

From: Sent: To: Cc: Subject: Chavez, Carl J, EMNRD Thursday, June 16, 2011 11:19 AM 'Moore, Darrell'; Cobrain, Dave, NMENV Monzeglio, Hope, NMENV RE: NRS Detailed Area Piping Plan Drawings

Darrell:

The OCD is in receipt of the engineering pipeline drawings for the waste water system. The OCD approved the tank upgrades with conditions on May 3, 2011.

Based on the attached drawings, the new tanks appear to be: Tk-0829, Tk-836, Tk-49 (solvent extraction tank), Frac Tank (Dwg: 80-1-201-D-04), Tk-803, Tk-804, Tk-1, Tk-2, Tk-3, Tk-4, Tk-807,.....

Dwg: 80-1-201-D-02 depicts a 300 GALLON POLYMER MIX TANK, which must also meet the design and construction requirements of the permit.

OCD requests that Navajo provide the listing of all new tanks (which include Frac Tanks?) installed at the facility so the OCD can inspect the locations for compliance with the permit.

Thank you.

File: GW-028: "Inspections" and "Permit Modification" Thumbnails

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Wednesday, June 15, 2011 9:39 AM
To: Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV
Cc: Monzeglio, Hope, NMENV
Subject: FW: NRS Detailed Area Piping Plan Drawings

Carl, Dave and Hope

Attached, please find detailed piping and other drawings for our upgrade of our Waste Water System. We had sent you the drawings for the tanks for this system a few weeks ago.

From: Siwek, Janusz
Sent: Thursday, June 09, 2011 9:49 PM
To: Moore, Darrell
Cc: McKee, Michael; Meeks, Jimmy; Evans, Jason
Subject: FW: NRS Detailed Area Piping Plan Drawings

From: Holmes, Don P. [holmesdp@cdm.com] Sent: Thursday, June 09, 2011 5:18 PM	· · · · · · · · · · · · · · · · · · ·
To: Siwek, Janusz; Cline, Jim; Davis, Gary Cc: Christiansen, John A.	
Subject: NRS Detailed Area Piping Plan Drawings	
located and how about 85% of the piping is located.	ese drawings are not complete, but do define where all the equipment is
These should be useful on your OCD permit request.	
Lagenia, Please send an office transmittal to document again to the official Transmittal.	t this and post these drawing on the e-Room. Do not attach these drawings
Don P. Holmes, P.E. Sr. Project Manager	
CDM, Inc. 3050 Post Oak Blvd., Site 300 Houston, Texas 77056	
direct (713) 423-7318 Cell (713) 208-6847	

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

	•			
	•			
		•		
				$\begin{array}{c c} -\frac{2652}{100} & -\frac{1}{2}(41) & -\frac{1}{100} - \frac{267}{100} \\ -\frac{1002}{100} & -\frac{1}{2}(41) & -\frac{1}{100} - \frac{1}{2}(41) \\ -\frac{1002}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} - \frac{1}{100} \\ -\frac{1}{100} - \frac{1}{100} - \frac{1}{100}$
				9062 1 6:61 1 097 5
				203° (E.1) 600.18
				City mark I T AL
	•			1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1
				a source to mo a treat poor at
				1 2002 1 6464 46.26
	**			1 100 C 101
				1 1005 11 1 11 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				16-51 - 561 000 51
				BCC7 (//) BCB (6
				1001 K201 W/U S/
•				
				BCCT C(2) BCB (5) i641 E265 DOC 51 imp (and any pert) E165 DOC 51 i0001 C725 DOC 51 i0002 C725 DOC 51 i0002 C725 DOC 52 i0002 C725 DOC 52 i0002 C725 DOC 52
				. 2002 2 L/E. 00 (WC) (Bel C/E) 098 T5
				Bel CALL
				1691 1 126. DOC 0C
				161 (16) 100 15

•

·----

and welling and west Take Augs

ZIA Marine a Mari

014 OL 2014

5002 5002

10.5

		A MOTOWING	71-
		те, ,	
an a			
			1
		AT- 1	1
	the second se		1
			1:00
			<u> </u>
			، تاسیکند
and the second s		And the second second	
		C. A. Smaplester, 14	/ DSP
•		IT. S.M. BARRONTS C.	
······································			111
		The bageter	
		3	
1.517 001 SZ 457 MC+0 5071	1002 11 10 10 10 10 10 10 10 10 10 10 10 10	CHAMM .	. (4)
1 (15) 072 45 B/A 1 LUNY MALA 100 1			
BAC DOS OF HTA HARAN APERA	1 241 (1. 1. 2 200 (1. 1. 1. 2 200 (1. 1. 2 200 (1. 1. 2 200 (1. 1. 1. 2 200 (1. 1. 1. 1. 2 200 (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		SAR
COCC 200 8. 824 PC 2019 PC. 4: 54 1		THATWO	
	1 222 (18) 3 - 202 (2) 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	100 100 100 100 100 100 100 100 100 100	
665. 607.56 arr (CC 1768 2040) 51-1 -			
2.61* 2012 Har 1 Ho stell water			
1.6. 007 M 444 WO WO WE I	2. 2022 1 12.0.1 2016 2005 (2) 12010 2017 (2) 1000 (2) 2011 12.0.0 2011 12.		
1 410 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
		I BROLI DENDI TOCHAL	
2)41		K (<u>(())) / () / ()</u> () / (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A SALES OF THE SALES OF A SALES OF THE SALES OF A		L, CHIER IT	62. Car

*

(6+)	1 126.	DOC OC	1 114	
1661	1.16)	00C 01	ALB	1
#JGZ	3 1.201	005 15.	t Bad	-
\$ 9 63	£/61 /	005 #1	- 633	;
242	\$241-	200 41	443	-
5641	1.61	500 C (ELH 1	
and her manual her J	I DIS MAA	ACK FREE THERE	MAL	C 440
		t16	z	
THE THE ST & THE S	LACT distan	\$0 ***.) ×) 💆		whether ×:
	3			1-
				1

ALL MARKAN 213 NO 100 10.4 Vie 24 | H3' 22 | b4A 22 | b4A 22 | b4A 22 | b4A 24 | b4A مرين کارو ^رو د کارو کارو کارو کارو

Ate

91A

emm] 12 -----

7.971

1 1524 K2. \$221

2.+1

.11'1

AIZJTRA

1 10 1 2014

- - - -

AneqmoD goinfles oleven

COOS VIGUNAL & THEMHOATTA

** **

DISCHARGE PERMITJOW 4281 NAVAJO REFINING COMPANY PROPOSED TRACES LEAK TEST PROJECT

From:	Moore, Darrell [Darrell.Moore@hollycorp.com]
Sent:	Wednesday, June 15, 2011 9:39 AM
То:	Chavez, Carl J, EMNRD; Cobrain, Dave, NMENV
Cc:	Monzeglio, Hope, NMENV
Subject:	FW: NRS Detailed Area Piping Plan Drawings
Attachments:	80-200-D-01.pdf; 80-I-201-D-15.pdf; 80-I-201-D-01.pdf; 80-I-201-D-02.pdf; 80-I-201-D-03.pdf;
	80-I-201-D-04.pdf; 80-I-201-D-05.pdf; 80-I-201-D-06.pdf; 80-I-201-D-07.pdf; 80-I-201-
	D-08.pdf; 80-I-201-D-09.pdf; 80-I-201-D-10.pdf; 80-I-201-D-11.pdf; 80-I-201-D-12.pdf; 80-
	I-201-D-13.pdf; 80-I-201-D-14.pdf

I

Carl, Dave and Hope

Attached, please find detailed piping and other drawings for our upgrade of our Waste Water System. We had sent you the drawings for the tanks for this system a few weeks ago.

From: Siwek, Janusz
Sent: Thursday, June 09, 2011 9:49 PM
To: Moore, Darrell
Cc: McKee, Michael; Meeks, Jimmy; Evans, Jason
Subject: FW: NRS Detailed Area Piping Plan Drawings

From: Holmes, Don P. [holmesdp@cdm.com]
Sent: Thursday, June 09, 2011 5:18 PM
To: Siwek, Janusz; Cline, Jim; Davis, Gary
Cc: Christiansen, John A.
Subject: NRS Detailed Area Piping Plan Drawings

Please find attached the 16 drawings noted above. These drawings are not complete, but do define where all the equipment is located and how about 85% of the piping is located. These should be useful on your OCD permit request.

Lagenia, Please send an office transmittal to document this and post these drawing on the e-Room. Do not attach these drawings again to the official Transmittal.

Don P. Holmes, P.E. Sr. Project Manager **CDM, Inc.** 3050 Post Oak Blvd., Site 300 Houston, Texas 77056 direct (713) 423-7318 Cell (713) 208-6847

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

From:	Chavez, Carl J, EMNRD
Sent:	Tuesday, May 03, 2011 1:57 PM
To:	'Moore, Darrell'; Monzeglio, Hope, NMENV
Cc:	Lackey, Johnny; Siwek, Janusz; Davis, Gary; Dade, Randy, EMNRD
Subject:	RE: Navajo Refining Company, Artesia Refinery (GW-028) Tank Drawings for Waste Water Tank Upgrades

Darrell et al .:

Good afternoon.

Approved with the conditions specified in the OCD Discharge Permit provided below. Navajo Refining Company shall provide an updated spreadsheet with tank specifications, info., etc., and tank diagram of tanks with identification numbers for the tank integrity program within 3 months of tank construction.

Please provide at least 72 hours advance notice of tank construction schedule so the agencies may witness the construction of the liner system, concrete ring, leak detection system, etc. You may recall the tank ring that developed cracks because the tank was not centered in the middle of the concrete ring; consequently, I'm sure the construction will ensure that the tank circumference is centered on the tank ring for the construction. Also, the OCD observes that liner specifications were not provided in the engineering diagrams. The discharge permit requires LLDPE; however, if HDPE is used, in order to overcome its stress crack nature, the mil thickness must be increased to a minimum of 60-mil. The OCD expects the liner to be properly tied into the tank ring structure beneath the tank and the liner seams to be properly tested to ensure a good seal exists during and after construction.

Per Section 9 of the Discharge Permit:

9. Above Ground Tanks:

All new and existing above ground tanks containing chemicals must be placed or retrofitted over an impermeable pad (40mil LLDPE reinforced liner with leak detection system) or liner system within a bermed secondary containment area approved by the OCD. The bermed areas shall be constructed to contain a volume of at least one and one-third (1+1/3) greater than the total volume of the largest tank and/or all interconnected tanks within a bermed containment area. Alternative secondary containment designs must be approved by the OCD.

The owner/operator shall submit a spreadsheet or table identifying all tanks with a work schedule to address this provision (Tank ID #, type of tank, new/used, volume, chemical stored, tank age, last integrity test date, planned retrofit date and/or construction date, etc.) to the OCD for approval. The owner operator shall prioritize existing tanks for retrofit based on the toxicity and solubility (contaminant transport potential) of chemicals (BTEX, JP4, etc.) and site-specific threats to public health, safety, fresh water, and the environment. A work schedule with a phased approach extending beyond the standard 5-Year permit period may be approved by the OCD if the table is submitted within 3 months of permit issuance. The table(s) shall be considered approved if the OCD does not respond within 30 days of receipt of the table and work schedule.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental) From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Tuesday, May 03, 2011 11:02 AM
To: Chavez, Carl J, EMNRD; Monzeglio, Hope, NMENV
Cc: Lackey, Johnny; Siwek, Janusz; Davis, Gary
Subject: Tank Drawings for Waste Water Upgrade

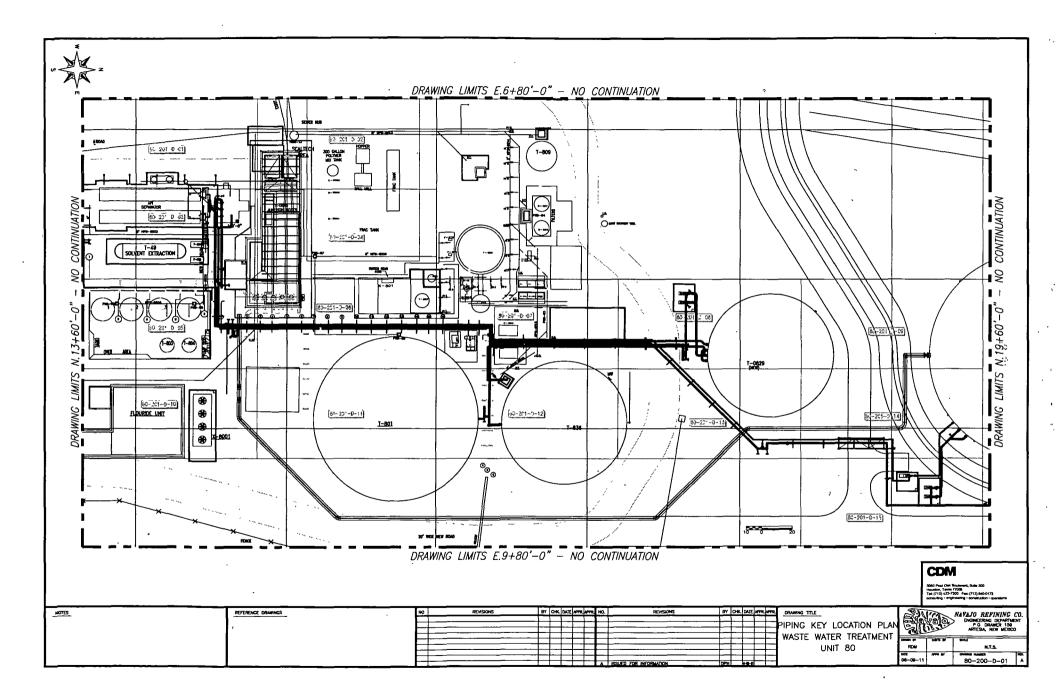
Carl and Hope

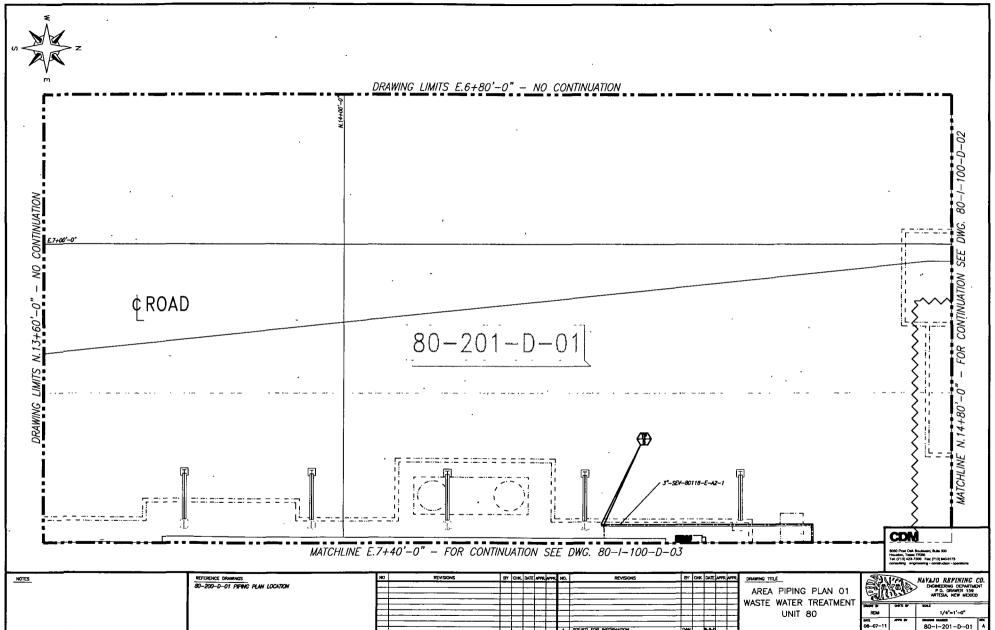
Attached are drawings for two tanks that we will be building as part of our Waste Water System Upgrade. This project was discussed at the meeting we held in Santa Fe at OCD's offices in March, 2011. We are asking for approval to build these tanks. They are located just north of current waste water tank 836 and will have a liner under each tank with PVC Tattle Tales thru the ring wall to detect any leaks.

If you have any questions, please contact me at 575-746-5281. We would like to start construction by the end of this week if possible. Your attention to this matter is greatly appreciated.

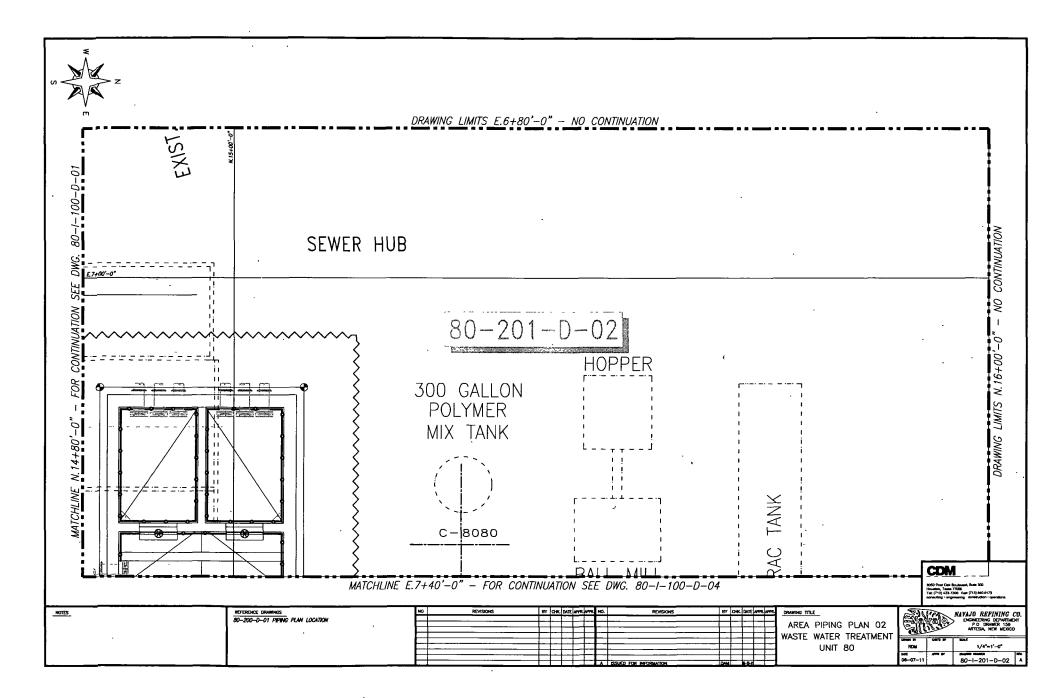
Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

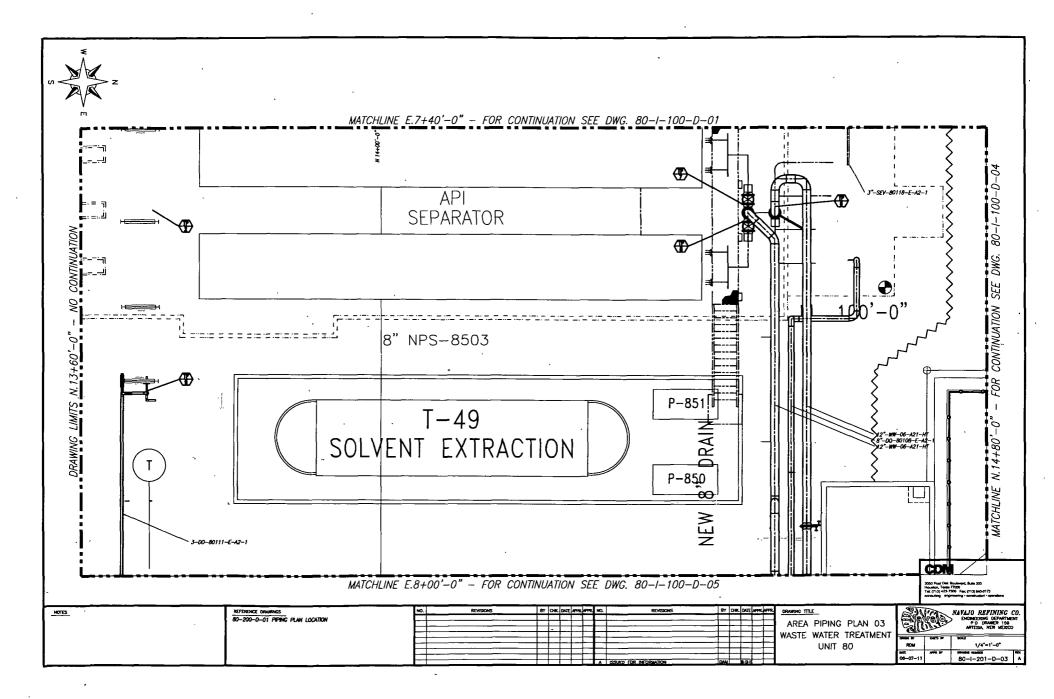
CONFIDENTIAL

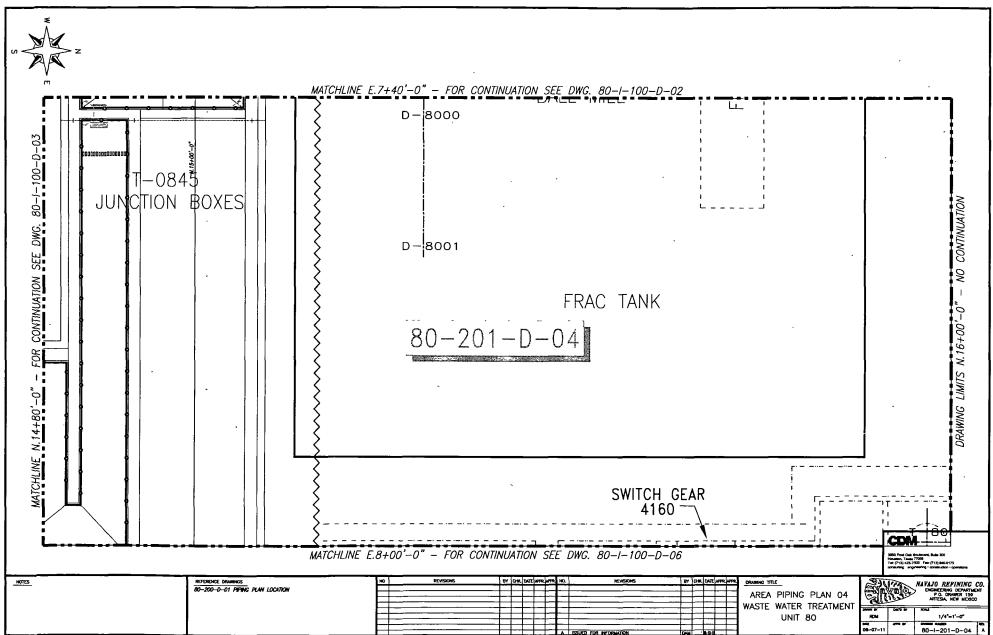

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.


Please consider the environment before printing this e-mail.

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

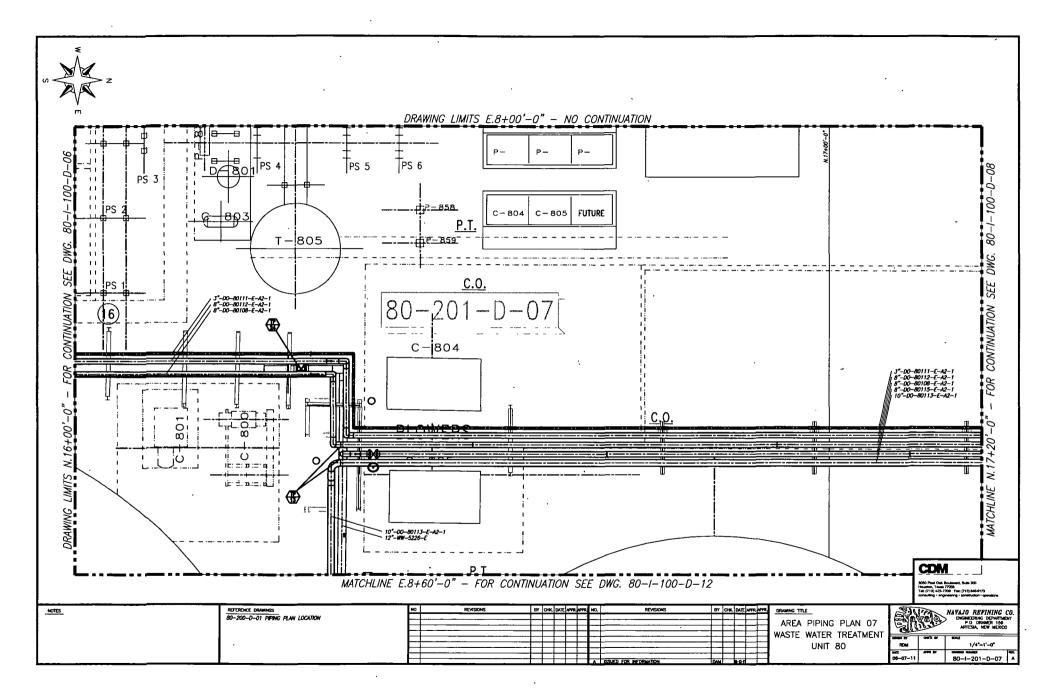

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

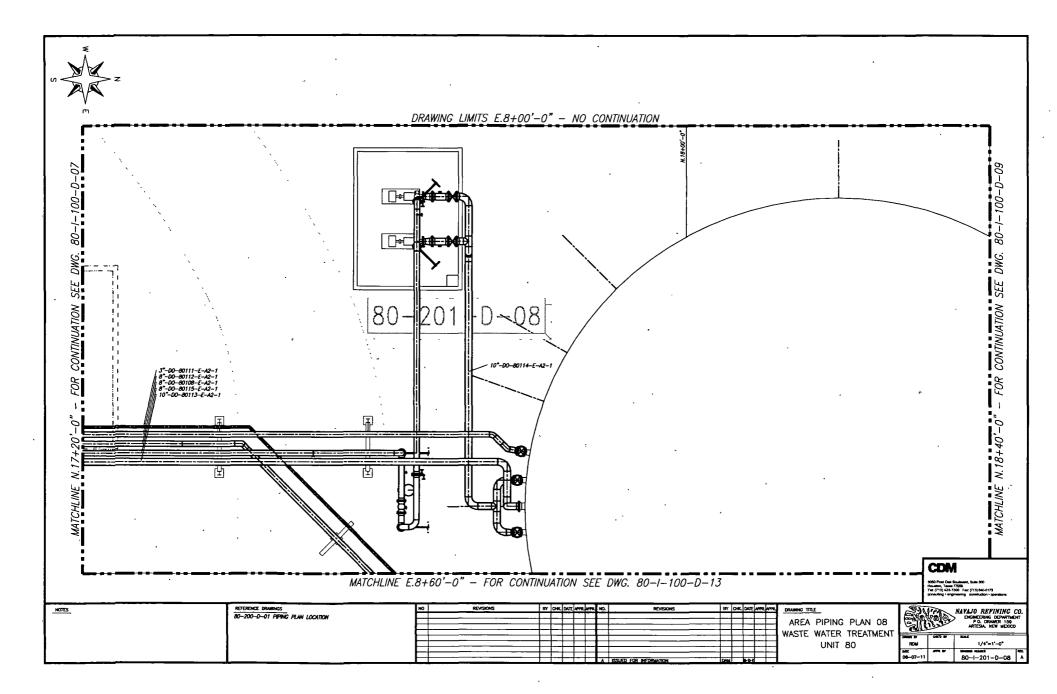

· .

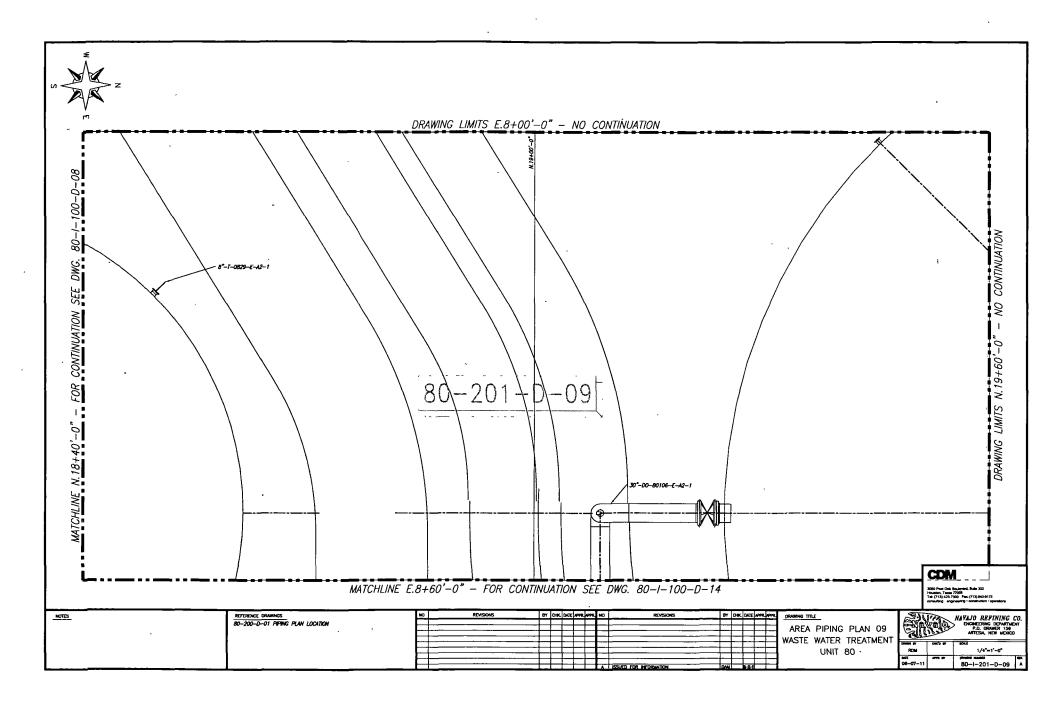


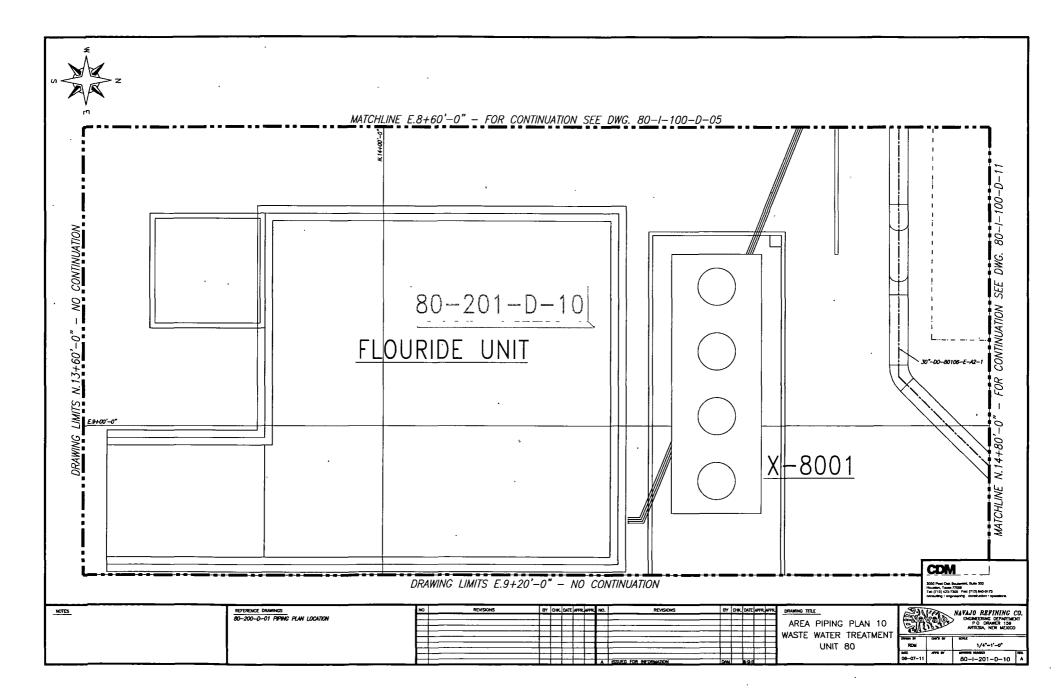
4° *

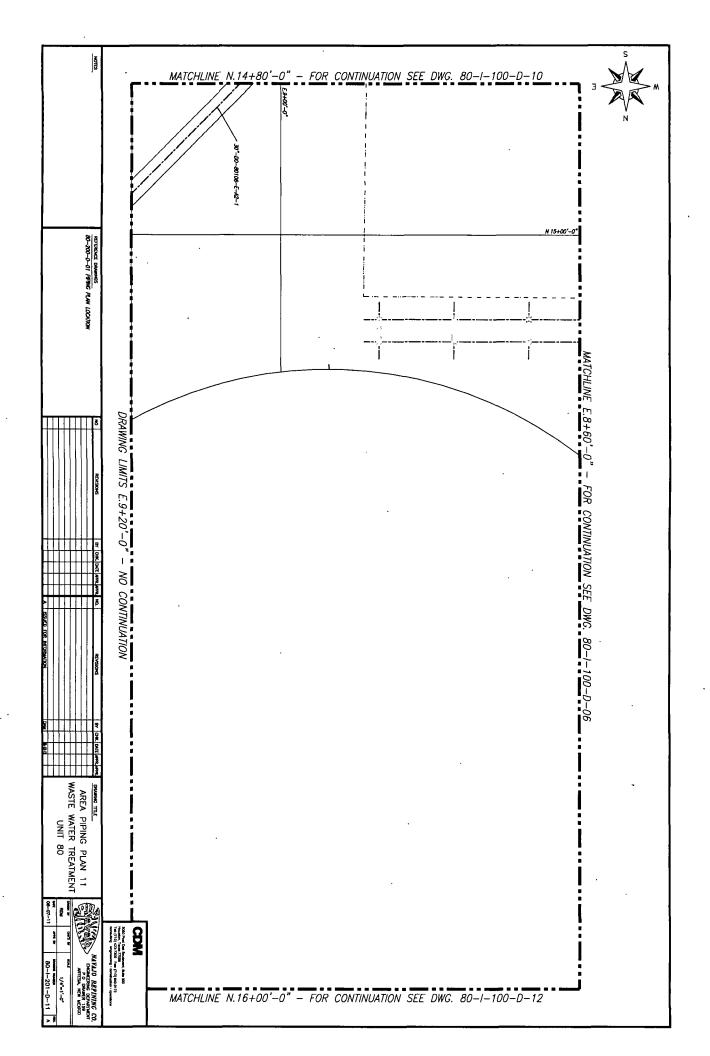


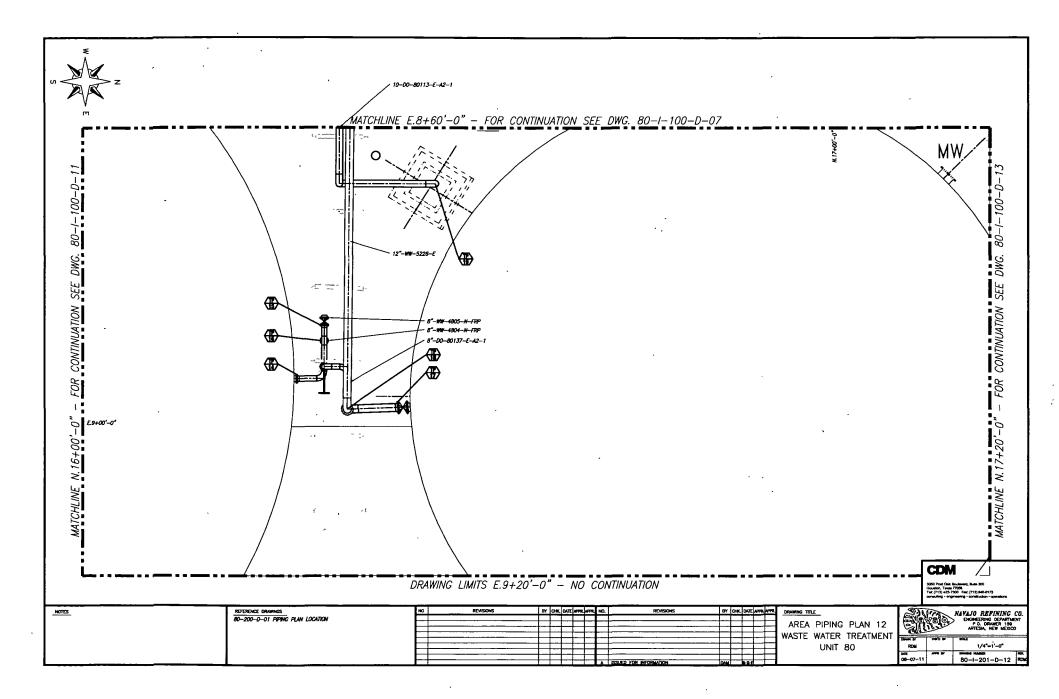

-- - - - - --

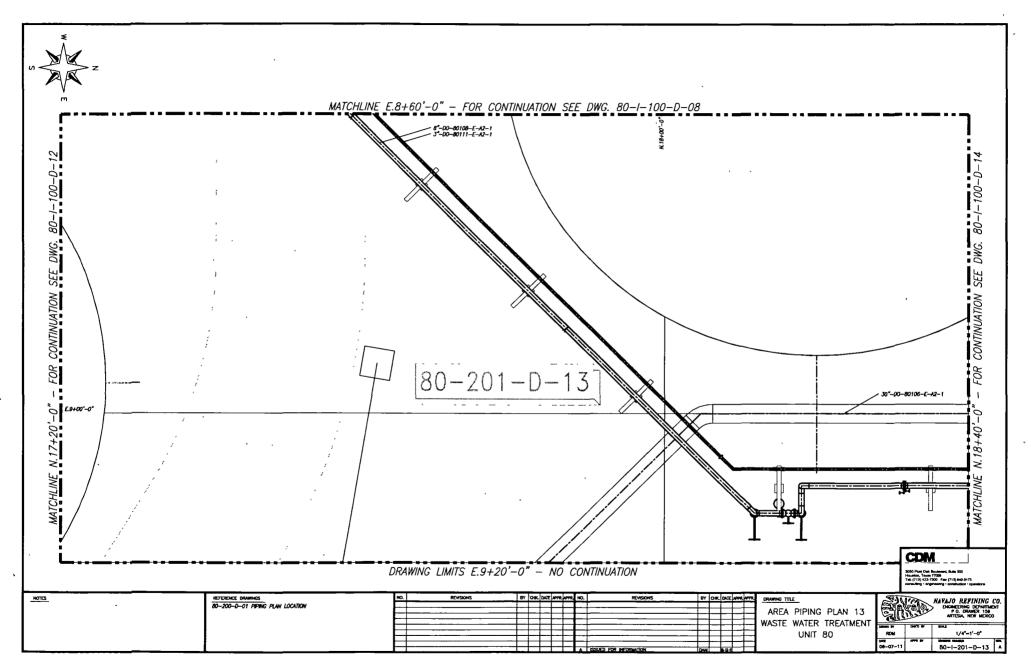


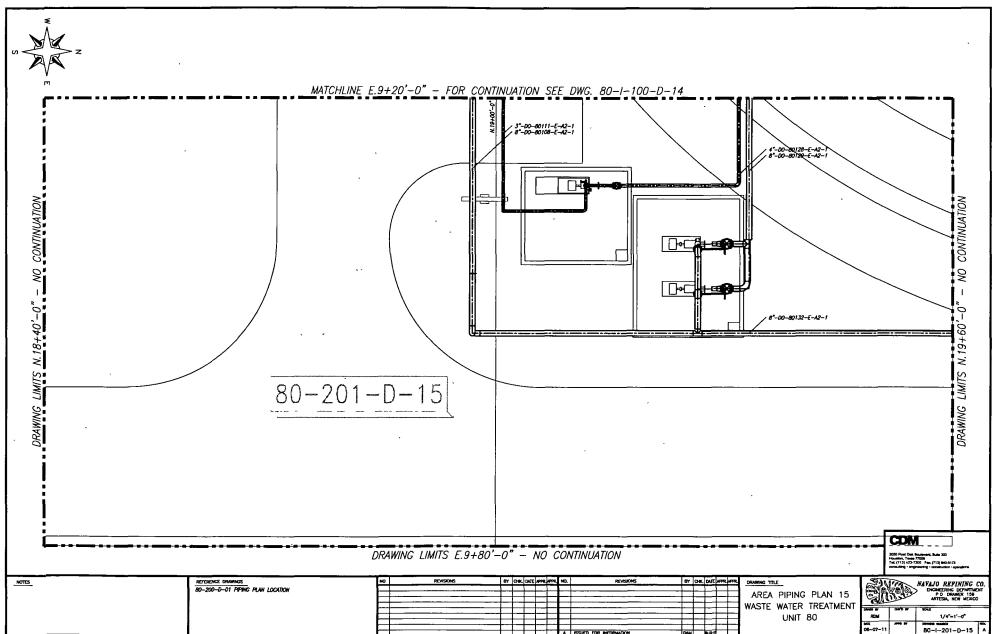












· ·

.

.

From: Sent:	Chavez, Carl J, EMNRD Friday, February 25, 2011 3:06 PM
То:	'Moore, Darrell'
Cc:	Lackey, Johnny; Siwek, Janusz; Vasquez, Clemente; Sanchez, George; VonGonten, Glenn, EMNRD; Monzeglio, Hope, NMENV; Powell, Richard, NMENV
Subject:	Navajo Refining Company Artesia Refinery (GW-028) "Minor Modification" to Section 13(A) Hydrotest Requirements for New Waste Water Effluent Line to UIC Class I (NH) Disposal Wells WDWs 1, 2 & 3

Darrell, et al.:

The OCD hereby **temporarily approves** the "sectional hydro test" method proposed by the Navajo Refining Company (NRC) below for "good cause" with the following conditions:

- 1) The new line shall be inspected daily for leakage after construction (flow start date when waste water effluent is flowing to the disposal wells) until a successful hydro test is achieved;
- 2) The hydro test must be performed within 3 months of completion of the new line and the flow start date; and
- 3) The operator must accept the "Minor Modification" conditions to the discharge permit outlined below.

The OCD hereby issues the "**Minor Modification**" pertaining to Section 13(A) (see Section provided below) of the current OCD Discharge Permit based on the acceptance of the above listed conditions by the NRC.

OCD Existing Permit Conditions:

13. Underground Process/Wastewater Lines:

A. The owner/operator shall provide a comprehensive spreadsheet/table listing of all underground process/wastewater pipelines within 3 months of permit issuance to establish the basis for compliance with this provision. The owner/ operator shall perform mechanical integrity testing (MIT) at least once every five (5) years and/or complete a minimum of 20% per year of the underground process/wastewater pipeline MITs before the expiration date of the permit to demonstrate the mechanical integrity of all underground process/wastewater pipelines, except lines containing fresh water or fluids that are gases at atmospheric temperature and pressure. Pressure rated pipe shall be tested by pressuring up to one and one-half times the normal operating pressure, if possible, or for atmospheric drain systems, to 3 pounds per square inch greater than normal operating pressure, and pressure held for a minimum of 30 minutes with no more than a 1% loss/gain in pressure. The owner/ operator may use other methods for testing if approved by the OCD. The OCD shall be notified at least 72 hours prior to all testing.

OCD New "Minor Modification" Conditions to Section 13(A):

Pressure rated pipe shall be tested by pressuring up to one and one-half times the normal operating pressure, if possible, or for atmospheric drain systems, to 3 pounds per square inch greater than normal operating pressure, and pressure held for a minimum of 30 minutes with no more than a 1% loss/gain in pressure. The exception is the "Waste Water Fiberglass Effluent Pipeline" to the UIC Class I (NH) Disposal Wells "WDWs 1, 2 & 3" that require testing on an annual basis and shall be tested by pressuring up to not less than 1200 psig nor greater than 1400 psig with pressure held for a minimum of 30 minutes with no more than 1% loss/gain in pressure. The owner/ operator may use other methods for testing if approved by the OCD. The OCD shall be notified at least 72 hours prior to all testing.

Please confirm that NRC accepts the terms and conditions stated above. Please contact me if you have questions. Thank you.

Please be advised that OCD approval of this plan does not relieve Navajo Refining Company of responsibility should their operations fail to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Navajo Refining Company of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> "Why not Prevent Pollution; Minimize Waste; Reduce the Cost of Operations; & Move Forward with the Rest of the Nation?" To see how, go to "Pollution Prevention & Waste Minimization" at: <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Friday, February 25, 2011 12:50 PM
To: Chavez, Carl J, EMNRD
Cc: Lackey, Johnny; Siwek, Janusz; Vasquez, Clemente; Sanchez, George
Subject: Hydrotest on new Effluent Line

Carl

As you know, Navajo is installing a new effluent pipeline to our injection wells. This new pipeline is made of fiberglas and has different specifications than our steel pipeline that is currently in service. As the line is being constructed, it is being hydrotested to 1600 psi in sections. This is done so in case there is a problem, that leak can be repaired right then.

As you are aware, Navajo is having some major issues with waste water right now. The sooner we can get this new line into service, the sooner we can alleviate some of those issues. With that in mind, is it possible to use these "sectional" hydrotests in lieu of the full hydrotest once the line is finished? This would save Navajo some time in getting the line operational. As an alternative, if that option is not acceptable, would OCD be open to postponing the full hydrotest for say 3 months. That would give Navajo some time to work off our excess wastewater before we shut the line down for the full hydrotest.

Along the same lines, the current permit says that we will test the line to 1 ½ times operating pressure. The operating pressure of the system will be approximately 1300 lbs +/-. The new fiberglas line is only guaranteed to 1630 psi. It is "rated" quite a bit higher than that, but the manufacturer's guarantee is only to 1630. Obviously, 1630 psi would not cover the 1 ½ times operating pressure that our permit currently requires. To maintain our warranty on the line, Navajo is requesting that the hydrotest pressure on the line be limited to 1630 psi.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

Please consider the environment before printing this e-mail.

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

From: Sent: To: Cc: Subject: Chavez, Carl J, EMNRD Friday, February 11, 2011 2:50 PM 'Moore, Darrell'; Lackey, Johnny VonGonten, Glenn, EMNRD RE: Abandonment Plan - Effluent Waste Water Line

Approved.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> (Pollution Prevention and Waste Minimization Guidance is under "About Us- Environmental Bureau" http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental)

OCD Online File: "Modifications 2011"

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Friday, February 11, 2011 2:39 PM
To: Chavez, Carl J, EMNRD; Lackey, Johnny
Cc: VonGonten, Glenn, EMNRD
Subject: RE: Abandonment Plan - Effluent Waste Water Line

The new pipeline is in the exact same **right of way** as the old one. It is NOT exactly in the location of the abandoned pipeline, but it is within 5 feet of it.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Friday, February 11, 2011 2:20 PM
To: Moore, Darrell; Lackey, Johnny
Cc: VonGonten, Glenn, EMNRD
Subject: FW: Abandonment Plan - Effluent Waste Water Line

Darrell, et al.:

I am in receipt of the maps of the new pipeline that OCD recently reviewed from the Navajo Refining Company (NRC),.

I believe NRC submitted the same maps of the pipeline to satisfy the approval condition by the OCD for the abandonment plan of the old pipeline?

If this is the case, please reply this message and indicate that the new effluent pipeline transect is exactly in the location of the abandoned pipeline. If it is not the same, then NRC has not satisfied the OCD condition for approval of the old pipeline that is being replaced.

Please reply within 5 working days to this message.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: <u>http://www.emnrd.state.nm.us/ocd/index.htm</u> (Pollution Prevention and Waste Minimization Guidance is under "About Us- Environmental Bureau" <u>http://www.emnrd.state.nm.us/ocd/environmental.htm#environmental</u>)

From: Chavez, Carl J, EMNRD
Sent: Tuesday, February 08, 2011 7:59 AM
To: 'Moore, Darrell'
Cc: VonGonten, Glenn, EMNRD
Subject: RE: Abandonment Plan - Effluent Waste Water Line

Darrell:

The abandonment plan for the existing effluent waste water line is approved with the following condition:

 Please send the OCD a map(s) depicting the actual location of the existing line (i.e., 7.5 Minute USGS Quadrangle Scale) by COB this Friday so the OCD can place it along with your abandonment procedure on OCD Online in the event there are any future issues with accidental burial, run-ins with the line, etc.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Tuesday, February 08, 2011 7:27 AM
To: Chavez, Carl J, EMNRD
Subject: Abandonment Plan - Effluent Waste Water Line

Carl,

Per your email of January 5, 2011. Navajo is submitting the following abandonment plan for the old effluent waste water line. The plan is as follows:

Abandonment plan will consist of removing all water from existing pipeline via running multiple pigs into frac tanks. Once all the water has been removed, then the pipeline will be cut off below grade and capped at both the start and end of the pipeline and at each lateral. Then the cathodic protection will be removed from the line.

If you have any questions concerning this submission, please contact me at 575-746-5281.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

Please consider the environment before printing this e-mail.

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

REFINING COMPANY, LLC

FAX (575) 746-5283 DIV. ORDERS (575) 746-5481 TRUCKING (575) 746-5458 PERSONNEL

501 EAST MAIN STREET • P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159 TELEPHONE (575) 748-3311

February 10, 2011

RECEIVED OCD 2011 FEB 11 P 1: 30

FAX

(575) 746-5451 ENV/PURCH/MKTG

Carata de core - or e

(575) 746-5419 ACCOUNTING

(575) 746-5421 ENGINEERING

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

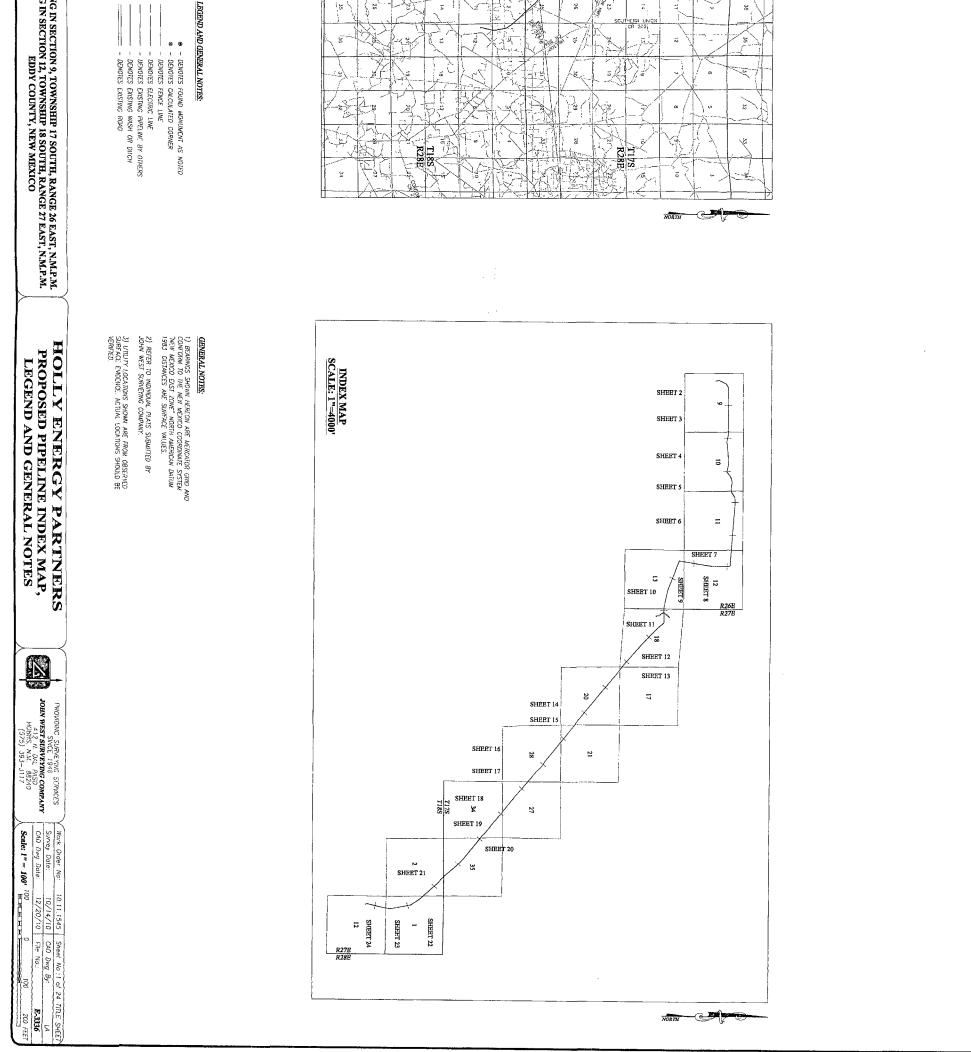
RE: MAP AND LOCATION OF REPLACEMENT EFFLUENT LINE

Carl,

Per your e mail request of February 8, 2011, please find the enclosed maps showing the location of our new effluent pipeline. If there are any questions concerning this submission, please call me at 575-746-5281.

An Independent Refinery Serving . . . NEW MEXICO • ARIZONA • WEST TEXAS • NORTHERN MEXICO

Sincerely, NAVAJO REFINING COMPANY, LLC


. D& Mone

Darrell Moore Environmental Manager for Water and Waste

Encl:

BEGINNING IN SECTION 9, TOWNSHIP 17 SOUTH, RANGE 26 EAST, N.M.P.M. & ENDING IN SECTION 12, TOWNSHIP 18 SOUTH, RANGE 27 EAST, N.M.P.M. EDDY COUNTY, NEW MEXICO

No. Rev. By: Chk'd By: REVISIONS

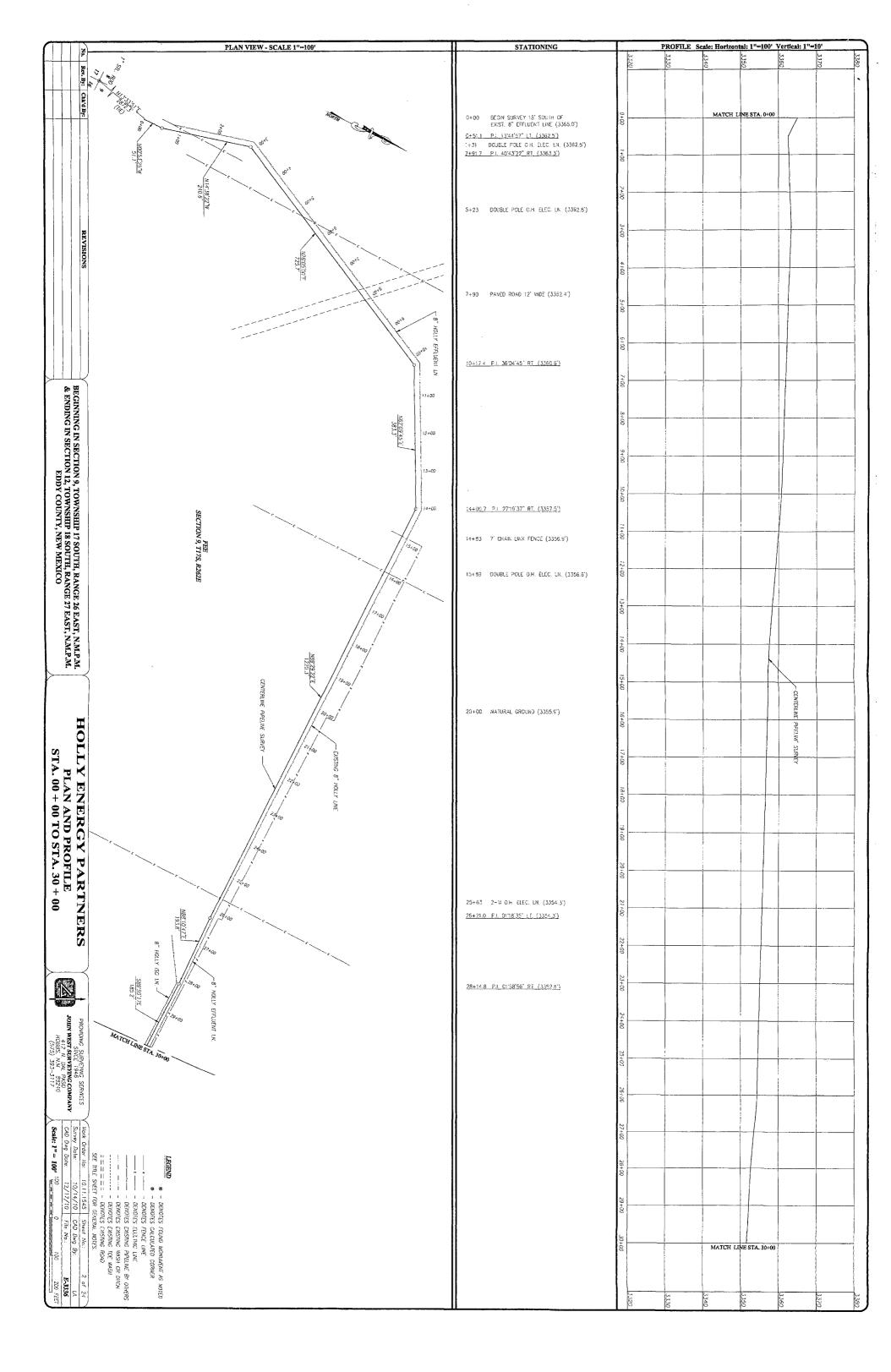
35		24	້ ຕ	i2		15	-;}∕-≌ I	24 CT			- < . =
3		6	10	, , ,	67		- 56 ,				
					5	75 FF					
	5486		285			271 	71	2	ANTESIA		
		R26E	T18S		• • • • •			20H	TI7S		
- 8							H <u>Z</u>				
3							25				
$\left\ \right\ _{\infty}$					Kr	Dat				<u> _</u>	
	<u> </u>					Balla Cascoba		10			
	28	8		(0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	102	PIPEIU		<u>}.</u>			
	-1		TI8S		102 201 L	-r-8\R 		R27E	16 		
				1		AT/		22 60	1.1	10-10	find the
35	- Contraction					A.	8	100 ES	HERN UNION		
136			E a	12 12		And a state				ā j	
							No.		N.K.	1	6
1	22	F)		KK.	10	51	24) Visia	\leq		

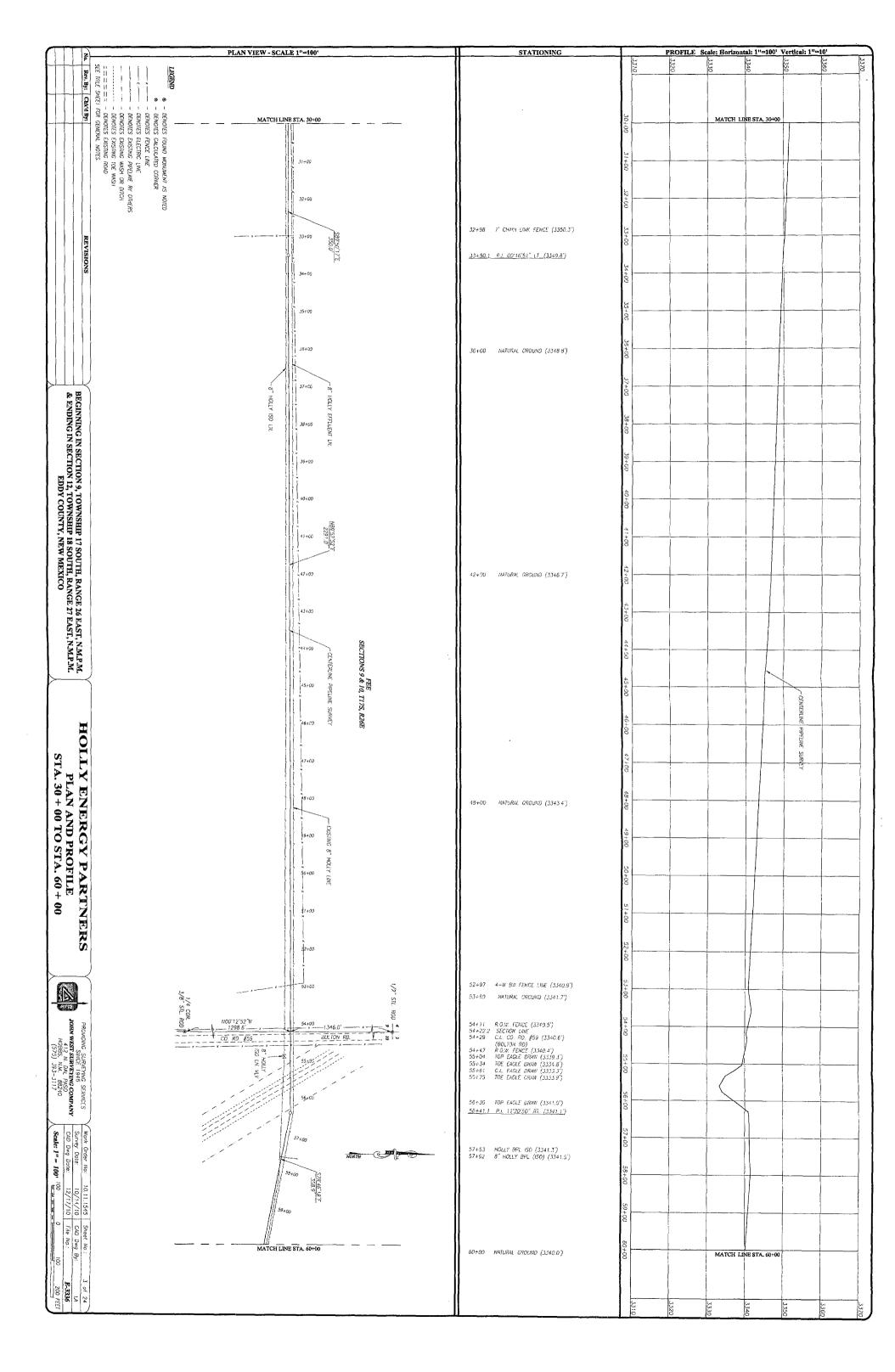
36

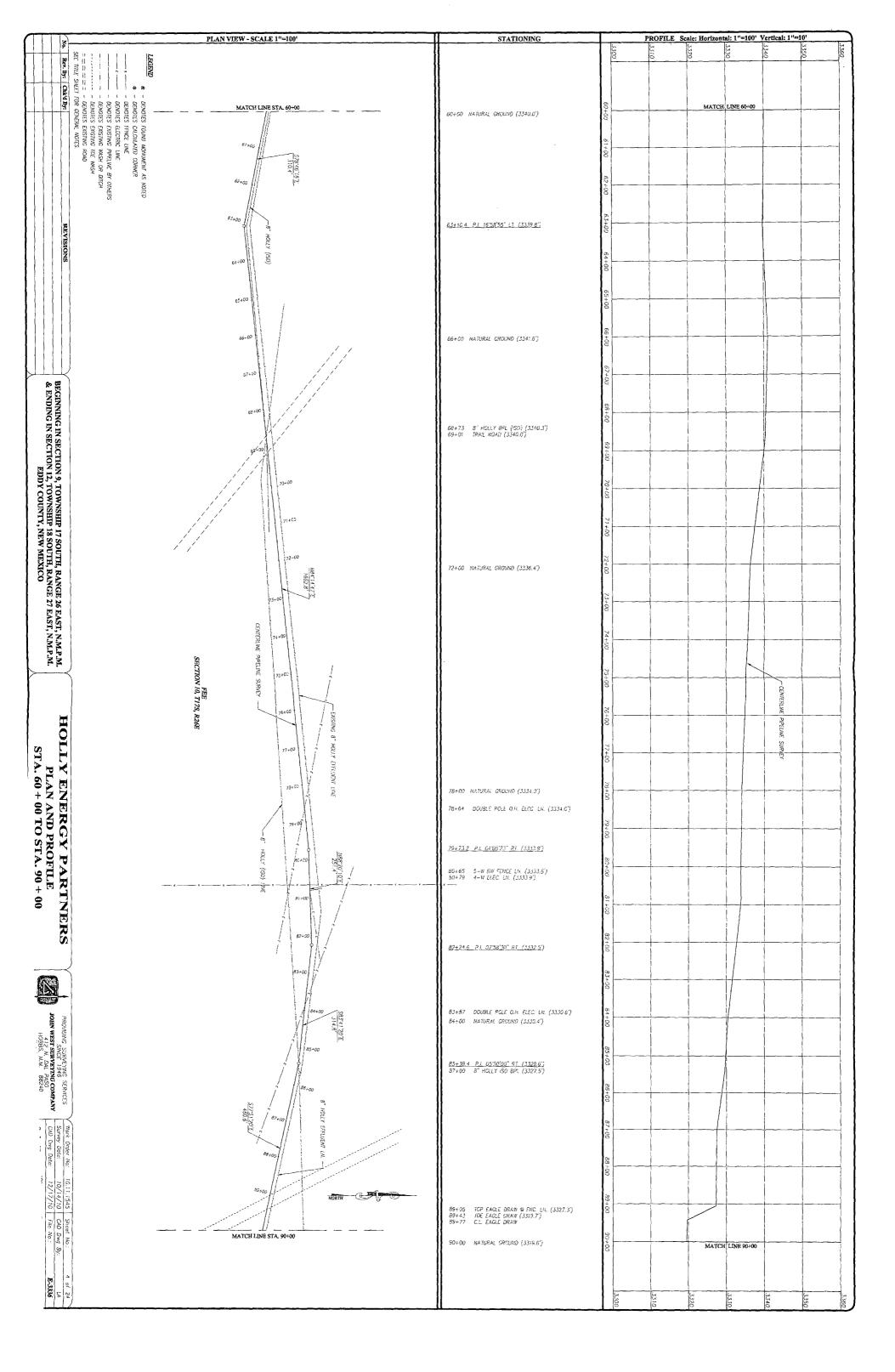
-54

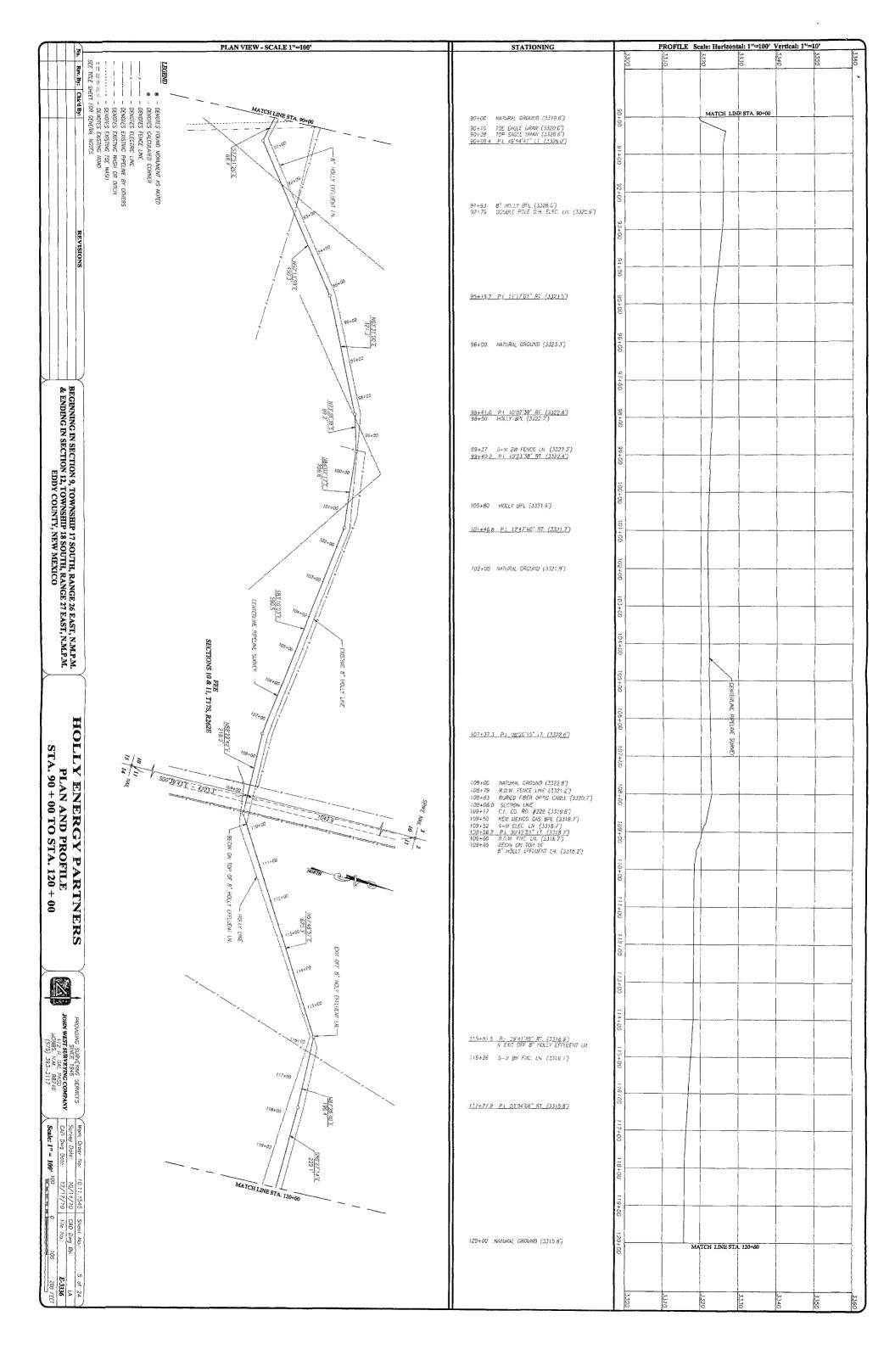
36

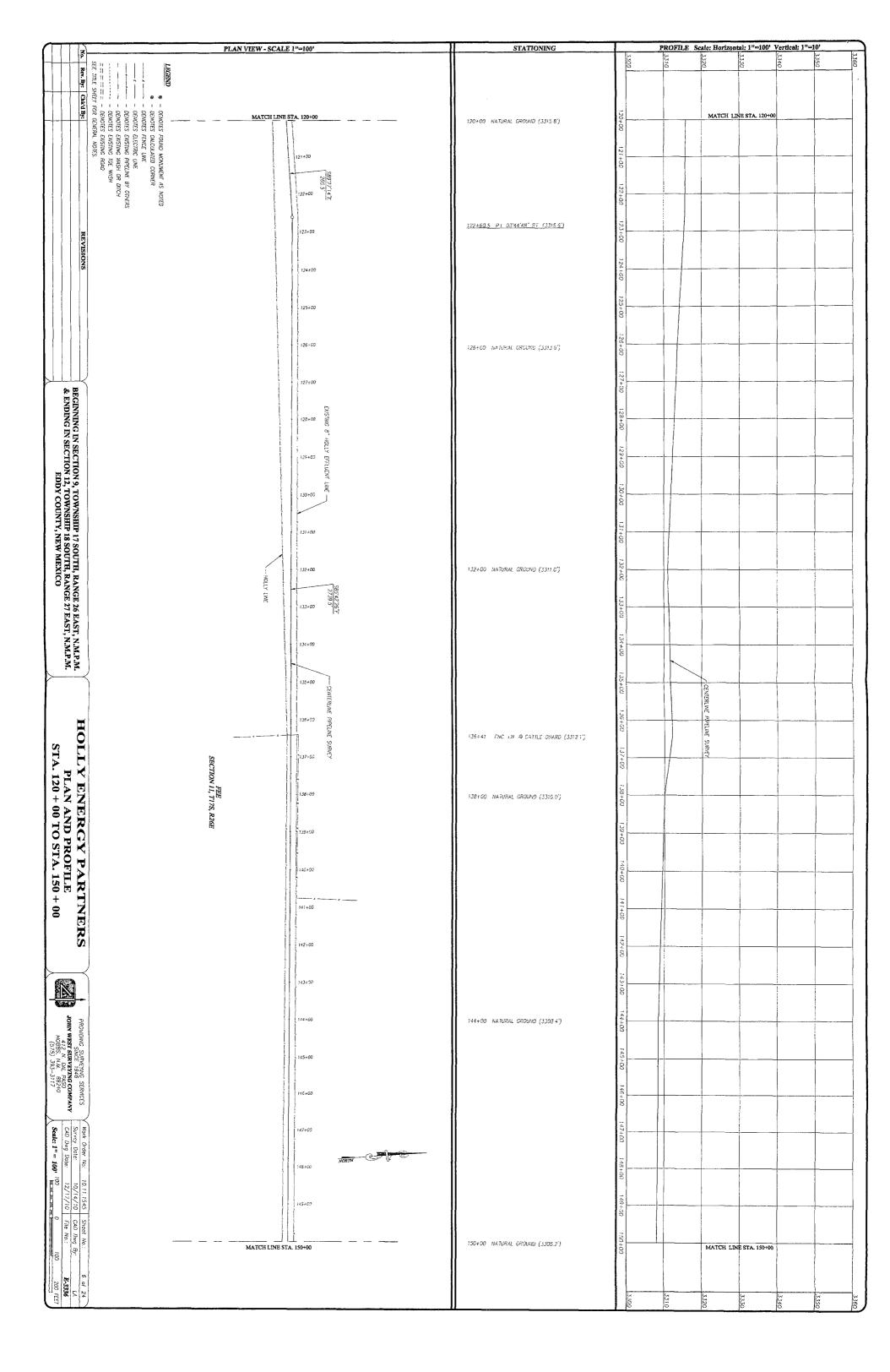
-H-

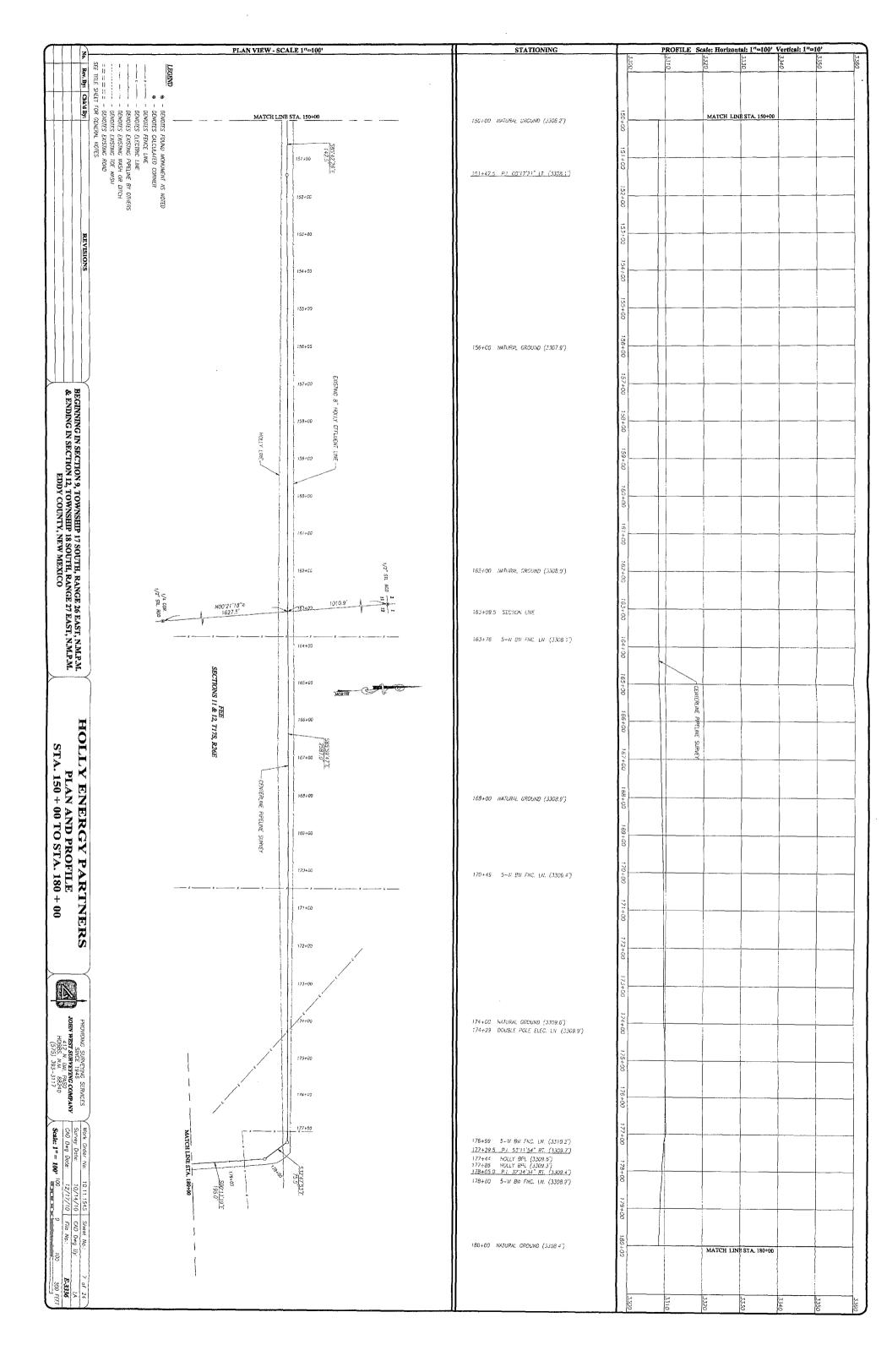

3

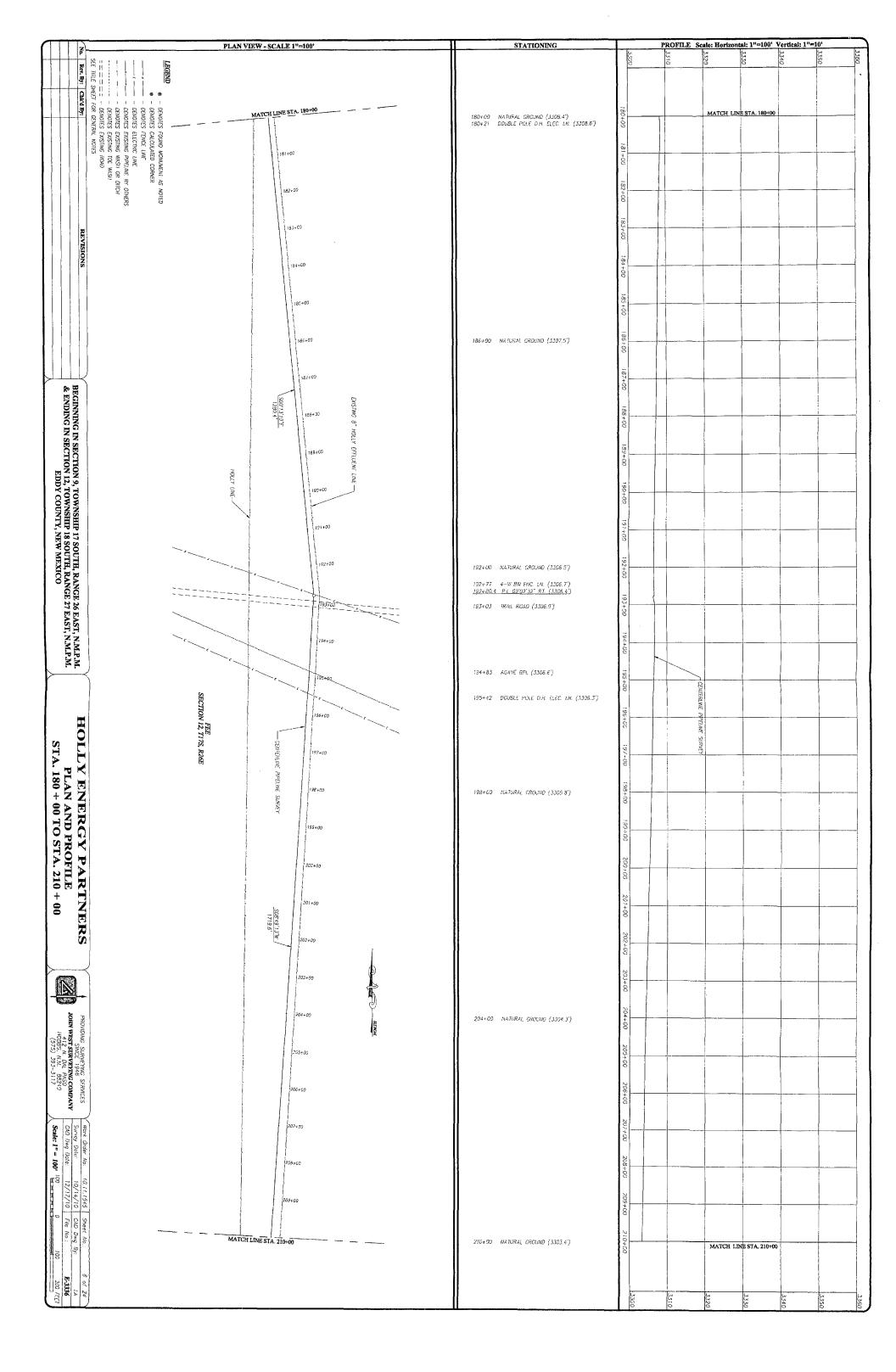

i.

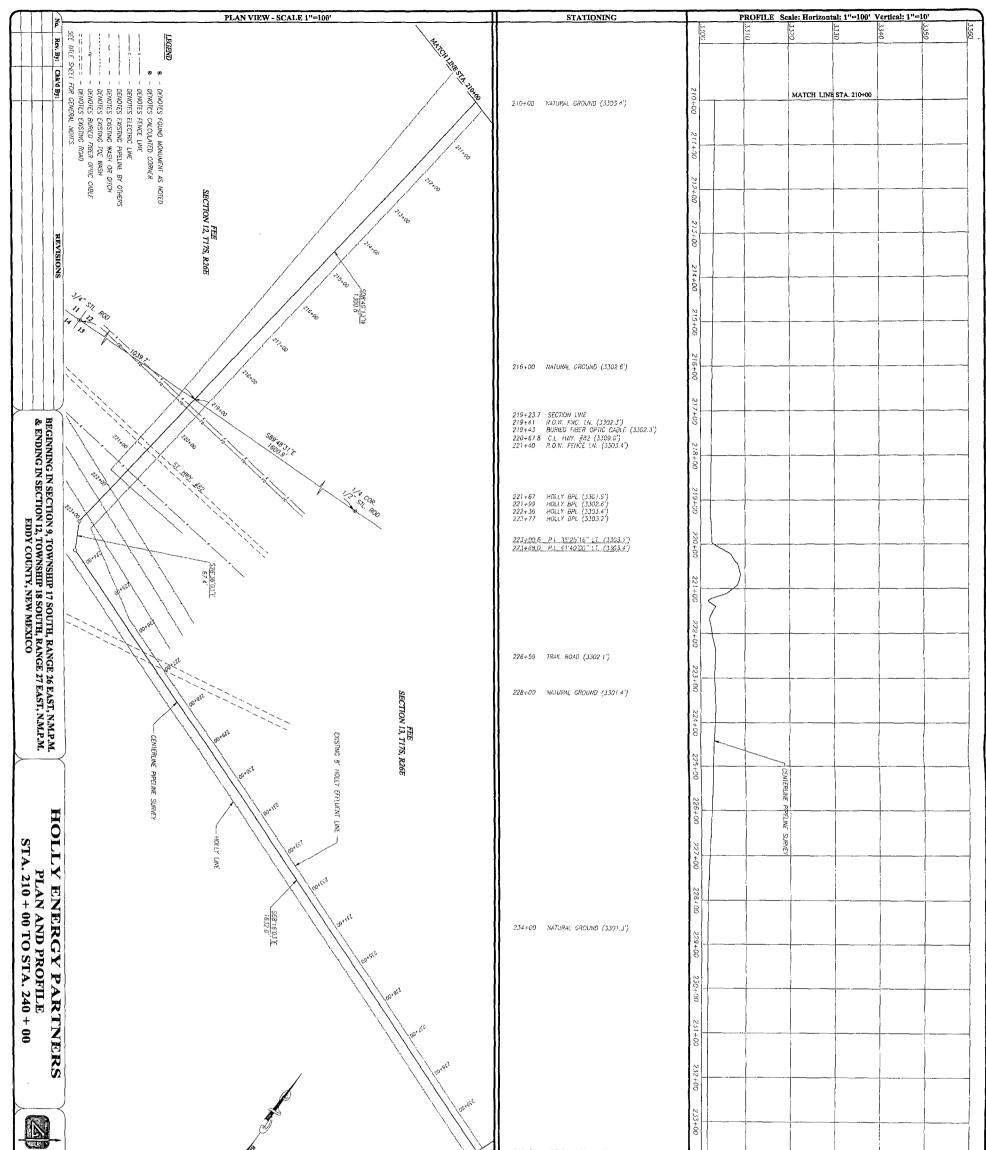

8

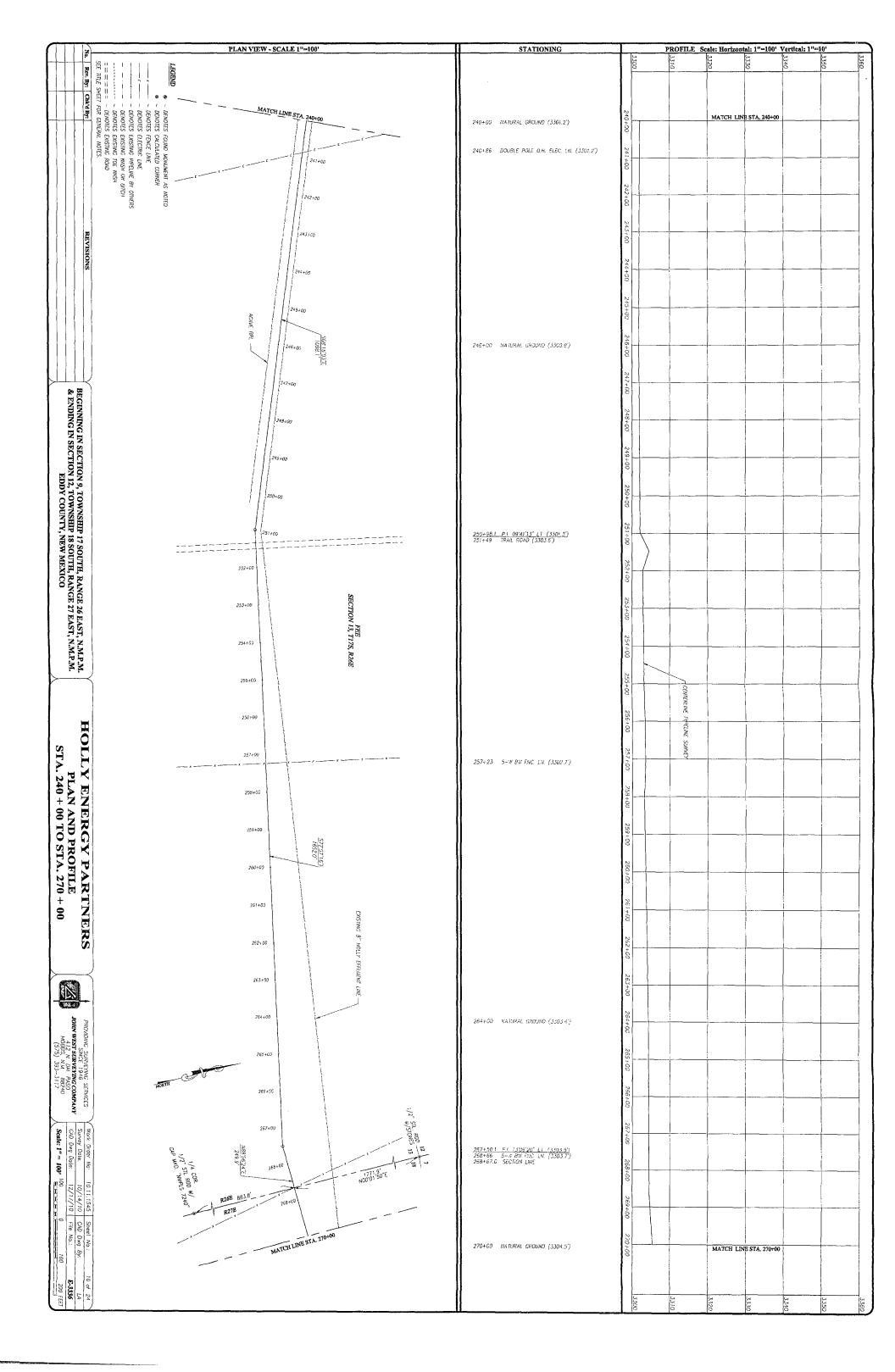

35

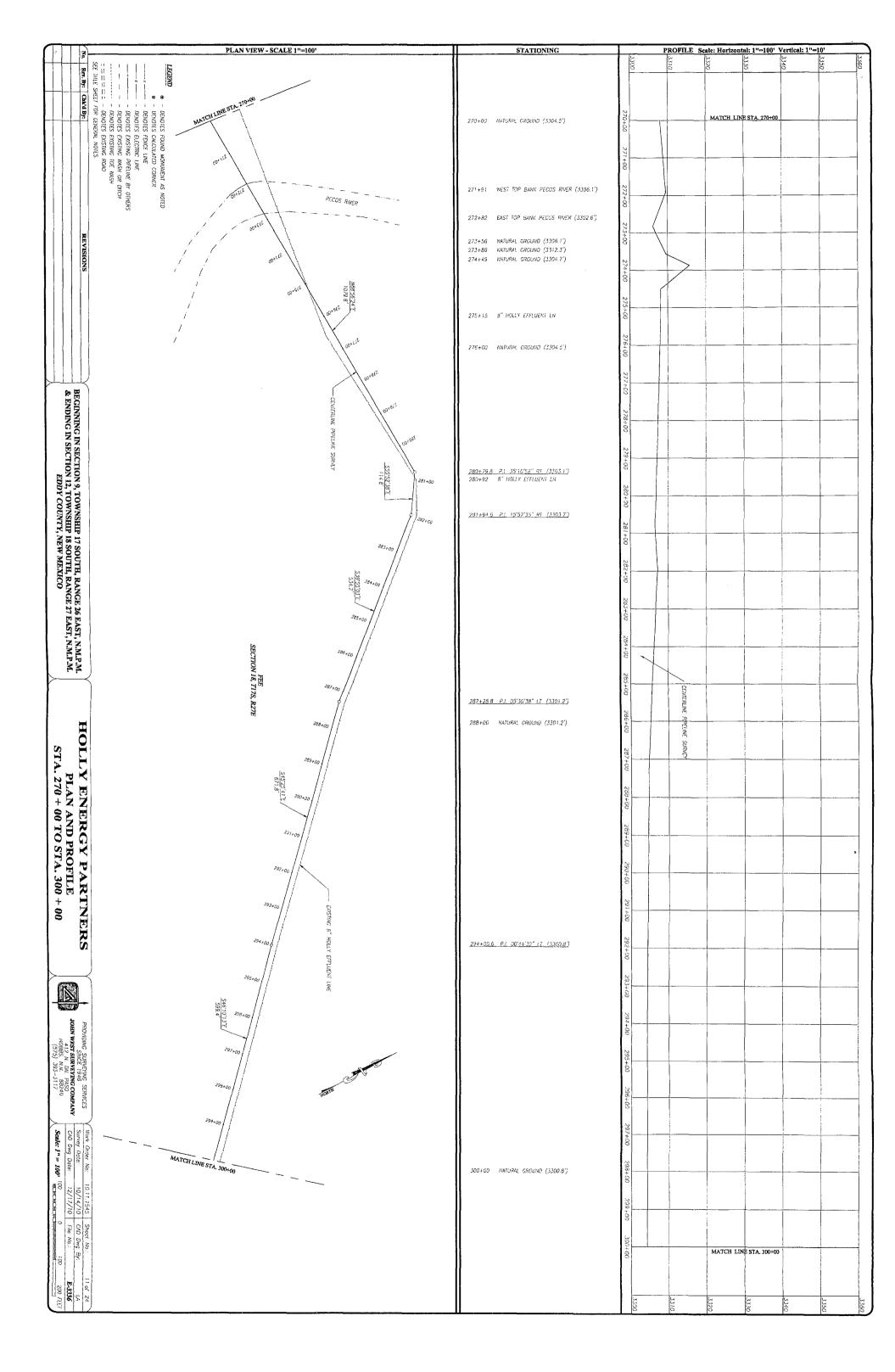

500

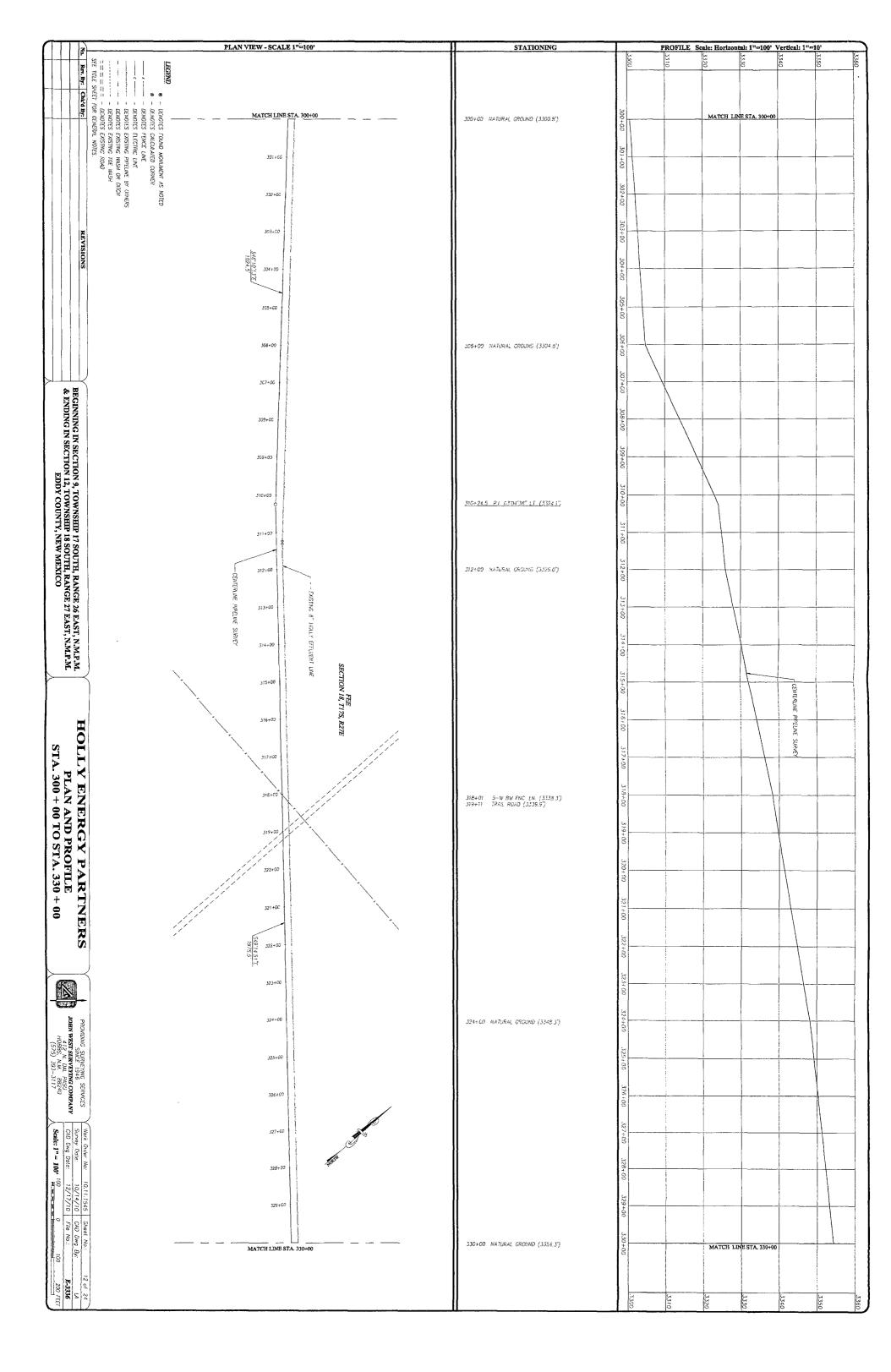


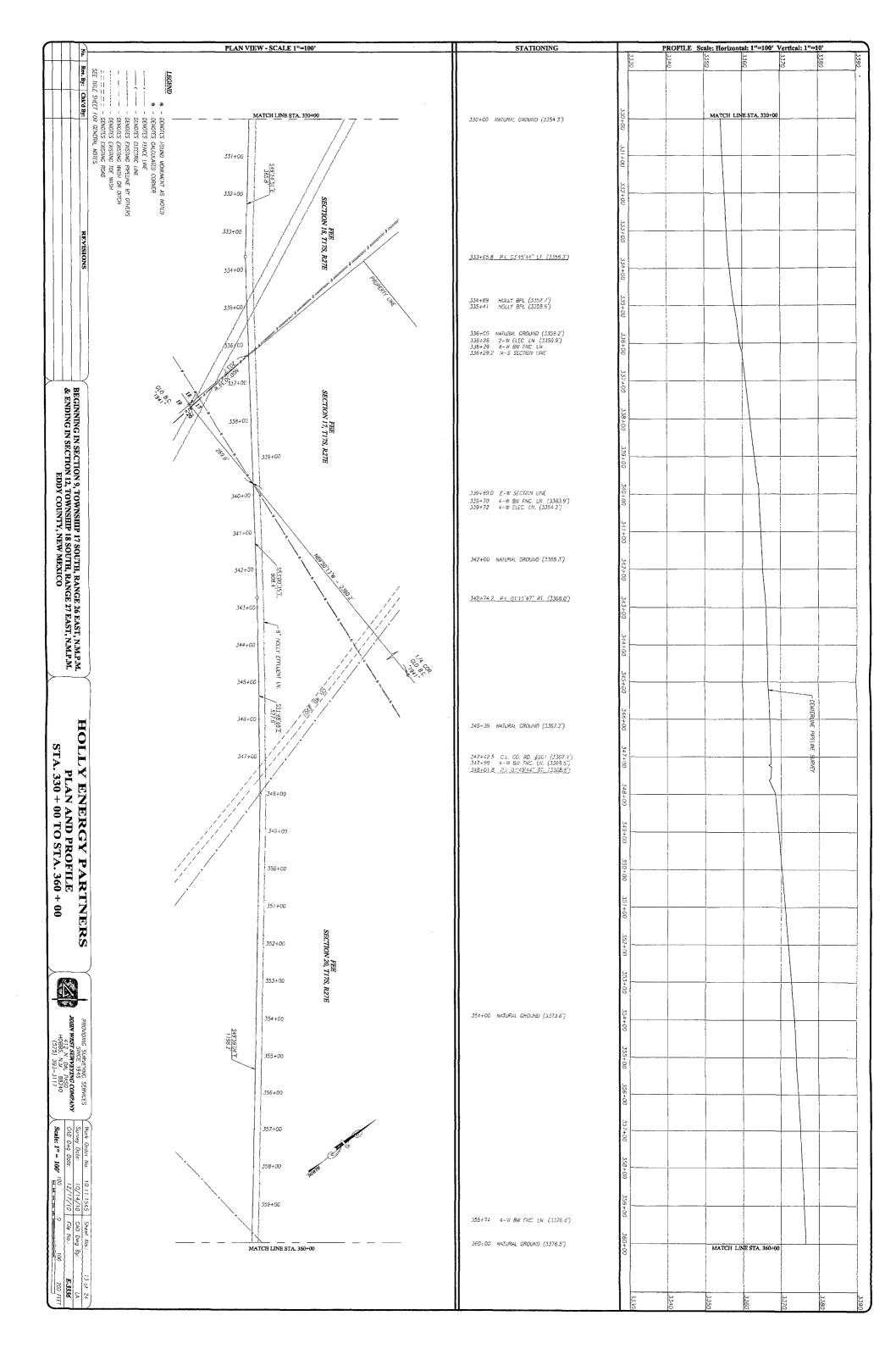


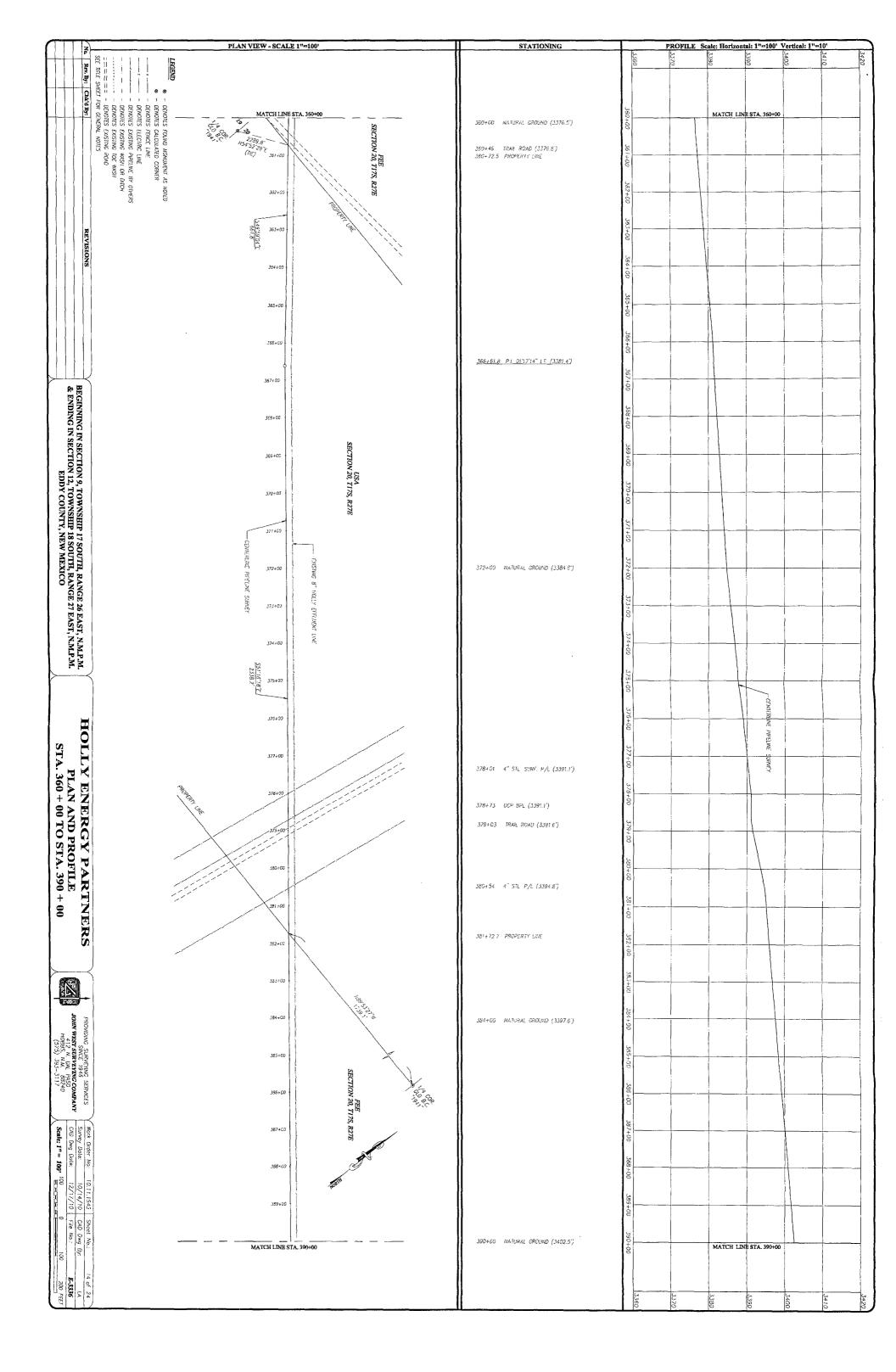


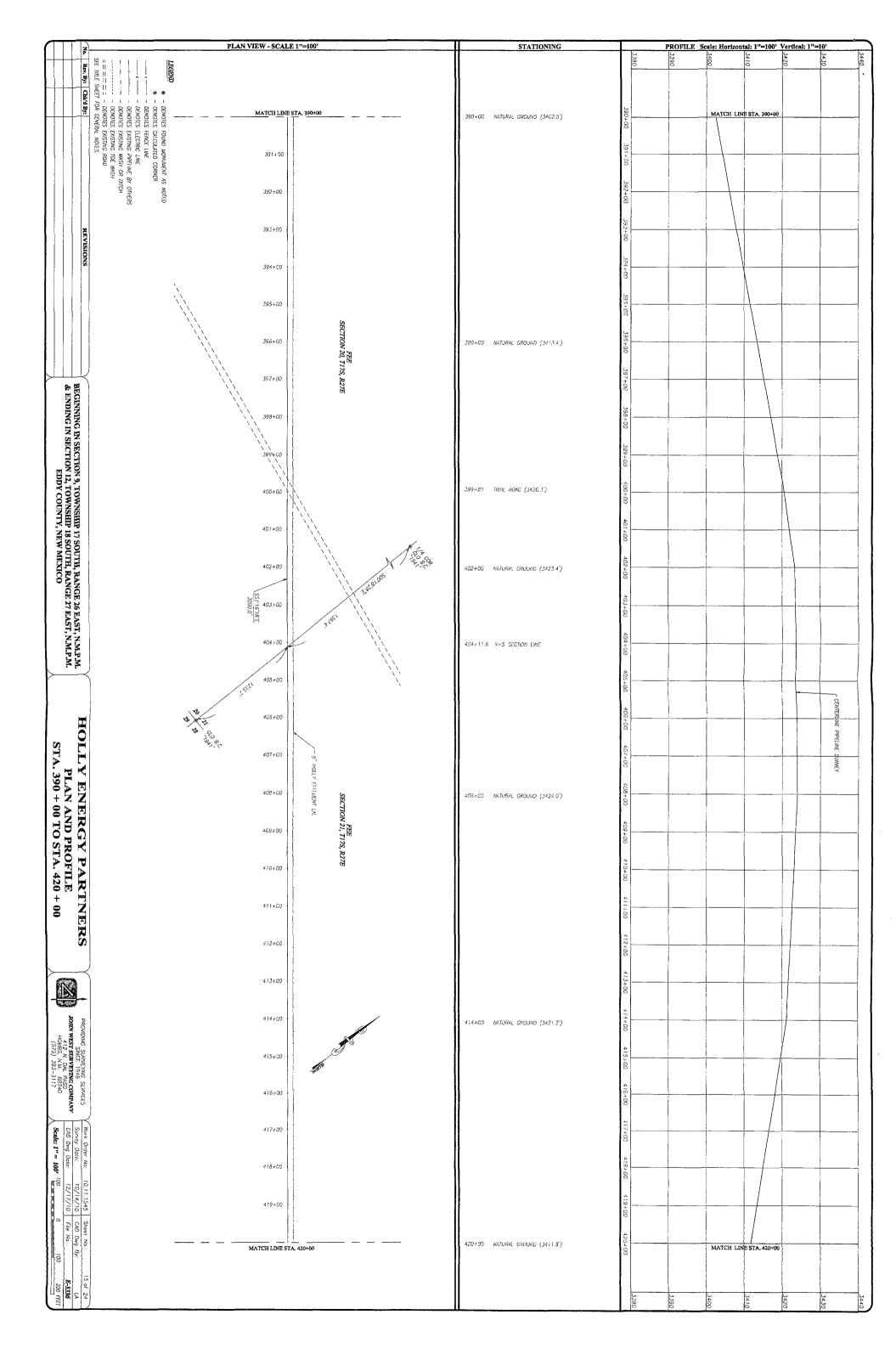


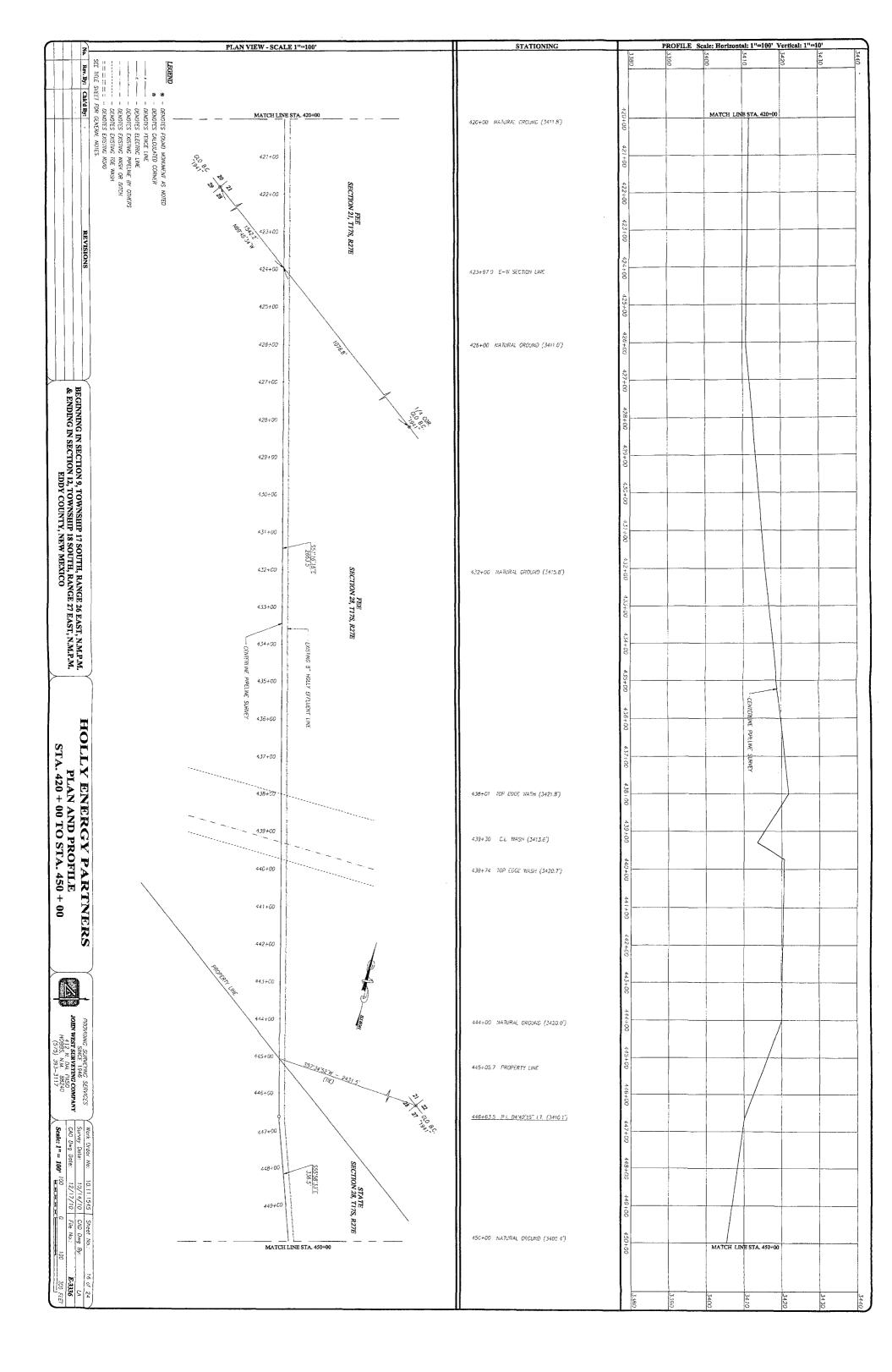


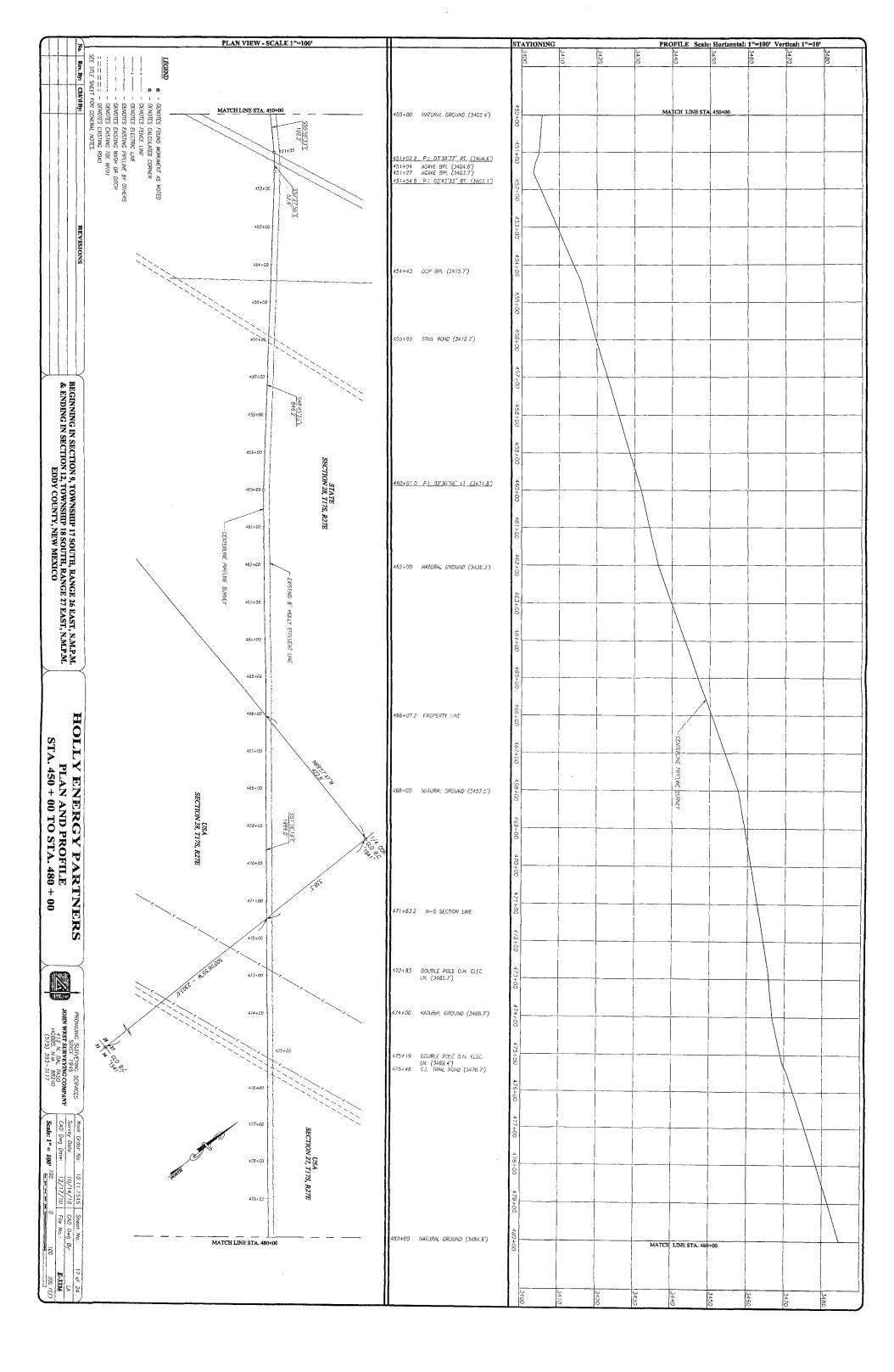


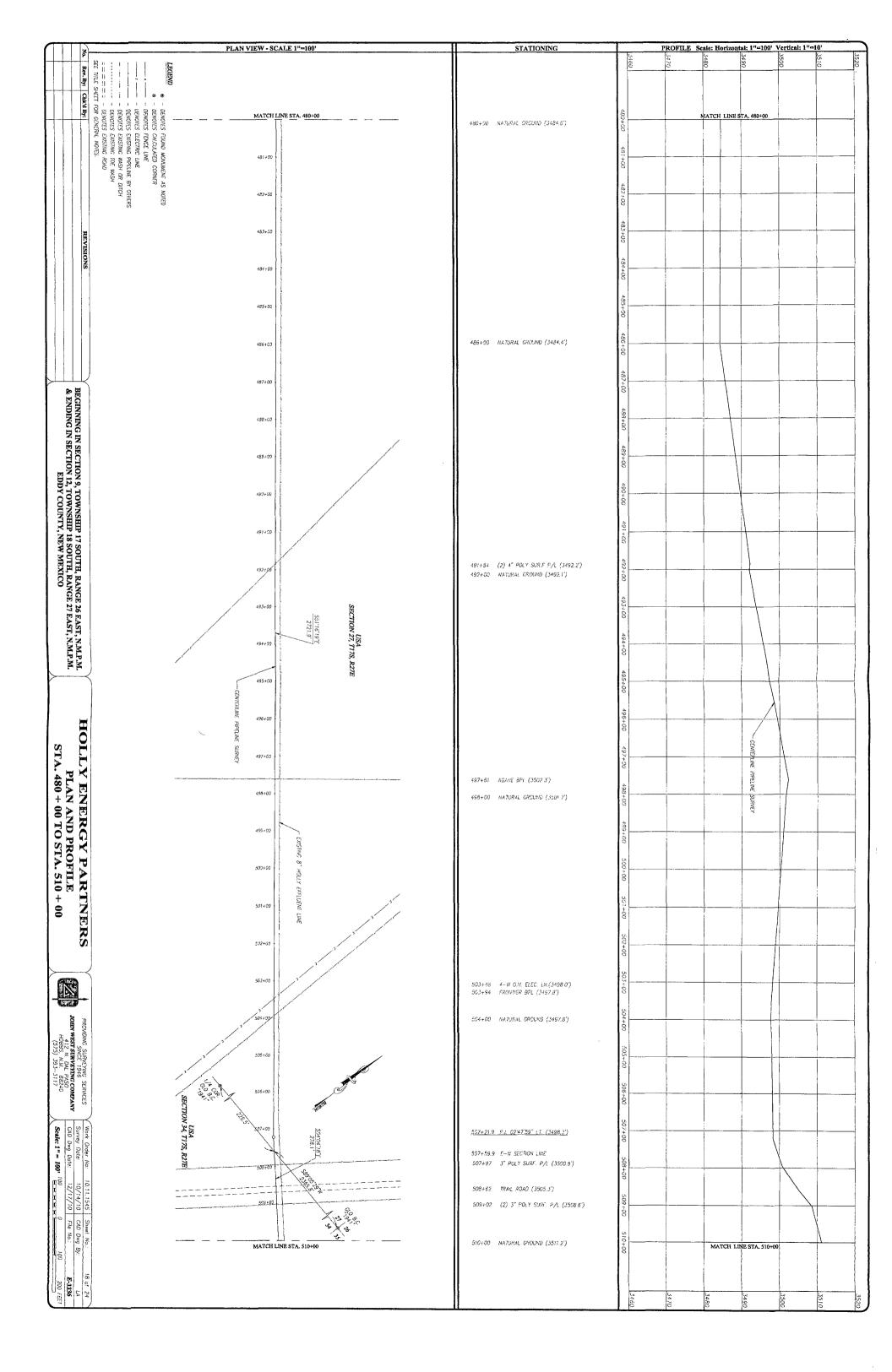


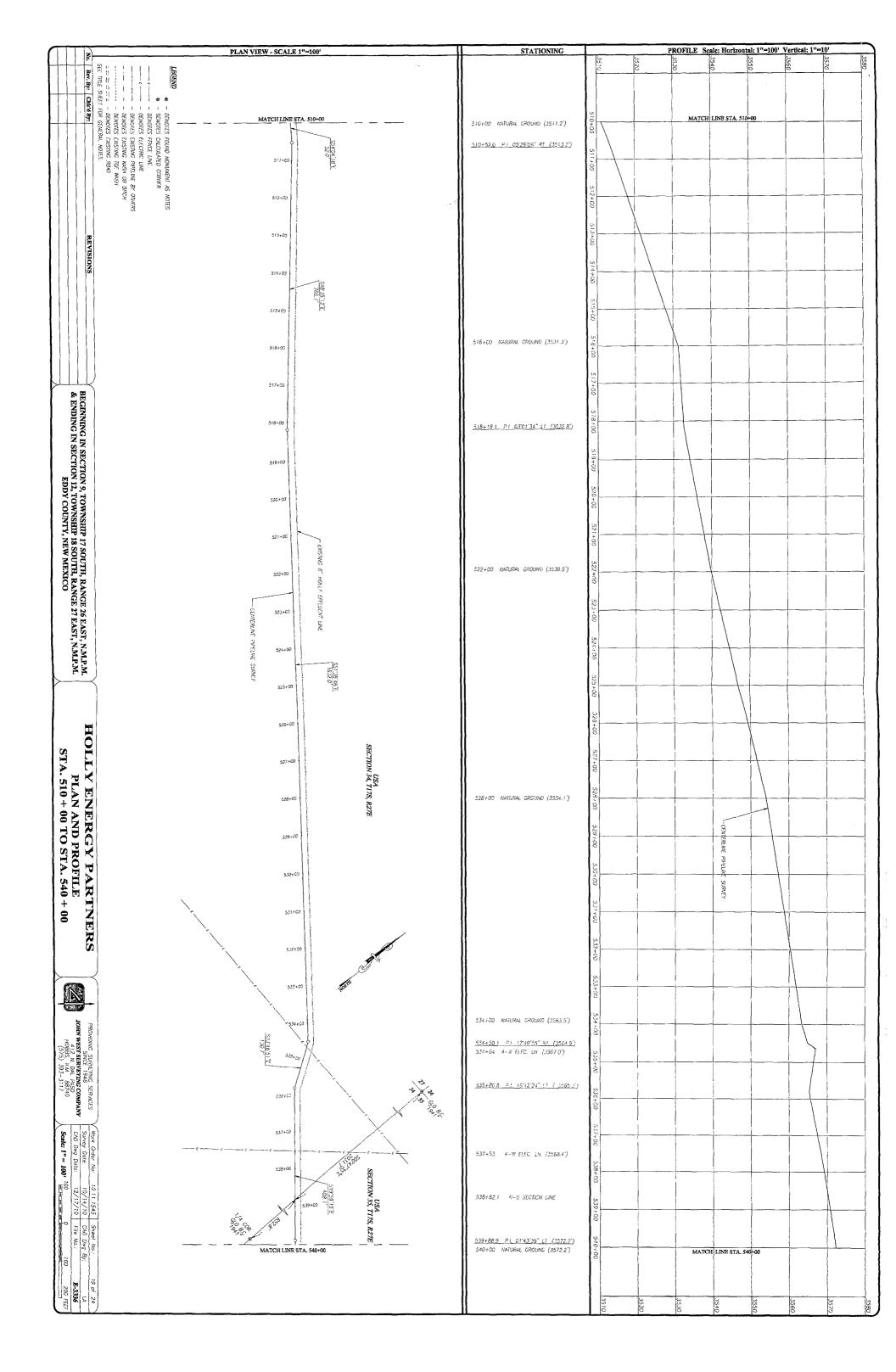

	AND IN THE REAL OF THE	240÷00 - NATURAL GROUND (3301.21)	234					
PROVIDING SUR SINCE JOHN WEST SUR 412 N. HOBBS, N (575)	ANT CH LINE STA JAMAN		\$4+00 235+00					
PROVIDING SUMPEYING SERVICES SINCE: 1946 412 N. DM. 2950 HOBSS, N.M. 2950 (575) 393-3117			+00 236+00					
NY CAD Dwg Date: NY CAD Dwg Date: Survey Date: Scale: 1" = 10			0 237+00					
der No: 10.1 Date: 10/ g Date: 12/ #= 100 ^{,100}			238+00					
1.1545 Shee 114/10 CAD 17/10 File 0			239+00					
t No.: 9 Dwg By: No.: 100			249+00		MATCH LINE STA. 240	++00		
9 of 24 LA E-3336 200 FEET			3300	3310	3330	3340	3350	3360

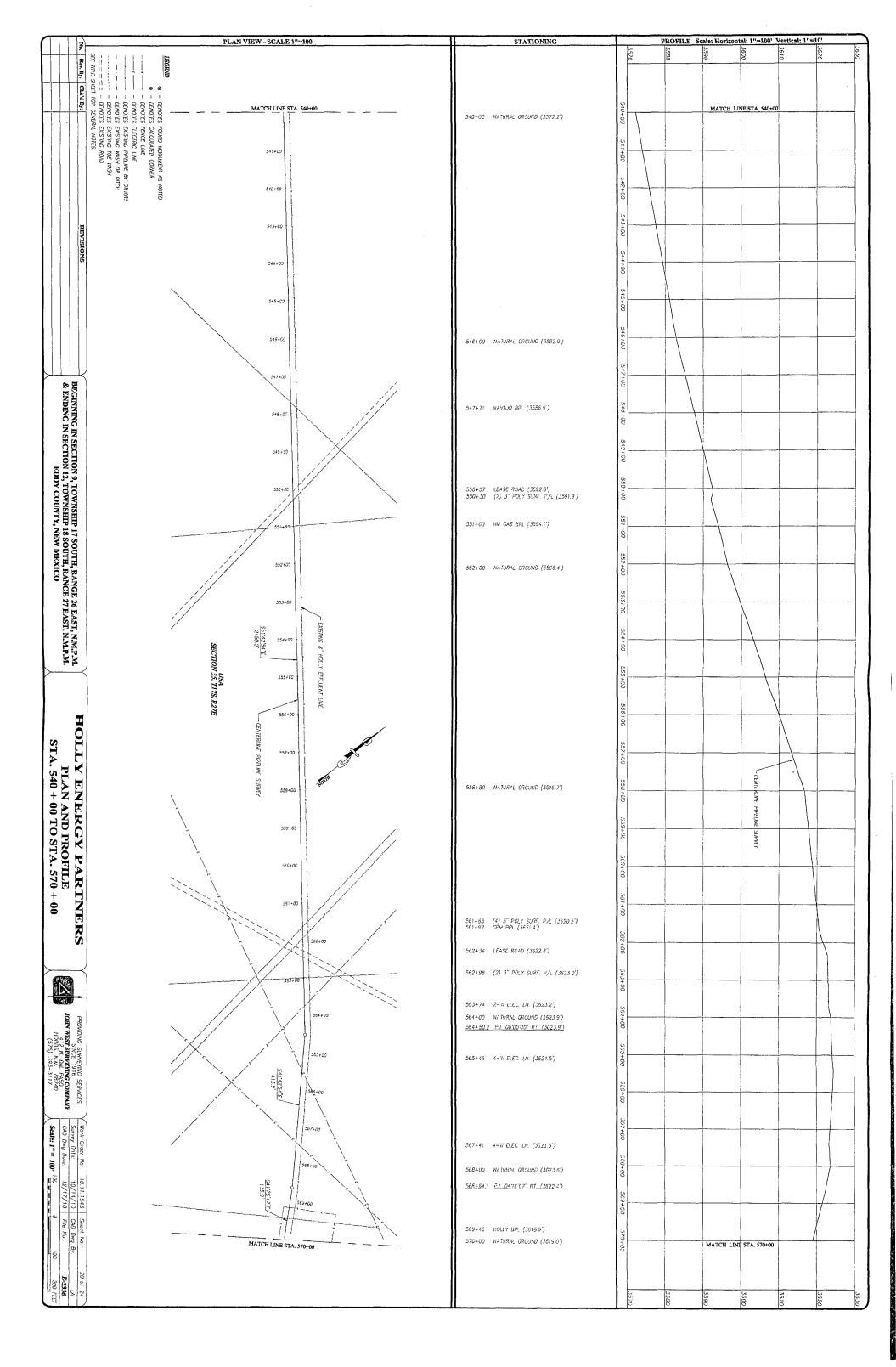


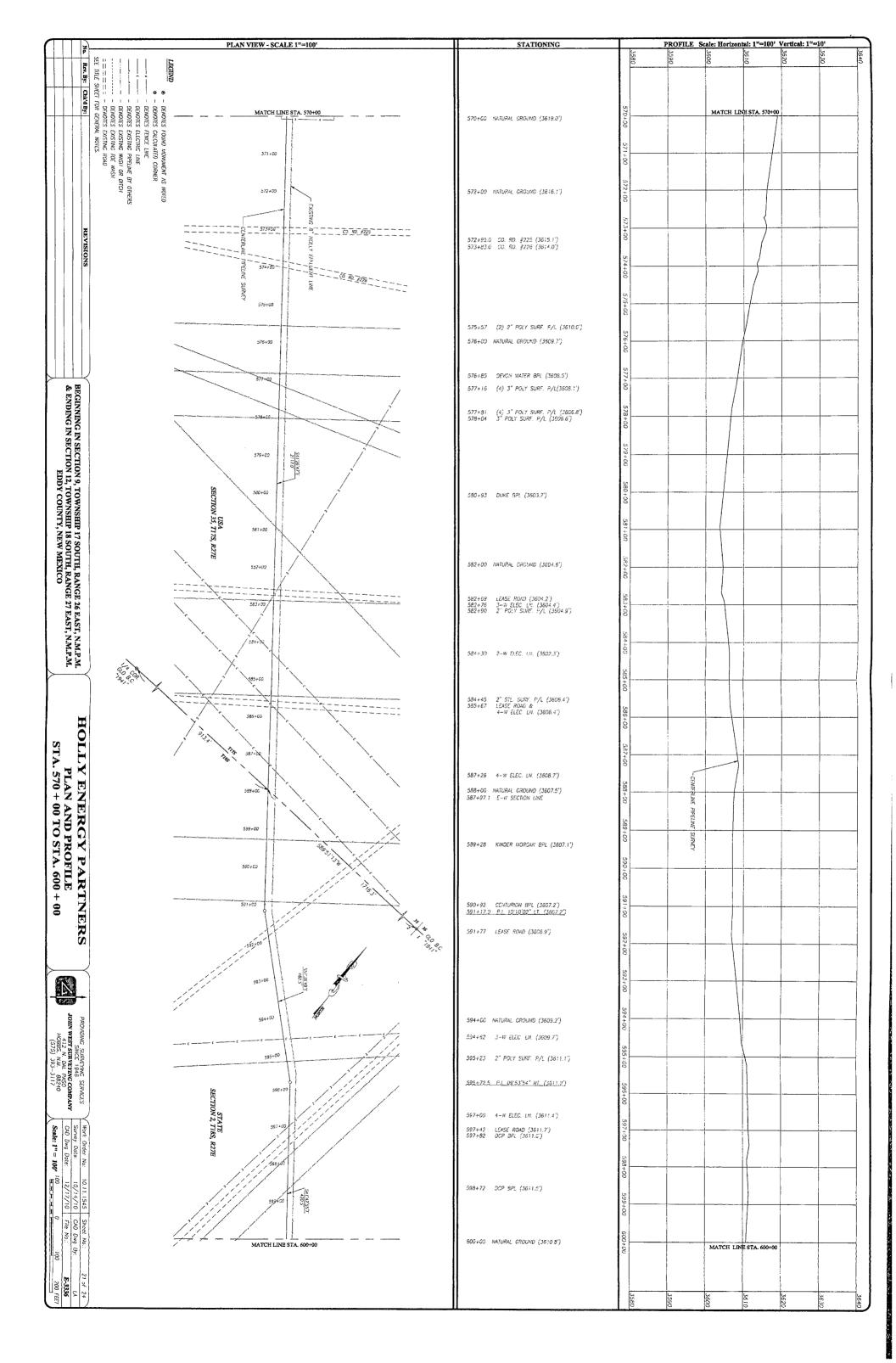


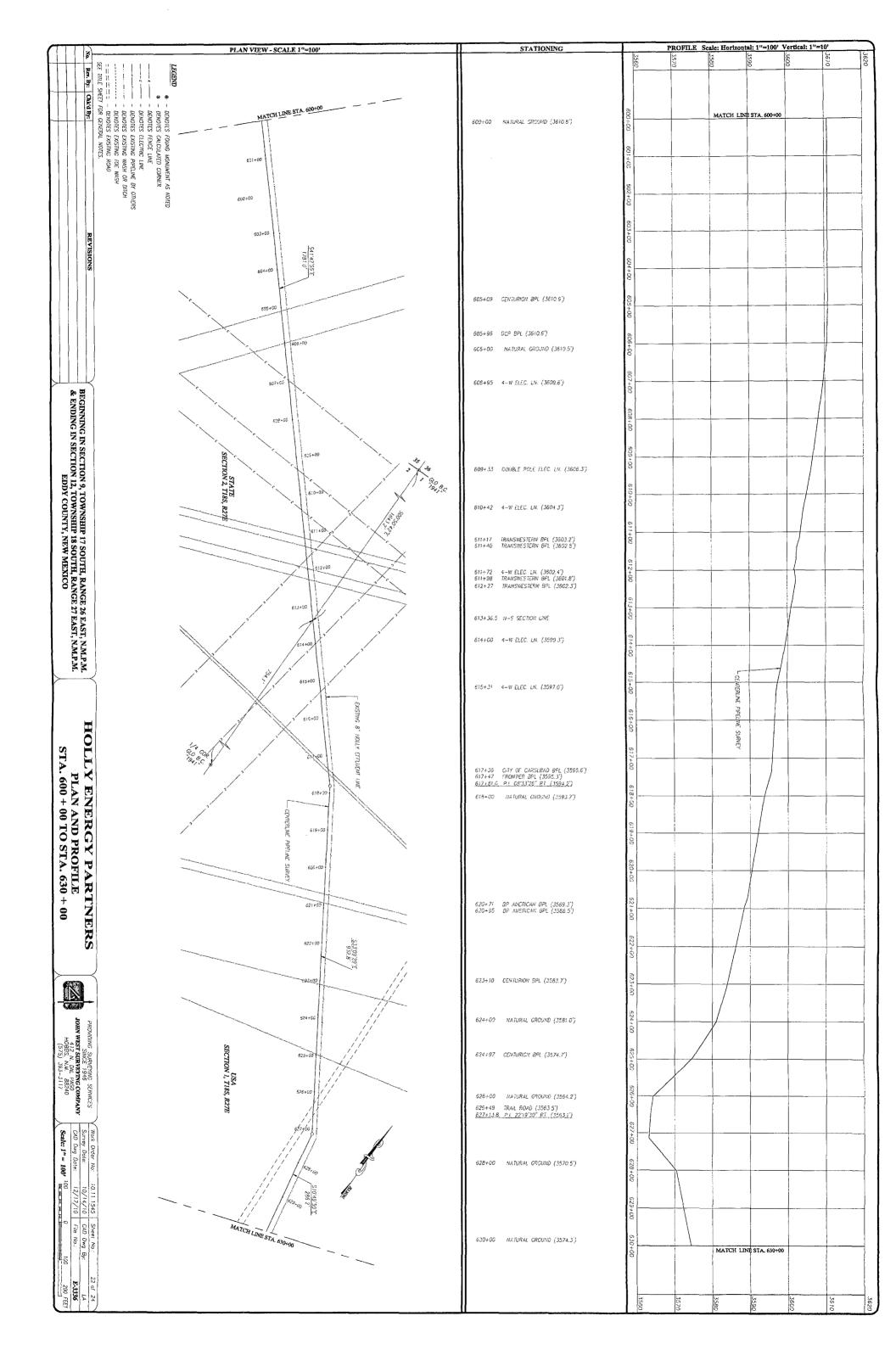


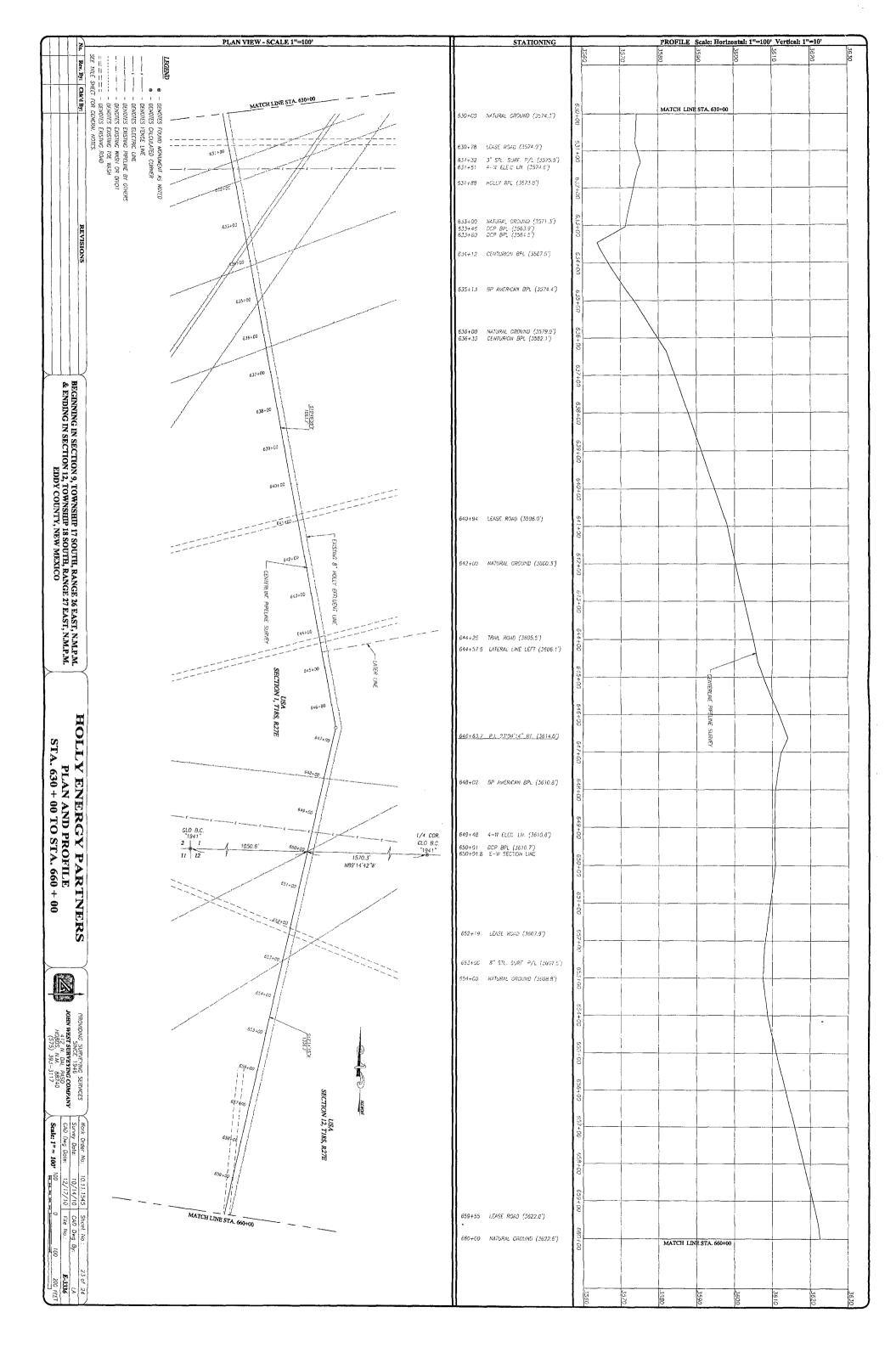


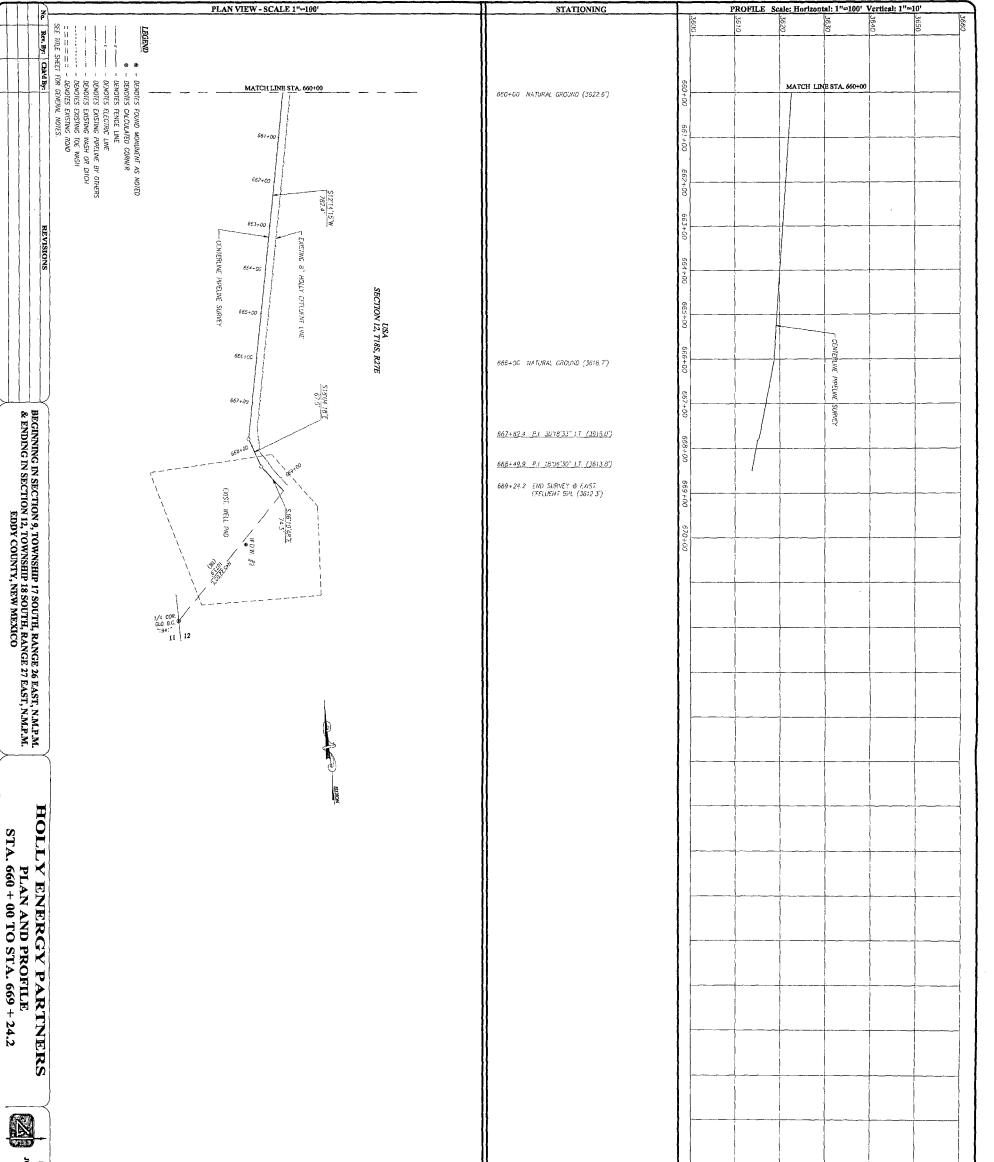


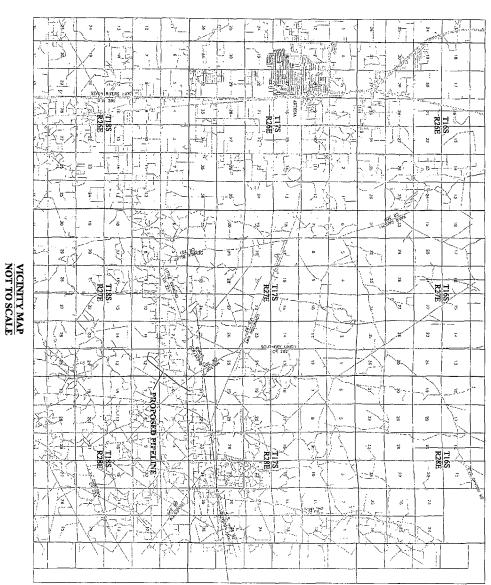




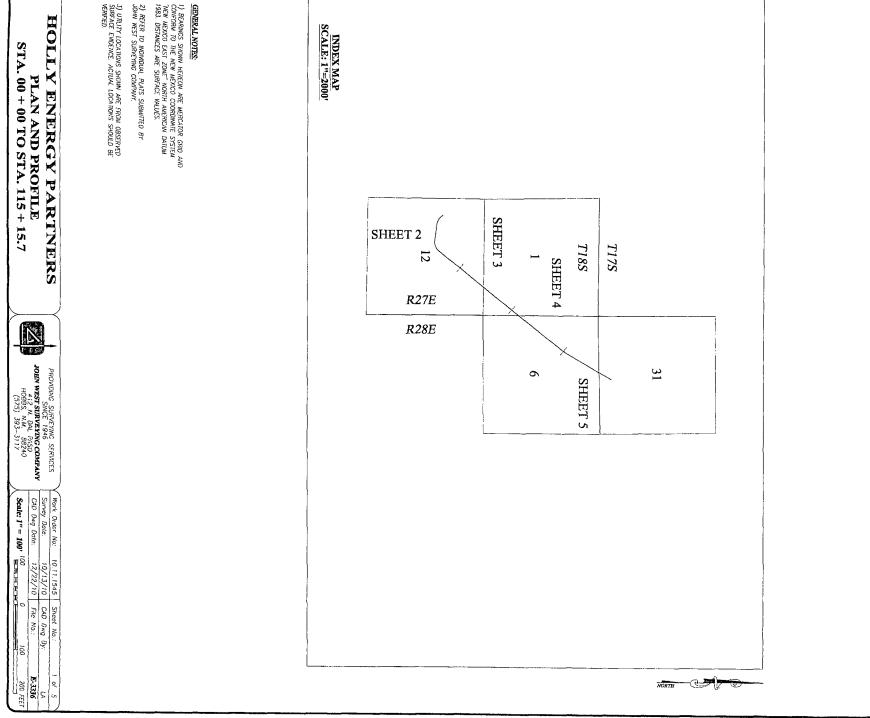


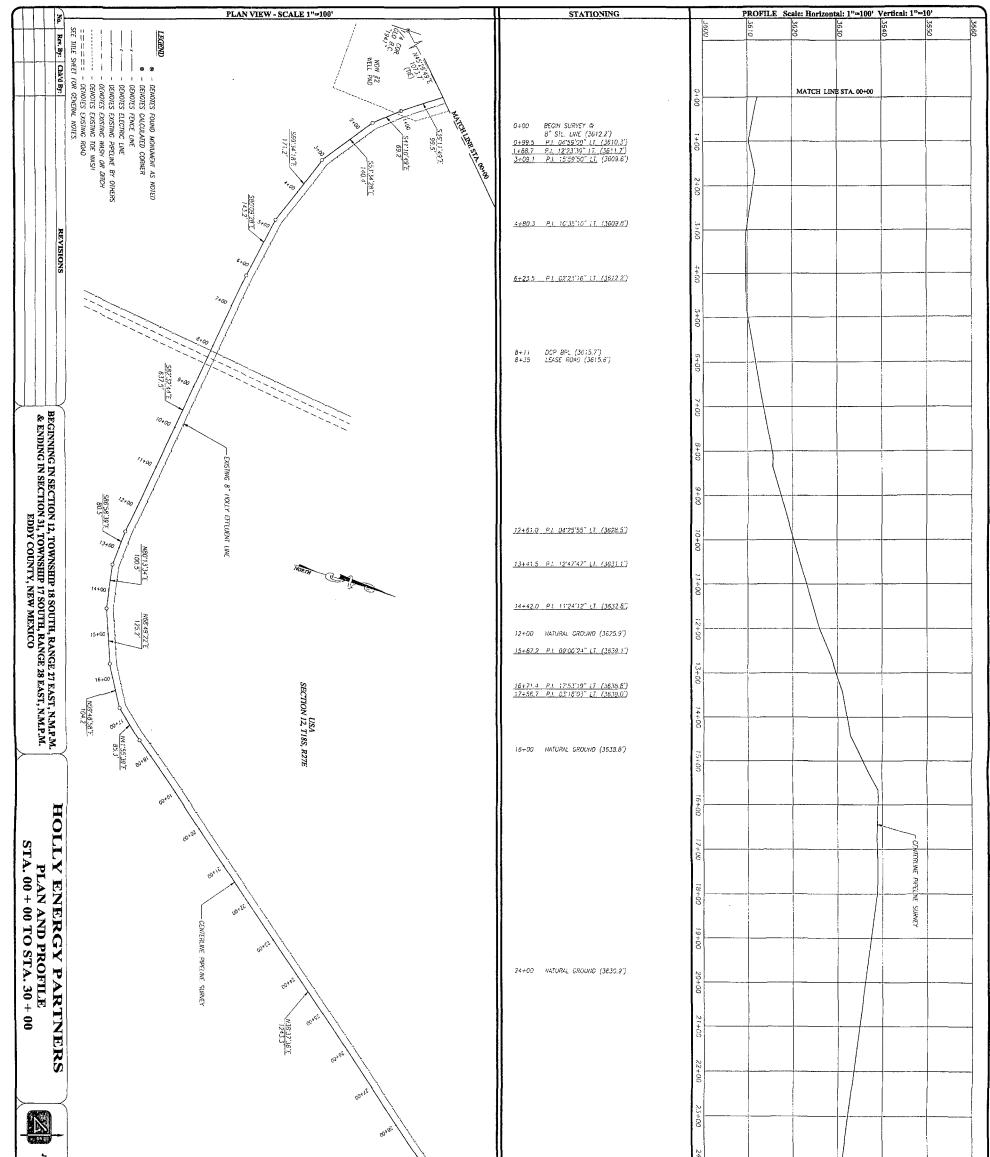




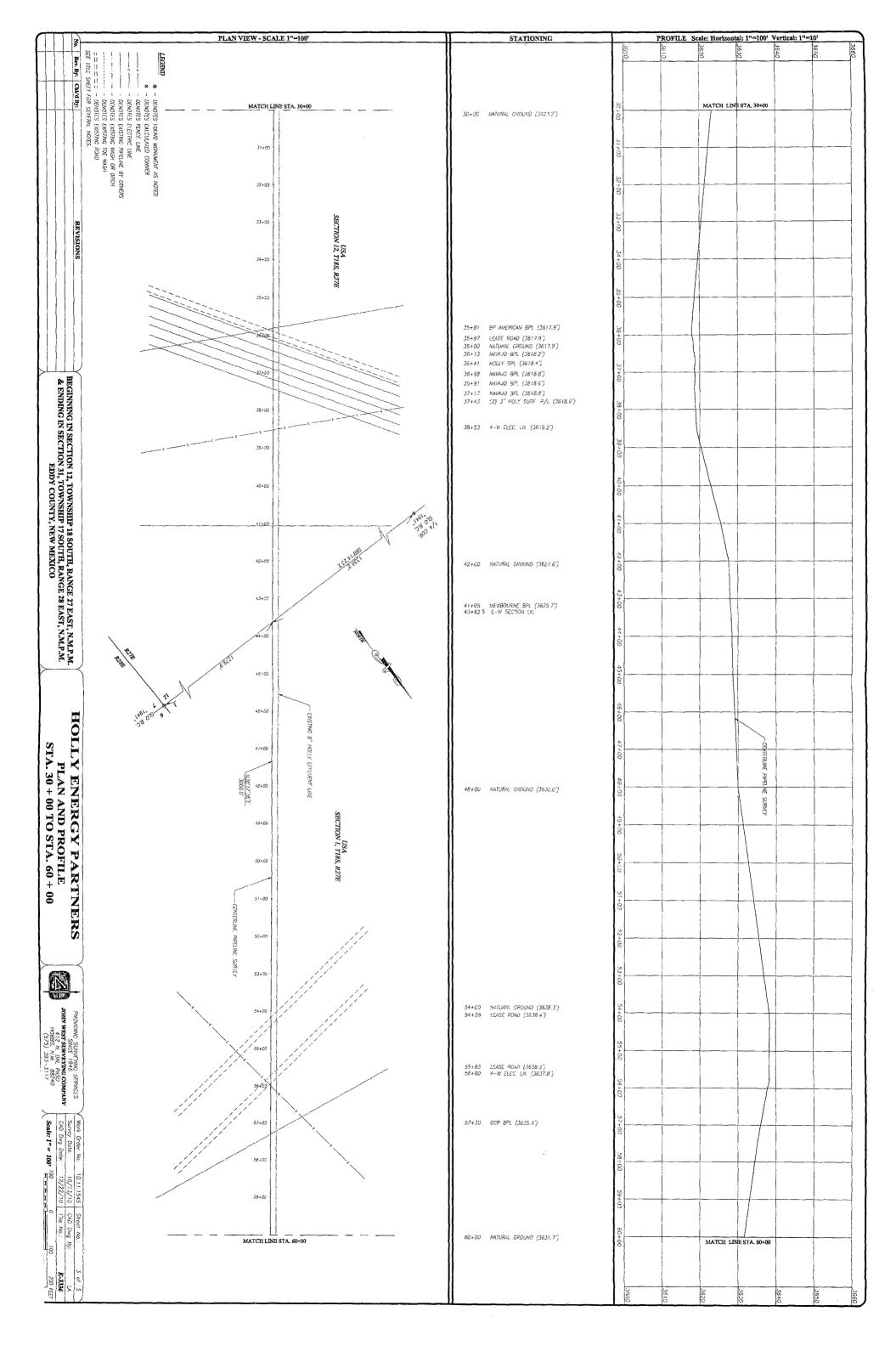

PROVIDING SURVEYING SERVICES SINCE 1946 IOHN WEST SURVEYING COMPANY ALZ N. M. BBZ40 HOBES, N.M. BBZ40					
Work Order No: 10.11.1545 Survey Date: 10/14/10 CAD Dwg Date: 12/17/10					
Sheet No.: 24 of 24 C/U Owg By: LA File No.: E-3336	3600	3620	MATCH LINE	3640	 3660

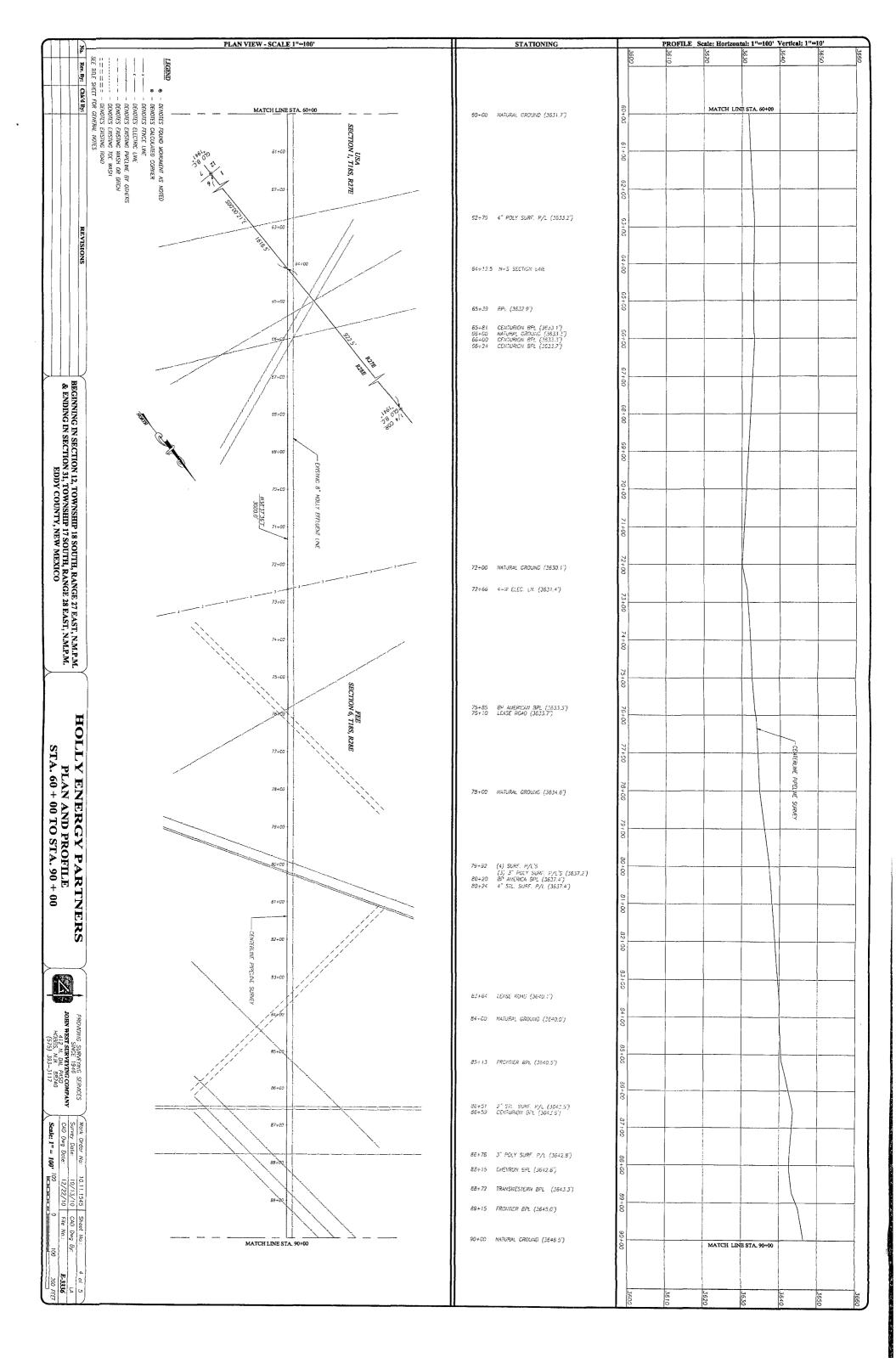
REVISIONS BEGINNING IN SECTION 12, TOWNSHIP 18 SOUTH, RANGE 27 EAST, N.M.P.M. & ENDING IN SECTION 31, TOWNSHIP 17 SOUTH, RANGE 28 EAST, N.M.P.M. EDDY COUNTY, NEW MEXICO

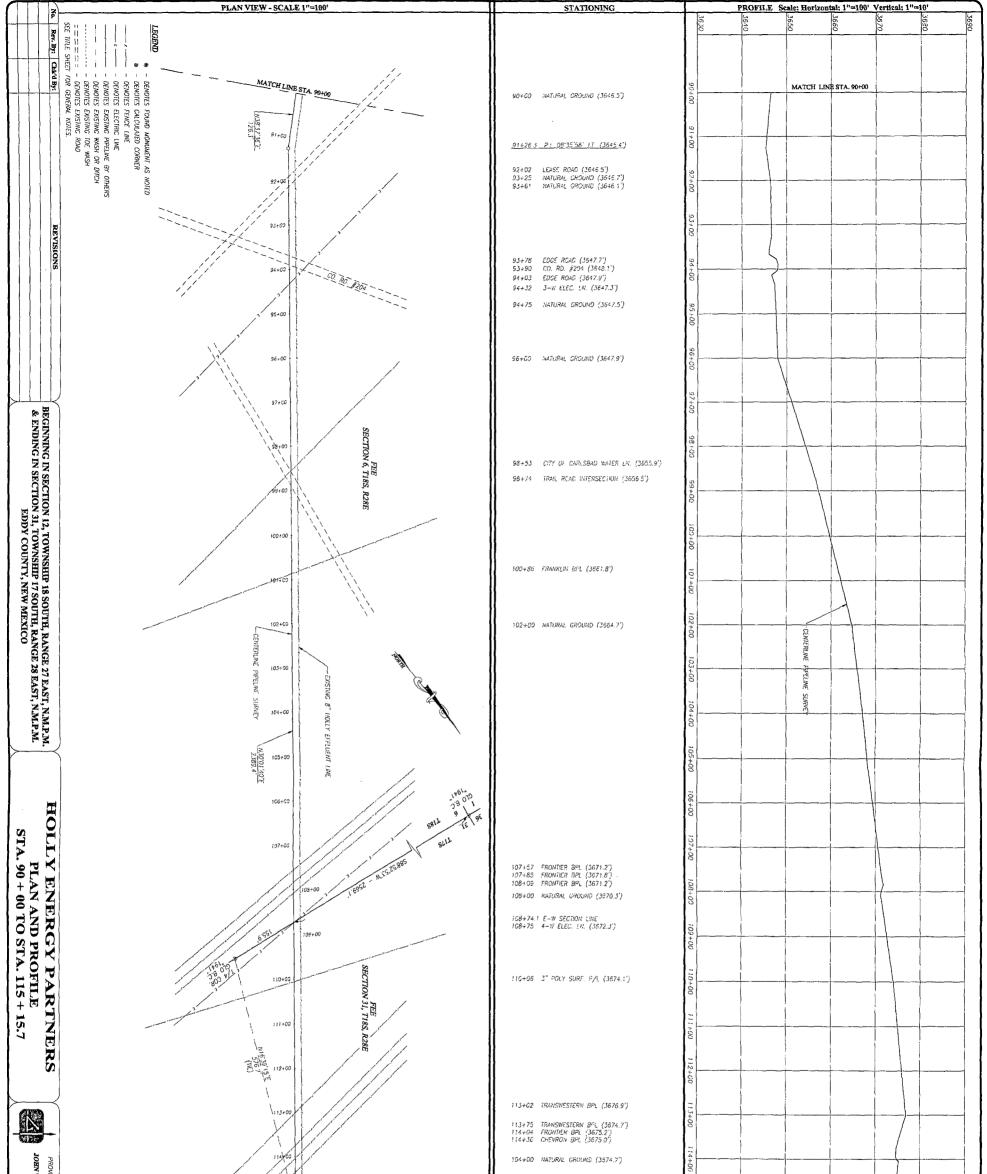

No. Rev. By: Chk'd By:


LEGEND AND GENERAL NOTES:

GENERAL NOTES:







PROVIDING SURVEYING SERVICES SINCE 1940 HOUSES, NUCLETING SERVICES	30+60 - NATURAL GROUNU (3623.2')	4+00 25+00		
		26:00		
Work Order No: Surrey Date: CAD Dwg Date: Scale: 1" = 100'		27+00 28+00		
10.11.1545 10/13/10 12/22/10 12/22/10 12/22/10		00 29+00		
Sheet No: CND Ung By File No: 100		30+00	MATCH LINE STA. 30+00	
2 of 5 E-3336 200 FEET		3610 3600	3630 3620	3560

HORD NESS SURVEYING SERVICES SURVEYING SURVEYING SERVICES SURVEYING SURVEYING SERVICES (575) 393-3117	104+00 NATURAL CROUND (3874.7') 115+15.7 END SURVEY & WDW ∦1 WELL PAD (3679.8')	4+06 115+00					
Work Order No: 10.11.1545 Survey Dote: 10/13/10 CAD Drug Dote: 12/22/10 Scale: 17 = 100							
Sheet No.: 5 of 5 C40 Dwg By: 5 File No.: 10 100 200 FEET		3630	3650	3660	3670	0895. 06055	0032

From: Sent: To: Cc: Subject: Chavez, Carl J, EMNRD Tuesday, February 08, 2011 7:59 AM 'Moore, Darrell' VonGonten, Glenn, EMNRD RE: Abandonment Plan - Effluent Waste Water Line

Darrell:

The abandonment plan for the existing effluent waste water line is approved with the following condition:

• Please send the OCD a map(s) depicting the actual location of the existing line (i.e., 7.5 Minute USGS Quadrangle Scale) by COB this Friday so the OCD can place it along with your abandonment procedure on OCD Online in the event there are any future issues with accidental burial, run-ins with the line, etc.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Tuesday, February 08, 2011 7:27 AM
To: Chavez, Carl J, EMNRD
Subject: Abandonment Plan - Effluent Waste Water Line

Carl,

Per your email of January 5, 2011. Navajo is submitting the following abandonment plan for the old effluent waste water line. The plan is as follows:

Abandonment plan will consist of removing all water from existing pipeline via running multiple pigs into frac tanks. Once all the water has been removed, then the pipeline will be cut off below grade and capped at both the start and end of the pipeline and at each lateral. Then the cathodic protection will be removed from the line.

If you have any questions concerning this submission, please contact me at 575-746-5281.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

From: Sent:	Moore, Darrell [Darrell.Moore@hollycorp.com] Monday, January 31, 2011 6:57 AM
То:	Chavez, Carl J, EMNRD
Cc:	Lackey, Johnny; VonGonten, Glenn, EMNRD; Dade, Randy, EMNRD; Monzeglio, Hope,
	NMENV; Powell, Richard, NMENV; Vasquez, Clemente
Subject:	RE: Navajo Refining Company- Artesia Refinery (GW-028) "Minor Modification" to Discharge Permit for New Effluent Pipeline Routed East to 3 Refinery UIC Class I (non-hazardous) Disposal Wells

Gentlemen and Hope

Navajo will be doing the bore under the river for our new 8" Effluent Line on Tuesday, February 1, 2011 starting first thing that morning. This notification is per requirement below under "Construction" #1.

If there are any questions, please contact me by email or at 575-746-5281.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]
Sent: Wednesday, January 05, 2011 9:33 AM
To: Moore, Darrell
Cc: Lackey, Johnny; VonGonten, Glenn, EMNRD; Dade, Randy, EMNRD; Monzeglio, Hope, NMENV; Powell, Richard, NMENV

Subject: Navajo Refining Company- Artesia Refinery (GW-028) "Minor Modification" to Discharge Permit for New Effluent Pipeline Routed East to 3 Refinery UIC Class I (non-hazardous) Disposal Wells

Mr. Moore:

The Oil Conservation Division (OCD) has completed its review of the "8" Water Effluent Pipeline Project NRC" dated December 27, 2010. The fiberglass pipeline is a product of Fiber Glass Systems.

The OCD hereby **approves** the "Minor Modification" to the OCD Discharge Permit and installation of the effluent pipeline with the following conditions:

Report:

- The report reviewed is unsigned and must be signed by the Project Engineer and General Manager and resubmitted to the OCD before the project may commence. This verifies that the engineers stand behind the proposed project. Also, the report should be the final report if the submitted report is a draft report.
- 2) The contact for OCD and NMED in the report shall be changed to Carl Chavez and Richard Powell, respectively. The HDD process could threaten aquatic wildlife (report will be filed on OCD Online under "GW-028" under a "Minor Modifications" thumbnail at <u>http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx</u>.
- 3) NRC shall submit an abandonment plan for the existing carbon steel pipeline that will be decommissioned after construction of the new pipeline to the OCD within 30 days of today's date or by February 7, 2011.

Pipeline:

- 1) The effluent pipeline shall be replaced as needed or on or before the 20 year life (by March of 2031) or within 1 year of this date.
- 2) The effluent temperature in the pipeline must not exceed 150 °F.
- 3) The mechanical integrity of the effluent pipeline must determined before effluent is discharged into the pipeline after its construction. This will commence the annual HST requirement for the effluent pipeline under the discharge permit. The most updated OCD Hydrostatic Testing (HST) Guidance for a new pipeline must be adhered to during the HST. Thereafter, the pipeline shall be monitored in accordance with the terms and conditions of the OCD discharge permit.

4) There appear to be near 90 elbows in the pipeline transect that would be preferred to have less bends. Cleanouts shall be placed in locations (elbows) inaccessible to the foam pig to ensure flow remains undisturbed throughout its life.

Construction:

- 1) Provide at least 24 hour notice to the OCD (Carl Chavez) and NMED- Surface Water Quality Bureau (Richard Powell) of project commencement and in advance of the pipeline emplacement below the Pecos River.
- 2) The setback distance at the Pecos River will likely need to be greater than 50 feet and should facilitate a smooth decline in elevation below the river to prevent any threat of discharges to the river throughout the life of the pipeline.

Please contact me if you have questions. Thank you.

Please be advised that NMOCD approval of this plan does not relieve Navajo Refining Company of responsibility should their operations fail to adequately prevent discharges of contamination to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Navajo Refining Company of responsibility for compliance with any other federal, state, or local laws and/or regulations.

File: OCD Online "GW-028- Minor Modifications" Thumbnail

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com] Sent: Monday, December 27, 2010 2:52 PM To: Chavez, Carl J, EMNRD Subject: New Effluent Line

Carl

Tomorrow, you will receive a package that includes drawings and other pertinent information regarding our installation of the new effluent line to the injection wells. Obviously, with the recent leaks on the current line, this is a high priority issue for Navajo Refining Company. Your attention to this submission is greatly appreciated.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

From: Sent: To:	Moore, Darrell [Darrell.Moore@hollycorp.com] Friday, January 07, 2011 3:08 PM Chavez, Carl J, EMNRD
To:	
Cc:	VonGonten, Glenn, EMNRD; Dade, Randy, EMNRD; Monzeglio, Hope, NMENV; Powell, Richard, NMENV
Subject:	RE: Navajo Refining Company- Artesia Refinery (GW-028) "Minor Modification" to Discharge Permit for New Effluent Pipeline Routed East to 3 Refinery UIC Class I (non-hazardous) Disposal Wells

Carl

Navajo agrees to the conditions listed below. Consider this email our notice that we will start construction in the prescribed time listed below.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Wednesday, January 05, 2011 9:33 AM

To: Moore, Darrell

Cc: Lackey, Johnny; VonGonten, Glenn, EMNRD; Dade, Randy, EMNRD; Monzeglio, Hope, NMENV; Powell, Richard, NMENV

Subject: Navajo Refining Company- Artesia Refinery (GW-028) "Minor Modification" to Discharge Permit for New Effluent Pipeline Routed East to 3 Refinery UIC Class I (non-hazardous) Disposal Wells

Mr. Moore:

The Oil Conservation Division (OCD) has completed its review of the "8" Water Effluent Pipeline Project NRC" dated December 27, 2010. The fiberglass pipeline is a product of Fiber Glass Systems.

The OCD hereby **approves** the "Minor Modification" to the OCD Discharge Permit and installation of the effluent pipeline with the following conditions:

Report:

- 1) The report reviewed is unsigned and must be signed by the Project Engineer and General Manager and resubmitted to the OCD before the project may commence. This verifies that the engineers stand behind the proposed project. Also, the report should be the final report if the submitted report is a draft report.
- 2) The contact for OCD and NMED in the report shall be changed to Carl Chavez and Richard Powell, respectively. The HDD process could threaten aquatic wildlife (report will be filed on OCD Online under "GW-028" under a "Minor Modifications" thumbnail at <u>http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx.</u>
- 3) NRC shall submit an abandonment plan for the existing carbon steel pipeline that will be decommissioned after construction of the new pipeline to the OCD within 30 days of today's date or by February 7, 2011.

Pipeline:

- 1) The effluent pipeline shall be replaced as needed or on or before the 20 year life (by March of 2031) or within 1 year of this date.
- 2) The effluent temperature in the pipeline must not exceed 150 °F.
- 3) The mechanical integrity of the effluent pipeline must determined before effluent is discharged into the pipeline after its construction. This will commence the annual HST requirement for the effluent pipeline under the discharge permit. The most updated OCD Hydrostatic Testing (HST) Guidance for a new pipeline must be adhered to during the HST. Thereafter, the pipeline shall be monitored in accordance with the terms and conditions of the OCD discharge permit.
- 4) There appear to be near 90 elbows in the pipeline transect that would be preferred to have less bends. Cleanouts shall be placed in locations (elbows) inaccessible to the foam pig to ensure flow remains undisturbed throughout its life.

Construction:

- 1) Provide at least 24 hour notice to the OCD (Carl Chavez) and NMED- Surface Water Quality Bureau (Richard Powell) of project commencement and in advance of the pipeline emplacement below the Pecos River.
- 2) The setback distance at the Pecos River will likely need to be greater than 50 feet and should facilitate a smooth decline in elevation below the river to prevent any threat of discharges to the river throughout the life of the pipeline.

Please contact me if you have questions. Thank you.

Please be advised that NMOCD approval of this plan does not relieve Navajo Refining Company of responsibility should their operations fail to adequately prevent discharges of contamination to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Navajo Refining Company of responsibility for compliance with any other federal, state, or local laws and/or regulations.

File: OCD Online "GW-028- Minor Modifications" Thumbnail

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com] Sent: Monday, December 27, 2010 2:52 PM To: Chavez, Carl J, EMNRD Subject: New Effluent Line

Carl

Tomorrow, you will receive a package that includes drawings and other pertinent information regarding our installation of the new effluent line to the injection wells. Obviously, with the recent leaks on the current line, this is a high priority issue for Navajo Refining Company. Your attention to this submission is greatly appreciated.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

From: Sent:	Moore, Darrell [Darrell.Moore@hollycorp.com] Friday, January 07, 2011 3:08 PM
То:	Chavez, Carl J, EMNRD
Cc:	VonGonten, Glenn, EMNRD; Dade, Randy, EMNRD; Monzeglio, Hope, NMENV; Powell, Richard, NMENV
Subject:	RE: Navajo Refining Company- Artesia Refinery (GW-028) "Minor Modification" to Discharge Permit for New Effluent Pipeline Routed East to 3 Refinery UIC Class I (non-hazardous) Disposal Wells

Carl

Navajo agrees to the conditions listed below. Consider this email our notice that we will start construction in the prescribed time listed below.

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us]

Sent: Wednesday, January 05, 2011 9:33 AM

To: Moore, Darrell

Cc: Lackey, Johnny; VonGonten, Glenn, EMNRD; Dade, Randy, EMNRD; Monzeglio, Hope, NMENV; Powell, Richard, NMENV

Subject: Navajo Refining Company- Artesia Refinery (GW-028) "Minor Modification" to Discharge Permit for New Effluent Pipeline Routed East to 3 Refinery UIC Class I (non-hazardous) Disposal Wells

Mr. Moore:

The Oil Conservation Division (OCD) has completed its review of the "8" Water Effluent Pipeline Project NRC" dated December 27, 2010. The fiberglass pipeline is a product of Fiber Glass Systems.

The OCD hereby **approves** the "Minor Modification" to the OCD Discharge Permit and installation of the effluent pipeline with the following conditions:

Report:

- 1) The report reviewed is unsigned and must be signed by the Project Engineer and General Manager and resubmitted to the OCD before the project may commence. This verifies that the engineers stand behind the proposed project. Also, the report should be the final report if the submitted report is a draft report.
- 2) The contact for OCD and NMED in the report shall be changed to Carl Chavez and Richard Powell, respectively. The HDD process could threaten aquatic wildlife (report will be filed on OCD Online under "GW-028" under a "Minor Modifications" thumbnail at <u>http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx</u>.
- 3) NRC shall submit an abandonment plan for the existing carbon steel pipeline that will be decommissioned after construction of the new pipeline to the OCD within 30 days of today's date or by February 7, 2011.

Pipeline:

- 1) The effluent pipeline shall be replaced as needed or on or before the 20 year life (by March of 2031) or within 1 year of this date.
- 2) The effluent temperature in the pipeline must not exceed 150 °F.
- 3) The mechanical integrity of the effluent pipeline must determined before effluent is discharged into the pipeline after its construction. This will commence the annual HST requirement for the effluent pipeline under the discharge permit. The most updated OCD Hydrostatic Testing (HST) Guidance for a new pipeline must be adhered to during the HST. Thereafter, the pipeline shall be monitored in accordance with the terms and conditions of the OCD discharge permit.
- 4) There appear to be near 90 elbows in the pipeline transect that would be preferred to have less bends. Cleanouts shall be placed in locations (elbows) inaccessible to the foam pig to ensure flow remains undisturbed throughout its life.

Construction:

- 1) Provide at least 24 hour notice to the OCD (Carl Chavez) and NMED- Surface Water Quality Bureau (Richard Powell) of project commencement and in advance of the pipeline emplacement below the Pecos River.
- 2) The setback distance at the Pecos River will likely need to be greater than 50 feet and should facilitate a smooth decline in elevation below the river to prevent any threat of discharges to the river throughout the life of the pipeline.

Please contact me if you have questions. Thank you.

Please be advised that NMOCD approval of this plan does not relieve Navajo Refining Company of responsibility should their operations fail to adequately prevent discharges of contamination to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Navajo Refining Company of responsibility for compliance with any other federal, state, or local laws and/or regulations.

File: OCD Online "GW-028- Minor Modifications" Thumbnail

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com] Sent: Monday, December 27, 2010 2:52 PM To: Chavez, Carl J, EMNRD Subject: New Effluent Line

Carl

Tomorrow, you will receive a package that includes drawings and other pertinent information regarding our installation of the new effluent line to the injection wells. Obviously, with the recent leaks on the current line, this is a high priority issue for Navajo Refining Company. Your attention to this submission is greatly appreciated.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

From:Chavez, Carl J, EMNRDSent:Thursday, January 06, 2011 11:00 AMTo:'Moore, Darrell'Cc:Lackey, Johnny; Vasquez, Clemente; Siwek, Janusz; VonGonten, Glenn, EMNRDSubject:RE: Signed Project Summary

Darrell:

You need to respond to the OCD's e-mail with your acceptance of the conditions and/or any remaining issues that you may have.

Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com]
Sent: Wednesday, January 05, 2011 2:39 PM
To: Chavez, Carl J, EMNRD
Cc: Lackey, Johnny; Vasquez, Clemente; Siwek, Janusz
Subject: Signed Project Summary

Carl

Attached, please find a scanned copy of the Project Summary signed by the Project Engineer, Clem Vasquez and the General Manager, George Sanchez. I will send the original by Fed Ex.

We would like to start the project as soon as possible. I trust this will suffice to commence the project.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

Please consider the environment before printing this e-mail.

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

8" WATER EFFLUENT PIPELINE PROJECT NRC

Project Summary for Oil Conservation Division, Environmental Bureau

Prepared by: Holly Energy Partners, Technical Services Dept

> HOLLY ENERGY PARTNERS Artesia, NM

Revision 00, December 27, 2010

Clem Vasquez, EIT Project Engineer

Prepared By

George L. Sanchez Geperal Manager, Tech Services

and pproved By

8" Water Effluent Pipeline Project Summary for OCD Rev00

PROJECT SUMMARY PROJECT: 8" Water Effluent Pipeline PROJECT LOCATION: Artesia, NM

The 8" Water Effluent Pipeline project will consist of designing and constructing approximately 15miles of new 8" Fiberglass pipeline. This new pipeline will parallel the existing 8" carbon steel water effluent pipeline (starting inside the Navajo Refinery and heading East to three injection wells). The current 8" carbon steel water effluent line is in service and operating but is highly corroded(due to internal corrosion), thus the need to design/construct a new pipeline parallel to it.

The new pipeline design needs to take into consideration the tie ins to the well injection locations and accommodate minimal down time on the existing carbon steel pipeline when activating the new line and deactivating the old (carbon steel) pipeline. The new fiberglass pipeline will be below grade and all below grade to above grade transitions will be accomplished with internal and external coated carbon steel. These carbon steel sections will also be protected with anode banks, for external corrosion protection. The scope of work will stop at the inlet to the filter isolation valves at each injection well sites. The isolation/block valves (qty 6) will be below grade in a concrete valve box (with the exception to the west river valve setting). The entire construction will consist of approximately 10weeks (see attached schedule).

The 8" Fiberglass is a NOV, STAR, Anhydride line pipe product with a design pressure rating 1500psig at 150deg F(see attached spec sheet). The fluid in this design is effluent water which comes from the Navajo Refinery (see attached water samples). The pipeline max flow rate for design is 750gpm (~26,000bbl/day) at 130deg F(max) and pressures shall stay within the pressure rating of ANSI 600#.

We will use the fiberglass line pipe max temperature rating (150 deg F) and the valves/flanges pressure rating (1480psig) as the constraints for design parameters.

The pipeline will be designed so that it can be pigged (with a foam pig) from the start of the pipeline (inside the refinery), the to last injection well (Mewbourne – Inj. well #1). The two other laterals are short sections with isolation valves that won't be pigged (Chukka –Inj. Well #2; Gains – Inj. Well #3).

This pipeline will have several locations where steel casing will be encasing the fiberglass pipeline to protect it from third party damage as additional precaution. These locations include but are not limited to county road crossings, state highway crossings, river crossing, and major pipeline corridor crossings. HOLLY ENERGY PARTNER

Thus overall the new pipeline design will be much more resilient to internal corrosion and the addition of more isolation valves will make it easier to work on sections of the line or injection well if a problem does prevail.

- 1. Specifications and Standards for Design
 - a. US DOT CFR 49 Part 195 -Hazardous Liquids
 - b. American Society of Mechanical Engineers B31.4 (ASME)
 - c. American Petroleum Institute 6D(API)
 - d. American Petroleum Institute 1104(API)
 - e. American Petroleum Institute Recommended Practice 1102(API RP)
 - f. American Society for Testing and Materials (ASTM)
 - g. Occupational Safety and Health Administration (OSHA)
 - h. American Concrete Institute (ACI)
 - i. National Association of Corrosion Engineers (NACE)
 - j. National Electric Code (NEC)

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Wednesday, January 05, 2011 9:33 AM
То:	'Moore, Darrell'
Cc:	Lackey, Johnny; VonGonten, Glenn, EMNRD; Dade, Randy, EMNRD; Monzeglio, Hope, NMENV; Powell, Richard, NMENV
Subject:	Navajo Refining Company- Artesia Refinery (GW-028) "Minor Modification" to Discharge Permit for New Effluent Pipeline Routed East to 3 Refinery UIC Class I (non-hazardous) Disposal Wells

Mr. Moore:

The Oil Conservation Division (OCD) has completed its review of the "8" Water Effluent Pipeline Project NRC" dated December 27, 2010. The fiberglass pipeline is a product of Fiber Glass Systems.

The OCD hereby **approves** the "Minor Modification" to the OCD Discharge Permit and installation of the effluent pipeline with the following conditions:

Report:

- 1) The report reviewed is unsigned and must be signed by the Project Engineer and General Manager and resubmitted to the OCD before the project may commence. This verifies that the engineers stand behind the proposed project. Also, the report should be the final report if the submitted report is a draft report.
- 2) The contact for OCD and NMED in the report shall be changed to Carl Chavez and Richard Powell, respectively. The HDD process could threaten aquatic wildlife (report will be filed on OCD Online under "GW-028" under a "Minor Modifications" thumbnail at <u>http://ocdimage.emnrd.state.nm.us/imaging/AEOrderCriteria.aspx.</u>
- 3) NRC shall submit an abandonment plan for the existing carbon steel pipeline that will be decommissioned after construction of the new pipeline to the OCD within 30 days of today's date or by February 7, 2011.

Pipeline:

- 1) The effluent pipeline shall be replaced as needed or on or before the 20 year life (by March of 2031) or within 1 year of this date.
- 2) The effluent temperature in the pipeline must not exceed 150 °F.
- 3) The mechanical integrity of the effluent pipeline must determined before effluent is discharged into the pipeline after its construction. This will commence the annual HST requirement for the effluent pipeline under the discharge permit. The most updated OCD Hydrostatic Testing (HST) Guidance for a new pipeline must be adhered to during the HST. Thereafter, the pipeline shall be monitored in accordance with the terms and conditions of the OCD discharge permit.
- 4) There appear to be near 90 elbows in the pipeline transect that would be preferred to have less bends. Cleanouts shall be placed in locations (elbows) inaccessible to the foam pig to ensure flow remains undisturbed throughout its life.

Construction:

- 1) Provide at least 24 hour notice to the OCD (Carl Chavez) and NMED- Surface Water Quality Bureau (Richard Powell) of project commencement and in advance of the pipeline emplacement below the Pecos River.
- 2) The setback distance at the Pecos River will likely need to be greater than 50 feet and should facilitate a smooth decline in elevation below the river to prevent any threat of discharges to the river throughout the life of the pipeline.

Please contact me if you have questions. Thank you.

Please be advised that NMOCD approval of this plan does not relieve Navajo Refining Company of responsibility should their operations fail to adequately prevent discharges of contamination to ground water, surface water, human health or the environment. In addition, NMOCD approval does not relieve Navajo Refining Company of responsibility for compliance with any other federal, state, or local laws and/or regulations.

File: OCD Online "GW-028- Minor Modifications" Thumbnail

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Moore, Darrell [mailto:Darrell.Moore@hollycorp.com] Sent: Monday, December 27, 2010 2:52 PM To: Chavez, Carl J, EMNRD Subject: New Effluent Line

Carl

Tomorrow, you will receive a package that includes drawings and other pertinent information regarding our installation of the new effluent line to the injection wells. Obviously, with the recent leaks on the current line, this is a high priority issue for Navajo Refining Company. Your attention to this submission is greatly appreciated.

Darrell Moore Environmental Manager for Water and Waste Navajo Refining Company, LLC Phone Number 575-746-5281 Cell Number 575-703-5058 Fax Number 575-746-5451

CONFIDENTIAL

This e-mail message and all corresponding e-mail messages, including all attachments, are intended solely for the individual(s) named above. They contain confidential and/or proprietary information. Do not forward, copy, distribute or otherwise relay the messages or their content to any individual without first contacting the sender of this message. If you have received this e-mail message in error, do not read, forward, copy or distribute it or any of its content to anyone. In addition, please notify the sender that you have received this message immediately by return e-mail and delete it.

Please consider the environment before printing this e-mail.

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

REFINING COMPANY, LLC

FAX (575) 746-5283 DIV. ORDERS (575) 746-5481 TRUCKING (575) 746-5458 PERSONNEL

501 EAST MAIN STREET • P. O. BOX 159 ARTESIA, NEW MEXICO 88211-0159 TELEPHONE (575) 748-3311 FAX (575) 746-5419 ACCOUNTING (575) 746-5451 ENV/PURCH/MKTG (575) 746-5421 ENGINEERING

December 27, 2010

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

Dear Carl,

Enclosed, please find a three ring binder that includes all information pertaining to installing the new effluent line at our Artesia facility. As you are aware, the current effluent line has suffered several leaks this past year. It is our intention to replace this old line with a new fiberglas line.

This submission has pipeline specifications, road crossing procedures, pipeline index maps, schedule, project summary and water sample results. The water sample results were to insure compatability with the pipe material.

Due to the stability of the current effluent line, we are planning on starting this project on January 3, 2011. We hope to be finished by the first week of April, 2011.

Your prompt attention to this submission is greatly appreciated.

Sincerely, NAVAJO REFINING COMPANY, LLC

Darrell Moore Environmental Manager for Water and Waste

Encl:

8" WATER EFFLUENT PIPELINE PROJECT NRC

Project Summary for Oil Conservation Division, Environmental Bureau

Prepared by: Holly Energy Partners, Technical Services Dept

> HOLLY ENERGY PARTNERS Artesia, NM

Revision 00, December 27, 2010

Clem Vasquez, EIT Project Engineer George L. Sanchez General Manager, Tech Services

Prepared By

Approved By

CD_WatesEffluent_Pipeli		
	D Search Polders	- Ag
Address C:\Documents and Sett	ings\cvasquez\Desktop\OCD_WaterEffluent_Pipeline_NRC	
File and Folder Tasks Image: Constraint of the set of the web Publish this folder to the web Share this folder Share this folder Other Places Desktop My Documents My Computer cvasquez on ART-CVASQULT02 My Network Places	Name Size Type FiberglassLinePipe File Fold HDD_Plan File Fold ProjectSchedule File Fold ProjectSummary File Fold WaterSamples File Fold	der 12/27/2010 12:17 PM der 12/27/2010 10:58 AM der 12/27/2010 12:17 PM der 12/27/2010 12:17 PM der 12/27/2010 12:20 PM
6 objects		0 bytes 🛛 🕄 My Computer .:

. *

STAR[™] Anhydride Line Pipe (High Pressure - API 15HR DESIGN - Product Data)

Product Description

- Pressure Up to 2750 psi (19,0 MPa)
- Resin System Anhydride Cured Epoxy
- Reinforcement Premium Fiberglass
- Joining Systems API 8rd Threaded
- Joint Length 30 Feet (9,1 mts) Nominal Random Lengths of 20 to 32 Feet (6,1 to 9,8 mts) depending on size
- Temperature Up to 150° F (65.6° C) Maximum
- Sizes 11/2 through 8 inches
- Fittings A variety of filament wound API 5B threaded fittings are available. API 15HR design systems require higher rated fittings, refer to the chart on page 26, STAR[™] High Pressure Threaded Fittings. Temperature interpolation is not recommended for fittings.

High Pressure Design > 500 psi

- API 15HR Designed and monogrammed products are indicated by a check mark (✔) in tables
- Design Life 20 years at full rating
- Design Temperature 150° F (65.6° C)
- Wall Thickness Minimum
- Hoop Stress Average Lower Confidence Limit (LCL), ASTM D2992-B
- 100% Factory Hydrotest At 1.5 x the series rated pressure at 150° F (65.6° C)

Flow Factors

- Hazen Williams C=150
- Absolute Roughness = 0.00021 in. (0.00533 mm)

Nominal Moduli

- Modulus of Elasticity
 - Hoop 3.5 x 10⁶ psi (24,1 GPa) Axial - 1.5 x 10⁶ psi (10,3 GPa)
- Poisson's Ratio (Minor) = 0.38

Physical Properties

- Density = 121 lbs/cu ft (1938 kgs/cu m)
- Specific Gravity = 1.94

Thermal Properties

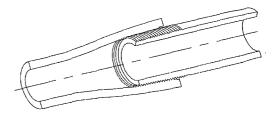
- Coefficient of Thermal Conductivity 0.23 BTU/(ft•hr•°F) (0.4 W/(m•C°))
- Coefficient of Thermal Expansion
 13.7 x 10⁻⁶ in/in/°F (24,7 x 10⁻⁶ mm/mm/°C)

www.fiberglasssystems.com

P.O. Box 37389, 2425 SW 36th Street San Antonio, Texas 78237 USA Phone: 1 (210) 434-5043 Fax: 1 (210) 434-7543

Benefits

- Corrosion Control
- Reduced Installation Costs
- Improved Flow Efficiency
- Reduced Paraffin & Scale Build-Up
- Reduced Maintenance Cost


Applications

- Production Lines or Injection Lines
- Transfer Lines or Disposal Lines
- Oil, Gas, Saltwater, CO_2 and H_2S

Performance Ratings	
(ASTM1D.2992-B)	, - 150°, F (65:6°, C) · · ·
11.4 Year Life, LTHS	24,503 (169,0)
20 Year Life, LTHS	23,768 (163,9)
20 Year Life, LCL (Lower Confidence Limit)	21,400 (147,6)

Joining System

Advanced Composite Thread (ACT)

API Threads

- Advanced Composite Thread (ACT) Molded threads using a graphite, ceramic and epoxy composite for high performance applications. (Patent No's 4,999,389 & 5,179,140)
- Precision Ground Thread (PGT) Typical ground threads produced with numerical controlled grinding equipment.
- All 1½" EUE 10rd and 2-3/8" 4½" EUE 8rd API threads conform to API 5B Table 14, 14th Edition (L4 is minimum) and all 5½" 9 5/8" OD 8rd casing threads conform to API 5B Table 7, 14th Edition (L4 is minimum).

NOV Fiber Glass Systems

	SIZE		2 2-74-32	NO SER	a start	IPE DIM	ENS	IONS (N	ÍÓŇÍ	NAL)			A ar	1.1.1.1
AN A	API X	R 2-5		nside 🔆 🕂	1 P. 141	Qutside,	2	and the second s	and a set of the	A . M Astronomical	- Al	PI:Thread 2		Maximum -Support
Nor	n. EThread Type	Product	1. State 1.	ameter: / 4 2 (mm):) I	Diameter	् 🐮 ा।	hickness (mm)	G . SAK M	veight 💦 🎓	$\sim \infty C$	onn Dia 4	1999 B	Ft." (m)
S	eries 500) - ACT (and the second	PGT (1					and the second
3	3 1/2	R0530	3.00	(76,2)	⁻	(79,3)		(1,5)	0.92	(1,4)	4.15	(105,4)	10	(3,1)
4	4 1/2	R0539	3.91	(99,3)		(103,4)		(2,0)			5.15	(130,7)		(3,4)
5	5 1/2	R0547	4.74	(120,4)	ar a	(125,3)	0.10		1.89		5.99	(152,2)	12	(3,7
6	6 5/8	R0558	5.85	(148,6)	6.08	(154,6)	0.12	(2,9)	2.67	(4,0)	7.09	(180,1)	13	(4,0
8	8 5/8	R0575	7.50	(190,5)	7.79	(198,3)	0.15	(3,7)	4.22	(6,3)	9.18	(233,1)	15	(4,6
S	eries 750	- ACT	(All Siz	zes) or F	PGT (All Sizes	exce	ept 5")		<i></i>				
2 1/2	2 7/8	R0724	2.43	(61,7)	2.58	(65,5)	0.08	(1,9)	0.72	(1,1)	3.49	(88,7)	10	(3,1
3	3 1/2	R0730	3.00	(76,2)	3.19	(80,9)	0.09	(2,4)	1.16	(1,7)	4.21	(106,9)	11	(3,4
4	4 1/2	R0739	3.91	(99,3)	4.15	(105,4)	0.12	(3,1)	1.80	(2,7)	5.26	. (133,7)	12	(3,7
5	5 1/2	R0747	4.74	(120,4)	5.03	(127,8)	0.15	(3,7)	2.25	(3,3)	6.11	(155,2)	14	(4,0
6	6 5/8	R0758	5.85	(148,6)	6.21	(157,8)	0.18	(4,6)	3.55	(5,3)	7.24	(183,9)	15	(4,6
8	8 5/8	R0775	7.50	(190,5)	7.96	(202,3)	0.23	(5,9)	5.39	(8,0)	9.35	(237,5)	17	(5,2
S	eries 100	0 - ACT	(All S	izes) or	PGT	(All Size	s exc	ept 5")						
2	2 3/8	R1020	2.00	(50,8)	2.17	(55,0)	0.08	(2,1)	0.60	(0,9)	3.00	(76,3)	9	(2,8
2 1/2	2 7/8	R1024	2.43	(61,7)	2.63	(66,9)	0.10	(2,6)	0.91	(1,4)	3.55	(90,3)	10	(3,1
3	- 31/2	R1030	3.00	(76,2)	3.25	(82,5)	0.12	(3,2)	1.40	(2,1)	4.27	· (108,5)	12	- (3,7)
4	4 1/2	R1039	3.91	(99,3)	4.24	(107,6)		(4,1)	2.12	(3,2)	5.32	(135,2)	13	(4,0)
5	5 1/2	R1047	4.74	(120,4)	5.13	(130,4)	0.20	(5,0)	3.00	(4,5)	6.23	(158,2)	14	(4,3
6	6 5/8	R1058	5.85	(148,6)	6.34	(160,9)	0.24	(6,2)	4.50	(6,7)	7.42	(188,4)	16	(4,9)
8	8 5/8	R1075	7.50	(190,5)	8.12	(206,3)	0.31	(7,9)	7.21	(10,7)	9.64	(244,9)	18	(5,5
S	eries 125	i0 - ACT	' (All S	izes) or	PGT	(2", 2 1/2	2", 3			zes)				
1 1/2	1.90	R1215	1.50	(38,1.)		(42,1)	0.08	(2,0)	0.46	de ser en ser en este	2.51	(63,8)	8	
2	2 3/8	R1220	2.00	(50,8)		(56,1)		(2,7)	0.76	(1,1)	3.06	(77,8)	10	(3,1)
21/2	0 7/0	D1001	0.40										······································	
		R1224	2.43	(61,7)		(68,2)	4.A 1. m	(3,2)		an advertised as at stranged	3.62	(91,8)	11	(3,4)
3	3 1/2	R1230	3.00	(76,2)	3.31	(84,2)	0.16	(4,0)	1.65	(2,5)	4.33	(110,1)	11 12	(3,7)
• · · · · · · · · · · · · · · ·	3 1/2 4 1/2	R1230 R1239	3.00 3.91-	(76,2) (99,3)	3.31 4.32	(84,2) (109,7)	0.16 0.21	(4,0) (5,2)	1.65 2.51	(2,5) (3,7)	4.33 5.46	(110,1) . (138,6)	11 12 13.	(3,7)
3 4 5	3 1/2 4 1/2 5 1/2	R1230 R1239 R1247	3.00 3.91_ 4.74	(76,2) . (99,3) (120,4)	3.31 4.32 5.24	(84,2) (109,7) (133,0)	0.16 0.21 0.25	(4,0) (5,2) (6,3)	1.65 2.51 3.79	(2,5) (3,7) (5,6)	4.33 5.46 6.40	(110,1) (138,6) (162,7)	11 12 13 15	(3,7) (4,0) (4,6)
	3 1/2 4 1/2 5 1/2 6 5/8	R1230 R1239 R1247 R1258	3.00 3.91_ 4.74 5.85	(76,2) (99,3) (120,4) (148,6)	3.31 4.32 5.24 6.46	(84,2) (109,7) (133,0) (164,2)	0.16 0.21 0.25 0.31	(4,0) (5,2) (6,3) (7,8)	1.65 2.51 3.79 5.48	(2,5) (3,7) (5,6) (8,2)	4.33 5.46 6.40 7.59	(110,1) (138,6) (162,7) (192,9)	11 12 13 15 17	(3,7) (4,0) (4,6) (5,2)
3 4 5	3 1/2 4 1/2 5 1/2 6 5/8	R1230 R1239 R1247	3.00 3.91_ 4.74 5.85	(76,2) . (99,3) (120,4)	3.31 4.32 5.24 6.46	(84,2) (109,7) (133,0)	0.16 0.21 0.25 0.31	(4,0) (5,2) (6,3)	1.65 2.51 3.79 5.48	(2,5) (3,7) (5,6)	4.33 5.46 6.40 7.59	(110,1) (138,6) (162,7)	11 12 13 15 17	(3,7) (4,0) (4,6) (5,2)
3 4 5 6 8 S	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150	R1230 R1239 R1247 R1258 R1275 00 - ACT	3.00 3.91- 4.74 5.85 7.50 (All S	(76,2) (99,3) (120,4) (148,6) (190,5)	3.31 4.32 5.24 6.46 8.29 PGT	(84,2) (109,7) (133,0) (164,2) (210,5) (2", 2 1/ 2	0.16 0.21 0.25 0.31 0.39 2", 3	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4"	1.65 2.51 3.79 5.48 9.04 Sizes	(2,5) (3,7) (5,6) (8,2) (13,5)	4.33 5.46 6.40 7.59 9.88	(110,1) (138,6) (162,7) (192,9) (250,9)	11 12 13 15 17 19	(3,7) (4,0) (4,6) (5,2) (5,9)
3 4 5 6 8 S 1 1/2	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 1.90	R1230 R1239 R1247 R1258 R1275 PO - ACT R1515	3.00 3.91- 4.74 5.85 7.50 (All S 1.50	(76,2) (99,3) (120,4) (148,6) (190,5) izes) or (38,1)	3.31 4.32 5.24 6.46 8.29 PGT 1.69	(84,2) (109,7) (133,0) (164,2) (210,5) (2", 2 1/2 (42,9)	0.16 0.21 0.25 0.31 0.39 2", 3 '	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9)	4.33 5.46 6.40 7.59 9.88 2.57	(110,1) (138,6) (162,7) (192,9) (250,9) (65,4)	11 12 13 15 17 19	(3,7) (4,0) (4,6) (5,2) (5,9) (2,8)
3 4 5 6 8 8 1 1/2 2	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 1.90 2 3/8	R1230 R1239 R1247 R1258 R1275 D0 - ACT R1515 R1520	3.00 3.91- 4.74 5.85 7.50 (All S 1.50 2.00	(76,2) (99,3) (120,4) (148,6) (190,5) (190,5) (izes) or (38,1) (50,8)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25	(84,2) (109,7) (133,0) (164,2) (210,5) 7 (2", 2 1/2 (42,9) (57,3)	0.16 0.21 0.25 0.31 0.39 2", 3 0.10 0.13	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2)	4.33 5.46 6.40 7.59 9.88 2.57 3.11	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (65,4) (78,9)	11 12 13. 15 17 19 9 10	(3,7) (4,0) (4,6) (5,2) (5,9) (2,8) (3,1)
3 4 5 6 8 S 1 1/2 2 2 1/2	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 1.90 2 3/8 2 2 7/8	R1230 R1239 R1247 R1258 R1275 00 - ACT R1515 R1520 R1524	3.00 3.91 4.74 5.85 7.50 (All S 1.50 2.00 2.43	(76,2) (99,3) (120,4) (148,6) (190,5) Sizes) or (38,1) (50,8) (61,7)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (227, 2 1/2 (42,9) (57,3) (69,6)	0.16 0.21 0.25 0.31 0.39 2", 3 0.10 0.13 0.15	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (65,4) (78,9) (92,8)	11 12 13 15 17 19 9 10 11	(3,7) (4,0) (4,6) (5,2) (5,9) (2,8) (2,8) (3,1) (3,4)
3 4 5 6 8 S 1 1/2 2 2 1/2 3	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 1.90 2 3/8 2 7/8 3 1/2	R1230 R1239 R1247 R1258 R1275 D0 - ACT R1515 R1520 R1524 R1530	3.00 3.91 4.74 5.85 7.50 (All S 1.50 2.00 2.43 3.00	(76,2) (99,3) (120,4) (148,6) (190,5) Sizes) or (38,1) (50,8) (61,7) (76,2)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38	(84,2) (109,7) (133,0) (164,2) (210,5) (2", 2 1/ 2 (42,9) (57,3) (69,6) (85,9)	0.16 0.21 0.25 0.31 0.39 2", 3 0.10 0.13 0.15 0.19	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (65,4) (78,9) (92,8) (113,2)	11 12 13 15 17 19 9 10 11 12	(3,7) (4,0) (4,6) (5,2) (5,9) (2,8) (3,1) (3,4) (3,4) (3,7)
3 4 5 6 8 1 1/2 2 2 1/2 3 4	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 1.90 2 3/8 2 2 7/8 3 1/2 4 1/2	R1230 R1239 R1247 R1258 R1275 00 - ACT R1515 R1520 R1524 R1530 R1539	3.00 3.91 4.74 5.85 7.50 (All S 1.50 2.00 2.43 3.00 3.91	(76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (38,1) (50,8) (61,7) (76,2) (99,3)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (2", 2 1/2 (42,9) (57,3) (69,6) (85,9) (111,9)	0.16 0.21 0.25 0.31 0.39 2", 3 0.10 0.13 0.15 0.19 0.25	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14	(2,5) (3,7) (5,6) (8,2) (13,5) (1,3,5) (0,9) (1,2) (1,8) (2,9) (4,7)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62	(110,1) (138,6) (162,7) (192,9) (250,9) (65,4) (78,9) (92,8) (113,2) (142,8)	11 12 13 15 17 19 9 10 11 12 14	(3,7) $(4,0)$ $(4,6)$ $(5,2)$ $(5,9)$ $(2,8)$ $(3,1)$ $(3,4)$ $(3,7)$ $(4,3)$
3 4 5 6 8 1 1/2 2 1/2 3 4 5	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 1.90 2 3/8 2 2 7/8 3 1/2 4 1/2 5 1/2	R1230 R1239 R1247 R1258 R1275 PO - ACT R1515 R1520 R1524 R1530 R1539 R1547	3.00 3.91 4.74 5.85 7.50 (All S 1.50 2.00 2.43 3.00 3.91 4.74	(76,2) (99,3) (120,4) (148,6) (190,5) 5izes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34	(84,2) (109,7) (133,0) (164,2) (210,5) (2", 2 1/2 (42,9) (57,3) (69,6) (85,9) (111,9) (135,7)	0.16 0.21 0.25 0.31 0.39 2", 3 0.10 0.13 0.15 0.19 0.25 0.30	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3) (7,7)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58	(110,1) (138,6) (162,7) (192,9) (250,9) (65,4) (78,9) (92,8) (113,2) (142,8) (167,2)	11 12 13 15 17 19 9 10 11 12 14 16	(3,7) (4,0) (4,6) (5,2) (5,9) (2,8) (3,1) (3,4) (3,7) (4,3) (4,9)
3 4 5 6 8 1 1/2 2 1/2 3 4 5 6	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 1.90 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8	R1230 R1239 R1247 R1258 R1275 D0 - ACT R1515 R1520 R1524 R1530 R1539 R1547 R1558	3.00 3.91 4.74 5.85 7.50 (All S 1.50 2.00 2.43 3.00 3.91 4.74 5.85	(76,2) (99,3) (120,4) (148,6) (190,5) Sizes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4) (148,6)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (27,2 1/2 (42,9) (57,3) (69,6) (85,9) (111,9) (135,7) . (167,5)	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3) (7,7) (9,5).	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (9,7)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (65,4) (78,9) (92,8) (113,2) (142,8) (167,2) (199,0)	11 12 13 15 17 19 10 11 12 14 16 17	(3,7) (4,0) (4,6) (5,2) (5,9
3 4 5 6 8 1 1/2 2 1/2 3 4 5 6 8	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8 8 5/8	R1230 R1239 R1247 R1258 R1275 PO - ACT R1515 R1520 R1524 R1530 R1539 R1547 R1558 R1575	3.00 3.91 4.74 5.85 7.50 (All S 1.50 2.00 2.43 3.00 3.91 4.74 5.85 7.50	(76,2) (99,3) (120,4) (148,6) (190,5) (190,5) (120,8) (61,7) (76,2) (99,3) (120,4) (120,4) (148,6) (190,5)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59 8.45	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (42,9) (57,3) (69,6) (85,9) (111,9) (135,7) (167,5) (214,7)	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37 0.48	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3) (7,7) (4,8) (6,3) (7,7) (12,1)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51 11.00	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (9,7) (16,4)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (65,4) (78,9) (92,8) (113,2) (142,8) (167,2) (199,0)	11 12 13 15 17 19 10 11 12 14 16 17	(3,7) (4,0) (4,6) (5,2) (5,9
3 4 5 6 8 1 1/2 2 1/2 3 4 5 6 8 8 S	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 175	R1230 R1239 R1247 R1258 R1275 00 - ACT R1515 R1520 R1524 R1530 R1539 R1547 R1558 R1575 60 - ACT	3.00 3.91 4.74 5.85 7.50 (All S 1.50 2.00 2.43 3.00 3.91 4.74 5.85 7.50 (All S	(76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4) (120,4) (148,6) (190,5) iizes) or	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59 8.45 PGT	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (2210,5) (42,9) (57,3) (69,6) (85,9) (111,9) (135,7) (135,7) (167,5) (214,7) (214,7) (2", 2 1/2)	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37 0.48 2", 3'	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3) (7,7) (9,5) (12,1) " and 4"	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51 11.00 Sizes	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (9,7) (16,4))	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83 10.18	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (250,9) (250,9) (250,9) (92,8) (113,2) (142,8) (113,2) (142,8) (167,2) (199,0) 3 (258,5)	11 12 13 15 17 19 9 10 11 12 14 16 17 20	(3,7 (4,0) (4,6) (5,2) (5,9) (2,8 (3,1) (3,4) (3,7) (4,3) (4,3) (4,9) (5,2) (6,2)
3 4 5 6 8 2 2 1/2 3 4 5 6 8 2 2 1/2 3 4 5 6 8 8	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 175 2 3/8	R1230 R1239 R1247 R1258 R1275 00 - ACT R1515 R1520 R1524 R1530 R1539 R1547 R1558 R1575 60 - ACT R1720	3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 3.91 4.74 5.85 7.50 (All S 2.00	(76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4) (120,4) (148,6) (190,5) iizes) or (50,8)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59 8.45 PGT 2.30	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (42,9) (57,3) (69,6) (85,9) (111,9) (135,7) (167,5) (214,7) (214,7) (23, 2 1/2) (58,4)	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37 0.37 0.48 2", 3'	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,2) (3,2) (4,8) (6,3) (7,7) (4,8) (6,3) (7,7) (12,1) " and 4" (3,8)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51 11.00 Sizes 0.98	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (2,9) (4,7) (6,8) (9,7) (16,4))	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83 10.18 3.15	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (65,4) (78,9) (92,8) (113,2) (142,8) (167,2) (199,0) 3 (258,5) (80,1)	11 12 13 15 17 19 9 10 11 12 14 16 17 20 10	(3,7) (4,0) (4,6) (5,2) (5,9
3 4 5 6 8 1 1/2 2 1/2 3 4 5 6 8 2 2 1/2	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 1.90 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 175 2 3/8 2 7/8	R1230 R1239 R1247 R1258 R1275 D0 - ACT R1515 R1520 R1524 R1530 R1539 R1547 R1558 R1575 50 - ACT R1720 R1724	3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43	(76,2) (99,3) (120,4) (148,6) (190,5) izes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4) (120,4) (148,6) (148,6) (148,6) (190,5) izes) or (50,8) (61,7)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59 8.45 PGT 2.30 2.79	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (42,9) (57,3) (69,6) (85,9) (111,9) (135,7) (167,5) (214,7) (227, 2 1/2) (58,4) (71,0)	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37 0.48 2", 3' 0.15 0.15 0.15	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3) (7,7) (12,1) " and 4" (3,8) (3,8) (4,6)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51 11.00 Sizes 0.98 1.39	(2,5) (3,7) (5,6) (8,2) (13,5) (13,5) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (2,9) (4,7) (6,8) (9,7) (16,4) (1,5) (2,1)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83 10.18 3.15 3.76	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (65,4) (78,9) (92,8) (113,2) (142,8) (167,2) (199,0) 3 (258,5) (80,1) (95,6)	11 12 13. 15 17 19 9 10 11 12 14 16 17 20	(3,7) $(4,0)$ $(4,6)$ $(5,2)$ $(5,9)$ $(2,8)$ $(3,1)$ $(3,4)$ $(3,7)$ $(4,3)$ $(4,9)$ $(5,2)$ $(6,2)$ $(3,1)$ $(3,4)$ $(3,4)$
3 4 5 6 8 2 2 1/2 3 4 5 6 8 8 2	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 175 2 3/8 2 7/8 3 1/2 3 1/2 3 1/2	R1230 R1239 R1247 R1258 R1275 00 - ACT R1515 R1520 R1524 R1530 R1539 R1547 R1538 R1547 R1558 R1575 60 - ACT R1720 R1724 R1720	3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 2.43 3.00	(76,2) (99,3) (120,4) (148,6) (190,5) izes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4) (120,4) (148,6) (190,5) izes) or (50,8) (61,7) (50,8) (61,7) (76,2)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59 8.45 PGT 2.30 2.79 3.45	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (27,2 1/2 (42,9) (57,3) (69,6) (85,9) (111,9) (135,7) (167,5) (214,7) (214,7) (27,2 1/2 (58,4) (71,0) (87,6)	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37 0.48 2", 3' 0.15 0.15 0.15 0.15 0.18 0.22	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3) (7,7) (4,8) (6,3) (7,7) (12,1) " and 4" (3,8) (4,6) (5,7)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51 11.00 Sizes 0.98 1.39 2.22	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (2,9) (4,7) (6,8) (9,7) (16,4)) (1,5) (2,1) (3,3)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83 10.18 3.15 3.76 4.58	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (250,9) (92,8) (113,2) (142,8) (142,8) (167,2) (199,0) 3 (258,5) (80,1) (95,6) (116,3)	11 12 13. 15 17 19 9 10 11 12 14 16 17 20 10 11 13	(3,7) $(4,0)$ $(4,6)$ $(5,2)$ $(5,9)$ $(2,8)$ $(3,1)$ $(3,4)$ $(3,7)$ $(4,3)$ $(4,3)$ $(5,2)$ $(6,2)$ $(3,1)$ $(3,4)$ $(3,4)$ $(4,0)$ $(4,0)$
3 4 5 6 8 1 1/2 2 1/2 3 4 5 6 8 2 2 1/2 2 1/2	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 175 2 3/8 2 7/8 3 1/2 4 1/2 4 1/2 4 1/2 4 1/2	R1230 R1239 R1247 R1258 R1275 00 - ACT R1515 R1520 R1524 R1530 R1539 R1547 R1538 R1575 50 - ACT R1720 R1724 R1730 R1739	3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 2.43 3.00 2.43 3.00 3.91	(76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (50,8) (61,7) (50,8) (61,7) (76,2) (99,3)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59 8.45 PGT 2.30 2.79 3.45 4.50	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (27,2 1/2 (42,9) (57,3) (69,6) (85,9) (111,9) (135,7) (135,7) (135,7) (135,7) (135,7) (214,7) (227, 2 1/2 (58,4) (71,0) (87,6) (114,2)	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37 0.48 2", 3' 0.15 0.15 0.15 0.15 0.15 0.12	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3) (7,7) (12,1) " and 4" (3,8) (4,6) (5,7) (7,4)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51 11.00 Sizes 0.98 1.39 2.22 3.54	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (2,9) (4,7) (6,8) (9,7) (16,4)) (1,5) (2,1) (3,3) (5,3)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83 10.18 3.15 3.76 4.58 5.81	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (250,9) (250,9) (92,8) (113,2) (142,8) (142,8) (167,2) (199,0) 3 (258,5) (195,6) (1116,3) (147,5)	11 12 13. 15 17 19 9 10 11 12 14 16 17 20 10 11 13 14	(3,7) $(4,0)$ $(4,6)$ $(5,2)$ $(5,9)$ $(2,8)$ $(3,1)$ $(3,4)$ $(3,7)$ $(4,3)$ $(4,9)$ $(5,2)$ $(6,2)$ $(3,1)$ $(3,4)$ $(3,4)$ $(3,4)$ $(4,0)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$ $(4,3)$
3 4 5 6 8 2 2 2 2 2 2 3 4 5 6 8 2 2 2 2 2 2 2 2 3 4 5 3 4 5	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 175 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 5 1/2 5 1/2	R1230 R1239 R1247 R1258 R1275 00 - ACT R1515 R1520 R1524 R1530 R1539 R1547 R1538 R1547 R1558 R1575 00 - ACT R1720 R1724 R1730 R1739 R1747	3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 2.43 3.00 2.43 3.00 2.43 3.00 2.43 3.00	(76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (50,8) (61,7) (50,8) (61,7) (76,2) (99,3) (120,4)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59 8.45 PGT 2.30 2.79 3.45 4.50 5.45	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (210,5) (210,5) (57,3) (69,6) (85,9) (111,9) (135,7) (1	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37 0.48 2", 3' 0.48 2", 3' 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,2) (3,2) (4,8) (6,3) (7,7) (12,1) " and 4" (3,8) (4,6) (5,7) (7,4) (9,0)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51 11.00 Sizes 0.98 1.39 2.22 3.54 5.23	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (2,9) (4,7) (6,8) (2,9) (4,7) (16,4)) (1,5) (2,1) (3,3) (5,3) (7,8)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83 10.18 3.76 4.58 5.81 6.75	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (250,9) (250,9) (92,8) (113,2) (142,8) (167,2) (142,8) (167,2) (199,0) 3 (258,5) (199,0) 3 (258,5) (116,3) (147,5) (147,5) (171,4)	11 12 13 15 17 19 9 10 11 12 14 16 11 13 14 16 11 13 14 16	(3,7) $(4,0)$ $(4,6)$ $(5,2)$ $(5,9)$ $(2,8)$ $(3,1)$ $(3,4)$ $(3,7)$ $(4,3)$ $(4,3)$ $(4,9)$ $(5,2)$ $(6,2)$ $(3,1)$ $(3,4)$ $(4,0)$ $(4,0)$ $(4,3)$ $(4,9)$ $(4,3)$ $(4,9)$ $(4,3)$ $(4,9)$ $(4,3)$ $(4,9)$
3 4 5 6 8 11/2 2 2 2 2 2 3 4 5 6 2 2 2 2 2 2 2 3 4 5 6	3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 150 2 3/8 2 7/8 3 1/2 4 1/2 5 1/2 6 5/8 8 5/8 eries 175 2 3/8 2 7/8 3 1/2 4 1/2 4 1/2 4 1/2 4 1/2	R1230 R1239 R1247 R1258 R1275 00 - ACT R1515 R1520 R1524 R1520 R1524 R1530 R1547 R1558 R1575 50 - ACT R1720 R1724 R1730 R1724 R1739 R1747 R1755	3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 3.91 4.74 5.85 7.50 (All S 2.00 2.43 3.00 2.43 3.00 2.43 3.00 3.91	(76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (38,1) (50,8) (61,7) (76,2) (99,3) (120,4) (148,6) (190,5) iizes) or (50,8) (61,7) (50,8) (61,7) (76,2) (99,3)	3.31 4.32 5.24 6.46 8.29 PGT 1.69 2.25 2.74 3.38 4.41 5.34 6.59 8.45 PGT 2.30 2.79 3.45 4.50 5.45	(84,2) (109,7) (133,0) (164,2) (210,5) (210,5) (27,2 1/2 (42,9) (57,3) (69,6) (85,9) (111,9) (135,7) (135,7) (135,7) (135,7) (135,7) (214,7) (227, 2 1/2 (58,4) (71,0) (87,6) (114,2)	0.16 0.21 0.25 0.31 0.39 2", 3' 0.10 0.13 0.15 0.19 0.25 0.30 0.37 0.48 2", 3' 0.48 2", 3' 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	(4,0) (5,2) (6,3) (7,8) (10,0) " and 4" (2,4) (3,2) (3,9) (4,8) (6,3) (7,7) (12,1) " and 4" (3,8) (4,6) (5,7) (7,4)	1.65 2.51 3.79 5.48 9.04 Sizes 0.59 0.83 1.19 1.93 3.14 4.60 6.51 11.00 Sizes 0.98 1.39 2.22 3.54 5.23	(2,5) (3,7) (5,6) (8,2) (13,5)) (0,9) (1,2) (1,8) (2,9) (4,7) (6,8) (2,9) (4,7) (6,8) (9,7) (16,4)) (1,5) (2,1) (3,3) (5,3)	4.33 5.46 6.40 7.59 9.88 2.57 3.11 3.65 4.46 5.62 6.58 7.83 10.18 3.76 4.58 5.81 6.75	(110,1) (138,6) (162,7) (192,9) (250,9) (250,9) (250,9) (250,9) (92,8) (113,2) (142,8) (142,8) (167,2) (199,0) 3 (258,5) (195,6) (1116,3) (147,5)	11 12 13 15 17 19 9 10 11 12 14 16 11 13 14 16 11 13 14 16	(3,7) (4,0) (4,6) (5,2) (5,9

^a Nom 'Size	ARI Thread Type	3	150°. 150°. PSI	ta <u>tic()</u> F (65.6° C)) (MPa))	ASTN SI	essuren; 1:D-1599 (MPa)	Be Ra Ft	nding adius (m)	ې کې ار	laxi éfic /jt ⁾
Se	ries 500	- A	CT (A	II Sizes)	or PO	GT (All S	Sizes	excep	ot 5'	")
3	3 1/2	V	500	(3,4)	1800	(12,4)	159	(48,5)	41	
4	4 1/2	V	500	(3,4)	1400	(9,7)	204	(62,2)	32	
5	5 1/2	~	500	(3,4)	1500	(10,3)	248	(75,6)	25	

SIZE

a set and a set of a set of a set			the first officer and the second	and a contract of the second se	and the second s	and the second sec		and the second s		THE OWNER AND	statements are as as		MTC		form a set of the base of the
4	4 1/2	~	500	(3,4)	1400	(9,7)	204	(62,2)	32	(81,3)	28	(0,2)	3000	(1361)	45NT
5	5 1/2	V	500	(3,4)	1500	(10,3)	248	(75,6)	25	(63,5)	35	(0,2)	4800	(2177)	55NR
6	6 5/8	V	500	(3,4)	1300	(9,0)	304	(92,7)	20	(50,8)	23	(0,2)	6300	(2858)	65NV
8	8 5/8	V	500	(3,4)	1400	(9,7)	392	(119,5)	16	(40,6)	30	(0,2)	11500	(5216)	85NU
Serie	es 750) - A	CT (A	II Sizes)	or PC	GT (All S	Sizes	s excep	ot 5	")					
2 1/2	2 7/8	7	750	(5,2)	2200	(15,2)	130	(39,6)	50	(127,0)	113	(0,8)	1900	(862)	27NT
3	3 1/2	~	750	(5,2)	2400	(16,5)	162	(49,4)	40	(101,6)	145	(1,0)	3200	(1452)	35NT
4	4 1/2		750	_(5,2)	2300	(15,9)	210	(64,0)	31,	(78,7)	124	.(0,9)	5200	(2359)	45ŅT
5	5 1/2	~	750	(5,2)	2200	(15,2)	254	(77,4)	24	(61,0)	117	(0,8)	7400	(3357)	55NR
6	6 5/8	1	750	(5,2)	2100	(14,5)	312	(95,1)	20	(50,8)	101	(0,7)	10700	(4854)	65NV
8	8 5/8	~	750	(5,2)	1900	(13,1)	398	(121,3)	15	(38,1)	76	(0,5)	15900	(7212)	85NU

ln/jtl (cm/jt)

(104,1) 62

(0,4) 2400

(1089)

35NT

	Serie	es 100	0 - /	аст (All Sizes	s) or	PGT (All	Siz	es exce	ept	5")					
2		. 23/8	1	1.000	(6,9)	2700	. (18,6)	109	(33,2)	60	(152,4)	212	(1,5)	1600	(726)	23NS
2	1/2	2 7/8	~	1000	· (6,9)	2900	(20,0)	133	(40,5)	49 ⁻	(124,5)	265	(1,8)	2600	(1179)	27NT
3		3 1/2	~	1000	. (6,9)	3000	(20,7)	165	(50,3)	39	= (99,1)	281	(1,9)	4100	(1860)	35NT
4		4 1/2	•	1000	(6,9)	2800	(19,3)	213	(64,9)	30	- (76,2)	215	(1,5)	6300 -	(2858)	45NT
5		5 1/2	V	1000	(6,9)	2600	(17,9)	257	(78,3)	24	(61,0)	186	(1,3)	8800	(3992)	55NR
6		6 5/8	V	1000	(6,9)	2700	(18,6)	318	(96,9)	19	(48,3)	212	(1,5)	14000	(6350)	65NS
8		8 5/8	٧.	1000	(6,9)	2600	(17,9)	406	(123,7)	15	(38,1)	183	(1,3)	21800	(9888)	85NS

Se	ries 125	50 -	ACT (All Sizes	s) or	PGT (2"	, 2 1	/2", 3",	4"	and 6" \$	Sizes	5)			
1.1/2	.1.90	V	.1250	(8,6)	3600		84	(25,6)	64	(162,6)	487	(3,4)	1200	(544)	.19NR
2	2 3/8	~	1250	(8,6)	3600	(24,8)	112	(34,1)	58	(147,3)	491	(3,4)	2200	(998)	23NS
2 1/2	2 7/8	<i>v</i> .	1250	(8,6)	3700	(25,5)	136	(41,5)	48	(121,9)	510	(3,5)	3300	(1497)	27NT
3	3 1/2	V	1250	(8,6)	3600	(24,8)	168	(51,2)	39	(99,1)	482	(3,3)	5000	(2268)	35NT
4	4 1/2		1250	.(8,6)	3300	(22,8)	216	(65,8)	30.	. (76,2)	361		7.600	(3447)	45NS
5	5 1/2	~	1250	(8,6)	3400	(23,4)	263	(80,2)	23	(58,4)	390	(2,7)	11500) (5216)	55NQ
6	6 5/8	~	1250		3300		324	(98,8)	19	(48,3)	384	(2,6)	17400) (7893)	65NQ
8	8 5/8	~	1250	(8,6)	3300	(22,8)	415	(126,5)	15	(38,1)	373	(2,6)	28300) (12837)	N/A

Serie	es 150	0 - /	ACT (All Sizes	s) or l	PGT (2"	, 2 1	/2", 3"	an	d 4" Size	s)				
1 1/2	1.90	1	1500	(10,3)	4800	(33,1)	87	(26,5)	62	(157,5)	1114	(7,7)	1700 ·	(771)	19NR
2	2 3/8	~	1500	(10,3)	3900	(26,9)	113	(34,4)	58	(147,3)	622	(4,3)	2400	(1089)	23NS
2 1/2	2 7/8	V	1500	(10,3)	3900	(26,9)	137	(41,8)	47	(119,4)	623	(4,3)	3600	(1633)	27NT
3	3 1/2	~	1500	(10,3)	4200	(29,0)	171	(52,1)	38	(96,5)	759	(5,2)	5900	(2676)	35NS
4	4 1/2	1	1500	(10,3)	4100	(28,3)	222	(67,7)	29	(73,7)	707	(4,9)	980Õ	(4445)	45NR
5	5 1/2	~	1500	(10,3)	4100	(28,3)	269	(82,0)	23	(58,4)	701	(4,8)	14300	(6486)	55NP
6	6.5/8	1	1500	(10,3)	3900	(26,9)	330	(100,6)	.19_	(48,3)	630	(4,3)	20900		N/A
8	8 5/8	~	1500	(10,3)	4000	<u>(2</u> 7,6)	424	(129,2)	14	(35,6)	660	(4,6)	35000	(15876)	N/A

l	Series 1750 -	ACT (All Sizes)	or PGT (2", 2 1/2"	, 3" and 4" Sizes)
F				

	2	2 3/8	1	1750	(12,1)	4700	(32,4)	116	(35,4)	56 <u>-</u>	(142,2)	1067	(7,4)	3000	(1361)	23NS
	2 1/2	2 7/8	٧.	1750	. (12,1)	4500	(31,0)	140.	. (42,7)	46	(116,8)	970	(6,7)	4200	(1905)	27NS
	3	3 1/2	~	1750	(12,1)	4800	(33,1)	174	(53,0)	37	(94,0)	1124	(7,7)	6900	(3130)	35NS
	4	4 1/2	~	1750	(12,1)	4500	(31,0)	225	(68,6)	29	(73,7)	969	(6,7)	11000	(4990)	45NR
	5	5 1/2	~	1750	(12,1)	4600	(31,7)	273	(83,2)	22	(55,9)	1007	(6,9)	16400	(7439)	N/A
	6	6 5/8	~	1750	(12,1)	4600	(31,7)	317	(96,6)	19	(48,3)	991	(6,8)	21900	(9934)	N/A
ļ	(Metric Convers	sions are in Pa	enthese	s)	·	•							*		NA - Not Available	(Repair Joint Required)

DIMENSIONS (NOMINAL)

Seri	ies 200	00 - ACT	(All s	Sizes) or	PGT	(2", 2 1/2	2", 3"	and 4"	Sizes	i)				
1 1/2	1.90	R2015	1.50	(38,1)	1.76	(44,7)	0.13	(3,3)	0.73	(1,1)	2.64	(67,1)	9	(2,8)
2	2 3/8	R2020	2.00	(50,8)	2.35	(59,6)	0.17	(4,4)	1.14	(1,7)	3.26	(82,7)	11	(3,4)
2 1/2	2 7/8	R2024	2.43	(61,7)	2.85	(72,4)	0.21	(5,3)	1.64	(2,4)	3.89	(98,8)	12	(3,7)
3	3 1/2	R2030	3.00	(76,2)	3.52	(89,4)	0.26	(6,6)	2.52	(3,7)	4.71	(119,5)	13	(4,0)
4	4 1/2	R2039	3.91	(99,3)	4.59	(116,5)	0.34	(8,6)	4.24	(6,3)	5.93	(150,7)	15	(4,6)
6	6 5/8	R2055	5.50	(139,7)	6.45	(163,9)	0.48	(12,1)	8.18	(12,2)	8.29	(210,7)	18	(5,5)

(3,7)(4,0)(4,6)

	Series 2250 - ACT (All Sizes) or PGT (2 1/2" and 3" Sizes)															
2	1/2	2 7/8	R2224	2.43	(61,7)	2.91	(73,9)	0.24		(6,1)	1.89	(2,8)	4.02	(102,1)	12	
3		3 1/2	R2230	3.00	(76,2)	3.59	(91,2)	0.30		(7,5)	2.82	(4,2)	4.83	(122,8)	13	
4	· ··· ··· ·	~4 1/2	R2239	3.91	(99,3)	4.68	(118,9)	0.39		(9,8)	4.65	(6,9)	6:12	(155,4)	15	

S	Series 2500 - ACT (All Sizes) or PGT (2", 2 1/2" and 3" Sizes)													
<u>1</u> 1/2	1.90	R2515	1.50	(38,1)	1.83	(46,5)	0.17	(4,2)	0.90	(1,3)	2.83	(71,9)	10	(3,1)
2	2 3/8	R2520	2.00	(50,8)	2.44	(62,0)	0.22	(5,6)	1.42	(2,1)	3.48	(88,5)	11	(3,4)
2 1/2	2 7/8	R2524	2.43	(61,7)	2.97	(75,4)	0.27	(6,8)	2.08	(3,1)	4.12	(104,6)	12	(3,7)
3	3 1/2		3.00	(76,2)	3.66	(93,1)	0.33	(8,4)	3.13	(4,7)	4.96	(126,1)	14	(4,3)
4	4 1/2	R2537	3.75	. (95,3)	4.58	(116,3)	0.42	(10,5)	5.09	(7,6)	6.33	(160,8)	15	(4,6)
Series 2750 - ACT (All Sizes)														

3 1/2 R2727 2.72 (69,1) 3.39 (86,1) 0.34 · (8,5) 3.44 · (4,7) 5.14 · (130,5) 13 .. (4;0) (Metric Conversions are in Parenthesis)

Joining System Information (API 8rd Thread)

			· · ·		/					
Pipe Size - Inches Joining System		1 1/2	2	2 1/2	3	4	5	6	8	8
Thread Size (3)		1.90" EUE 10rd	2 3/8" EUE 8rd	2 7/8" EUE 8rd	3 1/2" EUE 8rd	4 1/2" EUE 8rd	5 1/2" OD 8rd	6 5/8" OD 8rd	8 5/8" OD 8rd	9 5/8" OD 8rd
Pin Upset O.D.	In (mm)	2.15 (54,6)	2.60 (66,0)	3.10 (78,7)	3.75 (95,3)	4.75 (120,7)	5.55 (141,0)	6.65 (168,9)	8.65 (219,7)	9.65 (245,1)
Thread Length	In (mm)	2.36 (59,9)	2.94 (74,7)	3.25 (82,6)	3.50 (88,9)	3.88 (98,6)	4.75 (120,7)	4.25 (108,0)	4.85 (123,2)	5.13 (130,3)
Make Up Length Loss	In (mm)	2.06 (52,4)	2,56 (65,1)	2.86 (73,0)	3.13 (79,4)	3.50 (88,9)	4.38 (111,1)	3.88 (98,4)	4.50 (114,3)	4.75 (120,7)
(Metric Conversions are in Parentheses)				•	•	<u> </u>		L	L

Corresponding Numbered Notes:

- 1. SERIES PRESSURE (API 15HR) Based on minimum wall thickness dimensions and API 15HR Edition 3, for a 20 year life expectancy. Since some of the long term test data is incomplete for some of these products, not all are available with an API Monogram. API Monogrammable products are designated by check marks. NOV Fiber Glass Systems Standard Design products are not API monogrammed.
- 2. ULTIMATE PRESSURE The typical mode of failure for pressure is weep.
- 3. API CONNECTIONS All products are produced integral joint unless indicated (TC) Threaded and Coupled. All 11/2" EUE 10rd and 2 3/8" - 41/2" EUE 8rd API threads conform to API 5B Table 14, 14th Edition (L4 is minimum) and all 51/2" - 9 5/8" OD 8rd casing threads conform to API 5B Table 7, 14th Edition (L4 is minimum).

4. CYCLIC PRESSURE - Consult a NOV Fiber Glass Systems technical services personnel in applications where pressure fluctuations of more than 20 percent of the steady pressure rating are anticipated.....

Ser	Series 2000 - ACT (All Sizes) or PGT (2", 2 1/2", 3" and 4" Sizes)													
1 1/2	1.90	2000	(13,8)	<u> 5900</u>	(40,7)	9Ô	(27,4)	60	(152,4)	2141	(14,8)	2200	(998)	19NQ
2	2 3/8	2000	(13,8)	5400	(37,2)	118	(36,0)	55	(139,7)	1619	(11,2)	3500	(1588)	23NQ
2 1/2	2 7/8	2000	(13,8)	5300	(36,5)	143	(43,6)	45	(114,3)	1518	(10,5)	5100	(2313)	27NQ
3	3 1/2	2000	(13,8)	5400	(37,2)	177	(53,9)	37	(94,0)	1588	(10,9)	7800	(3538)	35NR
4	4.1/2	2000	(13,8)	5400	(37,2)	231	(70,4)	28	(71,1)	1637	(11,3)	13500	(6124)	45NP
6	6 5/8	2000	(13,8)	5200	(35,9)	323	(98,5)	19	(48,3)	1465	(10,1)	25500	(11567)	N/A

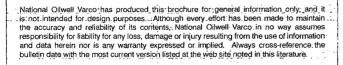
	Series 2250 - ACT (All Sizes) or PGT (2 1/2" and 3" Sizes)														
21	/2 27/8		2250	(15,5)	6000	(41,4)	146	(44,5)	45	(114,3)	2232	(15,4)	5900	(2676)	27NQ
3	3 1/2		2250	(15,5)	5900	(40,7)	180	(54,9)	36	(91,4)	2163	(14,9)	8900	(4037)	35NQ
4	-4 1/2	. 7 2	2250	(15,5)	5900	(40,7)	234~	(71,3)	28	(71,1)	2080	(14,3)	14800	(6713)	N/A

	Series 2500 - ACT (All Sizes) or PGT (2", 2 1/2" and 3" Sizes)														
1 1/	2 1.90		2500	(17,2)	7100	(49,0)	93	(28,3)	58	(147,3)	3645	(25,1)	2700	(1225)	19NS
2	2 3/8		2500	(17,2)	6500	(44,8)	122	(37,2)	54	(137,2)	2853	(19,7)	4400	(1996)	23NP
2 1/	2 27/8		2500	(17,2)	6500	(44,8)	149	(45,4)	44	(111,8)	2870	(19,8)	6500	(2948)	N/A
з	3 1/2		2500	(···,=)	6500	· · · · · /		· · · ·	35	(88,9)	2859	(19,7)	9900	(4491)	35NP
4	4 1/2		2500	(17,2)	6600	(45,5)	230	(70,1)	23	. (58,4)	3015	(20,8)	15800	(7167)	N/A_
	Series 2750 - ACT (All Sizes)														

3 31/2 2750 (19,0) 7400 (51,0) 171 (52,1) 36 (91,4) 4128 (28,5) 9500 (4309) N/	A
(Metric Conversions are in Parentheses) N/A - Not Available (Repair Joint R	Required)

Pipe	Capac	ity			
to Si	ze -	ANGE STA	Diameter	Сар	acity
::‡Pipe₌	Thread	, in .	🔆 🔄 (mm) 🐫	Bbls/1,000) ⁽ ft. ₂ (m³/km)
1 1/2	1.90	1.50	(38,1)	2.20	(1,1)
2	2 3/8	2.00	(50,8)	3.90	(2,0)
2 1/2	2 7/8	2.43	(61,7)	5.70	(3,0)
3	3 1/2	3.00	(76,2)	8.70	(4,5)
4	4 1/2	3.75	(95,3)	13.70	(7,1)
4	4 1/2	3.91	(99,3)	14.80	(7,7)
5	5 1/2	4,74	(120,4)	21.80	(11,4)
6	6 5/8	5.50	(139,7)	29.40	(15,3)
6	6 5/8	5.85	(148,6)	33.20	(17,3)
8	8 5/8	7.50	(190,5)	54.60	(28,5)

- ------


.

... . ..

5

ipter duct

. . .

. .

www.fiberglasssystems.com

PO. Box 37389, 2425 SW 36th Street San Antonio, Texas 78237 USA Phone: 1 (210) 434-5043 Fax: 1 (210) 434-7543

NOV Fiber Glass Systems

© 2009, NATIONAL OILWELL VARCO ® Trademark of NATIONAL OILWELL VARCO O1201 Issued August 2009 - Supersedes July 2007

HDD DRILLING MUD CONTINGENCY PLAN

DESCRIPTION OF HDD PROCESS

The HDD crossing technique is a trenchless installation process that uses equipment and methods derived from the oil well drilling industry. The technique is used to install pipelines beneath obstacles or sensitive areas and consists of a multi-stage process. A small diameter pilot hole is first drilled along a crossing profile, and is followed by an enlargement or "reaming" of the pilot hole to accommodate a pull back of the pipeline. The pilot hole is drilled using rotation cutting and/or jetting with a jetting assembly attached to drill pipe. The cutting action of the drill head is remotely operated to control its orientation and direction.

Increasing the pilot hole's diameter with multiple reaming passes is an incremental process that will depend on the pipeline diameter and subsurface geology. Once the pilot hole has been enlarged, the pre-assembled, hydrostatically tested section of pipeline is pulled into the completed hole.

PURPOSE OF PLAN

All stages of HDD operations involve the use and circulation of bentonite drilling fluid or mud. Drilling fluid is used to lubricate the drill bit, help stabilize the hole, and remove cuttings or spoil from the drill hole. Among other purposes, the drilling fluid is used to transport soil and rock cuttings to the surface as the drilling fluid is continuously recirculated to the entry point. The fluid also stabilizes the hole, reduces drilling friction, cools and cleans the drill cutters, transmits hydraulic power to the drill bit, and performs the hydraulic excavation of the cuttings.

The main component of the drilling fluid used in HDDs for pipeline installation is water. A viscosifier (typically a naturally-occurring bentonite clay) is added to the water to improve its lubricating properties and to enhance the fluid's performance. Specific soils and drilling conditions may require the addition of other constituents to ensure that the properties of the drilling fluid meet the needs of the particular situation. Because the drilling fluid consists mainly of a bentonite clay-water mixture, it is not considered to be hazardous or toxic. However, when inadvertently released into a waterbody, it can suffocate fish and aquatic organisms that live on the bottoms of streams and rivers.

The most likely occurrence of inadvertent drilling fluid release to develop during a drilling operation is from a "frac-out." A frac-out occurs when drilling fluids and mud are released through fractures in the soil and migrate toward the surface. Frac-outs usually occur during initial stages of the pilot hole drilling operations when the down-hole pressures are too high for the surrounding formation. Escape of drilling fluids and mud from a frac-out is most common near the drill entry and exit locations, but can occur at any location along the drill path.

This plan identifies operational procedures and responsibilities for the prevention, containment, and clean-up of frac-outs associated with HDD operations.

LAYOUT AND DESIGN FOR HDD CROSSINGS

The HDD entry and exit locations will be sited to provide a minimum of a 50-foot setback from all sensitive resources and a maximum design depth clearance to provide the greatest buffer between the sensitive resource and the drilling activity/installed pipe.

DOCUMENTATION AND MONITORING OF HDD OPERATIONS

Records of the HDD activities will be maintained by the drilling contractor (Contractor) and provided to the Operator. A daily progress report will document the employees engaged in the operation, as well as operational information such as hole size, tool in use, footage each day and to date, and rate of penetration. The records will also document the amount of bentonite used each day and to date, whether circulation had been lost, volume of fluid lost, and volumes of fluids and solids disposed of each day. Updates to the fluid system and/or drilling schedule will

also be recorded. A daily drilling log and daily reaming log will also be maintained for HDD activities. These logs will record parameters such as joint number and length, time, total hours, location of the drilling tool, torque, pump pressure, start/stop times and other notes. The Construction Inspector(s) and/or the Environmental Inspector(s) will continuously monitor operations during HDD activities.

Monitoring activities during drilling operations will include:

- Visual inspection along the drill path, fluid return pit(s) and waterbody or drainage surface for evidence of a release;
- Observation and documentation of drilling fluid pressures using HDD instrumentation;
- Observation and documentation of drilling fluid recirculation volumes; and
- Complete documentation of all drilling fluid products used.

The Contractor will have readily available containment equipment to contain inadvertent releases of drilling mud to water bodies including earth-moving equipment, portable pumps, containment booms, hand tools, hay bales, silt fence and sandbags. The Environmental Inspector(s) will ensure that adequate quantities of spill containment equipment and supplies are at the drilling location prior to allowing the Contractor to begin drilling. Further, the Environmental Inspector(s) will ensure that each individual involved in drilling operations is familiar with the locations of all spill containment equipment and the specific procedures for handling potential drilling fluid releases.

LOSS OF CIRCULATION

Typically, lost circulation has the highest probability of occurring while the pilot hole is being drilled due to the smaller bore-hole annulus and the large volume of solids being displaced from the bore and carried out in the drilling fluid. In the course of drilling the pilot hole, circulation will often be temporarily lost as the pilot bit is advanced through more permeable or less competent sections of the ground formation when fluid pressures are at a maximum. As the pilot bit advances beyond these sections of the bore-hole, fluid pressure will fall and circulation within the bore-hole will naturally be re-established. Much of the fluid lost to the formation under the greater pressures will return back to the bore-hole as the pressures fall, in which case the drilling fluid is not likely to migrate to the ground surface or the river.

Drill cuttings generated in the drilling process often naturally bridge and seal fractures or voids as the drilling progresses, thus providing another means of re-establishing circulation. This often happens during the reaming process when higher volumes of larger cuttings are generated. Therefore it is usually beneficial to proceed with the pilot hole even if circulation has not been re-established, since it will likely be re-established at some point during the reaming process.

If a significant reduction of drilling fluid circulation is detected without total loss of circulation, the Contractor will reduce drilling fluid volumes and subsequent pressures and will increase the yield point of drilling fluid. Then, depending upon the progress of the drilling, the drill pipe may be tripped out until return flow is restored.

However, if a complete loss of circulation of drilling mud occurs during operation of a HDD, the Operator, will require the Contractor to cease pumping immediately, contain any drilling fluid which has surfaced, notify the Chief Inspector and Chief Environmental Inspector, and evaluate the data and circumstances leading to the loss of circulation; and determine what method should be utilized to seal the fracture. Most fractures can be sealed, if detected early on, by pumping special materials to prevent loss of circulation down hole.

PROCEDURES FOR RELEASE OF DRILLING FLUID

Should an inadvertent release of drilling fluid occur in accessible areas, containment and subsequent clean-up will begin immediately upon detection. Remember that measures used to contain releases of drilling fluid will vary according to site-specific conditions (e.g. volume of fluid, topography, and environmental setting).

The most commonly used system for containing surface releases of bentonite involves a perimeter earthen berm, hay bales, or silt fence. In those instances where this type of containment cannot be used, containment procedures will be directed by the Chief Inspector assisted by the Chief Environmental Inspector to minimize environmental impact. After containment, clean-up and restoration will generally be accomplished utilizing one of the following: hand labor, hand tools and buckets; portable pumps and hand tools; rubber tired equipment and hand tools; and vacuum trucks and hand tools.

Under certain field conditions isolation of drilling fluid is virtually impossible. In the unlikely event that a release occurs within an area that cannot be isolated or contained, such as along the bed of a waterbody or into the water, drilling operations will be stopped immediately. Following evaluation by appropriate personnel, a decision will be made on how best to continue the crossing construction to minimize impacts.

In all cases, the procedures listed below will be followed.

- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation;
- Continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the pipeline.
- In the event of an inadvertent release of drilling fluid within a waterway, the Operator will immediately contact the following agencies by telephone and/or facsimile and describe the location and nature of the release, the corrective actions being taken, and whether the release poses a threat to public health and safety.

US Fish & Wildlife Service Wally Murphy, Ecological Services Field Supervisor (505) 761-4781

In Southern New Mexico and West Texas US Army Corps of Engineers El Paso Regulatory Office James Mace 915-568-1359 (915) 568-1359 FAX: 915-568-1348

New Mexico Department of Game and Fish Matt Wunder, Chief, Conservation Services Division (505) 476-8101

New Mexico Oil Conservation Division Wayne-Price, Environmental Bureau Chief (505) 476-3490

New Mexico Environment Department, Surface Water Bureau -Neal-Schaeffer (505) 476-3017

ABANDONMENT OF HDD

If a directional drill must be abandoned, the drill hole will be filled with drilling fluid and grout sealed for a distance of not less than thirty feet at each end.

HDD FAILURE CRITERIA

While it is widely believed that installing river crossings by HDD construction is less environmentally damaging than open cut construction, there are many cases where HDD may not be the method best suited for a particular crossing location. Soil conditions, scheduling, and economics often play a major role in determining whether an HDD is feasible. Furtherk, scheduling concerns may necessitate a "fall-back" plan that allows for the timely transition from HDD construction to an open cut or other type of construction if a drilled crossing is determined to be not economically or environmentally feasible.

PILOT HOLE

If it becomes evident that directional control of the downhole steering assembly has been lost during the pilot hole phase of construction, the HDD operations will be abandoned. This can occur as a result of gravel and cobble formations causing poor hole stability and the inability to move the heavier cobble-type material away from the bit.

In other words, if it is impossible to drill a hole within the design criteria set forth by the Operator, then another type of crossing method will be used. If the drill string becomes stuck during the drilling of the pilot hole and two attempts to free the pipe and drilling assembly from the formation fail, then only one more attempt to drill a new pilot hole will be made. This will also be the case for "twisted-off" drill pipe, since stuck or twisted–off pipe is usually the result of poor hole condition (cuttings or gravel surrounding the stem) and/or excessive sharp turns from a lack of directional control. Thus, if the drill stem is stuck and is either intentionally severed for recovery or inadvertently twisted apart, the crew will abandon the hole, move the drill rig, and begin a new hole.

Finally, if during the second attempt at a pilot hole the drill string or the drilling assembly becomes difficult to turn without the use of a large amount of torque from the drill rig, the contractor will make efforts to reduce the torque. If removal of the drill stem and cutting head (referred to as tripping out) to clean the hole or the use of torque reducing additives in the drill fluid fails to remedy the high torque on the drill pipe, the HDD will be abandoned to avoid creating another stuck or twisted-off pipe string. This will avoid the loss of another expensive tool and the waste of time and money on the drill spread.

PRE-REAMING

Fluid circulation is critical to the success of any HDD crossing. During the reaming process (preream or swab pass) large amounts of drill fluid, possibly 400 GPM or more, will be pumped down hole. The drill contractor may employ techniques such as "tripping out" to clean the hole, using a cleaning tool, or using fluid additives to aid in stabilizing the hole. If drill fluid circulation is lost during any of the ream passes, the drill contractor will make two attempts at both trying to regain circulation and containing any fluid reaching the surface.

In the event that full fluid circulation is not achieved and drilling fluid is reaching the ground surface or a waterbody that cannot be accessed for containment, HDD construction will be abandoned for another option so that further environmental impacts do not occur. If the drill string or reamer/hole opener becomes stuck during the final ream pass, and numerous attempts to free the pipe and drilling assembly from the formation fail, then only one more attempt to drill a new pilot hole will be made.

This will also be the case for "twisted-off" drill pipe. Thus, if the reamer/hole opener or drill stem is stuck and is either intentionally severed for recovery or inadvertently twisted apart, the crew will abandon the hole, move the drill rig and begin a new hole. If during the ream pass on the second pilot hole the drill string or the drilling assembly becomes difficult to turn without the use of a large amount of torque from the drill rig, the contractor will make efforts to reduce the torque. If "tripping out" to clean the hole or the use of torque reducing additives in the drill fluid fails to remedy the high torque on the drill pipe, the HDD will be abandoned to avoid having another stuck or twisted-off pipe string. This will avoid the loss of an expensive downhole tool and the waste of costly time of the drill spread.

Finally, if during the reaming process the equipment is experiencing very slow penetration rates, a determination will be made whether or not to continue. The slow rate of reaming will have a large impact on scheduling and cost. After reviewing drill logs and geotechnical data the Contractor and the Operator will decide whether a change in the penetration rates is likely. If it appears the current rate of reaming will continue throughout the crossing and that the rate is not economically feasible, the HDD operation will be abandoned.

PIPE PULLBACK

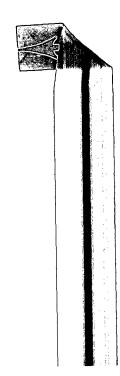
In this final stage of HDD construction the ultimate failure is if the pipe section being pulled in becomes stuck and is not able to be pulled further into the hole for completion. This occurs most often as a result of a poorly drilled pilot hole or poor hole stability due to a loose and granular formation or a loss of circulation. Depending on where in the section the stuck pipe has occurred, the Contractor may use winches to move the pipe to completion or pull the pipe section out of the hole. If the section is pulled out of the hole the Contractor will run a reamer through the hole again in order to clean any fallen debris. The Contractor may also opt to run a larger sized reamer if a dogleg is thought to be the problem. Once the hole is said to be suitable for pullback, the pipe section will be prepared for another attempt at installation. If a second attempt at pullback is not successful, the HDD crossing will be abandoned. If the Contractor is not able to pull the stuck section out of the hole, the pipe will be abandoned in-place in the ground. The section will be cut off below ground level and capped. At this point HDD construction will be deemed not feasible and an alternative crossing method will be adopted.

DOCUMENTATION OF EVENTS LEADING TO AN HDD FAILURE

In the event that an attempted HDD is determined to be unsuccessful, the following agencies will be provided with the documentation that describes the events leading up to the HDD failure:

US Fish & Wildlife Service Wally Murphy, Ecological Services Field Supervisor (505) 761-4781

In Southern New Mexico and West Texas US Army Corps of Engineers El Paso Regulatory Office James Mace 915-568-1359 (915) 568-1359 FAX: 915-568-1348

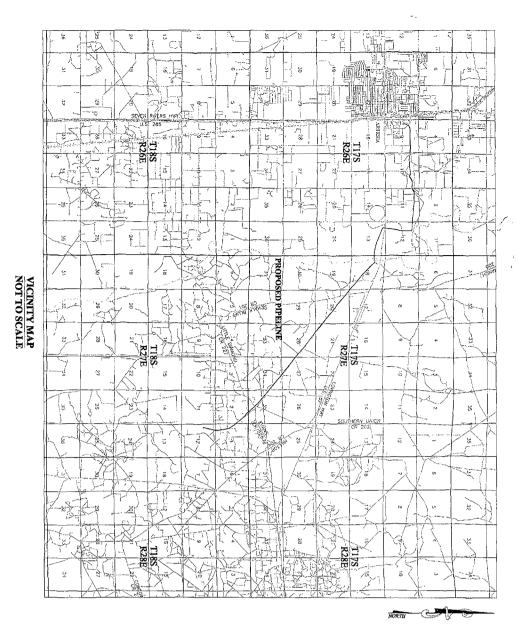

New Mexico Department of Game and Fish Matt Wunder, Chief, Conservation Services Division (505) 476-8101

New Mexico Oil Conservation Division Wayne Price, Environmental Bureau Chief (505) 476-3490

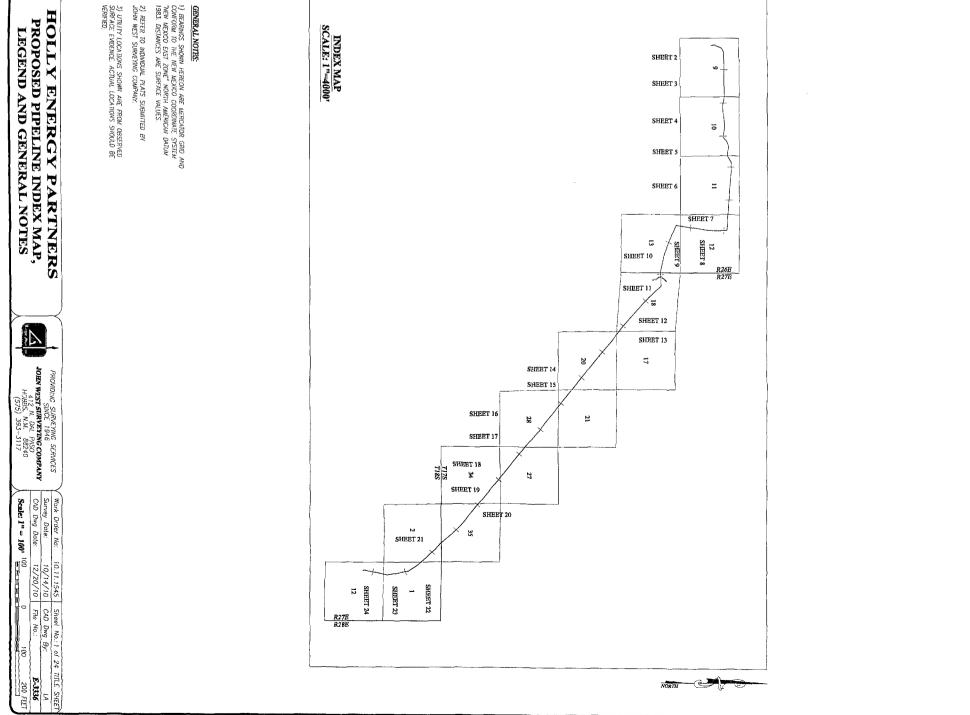
New Mexico Environment Department, Surface Water Bureau Neal Schaeffer (505) 476-3017

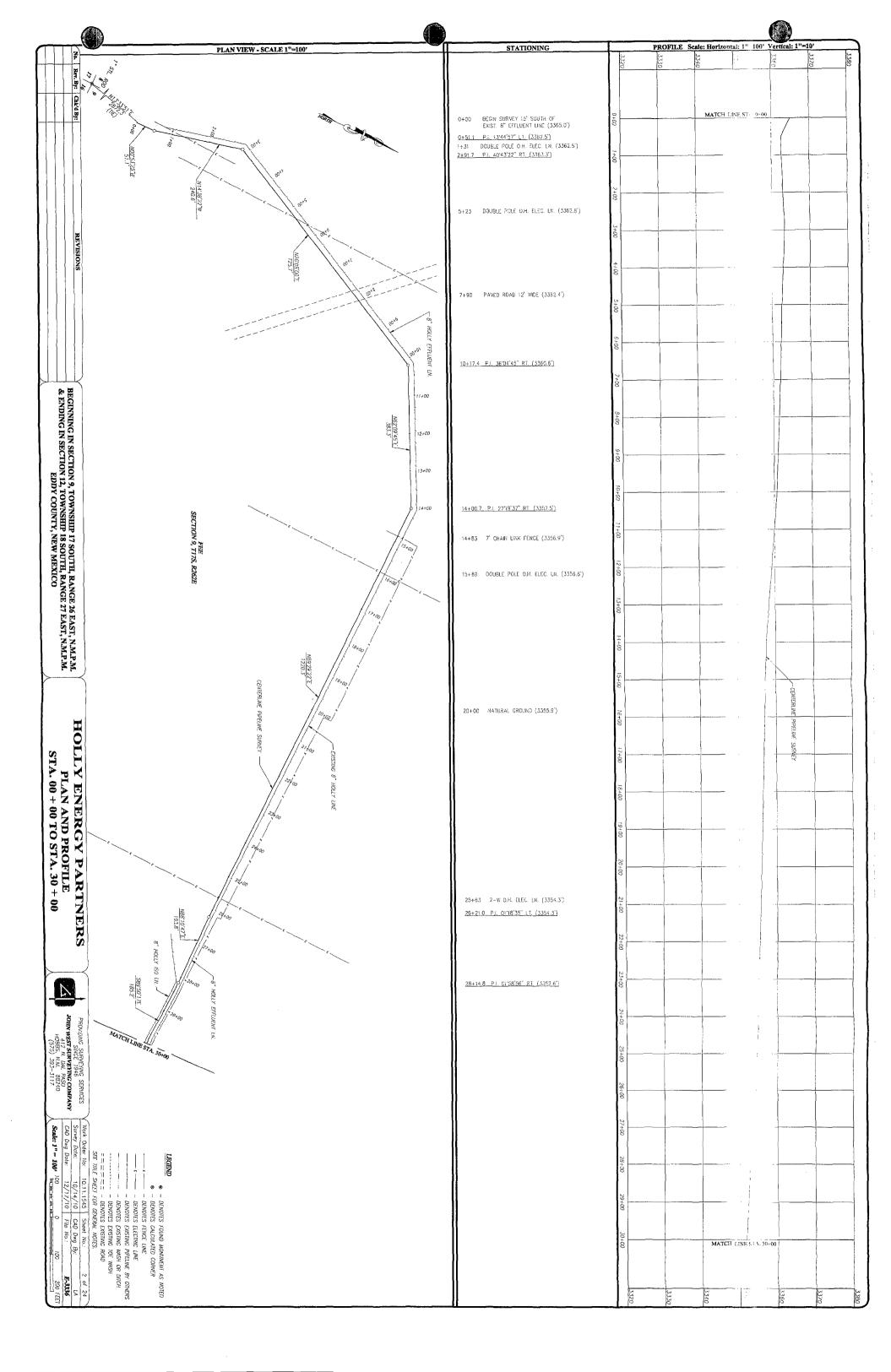
Rev. By: Chk'd By: REVISIONS BEGINNING IN SECTION 9, TOWNSHIP 17 SOUTH, RANGE 26 EAST, N.M.P.M. & ENDING IN SECTION 12, TOWNSHIP 18 SOUTH, RANGE 27 EAST, N.M.P.M. EDDY COUNTY, NEW MEXICO

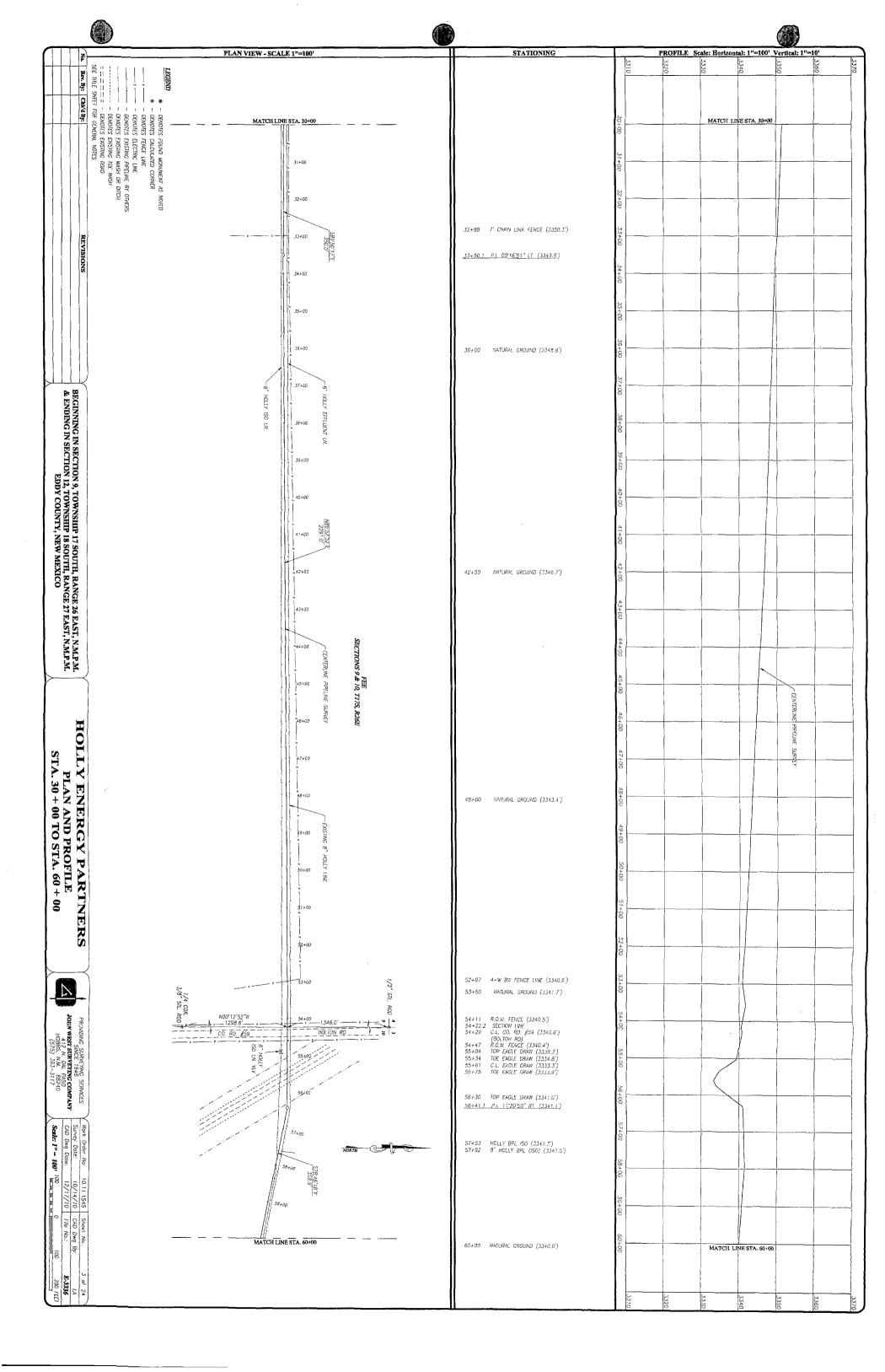
No

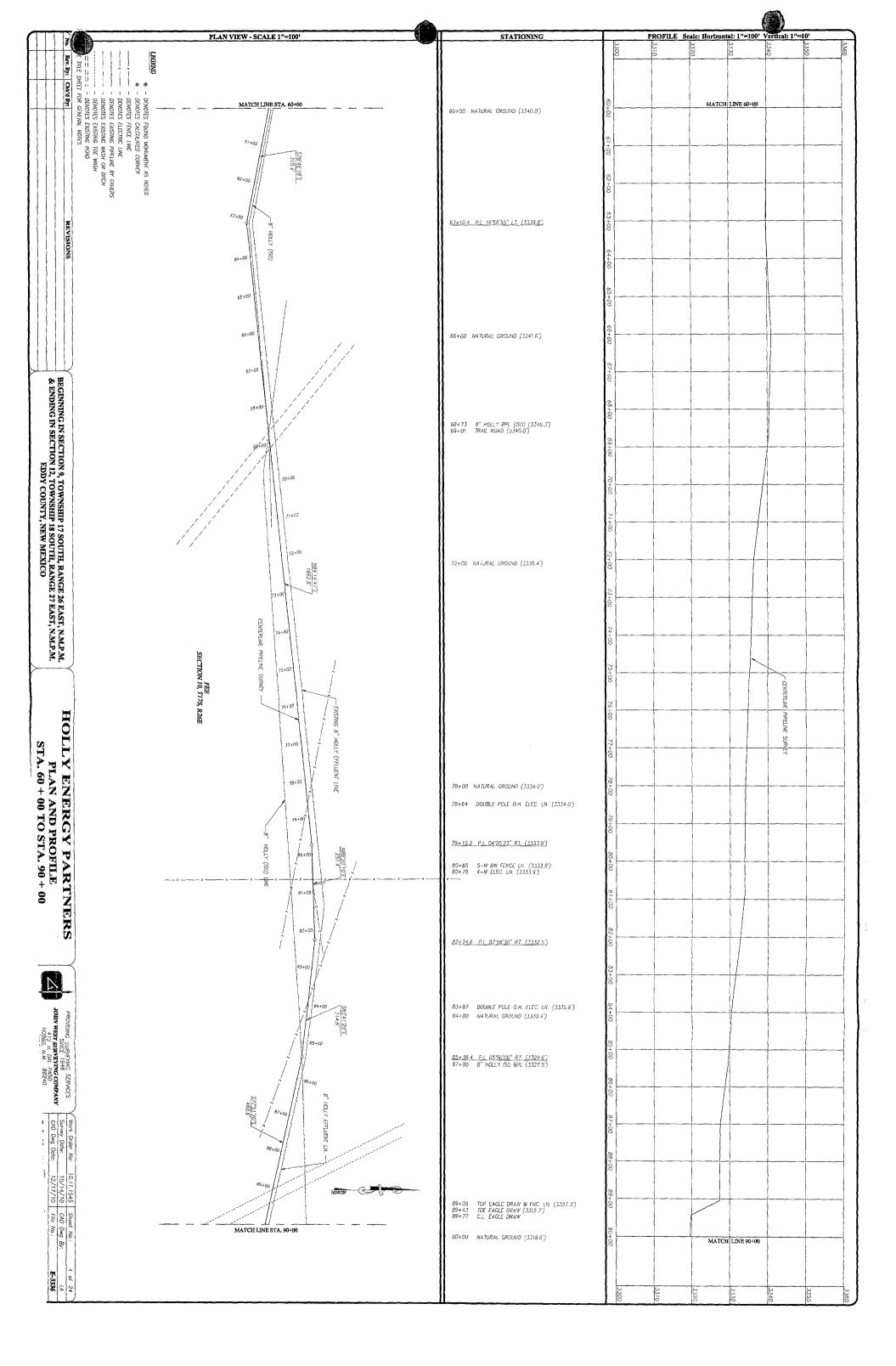

 DENOTES ELECTRIC LINE
 DENOTES EXISTING PIPELINE BY OTHERS
 DENOTES EXISTING WASH OR DATO
 DENOTES EXISTING ROAD T

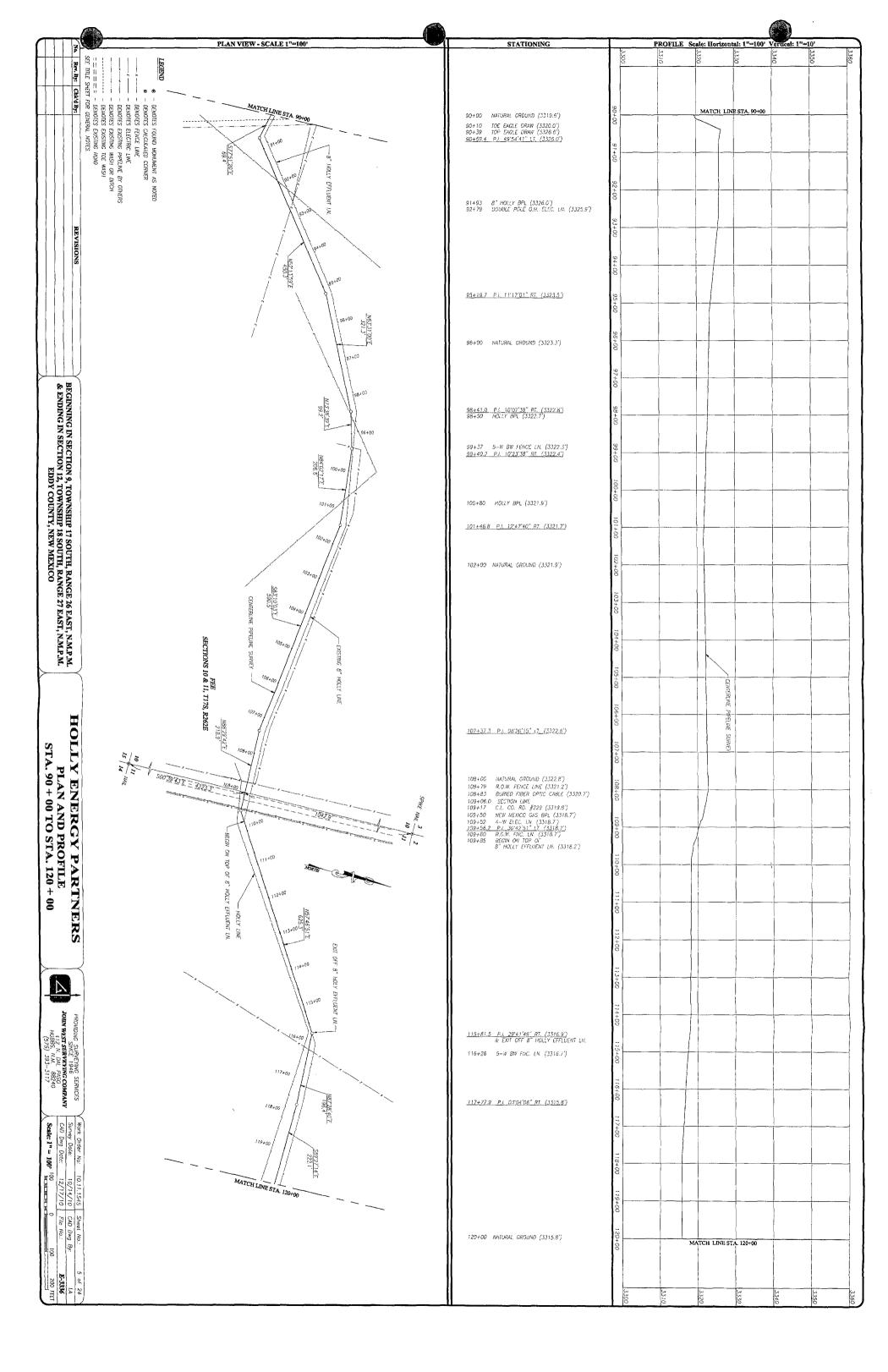
LEGEND AND GENERAL NOTES:

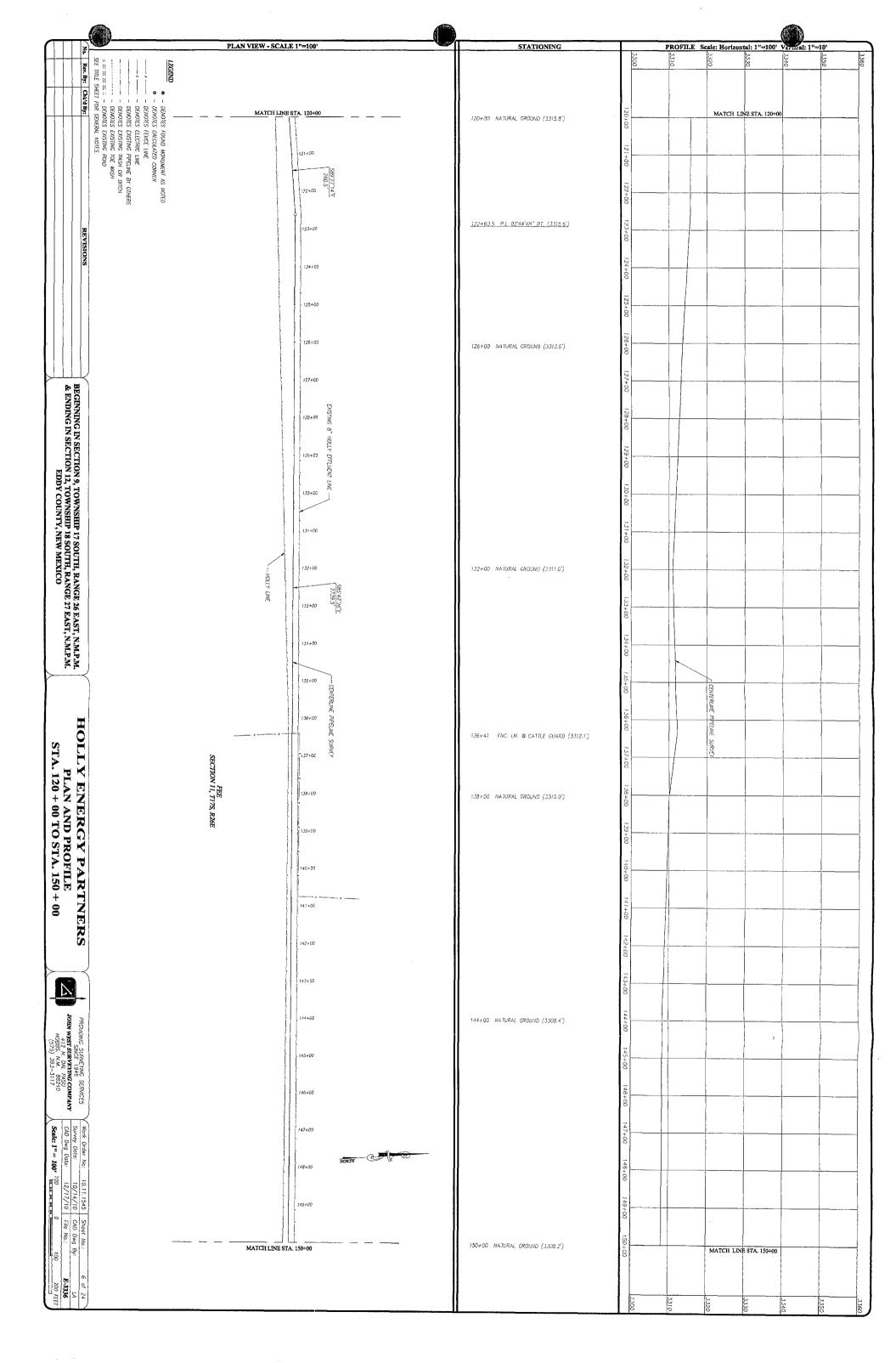

8 ®

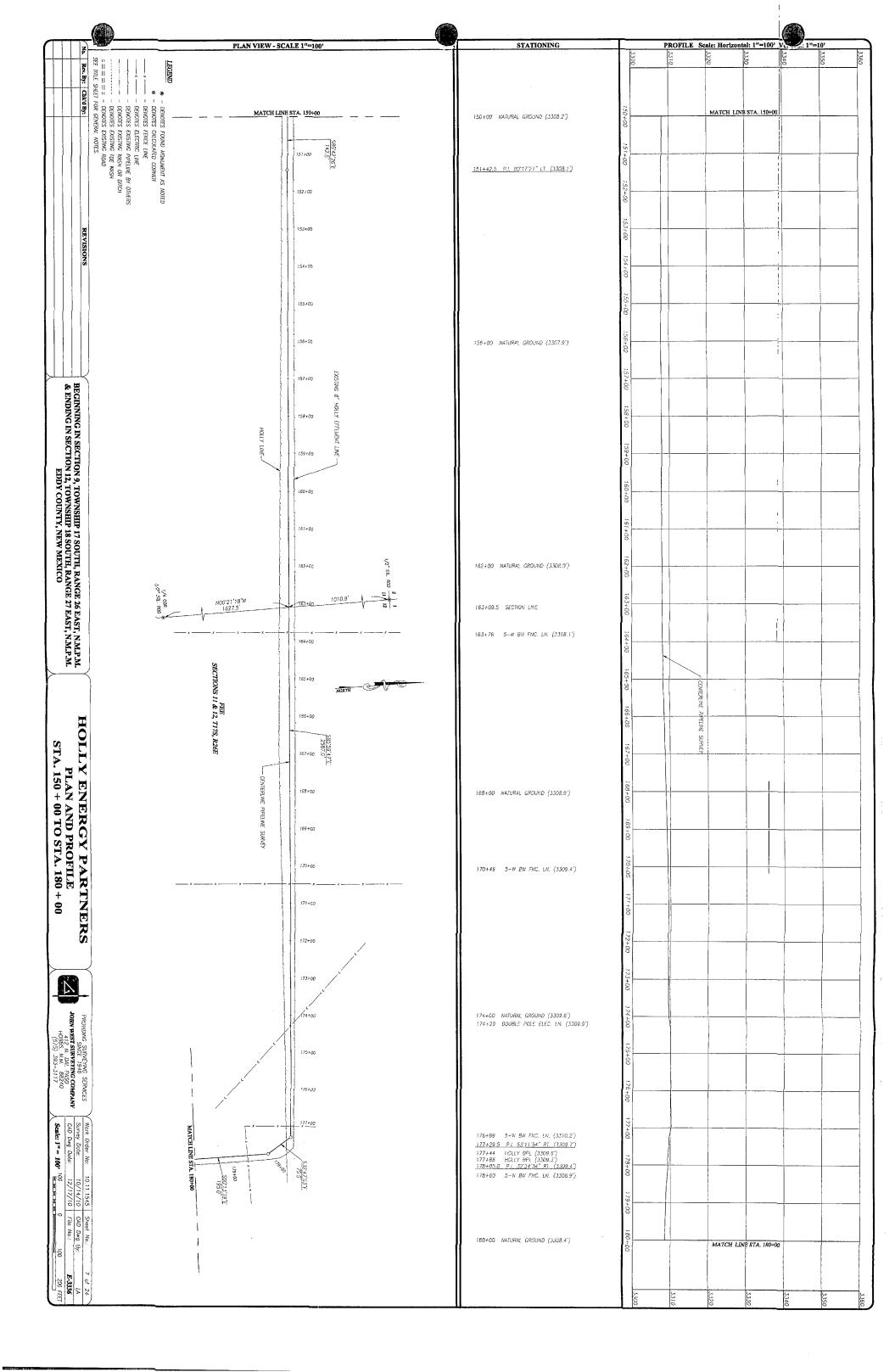

DENOTES FOUND MONUMENT AS NOTED DENOTES CALCULATED CORNER DENOTES FENCE LINE

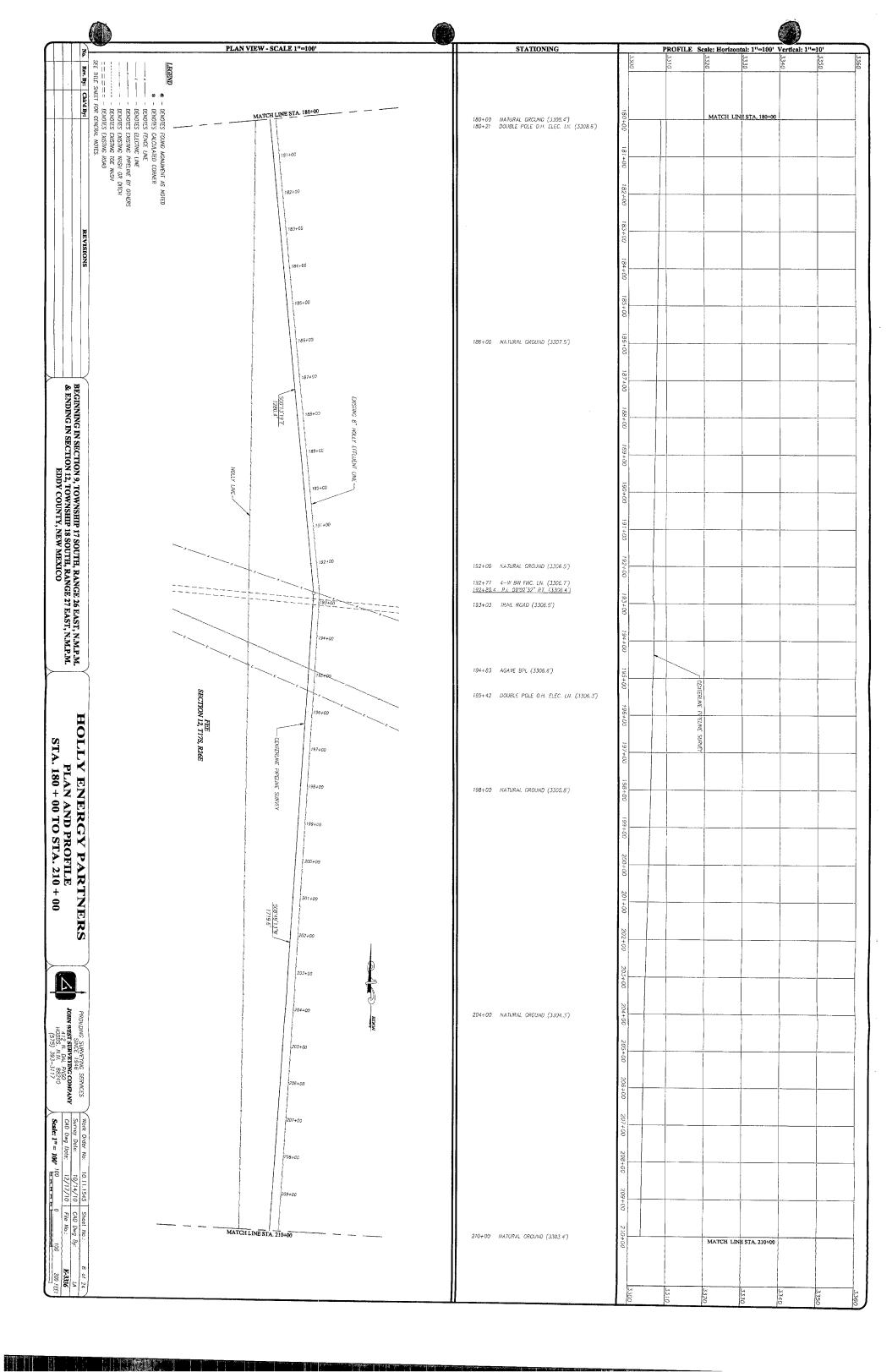

ſ

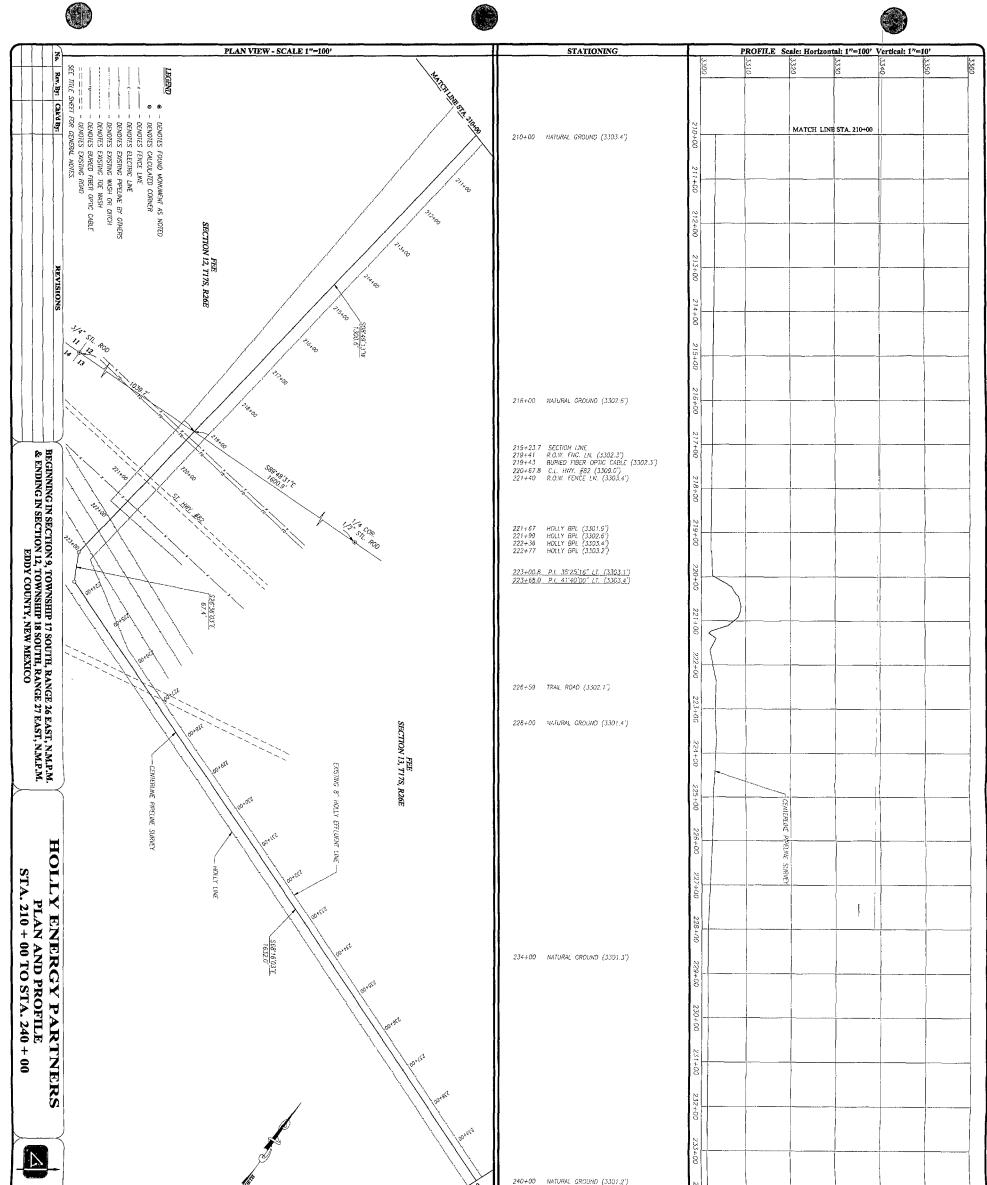


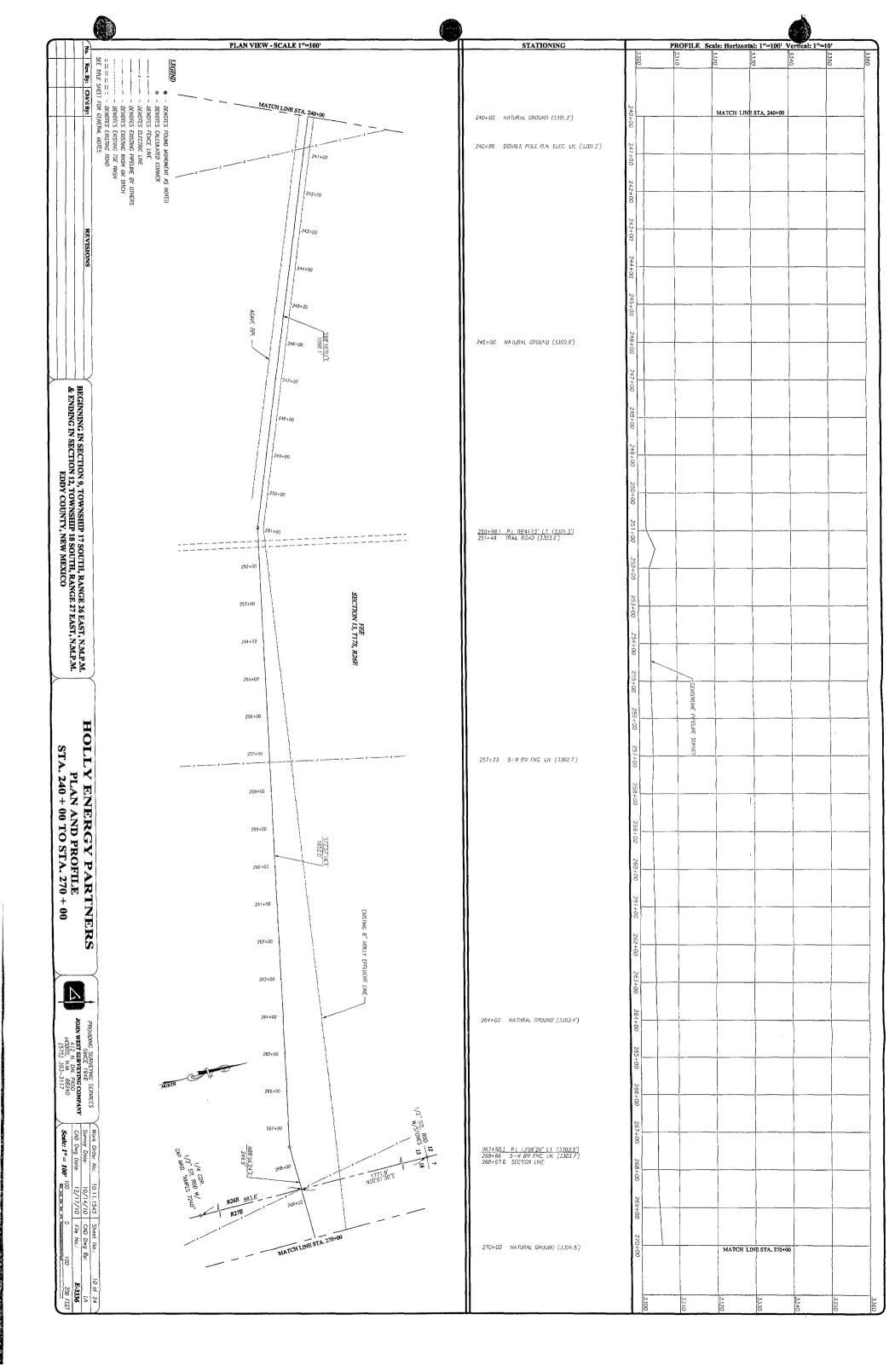

 $\sum_{j=1}^{n}$

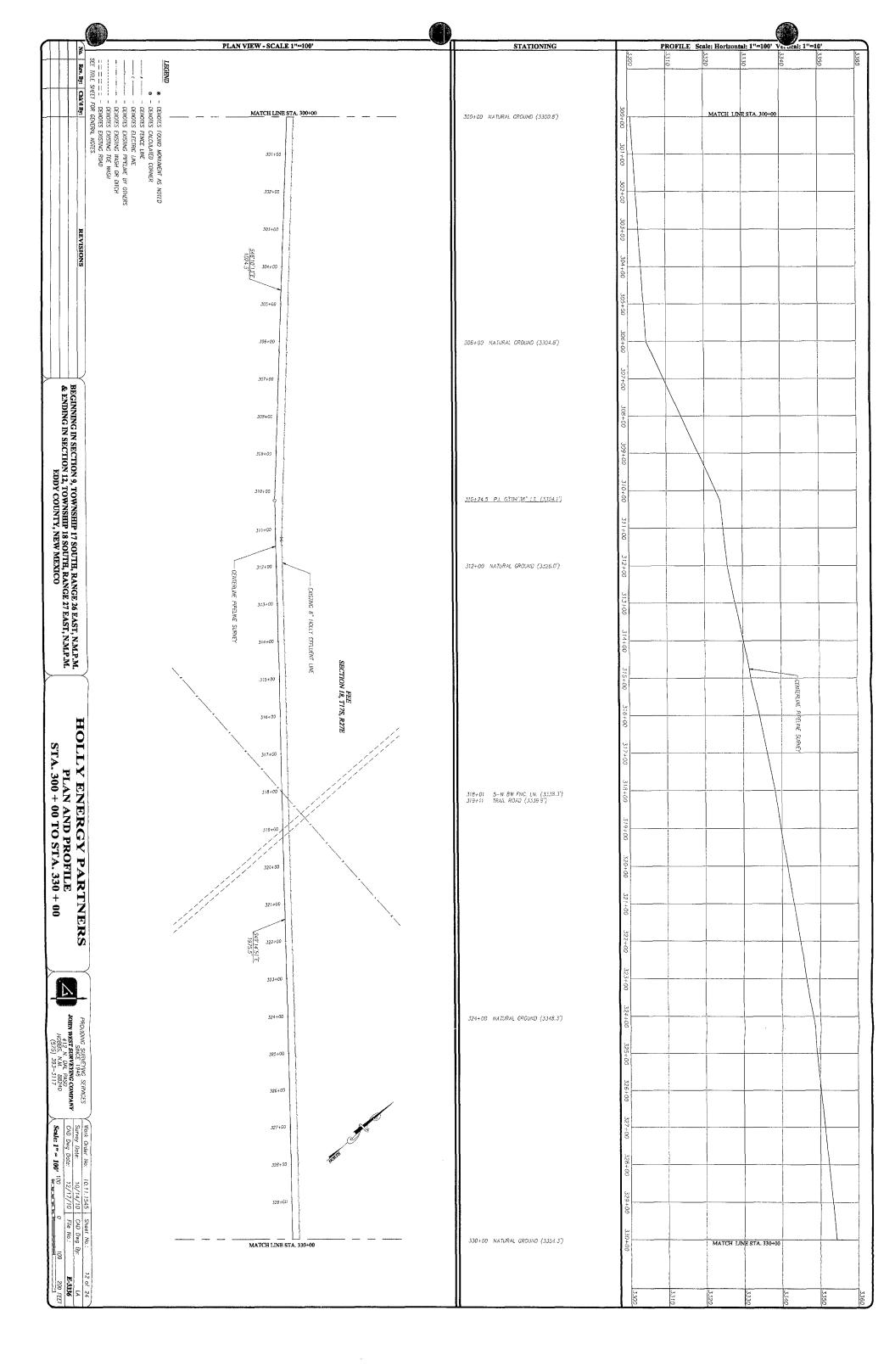


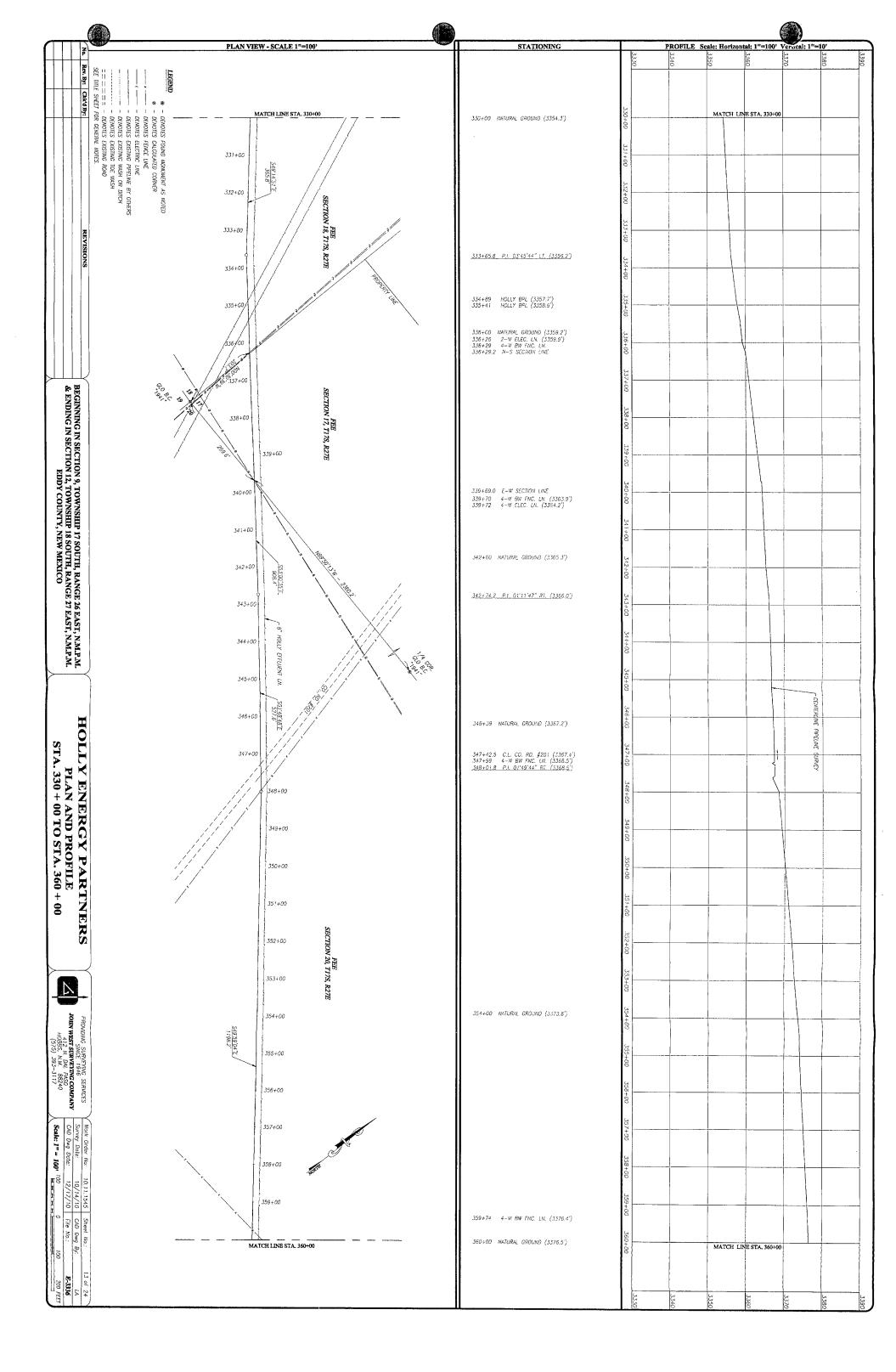


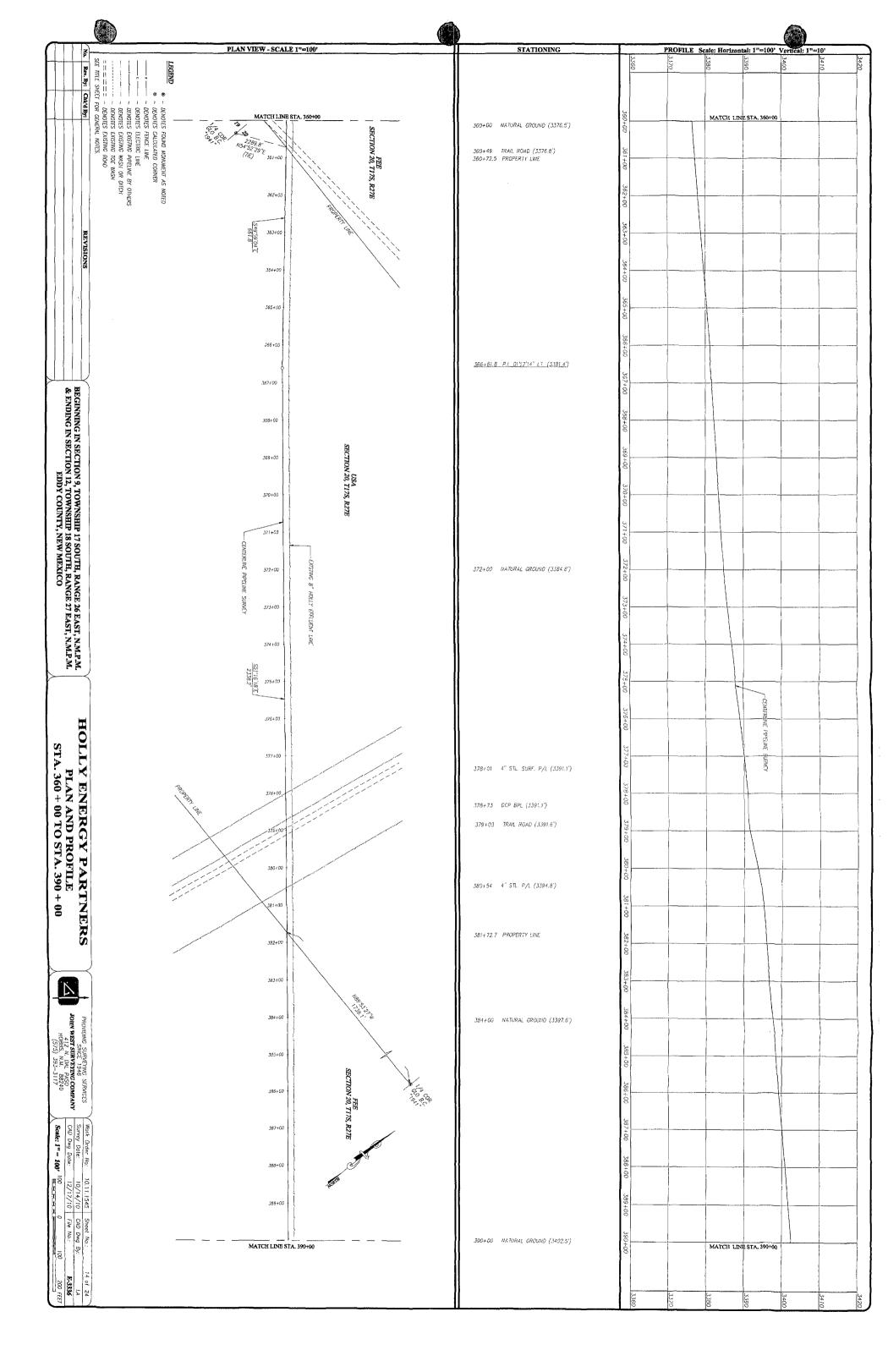


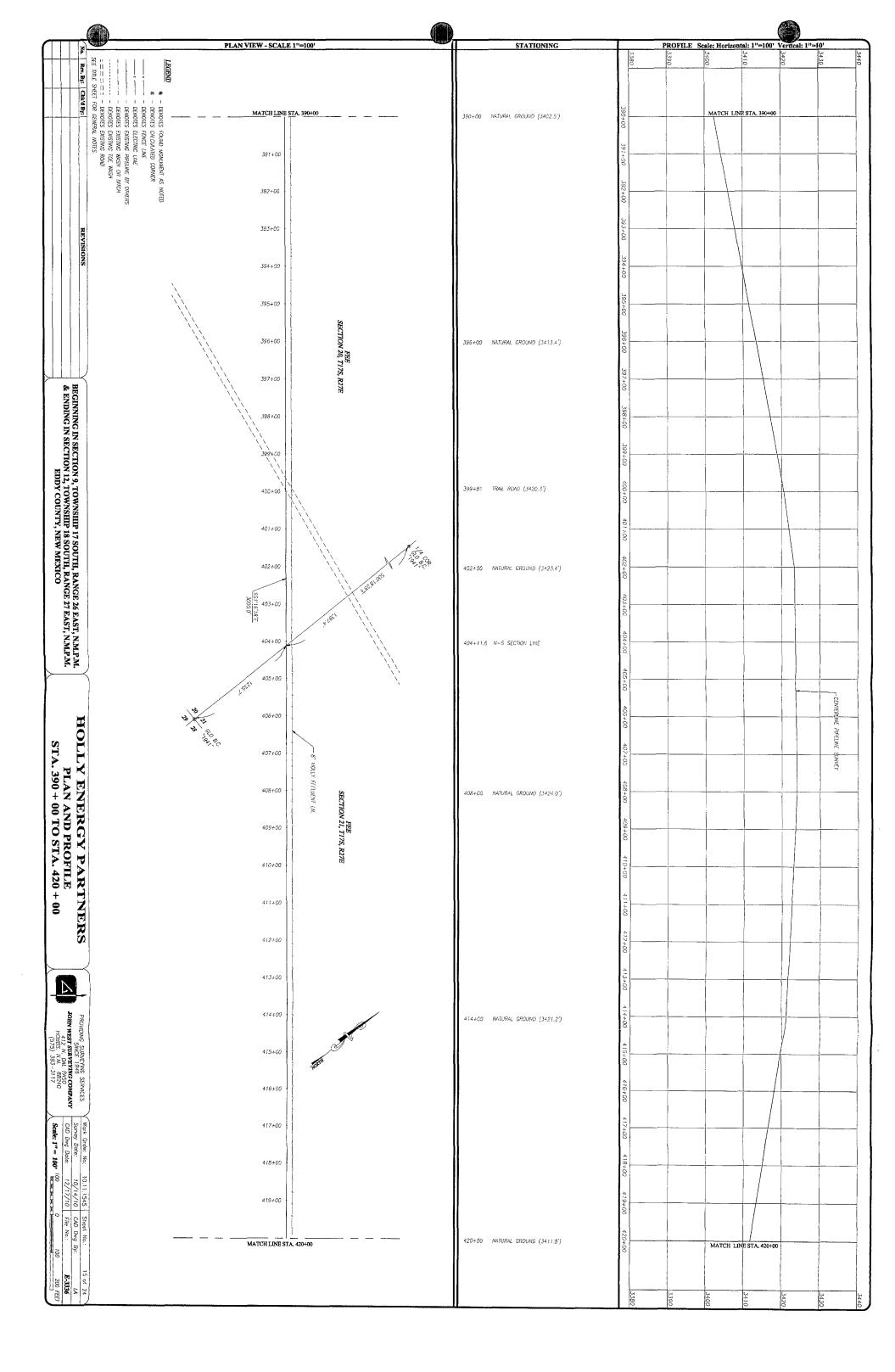


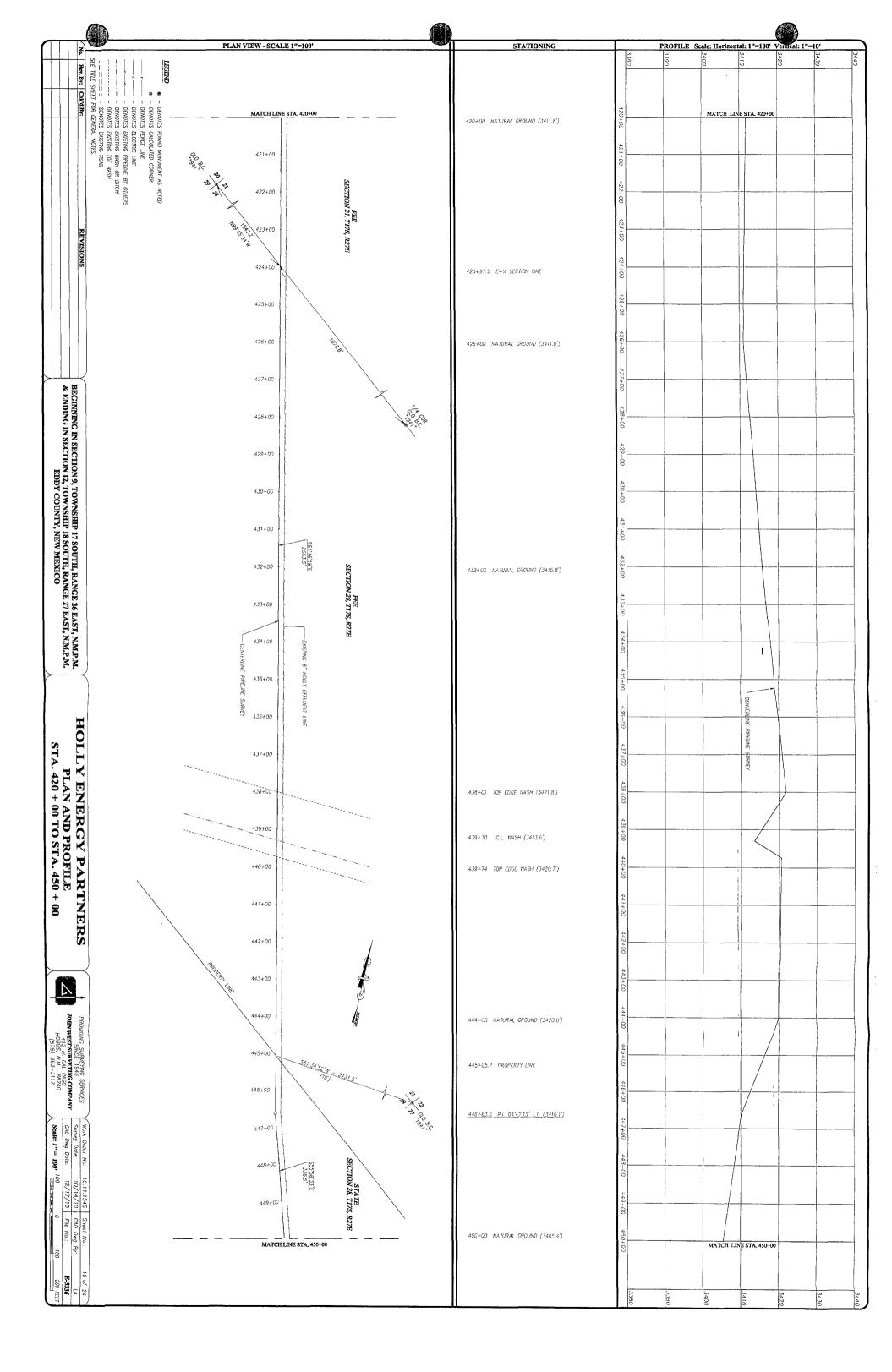


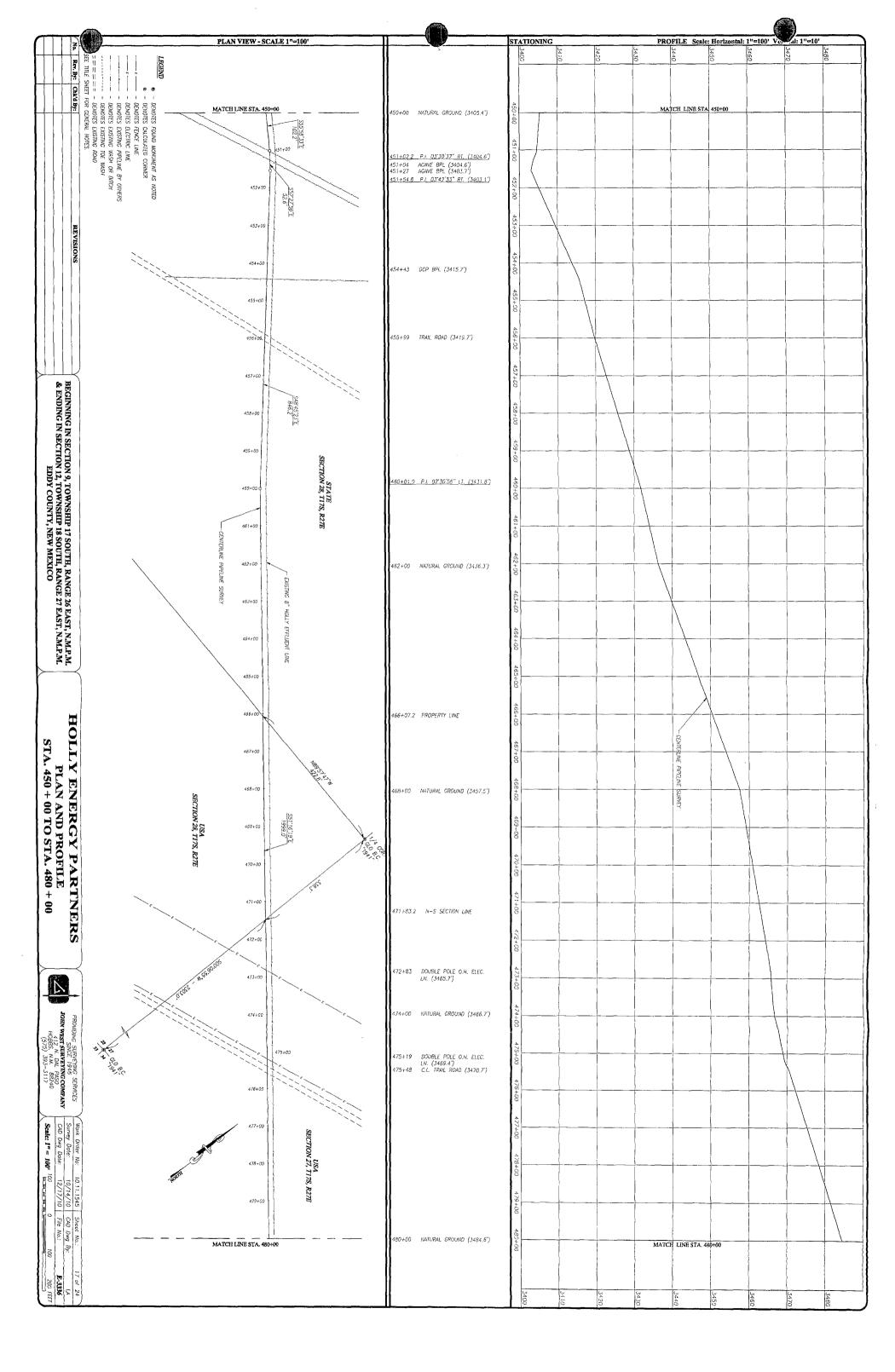


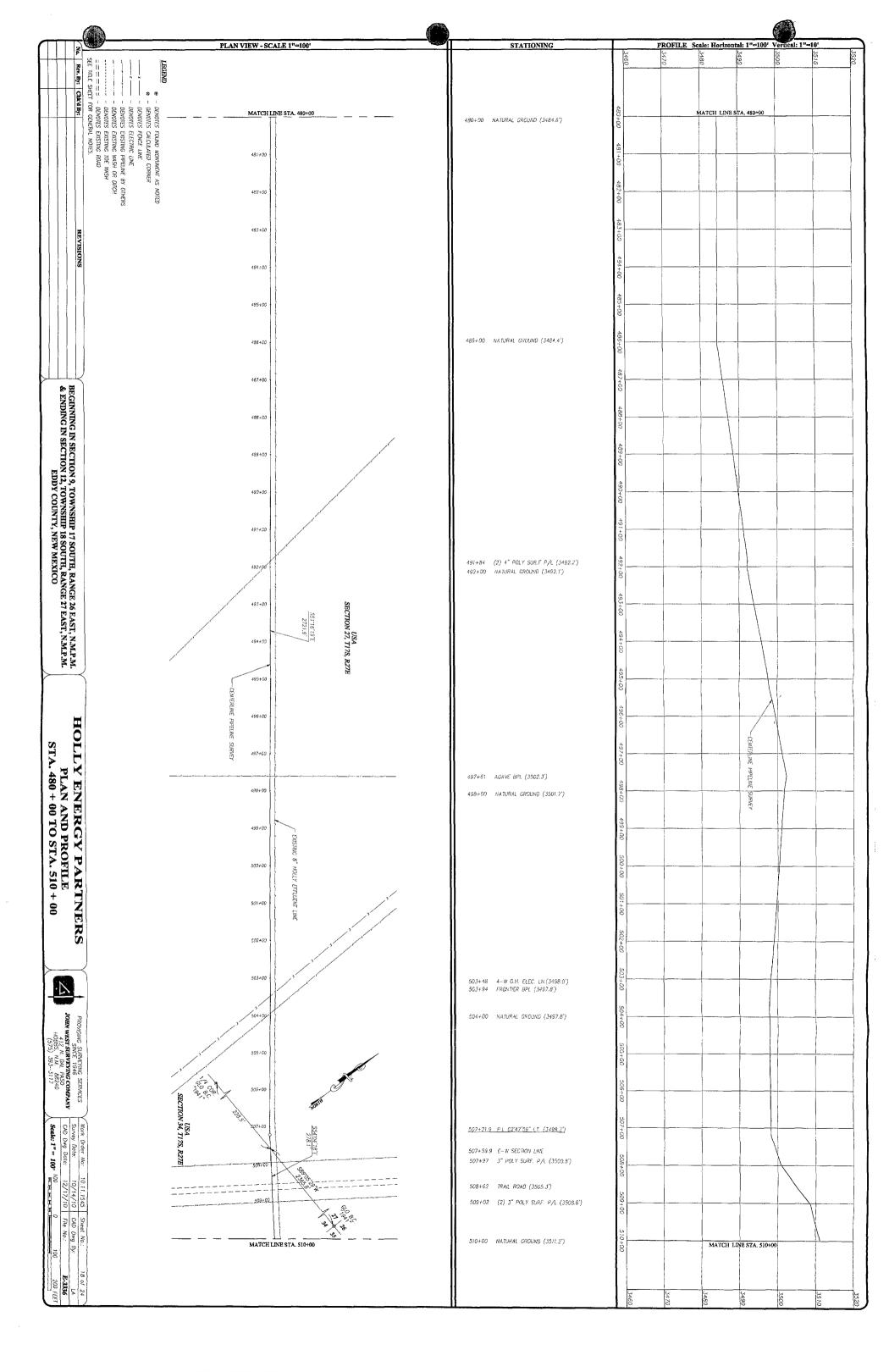

i

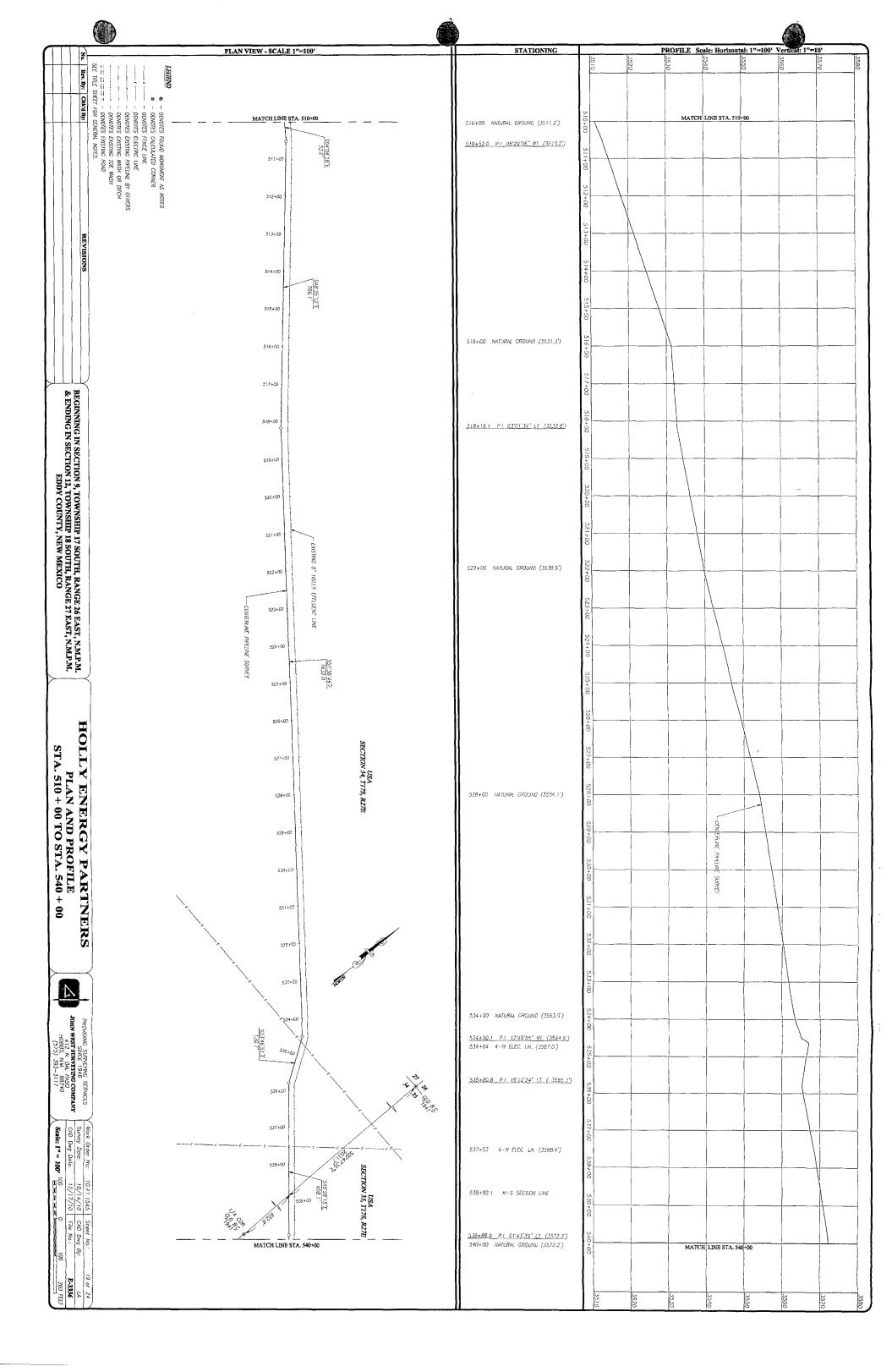

PROVIDING SU JORN WEST SU HOBES, HOBES, (575)	A ST	WATCH LAND STA. 20000 24	40+00 NATURAL GROUND (3301.2')	234+00 233		
PROVIDING SUBVEYING SERVICES SINCE 1946 JOHN WEST SUBVEXING COMPANY HOBES, N.M. B8240 (575) 393-3117				5+00 236+00		
				237+00 238+		
Work Order No: 10.11.1545 Sheet No: Survey Date: 10/14/10 CAD Ong Date: 12/17/10 File No: CAD Ong Date: 12/17/10 File No: 5 Survey Date: 12/17/10 File No: Scale: 1** 100* 100 10 10 10				00 239+00		
No.: 9 of 24 No.: 9 of 24 No.: LA Lo.: E.3336 200 FEET				240+00 33300	MATCH LINE STA. 240+00	

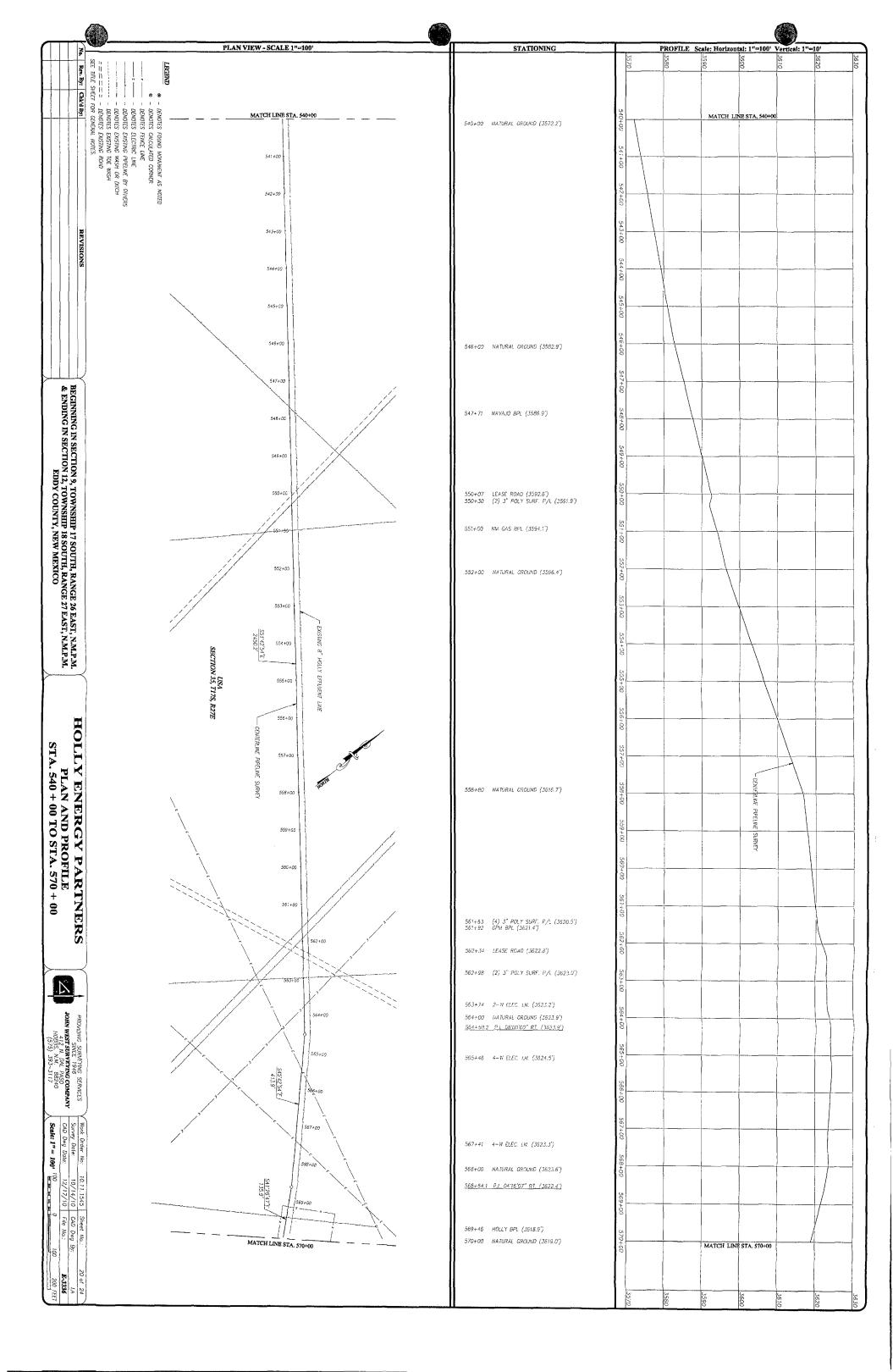


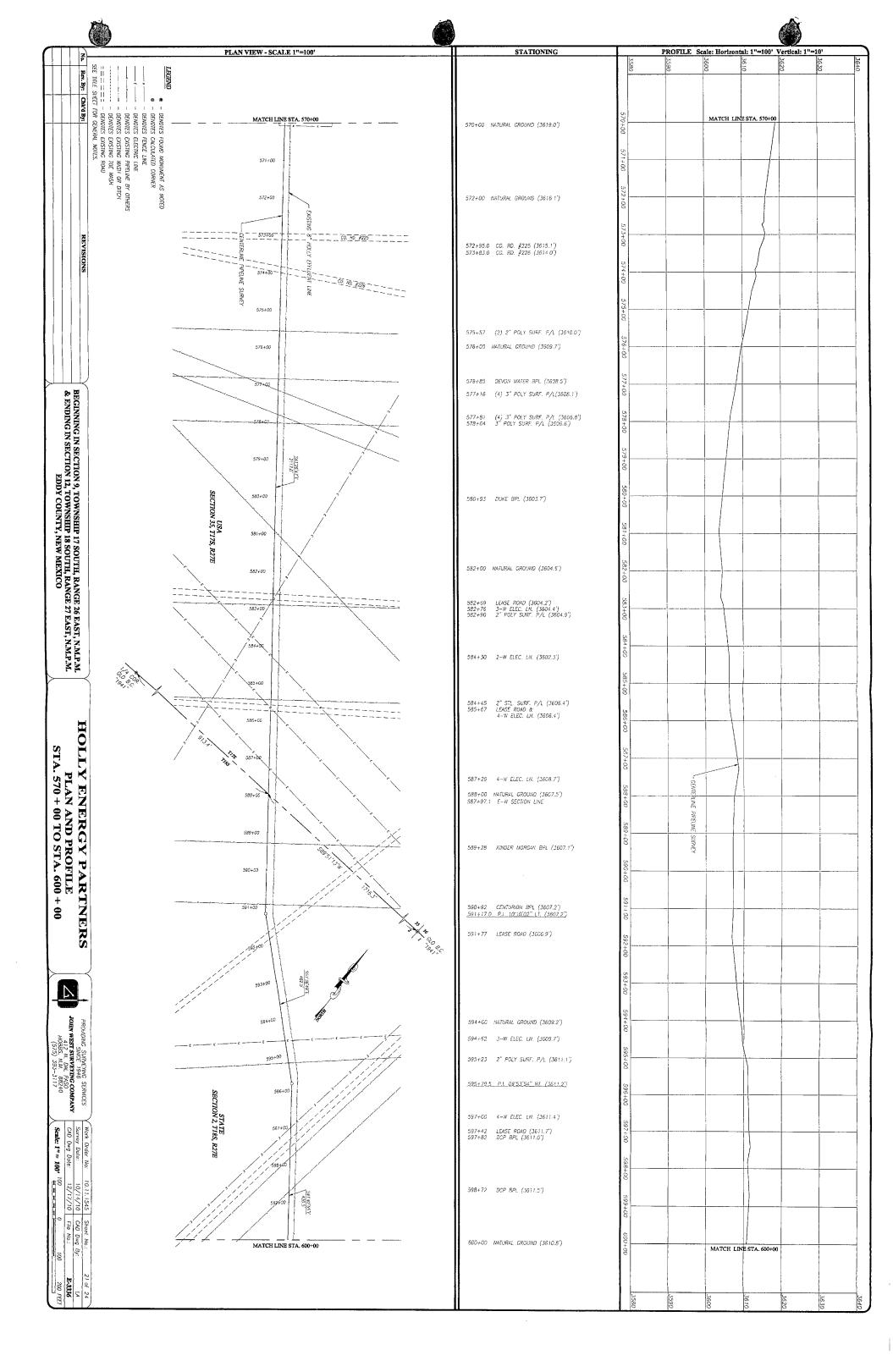


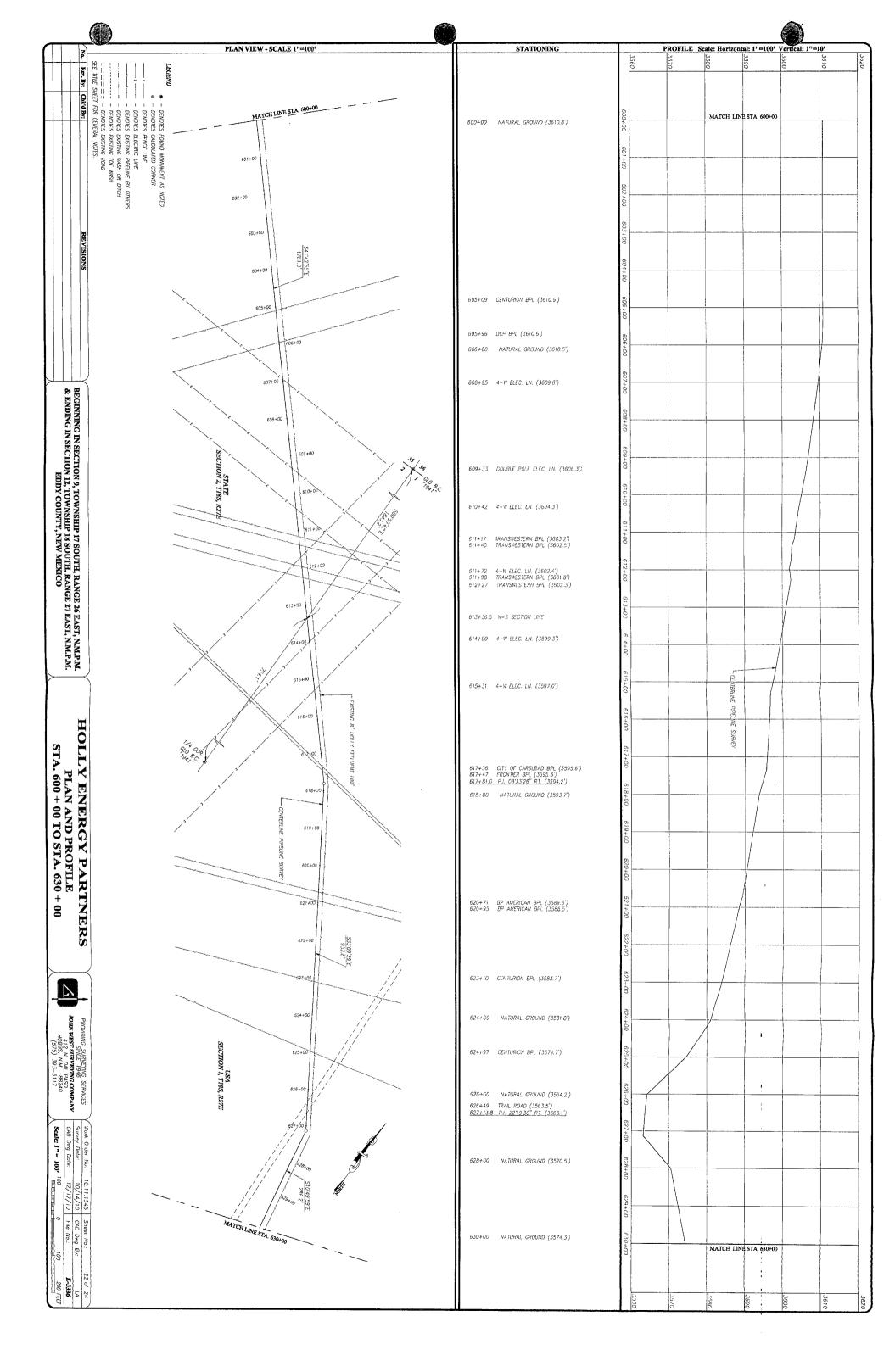


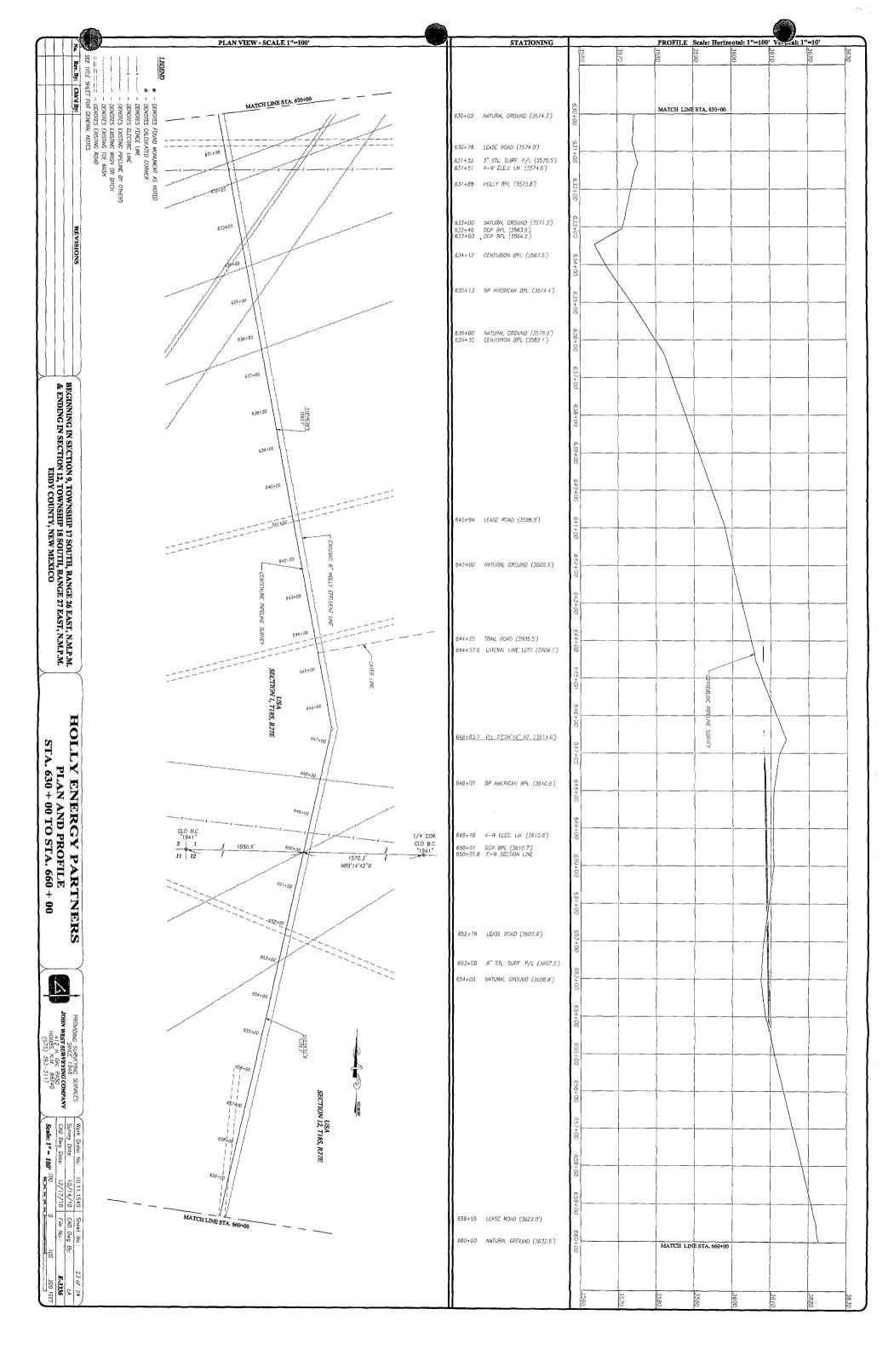








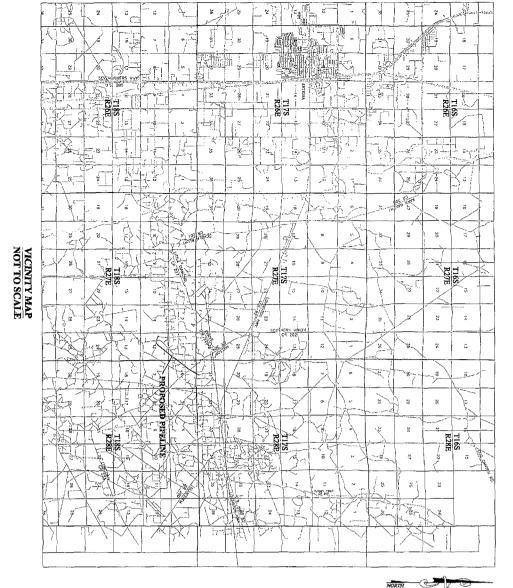


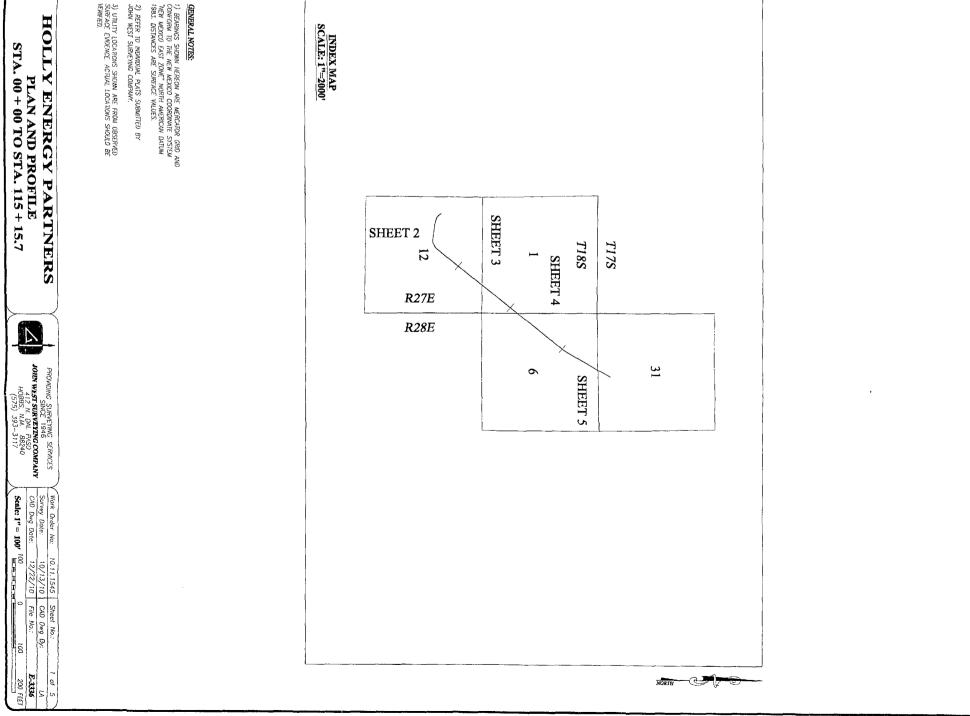


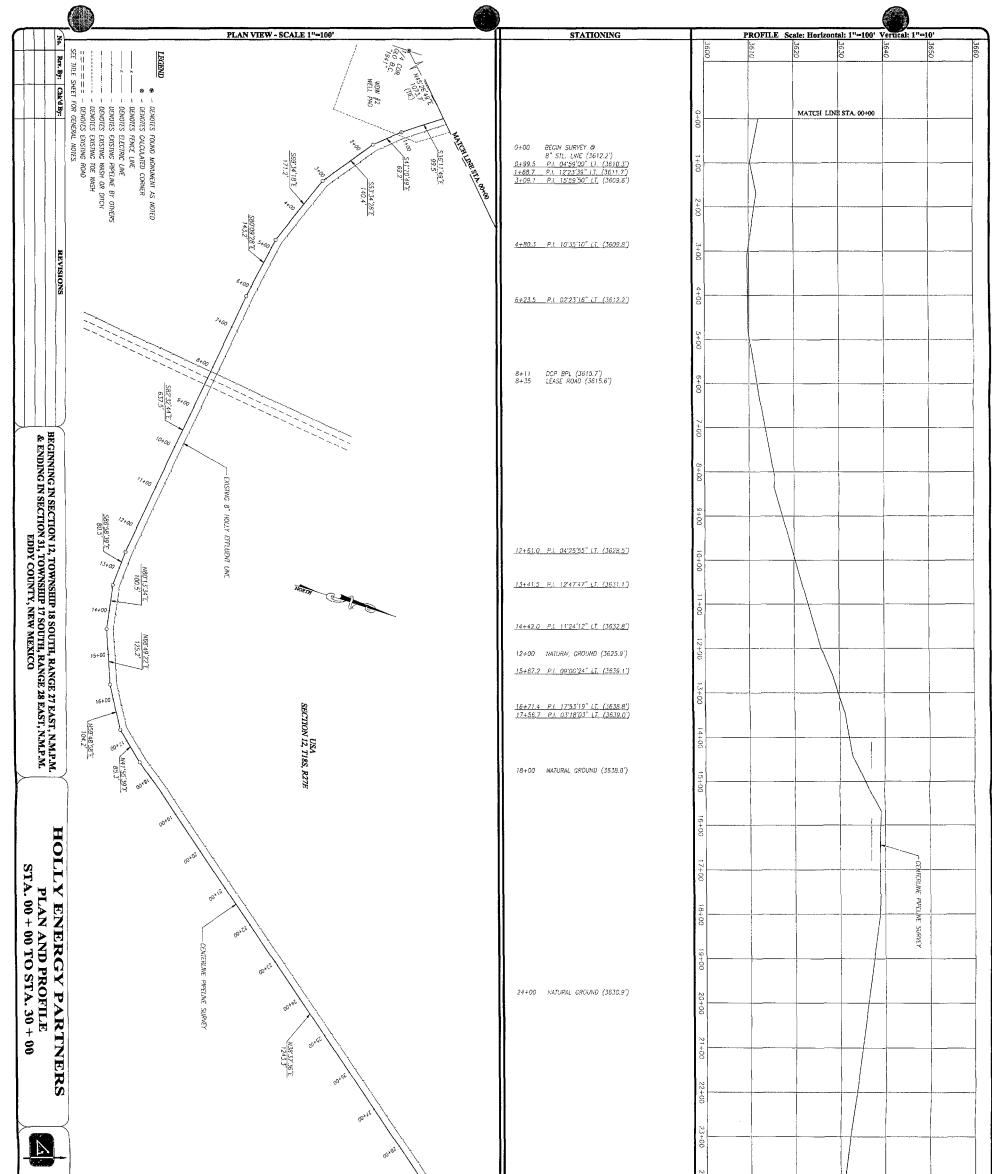
 		· · · · · · · · · · · · · · · · · · ·					33)		
	PLAN VIEW - SCALE 1"=100'	STATIONING		PROFILE Sc					3660
Rev. By:	LECEND • - DENOTES FOLKID MONULIENT AS NOTED • - DENOTES FOLKID MONULIENT AS NOTED • - DENOTES FOLKID CORNER • - DENOTES ENCINA PREVIA • - DENOTES ENCINA CHE • - DENOTE		0	<u>,</u>	<u> </u>	2	0	<u>°</u>	
Child By:									
	OR BENOTE	660+00 NATURAL GROUND (3622.6')	560+(MATCH LIN	E STA. 660+00	1		
	S FDOWN		8						
	15. ROWLING THE REPORT OF THE ROWLING THE ROWLING THE REPORT OF THE REPORT	11 1	661+00						
	HENT AS ORMER 1 OR DISA		0						
			62+00		-	 			
			66						
REVISIONS			3+00						
SIONS	- CENIERING 6"		554						
	<u>چ</u>		+00)	
	USA LY EFFLUENT LINE LY EFFLUENT LINE 666+00		665+						
	12, 118 12, 118		+00	ļ ļ		CE CE			
		665+00 NATURAL GROUND (3618.7')	666+00			CENTERLINE			
			6 0			LUNE PIPELINE			
	667+00		57+00			ESURVEY]	
GINN		<u>567+82.4 P.I. 34/18'33" (I. (3615.0')</u>	66			2			
ING IN	664.00 H	11 1	8+00						11
N SEC		669+24.2 END SURVEY ⊕ ExiST. EFFLUENT 9PL (3612.3')	663	· · · · · ·					
ION			+00						
9, TO 2, TO	Sig: 10 48 E		570+0						
BEGINNING IN SECTION 9, TOWNSHIP 17 SOUTH, RANGE 26 EAST, N.M.P.M. & ENDING IN SECTION 12, TOWNSHIP 18 SOUTH, RANGE 27 EAST, N.M.P.M.			00]			
SOUT	./4 COR								
E, R	1/∠ COR. CLO B C. ''941' 11 12		}						1
INGE									
26 E.4 27 E.A									
ST, N ST, N									
M.P.N	Þ								
44							ļ		
	Ì								
m							 		
, ō		1						ļ	
F									
PL									
AZ									-
								l.	
HOLLY ENERGY PARTNERS									1
OF P					 	ļ	1		
AR									
						ļ			
EE									
S									-
A									
				l					
PROVIL				+		<u> </u>			1
PROVIDING SURVEYING SERVICES SINCE 1946 JOHN WEST SURVEXING CONFANY 412 M. DAL PASO HORS N.M. 88240]]							
N.M. B				}		}	}		
SERVIC				<u> </u>				ļ	
CES PANY					}		1		
T		¥.			\	+			
Work Order No: Survey Date: CAD Dwg Date:									
						<u> </u>			
10.11.									
10.11.1545 1 10/14/10 1 12/17/10 1									
Sheet No.: CAD Dwg t File No.:		<u> </u>							
No.:)wg By: lo.:				<u> </u>	MATCH	ILINE	+		
2,					•				
24 of 24 1A E-3336			3		L.	52	<u>u</u>	<u></u>	
			3600	3610	3620	3630	3540	3650	3660

BEGINNING IN SECTION 12, TOWNSHIP 18 SOUTH, RANGE 27 EAST, N.M.P.M. & ENDING IN SECTION 31, TOWNSHIP 17 SOUTH, RANGE 28 EAST, N.M.P.M. EDDY COUNTY, NEW MEXICO

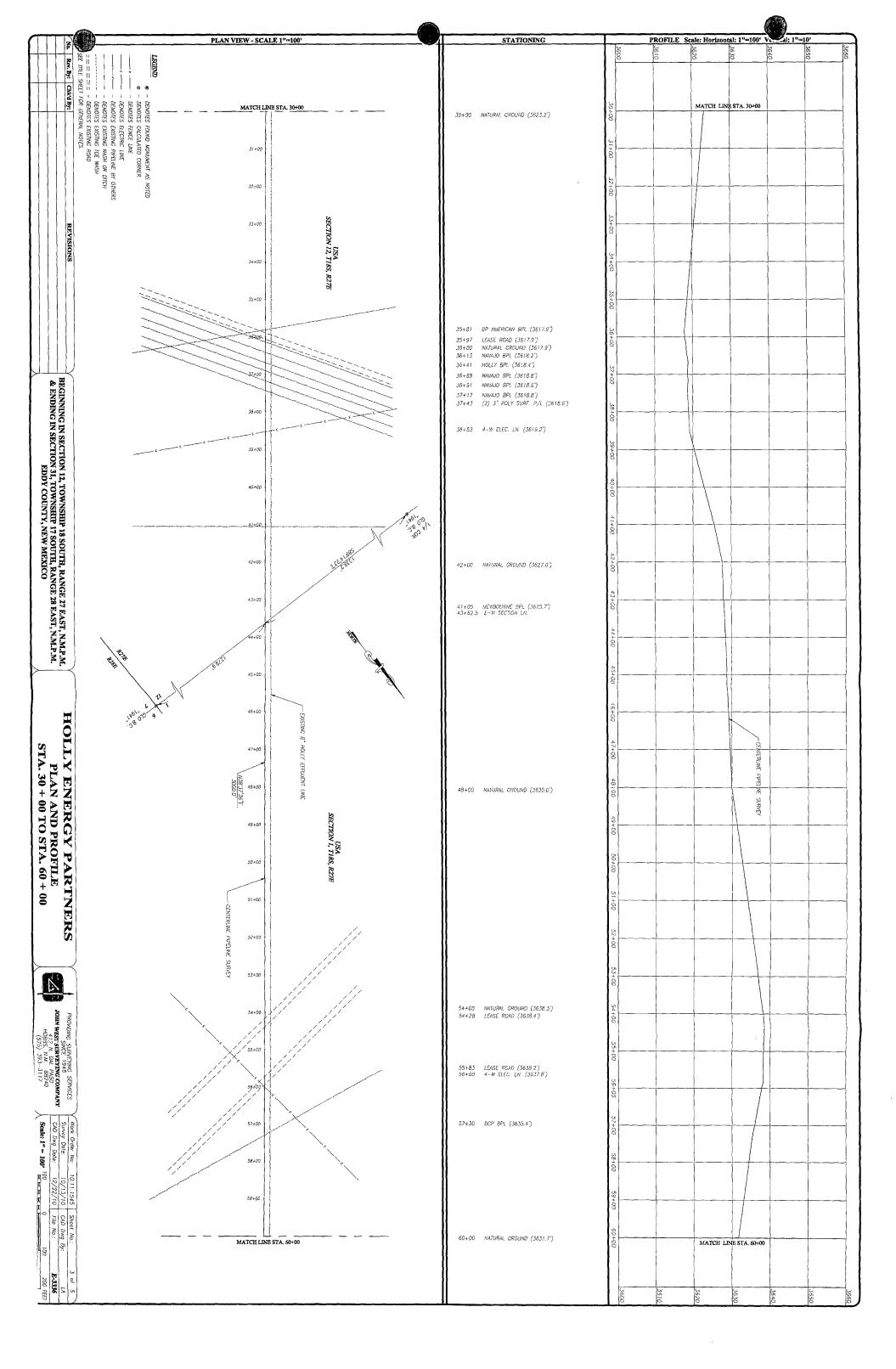
REVISIONS

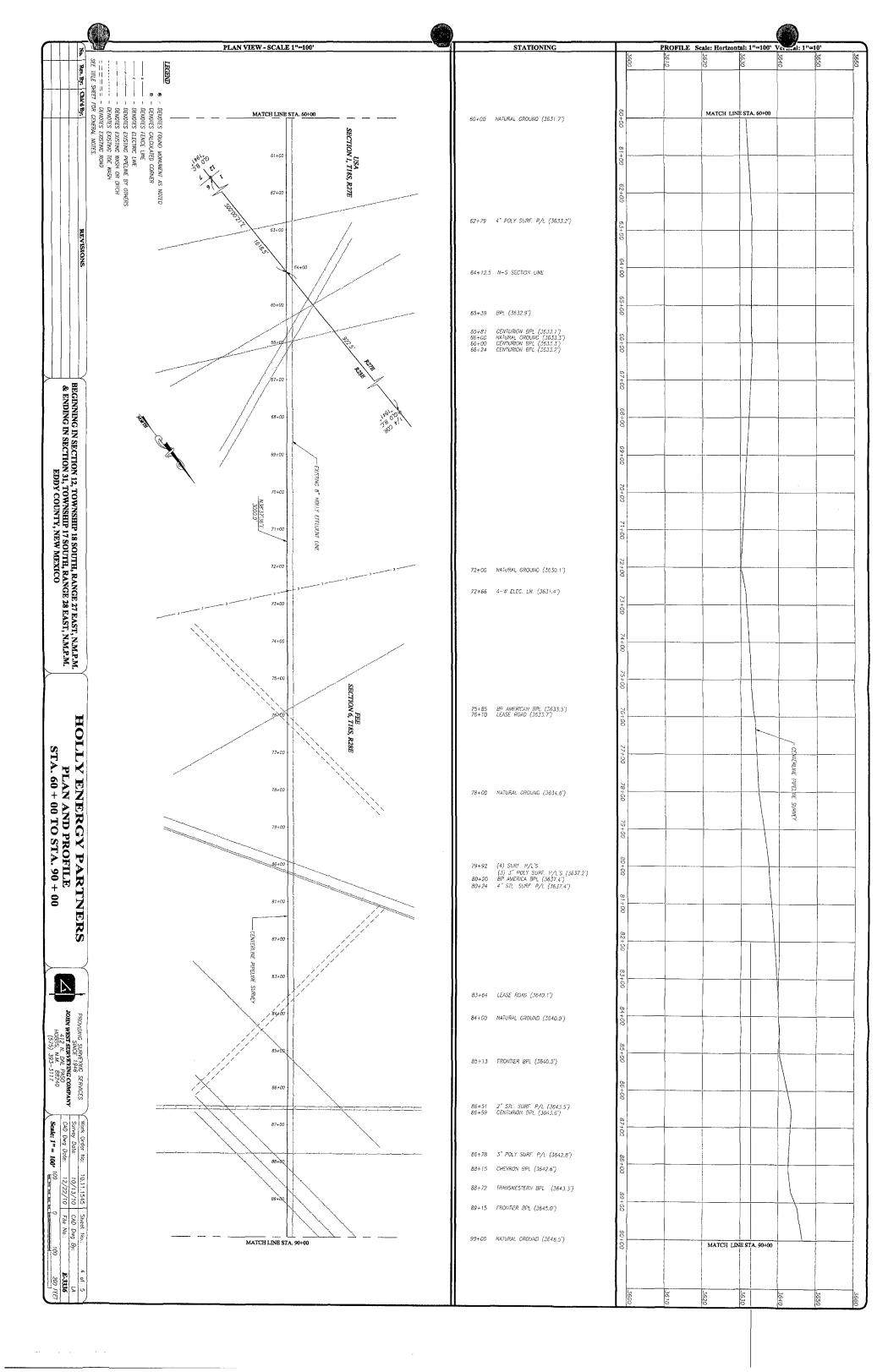

11 11 11

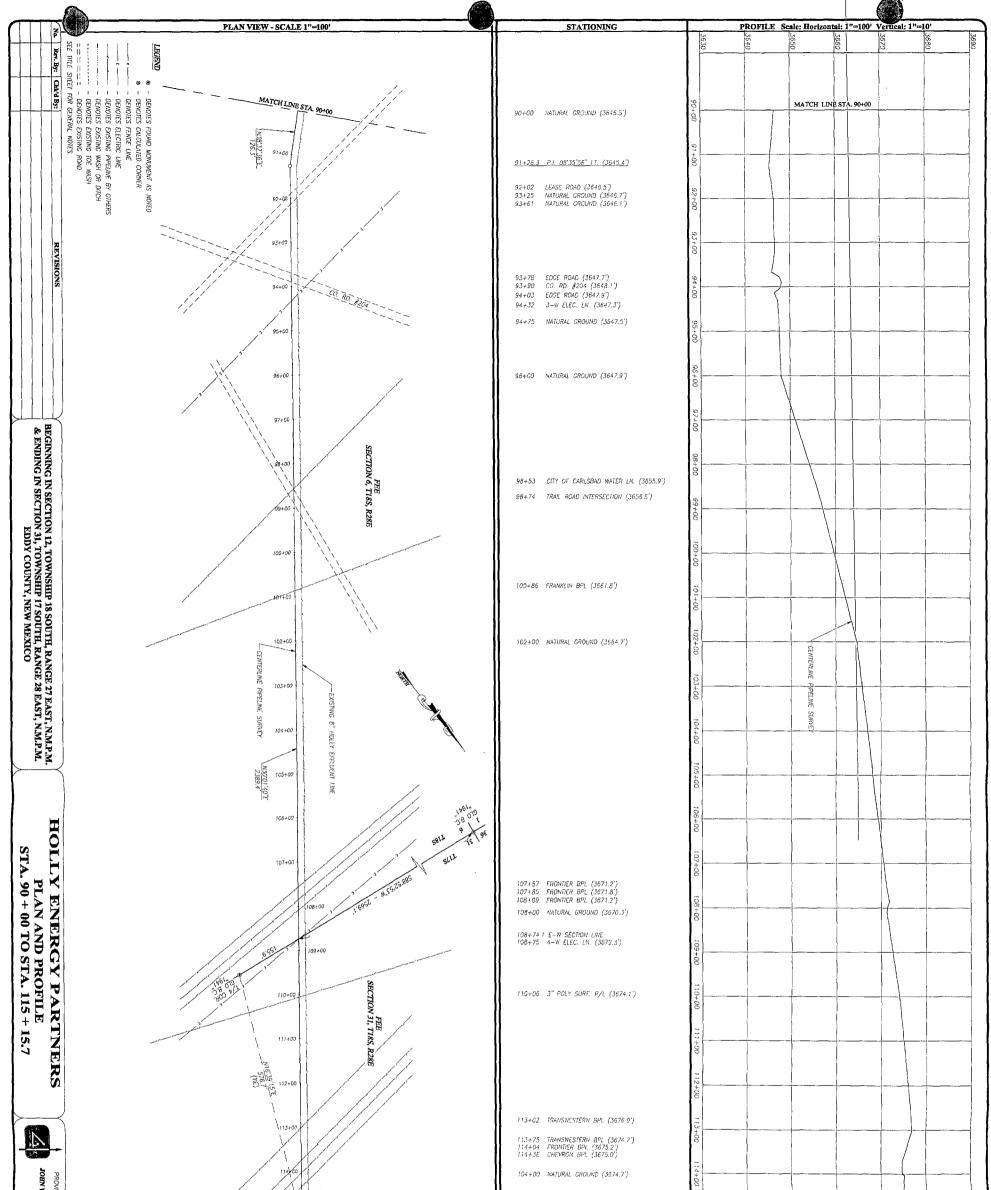

Ø No.


Rev. By: Chk'd By:

GENERAL NOTES:


LEGEND AND GENERAL NOTES:





PROVIDING SURVEYING SERVICES JOHN HEST SURVEYING COMPANY HOBES N. M. BASO HOBES N. M. BASO (575) 393-3117	ere Linest and the station	30+00 NATURAL GROUND (3623.2')	24+-00 25+00 26	
Work Order No. Survey Date: CAD Dwg Date: CAD Dwg Date: Scale: 1" = 100'			-00 27+00 28+00	
10.11.1545 Sheet No.: 10/13/10 CAD Dwg By: 12/22/10 File No.: 12/22/10 19 100			29+00 30+00	MATCH LINE STA. 30+00
2 of 5 1/4 200 FET 200 FET			3500	3660 3630 3630

PROVUDING SURPETING SERVICES SINCE 1946 IOEN VESSING SURVEYING COMPANY HOUSS N.M. 86240 (375) 393-3117	11900 115200 900 91	104+00 NATURAL GROUND (3574.7') 115+15.7 END SURVEY @ WDW ∦1 WELL PAD (3679.8')	115+00					
Work Order No: 10.11.15 Survey Date: 10/13, Ci0 Dwg Date: 12/22, Scale: 11/13, Scale: 11/13,								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
			3630	3650	3660	3670	1680	3690

Page 1 of 1 Thu 12/16/10						
	0 days	Mon 3/28/11	Mon 3/28/11	NEW PIPELINE ACTIVATION	54	
	2 wks	Fri 2/18/11	Mon 2/7/11	Pecos River Crossing (12" Bore-Casing)	53	}
	10 wks	Fri 3/25/11	Mon 1/17/11	Pipeline Construction	52	
	6 wks	Mon 2/7/11	Mon 12/27/10	Valve Boxes- Delivery	51	
	3 days	Mon 12/20/10	Thu 12/16/10	Valve Boxes - Procure	50	
	35 days	Mon 2/7/11	Thu 12/16/10	Valve Boxes Procurement/Delivery	49	
	2 wks	Mon 1/10/11	Mon 12/27/10	Fittings- Delivery	48	
	3 days	Mon 12/20/10	Thu 12/16/10	Fittings - Procure	47	
	15 days	Mon 1/10/11	Thu 12/16/10	CS Fittings Procurement/Delivery	46	
	8 wks	Tue 1/11/11	Tue 11/9/10	Valves- Delivery	45	
	3 days	Thu 11/4/10	Tue 11/2/10	Valves - Procure	44	·
	45 days	Tue 1/11/11	Tue 11/2/10	Pipeline Valves Procurement/Delivery	43	
	1 wk	Mon 2/21/11	Tue 2/15/11	Pipe/fittings (half of material)- Delivery#8 (remainder)	42	
	1 wk	Mon 2/14/11	Tue 2/8/11	Pipe/fittings (half of material)- Delivery#7 (1.21miles)	41	,
	1 wk	Mon 2/7/11	Tue 2/1/11	Pipe/fittings (half of material)- Delivery#6 (1.21miles)	40	. 1
	1 wk	Mon 1/31/11	Tue 1/25/11	Pipe/fittings (half of material)- Delivery#5 (1.21miles)	39	
	1 wk	Mon 1/24/11	Tue 1/18/11	Pipe/fittings (half of material)- Delivery#4 (1.21miles)	38	
	1 wk	Mon 1/17/11	Tue 1/11/11	Pipe/fittings (half of material)- Delivery#3 (1.21miles)	37	
	1 wk	Mon 1/10/11	Tue 1/4/11	Pipe/fittings (half of material)- Delivery#2 (1.21miles)	36)
	8 wks	Mon 1/3/11	Mon 11/1/10	Pipe/fittings (half of material)- Delivery#1 (6.06miles)	35	
	3 days	Wed 10/27/10	Mon 10/25/10	Pipe/fittings - Procure (15 miles Fiberglass)	34	
	80 days	Mon 2/21/11	Mon 10/25/10	FG Pipe & Fittings Procurement/Delivery	33	
	80 days	Mon 2/21/11	Mon 10/25/10	Materials Procurement/Delivery	32	
	0.8 mons	Tue 11/9/10	Tue 10/19/10	Purchase ROW - SLO	31	
	2.7 mons	Mon 1/10/11	Tue 10/19/10	Purchase ROW - Private	30	
	2.7 mons	Mon 1/10/11	Tue 10/19/10	Purchase ROW - BLM	29	
	54 days	Mon 1/10/11	Tue 10/19/10	Pipeline ROW	28	
	5.4 wks	Fri 12/17/10	Mon 11/8/10	Survey ROW Aligment Sheet Dwgs	27	
-	4.4 wks	Fri 12/10/10	Mon 11/8/10	Survey ROW Plats	26	
	3.2 wks	Fri 11/5/10	Fri 10/15/10	Survey ROW	25	
	16.6 wks	Fri 4/15/11	Tue 10/19/10	Engineering	24	
	125 days	Fri 4/15/11	Fri 10/15/10	Pipeline Project	23	
	25 days /5	Mon 7/5/10	Tue 6/1/10	River Bore Project (8")	4	•
10/25	7 days	Mon 10/25/10	Fri 10/15/10	AFE loaded into SAP and DataStream	з	
	7 wks	Thu 10/14/10	Thu 8/26/10	AFE Rev. HEP & HOC	2	
	222 days	Fri 4/15/11	Tue 6/1/10	Navajo Refinery Water Effluent Line	:	9
S M T W T F S S M T W T F S S M T W T F S S M	S					

					1/10 1/10	, '10 Jan 9, '11 M T W
	2/7 2/7	型 2/7 王司 2/14 [王] 2/14 [王] 2/21	17 1/24 []1/1/31	2121		Jan 30, '11 Feb 20, ' T F S S M
<u>법 []]</u> 3/25						'11 Mar 13, '11 Apr 3, T W T F S
						or 3, '11 Apr S S M 4/15

8" WATER EFFLUENT PIPELINE PROJECT NRC

Project Summary for Oil Conservation Division, Environmental Bureau

Prepared by: Holly Energy Partners, Technical Services Dept

> MOLLY ENERGY PARTNERS Artesia, NM

Revision 00, December 27, 2010

Clem Vasquez, EIT Project Engineer George L. Sanchez General Manager, Tech Services . 20. -

Prepared By

Approved By

8" Water Effluent Pipeline Project Summary for OCD Rev00

1 of 3

The 8" Water Effluent Pipeline project will consist of designing and constructing approximately 15miles of new 8" Fiberglass pipeline. This new pipeline will parallel the existing 8" carbon steel water effluent pipeline (starting inside the Navajo Refinery and heading East to three injection wells). The current 8" carbon steel water effluent line is in service and operating but is highly corroded(due to internal corrosion), thus the need to design/construct a new pipeline parallel to it.

The new pipeline design needs to take into consideration the tie ins to the well injection locations and accommodate minimal down time on the existing carbon steel pipeline when activating the new line and deactivating the old (carbon steel) pipeline. The new fiberglass pipeline will be below grade and all below grade to above grade transitions will be accomplished with internal and external coated carbon steel. These carbon steel sections will also be protected with anode banks, for external corrosion protection. The scope of work will stop at the inlet to the filter isolation valves at each injection well sites. The isolation/block valves (qty 6) will be below grade in a concrete valve box (with the exception to the west river valve setting). The entire construction will consist of approximately 10weeks (see attached schedule).

The 8" Fiberglass is a NOV, STAR, Anhydride line pipe product with a design pressure rating 1500psig at 150deg F(see attached spec sheet). The fluid in this design is effluent water which comes from the Navajo Refinery (see attached water samples). The pipeline max flow rate for design is 750gpm (~26,000bbl/day) at 130deg F(max) and pressures shall stay within the pressure rating of ANSI 600#.

We will use the fiberglass line pipe max temperature rating (150 deg F) and the valves/flanges pressure rating (1480psig) as the constraints for design parameters.

The pipeline will be designed so that it can be pigged (with a foam pig) from the start of the pipeline (inside the refinery), the to last injection well (Mewbourne - Inj. well #1). The two other laterals are short sections with isolation valves that won't be pigged (Chukka –Inj. Well #2; Gains – Inj. Well #3).

This pipeline will have several locations where steel casing will be encasing the fiberglass pipeline to protect it from third party damage as additional precaution. These locations include but are not limited to county road crossings, state highway crossings, river crossing, and major pipeline corridor crossings.

8" Water Effluent Pipeline Project Summary for OCD Rev00

Thus overall the new pipeline design will be much more resilient to internal corrosion and the addition of more isolation valves will make it easier to work on sections of the line or injection well if a problem does prevail.

1. Specifications and Standards for Design

a. US DOT CFR 49 Part 195 -Hazardous Liquids

b. American Society of Mechanical Engineers B31.4 (ASME)

c. American Petroleum Institute 6D(API)

d. American Petroleum Institute 1104(API)

e. American Petroleum Institute Recommended Practice 1102(API RP)

f. American Society for Testing and Materials (ASTM)

g. Occupational Safety and Health Administration (OSHA)

h. American Concrete Institute (ACI)

i. National Association of Corrosion Engineers (NACE)

j. National Electric Code (NEC)

8" Water Effluent Pipeline Project Summary for OCD Rev00

1097 Fiber Glass Systems

Fiber Glass Systems, L.P P.O. Box 37389 2425 S.W. 36th San Antonio, Texas 78237 USA 210-434-5043 Fax: 210-434-7543 www.starfiberglass.com

August 12, 2010

Holly Energy Partners, L.P.

Re. Confirmation of Fiberglass Pipe Compatibility

To Whom It May Concern:

We have been asked to provide a letter to Holly Energy confirming that our proposed fiberglass pipe is compatible with the chemical and operational parameters given for the 8" Water Effluent Pipeline Project. Please see the attached email on the subject.

Chemical Compatibility

We have reviewed the water constituents in the water analyses provided (attached) and do not find any constituent that would cause chemical incompatibility with our anhydride cured epoxy resin as long as the operations temperature never reaches above 150° F.

Operational Compatibility

The following operational parameters have been given in the attached literature:

- Service = Effluent water
- Maximum Operating Temperature = 130° F
- Flow Rate = 26000 bbl/day

From this, we can calculate the following:

- Flow Velocity = 5.5 ft/sec
- Friction Head Loss (ΔP) = 0.499 psi/100 ft

These parameters fall well within the recommended operating parameters for the proposed 8" pipe.

Please advise if there are any other subjects that need to be addressed for this project.

Sincerely.

Robert Hitchcock Sr. Applications Engineer

Hitchcock, Robert

From:Graham, DennisSent:Thursday, August 12, 2010 10:12 AMTo:Hitchcock, RobertSubject:FW: 8" Water Effluent Pipeline ProjectAttachments:Influent Water Quality pdf

High

.

Importance:

- - -

Robert,

I just received this from Clem at Holly. The way I read this we might need a more formal letter. If have already sent you response to them. Pleas e-mail Clem and see if that is satisfactory Dennis.

والمراجع والمتعاد ومتعيد بيتار والمع

From: Vasquez, Clemente [mailto:Clemente.Vasquez@hollyenergy.com]
Sent: Thursday, August 12, 2010 10:06 AM
To: Graham, Dennis
Cc: Sanchez, George; Jones, Kent
Subject: 8" Water Effluent Pipeline Project
Importance: High

Dennis:

Holly Corporation has made the decision to pursue with the design of a new fiberglass pipeline parallel to the current line.

Please start working up the latest pricing and lead time and see if you can reserve us a spot in the fabrication schedule for our order.

I expect 2 weeks from now we can provide you with a Purchase order.

Also we need a formal letter from NOV stating that they have reviewed our water samples and the pipe and resins and sealers that you all are quoting for this project meet all the design specifications required (temperature, pressure, flow rates, and etc).

<u>Note</u> the attached PDF has 3 effluent water samples, an average, and a City Water Sample for comparison (PH of water ranges from 7-9) Max Temperature of water in pipeline = 130 deg F Fluid = Effluent Water Flow Rates = 750gpm or approx 26,000bbl/day

Clem Vasquez, EIT

Project Engineer Technical Services **Holly Energy Partners, L.P.** Office Phone: 575-748-8973 Cell Phone: 214-478-4093 Fax: 214-237-3043 Email: clem.vasquez@hollyenergy.com

From: Graham, Dennis [mailto:Dennis.Graham@nov.com] Sent: Thursday, July 29, 2010 7:52 AM To: Sanchez, George; Jones, Kent; Vasquez, Clemente Subject:

George,

Could one of you let me know what Holly ending up doing on the 8" water line? I have to do a report for my boss and this information sure would help me complete it with the correct information. Thanks, Dennis

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

il la

:

Navajo Refinery Influent Water Quality Data

•

City Water 7/1/2008 176 48.6 0.208 21.8 37.5 637 1520 20 1530 640 API Separator Inlet Average 263 359 536 17 2487 204 163 672 178 47.7 367 ო API Sepator Inlet API Sepator Inlet 6/24/2008 0855 2590 157 50.8 1.14 273 375 563 195 18 188 383 601 Sample 6/23/2008 1440 2610 233 45.8 6.17 269 374 511 19 261 196 457 770 API Sepator Inlet 6/23/2008 0300 144 46.6 0.503 248 327 534 2260 157 15 105 262 644 mg/I as CaCO₃ mg/l as CaCO₃ mg/l as CaCO₃ mg/l as CaCO₃ mg/l as SiO₂ umhos Units l/gm mg/l ∥gm l/gm mg/l l/gm Alkalinity, Bicarb Alkalinity, Carb Alkalinity, Total Total Hardness Conductivity Magnesium Analyte Chloride Calcium Sodium Sulfate Silica lon

Navajo Refinery Recycled Water Quality

Cold Lime Softening **Option 4** Permeate 1200 10 14.8 500 263 359 536 15 Concentrate 3810 120 87 405 527 1841 19.4 140 556 164 Option 3 Nanofiltration Permeate 226 312 28 16.5 360 30 2.5 736 43 33 Concentrate 140 Option 2 UF/RO Permeate 360 30 8.4 52 75 98 3.3 312 from WWTP 6 Feed Water mg/l as CaCO₃ mg/I as SiO₂ umhos Units gpm Ngm Ngm Ngm Ngm l/gm ng/l mg/l mg/l Design Flow Rate Total Hardness Conductivity TDS CO3 HCO3 Calcium Magnesium Sodium Chloride Analyte Sulfate Silica Lon

...

25-Aug-2010

Aaron Strange Navajo Refining Company PO Box 159 Artesia, NM 88211

Tel: (575) 748-6733 Fax: (575) 746-5421

Re: Injection Well Quarterly

Work Order: 1008405

Dear Aaron,

ALS Environmental received 1 sample on 12-Aug-2010 08:16 AM for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested. Results are expressed as "as received" unless otherwise noted.

QC sample results for this data met EPA or laboratory specifications except as noted in the Case Narrative or as noted with qualifiers in the QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained by ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 37.

If you have any questions regarding this report, please feel free to call me.

Sincerely,

Jay Lynn F Thibault

Electronically approved by: Glenda H. Ramos JayLynn F Thibault Project Manager

Certificate No: T104704231-09A-TX

ADDRESS 10450 Stancliff Rd, Suite 210 Houston, Texas 77099-4338 | PHONE (281) 530-5656 | FAX (281) 530-5887 ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Commission (C)

www.alsglobal.com

FIGHT SOLUTIONS MEANT PARTNER

6

×

ALS Environmental

Date: 25-Aug-10

Client:	Navajo Refining Company	
Project:	Injection Well Quarterly	Work Order Sample Summary
Work Order:	1008405	

Lab Samp ID Client Sample ID	<u>Matrix</u>	<u>Tag Number</u>	Collection Date		<u>Hold</u>
1008405-01 Inj Well	Water		8/11/2010 12:40	8/12/2010 08:16	

١.

ŝ

ALS Environmental

Client:	Navajo Refining Company	
Project:	Injection Well Quarterly	Case Narrative
Work Order:	1008405	

Batch 45294 Metals (sample 1008401-15) MS/MSD unrelated sample.

Batch R96065 Volatiles (sample 1008613-30) MS/MSD unrelated sample.

Batch R965869 Chloride (sample 1008508-01) MS unrelated sample.

۲

¢

ALS Environmental

Date: 25-Aug-10

		Report	Dilution	_
Collection Date:	8/11/2010 12:40 PM		Matrix: WATER	
Sample ID:	Inj Well		Lab ID: 1008405-01	
Project:	Injection Well Quarterly		Work Order: 1008405	
Client:	Navajo Refining Company			

Analyses	Result	Qual Limit	Units	Factor	Date Analyzed
MERCURY		SW7470		Prep Date: 8/19/2010	Analyst: JCJ
Mercury	ND	0.000200	mg/L	1	8/19/2010 03:13 PM
METALS		SW6020		Prep Date: 8/13/2010	Analyst: ALR
Aluminum	0.158	0.0500	mg/L	5	8/14/2010 11:59 AM
Arsenic	0.0393	0.00500	mg/L	1	8/14/2010 05:12 AM
Barium	0.0218	0.00500	mg/L	1	8/14/2010 05:12 AM
Beryllium	ND	0.00200	mg/L	1	8/14/2010 05:12 AM
Boron	0.145	0.0200	mg/L	1	8/14/2010 05:12 AM
Cadmium	ND	0.00200	mg/L	1	8/14/2010 05:12 AM
Calcium	127	0.500	mg/L	1	8/14/2010 05:12 AM
Chromium	ND	0.00500	mg/L	1	8/14/2010 05:12 AM
Cobalt	ND	0.00500	mg/L	1	8/14/2010 05:12 AM
Copper	ND	0.00500	mg/L	1	8/14/2010 05:12 AM
Iron	0.387	0.200	mg/L	1	8/14/2010 05:12 AM
Lead	ND	0.00500	mg/L	1	8/14/2010 05:12 AM
Magnesium	39.0	0.200	mg/L	1	8/14/2010 05:12 AM
Manganese	0.0706	0.00500	mg/L	1	8/14/2010 05:12 AM
Molybdenum	0.120	0.00500	mg/L	1	8/14/2010 05:12 AM
Nickel	0.0106	0.00500	mg/L	1	8/14/2010 05:12 AM
Potassium	50.7	0.200	mg/L	1	8/14/2010 05:12 AM
Selenium	0.292	0.00500	mg/L	1	8/14/2010 05:12 AM
Silver	ND	0.00500	mg/L	1	8/14/2010 05:12 AM
Sodium	683	1.00	mg/L	5	8/14/2010 11:59 AM
Vanadium	ND	0.00500	mg/L	1	8/14/2010 05:12 AM
Zinc	1.30	0.00500	mg/L	1	8/14/2010 05:12 AM
EMIVOLATILES		SW8270		Prep Date: 8/13/2010	Analyst: KMB
1,2,4-Trichlorobenzene	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
2,4,5-Trichlorophenol	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
2,4,6-Trichlorophenol	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
2-Methylnaphthalene	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
2-Methylphenol	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
2-Nitroaniline	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
2-Nitrophenol	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
3&4-Methylphenol	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
3-Nitroaniline	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
4-Nitroaniline	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
4-Nitrophenol	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
Acenaphthene	ND	0.0050	mg/L	1	8/16/2010 03:00 PM
Acenaphthylene	ND	0.0050	mg/L	1	8/16/2010 03:00 PM

Note: See Qualifiers Page for a list of qualifiers and their explanation.

AR Page 1 of 4

ALS E

τ

٩

ALS Environmental

Date: 25-Aug-10

		Report	Dilution	
Collection Date:	8/11/2010 12:40 PM		Matrix:	WATER
Sample ID:	Inj Well		Lab ID:	1008405-01
Project:	Injection Well Quarterly		Work Order:	1008405
Client:	Navajo Refining Company			

ł

.

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Aniline	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Anthracene	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Benz(a)anthracene	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Benzidine	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Hexachloroethane	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Indeno(1,2,3-cd)pyrene	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Isophorone	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
N-Nitrosodi-n-propylamine	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
N-Nitrosodimethylamine	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
N-Nitrosodiphenylamine	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Naphthalene	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Nitrobenzene	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Pentachlorophenol	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Phenanthrene	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Phenol	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Pyrene	ND		0.0050	mg/L	1	8/16/2010 03:00 PM
Surr: 2,4,6-Tribromophenol	75.6		42-124	%REC	1	8/16/2010 03:00 PM
Surr: 2-Fluorobiphenyl	69.7		48-120	%REC	1	8/16/2010 03:00 PM
Surr: 2-Fluorophenol	53.7		20-120	%REC	1	8/16/2010 03:00 PM
Surr: 4-Terphenyl-d14	63.3		51-135	%REC	1	8/16/2010 03:00 PM
Surr: Nitrobenzene-d5	66.8		41-120	%REC	1	8/16/2010 03:00 PM
Surr: Phenol-d6	54.8		20-120	%REC	1	8/16/2010 03:00 PM
VOLATILES			SW8260			Analyst: PC
1,1,1-Trichloroethane	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
1,1,2,2-Tetrachloroethane	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
1,1,2-Trichloroethane	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
1,1-Dichloroethane	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
1,1-Dichloroethene	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
1,2-Dichloroethane	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
2-Butanone	ND		0.010	mg/L	1	8/22/2010 02:58 PM
2-Chloroethyl vinyl ether	ND		0.010	mg/L	1	8/22/2010 02:58 PM
2-Hexanone	ND		0.010	mg/L	1	8/22/2010 02:58 PM
4-Methyl-2-pentanone	ND		0.010	mg/L	1	8/22/2010 02:58 PM
Acetone	0.016		0.010	mg/L	- 1	8/22/2010 02:58 PM
Benzene	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
Bromodichloromethane	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
Bromoform	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
Bromomethane	ND		0.0050	mg/L	1	8/22/2010 02:58 PM
Carbon disulfide	ND		0.010	-	1	8/22/2010 02:58 PM
Carbon tetrachloride	ND		0.0050	mg/L	1	8/22/2010 02:58 PM

Note: See Qualifiers Page for a list of qualifiers and their explanation.

AR Page 2 of 4

ALS Environmental

Date:	25-Aug-10
-------	-----------

Client:	Navajo Refining Company
Project:	Injection Well Quarterly
Sample ID:	Inj Well
Collection Date:	8/11/2010 12:40 PM

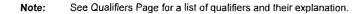
Work Order: 1008405 Lab ID: 1008405-01

Matrix: WATER

Analyses	Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
Chlorobenzene	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Chloroethane	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Chloroform	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Chloromethane	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
cis-1,3-Dichloropropene	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Dibromochloromethane	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Ethylbenzene	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
m,p-Xylene	0.011		0.010) mg/L	1	8/22/2010 02:58 PM
Methylene chloride	ND		0.010) mg/L	1	8/22/2010 02:58 PM
Styrene	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Tetrachloroethene	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Toluene	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
trans-1,3-Dichloropropene	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Trichloroethene	ND		0.0050) mg/L	1	8/22/2010 02:58 PM
Vinyl acetate	ND		0.010) mg/L	1	8/22/2010 02:58 PM
Vinyl chloride	ND		0.0020	mg/L	1	8/22/2010 02:58 PM
Xylenes, Total	ND		0.015	i mg/L	1	8/22/2010 02:58 PM
Surr: 1,2-Dichloroethane-d4	105		70-125	%REC	1	8/22/2010 02:58 PM
Surr: 4-Bromofluorobenzene	104		72-125	%REC	1	8/22/2010 02:58 PM
Surr: Dibromofluoromethane	106		71-125	%REC	1	8/22/2010 02:58 PM
Surr: Toluene-d8	112		75-125	%REC	1	8/22/2010 02:58 PM
REACTIVE CYANIDE			SW-846			Analyst: HN
Reactive Cyanide	ND		40.0	mg/Kg	1	8/19/2010 12:30 PM
REACTIVE SULFIDE			SW-846			Analyst: HN
Reactive Sulfide	ND		40.0	mg/Kg	1	8/19/2010 12:30 PM
ANIONS			E300			Analyst: DM
Chloride	195		5.00	mg/L	10	8/18/2010 04:42 PM
Sulfate	1,580		50.0	mg/L	100	8/18/2010 04:57 PM
Surr: Selenate (surr)	104		85-115	%REC	1	8/12/2010 06:26 PM
Surr: Selenate (surr)	9 <i>3</i> .9		85-115	%REC	100	8/18/2010 04:57 PM
Surr: Selenate (surr)	98.2		85-115	%REC	10	8/18/2010 04:42 PM
ALKALINITY			SM2320	3		Analyst: TDW
Alkalinity, Bicarbonate (As CaCO3)	219		5.00	mg/L	1	8/24/2010 02:00 PM
Alkalinity, Carbonate (As CaCO3)	ND		5.00	mg/L	1	8/24/2010 02:00 PM
Alkalinity, Hydroxide (As CaCO3)	ND		5.00	mg/L	1	8/24/2010 02:00 PM
Alkalinity, Total (As CaCO3)	219		5.00	mg/L	1	8/24/2010 02:00 PM
SPECIFIC CONDUCTIVITY			M2510 B			Analyst: TDW
Specific Conductivity	3,860		1.00	µmhos/cm	n 1	8/19/2010 01:00 PM

Note: See Qualifiers Page for a list of qualifiers and their explanation.

1


•

.

ALS Environmental

Date: 25-Aug-10

ALS EINIU								
Client:	Navajo Refining Comp	any						
Project:	Injection Well Quarterl	У			١	Work Order:	1008405	
Sample ID:	Inj Well					Lab ID:	1008405-01	
Collection Date:	8/11/2010 12:40 PM					Matrix:	WATER	
Analyses		Result	Qual	Report Limit	Units	Dilution Factor		Date Analyzed
PH pH		7.12	н	SM4500 0.10)H+B 0 pH unit	s 1		Analyst: JLC 8/12/2010
TOTAL DISSOLV Total Dissolved S Filterable)		7,080		M25400 10		1		Analyst: JLC 8/12/2010

ALS Environmental

Client:	Navajo Refining Company
Work Order:	1008405
Project:	Injection Well Quarterly

QC BATCH REPORT

Date: 25-Aug-10

Project:	Injection Well Quarterly									
Batch ID: 45	94 Instrument ID ICPMS03		Method:	SW602	0					
MBLK	Sample ID: MBLKW3-081310-45294		** ** <u>*</u> *******************************		Units: mg/	L	Analy	sis Date: 8	/14/2010	11:22 AM
Client ID:	Rur	n ID: ICPMS(3_100813A		SeqNo: 206*	1716	Prep Date: 8/1	3/2010	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.004821	0.010								J
Arsenic	ND	0.0050								
Barium	ND	0.0050								
Beryllium	ND	0.0020								
Boron	0.005306	0.050								J
Cadmium	ND	0.0020								
Calcium	ND	0.50								
Chromium	ND	0.0050								
Cobait	ND	0.0050								
Copper	ND	0.0050								
Iron	ND	0.20								
Lead	ND	0.0050								
Magnesium	ND	0.20								
Manganese	ND	0.0050								
Molybdenum	ND	0.0050								
Nickel	ND	0.0050								
Potassium	ND	0.20								
Selenium	ND	0.0050								
Silver	ND	0.0050								
Sodium	ND	0.20								
Vanadium	ND	0.0050								
Zinc	0.002978	0.0050								J

.....

100

Navajo Refining Company **Client:** 1008405 Work Order: **Project:**

QC BATCH REPORT

0

0

0

0

0

.

Injection Well Quarterly

Batch ID: 452	294 Instrument ID ICPMS03		Method:	SW602	:0						
LCS	Sample ID: MLCSW3-081310-45294				ι	Jnits: mg /		Analys	is Date: 8	/14/2010 (03:22 AM
Client ID:	Ru	n ID: ICPMS	03_100813A		Se	qNo: 206	1644	Prep Date: 8/13	3/2010	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.09599	0.010	0.1		0	96	80-120	0			
Arsenic	0.04807	0.0050	0.05		0	96.1	80-120	0			
Barium	0.04977	0.0050	0.05		0	99.5	80-120	0		_	
Beryllium	0.04866	0.0020	0.05		0	97.3	80-120	0			
Boron	0.4518	0.050	0.5		0	90.4	80-120	0			
Cadmium	0.04928	0.0020	0.05		0	98.6	80-120	0			
Calcium	4.877	0.50	5		0	97.5	80-120	0			
Chromium	0.04784	0.0050	0.05		0	95.7	80-120	0			
Cobalt	0.04874	0.0050	0.05		0	97.5	80-120	0			
Copper	0.04897	0.0050	0.05		0	97.9	80-120	0			
iron	4.755	0.20	5		0	95.1	80-120	0			
Lead	0.04831	0.0050	0.05		0	96.6	80-120	0			
Magnesium	4.848	0.20	5		0	97	80-120	0			
Manganese	0.04823	0.0050	0.05		0	96.5	80-120	0			
Molybdenum	0.0471	0.0050	0.05		0	94.2	80-120	0			
Nickel	0.05004	0.0050	0.05		0	100	80-120	0			
Potassium	4.742	0.20	5		0	94.8	80-120	0			

0.05

0.05

0.05

0.05

5

0

0

0

0

0

99.1

99.2

96.1

94.5

106

80-120

80-120

80-120

80-120

80-120

Selenium

Silver

Zinc

Note:

Sodium

Vanadium

See Qualifiers Page for a list of Qualifiers and their explanation.

0.04953

0.04959

0.04727

0.0529

4.807

0.0050

0.0050

0.0050

0.0050

0.20

Client:Navajo Refining CompanyWork Order:1008405

۲

.

•

QC BATCH REPORT

Project: Injection Well Quarterly

Batch ID: 45294	Instrument ID ICPMS03		Method	SW6020					
MS Sampl	le ID: 1008401-15CMS				Units: mg/l		Analysis Date:	8/14/2010	03:43 AM
Client ID:	Run	ID: ICPMS	3_100813A	Se	eqNo: 206 1	648	Prep Date: 8/13/2010	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value %RP[RPD Limit	Qual
Aluminum	0.5743	0.010	0.1	0.4728	102	80-120	0		0
Arsenic	0.08485	0.0050	0.05	0.0361	97.5	80-120	0		
Barium	0.06486	0.0050	0.05	0.01611	97.5	80-120	0		
Beryllium	0.04754	0.0020	0.05	0.0003813	94.3	80-120	0		
Boron	0.7433	0.050	0.5	0.2716	94.3	80-120	0		
Cadmium	0.04778	0.0020	0.05	0.0002854	95	80-120	0		
Calcium	63.93	0.50	5	58.96	99.4	80-120	0		0
Chromium	0.04825	0.0050	0.05	0.0007848	94.9	80-120	0		
Cobalt	0.04755	0.0050	0.05	0.0003192	94.5	80-120	0		
Copper	0.04809	0.0050	0.05	0.001347	93.5	80-120	0		
Iron	4.686	0.20	5	0.1167	91.4	80-120	0		
Lead	0.0491	0.0050	0.05	0.001824	94.6	80-120	0		
Magnesium	13.33	0.20	5	8.817	90.3	80-120	0		
Manganese	0.08577	0.0050	0.05	0.03932	92.9	80-120	0		
Molybdenum	0.05006	0.0050	0.05	0.003368	93.4	80-120	0		
Nickel	0.04817	0.0050	0.05	0.001961	92.4	80-120	0		
Potassium	10.06	0.20	5	5.465	91.9	80-120	0		
Selenium	0.05139	0.0050	0.05	0.001186	100	80-120	0		
Silver	0.04626	0.0050	0.05	0.000173	92.2	80-120	0		
Sodium	131.2	0.20	5	128.1	62	80-120	0		SO
Vanadium	0.06417	0.0050	0.05	0.01699	94.4	80-120	0		
Zinc	0.06945	0.0050	0.05	0.02342	92.1	80-120	0		

Client:Navajo Refining CompanyWork Order:1008405

. •

QC BATCH REPORT

Project: Injection Well Quarterly

Batch ID: 4529	Instrument ID iCPMS03		Method	: SW6020						
MSD	Sample ID: 1008401-15CMSD				Units: mg/		Analysi	s Date: 8/	14/2010 0	3:48 AM
Client ID:	Ru	n ID: ICPMS)3_100813A	. Se	SeqNo: 2061649			Prep Date: 8/13/2010		
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD_	RPD Limit	Qual
Aluminum	0.5766	0.010	0.1	0.4728	104	80-120	0.5743	0.4	15	0
Arsenic	0.08708	0.0050	0.05	0.0361	102	80-120	0.08485	2.59	15	
Barium	0.06457	0.0050	0.05	0.01611	96.9	80-120	0.06486	0.448	15	
Beryllium	0.0482	0.0020	0.05	0.0003813	95.6	80-120	0.04754	1.38	15	
Boron	0.7321	0.050	0.5	0.2716	92.1	80-120	0.7433	1.52	15	
Cadmium	0.0473	0.0020	0.05	0.0002854	94	80-120	0.04778	1.01	15	
Calcium	66.18	0.50	5	58.96	144	80-120	63.93	3.46	15	so
Chromium	0.04936	0.0050	0.05	0.0007848	97.2	80-120	0.04825	2.27	15	
Cobalt	0.04859	0.0050	0.05	0.0003192	96.5	80-120	0.04755	2.16	15	
Copper	0.04888	0.0050	0.05	0.001347	95.1	80-120	0.04809	1.63	15	
Iron	4.748	0.20	5	0.1167	92.6	80-120	4.686	1.31	15	
Lead	0.04924	0.0050	0.05	0.001824	94.8	80-120	0.0491	0.285	15	
Magnesium	13.52	0.20	5	8.817	94.1	80-120	13.33	1.42	15	
Manganese	0.08794	0.0050	0.05	0.03932	97.2	80-120	0.08577	2.5	15	
Molybdenum	0.05141	0.0050	0.05	0.003368	96.1	80-120	0.05006	2.66	15	
Nickel	0.04816	0.0050	0.05	0.001961	92.4	80-120	0.04817	0.0208	15	
Potassium	10.17	0.20	5	5.465	94.1	80-120	10.06	1.09	15	
Selenium	0.05134	0.0050	0.05	0.001186	100	80-120	0.05139	0.0973	15	
Silver	0.04755	0.0050	0.05	0.000173	94.8	80-120	0.04626	2.75	15	
Sodium	133.6	0.20	5	128.1	110	80-120	131.2	1.81	15	0
Vanadium	0.06662	0.0050	0.05	0.01699	99.3	80-120	0.06417	3.75	15	
Zinc	0.07304	0.0050	0.05	0.02342	99.2	80-120	0.06945	5.04	15	

Client:

Project:

Navajo Refining Company Work Order: 1008405 Injection Well Quarterly

QC BATCH REPORT

Batch ID: 45294

Instrument ID ICPMS03

Method: SW6020

DUP	Sample ID: 1008401-15CDUP				Uı	nits: mg/L	-		Analysi	s Date: 8/	14/2010 0	3:32 AM
Client ID:	Run I	D: ICPMS(03_100813A		Seq	No: 2061	646	P	rep Date: 8/13/	/2010	DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Contro Limit	!	RPD Ref Value	%RPD	RPD Limit	Qual
Aluminum	0.4951	0.010	0	i	0	0	-0	0	0.4728	4.61	25	
Arsenic	0.03893	0.0050	0	1	0	0	-0	0	0.0361	7.54	25	
Barium	0.01569	0.0050	0		0	0	-0	0	0.01611	2.64	25	
Beryllium	0.0003103	0.0020	0		0	0	-0	0	0.0003813	0	25	J
Boron	0.2882	0.050	0	1	0	0	-0	0	0.2716	5.93	25	
Cadmium	ND	0.0020	0		0	0	-0	0	0.0002854	0	25	
Calcium	63.15	0.50	0		0	0	-0	0	58.96	6.86	25	
Chromium	0.000633	0.0050	0		0	0	-0	0	0.0007848	0	25	J
Cobalt	ND	0.0050	0		0	0	-0	0	0.0003192	0	25	
Copper	0.001327	0.0050	0		0	0	-0	0	0.001347	0	25	J
Iron	ND	0.20	0		0	0	-0	0	0.1167	0	25	
Lead	0.001843	0.0050	0		0	0	-0	0	0.001824	0	25	J
Magnesium	9.285	0.20	0		0	0	-0	0	8.817	5.17	25	
Manganese	0.04182	0.0050	0		0	0	-0	0	0.03932	6.16	25	
Molybdenum	0.003335	0.0050	0		0	0	-0	0	0.003368	0	25	J
Nickel	0.001997	0.0050	0		0	0	-0	0	0.001961	0	25	J
Potassium	5.762	0.20	0		0	0	-0	0	5.465	5.29	25	
Selenium	ND	0.0050	0		0	0	-0	0	0.001186	0	25	
Silver	ND	0.0050	0		0	0		0	0.000173	0	25	
Sodium	133.6	0.20	0	i	0	0	-0	0	128.1	4.2	25	
Vanadium	0.01813	0.0050	0	•	0	0	-0	0	0.01699	6.49	25	
Zinc	0.02401	0.0050	0		0	0	-0	0	0.02342	2.49	25	

The following samples were analyzed in this batch:

1008405-01B

ļ

Note:

Client: Work Orc Project:	der: I	Javajo Refining 008405 njection Well Qu							QC	CBATC	H RE	PORT
Batch ID: 4	5414	Instrument II	D Mercury		Metho	d: SW747	0					
MBLK	Sample	ID: GBLKW1-081	910-45414				Units: mg	Ľ	Ana	alysis Date: 8	/19/2010 0	2:36 PM
Client ID:			Rur	ID: MERCU	JRY_10081	9B	SeqNo: 206	6994	Prep Date: 8	3/19/2010	DF: 1	
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury			ND	0.00020								
LCS	Sample	ID: GLCSW1-081	910-45414		<u></u>		Units: mg	ĽL	Ana	alysis Date: 8	/19/2010 0	2:38 PM
Client ID:			Rur	ID: MERCI	JRY_10081	9B	SeqNo: 206	6995	Prep Date: 8	3/19/2010	DF: 1	
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Mercury			0.00473	0.00020	0.005		0 94.6	85-115		0		
MS	Sample	ID: 1008604-01CI	ทร				Units: mg	/L	Ana	alysis Date: 8	/19/2010 0	2:47 PM
MS Client ID:	Sample	ID: 1008604-01CI		n ID: MERCI	JRY_10081	9B	Units: mg SeqNo: 206		Ana Prep Date: 8	-	0.000 DF: 1)2:47 PM
	Sample	ID: 1008604-01CI		n ID: Mercu PQL	J RY_10081 SPK Val	9 B SPK Ref Value				8/19/2010		Qual
Client ID:	Sample	ID: 1008604-01CI	Rur		-	SPK Ref	SeqNo: 206	6998 Control	Prep Date: 8 RPD Ref Value	8/19/2010	DF: 1 RPD	
Client ID: Analyte		ID: 1008604-01CI	Rur Result 0.00542	PQL	SPK Val	SPK Ref Value	SeqNo: 206	6998 Control Limit 85-115	Prep Date: 8 RPD Ref Value	8/19/2010 %RPD	DF: 1 RPD Limit	Qual
Client ID: Analyte Mercury			Rur Result 0.00542 VISD	PQL	SPK Val 0.005	SPK Ref Value 0.00002	SeqNo: 206 %REC 23 108	6998 Control Limit 85-115	Prep Date: 8 RPD Ref Value	8/19/2010 %RPD 0 alysis Date: 8	DF: 1 RPD Limit	Qual
Client ID: Analyte Mercury MSD			Rur Result 0.00542 VISD	PQL 0.00020	SPK Val 0.005	SPK Ref Value 0.00002	SeqNo: 206 %REC 23 108 Units: mg	6998 Control Limit 85-115	Prep Date: & RPD Ref Value	8/19/2010 %RPD 0 alysis Date: 8 8/19/2010	DF: 1 RPD Limit	Qual
Client ID: Analyte Mercury MSD Client ID:			Rur Result 0.00542 VISD Rur	PQL 0.00020 n ID: MERCU	SPK Val 0.005 JRY_10081	SPK Ref Value 0.00002 9B SPK Ref	SeqNo: 206 %REC 23 108 Units: mg SeqNo: 206 %REC	6998 Control Limit 85-115 /L 6999 Control	Prep Date: 8 RPD Ref Value Ana Prep Date: 8 RPD Ref Value	8/19/2010 %RPD 0 alysis Date: 8 8/19/2010 %RPD	DF: 1 RPD Limit //19/2010 (DF: 1 RPD Limit	Qual 02:49 PM
Client ID: Analyte Mercury MSD Client ID: Analyte	Sample		Rur <u>Result</u> 0.00542 MSD Rur Result 0.00541	PQL 0.00020 n ID: MERCU PQL	SPK Val 0.005 JRY_10081 SPK Val	SPK Ref Value 0.00002 9B SPK Ref Value	SeqNo: 206 %REC 23 108 Units: mg SeqNo: 206 %REC	6998 Control Limit 85-115 /L 6999 Control Limit 85-115	Prep Date: 8 RPD Ref Value Ana Prep Date: 8 RPD Ref Value 0.005	8/19/2010 %RPD 0 alysis Date: 8 8/19/2010 %RPD	DF: 1 RPD Limit DF: 1 RPD Limit 5 20	Qual 02:49 PM Qual
Client ID: Analyte Mercury MSD Client ID: Analyte Mercury	Sample	ID: 1008604-01Cf	Rur <u>Result</u> 0.00542 MSD Rur <u>Result</u> 0.00541 DUP	PQL 0.00020 n ID: MERCU PQL	SPK Val 0.005 JRY_10081 SPK Val 0.005	SPK Ref Value 0.00002 9B SPK Ref Value 0.00002	SeqNo: 206 %REC 23 108 Units: mg SeqNo: 206 %REC 23 108	6998 Control Limit 85-115 /L 6999 Control Limit 85-115	Prep Date: 8 RPD Ref Value Ana Prep Date: 8 RPD Ref Value 0.005	8/19/2010 %RPD 0 alysis Date: 8 8/19/2010 %RPD 542 0.188 alysis Date: 8	DF: 1 RPD Limit DF: 1 RPD Limit 5 20	Qual 02:49 PM Qual

Mercury

ND

The following samples were analyzed in this batch:

0.00020

0

1008405-01B

0

0

-0 0

0.000023

0

Navajo Refining Company **Client:** Work Order: 1008405 Injection Well Quarterly

QC BATCH REPORT

Project:

Batch ID: 45299

٠ .

Instrument ID SV-3

Method: SW8270

MBLK Sample ID: SBLKW2-	-100813-45299				Units: µg/I	-	Analy	Analysis Date: 8/16/2010 12:23 PN				
Client ID:	Run I	D: SV-3_1	00813D		SeqNo: 206	2945	Prep Date: 8/1	3/2010	DF: 1			
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual		
1,2,4-Trichlorobenzene	ND	5.0										
2,4,5-Trichlorophenol	ND	5.0										
2,4,6-Trichlorophenol	ND	5.0										
2-Methylnaphthalene	ND	5.0										
2-Methylphenol	ND	5.0										
2-Nitroaniline	ND	5.0										
2-Nitrophenol	ND	5.0										
3&4-Methylphenol	ND	5.0										
3-Nitroaniline	ND	5.0										
4-Nitroaniline	ND	5.0										
4-Nitrophenol	ND	5.0										
Acenaphthene	ND	5.0										
Acenaphthylene	ND	5.0										
Aniline	ND	5.0										
Anthracene	ND	5.0										
Benz(a)anthracene	ND	5.0										
Benzidine	ND	5.0										
Hexachloroethane	ND	5.0										
Indeno(1,2,3-cd)pyrene	ND	5.0										
Isophorone	ND	5.0										
N-Nitrosodi-n-propylamine	ND	5.0								<u>-</u>		
N-Nitrosodimethylamine	ND	5.0										
N-Nitrosodiphenylamine	ND	5.0										
Naphthalene	ND	5.0										
Nitrobenzene	ND	5.0										
Pentachlorophenol	ND	5.0		_								
Phenanthrene	ND	5.0										
Phenol	ND	5.0										
Pyrene	ND	5.0										
Surr: 2,4,6-Tribromophenol	73.51	5.0	100		0 73.5	42-124		0				
Surr: 2-Fluorobiphenyl	74.53	5.0	100		0 74.5	48-120		0	_			
Surr: 2-Fluorophenol	57.17	5.0	100		0 57.2	20-120		0				
Surr: 4-Terphenyl-d14	70.97	5.0	100		0 71	51-135		0				
Surr: Nitrobenzene-d5	70.15	5.0	100		0 70.2	41-120		0				
Surr: Phenol-d6	54.08	5.0	100		0 54.1	20-120		0				

Navajo Refining Company 1008405 Work Order:

QC BATCH REPORT

Injection Well Quarterly **Project:**

Bat	tch	ID:	4	152	299

Instrument ID SV-3

Method: SW8270

LCS Sample ID: SLCSW3-	100813-45299				Units: µg/L			Analysis Date: 8/16/2010 12:45			
Client ID:	Run ID: SV-3_100813D			SeqNo: 2062946			Prep Date: 8/13/2010		DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value	9	%REC	Control Límit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4-Trichlorobenzene	43.08	5.0	50	(0	86.2	50-120	0			
2,4,5-Trichlorophenol	79.89	5.0	100		0	79.9	50-120	0			
2,4,6-Trichlorophenol	79.12	5.0	100		0	79,1	50-120	0			
2-Methylnaphthalene	38.68	5.0	50		0	77.4	55-120	0			
2-Methylphenol	62.86	5.0	100		0	62.9	50-120	0			
2-Nitroaniline	49.51	5.0	50		0	99	55-120	0			
2-Nitrophenol	78.36	5.0	100	(0	78.4	55-120	0			
3&4-Methylphenol	93.63	5.0	150	(0	62.4	55-120	0			
3-Nitroaniline	34.07	5.0	50		0	68.1	40-120	0			
4-Nitroaniline	38.23	5.0	50		0	76.5	50-120	0			
4-Nitrophenol	84.84	5.0	100		0	84.8	45-120	0			
Acenaphthene	41.05	5.0	50		0	82.1	55-120	0			
Acenaphthylene	41.48	5.0	50		0	83	55-120	0			
Aniline	25.68	5.0	50		0	51.4	30-120	0			
Anthracene	43.56	5.0	50	·····	0	87.1	55-120	0			
Benz(a)anthracene	44.87	5.0	50		0	89.7	55-120	0			
Benzidine	24.38	5.0	50		0	48.8	10-120	0			
lexachloroethane	38.16	5.0	50		0	76.3	55-120	0			
ndeno(1,2,3-cd)pyrene	43.25	5.0	50		0	86.5	55-120	0			
sophorone	37.48	5.0	50	(0	75	55-120	0			
N-Nitrosodi-n-propylamine	32.41	5.0	50	(0	64.8	50-120	0			
N-Nitrosodimethylamine	34,57	5.0	50	(0	69.1	45-120	0			
N-Nitrosodiphenylamine	42.48	5.0	50	(0	85	55-120	0			
Naphthalene	40.58	5.0	50	(0	81.2	55-120	0			
Nitrobenzene	40.86	5.0	50		0	81.7	55-120	0			
Pentachlorophenol	89.43	5.0	100	(0	89.4	55-120	0			
Phenanthrene	42.64	5.0	50		0	85.3	55-120	0			
Phenol	62.86	5.0	100		0	62.9	50-120	0			
^o yrene	43.02	5.0	50		0	86	55-120	0			
Surr: 2,4,6-Tribromophenol	84.85	5.0	100	(0	84.9	42-124	0			
Surr: 2-Fluorobiphenyl	78.98	5.0	100	(0	79	48-120	0			
Surr: 2-Fluorophenol	72.01	_5.0	100		0	72	20-120	0			
Surr: 4-Terphenyl-d14	73.77	5.0	100	(0	73.8	51-135	0			
Surr: Nitrobenzene-d5	79.98	5.0	100	(0	80	41-120	0			
Surr: Phenol-d6	62.69	5.0	100	(0	62.7	20-120	0			-

QC BATCH REPORT

Project:

Batch ID: 45299

Injection Well Quarterly

Instrument ID SV-3

Method: SW8270

LCSD Sample ID: SLCSDW3	V3-100813-45299			Units: µg/L			Analysis Date: 8/16/2010 01:08 Pl				
Client ID:	Run ID: SV-3_100813D				SeqNo: 2062947			Prep Date: 8/13	DF: 1		
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4-Trichlorobenzene	39.72	5.0	50		0	79.4	50-120	43.08	8.13	20	
2,4,5-Trichlorophenol	77.7	5.0	100		0	77.7	50-120	79.89	2.77	20	
2,4,6-Trichlorophenol	74.62	5.0	100		0	74.6	50-120	79.12	5.85	20	
2-Methylnaphthalene	36.52	5.0	50		0	73	55-120	38.68	5.75	20	
2-Methylphenol	58.11	5.0	100		0	58.1	50-120	62.86	7.85	20	
2-Nitroaniline	45.47	5.0	50		0	90.9	55-120	49.51	8.51	20	
2-Nitrophenol	73.33	5.0	100		0	73.3	55-120	78.36	6.64	20	
3&4-Methylphenol	87.19	5.0	150		0	58.1	55-120	93.63	7.12	20	
3-Nitroaniline	32.83	5.0	50		0	65.7	40-120	34.07	3.73	20	
4-Nitroaniline	38.57	5.0	50		0	77.1	50-120	38.23	0.889	20	
4-Nitrophenol	84.34	5.0	100		0	84.3	45-120	84.84	0.589	20	
Acenaphthene	38.43	5.0	50		0	76.9	55-120	41.05	6.58	20	
Acenaphthylene	39.08	5.0	50		0	78.2	55-120	41.48	5.96	20	
Aniline	26.13	5.0	50		0	52.3	30-120	25.68	1.74	20	
Anthracene	41.23	5.0	50		0	82.5	55-120	43.56	5.5	20	
Benz(a)anthracene	41.02	5.0	50		0	82	55-120	44.87	8.95	20	
Benzidine	25.83	5.0	50		0	51.7	10-120	24.38	5.75	20	
Hexachloroethane	35.51	5.0	50		0	71	55-120	38.16	7.19	20	
ndeno(1,2,3-cd)pyrene	40.97	5.0	50		0	81.9	55-120	43.25	5.42	20	
sophorone	35.25	_ 5.0	50		0	70.5	55-120	37.48	6.13	20	
N-Nitrosodi-n-propylamine	29.75	5.0	50		0	59.5	50-120	32.41	8.54	20	
N-Nitrosodimethylamine	33.74	5.0	50		0	67.5	45-120	34.57	2.43	20	
N-Nitrosodiphenylamine	38.36	5.0	50		0	76.7	55-120	42.48	10.2	20	
Naphthalene	38.15	5.0	50		0	76.3	55-120	40.58	6.18	20	
Nitrobenzene	37.65	5.0	50		0	75.3	55-120	40.86	8.18	20	
Pentachlorophenol	83.89	5.0	100		0	83.9	55-120	89.43	6.39	20	
Phenanthrene	40.75	5.0	50		0	81.5	55-120	42.64	4.54	20	
Phenol	58.95	5.0	100		0	58.9	50-120	62.86	6.42	20	
Pyrene	38.06	5.0	50		0	76.1	55-120	43.02	12.2	20	
Surr: 2,4,6-Tribromophenol	82.54	5.0	100		0	82.5	42-124	84.85	2.76	20	
Surr: 2-Fluorobiphenyl	76.75	5.0	100		0	76.7	48-120	78.98	2.87	20	
Surr: 2-Fluorophenol	66.49	5.0	100		0	66.5	20-120	72.01	7.98	20	
Surr: 4-Terphenyl-d14	68.54	5.0	100		0	68.5	51-135	73.77	7.34	20	
Surr: Nitrobenzene-d5	74.25	5.0	100		0	74.2	41-120	7 9 .98	7.44	20	
Surr: Phenol-d6	58.13	5.0	100		0	58.1	20-120	62.69	7.56	20	

The following samples were analyzed in this batch:

1008405-01D

QC BATCH REPORT

Work Order:1008405Project:Injection Well Quarterly

Instrument ID VOA1

Batch ID: R96065

.

Method: SW8260

MBLK Sample ID: VB	LKW-082210-R96065				Units: µg/I	-	Analy	sis Date: 8	/22/2010	11:57 AN
Client ID:	Run i	D: VOA1_	100822A		SeqNo: 206	9725	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	ND	5.0								
1,1,2,2-Tetrachloroethane	ND	5.0								
1,1,2-Trichloroethane	ND	5.0								
1,1-Dichloroethane	ND	5.0								
1,1-Dichloroethene	ND	5.0								
1,2-Dichloroethane	ND	5.0								
2-Butanone	ND	10								
2-Chloroethyl vinyl ether	ND	10								
2-Hexanone	ND	10								
4-Methyl-2-pentanone	ND	10								
Acetone	ND	10								
Benzene	ND	5.0								
Bromodichloromethane	ND	5.0								
Bromoform	ND	5.0		·						
Bromomethane	ND	5.0								
Carbon disulfide	ND	10				······				
Carbon tetrachloride	ND	5.0								
Chlorobenzene	ND	5.0								
Chloroethane	ND	5.0								
Chloroform	ND	5.0								
Chloromethane	ND	5.0								
cis-1,3-Dichloropropene	ND	5.0								
Dibromochloromethane	ND	5.0								
Ethylbenzene	ND	5.0								
m,p-Xylene	ND	10								
Methylene chloride	ND	10								
Styrene	ND	5.0								
Tetrachloroethene	ND	5.0								
Toluene	ND	5.0								
rans-1,3-Dichloropropene	ND	5.0								
Frichloroethene	ND	5.0								
/inyl acetate	ND	10								
/inyl chloride	ND	2.0							_	
Xylenes, Total	ND	15	-							
Surr: 1,2-Dichloroethane-d4	4 46.5	5.0	50		0 93	70-125		0		
Surr: 4-Bromofluorobenzen	e 52.77	5.0	50		0 106	72-125		о С		
Surr: Dibromofluoromethan	e 50.96	5.0	50		0 102	71-125	(C		
Surr: Toluene-d8	57.02	5.0	50		0 114	75-125	(D		

QC BATCH REPORT

•

Project:

Injection Well Quarterly

Batch ID: R96065	Instrument ID VOA1		Method	: SW8266	0						
LCS Sample ID: 1	VLCSW-082210-R96065				U	nits: µg/L		Analy	sis Date: 8	/22/2010	11:06 AM
Client ID:	Run	ID: VOA1_1	100822A		Sec	No: 2069	9724	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	_	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	50,25	5.0	50		0	101	80-120		D		
1,1,2,2-Tetrachloroethane	50.7	5.0	50		0	101	72-120	1	0		
1,1,2-Trichloroethane	51.13	5.0	50		0	102	80-120	i	00		
1,1-Dichloroethane	49.82	5.0	50		0	99.6	76-120		0		
1,1-Dichloroethene	48.95	5.0	50		0	97.9	73-124		00		
1,2-Dichloroethane	51.58	5.0	50		0	103	78-120		0		
2-Butanone	108.1	10	100		0	108	58-132		0		
2-Chloroethyl vinyl ether	110	10	100		0	110	74-120		0		
2-Hexanone	100.1	10	100		0	100	61-130		0		_
4-Methyl-2-pentanone	98.34	10	100		0	98.3	65-127		0		
Acetone	99.41	10	100		0	99.4	59-137		0		
Benzene	54.47	5.0	50		0	109	73-121		D		
Bromodichloromethane	52.82	5.0	50		0	106	80-120		0		
Bromoform	48.16	5.0	50		0	96.3	79-120		0		
Bromomethane	49.82	5.0	50		0	99.6	66-137		0		
Carbon disulfide	101.4	10	100		0	101	68-1 4 1		0		
Carbon tetrachloride	46.93	5.0	50		0	93.9	75-124		0		
Chlorobenzene	48.07	5.0	50		0	96.1	80-120		D		
Chloroethane	49.98	5.0	50		0	100	76-121		0		
Chloroform	50.92	5.0	50		0	102	80-120		0		
Chloromethane	49.28	5.0	50		0	98.6	67-123		C		
cis-1,3-Dichloropropene	55.26	5.0	50		0	111	80-120		0		
Dibromochloromethane	51.43	5,0	50		0	103	80-120		0		
Ethylbenzene	51.37	5.0	50		0	103	80-120		D		
m,p-Xylene	93.5	10	100		0	93.5	78-121		0		

Methylene chloride

Tetrachloroethene

Trichloroethene

Vinyl acetate

Vinyl chloride

Xylenes, Total

trans-1,3-Dichloropropene

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

Styrene

Toluene

Note:

51.5

50.23

50.32

50.7

49.84

54.84

107.5

48.69

143.6

49.13

50.17

51.34

56.69

10

5.0

5.0

5.0

5.0

5.0

10

2.0

15

5.0

5.0

5.0

5.0

50

50

50

50

50

50

100

50

150

50

50

50

50

0

0

0

0

0

0

0

0

0

0

0

0

0

103

100

101

101

99.7

110

108

97.4

95.7

98.*3*

100

103

113

65-133

80-120

79-120

80-120

80-120

80-120

67-139

70-127

80-120

70-125

72-125

71-125

75-125

0

0

0

0

0

0

0

0

0

0

0

0

0

Navajo Refining Company **Client:** 1008405 Work Order:

QC BATCH REPORT

Injection Well Quarterly **Project:**

Instrument ID VOA1

Batch ID: R96065

Method:	SW8260
---------	--------

MS Sample ID: 1008613-3	OAMS			I	Units: µg/L	-	Analy	sis Date: 8	/22/2010	01:40 PI
Client ID:	Run II	D: VOA1_	100822A	Se	eqNo: 206 9	972 9	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,1,1-Trichloroethane	47.89	5.0	50	0	95.8	80-120		D		
1,1,2,2-Tetrachloroethane	48.01	5.0	50	0	96	72-120		- D		
1,1,2-Trichloroethane	50.43	5.0	50	0	101	80-120		- D		
1,1-Dichloroethane	50.63	5.0	50	0	101	76-120		0		
1,1-Dichloroethene	45.46	5.0	50	0	90.9	73-124		0		
1,2-Dichloroethane	52.26	5.0	50	0	105	78-120		0		
2-Butanone	99.21	10	100	0	99.2	58-132		- D		
2-Chloroethyl vinyl ether	ND	10	100	0	0	74-120		0		s
2-Hexanone	98.14	10	100	0	98.1	61-130		0		
4-Methyl-2-pentanone	97.46	10	100	0	97.5	65-127		0		
Acetone	89.45	10	100	2.183	87.3	59-137		0		
Benzene	51.68	5.0	50	0	103	73-121		- 0		
Bromodichloromethane	52.27	5.0	50	0	105	80-120		0		
Bromoform	45.67	5.0	50	0	91.3	79-120		 0		
Bromomethane	50.46	5.0	50	0	101	66-137		0		
Carbon disulfide	92.14	10	100	0	92.1	68-141		 0		
Carbon tetrachloride	44.76	5.0	50	0	89.5	75-124		0		
Chlorobenzene	49.46	5.0	50	0	98.9	80-120		0		
Chloroethane	52.77	5.0	50	0	106	76-121		0		
Chloroform	50.45	5.0	50	0	101	80-120		0		
Chloromethane	50.16	5.0	50	0	100	67-123		0		
cis-1,3-Dichloropropene	52.49	5.0	50	0	105	80-120		0		
Dibromochloromethane	49.04	5.0	50	0	98.1	80-120		0		
Ethylbenzene	49.71	5.0	50	0	99.4	80-120		0		
m,p-Xylene	97.64	10	100	ů 0	97.6	78-121		0		
Methylene chloride	50.2	10	50	0	100	65-133		0		
Styrene	49.94	5.0	50	0	99.9	80-120		0		
Tetrachloroethene	44.1	5.0	50	0	88.2	79-120		0		
Toluene	52.19	5.0	50	0	104	80-120		0		
trans-1,3-Dichloropropene	49.55	5.0	50	0	99.1	80-120		 0		
Trichloroethene	50.41	5.0	50	0	101	80-120		- D		
√inyl acetate	101.2	10	100	0	101	67-139		0		
√inyl chloride	43.31	2.0	50	0	86.6	70-127		0		
Kylenes, Total	148.2	15	150	0	98.8	80-120		0		
Surr: 1,2-Dichloroethane-d4	47.32	5.0	50	0	94.6	70-125		0		
Surr: 4-Bromofluorobenzene	53.03	5.0	50	0	106	72-125		 D		
Surr: Dibromofluoromethane	51.79	5.0	50	0	104	71-125		0		
Surr: Toluene-d8	56.22	5.0	50	0	112	75-125		0		

QC BATCH REPORT

Project:

Injection Well Quarterly

Instrument ID VOA1

Batch	ID:	R96065	

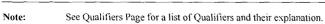
Method: SW8260

MSD Sample ID: 1008613-30	DAMSD			ι	Jnits: µg/L	•	Analysi	s Date: 8/2	22/2010 0	2:06 PI
Client ID:	Run IE	: VOA1_	100822A	Se	eqNo: 2069	9730	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
1,1,1-Trichloroethane	48.02	5.0	50	0	96	80-120	47.89	0.269	20	
1,1,2,2-Tetrachloroethane	47.63	5.0	50	0	95.3	72-120	48.01	0.200	20	
1,1,2-Trichloroethane	51.12	5.0	50	0	102	80-120	50.43	1.36	20	
1.1-Dichloroethane	51.12	5.0	50	0	102	76-120	50.63	0.972	20	
1,1-Dichloroethene	48.08	5.0	50	ů	96.2	73-124	45.46	5.59	20	
1,2-Dichloroethane	50.68	5.0	50	0	101	78-120	52.26	3.09	20	
2-Butanone	97.12	10	100	0	97.1	58-132	99.21	2.13	20	
2-Chloroethyl vinyl ether	ND	10	100	0	0	74-120	0	0	20	s
2-Hexanone	95.35	10	100	0	95.4	61-130	98.14	2.88	20	-
4-Methyl-2-pentanone	95.54	10	100	0	95.5	65-127	97.46	1.99	20	
Acetone	82.69	10	100	2.183	80.5	59-137	89.45	7.86	20	
Benzene	53.73	5.0	50	0	107	73-121	51.68	3.89	20	
Bromodichloromethane	53.88	5.0	50	0	108	80-120	52.27	3.03	20	
Bromoform	46.06	5.0	50	0	92.1	79-120	45.67	0.867	20	
Bromomethane	51.65	5.0	50	0	103	66-137	50.46	2.33	20	
Carbon disulfide	94,91	10	100	0	94.9	68-141	92.14	2.96	20	
Carbon tetrachloride	44.85	5.0	50	0	89.7	75-124	44.76	0.198	20	
Chlorobenzene	49.03	5.0	50	0	98.1	80-120	49.46	0.874	20	
Chloroethane	49.21	5.0	50	0	98.4	76-121	52.77	6.97	20	
Chloroform	50.08	5.0	50	0	100	80-120	50.45	0.753	20	
Chloromethane	51.83	5.0	50	0	104	67-123	50.16	3.27	20	
cis-1,3-Dichloropropene	53.39	5.0	50	0	107	80-120	52.49	. 1,7	20	
Dibromochloromethane	50.95	5.0	50	0	102	80-120	49.04	3.84	20	
Ethylbenzene	52.67	5.0	50	0	105	80-120	49.71	5.77	20	
m,p-Xylene	103.6	10	100	0	104	78-121	97.64	5.95	20	
Methylene chloride	50.44	10	50	0	101	65-133	50.2	0.467	20	
Styrene	51.65	5.0	50	0	103	80-120	49.94	3.36	20	
Tetrachloroethene	46.9	5.0	50	0	93.8	79-120	44.1	6.15	20	
Toluene	50.95	5.0	50	0	102	80-120	52.19	2.41	20	
trans-1,3-Dichloropropene	48.6	5.0	50	0	97.2	80-120	49.55	1.93	20	
Trichloroethene	51.3	5.0	50	0	103	80-120	50.41	1.75	20	
√inyl acetate	100.3	10	100	0	100	67-139	101.2	0.887	20	
Vinyl chloride	46.86	2.0	50	0	93.7	70-127	43.31	7.88	20	
Kylenes, Total	156.6	15	150	0	104	80-120	148.2	5.51	20	_
Surr: 1,2-Dichloroethane-d4	48.98	5.0	50	0	98	70-125	47.32	3.45	20	
Surr: 4-Bromofluorobenzene	52.14	5.0	50	0	104	72-125	53.03	1.69	20	
Surr: Dibromofluoromethane	51.92	5.0	50	0	104	71-125	51.79	0.246	20	
Surr: Toluene-d8	56.22	5.0	50	0	112	75-125	56.22	0.00834	20	

The following samples were analyzed in this batch:

1008405-01A

Injection Well Quarterly


. •

Project:

QC BATCH REPORT

Batch ID: R	195598 Instrument ID V	VetChem		Method	d: SM450	0H+	в					
LCS	Sample ID: WLCS-081210-R	95598				U	lnits: pH ι	units	Anal	ysis Date: 8/	12/2010	
Client ID:		Run I	D: WETCH	EM_10081	2E	Se	qNo: 206 (0107	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
рН		6.03	0.10	6		0	100	90-110		0		
DUP	Sample ID: 1008377-01CDU	P	- <u> </u>			Ľ	Inits: pH เ	units	Anal	ysis Date: 8/	12/2010	
Client ID:		Run I	D: WETCH	IEM_10081;	2E	Se	qNo: 206 (0115	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
pН		7	0.10	0		0	0	-0 () 7.(0.143	20	н
The follow	ing samples were analyzed in	this batch:	10	08405-01C								

Client: Navajo Refining Company 1008405 Work Order: Injection Well Quarterly **Project:**

٠ .

QC BATCH REPORT

Batch ID: R	Instrument ID	Balance1		Metho	d: M2540	С						
MBLK	Sample ID: BLANK-R95629					U	Inits: mg/		Analy	sis Date: 8/	12/2010	
Client ID:		Run II	: BALAN	CE1_10081	2D	Sec	qNo: 206 0)924	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolv	ed Solids (Residue, Fil	ND	10									
LCS	Sample ID: LCS-R95629					υ	nits: mg/		Analy	sis Date: 8/	12/2010	
Client ID:		Run II	D: BALAN	CE1_10081	2D	Sec	qNo: 206 0)925	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Total Dissolv	ed Solids (Residue, Fil	958	10	1000		0	95.8	85-115	()		
DUP	Sample ID: 1008300-02ADU	P			and a second	U	Inits: mg/		Analy	sis Date: 8 /	12/2010	
Client ID:		Run II	: BALAN	CE1_10081	2D	Sec	qNo: 2060	914	Prep Date:		DF: 1	
Analyte	······	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qua
Total Dissolv	ed Solids (Residue, Fil	5094	10	0		0	0	0-0	5070	0.472	20	
The followir	ng samples were analyzed in	this batch:	10	08405-01C								

Note:

.

QC BATCH REPORT

Batch ID: R	95869	Instrument ID ICS2100		Method	E300							
MBLK	Sample ID:	WBLKW3-081810-R95869				U	nits: mg /l		Analys	is Date: 8/	18/2010 0	9:24 AN
Client ID:		Run IE): ICS210	0_100818A		Sec	1No: 2066	5137	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
 Chloride		ND	0.50									
Sulfate		ND	0.50									
	enate (surr)	5.254	0.10	5		0	105	85-115	0			
.CS	Sample ID:	WLCSW3-081810-R95869				U	nits: mg /l		Analys	is Date: 8/	18/2010 0	9:39 AN
Client ID:	oumpio io:): ICS210	0_100818A			1No: 2066		Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Chloride		18.49	0.50	20		0	92.4	90-110	0			
Sulfate		18.31	0.50	20		0	91.6	90-110	0			
Surr: Sel	enate (surr)	5.057	0.10	55		0	101	85-115	0			
LCSD	Sample ID:	WLCSDW3-081810-R95869				U	nits: mg/	L,	Analys	is Date: 8/	18/2010 0	9:53 AI
Client ID:		Run IC): ICS210	0_100818A		Sec	9No: 206	5139	Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Chloride		20.05	0.50	20		0	100	90-110	18.49	8.13	20	
Sulfate		19.54	0.50	20		0	97.7	90-110	18.31	6.48	20	
Surr: Sel	enate (surr)	5.034	0.10	5		0	101	85-115	5.057	0.456	20	
NS	Sample ID:	1008508-01BMS				U	nits: mg/	<u> </u>	Analys	is Date: 8/	18/2010 1	0:55 AN
Client ID:		Run IC): ICS210	0_100818A		Sec	qNo: 2066	6143	Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Chloride		90.43	0.50	10	91.6	62	-12	80-120	. 0			so
Sulfate		15.95	0.50	10	7.87	71	80.8	80-120	0			
Surr: Sel	enate (surr)	4.753	0.10	5		0	95.1	85-115	0			
vis	Sample ID:	1008390-02CMS				υ	nits: mg/	L.	Analys	is Date: 8/	18/2010 0	1:19 PN
Client ID:		Run IE): ICS210	0_100818A		Sec	qNo: 206 6	6150	Prep Date:		DF: 1	
					SPK Ref			Control	RPD Ref		RPD	
Analyte		Result	PQL	SPK Val	Value		%REC	Limit	Value	%RPD	Limit	Qual
Chloride		14.72	0.50	10	4.68	39	100	80-120	0		;	
Sulfate		9.731	0.50	10	0.41	4	93.2	80-120	0			
	enate (surr)	4.836	0.10	5			96.7	85-115				

•

QC BATCH REPORT

Project: Injection Well Quarterly

Batch ID: R	95869	Instrument ID IC:	S2100		Method	E300						
MSD	Sample ID:	1008508-01BMSD				nga til na d ng tidanyadi	Units: mg /i	L	Analysi	s Date: 8/	18/2010 1	1:10 AM
Client ID:			Run	ID: ICS2100	_100818A	Se	eqNo: 206 6	5144	Prep Date:		DF: 1	
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride			100.3	0.50	10	91.62	86.5	80-120	90.43	10.3	20	EO
Sulfate			17.86	0.50	10	7.871	99.8	80-120	15.95	11.3	20	
Surr: Sel	enate (surr)		5.308	0.10	5	0	106	85-115	4.753	11	20	
MSD	Sample ID:	1008390-02CMSD		an Real the second s		in a sin	Units: mg/	L	Analysi	s Date: 8/	18/2010 0	1:33 PM
Client ID:			Run	ID: 1CS2100	_100818A	S	eqNo: 206	5152	Prep Date:		DF: 1	
Analyte			Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Chloride			14.58	0.50	10	4.689	98.9	80-120	14.72	0.908	20	
Sulfate			9.64	0.50	10	0.414	92.3	80-120	9.731	0.94	20	
Surr: Sel	enate (surr)		4.791	0.10	5	0	95. 8	85-115	4.836	0.935	20	
Th - 6-11		ware an alternal in th		. [10	00405.010							

The following samples were analyzed in this batch:

1008405-01C

Navajo Refining Company 1008405 Work Order:

QC BATCH REPORT

Injection Well Quarterly **Project:**

Client:

Batch ID: R	95895	Instrument ID WetChem		Method	i: M2510	в						
MBLK	Sample ID:	WBLKW1-081910-R95895	a sylan a si Synaa si Sina	anan da anan ang ang ang ang ang ang ang ang a		U	nits: µmh	os/cm	Analy	/sis Date: 8/	19/2010 0	1:00 PM
Client ID:		Run II	D: WETCH	IEM_10081	ЭС	Sec	qNo: 206 6	728	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Specific Cor	nductivity	ND	1.0									
LCS	Sample ID:	WLCSW1-081910-R95895				U	nits: µmh	os/cm	Analy	/sis Date: 8/	/19/2010 (1:00 PM
Client ID:		Run II	D: WETCH	IEM_10081	9C	Sec	qNo: 206 6	5729	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Specific Cor	nductivity	1410	1.0	1413		0	99.8	80-120	- <u>,</u>	0		<u> </u>
DUP	Sample ID:	1008405-01CDUP				U	inits: µmh	os/cm	Analy	/sis Date: 8	/19/2010 ()1:00 PM
Client ID: In	ij Well	Run II	D: WETCH	IEM_10081	ec	Sec	qNo: 2066	733	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Specific Cor	nductivity	3890	1.0	0		0	0		386	0 0.774	20	
The followi	ng samples	were analyzed in this batch:	10	08405-01C								

Note:

See Qualifiers Page for a list of Qualifiers and their explanation.

Injection Well Quarterly

QC BATCH REPORT

Batch ID: R96128 Instrument	ID WetChem		Method	i: SM232	0B						
MBLK Sample ID: WBLKW1-08	2410-R96128				U	Inits: mg /l	-	Analys	is Date: 8/	24/2010 0	2:00 PM
Client ID:	Run ID	: WETCH	IEM_100824	4H	Sec	qNo: 207(984	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicarbonate (As CaCO3)	ND	5.0									
Alkalinity, Carbonate (As CaCO3)	ND	5.0									
Alkalinity, Hydroxide (As CaCO3)	ND	5.0									
Alkalinity, Total (As CaCO3)	ND	5.0									
LCS Sample ID: WLCSW1-08	2410-R96128				U	Inits: mg /		Analys	is Date: 8/	24/2010 0	2:00 PM
Client ID:	Run ID	: WETCH	IEM_10082	4H	Sec	qNo: 207 (985	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Límit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Total (As CaCO3)	994.4	5.0	1000		0	99.4	80-120	0			
DUP Sample ID: 1008445-01B	DUP		an a		U	Inits: mg/	-	Analys	is Date: 8/	24/2010 0	2:00 PM
Client ID:	Run ID	: WETCH	IEM_10082	4H	Sec	qNo: 207(992	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Alkalinity, Bicarbonate (As CaCO3)	273.5	5.0	0		0	0	0-0	268.5	1.83	20	
Alkalinity, Carbonate (As CaCO3)	ND	5.0	0		0	0	0-0	0	0	20	
Alkalinity, Hydroxide (As CaCO3)	ND	5.0	0		0	0	0-0	0	0	20	
Alkalinity, Total (As CaCO3)	273.5	5.0	0		0	0	0-0	268.5	1.83	20	
			08405-01C								

Client:

Project:

Note:

.

1. L.

Client: Project: WorkOrder:	Navajo Refining Company Injection Well Quarterly 1008405	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the	e Reporting Limit
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
М	Manually integrated, see raw data for justification	
n ND	Not offered for accreditation Not Detected at the Reporting Limit	
0	Sample amount is > 4 times amount spiked	
P	Dual Column results percent difference > 40%	
R	RPD above laboratory control limit	
S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL	
<u>Acronym</u>	Description	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitation Limit	
SD	Serial Dilution	
SDL	Sample Detection Limit	
TRRP	Texas Risk Reduction Program	
Units Reported	d_Description_	
µmhos/cm		
mg/Kg	Milligrams per Kilogram	
mg/L	Milligrams per Liter	
pH units		

ALS Laboratory Group 3352 128th Ave. Holand, MI 49424-963 Tel: +1 616 399 6070 Fax: +1 616 399 6185	ALS Work Order # 100644	Parameter/wethod Hequest for Analysis										24+r. T/A	2440 T/A							<pre>x = Results Due Date:</pre>	· 王· · · · · · · · · · · · · · · · · ·		ck One Box Be	C Level II Std OC C TRRP Checklist		Copyright 2008 by ALS Laboratory Group.
		A happ Darcans			D AMANAR	E N SVIHUL ALLOHOL	0**					×	XXXXX							Dequired Turnaround Time: (Check Box)	Days	10° E11-11	er ib se scoaler Temp			
Chain Custody Form	Project Manager:			UNIVAR USA THIC.		હેનકઠેવ	SEATTLE, WA 93124		5		Time, saulis (Mätrix a) an Pres. 22 # Bottles a	D LLQUID NENT 4	LIGNID	1		· · · ·				-		all plane to	1 "1)11) & bayender and the second	d by (Laboratory):		Action of the second se
e 210 e 210		a bestated and a	Project Number	Bill 10 Company	A STATE ST		City/State/Zip	A WAY A THE WAY AND A WAY	· · · · · · · · · · · · · · · · · · ·). Co.A. e-Mail Address		00-09-10 0630	00-00-00-100							A CARACTAN Shipment Method		600 G		Time: Dhecked	· · ·	ad COC Form have been sul
ALS Laboratory Group 10450 Stancliff Rd., Sulte 210 Houston, Texas 77099 Tel. +1 281 530 5656 Fax. +1 281 530 5687	Outomor Information		CHERLURS - 12	UNINAR USH INC	. n	1 "	19026, XT, Washing	713~641-9449	713-641-5423	e-Mail Address 1/471+RVN . HOLTON O UNUARDA CAN CE-Mail Address	and the second se	Landine Rafek C.D. 191	U U							int & Sign	the second s		Date:	Will service Date:	Dorischnahlter Kern Hunden 2000 2000 2000 2000 2000 2000 2000 20	s must be made in writing once samples at wise areas
ALS		C. Purchase Order	Work Order	Company Name	Send Report To		City/State/Zip		本でのなどのなられてきませた。 東京市を自然の他を下記 他の代表でのためた正式。 他の代表でのためには、「「」	e-Mail Address		1252 20	2 PAO SPILL	ţ	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 × 2	6	Sampler(s) Please Print & Sign	Bellinging the first of the second terr of t		Relinquished by:	Lagged by (Laboratory):	Dratomative Kerr	lote: 1. Any changes

. •

. .

Unless outletwise agreed in a formal contract, services provided by ALS Laboratory Group are expressly limited to the ferms and conditions stated on the reverse.
 The Chain of Custody is a legal document. All information must be completed accurately.

•

Date: 23-Aug-10

Client:	ALS Laboratory Group	
Project:	1008405	Work Order Sample Summary
Work Order:	1008331	

Lab Samp ID Client Sample ID	<u>Matrix</u>	<u>Tag Number</u>	Collection Date		<u>Hold</u>
1008331-01 1008405-01E	Water		8/11/2010 12:40	8/13/2010 12:00	

SS Page 1 of 1

Date: 23-Aug-10

ALS Environmental

,

Client: Project: WorkOrder:	ALS Laboratory Group 1008405 1008331	QUALIFIERS, ACRONYMS, UNITS
Qualifier	Description	
*	Value exceeds Regulatory Limit	
а	Not accredited	
В	Analyte detected in the associated Method Blank above the F	Reporting Limit
E	Value above quantitation range	
Н	Analyzed outside of Holding Time	
J	Analyte detected below quantitation limit	
n	Not offered for accreditation	
ND	Not Detected at the Reporting Limit	
O P	Sample amount is > 4 times amount spiked Dual Column results percent difference $> 40\%$	
R	RPD above laboratory control limit	
K S	Spike Recovery outside laboratory control limits	
U	Analyzed but not detected above the MDL	
Acronym	Description	
DUP	Method Duplicate	
LCS	Laboratory Control Sample	
LCSD	Laboratory Control Sample Duplicate	
MBLK	Method Blank	
MDL	Method Detection Limit	
MQL	Method Quantitation Limit	
MS	Matrix Spike	
MSD	Matrix Spike Duplicate	
PDS	Post Digestion Spike	
PQL	Practical Quantitation Limit	
SD	Serial Dilution	
Units Reported	Description	
mg/Kg	Milligrams per Kilogram	

.

Date: 23-Aug-10

Client:	ALS Laboratory Group						
Project:	1008405				V	ork Order: 100833	1
Sample ID:	1008405-01E					Lab ID: 100833	1-01
Collection Date:	8/11/2010 12:40 PM					Matrix: WATE	R
Analyses		Result	Qual	Report Limit	Units	Dilution Factor	Date Analyzed
CYANIDE, REAC				SW7.3.			Analyst: EE
Cyanide, Reactive		ND		40.0	mg/Kg	1	8/19/2010 12:30 PM
SULFIDE, REACT	TIVE			SW7.3.	4.2		Analyst: EE
Sulfide, Reactive		ND		40.0	mg/Kg	1	8/19/2010 12:30 PM

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:ALS Laboratory GroupWork Order:1008331Project:1008405

QC BATCH REPORT

Date: 23-Aug-10

Batch ID: R80	217 Instrument ID WETCHEM		Metho	d: SW7.3	.4.2					
MBLK	Sample ID: WBLKW1-081910-R80217				Units: mg/	Kg	Analy	vsis Date: 8	/19/2010	12:30 PM
Client ID:	Run II	D: WETCI	HEM_10081	9F	SeqNo: 139	1118	Prep Date:		DF: 1	
Analyte	Result	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Sulfide, Reacti	ive ND	40								
The following	samples were analyzed in this batch:	1	008331-01A							

Client:	ALS Laboratory Group
Work Order:	1008331
Project:	1008405

QC BATCH REPORT

Batch ID: R	80218	Instrument ID WETCHEM		Metho	d: SW7.3	.3.2						
MBLK	Sample ID: 1	WBLKW1-081910-R80218				ι	Jnits: mg/	Kg	Analys	sis Date: 8	/19/2010 1	2:30 PM
Client ID:		Run ID:	WETCH	IEM_10081	9G	Se	qNo: 139 ′	1142	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Re	active	ND	40									
LCS	Sample ID: 1	WLCSW1-081910-R80218		1		L	Jnits: mg/	Kg	Analys	sis Date: 8	/19/2010 1	2:30 PM
Client ID:		Run ID:	WETCH	IEM_10081	9G	Se	qNo: 139	1143	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Re	active	249.6	40	250		0	99.8	75-125	C	ł		
LCSD	Sample ID:	WLCSDW1-081910-R80218				l	Jnits: mg/	Kg	Analys	sis Date: 8	/19/2010 1	2:30 PM
Client ID:		Run ID:	WETCH	IEM_10081	9G	Se	qNo: 139	1149	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Re	active	234.9	40	250		0	94	75-125	249.6	6.06	35	
MS	Sample ID:	1008432-01A MS				l	Jnits: mg/	Kg	Analys	sis Date: 8	/19/2010 1	2:30 PM
Client ID:		Run ID:	WETCH	HEM_10081	9G	Se	eqNo: 139 '	1147	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		_%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Re	active	234.9	40	250		0	94	50-150	C			
MSD	Sample ID:	1008432-01A MSD		ويستغيرون والتعريب		l	Jnits: mg/	Kg	Analys	sis Date: 8	/19/2010 1	2:30 PM
Client ID:		Run ID:	WETCH	IEM_10081	9G	Se	qNo: 139	1148	Prep Date:		DF: 1	
Analyte		Result	PQL	SPK Val	SPK Ref Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Cyanide, Re	active	234.9	40	250		0	94	50-150	234.9	0	35	
The followi	ng samples w	ere analyzed in this batch:	10	008331-01A		_						

Subcontractor: ALS Laboratory Group 3352 128th Ave.

TEL: (616) 399-6070 FAX: (616) 399-6185 Acct#:

Holland, MI 49424

CHARTER CONTRACTION RECORD

Date: <u>12-Aug-10</u> COC ID: <u>9208</u> Due Date <u>23-Aug-10</u>

Purchase Order	10-2118974	Project Name	1008405	A Reactive Cyanide (SW-846)
Work Order		Project Number		B Reactive Sulfide (SW-846)
Company Name	ALS Group USA, Corp.	Bill To Company	To Company ALS Group USA, Corp.	
Send Report To	Send Report To JayLynn F Thibault	Inv Attn	Accounts Payable	
Address	10450 Stancliff Rd, Suite 210 Address	Address	Suite 210	
	-			
City/State/Zip	Houston, Texas 77099-4338	City/State/Zip	Houston, Texas 77099-4338	
Phone	(281) 530-5656	Phone	(281) 530-5656	
Fax	(281) 530-5887	Fax	(281) 530-5887	
eMail Address	jaylynn.thibault@alsenviro.com eMail CC	m eMail CC	glenda ramos@alsglobal.com	
Sample ID	W	Matrix Collection Date 24hr	ate 24hr Bottle	
1008405-01E //ni Mall				

とない。 Report/QC Level Sed <u>Please analyze for Reactive Cyanide and Reactive Sulfide. Report is due on 8/23/10. Please send report to Hector Coronado.</u> hector.coronado@alsglobal.com, and CC. results to Glenda Ramos. glenda.ramos@alsglobal.com Cooler IDs Date/Time 8/13/10 1200 Date/Time Received by: Receive L. 2/2/10 Date/Time Date/Time Comments: Relinquished by Ş

WOH 100833

•

Sample	Receipt	Checklist
--------	---------	-----------

Client Name: ALS - HOUSTON		Date/Time I	Received:	13-Aug-10	12:00	
Work Order: 1008331		Received b	y:	KRW		
Checklist completed by Keith Wierenga	13-Aug-10 Date	Reviewed by:	Ann Preis eSignature	ton		14-Aug-10 Date
Matrices: <u>Water</u> Carrier name: <u>FedEx</u>						
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Pres	ent		
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗌	Not Pres	ent 🗹		
Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Pres	ent 🗹		
Chain of custody present?	Yes 🗹	No 🗌				
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌				
Chain of custody agrees with sample labels?	Yes 🔽	No 🗌				
Samples in proper container/bottle?	Yes 🔽	No 🗌				
Sample containers intact?	Yes 🔽	No 🗌				
Sufficient sample volume for indicated test?	Yes 🔽	No 🗔				
All samples received within holding time?	Yes 🔽	No 🗌				
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌				
Temperature(s)/Thermometer(s):	<u>3.2 C</u>					
Cooler(s)/Kit(s):						
Water - VOA vials have zero headspace?	Yes 🗋	No 🗌	No VOA vials	submitted		
Water - pH acceptable upon receipt?	Yes 🔽	No 🗌	N/A			
pH adjusted? pH adjusted by:	Yes 🗌	No 🔽	N/A			
Login Notes:						

Client Contacted:	Date Contacted:	Person Contacted:
Contacted By:	Regarding:	
Comments:		
CorrectiveAction:		

SRC Page 1 of 1

.

Sample Receipt Checklist

Client Name: NAVAJO REFINING	Date/Time Received: <u>12-Aug-10 08:16</u>			
Work Order: 1008405		Received b	y: <u>RNG</u>	
Checklist completed by Raymand N Gambia eSignature	12-Aug-10 Date	Reviewed by:	Lay Lynn 7 Thibi eSignature	nult 12-Aug-10 Date
Matrices:WaterCarrier name:FedEx				
Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🔽	No 🗌	Not Present	
Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present	
Chain of custody present?	Yes 🔽	No 🗋		
Chain of custody signed when relinquished and received?	Yes 🔽	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 🗌		
Sample containers intact?	Yes 🗹	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌		
All samples received within holding time?	Yes 🔽	No 🗌		
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌		
Temperature(s)/Thermometer(s):	<u>1.9c</u>		002	
Cooler(s)/Kit(s):	7128			
Water - VOA vials have zero headspace?	Yes 🗹	No 🗌	No VOA vials submitted	
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	N/A	
pH adjusted? pH adjusted by:	Yes	No 🗹	N/A	

Login Notes:

Date Contacted:
Regarding:

Person Contacted:

Contacted By:

Client Contacted:

CorrectiveAction:

Comments:

SRC Page 1 of 1

SOW Fiber Glass Systems

Fiber Glass Systems, L.P P.O. Box 37389 2425 S.W. 36th San Antonio, Texas 78237 USA 210-434-5043 Fax: 210-434-7543 www.starfiberglass.com

August 12, 2010

Holly Energy Partners, L.P.

Re. Confirmation of Fiberglass Pipe Compatibility

To Whom It May Concern:

We have been asked to provide a letter to Holly Energy confirming that our proposed fiberglass pipe is compatible with the chemical and operational parameters given for the 8" Water Effluent Pipeline Project. Please see the attached email on the subject.

Chemical Compatibility

We have reviewed the water constituents in the water analyses provided (attached) and do not find any constituent that would cause chemical incompatibility with our anhydride cured epoxy resin as long as the operations temperature never reaches above 150° F.

Operational Compatibility

The following operational parameters have been given in the attached literature:

- Service = Effluent water
- Maximum Operating Temperature = 130° F
- Flow Rate = 26000 bbl/day

From this, we can calculate the following:

- Flow Velocity = 5.5 ft/sec
- Friction Head Loss (ΔP) = 0.499 psi/100 ft

These parameters fall well within the recommended operating parameters for the proposed 8" pipe.

Please advise if there are any other subjects that need to be addressed for this project.

Sincerely.

Robert Hitchcock Sr. Applications Engineer

Hitchcock, Robert

From:Graham, DennisSent:Thursday, August 12, 2010 10:12 AMTo:Hitchcock, RobertSubject:FW: 8" Water Effluent Pipeline ProjectAttachments:Influent Water Quality.pdf

Importance:

High

Robert,

I just received this from Clem at Holly. The way I read this we might need a more formal letter. II have already sent you response to them. Pleas e-mail Clem and see if that is satisfactory Dennis.

From: Vasquez, Clemente [mailto:Clemente.Vasquez@hollyenergy.com]
Sent: Thursday, August 12, 2010 10:06 AM
To: Graham, Dennis
Cc: Sanchez, George; Jones, Kent
Subject: 8" Water Effluent Pipeline Project
Importance: High

Dennis:

Holly Corporation has made the decision to pursue with the design of a new fiberglass pipeline parallel to the current line.

Please start working up the latest pricing and lead time and see if you can reserve us a spot in the fabrication schedule for our order.

I expect 2 weeks from now we can provide you with a Purchase order.

Also we need a formal letter from NOV stating that they have reviewed our water samples and the pipe and resins and sealers that you all are quoting for this project meet all the design specifications required (temperature, pressure, flow rates, and etc).

<u>Note</u> the attached PDF has 3 effluent water samples, an average, and a City Water Sample for comparison (PH of water ranges from 7-9) Max Temperature of water in pipeline = 130 deg F Fluid = Effluent Water Flow Rates = 750gpm or approx 26,000bbl/day

Clem Vasquez, EIT

Project Engineer Technical Services Holly Energy Partners, L.P. Office Phone: 575-748-8973 Cell Phone: 214-478-4093 Fax: 214-237-3043 Email: <u>clem.vasquez@hollyenergy.com</u>

From: Graham, Dennis [mailto:Dennis.Graham@nov.com] Sent: Thursday, July 29, 2010 7:52 AM To: Sanchez, George; Jones, Kent; Vasquez, Clemente Subject:

George,

Could one of you let me know what Holly ending up doing on the 8" water line? I have to do a report for my boss and this information sure would help me complete it with the correct information. Thanks, Dennis

CONFIDENTIALITY NOTICE: This e-mail, and any attachments, may contain information that is privileged, proprietary and/or confidential. If you

received this message in error, please advise the sender immediately by reply e-mail and do not retain any paper or electronic copies of this message or any

2

attachments. Unless expressly stated, nothing contained in this message should be construed as a digital or electronic signature or a commitment to a binding agreement.

Navajo Refinery Influent Water Quality Data

City Water 7/1/2008 176 48.6 0.208 21.8 37.5 637 1520 20 1530 640 API Separator Inlet Average 2487 672 178 47.7 3 263 359 536 17 204 163 367 API Sepator Inlet 6/24/2008 0855 2590 601 157 50.8 11.14 2273 375 563 195 188 \$ 383 Sample API Sepator Inlet 6/23/2008 1440 2610 770 233 45.8 6.17 269 374 511 261 196 <u>6</u> 457 API Sepator Inlet 6/23/2008 644 144 46.6 0.503 248 248 534 0930 15 2260 157 105 262 mg/l as CaCO₃ mg/l as CaCO₃ mg/l as CaCO₃ mg/l as CaCO₃ mg/l as SiO₂ umhos Units l/gm Mg/l mg/l mg/l mg/l Alkalinity, Bicarb Alkalinity, Total Total Hardness Alkalinity, Carb Conductivity Magnesium Analyte Calcium Chloride Sulfate Sodium Silica Iron

Navajo Refinery Recycled Water Quality

Cold Lime Softening Option 4 Permeate 1200 10 14.8 263 359 536 15 500 Concentrate 3810 120 87 405 527 1841 19.4 556 164 140 Option 3 Nanofiltration Permeate 226 312 28 16.5 736 43 33 360 30 2.5 Concentrate 140 Option 2 UF/RO Permeate 52 75 98 3.3 312 360 30 8.4 Feed Water from WWTP 6 500 672 178 47.7 3 3 359 553 17.3 263 17.3 2487 17.3 2487 44 mg/l as CaCO₃ mg/I as SiO₂ umhos Units l/gm l/gm l/gm gpm l/gm l/gm l/gm Design Flow Rate Total Hardness Conductivity TDS CO3 HCO3 Calcium. Magnesium Iron Sodium Chloride Sulfate Silica Analyte

B

Fiber Glass Systems, L.P P.O. Box 37389 2425 S.W. 36th San Antonio, Texas 78237 USA 210-434-5043 Fax: 210-434-7543 www.starfiberglass.com

November 12, 2010

Holly Energy Partners, L.P.

Re. Confirmation of Fiberglass Pipe Compatibility – Followup to Letter on Same Subject of August 12, 2010

To Whom It May Concern:

On November 9, 2010, we received a message from Holly Energy requesting that we review a more recent water analysis to determine if any new incompatibilities were detected between the water sample and our proposed anhydride cured epoxy resin pipe. Please see the attached email on the subject.

Chemical Compatibility

We have reviewed the water constituents in the water analyses provided and again do not find any constituent that would cause chemical incompatibility with our anhydride cured epoxy resin as long as the operations temperature never reaches above 150° F. The water analysis shows the water to be of very low salinity and with a pH very slightly above neutral.

Please advise if there are any other subjects that need to be addressed for this project.

Sincerely

Robert Hitchcock Sr. Applications Engineer

9 9 Fiber Glass Systems