3RP-037

GW monitoring report

DATE: 2004

March 31, 2005

RECEIVE

Certified: 70993400001842167364

RECEIVED

Glen Von Gonten New Mexico Oil Conservation Division APR 06 2005 1220 South St. Francis Drive Oil Conservation Division APR 00 2005 Santa Fe, NM 87505 Environmental Bureau RE: 2004 Annual Groundwater Investigation and Remediation Reports Environmental Bureau

San Juan Basin, New Mexico

Dear Mr. von Gonten:

As required in Burlington Resources approved Groundwater Investigation and Remediation Plan dated August, 1998, enclosed are the 2004 annual reports for Burlington's groundwater impact sites in the San Juan Basin. Separate reports are enclosed for the following locations:

3RP 66	Cozzens B#1
320 69	Hampton #4M
31771	Johnson Federal #4 Metering Station
379173	Flora Vista (ENTER PRISE FIELD SUCCES - FLORADCE VISTA #1
3RP 37	Marcotte Pool Unit #1 (ひちか) 、 ひのーの45-29466
-	Sategna #2 (30-045-07974)

If you have questions or additional information is needed, please contact me at (505) 326-9537.

Sincerely,

reas Min

Gregg Wurtz Sr. Environmental Representative

Attachments - Groundwater Investigation and Remediation Reports

cc: Denny Foust - NMOCD Aztec WFS - Mark Harvey (Cozzens B#1, Hampton #4M) EPFS - Scott Pope (Johnson Fed. #4,) Facility and Correspondence Files

3RP - 37

RECEIVED

BURLINGTON RESOURCES 2004 ANNUAL GROUNDWATCER REPORT

Sategna #2 Oil Conservation Division Environmental Bureau

SITE DETAILS

SEC 21, 29N, 11W

Location: Unit Letter K Section 22, Township 30N, Range 12W; San Juan County, New Mexico Land Type: FEE

Background

The Sategna #2 is a Dakota well that was drilled and completed in 1960. Historic petroleum impacted soils were discovered during berm maintenance and open top water pit tank replacement activities. Approximately 6000 cu yds of contaminated soil were removed and replaced during remediation activities. The potential sources of the contamination include earthen pits operated by Southland Royalty, BR, and PNM/Williams. The extent of contamination and remediation was compounded by a shallow ground water regime.

Hydrology and Geology

The location is located in an OCD designated vulnerable area. The San Jun River channel is located approximately 1/2 mile to the south. The surface is used for farming grass and alfalfa crops. The southern boundary of the landowner's property and the approximate extent of contamination is an irrigation return flow ditch. The landowner reported the ditch was constructed to receive ground water from the upgradient irrigation activities and flow to a small pond within the flood plane of the San Juan River. No flowing water into or along the irrigation ditch was observed at the time of the excavation and concurrent with irrigation. No evidence of ground water contamination was observed in the irrigation ditch south of the excavation.

The geology of the immediate area is silty sand topsoil from the surface to a depth of approximately 3 feet. The subsoil consists of a fine to medium grained clean sand from 4 to 10 feet. The water table was discovered to be shallow at approximately 3.5 to 4 feet below surface. The hydraulic gradient is estimated to be toward the south in a direction toward the river. Actively irrigated fields surround the location to the north and west of the area and extend approximately one mile to the north. The Bloomfield highway is the northern boundary of the landowners property.

The hydrology of the area is directly affected by the irrigation activities of the landowner and the San Juan River regime. The seasonal irrigation activities may have cause fluctuations in the level of the water table in the area of the impacted soils. The irrigation activities have increased the quantity of water flowing in the unconfined water bearing formation that underlies this area. In addition, the proximity of the location to the flood plain of the San Juan River may also cause natural fluctuations in the water table. Moreover, the natural paleo sand channels (i.e., zones of higher hydraulic conductivity) were observed during the excavation work and may have directed

and facilitated movement of water and contamination in the subsurface soils. These fluctuations in the water table and the concentrating effect of buried sand channels increased and controlled the extent and volume of soil impacted.

The only domestic use of ground water is by the landowner. The landowner obtains his potable water supply from two ground water wells on the property. The wells are completed in a lower sandstone aquifer at approximately 90 feet and approximately 0.5 miles upgradient of the petroleum impacted soil discovered. The potential for impacting these wells is considered very unlikely.

Environmental Clean-up

Contamination Discovery

Petroleum impacted soils were discovered on the location during routine berm maintenance activities. In addition, below grade fiberglass drain tank installed in 1992 was replaced with a steel drain tank.

Contamination Investigation

Single backhoe bucket test holes, field monitor testing, and visual staining were used to delineate horizontal and vertical extent of contamination prior to the major excavation activities (Figure 1 Site Map). In addition, current and historical BR lease operators were contacted and a file search was completed to determine possible historic sources including old earthen pits and locations of spills and tanks.

The soil impacts observed during the excavation work were typical of a light phase hydrocarbon release to the water table. The subsoil horizon contamination range of 2 to 6 feet is mostly from the season irrigation impacted fluctuations of the water table causing smearing the soils with the oil suspended on the water table.

Potential Sources of Contamination

Based on well records and operator and landowner knowledge three earthen pits were believed to exist on the location: 1) old Southland Royalty location; 2) current BR fiberglass pit location, and 3) PNM/Williams dehydrator pit. The landowner also reported a history of well problems.

Southland Earth Pit

The Southland Royalty pit location was approximate and minor contamination was identified during excavation activities.

BR Earthen Pit

The BR drain pit was an earthen pit until the fiberglass tank was installed in 1993. The BR fiberglass tank and production condensate tank were visually examined and no obvious structural problems or leaks were observed. The plastic secondary containment liner of the fiberglass tank

and the tank excavation soils displayed evidence of condensate. The excavation activities determined this pit as one of the potential source of contamination.

PNM/Williams Earthen Pit

The historic PNM/Williams dehydrator pit location was identified from operator knowledge. Based on the excavation results the historic PNM/Williams dehydrator pit was a major source of contamination. Williams was contacted but denied they had a pit at this location. The landowner remembered the pit being closed within the last three years. No record of OCD pit closers was found and William's provided two filed forms that documented no pit was on the location. A soil sample was collected from beneath the PNM/Williams location to fingerprint the presence of glycol in the soil in an effort to demonstrate William's responsibility in the remediation. Moreover, Williams was contacted asked to visit the location during excavation work.

Well Head

No contamination was identified near the Sategna #2 well head. The landowner remembered the well might have had problems that caused condensate to seep to the surface on the side of the irrigation return ditch. No evidence of this seepage was identified.

Soil Remediation

Approximately 400 cu. yds. of topsoil overburden was removed and stockpiled on location. Approximately 6000 cu. yds. of contaminated soil was removed above and below the water table. Initially the contaminated soils were land farmed off location at a commercial landfarm on Crouch Mesa and later on BR Production locations Congress 5E and Congress 16. The OCD and BLM were contacted and a written proposal was approved to allow land farming on the selected BR production locations. The land farms on the Congress 5E and Congress 16 were cleaned and the soil reused in a suitable manner.

Approximately 5500 cu. yds of sandy loam subsoil suitable for the landowner's agricultural uses was backfilled into the excavation. The landowner was also provided soil fertilizer amendments and seed to rehabilitate the disturbed land.

Remedial Action

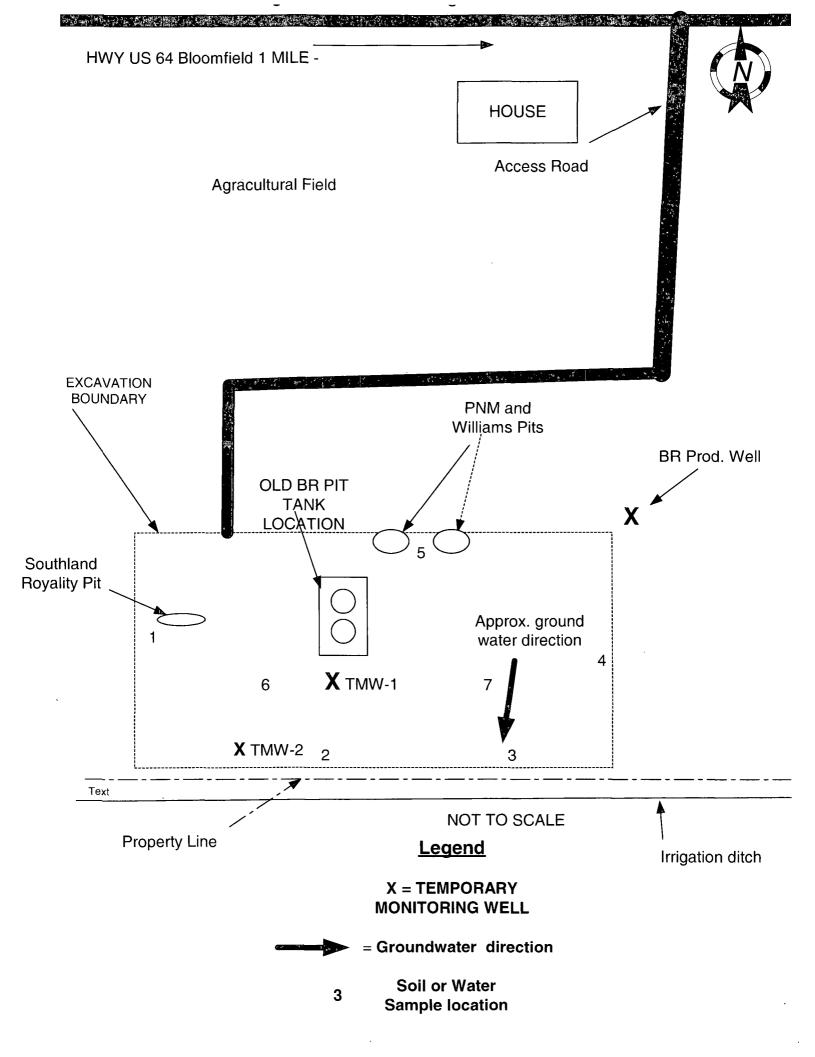
Soil three point composite samples were collected from the walls and bottom of the excavation to confirm soil contamination was below OCD standards. In addition, 80 bbls of a potassium permanganate solution was added to the excavation. The potassium permanganate was added to enhance remediation of any residual low-level petroleum impacts remaining. A water grab sample was collected from the standing water that accumulated in the excavation during excavation. The Site Map of the excavation shows the sample locations and the laboratory analysis results are include in Attachment 1. The soil and water samples collected were analyzed for BTEX and total petroleum hydrocarbons. The analyses reported were below the OCD contaminate specific remediation levels.

The installation of a temporary source ground water well (i.e., Monitoring Well TMW-1) and another downgradient temporary well (i.e., Monitoring Well TMW-2) were deferred until 2005

because of the rehabilitation and farming activities. The wells were installed in the first quarter of 2005 while farming was stopped. The two temporary wells were used to characterize the water quality given the large size of the excavation. The temporary wells are being used to minimize impacts to the landowners farming activities. The temporary wells installed were analyzed for a general list of WCCC parameters and BTEX. A map of the site is included as Figure 1.

CONCLUSIONS

The petroleum impacted soil was removed to the extent practical at this location. The soil and water sampling analysis from the walls and bottom of the excavation were determined to be below the OCD contaminate specific remediation levels. The monitoring wells were sampled Feb. 2005 to determine compliance with the New Mexico Groundwater Standards. No parameters were reported above the New Mexico Groundwater Standards from the samples collected from TMW-1 and TMW-2.


RECOMMENDATIONS

- Burlington Resources to submit for closure.

Attachments:	Figure 1 - Site Map and Sampling Location Table
	Table 1 – Excavation Soil and Water Analytical Results
	Table 2 – 2005 Ground Water Analytical Results

FIGURE 1 SATEGNA #2 Site map

S: / grndwatr/GW-Sites/JohnFed#4/99Annual.doc

Table 12002 Soil and Ground WaterANALYTICAL RESULTS

S: / gmdwatr/GW-Sites/JohnFed#4/99Annual.doc

Excavation Soil sample	Laboratory Identifier	Matrix	Excavation Location
Location	name		(See Site Map)
1	Sategna #2 BR#2	Soil	West wall
2	Sategna 3	Soil	South wall
3	Sategna 1A NE	Soil	South wall
4	Sategna A	Soil	East wall
5	Sategna B	Soil	North Wall
6	Sategna 3 A	Soil	Excavation bottom
7	Sategna #2	Water	Grab location

1

S: / grndwatr/GW-Sites/JohnFed#4/99Annual.doc

	Soil		8	T	m	×	BTEX	TPH
Well Name	sample	Sample Lab #	mg/kg	mg/kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Action Levels			10	na	na	na	50	100
Sategna #2								
					8. A.A. 13 (1998) - S.A.A.		Salar Sector	
	-1	Sategna #2 BR#2	<u></u>	Յ	ۍ 5	<15	<30	<100
	2	Sategna 3#	<5	<u>^</u> 5	^ 5	<15	<30	<100
	з	Sategna 1A NE	۸ 5	<u>^</u> 5	<u>ۍ</u>	<15	<30	<100
	4	Sategna A	^5	۸ 5	۸ 5	<15	<30	<100
	ഗ	Sategna B	^ ፓ	^ თ	۸ ن	<15	<30	<100
	6	Sategna 3A	~5	×2	^ ហ	<15	<30	<100
Water	Contraction P. S.	and the second of the second second	A A A A A A	NG ANG	4474-234 B	来在方台都是某	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	AN ANALY TRAT
Action levels			10 ppb	750 ppb	750ppb	620ppb	na	na
Grab sample	7	Sategna #2	ŝ	~5	ራ	66	66	355.00
								1

Table 1 Sategna #2 Soil Sampling Data

na = not applicable

.

Client:	Burlington Resources	
Project:	San Juan Division	Date Reported: 05/28/02
Sample ID:	SATEGNA #2 BR#2	Date Sampled: 04/28/02
Lab ID:	0302W02001	Date Received: 05/03/02
Matrix:	Soil	Date Extracted: 05/10/02
Condition:	Cool/Intact	Date Analyzed: 05/10/02

	Analytical		
Parameter	Result	PQL	Units
BTEX - Method 8021B			
Benzene	<5	5	mg/Kg
Toluene	<5	5	mg/Kg
Ethylbenzene	<5	5	mg/Kg
Xylenes (total)	<15	15	mg/Kg
Total BTEX	<30	30	mg/Kg
Quality Control - Surrogate Recovery	%	QC Li	mits
a,a,a-Trifluorotoluene(SUR-8021B)	95	70 -	130
4-Bromofluorobenzene(SUR-8021B)	95	70 -	130

Reference: Method 8021b, Volatile Organic Compounds, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, United States Environmental Protection Agency, SW-846, Volume IB.

Reviewed By:

Analyst:

lington Resources	
Juan Division Date Reported:	05/28/02
TEGNA #2 BR#2 Date Sampled:	04/28/02
2W02001 Date Received:	05/03/02
Date Extracted:	05/10/02
DI/Intact Date Analyzed:	05/10/02
	rlington ResourcesDate Reported:n Juan DivisionDate Sampled:TEGNA #2 BR#2Date Sampled:D2W02001Date Received:D2W02001Date Extracted:IDate Analyzed:

	Analytical		
Parameter	Result	PQL	Units
DRO - METHOD 8015		· · · · · · · · · · · · · · · · · · ·	
Diesel Range Organics (C10 - C22)	<50	50	mg/Kg
Gasoline Range Organics(C6-C10)	<50	50	mg/Kg
Total Petroleum Hydrocarbons (C6-C22)	<100	100	mg/Kg

Reference: Method 8015AZ, C10 - C32 Hydrocarbons in Soil, Arizona Department of Health Services, Revision - 1.0, 09/25/98.

Reviewed By:

Analyst:

Client:	Burlington Resources			
Project:	TPH/BTEX	Date Reported:	08/01/02	
Sample ID:	Sategna #3	Date Sampled:	07/09/02	
Lab ID:	0302W02853	Date Received:	07/18/02	
Matrix:	Soil	Date Extracted:	N/A	
Condition:	Cool/Intact	Date Analyzed:	07/31/02	

	Analytical		
Parameter	Result	PQL	Units
BTEX - Method 8021B			
Benzene	<5	5	mg/Kg
Toluene	<5	5	mg/Kg
Ethylbenzene	<5	5	mg/Kg
Total BTEX	<30	30	mg/Kg
Xylenes (total)	<15	15	mg/Kg
Quality Control - Surrogate Recovery	%	QC Li	mits
a,a,a-Trifluorotoluene(SUR-8021B)	74	70 - 1	130 -
4-Bromofluorobenzene(SUR-8020	68	70 - 1	130

Reference: Method 8021b, Volatile Organic Compounds, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, United States Environmental Protection Agency, SW-846, Volume IB.

Reviewed By

Analyst: Jahrille

Burlington Resources Client: Project: TPH/BTEX Sample ID: Sategna #3 Lab ID: 0302W02853 Matrix: Soil **Condition:** Cool/Intact

Date Reported: 08/01/02 **Date Sampled: 07/09/02** Date Received: 07/18/02 Date Extracted: N/A Date Analyzed: 07/31/02

70 - 130

Parameter	Analytical Result	PQL	Units
TPH - METHOD 8015			
Gasoline Range Organics(C6-C10)	<50	50	mg/Kg
Diesel Range Organics (C10 - C22)	<50	50	mg/Kg
	<100	100	mg/Kg
Quality Control - Surrogate Recovery	%	QC Li	mits

79

o-Terphenyl(SUR-8015)

.

Reference: Method 8015AZ, C10 - C32 Hydrocarbons in Soil, Arizona Department of Health Services, Revision - 1.0, 09/25/98. SW-846 - "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", United States Environmental Protection Agency, November, 1986.

Reviewed By

Analyst: _____

Client:Burlington ResourcesProject:TPH/BTEXSample ID:Sategna 1A NELab ID:0302W02855Matrix:SoilCondition:Cool/Intact

Date Reported:08/01/02Date Sampled:07/10/02Date Received:07/18/02Date Extracted:N/ADate Analyzed:07/31/02

Parameter	Analytical Result	PQL	Units
BTEX - Method 8021B			
Benzene	<5	5	mg/Kg
Toluene	<5	5	mg/Kg
Ethylbenzene	<5	5	mg/Kg
Total BTEX	<30	30	mg/Kg
Xylenes (total)	<15	15	mg/Kg
Quality Control - Surrogate Recovery	%	QC Li	mits
a,a,a-Trifluorotoluene(SUR-8021B)	97	70 - 1	130
4-Bromofluorobenzene(SUR-8020	82	70 - ⁻	130

Reference: Method 8021b, Volatile Organic Compounds, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, United States Environmental Protection Agency, SW-846, Volume IB.

Reviewed By

Analyst: John With

Client:Burlington ResourcesProject:TPH/BTEXSample ID:Sategna 1A NELab ID:0302W02855Matrix:SoilCondition:Cool/Intact

Date Reported:08/01/02Date Sampled:07/10/02Date Received:07/18/02Date Extracted:N/ADate Analyzed:07/31/02

_	Analytical		
Parameter	Result	PQL	Units
TPH - METHOD 8015		<u> </u>	
Gasoline Range Organics(C6-C10)	<50	50	mg/Kg
Diesel Range Organics (C10 - C22)	<50	50	mg/Kg
Total Petroleum Hydrocarbons (C6-C22)	<100	100	mg/Kg

Quality Control - Surrogate Recovery	%	QC Limits
o-Terphenyl(SUR-8015)	. 79	70 - 130

Reference: Method 8015AZ, C10 - C32 Hydrocarbons in Soil, Arizona Department of Health Services, Revision - 1.0, 09/25/98. SW-846 - "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", United States Environmental Protection Agency, November, 1986.

Reviewed By

Analyst: Jach lotte

Client:	Burlington Resources		
Project:	TPH/BTEX	Date Reported: 08/01/0)2
Sample ID:	Sategna A	Date Sampled: 07/08/0)2
Lab ID:	0302W02852	Date Received: 07/18/0)2
Matrix:	Soil	Date Extracted: N/A	·
Condition:	Cool/Intact	Date Analyzed: 07/31/0)2

	Analytical		
Parameter	Result	PQL	Units
BTEX - Method 8021B	<u></u>		
Benzene	<5	5	mg/Kg
Toluene	<5	5	mg/Kg
Ethylbenzene	<5	5	mg/Kg
Total BTEX	<30	30.	mg/Kg
Xylenes (total)	<15	15	mg/Kg
Quality Control - Surrogate Recovery	%	QC Limits	
a,a,a-Trifluorotoluene(SUR-8021B)	77	70 -	130
4-Bromofluorobenzene(SUR-8020	. 71	70 - 1	130

Reference: Method 8021b, Volatile Organic Compounds, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, United States Environmental Protection Agency, SW-846, Volume IB.

Reviewed By: M

Analyst:

Client:Burlington ResourcesProject:TPH/BTEXSample ID:Sategna ALab ID:0302W02852Matrix:SoilCondition:Cool/Intact

Date Reported:08/01/02Date Sampled:07/08/02Date Received:07/18/02Date Extracted:N/ADate Analyzed:07/31/02

	Analytical		
Parameter	Result	PQL	Units
TPH - METHOD 8015	· · · · · · · · · · · · · · · · · · ·		
Gasoline Range Organics(C6-C10)	<50	50	mg/Kg
Diesel Range Organics (C10 - C22)	<50	50	mg/Kg
Total Petroleum Hydrocarbons (C6-C22)	<100	100	mg/Kg

QC Limits	
70 - 130	_
	70 - 130

Reference: Method 8015AZ, C10 - C32 Hydrocarbons in Soil, Arizona Department of Health Services, Revision - 1.0, 09/25/98. SW-846 - "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", United States Environmental Protection Agency, November, 1986.

Reviewed By:

Analyst:

Client:Burlington ResourcesProject:TPH/BTEXSample ID:Sategna BLab ID:0302W02856Matrix:SoilCondition:Cool/Intact

Date Reported:08/01/02Date Sampled:07/10/02Date Received:07/18/02Date Extracted:N/ADate Analyzed:07/31/02

	Analytical		
Parameter	Result	PQL	Units
BTEX - Method 8021B			
Benzene	<5	5	mg/Kg
Toluene	<5	5	mg/Kg
Ethylbenzene	<5	5	mg/Kg
Total BTEX	<30	30	mg/Kg
Xylenes (total)	<15	15	mg/Kg
Quality Control - Surrogate Recovery	%	QC Limits	
a,a,a-Trifluorotoluene(SUR-8021B)	90	70 -	130
4-Bromofluorobenzene(SUR-8020	76	70 -	130

Reference: Method 8021b, Volatile Organic Compounds, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, United States Environmental Protection Agency, SW-846, Volume IB.

Reviewed By

Analyst: Juli

Client:	Burlington Resources			
Project:	TPH/BTEX	Date Reported:	08/01/02	
Sample ID:	Sategna B	Date Sampled:	07/10/02	
Lab ID:	0302W02856	Date Received:	07/18/02	
Matrix:	Soil	Date Extracted:	N/A	
Condition:	Cool/Intact	Date Analyzed:	07/31/02	

	Analytical		
Parameter	Result	PQL	Units
TPH - METHOD 8015			
Gasoline Range Organics(C6-C10)	<50	50	mg/Kg
Diesel Range Organics (C10 - C22)	<50	50	mg/Kg
Total Petroleum Hydrocarbons (C6-C22)	<100	100	mg/Kg

Quality Control - Surrogate Recovery	%	QC Limits	
o-Terphenyl(SUR-8015)	80	70 - 130	

Reference: Method 8015AZ, C10 - C32 Hydrocarbons in Soil, Arizona Department of Health Services, Revision - 1.0, 09/25/98. SW-846 - "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", United States Environmental Protection Agency, November, 1986.

Reviewed By

Analyst: JochW

Client: Burlington Resources TPH **Project:** Sample ID: Sategna 3A Lab ID: 0302W02859 Matrix: Soil Condition: Cool/Intact

Date Reported: 08/01/02 **Date Sampled: 07/01/02** Date Received: 07/18/02 Date Extracted: N/A Date Analyzed: 07/30/02

,	Analytical		
Parameter	Result	PQL	Units
BTEX - Method 8021B		······································	
Benzene	<5	5	mg/Kg
Toluene	<5	5	mg/Kg
Ethylbenzene	<5	5	mg/Kg
Xylenes (total)	<15	15	mg/Kg
Total BTEX	<30	30	mg/Kg
Quality Control - Surrogate Recovery	%	QC Limi	ts
4-Bromofluorobenzene(SUR-8021B)	80	70 - 130	0 -
a,a,a-Trifluorotoluene(SUR-8021B)	- 88	70 - 130	0

Reference: Method 8021b, Volatile Organic Compounds, Test Methods for Evaluating Solid Wasten Physical/Chemical Methods, United States Environmental

Reviewed By:

Analyst: Jachtothe

Protection Agenøy, SW-846, Volume IB.

Burlington Resources Client: **Project:** TPH Sample ID: Sategna 3A Lab ID: 0302W02859 Matrix: Soil **Condition:** Cool/Intact

Date Reported: 08/01/02 Date Sampled: 07/01/02 Date Received: 07/18/02 Date Extracted: 07/31/02 Date Analyzed: 07/30/02

Parameter	Analytical Result	PQL	Units
TPH - METHOD 8015			
Gasoline Range Organics(C6-C10)	<50	50	mg/Kg
Diesel Range Organics (C10 - C22)	<50	50	mg/Kg
Total Petroleum Hydrocarbons (C6-C22)	<100	100	mg/Kg

Quality Control - Surrogate Recovery	%	QC Limits
o-Terphenyl(SUR-8015)	82	70 - 130 _

Reference: Method 8015AZ, C10 - C32 Hydrocarbons in Soil, Arizona Department of Health Services, Revision - 1.0, 09/25/98. SW-846 - "Test Methods for Evaluating Solid Waste: Physical/Chemical Methods", United States Environmental Protection Agency, Nøvenber, 1986.

Reviewed By

Analyst:

Client:	Burlington Resources		•	
Project:	San Juan Division	Date Reported:	05/28/02	
Sample ID:	SATEGNA #2	Date Sampled:	05/03/03	
Lab ID:	0302W02003	Date Received:	05/03/02	
 Matrix:	Water	Date Extracted:	N/A	
Condition:	Cool/Intact	Date Analyzed:	05/06/02	

Parameter	Analytical Result	PQL	Units
BTEX - Method 8021B	···· <u>·</u> ··· <u>·</u> ···· <u>·</u> ······ <u>·</u> ········ <u>·</u> ······		·····
Benzene	<5	5	µg/L
Toluene	<5	5	μg/L
Ethylbenzene	<5	5	µg/L
Xylenes (total)	66	15	µg/L
Total BTEX	68	30	μg/L
Quality Control - Surrogate Recovery	%	QC Li	mits
a,a,a-Trifluorotoluene(SUR-8021B)	105	70 - 1	130
4-Bromofluorobenzene(SUR-8021B)	80	70 - 1	30

Reference:

<u>4</u>_ Reviewed By: υ

Analyst:

Client:	Burlington Resources	
Project:	San Juan Division	Date Reported: 05/28/02
Sample ID:	SATEGNA #2	Date Sampled: 05/03/03
Lab ID:	0302W02003	Date Received: 05/03/02
Matrix:	Water	Date Extracted: N/A
Condition:	Cool/Intact	Date Analyzed: 05/06/02

	Analytical		
Parameter	Result	PQL	Units
DRO - METHOD 8015	· · · · · · · · · · · · · · · · · · ·	·····	
Diesel Range Organics (C10 - C22)	17	5	μg/L
Gasoline Range Organics(C6-C10)	338	10	µg/L

Reference:

] 74 Reviewed By:

Analyst:

Table 22005 Ground WaterANALYTICAL RESULTS

S: / grndwatr/GW-Sites/JohnFed#4/99Annual.doc

Sategna #2 Ground Water Monitoring Sampling Data

			B	L	п	×	BTEX	ТРН
	Depth to							
Well Name	Water	Sample Lab #	mg/kg	mg/kg	mg/Kg	mg/Kg	ng/Kg mg/Kg mg/Kg	mg/Kg
Action Levels			10 ppb	750 ppb	750ppb	620ppb	50	100
Sategna #2								
TMW#1	50"	Sategna TMW-1	1.2	2.7	L6:0	48.2	48.2	
		See ger	See general water quality analysis attached	quality analy	sis attache			
TMM/#0	<u>78</u> "	Sategena TMW-2		0.3 I		3141	MAC:1-1-422	
•		See ger	See general water quality analysis attached	quality analy	sis attache			

na = not applicable

WELL DEVELOPMENT AND SAMPLING LOG

				<u> </u>					
Project No.:[Draft		Proj	ect Name:_	S <u>ATEGN</u>	<u>A</u> Clier	nt: <u>Burlingto</u>	<u>n</u>	
Location:	Well	No:	TMW-1_		Developr	nent INST	ALLATION	AND Samp	bling
Project Mana	ager	MJN		Date	2/10/05	Start Tin	ne1550	Weather_clear 40s	
Depth to Wa	ter4.	16 fee	t Dep	th to Produ	ct <u>na</u>	Product Thic	kness: <u>na</u>	Mea	asuring Point <u>TOC</u>
Water Colum									
	0								
Sampling Me	ethod: Si	ubmer	sible Pum	ip 🗆	Centrifug	al Pump 🗖	Peristalt	ic Pump	Other
	В	ottom '	Valve Bai	ler	C	Oouble Chec	k Valv⊡Bail	ler Stai	nless-Steel Kemrter
Criteria: 3 t	o 5 Casi	ng Vol	umes of V	Water Rem	oval X sta	abilization of	Indicator Pa	arameters 2	K Other <u>or bail</u> dry
[<u> </u>				Water Vol	ume in Well	, ··		
	ft of wat	er		Gallons			Ounces		Gal/oz to be removed
2.75	x 0.16			0.44					1.32
L									
Time	Рq		SC	Temp	ORP	D.O.	Turbidity	Vol Evac	Comments/
(military)	(su)		nos/cm)	(°F)	(millivolt		(NTU)	(gal)	Flow rate
1550	9.16	2	210	55.4				0.44	Clear
<u>1602</u>	8.14	2	010	51.1				.44	Clear
<u>1606</u>	7.6	2	040	51.7				.44	Clear
······									
	L	<u></u>		L	l		l	!	
Final:		1. (J.) 1. (J.)	ga na tana sa	e vegete en	1. Stee of		Ferrous		
Time pl	ı is	С	Temp	Eh-ORP	D.O.	Turbidity		Vol Evac.	Comments/Flow Rate
		910	52.0					4.0	Clear
							n a star francés a star de la seconda de La seconda de la seconda de La seconda de la seconda de	a Marina and	

COMMENTS: Pump depleting well

INSTRUMENTATION:	pH Meter	X		Temper	ature Meter x
•	DO Mon	itor		Other	
Cone	ductivity Mete	r X			
Water Disposal onsite		Sample	e ID TMW-1 Sample Time_		
<u>BTEX</u> VOCs					
MS/MSD	BD		BD Name/Time		ТВ

WELL DEVELOPMENT AND SAMPLING LOG

······										
Project No.:E	Draft		Proi	ect Name:	SATEG	iNA	Clien	t: Burlinato	n	
Location:			-							olina
Project Mana						•				Weatherclear 40s
										asuring Point
			-			_				
Water Colum	in Heign	(<u>_2.7(</u>	<u>vve</u> r	i Dia	_2	-				ť
Sampling Me	thod: S	ubmer	sible Pur	1p 🗌	Centrif	ugal I	Pump 🛛	Peristalti	c Pump 🔲	Other
	B	ottom	Valve Bai	ler		Dou	uble Chec	k Valv⊟Bail	er Stai	nless-Steel Kemr⊡rer
	_									
Criteria: 3 te	o 5 Casi	ng Vol	umes of \	Nater Rem	oval X	stabil	lization of	Indicator Pa	arameters)	K Other <u>or bail</u> dry
					Water \	/olum	ne in Well			
Gal/ft x	ft of wat	er		Gallons				Ounces		Gal/ oz to be removed
2.70	x 0.16			0.43						1.32
			İ							
Time	pН		SC	Temp	OR	P	D.O.	Turbidity	Vol Evac	. Comments/
(military)	(su)		nos/cm)	(°F)	(milliv		(mg/L)	(NTU)	(gal)	Flow rate
1650	9.16	2	210	55.4					0.44	Clear
<u>1702</u>	8.14	2	2010	51.1					.44	Clear
<u>1706</u>	7.6	2	2040	51.7					.44	Clear
					ļ					
			· - · · · -			· ·				
Final:		1.12			н	***		Ferrous		
Time p⊢	I S	C	Temp	Eh-ORP	D.O.	Tu	irbidity	Iron	Vol Evac.	Comments/Flow Rate
<u>1709</u> 7	.55	910	52.0						4.0	Clear
		<i></i>		n <u>a san sa an /u>					s the the	· · · · · · · · · · · · · · · · · · ·
00141-1			<u> </u>							
COMMENTS	S: Pump	deplet	ing well							
INSTRUMEN		N:	oH Meter	X					perature Me	ter x
			DO Mo					Othe	r	
			tivity Met							
Water Dispos	sal <u>onsit</u>	e		Sample	e ID TM	W-2	Sample T	ime	<u></u>	

<u>BTEX</u> VOCs			
MS/MSD	BD	BD Name/Time	ТВ

March 01, 2005

Report to: Gregg Wurtz Burlington Resources, Inc. 3401 E. 30th St. PO BOX 4289 Farmington, NM 87499 Bill to: Gregg Wurtz Burlington Resources, Inc. 3401 E. 30th St. PO BOX 4289 Farmington, NM 87499

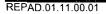
Project ID: ACZ Project ID: L49852

Gregg Wurtz:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on February 11, 2005. This project has been assigned to ACZ's project number, L49852. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 11.0. The enclosed results relate only to the samples received under L49852. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.


All samples and sub-samples associated with this project will be disposed of after April 01, 2005. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs.

If you have any questions, please contact your Project Manager or Customer Service Representative.

01/Mar/05

Sue Barkey, Project Manager, has reviewed and approved this report in its entirety.

L49852: Page 1 of 13

AC
 Laboratories, Inc.

 2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

Burlington Resources, Inc.

Project ID: Sample ID:

SATEGNA TMW-1

Inorganic Analytical Results

ACZ Sample ID:	L49852-01
Date Sampled:	02/10/05 09:25
Date Received:	02/11/05
Sample Matrix:	Surface Water

Metals Analysis								
Parameter	EPA Method	Result	Qual >	(Q. Units	MDL	POL	Date	Analyst
Arsenic, dissolved	M200.8 ICP-MS	0.0031		mg/L	0.0005	0.003	02/18/05 2:51	jag
Barium, dissolved	M200.7 ICP	0.095		mg/L	0.003	0.01	02/16/05 1:25	wfg
Cadmium, dissolved	M200.8 ICP-MS	0.0002	В	mg/L	0.0001	0.0005	02/18/05 2:51	jag
Calcium, dissolved	M200.7 ICP	441		mg/L	0.2	1	02/16/05 1:25	wfg
Chromium, dissolved	M200.8 ICP-MS	0.0012		mg/L	0.0001	0.0005	02/18/05 2:51	jag
Copper, dissolved	M200.8 ICP-MS	0.0037		mg/L	0.0005	0.003	02/18/05 2:51	jag
Iron, dissolved	M200.7 ICP	0.03	В	* mg/L	0.01	0.05	02/16/05 1:25	wfg
Magnesium, dissolved	M200.7 ICP	62.1		mg/L	0.2	1	02/16/05 1:25	wfg
Manganese, dissolved	M200.7 ICP	3.820		* mg/L	0.005	0.03	02/16/05 1:25	wfg
Potassium, dissolved	M200.7 ICP	10.2		mg/L	0.3	1	02/16/05 1:25	wfg
Sodium, dissolved	M200.7 ICP	453		mg/L	0.3	1	02/16/05 1:25	wfg
Zinc, dissolved	M200.7 ICP		U	* mg/L	0.01	0.05	02/16/05 1:25	wfg
Wet Chemistry								
Parameter	EPA Method	Result	- Qual- ?	(e) Units	MDL	POL	Date .	Analyst
Alkalinity as CaCO3	SM2320B - Titration							
Bicarbonate as		527		mg/L	2	10	02/24/05 0:00	ct
CaCO3						10	02/24/03 0.00	υ
Cacos				-	-	10	02/24/03 0.00	CL
Carbonate as CaCO	3		U	mg/L	2	10	02/24/05 0:00	ct
			U U	mg/L mg/L				
Carbonate as CaCO		527		•	2	10	02/24/05 0:00	ct
Carbonate as CaCO3 Hydroxide as CaCO3		527		mg/L	2 2	10 10	02/24/05 0:00 02/24/05 0:00	ct ct
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity	Calculation	527 -6.8		mg/L	2 2	10 10	02/24/05 0:00 02/24/05 0:00	ct ct
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Cation-Anion Balance	Calculation			mg/L mg/L	2 2	10 10	02/24/05 0:00 02/24/05 0:00 02/24/05 0:00	ct ct ct
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Cation-Anion Balance Cation-Anion Balance	Calculation	-6.8		mg/L mg/L %	2 2 2	10 10 10	02/24/05 0:00 02/24/05 0:00 02/24/05 0:00 03/01/05 0:00	ct ct ct calc
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Cation-Anion Balance Cation-Anion Balance Sum of Anions	Calculation	-6.8 54.5		mg/L mg/L % meq/L	2 2 2 0.1	10 10 10 0.5	02/24/05 0:00 02/24/05 0:00 02/24/05 0:00 03/01/05 0:00 03/01/05 0:00	ct ct ct calc calc
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Cation-Anion Balance Cation-Anion Balance Sum of Anions Sum of Cations	Calculation	-6.8 54.5 47.6		mg/L mg/L % meq/L meq/L	2 2 2 0.1 0.1	10 10 10 0.5 0.5	02/24/05 0:00 02/24/05 0:00 02/24/05 0:00 03/01/05 0:00 03/01/05 0:00 03/01/05 0:00	ct ct ct calc calc calc
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Cation-Anion Balance Cation-Anion Balance Sum of Anions Sum of Cations Chloride	Calculation M325.2 - Colorimetric	-6.8 54.5 47.6 19		mg/L mg/L % meq/L meq/L mg/L	2 2 0.1 0.1 1	10 10 10 0.5 0.5 5	02/24/05 0:00 02/24/05 0:00 02/24/05 0:00 03/01/05 0:00 03/01/05 0:00 03/01/05 0:00 03/01/05 0:00 02/12/05 23:41	ct ct calc calc calc calc erf
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Cation-Anion Balance Cation-Anion Balance Sum of Anions Sum of Cations Chloride Conductivity @25C	Calculation M325.2 - Colorimetric M120.1 - Meter	-6.8 54.5 47.6 19		mg/L mg/L % meq/L meq/L mg/L	2 2 0.1 0.1 1	10 10 10 0.5 0.5 5	02/24/05 0:00 02/24/05 0:00 02/24/05 0:00 03/01/05 0:00 03/01/05 0:00 03/01/05 0:00 02/12/05 23:41 02/21/05 10:25	ct ct calc calc calc calc erf jtl
Carbonate as CaCO3 Hydroxide as CaCO3 Total Alkalinity Cation-Anion Balance Cation-Anion Balance Sum of Anions Sum of Cations Chloride Conductivity @25C Lab Filtration Lab Filtration &	Calculation M325.2 - Colorimetric M120.1 - Meter SM 3030 B	-6.8 54.5 47.6 19		mg/L mg/L % meq/L meq/L mg/L	2 2 0.1 0.1 1	10 10 10 0.5 0.5 5	02/24/05 0:00 02/24/05 0:00 02/24/05 0:00 03/01/05 0:00 03/01/05 0:00 03/01/05 0:00 02/12/05 23:41 02/21/05 10:25 02/17/05 17:07	ct ct calc calc calc erf jtl mpj

ACZ Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

SATEGNA TMW-2

Burlington Resources, Inc.

Project ID: Sample ID:

Inorganic Analytical Results

ACZ Sample ID:	L49852-02
Date Sampled:	02/10/05 10:45
Date Received:	02/11/05
Sample Matrix:	Surface Water

Metals Analysis								
Parameter	EPA Method	Result	Qual XQ	Units	MDL	POL	Date	Analyst
Arsenic, dissolved	M200.8 ICP-MS	0.004	В	mg/L	0.003	0.01	02/18/05 20:06	jag
Barium, dissolved	M200.7 ICP	0.057		mg/L	0.003	0.01	02/16/05 1:29	wfg
Cadmium, dissolved	M200.8 ICP-MS	0.0018	В	mg/L	0.0005	0.003	02/18/05 20:06	jag
Calcium, dissolved	M200.7 ICP	369		mg/L	0.2	1	02/16/05 1:29	wfg
Chromium, dissolved	M200.8 ICP-MS	0.0016	В	mg/L	0.0005	0.003	02/18/05 20:06	jag
Copper, dissolved	M200.8 ICP-MS	0.036		mg/L	0.003	0.01	02/18/05 20:06	jag
Iron, dissolved	M200.7 ICP	0.5		mg/L	0.1	0.5	02/16/05 22:30	mea
Magnesium, dissolved	M200.7 ICP	102		mg/L	0.2	1	02/16/05 1:29	wfg
Manganese, dissolved	M200.7 ICP	0.26	В	mg/L	0.05	0.3	02/16/05 22:30	mea
Potassium, dissolved	M200.7 ICP	17.4		mg/L	0.3	1	02/16/05 1:29	wfg
Sodium, dissolved	M200.7 ICP	3210		mg/L	3	10	02/16/05 22:30	mea
Zinc, dissolved	M200.7 ICP	0.1	В	mg/L	0.1	0.5	02/16/05 22:30	mea
Wet Chemistry								
Parameter	EPA Method	Result	(0)(c)	Units	MDL	Poll	Date	Analyst
Alkalinity as CaCO3	SM2320B - Titration							A CONTRACTOR OF
Bicarbonate as		1600		mg/L	2	10	02/24/05 0:00	ct
CaCO3				5				
Carbonate as CaCO3	3		U	mg/L	2	10	02/24/05 0:00	ct
Hydroxide as CaCO3	3		U	mg/L	2	10	02/24/05 0:00	ct
Total Alkalinity		1600		mg/L	2	10	02/24/05 0:00	ct
Cation-Anion Balance	Calculation							
Cation-Anion Balance		-8.4		%			03/01/05 0:00	calc
Sum of Anions		200		meq/L	0.1	0.5	03/01/05 0:00	calc
Sum of Cations		169		meq/L	0.1	0.5	03/01/05 0:00	calc
Chloride	M325.2 - Colorimetric	14		mg/L	1	5	02/12/05 23:41	erf
Conductivity @25C	M120.1 - Meter	14000		umhos/cm	1	10	02/21/05 10:29	jtl
Lab Filtration	SM 3030 B		*				02/17/05 17:09	mpj
Lab Filtration & Acidification	SM 3030 B		*				02/11/05 15:00	ak
pH (lab)	M150.1 - Electrometric	7.5	н	units	0.1	0.1	02/24/05 18:13	ct
1 ()	MITOO.I Electronicate			unite	0.1	•••	02/2 1/00 10:10	•••

* Please refer to Extended Qualifier Report for detail

73 Downhill	I Drive Steamboat Springs, CO 80487 (800) 334-5493	<u></u>						
	er/Explanations	300 C 10						
Batch	A distinct set of samples analyzed at a specific time							
Found	Value of the QC Type of interest							
Limit		Upper limit for RPD, in %.						
Lower	• • • • • • •	Lower Recovery Limit, in % (except for LCSS, mg/Kg)						
MDL	Method Detection Limit. Same as Minimum Reporting L							
PCN/SCN	0 0	e manufacture	er's certificate of analysis					
PQL	Practical Quantitation Limit, typically 5 times the MDL.							
QC		True Value of the Control Sample or the amount added to the Spike						
Rec	Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)							
RPD	Relative Percent Difference, calculation used for Duplica	ate QC Types						
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)							
Sample	Value of the Sample of interest							
Sample T	ypes							
AS	Analytical Spike (Post Digestion)	LCSWD	Laboratory Control Sample - Water Duplica					
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Fortified Blank					
CCB	Continuing Calibration Blank	LFM	Laboratory Fortified Matrix					
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate					
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank					
ICB	Initial Calibration Blank	MS	Matrix Spike					
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate					
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil					
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water					
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard					
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution					
Sample T	ype Explanations							
Blanks	Verifies that there is no or minir	nal contamina	ation in the prep method or calibration procedure					
Control Sa	amples Verifies the accuracy of the me	thod, including	g the prep procedure.					
Duplicates	s Verifies the precision of the inst	rument and/o	r method.					
Spikes/Fo	ortified Matrix Determines sample matrix inter	ferences, if a	ny.					
Standard	Verifies the validity of the calibr	ation.						
Zonalilia	rs (Qual)							
B	Analyte concentration detected at a value between MDL	. and PQL.						
Н	Analysis exceeded method hold time. pH is a field test		diate hold time.					
R	Poor spike recovery accepted because the other spike i							
т	High Relative Percent Difference (RPD) accepted becau							
U	Analyte was analyzed for but not detected at the indicat	-						
v	High blank data accepted because sample concentratio	n is 10 tímes	higher than blank concentration					
W	Poor recovery for Silver quality control is accepted beca	use Silver oft	en precipitates with Chloride.					
х	Quality control sample is out of control.							
Z	Poor spike recovery is accepted because sample conce	entration is fou	ur times greater than spike concentration.					
A-2-11-2-2-0	rences							
		Water and Wa	istes, March 1983					
	EPA 600/4-83-020 Methods for Chemical Analysis of V							
(1)	EPA 600/4-83-020. Methods for Chemical Analysis of V EPA 600/8-93-100. Methods for the Determination of I	organic Subs	EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.					
(1) (2)	EPA 600/R-93-100. Methods for the Determination of In	-						
(1) (2) (3)	EPA 600/R-93-100. Methods for the Determination of In EPA 600/R-94-111. Methods for the Determination of M	letals in Envir	ronmental Samples - Supplement I, May 1994.					
 (1) (2) (3) (5) 	EPA 600/R-93-100. Methods for the Determination of In EPA 600/R-94-111. Methods for the Determination of M EPA SW-846. Test Methods for Evaluating Solid Waste	fetals in Envir e, Third Editio	ronmental Samples - Supplement I, May 1994. n with Update III, December 1996.					
 (1) (2) (3) (5) (6) 	EPA 600/R-93-100. Methods for the Determination of In EPA 600/R-94-111. Methods for the Determination of M	fetals in Envir e, Third Editio	ronmental Samples - Supplement I, May 1994. n with Update III, December 1996.					
 (1) (2) (3) (5) 	EPA 600/R-93-100. Methods for the Determination of In EPA 600/R-94-111. Methods for the Determination of M EPA SW-846. Test Methods for Evaluating Solid Waste	fetals in Envir e, Third Editio	ronmental Samples - Supplement I, May 1994. n with Update III, December 1996.					
(1) (2) (3) (5) (6) mments (1)	EPA 600/R-93-100. Methods for the Determination of In EPA 600/R-94-111. Methods for the Determination of M EPA SW-846. Test Methods for Evaluating Solid Waste	fetals in Envir a, Third Editio astewater, 19t	ronmental Samples - Supplement I, May 1994. n with Update III, December 1996. th edition, 1995.					
(1) (2) (3) (5) (6) miments	EPA 600/R-93-100. Methods for the Determination of In EPA 600/R-94-111. Methods for the Determination of M EPA SW-846. Test Methods for Evaluating Solid Waster Standard Methods for the Examination of Water and Wa	Aetals in Envir a, Third Editio astewater, 19t slightly if the	ronmental Samples - Supplement I, May 1994. n with Update III, December 1996. th edition, 1995. rounded values are used in the calculations.					

REPIN03.11.00.01

. .

Laboratories, Inc.2773 Downhill DriveSteamboat Springs, CO 80487 (800) 334-5493

Burlington Resources, Inc.

Inorganic Extended Qualifier Report

ACZ Project ID: L49852

ACZID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L49852-01	WG185390	Iron, dissolved	M200.7 ICP	M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
		Manganese, dissolved	M200.7 ICP	M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
		Zinc, dissolved	M200.7 ICP .	M3	The accuracy of the spike recovery value is reduced since the analyte concentration in the sample is disproportionate to spike level. The method control sample recovery was acceptable.
	WG185522	Lab Filtration	SM 3030 B	ΤВ	Analyte is not covered by NELAC certificate 02111CA, or ACZ does not maintain NELAC certification for this analyte.
	WG185244	Lab Filtration & Acidification	SM 3030 B	ТВ	Analyte is not covered by NELAC certificate 02111CA, or ACZ does not maintain NELAC certification for this analyte.
L49852-02	WG185522	Lab Filtration	SM 3030 B	тв	Analyte is not covered by NELAC certificate 02111CA, or ACZ does not maintain NELAC certification for this analyte.
	WG185244	Lab Filtration & Acidification	SM 3030 B	тв	Analyte is not covered by NELAC certificate 02111CA, or ACZ does not maintain NELAC certification for this analyte.

L49852: Page 5 of 13

ALZ Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Burlington Resources, Inc.

Project ID:

Sample ID: SATEGNA TMW-1 Locator:

Benzene, Toluene, Ethylbenzene & Xylene

Analysis Method: M8021B GC/PID Extract Method: Method

Compound Compound	CAS	Result	QUAL:	Xei	Unito	MOLE	POL
Benzene	000071-43-2	1.2		*	ug/L	0.3	1
Ethylbenzene	000100-41-4	0.9	J	*	ug/L	0.2	1
m p Xylene	01330 20 7	10.4		*	ug/L	0.4	2
o Xylene	00095-47- 6	37.8		*	ug/L	0.2	1
Toluene	000108-88-3	2.7		*	ug/L	0.2	1
Surrogate Recoveries	CAS	% Recovery		200	uitte (ાણા	SUGL S
Bromofluorobenzene	000460-00-4	112.8		*	%	83	117

Organic Analytical Results

 ACZ Sample ID:
 L49852-01

 Date Sampled:
 02/10/05 9:25

 Date Received:
 02/11/05

 Sample Matrix:
 Surface Water

Analyst:	jj
Extract Date:	02/16/05 12:10
Analysis Date:	02/16/05 12:10
Dilution Factor:	1

Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Burlington Resources, Inc.

Project ID: Sample ID: SATEGNA TMW-2 Locator:

Benzene, Toluene, Ethylbenzene & Xylene

Analysis Method: M8021B GC/PID

Extract Method: Method

Compound							
Compound	CAS	, Result	alulailan	3 (0)	Unito	NOL	Fel
Benzene	000071-43-2	0.3	J		ug/L	0.3	1
Ethylbenzene	000100-41-4	0.5	J	*	ug/L	0.2	1
m p Xylene	01330 20 7	0,8	J	*	ug/L	0.4	2
o Xylene	00095-47- 6	30.3		*	ug/L	0.2	1
Toluene	000108-88-3	0.6	J		ug/L	0.2	1
Surrogate Recoveries							
AN ADVANCE AND ADVANCE	CAS A	% Recovery		<u> (</u> 0):	Udlo	1045	Del
Bromofluorobenzene	000460-00-4	98.6			%	83	117

L49852-02
02/10/05 10:45
02/11/05
Surface Water

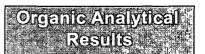
Analyst:	jj
Extract Date:	02/16/05 14:21
Analysis Date:	02/16/05 14:21
Dilution Factor:	1

ALZ Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Burlington Resources, Inc.

Project ID:


Sample ID: TB030904-03 Locator:

Benzene, Toluene, Ethylbenzene & Xylene

Analysis Method: M8021B GC/PID

Extract Method: Method

Compound							
Compound	CAS	Result	L QUAL	NO UNITS	MODE	িটিটিটি	
Benzene	000071-43-2		U	ug/L	0.3	1	
Ethylbenzene	000100-41-4	0.3	J	* ug/L	0.2	1	
m p Xylene	01330 20 7	0.7	J	* ug/L	0.4	2	
o Xylene	00095-47- 6	0.4	J	* ug/L	0.2	1	
Toluene	000108-88-3		U	ug/L	0.2	1	
Surrogate Recoveries							
STREET, ST	CAS	~.% Recovery		Xel Units	LGL	(UGL	
Bromofluorobenzene	000460-00-4	99.3		%	83	117	

L49852-03
02/10/05 0:00
02/11/05
Ground Water

Analyst:	jj
Extract Date:	02/16/05 15:04
Analysis Date:	02/16/05 15:04
Dilution Factor:	1

Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Report Header Explanations Batch A distinct set of samples analyzed at a specific time Found Value of the QC Type of interest Limit Upper limit for RPD, in %. Lower Recovery Limit, in % (except for LCSS, mg/Kg) Lower LCL Lower Control Limit Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations. MDL A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis PCN/SCN PQL Practical Quantitation Limit QC True Value of the Control Sample or the amount added to the Spike Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg) RPD Relative Percent Difference, calculation used for Duplicate QC Types Upper Recovery Limit, in % (except for LCSS, mg/Kg) Upper UCL Upper Control Limit Sample Value of the Sample of interest QC Sample Types SURR LFM Laboratory Fortified Matrix Surrogate INTS LFMD Laboratory Fortified Matrix Duplicate Internal Standard DUP LRB Laboratory Reagent Blank Sample Duplicate LCSS MS/MSD Matrix Spike/Matrix Spike Duplicate Laboratory Control Sample - Soil LCSW Laboratory Control Sample - Water PBS Prep Blank - Soil LFB Laboratory Fortified Blank PBW Prep Blank - Water QC Sample Type Explanations Blanks Verifies that there is no or minimal contamination in the prep method procedure. **Control Samples** Verifies the accuracy of the method, including the prep procedure. Duplicates Verifies the precision of the instrument and/or method Spikes/Fortified Matrix Determines sample matrix interferences, if any ACZ Qualifiers (Qual) в Analyte detected in daily blank н Analysis exceeded method hold time. Analyte concentration detected at a value between MDL and PQL Poor spike recovery accepted because the other spike in the set fell within the given limits. R High Relative Percent Difference (RPD) accepted because sample concentrations are less than 10x the MDL. Analyte was analyzed for but not detected at the indicated MDL U High blank data accepted because sample concentration is 10 times higher than blank concentration V W Poor recovery for Silver quality control is accepted because Silver often precipitates with Chloride. Х Quality contreol sample is out of control. Ζ Poor spike recovery is accepted because sample concentration is four times greater than spike concentration. Р Analyte concentration differs from second detector by more than 40%. E Analyte concentration is estimated due to result exceeding calibration range. Μ Analyte concentration is estimated due to matrix interferences. Method References (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983. (2)EPA 600/4-90/020. Methods for the Determination of Organic Compounds in Drinking Water (I), July 1990. (3)EPA 600/R-92/129. Methods for the Determination of Organic Compounds in Drinking Water (II), July 1990.

(5)EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December, 1996.

Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995. (6)

Comments · Course and the second second second second

(1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.

Organic analyses are reported on an "as received" basis. (2)

REPIN03.11.00.01

.1

Т

encernic

appane

Laboratories, Inc.2773 Downhill DriveSteamboat Springs, CO 80487 (800) 334-5493

Burlington Resources, Inc.

1

Organic Extended Qualifier Report

ACZ Project ID: L49852

AGZ ID	WORKNUM	PARAMETER	METHOD	QUAL,	DESCRIPTION
L49852-01	WG185432	*All Compounds*	M8021B GC/PID	Q3	Sample received with improper chemical preservation.
-4		Ethylbenzene	M8021B GC/PID	٧7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.
		m p Xylene	M8021B GC/PID	V7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.
		o Xylene	M8021B GC/PID	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
			M8021B GC/PID	٧7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.
L49852-02	WG185432	Ethylbenzene	M8021B GC/PID	٧7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.
		m p Xylene	M8021B GC/PID	V7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.
		o Xylene	M8021B GC/PID	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
			M8021B GC/PID	V7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.
L49852-03	WG185432	Ethylbenzene	M8021B GC/PID	V7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.
		m p Xylene	M8021B GC/PID	V7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.
		o Xylene	M8021B GC/PID	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
			M8021B GC/PID	V7	Calibration verification recovery was above the method control limit for this analyte, however the average % difference or % drift for all the analytes met method criteria.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Burlington Resources, Inc.

ACZ Project ID: L49852 Date Received: 2/11/2005 Received By:

ReceiptVerlitention			
	YES	NO	NA
1) Does this project require special handling procedures such as CLP protocol?	[X
2) Are the custody seals on the cooler intact?			X
3) Are the custody seals on the sample containers intact?			X
4) Is there a Chain of Custody or other directive shipping papers present?	Х		
5) Is the Chain of Custody complete?	X		
6) Is the Chain of Custody in agreement with the samples received?	Х		
7) Is there enough sample for all requested analyses?	Х		
8) Are all samples within holding times for requested analyses?	Х		
9) Were all sample containers received intact?	Х		
10) Are the temperature blanks present?			Х
11) Are the trip blanks (VOA and/or Cyanide) present?	X		
12) Are samples requiring no headspace, headspace free?		Х	
13) Do the samples that require a Foreign Soils Permit have one?			X

Exceptions: If you answered no to any of the above questions, please describe

Headspace found in trip blank.

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id		Temp (°C)	Rad (µR/hr)
ACZ #417		3.7	24
	-		
	•		

Client must contact ACZ Project Manager if analysis should not proceed for samples received outside of thermal preservation acceptance criteria.

Noice

Burlington Resources, Inc.

ACZ Project ID: Date Received: Received By:

L49852 2/11/2005

Sample Container Preservation

SAMPLE C	LIENT ID	R < 2	G < 2	Y < 2	YG< 2	B < 2	BG< 2	0 < 2	T >12	P >12	N/A	RAD
L49852-01 SATEGNA TMW-1					1						Х	
L49852-02 S	ATEGNA TMW-2										X	
L49852-03 T	B030904-03										X	
Sample Co	ntainer Preservation Lege	mel			- 26 D	Sec.						
Abbreviation	Description	Contair	ner Type	Pres	ervative	/Limits						
R	Raw/Nitric	RED		pH n	nust be <	2						
В	Filtered/Sulfuric	BLUE		pH m	nust be <	2						
BG	Filtered/Sulfuric	BLUE G	LASS	рН п	nust be <	2						
G	Filtered/Nitric	GREEN		pH n	nust be <	2						
0	Raw/Sulfuric	ORANG	ε	pH m	nust be <	2						
Р	Raw/NaOH	PURPLE	=	рН п	nust be >	12						
т	Raw/NaOH Zinc Acetate	TAN		pH n	nust be >	12						
Υ	Raw/Sulfuric	YELLO	N	рН п	nust be <	2						
YG	Raw/Sulfuric		N GLASS	6 pHm	nust be <	2						
N/A	No preservative needed	Not app	licable									
RAD	Gamma/Beta dose rate	Not appl	licable	must	t be < 250) µR/hr						

								1.5 e 5 1.	Ċ	HAIN	l'àf.	3
HLIZ Labo										JSTC		
2773 Downhill Drive Steamboat S Report to	prings, CO 80	0487 (800) 33	4-5493	l Black	L 49	<u>352</u>	sie ie te	19 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 1				
	+				H. W. Date State			<u></u>		9	- C. A. A.	a a C
Name: Greek MI	Pro Z			Addre			Co,	<u>× +</u>	10	1	240	20.
Company: Con Ingto- E-mail:	<u>nKes</u>	XINC 5	4	Telep	hone'	m		THE THE	271	$\frac{n}{2}$	62	5
		n' got n	1			5. 5 × 24	<u> </u>		<u>SCC</u>	2		
Copy of Report to					· · ? · .	1967 1 97					, °, °, °, °, °, °, °, °, °, °, °, °, °,	
Name:			4	E-mai								
Company:		3 8		Telep	none:	» به و						
Invoice to:		i si î				74		1.(1	202	1 1	- (* * * * * * * * * * * * * * * * * * *	
Name: greag U/U	12	•••	-	Addre	ss: P	0	201	42	57	2 717	20	
Company: Bor fingtion	Kasouri		-	1/2	SM	mai	ton	$\frac{N}{2}$	<u>n e</u>	5/4	<u> </u>	
E-mail: If sample(s) received past holdin	(HT)	or if incufficio] nt HT re		hone:5		520	07	23	<u>> /</u> YES	1	
analysis before expiration, shall	ACZ proceed	with request	ed short	t HT an	alyses?					NO		1
If "NO" then ACZ will contact clic												-
is Indicated, ACZ will proceed wi										use au	ote nun	nberl
Quote #:		An along the second			14							31 7 64 1
Project/PO #:			1	s	Sc			Í			1	
Shipping Co.: Feat	~ ×.			of Containers								
Tracking #: 8479824	9417	1	- - 	onta	er er						· .	
Reporting state for compliance	testing:	m		<u> </u>	144	<u> </u>						
Are any samples NRC licensab	le material?	No]	#	12							
SAMPLE IDENTIFICATION	DATE	E:TIME	Matrix		N.C.					ļ		
SATEGNA TMU-1	21005	0925	W6	Ŷ	X			ļ	<u> </u>			
SATEBINA TMUS	21005	1045	WG	0	X			ļ		 		
Trip	<u> </u>	<u></u>	w	1				ļ	<u> </u>]	
V			ļ					 	<u> </u>			
	<u> </u>							 				
				[
,												
			<u> </u>						t	<u> </u>		
· · · · · · · · · · · · · · · · · · ·	<u> </u>								†		<u>}</u>	
Matrix SW (Surface Water) · GW	(Ground Water)) · WW (Waste V	Vater) · D\	N (Drínki	ing Water) · SL (S	ludge) ·	SO (Soil) · OL (O	il) · Othe	r (Specify	0
REMARKS		• •∳ • • • •	in e		a).					2.0		es Antonio
				•								
RELINQUISHED BY		DATE:TI	ME	1	REC	EIVED	BY:		Ξ D/	ATE:TI	ME	Page
SAL	Υ	216051	1.2		1		In	e e	2 8 F 1	105 1	<u> </u>	, ago
THE	ł	~ (OQ 7)	100		<u></u>		<u>~~</u>			ביין	1:00	Of
									<u> </u>	·····		
FRMQA021.12.03.06	••	24		Whit	e - Retu	rn with	sample	. Ye	liov I f	etail to	Pyter I	