3R-024

GW Remediation Report

DATE: Feb. 2008

BLAGG ENGINEERING, INC.

3R024

P.O. Box 87, Bloomfield, New Mexico 87413 Phone: (505)632-1199 Fax: (505)632-3903

RECEIVED

2008 MAR 19 PM 3 45

March 17, 2008

Mr. Glenn von Gonten, Senior Hydrologist New Mexico Oil Conservation Division-**NMOCD** Environmental Bureau 1220 St. Francis Drive Santa Fe, New Mexico 87505

RE: REQUEST FOR PERMANENT CLOSURE BP America Production Company (formerly BP Amoco) Groundwater Monitoring Report Gooch # 1E, Unit E, Sec. 14, T29N, R11W, NMPM San Juan County, New Mexico

NMOCD Administrative/Environmental Order #: 3RP-24-0

Dear Mr. von Gonten:

BP America Production Company (**BP**) has retained Blagg Engineering, Inc. (**BEI**) to conduct environmental monitoring of groundwater at the Gooch #1E.

The last BEI correspondence concerning the above reference well site was with a formal notification of groundwater impact, dated, May 21, 1997. Since then, BP has followed its NMOCD approved groundwater management plan and request permanent closure for this site.

If you have any questions concerning the enclosed documentation, please contact either myself or Jeffrey C. Blagg at (505) 632-1199. Thank you for your cooperation and assistance.

Respectfully submitted: *Blagg Engineering, Inc.*

Hickory Caf

Nelson J. Velez Staff Geologist

Attachment: Groundwater Report (2 copies)

Mr. Brandon Powell, Environmental Specialist, NMOCD District III Office, Aztec, NM
 Mr. Larry Schlotterback, Environmental Coordinator, BP, Farmington, NM (without lab report)

;

BP AMERICA PRODUCTION CO

-

12 2 2

. .

1.50

. Ta

GROUNDWATER REMEDIATION REPORT

GOOCH #1E (F) SECTION 20, T28N, R8W, NMPM SAN JUAN COUNTY. NEW MEXICO

PREPARED FOR: NEW MEXICO OIL CONSERVATION DIVISION 1220 ST. FRANCIS DRIVE SANTA FE. NEW MEXICO 87504

FEBRUARY 2008

PREPARED BY: BLAGG ENGINEERING, INC.

Consulting Petroleum / Reclamation Services P.O. Box 87 **Bloomfield, New Mexico 87413**

BP AMERICA PRODUCTION COMPANY Gooch #1E Se/4 Nw/4, Sec. 20, T28N, R8W

Pit Closure Dates:	May, 1994 – separator pit; April, 1997 – abandoned & dehydrator pits
Reclamation Procedures:	Excavation – May, 1994; April-May, 1997
Monitor Well Installation Dates:	May, 1996; June, 2006
Monitor Well Sampling Dates:	June & December, 1996; June & August, 2006

Historical Information:

Environmental site activity was initiated in May, 1994. An earthen separator pit was remediated via excavation of the impacted soil media. The excavation perimeter was measured at approximately 35 X 20 X 10 feet depth. An estimated 250 cubic yards of soil was removed and landfarmed on-site during this remedial effort. Afterwards, the exposed groundwater within the excavations was sampled and tested for benzene, toluene, ethylbenzene, and total xylenes (BTEX) per US EPA method 8020.

The BTEX results of the groundwater sampling from the separator pit excavation are as follows;

NMWQCC regu Standard	-	10	750	750	620
WATER @ 9'	05/26/94	14.2	61	ND	435
Sample ID	Date	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Total Xylenes (ppb)

Note: ppb = parts per billion, ND = Not Detectable at Stated Limit, NMWQCC = New Mexico Water Quality Control Commission.

The pit closure data was submitted to the New Mexico Oil Conservation Division (NMOCD) with letter dated June 20, 1994. NMOCD responded with letter dated December 19, 1996 denying closure based on results exceeding the New Mexico Water Quality Control Commission (NMWQCC) standards.

Three (3) groundwater monitor wells were installed in May, 1996. Monitor wells MW #1, MW #2, and MW #3 were installed by Blagg Engineering, Inc. (BEI) utilizing a truck mounted drill rig with solid 3 ³/₄ inch augers. Two (2) inch PVC piping was hand driven into the annular after drilling to total depth and auger removal was finalized (see Bore/Test Hole Reports). The monitor wells were then completed by infilling the annular with Colorado silica sand. The monitor wells were developed and sampled in June, 1996. The BTEX results of the groundwater from the wells are as follows;

Sample ID	Date	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Total Xylenes (ppb)
MW #1	06/17/96	0.02 ft. (½	inch) of fre	e phase produc	t in well bore
MW #2	06/17/96	ND	0.78	ND	ND
MW #3	06/17/96	1.39	ND	ND	ND
NMWQCC reg Standard	-	10	750	750	620

Note: ppb = parts per billion, ND = Non detectable at stated limits, NMWQCC = New Mexico Water Quality Control Commission.

Blagg Engineering, Inc. Consulting Engineers In December, 1996, monitor well MW #1 was again measured with 0.02 ft. (¼ inch) of free phase product within the well bore. BEI suspected that a dehydrator (dehy) pit located on BP's Riddle F LS #3A bearing SSW of MW #1 may have been contributing to the free phase product observed.

In April, 1997, BP elected to investigate/remediate the Riddle F LS #3A dehy. pit along with the Gooch abandoned (aban) and dehy pits (Figure 1). The excavation perimeters were measured at approximately 95 X 35 X 14 feet depth for the Riddle dehy, 50 X 40 X 12 feet depth for the Gooch aban, and 65 X 123 X 12 for the Gooch dehy pit. A combined estimation of 5,250 cubic yards of soil was removed from all four (4) excavated areas. Approximately 1,100 cubic yards was partially landfarmed on-site while the remaining 4,150 cubic yards was transported and composted at the Riddle F LS #1 (Unit L, Sec. 17, T28N, R8W). The exposed groundwater within the excavations were sampled and tested for BTEX.

The BTEX results of the groundwater sampling from the April-May, 1997 excavated areas are as follows;

Sample ID	Date	Benzene (ppb)	Toluene (ppb)	Ethylbenzene (ppb)	Total Xylenes (ppb)
PW1 @ GW (9') – aban	04/14/97	3.9	229	9.9	667
PW1 @ GW (9') – dehy	04/15/97	21.0	646	150	2,555
PW1 @ GW (9') - Riddle F LS #3A dehy.	05/09/97	ND	17.2	ND	45.2
NMWQCC regulatory Standards		10	750	750	620

Note: ppb = parts per billion, ND = Not Detectable at Stated Limit, NMWQCC = New Mexico Water Quality Control Commission.

Upon receipt of the Gooch laboratory results, NMOCD was notified with letter dated May 21, 1997 of the groundwater impact (attached).

Groundwater Investigation and Soil Lithology:

Seven (7) additional monitor wells were installed in June, 2006 to test groundwater quality. Boring logs for all monitor wells along with well completion information are contained within this report. The well site is located in a remote area and no domestic or municipal receptors are at risk.

Soil lithology at the site consists of primarily coarse grained sand, non cohesive, and firm. Silty sand to clay was observed at depths greater than eight (8) feet below grade during the 1996 monitor well installations and the 1997 remediation effort.

Groundwater Monitor Well Sampling Procedures:

Groundwater samples were collected from site monitor wells following US EPA: SW-846 protocol. After well development, samples were collected with new disposable bailers, placed into laboratory supplied containers with appropriate preservative and stored in an ice chest for express delivery to a qualified laboratory for testing:--Analytical testing included BTEX by US EPA Method 8021B and general water chemistry.

Waste generated during monitor well sampling and development was disposed of utilizing the separator tank pit located on the well site.

Groundwater Quality & Flow Direction Information:

Groundwater monitor well sampling was reinitiated in June, 2006. Summary of laboratory BTEX and general water chemistry analytical results are included in the tables on the following pages. The data indicates all BTEX constituents tested at non-detectable levels. There were no abnormalities revealed from the general water chemistry testing. All pertinent laboratory reports and field data sheets can be found in Appendix A.

Groundwater contour maps of relative water table elevations are attached. The groundwater flow direction in June, 1996 (Figure 2) displayed a northeasterly trend based on the limited data points. With more data points available in 2006, a north-northwest to northwest flow direction was revealed from the two (2) sampling events conducted (Figures 3 & 4).

Summary and Recommendations:

Hydrocarbon impacts from four (4) apparent source areas appear to have been remediated via excavation of impacted soil. All site wells tested at non-detectable or well below NMWQCC standards for BTEX. Permanent site closure is recommended. Following approval by the NMOCD, site monitor wells will be abandoned pursuant to the approved BP Ground Water Management Plan.

BP AMERICA PRODUCTION CO. GROUNDWATER LAB RESULTS SUBMITTED BY BLAGG ENGINEERING, INC.

GOOCH #1E UNIT F, SEC. 20, T28N, R8W

Sec. 1

.

م در ارد. کامیانی در د

4. x ("

N. 18

1 - Tr

. e. .

. . .

•

REVISED DATE: December 5, 2006 FILENAME: (G1E-3Q06.WK4) NJV

			_					BTEX EPA METHOD 8021B (ppb)			
SAMPLE DATE	WELL NAME or No.	D.T.W. (ft)	T.D. (ft)	TDS (mg/L)	COND. umhos	рH	PRODUCT	Benzene	Toluene	Ethyl Benzene	Total Xylene
17-Jun-96	MW #1	10.73	14.61				0.02	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
16-Dec-96							0.02				
27-Jun-06	MW #1R	11.87	19.85	6,000	5,300	7.13		NÐ	ND	ND	ND
29-Aug-06		11.65			4,500_	7.16		ND	ND	ND	ND
17-Jun-96	MW #2	10.75	15.34	6,430	4,800	7.20		ND	0.78	ND	4.93
27-Jun-06		10.49		5,870	5,200	7.29		ND	ND	ND	ND
29-Aug-06		10.30			4,600	7.25		ND	ND	ND	ND
17-Jun-96	MW #3	11.44	15.35	6,580	5,000	6.90		1.39	ND	ND	ND
27-Jun-06	MW #4	13.28	20.00	6,130	5,300	7.26		ND	ND	ND	ND
29-Aug-06		13.15			4,600	7.21		ND	ND	ND	ND
27-Jun-06	MW #5	11.96	20.00	6,250	5,300	7.29		ND	ND	ND	ND
29-Aug-06		11.84			4,800	7.22		ND	ND	ND	ND
27-Jun-06	MW #6	11.76	20.00	5,170	4,900	7.20		ND	ND	ND	ND
29-Aug-06		11.58			4,300	7.31		ND	ND	ND	ND
27-Jun-06	MW #7	10.73	20.00	6,020	5,300	7.08		ND	ND	ND	ND
29-Aug-06		10.37			4,700	7.28		ND	ND	ND	ND
27-Jun-06	MW #8	12.08	20.00	6,400	5,500	7.11		ND	ND	ND	ND
29-Aug-06		11.79			4,800	7.06		ND	ND	ND	ND
27-Jun-06	MW #9	11.91	20.00	6,390	5,300	7.30		ND	ND	ND	ND
29-Aug-06		11.60			4,600	7.26		ND	ND	ND	ND
		NMW	QCC GI	ROUNDV	VATER S	TAND	ARDS	10	750	750	620

GENERAL WATER QUALITY AMOCO PRODUCTION COMPANY GOOCH #1E

10 mg

14. - 1

8

ار ماليا وروم منابع

Сте н

1. 1. j.

1. 2. 2. 3. 1. 2. 3. 3.

SAMPLE DATE : JUNE 17, 1996

F	MW #1	MW #2	MW #3	Units	
GENERAL	LAB pH	-	7.8	7.7	S. U.
	LAB CONDUCTIVITY (25 DEG. CELCIUS)	-	8,680	9,220	umhos cm
	TOTAL DISSOLVED SOLIDS (180 DEG. CELCIUS)	-	6,430	6,580	mg / L
	TOTAL DISSOLVED SOLIDS (CALCULATED)	-	6,470	6,100	mg / L
ANIONS	TOTAL ALKALINITY AS CaCO3	~	955	1,000	mg / L
	BICARBONATE ALKALINITY (AS CaCO3)	-	955	1,000	mg / L
	CARBONATE ALKALINITY (AS CaCO3)	-	NA	NA	mg / L
	HYDROXIDE ALKALINITY (AS CaCO3)	-	NA	NA	mg / L
	CHLORIDE	-	192	42.5	mg / L
	SULFATE	-	3,550	3,270	mg / L
	NITRATE + NITRITE - N	-	NA	NA	
	NITRATE - N	-	NA	NA	
	NITRITE - N	-	NA	NA	
CATIONS	TOTAL HARDNESS AS CaCO3	-	905	607	mg / L
	CALCIUM	-	327	331	mg / L
	MAGNESIUM	-	21.8	<0.1	mg / L
	POTASSIUM	-	<5.0	5.00	mg / L
	SODIUM	-	1,800	1,900	mg / L
DATA VALIDATION					ACCEPTANCE
	CATION/ANION DIFFERENCE	-	1.03	3.01	+/- 5 %
	TDS (180):TDS (CALCULATED)	-	1.0	1.1	1.0 - 1.2

GENERAL WATER QUALITY BP AMERICA PRODUCTION COMPANY GOOCH #1E

الى مى مى مى مەربىيە

120.3

24 A

2.42 C

- **-**

1. S.

. **5**

Sample Date : June 27, 2006

PARAMETERS	MW # 1R	MW # 2	MW # 4	MW # 5	Units
LAB pH	7.32	7.52	7.45	7.57	s. u.
LAB CONDUCTIVITY @ 25 C	9,500	9,150	9,530	9,950	umhos / cm
TOTAL DISSOLVED SOLIDS @ 180 C	6,000	5,870	6,130	6,250	mg / L
TOTAL DISSOLVED SOLIDS (Calc)	6,050	5,830	6,070	6,340	mg / L
SODIUM ABSORPTION RATIO	30.1	29.2	29.4	30.8	ratio
TOTAL ALKALINITY AS CaCO3	652	808	398	376	mg / L
TOTAL HARDNESS AS CaCO3	628	592	612	626	mg / L
BICARBONATE as HCO3	652	808	398	376	mg / L
CARBONATE AS CO3	< 0.1	< 0.1	< 0.1	< 0.1	mg / L
HYDROXIDE AS OH	< 0.1	< 0.1	< 0.1	< 0.1	mg / L
NITRATE NITROGEN	< 0.01	< 0.01	′< 0.01	< 0.01	mg / L
NITRITE NITROGEN	< 0.01	< 0.01	< 0.01	< 0.01	mg / L
CHLORIDE	126	101	31.4	30.5	mg / L
FLUORIDE	1.50	1.52	1.89	1.17	mg / L
PHOSPHATE	< 0.01	0.58	< 0.01	< 0.01	mg / L
SULFATE	3,540	3,300	3,810	4,020	mg / L
IRON	0.738	0.020	0.655	0.823	mg / L
CALCIUM	242	218	223	216	mg/L
MAGNESIUM	5.60	11.2	13.2	20.7	mg / L
POTASSIUM	10.6	80.8	75.8	50.0	mg/L
SODIUM	1,730	1,630	1,670	1,770	mg / L
CATION / ANION DIFFERENCE	0.05	0.15	0.04	0.03	

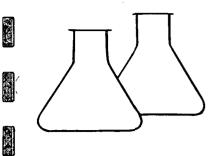
GENERAL WATER QUALITY BP AMERICA PRODUCTION COMPANY GOOCH # 1E

1.035 A

12.3

terita

. مدينا ميلا م


- z . g . e

3 **

Sample Date : June 27, 2006

PARAMETERS	MW # 6	MW # 7	MW # 8	MW # 9	Units
LAB pH	7.41	7.62	7.40	7.63	S. U.
LAB CONDUCTIVITY @ 25 C	8,230	9,550	9,920	10,010	umhos / cm
TOTAL DISSOLVED SOLIDS @ 180 C	5,170	6,020	6,400	6,390	mg / L
TOTAL DISSOLVED SOLIDS (Calc)	5,240	6,080	6,320	6,380	mg / L
SODIUM ABSORPTION RATIO	21.6	25.5	24.3	53.5	ratio
TOTAL ALKALINITY AS CaCO3	556	390	404	374	mg / L
TOTAL HARDNESS AS CaCO3	787	768	866	248	mg / L
BICARBONATE as HCO3	556	390	404	374	mg / L
CARBONATE AS CO3	< 0.1	< 0.1	< 0.1	< 0.1	mg / L
HYDROXIDE AS OH	< 0.1	< 0.1	< 0.1	< 0.1	mg / L
NITRATE NITROGEN	< 0.01	0.07	< 0.01	< 0.01	mg / L
NITRITE NITROGEN	< 0.01	< 0.01	< 0.01	< 0.01	mg / L
CHLORIDE	83.3	38.9	38.4	27.7	mg / L
FLUORIDE	1.10	1.40	1.68	1.81	mg / L
PHOSPHATE	< 0.01	< 0.01	< 0.01	< 0.01	mg / L
SULFATE	3,120	3,830	3,990	4,030	mg / L
IRON	0.578	0.007	0.402	0.825	mg / L
CALCIUM	267	259	279	73.1	mg / L
MAGNESIUM	28.6	28.9	40.6	15.6	mg / L
POTASSIUM	16.7	65.1	89.8	73.8	mg / L
SODIUM	1,390	1,620	1,640	1,930	mg / L
CATION / ANION DIFFERENCE	0.12	0.15	0.04	0.15	

and the second	
	PETULTS TO BOB MICOT 6/10/94 RED
	CLIENT AMOCO ENVIROTECH Inc. PIT NO: A0030
	5796 US HWY. 64, FARMINGTON, NM 87401 C.O.C. NO: <u>3699</u> (505) 632-0615
	FIELD REPORT: CLOSURE VERIFICATION
	LOCATION: NAME: 600CH WELL #: IE PIT: SEP DATE STARTED:
	QUAD/UNIT: F SEC: 20 TWP: 28 N RNG: 8 W BM: NM CNTY: SJ ST: NM DATE FINISHED: 320 TT QTR/FOOTAGE: SE/Y NW/Y CONTRACTOR: PAUL VELASQUE 2 SPECIALIST: PEO
	SOIL REMEDIATION: EXCAVATION APPROX. <u>20</u> FT. x <u>35</u> FT. x <u>10</u> FT. DEEP. DISPOSAL FACILITY: <u>0N SITE</u> CUBIC YARDAGE: <u>250</u>
	LAND USE: <u>RANGE</u> LEASE: <u>FOODERAL LEASE # NMSFORD</u> 2 FIELD NOTES & REMARKS: PIT LOCATED APPROXIMATELY <u>75</u> FEET <u>S30°W</u> FROM WELLHEAD.
_	DEPTH TO GROUNDWATER: 9 NEAREST WATER SOURCE: > 1000 NEAREST SURFACE WATER: < 1000
	NMOCD RANKING SCORE: 30 NMOCD TPH CLOSURE STD: 100 PPM SOIL AND EXCAVATION DESCRIPTION: SOIL ERGUATED TO GROWS WATER -
	SILTY FAMPY, BROWN SOIL- NO STAIN OR ODOR.
	GROUND WITH FAMPLE COLLECTED, CLOUDY- NO GOOR,
	FIELD 418.1 CALCULATIONS SAMPLE I.D. LAB NO: WEIGHT (g) mL. FREON DILUTION READING CALC. ppm
	SCALE
	O 10 20 FEET OVM PIT PERIMETER RESULTS PIT PROFILE
	A SURFACE GRADIENT WELL N A - 1 @ 9' WATER
	A A A A A A
AGAD. PLT	
	A LAB SAMPLES
	write?
	TRAVEL NOTES: CALLOUT: 5-26-94 ONSITE: 5-26-94 1000

1. A. A.

記書の

1990 - A

100

and the

100

and a

CONTRACT.

27 82 M

5796 US HIGHWAY 64-3014 • FARMINGTON, NEW MEXICO 87401 PHONE: (505) 632-0615 • FAX: (505) 632-1865

> EPA METHOD 8020 AROMATIC VOLATILE ORGANICS

Client:	Amoco	Project #:	92140
Sample ID:	Water @ 9'	Date Reported:	06-01-94
Laboratory Number:	7529	Date Sampled:	05-26-94
Sample Matrix:	Water	Date Received:	05-26-94
Preservative:	HgCl and Cool	Date Analyzed:	05-31-94
Condition:	Cool and Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/L)	Det. Limit (ug/L)
Benzene	14.2	0.4
Toluene	61	0.3
Ethylbenzene	ND	0.2
p,m-Xylene	338	0.2
o-Xylene	97	0.3

SURROGATE	RECOVERIES:	Parameter	Percent	Recovery	7
				• • • • • • • • • • • •	-
		Trifluorotoluene		100	0%
		Bromofluorobenzene		97	%

Method: Method 5030A, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

> Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986

ND - Parameter not detected at the stated detection limit.

Comments:

Gooch #1E Separator Pit A0030

Genee alyst

			8								Ċ.		N N	े3694
				CHAIN	N OF CUSTODY RECORD	STODY I	RECORI					-		
Client/Project Name 人いしじじで ず	# 9214C	<i>u</i>	Project Location もここてH	* [-]					ANALYSIS/PARAMETERS	PARAMET	ERS	-	Acc	Accsc
Sampler: (Signature) \mathcal{K}_{i} \mathcal{E}_{i} \mathcal{O}	Cherl		Chain of Custody Tape No.	Tape No.		Of Iners	ļ					Re	Remarks	
Sample No./ Identification	Sample Date	Sample Time	Lab Number		Sample Matrix	.oN Conta	US .		<u>. . </u>				-	
LATER @ 9	5/26/97	5721	7529	3	WARDE	\sim	2					ser.	114	
			-											
								-						
									-					
	-													
Relinquished by: (Signature) R. E. (O rul	Ø		Date .5(26(97	7 1302	Received by (Signature)	(Signature)) J				Ś	Date 5-31-74	Time ノሬ むり
Relinquished by: (Signature)						Received by: (Signature)	(Signature)							
Relinquished by: (Signature)						Received by: (Signature)	(Signature)							
					ENVIROTECH INC. 5796 U.S. Highway 64:3014 Farmington, New Mexico 87401	ENVIROTECH INC. 5796 U.S. Highway 64-3014 armington, New Mexico 8740 Access 2000	C. 14 7401				-	-		
					(enc)	cton-zco (cnc)	-						san juan rep	san juan repro Form 578-81

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

DIL CONSERVATION DIVISION 2040 S. PACHECO SANTA FE. NEW MEXICO 87505 (0500) 827-7131

December 19, 1996

DECENVED N JAN - 8 1097

OIL COM: DIV.

DIST. 3

CERTIFIED MAIL RETURN RECEIPT NO. P-269-269-232

Mr. B.D. Shaw Amoco Production Company 200 Amoco Court Farmington, New Mexico 87401

RE: FINAL SAN JUAN BASIN PIT CLOSURE REPORTS

Dear Mr. Shaw:

単語の

1.00

M. 3.2.

Server and

A B. A

1993

The New Mexico Oil Conservation Division (OCD) has completed a review of Amoco Production Company's (Amoco) June 20, 1994 "AMOCO PRODUCTION COMPAN: PIT CLOSURE VERIFICATIONS" which were submitted on behalf of Amoco by their consultant Blagg Engineering, Inc. This document contains "PIT REMEDIATION AND CLOSURE REPORTS" for 54 unlined pits in the San Juan Basin of Northwestern New Mexico.

The OCD's review of the above referenced document is addressed below:

A. The pit closure/soil remediation activities conducted at the site: listed below are approved.

- I'-	Cole A#1E (Blow pit)	Unit I,	Sec.	35,	T28N,	R10W.
E.	Cole A#1E (Tank pit)	Unit I,				
A LAND AND A	Elliott GC C#1 (Blow pit)	Unit G,				
the second second	Elliott GC C#1A (Blow pit)	Unit E,				
······································	Elliott GC L#1 (Blow pit)	Unit A,				
S.	Elliott GC N#1E (Blow pit) separator	Unit A,				
(A.	Elliott GC N#1E (Blow pit)	Unit A,				
8. 7. 8.	Elliott GC B#1 (Blow pit)	Unit K,				
19°.	Elliott GC B#1 (Compressor pit)	Unit K,				
. 64	E.E. Elliott B#8 (Blow pit)	Unit K,				
21.	E.E. Elliott C#2 (Blow pit)	Unit F,				
2.	Florance #55 (Tank pit)	Unit M,				
23.	Johnston LS #8 (Tank pit)	Unit G,				
ARC 4 +	Johnston LS #8 (Blow pit)	Unit G,				
15. 16.	Johnston LS #8 (Separator pit)	Unit G,				
7-26.	Omler A#2 (Blow pit)	Unit G,				
A.	Omler A#2 (Separator pit)	Unit G,				
18.	Omler A#2E (Blow pit)	Unit D,				
. فصيحه	Omler A#2E (Tank pit)	Unit D,				
20.	Omler A#2E (Separator pit)	Unit D,				
291.	Omler A#3 (Separator pit)	Unit M,				
22. 22.	Omler A#3E (Separator pit)	Unit O,				
23.	Omler A#3E (Tank pit)	Unit O,	Sec.	26,	T28N	RIOW.
	Riddle A#3 (Tank pit)	Unit A,	Sec.	18,	T30N,	RO9W.
N/				-		

Mr. B.D. Shaw December 19, 1996 Page 2

報告が

2.2.2.2

14.30

な変化

Please be advised that OCD approval does not relieve Amoco o liability if remaining contaminants are found to pose a future threat to surface water, ground water, human health or the environment. Is addition, OCD approval does not relieve Amoco of responsibility for compliance with any other federal, state or local laws and/or regulations.

B. The pit remedial activities conducted at the sites listed below arsatisfactory. However, according to the reports, onsite landfarminand/or composting actions are still continuing at the sites Subsequently, the OCD cannot issue final closure approval at this timand approval of closure actions at these sites is denied. Pleasresubmit final closure reports for these sites upon completion of thlandfarming and/or composting activities. The final reports wil include the results of the soil remediation levels achieved, thlaboratory analyses and associated quality assurance/quality contro data and the disposition of the remediated soils.

See.	Abrams GC D#1 (Blow pit)	Unit I,	Sec	29	TOON	RIOW
· · ·	Florance B#1 (Blow pit)	Unit E,				
set.	Florance C LS #13 (Dehy pit)	Unit C,				
A.	Florance #124 (Blow pit)	Unit M,	Sec.	27,	т29N,	R09W
	W.D. Heath A#3X (Separator pit)	Unit K,	Sec.	17,	Ť29N,	R09W
5 .	W.D. Heath A#5 (Blow pit)	Unit P,	Sec.	17,	Т29N,	R09W
، العمر	W.D. Heath A#10 (Blow pit)	Unit K,	Sec.	17,	T29N,	R09W
<i>.</i> .	W.D. Heath A#10 (Separator pit)	Unit K,	Sec.	17,	т29N,	RO9W
1. 1. 1. 1.	W.D. Heath A#10E (Blow pit)	Unit A,	Sec.	17,	Т29N,	R09W
. ملير	W.D. Heath A#13 (Blow pit)	Unit N,	Sec.	17,	T29N,	R09W
	Skelly GC #1E (Separator pit)	Unit O,	Sec.	32,	T29N,	R10W
. 12 . محملہ میں	Warren #4E (Separator pit)	Unit H,	Sec.	13,	T28N,	R09W
Sales.	Warren Com #3 (Separator pit)	Unit P,	Sec.	12,	T28N,	R09W
14.	Warren Com #3 (Blow pit)	Unit P,	Sec.	12,	T28N,	R09W
15.	Warren Com #3 (Dehy pit)	Unit P,	Sec.	12,	T28N,	R09W
14.	Warren LS #1A (Dehy pit)	Unit J,	Sec.	13,	T28N,	R09W
27.	Warren LS #1A (Separator pit)	Unit J,	Sec.	13,	T28N,	R09W
1 7.	Warren LS #8 (Separator pit)	Unit M,	Sec.	07,	T28N,	ROSW
129.	Warren LS #4E (Blow pit)	Unit H,	Sec.	13,	T28N,	R09W
25.	Warren LS #4E (Separator pit)	Unit H,				
29. 25. 24.	Warren LS #11 (Dehy pit)	Unit A,				
100	·					

C. The final pit remedial contaminant levels at the sites listed belo are in excess of the OCD's recommended remediation levels Consequently, the OCD cannot issue final closure approval and approva of closure actions at these sites is denied. The OCD requests tha Amoco address the extent of the remaining contamination at thes sites. The OCD will reconsider issuing closure approval upo resubmission of pit closure forms which address the remaining exten of contamination at the sites. The resubmitted forms should includ the completed form and all pertinent information elated to the exten Mr. B.D. Shaw December 19, 1996 Page 3

1. 2. 2 C

1. E. E

100 S

Contraction of the second

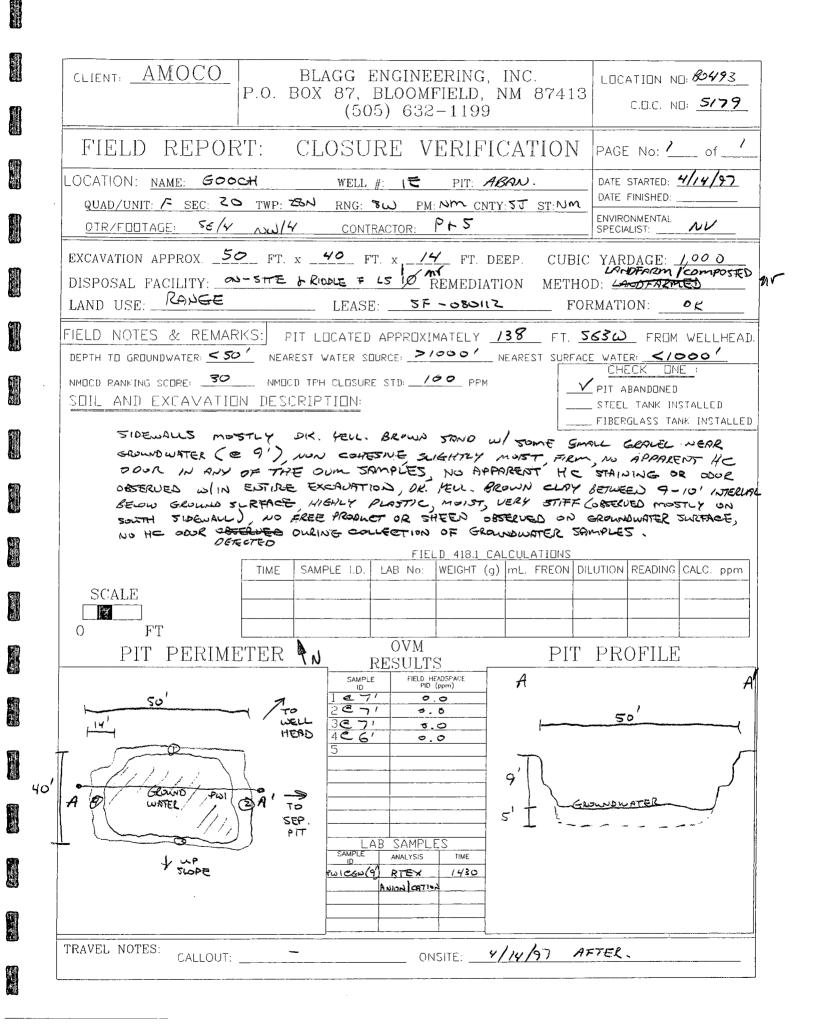
of contamination, the results of the soil remediation levels achieved, the results of the soil remediation levels achieved, the laboratory analyses and associated quality assurance/quality control data and the disposition of the remediated soils.

the .	Florance GC B#1 (Separator pit)	Unit H, Sec. 09, T291	I, R12W.
	Omler A#1E (Separator pit)	Unit F, Sec. 26, T281	, R10W.
· · · ·	W.D. Heath A#3X (Blow pit)	Unit K, Sec. 17, T291	
AT.	W.D. Heath A#5 (Separator pit)	Unit P, Sec. 17, T291	I, RO9W.

D. Ground waters at the sites listed below are contaminated with petroleum related constituents in excess of New Mexico Water Quality Control Commission ground water standards. In addition, the extent of ground water contamination at the sites has not been determined. Therefore, approval of these pit closure forms is denied. The OCC requests that Amoco investigate the extent of contamination and, if necessary, remediate contaminated ground water pursuant to Amoco's November 21, 1995 ground water investigation/remediation work plan which was approved by the OCD on November 29, 1995.

<u> </u>	Gooch #1E (Separator pit)	Unit F,	Sec.	20,	T28N,	ROSW.
-A.	Hutton GC #1E (Separator pit)	Unit F,				
- "En	McCoy GC C#1 (Separator pit)	Unit A,	Sec.	28,	TJON,	R12W.
. 1 ²		Unit A,	Sec.	30,	T29N,	R10W.
48°.	Sullivan GC D#1 (Separator pit)	Unit B,	Sec.	26,	T29N,	R11W.

To simplify the approval process for both Amoco and OCD, the OCD requests that Amoco submit all future pit closure reports only upon completion of all closure activities including onsite landfarming or composting of contaminated soils. The reports should include the completed form and all pertinent information related to the extent of contamination, the results of the soil remediation levels in the pits and landfarms, all laboratory analyses and associated quality assurance/quality control data and the disposition of all remediated soils.


If you have any questions, please call me at (505) 827-7154.

Sincerely,

William C. Olson Hydrogeologist Environmental Bureau

2

xc: *OCD Aztec District Office Bill Liess, BLM Farmington District Office

ENVIROTECH LABS

de la Maria

A THE A

and the second

The state

and the second second

an an abaile.

2.2

S. A. S. A.

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS

Client:	Blagg / Amoco	Project #:	04034
Sample ID:	PW 1 @ GW (9')	Date Reported:	04-15-97
Chain of Custody:	5179	Date Sampled:	04-14-97
Laboratory Number:	B133	Date Received:	04-15-97
Sample Matrix:	Water	Date Analyzed:	04-15-97
Preservative:	HgCl2 & Cool	Analysis Requested:	BTEX
Condition:	Cool & Intact		

· · ·			Det.
	Concentration	Dilution	Limit
Parameter	(ug/L)	Factor	(ug/L)
Benzene	3.9	1	0.2
Toluene	229	1	0.2
Ethylbenzene	9.9	1	0.2
p,m-Xylene	512	1	0.2
o-Xylene	155	1	0.1
Total BTEX	910		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries	Parameter	Percent Recovery
	Trifluorotoluene	99 %
	Bromofluorobenzene	100 %

References: Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992.

Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1994.

Comments: Gooch #1E Aban. Pit.

hen Analyst

They W. Sendle Review

CATION / ANION ANALYSIS

VACTICAL SOLUTIONS FOR A BETTERTOMORROW

A CONTRACTOR

2. 2. N. C.

The second

STOR 7.4

And Provide a

1. S. C.

1.44

あっても

でに

Service C

Blagg / Amoco	Project #:	04034
PW 1 @ GW (9')	Date Reported:	04-17-97
B133	Date Sampled:	04-14-97
Water	Date Received:	04-15-97
Cool	Date Analyzed:	04/16/97 - 04/17/97
Cool & Intact	Chain of Custody:	5179
	PW 1 @ GW (9') B133 Water	PW 1 @ GW (9')Date Reported:B133Date Sampled:WaterDate Received:CoolDate Analyzed:

	Analytical			
Parameter	Result	Units		Units
рН	7.48	s.u.		
Conductivity @ 25° C	2,164	umhos/cm		
Total Dissolved Solids @ 180C	1,080	mg/L		
Total Dissolved Solids (Calc)	1,122	mg/L		
SAR	18.07	ratio		
Total Alkalinity as CaCO3	434	mg/L		
Total Hardness as CaCO3	75.4	mg/L		
Bicarbonate as HCO3	434	mg/L	7.11	meq/L
Carbonate as CO3	<1	mg/L	0.00	meq/L
Hydroxide as OH	<1	mg/L	0.00	meq/L
Nitrate Nitrogen	0.2	mg/L	0.00	meq/L
Nitrite Nitrogen	<.001	mg/L	0.00	meq/L
Chloride	16.2	mg/L	0.46	meq/L
Fluoride	8.20	mg/L	0.43	meq/L
Phosphate	0.7	mg/L	0.02	meq/L
Sulfate	447	mg/L	9.31	meq/L
Calcium	0.41	mg/L	0.02	meq/L
Magnesium	18.0	mg/L	1.48	meq/L
Potassium	7.60	mg/L	0.19	meq/L
Sodium	360	mg/L	15.66	meq/L
Cations			17.36	meq/L
Anions			17.33	meq/L
Cation/Anion Difference			0.13%	

Reference:

U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983 Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Gooch #1E Aban. Pit.

esser Analyst

tay W. Jen Review

5796 U.S. Highway 64-3014 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

								5179
	U	CHAIN OF CUSTODY RECORD	ODY RE	CORD			-	
ClienvProject Name BLAGG / Amo CO	Project Location	ABAN. PIT #1E			ANALYSIS/PARAMETERS	METERS		
Sampler: (Signature)	Chain of Custody Tape No. $\mathcal{O}\mathcal{A}\mathcal{O}\mathcal{A}\mathcal{H}$	No.		(o. (o.			Remarks	
Sample No./ Sample Sample Identification Date Time	Lab Number	Sample Matrix	No. Contai	802 CBTI 208) 57€)		Air	SAMPLES	BTEX
PWI CEW(3') 4/14/97 1430	8133	WATER	m	>		q	PRESERN W/	H4C/z
							Auso.	
							-	
			Sauth	م لنظ بدود	received Coo	- - - -	best	
Relinquished by: (Signature)	7	Date Time R	Received W: (Signature)	nature)			Date 24-15-97	Time C1/C0
Relinquished by: (Signature)			Received by: (Signature)	nature)	the second			
Relinquished by: (Signature)		<u> </u>	Received by: (Signature)	nature)				
		EDVIROTECH INC. 5796 U.S. Highway 64:3014 Earrindton New Mexico 87401	CH INC way 64-3014					
		(505) 632-0615	2-0615					

Envirotech Labs

6.9

14.0

لا ي الله خل

State State

10 - 10 - 10

PRACTICAL SOLUTIONS FOR A BELTERTOMORROW

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client:	QA/QC	Project #:	N/A
Sample ID:	Laboratory Blank	Date Reported:	04-15-97
Laboratory Number:	04-15-BTEX.BLANK	Date Sampled:	N/A
Sample Matrix:	Water	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	04-15-97
Condition:	N/A	Analysis Requested:	BTEX

Parameter	Concentration (ug/L)	Det. Limit (ug/L)
Benzene	ND	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
p,m-Xylene	ND	0.2
o-Xylene	ND	0.1

ND - Parameter not detected at the stated detection limit.

Surrogate Rec	coveries:	Parameter	Percent Recovery			
		Trifluorotoluene Bromofluorobenzene	100 % 100 %			
References:	Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992.					
	Method 8020 USEPA, Sep	0, Aromatic Volatile Organics, Test Method ot. 1994.	ls for Evaluating Solid Waste, SW-846,			
Comments:	QA/QC fo	r samples B128 - B131 and B133.				

duce Analyst

tacy W. Sendo Review

Envirotech Labs

17<u>7</u>-21

1. 1. 1. 1. 1. 1. 1. 1.

周州

Sec. 1

-

Server 1

and the second

PRACTICAL SOLUTIONS FOR A BETTLER TOMORROW.

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client:	QA/QC	Project #:	N/A
Sample ID:	Matrix Duplicate	Date Reported:	04-15-97
Laboratory Number:	B133	Date Sampled:	N/A
Sample Matrix:	Water	Date Received:	N/A
Preservative:	HgCl and Cool	Date Analyzed:	04-15-97
Condition:	Cool and Intact	Analysis Requested:	BTEX-MTBE

<u> </u>	Sample	Duplicate		Det.	· · · · · · · · · · · · · · · · · · ·
	Result	Result	Percent	Limit	Dilution
Parameter	(ug/L)	(ug/L)	Diff.	(ug/L)	Factor
Benzene	3.9	3.8	3.6%	0.2	1
Toluene	229	220	4.1%	0.2	1
Ethylbenzene	9.9	9.4	4.7%	0.2	1
p,m-Xylene	512	501	2.1%	0.2	1
o-Xylene	155	152	2.0%	0.1	1

ND - Parameter not detected at the stated detection limit.

QA/QC Accep	tance Criteria:	Parameter	Maximum Difference				
		8020 Compounds	30 %				
References:	Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992.						
	Method 8020, Aromatic USEPA, Sept. 1994.	Volatile Organics, Test Methods for E	Evaluating Solid Waste, SW-846,				
	QA/QC for sample	- D400 - D404 and D400					

linen Analyst

tacy W. Jendle Review

6 I 9 J

- 10-

A. Strategy

Į.

い。

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client: Sample ID: Laboratory Number: Sample Matrix: Preservative: Condition:	QA/QC Matrix Spik B133 Water Cool Cool and Ir		Project #: Date Reported: Date Sampled: Date Received: Date Analyzed:			N/A 04-15-97 N/A N/A 04-15-97	
Parameter	Sample Result (ug/L)	Spike Added (ug/L)	Spiked Sample Result (ug/L)	Det. Limit (ug/L)	Percent Recovery	SW-846 % Rec. Accept. Range	
Benzene Toluene Ethylbenzene p,m-Xylene o-Xylene	3.9 229 9.9 512 155	50.0 50.0 50.0 100 50.0	53.6 280 59.6 613 204	0.2 0.2 0.2 0.2 0.1	99% 100% 100% 100% 99%	39-150 46-148 32-160 46-148 46-148	

ND - Parameter not detected at the stated detection limit.

References: Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992.

> Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1994.

Comments: QA/QC for samples B128 - B131 and B133.

diecon Analyst

tacy W. Jendle Review

CLIENT: AMOCO BLAGG ENGINEERING, INC. LOCATION NO: 80493 P.O. BOX 87, BLOOMFIELD, NM 87413 C.O.C. NO: 5032 (505) 632 - 1199CLOSURE VERIFICATION FIELD REPORT PAGE No: / of / DATE STARTED: 4/15/97 LOCATION: NAME: GOOCH IE WELL #: IE PIT: DEHY DATE FINISHED: QUAD/UNIT: F SEC: 20 TWP: 28 N RNG: 800 PM: NM CNTY: ST ST:NM ENVIRONMENTAL 5714 NW 4 CONTRACTOR: $P \neq 5$ OTR/FOOTAGE: SPECIALIST: EXCAVATION APPROX. <u>65</u> FT. x <u>123</u> FT. x <u>12</u> FT. DEEP. CUBIC YARDAGE: <u>ZZOO</u> LANDFARMED/COMPOSTED DISPOSAL FACILITY: ON-SITE / RIDDLE F IS TO REMEDIATION METHOD: LANDFARMED LAND USE: RANGE LEASE: 5F-080112 FORMATION: DK FIELD NOTES & REMARKS: PIT LOCATED APPROXIMATELY 10 FT. NSIW FROM WELLHEAD. DEPTH TO GROUNDWATER: <50' NEAREST WATER SOURCE: _>/000' NEAREST SURFACE WATER: <200' CHECK ONE : NMOCH PANKING SCORE: 40 NMOCH TPH CLOSURE STD: 100 PPM V PIT ABANDONED SOIL AND EXCAVATION DESCRIPTION: .____ STEEL TANK INSTALLED MOSTLY DR. YELL BROWN SAND, NON COHESIVE, SLIGHTLY ____ FIBERGLASS TANK INSTALLED FIRM, NO APPALENT HE ODOR OR STOLNING FLOW GROUND SWREREE TO A OPROX. 6'-7' BELOW GRADE IN ENTIRE EXCAVATION SOUTH SIDEWALL CONTRINS MED. TO DARK GRAY SAND WI STRONG HE ODOR BELOW SALE'S LINE (7'-9' INTERVAL) CLAY, HIGHLY PLASTIC, MOIST TO SATURATED, APPARENT HE STAINING ON SOUTH, NORTH, AND NORTHWEST CORNER SIDENALLS (9'-13'), OK. YELL. BROWN EAST & WEST SIDE -WALLS WIND APPARENT HE STAINING OF ODOR, GROWNDWATER NOT TREATED PRIOR TO (pumped) 4/15/97 SAMPLING, FIELD 418.1 CALCULATIONS WEIGHT (g) ML. FREON DILUTION READING CALC. ppm SAMPLE I.D. TIME LAB No: SCALE \bigcirc FT OVM RN PIT PERIMETER PIT PROFILE RESULTS FIELD HEADSPACE FID (ppm) SAMPLE 2081 0.0 30 91 879 488' 0.0 123 PWID Ø ಗರೆ wen HERN LAB SAMPLES SAMPLE ANALYSIS TIME PWIEGX () BTEX 1615 651 ANYON / - SALE'S OTTON METER ⇒ HOUSE TRAVEL NOTES: 4/15/97 AFTER. NA CALLOUT: ONSITE:

1.20.4

9**6**8-29-5

1. C. S.

100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100

1. S.

.

R. 2.

چ. «ده چ

1

- **- 1**

, 188, S.

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS

Client:	Blagg / Amoco	Project #:	04034
Sample ID:	PW 1 @ GW (9')	Date Reported:	04-16-97
Chain of Custody:	5032	Date Sampled:	04-15-97
Laboratory Number:	B136	Date Received:	04-16-97
Sample Matrix:	Water	Date Analyzed:	04-16-97
Preservative:	HgCl2 & Cool	Analysis Requested:	BTEX
Condition:	Cool & Intact		

Parameter	Concentration (ug/L)	Dilution Factor	Det. Limit (ug/L)
Benzene	21.0	5	0.9
Toluene	646	5	0.8
Ethylbenzene	150	5	0.8
p,m-Xylene	2,090	5	1.1
o-Xylene	465	5	0.5
Total BTEX	3,370		

ND - Parameter not detected at the stated detection limit.

	Trifluorotoluene Bromofluorobenzen	99 % ne 100 %
	/lethod 5030, Purge-and-Trap, Test Metho luly 1992.	ds for Evaluating Solid Waste, SW-846, USEPA,
	/lethod 8020, Aromatic Volatile Organics, T JSEPA, Sept. 1994.	Test Methods for Evaluating Solid Waste, SW-846,
Comments:	Gooch #1E Dehydrator Pit.	

- L. Oferen en Analyst

tay W. Jende Review

ENVIROTECH L

CATION / ANION ANALYSIS

PRACTICAL SOLUTIONS FOR A BETTIER TOMORROW

1.000

2

1 1 A

1

<u>25.5</u>

A Sec.

4. 2 m 2

The second

Client:	Blagg / Amoco	Project #:	04034
Sample ID:	PW 1 @ GW (9')	Date Reported:	04-17-97
Laboratory Number:	B136	Date Sampled:	04-15-97
Sample Matrix:	Water	Date Received:	04-16-97
Preservative:	Cool	Date Analyzed:	04-17-97
Condition:	Cool & Intact	Chain of Custody:	5032

	Analytical			
Parameter	Result	Units		Units
рН	7.47	s.u.		
Conductivity @ 25° C	2,645	umhos/cm		
Total Dissolved Solids @ 180C	1,320	mg/L		
Total Dissolved Solids (Calc)	1,338	mg/L		
SAR	22.80	ratio		
Total Alkalinity as CaCO3	610	mg/L		
Total Hardness as CaCO3	73.2	mg/L		
Bicarbonate as HCO3	610	mg/L	10.00	meq/L
Carbonate as CO3	<1	mg/L	0.00	meq/L
Hydroxide as OH	<1	mg/L	0.00	meq/L
Nitrate Nitrogen	0.6	mg/L	0.01	meq/L
Nitrite Nitrogen	<.001	mg/L	0.00	meq/L
Chloride	105	mg/L	2.96	meq/L
Fluoride	7.71	mg/L	0.41	meq/L
Phosphate	2.7	mg/L	0.09	meq/L
Sulfate	376	mg/L	7.83	meq/L
Calcium	0.19	mg/L	0.01	meq/L
Magnesium	17.8	mg/L	1.46	meq/L
Potassium	7.50	mg/L	0.19	meq/L
Sodium	450	mg/L	19.58	meq/L
Cations			21.24	meq/L
Anions			21.29	meq/L
Cation/Anion Difference			0.23%	

Reference:

U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983 Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Dehydrator Pit. Comments: Gooch #1E

Analyst

, (i) Review

5796 U.S. Highway 64-3014 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

5032				29mpres AEXED	v. w/ Accz			aut -	Date Time 4/1/47 0828			
		RS		ALL S. COOL	ACCEN.		 - Cheffer		_			
		ANAL YSIS/PARAMETERS					 - E C C					
		ANALYSIS					 bere-			1		
	ORD		No1- /~ (0	208) 208) 208)	>				ture)	ture)	ture)	
	DY REC			.oN BinoD	M		 Saug		Received by (Signature)	Received by: (Signature)	Received by: (Signature)	HINC. y 64-3014 exico 87401 515
	HAIN OF CUSTODY RECORD	DEHTORATOR PTT 77/E		Sample Matrix	WATER				Date Time Rec		ê 2	EDVIROTECH IDC. 57% U.S. Highway 64:3014 Farmington, New Mexico 87401 (505) 632-0615
	СН	Project Location	Chain of Custody Tape No	Lab Number	B136							
				Sample Time	1615							
		Amoco	0.1	Sample Date	4/15/12					D		
		ClienvProject Name BLAGG / AM	Sampler: (Signature)	C Sample No./ Identification	Pw1 eau(9')				Relinquished by: (Signature)	Relinquished by: (Signature)	Relinquished by: (Signature)	

Envirotech Labs

13 J

1. A. M. B.

1.1

1

المسلمينينين مسلمينينينينين

с. .

100

5

PRACTICAL SOLUTIONS FOR A BEIMER TOMORROW

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client:	QA/QC	Project #:	N/A
Sample ID:	Laboratory Blank	Date Reported:	04-16-97
Laboratory Number:	04-16-BTEX.BLANK	Date Sampled:	N/A
Sample Matrix:	Water	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	04-16-97
Condition:	N/A	Analysis Requested:	BTEX

Parameter	Concentration (ug/L)	Det. Limit (ug/L)
Davasa		0.0
Benzene Toluene	ND	0.2 0.2
Ethylbenzene	ND ND	0.2
p,m-Xylene	ND	0.2
o-Xylene	ND	0.1

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:		Parameter	Percent Recovery
		Trifluorotoluene	100 %
		Bromofluorobenzene	100 %
References:	Method 503 July 1992.	0, Purge-and-Trap, Test Methods for Evalua	ting Solid Waste, SW-846, USEPA,

Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1994.

Comments: QA/QC for samples B134 - B136.

Gener Analyst

tacy W. Sendle Review

Envirotech Labs

1. A. 19

545 - 14 5 T

To see the

100 P.

2. July 2.

31.2 Berlin - 1997

C. Martine Street

Sitter to 'I

And the state

alat selar

100 CT

1. S. 2.

1. 1960 S

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS

Client: QA/QC Sample ID: Matrix Duplicate		Project #:		N/A
		Date Reported:		04-16-97
Laboratory Number:	B134	Date Sampled:		N/A
Sample Matrix:	Soil	Date Received:		N/A
Preservative:	Cool	Date Analyzed:		04-16-97
Condition:	Cool and Intact	Analysis Requested	d:	BTEX
	Sample	Duplicate	Det.	
Parameter	Result (ug/Kg)	Result (ug/Kg)	Limit (ug/Kg)	Percent Difference
Panzana	50.0	47.0	11 7	0.0%
	50.0 36 900	47.0 36 600	11.7	0.0%
Toluene	36,900	36,600	11.1	0.8%
Ethylbenzene	36,900 11,100	36,600 10,900	11.1 10.1	0.8% 1.2%
Toluene	36,900	36,600	11.1	0.8%

ND - Parameter not detected at the stated detection limit.

QA/QC Acceptance Criteria:		Parameter	Maximum Difference
		8020 Compounds	30 %
References:	Method 5030, Purge-and July 1992.	d-Trap, Test Methods for Evaluating	Solid Waste, SW-846, USEPA,
	Method 8020, Aromatic V USEPA, Sept. 1994.	Volatile Organics, Test Methods for Ⅰ	Evaluating Solid Waste, SW-846,
Comments:	QA/QC for samples	B134 - B136.	

- L. Ceferen en Analyst

tacy W. Jendle Review

ENVIROTECH LABS

「ないます」

ATT CARE

Ja 62-24

1. 198

1. C. S. S.

Sare Sare

10 H 2 V

11.12.44

1. (Sec.

19. A.

Star Bay Barne

1. 1. S. S. S.

になる

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS

Client:	QA/QC			Project #:		N/A
Sample ID:	Matrix Spike			Date Reported:		04-16-97
Laboratory Number:	B134			Date Samp	oled:	N/A
Sample Matrix:	Soil	Soil		Date Rece	ived:	N/A
Preservative:	Cool			Date Extra	cted:	04-16-97
Condition:	Cool and Int	act		Date Analy	zed:	04-16-97
			Spiked			SW-846
	Sample	Spike	Sample	Det.	Percent	% Rec.
	Result	Added	Result	Limit	Recovery	Accept.
Parameter	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)		Range
Benzene	50.0	50.0	98.4	11.7	100%	39-150
Toluene	36,900	50.0	36,900	11.1	100%	46-148
Ethylbenzene	11,100	50.0	11,120	10.1	100%	32-160
p,m-Xylene	34,400	100	34,500	14.4	100%	46-148
o-Xylene	19,500	50.0	19,600	6.9	100%	46-148

ND - Parameter not detected at the stated detection limit.

References: Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992.

Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1994.

Comments:

QA/QC for samples B134 - B136.

Cy'even Analyst

tey W. Sindle Review

BLAGG ENGINEERING, INC.

P.O. Box 87, Bloomfield, New Mexico 87413 Phone: (505)632-1199 Fax: (505)632-3903

May 21, 1997

Mr. Roger Anderson Chief of Environmental Bureau State of New Mexico Oil Conservation Division 2040 So. Pacheco Santa Fe, New Mexico 87505

RE: Groundwater Impact Amoco Production Company:

Gooch #1E - Dehydrator pit Legal Description: Unit F, Sec. 20, T28N, R08W San Juan County, New Mexico

Dear Mr. Anderson:

Initial groundwater sample analytical results at the above referenced well site during pit closure activity indicated contamination to be above the State of New Mexico Water Quality Control Commission's regulatory standards for Benzene and total Xylenes. Sampling on the Dehydrator pit was conducted April 15, 1997. Depth to groundwater was measured at approximately nine (9) feet below grade. Listed below are summary analytical results for Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX):

Parameter	Dehydrator Pit (parts per billion)
Benzene	21.0
Toluene	646
Ethylbenzene	150
Total Xylenes	2,555

If you have any questions concerning this information, please do not hesitate to contact us at (505) 632-1199. Thank you for your cooperation.

Respectfully submitted, **Blagg Engineering, Inc.**

July C. Blegg

Jeffrey C. Blagg, P.E. President

cc: Denny Foust, Deputy Oil & Gas Inspector, NMOCD, Aztec, NM Buddy Shaw, Environmental Coordinator, Amoco Production Company, Farmington, NM

GOOCH-1E.DEH

NV/nv

5-23

BLAGG ENGINEERING, INC.

P.O. Box 87, Bloomfield, New Mexico 87413 Phone: (505)632-1199 Fax: (505)632-3903

May 21, 1997

Mr. Roger Anderson Chief of Environmental Bureau State of New Mexico Oil Conservation Division 2040 So. Pacheco Santa Fe, New Mexico 87505

RE: Groundwater Impact Amoco Production Company:

Gooch #1E - Abandoned pit Legal Description: Unit F, Sec. 20, T28N, R08W San Juan County, New Mexico

Dear Mr. Anderson:

7

Initial groundwater sample analytical results at the above referenced well site during pit closure activity indicated contamination to be above the State of New Mexico Water Quality Control Commission's regulatory standards for total Xylenes. Sampling on the Abandoned pit was conducted April 14, 1997. Depth to groundwater was measured at approximately nine (9) feet below grade. Listed below are summary analytical results for Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX):

Parameter	Abandoned Pit (parts per billion)
Benzene	3.9
Toluene	229
Ethylbenzene	9.9
Total Xylenes	667

If you have any questions concerning this information, please do not hesitate to contact us at (505) 632-1199. Thank you for your cooperation.

Respectfully submitted, **Blagg Engineering**, Inc.

Jeffy C. Blegg

Jeffrey C. Blagg, P.E. President

cc:

Denny Foust, Deputy Oil & Gas Inspector, NMOCD, Aztec, NM Buddy Shaw, Environmental Coordinator, Amoco Production Company, Farmington, NM

NV/nv

GOOCH-1E.ABA

ENVIROTECH LABS

10.00

10.00

Sector Sector

A STATE

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS

Client:	35	Blagg / Amoco	Project #:	04034
Sample ID:	FiJ <u>1</u> .	PW 2 @ GW (9')	Date Reported:	05-12-97
Chain of Custody:		5090	Date Sampled:	05-09-97
Laboratory Number:		B206	Date Received:	05-09-97
Sample Matrix:		Water	Date Analyzed:	05-12-97
Preservative:		HgCl2 & Cool	Analysis Requested:	BTEX
Condition:		Cool & Intact		

Parameter	Concentration (ug/L)	Dilution Factor	Det. Limit (ug/L)
Benzene	ND	1	0.2
Toluene	17.2	1	0.2
Ethylbenzene	ND	1	0.2
p,m-Xylene	32.2	1	0.2
o-Xylene	13.0	1	0.1
Total BTEX	62.4		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:		Parameter	Percent Recovery
		Trifluorotoluene	99 %
Bromofluorobenzene		100 %	
References: Method 503 July 1992.		, Purge-and-Trap, Test Methods for Eval	uating Solid Waste, SW-846, USEPA,
l	Method 8020	, Aromatic Volatile Organics, Test Method	ds for Evaluating Solid Waste, SW-846
もう	USEPA, Sep (<i>IODLE F[°] L</i>	t. 1994.	
A	RIDDLE F L	5 #32	
	Gooch #1		

exercen λ. Ånalyst

May W. Jendle Review

ENVIROTECI

1.22

A CONTRACTOR

1000

21. 21. A

A COLORADO

101 101 101

CATION / ANION ANALYSIS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Client:	Blagg / Amoco	Project #:	04034
Sample ID: PW1	PJW-2"@ GW (9')	Date Reported:	05-12-97
Laboratory Number:	B206	Date Sampled:	05-09-97
Sample Matrix:	Water	Date Received:	05-09-97
Preservative:	Cool	Date Analyzed:	05/9/97 & 05/12/97
Condition:	Cool & Intact	Chain of Custody:	5090

	Analytical			
Parameter	Result	Units		Units
рН	8.09	s.u.		
Conductivity @ 25° C	18,720	umhos/cm		
Total Dissolved Solids @ 180C	9,320	mg/L		
Total Dissolved Solids (Calc)	9,295	mg/L		
SAR	62.9	ratio		
Total Alkalinity as CaCO3	344	mg/L		
Total Hardness as CaCO3	216	mg/L		
Bicarbonate as HCO3	344	mg/L	5.64	meq/L
Carbonate as CO3	<1	mg/L	0.00	meq/L
Hydroxide as OH	<1	mg/L	0.00	meq/L
Nitrate Nitrogen	0.1	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.001	mg/L	0.00	meq/L
Chloride	350	mg/L	9.87	meq/L
Fluoride	32.2	mg/L	1.70	meq/L
Phosphate	0.7	mg/L	0.02	meq/L
Sulfate	5,650	mg/L	117.63	meq/L
Calcium	76.1	mg/L	3.80	meq/L
Magnesium	52.4	mg/L	4.31	meq/L
Potassium	14.8	mg/L	0.38	meq/L
Sodium	2,910	mg/L	126.59	meq/L
Cations			135.07	meq/L
Anions			134.86	meq/L
Cation/Anion Difference			0.16%	

Reference:

U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992. 15

RIDGE FLS #3A Comments: Gooch #15 Dehy. Pit.

ellen Ánalyst

Review

5796 U.S. Highway 64-3014 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

								,					- Dree mark			2	5090
						CH	IAIN O	F CUS	AIN OF CUSTODY RECORD	RECOF	õ						
	Client/Project Name	/ Ano	۵ U	NUL	Project Location KIODLE	N	DEHY PIT	E.				ANALYSIS	ANALYSIS/PARAMETERS	TERS			
	Sampler: (Signature)	Vel			Chain of Cus	Chain of Custody Tape No.	ġ				70					Remarks	
	Sample No./		Sample	Sample Time	Lab Number	mber	j o z	Sample Matrix	No. of Containe		1145 NoINH 2087 (318			5	SAMPLES		PRESERV.
4	16) W = 2 - 2 - 10/		~	2420	8206	e	WATER	TER	M		. >			5 96	PEX 3	BIEX SAMPLES	
	pw1									 				~	ALESERV.	3	1 Hg C/2
										 					ALSO.		
							- - - -										
•4									Sau	- porto	5	لعدامهم	1000	cend 1	Intact DA	A	
•										•.							
¥							ŀ										
	Relinquished by: (Signature)	nature)	ort.			5/3/	1e /27	Time 1041	Received by	Received by: (Signature)	\mathcal{J}	en e			<u>.</u>	Date 5-9-97	Time /℃ 4/
• <u> </u>	Relinquished by: (Signature)	nature)	D						Received by	Received by: (Signature)		2					
<u></u>	Relinquished by: (Signature)	nature)							Received by	Received by: (Signature)							
						-	Ē	VIROTI	ENVIROTECH INC.	Q		ļ					
						}	5/9 Farmii	6 U.S. Hig ngton, Nev (505) 63	5/96 U.S. Highway 64-3014 Farmington, New Mexico 87401 (505) 632-0615	914 87401							
•		ţ															

Envirotech Labs

and the second second

A dra LC

A. A.

1000

Tions and

States of the second

A STATE

1.22 S.S.

R. L. W. W.

に書か

ł.

PRACTICAL SOLUTIONS FOR A BELTERI OMORROW

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client:	QA/QC	Project #:	N/A
Sample ID:	Laboratory Blank	Date Reported:	05-12-97
Laboratory Number:	05-12-BTEX.BLANK	Date Sampled:	N/A
Sample Matrix:	Water	Date Received:	N/A
Preservative:	N/A	Date Analyzed:	05-12-97
Condition:	N/A	Analysis Requested:	BTEX

Parameter	Concentration (ug/L)	Det. Limit (ug/L)
Benzene	ND	0.2
Toluene	ND	0.2
Ethylbenzene	ND	0.2
p,m-Xylene	ND	0.2
o-Xylene	ND	0.1

ND - Parameter not detected at the stated detection limit.

Surrogate Re	coveries:	Parameter	Percent Recovery
		Trifluorotoluene Bromofluorobenzene	99 % 100 %
References:	Method 503 July 1992.	0, Purge-and-Trap, Test Methods for Evalu	ating Solid Waste, SW-846, USEPA,
	Method 802 USEPA, Sep	0, Aromatic Volatile Organics, Test Method ot. 1994.	s for Evaluating Solid Waste, SW-846,

Comments: QA/QC for samples B206 - B207.

en L. Cerecen Analyst

In Chahrela Review

<u>ENVIROTECH LABS</u>

PRAGINEAL SOLUTIONS FOR A BETHER TOMORROW

And the second second

2000 200 100

144

1999 - A

Analyst

EPA METHOD 8020 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client:	QA/QC	Project #:	N/A
Sample ID:	Matrix Duplicate	Date Reported:	05-12-97
Laboratory Number:	B206	Date Sampled:	N/A
Sample Matrix:	Water	Date Received:	N/A
Preservative:	HgCl and Cool	Date Analyzed:	05-12-97
Condition:	Cool and Intact	Analysis Requested:	BTEX-MTBE

Parameter	Sample Result (ug/L)	Duplicate Result (ug/L)	Percent Diff.	Det. Limit (ug/L)	Dilution Factor
Benzene	ND	ND	0.0%	0.2	1
Toluene	17.2	17.2	0.0%	0.2	1
Ethylbenzene	ND	ND	0.0%	0.2	1
p,m-Xylene	32.2	32.0	0.7%	0.2	1
o-Xylene	13.0	12.8	1.6%	0.1	1

ND - Parameter not detected at the stated detection limit.

QA/QC Accep	tance Criteria:	Parameter	Maximum Difference
		8020 Compounds	30 %
References:	Method 5030, Purge-ar July 1992.	d-Trap, Test Methods for Evaluatin	ng Solid Waste, SW-846, USEPA,
	Method 8020, Aromatic USEPA, Sept. 1994.	Volatile Organics, Test Methods fo	or Evaluating Solid Waste, SW-846,
Comments:	QA/QC for sample	s B206 - B207.	
\bigcap			
alen	~ L. Colec	en h	n Chohorland

10 2

4

1.2. 2.2. 1.2.

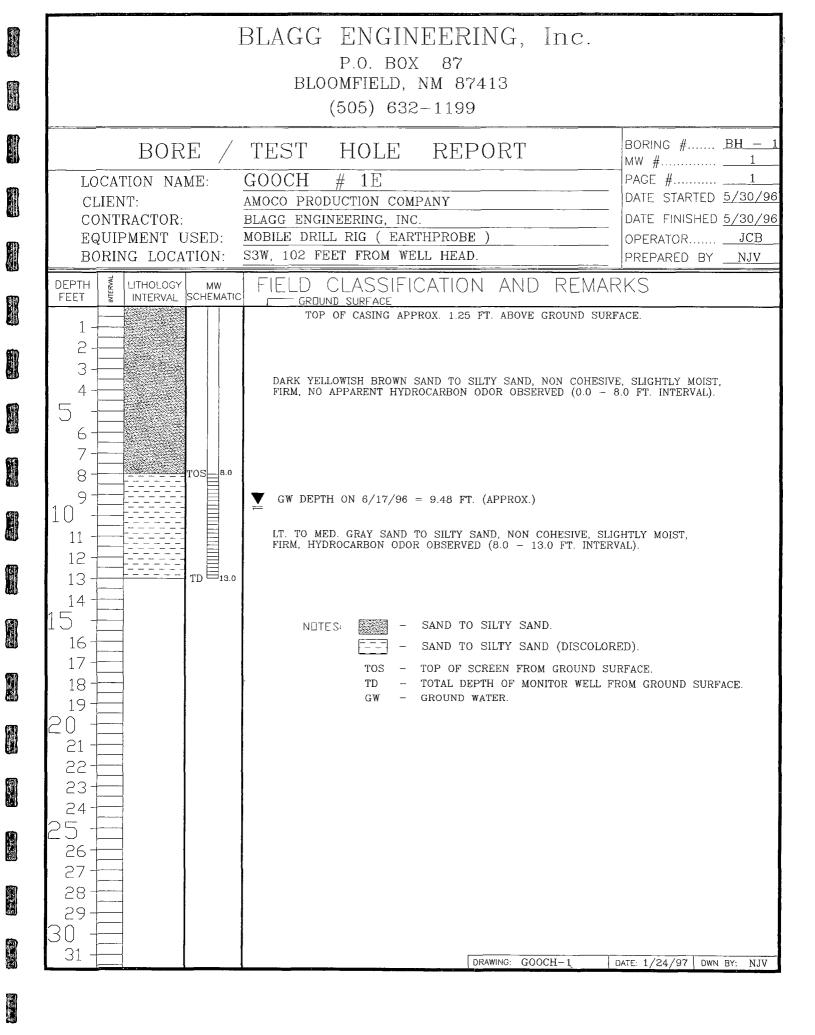
EPA METHOD 8020 AROMATIC VOLATILE ORGANICS QUALITY ASSURANCE REPORT

Client:	QA/QC			Project #:		N/A
Sample ID:	Matrix Spik	e		Date Rep		05-12-97
Laboratory Number:	B206			Date Sam	•	N/A
Sample Matrix:	Water			Date Reco	eived:	N/A
Preservative:	Cool			Date Anal	yzed:	05-12-97
Condition:	Cool and Ir	ntact				
			Spiked			SW-846
	Sample	Spike	Sample	Det.	Percent	% Rec.
	Result	Added	Result	Limit	Recovery	Accept.
Parameter	(ug/L)	(ug/L)	(ug/L)	(ug/L)		Range
Benzene	ND	50.0	50.2	0.2	100%	39-150
Toluene	17.2	50.0	67.1	0.2	100%	46-148
Ethylbenzene	ND	50.0	49.6	0.2	99%	32-160
p,m-Xylene	32.2	100	132	0.2	100%	46-148
o-Xylene	13.0	50.0	62.4	0.1	99%	46-148

ND - Parameter not detected at the stated detection limit.

References: Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992.

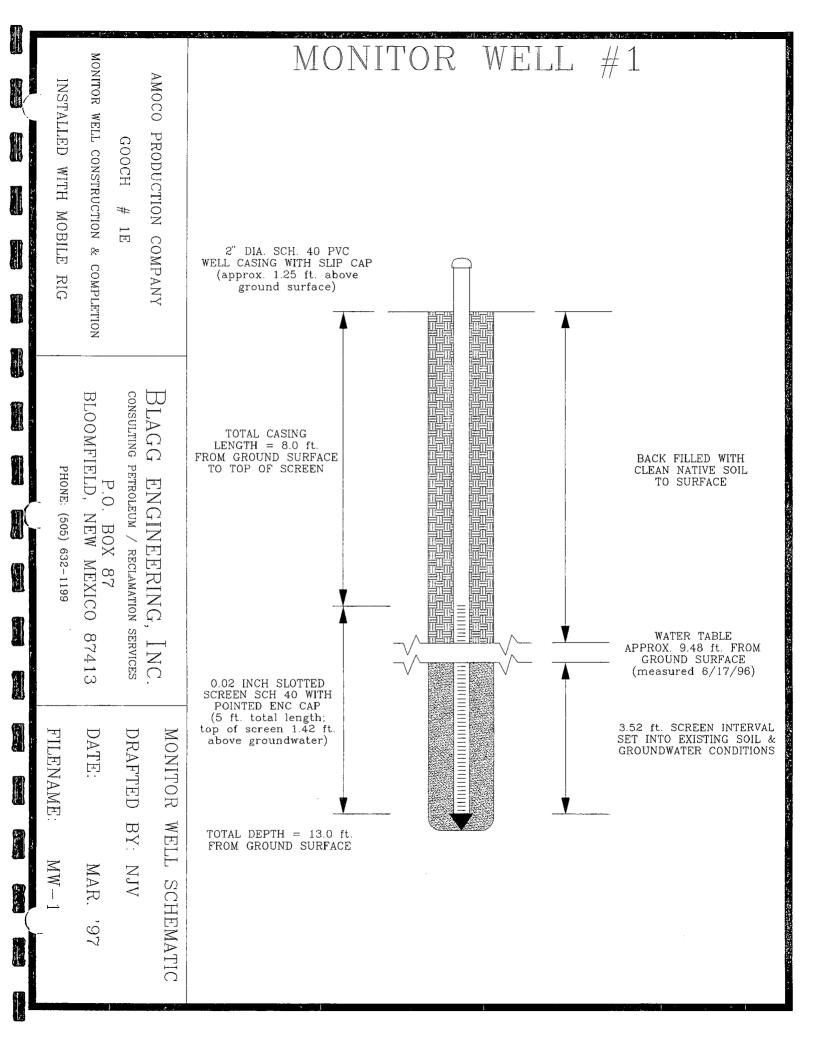
Method 8020, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1994.

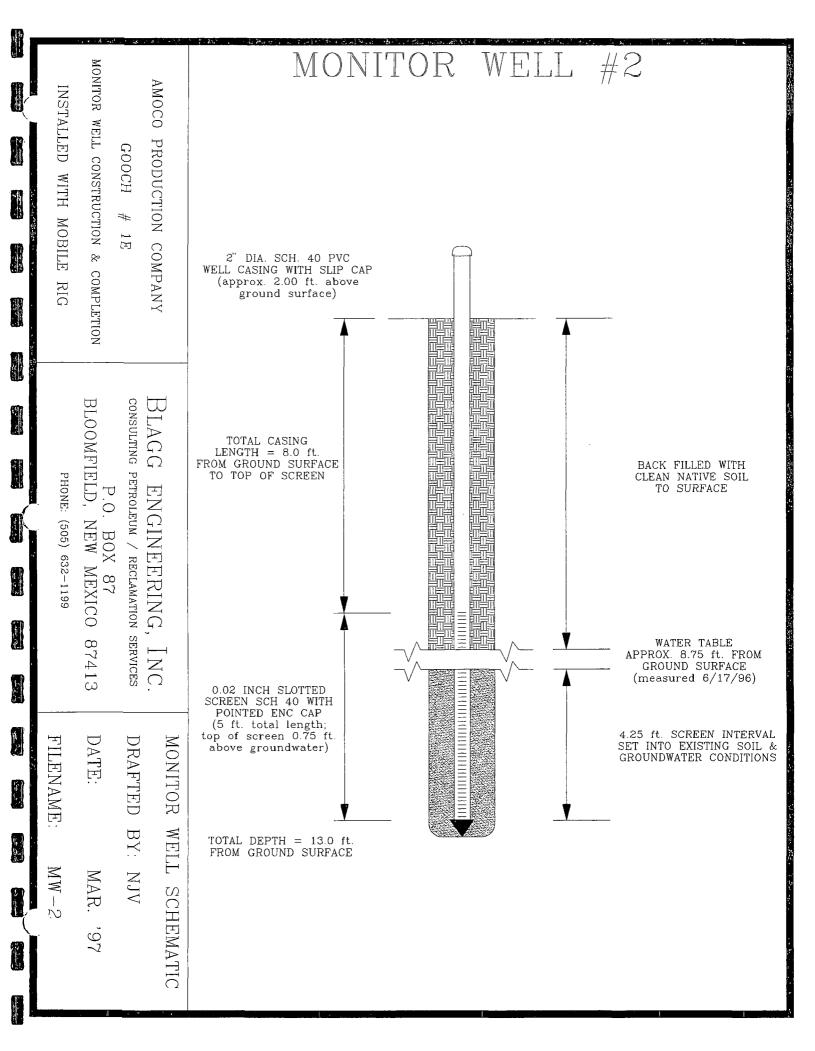

Comments:

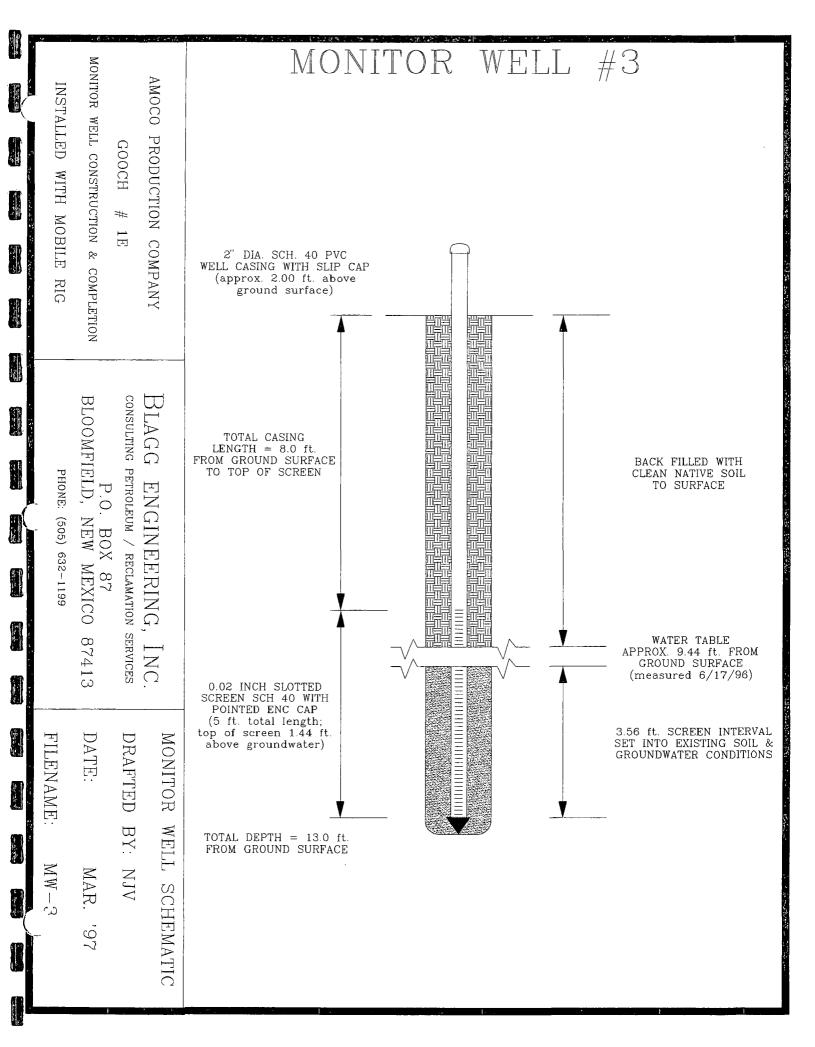
QA/QC for samples B206 - B207.

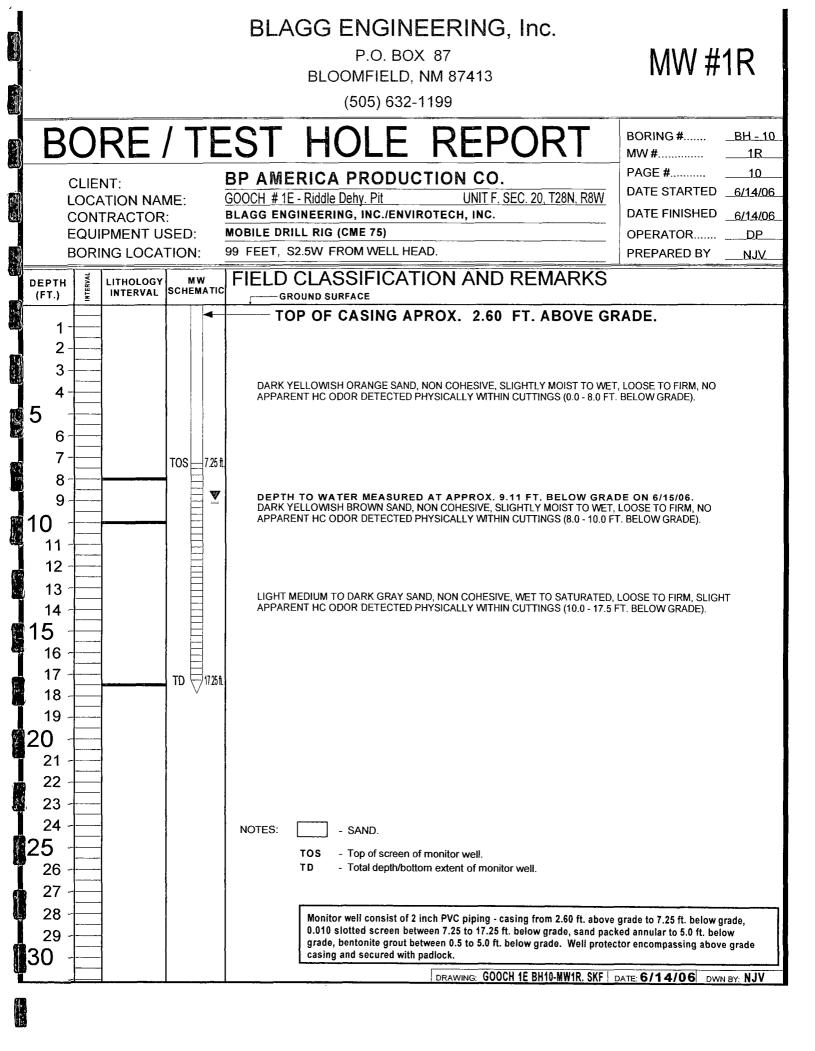
und. Cerecca

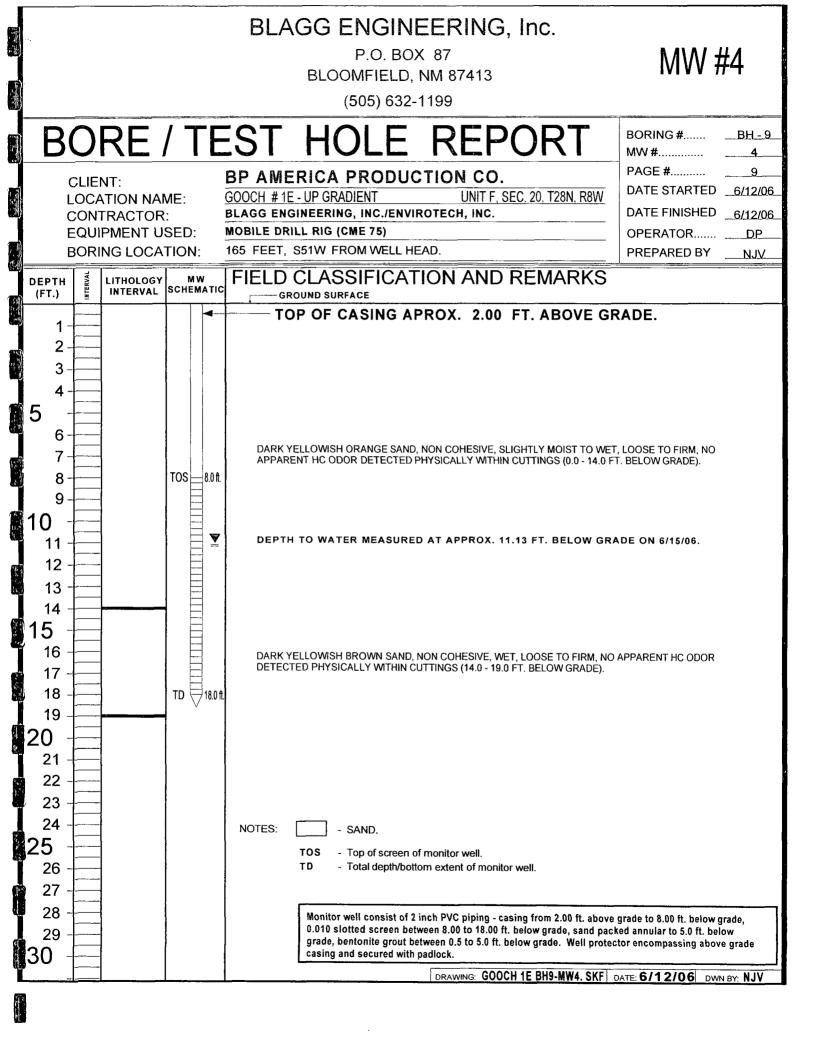
In thating Review

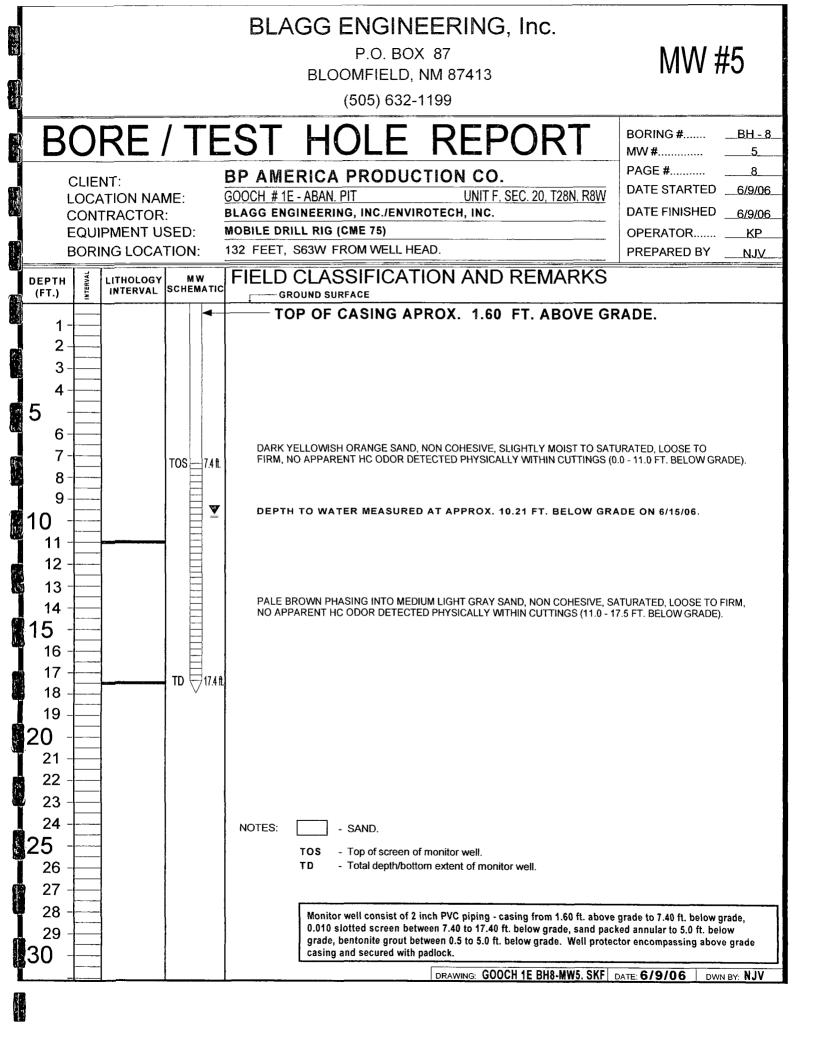

Analyst

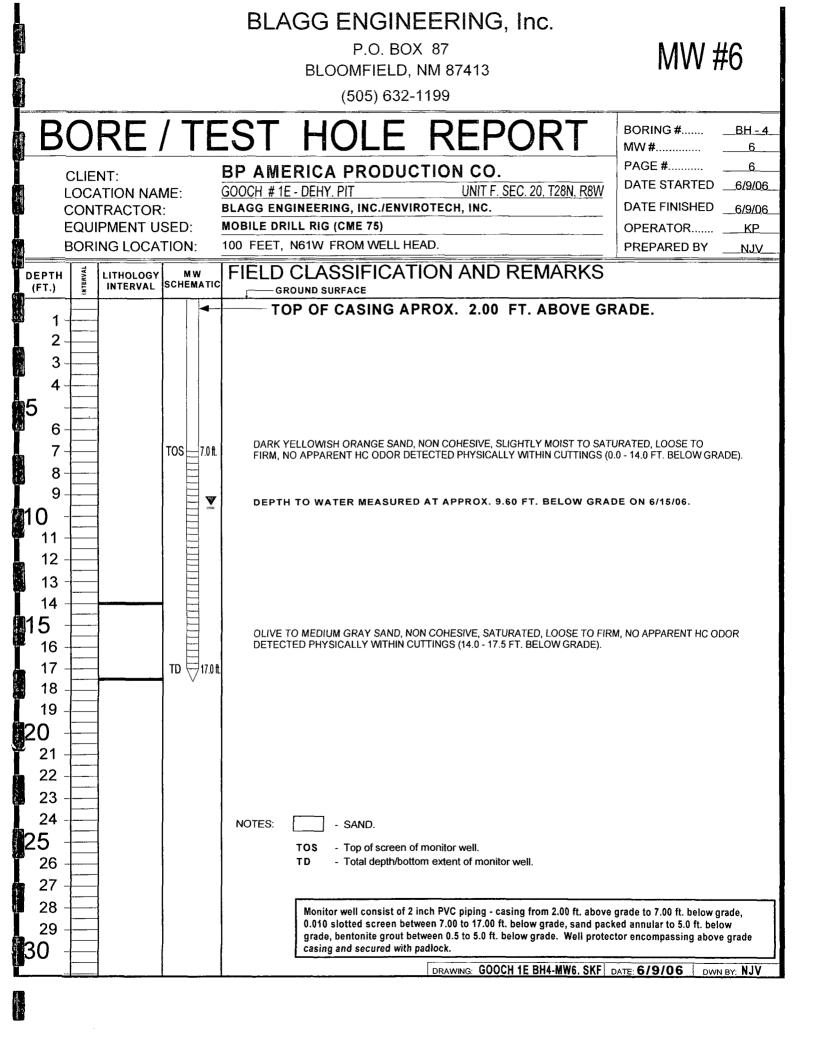


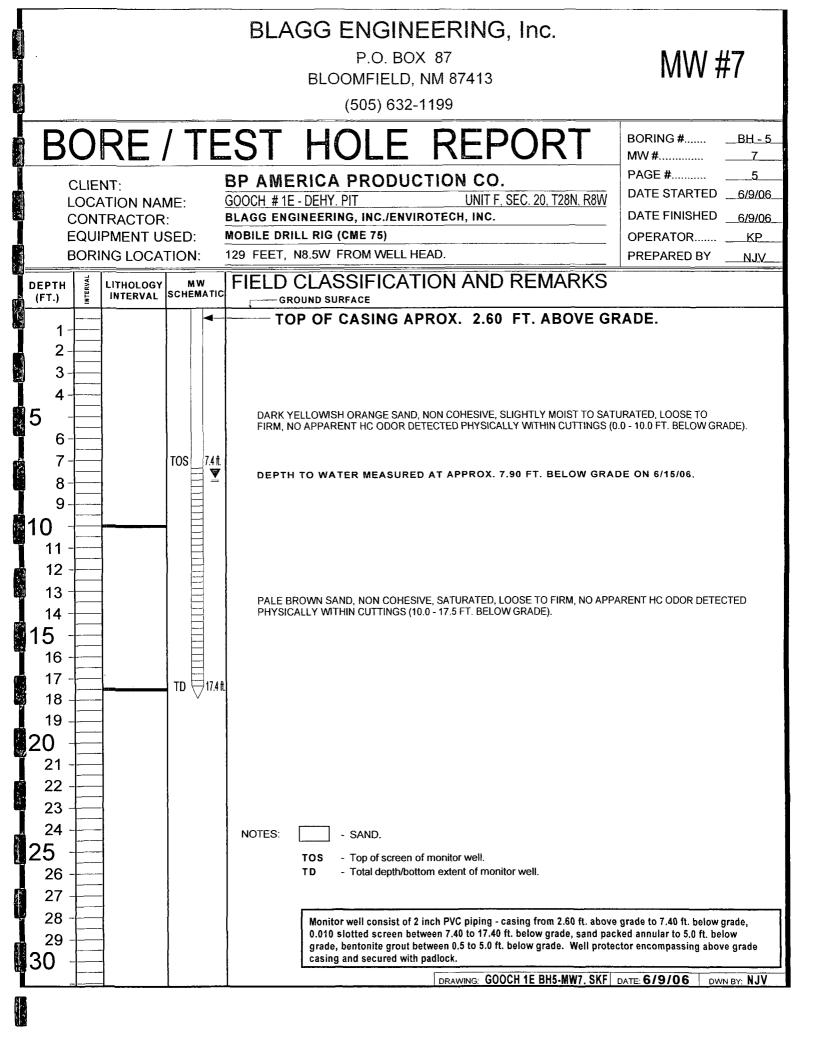

	BLAGG ENGINEERING, Inc. p.o. box 87 bloomfield, nm 87413 (505) 632-1199	
BORE LOCATION NAME: CLIENT: CONTRACTOR: EQUIPMENT USE BORING LOCATIO	AMOCO PRODUCTION COMPANY BLAGG ENGINEERING, INC. D: MOBILE DRILL RIG (EARTHPROBE)	BORING # BH 2 MW #
DEPTH FEET	MATIC GROUND SURFACE TOP OF CASING APPROX. 2.00 FT. ABOVE GROUND DARK YELLOWISH BROWN SAND TO SILTY SAND, NON COH FIRM, NO APPARENT HYDROCARBON ODOR OBSERVED (0.0 GW DEPTH ON 6/17/96 = 8.75 FT. (APPROX.) LT. TO MED. GRAY SAND TO SILTY SAND, NON COHESIVE FIRM, HYDROCARBON ODOR OBSERVED (8.0 - 13.0 FT. II 13.0 NDTES: — SAND TO SILTY SAND. — SAND TO SILTY SAND. (DISCOL TOS - TOP OF SCREEN FROM GROUND TD - TOTAL DEPTH OF MONITOR WELL GW - GROUND WATER.	SURFACE. HESIVE, SLIGHTLY MOIST,) - 0.0 FT. INTERVAL). , SLIGHTLY MOIST, NTERVAL). LORED). SURFACE.

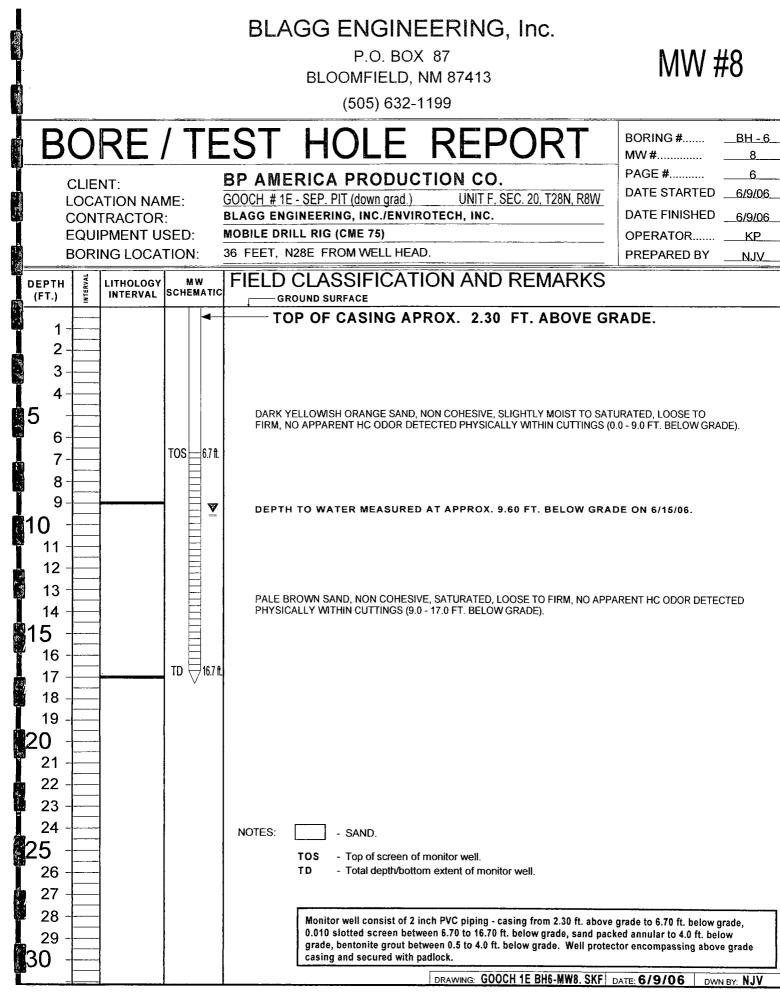

1 - P

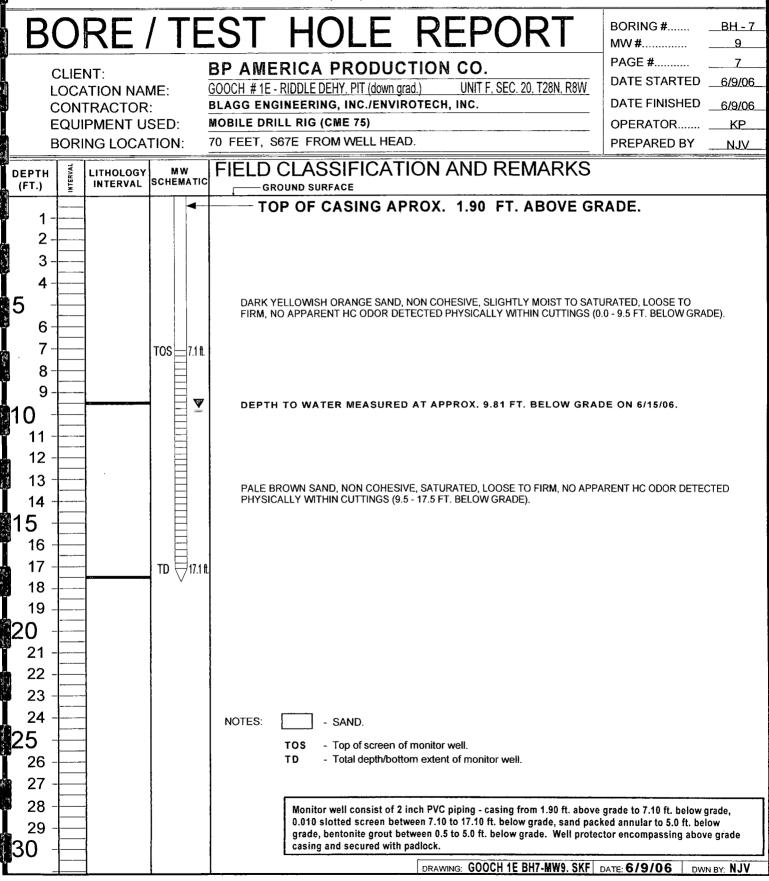

	BLAGG ENGINEERING, Inc. p.o. box 87	
8	BLOOMFIELD, NM 87413 (505) 632-1199	
	BORE / TEST HOLE REPORT	BORING #: <u>BH - 3</u> MW # <u>3</u> PAGE #
	CLIENT: AMOCO PRODUCTION COMPANY CONTRACTOR: BLAGG ENGINEERING, INC. EQUIPMENT USED: MOBILE DRILL RIG (EARTHPROBE)	DATE STARTED <u>5/30/96</u> DATE FINISHED <u>5/30/96</u> OPERATOR JCB
	BORING LOCATION: N87W, 60 FEET FROM WELL HEAD.	PREPARED BY
	FEET INTERVAL SCHEMATIC GROUND SURFACE 1	
	3	
8	9 GW DEPTH ON $6/17/96 = 9.44$ FT. (APPROX.)	
	12 + 13 + 13 + 13 + 15 + 15 + 15 + 15 + 15	
	16 ICTES: ICTES: SAND TO SILTY SAND. 17 ICTES: ICTES:	
	28	
	31 DRAWING: GOOCH-3	DATE: 1/24/97 DWN BY: NJV



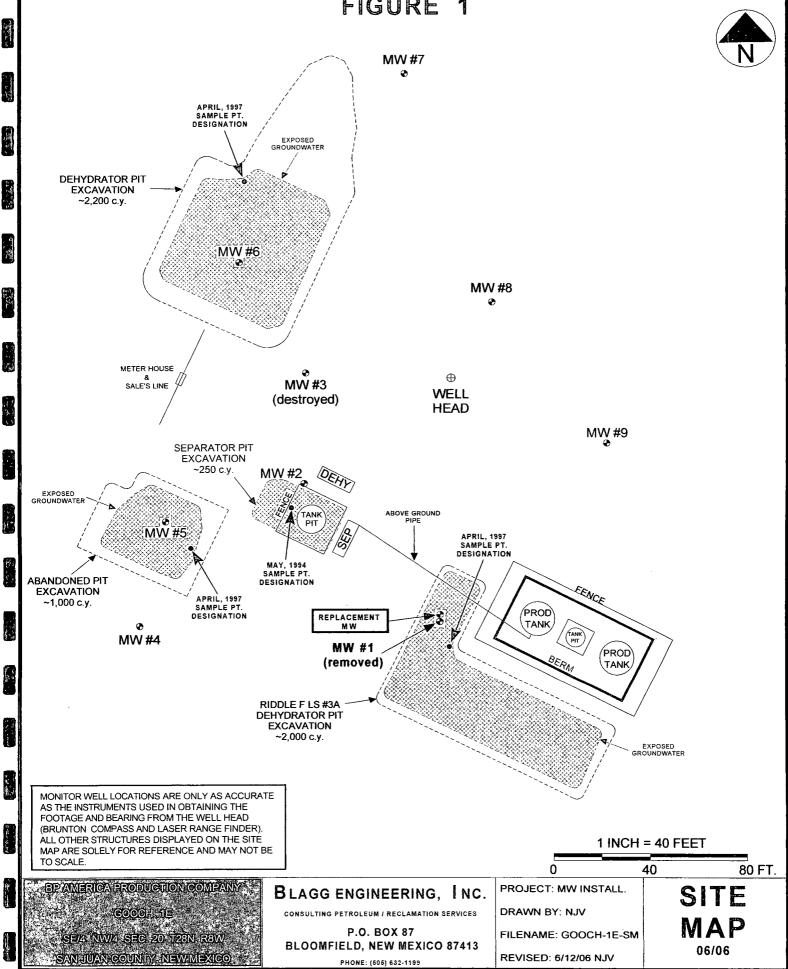


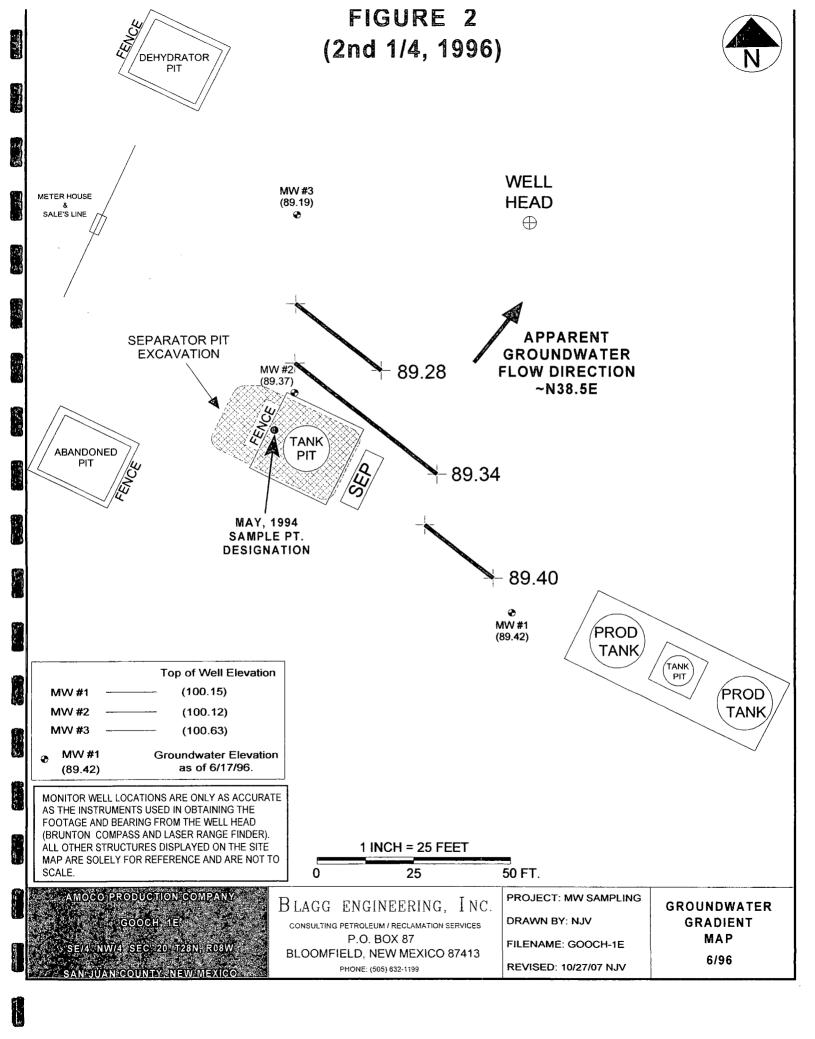


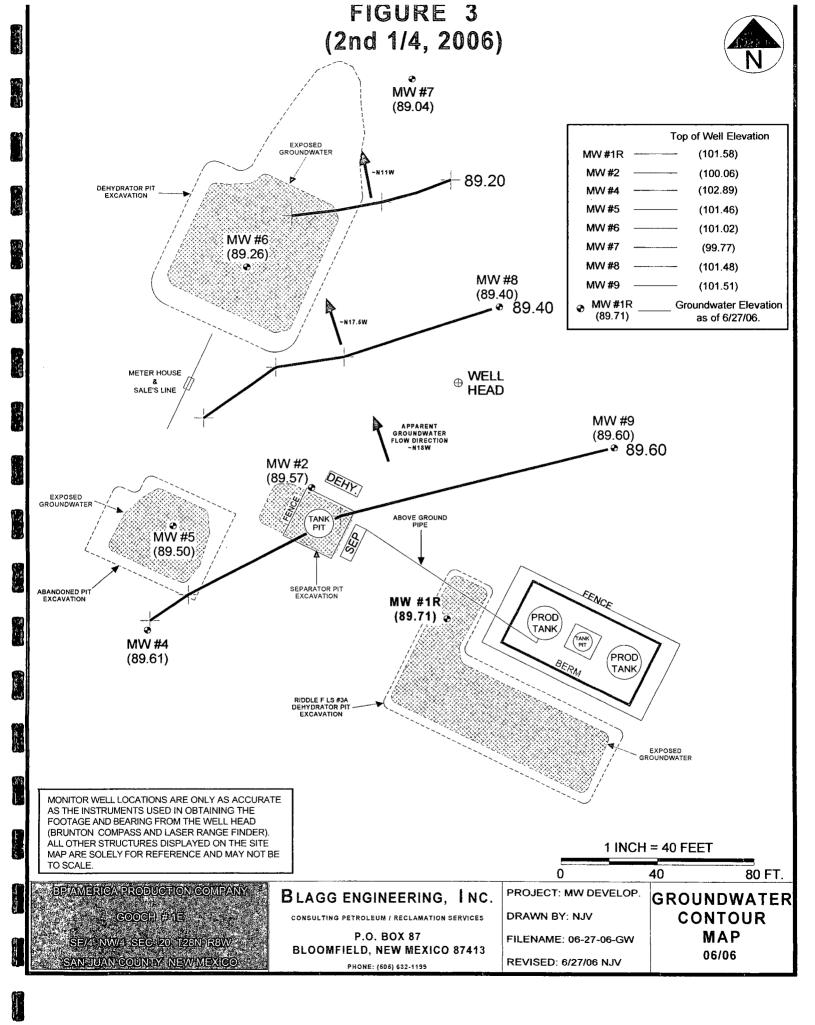


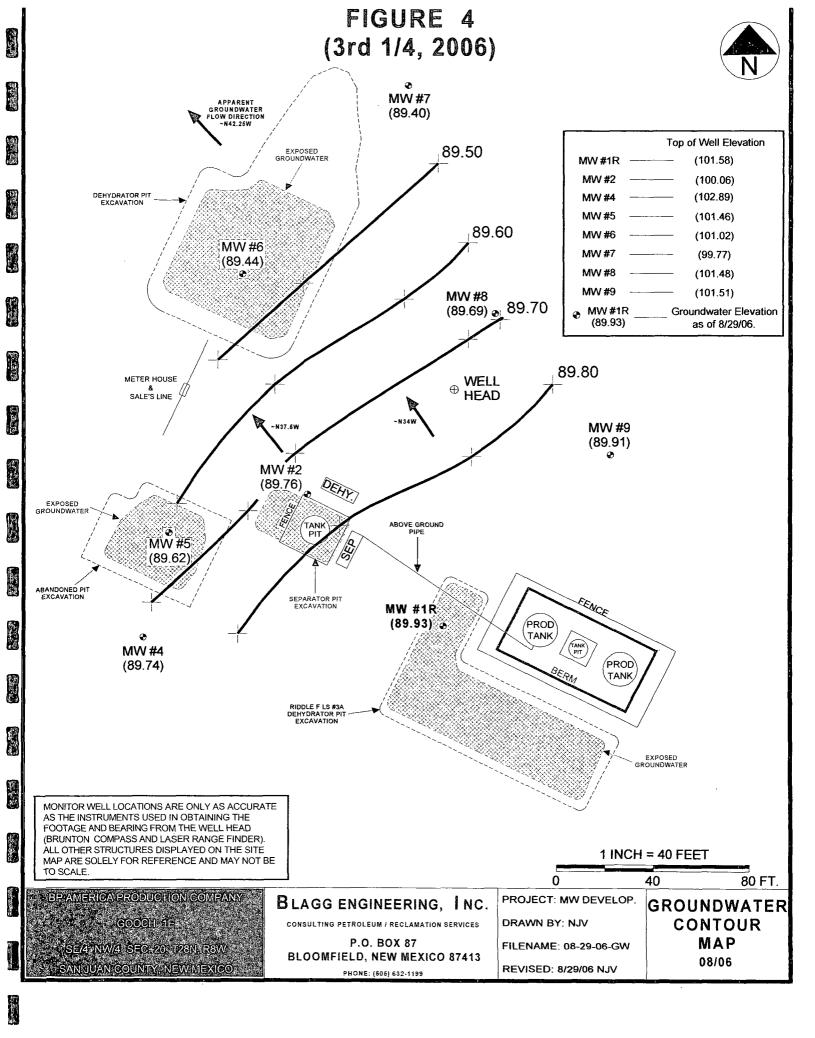


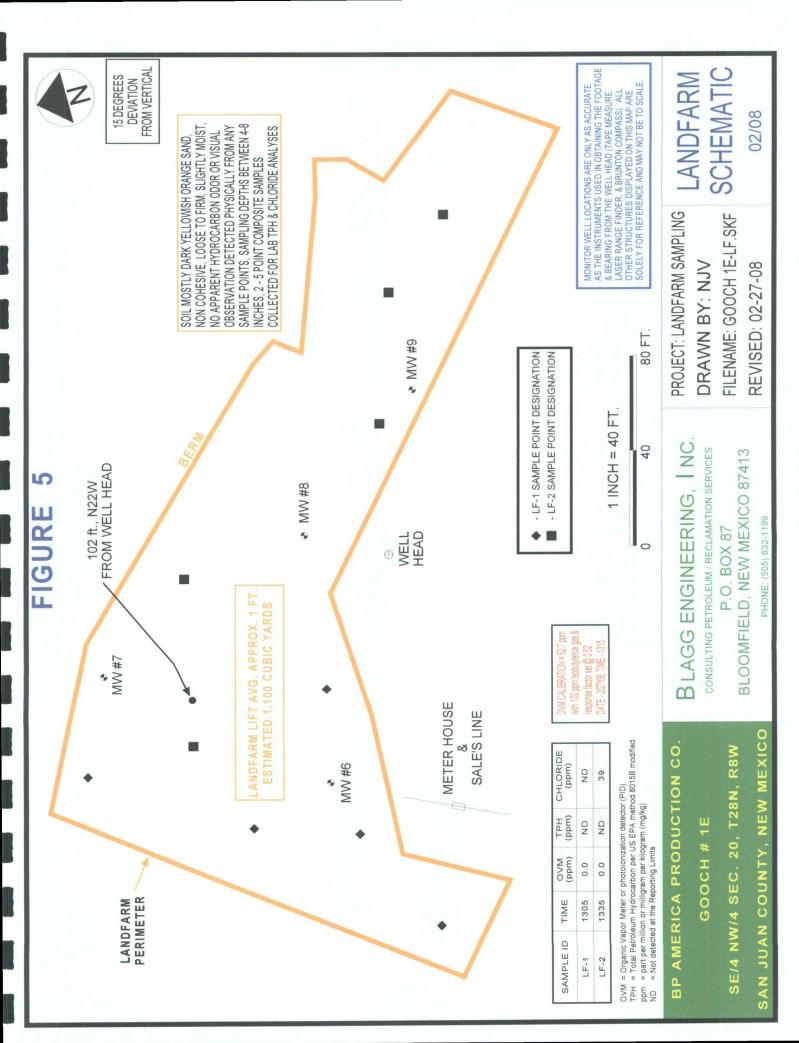
P.O. BOX 87


MW #9


BLOOMFIELD, NM 87413


(505) 632-1199




FIGURE 1

BLAGG ENGINEERING, INC.

MONITOR WELL SAMPLING DATA

CLIENT: <u>AMOCO PRODUCTION CO.</u>

CHAIN-OF-CUSTODY # : 2377

GOOCH #1E - SEPARATOR PIT UNIT F, SEC. 20, T28N, R8W LABORATORY (S) USED : ANAITAS

Date : June 17, 1996

Filename : 06-17-96.WK3

Res R

ない

and the

SAMPLER :REOPROJECT MANAGER :REO

WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	pН	CONDUCT	VOLUME	FREE
#	ELEV.	ELEV.	WATER	DEPTH		TIME		PURGED	PRODUCT
	(ft)	(ft)	(ft)	(ft)			(umhos)	(gal.)	(ft)
1	100.15	89.42	10.73	14.61	-	-	-	_	0.02
2	100.12	89.37	10.75	15.34	0930	7.2	4,800	1.00	-
3	100.63	89.19	11.44	15.35	0950	6.9	5,000	1.00	_

NOTES: <u>Volume_of water purged from well prior to sampling</u>; $V = pi X r_2 X h X 7.48 gal./ft3) X 3 (wellbores).$ (i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

Ideally a minimum of three (3) wellbore volumes:

1.25" well diameter = 0.19 gallons per foot of water (or 24 oz.).

2 bails per foot - small teflon bailer.

3 bails per foot - 3/4" teflon bailer.

2.00 " well diameter = 0.49 gallons per foot of water.

4.00 " well diameter = 1.95 gallons per foot of water.

Comments or note well diameter if not standard 2 ".

構成的

行業

and the second

2017

1.000

4

S. Carlo

E ROLL

PURGEABLE AROMATICS

Blagg Engineering, Inc.

Project ID: Sample ID: Lab ID: Sample Matrix: Preservative: Condition: Gooch 1E MW - 2 3959 Water Cool, HgCl₂ Intact
 Report Date:
 07/03/96

 Date Sampled:
 06/17/96

 Date Received:
 06/17/96

 Date Analyzed:
 06/28/96

Target Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	ND	0.50
Toluene	0.78	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	4.43	1.00
o-Xylene	0.50	0.50

Total BTEX 6.13

ND - Analyte not detected at the stated detection limit.

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
,	Trifluorotoluene	104	88 - 110%
	Bromofluorobenzene	105	86 - 115%
Reference:	Method 602.2, Purgeat Oct. 1984.	ble Aromatics; Federal Regi	ster, Vol. 49, No. 209,

Comments:

auna Analyst

Dirich

S.C.B.

Salar B

「語言語

武法院

PURGEABLE AROMATICS

Blagg Engineering, Inc.

Project ID:
Sample ID:
Lab ID:
Sample Matrix
Preservative:
Condition:

Gooch 1E MW - 3 3960 Water Cool, HgCl₂ Intact

Report Date:	07/03/96
Date Sampled:	06/17/96
Date Received:	06/17/96
Date Analyzed:	06/28/96

and the second and the second states of the second second second second second second second second second second

Target Analyte	Concentration (ug/L)	Detection Limit (ug/L)
Benzene	1.39	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	1.00
o-Xylene	ND	0.50

THE REPORT OF A STREET OF A STREET AND A S	

ND - Analyte not detected at the stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	Trifluorotoluene	98	88 - 110%
	Bromofluorobenzene	102	86 - 115%
Reference:	Method 602.2, Purgeal Oct. 1984.	ole Aromatics; Federal Reg	ister, Vol. 49, No. 209,

Comments:

muc aime Analyst

1 Quiel

General Water Quality Blagg Engineering, Inc.

an inclusion internet and the second time in a state in the second second second second second second second se

Project ID:	Gooch 1E	Date Reported:	07/03/96
Sample ID:	MW - 2	Date Sampled:	06/17/96
Laboratory ID:	3959	Time Sampled:	9:30
Sample Matrix:	Water	Date Received:	06/17/96

Parameter		Analytical Result	Units 2
General	Lab pH	7.8	s.u.
	Lab Conductivity @ 25° C	8,680	μmhos/cm
	Total Dissolved Solids @ 180°C	6,430	mg/L
	Total Dissolved Solids (Calc)	6,470	mg/L
Anions	Total Alkalinity as CaCO ₃	955	mg/L
	Bicarbonate Alkalinity as CaCO ₃	955	mg/L
	Carbonate Alkalinity as CaCO ₃	NA	mg/L
	Hydroxide Alkalinity as CaCO ₃	NA	mg/L
	Chloride	192	mg/L
	Sulfate	3,550	mg/L
	Nitrate + Nitrite - N	NA	
	Nitrate - N	NA	
	Nitrite - N	NA	
Cations	Total Hardness as CaCO ₃	905	mg/L
	Calcium	327	mg/L
	Magnesium	21.8	mg/L
	Potassium	< 5.0	mg/L
	Sodium	1,800	mg/L
Data Validation			Acceptance Level
	Cation/Anion Difference	1.03	+/- 5 %
	TDS (180):TDS (calculated)	1.0	1.0 - 1.2

Reference

U.S.E.P.A. 600/4-79-020, Methods for Chemical Analysis of Water and Wastes, 1983. Standard Methods For The Examination Of Water And Wastewater, 18th ed., 1992.

Emie Ma

Review

調整

Name of

清朝湯

田村市

General Water Quality Blagg Engineering, Inc.

Gooch 1E	Date Reported:	07/03/96
MW - 3	Date Sampled:	06/17/96
3960	Time Sampled:	9:50
Water	Date Received:	06/17/96
	MW - 3 3960	MW - 3Date Sampled:3960Time Sampled:

Parameter		Analytical Result	Units
General	Lab pH	7.7	s.u.
	Lab Conductivity @ 25° C	9,220	µmhos/cm
	Total Dissolved Solids @ 180°C	6,580	mg/L
	Total Dissolved Solids (Calc)	6,100	mg/L
Anions	Total Alkalinity as CaCO ₃	1,000	mg/L
	Bicarbonate Alkalinity as CaCO ₃	1,000	mg/L
	Carbonate Alkalinity as CaCO ₃	NA	mg/L
	Hydroxide Alkalinity as CaCO ₃	NA	mg/L
	Chloride	42.5	mg/L
	Sulfate	3,270	mg/L
	Nitrate + Nitrite - N	NA	
	Nitrate - N	NA	
	Nitrite - N	NA	
Cations	Total Hardness as CaCO ₃	607	mg/L
	Calcium	331	mg/L
	Magnesium	< 0.1	mg/L
	Potassium	5.00	mg/L
	Sodium	1,900	mg/L
Data Validation			Acceptance Level
	Cation/Anion Difference	3.01	+/- 5 %
	TDS (180):TDS (calculated)	1.1	1.0 - 1.2

Reference

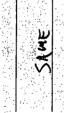
U.S.E.P.A. 600/4-79-020, Methods for Chemical Analysis of Water and Wastes, 1983. Standard Methods For The Examination Of Water And Wastewater, 18th ed., 1992.

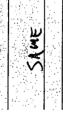
mille

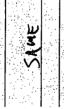
Review

24		
S		
979 8 -	 (1) 1 1 (1) 	
141.6		
10.12		
1.	· · · · · · ·	
	4 🕰	1011
33.41		
	- 1 C - 1	AB
20 C		
. .		
an test		
83	· · · · · · · · · · · · · · · · · · ·	
1.50		
39.51	** .*	1000
1.11		
		TT ###
29		2000
201 C	(1) 1132	6
29 F	10.1	
	1.1	
- 1 A	S	02 1111
S. 1	10 A (23)	6
6 M . D		
12.24	A	2000
(i	1.1.	
1		
1.1.1		IN KEEL
23	P.4.4. 701.44	
S		
£8.	· · · ·	· • •
	- N	3. Kat i
		- 163
89. <i>I</i>	·	C
22 P	- A 1 1 1 1	
5 C I I		
1.15.		
1 1		1
56 E A	N . T . W.	12:00


· 0.		-8009		3.28		o433	£		٠.
- 94				3800 B	860 C	38 X I	8. 1	• • •	•
- ^	1.4	- 200		1.00		2433	٤.,	r -	1
		2000	20020	1800 (N	2226	66.23	24	٠.	•
:. 1		200		2005	268	88.09	č –	• `	••
ഹ		223	2022	0.53		61. S.	6 t	÷	۰.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2000		÷		2123	£1.	••	
ŝ		:200	2232	F		ाःः	:	• • •	
- 22		9803	80 C.	÷		ाळ	5. 1	. **	۰.
		922		1.00		<b>91</b> 33	÷ - 1		
- 10	,	288		100	0000	<b>18</b> 3	1.11	15	4
	-	2003	38 B		883	8 <b>1</b> 833		× * *	
. –		- 200		- C.		CI 200	12.1		
	۰.	2000	S28	153		84 XX		÷.,	
. 7		200		Sec. 10		018X	111	a. 5.	
-		388		<b>1</b> . (	889	400	÷.,	1.1	· *
		988	2000	1.000	0000	on xee	÷.,	1.14	
-0	•	2000		1223		8168	11	1.1	
- 22		466	2003	Sec. 13	86.83	6 <b>1</b> 223	• •	۰.,	х.
- 57		222	8883	1838		8 <b>1</b> 00	1.1	Ŀ٢.,	
- N2		3225		1666	333 A A	- 1 A A		1.2	
- 02		2002	20203	1967		G123			
- œ		200	2.00S	1.5.2	S	69 C 2		· .	- 6
~		-200	8833	1200		SI 83		٠÷٢	
		220	00000	1263	×22	3 CS		e 1	ъ.
		- 689	2023	1.400	00693	0.000	6		
~		282		×83	88.5			÷.,	-
-									
-				· · ·				a	- 5
					- 11			• •	
					- i •				
						· • `			
	• •		m	5 F.				а.	
$\sim$			α	1			٠,	λ.	÷
õ	5	۰,	α				1	<u>.</u>	ł
ĝ			СТ ГТ			Ha	ł		ł.
ĝ		1	СС Ц			Gir			i V
ĝ			СС Ц			Vy			ł
ĝ			С Ц			i Viv Ni			1
ic lo			ш Ш С						
No.			Ц Ц С						
NGTON			Ц Ц Ц Ц Ц						
INGTO!			Ц Ц Ц Ц Ц Ц						
VINCTO	- 		AGFH						
MINGTON			AGFH						
MINGTON			IAGFI						
NINGTON	4		<b>HHCAN</b>		-				
BMINGTON		a	<b>UAGER</b>		, C				
NUNCTON		4	NAGEB		Ċ				
ARMINGTON					c	i			
<b>ARMINGTO!</b>		4	ANAGFR		Ċ	;			
FARMINGTON			ANAGER		<u>_</u>	i			
FARMINGTON			ANAGER		ċ	i			
• FARMINGTO!	44		AANAGFR		ċ	j			
• FARMINGTO!			NANAGER			; ;			
I • FARMINGTO!			MANAGER			;			
N • FARMINGTON			MANAGER			2			
N . FARMINGTON			- MANAGFR			,			
ON • FARMINGTON			I MANAGER						
ON • FARMINGTON			T MANAGER						
TON • FARMINGTON			T MANAGER						
TON . FARMINGTON			T MANAGER						
ITON • FARMINGTON			OT MANAGER						
ITON • FARMINGTON			CT MANAGER						
RUTON • FARMINGTON			FCT MANAGER						
RUTON • FARMINGTON			ECT MANAGER						
ARITON • FARMINGTON			<b>FCT MANAGER</b>		se lah I D				
ARITON • FARMINGTON			IECT MANAGER		aclahlD				
CARLTON • FARMINGTON			<b>JECT MANAGER</b>		as and D.				
CARLTON • FARMINGTON			DIFCT MANAGER		taslahID				
CARLTON • FARMINGTON			DIFCT MANAGER		itas lah I D				
CARLTON • FARMINGTON					aitas I ah I D		一日		
S CARITON • FARMINGTON			OJECT MANAGER		aitas lah I D		ここに、「いい」 地に通知 たいていたいかいかい 潮気		
S. CARLTON • FARMINGTON			<b>NOTECT MANAGER</b>		aitas I ah I D		いいいいい いいかい ないたいかい ないない		
S CARITON • FARMINGTON			<b>30, JECT MANAGER</b>		naitas I ah I D		- こうしょう いいがい ひょうかい なんかい 感見		
7 S. CARLTON • FARMINGTON					naitas I ah I D		「「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」		
7 S CARLTON • FARMINGTON			PROJECT MANAGER		naitas I ah I D		こうしょう いいがい ひとうたい アインド がたたた		
07 S. CARLTON • FARMINGTON					Anaitas I ah I D		こうしょう いいがい たいていたい たいがた 読んを読み		
BIT S CARLTON • FARMINGTON			PROJECT MANAGER	「「「「「「「「「「」」」」」」」」	Anaitas I ah I D		こうしょう はいかい たいていたい いたい かいがた ないない		
RIT S. CARLTON • FARMINGTON NM 87401 • (505) 326-2395			PROJECT MANAGER		Anaitas I ah I D		こうしょう いいがい たいていたい ひんした がたなながな		


-225


Phone: Fax:


RLA61

Company: Address:









Lab ID Y Matrix 030 Time 6-17 Date

Sample ID

V

S S 38

Company:

**Bill To:** 

Address:

0510 ŗ 2 3

100

54

1

(r.coa \ r.coa) seliteloV AWOS (OHD) eniloseD Gasoline / Diesel (mod. 8015) Petroleum Hydrocarbons (418.1)

Base / Neutral / Acid GC/MS (625 / 8270) Volatiles GC/MS (624 / 8240 / 8260) (0218 / 313) sebicid19H Chlorinated Pesticides / PCBs (608 / 8080) Chlorinated Hydrocarbons (8010) Aromatic HCs(ETEX) ATBE (602 / 8020) Į.

Polynuclear Aromatic Hydrocarbons (8100)

ORGANIC ANALYSES

CHAIN OF CUSTODY

WATER ANALYSES

Page

METALS

COMMEN

Please Fill Out Thoroughly.

Relinquished By:

Relinquished By:

Sampled By:

ģ

Sample Receipt

Project Information

1

. . u.

. 1

Signat

91-4-9

252

6-11-96

P EP

МA

Z

**Custody Seals: Heceived Intact** 

Amoro

Proj. Name:

Proj. #:

P.O.No:

No. Containers:

Shaded areas for lab use only.

Received By:

Received By:

Received By

Required Turnaround Time (Prior Authorization Required for Rush)

U

GOOCH

Received Cold:

DEL'D

Shipped Via:

BEI

Company;

Signatur

Company.

EII 0

ate

345

Bet

White/Yellow: Anaitas

Pink: Client

Priority Pollutants

Cther (specify):

Oil and Grease

Cation / Anion

Cther (specify):

TOLP Extraction

2

(IstoT) alstel AROR

Nutrients: NH4+ / NO2- / NO3- / TKN

RCRA Metals TCLP (1311)

Solids: TDS / SST / SOT :sbilos

mrofiloO IstoT / IsseT / GOB

Specific Anions (specify): Specific Cations (specify):

Other (specify):

#### PURGEABLE AROMATICS Quality Control Report

#### Method Blank Analysis

Sample Matrix: Lab ID:

「「「「「」」」

1.00

時時に

Name of

Line I

の影響

L. S. C.

Water MB35244 
 Report Date:
 07/03/96

 Date Analyzed:
 06/28/96

Target Analyte	Concentration (ug/L)	Detection Limit
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
m,p-Xylenes	ND	1.00
o-Xylene	ND	0.50

ND - Analyte not detected at the stated detection limit.

Quality Control:	Surrogate	Percent Recovery	Acceptance Limits
	Trifluorotoluene	103	88 - 110%
	Bromofluorobenzene	103	86 - 115%
Reference:	Method 602.2, Purgeab Oct. 1984.	le Aromatics; Federal Regi	ister, Vol. 49, No. 209,

Comments:

ua arma Analyst

Reineth

#### **Purgeable Aromatics**

#### **Matrix Spike Analysis**

3953Spk Lab ID: Report Date: 7/3/96 Sample Matrix: Water Date Sampled: 6/17/96 Preservative: Cool, HgCl2 Date Received: 6/17/96 Condition: Intact Date Analyzed: 6/27/96

Target Analyte	Spike Added (ug/L)	Original Conc. (ug/L)	Spiked Sample Conc. (ug/L)	% Recovery	Acceptance Limits (%)
Benzene	10	ND	10.8	105%	39 -150
Toluene	10	1.12	11.3	101%	46 - 148
Ethylbenzene	10	ND	10.8	104%	32 - 160
m,p-Xylenes	20	3.13	23.5	102%	NE
o-Xylene	10	1.11	11.4	102%	NE

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

NE - Spike acceptance range not established by the EPA.

Quality Control:	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
	Trifluorotoluene	103	88 - 110%
	Bromofluorobenzene	102	86 - 115%

Reference: Method 602.2, Purgeable Aromatics; Federal Register, Vol. 49, No. 209, Oct. 1984.

Comments:

ないであ

10 CA 10

No.

a na tanu

漫画

na aima Analyst

Dime The

#### **Purgeable Aromatics**

#### **Duplicate Analysis**

Lab ID: Sample Matrix: Preservative: Condition:

「ない」

の語を見

1. N. C.

3.4233

の開始に

1.40 2.40

terten n

a State State

al the state

and the second

3956Dup Water Cool, HgCl₂ Intact

 Report Date:
 07/03/96

 Date Sampled:
 06/17/96

 Date Received:
 06/17/96

 Date Analyzed:
 06/28/96

Target Analyte	Original Conc. (ug/L)	Duplicate Conc. (ug/L)	Acceptance Range (ug/L)
Benzene	230	220	183 - 267
Toluene	10.2	9.19	7.01 - 12.4
Ethylbenzene	77.7	77.7	50.4 - 105
m,p-Xylenes	30.4	27.8	NE
o-Xylene	2.14	2.88	NE

ND - Analyte not detected at the stated detection limit.

NA - Not applicable or not calculated.

NE - Duplicate acceptance range not established by the EPA.

	<u>Surrogate</u>	Percent Recovery	Acceptance Limits
Quality Control:	Trifluorotoluene	113	88 - 110%
	Bromofluorobenzene	110	86 - 115%

Reference:	Method 602.2,	Purgeable Aromatics;	Federal Register,	Vol. 49	9, No. 209, Oct. 1984.
------------	---------------	----------------------	-------------------	---------	------------------------

**Comments:** High toluene-d8 recovery is due to hydrocarbon interference at the d8 retention time.

nua auma Analyst

A Quine Ma

## General Water Quality Quality Control Report

#### Blagg Engineering, Inc.

Report Date:

7/3/96

「たち」

20.03

20.40

Sector Sector

and and

Parameter Analytical Result **Certified Value** Acceptance Range Units 9.07 9.09 Laboratory pH 8.89 - 9.29 s.u. 1263 1220 Conductivity 1040 - 1400 µmhos/cm 900 913 **Total Dissolved Solids** 794 - 1030 mg/L 179 180 **Total Alkalinity** 160 - 200 mg/L 140 138 Chloride 128 - 148 mg/L 115 124 Sulfate 107 - 141 mg/L 269 254 **Total Hardness** 218 - 290 mg/L 59.8 54.6 Calcium 47.0 - 62.2 mg/L NA NA NA Magnesium mg/L 120 123 Potassium 105 - 141 mg/L 170 173 Sodium 147 - 199 mg/L

**Reference:** 

U.S.E.P.A. 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. <u>Standard Methods For The Examination Of Water And Wastewater</u>, 18th ed., 1992.

**Comments:** 

Amie/h/

Review

#### BLAGG ENGINEERING, INC.

MONITOR WELL DEVELOPMENT & / OR SAMPLING DATA

#### CLIENT: BP AMERICA PROD. CO.

CHAIN-OF-CUSTODY #: N / A & 14637

**GOOCH #1E - MULTIPLE PITS** UNIT F, SEC. 20, T28N, R8W

市場地

to the

and the second

10110

Physics

Sec. 1

LABORATORY (S) USED : HALL ENVIRONMENTAL

ENVIROTECH

Date : June 27, 2006

*Filename* : 06-27-06.WK4

**PROJECT MANAG** 

SAMPLER :	NJV
MANAGER :	NJV

WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	рН	CONDUCT	TEMP.	VOLUME
#	ELEV.	ELEV.	WATER	DEPTH	TIME		(umhos)	(celcius)	PURGED
	(ft)	(ft)	(ft)	(ft)					(gal.)
MW - 1R	101.58	89.71	11.87	19.85	1110	7.13	5,300	21.2	4.00
MW - 2	100.06	89.57	10.49	15.00	0945	7.29	5,200	20.4	1.25
MW - 4	102.89	89.61	13.28	20.00	0950	7.26	5,300	19.9	3.25
MW - 5	101.46	89.50	11.96	20.00	1010	7.29	5,300	21.0	4.00
MW - 6	101.02	89.26	11.76	20.00	1020	7.20	4,900	20.4	4.00
MW - 7	99.77	89.04	10.73	20.00	1035	7.08	5,300	21.6	4.50
MW - 8	101.48	89.40	12.08	20.00	1045	7.11	5,500	22.7	4.00
MW - 9	101.51	89.60	11.91	20.00	1055	7.30	5,300	21.5	4.00
		<u>.</u>	INSTRUM	ENT CALIE	BRATIONS =	7.00	2,800		·
				DAT	E 9 TIME -	06/26/06	0630		

DATE & TIME = 06/26/06 0630

NOTES: Volume of water purged from well prior to sampling; V = pi X r2 X h X 7.48 gal./ft3) X 3 (wellbores). (i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

Ideally a minimum of three (3) wellbore volumes:

2.00 " well diameter = 0.49 gallons per foot of water.

Comments or note well diameter if not standard 2 ".

Excellent recovery in all MW's except MW #2 - fair / poor. Collected BTEX & major anions / cations from all MW's.

Survey conducted on 6/14/06. Top of casings : MW # 1R ~ 2.60 ft., # 2 ~ 1.90 ft., # 4 ~ 2.00 ft., # 5 ~ 1.60 ft., # 6 ~ 2.00 ft., # 7 ~ 2.60 ft., #8~2.30 ft., #9~1.90 ft. above grade.

CLIENT: Project:	Blagg Engineering Gooch #1E				La	b Order:	0606315
Lab ID:	0606315-01			C	ollection Date:		
Client Sample I	$\mathbf{D:}  \mathbf{MW} \# \mathbf{1R}$				Matrix:	AQUEOU	JS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	3021B: VOLATILES						Analyst: NSE
Benzene		ND	1.0	ł	ug/L	1	7/7/2006 2:12:33 PM
Toluene		ND	1.0	4	ug/L	1	7/7/2006 2:12:33 PM
Ethylbenzene		ND	1.0	ŀ	ug/L	1	7/7/2006 2:12:33 PM
Xylenes, Total		ND	3.0	ł	ug/L	1	7/7/2006 2:12:33 PM
Surr: 4-Bromo	ofluorobenzene	94.8	72.2-125	c	%REC	1	7/7/2006 2:12:33 PM
Lab ID:	0606315-02			С	ollection Date:	6/27/200	6 9:45:00 AM
Client Sample ]	<b>D</b> : MW#2				Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8021B: VOLATILES						Analyst: NSI
Benzene		NÐ	1.0	I	µg/L	1	7/7/2006 2:41:43 PM
Toluene		ND	1.0	1	µg/L	1	7/7/2006 2:41:43 PM
Ethylbenzene		ND	1.0	1	µg/L	1	7/7/2006 2:41:43 PM
Xylenes, Total		ND	3.0	1	µg/L	1	7/7/2006 2:41:43 PM
Surr: 4-Brome	ofluorobenzene	100	72.2-125		%REC	1	7/7/2006 2:41:43 PM
Lab ID:	0606315-03			C	ollection Date:	6/27/200	6 9:50:00 AM
Client Sample	<b>ID:</b> MW#4				Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8021B: VOLATILES						Analyst: NS
Benzene		ND	1.0		µg/L	1	7/7/2006 3:10:44 PM
Toluene		ND	1.0		µg/L	1	7/7/2006 3:10:44 PM
Ethylbenzene		ND	1.0	I	µg/L	1	7/7/2006 3:10:44 PM
Xylenes, Total		ND	3.0		µg/L	1	7/7/2006 3:10:44 PM
Curri & Prom	ofluorobenzene	95.2	72.2-125		%REC	1	7/7/2006 3:10:44 PM

#### Hall Environmental Analysis Laboratory, Inc.

8. a. 2 13

100

S STATES

1. T. T. T. T.

1997 L.B.

S. S. S. S.

「東京」は

and the second

A NOTES

Date: 10-Jul-06

Qualifiers:

- * Value exceeds Maximum Contaminant LevelE Value above quantitation range
- E Value above quantitation rangeJ Analyte detected below quantitation limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

CLIENT: Project:	Blagg Engineering Gooch #1E				La	b Order:	0606315
Lab ID:	0606315-04			C	Collection Date:	6/27/200	6 10:10:00 AM
Client Sample	ID: MW#5				Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8021B: VOLATILES						Analyst: NSI
Benzene		ND	1.0		µg/L	1	7/7/2006 3:39:53 PM
Toluene		ND	1.0		µg/L	1	7/7/2006 3:39:53 PM
Ethylbenzene		ND	1.0		µg/L	1	7/7/2006 3:39:53 PM
Xylenes, Total		ND	3.0		µg/L	1	7/7/2006 3:39:53 PM
Surr: 4-Bron	nofluorobenzene	92.4	72.2-125		%REC	1	7/7/2006 3:39:53 PM
Lab ID:	0606315-05			(	Collection Date:	6/27/200	6 10:20:00 AM
Client Sample	e ID: MW#6				Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8021B: VOLATILES						Analyst: NS
Benzene		ND	1.0		µg/L	1	7/7/2006 4.08:52 PM
Toluene		ND	1.0		µg/L	1	7/7/2006 4:08:52 PM
Ethylbenzene		ND	1.0		µg/L	1	7/7/2006 4:08:52 PM
Xylenes, Total		ND	3.0		µg/L	1	7/7/2006 4:08:52 PM
Surr: 4-Bron	nofluorobenzene	98.2	72.2-125		%REC	1	7/7/2006 4:08:52 PM
Lab ID:	0606315-06	·····	<u>.</u>	(	Collection Date:	6/27/200	6 10:35:00 AM
Client Sample	e <b>D:</b> MW#7				Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8021B: VOLATILES						Analyst: NS
Benzene		ND	1.0		µg/L	1	7/7/2006 4:38:04 PM
Toluene		ND	1.0		µg/L	1	7/7/2006 4:38:04 PM
Ethylbenzene		ND	<b>1</b> .0		µg/L	1	7/7/2006 4:38:04 PM
Xylenes, Total	1	ND	3.0		µg/L	1	7/7/2006 4:38:04 PM
Current A Dana a	nofluorobenzene	92.3	72.2-125		%REC	1	7/7/2006 4:38:04 PM

#### Hall Environmental Analysis Laboratory, Inc.

a allo and

である

States and

and the second

S. 200

South Bar

語の記事

The second

S. Leve

Date: 10-Jul-06

Qualifiers: * Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

CLIENT: Project:	Blagg Engineering Gooch #1E				Lab Order:	0606315
Lab ID:	0606315-07			Collection D	ate: 6/27/200	6 10:45:00 AM
Client Sample I	<b>D:</b> MW#8			Mat	rix: AQUEO	US
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8	021B: VOLATILES					Analyst: NSE
Benzene		ND	1.0	µg/L	1	7/7/2006 5:07:14 PM
Toluene		ND	1.0	µg/L	1	7/7/2006 5:07:14 PM
Ethylbenzene		ND	1.0	µg/L	1	7/7/2006 5:07:14 PM
Xylenes, Total		ND	3.0	µg/L	1	7/7/2006 5:07:14 PM
Surr: 4-Bromo	fluorobenzene	94.5	72.2-125	%REC	1	7/7/2006 5:07:14 PM
Lab D:	0606315-08			Collection D	ate: 6/27/200	06 10:55:00 AM
Client Sample I	<b>D:</b> MW#9			Mat	rix: AQUEO	US
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8	3021B: VOLATILES					Analyst: NSI
Benzene		ND	1.0	μg/L	1	7/7/2006 7:03:37 PM
Toluene		ND	1.0	µg/L	1	7/7/2006 7:03:37 PM
Ethylbenzene		ND	1.0	µg/L	1	7/7/2006 7:03:37 PM
Xylenes, Total		ND	3.0	µg/L	1	7/7/2006 7:03:37 PM

Sec. No.

開設で

L. R. W.

1.20

and the

「「「「

1993 B

1.5

Qualifiers:

Value exceeds Maximum Contaminant Level *

- Е Value above quantitation range
- Analyte detected below quantitation limits J
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

# ENVIROTECH LABS

hered for

単語の

S. S. Salar

13 B.

16.22.0

K

al and

10.282.02

1000

#### **CATION / ANION ANALYSIS**

Client:	Blagg / BP	Project #:	94034-010
Sample ID:	MW #1R	Date Reported:	06-28-06
Laboratory Number:	37575	Date Sampled:	06-27-06
Chain of Custody:	14637	Date Received:	06-27-06
Sample Matrix:	Water	Date Extracted:	N/A
Preservative:	Cool	Date Analyzed:	06-28-06
Condition:	Cool & Intact		

	Analytical			-
Parameter	Result	Units		
ЪН	7.32	s.u.		
Conductivity @ 25º C	9,500	umhos/cm		
Total Dissolved Solids @ 180C	6,000	mg/L		
Fotal Dissolved Solids (Calc)	6,050	mg/L		
SAR	30.1	ratio		
Total Alkalinity as CaCO3	652	mg/L		
Total Hardness as CaCO3	628	mg/L		
Bicarbonate as HCO3	652	mg/L	10.69	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	<0.01	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.01	mg/L	0.00	meq/L
Chloride	126	mg/L	3.55	meq/L
Fluoride	1.50	mg/L	0.08	meq/L
Phosphate	<0.01	mg/L	0.00	meq/L
Sulfate	3,540	mg/L	73.70	meq/L
Iron	0.738	mg/L	0.03	meq/L
Calcium	242	mg/L	12.08	meq/L
Magnesium	5.60	mg/L	0.46	meq/L
Potassium	10.6	mg/L	0.27	meq/L
Sodium	1,730	mg/L	75.26	meq/L
Cations			88.06	meq/L
Anions			88.02	meq/L
Cation/Anion Difference			0.05%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Gooch #1E Grab Sample.

Analyst

Review Review



and the

7.67

3420 L

Sec. Car

10.2

17. A.S.

2.11.22

and the second

4.2 × 2.4

#### **CATION / ANION ANALYSIS**

Client:	Blagg / BP	Project #:	94034-010
Sample ID:	MW #2	Date Reported:	06-28-06
Laboratory Number:	37576	Date Sampled:	06-27-06
Chain of Custody:	14637	Date Received:	06-27-06
Sample Matrix:	Water	Date Extracted:	N/A
Preservative:	Cool	Date Analyzed:	06-28-06
Condition:	Cool & Intact		

<b>D</b>	Analytical	11		
Parameter	Result	Units		
рН	7.52	s.u.		
Conductivity @ 25° C	9,150	umhos/cm		
Total Dissolved Solids @ 180C	5,870	mg/L		
Total Dissolved Solids (Calc)	5,830	mg/L		
SAR	29.2	ratio		
Total Alkalinity as CaCO3	808	mg/L		
Total Hardness as CaCO3	592	mg/L		
Bicarbonate as HCO3	808	mg/L	13.24	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	<0.01	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.01	mg/L	0.00	meq/L
Chloride	101	mg/L	2.85	meq/L
Fluoride	1.52	mg/L	0.08	meq/L
Phosphate	0.58	mg/L	0.02	meq/L
Sulfate	3,300	mg/L	68.71	meq/L
Iron	0.020	mg/L	0.00	meq/L
Calcium	218	mg/L	10.88	meq/L
Magnesium	11.2	mg/L	0.92	meq/L
Potassium	80.8	mg/L	2.07	meq/L
Sodium	1,630	mg/L	70.91	meq/L
Cations			84.77	meq/L
Anions			84.90	meq/L
Cation/Anion Difference			0.15%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Gooch #1E Grab Sample.

Analyst

Mister Marten Review



-975-

di Tra

3. <del>1</del>1. 3

2.65.2

お理論

State of

20.02

13. C. L

の理想で

18. C. 133

1.0

19 A

#### **CATION / ANION ANALYSIS**

Client:	Blagg / BP	Project #:	94034-010
Sample ID:	MW #4	Date Reported:	06-28-06
Laboratory Number:	37577	Date Sampled:	06-27-06
Chain of Custody:	14637	Date Received:	06-27-06
Sample Matrix:	Water	Date Extracted:	N/A
Preservative:	Cool	Date Analyzed:	06-28-06
Condition:	Cool & Intact		

	Analytical			
Parameter	Result	Units		
рН	7.45	s.u.		
Conductivity @ 25° C	9,530	umhos/cm		
Total Dissolved Solids @ 180C	6,130	mg/L		
Total Dissolved Solids (Calc)	6,070	mg/L		
SAR	29.4	ratio		
Total Alkalinity as CaCO3	398	mg/L		
Total Hardness as CaCO3	612	mg/L		
Bicarbonate as HCO3	398	mg/L	6.52	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	<0.01	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.01	mg/L	0.00	meq/L
Chloride	31.4	mg/L	0.89	meq/L
Fluoride	1.89	mg/L	0.10	meq/L
Phosphate	<0.01	mg/L	0.00	meq/L
Sulfate	3,810	mg/L	79.32	meq/L
Iron	0.655	mg/L	0.02	meq/L
Calcium	223	mg/L	11.13	meq/L
Magnesium	13.2	mg/L	1.09	meq/L
Potassium	75.8	mg/L	1.94	meq/L
Sodium	1,670	mg/L	72.65	meq/L
Cations			86.80	meq/L
Anions			86.83	meq/L
Cation/Anion Difference			0.04%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Analyst 

<u>A Mistine Multers</u> Review

# ENVIROTECH LABS

1. A. S.

61.3m

追称

and the second

No. of Case

a and

1.00

#### **CATION / ANION ANALYSIS**

Client:	Blagg / BP	Project #:	94034-010
Sample ID:	MW #5	Date Reported:	06-28-06
Laboratory Number:	37578	Date Sampled:	06-27-06
Chain of Custody:	14637	Date Received:	06-27-06
Sample Matrix:	Water	Date Extracted:	N/A
Preservative:	Cool	Date Analyzed:	06-28-06
Condition:	Cool & Intact		

	Analytical			
Parameter	Result	Units		
рΗ	7.57	s.u.		
Conductivity @ 25° C	9,950	umhos/cm		
Total Dissolved Solids @ 180C	6,250	mg/L		
Fotal Dissolved Solids (Calc)	6,340	mg/L		
SAR	30.8	ratio		
Total Alkalinity as CaCO3	376	mg/L		
Total Hardness a <del>s</del> CaCO3	626	mg/L		
Bicarbonate as HCO3	376	mg/L	6.16	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	<0.01	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.01	mg/L	0.00	meq/L
Chloride	30.5	mg/L	0.86	meq/L
Fluoride	1.17	mg/L	0.06	meq/L
Phosphate	<0.01	mg/L	0.00	meq/L
Sulfate	4,020	mg/L	83.70	meg/L
Iron	0.823	mg/L	0.03	meq/L
Calcium	216	mg/L	10.78	meq/L
Magnesium	20.7	mg/L	1.70	meq/L
Potassium	50.0	mg/L	1.28	meq/L
Sodium	1,770	mg/L	77.00	meq/L
Cations			90.76	meq/L
Anions			90.78	meq/L
Cation/Anion Difference			0.03%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

1. T. J. J. Analyst

histine m Waltes Review



17. T. T. T. T.

The second

THE REAL

See .

1000

100.0

202.20

Star Street

1. A. A. A.

#### **CATION / ANION ANALYSIS**

Client:	Blagg / BP	Project #:	94034-010
Sample ID:	MW #6	Date Reported:	06-28-06
Laboratory Number:	37579	Date Sampled:	06-27-06
Chain of Custody:	14637	Date Received:	06-27-06
Sample Matrix:	Water	Date Extracted:	N/A
Preservative:	Cool	Date Analyzed:	06-28-06
Condition:	Cool & Intact		

	Analytical			
Parameter	Result	Units		
pH	7.41	s.u.		
Conductivity @ 25° C	8,230	umhos/cm		
Total Dissolved Solids @ 180C	5,170	mg/L		
Fotal Dissolved Solids (Calc)	5,240	mg/L		
SAR	21.6	ratio		
Fotal Alkalinity as CaCO3	556	mg/L		
Fotal Hardness as CaCO3	787	mg/L		
Bicarbonate as HCO3	556	mg/L	9.11	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	<0.01	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.01	mg/L	0.00	meq/L
Chloride	83.3	mg/L	2.35	meq/L
Fluoride	1.10	mg/L	0.06	meq/L
Phosphate	<0.01	mg/L	0.00	meq/L
Sulfate	3,120	mg/L	64.96	meq/L
Iron	0.578	mg/L	0.02	meq/L
Calcium	267	mg/L	13.32	meq/L
Magnesium	28.6	mg/L	2.35	meq/L
Potassium	16.7	mg/L	0.43	meq/L
Sodium	1,390	mg/L	60.47	meq/L
Cations			76.57	meq/L
Anions			76.48	meq/L
Cation/Anion Difference			0.12%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Section 2. Analyst 

1 Mistime Mulalles_ Review



ALC: NO

and the second

200.000

and the

10.00

の記書

では

100

1. S. C. C.

#### **CATION / ANION ANALYSIS**

Client:	Blagg / BP	Project #:	94034-010
Sample ID:	MW #7	Date Reported:	06-28-06
Laboratory Number:	37580	Date Sampled:	06-27-06
Chain of Custody:	14637	Date Received:	06-27-06
Sample Matrix:	Water	Date Extracted:	N/A
Preservative:	Cool	Date Analyzed:	06-28-06
Condition:	Cool & Intact		

~~~~~~	Analytical			
Parameter	Result	Units		
рН	7.62	s.u.		
Conductivity @ 25° C	9,550	umhos/cm		
Total Dissolved Solids @ 180C	6,020	mg/L		
Total Dissolved Solids (Calc)	6,080	mg/L		
SAR	25.5	ratio		
Total Alkalinity as CaCO3	390	mg/L		
Total Hardness as CaCO3	768	mg/L		
Bicarbonate as HCO3	390	mg/L	6.39	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	0.07	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.01	mg/L	0.00	meq/L
Chloride	38.9	mg/L	1.10	meq/L
Fluoride	1.40	mg/L	0.07	meq/L
Phosphate	<0.01	mg/L	0.00	meq/L
Sulfate	3,830	mg/L	79.74	meq/L
Iron	0.007	mg/L	0.00	meq/L
Calcium	259	mg/L	12.92	meq/L
Magnesium	28.9	mg/L	2.38	meq/L
Potassium	65.1	mg/L	1.67	meq/L
Sodium	1,620	mg/L	70.47	meq/L
Cations			87.44	meq/L
Anions			87.30	meq/L
Cation/Anion Difference			0.15%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: Gooch #1E Grab Sample.

Analyst

Review Walter

a la sur

22. M.

a star a

1000

1.25

ALC AND A

STATE OF

Str.F.

で記録

CATION / ANION ANALYSIS

Client:	Blagg / BP	Project #:	94034-010
Sample ID:	MW #8	Date Reported:	06-28-06
Laboratory Number:	37581	Date Sampled:	06-27-06
Chain of Custody:	14637	Date Received:	06-27-06
Sample Matrix:	Water	Date Extracted:	N/A
Preservative:	Cool	Date Analyzed:	06-28-06
Condition:	Cool & Intact		

	Analytical			
Parameter	Result	Units		
рН	7.40	s.u.		
Conductivity @ 25° C	9,920	umhos/cm		
Total Dissolved Solids @ 180C	6,400	mg/L		
Total Dissolved Solids (Calc)	6,320	mg/L		
SAR	24.3	ratio		
Total Alkalinity as CaCO3	404	mg/L		
Total Hardness as CaCO3	866	mg/L		
Bicarbonate as HCO3	404	mg/L	6.62	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	<0.01	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.01	mg/L	0.00	meq/L
Chloride	38.4	mg/L	1.08	meq/L
Fluoride	1.68	mg/L	0.09	meq/L
Phosphate	<0.01	mg/L	0.00	meq/L
Sulfate	3,990	mg/L	83.07	meq/L
Iron	0.402	mg/L	0.01	meq/L
Calcium	279	mg/L	13.92	meq/L
Magnesium	40.6	mg/L	3.34	meq/L
Potassium	89.8	mg/L	2.30	meq/L
Sodium	1,640	mg/L	71.34	meq/L
Cations			90.90	meq/L
Anions			90.87	meq/L
Cation/Anion Difference			0.04%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Analyst

Mistury Walter Review

Sales of the second second

12.00

Same a

3. ABA

States.

25.002.2

いたが

10. 10 h

1000

調問

3000

た。語

CATION / ANION ANALYSIS

Client:	Blagg / BP	Project #:	94034-010
Sample ID:	MW #9	Date Reported:	06-28 - 06
Laboratory Number:	37582	Date Sampled:	06-27-06
Chain of Custody:	14637	Date Received:	06-27-06
Sample Matrix:	Water	Date Extracted:	N/A
Preservative:	Cool	Date Analyzed:	06-28-06
Condition:	Cool & Intact		

	Analytical			
Parameter	Result	Units		
рН	7.63	s.u.		
Conductivity @ 25° C	10,010	umhos/cm		
Total Dissolved Solids @ 180C	6,390	mg/L		
Total Dissolved Solids (Calc)	6,380	mg/L		
SAR	53.5	ratio		
Total Alkalinity as CaCO3	374	mg/L		
Total Hardness as CaCO3	248	mg/L		
Bicarbonate as HCO3	374	mg/L	6.13	meq/L
Carbonate as CO3	<0.1	mg/L	0.00	meq/L
Hydroxide as OH	<0.1	mg/L	0.00	meq/L
Nitrate Nitrogen	<0.01	mg/L	0.00	meq/L
Nitrite Nitrogen	<0.01	mg/L	0.00	meq/L
Chloride	27.7	mg/L	0.78	meq/L
Fluoride	1.81	mg/L	0.10	meq/L
Phosphate	<0.01	mg/L	0.00	meq/L
Sulfate	4,030	mg/L	83.90	meq/L
Iron	0.825	mg/L	0.03	meq/L
Calcium	73.1	mg/L	3.65	meq/L
Magnesium	15.6	mg/L	1.28	meq/L
Potassium	73.8	mg/L	1.89	meq/L
Sodium	1,930	mg/L	83.96	meq/L
Cations			90.77	meq/L
Anions			90.91	meq/L
Cation/Anion Difference			0.15%	

Reference: U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983. Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Analyst

Anotine Marin Review

	.u y				(V or V)	əcedsp	sor Hea	səldduð	ліА													
		70				<u> </u>																
1.000	° ¤≺	zalca o 7 103 Fax 505.345.4107 al.com											-									
	HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D	Aibuquerque, New Wextur of 103 Tel. 505.345.3975 Fax 505.34 www.hallenvironmental.com	5	n.t			(AOV-ir	n92) 07	85	_												
	ABON Suite	intexict 5 Fax ental.c)V) 808														
	IS IS IS Na IS Na IS Na	r, New 5.3975 ironme) ,7) eno 81 Pest		_												
	HALL ENVIRONME ANALYSIS LABOR 4901 Hawkins NE, Suite D	Albuquerque, New INEXICU o Tel. 505.345.3975 Fax 50 www.hallenvironmental.com	YSIS				sleta	aM 8 AF	เวย	1												
	HAL AN 1901 2010	Tel. 51 Www.						10 (BNt) 														
17. F.		- No. 2						htəM) E		+					-							
				<u>.</u>	(ləsəiQ			- 														
					nO enilos																Remarks:	
				<u> </u>	8 1208)	s'8MT	+ 381 T	₩+(X		. ~	2	>	>	δ	$\overline{2}$	\geq	<u> </u>					
学校で			r	34				HEAL No.	060631				N I)							0009	
		• •							Dec											(17-0	
100 M	QA / QC Package:	# H			- - 			Preservative	ا0 ₃ دول	>			\geq	/	\geq	7			 			ct/re)
	QA/QC Std 🗖	FO			\searrow	NN	ire:	Preser	HgCl ₂ HNO ₃ 60 ⁵	<u> </u>	>	>	\mathbf{i}	$\overline{\ }$	>	>				00	W. Bigha	By: (Sign ¢ tv i
1	Other:	Name: GOO	#		Project Manager:	Ŀ	Sample Temperature:	Numben/Volume	101	2-40ml	40ml	40ml	40m	2-40m/	2-40 ml	2-40m/					Reference	Received By: (
The second s	Ot	Project Name:	Project #:		Project	Sampler:	Sample	Numbe	1	i n	y 4	on on	6	л М	'n	2-6			 			
	0KD	14						O. No.	R													_
	AEC /	BP AMERICA		87413				Sample I.D. No.	AL HIN	0 # (N)	41		#6	(#)	1 # 8	×#9					Relinguisted By: (Signature)	Relinquished By: (Signature)
			1	-		66	-		8		MM	MUN	MW	(UN)	MM	NW					1 By (ad By: (9
	UST	NER	XUX				-	Matrix	0	unter .	NHK	WATER	WRITER MW	NETRU	RER	NATER					elingursh	elinquishe
	CHAIN-OF-CUSTODY RECORD	Client: BLAGG ENCR.	P.O.) (Twe	_	1 1	27/060 950 WATE	NO/0	10201	106 1035 4	1045 WHIER	255 h					2	
	HAIN	It: BLA	Address:	6		Phone #:	:#	Date		- 101	7/0%0	1 20/22	21/20/12	1 90/0	1 20/52/0	6/27/055					8	e: Time:
	8	Clier	Add			Pho	Fax #:							1/2	6/2-	6/2					Date:	Dat

62266/		Project Location				
	BP	GOOCH	エオガ		ANALYOIS / PARAMETERS	
Sampler:		Client No. クイロ34	010 - 1	ainers Andres Andres	No.	Remarks
Sample No./ Identification	Sample Sample Date Time	Lab Number	Sample Matrix	tuoO	6/1B	B SAMPLES
1920 #1K	6/27/05 1110	37575	WATER	· > /		
K # MW	6/27/06 0945		WATER			
NW # Y	6/22/08 0950	37577	WATER	~		
MW #5	6/27/06 1010		LARK			
MW # C	02 0/ 90/ L2/S	0	NATE C	>		
MW # 7	6/22/49/035	•••	UATRC	>		
MW # 8	5/27/09 20 43		WATER			
6#104	5/2/6/ 1055	37582	water-			
Relinquished by: (Signature)	tature)		Date, Time 1 6/27/06/357	Received by (Signature)	New L	Date Time $\frac{\zeta}{\zeta/27/\delta_{bb}}$ 135
Relinquished by: (Signature)	lature)			Received by: (Signature)		
Relinquished by: (Signature)	lature)			Received by: (Signature)		
			ENVIROTEC	ECH INC.	San	Sample Receipt
				「「「「「」」」、「「」」、「」」、「」、「」、「」、「」、「」、「」、「」、」、「」、」、「」、」、「」、」、		Y N N/A
			5796 U.S. Farmington Ne	5796 U.S. Highway 64 Farmington New Mexico 87401	Received Intact	tact
			(505) 6	(505) 632-0615	Cool - Ice/Blue Ice	le Ice

QA/QC SUMMARY REPORT

ent:	Blagg Engineering
ent: bject:	Gooch #1E

S. Back

STATES OF

130 AN

and the second

201-22

1.490.2

A. C. Star

1000

調信に開

の読みた

bject: Gooch #1E							Work	Order: 0606315
Analyte	Result	Units	PQL	%Rec	LowLimit H	lighLimit	%RPD RPI	DLimit Qual
lethod: SW8021								
ample ID: 5ML RB Inzene oluene		MBLK			Batch ID	: R19830	Analysis Date:	7/7/2006 7:40:50 AM
zene	ND	µg/L	1.0					
oluene	ND	µg/L	1.0					
thylbenzene	ND	µg/L	1.0					
enes, Total	ND	µg/L	3.0					
nple ID: 100NG BTEX LCS		LCS			Batch ID	: R19830	Analysis Date:	7/7/2006 11:10:13 AM
enzene	19.19	µg/L	1.0	95.9	85	115		
uene Sylbenzene	19.10	µg/L	1.0	93.5	85	118		
ylbenzene	19.32	µg/L	1.0	96.6	85	116		
Jylenes, Total	59.98	µg/L	3.0	97.4	85	119		

Qualifiers:

Value above quantitation range

Analyte detected below quantitation limits

RPD outside accepted recovery limits

- н Holding times for preparation or analysis exceeded ND
- Not Detected at the Reporting Limit S Spike Recovery outside accepted recovery limits

Page 1

1400

1. A. S.

		Sample	Rece	eipt Ch	ecklist				
3	Client Name BLAGG				Date and Time	Received:		6/2	28/2006
	Work Order Number 0606315	1 1 1	_		Received by	GLS			
E. S.	Checklist completed by Signature	Alip.	le	Date	0-28-(X			
	Matrix	Carrier name	<u>Grey</u>	hound					
	Shipping container/cooler in good condition?		Yes		No	Not Present			
1	Custody seals intact on shipping container/coole	er?	Yes		No 🗔	Not Present		Not Shipped	
	Custody seals intact on sample bottles?		Yes		No 🗔	N/A	\checkmark		
	Chain of custody present?		Yes		No 🗌				
1. 2. B. 10	Chain of custody signed when relinquished and	received?	Yes	\checkmark	No 🗔				
	Chain of custody agrees with sample labels?		Yes		No 🗌				
11.5 C	Samples in proper container/bottle?		Yes		No 🗌				
44 844	Sample containers intact?		Yes		No 🗌				
in the second se	Sufficient sample volume for indicated test?		Yes		No 🗌				
	All samples received within holding time?		Yes	\checkmark	No 🗌				
	Water - VOA vials have zero headspace?	No VOA vials sub	mitted		Yes 🗹	No 🗍			
	Water - pH acceptable upon receipt?		Yes		No 🗌	N/A 🔽			
8 .	Container/Temp Blank temperature?			1°	$4^{\circ}C \pm 2$ Accepta				
	COMMENTS:							-	
N.W.Z			. •						
語語で									
	Client contacted	Date contacted:			Pers	on contacted			
	Contacted by:	Regarding							
1. A. A.	Comments:								
24. A. 10									
R. See	Corrective Action			/					
A.323									

BLAGG ENGINEERING. INC.

MONITOR WELL DEVELOPMENT & / OR SAMPLING DATA

CLIENT : BP AMERICA PROD. CO.

CHAIN-OF-CUSTODY # : N / A

GOOCH #1E - MULTIPLE PITS UNIT F, SEC. 20, T28N, R8W

LABORATORY (S) USED : HALL ENVIRONMENTAL

Date : August 29, 2006

Filename : 08-29-06.WK4

1987. 1987.

10.00

7. B. H

6. <u>T</u>ent

20.00

ang Bran

300 a. .

3 E. 3 .

1997

PROJECT MANAGER : N J V

	3.7	1
•	Ν	
	1.4	- 3

SAMPLER : NJV

WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	pН	CONDUCT	TEMP.	VOLUME
#	ELEV.	ELEV.	WATER	DEPTH	TIME		(umhos)	(celcius)	PURGED
	(ft)	(ft)	(ft)	(ft)					(gal.)
MW - 1R	101.58	89.93	11.65	19.85	1535	7.16	4,500	20.9	4.00
MW - 2	100.06	89.76	10.30	15.00	1450	7.25	4,600	22.4	1.25
MW - 4	102.89	89.74	13.15	20.00	1405	7.21	4,600	21.8	3.50
MW - 5	101.46	89.62	11.84	20.00	1315	7.22	4,800	22.1	4.00
MW - 6	101.02	89.44	11.58	20.00	1240	7.31	4,300	22.7	4.25
MW - 7	99.77	89.40	10.37	20.00	1155	7.28	4,700	21.4	4.75
MW - 8	101.48	89.69	11.79	20.00	1110	7.06	4,800	21.7	4.00
MW - 9	101.51	89.91	11.60	20.00	1020	7.26	4,600	21.7	4.25
			INSTRUM	ENT CALIE	BRATIONS =	7.00	2,800		
				DAT	E & TIME =	08/29/06	1000		

NOTES: Volume of water purged from well prior to sampling; V = pi X r2 X h X 7.48 gal./ft3) X 3 (wellbores). (i.e. 2" MW r = (1/12) ft. h = 1 ft.) (i.e. 4" MW r = (2/12) ft. h = 1 ft.)

Ideally a minimum of three (3) wellbore volumes:

2.00" well diameter = 0.49 gallons per foot of water.

Comments or note well diameter if not standard 2".

Excellent recovery in all MW's except MW #2 - fair/poor. Collected BTEX samples from all MW's.

Top of casings : MW # 1R ~ 2.60 ft., # 2 ~ 1.90 ft., # 4 ~ 2.00 ft., # 5 ~ 1.60 ft., # 6 ~ 2.00 ft., # 7 ~ 2.60 ft., #8~2.30 ft., #9~1.90 ft. above grade.

CLIENT: Project: 	Blagg Engineering Gooch #1E				La	b Order:	0608354
Lab ID:	0608354-01			C	ollection Date:	8/29/200	6 3:35:00 PM
Client Sample ID	: MW #1R				Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 80	21B: VOLATILES						Analyst: NSB
Benzene		ND	1.0	ŀ	ug/L	1	9/6/2006 6:54:20 PM
Toluene		ND	1.0	ł	µg/L	1	9/6/2006 6:54:20 PM
Ethylbenzene		ND	1.0	1	µg/L	1	9/6/2006 6:54:20 PM
Xylenes, Total		ND	3.0	ţ	hð\r	1	9/6/2006 6:54:20 PM
Surr: 4-Bromoflu	Jorobenzene	92.8	72.2-125	c	%REC	1	9/6/2006 6:54:20 PM
Lab ID:	0608354-02			C	ollection Date:	8/29/200	6 2:50:00 PM
Client Sample ID	: MW #2	*			Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 80	21B: VOLATILES						Analyst: NSE
Benzene		ND	- 1.0	1	µg/L	1	9/6/2006 7:23:13 PM
Toluene		ND	1.0	1	µg/L	1	9/6/2006 7:23:13 PM
Ethylbenzene		ND	1.0		hð\r	1	9/6/2006 7:23:13 PM
Xylenes, Total		ND	3.0	I	µg/L	1	9/6/2006 7:23:13 PM
Surr: 4-Bromofle	uorobenzene	94.7	72.2-125	1	%REC	1	9/6/2006 7:23:13 PM
Lab ID:	0608354-03			C	ollection Date:	8/29/200	6 2:05:00 PM
Client Sample IE	: MW #4				Matrix:	AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 80	21B: VOLATILES		· .				Analyst: NSE
Benzene		ND	1.0		µg/L	1	9/6/2006 7:52:17 PM
Toluene		ND	1.0		µg/L	1	9/6/2006 7:52:17 PM
Ethylbenzene		ND	1.0		µg/Ľ	1	9/6/2006 7:52:17 PM
Xylenes, Total		ND	3.0		hð\r	1	9/6/2006 7:52:17 PM
Surr: 4-Bromofl	uorobenzene	96.5	72.2-125		%REC	1	9/6/2006 7:52:17 PM

1 . A . . .

1000

Date: 07-Sep-06

Qualifiers:

9 . Po

*

Value exceeds Maximum Contaminant Level

Ε Value above quantitation range

J Analyte detected below quantitation limits S

- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank

В Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 1 of 3

	Blagg Engineering Gooch #1E				Lab Or	der:	0608354
Lab ID:	0608354-04			Collec	tion Date: 8/29	/2006	1:15:00 PM
Client Sample ID	: MW #5				Matrix: AQU	JEOU	S
Analyses		Result	PQL	Qual Units	5 DF		Date Analyzed
EPA METHOD 802	21B: VOLATILES						Analyst: NSE
Benzene		ND	1.0	μg/L	1	ę	9/6/2006 8:21:16 PM
Toluene		ND	1.0	μg/L	1	9	9/6/2006 8:21:16 PM
Ethylbenzene		ND	1.0	µg/L	1	9	9/6/2006 8:21:16 PM
Xylenes, Total		ND	3.0	µg/L	1	9	9/6/2006 8:21:16 PM
Surr: 4-Bromoflu	orobenzene	98.5	72.2-125	%REC	C 1	9	9/6/2006 8:21:16 PM
Lab ID:	0608354-05	<u></u>		Collec	tion Date: 8/29	0/200.6	12:40:00 PM
Client Sample ID					Matrix: AQ	UEOU	IS
Analyses		Result	PQL	Qual Units	5 DF		Date Analyzed
EPA METHOD 80							Analyst: NSE
Benzene		ND	1.0	μg/L	1	1	9/6/2006 8:50:13 PM
Toluene		ND	1.0	µg/L	1	:	9/6/2006 8:50:13 PM
Ethylbenzene	•	. ND	1.0	µg/L	1		9/6/2006 8:50:13 PM
Xylenes, Total		ND	3.0	µg/L	1		9/6/2006 8:50:13 PM
Surr: 4-Bromoflu	uorobenzene	96.1	72.2-125	%RE	C 1		9/6/2006 8:50:13 PM
Lab ID:	0608354-06	<u></u>		Collec	tion Date: 8/29	9/2006	11:55:00 AM
Client Sample ID	: MW #7				Matrix: AQ	UEOU	JS
Analyses		Result	PQL	Qual Unit	s DF	• • • • • • • • • • • • • •	Date Analyzed
EPA METHOD 80	21B: VOLATILES						Analyst: NSE
Benzene		ND	1.0	µg/L	1		9/6/2006 9:19:12 PM
Toluene		ND	1.0	µg/L	1		9/6/2006 9:19:12 PM
Ethylbenzene		ND	1.0	µg/L	1		9/6/2006 9:19:12 PM
Xylenes, Total		ND	3.0	µg/L	1		9/6/2006 9:19:12 PM
Surr: 4-Bromofle	uorobenzene	9 5.5	72.2-125	%RE	C 1		9/6/2006 9:19:12 PM

語を

a series

- * Value exceeds Maximum Contaminant Level
 - E Value above quantitation range
 - J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

S. The Land

いい

ある湯

調整

語い言語

	Blagg Engineering Gooch #1E]	Lab Order:	0608354
Lab ID:	. 0608354-07				Collection Dat	e: 8/29/200	6 11:10:00 AM
Client Sample ID:	MW #8				Matri	x: AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 802	1B: VOLATILES						Analyst: NS
Benzene	,	ND	1.0		µg/L	1	9/7/2006 1:12:38 AM
Toluene		ND	1.0		µg/L	1	9/7/2006 1:12:38 AM
Ethylbenzene		ND	1.0		µg/L	1	9/7/2006 1:12:38 AM
Xylenes, Total		ND	. 3.0		µg/L	1	9/7/2006 1:12:38 AM
Surr: 4-Bromoflu	probenzene	93.2	72.2-125		%REC	1	9/7/2006 1:12:38 AM
Lab ID:	0608354-08			(Collection Dat	e: 8/29/200	6 10:20:00 AM
Client Sample ID:	MW #9				Matri	x: AQUEO	US
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed

EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	μg/L	1	9/7/2006 1:41:38 AM
Toluene	ND	1.0	µg/L	1	9/7/2006 1:41:38 AM
Ethylbenzene	ND	1.0	µg/L	1	9/7/2006 1:41:38 AM
Xylenes, Total	ND	3.0	µg/L	1	9/7/2006 1:41:38 AM
Surr: 4-Bromofluorobenzene	98.6	72.2-125	%REC	1	9/7/2006 1:41:38 AM

Qualifiers:

*

, v

Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

S

Spike Recovery outside accepted recovery limits

В Analyte detected in the associated Method Blank

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Page 3 of 3

QA/QC SUMMARY REPORT

Client:

S. C. C. C.

4.0

1. 202 - 10

Blagg Engineering

Project: Gooch #1E							Worl	k Order: 0608354
Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RF	PDLimit Qual
Method: SW8021								
Sample ID: 5ML REAGENT BLA		MBLK			Batch IE	D: R20581	Analysis Date:	9/6/2006 11:07:46 AM
Benzene	ND	µg/L	1.0					
Toluene	ND	µg/L	1.0					
Ethylbenzene	ND	µg/L	1.0					
Xylenes, Total	ND	µg/L	3.0					
Sample ID: 100NG BTEX LCS		LCS			Batch I	D: R20581	Analysis Date:	9/6/2006 10:45:52 PM
Benzene	21.00	µg/L	1.0	105	85	115		
Toluene	21.78	µg/L	1.0	109	85	118		
Ethylbenzene	23.42	µg/L	1.0	117	85	116		S
Xylenes, Total	67.49	µg/L	3.0	111	85	119		
Sample ID: 100NG BTEX LCSD		LCSD			Batch II	D: R20581	Analysis Date:	9/6/2006 11:14:40 PM
Benzene	20.84	µg/L	1.0	104	85	115	0.746	27
Toluene	20.71	µg/L	1.0	104	85	118	5.06	19
Ethylbenzene	21.79	µg/L_	1.0	109	85	116	7.20	10
Xylenes, Total	64.96	µg/L	3.0	107	85	119	3.83	13

inter E

 $|\mathbf{f}_{i}| \geq \frac{1}{2}$

E Value above quantitation range

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

S

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - $\hat{4}$ / $5^{\text{Recovery outside accepted recovery limits}}$

•

24° 7 - 7

5.1

с. В 8-

3 12 12

2. - - **6** -

2 (2) 14

ур. 1. 1.

	Sample	Receipt C	Checklist			
Client Name BLAGG			Date and Time	Received:		8/30/2006
Work Order Number 0608354 //	Л Л		Received by	GLS		
Checklist completed by	htpp	Da	8-3006			
	V					
Matrix	Carrier name	Greyhound	<u>t</u>			
Shipping container/cooler in good condition?		Yes 🗹	No 🗔	Not Present		
Custody seals intact on shipping container/cool	er?	Yes 🗹	No 🗔	Not Present	Not Ship	ped
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	N/A		
Chain of custody present?		Yes 🗹	No 🗌			
Chain of custody signed when relinquished and	received?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?		Yes 🗹	No 🗔			
Samples in proper container/bottle?		Yes 🗹	No \Box			
Sample containers intact?		Yes 🗹	No 🗔			
Sufficient sample volume for indicated test?		Yes 🗹	No 🗔			
All samples received within holding time?		Yes 🗹	No 🗔			
Water - VOA vials have zero headspace?	No VOA vials subr	nitted	Yes 🔽	No 🗋]	
Water - pH acceptable upon receipt?		Yes 🗌	No 🗌	N/A 🔽]	
Container/Temp Blank temperature?		3°	4° C ± 2 Accepta			
COMMENTS:						
				· · · · · · · · · · · · · · · · · · ·		
					•	
Client contacted	Date contacted:		Pers	son contacted	·····	
Contacted by:	Regarding					
Comments:						
	· · · · · · · · · · · · · · · · · · ·					
					·····	
Corrective Action						
					··· · · · - ·	
· · · · · · · · · · · · · · · · · · ·						

4

Date: 07-Mar-08

CLIENT:Blagg EngineeringClient Sample ID:LF-1 5pt. CompositeLab Order:0802339Collection Date:2/27/2008 1:05:00 PMProject:Gooch #1E - LandfarmDate Received:2/29/2008Lab ID:0802339-01Matrix:SOIL

Analyses	Result	PQL (Qual Units	DF	Date Analyzed				
EPA METHOD 8015B: DIESEL RAN	GE ORGANICS	· · · · · · · · · · · · · · · · · · ·			Analyst: SCC				
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	3/4/2008 6:43:02 PM				
Surr: DNOP	94.2	61.7-135	%REC	1	3/4/2008 6:43:02 PM				
EPA METHOD 8015B: GASOLINE R	ANGE				Analyst: NSB				
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	3/4/2008 7:21:30 PM				
Surr: BFB	113	84-138	%REC	1	3/4/2008 7:21:30 PM				
EPA METHOD 9056A: ANIONS					Analyst: SLB				
Chloride	ND	1.5	mg/Kg	5	3/3/2008 11:38:22 PM				

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND
 Not Detected at the Reporting Limit

 S
 Spike recovery outside accepted recovery limits

1

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 1 of 2

CLIENT:	Blagg Engineering			Client Sampl	le ID:	LF-2 5pt.	Composite
Lab Order:	0802339			Collection	Date:	2/27/2008	8 1:35:00 PM
Project:	Gooch #1E - Landfarm			Date Rece	ived:	2/29/2008	3
Lab ID:	0802339-02			M	atrix:	SOIL	
Analyses	<u></u>	Result	PQL	Qual Units	, ,	DF	Date Analyzed
EPA METHOD	BO15B: DIESEL RANGE C	RGANICS					Analyst: SCC
Diesel Range O	rganics (DRO)	ND	10	mg/Kg		1	3/4/2008 7:17:45 PM
Surr: DNOP		98.6	61.7-135	%REC		1	3/4/2008 7:17:45 PM
EPA METHOD	8015B: GASOLINE RANG	E					Analyst: NSB
Gasoline Range	Organics (GRO)	ND	5.0	mg/Kg		1	3/4/2008 7:51:46 PM
Surr: BFB		113	84-138	%REC		1	3/4/2008 7:51:46 PM
EPA METHOD	056A: ANIONS						Analyst: SLB
Chloride	,	39	1.5	mg/Kg		5	3/3/2008 11:55:47 PM

Date: 07-Mar-08

Qualifiers:

* Value exceeds Maximum Contaminant Level

E. Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 2 of 2

2

.

aug

200

Real Property

			17.4 (7.4 (7.4 (7.4 (7.4 (7.4 (7.4 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(N JO	Y) 906	dspea	e or He	Jir Bubble	7													h
東京記録	(4 • *			1																				NS1
		4107											·					-						ANALYS/S
	⊐Ar	Fax 505.345.4107 al.com	للمحالي المحالية				 		- 17	(<u>)</u>						- 25 - 2	:	•	, ;	· ·	:			r V
		202. 205.				<u> </u>				24100 (26L	3	┦		<u>~</u>							 :			d.
	HALL ENVIRONMENTAL ANALYSIS LABORATORY 4901 Hawkins NE, Suite D	Tel. 505.345.3975 Fax 50 www.hallenvironmental.com		רב היי היי						N) 80928	_	-				*	<u> </u>				·	•	., .	
		1975 1975 1976								tsag r808					\$.					· .				20
1	VKins Vkins	Tel. 505.345.3975 www.hallenvironmen	42.00			(°OS	'*Od '	°0N ' [£]) ,7) enoin/									<u> </u>					9
	I Hav	nquer 505.3 v.halle								10158 Mi M 8 ARO		\rightarrow	-						<u> </u>					Dol
	AA 490 490	Vivo Vivo	, , , , , , , , , , , , , , , , , , ,			<u> </u>	:		·	ItaM) 00		_		*	;							-		1.1
に言い										IteM) 80	_	-+												70
		, a	1.0.10 H	89 89						Hq (Meth														050
		2 P								PH Metho		>		>										
			1. 2. 18 and		(/ L					M + X = M		_			, ,				–					Remarks:
ā,	. :													14. 14. 14. 14. 14.			e se Siĝ	- 1 - 1		· • •	Ţ		-	Ē
				•	•	• •	a sua monte a conte		1 5.345 4.52	N S	<u>v80207</u>		i matu tuurhutur ariturharit zaga	2 4 - 144	्याप्रदेश भारत्य जनसङ्ख्या थाये हत्य इत्या भारत		n i utbourger 1 Ryslaad No Gott o 1 Set Diebbe up neur	- and the second						
62				2 98 5 1			- WO	가는 점 역 및 ·		HEAL NG.	ğ			7		10. 10. 10.		4 10 4 4 4					-	130
		Ĵ	ちか				· .	5. H \$				• •	 	a, 1	- 1.9-1 - 1.9-1				· · ·	k				50/
	/ OC Package: I tevel 4		₩¥	2 •	* • *		5 5 7 # 1		1.1940 - L	ative				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							1 (K	·.		ture)
	° [×] QA∕ (QC Packáge: Std □ ^{**} ··· Level 4 □	1	F S O		· · ·		> ₫: > {:{	>	5.25.7	heservative HNI			1. 数 笔	12 4		in faither the faither the faither	n an Start	ands a		<u>i</u> i				
	Std □		200E					2	:aun:		2 2 2	· ·		3		,			1. ³ 4		+	•••		Repeived By: (S OWUJO
	· .	i i i i i i i i i i i i i i i i i i i	0			Project Manager:	:		Sample Temperature:	olume		707	1. A	02.										DML BML
in the second se	Other:	Project Name:	0	Project #:		ect Ma		Sampler:	ple Ten	Number/Volume		7		- 4										and
E		11		Го Ц		Du	<u></u>	San	San	Nur		\downarrow		>										
	2	5	İ								1	P		た										
		Amer C)								Sample I.D. No.		APS/1E	- 	2 mposite									ļ	
		Am	•		87413			5		Sample I.I		ng 19		Ĝγ		. - -							- - 	
		db -	•	5	2			99		S.	1		1	H &						ŀ .	\			I By (Sign
							5 - 12 -	- 119				S.	1 1 1 1 1 1 1 1 1 1 1 1 1	R S N		r.		7.	<u> </u>					hed By
	S S S			X08	2			- ^		Matrix		SOL		Sole	日本にとい			- 42 -						Relinquished By. (Signature) Relinquished By. (Signatore)
		Т Т		0			. 	(0) (0)			_			2					· ·			`	\`	
•	CHAIN-OF-CUSTODY RECORD	Client: RAGE ENER.	7	I.	BEF O					Time		1305		1335		and the		ļ	ತ್ರಣ ಬಿಡ್ಡ ಚಿತ್ರ ಕೆಂಗಲ		1. 1. 1. 1. 1. 1. 1. 1. 1.			Time: Time:
				Address:			1. 1. 11.	e #:	+ :	Date	-			12/58		100 C	+ 1.234. T		50 P. 1		· · · ·			No No
		Client	and the second sec	Addre				Phone #:	Fax #:			127		して			4 X . 4 X . 1 14							Date: Date: Date:
		•												•										· • • • •

.....

5

taria.

H

وتود حد

in la

101

1. E.S.

19 A A

1 . 2 . I

Same a

1. A. -

1.00

QA/QC SUMMARY REPORT

Client: Blagg Engir	neering							
Project: Gooch #1E	- Landfarm						Work	Order: 0802339
Analyte	Result	Units	PQL	%Rec	LowLimit Hig	hLimit	%RPD RPI	DLimit Qual
Method: EPA Method 9056A: A	Anions				· · · · · · · · · · · · · · · · · · ·			······································
Sample ID: MB-15268		MBLK			Batch ID:	15268	Analysis Date:	3/3/2008 5:50:12 PM
Chloride	ND	mg/Kg	0.30					
Sample ID: LCS-15268		LCS			Batch ID:	15268	Analysis Date:	3/3/2008 6:07:37 PN
Chloride	14.96	mg/Kg 🕚	0.30	99.7	90 11	0		
Sample ID: MB-15274 Diesel Range Organics (DRO) Sample ID: LCS-15274	ND	MBLK mg/Kg LCS	10		Batch ID: Batch ID:	15274 15274	Analysis Date: Analysis Date:	3/4/2008 8:16:23 AN 3/4/2008 8:51:23 AN
Diesel Range Organics (DRO) Sample ID: LCSD-15274	43.20	mg/Kg LCSD	10	86.4	64.6 11 Batch ID:	15274	Analysis Date:	3/4/2008 9:26:22 AN
Diesel Range Organics (DRO)	43.24	mg/Kg	10	86.5	64.6 11		0.102 17	
Method: EPA Method 8015B: (Gasoline Rar	nge						
Sample ID: MB-15269		MBLK			Batch ID:	15269	Analysis Date:	3/4/2008 10:52:49 PM
Gasoline Range Organics (GRO) Sample ID: LCS-15269	ND	mg/Kg LCS	5.0	·	Batch ID:	15269	Analysis Date:	3/4/2008 9:52:20 PM
Gasoline Range Organics (GRO)	25.89	mg/Kg	5.0	104	69.5 12	20		

Qualifiers:

Е

J

Value above quantitation range

Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Page 1

2

Sam	nple Receipt C	hecklist		
Client Name BLAGG		Date Receiv	red:	2/29/2008
Work Order Number 0802339		Received I	by: TLS	
Checklist completed by: <u>Shown</u>	Date	Sample ID 2908	labels checked by 	Initials
Matrix Carrier na	ame <u>UPS</u>			
Shipping container/cooler in good condition?	Yes 🗹	No	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🗌	Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗹	No 🗀	N/A	
Chain of custody present?	Yes 🗹	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🗹	No 🗔		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗹	Νο		
All samples received within holding time?	Yes 🗹	No 🗌		
Water - VOA vials have zero headspace? No VOA vials	submitted 🗹	Yes 🗌	No 🗔	
Water - Preservation labels on bottle and cap match?	Yes 🗌	No 🗌	N/A 🗹	
Water - pH acceptable upon receipt?	Yes 🗌	No 🗔	N/A 🗹	
Container/Temp Blank temperature?	4°	<6° C Accept		
COMMENTS:		n given sunce	ent time to cool.	
Client contacted Date contacted	: 	Pe	erson contacted	
Contacted by: Regarding				····
Comments:				
			· · · · · · · · · · · · · · · · · · ·	
Corrective Action			· · · · · · · · · · · · · · · · · · ·	

ما کر عدار مر ع

10 . 10 . 10 . 10 .

2 - - - 2V^T

5 10 m

49 - <u>1</u>244

1. And 1.

• •

.