mg/l mg/l mg/l		
CAS No.	Surrogate Recov	eries	Run# 1	Run# 2	Limi	ts		
1868-53-7 17060-07-0	Dibromofluoromo 1,2-Dichloroethau	ethane ne-D4	111% 105%		79-12 75-12	2% 1%		

95%

80%

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

87-119%

80-133%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.5 2

100-41-4

1330-20-7

CAS No.

1868-53-7

2037-26-5

460-00-4

17060-07-0

Ethylbenzene

Xylene (total)

Toluene-D8

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

D	<u> </u>		4	•
Renort	of.	Ang	a Iv	212
Report	UI	1 7110	41 y	919

Client Sam Lab Samp Matrix: Method: Project:	aple ID: le ID:	MW-F T49985 AQ - G SW846 CRA: H	-6 round Water 8260B Iobbs			Date Sa Date R Percent	ampled: eceived: t Solids:	03/25/10 03/30/10 n/a	
Run #1 Run #2	File ID C00079	46.D	DF 1	Analyzed 04/05/10	By RR	Prep Da n/a	te	Prep Batch n/a	Analytical Batch VC369
Run #1 Run #2	Purge V 5.0 ml	/olume							
Purgeable	Aromatic	cs							
CAS No.	Compo	ound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3	Benzen Toluen	ie e		NÐ ND	0.0020 0.0020	0.00050 0.00043	mg/l mg/l		

ND 0.0020 0.00055 mg/l

0.0017 mg/l

Limits

79-122%

75-121%

87-119%

80-133%

0.0060

Run# 2

ND

Run#1

111%

105%

95%

89%

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

2.6

460-00-4

	Page 1 of 1							
Client Sam Lab Sample Matrix: Method: Project:	ple ID: DUPI e ID: T4998 AQ - SW84 CRA:	LICATE 85-7 Ground Wat 16 8260B Hobbs	er		Date Sampled: 03/25/10 Date Received: 03/30/10 Percent Solids: n/a			Analytical Batch VF3815
Run #1 Run #2	File ID DF F024965.D 1		Analyzed 04/04/10	By RR	Prep Date n/a		Prep Batch n/a	
Run #1 Run #2	Purge Volum 5.0 ml	e						
Purgeable A	Aromatics							
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	')	0.0522 0.0029 0.0203 0.123	0.0020 0.0020 0.0020 0.0060	0.00050 0.00043 0.00055 0.0017	mg/l mg/l mg/l mg/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Limit	ts		
1868-53-7 17060-07-0 2037-26-5	Dibromofluor 1,2-Dichloro Toluene-D8	romethane ethane-D4	103% 96% 101%		79-12 75-12 87-11	2% 1% 9%		

98%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit E = Indicates value exceeds calibration range

4-Bromofluorobenzene

J = Indicates an estimated value

80-133%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

17060-07-0

2037-26-5

460-00-4

	Page 1 of 1									
Client Sam Lab Samp Matrix: Method: Project:	aple ID: TR le ID: T49 AQ SW CR	IP BLANK 9985-8 97 Trip Blank 7846 8260B A: Hobbs	Water		Date Sa Date R Percent	ampled: eceived: t Solids:	03/25/10 : 03/30/10 : n/a			
File ID Run #1 F024966.D Run #2		ile ID DF 024966.D 1		ID DF Analyze 1966.D 1 04/04/10		By RR	Prep Da n/a	te	Prep Batch n/a	Analytical Batch VF3815
Run #1 Run #2	Purge Volu 5.0 ml	me								
Purgeable	Aromatics									
CAS No.	Compound	1	Result	RL	MDL	Units	Q			
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)		ND ND ND ND	0.0020 0.0020 0.0020 0.0020 0.0060	0.00050 mg/l 0.00043 mg/l 0.00055 mg/l 0.0017 mg/l					
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	Limit	S				
1868-53-7	Dibromofluoromethane		102%	í.	79-12	2%				

98%

104%

101%

ND = Not detected **MDL - Method Detection Limit** RL = Reporting Limit E = Indicates value exceeds calibration range

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

J = Indicates an estimated value

75-121%

87-119%

80-133%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

2.8

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

CHAIN OF CUSTODY

	Laporatories									_				FLUER	theory	•									
	10165 Harwin, Suite 150	- Houston,	, TX 77	036 - 1	713-271	-470	U iax	: 71	3-27	/1-4	4770	J		Accutes	it Quote S					Accutas	t Job f	-110	0	~~	•
														******	1222444	1000	1731 14	Charlotte		110000012480	1	19	4	53 550	And The Party of The Party of the Party of the
22 ALC: NO.	Client / Reporting Information	EXSERNE AL	257 a 1 2 1 2 1		P	roject in	formatio	n is	05		15 ° 16	10 M H H	<u></u>	(12) (13) (13) (13) (13) (13) (13) (13) (13	1.21-165 Azərbaycan	1	104-11 104-11	5636388	legue.	sted A	alyse	9 9	2007), K	HURES	Matrix Codes
Сотралу Nan	19			Project N	leme / No.											T				[1			DW - Drinking Water
Conestoga	Rovers and Associates			DCP N	Aidstream	-Hobb	s						1		1 1	1	- 1			1		1	1		GW - Ground Water
Project Conta	ct	E-Mail		Bill to				In	volce	Altn,															WW - Wastewater
Rustin Bac	a rbaca	@craworld.com	n	DCP M	lidstream-l	lobbs		Stev	e We	athe	rs														50 - Sol
Address				Address																					SL - Sludge
2135 South	1 Loop 250 W							:												1					01 - 0ii
City	Stato	Z	Cip	City				State				Zij	P									1			LIQ - Liquid
Midland	Texas	79703																							SOL - Other Solid
Phone No.		Fax No.		Phone No	ə.						Fax	No.				- {						1			
432 685-00	086					-										- 1						1			
Samplers's Na	m• 0 . /			Ctient Pu	rchase Order	#								2	1	- 1	}								
1 000	Mireles				-									<u>e</u>	.		1		1						
Accutest		L L	c	ollection				Nun	iber c	of pre	serve	ed bot	tles	8				- 1						Ļ	
Sample #	Field ID / Point of Collection	n l			-		# of	₽₿	8	P.	5		X	26											LAB USE ONLY
<u> </u>	NIM A		Date		23 245	MBCHX	ocuues		-	Ť	- P	<u> </u>	- I		-									-+	
	MW-A		57251	10	12263	GW		3	+	\vdash	-+-	_	$\left \right $	×	┝		-	_					\dashv	-+	
	MW-C		21-11	fo	15 1462	GW	<u> </u>	3	+	\vdash	+		$\left - \right $	<u>×</u>	\vdash	\rightarrow	\rightarrow	-							
<u> </u>	MW-C		51241	10	1292 00 1135	GW	3	3			_	+-		÷	-	_	-	_							
	MW-D		31-1	10	14210	GW	3	2					$\left \right $	<u>~</u>			_	\neg	_					-	
	MWLE		5(29		16 1210	GW	3	2	+-	$\left \cdot \right $			\vdash	<u>~</u>		-+-								\rightarrow	
9	Dunlicate		3 25	10	1218	GW	3	3	+					<u>-</u>		+		-							
4	Trip Black		>1231	10		CW	3	3	+	$ \rightarrow$	+			<u>~</u>		-			_						<u> </u>
· °						GW		3		-	+	+	\square	×									-		
CHEM THE CO- THE D	Townson Time (Business days)	Transferrages Solver 10	Service and the second second second	- Minuth Start Start	CONTRACTOR AND	Gvv	<u> </u>	3		The second		-		-	to a strice of		-	[-	Second States and States of States
Walking and	10 Day STAKOARD	4.194.20143/047-034020		Contractore Co.		Dele L	Activeraci			2272	11122	110-22-43			1000962-01	COST CO	25(2)		Con	nmenta /	Kemar	15	- 13	Scouth-	No. No. and the second second second
	7 Day	APProved Bits Data.	•																						
	A Day					and Tior 1			****	unar_		·													
						ata Daaka																			
							r.Ro																		
	1 Day Emergenci	11) polondos do			Commo	Inclai "A"	# Kesul	s Only		~~															
	unor no prolutical data available via t	To calendar da	У		Comme	incial "B"	= KOSUI	36 30	ncard	qu															
Real UN	s anaryucar bala avanable via La	AMPLE CUSTODY	NUST BE DOC	UMENTED	BELOW EAC	HTME	SAMPLES	CHAN	GEPO	SSES	SION	INCLI	DING	COURI	ER DELI	VERY			- 1	10000000			0.2.14	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
Relinquighed	by Semplar: X	De	ate Time:		Received By:					Relling	ulahed	By:			(ate Tim	•;		-	Racelvad	Ar:	5	<u> </u>	-	
1 p	malle		3129/10	· 6135	1 RA	in E	SACH			2 3	den	6R	Istin	BACE	4 3	3/29	110	100	0	27	1	×			\mathbf{D}
Ralignulahed	by:	Da	ate Time:		Received By:			_		Reling	ulshed	By:				tate Tim	•:			Received	By:			01/3	10 0930
3					3					4										4					
Relinguished	by:	0:	ate Time;		Received By:					Custo	dy Seal				Preserve	d where	applic	abie				Onlo	•	Cooler 1	Temp.
5					15																	M	2	4	

T49985: Chain of Custody Page 1 of 3

Page _ of 1

SAMPLE INSPECTION FORM

Accutest Job Number: TY94.85 Client: Care, Jaga Bauer Caud Aboors to Date/Time Received:				
ethod of Delivery: REDEX UPS	Accutest Courier Greyh	ound Delivery	Other	
rbill Numbers:			·	5 - 51x 304 40 1 - 5
COOLER INFORMATION	SAMPLE INFORMATIO	N	TRIP BLANK I	NFORMATION
Custody seal missing or not intact	Sample containers received broken	;	Trip Blank on COC but r	ot received
Temperature criteria not met	VOC vials have headspace		Trip Blank received but i	not on COC
Wet ice received in cooler	Sample labels missing or illegible		Trip Blank not Intact	
	ID on COC does not match label(s)	I	Received Water Trip Blar	ık .
CHAIN OF CUSTODY	D/T on COC does not match label(s) · (]	Received Soil TB	
Chain of Custody not received	Sample/Bottles revd but no analysi	s on COC		
Sample D/T unclear or missing	Sample listed on COC, but not rece	ved	(
Analyses unclear or missing	Bottles missing for requested analy	iis Numbe	r of Encores?	
COC fint property executed	Sample received improperly preserved	ed Numbe	er of lab-filtered metals?	
ummary of Discrepancies:				
ECHNICIAN SIGNATURE/DATE:		07/20/10		
NFORMATION AND SAMPLE LABELING V	ERIFIED BY:	= 3/30/10		
		<u> </u>		
• • • • • • • • •	· · CORRECTIVE	ACTIONS +		
lient Representative Notified:	······································	Date:		
y Accutest Representative:		Via:	Phone	Email
lient Instructions:		:		

T49985: Chain of Custody Page 2 of 3

ယ _____ 20)

.

SAMPLE RECEIPT LOG	
--------------------	--

JO	в	#:
CL	IE	NT

IT:		 	 •	

DATE/TIME RECEIVED:

03/30/10 P1=

093

CLIENT:		CRA				INITIALS:				
r			······································				- T1		r	
COOLER#	SAMPLE ID	FIELD ID	DA	TE.	MATRIX	VOL	BOTTLE #	LOCATION	PRESERV	PH
	,	MW-4	03/25/10	145	ي. ب	40ml	1-3	UR	1 60 3 4 5 6 7 8	<2 >12
	2	мw · В	1	1415					1 2 3 4	<2 >12
	3	MW-C		1402					1 C2 3 4 5 6 7 8	<2 >12
	4	MW- 0		1135					1 <i>CP</i> 3 4 5 8 7 8	<2 >12
	5	MW - E		1318					1 <i>62</i> 3 4 5 6 7 8	<2 >12
	6	MW-F		1210					1 42 3 4 5 6 7 8	<2 >12
	Г	Duplicate	1	_			*		1 (2) 3 4 5 6 7 8	ຸ<2 >12
↓	3	Trip Blank			1	/	1-2		1 (2) 3 4 5 6 7 8	<2 >12
~			<u> </u>			\sim			1 - 2 - 3 - 4 5 6 7 8	>12
									1 2 3 4 5 6 7 8	<u>~2</u> >12
)	\ <u>.</u>				1 2 4	<2 >12
		·	de.	1701					1 2 3 4 5 6 7 8	<2 >12
			17						1 2 3 4 5 6 7 B	<2 >12
				\sim					1 2 3 4 5 6 7 8	<2 >12
									1 2 3 4 5 6 7 B	<2 >12
		/	1						1 2 3 4 5 6 7 8	<2 >12
									1 2 3 4 5 6 7 8	<2 >12
			_						1 2 3 4 5 6 7 8	<2 >12
		<u> </u>	· ·						1 2 3 4 5 6 7 8	<2 >12
l									1 2 3 4 5 6 7 8	<2 >12
			\leftarrow	\frown	\frown		<u>L</u>		1 2 3 4 5 <u>6 7 8</u>	<2 >12
\sim			-						1 2 3 4 5 8 7 8	<2 >12

PRESERVATIVES: 1: None 2: HCL 3: HNO3 4: H2SO4 5: NAOH 6: DI 7: MeOH 8: Other

LOCATION: 1: Walk-In #1 (Walers) 2: Walk-In #2 (Soils) VR: Volatile Fridge M: Metals SUB: Subcontract EF: Encore Freezer Rev 8/13/01 evp

T49985

T49985: Chain of Custody Page 3 of 3

16 of 25 T49985 Laboratorias

دن هـــّ

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: Account: Project:	T49985 DUKE DCP M CRA: Hobbs	idstream	, LLC				
Sample VF3815-MB	File ID F024949.D	DF 1	Analyzed 04/04/10	By RR	Prep Date n/a	Prep Batch n/a	Analytical Batch VF3815
The QC repor	ted here applies	to the fo	llowing sample	s:]	Method: SW84	6 8260B

T49985-7, T49985-8

orio no. Compound				· · · · · · · · ·
71-43-2Benzene100-41-4Ethylbenzene108-88-3Toluene1330-20-7Xylene (total)	ND	2.0	0.50	ug/l
	ND	2.0	0.55	ug/l
	ND	2.0	0.43	ug/l
	ND	6.0	1.7	ug/l

CAS No.	Surrogate Recoveries		Limits	
1868-53-7 17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	101% 96% 104%	79-122% 75-121% 87-119%	
460-00-4	4-Bromofluorobenzene	99%	80-133%	

Page 1 of 1

4.1.1

Method Blank Summary

-

Job Numbe Account: Project:	DTAILK Summary T: T49985 DUKE DCP Midstrea CRA: Hobbs	m, LLC					Tage T UT T
Sample VC369-MB	File ID DF C0007945.D 1	Analyzed 04/05/10	By RR	Pre n/a	ep Date	Prep Batch n/a	Analytical Batch VC369
The QC re	ported here applies to the	following sampl	es:			Method: SW84	6 8260B
T49985-2,	Г49985-6						
CAS No.	Compound	Result	RL	MDL	Units	Q	
71-43-2	Benzene	ND	2.0	0.50	ug/l		
100-41-4	Ethylbenzene	ND	2.0	0.55	ug/l		
108-88-3	Toluene	ND	2.0	0.43	ug/l		
1330-20-7	Xylene (total)	ND	6.0	1.7	ug/l		
CAS No.	Surrogate Recoveries		Limit	S			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	106% 95% 96% 89%	79-12 75-12 87-11 80-13	2% 1% 9% 3%			

.

Page 1 of 1

4.1.2

Blank Spike Summary

Job Number:	T49985												
Account:	DUKE DCP Midstream, LLC												
Project:	CRA: Hobbs												
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch						
VC368-BS	C0007914.D	1	04/04/10	RR	n/a	n/a	VC368						

The QC reported here applies to the following samples:

Method: SW846 8260B

T49985-1, T49985-3, T49985-4, T49985-5

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	24.9	100	76-118
100-41-4	Ethylbenzene	25	23.0	92	75-112
108-88-3	Toluene	25	24.5	98	77-114
1330-20-7	Xylene (total)	75	66.6	89	75-111
CAS No.	Surrogate Recoveries	BSP	Li	mits	
1000 70 7		0504	70	1000/	

CAS NO.	Surrogate Recoveries	D 31	Linns
1868-53-7	Dibromofluoromethane	95%	79-122%
17060-07-0	1,2-Dichloroethane-D4	96%	75-121%
2037-26-5	Toluene-D8	101%	87-119%
460-00-4	4-Bromofluorobenzene	91%	80-133%

Page 1 of 1

4.2.1 4

Blank Spike Summary

Job Number:	T49985									
Account:	DUKE DCP Midstream, LLC									
Project:	CRA: Hobbs									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
VF3815-BS	F024947.D	1	04/04/10	RR	n/a	n/a	VF3815			

The QC reported here applies to the following samples:

•

Method: SW846 8260B

T49985-7, T49985-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP % Limits
71-43-2	Benzene	25	22.6	90 76-118
100-41-4	Ethylbenzene	25	21.8	87 75-112
108-88-3	Toluene	25	22.4	90 77-114
1330-20-7	Xylene (total)	75	67.7	90 75-111

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	102%	79-122%
17060-07-0	1,2-Dichloroethane-D4	97%	75-121%
2037-26-5	Toluene-D8	104%	87-119%
460-00-4	4-Bromofluorobenzene	98%	80-133%

Page 1 of 1

4.2.2

Blank Spike Summary

Job Number:	T49985									
Account:	DUKE DCP Midstream, LLC									
Project:	CRA: Hobbs									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
VC369-BS	C0007943.D	1	04/05/10	RR	n/a	n/a	VC369			

The QC reported here applies to the following samples:

Method: SW846 8260B

T49985-2, T49985-6

CAS No.	Compound	Spike ug/l	BSP ug/1	BSP %	Limits
71-43-2	Benzene	25	25.7	103	76-118
100-41-4	Ethylbenzene	25	23.9	96	75-112
108-88-3	Toluene	25	25.1	100	77-114
1330-20-7	Xylene (total)	75	67.9	91	75-111
CAS No.	Surrogate Recoveries	BSP	Li	mits	

	-		
1868-53-7	Dibromofluoromethane	98%	79-122%
17060-07-0	1,2-Dichloroethane-D4	94%	75-121%
2037-26-5	Toluene-D8	100%	87-119%
460-00-4	4-Bromofluorobenzene	90%	80-133%

22 of 25 **ACCUTEST.** T49985

4.2.3

ß

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	T49985
Account:	DUKE DCP Midstream, LLC
Project:	CRA: Hobbs

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
T49684-17MS	C0007922.	D 1	04/04/10	RR	n/a	n/a	VC368
T49684-17MSD	C0007923.	D 1	04/04/10	RR	n/a	n/a	VC368
T49684-17	C0007921.	D 1	04/04/10	RR	n/a	n/a	VC368

The QC reported here applies to the following samples:

Method: SW846 8260B

T49985-1, T49985-3, T49985-4, T49985-5

CAS No.	Compound	T49684-1 ug/l	7 Spike Q ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	25	27.9	112	26.3	105	6	76-118/16
100-41-4	Ethylbenzene	ND	25	24.0	96	23.0	92	4	75-112/12
108-88-3	Toluene	ND	25	25.1	100	24.7	99	2	77-114/12
1330-20-7	Xylene (total)	ND	75	68.0	91	66.5	89	2	75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T4	9684-17	Limits			
1868-53-7	Dibromofluoromethane	102%	97%	11	1%	79-122	%		
17060-07-0	1,2-Dichloroethane-D4	99%	95%	10	3%	75-121	%		
2037-26-5	Toluene-D8	100%	101%	96	%	87-119	%		

83%

80%

80-133%

82%

460-00-4 4-Bromofluorobenzene

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	T49985
Account:	DUKE DCP Midstream, LLC

Project: CRA: Hobbs

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
T49684-1MS	F024954.D	1	04/04/10	RR	n/a	n/a	VF3815
T49684-1MSD	F024955.D	1	04/04/10	RR	n/a	n/a	VF3815
T49684-1	F024953.D	1	04/04/10	RR	n/a	n/a	VF3815

The QC reported here applies to the following samples:

Method: SW846 8260B

T49985-7, T49985-8

CAS No.	Compound	T49684-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	25	23.9	96	24.0	96	0	76-118/16
100-41-4	Ethylbenzene	ND	25	23.4	94	23.4	94	0	75-112/12
108-88-3	Toluene	ND	25	23.6	94	23.7	95	0	77-114/12
1330-20-7	Xylene (total)	ND	75	71.5	95	71.3	95	0	75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T49	9684-1	Limits			
1868-53-7	Dibromofluoromethane	102%	101%	101	%	79-122%	ó		
17060-07-0	1,2-Dichloroethane-D4	98%	98%	96%	6	75-121%	6		
2037-26-5	Toluene-D8	103%	104%	104	%	87-119%	6		
460-00-4	4-Bromofluorobenzene	98%	97%	100	%	80-133%	6		

Page 1 of 1

4.3.2

ß

Matrix	Spike/Matrix Spike	Duplicate	Summ	ary				P	age 1 of 1
Job Numbe	er: T49985								
Account:	DUKE DCP Midstream	, LLC							
Project:	CRA: Hobbs	1995) 1995							
Sample	File ID DF	Analyzed	By	Pre	p Date	Prepl	Batch	Analyti	cal Batch
T50047-1M	IS C0007953.D 1	04/05/10	ŔŔ	n/a	-	n/a		VC369	
T50047-1M	ISD C0007954.D 1	04/05/10	RR	n/a		n/a		VC369	
T50047-1	C0007952.D 1	04/05/10	RR	n/a		n/a		VC369	
The QC re	ported here applies to the fo T49985-6	llowing sample	es:			Method:	SW846	8260B	
CAS No.	Compound	T50047-1 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	67.3	25	108	163* ^a	101	135*	a 7	76-118/16
100-41-4	Ethylbenzene	ND	25	27.3	109	26.9	108	1	75-112/12
108-88-3	Toluene	ND	25	27.8	111	26.8	107	4	77-114/12
1330-20-7	Xylene (total)	ND	75	76.7	102	75.8	101	1	75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T5	50047-1	Limits			
1868-53-7	Dibromofluoromethane	97%	92%	95	%	79-122	%		
17060-07-0	1,2-Dichloroethane-D4	86%	73%*	80	%	75-121	%		
2037-26-5	Toluene-D8	103%	102%	98	%	87-119	%		
460-00-4	4-Bromofluorobenzene	81%	84%	82	%	80-133	%		

(a) Outside control limits due to high level in sample relative to spike amount.

۰.^د و و

. . .

1.00

4.3.3

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

August 18, 2010

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: Supplemental Site Assessment Workplan DCP Hobbs Gas Plant (GW-175) Unit G, Section 36, Township 18 South, Range 36 East Lea County, New Mexico

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the Supplemental Site Assessment Work Plan for the DCP Hobbs Gas Plant located in Lea County, New Mexico (Unit G, Section 36, Township 18 South, Range 36 East).

Upon your approval of the work plan, DCP will schedule the drilling activities. DCP will notify the OCD at least 48 hours before field activities start.

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me <u>swweathers@dcpmidstream.com</u>.

Sincerely

DCP Midstream, LP

Stephen Weathers, P.G. Principal Environmental Specialist

cc: Larry Johnson, OCD Hobbs District Office (Copy on CD) Environmental Files

www.dcpmidstream.com

SUPPLEMENTAL SITE ASSESSMENT WORKPLAN

DCP HOBBS GAS PLANT GWf175 LATITUDE: N 32.70533° LONGITUDE: W 103.3066° LEA COUNTY, NEW MEXICO

Prepared For: Mr. Steve Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, Colorado 80202

Siobhan Fackelman

Senior Staff Geologist

For

John Riggi, P.G. Senior Project Geologist

Prepared by: Conestoga-Rovers & Associates

2420 West 26th Ave, Suite 450-D Denver, CO 80211

Office: 7209759120 Fax: 7209759150

AUGUST 2, 2010 REF. NO. 059097 (5) This report is printed on recycled paper.

. *

TABLE OF CONTENTS

1.0	INTRO	DDUCTION	1
•	CITE D		1
2.0	SHED		·····1
	2.1	SITE CHARACTERIZATION	1
	2.2	PREVIOUS INVESTIGATIONS	1
	2.3	CONSTITUENTS OF CONCERN AND CLEANUP LEVELS	1
	2.4	REGIONAL GEOLOGY	2
	2.5	SITE LITHOLOGY	2
	2.6	HYDROGEOLOGY	2
	2.7	SURFACE WATER BODIES	2
	2.8	SENSITIVE RECEPTORS	3
	2.9	PETROLEUM HYDROCARBON DISTRIBUTION	3
2.0	DDOD		2
3.0	PROP	JSED SCOPE OF WORK	
	3.1	WELL INSTALLATION RATIONALE	3
	3.2	PRE-FIELD COORDINATION	4
	3.3	DRILLING AND SAMPLING	4
	3.4	REPORTING	5

٠.

c

- 1² -

LIST OF FIGURES

(Following Text)

FIGURE 1 VICINITY MAP

FIGURE 2 PROPOSED BORING LOCATION MAP

LIST OF TABLES

(Following Text)

TABLE 1WELLS WITHIN ONE MILE RADIUS

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) is submitting this *Supplemental Site Assessment Workplan* to DCP Midstream, LP (DCP) for the Hobbs Gas Plant in Lea County, New Mexico. Additional site characterization is required to delineate the benzene plume to the southeast. CRA proposes to install two groundwater monitoring wells.

This workplan was prepared in accordance with the New Mexico Oil Conservation Division's (NMOCD) August 13, 1993 *Guidelines for Remediation of Leaks, Spills, and Releases.* The site background, proposed scope of work and schedule are described below.

2.0 <u>SITE BACKGROUND</u>

2.1 SITE CHARACTERIZATION

The site is a cryogenic processing plant located in Lea County, New Mexico approximately nine miles west of Hobbs, New Mexico (Figure 1). The site occupies approximately 3.5 acres in an undeveloped area. Facilities include a laboratory, an amine unit, compressors, sumps, mol sieve dehydration, tank batteries and an onsite water production well used for non-potable water. The Apex Compressor Station is located approximately 750 feet (ft) north of the Hobbs Gas Plant. There are six groundwater monitoring wells onsite (Figure 2).

2.2 **PREVIOUS INVESTIGATIONS**

Maxim Technologies Incorporated conducted a subsurface investigation in 2000. No petroleum hydrocarbons were detected above cleanup levels in any collected soil sample. In 2004, Arcadis completed six monitoring wells MW-A through MW-F to determine if petroleum hydrocarbons were present in groundwater. The maximum benzene concentration detected in groundwater was 47 micrograms per liter (μ g/l).

No total petroleum hydrocarbons as gasoline range organics (TPH-GRO) or benzene, toluene, ethylbenzene or xylenes (BTEX) were detected in soil above NMOCD regulatory cleanup levels.

2.3 CONSTITUENTS OF CONCERN AND CLEANUP LEVELS

The NMOCD guidelines require groundwater to be analyzed for potential constituents of concern (COC) as defined by the NMWQCC regulations. The COC in site groundwater is benzene. NMWQCC human heath standards for groundwater (*Title 20, Chapter 6, Part 2, Section 3103, Subsection A*) are:

Analyte	NMWQCC Standard for Groundwater (µg/l)
Benzene	10
Toluene	750
Ethylbenzene	750
Total Xylenes	620

2.4 **REGIONAL GEOLOGY**

Bedrock in the Hobbs area consists primarily of the Tertiary Ogallala Formation. The Ogallala Formation is generally composed of unconsolidated and poorly sorted gravel, sand, silt and clay deposited by ancient streams flowing east out of the Rocky Mountains. The local Tertiary Ogallala Formation is underlain by less permeable Jurassic and Triassic sedimentary rocks, primarily shale and sandstone.

2.5 SITE LITHOLOGY

Subsurface sediments are dominated by the Amarillo-Arvana association, which is composed of sandy alluvium and wind-deposited sediments. These sediments include a fine sandy loam or loamy fine sand underlain by sandy clay loam. The Amarillo-Arvana association overlies sand, silt, clay and gravel, which overlies a caliche layer associated with the Ogallala Formation.

2.6 HYDROGEOLOGY

Historical static groundwater depths have ranged between 60.18 (MW-A) and 62.44 ft below ground surface (ft bgs) (MW-F). Groundwater flows to the southeast with a general gradient of 0.0043 ft/ft.

2.7 SURFACE WATER BODIES

An unnamed intermittent watercourse is located approximately ½ mile crossgradient southwest of the site. Based on distance and local topography it is unlikely that the watercourse has been affected by site activities.

2.8 SENSITIVE RECEPTORS

One onsite water production well (Well Number L07843) supplies water for the gas plant. The onsite well was sampled in 2004; no benzene was detected in groundwater above cleanup levels. There are 20 registered wells within one mile of the site. The nearest well is approximately 900 ft south of the site (Well Number L03079). This well is used for prospecting or development of natural resources. Based on distance and local topography it is unlikely that this well has been affected by site activities. Wells within one mile radius are presented on Table 1.

2.9 PETROLEUM HYDROCARBON DISTRIBUTION

Soil

The 2004 soil sample contained no TPH-GRO or BTEX above regulatory cleanup levels.

Groundwater

Groundwater data from site monitoring wells MW-A, MW-D, MW-E, and MW-F have delineated petroleum hydrocarbon impact to the northwest, west, south, and east, respectively. The site has not been delineated to the southeast. Benzene has historically been above cleanup levels in monitoring wells MW-B and MW-C. Xylenes have exceeded groundwater cleanup levels in well MW-B

3.0 PROPOSED SCOPE OF WORK

3.1 WELL INSTALLATION RATIONALE

Petroleum hydrocarbon concentrations in monitoring wells MW-A, MW-D, MW-E and MW-F have been below NMWQCC groundwater cleanup levels since June 2008. Groundwater samples collected from wells MW-B and MW-C have historically contained benzene and/or xylene concentrations above cleanup levels since March 2008. CRA proposes to install two groundwater monitoring wells to delineate the southeast extent of petroleum hydrocarbon impact (Figure 2).

One monitoring well will be installed near the northeast corner of the computer building to assess groundwater downgradient of MW-C. Groundwater quality downgradient of MW-B will be assessed by installing a well south-southwest of the computer building.

3.2 PRE-FIELD COORDINATION

CRA will coordinate site activities with all associated laboratories, contractors, and DCP. CRA will conduct a pre-field safety meeting with DCP and all appropriate parties prior to the start of field work.

Underground Utility Location

CRA will notify New Mexico One Call prior to drilling to clear boring locations with utility companies. A hydrovac truck will clear monitoring well locations to 5 ft bgs.

Site Health and Safety Plan (HASP)

CRA will prepare a HASP to inform all site workers of known hazards and provide health and safety guidance. CRA will review DCP and CRA safety protocols at daily tailgate meetings. A journey management plan will be prepared to address any safety concerns associated with traffic routes and onsite parking.

3.3 DRILLING AND SAMPLING

A trained geologist will supervise the drilling. One boring will be logged continuously to the total explored depth; the remaining borings will be logged in 5 ft intervals. Soil samples will be collected for analyses based on lithological changes, signs of subsurface impact, and the capillary fringe. Soil samples will be screened with a photoionization detector (PID) and described using the Unified Soil Classification System.

Monitoring Well Installation

The boring will be advanced to approximately 10 ft below first encountered groundwater and completed as a 2 inch well, screened from 5 ft above to 10 ft below the potentiometric surface. The well will be constructed of Schedule 40 PVC with a 0.010 inch slotted screen. The well annulus will have a filter pack of clean silica sand from 1 ft below the screen bottom to 2 ft above the screen top. Above the filter pack the well annulus will have a 3 ft thick bentonite seal covered by bentonite grout to within 3 inches of the ground surface. The monitoring well will be sealed in a flush mount well vault and completed with a concrete well pad to match the existing grade.

Monitoring Well Development

The groundwater monitoring well will be developed by surge block agitation and submersible groundwater pump evacuation. Turbidity, pH, dissolved oxygen, temperature, and specific conductivity will be measured during evacuation. CRA will develop the wells no sooner than 24 hours following installation.

Soil Analytical Methods

Select soil samples will be analyzed for:

- TPH by SW-846 8015B
- BTEX by SW-846 8021B

Investigation Derived Waste Disposal

Soil cuttings produced during drilling will be temporarily stored onsite in 55-gallon United States Department of Transportation (USDOT) approved drums with appropriate labeling. Soil cuttings will be transported to a treatment and disposal facility following review of laboratory analytical results and disposal approval from DCP. Groundwater purged during well development will be temporarily stored in a USDOT approved polydrum. Purged groundwater will be transported and disposed of at the DCP Linam Ranch facility. Drums will be labeled with contents, date of generation, generator identification and consultant contact information.

3.4 **REPORTING**

CRA will prepare a Supplemental Site Assessment Report presenting the investigation results and recommendations. The report, at a minimum, will contain:

- Summary of the site background and history
- Descriptions of drilling and soil sampling methods
- Descriptions of well installation methods
- Boring logs
- Figures and tables
- Analytical reports and chain-of-custody forms
- Soil and groundwater disposal methods
- Discussion of petroleum hydrocarbon distribution in soil
- Conclusions

FIGURES

FIGURE 1: VICINITY MAP

FIGURE 2: PROPOSED BORING LOCATION MAP

059097-10(010)GN-MD001 FEB 09/2010

TABLES

TABLE 1: WELLS WITHIN ONE MILE RADIUS

i al c

6. 4 AD

1. 1. j.

1,44

8. i . e

. . . .

14,

.

مت الم

40.4

CONESTOGA-ROVERS & ASSOCIATES

÷.,

: : :

5. - 4. - 5. - 4. - 5. - 4. - 5.

- 4, - 1, -

¥ 6

1

1. S. .

1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 - 1940 -

1. 10 A

- 4⁶ - 1

4 . JAS & 184

4. 6. 6.

1. 2. C. C. 2

| Table 1. | Wells Within | a One-Mile Rad | lius - Hobbs (| Gas Plant, Lea (| County, New Mexic | 0 | | | | |
|---|--------------------|----------------|----------------|------------------|-------------------|----------|------------|-------------|------------|----------------|
| Well Number | Úse | Township | Range | Section | Easting | Northing | Start Date | Finish Date | Well Depth | Depth to Water |
| | | | , | | | | | | ft bgs | ft bgs |
| L03079 | PRO | 18S | 36E | 36 | 658865 | 3619347 | 1/10/1956 | 1/11/1956 | 122 | 65 |
| L03079 APPRO | PRO | 18S | 36E | 36 | 658865 | 3619347 | 1/10/1956 | 1/11/1956 | 122 | 65 |
| L 03153 | PRO | 18S | 37E | 31 | 660281 | 3619562 | 3/29/1956 | 3/30/1956 | 140 | 70 |
| L 03153 APPRO | PRO | 18S | 37E | 31 | 660281 | 3619562 | 3/29/1956 | 3/30/1956 | 140 | 70 |
| L 03166 | PRO | 18S | 37E | 31 | 660066 | 3619769 | 4/8/1956 | 4/9/1956 | 108 | 35 |
| L 03166 APPRO | PRO | 18S | 37E | 31 | 660066 | 3619769 | 4/8/1956 | 4/9/1956 | 108 | 35 |
| L 03792 | PRO | 18S | 36E | 1 | 659289 | 3618146 | 2/6/1958 | 2/7/1958 | 106 | 47 |
| L 0379 APPRO | PRO | 18S | 36E | | 659289 | 3618146 | 2/6/1958 | 2/7/1958 | 106 | 47 |
| L 04665 | PRO | 18S | 36E | 25 | 658830 | 3621358 | 6/23/1961 | 6/23/1961 | 125 | 60 |
| L 04665 (1) EXP | PRO | 18S | 36E | 25 | 658830 | 3621358 | NR | NR | 0 | 0 |
| L 04665 (2) EXP | PRO | 185 | 36E | 25 | 658830 | 3621358 | NR | NR | 0 | 0 |
| L 04665 (3) EXP | PRO | 18S | 36E | 25 | 658830 | 3621358 | NR | NR | 0 | 0 |
| L 04665 (4) EXP | PRO | 18S | 36E | 55 | 658830 | 3621358 | NR | NR | 0 | 0 |
| L 04665 APPRO | PRO | 18S | 36E | 25 | 658830 | 3621358 | 6/23/1961 | 6/23/1961 | 125 | 60 |
| L 05176 | QNI | 18S | 36E | 25 | 659045 | 3620754 | 2/1/1965 | 2/10/1965 | 206 | 84 |
| L 05189 | PRO | 185 | 37E | 31 | 659657 | 3620165 | 7/12/1963 | 7/13/1963 | 120 | 65 |
| L 05189 (1) | PRO | 18S | 37E | 31 | 659657 | 3620165 | NR | NR | 0 | 0 |
| L 05189 (2) EXP | PRO | 18S | 37E | 31 | 659657 | 3620165 | NR | NR | 0 | 0 |
| L 05509 | PRO | 18S | 36E | 25 | 659247 | 3620560 | 12/4/1964 | 12/5/1964 | 103 | 45 |
| L 07843 | SAN | 18S | 36E | 36 | 658757 | 3619648 | 7/25/1978 | 8/1/1978 | 181 | 55 |
| <u>Notes and Abbreviations</u> :
fi bgs = feet helow ground surface
PRO = 72-12-1 Prospecting or deve | elopment of nature | | | | | | | | | |
| | • | | | | | | | | | |

SAN = 72-12-0 Samiary in conjucntion with a commercial use NR = Not reported Information source. New Mosto State Engineer Offne WATERS, program Table based on information from Arcatis Stage 1 Abrienen Plan, November 2004 \\den=61 Shoured\Preser FileA(039007-HOBE)(03907-REPORTS/0390