GW - 001 REPORTS **River Terrace** Voluntary Corrective Measures (2) (2010)

April 6, 2016

00

Leona Tsinnajinnie New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505 Carl Chavez NM Energy, Minerals & Natural Resources Oil Conservation Division, Env Bureau 1220 South St. Francis Drive Santa Fe, NM 87505

Certified Mail#: 7015 1520 0001 8113 5536 (delivery to NMED) Certified Mail#: 7015 1520 0001 8113 5543 (delivery to OCD)

RE: Notification for River Terrace Low Flow Sampling Event Western Refining Southwest, Inc. - Bloomfield Terminal EPA ID# NMD089416416 GW - 001

Dear Mrs. Tsinnajinnie and Mr. Chavez,

Western Refining Southwest, Inc. – Bloomfield Terminal (Western) is scheduled to conduct the River Terrace Low Flow Sampling Event at the Bloomfield Facility starting the week of April 25, 2016. The Low Flow Sampling Event is conducted during low flow conditions of the San Juan River (i.e. with a flow rate of less than 500 scfm).

If you have any questions or need additional information, please feel free to contact me at (505) 632-4166 at your convenience.

Sincerely, 400 Kelly Robinson

Environmental Manager-Logistics Western Refining Southwest, Inc.

Cc: Randy Schmaltz - HSER Director

SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

RYAN FLYNN Cabinet Secretary BUTCH TONGATE Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

April 21, 2015

Mr. Randy Schmaltz Health, Safety, Environmental, and Regulatory Director Western Refining Southwest, Inc. Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

RE: APPROVAL WITH MODIFICATIONS RIVER TERRACE VOLUNTARY CORRECTIVE MEASURES BIOVENTING SYSTEM ANNUAL REPORT (JANUARY – DECEMBER 2012), MARCH 2013 WESTERN REFINING SOUTHWEST INC., BLOOMFIELD REFINERY EPA ID# NMD089416416 HWB-WRB-13-001

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has received Western Refining Southwest, Inc., Bloomfield Refinery's (Western) *River Terrace Voluntary Corrective Measures Bioventing System Annual Report (January – December 2012)* (Report) dated March 2013. NMED has reviewed the Report and hereby issues this Approval with Modifications with the following comments.

Comment 1

In Section 4.3 (Investigation Derived Waste), page 11, Western summarizes information about the investigation derived waste from the investigation. However, page 12 is missing from the

R. Schmaltz April 21, 2015 Page 2 of 3

hardcopy and the electronic copy of the report. Provide the missing page of the Report for the both the electronic and hard copies.

Comment 2

Section 5 (Conclusions and Recommendations), pages 13 through 16, summarizes the conclusions and recommendations for the Report. Western presents the analytical data results as averages; however, it is more useful to present the analytical results as ranges. In future reports, present analytical data results as ranges. No response is required.

Comment 3

Figure 8 (River Terrace Area) depicts the upgraded remediation system; however, the scale and north indicator are not legible on the figure. In future work plans and reports, ensure the figures are good quality and that important information is clearly presented. No response is required.

Comment 4

In Appendix A (Regulatory Criteria/Groundwater Clean-up Standards), Western attached NMED's *Risk Assessment Guidance for Site Investigation and Remediation, February 2012* as a reference for screening levels. At the time of the submittal, the most recent guidance document was revised in June 2012 and was subsequently revised in December 2014. Use the most recent guidance document in future work plans and reports and check the NMED website for updates to the guidance document. No revision is necessary.

Comment 5

In Appendix C, Western includes Hall Environmental Analysis Laboratory's *Quality Assurance Plan, Revision 9.5.* NMED does not review or approve subcontracted laboratory Quality Assurance Plans. Approval of this Work Plan does not constitute approval of the Quality Assurance Plan. No revision is necessary.

Western must submit the hard copies for the missing page from Comment 1 as well as a revised electronic copy by **June 12, 2015**. All other comments must be applied to future work plans and reports, as applicable.

R. Schmaltz April 21, 2015 Page 3 of 3

If you have any questions regarding this letter, please contact Leona Tsinnajinnie of my staff at (505) 476-6057.

Sincerely, John E. Kieling Chief

Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB
N. Dhawan, NMED HWB
K. Van Horn, NMED HWB
L. Tsinnajinnie, NMED HWB
C. Chavez, OCD
K. Robinson, Western Refining Southwest, Inc., Bloomfield Refinery

File: HWB-WRB-13-001 and Reading 2015

SUSANA MARTINEZ Governor

JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

DAVE MARTIN Secretary

BUTCH TONGATE Deputy Secretary

JAMES H. DAVIS, Ph.D. Director Resource Protection Division

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

September 17, 2012.

Mr. Randy Schmaltz Environmental Manager Western Refining, Southwest, Inc. Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

RE: APPROVAL

RIVER TERRACE VOLUNTARY CORRECTIVE MEASURES BIOVENTING SYSTEM ANNUAL REPORT (JANUARY – DECEMBER 2011), MARCH 2012 WESTERN REFINING SOUTHWEST INC., BLOOMFIELD REFINERY EPA ID# NMD089416416 HWB-WRB-12-001

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has received Western Refining Southwest, Inc., Bloomfield Refinery's (Western) *River Terrace Voluntary Corrective Measures Bioventing System Annual Report (January – December 2011)* (Report) dated March 2012. NMED has reviewed the Report and hereby issues this Approval with the following comments.

Comment 1

The following comments pertain to Table 2 (Groundwater Monitoring Data Summary – 2011):

R. Schmaltz September 17, 2012 Page 2 of 3

- a. On page 2 of 14 in the "Toluene" column, Western highlighted several data results for TP-2 that are below the screening level, 0.75 mg/L.
- b. On page 4 of 14 in the "Ethylbenzene" column, Western highlighted a data result for TP-5 for the High Flow 2011 sampling event that is below the screening level, 0.7 mg/L.
- c. On page 5 of 14 in the "Benzene" column, Western did not highlight a data result for TP-6 for the 4th Quarter 2006 sampling event that is above the screening level, 0.005 mg/L.
- d. On page 7 of 14 in the "Toluene" column, there is an extra significant digit reported for the data result for the 4th Quarter 2010 sampling event for TP-8.
- e. On page 8 of 14 in the "MTBE" and "Lead" columns, Western did not highlight data results for TP-9 for the Baseline and 4th Quarter 2009 sampling events that are above their respective screening levels (0.012 mg/L and 0.015 mg/L).
- f. On pages 12 and 13 of 14 in the "Lead" column, Western highlighted data results for TP-13 and DW-1 that are below the screening level, 0.015 mg/L.
- g. In several of the data table results, Western has an asterisk next to a data result but does not define it in the "Notes" section of the table.

In future work plans and reports, review data tables to ensure the correct information is highlighted and that all symbols, highlighting, and formatting are defined in the "Notes" section of the data tables.

Comment 2

In Table 4 (GAC Filter Monitoring – 2011), the GAC-Lead analytical results in the "TPH-DRO" column are transposed. According to the analytical results in Appendix D (Analytical Reports), the January 17, 2011 analytical result is ND < 0.2 mg/L and the February 10, 2011 analytical result is 0.4 mg/L. Provide a replacement page for Table 4 and check the data tables to ensure the correct analytical result is provided for the sample event date. If any other data tables are found to be incorrect, provide a replacement page for them as well.

Comment 3

In the Figures section, Western provides Figure 2 (Facility Site Plan) that depicts the entire refinery. In future work plans and reports, Western must highlight the investigation area to help the reader identify its location. No revision is necessary.

R. Schmaltz September 17, 2012 Page 3 of 3

Comment 4

In Appendix A (Regulatory Criteria/Groundwater Clean-up Standards), Western has attached NMED's *Risk Assessment Guidance for Site Investigation and Remediation, February 2012* as a reference for screening levels. The guidance document was revised in June 2012. Use the revised guidance document in future work plans and reports and check the NMED website for updates to the guidance document. No revision is necessary.

Comment 5

In Appendix C, Western includes Hall Environmental Analysis Laboratory's *Quality Assurance Plan, Revision 9.4.* Western is reminded that NMED does not review or approve Quality Assurance Plans. Approval of this Work Plan does not constitute approval of the Quality Assurance Plan. No revision is necessary.

If you have any questions regarding this letter, please contact Leona Tsinnajinnie of my staff at (505) 476-6057.

Sincerely,

John E. Kieling

Chief Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB

L. Tsinnajinnie, NMED HWB

C. Chavez, OCD

A. Hains, Western Refining Company, El Paso, Texas

K. Robinson, Western Refining Company, Bloomfield Refinery

File: HWB-WRB-12-001 and Reading 2012

SUSANA MARTINEZ Governor

JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmeny.state.nm.us

DAVE MARTIN Secretary

RAJ SOLOMON, P.E. Deputy Secretary

CERTIFIED MAIL-RETURN RECEIPT REQUESTED

April 15, 2011

Mr. Randy Schmaltz Environmental Manager Western Refining, Southwest, Inc. Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

RE: APPROVAL

RIVER TERRACE VOLUNTARY CORRECTIVE MEASURES BIOVENTING SYSTEM ANNUAL REPORT (DECEMBER - JANUARY 2010) WESTERN REFINING COMPANY SOUTHWEST, INC. BLOOMFIELD REFINERY EPA ID# NMD089416416 HWB-WRB-11-001

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has completed its review of Western Refining Southwest, Inc., Bloomfield Refinery (Western) *River Terrace Voluntary Corrective Measures Bioventing System Annual Report December – January 2010* (Report), submitted March 2011. NMED hereby approves this Report.

Western must continue to operate the bioventing system in accordance with the monitoring and sampling requirements established in NMED's March 15, 2011 *Proposals to Modify Monitoring at the River Terrace Area*, unless otherwise notified. The annual report is due to NMED on or before March 1, 2012 in accordance with Section V.B.1, item 3 of the July 27, 2007 Order.

Mr. Schmaltz April 15, 2011 Page 2 of 2

If you have any questions regarding this letter, please contact Hope Petrie at (505) 476-6045.

Sincerely,

John E. Kieling

Program Manager Permits Management Program Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB H. Petrie, NMED HWB C. Chavez, OCD K. Robinson, Western A. Hains, Western File: WRB 2011 and Reading HWB-WRB-11-001

SUSANA MARTINEZ Governor

JOHN A. SANCHEZ Licutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.nmenv.state.nm.us

DAVE MARTIN Secretary

RAJ SOLOMON, P.E. Deputy Secretary

Certified Mail - Return Receipt Requested

March 15, 2011

Mr. Randy Schmaltz Environmental Manager Western Refining, Southwest, Inc. Bloomfield Refinery P.O. Box 159 Bloomfield, New Mexico 87413

RE: PROPOSALS TO MODIFY MONITORING AT THE RIVER TERRACE AREA WESTERN REFINING COMPANY SOUTHWEST, INC. BLOOMFIELD REFINERY EPA ID# NMD089416416 HWB-WRB-11-001

Dear Mr. Schmaltz:

The New Mexico Environment Department (NMED) has completed its review of Western Refining Southwest, Inc., Bloomfield Refinery's (Western) February 25, 2011 letter *Proposal to Modify Monitoring at Bloomfield Refinery River Terrace Area.* Sampling modifications at the River Terrace are identified below.

1. Soil Gas Monitoring Modifications (Attachment 2, Table 2):

a. Collect soil gas samples for laboratory analysis from all Temporary Wells (TP), DW-1, and MW-49 on an annual basis. The samples must be collected during low flow of the San Juan River (corresponding to relatively low groundwater levels).

Mr. Schmaltz March 15, 2011 Page 2 of 3

> **b.** Conduct soil gas monitoring and sampling for TP wells 1, 2, 5, 6, 7, 8, 9, DW-1, and MW-49 on a semi-annual basis. The soil gas monitoring must be collected during high and low flow stages of the San Juan River.

2. Groundwater Monitoring Modifications (Attachment 1, Table 1):

- **a.** Conduct groundwater monitoring and sampling of TP wells 3, 10, 11, 12, and 13 on a biennially basis (beginning 2011). Samples must be collected during low flow stages of the San Juan River.
- **b.** Conduct groundwater monitoring and sampling of TP wells 7, 9, and DW-1 biennially (beginning 2011). Samples must be collected during low flow stages of the San Juan River.
- c. Discontinue analyses for barium and chromium at all Temporary Wells and wells MW-49 and DW-1.
- **d.** Conduct groundwater monitoring and sampling of TP wells 1, 2, 5, 6, 8, and MW-49 on a semi-annual basis. The samples must be collected during high and low flow stages of the San Juan River.

3. GAC Filter Modification (Attachment 1, Table 1):

a. Collect GAC 1 Effluent samples on a quarterly basis.

The sampling requirements for the River Terrace are identified in the updated Table 1 (Groundwater Monitoring) and Table 2 (Soil Vapor Monitoring) in Attachment 1 and 2, respectively. Sampling must be conducted in accordance with these revised Tables.

Mr. Schmaltz March 15, 2011 Page 3 of 3

If you have any questions regarding this letter, please contact Hope Petrie of my staff at (505) 476-6045.

Sincerely,

Uhn E. Kieling

Program Manager Permits Management Program Hazardous Waste Bureau

cc: D. Cobrain, NMED HWB H. Petrie, NMED HWB C. Chavez, OCD A. Hains, Western File: WRB 2011 and Reading HWB-WRB-11-001

Attachment 1 River Terrace Bioventing System Monitoring Table 1 - Groundwater Monitoring

Revised March 2011

	-																
Sampling	SIA -B, GRO, DRO, Pb	BIA, B, GRO, DRO, Pb, Hg	SIA-B, GRO, DRO, Pb	SIA-B, GRO, DRO, Pb	BIA-B, GRO, DRO, Pb	SIA-B, GRO, DRO, Pb	SIA-B, GRO, DRO, Pb	BIA-B, GRO, DRO, Pb	SIA-B, GRO, DRO, Pb	SIA-B, GRO, DRO, Pb	BIA-B, GRO, DRO, Pb	Q-B, GRO, DRO	Q - B, GRO, DRO	Q-B, GRO, DRO			
ORP	SIA	BIA	SIA	SIA	BIA	SIA	SIA	BIA	SIA	BIA	BIA	BIA	BIA	BIA			
ро	SIA	BIA	SIA	SIA	BIA	SIA	SIA	BIA	SIA	BIA	BIA	BIA	BIA	BIA			
Cond	SIA	BIA	SIA	SIA	BIA	SIA	SIA	BIA	SIA	BIA	BIA	BIA	BIA	BIA			
Ηd	SIA	BIA	SIA	SIA	BIA	SIA	SIA	BIA	SIA	BIA	BIA	BIA	BIA	BIA			
Temp	SAI	BIA	SIA	SIA	BIA	SIA	SIA	BIA	SIA	BIA	BIA	BIA	BIA	BIA			
DTW/DTP	SIA	BIA	SIA	SIA	BIA	SIA	SIA	BIA	SIA	BIA	BIA	BIA	BIA	BIA			
Matrix	GW	GW	ВW	M9	GW	ΕW	EW	EW									
Location	MW-49	DW-1	TP-1	ТР-2	TP-3	TP-5	TP-6	TP-7	TP-8	TP-9	TP-10	TP-11	TP-12	TP-13	GAC Inf	GAC 1 Eff	GAC 2 Eff

Field Parameters

DTP - depth to product measurement **ORP** - oxidation Reduction Potential DTW - depth to water measurement Cond - electrical conductivity DO - dissolved Oxygen T - temperature

GRO - gasoline range organics by EPA Method 8015B DRO - diesel range organics by EPA Method 8015B

Pb - lead EPA Method 6010 Hg -mercury by EPA Method 7470

B - BTEX and MTBE by EPA Method 8021B

Analytical Analysis

Sampling Frequency Q - quarterly

<u>Matrix</u> **GW** - groundwater **EW** -extracted groundwater SIA - Semi -annual (2 x a year during the high and low flows of the San Juan River)
 EW -extracted gr
 A - annual (collected during low flow stage of the San Juan River)
 BIA - Biennially (1 x every two years, collected during low flow stages of the San Juan River)

March 2011

Attachment 2 **River Terrace Bioventing System Monitoring** Table 2 - Soil Vapor Monitoring

Revised March 2011

Location	Matrix	* Injection Pressure	* Injection Flow Rate	% CO2	%02	Organic Vapors PID	Pressure	Analytical
MW-49	A			SIA	SIA	SIA	SIA	A-b, GRO
DW-1	A		······	SIA	SIA	SIA	SIA	A-b, GRO
TP-1	A	1		SIA	SIA	SIA	SIA	A-b, GRO
TP-2	A			SIA	SIA	SIA	SIA	A-b, GRO
TP-3	A							A-b, GRO
TP-5	A			SIA	SIA	SIA	SIA	A-b, GRO
TP-6	A			SIA	SIA	SIA	SIA	A-b, GRO
TP-7	Α			SIA	SIA	SIA	SIA	A-b, GRO
TP-8	А			SIA	SIA	SIA	SIA	A-b, GRO
TP-9	A			SIA	SIA	SIA	SIA	A-b, GRO
TP-10	A							A-b, GRO
TP-11	A							A-b, GRO
TP-12	A							A-b, GRO
TP-13	A							A-b, GRO
BV-1	A	Q	Q			Ī	T	
BV-2	A	Q	Q			1		
BV-3	A	Q	q					
BV-4	A	Q	Q					
BV-5	А	Q	Q			1		
BV-6	A	Q	Q					
BV -7	A	Q	Q					
BV-8	A	Q	Q					
BV-9	A	Q	Q					
BV-10	A	Q	Q					
BV-11	A	Q	Q					
BV-12	A	Q	Q	1				
BV-13	A	Q	Q			-		

<u>Matrix</u>

A - soil gas

Field Parameters % CO₂ - percent carbon dioxide % O2 - percent oxygen PID - photoionization detector

Analytical Analysis b - BTEX by EPA Method 8021B GRO - gasoline range organics by EPA Method 8015B

Sampling Frequency Q - quarterly A - Annual (1 x year, San Juan River low flow) SIA- Semi-annual (2 x a year during the high and low flow stages of the San Juan River)

--- No sample collection

*Pressure - Full system and individual well injection pressures and injection flow rates must be recorded during each monitoring event.

n-SITU RESPIRATION TEST -Suspended								
Requirements estab	Requirements established in NMED 11-23-2010 letter (Request to Suspend In-Situ Respiration Test)							
Must be conducted und	Must be conducted under similar conditions as the 9/07 respiration test (e.g. similar groundwater levels and river levels)							
Shutdown blowers and	Shutdown blowers and monitoring oxygen/carbon dioxide levels in TP-1, 2, 5, 6, 8, 9, and each of the 13 BV wells.							
Monitor location	Analytes(s)	Frequency	Duration	TP - Temporary Wells				
TP-1, 2 5, 6, 8, 9	O ₂ , CO ₂ , VOCs	every 1 hour	first 8 hours	VOCs - Volatile Organic Carbons				
TP-1, 2 5, 6, 8, 9	O ₂ , CO ₂ , VOCs	every 12 hours	next 48 hours	O ₂ - Oxygen				
All BV wells	O ₂	every 12 hours	first 72 hours	CO ₂ - Carbon Dioxide				

February 25, 2011

Certified Mail: 7010 1870 0000 0709 4815 7010 1870 0000 0709 4808

Hope Monzeglio New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East Bldg 1 Santa Fe, NM 87505 Carl Chavez New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Dr Santa Fe, NM 87505

Re: River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2010 through December 2010

Dear Hope and Carl,

Western Refining - Bloomfield Refinery submits the River Terrace Voluntary Corrective Measures Bioventing System Annual Report as requested by NMED. This report summarizes monitoring activities and data gathered at the River Terrace throughout 2010.

If you have questions or would like to discuss any aspect of the report, please contact me at (505) 632-4171.

Sincerely (

James R. Schmaltz (Environmental Manager Bloomfield Refinery

Cc: Laurie King, USEPA – Region VI Brandon Powell - NMOCD Aztec District Office Allen Hains – Western Refining – El Paso

Executive Summary

This report is a summary of monitoring activities conducted in 2010 at the River Terrace Bioventing System located at the Bloomfield Refinery. The following is a synopsis of conclusions and recommendations developed from the monitoring activities performed at the River Terrace in 2010.

Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. The River Terrace Bioventing System continues to operate.

Dewatering System

Operation of the dewatering system is interlocked with the river pumps that pump fresh water up to the refinery. The change in site operation (suspension of refining operations on November 23, 2009) has impacted the operation of the dewatering system of the River Terrace Bioventing System. Although the aeration system continues to operate continuously, operation of the dewatering system has become infrequent due to the lessened demand for fresh water to support current facility operations.

The collection gallery, pump, and piping which were installed in 2009 and came online on October 13, 2009 are also interlocked with the river pumps and also operate infrequently due to current facility operations.

Performance Monitoring

On-going performance monitoring activities continued on a quarterly basis at the River Terrace area in accordance with the approved *Bioventing System Monitoring Plan*, dated October 28, 2006, and in accordance with an NMED comment letter (*Direction to Modify Future Monitoring as reported in the River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2006 through December 2006*) dated June 13, 2007. Additional revisions to the monitoring plan were stated in the NMED letter dated June 16, 2009 (*Approval with Direction River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2008 through December 2008*).

Laboratory analysis of groundwater, treated groundwater, and soil gas provides periodic feedback of the remediation operation and GAC filter capability. The ongoing performance monitoring program also includes certain field parameter data which are collected using portable gauges and gas meters.

Western has conducted three separate in-situ respiration tests at the River Terrace area in May 2006, September 2007, and October 2009. The suspension

of refining operations causes the dewatering system to operate infrequently which in turn affects exposure of the vadose zone thus affecting the accuracy of the in-situ respiration test. In a November 23, 2010 letter (*Request to Suspend In-Situ Respiration Testing At The River Terrace Area*), New Mexico Environmental Department – Hazardous Waste Bureau (NMED) granted approval to discontinue conducting the in-situ respiration tests. Therefore an insitu respiration was not performed in 2010. Future respiration tests may be evaluated on an annual basis based on the operation of the dewatering system.

Conclusions

Bloomfield Refinery met all NMED and OCD sampling and monitoring requirements for 2010 with the exception of mercury analysis during the fourth quarter sampling event. Operation of the River Terrace Bioventing System has been affected by current facility operational conditions. Air sparging is continuing however the dewatering system operates infrequently as the plant requires less water.

CONTENTS

<u>Section</u>	Title
	Executive Summary
1.0	Introduction
2.0	Scope of Activities
3.0	Regulatory Criteria / Groundwater Cleanup Standards
4.0	Monitoring Results
5.0	Concentration VS Time Charts
6.0	Maps
7.0	Summary
8.0	Field Methods
9.0	Chemical Analytical Program
10.0	Chemical Analytical Reports

Section 1.0 Introduction

INTRODUCTION

Owner:	San Juan Refining Company, a New Mexico Corporation 1250 Washington Street Tempe, AZ 85281					
Operator:	Western Refining Southwest, Inc. (formerly known as Giant Industries Arizona, Inc.), an Arizona Corporatio 1250 Washington Street Tempe, AZ 85281					
Facility Name:	Bloomfield Refinery #50 Rd 4990 Bloomfield, New Mexico 87413	(physical address)				
	Western Refining Southwest, Inc. P.O. Box 159 Bloomfield, New Mexico 87413	(postal address)				
Facility Status:	Corrective Action/Compliance					
US EPA ID:	NMD089416416					
SIC Code:	2911					
Purpose of Monitoring: River Terrace Corrective Measures – Assess and Provide Periodic Progress Information						
Type of Monitoring: Periodic Groundwater and Soil Vapor Monitoring						

BACKGROUND INFORMATION

SITE LOCATION AND DESCRIPTION

The Bloomfield Refinery is a crude oil refining facility with a crude capacity of 18,000 barrels per day. It is located approximately 1 mile south of Bloomfield, New Mexico, in San Juan County, latitude N36 41' 87", longitude W107 58' 70". It is further located approximately ½ mile east of State Route 550 on County Road 4990 (a.k.a. Sullivan Road).

The refinery is located on a bluff 120 feet above the south side of the San Juan River. The top of the bluff is relatively flat and is at an elevation of 5,540 feet above sea level. The geological units that comprise the site include, in order of increasing depth, San Juan River Alluvium, Quaternary apron deposits, Aeolian sand and silt, Jackson Lake Terrace, and the Tertiary Nacimiento Formation. An unnamed arroyo flows toward the San Juan River on the southern and western edges of the site. East of the site, a welldefined arroyo cuts a small canyon from the bluff to the San Juan River. Hammond Ditch lies on the bluff between the limit of the Jackson Lake Terrace and the refinery.

Refinery offices are on the western end of the facility, along with warehouse space, maintenance areas, and a storage yard containing used material (e.g., pipes, valves). Petroleum processing units, located in the northwest portion of the refinery, include the crude unit, fluidized cracking unit, catalytic polymerization unit, and hydrodesulfurization unit. The API Separator and the aeration lagoons are located in the north central section of the refinery.

In the central portion of the site, aboveground storage tanks (AST's) occupy a large percentage of refinery property. South of the refinery and across Sullivan Road are terminals for loading product and off-loading crude, as well as gas storage and hazardous waste storage.

Western Refining merged with San Juan Refining Company (SJRC) May 31, 2007. The refinery is operated by Western Refining Southwest, Inc. The historical activities conducted at the refinery are petroleum processing, crude and product storage, crude unloading and product loading, waste management (closed and existing facilities), and offices and non-petroleum material storage. Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

1

HISTORY OF THE RIVER TERRACE

1999

Sheet piling was installed along with a bentonite slurry wall adjacent to the San Juan River, at the River Terrace, in order to intercept a small hydrocarbon seep that had been detected in the area.

2004

MW #48 & MW #49 and 8 temporary piezometers were installed to launch a River Terrace Investigation. Several temporary piezometers were drilled on the north side of Hammond Ditch to chart the top of the Naciemento Formation.

2005

The North Boundary Barrier Wall installation was completed March 2005. In April, five more temporary piezometers were installed at the River Terrace. Dewatering Wells #1 and #2 and thirteen bioventing wells were drilled in August at the River Terrace. Construction of the River Terrace Bioventing Project was initiated in August. The system was put on-line in January 2006.

2006

System monitoring began in January abiding by the guidelines from the River Terrace Voluntary Corrective Measures Monitoring Plan approved by OCD and NMED. The In-Situ Respiration test was conducted in May 2006. Quarterly performance monitoring was carried out in March, June, September, and December of 2006.

2007

The dewatering pumps failed and were replaced in February. Breakthrough in the lead GAC (V-612) was detected in April at which time it was taken out of service and V-611 became the lead GAC. V-612 was replaced and back in service in June as the lag filter. Quarterly performance monitoring for the Bioventing System occurred in February, June, August, and October. The In-Situ Respiration Test was conducted in September 2007.

2008

The blower bearings were replaced in February. The dewatering pump at MW #48 failed and was replaced in August. Blower piping was upgraded in October. Quarterly performance monitoring for the Bioventing System occurred in March, May, July, and November.

2

2009

Quarterly performance monitoring for the Bioventing System occurred in March, April, September, and October.

Modifications to the monitoring plan (TP #3, TP #10, TP #11, TP #12, and TP #13 revised to semi-annual sampling) were employed during the fourth quarter (October) sampling event of 2009.

An In-Situ Respiration Test was conducted during the week of October 26, 2009. In order to improve and optimize the dewatering system, a collection gallery, pump, and piping system were installed in the southwest portion of the River Terrace and put on service by October 13, 2009.

Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. The River Terrace Bioventing System will continue to operate.

2010

Quarterly performance monitoring for the Bioventing System occurred in March, April, July, and October.

The change in site operation (suspension of refining operations on November 23, 2009) has impacted the operation of the dewatering system of the River Terrace Bioventing System. Although the aeration system continues to operate consistently, operation of the dewatering system has become infrequent due to the decreased demand for fresh water to support current facility operations.

3

ł

Scope of Activities

Bloomfield Refinery initiated and constructed the River Terrace Bioventing Project to provide oxygen to the subsurface and support aerobic biodegradation of petroleum hydrocarbons existing in the soil at the River Terrace. The project includes a dewatering system to expand the vadose zone for increased bioremedial activity. The system was put on-line in January 2006 at which time the Voluntary Corrective Measure Bioventing Monitoring Plan was followed.

The NMED letter dated June 13, 2007 (*Direction to Modify Future Monitoring as reported in the River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2006 through December 2006*) revised the monitoring plan to include additional metals analysis and incorporate quarterly sampling of TP-7. The revisions were implemented during the second quarter sampling event of 2007 and continue to be followed.

Additional revisions to the monitoring plan were stated in the NMED letter dated June 16, 2009 (*Approval with Direction River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2008 through December 2008*). NMED agreed to modify the sampling program at the eastern portion of the River Terrace (TP #3, TP #10, TP #11, TP #12, and TP #13) to semi-annual sampling during the high and low water flows of the San Juan River. These modifications were employed during the fourth quarter sampling event of 2009 and were continued throughout 2010.

Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation.

Performance Monitoring

On-going performance monitoring activities continued on a quarterly basis to assess the progress of the remediation system in reducing fuel hydrocarbons. Laboratory analysis of groundwater, treated groundwater, and soil gas are included in the on-going performance monitoring program. In addition, certain field parameter data were collected using portable gauges and gas meters.

Section 4.0 of this report summarizes the field parameters and analytical data obtained during routine performance monitoring activities performed in 2006, 2007, 2008, 2009, and 2010.

Pressure Readings

During each quarterly sampling event, pressure readings were collected from each of the TP wells, MW #49, and DW #1 using a hand-held magnahelic gauge connected to the sample port at the top of each well. Injection pressure and flow rates were collected from all bioventing wells (BV wells). Overall system pressure measurements were also collected.

This data is available in Section 4.0 Tab 1 and Tab 4 in this report.

Groundwater

First quarter groundwater elevation measurements were collected from each of the TP wells, DW #1, and MW #49 during the week of March 8, 2010. Groundwater samples were not collected from the TPs on the eastern portion of the River Terrace (TP #3, TP #10, TP #11, TP #12, and TP #13). The wells on the western portion of the River Terrace (TP #1, TP #2, TP #5, TP #6, TP, #7, TP #8, TP #9, DW #1, and MW #49 were sampled and analyzed for BTEX and MTBE (EPA Method 8021B), GRO and DRO (EPA Method 8015B), and lead analysis (EPA Method 6010B). DW #1 samples were also analyzed for mercury (EPA Method 7470). Field measurements included temperature, pH, conductivity, DO, and ORP. TP-7 was sampled after a 24 hour recharge time.

Second quarter sampling and groundwater elevation measurements were collected from each of the TP wells, DW #1, and MW #49 during the week of April 19, 2010. TP-7 was sampled after a 24 hour recharge time. Annual analysis of chromium and barium (EPA Method 6010B) were performed during the second quarter event. Lead analysis (EPA Method 6010B) was performed on samples collected from each TP Well, MW #49, and DW#1. DW #1 samples were also analyzed for mercury (EPA Method 7470). In addition, groundwater samples were analyzed for BTEX and MTBE (EPA Method 8021B), GRO and DRO (EPA Method 8015B). Field measurements included temperature, pH, conductivity, DO, and ORP.

Third quarter groundwater elevation measurements were collected from each of the TP wells, DW #1, and MW #49 during the week of July 20, 2010. During this sampling event, groundwater samples were not collected from the TPs on the eastern portion of the River Terrace (TP #3, TP #10, TP #11, TP #12, and TP #13). The wells on the western portion of the River Terrace (TP #1, TP #2, TP #5, TP #6, TP, #7, TP #8, TP #9, DW #1, and MW #49) were sampled and analyzed for BTEX and MTBE (EPA Method 8021B), GRO and DRO (EPA Method 8015B), and lead analysis (EPA Method 6010B). DW #1 samples were also analyzed for mercury (EPA Method 7470). Field measurements included temperature, pH, conductivity, DO, and ORP. TP-7 was sampled after a 24 hour recharge time.

Fourth quarter groundwater samples and groundwater elevation measurements were collected from each of the TP wells, DW #1, and MW #49 during the week of October 18, 2010. TP-7 was sampled after a 24 hour recharge time. Lead analysis (EPA Method 6010B) was performed on samples collected from each TP Well, MW #49, and DW#1. In addition, groundwater samples were analyzed for BTEX and MTBE (EPA Method 8021B), GRO and DRO (EPA Method 8015B). Field measurements included temperature, pH, conductivity, DO, and ORP. Mercury analysis (EPA Method 7470) for DW #1 was inadvertently not marked on the Chain of Custody. There are no mercury results for DW #1 for the fourth quarter 2010 sampling event.

A summary of the groundwater monitoring results can be found in Section 4.0 Tab 2 and Tab 3.

Soil Gas

The first quarter sampling event was conducted during the week of March 8, 2010. Soil gas samples were not collected from the TPs on the eastern portion of the River Terrace (TP #3, TP #10, TP #11, TP #12, and TP #13) due to approved changes in the monitoring plan. Soil gas samples were collected from the wells on the western portion of the River Terrace (TP #1, TP #2, TP #5, TP #6, TP, #7, TP #8, TP #9, DW #1, and MW #49) and analyzed for BTEX (8021B) and GRO (8015B). Field measurements of vapor-phase organics (using a PID) and oxygen and carbon dioxide concentrations (using a multi-gas meter) were collected. Third quarter monitoring events occurred during the week of July 20, 2010 and utilized the same collection sites, and the same methods and parameters.

During the second and fourth quarter sampling events, soil gas samples were collected from each of the TP Wells, DW #1, and MW #49. Soil gas analysis included BTEX (8021B) and GRO (8015B). Field measurements of vapor-phase organics (using a PID) and oxygen and carbon dioxide concentrations (using a multi-gas meter) were collected. Second quarter samples were collected the week of April 19, 2010. Fourth quarter monitoring was conducted during the week of October 18, 2010.

A summary of the soil gas monitoring results can be found in Section 4.0 Tab 1.

Dewatering System

Operation of the dewatering system is interlocked with the river pumps that pump fresh water up to the refinery. The change in site operation (suspension of refining operations on November 23, 2009) has impacted the operation of the dewatering system of the River Terrace Bioventing System. Although the aeration system continues to operate continuously, operation of the dewatering system has become infrequent due to the decreased demand for fresh water to support current facility operations.

The collection gallery, pump, and piping which were installed in 2009 and came online on October 13, 2009 are also interlocked with the river pumps and also operate infrequently due to current facility operations.

Extracted groundwater generated in the operation of the dewatering system and collection gallery is pumped through two GAC filters positioned in series for removal of dissolved-phase hydrocarbons.

In-Situ Respiration Test

Western has conducted three separate in-situ respiration tests at the River Terrace area in May 2006, September 2007, and October 2009. The suspension of refining operations causes the dewatering system to operate intermittently which in turn affects exposure of the vadose zone thus affecting the accuracy of the in-situ respiration test. In a November 23, 2010 letter (*Request To Suspend In-Situ Respiration Testing At The River Terrace Area*), New Mexico Environmental Department – Hazardous Waste Bureau (NMED) granted approval to discontinue conducting the in-situ respiration tests. Therefore an insitu respiration was not performed in 2010. Future respiration tests may be evaluated on an annual basis based on the operation of the dewatering system.

GAC Filter Monitoring

Extracted groundwater from the dewatering wells and collection gallery is treated prior to discharge to the raw water ponds, located within the east portion of the refinery. Extracted groundwater is pumped through two GAC filters positioned in series for removal of dissolved-phase hydrocarbons.

GAC filter sampling includes influent samples from a sample port located upstream of the GAC filters, and effluent samples collected from ports located after each of the lead and lag GAC filters. Monitoring the performance of the GAC filters is performed as required to estimate GAC filter change-out frequency.

GAC filter influent samples (GAC Inf) and effluent samples collected downstream of the lag GAC filter (GAC 1 Eff – V612) were collected quarterly. Effluent samples from the lead GAC filter (GAC 2 Eff – V-611) were obtained monthly. Samples were analyzed for BTEX by EPA Method 8021B, GRO and DRO by EPA Method 8015B.

A summary of the GAC filter performance monitoring results is presented in Section 4.0 Tab 5 of this report.

Field Data Collection

All water/product levels were measured to an accuracy of 0.01 foot using a Geotech Interface Probe. After determining water levels, purge volumes were calculated.

Soil gas purging and sampling were done before groundwater purging and sampling. After sufficient purging (three well volumes), soil gas samples were collected using the vacuum pump. Field measurements of vapor-phase organics (using a PID meter), oxygen, and carbon dioxide concentrations (using a multigas meter) were recorded using portable field instruments.

Prior to soil gas purging, the YSI 550A Dissolved Oxygen Probe was used to determine dissolved oxygen (DO) levels. At least three well volumes were purged from each well prior to groundwater sampling. Electrical conductance (E.C.), pH, temperature, and oxidation reduction potential were monitored during purging using an Ultrameter 6P. The wells were considered satisfactorily purged when the pH, E.C., and temperature values did not vary by more than 10 percent for at least three measurements.

All purged water was collected and disposed of through the refinery wastewater system.

Field data and analytical results can be found in Section 4.0 – Tabs 1, 2, 3, 4 and 5.

Section 3.0 Regulatory Criteria / Groundwater Cleanup Standards

Metals	(mg/l)
Antimony	0.006 ²
Arsenic	0.01 ²
Barium	1.0
Beryllium	0.004 2
Cadmium	0.005 ²
Chromium	0.05
Cobalt	0.05
Copper	1.0
Cyanide	0.2
Lead	0.015²
Mercury	0.002
Nickel	0.200
Selenium	0.05
Silver	0.05
Uranium	0.03
Vanadium	0.26 ³
Zinc	10.0

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)
1,2,4-Trichlorobénzene	70 ²
1,2-Dichlorobenzene	600²
1,3-Dichlorobenzene	Ne
1,4-Dichlorobenzene	75²
2,4,5-Trichlorophenol	3,700 ³
2,4,6-Trichlorophenol	6.1 ³
2,4-Dichlorophenol	110 ³
2,4-Dimethylphenol	730 ³
2,4-Dinitrophenol	73 ³
2,4-Dinitrotoluene	0.22 ³
2,6-Dinitrotoluene	37 ³
2-Chloronaphthalene	2900³
2-Chlorophenol	180³
2-Methylnaphthalene	150³
2-Methylphenol	1,800 ³
2-Nitroaniline	110 ³
2-Nitrophenol	Ne
3,3'-Dichlorobenzidine	0.15³
3+4-Methylphenol	180 ³
3-Nitroaniline	Ne
4,6-Dinitro-2-methylphenol	Ne
4-Bromophenyl phenyl ether	Ne
4-Chloro-3-methylphenol	Ne
4-Chloroaniline	0.34³
4-Chlorophenyl phenyl ether	Ne
4-Nitroaniline	3.4 ³
4-Nitrophenol	Ne
Acenaphthene	2200³
Acenaphthylene	Ne

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)			
Aniline	12 ³ ·			
Anthracene	1100 ³			
Azobenzene	0.12³			
Benz(a)anthracene	0.029 ³			
Benzo(a)pyrene	0.2 ²			
Benzo(b)fluoranthene	0.029 ³			
Benzo(g,h,i)perylene	Ne			
Benzo(k)fluoranthene	0.29 ⁻³			
Benzoic acid	150,000 ³			
Benzyl alcohol	· 1800³			
Bis(2-chloroethoxy)methane	110 ³			
Bis(2-chloroethyl)ether	0.012 ³			
Bis(2-chloroisopropyl)ether	Ne			
Bis(2-ethylhexyl)phthalate	6²			
Butyl benzyl phthalate	35³			
Carbazole	Ne			
Chrysene	2.9 ³			
Dibenz(a,h)anthracene	0.0029 ³			
Dibenzofuran	Ne			
Diethyl phthalate	29,000 ³			
Dimethyl phthalate	Ne			
Di-n-butyl phthalate	Ne			
Di-n-octyl phthalate	Ne			
Fluoranthene	1,500 ³			
Fluorene	1500³			
Hexachlorobenzene	1.0 ²			
Hexachlorobutadiene	0.86 ³			
Hexachlorocyclopentadiene	50 ²			
Hexachloroethane	4.8 ³			
Groundwater Standards are WOCC 20NMAC 6				

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Semivolatiles	(ug/l)
Indeno(1,2,3-cd)pyrene	0.029 ³
Isophorone	71³
Naphthalene	0.14³
Nitrobenzene	0.12³
N-Nitrosodimethylamine	0.00042 ³
N-Nitrosodi-n-propylamine	0.0096 ³
N-Nitrosodiphenylamine	14 ³
Pentachlorophenol	1 ²
Phenanthrene	Ne
Phenol	5 ³
Pyrene	1100 ³
Pyridine	37 ³

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

2	

Volatiles	(ug/l)
1,1,1,2-Tetrachloroethane	0.52³
1,1,1-Trichloroethane	60
1,1,2,2-Tetrachloroethane	10
1,1,2-Trichloroethane	5²
1,1-Dichloroethane	25
1,1-Dichloroethene	_ 5
1,1-Dichloropropene	Ne
1,2,3-Trichlorobenzene	Ne
1,2,3-Trichloropropane	0.0096³
1,2,4-Trichlorobenzene	70.0²
1,2,4-Trimethylbenzene	15.0 ³
1,2-Dibromo-3-chloropropane	0.2 ²
1,2-Dibromoethane (EDB)	0.05²
1,2-Dichlorobenzene	600.0 ²
1,2-Dichloroethane (EDC)	5²
1,2-Dichloropropane	5.0 ²
1,3,5-Trimethylbenzene	12³
1,3-Dichlorobenzene	Ne
1,3-Dichloropropane	730 ³
1,4-Dichlorobenzene	75.0 ²
1-Methylnaphthalene	2.3³
2,2-Dichloropropane	Ne
2-Butanone	710.0 ³
2-Chlorotoluene	730.0 ³
2-Hexanone	Ne
2-Methylnaphthalene	150³
4-Chlorotoluene	2600³
4-Isopropyltoluene	Ne
4-Methyl-2-pentanone	Ne

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Ne - not established

,

Volatiles	(ug/l)
Acetone	22000³
Benzene	5 ²
Bromobenzene	20³
Bromodichloromethane	0.12³
Bromoform	8.5 ³
Bromomethane	8.7 ³
Carbon disulfide	1,000 ³
Carbon Tetrachloride	5²
Chlorobenzene	100.0 ²
Chloroethane	Ne
Chloroform	100
Chloromethane	190 ³
cis-1,2-DCE	70 ²
cis-1,3-Dichloropropene	0.4 ³
Dibromochloromethane	0.15³
Dibromomethane	370³
Dichlorodifluoromethane	390 ³
Ethylbenzene	700 ²
Hexachlorobutadiene	0.86 ³
Isopropylbenzene	680³
Methyl tert-butyl ether (MTBE)	12³
Methylene Chloride	5²
Naphthalene	0.14 ³
n-Butylbenzene	Ne
n-Propylbenzene	Ne
sec-Butylbenzene	Ne
Styrene	100²
tert-Butylbenzene	Ne
Tetrachloroethene (PCE)	5 ²

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Table of New Mexico and USEPA Groundwater Standards

Volatiles	(ug/l)
Toluene	750
trans-1,2-DCE	100 ²
trans-1,3-Dichloropropene	0.4 ³
Trichloroethene (TCE)	5 ²
Trichlorofluoromethane	1,300 ³
Vinyl chloride	1
Xylenes, Total	620

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Ne - not established

Table of New Mexico and USEPA Groundwater Standards

General Chemistry	(mg/l)
Alkalinity, Total (As CaCO3)	Ne
Bicarbonate	Ne
Calcium	Ne
Carbonate	Ne
Chloride	250
Fluoride	1.6
Iron	1
Magnesium	Ne
Manganese	0.2
Nitrogen, Nitrate (As N)	10
Nitrogen, Nitrite (As N)	1²
Nitrate (As N)+Nitrite (As N)	10
Potassium	Ne
Sodium	Ne
Sulfate	600

Groundwater Standards are WQCC 20NMAC 6.2.3103 unless otherwise indicated

2 - Federal Maximum Contaminant Level

3 - USEPA Regional Screening Levels (April 2009)

Ne - not established

STANDARDS FOR GROUND WATER OF 10,000 mg/l TDS CONCENTRATION OR LESS: The 20.6.2.3103 following standards are the allowable pH range and the maximum allowable concentration in ground water for the contaminants specified unless the existing condition exceeds the standard or unless otherwise provided in Subsection D of Section 20.6.2.3109 NMAC. Regardless of whether there is one contaminant or more than one contaminant present in ground water, when an existing pH or concentration of any water contaminant exceeds the standard specified in Subsection

A, B, or C of this section, the existing pH or concentration shall be the allowable limit, provided that the discharge at such concentrations will not result in concentrations at any place of withdrawal for present or reasonably foreseeable future use in excess of the standards of this section. These standards shall apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the publication "methods for chemical analysis of water and waste of the U.S. environmental protection agency," with the exception that standards for mercury, organic compounds and non-aqueous phase liquids shall apply to the total unfiltered concentrations of the contaminants.

Human Health Standards-Ground water shall meet the standards of Subsection A and B of this section Α. unless otherwise provided. If more than one water contaminant affecting human health is present, the toxic pollutant criteria as set forth in the definition of toxic pollutant in Section 20.6.2.1101 NMAC for the combination of contaminants, or the Human Health Standard of Subsection A of Section 20.6.2.3103 NMAC for each contaminant shall apply, whichever is more stringent. Non-aqueous phase liquid shall not be present floating atop of or immersed within ground water, as can be reasonably measured.

DIY meas		
(1)	Arsenic (As)	0.1 mg/l
(2)	Barium (Ba)	1.0 mg/]
(3)	Cadmium (Cd)	0.01 mg/]
(4)	Chromium (Cr)	
(5)	Cyanide (CN).	
(6)	Fluoride (F)	
(7)	Lead (Pb)	
(8)	Total Mercury (Hg)	
(9)	Nitrate (NO ₃ as N)	
(10)		-
(11)		
(12)	Uranium (U)	
(12)	Radioactivity: Combined Radium-226 & Radium-228	30 nCi/l
(14)	Benzene	
(15)	Polychlorinated biphenyls (PCB's)	0.001 mg/
(16)	Toluene	0.75 mg/l
(17)	Carbon Tetrachloride	0.01 mg/l
(18)	1,2-dichloroethane (EDC)	
(19)	1,1-dichloroethylene (1,1-DCE)	
(20)	1,1,2,2-tetrachloroethylene (PCE)	0.02 mg/l
(21)	1,1,2-trichloroethylene (TCE)	
(22)	ethylbenzene	
(23)	total xylenes	
(24)	methylene chloride	
(25)	chloroform	
(26)	1,1-dichloroethane	
(27)	ethylene dibromide (EDB)	
(28)	1,1,1-trichloroethane	0.06 mg/l
(29)	1,1,2-trichloroethane	0.01 mg/l
(30)	1,1,2,2-tetrachloroethane	0.01 mg/l
(31)	vinyl chloride	0.001 mg/l
(32)	PAHs: total naphthalene plus monomethylnaphthalenes	0.03 mg/l
(33)	benzo-a-pyrene	0.0007 mg/l
B .	Other Standards for Domestic Water Supply	
(1)	Chloride (Cl)	250.0 mg/l
(2)	Copper (Cu)	1.0 mg/l
(3)	Iron (Fe)	
(4)	Manganese (Mn)	0.2 mg/l
(6)	Phenols	0.005 mg/l
(7)	Sulfate (SO ₄)	
(8)	Total Dissolved Solids (TDS)	1000.0 mg/l
(9)	Zinc (Zn)	
(10)	pH	between 6 and 9
С.	Standards for Irrigation Use - Ground water shall meet the	standards of Subs

Standards for Irrigation Use - Ground water shall meet the standards of Subsection A, B, and C of

this section unless otherwise provided.

(1)	Aluminum (Al) 5.0 mg/l
(2)	Boron (B)0.75 mg/l
	Cobalt (Co)0.05 mg/l
	Molybdenum (Mo)1.0 mg/1
	Nickel (Ni)

[2-18-77, 1-29-82, 11-17-83, 3-3-86, 12-1-95; 20.6.2.3103 NMAC - Rn, 20 NMAC 6.2.III.3103, 1-15-01; A, 9-26-04] [Note: For purposes of application of the amended numeric uranium standard to past and current water discharges (as of 9-26-04), the new standard will not become effective until June 1, 2007. For any new water discharges, the uranium standard is effective 9-26-04

NEW MEXICO ENVIRONMENT DEPARTMENT TPH SCREENING GUIDELINES October 2006

In some instances, it may be practical to assess areas of soil contamination that are the result of releases of petroleum products such as jet fuel and diesel, using total petroleum hydrocarbon (TPH) analyses. TPH results may be used to delineate the extent of petroleum-related contamination at these sites and ascertain if the residual level of petroleum products in soil represents an unacceptable risk to future users of the site. Petroleum hydrocarbons represent complex mixtures of compounds, some of which are regulated constituents and some compounds that are not regulated. In addition, the amount and types of the constituent compounds in a petroleum hydrocarbon release differ widely depending on what type of product was spilled and how the spill has weathered. This variability makes it difficult to determine the toxicity of weathered petroleum products in soil solely from TPH results; however, these results can be used to approximate risk in some cases, depending upon the nature of the petroleum product, the release scenario, how well the site has been characterized, and anticipated potential future land uses. In some cases, site clean up cannot be based solely on results of TPH sampling. The New Mexico Environment Department (NMED) will make these determinations on a case by case basis. If NMED determines that additional data are necessary, these TPH guidelines must be used in conjunction with the screening guidelines for individual petroleum-related contaminants in Table 3 and other contaminants, as applicable.

The screening levels for each petroleum carbon range from the Massachusetts Department of Environmental Protection (MADEP) Volatile Petroleum Hydrocarbons/Extractable Petroleum Hydrocarbons (VPH/EPH) approach and the percent composition table below were used to generate screening levels corresponding to total TPH. Except for waste oil, the information in the compositional assumptions table was obtained from the Massachusetts Department of Environmental Protection guidance document Implementation of the MADEP VPH/EPH Approach (October 31, 2002). TPH toxicity was based only on the weighted sum of the toxicity of the hydrocarbon fractions listed in Table 1.

Petroleum Product	C11-C22 Aromatics	C9-C18 Aliphatics	C19-C36 Aliphatics
Diesel #2/ new crankcase oil	60%	40%	0%
#3 and #6 Fuel Oil	70%	30%	0%
Kerosene and jet fuel	30%	70%	0%
Mineral oil dielectric fluid	20%	40%	40%
Unknown oil ^a	100%	0%	0%
Waste Oil ^b	0%	. 0%	100%

	Table 1.	TPH (Compositiona	lAssum	ptions	in Soil
--	----------	-------	--------------	--------	---------------	---------

Sites with oil from unknown sources must be tested for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and polychlorinated biphenyls (PCBs) to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

October 2006 Page 1 of 5

A TPH screening guideline was calculated for each of the types of petroleum product based on the assumed composition from Table 1 for petroleum products and the direct soil standards incorporating ceiling concentrations given in the MADEP VPH/EPH Excel spreadsheet for each of the carbon fractions. Groundwater concentrations are based on the weighted sum of the noncarcinogenic toxicity of the petroleum fractions.

Method 1 from the MADEP VPH/EPH document was applied, which represents generic cleanup standards for soil and groundwater. Method 1 applies if contamination exists in only soil and groundwater. The MADEP VPH/EPH further divides groundwater into standards. Standard GW-1 applies when groundwater may be used for drinking water purposes. GW-1 standards are based upon ingestion and use of groundwater as a potable water supply. The TPH screening guidelines for sites with potable groundwater are presented in Table 2a.

	ТРН		
Petroleum Product	Residential Direct Exposure (mg/kg)	Industrial Direct Exposure (mg/kg)	Concentration in Groundwater (mg/L)
Diesel #2/crankcase oil	520	1120	1.72
#3 and #6 Fuel Oil	440	890	1.34
Kerosene and jet fuel	760	1810	2.86
Mineral oil dielectric fluid	1440	3040	3.64
Unknown oil	200	200	0.2
Waste Oil	2500	5000	Petroleum-Related Contaminants
Gasoline	Not applicable	Not applicable	Petroleum-Related Contaminants

Table 2a. TPH Screening Guidelines for Potable Groundwater (GW-1)

Sites with oil from unknown sources must be tested for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and polychlorinated biphenyls (PCBs) to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

The second standard is GW-2, which is applicable for sites where the depth to groundwater is less than 15 feet from the ground surface and within 30 feet of an occupied structure. The structure may be either residential or industrial. GW-2 standards are based upon "inhalation exposures that could occur to occupants of the building impacted by volatile compounds, which partition from the groundwater" (MADEP 2001). The GW-2 screening guidelines ONLY apply for the evaluation of inhalation exposures. If potential ingestion or contact with contaminated soil and/or

October 2006 Page 2 of 5 groundwater could occur, then the screening guidelines provided in Table 2.a should be applied. Table 2.b lists the TPH screening guidelines for the inhalation scenario.

	ТРН		
Petroleum Product	Residential Direct Exposure (mg/kg)	Industrial Direct Exposure (mg/kg)	Concentration in Groundwater (mg/L)
Diesel #2/crankcase oil	880	2200	30.4
#3 and #6 Fuel Oil	860	2150	35.3
Kerosene and jet fuel	940	2350	15.7
Mineral oil dielectric fluid	1560	3400	10.4
Unknown oil	800	2000	50.0
Waste Oil	2500	5000	Petroleum-Related Contaminants
Gasoline	Not applicable	Not applicable	Petroleum-Related Contaminants

Table 2b. TPH Screening Guidelines – Vapor Migration and Inhalation of Groundwater (GW-2)

Sites with oil from unknown sources must be tested for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and polychlorinated biphenyls (PCBs) to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Compositional assumption for waste oil developed by NMED is based on review of chromatographs of several types of waste oil. Sites with waste oil must be tested for VOCs, SVOCs, metals, and PCBs to determine if other potentially toxic constituents are present. The TPH guidelines in Table 2 are not designed to be protective of exposure to these constituents therefore they must be tested for, and compared to, their individual NMED soil screening guidelines.

Mineral oil based hydraulic fluids can be evaluated for petroleum fraction toxicity using the screening guidelines from Tables 2a and 2b specified for waste oil, because this type of hydraulic fluid is composed of approximately the same range of carbon fractions as waste oil. However, these hydraulic fluids often contain proprietary additives that may be significantly more toxic than the oil itself; these additives must be considered on a site- and product-specific basis (see ATSDR hydraulic fluids profile reference). Use of alternate screening guideline values requires prior written approval from the New Mexico Environment Department. TPH screening guidelines in Tables 2a and 2b must be used in conjunction with the screening levels for petroleum-related contaminants given in Table 3 because the TPH screening levels are NOT designed to be protective of exposure to these individual petroleum-related contaminants. Table 3 petroleum-related contaminants screening levels are based on the NMED Technical Background Document for Development of Soil Screening Levels, Rev 4.0 (June 2006).

The list of petroleum-related contaminants does not include polyaromatic hydrocarbons (PAHs) with individual screening levels that would exceed the total TPH screening levels (acenaphthene, anthracene, flouranthene, flourene, and pyrene). In addition, these TPH screening guidelines are based solely on human health, not ecological risk considerations, protection of surface water, or

October 2006 Page 3 of 5 potential indoor air impacts from soil vapors. Potential soil vapor impacts to structures or utilities are not addressed by these guidelines. Site-specific investigations for potential soil vapor impacts to structures or utilities must be done to assure that screenings are consistently protective of human health, welfare or use of the property. NMED believes that use of these screening guidelines will allow more efficient screenings of petroleum release sites at sites while protecting human health and the environment. Copies of the references cited below are available on the MADEP website at http://www.state.ma.us/dep/bwsc/vph_eph.htm and the NMED website at http://www.nmenv.state.nm.us/HWB/guidance.html.

	Values fo Exposur		NMED DAF ^a 20 GW	
Petroleum-Related Contaminants	NMED Residential SSL (mg/kg)	NMED Industrial SSL (mg/kg)	Protection (mg/kg in soil)	NMED DAF ^b 1 GW Protection (mg/kg in soil)
Benzene	1.03E+01	2.58E+01	2.01E-02	1.00E-03
Toluene	2.52E+02	2.52E+02	2.17E+01	1.08E+00
Ethylbenzene	1.28E+02	1.28E+02	2.02E+01	1.01E+00
Xylenes ^e	8.20E+01	8.20E+01	2.06E+00	1.03E-01
Naphthalene	7.95E+01	3.00E+02	3.94E-01	1.97E-02
2-Methyl naphthalene	5.00E+02	1.00E+03	e	°
Benzo(a)anthracene	6.21E+00	2.34E+01	1.09E+01	5.43E-01
Benzo(b)fluoranthene	6.21E+00	2.34E+01	3.35E+01	1.68E+00
Benzo(k)fluoranthene	6.21E+01	2.34E+02	3.35E+02	1.68E+01
Benzo(a)pyrene	6.21E-01	2.34E+00	2.78E+00	1.39E-01
Chrysene	6.15E+02	2.31E+03	3.48E+02	1.74E+01
Dibenz(a,h)anthracene	6.21E-01	2.34E+00	1.04E+01	5.18E-01
Indeno(1,2,3-c,d)pyrene	6.21E+00	2.34E+01	9.46E+01	4.73E+00

Revised Table 3. Petroleum-Related	Contaminants Sc	creening Guidelines
------------------------------------	-----------------	---------------------

* DAF - Dilution Attenuation Factor

^b For contaminated soil in contact with groundwater.

[°] Based upon total xylenes

^d No NMED value available, value taken from Massachusetts Contingency Plan, 310 CMR 40.0985, 4/3/06.

^e No NMED value available and leachability-based value for DAF =1 or 20 not established in the Massachusetts Contingency Plan, 310 CMR 40.0985, 4/3/06.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 1997. Toxicological Profile for Hydraulic fluids.

Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup and Office of Research and Standards. 1994. "Background Documentation for the Development of the MCP Numerical Standards."

Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup and Office of Research and Standards. 2002. "Characterizing Risks Posed by Petroleum

October 2006 Page 4 of 5 Contaminated Sites: Implementation of the MADEP VPH/EPH Approach," Policy, October 31, 2002.

Massachusetts Department of Environmental Protection, Bureau of Waste Site Cleanup and Office of Research and Standards. 2003. "Updated Petroleum Hydrocarbon Fraction Toxicity Values for the VPH/EPH/APH Methodology." November 2003.

New Mexico Environment Department, Hazardous Waste Bureau and Groundwater Quality Bureau Voluntary Remediation Program. 2006. "Technical Background Document for Development of Soil Screening Levels." June 2006. Revision 4.0.

October 2006 Page 5 of 5

Section 4.0 Monitoring Results

Title	Tab Number
Soil Gas Monitoring	1
Groundwater Monitoring	2
Groundwater Metals Analysis	3
Bioventing Wells Pressure Reading	4
GAC Analysis	5

.

RIVER TERRACE

Soil Gas Monitoring

Pickalina Carticlina Data Weiler (N) (Neiler 2010 Meiler 2010				10.00 (Mail 10.00)			a the start and the			1.5				
4th Quarter 2010 Neek of 70000 15. 6.30 0.00 6.13 20.2 0.00 3rd Quarter 2010 Week of X720010 11.0 5.90 0.00 4.33 20.5 0.10 2nd Quarter 2010 Week of X720010 11.0 5.90 0.000 6.23 20.3 0.00 2nd Quarter 2010 Week of X78101 8.0 4.40 0.000 6.23 20.3 0.00 3rd Quarter 2009 Week of X78100 8.9 4.90 0.000 5.3 20.9 0.00 3rd Quarter 2003 Week of X78100 8.9 4.90 0.000 5.1 20.9 0.00 3rd Quarter 2003 Week of X79100 8.9 4.90 0.000 5.1 20.9 0.00 3rd Quarter 2006 8.9 4.90 0.00 37.4 20.9 0.00 3rd Quarter 2006 Week of X7400 8.9 0.00 20.4 20.9 0.00 3rd Quarter 2006 Week of X7400 8.9 0.00 20.4 <td< th=""><th>tion:</th><th>Sampling</th><th>DATE</th><th>(r)</th><th></th><th>(Inches of Water)</th><th>PID (ppm))</th><th>Oxygen (%)</th><th>(%)</th><th>(ngh)</th><th>(mon)</th><th>(njm)</th><th>Xylene/(ug/l=)</th><th>GRO) (ug/L)</th></td<>	tion:	Sampling	DATE	(r)		(Inches of Water)	PID (ppm))	Oxygen (%)	(%)	(ngh)	(mon)	(njm)	Xylene/(ug/l=)	GRO) (ug/L)
3rd Quarter 2010Yacardi11.05.000.004.32.0.50.10Zind Quarter 2010Week of 419/1012.76.960.3056.22.0.30.002nd Quarter 2010Week of 419/1012.76.960.3056.22.0.30.001st Quarter 2010Week of 419/108.04.400.005.320.90.004th Quarter 2009Week of 10008.94.900.005.320.90.003rd Quarter 2009Week of 420008.94.900.005.120.90.102nd Quarter 2009Week of 44008.94.911.002.442.090.002nd Quarter 2009Week of 44008.94.911.002.442.090.002nd Quarter 2009Week of 723.370.002.432.090.002nd Quarter 2008Week of 723.370.003.782.090.002nd Quarter 2008Week of 723.370.003.782.090.002nd Quarter 2008Week of 727.23.772.090.000.002nd Quarter 2008Week of 81007.23.780.003.760.002nd Quarter 2008Week of 81007.23.790.003.760.002nd Quarter 2008Week of 81007.23.790.000.000.002nd Quarter 2008Week of 820011.40.003.76		4th Quarter 2010		11.5	6.30	0.00	0.7	20.2	0.00	<0.10	<0.10	<0.10	<0.30	<5.0
2nd Quarter 2010 Week of Mission 2.4 6.5 0.30 5.2 2.0.3 0.00 1st Quarter 2010 Week of Mission 8.0 4.40 0.00 5.3 20.9 0.00 4th Quarter 2009 Week of Week of Mission 8.9 4.90 0.00 5.3 20.9 0.00 2nd Quarter 2009 Week of Week of Mission 8.9 4.90 0.00 5.1 20.9 0.00 2nd Quarter 2009 Week of Meek of Mission 8.9 4.91 0.00 3.7.8 20.9 0.00 2nd Quarter 2009 Week of Meek of Mission 8.9 4.91 1.00 3.7.8 20.9 0.00 3rd Quarter 2008 Week of Meek of Meek of Mission 8.9 4.91 0.00 20.4 20.9 0.00 2nd Quarter 2008 Week of Meek of Meek of Meek of Meek of Mission 7.2 3.9 0.00 2.0.9 0.00 2nd Quarter 2007 Week of Meek		3rd Quarter 2010	Week of 7/20/10	11.0	5.90	0.00	4.3	20.5	0.10	0.14	<0.10	0.39	1.5	17
Ist Quarter 2010 Week of Week of 10.050-05 8.0 4.40 0.00 5.2 2.0.9 0.00 4th Quarter 2009 Week of 10.050-05 8.9 4.90 0.00 5.3 2.0.9 0.00 3rd Quarter 2009 Week of 91000 8.9 4.90 0.00 5.1 2.0.9 0.00 2rd Quarter 2009 Week of 91000 8.9 4.91 1.00 37.8 2.0.9 0.00 2rd Quarter 2009 Week of 8100 8.9 4.91 1.00 37.8 2.0.9 0.00 3rd Quarter 2008 Week of 714.00 8.9 4.91 1.00 27.8 2.0.9 0.00 3rd Quarter 2008 Week of 714.00 7.2 3.97 0.00 10.6 2.0.9 0.00 2rd Quarter 2008 Week of 714.00 7.2 3.97 0.00 2.0.9 0.00 2rd Quarter 2008 Week of 714.00 7.2 3.97 0.00 2.0.9 0.00 2rd Quarter 2008 Week of 8.010 6.8 3.6.7 <t< th=""><th></th><th>2nd Quarter 2010</th><td>Week of 4/19/10</td><td>12.7</td><td>6.96</td><td>0.30</td><td>56.2</td><td>20.3</td><td>0.00</td><td><0.10</td><td>0.3</td><td>0.11</td><td>7.4</td><td>220</td></t<>		2nd Quarter 2010	Week of 4/19/10	12.7	6.96	0.30	56.2	20.3	0.00	<0.10	0.3	0.11	7.4	220
4th duarter 2009Week of b 2005 8:98:94:900:005:32:0:90:003rd duarter 2009Week of 910008:94:900:005:120.90:1012nd duarter 2009Week of 410008:994:911.002:34.02:090:1012nd duarter 2009Week of 410008:094:911.002:34.02:090:0014th duarter 2009Week of 410008:04:350:002:042:090:0014th duarter 2008Week of 11/10068:04:350:002:042:090:0014th duarter 2008Week of 11/10069:05:370:002:050:00112nd duarter 2008Week of 51/20077:23:370:003:28.00:002:030:002nd duarter 2008Week of 51/20077:23:370:003:28.00:000:0012nd duarter 2007Week of 51/20079:65:570:003:28.00:000:0013nd duarter 2007Week of 61/80710:35:670:003:27.010:000:003nd duarter 2007Week of 61/80710:310:60:010:010:010:003nd duarter 2007Week of 61/80710:310:60:010:010:010:003nd duarter 2007Week of 61/80710:310:60:010:010:00 <t< th=""><th></th><th>1st Quarter 2010</th><td>Week of 3/08/10</td><td>8.0</td><td>4.40</td><td>0.00</td><td>6.2</td><td>20.9</td><td>0.00</td><td>0.70</td><td><0.10</td><td>0.62</td><td>3.8</td><td>34</td></t<>		1st Quarter 2010	Week of 3/08/10	8.0	4.40	0.00	6.2	20.9	0.00	0.70	<0.10	0.62	3.8	34
3rd duarter 2009Week of 910068.94.900.005.120.90.1012nd duarter 2009Week of 420094.905.262.0023.4020.91.102nd duarter 2009Week of 30.02098.994.911.0023.4020.90.001.104th duarter 2008Week of 1110068.04.810.0020.420.90.001.103nd duarter 2008Week of 1110068.04.850.0020.420.90.001.102nd duarter 2008Week of 517087.140089.95.370.0020.420.90.002nd duarter 2008Week of 517087.23.970.0010.420.90.001.102nd duarter 2008Week of 517087.146.20.00328.00.001.142.030.002nd duarter 2007Week of 6180711.46.240.00327.5017.90.001.142nd duarter 2007Week of 6180711.46.240.00327.5017.90.701.142nd duarter 2007Week of 6180710.35.670.00327.5017.90.701.142nd duarter 2007Week of 6180710.35.670.00327.5017.90.701.142nd duarter 2007Week of 6180710.35.670.00327.5017.90.701.142nd duarter 2007Week of 6180710.3 </th <th></th> <th>4th Quarter 2009</th> <td>Week of 10-05-09</td> <td>8.9</td> <td>4.90</td> <td>0.00</td> <td>5.3</td> <td>20.9</td> <td>0.00</td> <td>0.19</td> <td><0.10</td> <td>2.20</td> <td>12.0</td> <td>49</td>		4th Quarter 2009	Week of 10-05-09	8.9	4.90	0.00	5.3	20.9	0.00	0.19	<0.10	2.20	12.0	49
Znd Quarter 2009Week of 41200910.05.262.00234.01.101st Quarter 2009Week of 302008.994.911.0037.820.90.004th Quarter 2008Week of 11/10088.04.850.0020.420.90.003rd Quarter 2008Week of 11/10089.95.370.0020.420.90.003rd Quarter 2008Week of 11/10087.23.970.0010.620.90.002nd Quarter 2008Week of 5/12087.23.970.00328.020.90.002nd Quarter 2008Week of 5/12087.23.970.00328.020.90.004th Quarter 2007Week of 8/1089.65.290.00327.5017.90.403rd Quarter 2007Week of 8/10811.46.240.00327.5017.90.404th Quarter 2007Week of 8/10811.46.240.00327.5017.90.402nd Quarter 2007Week of 8/10610.35.670.00327.5017.90.402nd Quarter 2007Week of 8/10610.317.39.0117.90.400.402nd Quarter 2007Week of 8/10610.317.920.40.400.402nd Quarter 2006Week of 8/10610.317.920.40.400.402nd Quarter 2006Week of 8/10610.310.620.90.400.4 <td< th=""><th></th><th>3rd Quarter 2009</th><td>Week of 9/10/09</td><td>8.9</td><td>4.90</td><td>0.00</td><td>5.1</td><td>20.9</td><td>0.10</td><td>0.62</td><td>0.12</td><td>94.0</td><td>3.3</td><td>67</td></td<>		3rd Quarter 2009	Week of 9/10/09	8.9	4.90	0.00	5.1	20.9	0.10	0.62	0.12	94.0	3.3	67
Ist Quarter 2009 Week of 302/09 8.99 4.91 1.00 37.8 20.9 0.00 4th Quarter 2008 Week of 11/1006 8.0 4.85 0.00 20.4 20.9 0.00 3rd Quarter 2008 Week of 7/1408 9.9 5.37 0.00 10.6 20.9 0.00 3rd Quarter 2008 Week of 7/1408 7.2 3.97 0.00 10.6 20.9 0.00 3rd Quarter 2008 Week of 7/1408 7.2 3.97 0.00 328.0 0.00 0.00 1st Quarter 2008 Week of 702907 9.6 5.29 0.00 328.0 0.00 0.40 3rd Quarter 2007 Week of 102907 9.6 5.29 0.00 328.0 17.9 4.20 3rd Quarter 2007 Week of 61807 10.3 5.67 0.00 327.50 17.9 4.20 3rd Quarter 2006 Week of 61807 10.3 5.67 0.00 20.4 0.30 0.40 3rd Quarter 2006 Week of 7108 10.3 <th></th> <th>2nd Quarter 2009</th> <td>Week of 4/20/09</td> <td>10.0</td> <td>5.26</td> <td>2.00</td> <td>234.0</td> <td>20.9</td> <td>1.10</td> <td>5.10</td> <td><0.10</td> <td>16.0</td> <td>100.0</td> <td>330</td>		2nd Quarter 2009	Week of 4/20/09	10.0	5.26	2.00	234.0	20.9	1.10	5.10	<0.10	16.0	100.0	330
4th Quarter 2008Week of 11/10/088.04.850.0020.420.90.003rd Quarter 20087/14/089.95.370.0010.620.90.002nd Quarter 2008Week of 5/12/087.23.970.0010.620.90.002nd Quarter 2008Week of 5/12/087.23.970.0010.420.90.001st Quarter 2008Week of 5/12/087.23.970.00328.020.90.001st Quarter 2007Week of 102/969.65.290.00328.07.90.003rd Quarter 2007Week of 102/9611.46.240.00327.5.017.94.203rd Quarter 2007Week of 102/9610.35.570.00327.5.017.94.201st Quarter 2007Week of 14.210.37.790.011981.020.40.301st Quarter 2007Week of 14.213.57.420.02301.019.00.401st Quarter 2006Week of 13.613.57.420.02301.020.40.303rd Quarter 2006Week of 13.04613.57.420.021146.020.80.303rd Quarter 2006Week of 13.04613.55.60.02301.019.00.303rd Quarter 2006Week of 13.04613.55.80.021146.020.80.303rd Quarter 2006Week of 13.0613.55.80.02 <td< th=""><th></th><th>1st Quarter 2009</th><td>Week of 3/02/09</td><td>8.99</td><td>4.91</td><td>1.00</td><td>37.8</td><td>20.9</td><td>0.00</td><td>0.92</td><td><0.10</td><td>3.8</td><td>24.0</td><td>65</td></td<>		1st Quarter 2009	Week of 3/02/09	8.99	4.91	1.00	37.8	20.9	0.00	0.92	<0.10	3.8	24.0	65
3rd Quarter 2008Week of 714/089.95.370.0010.620.90.002nd Quarter 2008Week of 5/12/087.23.970.0010.420.90.002nd Quarter 2008Week of 03/10/087.23.630.00328.020.90.4074th Quarter 2007Week of 03/10/089.65.290.00328.00.70774th Quarter 2007Week of 03/10/089.65.290.003275.017.90.7073rd Quarter 2007Week of 03/10611.46.240.003275.017.94.2072nd Quarter 2007Week of 04/08/0710.35.670.003275.017.94.2072nd Quarter 2007Week of 12/04/610.37.420.00301.019.00.4074th Quarter 2006Week of 12/04/610.37.420.011981.00.300.303rd Quarter 2006Week of 12/04/610.45.680.0185.50.050.303rd Quarter 2006Week of 12/04/610.45.680.0185.50.050.303rd Quarter 2006Week of 12/04/610.45.680.010.050.303rd Quarter 2006Week of 12/0610.56.80.0514.520.102rd Quarter 2006Week of 12/10610.56.80.0514.520.102rd Quarter 2006Week of 12/106 <th></th> <th>4th Quarter 2008</th> <td>Week of 11/10/08</td> <td>8.0</td> <td>4.85</td> <td>0.00</td> <td>20.4</td> <td>20.9</td> <td>0.00</td> <td>7.70</td> <td><0.50</td> <td>8.0</td> <td>31.0</td> <td>210.0</td>		4th Quarter 2008	Week of 11/10/08	8.0	4.85	0.00	20.4	20.9	0.00	7.70	<0.50	8.0	31.0	210.0
Znd Quarter 2008Week of 5/12/087.23.970.0010.420.90.001st Quarter 2008Week of 03/10/080.83.630.00328.020.90.404th Quarter 2007Week of 10/29/079.65.290.0031.019.30.704th Quarter 2007Week of 8/20/0711.46.240.0031.019.30.703rd Quarter 2007Week of 8/20/0711.46.240.003275.017.94.20Veek of 1st Quarter 2007Week of 8/18/0710.35.670.00301.019.00.40Veek of 1st Quarter 200610.35.670.00301.019.00.4014.0Veek of 1st Quarter 200610.310.35.670.00301.019.00.404th Quarter 2006Week of 9/110610.37.420.0185.520.60.302nd Quarter 20069/110612.56.80.0185.520.60.102nd Quarter 20069/110612.56.80.051452.018.90.502nd Quarter 20069/110612.56.80.051452.018.90.502nd Quarter 20069/110612.56.80.051452.018.90.502nd Quarter 20069/110612.56.80.051452.018.90.502nd Quarter 20069/110612.56.80.051452.018.50.50 <t< th=""><th>Ŀ</th><th>3rd Quarter 2008</th><td>Week of 7/14/08</td><td>6.6</td><td>5.37</td><td>0.00</td><td>10.6</td><td>20.9</td><td>0.00</td><td>0.16</td><td>0.19</td><td>0.2</td><td>6.3</td><td>48.0</td></t<>	Ŀ	3rd Quarter 2008	Week of 7/14/08	6.6	5.37	0.00	10.6	20.9	0.00	0.16	0.19	0.2	6.3	48.0
Ist Quarter 2008 Week of 031(0)08 6.8 3.63 0.00 328.0 20.9 0.40 4th Quarter 2007 Week of 10/29/07 9.6 5.29 0.00 51.0 19.3 0.70 3rd Quarter 2007 Week of 8/20/07 11.4 6.24 0.00 3275.0 17.9 4.20 Jrd Quarter 2007 Week of 8/20/07 10.3 5.67 0.00 301.0 19.0 0.40 Veek of 1st Quarter 2007 Week of 6/18/07 10.3 5.67 0.00 301.0 19.0 0.40 Veek of 1st Quarter 2006 Week of 312/04/6 14.2 7.79 0.11 1981.0 20.4 0.30 Veek of 312/04/6 13.5 7.42 0.01 35.5 20.6 0.30 Veek of 312/04/6 13.5 7.42 0.01 20.5 0.30 0.30 Veek of 312/04/6 10.4 5.68 0.01 20.5 0.30 0.30 Veek of 312/04/6 13.5 7.42 0.02 114.6.0 20.6	ہے +	2nd Quarter 2008	Week of 5/12/08	7.2	3.97	0.00	10.4	20.9	0.00	0.40	<0.10	0.42	1.4	15.0
Week of 10/29/07 9.6 5.29 0.00 51.0 19.3 0.70 Week of 8/20/07 11.4 6.24 0.00 3275.0 17.9 4.20 Week of 8/20/07 11.4 6.24 0.00 3275.0 17.9 4.20 Week of Week of Week of 12/04/6 10.3 5.67 0.00 301.0 19.0 0.40 Week of Week of 12/04/6 10.3 5.67 0.00 301.0 20.4 0.30 Week of Week of 12/04/6 14.2 7.42 0.01 1981.0 20.4 0.30 Week of Week of Week of Week of Week of 10.4 5.68 0.01 85.5 20.6 0.10 Week of Week of Week of 10.4 5.68 0.01 85.5 20.6 0.10		1st Quarter 2008	Week of 03/10/08	6.8	3.63	0.00	328.0	20.9	0.40	4.50	<0.10	6.0	11.0	0.06
Week of BI20/07 11.4 6.24 0.00 3275.0 17.9 4.20 Week of Week of Week of Week of 10.3 5.67 0.00 301.0 19.0 0.40 Week of Week of UVeek of 10.3 5.67 0.00 301.0 19.0 0.40 Week of UVeek of 12/04/6 14.2 7.79 0.11 1981.0 20.4 0.30 Week of UVeek of UVeek of UVeek of UVeek of 13.5 7.42 0.02 1146.0 20.8 0.30 Week of UVeek of UVeek of UVeek of 10.4 5.68 0.01 85.5 20.6 0.10 Week of UVeek of UVeek of 12.5 6.8 0.05 1452.0 18.9 0.50		4th Quarter 2007	Week of 10/29/07	9.6	5.29	0:00	51.0	19.3	0.70	6.10	<0.10	9.0	12.0	95.0
Week of 6/18/07 10.3 5.67 0.00 301.0 19.0 0.40 Week of Week of 12/04/6 14.2 7.79 0.11 1981.0 20.4 0.30 Week of 12/04/6 13.5 7.42 0.02 1146.0 20.8 0.30 Week of 12/04/6 13.5 7.42 0.02 1146.0 20.8 0.30 Week of Week of 9/11/06 10.4 5.68 0.01 85.5 20.6 0.10 Week of Week of 0/11/06 10.4 5.68 0.01 85.5 20.6 0.10		3rd Quarter 2007	Week of 8/20/07	11.4	6.24	0.00	3275.0	17.9	4.20	23.00	<0.10	75.0	390.0	1300.0
Week of 2/26/07 14.2 7.79 0.11 1981.0 20.4 0.30 Week of 12/04/6 13.5 7.42 0.02 1146.0 20.8 0.30 Week of 12/04/6 13.5 7.42 0.02 1146.0 20.8 0.30 Week of 9/11/06 10.4 5.68 0.01 85.5 20.6 0.10 Week of 6/17/06 12.5 6.8 0.05 1452.0 18.9 0.50		2nd Quarter 2007	Week of 6/18/07	10.3	5.67	0.00	301.0	19.0	0.40	<0.10	<0.10	0.28	1.0	7.4
Week of 12/04/6 13.5 7.42 0.02 1146.0 20.8 0.30 Week of 9/11/06 10.4 5.68 0.01 85.5 20.6 0.10 Week of 0/veek of 6/17/06 10.4 5.68 0.01 85.5 20.6 0.10		1st Quarter 2007	Week of 2/26/07	14.2	7.79	0.11	1981.0	20.4	0.30	6.10	8.20	150	1200.0	7300.0
Week of 9/11/06 10.4 5.68 0.01 85.5 20.6 0.10 Week of 6/17/06 12.5 6.8 0.05 1452.0 18.9 0.50		4th Quarter 2006	Week of 12/04/6	13.5	7.42	0.02	1146.0	20.8	0.30	<5.00	8.30	140.0	1000.0	8000.0
Week of 6/17/06 12.5 6.8 0.05 1452.0 18.9 0.50		3rd Quarter 2006	Week of 9/11/06	10.4	5.68	0.01	85.5	20.6	0.10	29.00	<2.0	36.0	170.0	920.0
		2nd Quarter 2006	Week of 6/17/06	12.5	6.8	0.05	1452.0	18.9	0.50	2.60	5.50	<2.0	210.0	3100.0
1st Quarter 2006 Week of 3/06/06 15.0 8.04 0.30 1534.0 20.7 0.10 22.0		1st Quarter 2006	Week of 3/06/06	15.0	8.04	0.30	1534.0	20.7	0.10	22.00	321.00	12.0	2100.0	8500.0
Pre-Dewater Week of 1/09/06 9.4 5.14 0.00 1401.0 15.0 1.30 5.80		Pre-Dewater	Week of 1/09/06	9.4	5.14	0.00	1401.0	15.0	1.30	5.80	47.00	3.5	320.0	2800.0

Page 1 of 14

NM = Not Measured

NR1= Not Required (Approval With Direction - June 2009)

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

Ш
$\overline{\mathbf{O}}$
2
\supset
Ľ,
ш

~
Ľ
2
2
_

	(1) (GRO (19(1-)	<5.0	<5.0	<2.0	<25.0	<5.0	<25.0	290	370	78.0	410.0	310.0	18.0	<	0 <5.0	10.0	88.0	120.0	0 <5.0	25.0		
	L Rytano (trei U)	<0.30	<0.30	<0.30	<0.30	0.34	<0.30	15.0	48.0	1.7	47.0	34.0	1:	<0.10	<0.10	1.4	17.0	18.0	<0.10	2.8	17.0	88.0
	(Figure 1) (Figure 1)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	1.10	0.14	1.20	7.10	0.36	<0.10	<0.10	<0.10	1.1	1.6	<0.10	0.12	1.4	8.0
	(tolueno (tug/tu)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	0.78	₹.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.23	1.80	11.00
	Benzené (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<0.50	2.80	0.57	<0.10	<0.10	<0.10	<0.10	0.11	<0.10	0.21	0.36	7.80
	Carbon Dioxide (%)	00.0	00.0	00.0	00.0	0.0	0.10	0.0	0.00	00.0	0.10	0.10	0.00	0:00	0.00	0.10	0.10	0.00	0.00	0.0	0.0	6.40
	Oxygen (%)	20.3	20.5	20.6	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	19.7	19.9	20.1	20.6	20.9	20.9	20.9	20.9	4.0
	PID (ppm))	0.4	0.6	1.3	9.0	0.7	0.3	87.5	70.5	19.5	71.7	30.3	12.5	0.7	13.0	112.0	8.8	67.0	5.4	23.8	92.7	1589.0
Rin D	Pressure (Inches of Water)	4.00	6.20	8.00	18.00	3.10	2.50	8.30	10.50	6.00	5.00	1.20	1.20	0.00	0.00	0.10	0.10	0.08	0.01	0.15	0.05	0.00
	e Depth to Water (ft)	7.70	7.29	8.13	6.56	6.60	6.52	6.89	6.46	6.72	7.06	5.52	5.3	6.86	7.73	7.5	8.86	9.03	7.37	8.27	9.83	6.62
	Purge Volume (L)	14.1	13.0	14.9	12.0	12.0	11.9	13.0	11.8	5.8	12.9	10.0	9.7	12.5	14.1	13.7	16.2	16.5	13.4	15.1	18.0	12.0
	Activities DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 1/09/06
	Sampling Activities	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
	Sample										7	# - d .	L									

Soil Gas Monitoring

NM = Not Measured

NR1= Not Required (Approval With Direction - June 2009)

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

δ
Ĕ
ring
0
Ë
0
Ś
as
ö
-
<u>Dil</u>
0
S

<u>.</u>																					
GRO (UGU)	<5.0	NR1	<5.0	NR	NR1	<5.0	<5.0	<5.0	<5.0	5.6	<5.0	<5.0	<5.0	19.0	7.6	13.0	<5.0	<5.0	<5.0	1300.0	<5.0
Xyleno(ug/b)	<0.30	NR1	<0.30	NR1	NR ¹	<0.30	<0.30	<0.30	<0.30	0.55	0.52	0.42	<0.1	1.3	1.0	1.2	<0.3	<0.1	<0.3	23.0	0.093
Envicon (cc/u)	<0.10	NR ¹	<0.10	NR ¹	NR ¹	<0.10	<0.10	<0.10	<0.10	<0.10	0.15	<0.10	<0.10	<0.10	<0.10	0.11	<0.10	<0.10	<0.10	0.53	<0.05
(tetrano (trg/th)	<0.10	NR ¹	<0.10	NR ¹	NR ¹	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	2.20	<0.05
Benzene (ug/L:)	<0.10	NR [†]	<0.10	NR'	NR ¹	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.55	<0.05
) Carbon Dioxidé (%)	0.00	NR ¹	0.00	NR'	NR1	0.10	0.00	0.00	0.00	0.00	0.0	0.00	0.30	0.10	0.10	0.10	0.50	0.10	1.00	0.60	0.00
Dxygen (%	20.3	NR ¹	20.5	NR ¹	NR1	20.9	20.9	6.02	20.9	20.9	20.9	20.9	19.2	19.6	20.5	20.4	19.7	20.9	20.9	18.6	17.80
PID (ppm)) 0	0.1	NR'	0.6	NR1	NR1	0.0	0.3	0.0	0.5	0.8	0.8	2.1	0.4	16.0	19.0	5.2	1.3	6.6	2.9	179.8	WN
Pressure (Inches of Water)	0.00	NR ¹	0.00	NR ¹	NR ¹	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0:00	0.00	0.00	0.00	0.00	0.00
Depth to Water (ft)	7.05	6.85	7.32	6.75	6.91	6.85	7.06	6.92	6.8	7.15	5.86	5.17	6.94	7.62	7.02	7.52	11.1	7.41	7.23	8.09	6.44
Purge Volume (L)	12.9	NR ¹	13.4	NR1	NR ¹	12.5	13.0	12.6	10.0	13.1	11.0	0.6	12.7	13.9	12.8	13.7	14.0	13.5	13.2	15.0	11.8
DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 1/09/06
Sampling Activities	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
Sample Location										8	# - d	T									

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

NR1= Not Required (Approval With Direction - June 2009)

NM = Not Measured

Page 3 of 14

Ш С
Ă
R
R
μ
Ľ.
Щ.
\leq

δ
2
Ξ.
0
<u>۲</u>
2
0
S
S
g
G
_
0
S

) (eto) (uju)	6.0	<5.0	12	9.3	140	730	18	7.8	190.0	9.8	31.0	55.0	180.0	13000.0	0.0006	6100.0	0.0068	1200.0	1800.0	34000.0	150.0
(fuine(high)	0.50	<0.30	<0.30	2.4	50.0	180.0	7.6	2.4	45.0	2.9	8.8	12.0	46.0	910.0	1500.0	1000.0	1400.0	380.0	130.0	2000.0	38.0
(ක්ලාය) (ක්ලාය)	<0.10	<0.10	<0.10	0.41	8.10	42.00	2.00	0.50	12.00	0.45	1.60	2.60	9.80	<0.10	<5.00	23.00	14.00	00.67	11.00	55.00	0.25
Curion Curion	<0.10	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0.50	0.12	<0.10	<0.10	<0.10	<0.10	<5.00	9.80	15.00	<2.5	15.00	310.00	54.00
Benzene) (ug/t_)	<0.10	<0.10	<0.10	<0.10	<0.20	<0.10	<0.10	<0.10	<0:50	<0.10	0.11	<0.10	<0.10	<0.10	<5.00	<5.00	6.10	<2.5	<10	69.00	0.13
Carbon Dioxide (%)	0.00	0.00	0.20	60.00	0.10	0.10	0.00	0.00	0.00	1.40	0.00	0.00	0.30	2.60	1.90	0.60	06.0	1.40	1.40	0.10	1.10
Oxygen (%)	20.3	20.3	19.3	20.3	20.9	20.9	20.9	20.9	20.9	18.7	20.9	20.9	19.3	16.9	18.6	19.8	19.3	18.6	18.6	19.7	16.0
PID. (ppm))	2.2	0.8	4.2	5.5	63.4	284.0	34.1	37.7	86.6	2.3	2.5	115.0	54.1	0.0689	1100.0	1268.0	1805.0	137.0	953.0	1534.0	103.5
Pressure (Inches of Water)	0.00	0.20	0:30	0.00	0.00	0.00	0.50	0.20	0.30	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	00.0
Depth to Water (ft)	5.65	5.11	5.98	4.41	4.57	4.54	4.96	4.86	4.54	4.76	3.43	3.15	4.78	6.97	6.62	5.59	5.95	5.32	5.24	7.81	4.70
Purge Volume (L)	10.3	9.3	10.9	8.0	8.3	8.3	0.6	8.8	7.8	2.8	6.3	5.7	8.7	12.7	12.1	10.2	11.0	7.6	9.6	14.0	8.6
DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 1/09/06
Sampling Activities	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
Sample Location			·		·				·	S	# - d	T					• <u>-</u> -				

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

NR1= Not Required (Approval With Direction - June 2009)

Page 4 0f 14

(त्तुविन)

GRO

<5.0

<5.0

6.8

5.0

370

43 8

			Soil Gas	Monitoring	oring							
Sample	Sampiling Activities	DÀTE	ourge Volume (L)	Depth to Water (ft)	Pressure (Inches of Water)	PiD (ppm)), Oxygen (%)	Oxygen (%)	Carbon Dioxide (%)	Benzene (ug/L)	Rotreno (mglu)	Ethilican (trojul)	ന്രതിയുറു
	4th Quarter 2010	Week of 10/18/10	11.9	6.51	0.00	0.5	20.3	00.0	<0.10	<0.10	<0.10	<0.30
	3rd Quarter 2010	Week of 7/20/10	11.0	5.82	0.20	1.0	20.5	0.00	<0.10	<0.10	<0.10	<0.30
	2nd Quarter 2010	Week of 4/19/10	12.5	6.84	0.80	2.1	20.7	00.0	<0.10	<0.10	<0.10	<0.30
	1st Quarter 2010	Week of 3/08/10	9.6	5.27	0.00	1.3	20.9	0.00	<0.10	<0.10	<0.10	0.41
	4th Quarter 2009	Week of 10-05-09	10.0	5.49	0.00	134.0	20.9	0.30	0.89	<0.10	1.70	4.00
	3rd Quarter 2009	Week of 9/10/09	10.1	5.47	0.00	16.7	20.9	0.20	<0.10	<0.10	4.40	8.00
	2nd Quarter 2009	Week of 4/20/09	11.0	5.93	1.00	20.5	20.9	0.00	<0.10	<0.10	5.20	19.00
	1st Quarter 2009	Week of 3/02/09	8.9	5.86	0:50	60.1	20.6	0.10	1.70	<0.10	29.00	110.00
	4th Quarter 2008	Week of 11/10/08	8.3	5.4	0.00	2.6	20.9	0.00	<0.10	<0.10	0.41	0.35
91	3rd Quarter 2008	Week of 7/14/08	10.4	5.67	0.20	4.5	20.9	0.00	<0.10	0.13	<0.10	3.80
# - d	2nd Quarter 2008	Week of 5/12/08	7.9	4.33	0.00	2.3	20.9	0.00	0.17	<0.10	0.34	, 1.10
-												

9**# - d**⊥

NR1= Not Required (Approval With Direction - June 2009)

NR = Not Required (Voluntary Corrective Measures - ... Revised Monitoring Plan - October 2005)

NM = Not Measured

320.0

<5.0

6.6

<5.0 98.0

<0.10

<0.10 <0.10

13.0 37.0

1.00

0.30

20.2

29.5 160.0

0.60

19.4 26.0 20.6

0.00 0.00

0.70

0.60

14.0 25.0

7.32

6.39 6.61

Week of 2/26/07 Week of 12/04/6

Week of 9/11/06 Week of 6/17/06 Week of 3/06/06 Week of 1/09/06

2nd Quarter 2006

1st Quarter 2006 Pre-Dewater

Week of 6/18/07

7.65

5.7

Week of 10/29/07 Week of 8/20/07

4th Quarter 2007 3rd Quarter 2007 2nd Quarter 2007 1st Quarter 2007 4th Quarter 2006 3rd Quarter 2006

2.30

26.0

7.6 9.8

> 1.30 2.30 0.44

0.49 0.39

<0.10 <0.10 <0.10 <0.10 <0.20 <0.50

<0.10 <0.10 <0.10 <0.10 <0.20

0.0

20.9

16.6

0.00 0.00 0.0 0.00 0.00

4.02

7.0 10.4 14.0 13.4 6.39 12.0 11.3 11.3 16.0 10.4

Week of 03/10/08

1st Quarter 2008

0.20

19.4 19.1 19.2

3.6

9.2

620

4500.0 570.0

950.0 210.0

6.50 0.36

47.00 41.00

0.30 1.40

20.0

1534.0

0.00

8.61

56.9

0.0

6.18 6.17

8.1

16.5

350.0

0.00

5.63

100.0

<0.10

0.18

<0.10 7.60 2.70

17.0

; 3.1

0.18

<0.10

<0.10 <0.50

> 0.60 0.50

Page 5 of 14

ш
C)
₹
RR
ш
—
2
Щ
2
ß

g
Ξ
7
Ξ.
-
Ē
0
5
as
()
•
-
0
S

Sample Sampling Location	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	# 2nd Quarter 2008	H 1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
Activities																					
DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week <i>o</i> f 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 1/09/06
Purge Volume (L)	10.6	6.6	11.2	9.7	10.0	9.99	10.5	10.1	8.0	9.9	7.6	6.7	6.6	11.3	9.9	R	R	R	R	R	NR
Depth to Water (ft)	5.84	5.44	3.12	5.35	5.48	5.46	5.78	5.55	5.35	5.43	4.17	3.63	5.42	6.2	5.4	R	R	NR	R	R	NR
Pressure (Inches of Water)	0.00	0.00	0.00	0.0	0.00	0.0	0.0	0.00	0.0	0.00	0.0	0.00	0.00	0.0	0.00	R	R	NR	NR	R	N
PID (ppm))	0.1	0.6	1.6	0.7	0.1	3.7	0.0	1.1	1.3	7.1	3.6	9.1	7.4	38.0	35.0	NR	NR	NR	NR	R	NR
Oxygen (%)	19.8	19.8	20.5	20.9	20.9	19.4	20.9	20.9	20.9	20.9	20.9	20.9	19.2	19.8	20.6	R	NR	NR	R	R	R
Carbón Dioxide (%)	0.40	0.60	0.00	0.00	0.80	1.20	0.00	0.00	0.20	0.40	0.00	0.00	0.70	0.10	0.00	NR	NR	NR	NR	NR	NR
Benzene (úg/l <u>:</u>)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.13	<0.10	<0.10	<0.10	NR	N	NR	NR	R	NR
ල්සියාව (ල්ලියා)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.12	<0.10	0.10	<0.10	<0.10	<0.10	R	R	R	R	R	NR
Englicin (toly)	<0.10	<0.10	<0.10	<0.10	<0.10	0.16	<0.10	<0.10	<0.10	<0.10	0.38	0.44	<0.10	<0.10	<0.10	NR	R	R	RN	R	NR
Wine (celu)	<0.30	<0.30	<0.30	<0.30	<0.30	0.78	<0.30	<0.30	<0.30	2.00	、 1.50	2.60	0.85	<0.3	1.00	R	ЯŻ	R	R	R	R
කියා) ලැන	<5.0	<5.0	<5.0	<5.0	103	15	<5.0	<5.0	6.4	17.0	6.2	47.0	9.4	<5.0	2.0	NR	R	R	R	NR	NR

NM = Not Measured

NR1= Not Required (Approval With Direction - June 2009)

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

СE	
RRACI	
R TE	
RIVE	

Soil Gas Monitoring

(एत)। (एत)।	<5.0	<5.0	56	<5.0	110	180	<5.0	<5.0	7.0	17.0	22.0	5.0	<5.0	6.2	<5.0	7100.0	4700.0	14.0	3700.0	7700.0	1800.0
	<0.30	<0.30	<0.30	<0.30	25.00	35.00	<0:30	0.58	<0.30	2.00	2.00	1.20	0.57	0.78	<0:30	1400.0	710.0	0.43	460.0	1900.0	300.0
ඩෝගියා (ලේඛා)	<0.10	<0.10	<0.10	<0.10	4.90	7.00	<0.10	0.10	<0.10	0.11	0.48	0.23	0.11	<0.10	<0.10	130.00	50.00	0.13	2.20	13.00	2.90
(filterio	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.12	<0.10	<0.10	<0.10	<0.10	<0.10	9.50	7.40	<0.10	6.60	220.00	31.00
Benzene	<0.10	<0.10	<0.10	<0.10	0.28	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<5.00	<5.00	<0.10	<2.00	8.80	6.90
Carbon Dioxide (%)	0.00	00.00	0.00	0.00	0.10	0.10	0.00	0.00	00:0	0.00	0.00	0.0	0.10	0.10	0.10	0.30	0.40	0.0	0.10	0.10	8.90
Oxygen (%)	20.3	20.4	20.5	20.9	10.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	19.7	19.7	20.1	20.4	20.5	20.9	20.9	20.7	4.6
PID (ppm))	. 0.5	6.0	19.8	0.8	24.3	0.7	0.3	1.3	1.1	0.7	6.0	19.1	3.7	91.0	59.0	1775.0	555.0	11.2	1641.0	1534.0	1589.0
Pressure (Inches of Water)	3.00	2.50	5.10	4.00	0.10	0.0	4.00	5.00	4.10	6.50	0.0	0.00	3.00	0.0	0.00	0.05	0.02	0.01	0.01	0.05	0.00
Depth to Water (ft)	6.83	6.45	7.49	5.05	5.48	5.43	5.60	5.42	5.35	5.88	4.44	4.13	5.81	6.67	6.22	8.57	8.21	6.21	7.5	8.92	5.61
Purge Volume (L)	12.5	12.0	13.7	9.2	10.0	9.9	10.1	6.9	10.2	10.8	8.1	7.5	10.6	12.2	11.3	15.6	15.0	11.3	13.7	16.0	10.3
DATĘ	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 1/09/06
Sampling Activities	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
Sample										8;	# - d	T									

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

NR1= Not Required (Approval With Direction - June 2009)

NM = Not Measured

Page 7 of 14

RIVER TERF	R TER	Soil Gas Monitoring
------------	-------	---------------------

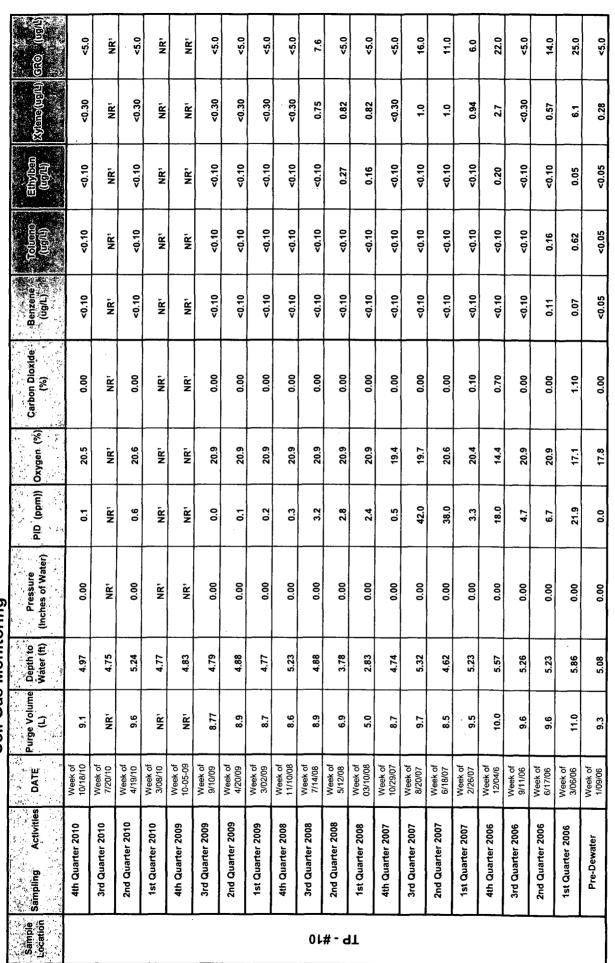
,

(ດັ <u>ນ</u> ອີກູ)					_	_	_	-	_	_		_	_	_	,		_				_
GRO	<5.0	<5.0	<2.0	<5.0	<5.0	<5.0	<5.0	<2:0 <2:0	10.0	<5.0	8.8	<5.0	49.0	65.0	6.6	290.0	20.0	140.0	31.0	8.0	31.0
	<0.30	<0.30	<0.30	<0.30	<0.30	0.55	<0.30	<0.30	1.00	<0.30	2.1	<0.30	4.0	2.8	0.93	41.0	3.5	2.5	0.62	0.53	0.35
attylican (和3)	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	<0.10	<0.10	0.21	<0.10	0.55	<0.10	0.56	<0.10	<0.10	4.30	0.16	0.18	0.10	0.06	0.18
Toluens (trgtt)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.13	<0.10	<0.10	<0.10	<0.10	<0.10	0.15	<0.10	0.21	<0.10	0.09	0.05
Benzenete (ug/L)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.05	<0.05
Carbon Dioxide	0.0	0.00	0.00	00.0	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.10	0.00	0.10	0.20	0.10	0.30	0.00	0.10	0.20
Oxygen (%)	20.3	20.6	20.7	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	20.9	19.7	19.9	20.6	20.6	20.9	20.3	20.9	20.6	17.2
(ingu))	5.0	0.5	2.1	2.0	0.0	0.8	0.0	0.6	3.2	0.2	4.4	2.1	8.2	48.0	24.0	95.1	9.6	18.3	13.9	7.7	8.5
Pressure (Inches of Water)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Depth to Water (ft)	5.28	5.13	5.73	5.30	5.33	5.43	5.49	5.35	5.29	5.4	4.03	3.32	4.94	5.18	4.73	5.07	5.39	5.48	5.26	5.21	5.08
Purge Volume (L)	9.7	9.4	10.5	9.7	9.7	6.6	10.0	2.6	10.4	6.6	7.4	0:9	0.6	9.4	8.6	9.2	10.0	10.0	9.0	10.0	11.3
ÛĂŢĔ	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of . 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 1/09/06
Sampiling Activities	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
Sample Location										6	# - d	T					-		·		

NR1= Not Required (Approval With Direction - June 2009)

NM = Not Measured

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)


.

Page our 14

NR'= Not Required (Approval With Direction - June 2009)

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

ш
ច
4
R
R
ш
┣━
2
Ш
2
R

D	2
<u> </u>	Þ.
ij.	11
0	E
Ľ.	
	Ι.
C	F
~ ~	K.
U	i,
	1
	I.
	÷.
S)	۰.
Gas	ŀ.
2 m	ι.
U.	í,
-	
0	5
	11
So	

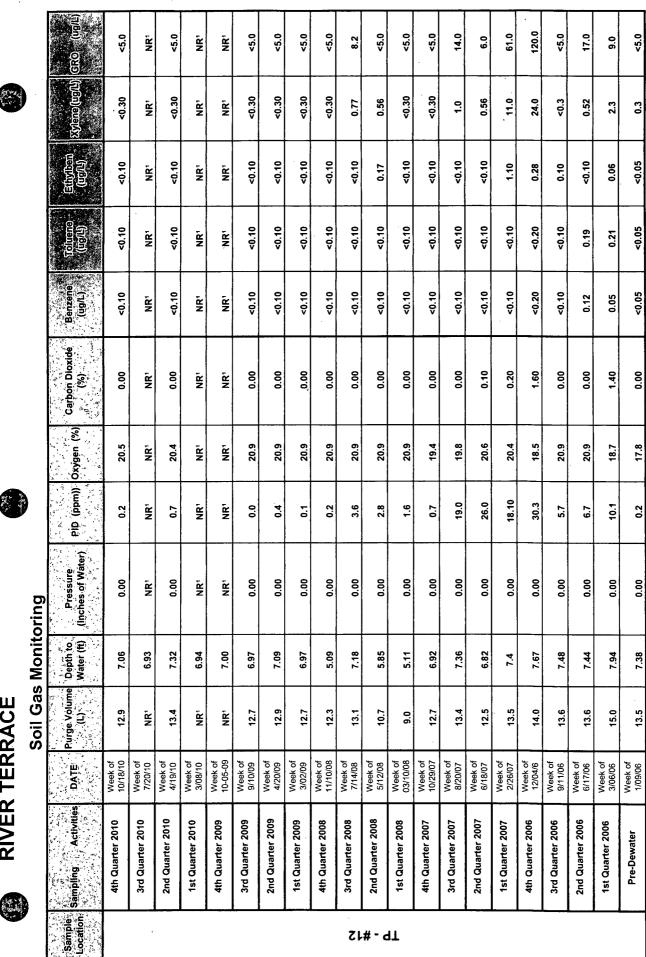
A DESCRIPTION OF THE PARTY OF T	GRO (ug/u)	<5.0	NR	<5.0	NR ¹	NR'	<5.0	<5.0	<5.0	<5.0	8.0	<5.0	<5.0	<5.0	39.0	7.2	11.0	<5.0	9.0	<5.0	13.0	<5.0
A SAMARANA AN	(then)encity	<0.30	NR1	<0.30	NR¹	NR ¹	<0.30	- <0.30	<0.30	<0.30	0.74	0.64	<0.30	<0.3	1.4	0.74	1.4	<0.1	1.5	<0.3	3.3	0.14
		<0.10	NR ¹	<0.10	١R٩	NR ¹	<0.10	<0.10	<0.10	<0.10	<0.10	0.20	<0.10	<0.10	<0.10	<0.10	0.11	<0.10	0.24	<0.10	0.053	<0.05
	Veltano (හලා)	<0.10	NR	<0.10	١R'	NR	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.32	<0.05
1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	Benzene (ug/L)	<0.10	NR1	<0.10	NR ¹	NR ¹	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.06	<0.05
	Carbon Dioxide (%)	0.00	NR ⁴	0.00	NR1	NR ¹	0.00	0.00	0.00	0:00	0.00	0.00	0.00	0.00	6.20	0.00	1.00	0.70	1.40	1.40	0.40	0:30
	PID (ppm)), Oxygen (%)	20.4	NR ⁴	20.5	NR ¹	NR'	20.9	20.9	20.9	20.9	20.9	20.9	20.9	19.4	14.9	20.6	19.0	14.4	19.1	18.8	20.0	17.5
	PID (ppm))	0.0	NR'	0.7	NR'	NR'	0.0	0.2	0.1	0.1	2.2	1.7	6.0	0.6	81.0	45.0	5.9	2.8	2.8	2.6	13.2	0.0
Sun S	Pressure (Inches of Water)	0.00	NR1	00.0	١R¹	NR ¹	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Depth to Water (ft)	5.38	5.22	5.63	5.17	5.28	5.25	5.34	5.22	4.64	5.47	4.15	3.43	5.18	5.75	5.17	5.69	6.00	5.69	5.61	6.31	5.55
	Purge Volume (<u>L</u>)	8.6	NR1	10.3	. NR1	NR1	9.6	9.7	9.55	6.1	10.0	7.6	6.0	9.5	10.5	9.5	10.4	10.0	10.3	10.3	11.0	10.2
	DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 1/09/06
	Sampling Activities	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
2	Sample										11	# - c	4L				• <u> </u>					

.

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

NR1= Not Required (Approval With Direction - June 2009)

Page 10 of 14


NM = Not Measured

.

1.

RIVER TERRACE

NM = Not Measured

NR1= Not Required (Approval With Direction - June 2009)

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

Page 11 of 14

ш
U
4
R
R
μ
F
R
Ш
2
R

	. 1
0	
-	1
<u> </u>	
÷Ē	
-	
63	
~	
-	
_	
-	
-	
~	
- C 1	
~	1
1000	
_	
as	1
\ U	
/n	
1 ° J	
~	
_	
**	
-	
- C	
~	
~/	

	olda) GRO (traftu)	<5.0	NR ⁴	<5.0	NR ¹	NR'	<5.0	<5.0	<5.0	<5.0	11.0	<5.0	<5.0	<5.0	30.0	5.8	24.0	18.0	<5.0	27.0	8.6	
	Xyleno(tt	<0.30	NR ¹	<0.30	NR1	NR'	<0.30	<0.30	<0.30	<0.30	1.40	0.54	<0.30	<0.30	1.3	0.60	2.9	2.4	<0.30	2.4	1.6	
	(tricin)	<0.10	NR ⁴	<0.10	NR ¹	NR	<0.10	<0.10	<0.10	<0.10	<0.10	0.17	<0.10	<0.10	<0.10	<0.10	0.20	0.18	<0.10	0.11	60.0	
	Tolucco (Uc/U)	<0.10	NR'	<0.10	NR'	NR'	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.48	0.17	
	Benzen (ug/L)	<0.10	NR ¹	<0.10	NR1	NR1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.11	0.05	
	Carbon Dioxid (%)	0.00	NR ¹	0.00	NR ¹	NR1	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.10	0.00	0.00	0.20	1.10	6:90	1.00	1.00	
	RID (ppm)) Oxygen (%)	20.4	NR1	20.6	NR1	NR	20.9	20.9	20.9	20.9	20.9	20.9	20.9	19.4	19.8	20.6	20.2	18.5	18.6	18.1	19.1	
L. L. Charles and L.		0.2	NR'	0.5	NR'	NR'	0.0	0.1	0.2	0.2	3.2	1.5	1:	0.7	128.0	0.79	4.10	13.8	1.8	19.5	12.6	
	Pre (Inches	0.00	NR'	0.00	NR ¹	NR ¹	0.00	0.00	0.0	0.0	0:00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	
	Depth to Water (ft)	5.93	5.75	6.17	5.83	5.85	5.80	5.98	5.66	6.83	5.97	4.69	3.92	5.8	6.1	5.63	6.16	6.51	6.33	6.35	6.78	
	Purge Volume (L)	10.8	NR1	11.3	NR ¹	NR'	10.6	10.9	10.4	16.9	10.9	8.6	7.0	10.0	11.0	10.3	11.3	11.9	11.6	11.6	12.0	
R town	DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of
	Sampling	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
Sec. Sec.	Sample				•		-				13	# ⁻ c	4L		•					·		

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

NR1= Not Required (Approval With Direction - June 2009)

Page 12 of 14

ш
Ü
2
4
R
$\overline{\mathbf{z}}$
Ř
ш
F
•
R
Ш
>
Ϋ́
_

Þ

	1
	1
itoring	ļ
- 0,	ł
C	
Ξ.	E
<u> </u>	
0	I
<u> </u>	l
<u> </u>	ł
1	I
<u> </u>	ł
0	I
ž	I
Mol	ł
	I
Gas	ł
<u> </u>	I
0	l
Ü	I
\mathbf{U}	ł
_	I
0	1
	1
٥	1
	1

Benteino (ugit) (cc/u)	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 0.11	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.05 0.61	0.09 0.14
Carbon Dioxide Bê	0.00	0.00	0.00	15.00 <	0.10	0.20	0.00	0.00	0.00	0.60	0.00	0.00	0.20	1.10 <	1.80 <	0.50	0.00	1.30 <	4.40	8.70 <	7.40
Oxygen (%)	20.3	20.5	20.6	20.6	20.9	20.9	20.9	20.9	20.9	20.7	20.9	20.9	19.3	18.6	18.6	19.8	20.9	18.8	16.6	9.9	12.7
PIQ (ppm)	0.5	0.6	6.0	9.0	0.0	0.0	0.0	0.8	0.1	0.2	0.9	2.0	0.7	27.0	0.6	1.00	1.1	7.8	5.8	25.4	0.0
Pressure (Inches of Water)	0.00	0.00	0.00	0.00	00.0	0.00	00.0	0.00	0.00	00.0	00.0	00.0	00.0	0.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00
Depth to Water (ft)	3.17	5.82	6.24	5.62	5.85	5.82	6.02	5.69	5.72	5.89	4.66	4.11	5.8	6.71	5.81	6.11	5.58	6.39	6.49	7.91	6.9
Purge Volume	101.0	95.0	102.0	92.0	96.0	95.0	99.1	93.0	162.0	96.8	76.7	68.0	95.0	110.0	95.6	100.5	92.0	105.0	150.0	130.0	113.0
DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 1/09/06
Sampling	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
Sam																					

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

NR1= Not Required (Approval With Direction - June 2009)

ш
S
2
2
ш
E E E E E
5
2

δ
Ξ.
2
Ξ.
C
0
5
_
as
G
_
0
Ō

	ात्री) (एत्री)		0 <5.0	0 <5.0	0 <5.0	0 <5.0	0 <5.0	0 <5.0	0 <5.0	0 <5.0	0 <5.0	0 <5.0	0 <5.0	0 <5.0	< 2.0	0 11.0	0 <5.0	s <5.0	0 <5.0	35.0	28.0	
	san Isyaacteelu	0 <0.30	0 <0.30	0 <0.30	0 <0.30	0 <0.30	0 <0.30	0 <0.30	0 <0.30	0 <0.30	0 <0.30	0 <0.10	0 < <0.30	0 <0.30	0 0.39	0 <0.30	0 <0.30	0 0.46	0 <0.30	0 1.4	6.8	
	m (tech) (tech)	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	1 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	10 <0.10	0 0.06	
	Benzene folueno (ug/L) (tg/L)	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 0.11	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.05 1.00	
	(%) Carbon Dioxide	0.30	1.30	0.00	55.00	1.10	2.30	0.20	0:30	0.60	2.60	0.00	0.00	1.60	5.00	3.00	0.60	1.00	2.80	2.70	1.00	
	om)) Oxygen (%)	19.7	18.7	20.1	20.3	20.9	19.1	20.9	20.5	20.9	18.1	20.9	20.9	18.2	15.7	17.4	19.8	19.0	17.7	16.8	19.2	
	ater) PID (ppm))	0.2	0.6	1.0	0.6	0.0	0.0	0.0	0.4	0.1	0.2	1.0	2.0	1.1	22.0	64.0	1.60	2.1	3.5	16.1	20.3	
	Pressure (Incries of Water)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	me Depth to Water (ft)	9.14	8.95	9.59	9.30	9.03	9.02	9.24	8.96	8.72	9.03	7.66	6.9	8.62	9.3	8.41	8.79	9.16	9.38	9.98	10.07	
1	Purge Volume (L)	f 67.0	f 65.0	f 70.0	f 68.0	f 9 66.0	f 65.0	f 67.7	f 65.0	f 60.0	f 66.2	f 56.2	f 50.0	f 63.0	f 68.0	f 61.6	f 64.4	f 67.0	f 68.0	f 73.0	f 74.0	
	les DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/6	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of
	Sămpilîng Activities	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater
	Sample		-	_							67	# - N	vw									<u> </u>

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

NR1= Not Required (Approval With Direction - June 2009)

Page 14 of 14

od(80/15B%22

UCERN

River Terra

(FR) Scienting Collections Tetalora		କ୍ଟେଭ (ଲଟ୍ଟ ^U)	55.00	40.00	39.00	34.00	44.00	39.00	59.00	46.00	51.00	59.00	54.00	62.00	64.00	80.00	70.00	160.00	95.00	98.00	40.00	72.00	66.00
(FFN) Sec.	0.8	(hj.j.u) (220	839	(CPD)	070 -	GZB	0070	N.CO)	(<u>)</u> (15(0)	(i)()()	00°203	r 630	500	200	03.0	93D	2.00	200	, 23G	W.	930) - 930) -	830	9.03
යෙන කියාන කියාන කියාන කියාන	(00£9	(knjaca) Ejenca	<0.05	<0.13	<0.130	<0.25	<0.25	<0.25	<0.25	<0.25	<0.63	<0.12	<0.12	<0.12	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.62	<0.12	<0.05
WEEE EDULING ELEETUR	0.62	(FT(200)) CUCC/AX	1900	16 400	1	Lingua	(OPH)	(0)%R	N.OD	ne al	0.0	00/2	(inclusion)	2000 2000	00°0	£000	90109	M	(1979) (1979)	-900ee	A.Lia)	. ED@)	
liter.	027	(h)(311) (13)(11)	ହତ୍ତ	ଥିଛା	0360	â.M	8400	520	3.30	300	3.XC	936	800	ୁ ଅନ୍ତ	980	0 <u>5</u> 0	. (III)	630	œ??	B.G.B.	61.239	000 700	3.60
WOGE ZUNIAG FIZENDE	0.86	Column (ECCI)	<0.02	<0.05	<0.05	<0.10	<0.10	<0.10	<0.10	<0.10	<0.25	<0.05	<0.05	<0.05	<0.001	<0.10	<0.10	<0.10	<0.10	<0.10	<0.25	<0.05	0.05
, mên	0003	Benzene (mg/L) K	0,272	600	000	(160)	0003	ଉତ୍ତ	G70	908	0 5 0	08U	නිසා	540	1.00 1	020	160	2000	0001	9230	260	0FD	1400
		ORP (mV)	-47	-62	-193	231	137	42	209	194	241	123	262	210	223	237	185	134	<u>96</u>	-50	-15	186	NR
		D.O. (mg/L)	1.89	0.81	0.94	1.62	1.69	1.51	0.83	10.35	0.56	6.94	1.40	4.55	0.49	4.19	0.31	0.65	ŴN	0.71	0.56	0.83	R
		ŤEMP (%)	66.5	66.2	51.2	45.1	67.4	6.96	54.5	46.6	61.1	68.6	58.6	49.4	63.4	74.4	65.9	50.3	57.3	72.8	67.3	52.0	70.6
		Hđ	6.92	6.58	6.88	6.80	6.79	6.93	6.92	6.91	6.81	6.96	6.83	6.96	6.78	6.93	6.93	6.82	6:99	7.00	6.96	7.04	6.92
		E.C. (umhos/cm)	1833	1811	2654	2198	2732	2653	2684	2920	3050	4037	3572	3533	4123	4661	4907	3825	3631	3053	2372	2233	2034
Irements		Total Well Depth (ft below TOC)	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.28	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38	9.38
Field Measurements		Depith to Product (ft below TOC).	ddN	NPP	MPP	NPP	NPP	NPP	NPP	NPP	NPP	NPP	NPP	ddN	ЧРР	NPP	NPP	ЧРР	NPP	ddN	ddN	ЧРР	ddN
ï		Depth to Water. (ft below TOC)	6.30	5.90	6.96	4.40	4.90	4.90	5.26	4.91	4.85	5.37	3.97	3.63	5.29	6.24	5.67	7.79	7.42	5.68	6.80	8.04	5.35
		DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/06	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 8/15/05
		Sampling	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Baseline
		Sample										ι	# d.				<u> </u>						

*Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

Page 1 of 14

NM = Not Measured

NR¹= Not Required (Approval With Direction - June 2009)

Ground Water Monitoring

River Terrace

nts	
Iremen	
easul	

EPAMethod(80)(5B () (174) Succentral Entite Ances

ethod 8021B

0.V5 6.V 0.V1 0.05 0.05 (10000) (10010) (10010) (10010) (10010) 0000 0.013 2.50 1.7000 0.013 2.50 2.60 2.60 0.014 2.00 1.7000 0.013 2.50 2.60 2.60 0.014 2.00 1.700 0.013 2.60 2.60 2.60 0.014 2.00 1.700 0.013 2.60 2.60 2.60 0.014 2.00 2.60 2.60 0.013 2.6 2.6 0.014 1.40 2.60 0.60 2.60 2.6 2.6 0.017 2.60 0.50 0.50 0.6 2.6 2.6 0.017 2.60 0.50 0.50 0.55 0.7 2.6 0.013 2.60 2.60 2.60 2.6 2.6 2.6 0.013 2.60 2.60 2.60 2.6 2.6 2.6				ΪĹ	Field Measurements	irements						Me	Weec ZUINAS GARAS	tion	ഷ്തി	Contral Generation Contral		cathgent have Tablea
Mitter Description Description <thdescripication< th=""> <thdescription< th=""> <</thdescription<></thdescripication<>												6009	0.46.	63/	aro:	6.00G	0.3	
Without Name Wat Wa	OF.		DATE	Depth to Water (ft below TOC)	Depth to Product (ft below TOC)	Total Well Depth (ft below TOC)	umhoë/cm)	, pH	° ([°] E)	D.O.	The rest is not the rest of the local division of the local divisi	Benzene (mg/L) a	(Glueno (mg/li)	(inglu)	XVIEND (CCUU)	(11) (11)	010 (ii:01)	डा (क.())
Weak 		4th Quarter 2010	Week of 10/18/10	7.70	ddN	9.92	1222	00.7	62.6	1.78	-153		0.03	<u>1</u>	. W.22	<0.013	2.6	45.00
Were No. B3 TA 53 TA 64 054 041 54 011 54 Were 656 HP 323 153 7.3 154 7.4 050 0.01 <td></td> <td>3rd Quarter 2010</td> <td>Week of 7/20/10</td> <td>7.29</td> <td>ddN</td> <td>9.92</td> <td>1546</td> <td>6.77</td> <td>63.6</td> <td>0.62</td> <td>-72</td> <td>0,531</td> <td>0.015</td> <td></td> <td>99.00</td> <td><0.013</td> <td><u>8</u>.B</td> <td>32.00</td>		3rd Quarter 2010	Week of 7/20/10	7.29	ddN	9.92	1546	6.77	63.6	0.62	-72	0,531	0.015		99.00	<0.013	<u>8</u> .B	32.00
Werker Werker Mer 912 153 47.3 194 714 60.0 100 <th< td=""><td></td><td>2nd Quarter 2010</td><td>Week of 4/19/10</td><td>8.13</td><td>NPP</td><td>9.92</td><td>1952</td><td>7.00</td><td>53.5</td><td>1.17</td><td>-64</td><td>000</td><td>0.014</td><td></td><td>115,000</td><td><0.013</td><td>$\bar{h}_{a}\bar{J}$</td><td>45.00</td></th<>		2nd Quarter 2010	Week of 4/19/10	8.13	NPP	9.92	1952	7.00	53.5	1.17	-64	000	0.014		115,000	<0.013	$\bar{h}_{a}\bar{J}$	45.00
Weeker 6.60 NPP 9.22 1789 6.44 6.15 7.55 6.50 0.17 6.66 0.17 6.05 0.175 6.025 6.025 6.025 6.025 6.025 6.025 6.025 6.025 6.025 6.025 6.017 8.05 6.017 8.05 6.025		1st Quarter 2010	Week of 3/08/10	6.56	AdN	9.92	1659	6.73	47.3	1.94	274	0 :00	<0.01	689	200	<0.25	200	8.80
Werker 6.27 NPP 9.82 1936 6.51 <t< td=""><td></td><td>4th Quarter 2009</td><td>Week of 10-05-09</td><td>6.60</td><td>ddN</td><td>9.92</td><td>1789</td><td>6.84</td><td>64.6</td><td>2.38</td><td>157</td><td>020</td><td>0.015</td><td>30</td><td></td><td><0.025</td><td>909</td><td>16.00</td></t<>		4th Quarter 2009	Week of 10-05-09	6.60	ddN	9.92	1789	6.84	64.6	2.38	157	020	0.015	30		<0.025	909	16.00
Week E.89 NPP 9.22 7.15 6.40 7.14 0.73 2.60 4.01 4.025 4.01 4	_	3rd Quarter 2009	Week of 9/10/09	6.52	ddN	9.92	1926	6.97	66.5	0.75	109	0,650	0.017	9 T	ર્શકો શિક્ષો	<0.025	്ജ	13.00
Weeker 6.46 NPP 9.82 2.816 7.00 4.80 6.90 0.50 0.50 0.50 0.013 5.001 Weeker 6.72 NPP 9.92 2619 6.89 3.36 174 0.005 0.50 0.50 0.015 5.005 <td< td=""><td></td><td>2nd Quarter 2009</td><td>Week of 4/20/09</td><td>6.89</td><td>NPP</td><td>9.92</td><td>2175</td><td>6.90</td><td>57.4</td><td>0.73</td><td>215</td><td>060</td><td><0.01</td><td>(jig)) </td><td>ψι<u>C</u></td><td><0.025</td><td></td><td>14.00</td></td<>		2nd Quarter 2009	Week of 4/20/09	6.89	NPP	9.92	2175	6.90	57.4	0.73	215	060	<0.01	(jig)) 	ψι <u>C</u>	<0.025		14.00
Medical 6,72 NPP 9,92 2619 6,89 3.3 1,74 6,01 6,03 <t< td=""><td></td><td>1st Quarter 2009</td><td>Week of 3/02/09</td><td>6.46</td><td>ddN</td><td>9.92</td><td>2358</td><td>7.00</td><td>49.8</td><td>1.8</td><td>207</td><td>- 030</td><td><0.0005</td><td>0.50</td><td>0.58</td><td><0.013</td><td>, GW,</td><td></td></t<>		1st Quarter 2009	Week of 3/02/09	6.46	ddN	9.92	2358	7.00	49.8	1.8	207	- 030	<0.0005	0.50	0.58	<0.013	, GW,	
Weeked Tote NP 992 3353 6.9 6.4 3.4 162 0.02 0.02 0.03		4th Quarter 2008	Week of 11/10/08	6.72	APP	9.92	2619	6.89	59.9	3.58	174	030	<0.01	10 A	С. Т	<0.025		
New Sec Sec <td></td> <td>3rd Quarter 2008</td> <td>Week of 7/14/08</td> <td>7.06</td> <td>ЧРР</td> <td>9.92</td> <td>3363</td> <td>6.98</td> <td>66.4</td> <td>3.48</td> <td>162</td> <td></td> <td><0.02</td> <td>2. ESC - 1</td> <td>2003</td> <td><0.05</td> <td>10 A</td> <td>19.00</td>		3rd Quarter 2008	Week of 7/14/08	7.06	ЧРР	9.92	3363	6.98	66.4	3.48	162		<0.02	2. ESC - 1	2003	<0.05	10 A	19.00
Week of New Kord S.30 NPP 9.92 7.74 6.96 5.1 1.89 171 6.20 8.30 <0.02 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 <0.05 8.30 8.30 8.30 8.30 8.30 8.30 8.30 8.30 8.30 8.30 <th< td=""><td></td><td>2nd Quarter 2008</td><td>Week of 5/12/08</td><td>5.52</td><td>NPP</td><td>9.92</td><td>2664</td><td>6.85</td><td>56.7</td><td>0.44</td><td>118</td><td>030</td><td><0.02</td><td>200</td><td><u>A</u>(0)</td><td><0.05</td><td>Rold Street</td><td>19.00</td></th<>		2nd Quarter 2008	Week of 5/12/08	5.52	NPP	9.92	2664	6.85	56.7	0.44	118	030	<0.02	200	<u>A</u> (0)	<0.05	Rold Street	19.00
Week of 10/2007 6.86 NPP 992 3507 6.96 6.2.4 0.85 217 0.60 200 20.5 6.01 200 20.5 6.02 20.25 6.02 20.25 20.0 20 20.0		1st Quarter 2008	Week of 03/10/08	5.30	NPP	9.92	2748	7.00	51.3	1.89	171	020	<0.02	દ્વસંઈ	G 5 D	<0.05	623	18.00
Week of 052007 7.7.3 NPP 9.92 3771 6.97 71.0 1.78 217 (0.63) <0.10 (0.25) (0.25) (0.25) (0.25) (0.25) (0.25) (0.10) Week of 12000 7.50 NPP 9.92 2376 6.87 6.75 0.70 191 (0.0) 0.25 (0.25) (0.10) Week of 22607 8.86 NPP 9.92 3783 6.82 51.4 1.45 171 (0.0) 0.25 (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0.10) (0.25) (0		4th Quarter 2007	Week of 10/29/07	6.86	ΔPP	9.92	3507	6.96	62.4	0.85	217	9,60	<0.10	340	् अर्थ ह	<0.25	900 F	22.00
Week of 61807 Veek of 71807 7.50 NPP 9.92 2576 6.87 6.75 0.70 191 0.02 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **1.00 **0.5 **0.5 **0.5 **0.5 **0.5 **1.00 **0.5 <th< td=""><td></td><td>3rd Quarter 2007</td><td>Week of 8/20/07</td><td>7.73</td><td>NPP</td><td>9.92</td><td>3771</td><td>6.97</td><td>71.0</td><td>1.78</td><td>217</td><td>: 0.69</td><td><0.10</td><td>2(60</td><td>909 7</td><td><0.25</td><td>1.100</td><td>28.00</td></th<>		3rd Quarter 2007	Week of 8/20/07	7.73	NPP	9.92	3771	6.97	71.0	1.78	217	: 0.69	<0.10	2(60	909 7	<0.25	1.100	28.00
Week of 22807 8.86 NPP 9.92 3783 6.82 51.4 1.45 171 4.00 4.00 4.01 4.02 6.01 4.02 6.01 4.02 6.02 6.01 4.02 6.01 4.02 6.02		2nd Quarter 2007	Week of 6/18/07	7.50	ddN	9.92	2576	6.87	67.5	0.70	191	0.00	0.32	8. D	, ja o	<0.25	*<1.00	47.00
Week of 1200406 9.03 NPP 9.92 3548 6.92 53.5 2.14 177 1770 <0.10 2.03 <0.25 Week of Week of Week of Week of Week of Week of 306006 7.37 NPP 9.92 2531 7.03 67.4 0.65 -13 2.09 0.27 <0.25		1st Quarter 2007	Week of 2/26/07	8.86	NPP	9.92	3783	6.82	51.4	1.45	171	ବର	<0.10	6 W.O.	. Dud	<0.25	24M	94.00
Week of 911/06 7.37 NPP 9.92 2531 7.03 67.4 0.65 -13 9.90 0.27 <0.25 W. 911/06 8.27 NPP 9.92 2531 7.03 67.4 0.65 -13 9.90 0.27 <0.25		4th Quarter 2006	Week of 12/04/06	9.03	ddN	9.92	3548	6.92	53.5	2.14	177	120	<0.10	S.S.	il a	<0.25	6	41.00
Week of 6/17/06 8.27 NPP 9.92 3586 6.93 62.8 0.94 -216 8.60 2.00 2.01 -0.12 -0.12 Week of 3/06/06 9.83 NPP 9.92 1802 7.08 53.2 9.48 184 6.20 0.51 5.2 -0.12 0.51 5.2 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 0.51 5.3 -0.12 5.3 -0.12 0.51 5.3 -0.12 5.3 -0.12 0.51 5.3 -0.12 5.3 -0.12 0.55 5.3 -0.12 5.3		3rd Quarter 2006	Week of 9/11/06		ddN	9.92	2531	7.03	67.4	0.65	-13	820	0.27	99 99 99 99 99 99 99 99 99 99 99 99 99	666	<0.25	1977	77.00
Week of 3/06/06 9.83 NPP 9.92 1802 7.08 5.3.2 9.48 184 6.20 1.50 0.51 5.02 5.03 Week of Week of 8/15/05 6.84 NP 9.92 1802 7.08 53.2 9.48 184 6.20 1.50 0.51 5.05 5.05 Week of 8/15/05 6.84 NP 9.92 2225 6.85 NR NR 6.50 0.50 0.51 5.05 5.05		2nd Quarter 2006	Week of 6/17/06.	8.27	NPP	9.92	3586	6.93	62.8	0.94	-216	<u> </u>	<u> 2(B</u>		1999 1999 1999 1999 1999 1999 1999 199	<0.12		42.00
Week of 8/15/05 6.84 NPP 9.92 2225 6.85 65.2 NR 650 370 6.4 <0.05 2 3		1st Quarter 2006	Week of 3/06/06	9.83	ddN	9.92	1802	7.08	53.2	9.48	184	620	030	0.51		<0.12	1850 1	27.00
		Baseline	Week of 8/15/05	6.84	NPP	9.92	2225	6.85	65.2	NR	NR	<u>6</u> 30	020	200 (* 13 (* 13	5 - - - -	<0.05	• - 24 - 12 - 12	84.00

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated ept. 1, 2009 all future DRO analysis will be analysed at a lower detection level of 0.2mg/L by EPA Mer 9015B.

NR¹= Not Required (Approval With Direction - June 2009)

e 2 of 14

WAEK JU

SEPA

(Mintele:

AvMethodi802818.

Ground Water Monitoring

River Terra

) Currente de la comparte de la comparte de la comparte Comparte de la comparte d		GEO (mOL)	<0.05	NR1	<0.05	NR'	NR'	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0,05	<0.05	<0.05	<0.05
(පති පෙලේ කාලා පො ලින්ඩා වියි	62	010 (100)	<0.20	NR'	<0.20	NR'	NR1	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00
Second Second Peratr	3.00	(incia) (incoli)	<0.0025	NR'	<0.0025	R	R	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
20000	906	(filent)	<0.002	NR ¹	<0.002	NR	NR ¹	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.003	<0.003	<0.003	<0,003	0.0012
ETG.	1 (TO)	(HOM) (ALA)	<0.001	NR	<0.001	NR'	NR	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005
EDNIAC GRADO	0.75	Roluciuo (inc/ltf)	<0.001	NR'	<0.001	NR1	NR1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005
l lieit	0009	Benzene (mĝ/E)	<0.001	NR	<0.001	NR	NR1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005
·		ÓRP (mV)	309	NR	286	NR'	NR'	271	231	278	216	240	122	223	254	246	211	248	242	233	179	256	R
) (mg/L)	2.03	NR	0.93	NR	NR	5.38	3.20	3.04	1.75	1.56	3.95	2.87	3.40	2.67	3.12	1.65	1.32	0.33	0.98	0.21	К
		TEMP (°F	64.7	NR'	52.5	NR	NR	67.9	55.5	49.7	60.1	64.5	55.7	48.5	62.3	66.2	60.8	47.0	54.8	68.0	62.1	47.9	68.4
		PH	6.98	NR	6.99	NR'	NR'	6.85	6.91	7.07	06.9	6:99	6.86	6.89	6.87	6.97	6.85	6.89	7.06	6:99	6:99	6.94	6.85
		E.C. (umhos/cm)	479	NR ⁴	524	NR'	NR ⁴	802	752	812	1096	867	775	602	806	815	560	839	673	779	856	1050	1295
Irements		Total Well Depth (fit below TOC)	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35	12.35
Field Measurements		Depth to Product (ft below TOC)	NPP	NPP	NPP	NPP	NPP	NPP	APP	NPP	ЧРР	ddN	MPP	NPP	ddN	NPP	NPP	NPP	ЧРР	NPP	NPP	NPP	ddN
		Depth to Water (ft below TOC)	7.05	6.85	7.32	6.75	6.91	6.85	7.06	6.46	6.80	7.15	5.86	5.17	6.94	7.62	7.02	7.52	7.77	7.41	7.23	8.09	6.61
		DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week af 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/06	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 8/15/05
			4th Quarter 2010	3rd Quarter 2010	$_{ m o}$ 2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Baseline
		Sample										8	# d.	L									

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

NR¹= Not Required (Approval With Direction - June 2009)

NM = Not Measured

Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

Page 3 of 14

River Terrace

Latheriotics		ලැබ (සාවු	9	26	38	31	40.00	33.00	49.00	37.00	38.00	50.00	46.00	52.00	56.00	69.00	78.00	85.00	50.00	110.00	34.00	59.00	56.00
uringasin Uringasin Te	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(tu:Cu)	8.00.	3.00 	600	9,0	8.40	£001	(elicit)	\$2100-	6.56	007 (100	*<1.00	*<1.00	. 63	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	9.20
Ton Page		(tron)	<0.025	<0.025	<0.025	<0.013	<0.025	<0.025	<0.025	<0.025	<0.025	<0.05	<0.05	<0.050	<0.0025	<0.25	<0.25	<0.025	<0.120	<0.025	<0.025	<0.05	<0.05
WOGE WO	(1953) 1	(inclu)	640	939	(B)00	0.00 U.00	00%	38.00	Billion	00.00	00%61	(00) (01)	(gana)	0074	00%0		30.00	00101	000	10,60	6073)	9080S	29,299
(Lice)	APO -	(EUVICED (EUVICED	- 1	0.31	90	0.15	0.00	1.00 F	<u>છ</u> ે.	031	<u>8</u> 49	0.20	. UDU -	000	5000	800	830)	0 2 0	3,200	(A)(E)	900¥	0.28	3.59
ALEL ALE	കന	Goltenn (mj/h)	<0.01	<0.01	<0.010	0.0078	<0.01	<0.01	0.011	<0.01	0.01	<0.02	<0.02	<0.020	<0.001	<0.10	<0.10	<0.01	<0.050	<0.01	<0.001	<0.02	<0.005
linet.	ann	Benzene (mgil.)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	- 97000. j	0000	800	<0.02	900	<0.020	<0.001	020	0300 1	<0.01	000	<0.01	005	050	०४छ
		ORP (mV)	71	84	121	253	212	152	106	176	129	159	54	216	229	129	148	219	229	149	39	-51	R
		, D.O. ک (شوار)	2.06	1.11	0.58	0.67	4.57	1.12	0.69	3.33	1.23	1.49	1.32	2.34	0.23	0.17	0.80	6.79	1.36	0.29	0.05	0.52	R
		TEMP. (*	68.2	65.8	54.1	48.5	67.4	72.6	55.2	49.2	61.8	69.8	56.8	47.4	66.5	69.8	63.9	49.6	56.0	71.0	65.3	54.1	68.7
		'n	7.01	6.79	7.02	7.05	6.76	7.04	6.69	7.07	6.83	6.95	6.87	6.82	7.04	6.88	6.87	6.87	66.9	60''	6.94	7.03	6.90
		E.C. (umbos/cm)	632	707	590	807	759	794	1128	1092	981	852	702	656	857	911	884	1027	1377	879	989	747	923
rements		Total Well Depth (ft below TOC)	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84	8.84
Field Measurements		Depth to Product (ft below-TOC)	NPP	NPP	NPP	NPP	NPP	NPP	NPP	ddΝ	ddN	NPP	ddN	ddN	NPP	NPP	ΔdΝ	NPP	ddN	NPP	NPP	NPP	APP
Ë		Depth to Water (ft below, TOC)	5.65	5.11	5.98	4.41	4.57	4.54	4.96	4.86	4.54	4.76	3.43	3.15	4.78	6.97	6.62	5.59	5.95	5.32	5.24	7.81	5.91
		DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/06	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 8/15/05
	1988. Ann	Sampling 4 Events 4	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Baseline
		Sample	_		4							ç	# dJ										·

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005) Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated pt. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA M

NR'= Not Required (Approval With Direction - June 2009)

River Terra	
	Ground Water Monitoring

Sample

Q. (UCU)

5.5 1.5 0.056 <0.05 <0.05

0.27

12.00 11.00 12.00

9.8

3.40 8.60 1.20 1.90 0.07 0.19 0.11 0.28

*<1.00

<0.0025

<0.002

<0.001 <0.001

<0.001<0.001<0.01<0.01

<0.001

253

0.72 1.03 0.76 0.38 0.63 NR

47.5 54.8 69.4 66.5 52.3 52.3

6.83

1857

9.94 9.94 9.94 9.94 9.94

ddN ddN ddN

6.39

Week of 2/26/07 Week of 12/04/06

1st Quarter 2007

6.61

4th Quarter 2006 3rd Quarter 2006 2nd Quarter 2006 1st Quarter 2006

Week of 9/11/06 Week of 6/17/06

6.95 7.02

1826 2698 1216

226

5.30

*<1.00 *<1.00 *<1.00

<0.025 <0.025 <0.025

0.41

0.01 0.03

94 55

1.90 2.70

0.48

*<1.00

<0.0025

<0.003

26.00

S. S. S. C.

<0.05

<u>.</u>

auro.

<0.01

0233

6.94

602 1128

ЧЧN

6.18

Week of 3/06/06 NPP

8.61 5.78

> Week of 8/15/05

> > Baseline

CTD -

0.18

<0.001</pre>

R 153

0.05

000

<0.001 <0.001

6.98 7.35

States and a EPAMethod 80/15B was

A State of CPANNethod (802/18 20)

SUIDEILLER

			Ε	Field Measure	Irements						men	WOGE ZUNING GZZIO	Met.	MERCE SOUTING O.S.BOB	icerta Rotenti Corentra Loota	ගැඩ දිනයක් ගැනී ගැනී රූකිය දිද	D D D D D D D D D
											0008	075	0.2	(BD0	0005	023	
	Sampling	DATE	Depth to Water (ft below TOC)	Depth to Product (ft.below TOC)	Total Well Depth (ft.below_TOC)	E.C. (umhos(cm)	He	TEMP (°F)	D.O. (mg/L)	ORP (mV)	Benzene) (mg/L)	(filling)	(fg@ug) (gg@gg)	(fuCun)	(futeral)	(hjîni) Ozo	લરહ
4	4th Quarter 2010	Week of 10/18/10	6.50	NPP	9.94	870	96.9	66.3	2.29	-499	<0.001	<0.001	0.0094	0.0039	<0.0025	<0.20	
3.	3rd Quarter 2010	Week of 7/20/10	5.82	NPP	9.94	934	6.63	67.3	1.09	150	<0.001	<0.001	0.0021	0.0089	<0.0025	<0.20	
2 ¹¹	2nd Quarter 2010	Week of 4/19/10	6.84	NPP	9.94	1712	6.91	51.1	6.80	-515	<0.001	<0.001	0.0024	0.0075	<0.0025	0.50	
4	1st Quarter 2010	Week of 3/08/10	5.27	APP	9.94	1262	6.84	46.5	6.57	214	<0.001	<0.001	0.018	0.09	<0.0025	970	
4	4th Quarter 2009	Week of 10-05-09	5.49	NPP	9.94	919	6.69	66.0	1.33	278	0.023	<0.02	(6 7	2.2	<0.05	2.6	
31	3rd Quarter 2009	Week of 9/10/09	5.47	ddN	9.94	934	6.99	69.5	1.71	-5	:ଉଡ୍ଟେ	<0.02	0.80	100	<0.05	200	
2u	2nd Quarter 2009	Week of 4/20/09	5.93	ddN	9.94	1025	6.99	54.2	5.99	141	- 970FB	<0.02	000	8.D	<0.05	24600	
\$°	1st Quarter 2009	Week of 3/02/09	5.68	ddN	9.94	1126	7.02	48.7	1.63	169	0.055	<0.02	tt un 1	ભિષ્ય	<0.05	8E0	
4t	4th Quarter 2008	Week of 11/10/08	5.40	NPP	9.94	1293	7.07	61.0	0.58	199	0.020	<0.005	0.430	1260	<0.013	Q.Z	•
31	3rd Quarter 2008	Week of 7/14/08	5.67	NPP	9.94	726	7.00	66.3	0.53	70	<0.005	<0.005	0600	0173	<0.012	*<1.00	
3	2nd Quarter 2008	Week of 5/12/08	4.33	NPP	9.94	266	6.87	58.0	0.77	181	0.000	<0.001	0.180	0.07	<0.0025	*<1.00	
1s	1st Quarter 2008	Week of 03/10/08	4.02	NPP	9.94	1093	6.93	49.9	1.62	176	0023	<0.001	0.260	0.30	0.0029	*<1.00	
4t.	4th Quarter 2007	Week of 10/29/07	5.70	ddN	9.94	1502	6.93	63.3	0.53	177	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	
3,	3rd Quarter 2007	Week of 8/20/07	7.65	NPP	9.94	1317	6.89	69.0	0.38	145	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	
2n	2nd Quarter 2007	Week of 6/18/07	7.32	NPP	9.94	1361	68'9	62.2	1.19	220	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	
								1	-								

NR¹= Not Required (Approval With Direction - June 2009)

NM = Not Measured

*Per NMED letter Approval with Direction 2008 Groundwater Remediation and Moniforing Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005) Page 5 of 14

9# d1

River Terrace

200 200

EPAMethod 802/1812/1912

Ground Water Monitoring

100	(tiellma)		(juan		, v	2	5	5	5	2		5	5	2	5	5	5	5		~				2
inoinnina	aing Guta Rinezo		GEO (mult)		60.0>	<0.05	<0.05	<0.05	<0.05	<0.05	0.063	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	R	R	, N	R	R R	<0.05
	TRRI Sera	62	(H)(U)) (0)(0)		<0.20	<0.20	<0.20	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	R	R	R	R	R	*<1.00
	Colorado Colorado Securitoria	0.062	(Anom) Econo	10,0005	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	NR	NR	NR	R	R	<0.0025
	WEE6 ZDNING (V23500)	. 069			<0.002	<0.002	<0.002	<0.002	<0.002	0.008	0.021	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	R	R	¥	R	Å	0.0049
Mainoutau	NGN	6.8	हिपोल्टाज (तिहास)		<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	NR	R	R	R	Я	0.00065
	MEGO EMNAGO GLEMO	076	Toluens (insliny)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	R. ,	R	R	Я	R	<0.0005
はために、こことのないという。	frank and	0009	Benzene	10.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	¥	¥	ц	R	R	<0.0005
1	<u></u> 191. (* 19		ORP: (mV)	1	108	309	312	247	236	250	251	221	229	179	244	253	245	222	R	R	R	R	R	R
			D.O.	<u></u>	1.13	0.98	1.11	0.90	1.01	0.92	2.84	1.64	0.74	1.29	4.67	1.10	1.01	0.39	¥	, R	R	Ъ	R	NR
			TEMP (°r)		70.0	52.2	45.6	65.3	71.6	52.1	47.3	58.1	68.0	55.1	45.8	59.7	67.6	59.2	ĥ	R	NR	R	R	68
			Hq	00 2	6.65	6.89	6.84	6.93	7.04	6.96	7.05	7.04	6.93	6.89	6.97	6.89	7.09	6.83	R	R	R	R	R	6.89
			E.C. (umhos/cm)	000	714	972	944	753	749	875	896	751	778	1850	2022	1066	2267	2795	R	R	NR	R	R	1740
	rements		₫Ĕ	0.73	9.72	9.72	9.72	9.72	9.72	9.72	9.72	9.72	9.72	9.72	9.72	9.72	9.72	9.72	Ŗ	R	NR	R	NR	9.72
	Field Measurements		Product		ddN	ddN	APP	ddN	ddN	ddN	ddN	ddN	NPP	ddN	ddN	APP	ddN	APP	R	NR	NR	R	NR	ddN
	Fie		Depth to Water (ft below TOC)	E 04	5.44	6.12	5.35	5.48	5.46	5.78	5.55	5.35	5.43	4.17	3.63	5.42	6.20	5.40	N	NR	NR	N	R	5.72
			DATE	Week of	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/06	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 8/15/05
			Sampling Event	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Baseline
			THE C		1	<u>.</u>		·			·]		1	# dJ		L		·			L	·		

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated of 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2 mg/L by EPA Machine 015B.

NR¹= Not Required (Approval With Direction - June 2009)

Techin Par

TEACE

120

NGI

linel.

Field Measurements

Ground Water Monitoring

River Terra

GP.5 (0.7) G.2.5 (0.6) G.2.5 (0.6) G.75 (0.7) 0.67 (0.6) 0.42 C0005 (0.10) 0.10 (0.42 0.42 <0.005 (0.13) 0.13 (0.3) 0.35 <0.005 (0.13) 0.13 (0.3) 0.35 <0.005 (0.13) 0.13 (0.3) 0.35 <0.005 (0.13) 0.13 (0.3) 0.35 <0.005 (0.13) 0.13 (0.3) 0.35 <0.005 (0.13) 0.13 (0.3) 0.35 <0.005 (0.13) 0.24 (0.3) 0.46 <0.005 (0.24 (0.3) 0.35 0.46 <0.005 (0.24 (0.3) 0.35 0.46 <0.005 (0.24 (0.3) 0.35 0.46 <0.005 (0.24 (0.3) 0.35 0.46 <0.010 (0.33 0.27 0.46 <0.011 (0.34 0.36 0.46 <0.011 (0.34 0.36 0.46 <0.011 (0.34 0.36 0.46 <0.011 (0.36 0.36 0.46 <0.01 (0.36 0.36 0.46 <0.01 (0.4 0.36 0.46
0.03 0.03 <th0.03< th=""> 0.03 0.03 <th0< th=""></th0<></th0.03<>

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

NR¹= Not Required (Approval With Direction - June 2009)

NM = Not Measured

Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

Page 7 of 14

River Terrace

Ground Water Monitoring

aating Cutchings Achta 2a		(බියා) මා	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.72	<0.05	60.0	1.10
WPRICERO W		(নি) (নি)) (টাইট	<0.20	<0.20	<0.20	<0.20	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00
· 0627A Regenta Strutto	3000	(1303,220) EGEN 19	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	0.027
Walle ZUMING B.Z.3006	0,020	XVICTO (ILICID)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	·· <0.002	<0.002	<0.002	<0.002	<0.003	<0.003	<0.003	<0.003	0.02
TIGHT.	<i>4</i> 10	(fnCu) Ecolorus	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	0.001	<0.003	<0.003
Meee 2000.re 62.5409	0.56	Toluena (mg/U)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
າຍຫ	0009	Benzene (mg(L))	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.005
		ORP (mV)	127	194	264	324	273	287	275	219	119	216	147	245	218	136	224	173	254	219	169	214	NR
		(mg/L)	2.48	1.53	0.85	1.05	1.67	2.38	0.93	1.45	3.72	0.78	1.98	1.66	0.41	1.15	0.31	0.85	1.37	1.09	0.39	0.75	R
		TEMP (*)	64.8	66.7	50.7	44.4	61.2	67.6	53.2	48.0	57.9	61.6	51.8	45.3	61.7	67.5	58.5	46.1	51.9	64.8	9.09	47.8	62.8
		Ha	6.94	6.76	6.96	6.76	6.81	7.00	6.94	6.93	6.87	6.95	6.87	6.89	6.98	7.11	6.90	6.85	7.06	7.04	7.02	7.02	6.92
		E.C. (umhos/cm)	1993	2080	2288	2389	2006	2034	2406	2557	2074	1712	1471	1559	875	1342	2035	2379	2149	1809	1883	1944	1968
urements		Total Well Depth (ft belowsTOC)	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97	10.97
Field Measurements		Depth to Product (ft below TOC)	NPP	ЧРР	ddN	NPP	ddN	ddN	ddN	ddN	ddN	ddN	ddN	ddN	ddN	APP	ddN	ЧЧN	ЧРР	ЧЧN	NPP	NPP	ddN
Ë		Depth to Water (ft below TOC)	5.28	5.13	5.73	5.30	5.33	5.43	5.49	5.34	5.23	5.40	4.03	3.32	4.94	5.18	4.73	5.07	5.39	5.48	5.26	5.21	5.12
		DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/06	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 8/15/05
		Sampling Event		3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Baseline
		Sample	2000									6	# d]	L			L						

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

NR¹= Not Required (Approval With Direction - June 2009)

NM = Not Measured

*Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Ept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Meyer 9015B.

.

8 of 14

EPA'Method 802

Ground Water Monitoring

River Terra

و معرف مراجع	· Martin Anglana	.													_							
WA Sevening Cultures Tents Fa 0.2	बर छ (मा)	<0.05	NR'	<0.05	NR'	NR'	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
UNDERNE R UZ UZ	(ருறு) (ருறு)	<0.20	NR ¹	<0.20	NR'	NR'	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00
UCERS Regional Carrier Lavere	(त7) (11) (11)	<0.0025	NR	<0.0025	NR	NR'	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
Undec Zonthas 62.2100 0.03	(ACC) (ACC)	<0.002	R,	<0.002	R	NR ¹	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.003	<0.003	<0.003	<0.003	0.0025
600 0.7	(EUVESO) (EUVESO)	<0.001	NR ¹	<0.001	NR ⁴	R	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
WEEE 2008/NG 622:5009 0.78	(krigin) (taringi)	<0.001	NR	<0.001	NR ¹	NR'	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
Line Line Dotte	Land and	<0.001	R,	<0.001	R.	NR	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
	ORP (mV)	282	NR	259	NR'	R	259	207	269	198	212	107	213	253	230	213.	233	269	247	168	224	R
	D:0. (mg/t.)	2.03	NR	0.92	NR ¹	NR	1.05	1.26	1.45	1.48	1.13	0.77	2.52	2.28	1.16	7.32	3.87	1. 44	0.45	1.52	1.72	R
	TEMP. (*)	56.2	NR	48.6	NR ⁴	NR'	63.8	51.7	43.0	50.7	66.5	53.7	43.5	51.3	61.8	57.2	41.1	44.9	62.6	59.8	42.8	71.2
	НЧ	6.96	NR ¹	6.95	NR	NR ⁴	6.92	6.95	7.06	7.06	7.11	6.88	6.94	6.90	6.98	6.86	6.85	7.00	6.97	7.01	6.99	6.94
	(umhos/cm)	352	NR'	461	NR'	NR ¹	322	357	342	343	405	479	279	307	368	268	426	387	395	325	355	377
Irements	Total Well Depth (ft below TOC)	9.95	9.95	9.95	9.95	9.95	9.95	9:95	. 9.95	9:95	9.95	9.95	9.95	9.95	9.95	9.95	9.95	9.95	6.95	9.95	9.95	9.95
Field Measurements	Depth to Product (ft below TOC)	ЧРР	ddN	APP	NPP	NPP	NPP	ddN	NPP	NPP	NPP	NPP	NPP	NPP	NPP	NPP	ΑqN	ddΝ	ddN	NPP	NPP	NPP
ï	Depth to Water (ft below TOC)	4.97	4.75	5.24	4.77	4.83	4.79	4.88	4.77	4.64	4.88	3.78	2.83	4.74	5.32	4.62	5.23	5.57	5.26	5.23	5.86	5.10
	DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/06	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 8/15/05
	Sampling	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Baseline
	Sample										0	l# d	T									

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

NR¹= Not Required (Approval With Direction - June 2009)

NM = Not Measured

Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

Page 9 of 14

River Terrace

Material Lank EP Al Method (8015B) was 1 0629A 1 1600 Secondrop Collection Co

Unede

EPAIMethod 8021B

Ground Water Monitoring

S
Ē
Q
Ε
ø
Б
S
69
Š
2
σ
Ð

		. Sample Location										ŀ	ل# d	T				I					
		Sampling Event	4th Quarter 2010	3rd Quarter 2010	2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	1st Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Baseline
		DATE	Week of 10/18/10	Week of 7/20/10	Week of 4/19/10	Week of 3/08/10	Week of 10-05-09	Week of 9/10/09	Week of 4/20/09	Week of 3/02/09	Week of 11/10/08	Week of 7/14/08	Week of 5/12/08	Week of 03/10/08	Week of 10/29/07	Week of 8/20/07	Week of 6/18/07	Week of 2/26/07	Week of 12/04/06	Week of 9/11/06	Week of 6/17/06	Week of 3/06/06	Week of 8/15/05
Ë.		Depth to Water (ft below TOC)	5.38	5.22	5.63	5.17	5.28	5.25	5.34	5.22	5.09	5.47	4.15	3.43	5.18	5.75	5.17	5.69	6.00	5.69	5.61	6.31	5.67
Field Measurements		☐ Depth to Product (ft below TOC)	NPP	NPP	NPP	NPP	NPP	NPP	ddN	NPP	ddN	APP	NPP	NPP	NPP	NPP	NPP	ddN	NPP	NPP	NPP	ΜΡΡ	ddN
Irements		Total Well Depth (ft below TOC)	7.98	7.98	7.98	7.98	7.98	7.98	7.98	7.98	9.98	9.98	9.98	9.98	9.98	9.98	9.98	9.98	9.98	9.98	9.98	9.98	9.98
		(umbostcm)	472	NR1	442	NR ⁴	NR ⁴	531	522	539	745	850	640	611	541	596	378	540	738	632	551	851	794
		Hd	6.95	NR'	6.97	NR'	NR'	6.87	6.94	7.05	6.95	7.03	6.87	6.94	6.93	7.02	6.84	6.87	7.07	7.06	6.98	6.92	6.93
		TEMP (%	61.9	NR'	50.5	NR ¹	NR1	66.5	52.9	47.4	58.4	64.7	52.9	42.5	56.6	69.4	62.5	44.2	52.8	67.7	62.6	45.4	68.2
		ر پیگر() (شهرال)	1.77	NR¹	0.82	NR'	NR'	0.81	0.89	1.63	0.89	0.50	0.78	3.21	0.59	1.49	1.69	1.45	0.97	0.36	1.1	0.24	R
	in the second	ORP. (mV)	299	NR1	. 283	NR'	NR	255	212	252	203	229	148	239	242	226	217	262	257	269	177	243	R
Щeр.	0009	Benzene:	<0.001	NR'	<0.001	NR'	NR'	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
-Week EUNDAG GREAD	026	(Toluena) (mg/ti)	<0.001	NR1	<0.001	NR'	NR	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
litici.	0.0	(action)	<0.001	NR1	<0.001	NR'	NR'	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0005
weee RULING GASHUB	0.62	Sigterio (incid)	<0.002	NR ¹	<0.002	NR'	NR ¹	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.003	<0.003	<0.003	<0.003	0.0028
	CLORE]		<0.0025	NR1	<0.0025	NR1	NR	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025
TUPUSERSON TE	0.22	DECO (Inc/U)	<0.20	NR'	<0.20	NR'	NR	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00	*<1.00
contro Colifolmes Rento Es		(1).010	<0.05	NR ¹	<0.05	NR'	NR'	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

*Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated ppt. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2 mg/L by EPA Mey 015B.

NR¹= Not Required (Approval With Direction - June 2009)

NM = Not Measured

. • .

0 of 14

MINE RAIN

River Terra

S
Ē
Ð
Ē
e
asu
6a
ž
<
2
Φ

			Ĩ	Field Measurements	Irements							UNAGE ZUNING G2300	Rigi	VIEEE ZONING GRANDE	Octano, Rocendo Generado Porcio	TUR Becon	ssenting Guild Alter Railto 2a
											500D ;	- 02/9	6.7	0.62	0,662	660	
Sample- Location	Sampling	DATE	Depth to Water (ft below TOC)	 Depth to Product Deplow, TOC) 	Total Well Depth (ft below TOC)	(unhos/cm)	Hd	TEMP (*)	D.O.	ORP- (mV)	Benzene) (mg/L)	Tolueno (mg/k)	Environ (Ecold)	(h()m)	(mera (moju)	(1010) (1010)	වෙන (කාඩ)
	4th Quarter 2010	Week of 10/18/10	7.06	ddN	11.79	1121	6.88	56.2	1.96	306	<0.001	<0.001	<0.001	<0.002		<0.20	<0.05
	3rd Quarter 2010	Week of 7/20/10	6.93	NPP	11.79	NR ¹	NR'	NR ⁴	NR ¹	NR	NR	R	NR	NR	NR	NR'	٨R
	2nd Quarter 2010	Week of 4/19/10	7.32	ddN	11.79	760	6.94	49.9	0.91	290	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
	1st Quarter 2010	Week of 3/08/10	6.94	NPP	11.79	NR ¹	NR1	NR1	NR ¹	NR1	NR	NR1	NR'	NR'	NR'	NR¹	NR ⁴
	4th Quarter 2009	Week of 10-05-09	7.00	NPP	11.79	NR ¹	NR ¹	NR'	NR'	NR ¹	NR'	NR'	NR'	NR'	NR	NR ¹	NR ¹
	3rd Quarter 2009	Week of 9/10/09	6.97	ddN	11.79	1491	6.85	60.1	4.27	282	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	2nd Quarter 2009	Week of 4/20/09	7.09	NPP	11.79	723	6.91	52.6	0.91	237	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
-	1st Quarter 2009	Week of 3/02/09	6.97	NPP	11.79	752	7.04	46.9	1.90	248	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	4th Quarter 2008	Week of 11/10/08	6.83	ddN	11.79	1059	6.87	53.8	1.10	279	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
2	3rd Quarter 2008	Week of 7/14/08	7.18	NPP	11.79	526	6.97	58.9	0.46	250	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
l# d	2nd Quarter 2008	Week of 5/12/08	5.85	NPP	11.79	771	6.85	53.9	0.77	142	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
1	1st Quarter 2008	Week of 03/10/08	5.11	NPP	11.79	1197	6.86	47.9	1.75	264	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
-	4th Quarter 2007	Week of 10/29/07	6.92	NPP	11.79	1745	6.85	54.3	0.56	271	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	3rd Quarter 2007	Week of 8/20/07	6.36	NPP	11.79	2189	6.97	57.1	1.6	238	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	2nd Quarter 2007	Week of 6/18/07	6.82	NPP	11.79	1750	6.81	56.7	2.04	242	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	1st Quarter 2007	Week of 2/26/07	7.40	NPP	11.79	952	6.92	48.2	1.73	205	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	4th Quarter 2006	Week of 12/04/06	. 7.67	NPP	11.79	855	6.99	52.8	3.11	252	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	<0.05
·	3rd Quarter 2006	Week of 9/11/06	7.48	NPP	11.79	1875	6.98	60.0	0.91	237	<0.001	<0.001	<0.001	<0.003	0.0081	*<1.00	<0.05
	2nd Quarter 2006	Week of 6/17/06	7.44	NPP	11.79	1171	7.00	55.9	0.26	157	<0.001	<0.001	<0.001	<0.003	0.0049	*<1.00	<0.05
	1st Quarter 2006	Week of 3/06/06	7.94	ЧРР	11.79	1234	6.91	48.0	0.19	242	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	<0.05
	Baseline	Week of 8/15/05	7.43	NPP	11.79	2143	6.88	64.1	NR	NR	<0.0005	<0.0005	0.00055	0.0042	0.0028	1,001	<0.05
											-						

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

*Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

NR¹= Not Required (Approval With Direction - June 2009)

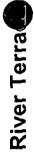
NM = Not Measured

Page 11 of 14

Φ
Ce
a
<u> </u>

Ð
5
Φ
>
·
\sim
عكا

Ground Water Monitoring


			2								1. 2	A CARLENA	SEPA Method 80218 200	218 20 20 20 20 20 20 20 20 20 20 20 20 20		BILLERALME	EPAMethod 80/158 was
			ïË	Field Measurements	Irements						۳ø	WEEE ZUNINAG OLISTOD	Tem (Weece BUNDO BRADO	. (Feltina) Rectanal Sacutary Lovelb	TANSECON Test	connorch tealmon Results 20
											0008	0.73	6.7	- 0.62	0.049	02	
Sample	Sampling Events	DATE	Depth to Water (ft below TOC)	Depth to Product (ft below TOC)	Total Well Depth (ft below TOC)	(umhosícm)	pH	TEMP (*	D:O. (mg/L)	ORP ⁴ (mV)	Benzene (mg/L)	Toluene) (mg/ll)		(filon) (filon)	(meru)	are Caroly	ELO (mgl)
	4th Quarter 2010	Week of 10/18/10	5.93	ddN	16.09	343	6.96	60.7	1.86	277	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
	3rd Quarter 2010	Week of 7/20/10	5.75	ddN	16.09	NR ¹	NR ¹	NR	ĸ	R	NR ⁴	R	NR ¹	NR	R	NR ¹	NR ⁴
	2nd Quarter 2010	Week of 4/19/10	6.17	ddN	16.09	422	6.95	47.9	0.89	276	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
	1st Quarter 2010	Week of 3/08/10	5.83	ddN	16.09	NR	NR'	NR'	NR1	NR'	NR	NR'	NR	NR	NR	NR	NR
	4th Quarter 2009	Week of 10-05-09	5.85	ddN	16.09	NR	NR'	NR'	NR'	NR'	NR	NR	NR	NR'	R	NR ¹	NR ¹
	3rd Quarter 2009	Week of 9/10/09	5.80	ddN	16.09	336	6.87	64.3	1.21	269	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	2nd Quarter 2009	Week of 4/20/09	5.98	ddN	16.09	460 -	6.97	51.2	1.08	234	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	1st Quarter 2009	Week of 3/02/09	5.66	ddN	16.09	471	7.07	46.7	1.61	261	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	4th Quarter 2008	Week of 11/10/08	5.72	NPP	16.09	422	6.96	57.2	1.21	228	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
3	3rd Quarter 2008	Week of 7/14/08	5.97	ЧЧN	16.09	584	7.02	56.7	0.53	240	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
l# d	2nd Quarter 2008	Week of 5/12/08	4.69	NPP	16.09	500	6.88	52.8	0.77	122	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
L	1st Quarter 2008	Week of 03/10/08	3.92	ddN	16.09	478	6.89	45.6	4.58	257	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	4th Quarter 2007	Week of 10/29/07	5.80	NPP	16.09	342	6.99	58.6	0.74	237	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	3rd Quarter 2007	Week of 8/20/07	6.17	NPP	16.09	472	7.04	58.3	1.29	220	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	2nd Quarter 2007	Week of 6/18/07	5.63	NPP	16.09	563	6.86	56.3	1.43	207	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	1st Quarter 2007	Week of 2/26/07	6.16	NPP	16.09	449	6.97	46.7	1.86	236	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	4th Quarter 2006	Week of 12/04/06	6.51	⁷ NPP	16.09	515	2.08	53.9	0.97	251	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	<0.05
	3rd Quarter 2006	Week of 9/11/06	6.33	NPP	16.09	554	6.98	63.9	0.54	244	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	<0.05
-	2nd Quarter 2006	Week of 6/17/06	6.35	ŅP	16.09	526	7.02	58.6	0.28	240	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	<0.05
	1st Quarter 2006	Week of 3/06/06	6.78	ddN	16.09	508	6.90	46.3	0.28	242	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	<0.05
	Baseline	Week of 8/15/05	6.27	ddN	16.09	1226	6.97	58.4	R	NR	<0.0005	<0.0005	<0.0005	0.0037	<0.0025	*<1.00	<0.05

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

*Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated

NR¹= Not Required (Approval With Direction - June 2009)

al - ERAMethod 80/158 1 WH Secondra Calerine

EPAWethod/8024Be

Ground Water Monitoring

G
ü
me
<u>Tel</u>
asu
fea
2
ē

			ĬL.	Field Measurements	irements						ଆହା	ULOGC ZUNINAC GRANDE	LIGI	Menology SUNING 6.23008	Control Control Control	WH Second	WKI Secondroj Euletinen Verbiolen
											0,005	0.56	0.8/	0090	0000	02 [[
Samples	Event	DATE	Depth to Water (ft below, TOC)	Depth to Product (ft below TOC)	Total Well Depth (ft below TOC)	E.C. (umhos(cm)	Hd	TEMP (°r)	D.O.	ORP (mV)	Benzene) (mg/L)	(ຄາຍແມ່) ອີນອາມຸລິ	(E001)		(HIGH)	(film)	GEO ([117]1)
	4th Quarter 2010	Week of 10/18/10	6.17	ddN	15.62	2352	7.13	66.5	2.35	263	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
	3rd Quarter 2010	Week of 7/20/10	5.82	ddN	15.62	2836	6.81	68	1.31	-16	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
	2nd Quarter 2010	Week of 4/19/10	6.24	NPP	15.62	2546	7.03	52.1	0.86	270	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
_	1st Quarter 2010	Week of 3/08/10	5.62	NPP	15.62	2625	6.93	47.7	0.36	286	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
_	4th Quarter 2009	Week of 10-05-09	5.85	ddN	15.62	2409	6.89	67.4	1.67	-12	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	3rd Quarter 2009	Week of 9/10/09	5.82	NPP	15.62	2443	6.86	69.2	1.96	281	<0.005	<0.01	<0.01	<0.02	<0.025	*<1.00	<0.05
	2nd Quarter 2009	Week of 4/20/09	6.02	NPP	15.62	2512	6.83	51.9	0.85	261	<0.05	<0.0>	<0.01	<0.02	<0.025	*<1.00	<0.05
_	1st Quarter 2009	Week of 3/02/09	5.69	NPP	15.62	2558	67.4	49.9	1.56	242	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	4th Quarter 2008	Week of 11/10/08	5.72	ddN	15.62	2462	6.76	59.4	2.06	159	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
Li	3rd Quarter 2008	Week of 7/14/08	5.89	ddN	15.62	2443	6.93	65.5	0.59	160	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
# M(2nd Quarter 2008	Week of 5/12/08	4.66	NPP	15.62	2568	6.87	54.7	2.98	204	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
ַ	1st Quarter 2008	Week of 03/10/08	4.11	ddN	15.62	2804	6.73	44.5	1.58	239	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
_	4th Quarter 2007	Week of 10/29/07	5.80	NPP	15.62	1990	6.88	62.9	0.62	294	<0.001	<0.001	<0.001	0.01	<0.0025	*<1.00	0.06
-	3rd Quarter 2007	Week of 8/20/07	6.71	NPP	15.62	1928	7.05	65.7	0.27	155	<0.001	<0.001	<0.001	0.01	<0.0025	*<1.00	0.29
	2nd Quarter 2007	Week of 6/18/07	5.81	NPP	15.62	2548	6.75	58.6	4.59	257	<0.001	<0.001	<0.001	0.0026	<0.0025	*<1.00	0.15
	1st Quarter 2007	Week of 2/26/07	6.11	ЧрР	15.62	3126	6.88	48.1	0.65	235	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	0.29
	4th Quarter 2006	Week of 12/04/06	5.58	ddN	15.62	2789	7.01	52.7	1.24	281	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	0.09
	3rd Quarter 2006	Week of 9/11/06	6.39	ddN	15.62	2067	7.04	66.2	0.30	258	<0.005	<0.005	<0.005	<0.015	<0.012	*<1.00	1.20
	2nd Quarter 2006	Week of 6/17/06	6.49	ddN	15.62	2329	6.96	58.0	0.42	143	<0.001	<0.001	0.016	0.12	<0.0025	(Q)	0.90
	1st Quarter 2006	Week of 3/06/06	7.91	ddN	15.62	2118	6.95	50.2	0.75	-64	<0.005	<0.005	0.041	0.23	<0.012	220	2.80
	Baseline	Week of 8/15/05	6.43	NPP	15.62	1226	6.97	58.4	R	Ъ	<0.001	<0.001	<0.001	0.0031	<0.001	R	R

NR = Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005)

*Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

NR¹= Not Required (Approval With Direction - June 2009)

NM = Not Measured

Page 13 of 14

Φ
Ù
-
ğ
÷
,
Ð
. —
-
.
O
N
>
~
R

H EPAMethod 8015B

Contraction of the second s

Ground Water Monitoring

			ï	Field Measurements	rements						Mai	WEGE EUNING 62306	Re	Weee Entro	JEFFA LEGENEI Constitution Constitution	UFA BEACH	sculing Guideline) Techo 20
											- 0000 ·	0.56	629	663	0036	0.8	
Sample	E Sampling Event	DATE-	Depth to Water (ft below TOC)	Depth to Product: (ft below TOC)	Total Well Depth (ft below TOC)	(umhos/cm)	Hđ	(°F)	0.0. (mg/L.)	ORP-(mV)	Benzene (mg/L)*	(ຖາວແມ່) (ແມວນ) ເມນາອາ	(inclu)	(fu:2m)	(filicita)	010 (030)	(inclu)
	4th Quarter 2010	Week of 10/18/10	9.14	ddN	16.48	1414	7.12	62.6	2.04	269	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
	3rd Quarter 2010	Week of 7/20/10	8.95	ddN	16.48	1546	6.82	60.7	1.11	197	<0.001	<0.001	<0.001	<0.002	<0.0025	<0.20	<0.05
	2nd Quarter 2010	Week of 4/19/10	9.59	NPP	16.48	1498	7.02	52.0	1.01	284	<0.001	<0.001	<0.001	<0.002	<0.0025	0.630	<0.05
	1st Quarter 2010	Week of 3/08/10	9.3	ddN	16.48	1870	7.00	47.7	0.44	206	<0.001	<0.001	<0.001	<0.002	<0.0025	020	<0.05
	4th Quarter 2009	Week of 10-05-09	9.03	- ddN	16.48	1510	6.95	65.0	1.58	179	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	3rd Quarter 2009	Week of 9/10/09	9.02	ddN	16.48	1574	6.86	61.8	2.39	295	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	2nd Quarter 2009	Week of 4/20/09	9.24	ddN	16.48	1873	6.84	51.6	26.0	284	<0.001	<0.001	0.003	0.002	<0.0025	*<1.00	0.18
	1st Quarter 2009	Week of 3/02/09	8.96	ddN	16.48	1982	6.88	50.9	1.61	223	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	0.083
	4th Quarter 2008	Week of 11/10/08	8.72	ddN	16.48	2413	7.02	60.0	1.16	237	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
67	3rd Quarter 2008	Week of 7/14/08	9.03	NPP	16.48	2280	6.98	61.1	0.59	148	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	0.24
# M	2nd Quarter 2008	Week of 5/12/08	7.66	NPP	16.48	2831	6.92	52.8	2.61	187	0.0018	<0.001	<0.001	<0.002	<0.0025	*<1.00	0.25
M	1st Quarter 2008	Week of 03/10/08	6.95	ЧрР	16.48	3947	6.75	47.3	1.75	246	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	0.09
	4th Quarter 2007	Week of 10/29/07	8.62	NPP	16.48	2740	6.95	62.3	0.39	265	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	0.05
	3rd Quarter 2007	Week of 8/20/07	9.30	ddN	16.48	924	6.86	63.9	0.52	192	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	2nd Quarter 2007	Week of 6/18/07	8.41	ddN	16.48	1217	6.95	57.5	0.49	217	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	<0.05
	1st Quarter 2007	Week of 2/26/07	8.79	MPP	16.48	2568	6.90	48.4	0.73	265	<0.001	<0.001	<0.001	<0.002	<0.0025	*<1.00	0.05
	4th Quarter 2006	Week of 12/04/06	9.16	ddN	16.48	2356	7.07	56.2	0.78	295	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	0.081
	3rd Quarter 2006	Week of 9/11/06	9.38	ЧрР	16.48	1736	7.04	64.4	0.89	234	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	0.23
	2nd Quarter 2006	Week of 6/17/06	9.98	NPP	16.48	701	7.01	57.9	0.26	181	<0.001	<0.001	<0.001	<0.003	<0.0025	*<1.00	<0.05
	1st Quarter 2006	Week of 3/06/06	10.07	. ddn	16.48	961	7.07	51.9	0.33	190	<0.001	<0.001	<0.001	0.0061	<0.0025	*<1.00	0.074
	Baseline	Week of 8/15/05	9.57	ddN	16.48	2393	6.96	59.8	NR	NR .	8300	<0.002	0.015	0.0041	<0.002	R	R
												.					

NR ≈ Not Required (Voluntary Corrective Measures - Revised Monitoring Plan - October 2005) Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

NR¹_≍ Not Required (Approval With Direction - June 2009)

NM = Not Measured

.

4 of 14

	Total Metals		and the second se	MAC 6.2.3103	AP	141.62 (MCL)
		DATE	1.00	0.05	0.015	0.002
Sample Location	Sampling Event	DATE	Ba (mg/L)	Cr (mg/L)	Lead (mg/L)	Mercury (mg/L)
	4th Quarter 2010	Week of 10/18/10	NR	NR	0.032	NR
	3rd Quarter 2010	Week of 7/20/10	NR	NR	0.19	NR
	2nd Quarter 2010	Week of 4/19/10	0.26	0.0089	0.12	NR
	(Annual) 1st Quarter 2010	Week of 3/08/10	NR	NR	0.044	NR
-	4th Quarter 2009	Week of 10-05-09	NR	NR	0.039	NR
· -	3rd Quarter 2009	Week of 9/10/09	NR	NR	0.058	NR
	2nd Quarter 2009	Week of 4/20/09	0.075	<0.006	0.042	NR
-	(Annual) 1st Quarter 2009	Week ot 3/02/09	 	NR	0.04	NR
TP #1	4th Quarter 2008	Week of	NR	NR	0.042	NR
- F	3rd Quarter 2008	11/10/08 Week of	NR	NR		NR
	2nd Quarter 2008	7/14/08 Week of			0.085	
	(Annual)	5/12/08 Week of	0.044	<0.006	0.045	NR
ļ.	1st Quarter 2008	03/10/08 Week of	NR	NR	0.093	NR
	4th Quarter 2007	10/29/07	NR	NR	0.044	NR
	3rd Quarter 2007 2nd Quarter 2007	Week of 8/20/07 Week of	NR	NR	0.074	NR
	(Annual)	6/18/07	0.14	<0.006	0.240	NR
	1st Quarter 2007	Week of 2/26/07	NR	NR	NR	NR
	4th Quarter 2010	Week of 10/18/10	NR	NR	0.02	NR
	3rd Quarter 2010	Week of 7/20/10	NR	NR	0.029	NR
	2nd Quarter 2010 (Annual)	Week of 4/19/10	0.23	<0.006	0.032	NR
	1st Quarter 2010	Week of 3/08/10	NR	NR	0.020	NR
	4th Quarter 2009	Week of 10-05-09	NR	NR	0.019	NR
	3rd Quarter 2009	Week of 9/10/09	NR	NR	0.02	NR
	2nd Quarter 2009 (Annual)	Week of 4/20/09	0.22	<0.006	0.011	NR
2	1st Quarter 2009	Week of 3/02/09	NR	NR	0.019	NR
TP #2	4th Quarter 2008	Week of 11/10/08	NR	NR	0.012	NR
	3rd Quarter 2008	Week of 7/14/08	NR	NR	0.035	NR
-	2nd Quarter 2008	Week of	0.13	<0.006	0.020	NR
	(Annual) 1st Quarter 2008	5/12/08 Week of	NR	NR	0.019	NR
- F	4th Quarter 2007	03/10/08 Week of	NR	NR	0.007	NR
	3rd Quarter 2007	10/29/07 Week of	NR	NR	0.019	NR
	2nd Quarter 2007	8/20/07 Week of 6/18/07	0.29	<0.006	0.019	NR
	(Annual) 1st Quarter 2007	6/18/07 Week of	l	}		<u> </u>
	R = Not Required (Voluntary Correcti	2/26/07	NR	NR ot Required (App	NR	NR

Groundwater Monitoring

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

NR¹= Not Required (Approval With Direction - June 2009)

Page 1 of 7

	ter Monitoring		WQCC 20N	MAC 6.2.3103	40 CFR.	141.62 (MCL)
	Total Metals		1.00	0.05	0.015	0.002
Sample _ocation	Sampling Event	DATE	Ba (mg/L)	Cr (mg/L)	Lead (mg/L)	Mercury (mg/L)
	4th Quarter 2010	Week of 10/18/10	NR ¹	NR ¹	<0.005	NR ¹
	3rd Quarter 2010	Week of 7/20/10	NR ¹	NR ¹	NR ¹	NR ¹
	2nd Quarter 2010	Week of 4/19/10	0.15	<0.006	<0.005	NR ¹
	(Annual) 1st Quarter 2010	Week of 3/08/10	NR ¹	NR ¹	NR ¹	NR ¹
	4th Quarter 2009	Week of 10-05-09	NR ¹	NR ¹	NR ¹	NR ¹
	3rd Quarter 2009	Week of 9/10/09	NR	NR	0.025	NR
	2nd Quarter 2009	week of	0.1	<0.006	<0.005	NR
	(Annual) 1st Quarter 2009	4/20/09 Week of	NR	NR	<0.005	NR
TP #3		3/02/09 Week of	NR	NR	< 0.005	NR
	4th Quarter 2008	11/10/08 Week of				
	3rd Quarter 2008 2nd Quarter 2008	7/14/08 Week of	NR	NR	0.005	NR
	(Annual)	5/12/08	0.089	<0.006	<0.005	NR
	1st Quarter 2008	Week of 03/10/08	NR	NR	<0.005	NR
	4th Quarter 2007	Week of 10/29/07	NR	NR	<0.005	NR
	3rd Quarter 2007	Week of 8/20/07	NR	NR	0.010	NR
	2nd Quarter 2007 (Annual)	Week of 6/18/07	0.2	0.008	0.007	NR
	1st Quarter 2007	Week of 2/26/07	NR	NR	NR	NR
	4th Quarter 2010	Week of 10/18/10	NR	NR	0.023	NR
	3rd Quarter 2010	Week of 7/20/10	NR	NR	0.083	NR
	2nd Quarter 2010	Week of 4/19/10	0.89	0.041	0.13	NR
	(Annual) 1st Quarter 2010	Week of 3/08/10	NR	NR	0.043	NR
	4th Quarter 2009	Week of 10-05-09	NR	NR	0.025	NR
	3rd Quarter 2009	Week of 9/10/09	NR	NR	0.033	NR
	2nd Quarter 2009	Week of 4/20/09	0.47	< 0.006	0.026	NR
	(Annual) 1st Quarter 2009	Week of 3/02/09	NR	NR	0.026	NR
TP #5	4th Quarter 2008	Week of	NR	NR ⁻	0.029	NR
-	3rd Quarter 2008	11/10/08 Week of	NR	NR	0.043	NR
	2nd Quarter 2008	7/14/08 Week of	0.31	<0.006	0.039	NR
· -	(Annual) 1st Quarter 2008	5/12/08 Week of	NR	 NR	0.053	NR
	4th Quarter 2007	03/10/08 Week of		NR	· · · · · · · · · · · · · · · · · · ·	
		10/29/07 Week of	NR		0.032	NR
	3rd Quarter 2007 2nd Quarter 2007	8/20/07 Week of	NR	NR	0.044	NR
	(Annual)	6/18/07 Week of	0.21	<0.006	0.09	NR
	1st Quarter 2007	2/26/07	NR	NR	NR	NR

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005) NR¹= Not Required (Approval With Direction - June 2009)

Page 2 of 7

_	
100	
- R (1) - E	
100	
A	

	Total Metals		WQCC 20N	MAC 6.2.3103	40 CFR 1	41.62 (MCL)
			1.00	0.05	0.015	0.002
Sample Location	Sampling Event	DATE	Ba (mg/L)	Cr (mg/L)	Lead (mg/Ľ)	Mercury (mg/L)
	4th Quarter 2010	Week of 10/18/10	NR	NR	0.0074	NR
	3rd Quarter 2010	Week of 7/20/10	NR	NR	0.026	NR
	2nd Quarter 2010 (Annual)	Week of 4/19/10	0.28	<0.006	0.019	NR
	1st Quarter 2010	Week of 3/08/10	NR	NR	0.031	NR
	4th Quarter 2009	Week of 10-05-09	NR	NR	0.023	NR
	3rd Quarter 2009	Week of 9/10/09	NR	NR	0.028	NR
	2nd Quarter 2009	Week of 4/20/09	0.34	<0.006	0.036	NR
。	(Annual) 1st Quarter 2009	Week of	NR	NR	0.019	NR
TP #6	4th Quarter 2008	3/02/09 Week of	NR	NR	0.018	NR
		11/10/08 Week of				
· •	3rd Quarter 2008	7/14/08 Week of	NR	NR	0.051	NR
	(Annual)	5/12/08 Week of	0.15	<0.006	0.022	NR
	1st Quarter 2008	03/10/08 Week of	NR	NR	0.028	NR
	4th Quarter 2007	10/29/07	NR	NR	<0.005	NR
	3rd Quarter 2007	Week of 8/20/07	NR	NR	0.009	NR
	2nd Quarter 2007 (Annual)	Week of 6/18/07	0.38	<0.006	0.03	NR
	1st Quarter 2007	Week of 2/26/07	NR	NR	NR	NR
	4th Quarter 2010	Week of 10/18/10	NR	NR	0.0073	NR
	3rd Quarter 2010	Week of 7/20/10	NR	NR	<0.005	
Tanan I	2nd Quarter 2010	Week of 4/19/10	0.5	0.01	0.0078	NR
	(Annual) 1st Quarter 2010	Week of 3/08/10	NR	NR	<0.005	NR
	4th Quarter 2009	Week of 10-05-09	NR	NR	0.0085	NR
	3rd Quarter 2009	Week of 9/10/09	NR	NR	<0.005	NR
	2nd Quarter 2009	Week of 4/20/09	0.065	<0.006	< 0.005	NR
	(Annual) 1st Quarter 2009	Week of 3/02/09	NR	NR	< 0.005	NR
TP #7	4th Quarter 2008	Week of	NR	NR	< 0.005	NR
	3rd Quarter 2008	11/10/08 Week of	NR	NR	<0.005	NR
	2nd Quarter 2008	7/14/08 Week of	0.032	<0.006		
	(Annual)	5/12/08 Week of			0.007	NR
	1st Quarter 2008	03/10/08 Week of	NR	NR	<0.005	NR
	4th Quarter 2007	10/29/07 Week of	NR	NR.	<0.005	NR
	3rd Quarter 2007 2nd Quarter 2007	8/20/07 Week of	NR	NR	0.006	NR
	(Annual)	6/18/07	0.075	<0.006	<0.005	NR
	1st Quarter 2007	Week of 2/26/07	NR	NR	NR	NR

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

	Tatal Matale		WQCC 20N	MAC 6.2.3103	40 CFR	141.62 (MCL)	21
	Total Metals		1.00	0.05	0.015	0.002	8
Sample Location	Sampling Event	DATE	Ba (mg/L)	Cr (mg/L)	Lead (mg/L)	Mercury (mg/L)	
	4th Quarter 2010	Week of 10/18/10	NR	NR	0.0065	NR	1
	3rd Quarter 2010	Week of 7/20/10	NR	NR	0.039	NR	1
	2nd Quarter 2010 (Annual)	Week of 4/19/10	0.42	0.011	0.065	NR	1
	1st Quarter 2010	Week of 3/08/10	NR	NR	0.038	NR]
	4th Quarter 2009	Week of 10-05-09	NR	NR	0.033	NR]
	3rd Quarter 2009	Week of 9/10/09	NŖ	NR	0.04	NR	
:	2nd Quarter 2009 (Annual)	Week of 4/20/09	0.38	<0.006	0.03	NR	
TP #8	1st Quarter 2009	Week of 3/02/09	NR	NR	0.033	NR	
ЦЪ	4th Quarter 2008	Week of 11/10/08	NR	NR	0.017	NR	
	3rd Quarter 2008	Week of 7/14/08	NR	NR	0.066	NR	.
	2nd Quarter 2008 (Annual)	Week of 5/12/08	0.07	<0.006	<0.005	NR]
	1st Quarter 2008	Week of 03/10/08	NR	NR	0.043	NR	m
	4th Quarter 2007	Week of 10/29/07	NR	NR	0.30	NR	EPA N
6#	3rd Quarter 2007	Week of 8/20/07 Week of	NR	NR	0.027	NR	Method
	2nd Quarter 2007 (Annual)	6/18/07	0.44	<0.006	0.054	NR	
	1st Quarter 2007	Week of 2/26/07	NR	NR	NR	NR	6010
	4th Quarter 2010	Week of 10/18/10	NR	NR	0.005	NR	& 7470
	3rd Quarter 2010	Week of 7/20/10	NR	NR	0.0098	NR]2
	2nd Quarter 2010 (Annual)	Week of 4/19/10	0.18	<0.006	<0.005	NR	
	1st Quarter 2010	Week of 3/08/10	NR	NR	<0.005	NR	
	4th Quarter 2009	Week of 10-05-09	NR	NR	0.015	NR	
ŕ	3rd Quarter 2009	Week of 9/10/09 Week of	NR	NR	0.009	NR	1
	2nd Quarter 2009 (Annual)	4/20/09	0.081	<0.006	0.0089	NR	
6# 0	1st Quarter 2009	Week of 3/02/09	NR	NR	<0.005	NR	
Ę	4th Quarter 2008	Week of 11/10/08	NR	NR	0.008	NR	
	3rd Quarter 2008 2nd Quarter 2008	Week of 7/14/08	NR	NR	0.007	NR	
	(Annual)	Week of 5/12/08	0.11	<0.006	0.013	NR	
	1st Quarter 2008	Week of 03/10/08	NR	NR	0.009	NR	
	4th Quarter 2007	Week of 10/29/07	NR	NR	<0.005	NR	
	3rd Quarter 2007	Week of 8/20/07 Week of	NR	NR	0.013	NR	
	2nd Quarter 2007 (Annual)	6/18/07	0.91	0.018	0.020	NR	
	1st Quarter 2007	Week of 2/26/07	NR	NR t Required (Appr	NR	NR	

Groundwater Monitoring

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005) NR¹= Not Required (Approval With Direction - June 2009)

Page 4 of 7

	vater Monitoring		WQCC 20N	MAC, 6.2.3103	40 CFR	141.62 (MCL)
	Total Metals		1.00	0.05	0.015	0:002
Sample Location	Sampling Event	DATE	Ba (mg/L)	Cr (mg/L)	Lead (mg/L)	Mercury (mg/L)
	4th Quarter 2010	Week of 10/18/10	NR ¹	NR ¹	<0.005	NR ¹
	3rd Quarter 2010	Week of 7/20/10	NR ¹	NR ¹	NR ¹	NR1
Ì	2nd Quarter 2010 (Annual)	Week of 4/19/10	0.24	0.012	<0.005	NR ¹
	1st Quarter 2010	Week of 3/08/10	NR ¹	NR ¹	NR ¹	NR1
	4th Quarter 2009	Week of 10-05-09	NR ¹	NR ¹	NR ¹	NR ¹
ļ	3rd Quarter 2009	Week of 9/10/09	NR	NR	0.007	NR
1	2nd Quarter 2009 (Annual)	Week of 4/20/09	0.11	<0.006	<0.005	NR
9	1st Quarter 2009	Week of 3/02/09	NR	NR	<0.005	NR
TP #10	4th Quarter 2008	Week of 11/10/08	NR	NR	0.006	NR
	3rd Quarter 2008	Week of 7/14/08	· NR	NR	<0.005	NR
	2nd Quarter 2008 (Annual)	Week of 5/12/08	0.11	<0.006	<0.005	NR
	1st Quarter 2008	Week of 03/10/08	NR	NR	<0.005	NR
	4th Quarter 2007	Week of 10/29/07	NR	NR	<0.005	NR
	3rd Quarter 2007	Week of 8/20/07	NR	NR	0.006	NR
	2nd Quarter 2007 (Annual)	Week of 6/18/07	0.41	0.024	0.009	NR
	1st Quarter 2007	Week of 2/26/07	NR	NR	NR	NR
	4th Quarter 2010	Week of	NR ¹	NR ¹	<0.005	NR ¹
	3rd Quarter 2010	10/18/10 Week of 7/20/10	NR ¹	NR ¹	NR ¹	NR ¹
	2nd Quarter 2010	Week of 4/19/10	0.1	<0.006	<0.005	NR ¹
	<u>(Annual)</u> 1st Quarter 2010	Week of 3/08/10	NR ¹	NR ¹	NR ¹	NR ¹
	4th Quarter 2009	Week of 10-05-09	NR ¹	NR ¹	NR ¹	NR ¹
	3rd Quarter 2009	Week of 9/10/09	NR	NR	0.007	NR
	2nd Quarter 2009	Week of 4/20/09	0.088	< 0.006	< 0.005	NR
-	(Annual) 1st Quarter 2009	Week of 3/02/09	NR	NR	< 0.005	NR
TP #11	4th Quarter 2008	Week of	NR	NR	0.006	NR
	3rd Quarter 2008	11/10/08 Week of	NR	NR	0.008	NR
	2nd Quarter 2008	7/14/08 Week of	0.068	< 0.006	< 0.005	NR
	(Annual) 1st Quarter 2008	5/12/08 Week of	NR	NR	<0.005	
}	4th Quarter 2007	03/10/08 Week of	NR			NR
		10/29/07 Week of			0.006	NR
ļ	3rd Quarter 2007 2nd Quarter 2007	8/20/07 Week of	NR	NR	0.010	NR
	(Annual)	6/18/07 Week of	0.33	0.013	0.015	NR
	1st Quarter 2007	2/26/07	NR	NR	NR	NR

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

	Total Metals		WQCC 20N	MAC 6.2.3103	or provide and the second s	141.62 (MCL)
		مقرب ويستعد وسيرا والمراج	1.00	0.05	0.015	0.002
Sample Location	Sampling Event	DATE	Ba (mg/L)	Cr (mg/L)	Lead (mg/L)	Mercury (mg/L)
	4th Quarter 2010	Week of 10/18/10	NR ¹	NR ¹	0.0095	NR ¹
	3rd Quarter 2010	Week of 7/20/10	NR1	NR ¹	NR ¹	NR ¹
	2nd Quarter 2010	Week of 4/19/10	0.092	<0.006	<0.005	NR ¹
	(Annual) 1st Quarter 2010	Week of 3/08/10	NR ¹	NR ¹	NR ¹	NR ¹
⊢	4th Quarter 2009	Week of 10-05-09	NR ¹	NR ¹	NR ¹	NR ¹
	3rd Quarter 2009	Week of 9/10/09	NR	NR	<0.005	NR
	2nd Quarter 2009	Week of	0.047	< 0.006	<0.005	NR [′]
	(Annual)	4/20/09 Week of	-	<u> </u>		· · · ·
TP #12	1st Quarter 2009	3/02/09 Week of	NR	NR	0.0057	NR
╞┝	4th Quarter 2008	11/10/08 Week of	NR	NR	<0.005	NR
	3rd Quarter 2008	7/14/08	NR	NR	0.005	NR
	(Annual)	Week of 5/12/08	0.043	<0.006	<0.005	NR
	1st Quarter 2008	Week of 03/10/08	NR	NR	0.006	NR
	4th Quarter 2007	Week of 10/29/07	NR	NR	0.010	NR
	3rd Quarter ` 2007	Week of 8/20/07	NR	NR	0.021	NR
	2nd Quarter 2007 (Annual)	Week of 6/18/07	0.21	0.010	0.016	NR
-	1st Quarter 2007	Week of 2/26/07 -	NR	NR	NR	NR
	4th Quarter 2010	Week of 10/18/10	NR ¹	NR ¹	0.0051	NR ¹
	3rd Quarter 2010	Week of 7/20/10	NR ¹	NR ¹	NR ¹	NR ¹
	2nd Quarter 2010	Week of 4/19/10	0.024	0.0078	0.0061	NR ¹
	(Annual) 1st Quarter 2010	Week of 3/08/10	NR ¹	NR ¹	NR ¹	NR ¹
-	4th Quarter 2009	Week of 10-05-09	NR ¹	NR ¹	NR ¹	NR ¹
	3rd Quarter 2009	Week of 9/10/09	NR	NR	0.009	NR
	2nd Quarter 2009	Week of 4/20/09	0.21	<0.006	<0.005	NR
<u>د</u>	(Annual) 1st Quarter 2009	Week of	NR	NR	< 0.005	NR
TP #13	4th Quarter 2008	Week of	NR	NR	0.007	NR
「	3rd Quarter 2008	11/10/08 Week of	NR	NR	<0.005	NR
	2nd Quarter 2008	7/14/08 Week of	0.22	<0.006	< 0.005	NR
2000, 20 00	(Annual) 1st Quarter 2008	5/12/08 Week of	NR	NR	<0.005	NR
		03/10/08 Week of	· · · · · · · · · · · · · · · · · · ·		·	
	4th Quarter 2007	10/29/07 Week of	NR	NR	< 0.005	NR
	3rd Quarter 2007 2nd Quarter 2007	8/20/07 Week of	NR	NR	0.012	NR
	(Annual)	6/18/07	0.42	0.019	0.011	NR
	1st Quarter 2007	Week of 2/26/07	NR	NR	NR	NR

NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

	Total Motals		WQCC 20N	MAC 6.2.3103	40 CFR	141.62 (MCL)
	Total Metals		1.00	0.05	0.015	0:002
Sample Location	Sampling Event	DATE	Ba (mg/L)	Cr (mg/L)	Lead (mg/L)	Mercur <u>y</u> (mg/L)
	4th Quarter 2010	Week of 10/18/10	NR	NR	<0.005	No Analysis
	3rd Quarter 2010	Week of 7/20/10	NR	NR	0.0063	<0.0002
	2nd Quarter 2010 (Annual)	Week of 4/19/10	0.1	<0.006	<0.005	<0.0002
	1st Quarter 2010	Week of 3/08/10	NR	NR	<0.005	<0.0002
	4th Quarter 2009	Week of 10-05-09	NR	NR	0.0057	<0.0002
	3rd Quarter 2009	Week of 9/10/09	NR	NR	<0.005	Laboratory Error No Analysis
	2nd Quarter 2009 (Annual)	Week of 4/20/09	0.61	<0.006	<0.005	0.0008
₩ F	1st Quarter 2009	Week of 3/02/09	NR	NR	<0.005	<0.001
DW #1	4th Quarter 2008	Week of 11/10/08	NR	NR	<0.005	No Analysis
	3rd Quarter 2008	Week of 7/14/08	NR	NR	<0.005	<0.001
	2nd Quarter 2008 (Annual)	Week of 5/12/08	0.12	<0.006	<0.005	<0.001
	1st Quarter 2008	Week of 03/10/08	NR	NR	<0.005	<0.0002
	4th Quarter 2007	Week of 10/29/07	NR	NR	<0.005	<0.0002
	3rd Quarter 2007	Week of 8/20/07	NR	NR	0.009	<0.0002
Γ	2nd Quarter 2007 (Annual)	Week of 6/18/07	0.93	<0.03	<0.025	<0.0002
Γ	1st Quarter 2007	Week of 2/26/07	NR	<0.006	<0.005	0.002
	4th Quarter 2010	Week of 10/18/10	NR	NR	<0.005	NR
:	3rd Quarter 2010	Week of 7/20/10	NR	NR	<0.005	NR
	2nd Quarter 2010 (Annual)	Week of 4/19/10	0.12	<0.006	<0.005	NR
	1st Quarter 2010	Week of 3/08/10	NR	NR	<0.005	NR
	4th Quarter 2009	Week of 10-05-09	NR	NR	0.0052	NR
	3rd Quarter 2009	Week of 9/10/09	NR	NR	<0.005	NR
	2nd Quarter 2009 (Annual)	Week of 4/20/09	0.062	<0.006	<0.005	NR
#49	1st Quarter 2009	Week of 3/02/09	NR	NR	<0.005	NR
MW #49	4th Quarter 2008	Week of 11/10/08	NR	NR	0.007	NR
Γ	3rd Quarter 2008	Week of 7/14/08	NR	NR	<0.005	NR
Γ	2nd Quarter 2008 (Annual)	Week of 5/12/08	0.066	<0.006	<0.005	NR
Γ	1st Quarter 2008	Week of 03/10/08	NR	NR	<0.005	NR
	4th Quarter 2007	Week of 10/29/07	NR	NR	<0.005	NR
F	3rd Quarter 2007	Week of 8/20/07	NR	NR	<0.005	NR
	2nd Quarter 2007 (Annual)	Week of 6/18/07	0.064	<0.006	<0.005	NR
	1st Quarter 2007	Week of 2/26/07	NR	<0.006	<0.005	NR

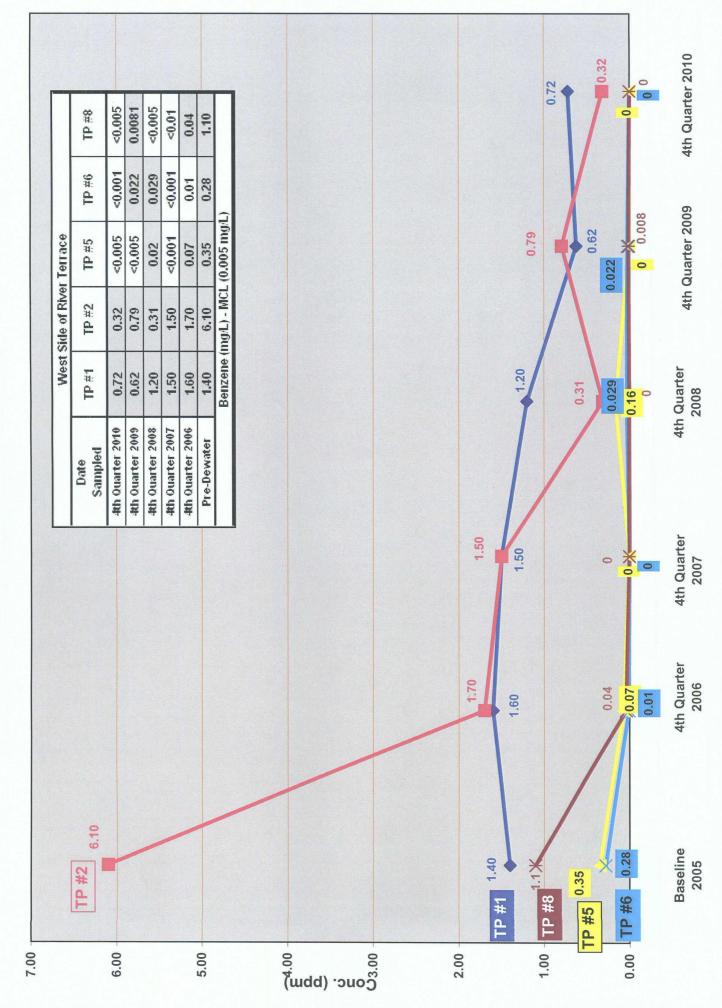
NR = Not Required (Voluntary Corrective Measures -Revised Monitoring Plan - October 2005)

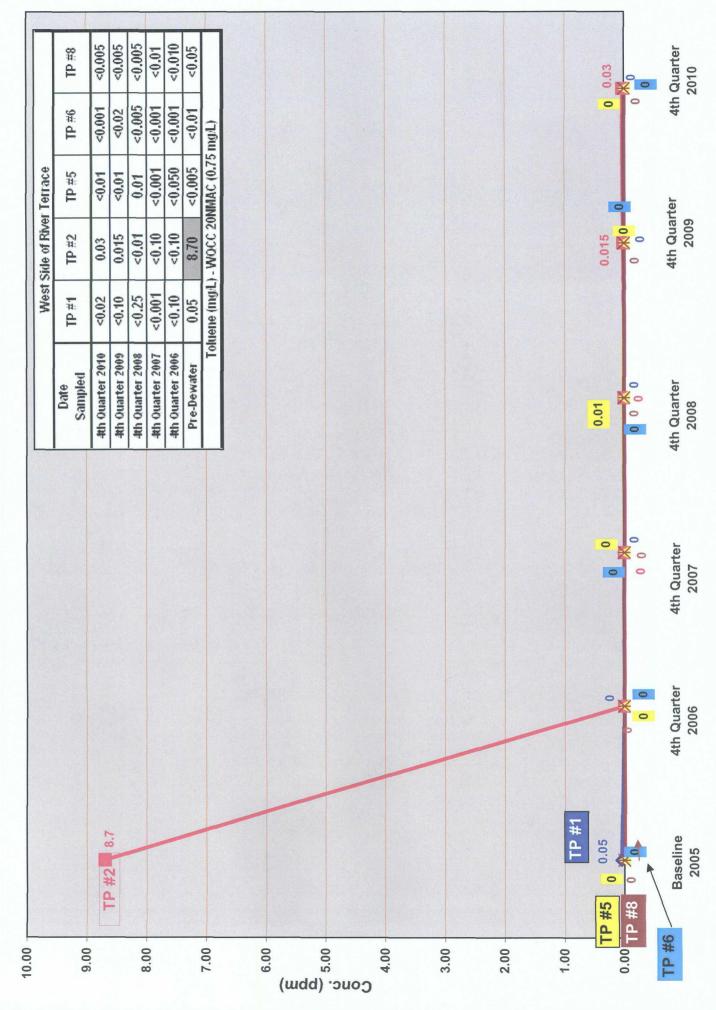
BV Air Pre	ssure 2010					
Sample Location	Sampling Activities	Date	Velocity (scfm)	Pressure (psi)		
	4th Quarter	10/19/2010	10.0	2.0		
	3rd Quarter	7/20/2010	8.0	2.5		
BV	2nd Quarter	4/19/2010	10.0	2.3		
	1st Quarter	3/9/2010	12.0	2.0		
	4th Quarter	10/19/2010	6.0	2.0		
- 2	3rd Quarter	7/20/2010	8.0	2.5		
BV	2nd Quarter	4/19/2010	8.0	2.3		
	1st Quarter	3/9/2010	8.0	2.0		
	4th Quarter	10/19/2010	8.0	2.0		
- 3	3rd Quarter	7/20/2010	8.0	2.3		
B	2nd Quarter	4/19/2010	12.0	2.3		
	1st Quarter	3/9/2010	10.0	2.0		
	4th Quarter	10/19/2010	10.0	2.0		
BV - 4	3rd Quarter	7/20/2010	10.0	2.5		
BV	2nd Quarter	4/19/2010	10.0	2.3		
	1st Quarter	3/9/2010	12.0	2.0		
	4th Quarter	10/19/2010	10.0	2.0		
1 - 5	3rd Quarter	7/20/2010	8.0	2.0		
BV	2nd Quarter	4/19/2010	12.0	2.3		
	1st Quarter	3/9/2010	12.0	2.0		
<i>(</i>	4th Quarter	10/19/2010	10.0	2.0		
V - 6	3rd Quarter	7/20/2010	12.0	2.5		
BV	2nd Quarter	4/19/2010	12.0	2.3		
	1st Quarter	3/9/2010	12.0	2.0		
	4th Quarter	10/19/2010	10.0	2.0		
7 - 1	3rd Quarter	7/20/2010	10.0	2.5		
BV	2nd Quarter	4/19/2010	14.0	2.3		
	1st Quarter	3/9/2010	10.0	2.0		

BV Air Pre	ssure 2010					
Sample Location	Sampling Activities	Date	Velocity (scfm)	Pressure (psi)		
	4th Quarter	10/19/2010	10.0	2.0		
8	3rd Quarter	7/20/2010	12.0	2.5		
BV -	2nd Quarter	4/19/2010	10.0	2.3		
	1st Quarter	3/9/2010	10.0	2.0		
	4th Quarter	10/19/2010	10.0	2.0		
6 -	3rd Quarter	7/20/2010	12.0	2.5		
BV	2nd Quarter	4/19/2010	10.0	2.3		
	1st Quarter	3/9/2010	10.0	2.0		
-	4th Quarter	10/19/2010	10.0	2.0		
BV - 10	3rd Quarter	7/20/2010	10.0	2.5		
BV	2nd Quarter	4/19/2010	12.0	2.3		
io	1st Quarter	3/9/2010	12.0	2.0		
_	4th Quarter	10/19/2010	14.0	2.0		
	3rd Quarter	7/20/2010	8.0	2.5		
B<	2nd Quarter	4/19/2010	10.0	2.3		
	1st Quarter	3/9/2010	12.0	2.0		
01	4th Quarter	10/19/2010	10.0	2.0		
BV - 12	3rd Quarter	7/20/2010	12.0	2.5		
BV	2nd Quarter	4/19/2010	14.0	2.3		
	1st Quarter	3/9/2010	12.0	2.0		
~	4th Quarter	10/19/2010	6.0	2.0		
BV - 13	3rd Quarter	7/20/2010	8.0	2.5		
BV	2nd Quarter	4/19/2010	10.0	2.3		
	1st Quarter	3/9/2010	10.0	2.0		
<u>- с </u> е	4th Quarter	10/19/2010		2.5		
eral sten ssur	3rd Quarter	7/20/2010		2.7		
Overali System Pressure	2nd Quarter	4/19/2010		3.3		
	1st Quarter	3/9/2010		3.2		

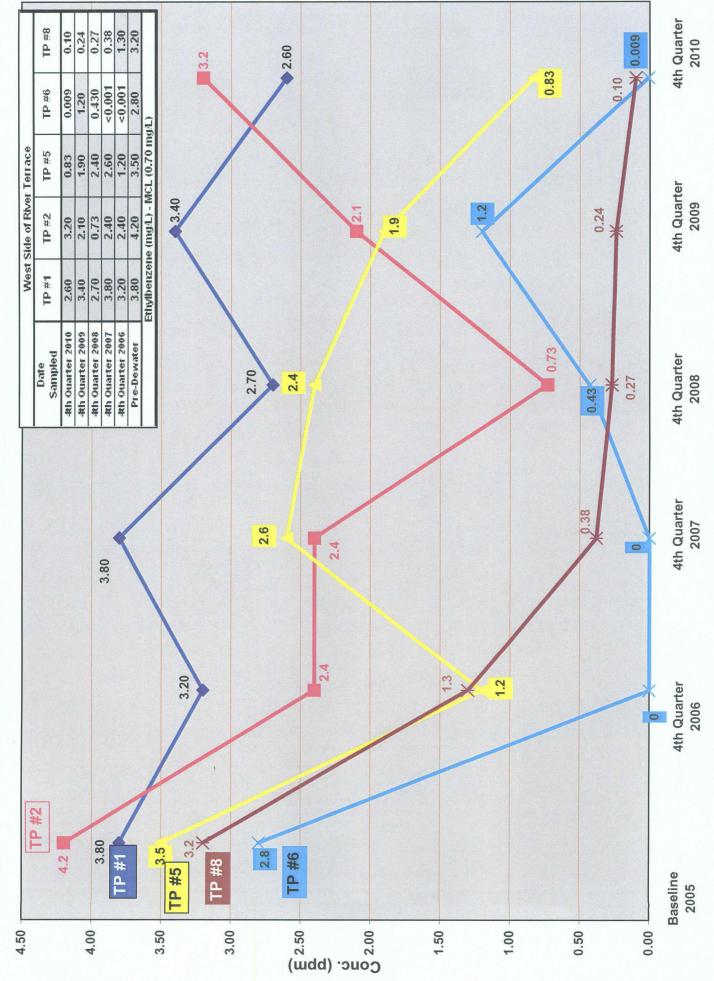
	GAC Fi	ilter Mon	itoring		EPA Metho	EPA Method 8015B				
	Anı	2010 nual Rep	oort	MCL	WQCC 20NMAC 6.2.3103	MCL	WQCC 20NMAC 6.2.3103	TPH Sc Guideline	-	
	Sample Location	Sampling Event	DATE	0.005 Benzene (mg/L)	0.75 Toluene (mg/L)	0.70 Ethylben (mg/L)	0.62 Xylene (mg/L)	0.2 DRO (mg/L)	GRO (mg/L)	
	<u> </u>	4th Quarter	10/19/10	0.069	<0.005	0.630	2.30	0.9	8.60	
	NLE	3rd Quarter	07/20/10	0.03	<0.01	0.48	1.30	0.61	5.2	
	GAC INLET	2nd Quarter	04/20/10	0.100	<0.010	0.790	3.00	4.1	9.30	
	G	1st Quarter	01/04/10	<0.005	<0.01	0.049	0.63.	1.6	2.00	
Ĩ			12/13/10	<0.001	<0.001	<0.001	<0.002	**<0.80	<0.05	
	L		11/30/10	<0.001	<0.001	<0.001	<0.002	0.76	<0.05	
	Lead Filter(V-611)North Filter	4th Quarter	10/19/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
	th F		09/27/10	<0.001	<0.001	<0.001	<0.002	**<0.80	<0.05	
	Nor		08/10/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
	11)	3rd Quarter	07/20/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
	(^ -6		06/01/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
	ter		05/03/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
		2nd Quarter	04/20/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
	-ead		03/09/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
			02/02/10	<0.001	<0.001	<0.001	<0.002	*<1.0	<0.05	
		1st Quarter	01/04/10	<0.001	<0.001	<0.001	<0.002	*<1.0	<0.05	
	g) uth	4th Quarter	10/19/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
	vC (Laç 12) Sou Filter	3rd Quarter	7/202010	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
	GAC (Lag) (V-612) South Filter	2nd Quarter	04/20/10	<0.001	<0.001	<0.001	<0.002	<0.20	<0.05	
	<u>ح</u> ں	1st Quarter	01/04/10	<0.001	<0.001	<0.001	<0.002	*<1.0	<0.05	

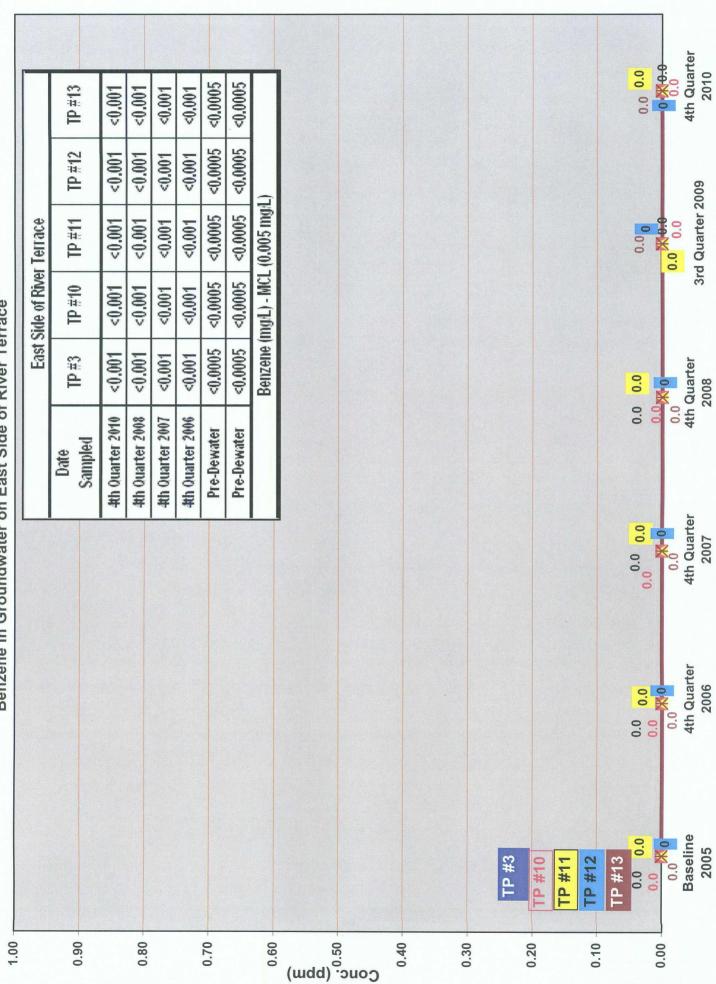
*Per NMED letter Approval with Direction 2008 Groundwater Remediation and Monitoring Annual Report (Comment 9) dated Sept. 1, 2009 all future DRO analysis will be analyzed at a lower detection level of 0.2mg/L by EPA Method 8015B.

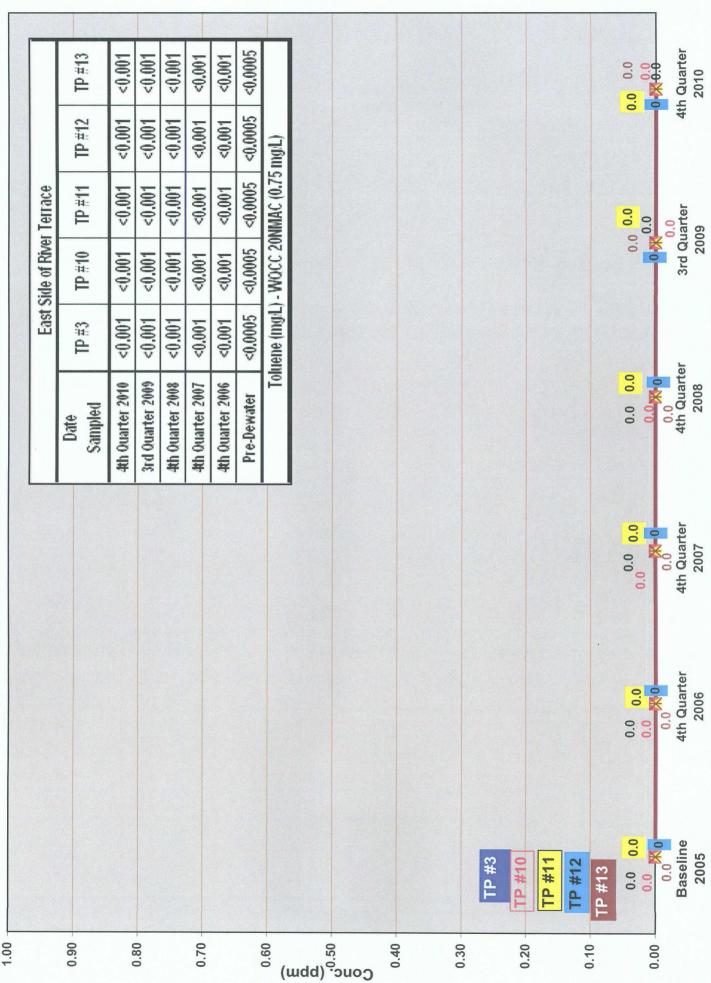

** Laboratory Error - Sample was not analyzed by the 0.20 mg/L reporting limit as requested.

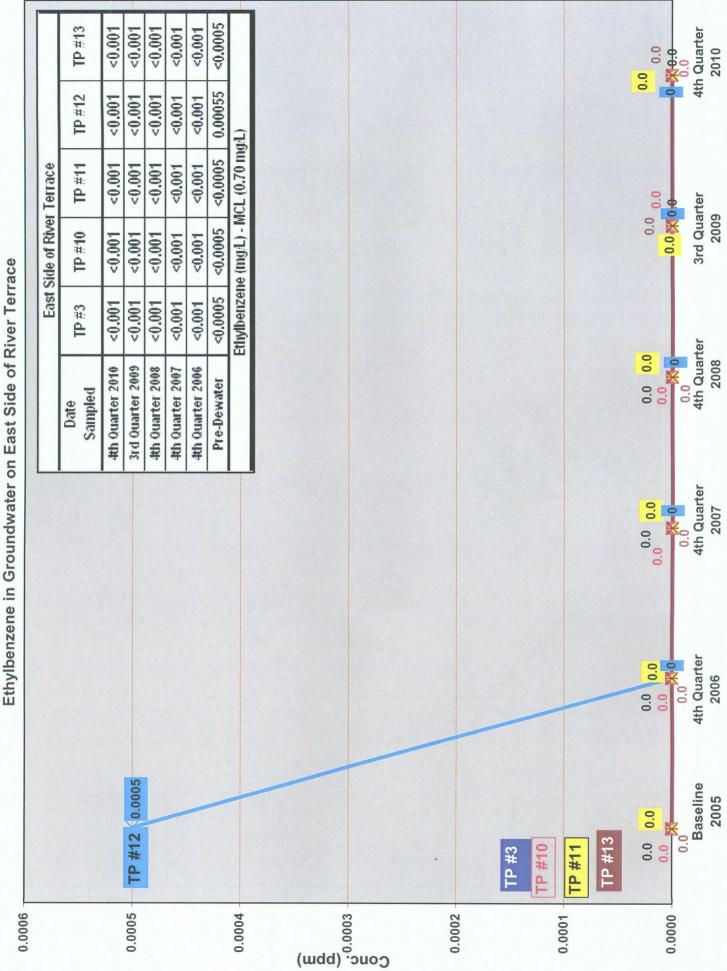

Section 5.0 Concentration VS Time Charts

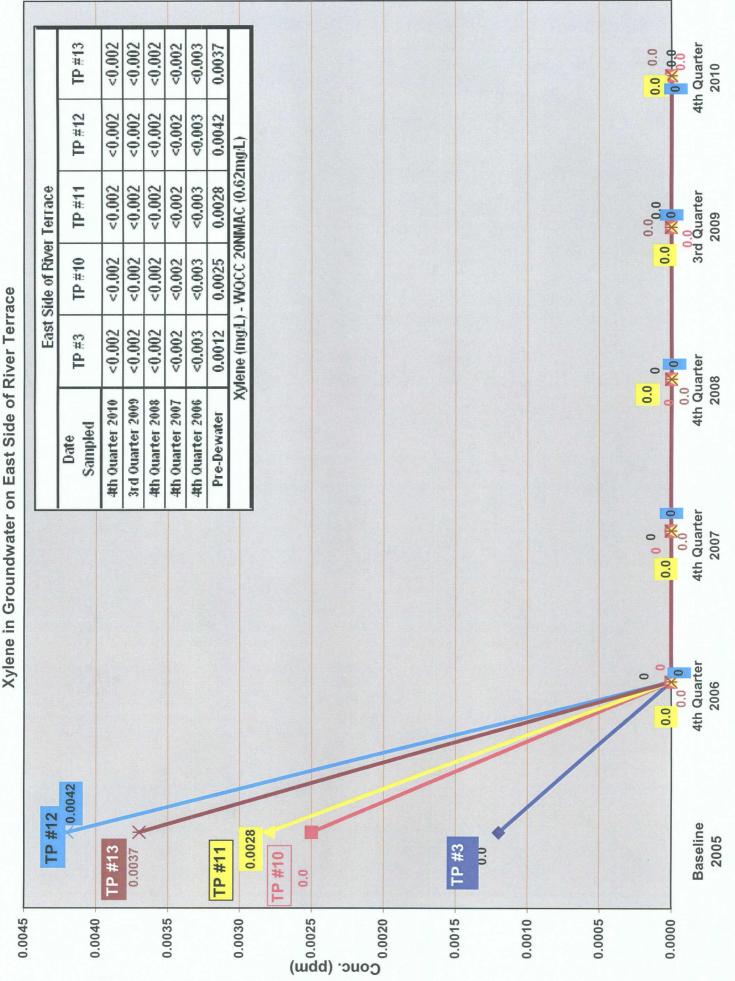
Title	Tab Number
BTEX Concentration West Side	6
BTEX Concentration East Side	7
BTEX Concentration Remaining Wells	8
Soil Vapor West Side	9
Soil Vapor East Side	10
Soil Vapor Remaining Wells	11

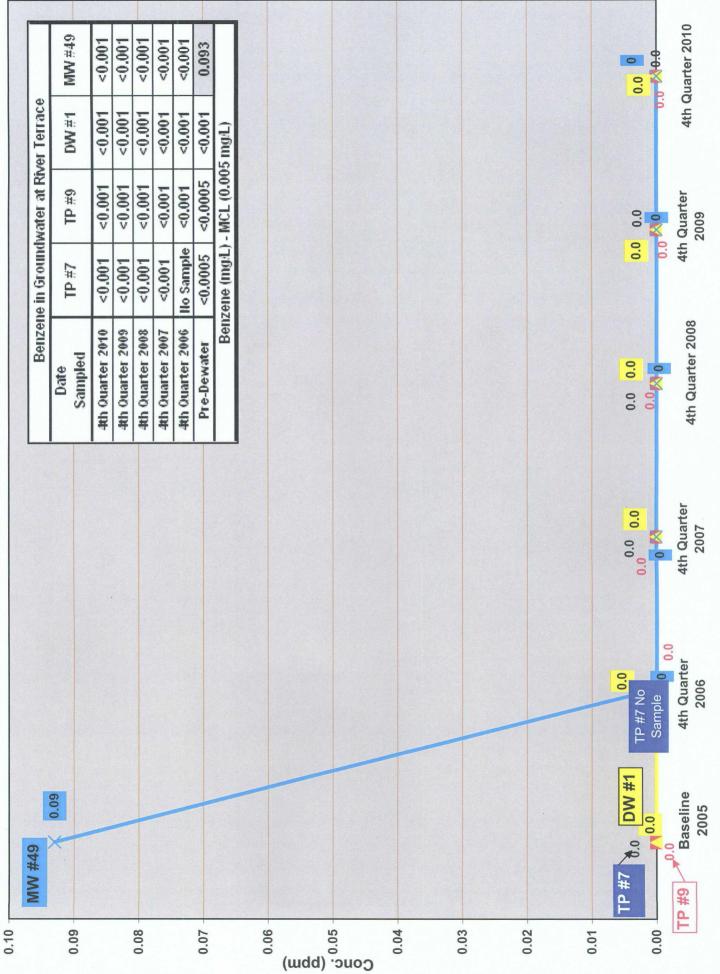

Benzene in Groundwater on West Side of River Terrace

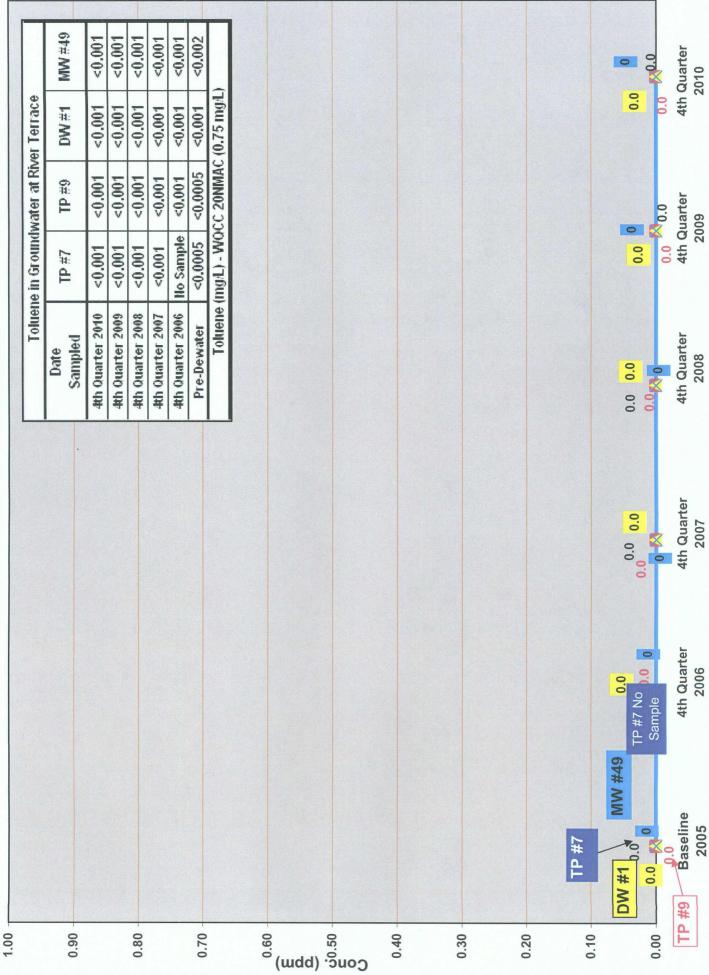


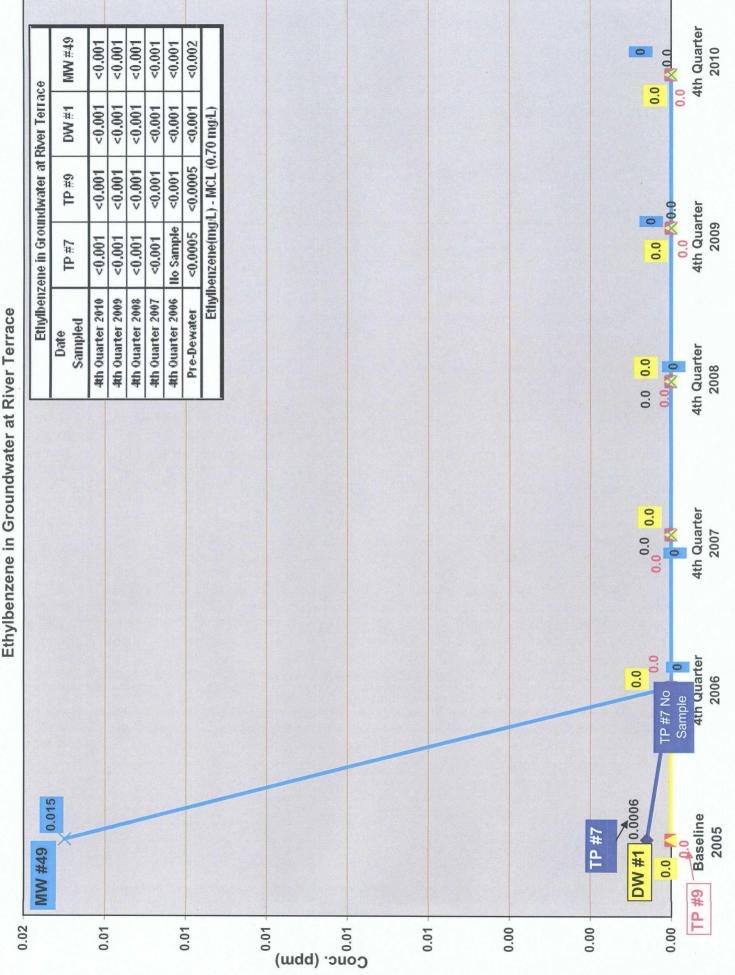



	TP #8	0.42	3.1	0.92	1.50	12.00	25.00		17.0	13.0		8.0	0.42	
	1P #6	0.004	3.2	1.20	<0.002	<0.003	7.50	mg/L)		1>	\langle			
r Terrace	5# d1	0.83	15.0	12.0	17.0	10.0	21.0	Xylene (mg/L) - WOCC 20NMAC (0.62mg/L)	15.0	15.0			4.2 × 3.2 2.1	
West Side of River Terrace	TP #2	17.0	4.2	0.9	3.7	12.0	25.0	- WOCC 20						
West	TP #1	13.0	15.0	16.0	18.0	20.0	23.0	/lene (mg/L)	16.0		12.0		6.0 X	
	Date Sampled	4th Quarter 2010	4th Quarter 2009	4th Quarter 2008	4th Quarter 2007	4th Quarter 2006	Pre-Dewater	SX .	18.0				3.7 1.5 1.2 0.92	
	8#						20.0	+		12	10.0			X
	TP #2	25	25.U	/	1	23.0	1P #1	2.	TP #5			7.5 TP #6		

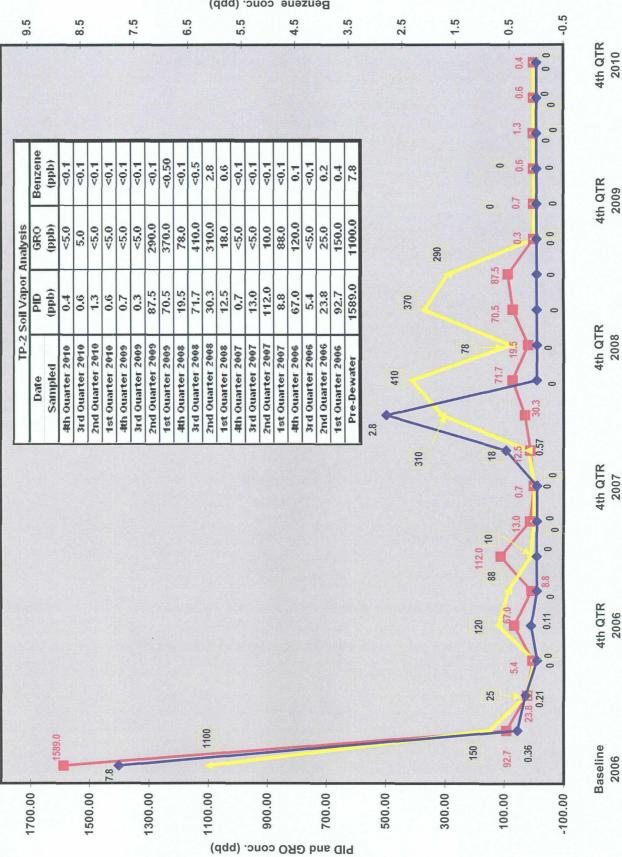

Benzene in Groundwater on East Side of River Terrace


Toluene in Groundwater on East Side of River Terrace



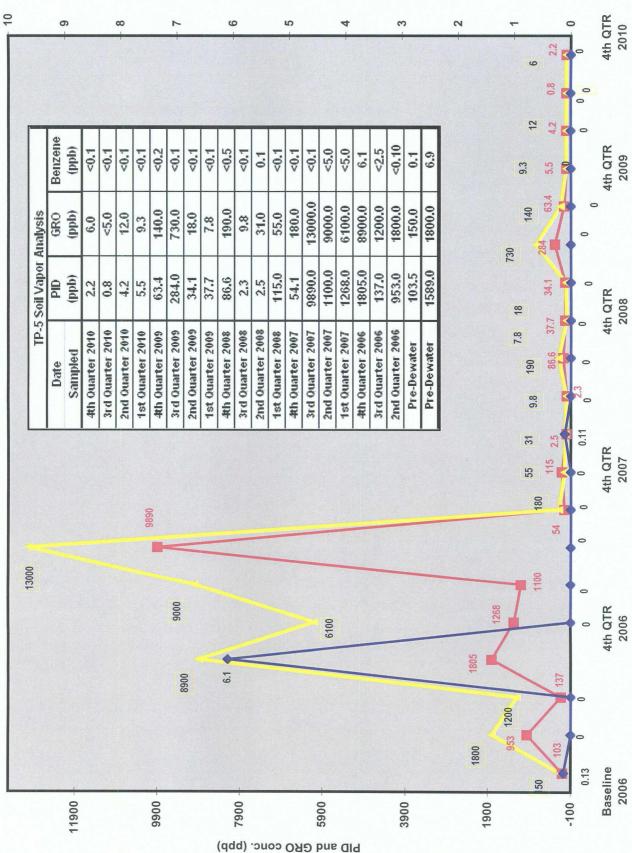


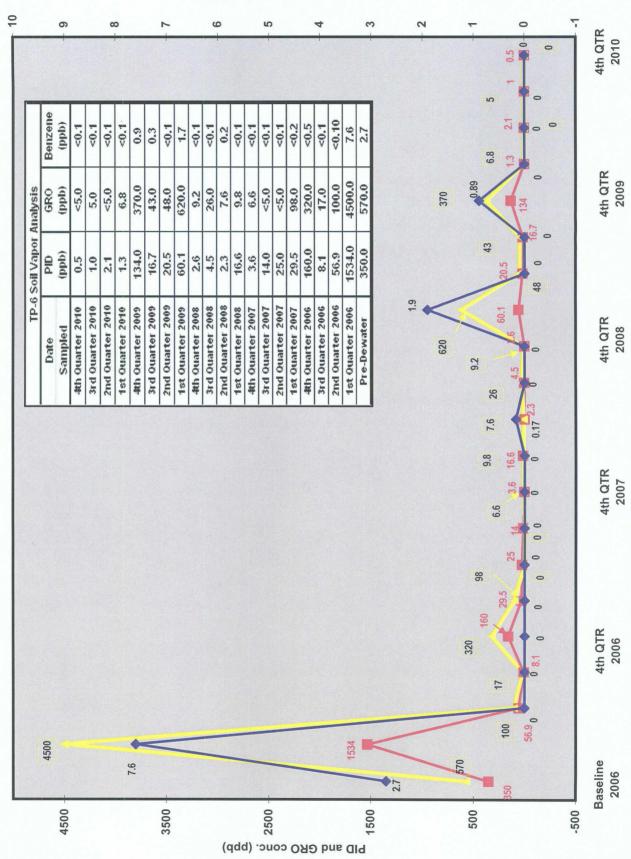
Ethylbenzene in Groundwater at River Terrace

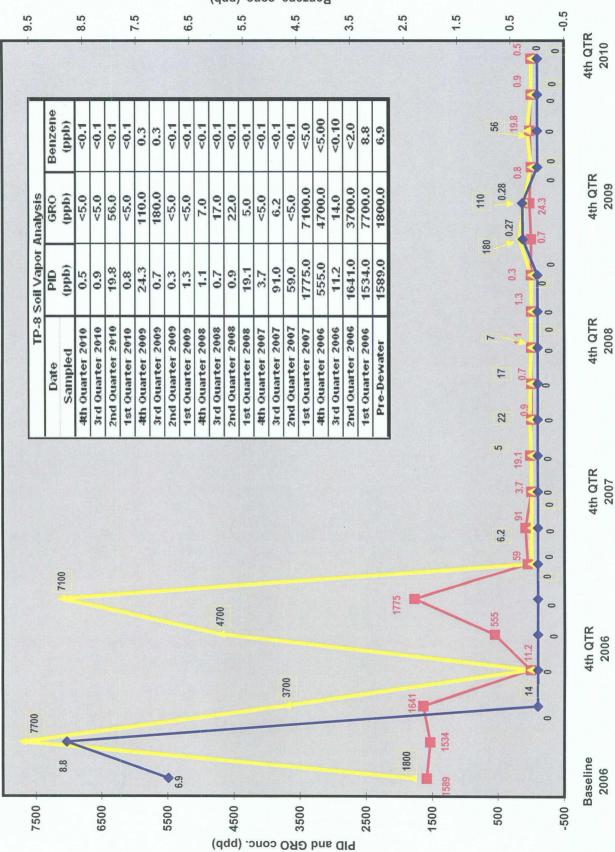


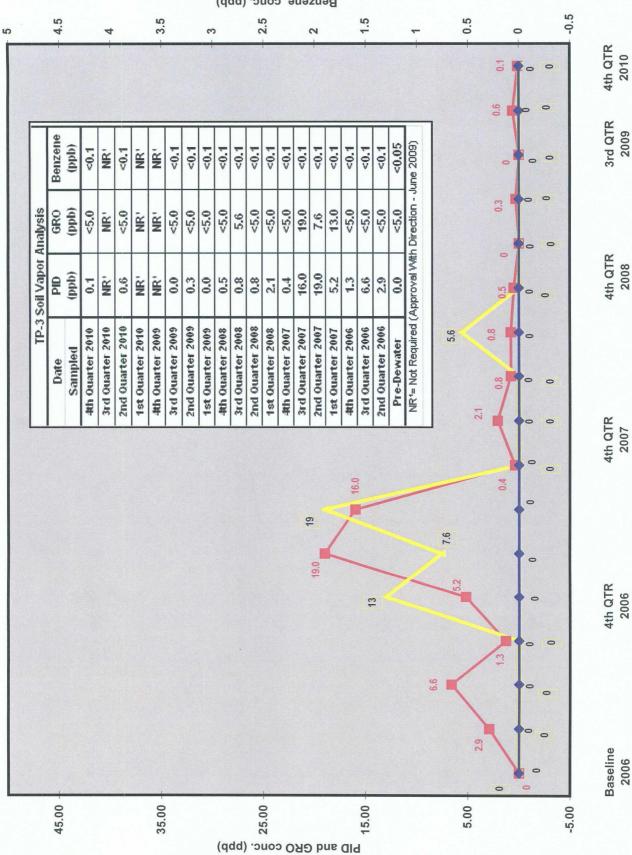
		25	2	100000				+ 20						+ 15	2					- 10			L	0 				0	Ř
Benzene (ppb)	<0.1	<0.1	0.7	0.2	0.6	5.1	7.7	0.2	0.4	4.5	6.1	23.0	<0.1	6.1	<5.0	29.0	2.6	22.0	5.8						220 17		₹ 7	0 0.14 0	4th QTR
GRO (ppb)	<5.0	220.0	34.0	49.0	67.0	330.0	2.10.0	48.0	15.0	90.0	95.0	1300.0	7.4	7300.0	8000.0	920.0	3100.0	8500.0	2800.0						49			0.19 0.7	4th QTR
(qdd)	0.7	4.3	6.2	5.3	5.1	234.0	20.4	10.6	10.4	328.0	51.0	3275.0	301.0	1981.0	1146.0	85.5	1452.0	1534.0	1401.0			Ţ	1.6	X 330		234.0 E.		0.02	
Date Sampled	4th Quarter 2010	2nd Quarter 2010 2nd Quarter 2010	1st Quarter 2010	4th Quarter 2009	3rd Quarter 2009	2nd Quarter 2009	4th Quarter 2008	3rd Quarter 2008	2nd Quarter 2008	1st Quarter 2008	4th Quarter 2007	3rd Quarter 2007	2nd Quarter 2007	1st Quarter 2007	4th Quarter 2006	3rd Quarter 2006	2nd Quarter 2006	1st Quarter 2006	Pre-Dewater		7.7 *	<			48 210		10.0	0.16	4th QTR
				23	•																3275.0	X 6.1		1300		51.0 328.0	4	95 	4th OTR
										RUND	000	7300	Anc I									6.1		146.0		920			4th OTR
13500.00 -		+ 00.		11500.00	22	10500.00 +		9500.00 +	8400	8500.00			7500.00 +			6500.00 +				4500.00 -	3500.00 3100			1401.0	1452.0		¥,	-500.00	Baseline
	Date PID GRO Sampled (ppb) (ppb)	DatePIDGROSampled(ppb)(ppb)4th Quarter 20100.7<5.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date PID GRO Sampled (ppb) (ppb) 4th Quarter 2010 0.7 <5.0	Date PID GRO Benzene Sampled (ppb) (ppb) (ppb) 4th Ouarter 2010 0.7 <5.0	Date PID GRO Benzene Sampled (ppb) (ppb) (ppb) (ppb) Ath Ouarter 2010 0.7 <5.0	Date Date PID GRO Benzene Sampled (ppb) (ppb) (ppb) (ppb) Ath Ouarter 2010 0.7 <5.0	Date Diate PID GRO Benzene Sampled (ppb) (ppb) (ppb) (ppb) Ath Ouarter 2010 0.7 <5.0	22 Date PID GRO Benzene 23 Rh Ouarter 2010 0.7 <5.0	22 23 24h Ouarter 2010 (ppb) (ppb) (ppb) 4th Ouarter 2010 0.7 <5.0 <0.1 3rd Ouarter 2010 4.3 17.0 0.1 2nd Ouarter 2010 56.2 220.0 <0.1 1st Ouarter 2010 5.3 49.0 0.2 3rd Ouarter 2009 5.3 49.0 0.2 3rd Ouarter 2009 5.1 67.0 0.6 2nd Ouarter 2009 5.1 67.0 0.9 4th Ouarter 2009 37.8 65.0 0.9 4th Ouarter 2008 20.4 210.0 7.7 3rd Ouarter 2008 10.6 48.0 0.2 2nd Ouarter 2008 10.6 48.0 0.2 3rd Ouarter 2008 10.4 15.0 0.4	22 850 850 850 850 850 850 850 850	22 8500 8500 800 800 800 800 800 8	22 Campled (ppb) (ppb)	22 Date PID GRO Benzene 8500 8500 77 75.0 60.1 23 740 Ouarter 2010 0.7 55.0 60.1 21<0 Ouarter 2010	$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\$	22 850 950 950 950 950 950 950 950 9	23 800 800 800 800 800 800 800 80	2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 Date PID GRO Benzene 20 40 Ouarter 2010 0.7 5:5 0.1 20 300 0.7 5:5 0.1 20 40 Ouarter 2010 6:2 24.0 0.1 20 40 Ouarter 2010 6:2 24.0 0.1 21 000 5:3 49.0 0.2 22 40 Ouarter 2010 5:3 49.0 0.2 230.0 5:1 330.0 5:1 45.0 0.2 240 Ouarter 2009 5:1 330.0 5:1 45.0 0.2 210.0 77 240 Ouarter 2009 214.0 0.2 210.0 0.2 210.0 730.0 5.1 45.0 0.2 45.0 0.2 210 141 Ouarter 2008 10.6 4.5 210.0 0.2 0.2 210.0 74 210.0 74 20.0 0.2 0.2 0.2 210 210.0 74.0	22 23 800 700 800 700 700 700 700 700	Date Date PD GRO Benzene 500 500 51 001 000) 000) 000) 500 500 51 52 220.0 0.1 0.1 500 500 51 52 51 0.0 0.1 500 500 51 52 34.0 0.2 0.1 500 51 001 51 51 0.0 0.1 500 51 51 350 51 0.0 0.1 500 51 51 350 0.2 0.1 0.1 500 51 51 0.0 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 0.1 1.1 1.1 0.1	Date Date PID GRO Benzene 2 0	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Deficient Deficient PDD 6RO Benizerie Deficient PDD 6RO Benizerie PDD 6RO Benizerie Deficient PDD 6RO PDD 6RO Benizerie Benizerie	20 Date PD 0R0 Benzene 20 000 0R0 0R0 0R00 0000 21 000 0R0 0R0 0000 010 20 000 0R0 0R0 0R0 0R0 20 000 0R0 0R0 0R0 0R0 20 000 0R0 0R0 0R0 0R0 200 0R0 0R0 0R0 0R0 0R0 200 0R0 0R0 0R0 0R0 0R0 200 0R0 0	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

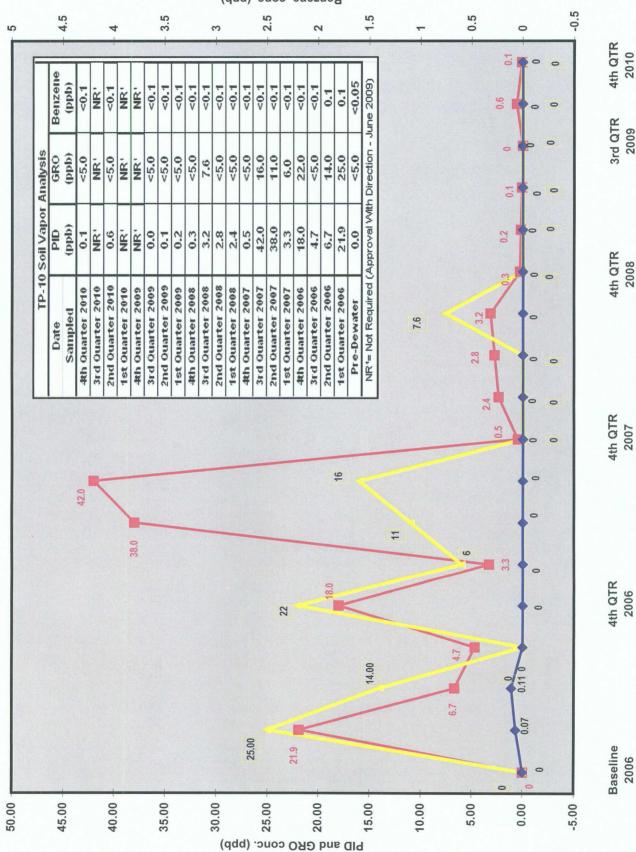
TP-1 Vapor

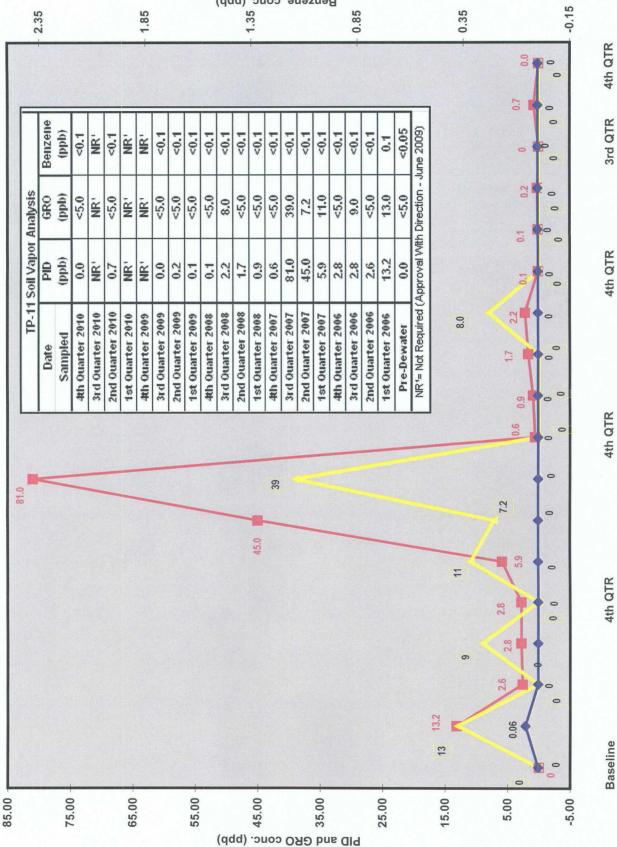



	5
	0
	0
)	/a
	-
	5
	-
	1
	-

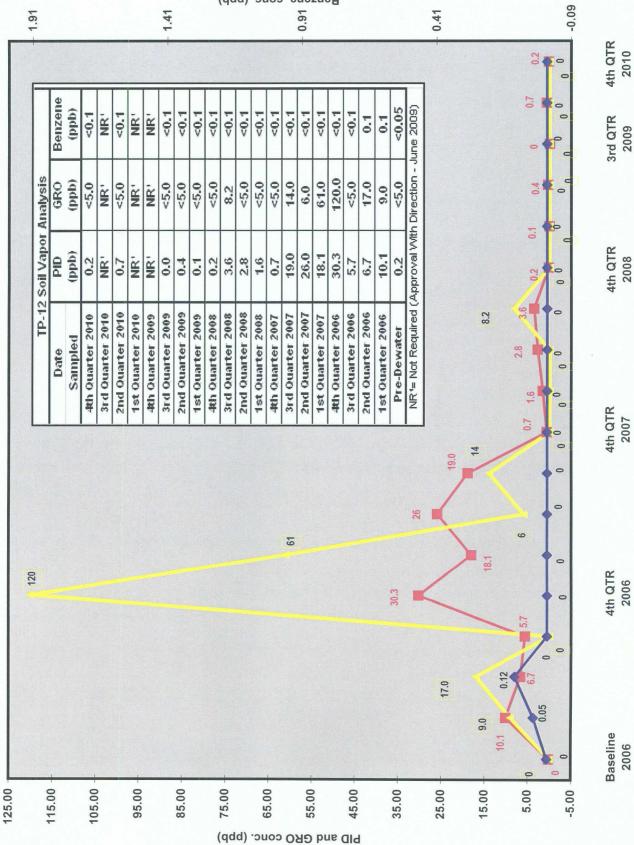



TP- 8 Vapor

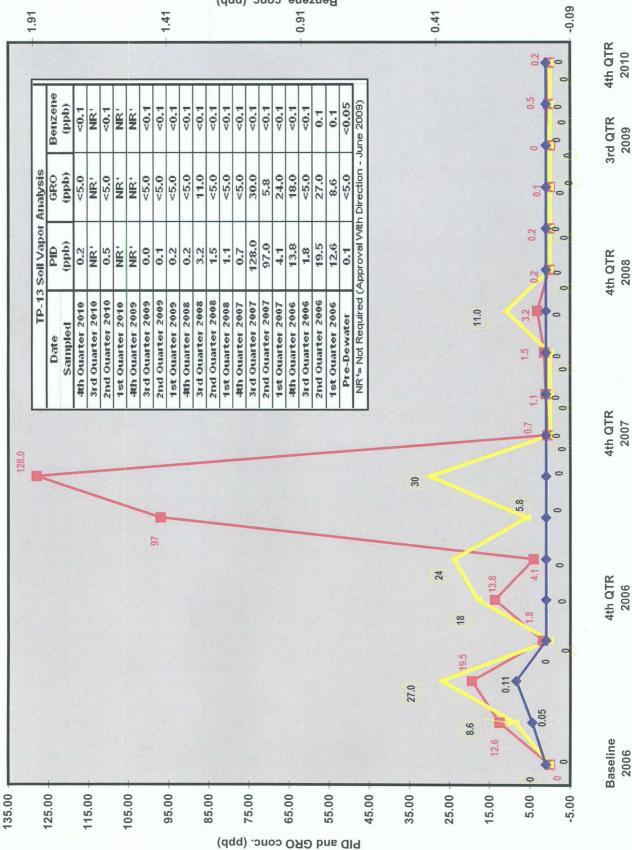


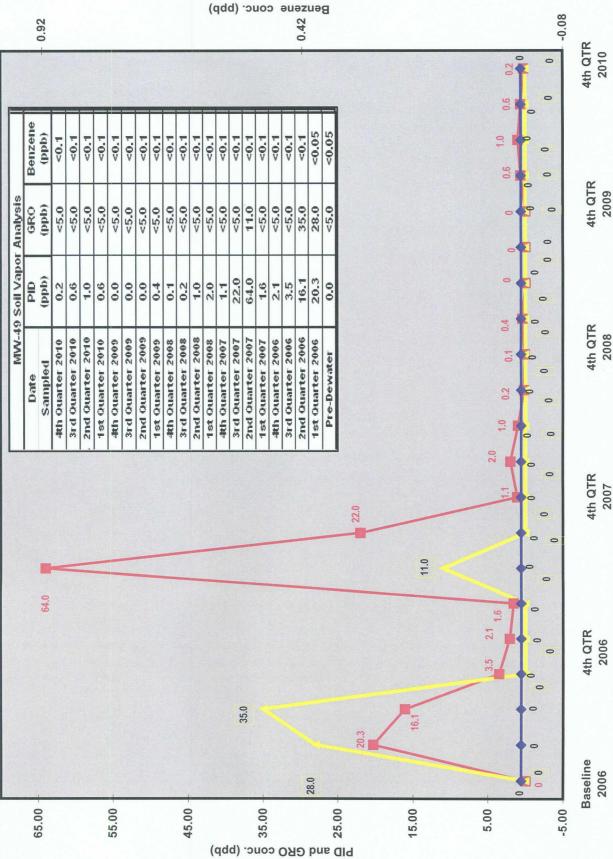


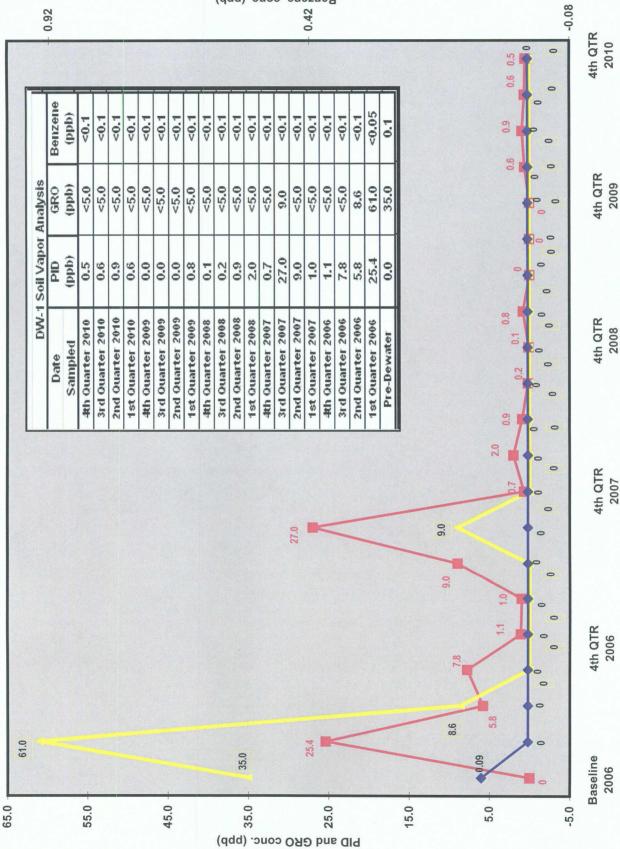
Vapor
1
TP-

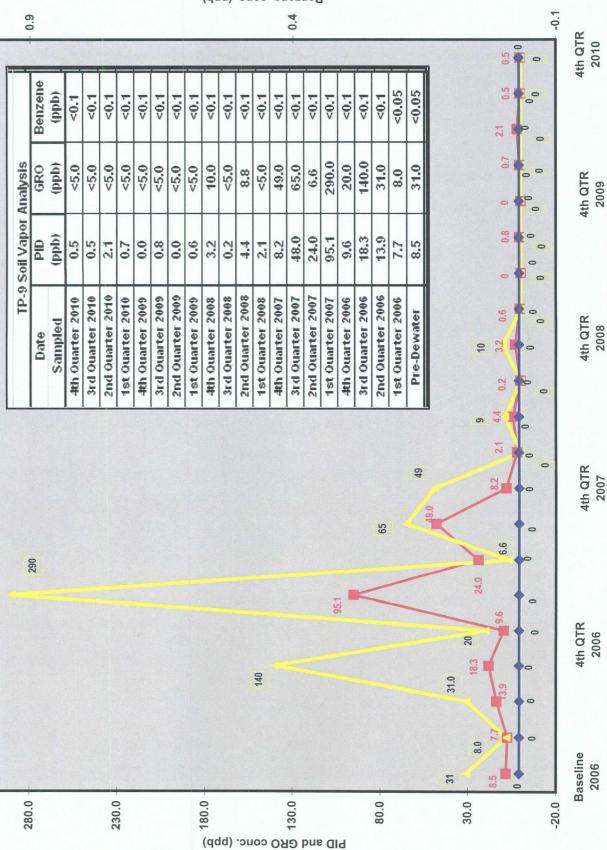


Baseline

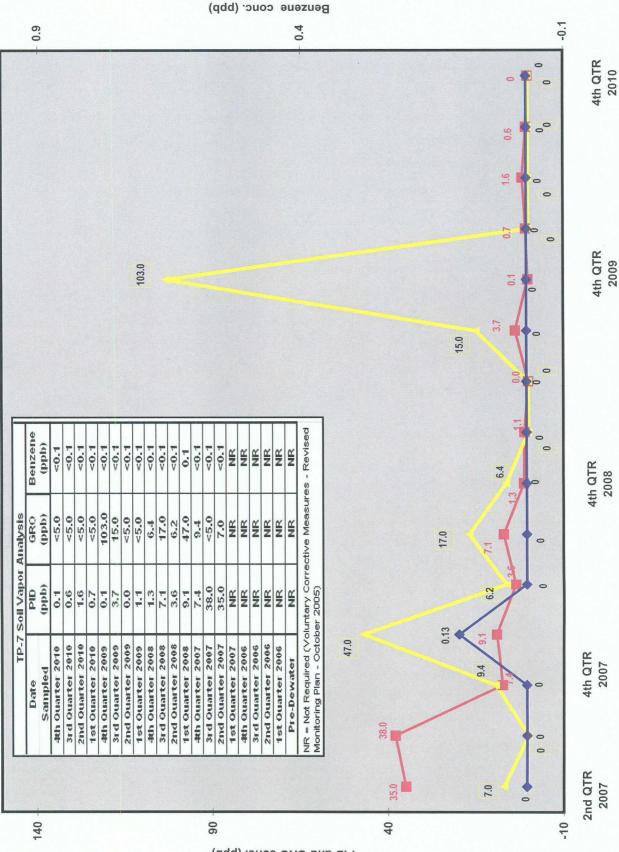




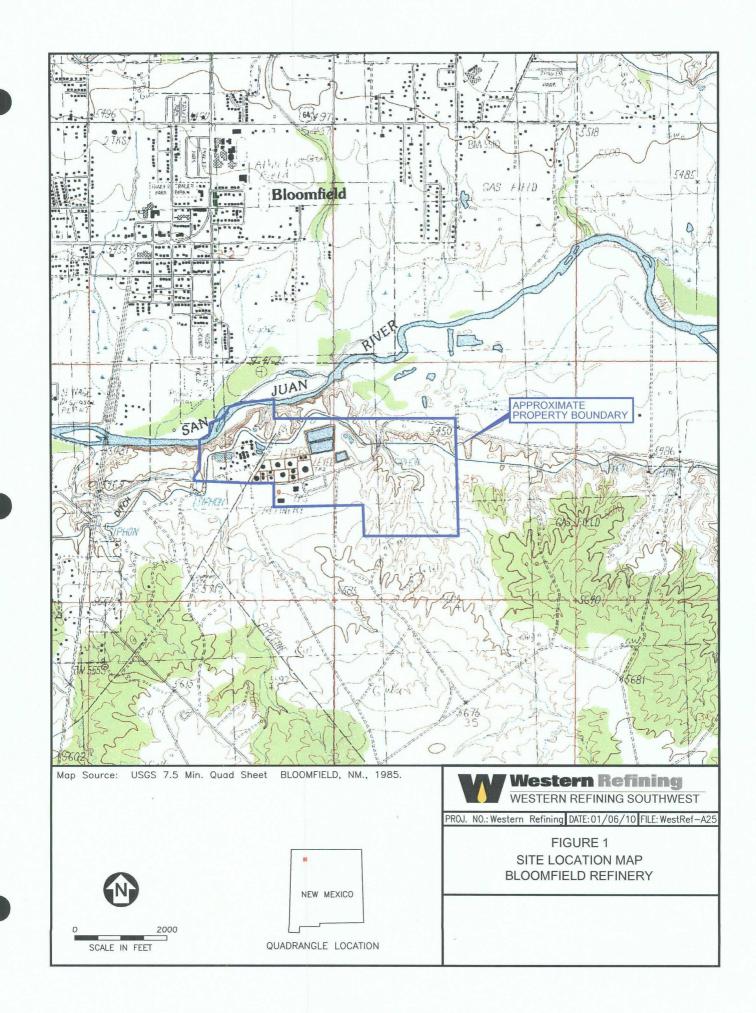


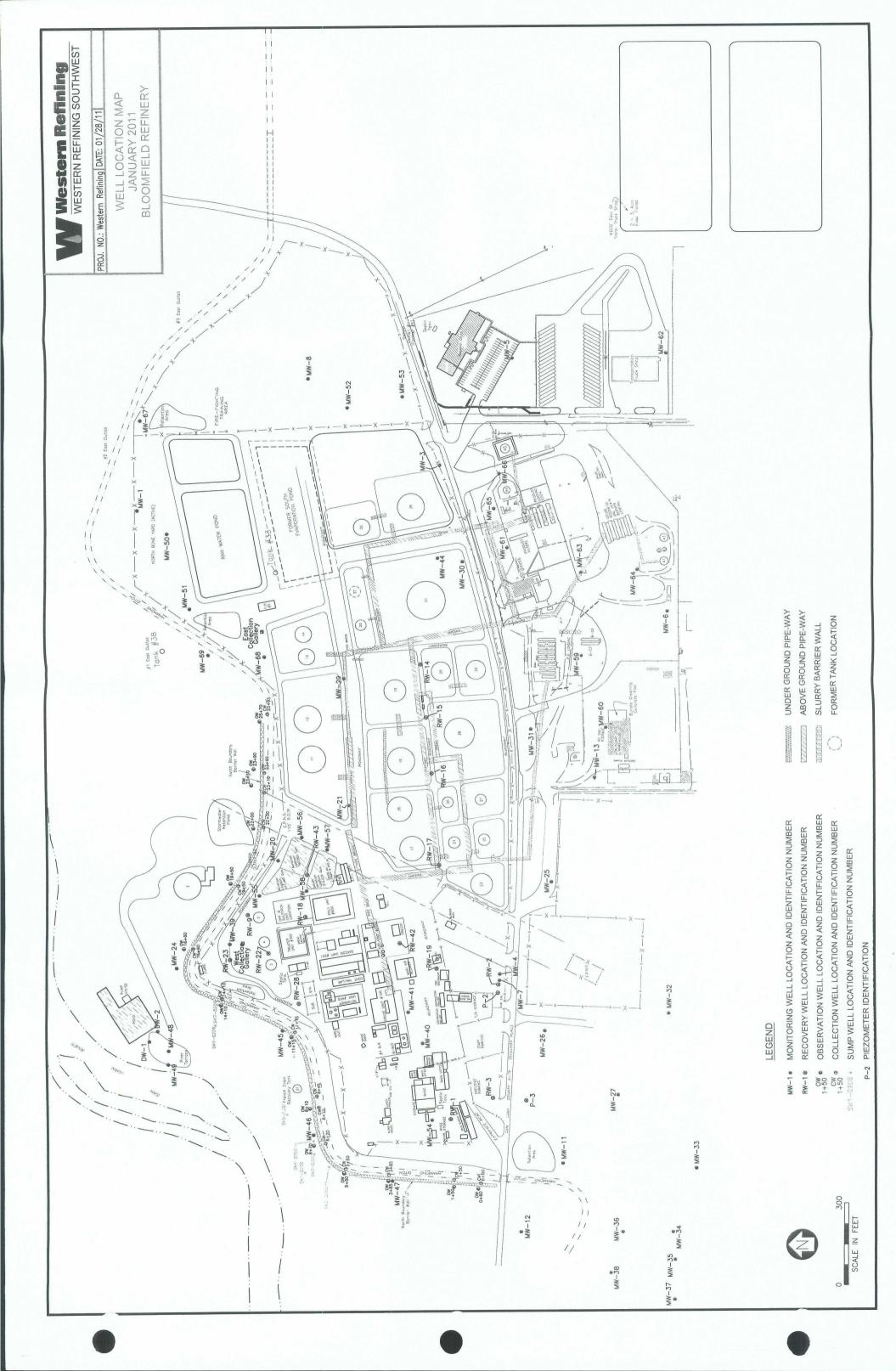


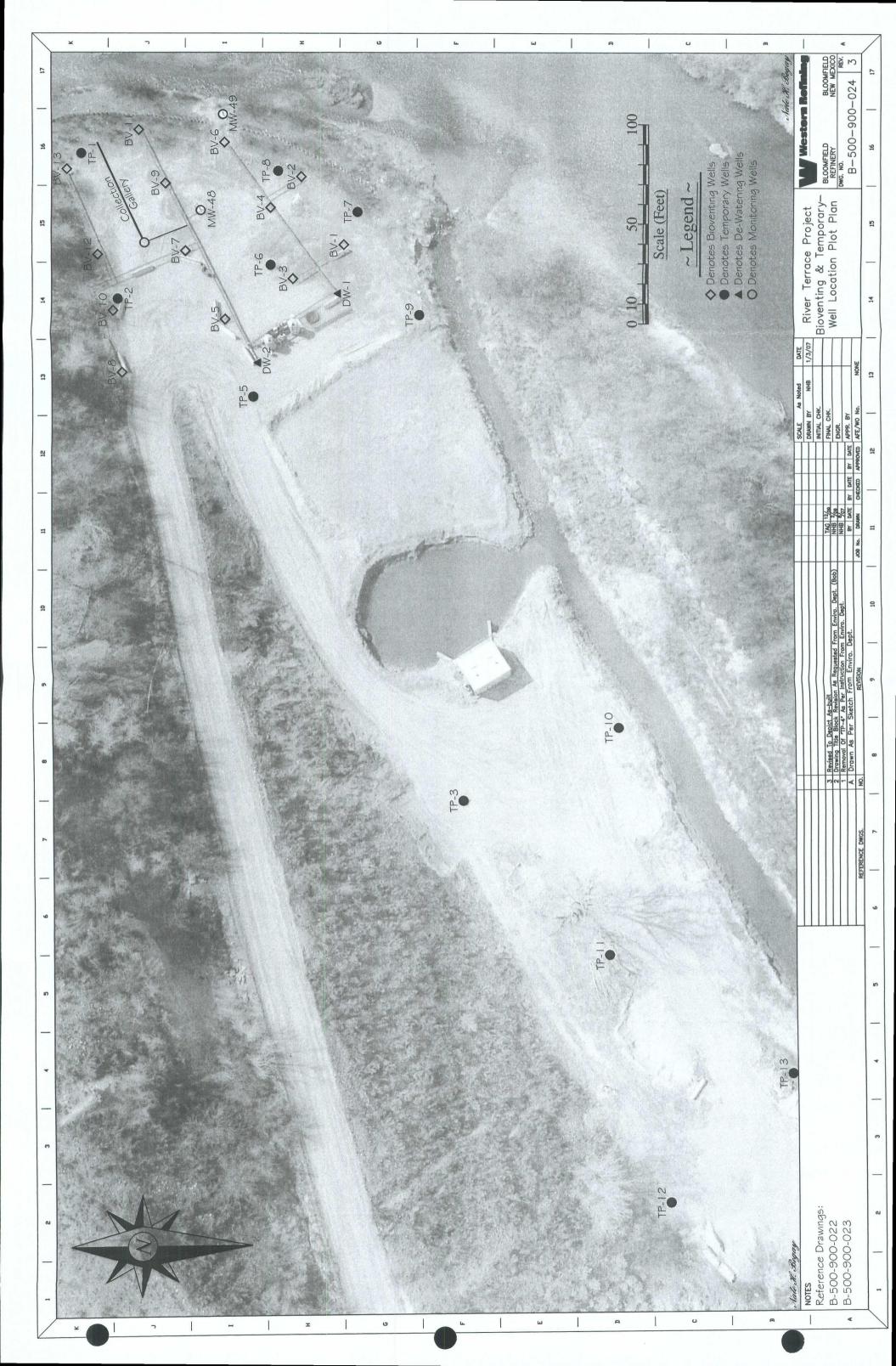
Benzene conc. (ppb)



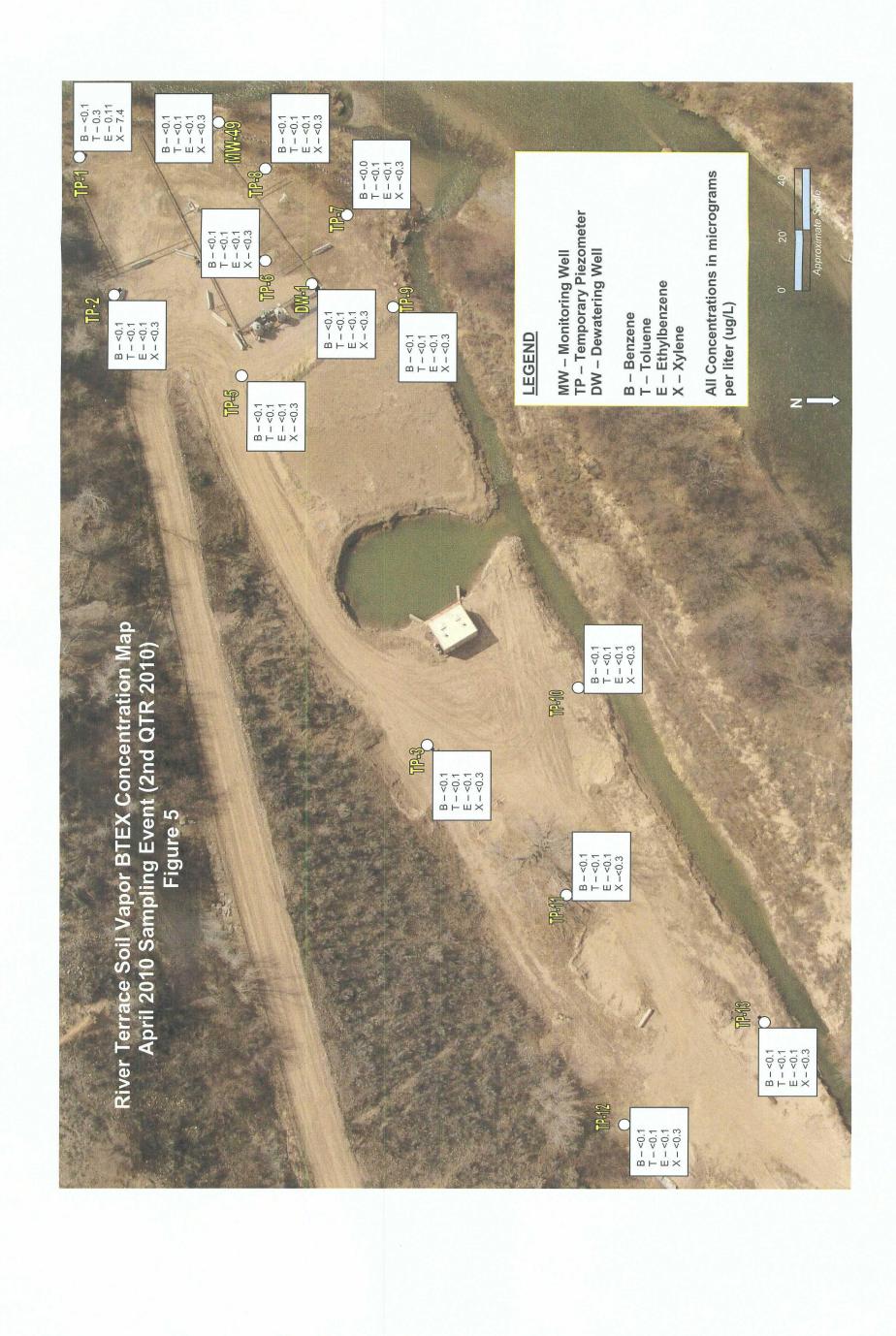
Benzene conc. (ppb)

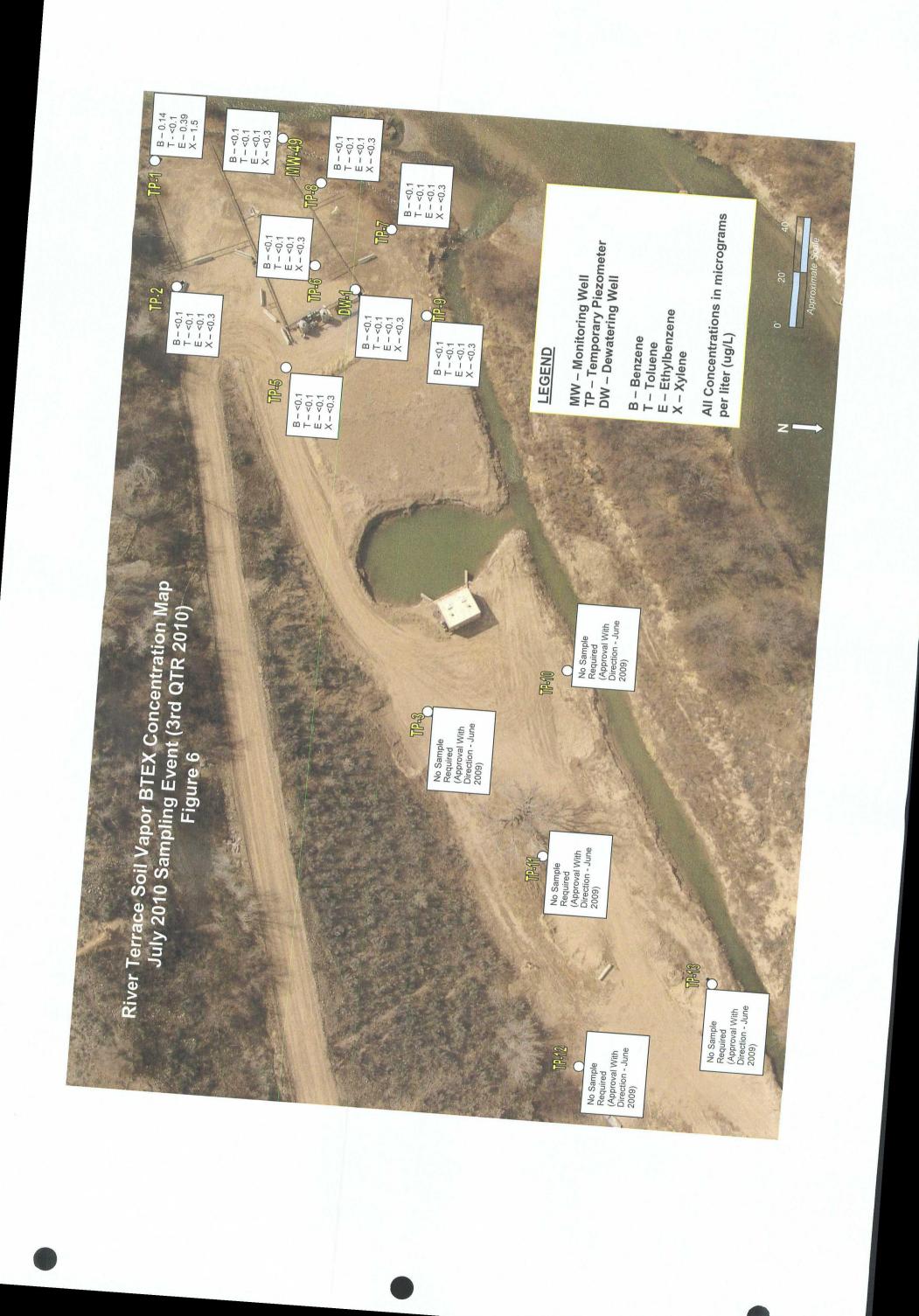


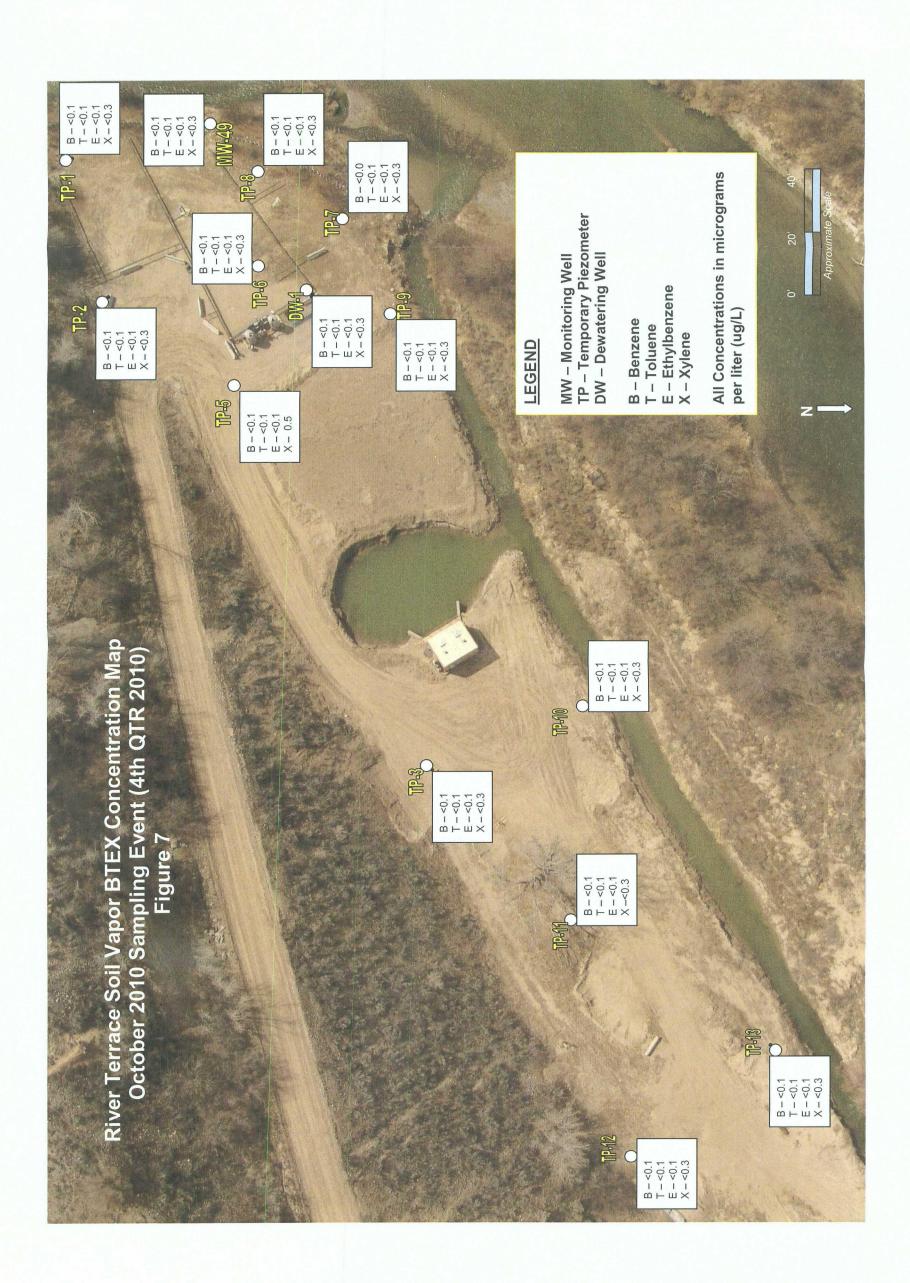


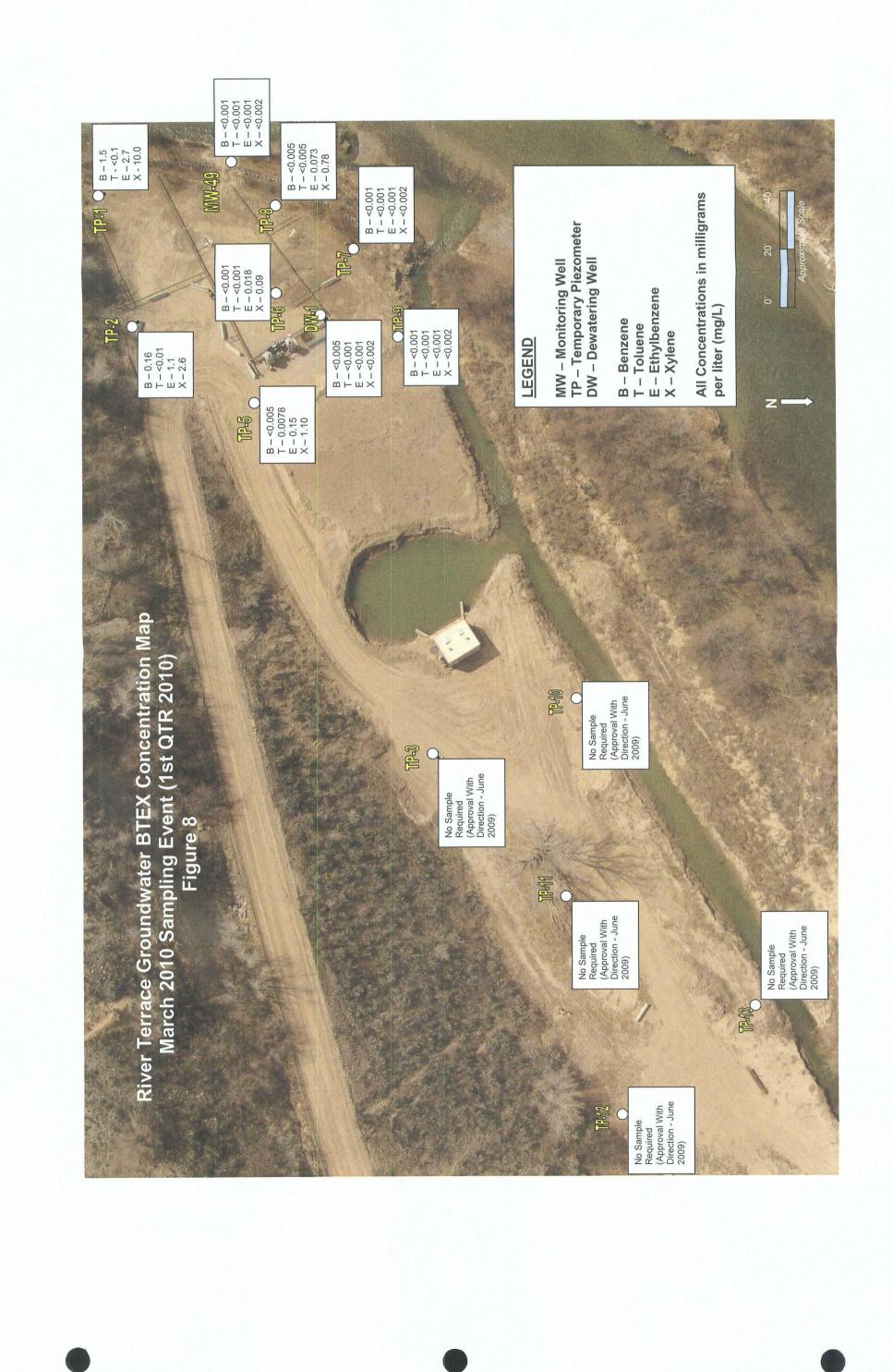

PID and GRO conc. (ppb)

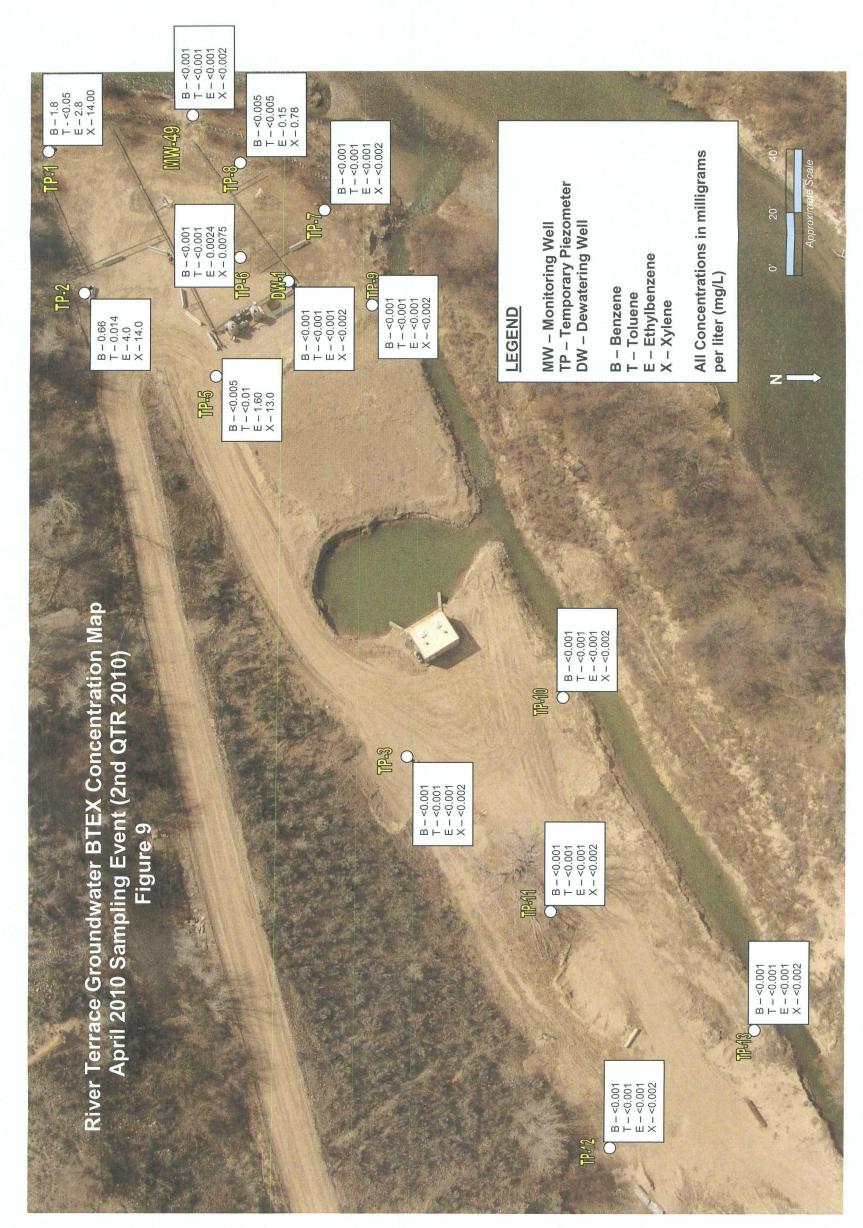
Section	6.0	Maps
---------	-----	------

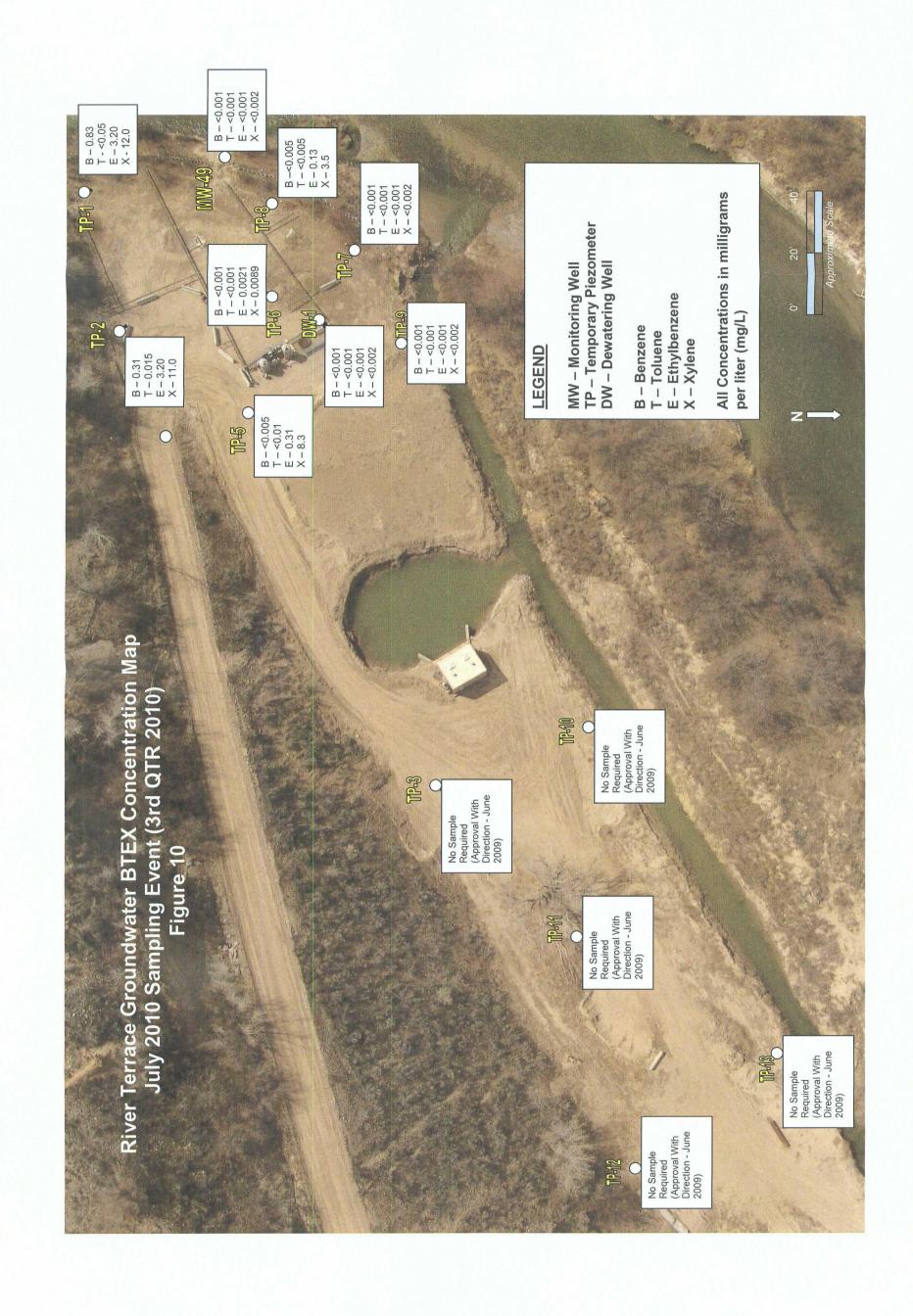

Title	Figure
Vicinity Map	Figure 1
Facility Site Plan	Figure 2
River Terrace Bioventing Project Plot Plan	Figure 3
Soil Vapor 1st QTR BTEX Concentration Map	Figure 4
Soil Vapor 2nd QTR BTEX Concentration Map	Figure 5
Soil Vapor 3rd QTR BTEX Concentration Map	Figure 6
Soil Vapor 4th QTR BTEX Concentration Map	Figure 7
Groundwater 1st QTR BTEX Concentration Map	Figure 8
Groundwater 2nd QTR BTEX Concentration Map	Figure 9
Groundwater 3 rd QTR BTEX Concentration Map	Figure 10
Groundwater 4 th QTR BTEX Concentration Map	Figure 11

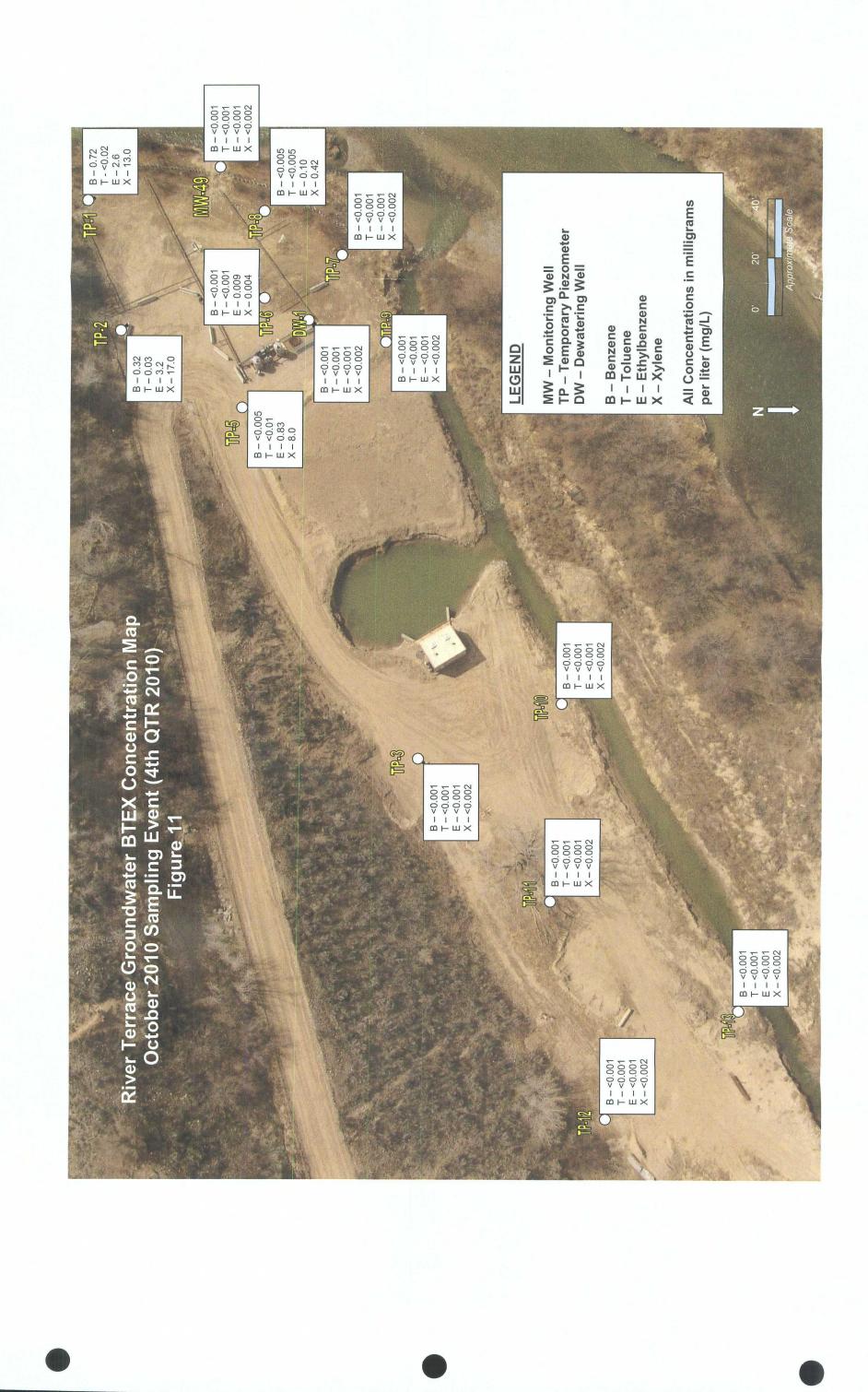












Section 7.0 Summary

Summary

Construction of the River Terrace Bioventing Project was initiated in August 2005. The system was put on-line in January 2006. On-going sampling at the River Terrace is conducted in accordance with the approved Bioventing System Monitoring Plan, dated October 28, 2006, and in accordance with an NMED comment letter (Direction to Modify Future Monitoring as reported in the River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2006 through December 2006) dated June 13, 2007. These revisions were implemented during the second guarter sampling event of 2007 and continue to be utilized. Additional revisions to the monitoring plan were stated in the NMED letter dated June 16, 2009 (Approval with Direction River Terrace Voluntary Corrective Measures Bioventing System Annual Report January 2008 through December 2008). NMED agreed to modify the sampling at the eastern portion of the River Terrace (TP #3, TP #10, TP #11, TP #12, and TP #13) to semi-annual sampling during the high and low water flows of the San Juan River. These modifications were employed during the fourth guarter sampling event of 2009 and were applied throughout 2010.

Data Collection

Western Refining indefinitely suspended refining operations at the Bloomfield Refinery on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. The change in site operation has impacted the operation of the dewatering system of the River Terrace Bioventing System. Although the aeration system operates continuously, operation of the dewatering system has become infrequent due to the lessened demand for fresh water to support current facility operations.

Groundwater Monitoring

First quarter groundwater elevation measurements were collected from each of the TP wells, DW #1, and MW #49 during the week of March 8, 2010. Groundwater samples were not collected from the TPs on the eastern portion of the River Terrace (TP #3, TP #10, TP #11, TP #12, and TP #13). The wells on the western portion of the River Terrace (TP #1, TP #2, TP #5, TP #6, TP, #7, TP #8, TP #9, DW #1, and MW #49) were sampled and analyzed for BTEX and MTBE (EPA Method 8021B), GRO and DRO (EPA Method 8015B), and lead analysis (EPA Method 6010B). Field measurements included temperature, pH, conductivity, DO, and ORP. TP-7 was sampled after a 24 hour recharge time. DW #1 was also analyzed for Mercury (EPA Method 7470). The third quarter monitoring event (the week of July 20, 2010) included the same collection sites and the same methods.

Second quarter sampling and groundwater elevation measurements were collected from each of the TP wells, DW #1, and MW #49 during the week of April 19, 2010. TP-7 was sampled after a 24 hour recharge time. Annual analysis

1

of chromium and barium (EPA Method 6010B) were performed during the second quarter event. Lead analysis (EPA Method 6010B) was performed on samples collected from each TP Well, MW #49, and DW#1. DW #1 samples were also analyzed for mercury (EPA Method 7470). In addition, groundwater samples were analyzed for BTEX and MTBE (EPA Method 8021B), GRO and DRO (EPA Method 8015B). Field measurements included temperature, pH, conductivity, DO, and ORP. The fourth quarter monitoring event (the week of October 18, 2010) included the same collection sites and the same methods except there were no annual analysis of chromium and barium. Mercury analysis (EPA Method 7470) for DW #1 was inadvertently not marked on the Chain of Custody. There are no mercury results for DW #1 for the fourth quarter 2010 sampling event.

Analytical results for TP #1 and TP #2 groundwater samples indicate regulatory standards were exceeded for benzene, ethylbenzene, xylene, DRO (Diesel Range Organics), and total lead in all four sampling events. TP-5 surpassed xylene, DRO, and total lead screening guidelines in all four quarters and ethylbenzene standards in the first and third quarters. TP-6 surpassed regulatory limits for total lead in the first, second, and third quarter and exceeded DRO guidelines in the first and second quarter of 2010.TP-8 topped DRO guidelines (all four quarters), total lead standards (first, second, and third quarter), and xylene limits (first and second quarter) in 2010. MW #49 exceeded DRO standards in the first and second quarter of 2010.Analytical results for all remaining samples were below the applicable screening levels.

Since August 2005, BTEX concentrations in groundwater show a decreasing trend over time at wells within the western portion of the River Terrace (TP-#1, #2, #5, #6 and #8). BTEX concentration vs time graphs located in Section 5.0, Tabs 6, 7, and 8 demonstrate this decreasing trend over the last five years. Analytical results of the groundwater monitoring continue to indicate that the contaminants of concern are primarily benzene, ethylbenzene, xylene, and total lead for these wells.

Analytical results of samples collected from the wells on the eastern portion of the River Terrace (TP-3, 10, 11, 12, and 13) continue to be below method detection limits. BTEX concentration vs time graphs in Section 5.0 illustrate that non-detect results have consistently occurred in the eastern portion of the River Terrace since 2006. BTEX results are still below WQCC Standards at wells located on the eastern most side of the bioventing area (TP #7, TP #9, DW #1).

TP #3, TP #7, TP #9, TP #10, TP #11, TP #12, TP #13, and DW #1 did not exceed regulatory standards in groundwater for BTEX, DRO, or total lead in 2010. Barium and chromium regulatory limits have not been surpassed at any well location at the River Terrace since 2006. TP-8 baseline results in January 2006 exceeded barium limits (2.0 ppm) with a result of 2.2 ppm.

2

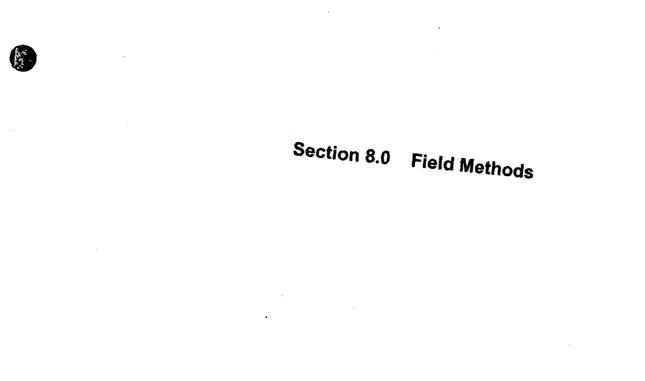
Mercury was detected at DW-1 during the February 2007 sampling event (0.002 mg/L) and again during the April 2009 sampling event (0.0008 mg/L). Due to laboratory error, mercury was not analyzed during the 4th quarter of 2008 and again during the 3rd quarter of 2009 and was inadvertently not analyzed in the 4th quarter of 2010. Mercury results have been below detection levels for the other eleven sampling events.

Soil Gas Monitoring

The first quarter soil gas sampling event was conducted during the week of March 8, 2010. Samples were not collected from the TPs on the eastern portion of the River Terrace (TP #3, TP #10, TP #11, TP #12, and TP #13) due to approved changes in the monitoring plan. Soil gas samples were collected from the wells on the western portion of the River Terrace (TP #1, TP #2, TP #5, TP #6, TP, #7, TP #8, TP #9, DW #1, and MW #48) and analyzed for BTEX (8021B) and GRO (8015B). Field measurements of vapor-phase organics (using a PID) and oxygen and carbon dioxide concentrations (using a multi-gas meter) were collected. Third quarter monitoring events occurred during the week of July 20, 2010 and utilized the same collection sites, and the same methods and parameters.

During the second and fourth quarter sampling events, soil gas samples were collected from each of the TP Wells, DW #1, and MW #49. Soil gas analysis included BTEX (8021B) and GRO (8015B). Field measurements of vapor-phase organics (using a PID) and oxygen and carbon dioxide concentrations (using a multi-gas meter) were collected. Second quarter samples were collected the week of April 19, 2010. Fourth quarter monitoring was conducted during the week of October 18, 2010.

Soil vapor concentration vs time comparisons (Section 5.0, Tabs 9, 10, and 11) indicate a significant downward trend from 2006 benzene, GRO, and PID analysis when compared to current results from 2010.


GAC Monitoring

GAC filter influent samples (GAC Inf) and effluent samples collected downstream of the lag GAC filter (GAC 1 Eff – V-612) were collected quarterly. Effluent samples from the lead GAC filter (GAC 2 Eff – V-611) were obtained every month. Samples were analyzed for BTEX by EPA Method 8021B, GRO and DRO by EPA Method 8015B. Break through in the GAC did not occur in 2010.

Analysis and Conclusions

Bloomfield Refinery met all NMED and OCD sampling and monitoring requirements for 2010 with the exception of mercury analysis during the fourth quarter sampling event. Operation of the River Terrace Bioventing System has been affected by current facility operational conditions. Air sparging is continuing however the dewatering system operates infrequently as the plant requires less water.

.

Chemical Analytical Program

Section 9.0

Hall Environmental Analysis Laboratory **QUALITY ASSURANCE PLAN** Effective Date: February 2nd 2010 **Revision 9.2**

www.hallenvironmental.com

Control Number: 0000095

Approved By:

Andy Freeman

Laboratory Manager

2/10

Approved By:

Carolyn Swanson Date Quality Assurance/Quality Control Officer

Table of Contents

Section	Title	Page
1.0	Title Page	1
2.0	Table of Contents	3
3.0	Introduction Purpose of Document Objectives Policies	6
4.0	Organization and Responsibility Company Certifications Personnel Laboratory Director Laboratory Manager/ Lead Technical Director Quality Assurance Officer Business/Project Manager Section Managers/Technical Directors Health and Safety/Chemical Hygiene Officer Chemist I-III Laboratory Technician Sample Control Manager Sample Custodians Delegations in the Absence of Key Personnel Personnel Qualifications and Training	8
5.0	Receipt and Handling of Samples Sampling Procedures Containers Preservation Sample Custody Receiving Samples Logging in Samples and Storage Disposal of Samples	16
6.0	Analytical Procedures List of Procedures Used Criteria for Standard Operating Procedures	19

7.0	Calibration	23
	Thermometers Refrigereters/Freezers	
	Refrigerators/Freezers Ovens	
	Analytical/Table Top Balances	
	Instrument Calibration	
	pH Meter	
	Other Analytical Instrumentation and Equipment	
	Standards	
	Reagents	
8.0	Maintenance	27
9.0	Data Integrity	28
10.0	Quality Control	29
	Internal Quality Control Checks	
	Precision, Accuracy, Detection Limit	
	Quality Control Parameter Calculations	
	Mean	/
	Standard Deviation	
	Percent Recovery (%R) Confidence Intervals	
	Relative Percent Difference (RPD)	
	Uncertainty Measurements	
	Calibration Calculations	
11.0	Data Reduction, Validation, and Reporting	39
	Data Reduction	•••
	Validation	
	Reports and Records	
12.0	Corrective Action	41
13.0	Quality Assurance Audits, Reports and Complaints	43
19.0	Internal/External Systems' Audits	40
	Management Reviews	
	Complaints	
	Internal and External Reports	
14.0	References	46
Appendix	A Personnel Chart/Organizational Structure	48
Appendix	B ORELAP Accreditation	
	Full list of approved analytes, methods, analytical techniques and fields of testing	
	Reserved, available upon request	
-	Page 4 of 49	

Page 4 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

Appendix C TCEQ Accreditation Full list of approved analytes, methods, analytical techniques and fields of testing Resorved, available upon request

- Appendix D Utah ELCP Accreditation Full list of approved analytes, methods, analytical techniques and fields of testing Reserved, available upon request
- Appendix E ADHS Accreditation Full list of approved analytes, methods, analytical techniques and fields of testing Reserved, available upon request
- Appendix F NMED-DWB Certification Reserved, available upon request
- Appendix G NM DOH Certification Reserved, available upon request
- Appendix H Terms and Definitions Reserved, available upon request
- Appendix I Chain of Custody Record Reserved, available upon request
- **Appendix J HEAL Forms**

Analyst Ethics and Data Integrity Agreement IDOC Certificate ADOCP Certificate Training Forms Corrective Action Report **Reserved, available upon request**

> Page 5 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

Purpose of Document

The purpose of this Quality Assurance Plan is to formally document the quality assurance policies and procedures of Hall Environmental Analysis Laboratory, Inc. (HEAL), for the benefit of its employees, clients, and accrediting organizations. HEAL continually implements all aspects of this plan as an essential and integral part of laboratory operations in order to ensure that high quality data is produced in an efficient and effective manner.

Objectives

The objective of HEAL is to achieve and maintain excellence in environmental testing. This is accomplished by developing, incorporating and documenting the procedures and policies specified by each of our accrediting authorities and outlined in this plan. A laboratory staff that is analytically competent, well qualified, and highly trained carries out these activities. An experienced management team, knowledgeable in their area of expertise, monitors them. Finally, a comprehensive quality assurance program governs laboratory practices and ensures that the analytical results are valid, defensible, reproducible, reconstructable and of the highest quality.

HEAL establishes and thoroughly documents its activities to ensure that all data generated and processed will be scientifically valid and of known and documented quality. Routine laboratory activities are detailed in method specific standard operating procedures (SOP). All data reported meets the applicable requirements for the specific method that is referenced, ORELAP, TCEQ, EPA, client specific requirements and/or State Bureaus. In the event that these requirements are ever in contention with each other, it is HEAL's policy to always follow the most prudent requirement available. For specific method requirements refer to HEAL's Standard Operating Procedures (SOP's), EPA methods, Standard Methods 20th edition, ASTM methods or state specific methods.

HEAL management ensures that this document is correct in terms of required accuracy, data reproducibility, and that the procedures contain proper quality control measures. HEAL management additionally ensures that all equipment is reliable, well maintained and appropriately calibrated. The procedures and practices of the laboratory are geared towards not only strictly following our regulatory requirements but also allowing the flexibility to conform to client specific specifications. Meticulous records are maintained for all samples and their respective analyses so that results are well documented and defensible in a court of law.

The HEAL Quality Assurance/Quality Control Officer (QA/QCO) and upper management are responsible for supervising and administering this quality assurance program, and ensuring each individual is responsible for its proper implementation. All HEAL management remains committed to the encouragement of excellence in analytical testing and will continue to provide the necessary resources and environment conducive to its achievement.

Policies

Understanding that quality cannot be mandated, it is the policy of this laboratory to provide an environment that encourages all staff members to take pride in the quality of their work. In addition to furnishing proper equipment and supplies, HEAL stresses the importance of continued training and professional development. Further, HEAL recognizes the time required for data interpretation. Therefore, no analyst should feel pressure to sacrifice data quality for data quantity. Each staff member must perform with the highest level of integrity and professional competence, always being alert to problems that could compromise the quality of their technical work.

Management and senior personnel supervise analysts closely in all operations. Under no circumstance is the willful act or fraudulent manipulation of analytical data condoned. Such acts must be reported immediately to HEAL management. Reported acts will be assessed on an individual basis and resulting actions could result in dismissal. The laboratory staff is encouraged to speak with lab managers or senior management if they feel that there are any undo commercial, financial, or other pressures, which might adversely affect the quality of their work; or in the event that they suspect that data quality has been compromised in any way. HEAL's Quality Assurance/Quality Control Officer is available if any analyst and/or manager wishes to anonymously report any suspected or known breaches in data integrity.

All proprietary rights and client information at HEAL (including national security concerns) are considered confidential. No information will be given out without the express verbal or written permission of the client. All reports generated will be held in the strictest of confidence.

This is a controlled document. Each copy is assigned a unique tracking number and when released to a client or accrediting agency the QA/QCO keeps the tracking number on file. This document is reviewed on an annual basis to ensure that it is valid and representative of current practices at HEAL.

4.0 Organization and Responsibility

Company

HEAL is accredited in accordance with the 2003 NELAC standard (see NELAC accredited analysis list in the appendix), through ORELAP and TCEQ and by the Arizona Department of Health Services. Additionally, HEAL is qualified as defined under the State of New Mexico Water Quality Control Commission regulations and the New Mexico State Drinking Water Bureau. HEAL is a locally owned small business that was established in 1991. HEAL is a full service environmental analysis laboratory with analytical capabilities that include both organic and inorganic methodologies and has performed analyses of soil, water, air as well as various other matrices for many sites in the region. HEAL's client base includes local, state and federal agencies, private consultants, commercial industries as well as individual homeowners. HEAL has performed as a subcontractor to the state of New Mexico and to the New Mexico Department of Transportation. HEAL has been acclaimed by its customers as producing quality results and as being adaptive to client-specific needs.

The laboratory is divided into an organic section, and an inorganic section. Each section has a designated manager/technical director. The technical directors report directly to the laboratory manager, who oversees all operations.

Certifications

ORELAP -- NELAC Oregon Primary accrediting authority.

TCEQ – NELAC Texas Secondary accrediting authority.

The Arizona Department of Health Services

The New Mexico Drinking Water Bureau

The New Mexico Department of Health

See appendix B-E for copies of current licenses and licensed parameters, or refer to our current list of certifications online at <u>www.hallenvironmental.com</u>.

In the event of a certification being revoked or suspended HEAL will notify, in writing, those clients that require the effected certification.

Page 8 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

Personnel

HEAL management ensures the competence of all who operate equipment, perform environmental tests, evaluate results, and sign test reports. Personnel performing specific tasks shall be qualified on the basis of appropriate education, training, experience and /or demonstrated skills.

All personnel shall be responsible for complying with HEAL's quality assurance/quality control requirements that pertain to their technical function. Each technical staff member must have a combination of experience and education to adequately demonstrate specific knowledge of their particular function and a general knowledge of laboratory operations, test methods, quality assurance/quality control procedures and records management.

All employees training certificates and diplomas are kept on file with demonstrations of capability for each method they perform. An Organizational Chart can be found in Appendix A.

Laboratory Director

The Laboratory Director is responsible for overall technical direction and business leadership of HEAL. The Laboratory Manager, the Project Manager and Quality Assurance/Quality Control Officer report directly to the Laboratory Director. Someone with a minimum of 7 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

Laboratory Manager/Lead Technical Director

The Laboratory Manager shall exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results. The Laboratory Manager shall be experienced in the fields of accreditation for which the laboratory is approved or seeking accreditation. The Laboratory Manager shall certify that personnel with appropriate educational and/or technical background perform all tests for which HEAL is accredited. Such certification shall be documented.

The Laboratory Manager shall monitor standards of performance in quality control and quality assurance and monitor the validity of the analyses performed and data generated at HEAL to assure reliable data.

The Laboratory Manager is responsible for the daily operations of the laboratory. The Laboratory Manager is the lead technical director of the laboratory and in conjunction with the section technical directors is responsible for coordinating activities within the laboratory with the overall goal of efficiently producing high quality data with in a reasonable time frame.

In events where employee scheduling or current workload is such that new work cannot be incorporated, with out missing hold times, the Laboratory Manager has authority to modify employee scheduling, re-schedule projects or, when appropriate, allocate the work to approved subcontracting laboratories.

Additionally, the laboratory manager reviews and approves new analytical procedures and methods, and performs a final review of most analytical results. The Laboratory Manager provides technical support to both customers and HEAL staff.

The Laboratory Manager also observes the performance of supervisors to ensure good laboratory practices and proper techniques are being taught and utilized, assisting in overall quality control implementation, and strategic planning for the future of the company. Other duties include assisting in establishing laboratory policies which lead to the fulfillment of requirements for various certification programs, assuring that all Quality Assurance and Quality Control documents are reviewed and approved, and assisting in conducting Quality Assurance Audits.

The laboratory manager addresses questions or complaints that cannot be answered by the section managers.

The Laboratory Manager shall have a bachelor's degree in a chemical, environmental, biological sciences, physical sciences or engineering field, and at least five years of experience in the environmental analysis of representative inorganic and organic analytes for which the laboratory seeks or maintains accreditation.

Quality Assurance Quality Control Officer

The Quality Assurance/Quality Control Officer (QA/QCO) serves as the focal point for QA/QC and shall be responsible for the oversight and/or review of quality control data. The QA/QCO functions independently from laboratory operations and shall be empowered to halt unsatisfactory work and/or prevent the reporting of results generated from an out-of-control measurement system. The QA/QCO shall objectively evaluate data and perform assessments without any outside/managerial influence. The QA/QCO shall have direct access to the highest level of management at which decisions are made on laboratory policy and/or resources. The QA/QCO shall notify laboratory management of deficiencies in the quality system in periodic, independent reports.

The QA/QCO shall have general knowledge of the analytical test methods, for which data review is performed, have documented training and/or experience in QA/QC procedures and in the laboratory's quality system. The QA/QCO will have a minimum of a BS in a scientific or related field and a minimum of three years of related experience.

The QA/QCO shall schedule and conduct internal audits as per the Internal Audit SOP at least annually, monitor and trend Corrective Action Reports as per the Data Validation SOP, periodically review control charts for out of control conditions and initiate any appropriate corrective actions.

The QA/QCO shall oversee the analysis of proficiency testing in accordance with our standards and monitor any corrective actions issued as a result of this testing.

The QA/QCO reviews all standard operating procedures and statements of work in order to assure their accuracy and compliance to method and regulatory requirements.

The QA/QCO shall be responsible for maintaining and updating this quality manual.

Business/Project Manager

The role of the business/project manager is to act as a liaison between HEAL and our clients. The project manager reviews reports, updates clients on the status of projects inhouse, prepares guotations for new work, and is responsible for HEAL's marketing effort.

All new work is assessed by the project manager and reviewed with the other managers so as to not exceed the laboratories capacity. In events where employee scheduling or current workload is such that new work cannot be incorporated with out missing hold times, the Project Manager has authority to re-schedule projects.

It is also the duty of the project manager to work with the Laboratory Manager and QA/QCO to insure that before new work is undertaken the resources required and accreditations requested are available to meet the client's specific needs.

Additionally, the Project Manager can initiate the review of the need for new analytical procedures and methods, and performs a final review of some analytical results. The Project Manager provides technical support to customers. Someone with a minimum of 2 years of directly related experience and a bachelor's degree in a scientific or engineering discipline should fill this position.

Section Manager/Technical Directors

The Section Manager/Technical Directors are full-time members of the staff at HEAL who exercise day-to-day supervision of laboratory operations for the appropriate fields of accreditation and reporting of results for their department within HEAL. A Technical Director's duties shall include, but not be limited to, monitoring standards of performance in quality control and quality assurance; monitoring the validity of the analyses performed and the data generated in their sections to ensure reliable data, overseeing training and supervising departmental staff, schedule incoming work for their sections and monitor laboratory personnel to ensure that proper procedures and techniques are being utilized. They supervise and implement new Quality Control procedures as directed by the QA/QCO, update and maintain quality control records including, but not limited to, training forms, IDOCs, ADOCPs, MDLs and evaluate laboratory personnel in their Quality Control activities. In addition technical directors are responsible for upholding the spirit and intent of HEAL's data integrity procedures.

They are the technical director of the associated section and review analytical data to acknowledge that data meets all criteria set forth for good Quality Assurance practices. Someone with a minimum of 2 years of experience in the environmental analysis of

representative analytes for which HEAL seeks or maintains accreditation and a bachelor's degree in a scientific or related discipline should fill this position.

Health and Safety / Chemical Hygiene Officer

Refer to the most recent version of the Health and Safety and Chemical Hygiene Plans for the rolls, responsibilities and basic requirements of the Health and Safety Officer (H&SO) and the Chemical Hygiene Officer (CHO). These jobs can be executed by the same employee.

Chemist I, II and III

Chemists are responsible for the analysis of various sample matrices including, but not limited to, solid, aqueous, and air as well as the generation of high quality data in accordance with the HEAL SOPs and QA/QC guidelines in a reasonable time as prescribed by standard turnaround schedules or as directed by the Section Manager or Laboratory Manager.

Chemists are responsible for making sure all data generated is entered in the database in the correct manner and the raw data is reviewed, signed and delivered to the appropriate peer for review. A Chemist reports daily to the section manager and will inform them as to material needs of the section specifically pertaining to the analyses performed by the chemist. Additional duties may include preparation of samples for analysis, maintenance of lab instruments or equipment, cleaning and providing technical assistance to lower level laboratory staff.

The senior chemist in the section may be asked to perform supervisory duties as related to operational aspects of the section. The chemist may perform all duties of a lab technician.

The position of Chemist is a full or part time hourly position and is divided into three levels. Chemist I, II, and III. All employees hired into a Chemist position at HEAL must begin as a Chemist | and remain there at a minimum of three months regardless of their education and experience. Chemist I must have a minimum of an AA in a related field or equivalent experience (equivalent experience means years of related experience can be substituted for the education requirement). A Chemist I is responsible for analysis, instrument operation and data reduction. Chemist II must have a minimum of an AA in a related field or equivalent experience and must have documented and demonstrated aptitude to perform all functions of a Chemist II. A Chemist II is responsible for the full analysis of their test methods, routine instrument maintenance, purchase of consumables as dictated by their Technical Director, advanced data reduction and basic data review. Chemist II may also assist Chemist III in method development and, as dictated by their Technical Director, may be responsible for the review and/or revision of their method specific SOPs. Chemist III must have Bachelors degree or equivalent experience and must have documented and demonstrated aptitude to perform all functions of a Chemist III. A Chemist III is responsible for all tasks completed by a Chemist I and II as well as advanced

> Page 12 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

data review, non-routine instrument maintenance, assisting their technical director in basic supervisory duties and method development.

Laboratory Technician

A laboratory technician is responsible for providing support in the form of sample preparation, basic analysis, general laboratory maintenance, glassware washing, chemical inventories and sample kit preparation. This position can be filled by someone without the education and experience necessary to obtain a position as a chemist.

Sample Control Manager

The sample control manager is responsible for receiving samples and reviewing the sample login information after it has been entered into the computer. The sample control manager also checks the samples against the chain-of-custody for any sample and/or labeling discrepancies prior to distribution.

The sample control manager is responsible for sending out samples to the sub-contractors along with the review and shipping of field sampling bottle kits. The sample control manager acts as a liaison between the laboratory and field sampling crew to ensure that the appropriate analytical test is assigned. If a discrepancy is noted the sample control manager or sample custodian will contact the customer to resolve any questions or problems. The sample control manager is an integral part of the customer service team.

This position should be filled by someone with a high school diploma and a minimum of 2 years of related experience and can also be filled by a senior manager.

Sample Custodians

Sample Custodians work directly under the Sample Control Manager. They are responsible for sample intake into the laboratory and into the LIMS. Sample Custodians take orders from our clients and prepare appropriate bottle kits to meet the client's needs. Sample Custodians work directly with the clients in properly labeling and identifying samples as well as properly filling out legal COCs. When necessary, Sample Custodians contact clients to resolve any questions or problems associated with their samples. Sample Custodians are responsible for distributing samples throughout the laboratory and are responsible for notifying analysts of special circumstances such as short holding times or improper sample preservation upon receipt.

Delegations in the Absence of Key Personnel

Planned absences shall be preceded by notification to the Laboratory Manager. The appropriate staff members shall be informed of the absence. In the case of unplanned absences, the organizational superior shall either assume the responsibilities and duties or delegate the responsibilities and duties to another appropriately qualified employee.

In the event that the Laboratory Manager is absent for a period of time exceeding fifteen consecutive calendar days, another full-time staff member meeting the basic qualifications and competent to temporarily perform this function will be designated. If this absence exceeds thirty-five consecutive calendar days, HEAL will notify ORELAP in writing of the absence and the pertinent qualifications of the temporary laboratory manager.

Laboratory Personnel Qualification and Training

All personnel joining HEAL shall undergo orientation and training. During this period the new personnel shall be introduced to the organization and their responsibilities, as well as the policies and procedures of the company. They shall also undergo on the job training and shall work with trained staff. They will be shown required tasks and be observed while performing them.

When utilizing staff undergoing training, appropriate supervision shall be dictated and overseen by the appropriate section technical director. Prior to analyzing client samples, a new employee, or an employee new to a procedure, must meet the following basic requirements. The SOP and Method for the analysis must be read and signed by the employee indicating that they read, understood and intend to comply with the requirements The employee must undergo documented training. of the documents. Training is conducted by a senior analyst familiar with the procedure and overseen by the section Technical Director. This training is documented by any means deemed appropriate by the trainer and section Technical Director, and kept on file in the employees file located in the QA/QCO's office. The employee must perform a successful Initial Demonstration of Proficiency (IDOC). See Appendix H for the training documents and checklists utilized at HEAL to ensure that all of these requirements are met. Once all of the above requirements are met it is incumbent upon the section Technical Director to determine at which point the employee can begin to perform the test unsupervised. A Certification to Complete Work Unsupervised (see Appendix H) is them filled out by the employee and technical director.

All IDOCs shall be documented through the use of the certification form which can be found in Appendix H. IDOCs are performed by analyzing four Laboratory Control Spikes (LCSs). Using the results of the LCSs the mean recovery is calculated in the appropriate reporting units and the standard deviations of the population sample (n-1) (in the same units) as well as the relative percent difference for each parameter of interest. When it is not possible or pertinent to determine mean and standard deviations HEAL assesses performance against establish and documented criteria dictated in the method SOP. The mean and standard deviation are compared to the corresponding acceptance criteria for

Page 14 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

precision and accuracy in the test method (if applicable) or in laboratory-generated acceptance criteria. In the event that the HEAL SOP or test method fail to establish the pass/fail criteria the default limits of +/- 20% for calculated recovery and <20% relative percent difference based on the standard deviation will be utilized. If all parameters meet the acceptance criteria, the IDOC is successfully completed. If any one of the parameters do not meet the acceptance criteria, the performance is unacceptable for that parameters and the analyst must either locate and correct the source of the problem and repeat the test for all parameters that failed to meet criteria. Repeat failure, however, confirms a general problem with the measurement system. If this occurs the source of the problem must be identified and the test repeated for all parameters of interest.

New employees that do not have prior analysis experience will not be allowed to perform analysis until they have demonstrated attention to detail with minimal errors in the assigned tasks. To ensure a sustained level of quality performance among staff members, continuing demonstration of capability shall be performed at least once a year. These are as an Annual Documentation of Continued Proficiency (ADOCP).

At least once per year an ADOCP must be completed by: the acceptable performance of a blind sample (this is typically done using a PT sample but can be a single blind sample to the analyst), by performing another IDOC, or by summarizing the data of four consecutive laboratory control samples with acceptable levels of precision and accuracy (these limits are those currently listed in the LIMS for an LCS using the indicated test method.) ADOCPs are documented using a standard form and are kept on file in each analysts employee folder.

Each new employee shall be provided with data integrity training as a formal part of their new employee orientation. Each new employee will sign an ethics and data integrity agreement to ensure that they understand that data quality is our main objective. Every HEAL employee recognizes that although turn around time is important, quality is put above any pressure to complete the task expediently. Analysts are not compensated for passing QC parameters nor are incentives given for the quantity of work produced. Data Integrity and Ethics training are performed on an annual basis in order to remind all employees of HEAL's policy on data quality. Employees are required to understand that any infractions of the laboratory data integrity procedures will result in a detailed investigation that could lead to very serious consequences including immediate termination, debarment or civil/criminal prosecution.

Training for each member of HEAL's technical staff is further established and maintained through documentation that each employee has read, understood, and is using the latest version of this Quality Assurance Manual. Training courses or workshops on specific equipment, analytical techniques or laboratory procedures are documented through attendance sheets, certificates of attendance, training forms or quizzes. This training documentation is located in either analyst specific employee folders in the QA/QCO Office or in the current years group training folder, also located in the QA/QCO Office. On the front of all methods, SOPs and procedures for HEAL there is a signoff sheet that is signed by all pertinent employees, indicating that they have read, understood and agreed to perform the most recent version of the document.

Page 15 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

Sampling

Procedures

HEAL does not provide field sampling for any projects. Sample kits are prepared and provided for clients upon request. The sample kits contain the appropriate sampling containers (with a preservative when necessary), labels, blue ice (The use of "blue ice" by anyone except HEAL personnel is discouraged because it generally does not maintain the appropriate temperature of the sample. If blue ice is used, it should be completely frozen at the time of use, the sample should be chilled before packing, and special notice taken at sample receipt to be certain the required temperature has been maintained.), a cooler, chain-of-custody forms, plastic bags, bubble wrap, and any special sampling instructions. Sample kits are reviewed prior to shipment for accuracy and completeness.

Containers

Containers which are sent out for sampling are purchased by HEAL from a commercial source. Glass containers are certified "EPA Cleaned" QA level 1. Plastic containers are certified clean when required. These containers are received with a Certificate of Analysis verifying that the containers have been cleaned according to the EPA wash procedure. Containers are used once and discarded. If the samples are collected and stored in inappropriate containers the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Preservation

If sampling for an analyte(s) requires preservation, the sample custodians fortify the containers prior to shipment to the field, or provide the preservative for the sampler to add in the field. The required preservative is introduced into the vials in uniform amounts and done so rapidly to minimize the risk of contamination. Vials that contain a preservative are labeled appropriately. If the samples are stored with inappropriate preservatives the laboratory may not be able to accurately quantify the amount of the desired components. In this case re-sampling may be required.

Refer to the current Login SOP and/or the current price book for detailed sample receipt and handling procedures, appropriate preservation and holding time requirements.

Page 16 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

Sample Custody

Chain-of-Custody Form

A Chain-of-Custody (COC) form is used to provide a record of sample chronology from the field to receipt at the laboratory. HEAL's COC contains the client's name, address, phone and fax numbers, the project name and number, the project manager's name, and the field sampler's name. It also identifies the date and time of sample collection, sample matrix, field sample ID number, number/volume of sample containers, sample temperature upon receipt, and any sample preservative information.

There is also a space to record the HEAL ID number assigned to samples after they are received. Next to the sample information is a space for the client to indicate the desired analyses to be performed. There is a section for the client to indicate the data package level as well as any accreditation requirements. Finally, there is a section to track the actual custody of the samples. The custody section contains lines for signatures, dates and times when samples are relinquished and received. The COC form also includes a space to record special sample related instructions, sampling anomalies, time constraints, and any sample disposal considerations.

It is paramount that all COCs arrive at HEAL complete and accurate so that the samples can be processed and allocated for testing in a timely and efficient manor. A sample chain-of-custody form can be found in Appendix G or on line at www.hallenvironmental.com.

Receiving Samples

Samples are received by authorized HEAL personnel. Upon arrival, the COC is compared to the respective samples. After the samples and COC have been determined to be complete and accurate, the sampler signs over the COC. The HEAL staff member in turn signs the chain-of-custody, also noting the current date, time and sample temperature. This relinquishes custody of the samples from the sampler and delegates sample custody to HEAL. The third (pink) copy of the COC form is given to the person who has relinquished custody of the samples.

Logging in Samples and Storage

Standard Operating Procedures have been established for the receiving and tracking of all samples (refer to the current HEAL Login SOP). These procedures ensure that samples are received and properly logged into the laboratory, and that all associated documentation, including chain of custody forms, are complete and consistent with the samples received. Each sample set is given a unique HEAL tracking ID number. Individual sample locations within a defined sample set are given a unique sample ID suffix-number. Labels with the HEAL numbers, and tests requested, are generated and

> Page 17 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

placed on their respective containers. The pH of preserved, non-volatile samples is checked and noted if out of compliance. Due to the nature of the samples, the pHs of volatiles samples are checked after analysis. Samples are reviewed prior to being distributed for analysis.

Samples are distributed for analysis based upon the requested tests. In the event that sample volume is limited and different departments at HEAL are required to share the sample, volatile work takes precedence and will always be analyzed first before the sample is sent to any other department for analysis.

Each project (sample set) is entered into the Laboratory Information Management System (LIMS) with a unique ID that will be identified on every container. The ID tag includes the Lab ID, Client ID, date and time of collection, and the analysis/analyses to be performed. The LIMS continually updates throughout the lab. Therefore, at any time, an analyst or manager may inquire about a project and/or samples status. For more information about the login procedures, refer to the Sample Login SOP.

Disposal of Samples

Samples are held at HEAL for a minimum of thirty days and then transferred to the HEAL warehouse for disposal. Analytical results are used to characterize their respective sample contamination level(s) so that the proper disposal can be performed. These wastes will be disposed of according to their hazard as well as their type and level of contamination. Refer to the Hall Environmental Analysis Laboratory Chemical Hygiene Plan and current Sample Disposal SOP for details regarding waste disposal.

Waste drums are provided by an outside agency. These drums are removed by the outside agency and disposed of in a proper manner.

The wastes that are determined to be non-hazardous are disposed of as non-hazardous waste in accordance with the Chemical Hygiene Plan and Sample Disposal SOP.

6.0 Analytical Procedures

All analytical methods used at HEAL incorporate necessary and sufficient Quality Assurance and Quality Control practices. A Standard Operating Procedure (SOP) is used for each method to provide the necessary criteria to yield acceptable results. These procedures are reviewed at least annually and revised as necessary and are attached as a pdf file in the Laboratory Information Management System (LIMS) for easy access by each analyst. The sample is often consumed or altered during the analytical process. Therefore, it is important that each step in the analytical process be correctly followed in order to yield valid data.

When unforeseen problems arise, the analyst, technical director, and, when necessary, laboratory manager meet to discuss the factors involved. The analytical requirements are evaluated and a suitable corrective action or resolution is established. The client is notified in the case narrative with the final report or before, if the validity of their result is in question.

List of Procedures Used

Typically, the procedures used by HEAL are EPA approved methodologies or 20th edition Standard Methods. However, proprietary methods for client specific samples are sometimes used. The following tables list EPA and Standard Methods Method numbers with their corresponding analytes and/or instrument classification.

	Water(DW) Non-P	otable Water (NPW) Solids (S)	
Methodolog		Title of Method	
120.1	DW NPW	"Conductance(Specific Conductance, uohms at 25 ° C)"	
180.1	DW NPW	"Turbidity (Nephelometric)"	
200.2	DW NPW	"Sample Preparation Procedure For Spectrochemical Determination of Total Recoverable Elements"	
200.7	DW NPW	"Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry"	
200.8	DW NPW	"Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry."	
245.1	DW NPW	"Mercury (Manual Cold Vapor Technique)"	
300.0	DW NPW S	"Determination of Inorganic Anions by Ion Chromatography"	
413.2	NPW S	"Oil and Grease"	
418.1	NPW S	"Petroleum Hydrocarbons (Spectrophotometric, Infrared)"	
504.1	^{DW} "EDB, DBCP and 123TCP in Water by Microextraction and Gas Chromatography"		

Methods Utilized at HEAL

Page 19 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

	DW	"Analysis of Organohalide Pesticides and Commercial Polychlorinated		
505		Biphenyl (PCB) Products in Water by Microextraction and Gas Chromatography"		
515.1	DW	"Determination of Chlorinated Acids in Water by Gas Chromatography with an Electron Capture Detector"		
524.2	DW	"Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass Spectrometry"		
531.1	DW	"Measurement of N-Methylcarbomoyloximes and N-Methylcarbamates in Water by Direct Aqueous Injection HPLC with Post Column Dervivatization"		
547	DW	"Determination of Glyphosate in Drinking Water by Direct-Aqueous Injection HPLC, Post-Column Derivatization, and Fluorescence Detection"		
552.1	DW	"Determination of Haloacetic Acids and Dalapon in Drinking Water by Ion-Exchange Liquid-Solid Extraction and Gas Chromatography with an Electron Capture Detector"		
1311	S	"Toxicity Characteristic Leaching Procedure"		
1311ZHE	S	"Toxicity Characteristic Leaching Procedure"		
3005A	NPW	"Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by FLAA or ICP Spectroscopy"		
3010A	S r	"Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by FLAA or ICP Spectroscopy"		
3050B	S	"Acid Digestion of Sediment, Sludge, and Soils"		
3510C	DW NPW	"Separatory Funnel Liquid-Liquid Extraction"		
3540	S	"Soxhlet Extraction"		
3545	S	"Pressurized Fluid Extraction(PFE)"		
3665	NPW S	"Sulfuric Acid/Permanganate Cleanup"		
5030B	NPW	"Purge-and-Trap for Aqueous Samples"		
5035	S	"Closed-System Purge-and-Trap and Extraction for Volatile Organics in Soil and Waste Samples"		
6010B	NPW S	"Inductively Coupled Plasma-Atomic Emission Spectrometry"		
6020	NPW S	"Inductively Coupled Plasma-Mass Spectrometry"		
7470A	NPW	"Mercury in Liquid Waste (Manual Cold-Vapor Technique)"		
7471A	S	"Mercury in Solid or Semisolid Waste (Manual Cold Vapor Technique)"		
8021B	NPW S	"Aromatic and Halogenated Volatiles By Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors"		
8015B	NPW S	"Nonhalogenated Volatile Organics by Gas Chromatography" (Gasoline Range and Diesel Range Organics)		

8015AZ	S	"C10-C32 Hydrocarbons in Soil-8015AZ"	
8081A	NPW S	"Organochlorine Pesticides by Gas Chromatography"	
8082	NPW Ś	"Polychlorinated Biphenyls (PCBs) by Gas Chromatography"	
8260B	NPW S	"Volatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"	
8270C	NPW S	"Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)"	
8310	NPW S	"Polynuclear Aromatic Hydrocarbons"	
9045C	S	"Soil and Waste pH"	
9060	NPW	"Total Organic Carbon"	
9067	NPW S	"Phenolics (Spectrophotometric, MBTH With Distillation)"	
9095	S	Paint Filter	
Walkley/Black	S	FOC/TOC WB	
SM2320 B	DW NPW	"Alkalinity"	
SM2540 B	NPW	"Total Solids Dried at 103-105° C"	
SM2540 C	DW NPW	"Total Dissolved Solids Dried at 180° C"	
SM2540 D	NPW	"Total Suspended Solids Dried at 103-105° C"	
SM4500-H+B	DW NPW	"pH Value"	
SM4500-NH3 C	NPW S	"4500-NH3" Ammonia	
SM4500-Norg C	NPW S	"4500-Norg" Total Kjeldahl Nitrogen (TKN)	
SM5310 B	DW	"5310" Total Organic Carbon (TOC)	
8000B	NPW S	"Determinative Chromatographic Separations"	
8000C	NPW S	"Determinative Chromatographic Separations"	

Priteria for Standard Operating Procedures

HEAL has Standard Operating Procedures (SOPs) for each of the test methods listed above. These SOPs are based upon the listed methods and detail the specific procedure and equipment utilized as well as the quality requirements necessary to prove the integrity of the data. SOPs are reviewed or revised every twelve months or sooner if necessary. The review/revision is documented in the Master SOP Logbook filed in the QA/QC Office. All SOPs are available in the LIMS linked under the specific test method. Administrative SOPs, which are not linked in the LIMS, are available on desktops throughout the laboratory in the link to administrative SOPs folder.

Each HEAL test method SOP shall include or reference the following topics where applicable:

Identification of the test method; Applicable matrix or matrices; Limits of detection and quantitation; Scope and application, including parameters to be analyzed; Summary of the test method; Definitions; Interferences: Safety: Equipment and supplies; Reagents and standards; Sample collection, preservation, shipment and storage; Quality control parameters: Calibration and standardization: Procedure: Data analysis and calculations; Method performance; Pollution prevention; Data assessment and acceptance criteria for quality control measures; Corrective actions for out-of-control data; Contingencies for handling out-of-control or unacceptable data; Waste management; References: and Any tables, diagrams, flowcharts and validation data.

7.0 Calibration

All equipment and instrumentation used at HEAL are operated, maintained and calibrated according to manufacturers guidelines, as well as criteria set forth in applicable analytical methodology. Personnel who have been properly trained in their procedures perform operation and calibration. Brief descriptions of the calibration processes for our major laboratory equipment and instruments are found below.

Thermometers

The thermometers in the laboratory are used to measure the temperatures of the refrigerators/freezers, ovens, water baths, hot blocks, ambient laboratory conditions, TCLP Extractions, digestion blocks and samples at the time of log-in. All NIST traceable thermometers are either removed from use upon their documented expiration date or they are checked annually with a NIST certified thermometer and a correction factor is noted on each thermometer log. See the most current Login SOP for detailed procedures on this calibration procedure.

Dickson Data Loggers are used to record sample and standard storage refrigerators over the weekend when the appropriate staff is not available to record the temperatures. These data loggers are shipped back to the manufacturer once a year to be re-calibrated.

Refrigerators/Freezers

Each laboratory refrigerator or freezer contains a thermometer capable of measuring to a minimum precision of 1°C. The thermometers are kept with the bulb immersed in liquid. Each workday, the temperatures of the refrigerators are recorded in a designated logbook to insure that the refrigerators are within the required designated range. Samples are stored separately from the standards to reduce the risk of contamination.

See the current catastrophic Failure SOP for the procedure regarding how to handle failed refrigerators or freezers.

Ovens

The ovens contain thermometers graduated by 1° C. The ovens are calibrated quarterly against NIST thermometers and checked daily as required and in which ever way is dictated by or appropriate for the method in use.

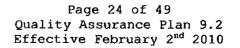
Analytical and Table Top Balances

The table top balances are capable of weighing to a minimum precision of 0.01 grams. The analytical balances are capable of weighing to a minimum precision of 0.0001 grams. Records are kept of daily calibration checks for the balances in use. Working weights are used in these checks. The balances are annually certified by an outside source and the certifications are on file with the QA/QCO.

Balances, unless otherwise indicated by method specific SOPs, will be checked daily with at least two weights that will bracket the working range of the balance for the day. Daily balance checks will be done using working weights that are calibrated annually against Class S weights. Class S weights are calibrated as required by an external provider. The Class S weights are used once a year or more frequently if required, to assign values to the Working Weights. During the daily balance checks the working weights are compared to their assigned values and must pass in order to validate the calibration of the balance. The assigned values for the working weights, as well as the daily checks, are recorded in the balance logbook for each balance.

Instrument Calibration

An instrument calibration is the relationship between the known concentrations of a set of calibration standards introduced into an analytical instrument and the measured response they produce. Calibration curve standards are a prepared series of aliquots at various known concentrations levels from a primary source reference standard. Specific mathematical types of calibration techniques are outlined in SW-846 8000B and/or 8000C. The entire initial calibration must be performed prior to sample analyses.


The lowest standard in the calibration curve must be at or below the required reporting limit.

Refer to the current SOP to determine the minimum requirement for calibration points.

Most compounds tend to be linear and a linear approach should be favored when linearity is suggested by the calibration data. Non-linear calibration should be considered only when a linear approach cannot be applied. It is not acceptable to use an alternate calibration procedure when a compound fails to perform in the usual manner. When this occurs it is indicative of instrument issues or operator error.

If a non-linear calibration curve fit is employed, a minimum of six calibration levels must be used for second-order (quadratic) curves.

When more than 5 levels of standards are analyzed in anticipation of using second-order calibration curves, all calibration points MUST be used regardless of the calibration option employed. The highest or lowest calibration point may be excluded for the purpose of

narrowing the calibration range, and meeting the requirements for a specific calibration option. Otherwise, unjustified exclusion of calibration data is expressly forbidden.

Analytical methods vary in QC acceptance criteria. HEAL follows the method specific guidelines for QC acceptance. The specific acceptance criteria are outlined in the analytical methods and its corresponding SOP.

pH Meter

The pH meter measures to a precision of 0.01 pH units. The pH calibration logbook contains the calibration before each use, or each day, if used more than once per day. It is calibrated using a minimum of 3 certified buffers. Also available with the pH meter is a magnetic stirrer with a temperature sensor. See the current pH SOP (SM4500 H+ B) for specific details regarding calibration of the pH probe.

Other Analytical Instrumentation and Equipment

The conductivity probe is calibrated as needed and checked daily when in use.

Eppendorf (or equivalent brands) pipettes are checked gravimetrically prior to use.

Standards

All of the source reference standards used are ordered from a reliable commercial vendor. A Certificate of Analysis (CoA), which verifies the quality of the standard, accompanies the standards from the vendor. The Certificates of Analysis are dated and stored on file by the Technical Directors or their designee. These standards are traceable to the National Institute of Standards (NIST). When salts are purchased and used as standards the certificate of purity must be obtained from the vendor and filed with the CoAs.

All standard solutions, calibration curve preparations, and all other quality control solutions are labeled in a manner that can be traced back to the original source reference standard. All source reference standards are entered into the LIMS with an appropriate description of the standard. Dilutions of the source reference standard (or any mixes of the source standards) are fully tracked in the LIMS. Standards are labeled with the date opened for use, and an expiration date.

As part of the quality assurance procedures at HEAL, analysts strictly adhere to manufacture recommendations for storage times/expiration dates and policies of analytical standards and quality control solutions.

Reagents

HEAL ensures that the reagents used are of acceptable quality for their intended purpose. This is accomplished by ordering high quality reagents and adhering to good laboratory practices so as to minimize contamination or chemical degradation. All reagents must meet any specifications noted in the analytical method. Refer to the current Purchase of Consumables SOP for details on how this is accomplished and documented.

Upon receipt, all reagents are assigned a separate ID number, and logged into the LIMS. All reagents shall be labeled with the date received into the laboratory and again with the date opened for use. Recommended shelf life shall be documented and controlled. Dilutions or solutions prepared shall be clearly labeled, dated, and initialed. These solutions are traceable back to their primary reagents.

All gases used with an instrument shall meet specifications of the manufacturer. All safety requirements that relate to maximum and/or minimum allowed pressure, fitting types, and leak test frequency, shall be followed. When a new tank of gas is placed in use, it shall be checked for leaks and the date put in use will be written in the instrument maintenance logbook.

HEAL continuously monitors the quality of the reagent water and provides the necessary indicators for maintenance of the purification systems in order to assure that the quality of laboratory reagent water meets established criteria for all analytical methods.

Reagent blank samples are also analyzed to ensure that no contamination is present at detectable levels. The frequency of reagent blank analysis is typically the same as calibration verification samples. Refrigerator storage blanks are stored in the volatiles refrigerator for a period of one week and analyzed and replaced once a week.

Page 26 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

8.0 Maintenance

Maintenance logbooks are kept for each major instrument and all support equipment in order to document all repair and maintenance. In the front of the logbook, the following information is included:

Unique name of the item or equipment Manufacturer Type of Instrument Model Number Serial Number Date received and date placed into service Location of Instrument Condition of instrument upon receipt

For routine maintenance, the following information shall be included in the log:

Maintenance Date Maintenance Description Maintenance Performed by Initials

A manufacturer service agreement (or equivalent) covers most major instrumentation to assure prompt and reliable response to maintenance needs beyond HEAL instrument operator capabilities.

Refer to the current Maintenance and Troubleshooting SOP for each section in the laboratory for further information.

For HEAL's policy on ethics and data integrity see section 3.0 of this document. Upon being hired and annually there after, all employees at HEAL undergo documented data integrity training. All new employees sign an Ethics and Data Integrity Agreement, documenting their understanding of the high standards of integrity required at HEAL and outlining their responsibilities in regards to ethics and data integrity. See Appendix H for a copy of this agreement.

In instances of ethical concern analysts are required to report the known or suspected concern to their Technical Director, the Laboratory Manager or the QA/QCO. This will be done in a confidential and receptive environment, allowing all employees to privately discuss ethical issues or report items of ethical concern.

Once reported and documented the ethical concern will be immediately elevated to the Laboratory Manager and the need for an investigation, analyst remediation or termination will be determined on a case by case basis.

All reported instances of ethical concern will be thoroughly documented and handled in a manner sufficient to rectify any breaches in data integrity with an emphasis on preventing similar incidences from happening in the future.

Page 28 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

10.0 Quality Control

Internal Quality Control Checks

HEAL utilizes various internal quality control checks, including duplicates, matrix spikes, matrix spike duplicates, method blanks, laboratory control spikes, laboratory control spike duplicates, surrogates, internal standards, calibration standards, quality control charts, proficiency tests and calculated measurement uncertainty.

Refer to the current method SOP to determine the frequency and requirements of all quality controls. In the event that the frequency of analysis is not indicated in the method specific SOP, duplicate samples, laboratory control spikes (LCS), Method Blanks (MB) and matrix spikes and matrix spike duplicates (MS/MSD) are analyzed for every batch of twenty samples.

When sample volume is limited on a test that requires an MS/MSD an LCSD shall be analyzed to demonstrate precision and accuracy and when possible a sample duplicate will be analyzed.

Duplicates are identical tests repeated for the same sample or matrix spike in order to determine the precision of the test method. A Relative Percent Difference (RPD) is calculated as a measure of this precision. Unless indicated in the SOP, the default acceptance limit is </= 20%.

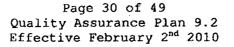
Matrix Spikes and Matrix Spike Duplicates are spiked samples (MS/MSD) that are evaluated with a known added quantity of a target compound. This is to help determine the accuracy of the analyses and to determine the matrix affects on analyte recovery. A percent recovery is calculated to assess the quality of the accuracy. In the event that the acceptance criteria is not outlined in the SOP, a default limits of 70-130% will be utilized. When an MSD is employed an RPD is calculated and when not indicated in the SOP shall be acceptable at </= 30%.

When appropriate for the method, a Method Blank should be analyzed with each batch of samples processed to assess contamination levels in the laboratory. MBs consist of all the reagents measured and treated as they are with samples, except without the samples. This enables the laboratory to ensure clean reagents and procedures. Guidelines should be in place for accepting or rejecting data based on the level of contamination in the blank. In the event that these guidelines are not dictated by the SOP or in client specific work plans, the MB should be less than the MDL reported for the analyte being reported.

A Laboratory Control Spike and Laboratory Control Spike Duplicate (LCS/LCSD) are reagent blanks, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst-specific precision and bias or to assess the performance of all or a portion of the measurement system. Guidelines are outlined in each

Page 29 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010 SOP for the frequency and pass fail requirements for LCS and LCSDs. These limits can be set utilizing control charts as discussed below.

Surrogates are utilized when dictated by method and are substances with properties that mimic the analytes of interest. The surrogate is an analyte that is unlikely to be found in environmental samples. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for surrogates.


Internal Standards are utilized when dictated by the method and are known amounts of standard added to a test portion of a sample as a reference for evaluating and controlling the precision and bias of the applied analytical method. Refer to the appropriate Method and SOP for guidelines on pass/fail requirements for Internal Standards.

Proficiency Test (PT) Samples are samples provided by an unbiased third party. They are typically analyzed twice a year, or at any other interval defined in the method SOP. They contain a pre-determined concentration of the target compound, which is unknown to HEAL. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seek accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall not attempt to obtain the assigned value of any PT sample from the PT Provider.

Calibration standards are standards run to calibrate. Once the calibration is established the same standards can be analyzed as Continuing Calibration Verifications (CCV), used to confirm the consistency of the instrumentation. Calibration standards can be utilized at the beginning and end of each batch, or more frequently as required. Typically Continuing Calibration Blanks (CCB) are run in conjunction with CCVs. Refer to the current method SOP for frequency and pass/fail requirements of CCVs and CCBs.

Control Limits are limits of acceptable ranges of the values of quality control checks. If a value falls outside the appropriate range, immediate evaluation and assessment of the procedure is required. Data generated with laboratory control samples that fall outside of the established control limits are judged to be generated during an "out-of-control" situation. These data are considered suspect and shall be repeated or reported with qualifiers.

Control limits should be established and updated according to the requirements of the method being utilized. When the method does not specify, and control limits are to be generated or updated for a test, the following guidelines shall be utilized.

Control Limits should be updated periodically and at least annually. The Limits should be generated utilizing the most recent 20-40 data values and Control Charts should be printed when these limits are updated in the LIMS. The data values used shall not reuse values that were included in the previous Control Limit update. The data values shall also be reviewed by the LIMS for any Grubbs Outliers, and if identified, the outliers must be removed prior to generating new limits. Once new Control Limits have been established and updated in the LIMS, the printed Control Chart shall be reviewed by the appropriate technical director and primary analyst performing the analysis for possible trends and compared to the previous Control Charts. The technical director initials the control charts, indicating that they have reviewed and determined the updated Limits to be accurate and appropriate. These initialed charts are then filed in the QA/QCO office.

Calculated Measurement Uncertainty is calculated annually using LCSs in order to determine the laboratory specific uncertainty associated with each test method. These uncertainty values are available to our clients upon request and are utilized as a trending tool internally to determine the effectiveness of new variables introduced into the procedure over time.

Precision, Accuracy, Detection Levels

Precision

The laboratory uses sample duplicates, laboratory control spike duplicates and matrix spike duplicates to assess precision in terms of relative percent difference (RPD). HEAL requires the RPD to fall within the 99% confidence interval of established control charts or an RPD of less than 30% if control charts are not available. RPD's greater than these limits are considered out-of-control and require an appropriate response.

RPD = 2 x (Sample Result - Duplicate Result) X 100(Sample Result + Duplicate Result)

Accuracy

The accuracy of an analysis refers to the difference between the calculated value and the actual value of a measurement. The accuracy of a laboratory result is evaluated by comparing the measured amount of QC reference material recovered from a sample and the known amount added. Control limits can be established for each analytical method and sample matrix. Recoveries are assessed to determine the method efficiency and/or the matrix effect.

> Page 31 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

Analytical accuracy is expressed as the percent recovery (%R) of an analyte or parameter. A known amount of analyte is added to an environmental sample before the sample is prepared and subsequently analyzed. The equation used to calculate percent recovery is:

%Recovery = {(concentration* recovered)/(concentration* added)} X 100

*or amount

HEAL requires that the Percent Recovery to fall within the 99 % confidence interval of established control limits. A value that falls outside of the confidence interval requires a warning and process evaluation. The confidence intervals are calculated by determining the mean and sample standard deviation. If control limits are not available, the range of 70 to 130% is used unless the specific method dictates otherwise. Percent Recoveries outside of this range mandate additional action such as analyses by Method of Standard Additions, additional sample preparation(s) where applicable, method changes, out-of-control action or data qualification.

Detection Limit

Current practices at HEAL define the Detection Limit (DL) as the smallest amount that can be detected above the baseline noise in a procedure within a stated confidence level.

HEAL presently utilizes an Instrument Detection Limit (IDL), a Method Detection Limit (MDL), and a Practical Quantitation Limit (PQL). The relationship between these levels is approximately IDL: MDL; PQL = 1:5:5.

The IDL is a measure of the sensitivity of an analytical instrument. The IDL is the amount which, when injected, produces a detectable signal in 99% of the analyses at that concentration. An IDL can be considered the minimum level of analyte concentration that is detectable above random baseline noise.

The MDL is a measure of the sensitivity of an analytical method. An MDL determination (as required in 40CFR part 136 Appendix B) consists of replicate spiked samples carried through all necessary preparation steps. The spike concentration is three times the standard deviation of three replicates of spikes. At least seven replicates are spiked and analyzed and their standard deviation (s) calculated. Routine variability is critical in passing the 10 times rule and is best achieved by running the MDLs over different days and when possible over several calibration events. The method detection limit (MDL) can be calculated using the standard deviation according to the formula:

Page 32 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

MDL = s * t (99%)

Where t (99%) is the student's t value for the 99% confidence interval. It depends on the number of trials used in calculating the sample standard deviation, so choose the appropriate value according to the number of trials.

Number of Trials	t(99%)	
6	3.36	
7	3.14	
8	3.00	
9	2.90	

The calculated MDL must not be less than 10 times the spiked amount or the study must be performed again with a lower concentration.

The PQL is significant because different laboratories can produce different MDLs although they may employ the same analytical procedures, instruments and sample matrices. The PQL is about two to five times the MDL and represents a practical, and routinely achievable, reporting level with a good certainty that the reported value is reliable. It is often determined by regulatory limits. The reported PQL for a sample is dependent on the dilution factor utilized during sample analysis.

Quality Control Parameter Calculations

Mean

The sample mean is also known as the arithmetic average. It can be calculated by adding all of the appropriate values together, and dividing this sum by the number of values.

Average = $(\Sigma x_i) / n$

 x_i = the value x in the lth trial n = the number of trials

Standard Deviation

The sample standard deviation, represented by s, is a measure of dispersion. The dispersion is considered to be the difference between the average and each of the values x_i . The variance, s^2 , can be calculated by summing the squares of the

Page 33 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010 differences and dividing by the number of differences. The sample standard deviation, s, can be found by taking the square root of the variance.

Standard deviation = s = $\left[\sum (x_{l} - average)^{2} / (n - 1)\right]^{\frac{1}{2}}$

Percent Recovery (MS, MSD, LCS and LCSD)

Percent Recovery = <u>(Spike Sample Result – Sample Result)</u> X100 (Spike Added)

Control Limits

Control Limits are calculated by the LIMS using the average percent recovery (x), and the standard deviation (s).

Upper Control Limit = x + 3sLower Control Limit = x - 3s

These control limits approximate a 99% confidence interval around the mean recovery.

RPD (Relative Percent Difference)

Analytical precision is expressed as a percentage of the difference between the results of duplicate samples for a given analyst. Relative percent difference (RPD) is calculated as follows:

RPD = 2 x (Sample Result - Duplicate Result) X 100(Sample Result + Duplicate Result)

Uncertainty Measurements

Uncertainty, as defined by ISO, is the parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurement. Ultimately uncertainty measurements are used to state how good a test result is and to allow the end user of data to properly interpret their reported data. All procedures allow for some uncertainty. For most analyses the components and estimates of uncertainty are reduced by following well established test methods. To further reduce uncertainty, results are generally not reported below

Page 34 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

the lowest calibration point (PQL) or above the highest calibration point (UQL). Understanding that there are many influence quantities affecting a measurement result, so many in fact that it is impossible to identify all of them, HEAL calculates measurement uncertainty at least annually using LCSs. These estimations of measurement uncertainty are kept on file in the method folders in the QA/QC office.

Measurement Uncertainty contributors are those that may be determined statistically. These shall be generated by estimating the overall uncertainty in the entire analytical process by measuring the dispersion of values obtained from laboratory control samples over time. At least 20 of the most recent LCS data points are gathered. The standard deviation (s) is calculated using these LCSs data points. Since it can be assumed that the possible estimated values of the spikes are approximately normally distributed with approximate standard deviation (s), the unknown value of the spike is believed to lie in 95% confidence interval, corresponding to an uncertainty range of +/- 2(s).

Calculate standard deviation (s) and 95% confidence interval according to the following formulae:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{(n-1)}}$$

Where: s = standard deviation

 $\mathbf{x} = \mathbf{number}$ in series

 \overline{x} = calculated mean of series

n = number of samples taken

95% confidence = $2 \times s$

Example: Assuming that after gathering 20 of the most recent LCS results for Bromide, we have calculated the standard deviations of the values and achieved a result of 0.0326, our measurement uncertainty for Bromide (at 95% confidence = $2 \times s$) is 0.0652.

Calibration Calculations

1. Response Factor or Calibration Factor:

$$RF = ((A_x)(C_{is}))/((A_{is})(C_x))$$

$$CF=(A_x)/(C_x)$$

a. Average RF or CF

 $RF_{AVE} = \Sigma RF_i / n$

- b. Standard Deviation $s = SQRT \{ [\Sigma (RF_i - RF_{AVE})^2] / (n-1) \}$
- c. Relative Standard Deviation

$$RSD = s / RF_{AVE}$$

Where:

 A_x = Area of the compound C_x = Concentration of the compound A_{is} = Area of the internal standard C_{is} = Concentration of the internal standard n = number of pairs of data RF_i = Response Factor (or other determined value) RF_{AVE} = Average of all the response factors Σ = the sum of all the individual values

2. Linear Regression

y=mx+b

a. Slope (m)

 $\mathbf{m} = (\mathbf{n} \Sigma \mathbf{x}_i \mathbf{y}_i - (\mathbf{n} \Sigma \mathbf{x}_i)^* (\mathbf{n} \Sigma \mathbf{y}_i)) / (\mathbf{n} \Sigma \mathbf{x}_i^2 - (\Sigma \mathbf{x}_i)^2)$

b. Intercept (b)

 $b = y_{AVE} - m^*(x_{AVE})$

c. Correlation Coefficient (cc)

 $CC (r) = \{ \Sigma((x_i - x_{ave})^*(y_i - y_{ave})) \} / \{ SQRT((\Sigma(x_i - x_{ave})^2)^*(\Sigma(y_i - y_{ave})^2)) \}$

Page 36 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

N. AL

Or

CC (r) =[$(\Sigma w * \Sigma w x y) - (\Sigma w x * \Sigma w y)$] / (sqrt(([$(\Sigma w * \Sigma w x^2) - (\Sigma w x * \Sigma w x)$] * [$(\Sigma w * \Sigma w y^2) - (\Sigma w y * \Sigma w y)$])))]

d. Coefficient of Determination

$$COD(r^2) = CC^*CC$$

Where:

y = Response (Area) Ratio A_x/A_{is}

 $x = Concentration Ratio C_x/C_{is}$

m = slope

b = intercept

n = number of replicate x, y pairs

 x_i = individual values for independent variable

y_i = individual values for dependent variable

 Σ = the sum of all the individual values

 x_{ave} = average of the x values

yave = average of the y values

w = weighting factor, for equal weighting w=1

3. Quadratic Regression

 $y = ax^2 + bx + c$

a. Coefficient of Determination

COD (r²) =(
$$\Sigma(y_i-y_{ave})^2 - \{[(n-1)/(n-p)] * [\Sigma(y_i-Y_i)^2]\}) / \Sigma(y_i-y_{ave})^2$$

Where:

y = Response (Area) Ratio A_x/A_{is}

 $x = Concentration Ratio C_x/C_{is}$

 $a = x^2$ coefficient

b = x coefficient

c = intercept

y_i = individual values for each dependent variable

 x_i = individual values for each independent variable

yave = average of the y values

n = number of pairs of data

p = number of parameters in the polynomial equation (I.e., 3 for third order, 2 for second order)

 $Yi = ((2^*a^*(C_x/C_{is})^2) - b^2 + b + (4^*a^*c))/(4a)$

Page 37 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

b. Coefficients (a,b,c) of a Quadratic Regression

 $a = S_{(x2y)}S_{(xx)}-S_{(xy)}S_{(xx2)} / S_{(xx)}S_{(x2x2)}-[S_{(xx2)}]^{2}$ $b = S_{(xy)}S_{(x2x2)}-S_{(x2y)}S_{(xx2)} / S_{(xx)}S_{(x2x2)}-[S_{(xx2)}]^{2}$ $c = [(\Sigma yw)/n] - b^{*}[(\Sigma xw)/n] - a^{*}[\Sigma(x^{2}w)/n]$

Where:

n = number of replicate x,y pairs x = x values y = y values w = S⁻² / (Σ S⁻²/n) S_(xx) = (Σ x²w) - [(Σ xw)² / n] S_(xy) = (Σ xyw) - [(Σ xw)*(Σ yw) / n] S_(x22) = (Σ x³w) - [(Σ xw)*(Σ x²w) / n] S_(x2y) = (Σ x²yw) - [(Σ x²w)*(Σ yw) / n] S_(x2x2) = (Σ x⁴w) - [(Σ x²w)² / n] Or If unweighted calibration, w=1 S(xx) = (Sx2) - [(Sx)2 / n] S(xy) = (Sxy) - [(Sx)*(Sy) / n] S(x2y) = (Sx2y) - [(Sx2)*(Sy) / n] S(x2y) = (Sx2y) - [(Sx2)*(Sy) / n] S(x2x2) = (Sx4) - [(Sx2)*(Sy) / n]

11.0 Data Reduction, Validation, Reporting, and Record Keeping

All data reported must be of the highest possible accuracy and quality. During the processes of data reduction, validation, and report generation, all work is thoroughly checked to insure that error is minimized.

Data Reduction

The analyst who generated the data usually performs the data reduction. The calculations include evaluation of surrogate recoveries (where applicable), and other miscellaneous calculations related to the sample quantitation.

If the results are computer generated, then the formulas must be confirmed by hand calculations, at minimum, one per batch.

See the current Data Validation SOP for details regarding data reduction.

Validation

A senior analyst, most often the section supervisor, validates the data. All data undergoes peer review. If an error is detected it is brought to the analyst attention to rectify and further checks ensure that all data for that batch is sound. Previous and/or common mistakes are stringently monitored throughout the validation process. Data is reported using appropriate significant figure criteria. In most cases, two significant digits are utilized, but three significant digits can be used in QC calculations. Significant digits are not rounded until after the last step of a sample calculation. All final reports undergo a review by the laboratory manager, or the project manager or their designee, to provide a logical review of all results before they are released to the client.

If data is to be manually transferred from one medium to another, the transcribed data is checked by a peer. This includes data typing, computer data entry, chromatographic data transfer, data table inclusion to a cover letter, or when data results are combined with other data fields.

All hand written data from run logs, analytical standard logbooks, hand entered data logbooks, or on instrument generated chromatograms, are systematically archived should the need for future retrieval arise.

See the current Data Validation SOP for detail regarding data validation.

Reports and Records

All records at HEAL are retained and maintained through the procedures outlined in the most recent version of the Records Control SOP.

The reports are compiled by the Laboratory Information Management System (LIMS). Most data is transferred directly from the instruments to the LIMS. After being processed by the analyst and reviewed by a data reviewer, final reports are approved and signed by the senior laboratory management. A comparative analysis of the data is performed at this point. For example, if TKN and NH3 are analyzed on the same sample the NH3 result should never be greater than the TKN result. Lab results and reports are released only to appropriately designated individuals. Release of the data can be by fax, email, electronic deliverables or mailed hard copy.

When a project is completed, the project file folder is stored with a hard copy of the report, relevant supporting data, and the quality assurance/control worksheets. These folders are kept on file and are arranged by project number. Additionally, all electronic data is backed up daily on the HEAL main server. The backup includes raw data, chromatograms and report documents. Hard copies of chromatograms are stored separately according to the instrument and the analysis date. All records and analytical data reports are retained in a secure location as permanent records for a minimum period of five years (unless specified otherwise in a client contract). Access to archived information shall be documented with an access log. Access to archived electronic reports and data will be protected by a project manager password. In the event that HEAL transfers ownership or terminates business practices, complete records will be maintained or transferred according to the client's instructions.

After issuance, the original report shall remain unchanged. If a correction to the report is necessary, then an additional document shall be issued. This document shall have a title of "Addendum to Test Report or Correction to Original Report", or equivalent. Demonstration of original report integrity comes in two forms. First, the report date is included on each page of the final report. Second, each page is numbered in sequential order, making the addition or omission of any data page(s) readily detectable.

Page 40 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

12.0 Corrective Action

Refer to the most recent version of the Data Validation SOP for the procedure utilized in filling out a Corrective Action Report. A blank copy of the corrective action report is available in the Appendix.

The limits that have been defined for data acceptability also form the basis for corrective action initiation. Initiation of corrective action occurs when the data generated from continuing calibration standard, sample surrogate recovery, laboratory control spike, matrix spike or sample duplicates exceed acceptance criteria. If corrective action is necessary, the analyst or the section supervisor will coordinate to take the following steps to determine and correct the measurement system deficiency:

Check all calculations and data measurements systems (Calibrations, reagents, instrument performance checks etc.).

Assure that proper procedures were followed.

Unforeseen problems that arise during sample preparation and/or sample analysis that lead to treating a sample differently from documented procedures shall be documented with a corrective action report. The section supervisor and laboratory manager shall be made aware of the problem at the time of the occurrence. See the appropriate SOP regarding departures from documented procedures.

Continuing calibration standards below acceptance criteria can not be used for reporting analytical data unless method specific criteria states otherwise.

Continuing calibration standards above acceptance criteria can be used to report data so long as the failure is isolated to a single standard and the corresponding samples are non-detect for the failing analyte.

Samples with non-compliant surrogate recoveries should be reanalyzed unless deemed unnecessary by the supervisor for matrix, historical data or other analysis related anomalies.

Laboratory and Matrix Spike acceptance criteria vary significantly depending on method and matrix. Analysts and supervisors meet and discuss appropriate corrective action measures as spike failures occur.

Sample duplicates with RPD values outside control limits require supervisor evaluation and possible reanalysis.

A second mechanism for initiation of corrective action is that resulting from Quality Assurance performance audits, system audits, inter and intra-laboratory comparison studies. Corrective Actions initiated through this mechanism will be monitored and coordinated by the laboratory QA/QCO.

Page 41 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

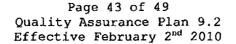
All corrective action forms are entered in the LIMS and included with the raw data for peer review, signed by the technical director of the section and included in the case narrative to the client whose samples were affected. All Corrective action forms in the LIMS are reviewed by the QA/QCO.

Page 42 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

13.0 Quality Assurance Audits, Reports and Complaints

Internal/External Systems' Audits, Performance Evaluations, and Complaints

Several procedures are used to assess the effectiveness of the quality control system. One of these methods includes internal performance evaluations, which are conducted by the use of control samples, replicate measurements and control charts. Another method is external performance audits, which are conducted by the use of inter-laboratory checks, such as participation in laboratory evaluation programs and performance evaluation samples available from a NELAC accredited Proficiency Standard Vendor.


Proficiency samples will be obtained twice per year from an appropriate vendor for all tests and matrices for which we are accredited and for which there are PTs available. HEAL participates in soil, waste water, drinking water and underground storage tank PT studies. Copies of results are available upon request. HEAL's management and all analysts shall ensure that all PT samples are handled in the same manner as real environmental samples utilizing the same staff, methods, procedures, equipment, facilities and frequency of analysis as used for routine analysis of that analyte. When analyzing a PT, HEAL shall employ the same calibration, laboratory quality control and acceptance criteria, sequence of analytical steps, number of replicates and other procedures as used when analyzing routine samples.

With regards to analyzing PT Samples HEAL shall not send any PT sample, or portion of a PT sample, to another laboratory for any analysis for which we seeks accreditation, or are accredited. HEAL shall not knowingly receive any PT sample or portion of a PT sample from another laboratory for any analysis for which the sending laboratory seeks accreditation, or is accredited. Laboratory management or staff will not communicate with any individual at another laboratory concerning the PT sample. Laboratory management or staff shall no attempt to obtain the assigned value of any PT sample from the PT Provider.

Internal Audits are performed annually by the QA/QCO in accordance with the current Internal Audit SOP. They are performed using the guidelines outlined below:

The system audit consists of a qualitative inspection of the QA system in the laboratory and an assessment of the adequacy of the physical facilities for sampling, calibration, and measurement. This audit includes a careful evaluation and review of laboratory quality control procedures. Including but not limited to:

- 1. Review of staff qualifications, demonstration of capability, and personnel training programs
- 2. Storage and handling of reagents, standards and samples
- 3. Standard preparation logbook and LIMS procedures
- 4. Extraction logbooks
- 5. Raw data logbooks
- 6. Analytical logbooks or batch printouts and instrument maintenance logbooks

- 7. Data review procedures
- 8. Corrective action procedures
- 9. Review of data packages is performed regularly by the lab manager/QA Officer.

The QA/QCO will conduct these audits on an annual basis.

Management Reviews

HEAL management shall periodically, and at least annually, conduct a review of the laboratory's quality system and environmental testing activities to ensure their continuing suitability and effectiveness, and to introduce necessary changes or improvements. The review shall take account of:

- 1. the suitability and implementation of policies and procedures
- 2. reports from managerial and supervisory personnel
- 3. the outcome of recent internal audits
- 4. corrective and preventive actions
- 5. assessments by external bodies
- 6. the results of inter-laboratory comparisons or proficiency tests
- 7. changes in volume and type of work
- 8. client feed back
- 9. complaints
- 10. other relevant factors, such as laboratory health and safety, QC activities, resources and staff training.

Findings from management reviews and the actions that arise from them shall be recorded and any corrective actions that arise shall be completed in an appropriate and agreed upon timescale.

Complaints

Complaints from clients are documented and given to the laboratory manager. The lab manager shall review the information and contact the client. If doubt is raised concerning the laboratories policies or procedures, then an audit of the section or sections may be performed. All records of complaints and subsequent actions shall be maintained in the client compliant logbook for 5 years unless otherwise stated.

Internal and External Reports

The QA/QCO is responsible for preparation and submission of quality assurance reports to the appropriate management personnel as problems and issues arise. These reports include the assessment of measurement systems, data precision and accuracy, and the results of performance and system audits. Additionally, they also include significant QA

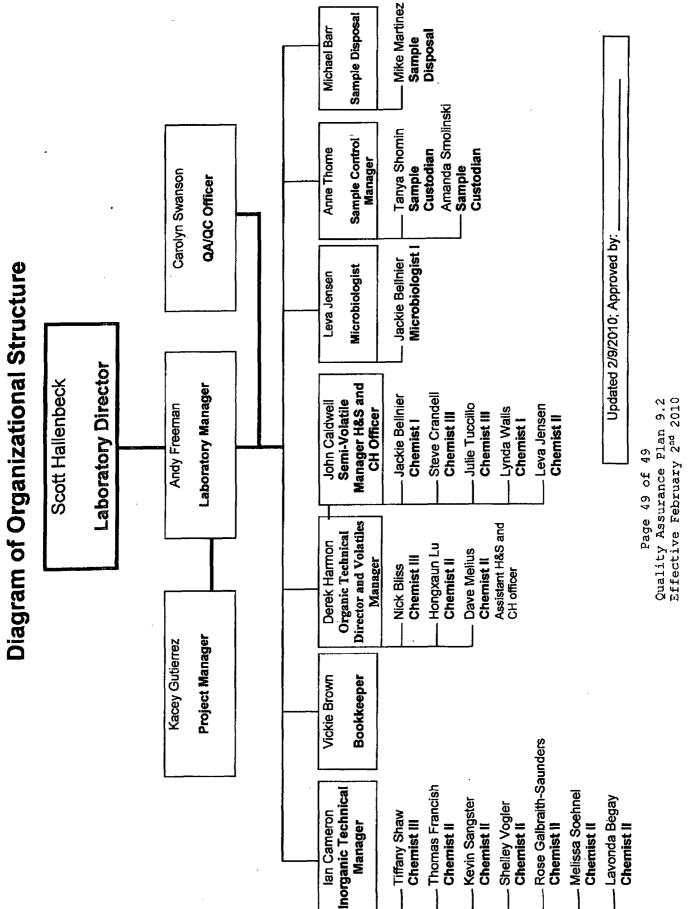
> Page 44 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

problems, corrective actions, and recommended resolution measures. Reports of these Quality Assurance Audits describe the particular activities audited, procedures utilized in the examination and evaluation of laboratory records, and data validation procedures. Finally, there are procedures for evaluating the performance of Quality Control and Quality Assurance activities, and laboratory deficiencies and the implementation of corrective actions with the review requirements.

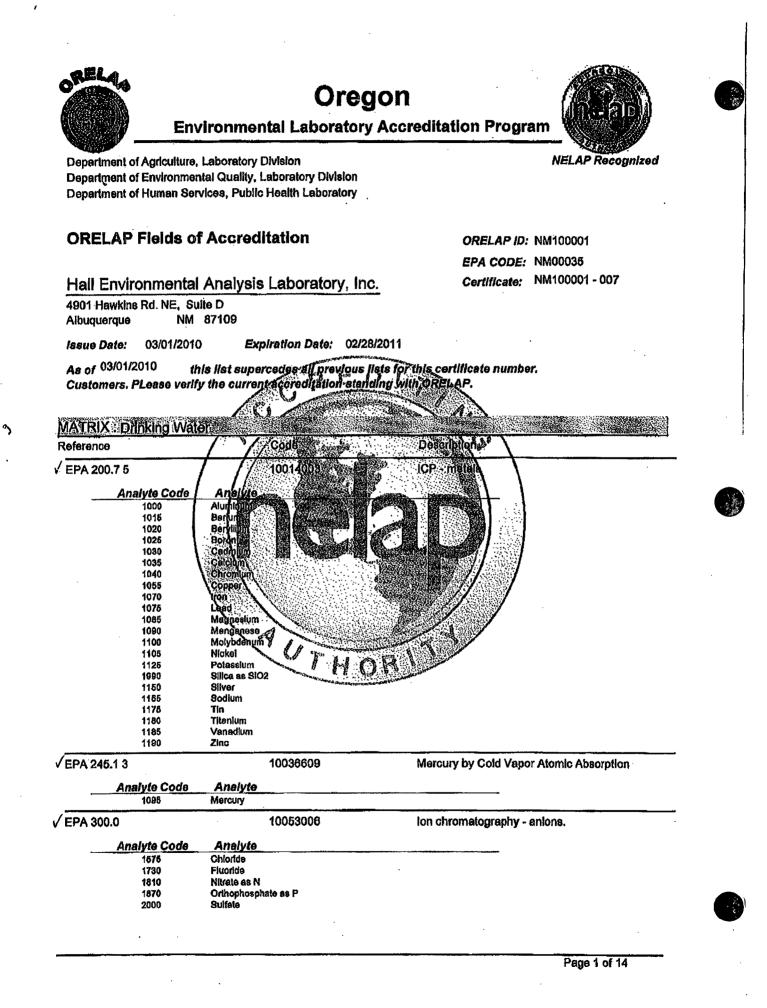
eferences (Analytical Protocols Utilized at HEAL)

- 1. <u>Standard Methods for the Examination of Water and Wastewater:</u> AOHA, AWWA, and WPCG; 20th Edition, 1999.
- 2. <u>Methods for Chemical Analysis of Water and Wastes</u>, USEPA, EPA-600/4-79-020, March 1979 and as amended December, 1982 (EPA-600/4-82-055)
- 3. <u>Test Methods for Evaluating Solid Waste: Physical/Chemical Methods</u>, USEPA SW-846, 3rd Edition, Updates I, II, IIA, IIB, III, December, 1996.
- 4. <u>Methods of Soil Analysis</u>: Parts 1 & 2, 2nd Edition, Agronomy Society of America, Monograph 9
- 5. <u>Diagnosis & Improvement of Saline & Alkali Soils</u>, Agriculture Handbook No. 60, USDA, 1954
- 6. <u>Handbook on Reference Methods for Soil Testing</u>, The Council on Soil Testing & Plant Analysis, 1980 and 1992
- 7. <u>Field and Laboratory Methods Applicable to Overburdens and Mine Soils.</u> USEPA, EPA-600/2-78-054, March 1978

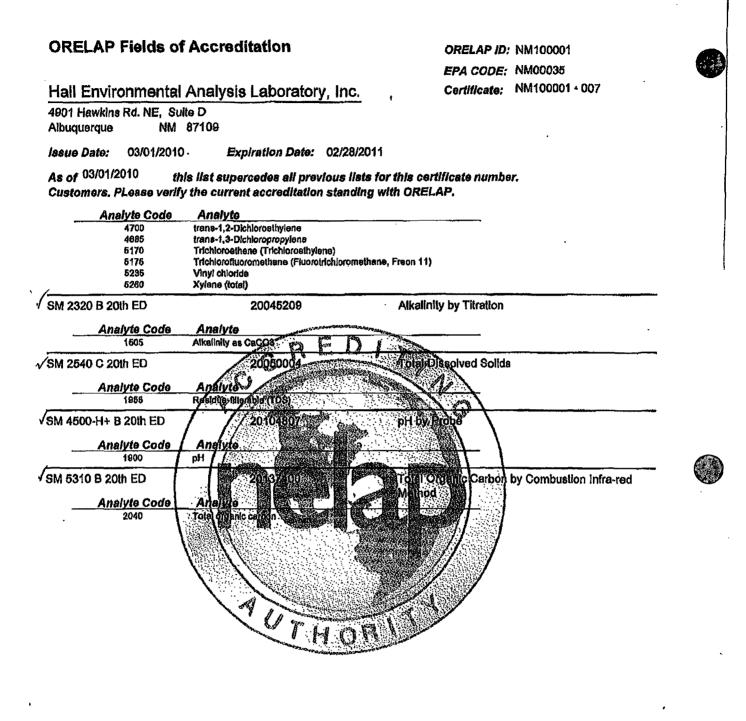
- 9. <u>Soil Testing Methods Used at Colorado State University for the Evaluation of Fertility,</u> <u>Salinity and Trace Element Toxicity,</u> Technical Bulletin LT B88-2 January, 1988
- 10. <u>Manual of Operating Procedures for the Analysis of Selected Soil, Water, Plant Tissue and</u> <u>Wastes Chemical and physical Parameter.</u> Soil, Water, and Plant Analysis Laboratory, Dept. of Soil and Water Science, The University of Arizona, August 1989
- 11. <u>Sampling Procedures and Chemical Methods in Use at the U.S. Salinity Laboratory for</u> <u>Characterizing Salt-Affected Soils and Water.</u> USDA Salinity Laboratory.
- 12. <u>Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey.</u> USDA Soil Conservation Service, SSIR No. 1.
- 13. <u>Soil Survey Laboratory Methods Manual.</u> Soil Survey Laboratory Staff. Soil Survey Investigations Report No. 42, version 2.0, August 1992.
- 14. <u>Methods for the Determination of Metals in Environmental Samples</u>, USEPA, EPA-600/4-91-010, June 1991
- 5. The Merck Index, Eleventh Edition, Merck & Co., Inc. 1989.


Page 46 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

- 16. Handbook of Chemistry and Physics, 62nd Edition, CRC Press, Inc. 1981-1982.
- 17. Analytical Chemistry of PCB's. Erickson, Mitchell D., CRC Press, Inc. 1992.
- 18. <u>Environmental Perspective on the Emerging Oil Shale Industry</u>, EPA Oil & Shale Research Group.
- 19. Polycyclic Aromatic Hydrocarbons in Water Systems, CRC Press, Inc.
- 20. <u>Quality Systems for Analytical Services, Revision 2.2</u>, U.S. Department of Energy, October 2006.
- 21. <u>Manual for the Certification of Laboratories Analyzing Drinking Water, Criteria and procedures</u> <u>Quality Assurance Fifth Edition, U.S. Environmental Protection Agency, January 2005.</u>
- 22. <u>Technical Notes on Drinking Water Methods</u>, U.S. Environmental Protection Agency, October 1994.


Appendix A Personnel Chart / Organizational Structure

٦


Page 48 of 49 Quality Assurance Plan 9.2 Effective February 2nd 2010

OREGON **Environmental Laboratory Accreditation Program NELAP Recognized** Hall Environmental Analysis Laboratory, Inc. NM100001 4901 Hawkins Rd. NE, Suite D Albuquerque,NM 87109 IS GRANTED APPROVAL BY OBELAR UNDER THE 2003 NELAC STANDARDS, TO PERFORM ANALYSES ON ENVIRONMENTAL SAMPLES IN MATRICES AS LISTED **BELOW:** Non Potable Solids Drinking Water Chem. Waste Air Tissue Water Chemistry Chemist Chemistry AND AS RECORDED IN THE LIST OF APPROVED ANALYTES, METHODS, ANALYTIC TECHNIQUES, AND RIELDS OF TESTING ISSUED CONCURRENTLY WITH THIS PERTIFICATE AND REVISED AS NECESSARY, ACCREDITED STATUS DEPENDS ON SUCCESSFUL ONGOING PARTICIPATION IN THE PROGRAM AND CONTINUED COMPLIANCE WITH THE STANDARDS CUSTOMERS ARE URGED TO VERIFY THE LABORATORYS CURRENT ACCREDITATION STATUS m In MISh L Irene E. Ronning Ph.D. Oregon State Public Health Laboratory **ORELAP Administrator** 3150 NW. 229th Ave, Suite 100 Hillsboro, OR 97124 ISSUE DATE: 03/01/2010 EXPIRATION DATE: 02/28/2011 Certificate No: NM100001 - 007

· .		EPA CODE: NM00035
Hall Environmental	Analysis Laboratory, Inc.	Certificate: NM100001 - 007
4901 Hawkins Rd. NE, Su		
	87109	
Issue Date: 03/01/2010) Expiration Date: 02/28/201	1
	ils list supercedes all previous lists : y the current accreditation standing	
EPA 5030B	10153409	Purge and trap for aqueous samples
Analyte Code	Analyte	
125	Extraction/Preparation	
EPA 504.1	10083008	EDB/DBCP/TCP micro-extraction, GC/ECD
Analyte Code 4570	Analyte 1,2-Dibromo-3-chloropropane (DBCP)	
4585	1,2-Dibromoethane (EDB, Ethylene dibromid	9)
EPA 524.2 4.1	100888899 ([)	Volatile Organic Compounds GC/MS Capillary
Analyte Code	Analyte C	Column
5105	1,1,1,8 Telrachloroeinanes	S IN
5160	1,14-Inchioroethenes 1,1,2,2,1 et achioroethene	
5110 5165	1,1,2-Trichloroeunane	S S S S S S S S S S S S S S S S S S S
4630	1,1-Dicploroethane	
4840	1,1-Dichloroethylene	
4670	1,1-Dichloropropene	
5150 5180	1,2,3 Trohlorobenzene	
5165	1,2,4-1 minioroben eff	
5210	1,2,4-Trimelhykanzanessisterase as	
4610	1,2-bismoroben kenda	
4635	1,2 billiproeth me (Euvrene Ughlonde)	
4855 5215	1.2 Chellbropropine	
4616	1;3-Dichlorobenzene	
4660	V.S-Dichlaropropane	
4620	h4-Dichloropenzene	
4635 4640	2-Optorotoluene	
4375	Benzene	
4385	Bromobenzene	
4390	Bromochloromethene	
4398 4400	Bromodichioromethane	a start of the second
4455	Carbon tetrachtoride	
4476	Chlorobenzene	
4675 4485	Chlorodibromomethane Chloroethane (Ethyl chloride)	
4400	Chloroform	
4645	cls-1,2-Dichtoroethylene	• · · · · · · · · · · · · · · · · · · ·
4880	cis-1,3-Dichloropropane	
4595 4765	Dibromomethane (Methylene bromide) Ethylbenzene	
4835	Hexachlorobuladiene	
4900	isopropyibenzene	
4950	Methyl bromide (Bromomethane)	
4960 5000	Methyl chloride (Chloromethene) Methyl tert-bulyl ether (MTBE)	
4976	Methylene chloride (Dichloromelhane)	
4435	n-Bulytbenzene	
5090	n-Propylbenzene	
4440	sec-Butylbenzene	
5100 4445	Styrene tert-Bulybenzene	
5115	Telrachloroethylene (Perchloroethylene)	
5140	Toluene	

EPA CODE: NM00035 Certificate: NM100001 - 007 Hall Environmental Analysis Laboratory, Inc. 4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109 03/01/2010 Expiration Date: 02/28/2011 Issue Date: As of 03/01/2010 this list supercedes all previous lists for this certificate number. Customers. PLease verify the current accreditation standing with ORELAP. Reference Code Description VEPA 300.0 10053006 ion chromatography - anions. <u>Analyte</u> Analyte Code Bromide 1540 Chloride 1675 1780 Fluoride Nitrate as N 1810 Nitrete-nitrite 1820 -R 1840 Nitrite as N Orthophosphate as P 1870 2000 Sulfate. VEPA 3005A 0133207 eld Digestion of waters for Total Recoverable Discolved Metals Analyte Code Analy ð 128 Extraction/Preparatio ✓ EPA 3510C Separatory Punnel Alguid-Ilguid extraction 1013820 Analyte Code A۲ øĬ 125 Exte VP mi ✓ EPA 5030B ie and ir b for adueous samples Analyte Code Analyte 125 Extraction/Preparation √ EPA 6010B 10155609 Analyte Code Analyte 1000 Aluminum сÉ 1005 Antimon 1010 Arsenio 40 1015 Barlum 1020 Beryllium 1025 Boron 1030 Cadmium Calcium 1035 Chromium 1040 1050 Coball 1070 Iron 1075 Lead Megnaslum 1085 1090 Manganess 1100 Molybdenum 1105 Nickel 1128 Potassium 1140 Setenium 1150 Silver Sodium 1155 1165 Thallium 1176 Tin Titanium 1180 3035 Uranium 1185 Vanadium 1190 Zino

ORELAP ID: NM100001

ORELAP Fields of Accreditation

Hall Env	rironmente	I Analysis Laboratory, In	C. Certificate: NM100001 - 007
and the second distance of the second distanc	Ins Rd. NE, S		
Albuquerqu	e NM	87109	
issue Date	: 03/01/201	0 Expiration Date: 02/2	8/2011
As of 03/0			
		his list supercedes all previous : ify the current accreditation stan	
EPA 7470A		10165807	Mercury In Liquid Waste by Cold Vapor Atomic
			Absorption
A	nalyte Code 1095	Analyte Mercury	
VEPA 8015B		10173601	Non-halogenated organics using GC/FID
A	nalyte Code 9369	Analyte Diesel range organics (DRO)	
	9408	Gasoline range organics (GRQ)	
/	8499	Motor Oil	
✓ EPA 8021B		10174808	Aromatic and Halogenated Volatiles by GC with
A	nalyte Code	Anelyte s	PID and/or ECD Purge & Trap
	5210 5215	1,2,4-Trimelinylbenzene 1,6,6-Trimelinylbenzene	
	4375	Benzene	
	4765	Ethylberizene	
	5240 #000	m+p-xilene	
	6000 5250	Methyl ten-bulyl ether (MTOR)	
	6140	Toluenes States States	
	5280	Xylene ((olai)	
√ EPA 8081A		1017(626	Orienochlotine Pesticides by GC/ECD
A	nalyte Code	Analyte III Care	
	7355	44 DOD	
	7360	N.A. DDF	
	7365 7025	Adda	
	7110	alona-BHC (alpha Hexachlorocyclohex	ane) (ane
	7115	beta-BHC (beta-Hexechtorocyclohexen	e) () () () () () () () () () (
	7105	della-BHQ	
	7470 7610	Disidrin Endosulfan i	
	7615	Endosulfan II	
	7620	Endosulfan sulfate	and the second
	7540 7530	Endrin Endrin eldehyde	
	7120	gamma-BHC (Lindene, gamma-Hexact	nlorooyclohexanE)
	7665	Heptechlor	-
	7690 7810	Heptachlor epoxide Methoxychlor	
✓ EPA 8082		10179007	Polychlorinated Biphenyls (PCBs) by GC/ECD
A	nalyte Code 8880	Analyte Arockir-1016 (PCB-1016)	
	8885	Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221)	
	8890	Arocior-1232 (PCB-1232)	
	8895	Aroclor-1242 (PCB-1242)	
	8900 8905	Aroclor-1248 (PCB-1248) Aroclor-1264 (PCB-1254)	
	8910	Arockor-1260 (PCB-1264) Arockor-1260 (PCB-1260)	
VEPA 8260B		10184802	Volatile Organic Compounds by purge and trap
A	nalyte Code	Analyte	GC/MS
	5105	1,1,1,2-Tetrachloroethane	······································

• •

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D

Albuquerque NM 87109

Issue Date: 03/01/2010 Expiration Date: 02/28/2011

As of ^{03/01/2010} this list supercedes all previous lists for this certificate number. Customers. PLease verify the current accreditation standing with ORELAP.

Analyte Code	Analyte
 5160	1,1,1-Trichlorcethane
5110	1,1,2,2-Tetrachtoroethane
5165	1,1,2-Trichloroethane
4630	1,1-Dichloroethane
4640	1,1-Dichlorosihylené
4670	1,1-Dichloropropene
5160	1,2,3-Trichlorobenzene
6180	1,2,3-Trichloropropane
5165	1,2,4-Trichlorobenzena
5210	1,2,4-Trimethylbanzang
4570	1,2-Dibromo-3-chloropropene (DECP)
4585	1,2-Dibromoethene (EDB" Ethylene dibromide)
4610	1,2-Dichlorobenzene
4635	1,2-Diphlorodinane (#(hylane dichloride)
4655	1,2-pichlorepropene
6215	1,3:5-Trimethy banzene
4615	1,356 Trimethylbenteine 1/3-Dichlordhenzene 1/3-Dichlordhenzene
4660	
4620	1,4-Dichlorobenzene
6380	1-Methylfiephthelene
4685	2,2-Dictiloropropane
4410	2-Bulanoren Melbyl ally Interene, MER
4535	2-Chidpoldwente
4880	2-Hexmone
6385	2-Mathythaphthatan
4540	A-Chicololuene
4910	4-leoplopytoluene (p-Oymene)
4995	4-Molty/-2-pentenone (MIBK)
4315	Acetone
4375	Benzene
4385	Bromobenzene
4390	Bromochloromelhane
4395	Bromodichioromelhane
4400	Bromotorm
4450	Carbon disulfide
4455 4475	Chlorobenzene
4475	Chlorodibromomelhane
4485	Chloroethane (Ethyl chloride)
4505	Chloroform
4645	cis-1,2-Dichloroethylene
4660	cls-1,3-Dichloropropens
4595	Dibromomethane (Methylene bromide)
4625	Dichlorodifluoromethane (Freon-12)
4765	Ethylbenzene
4835	Hexachlorobutadiene
4900	Isopropylbenzene
5240	m+p-xylene
4950	Methyl bromide (Bromomethane)
4960	Methyl chloride (Chloromethane)
5000	Methyl tert-bulyl ether (MTBE)
4975	Methylene chloride (Dichloromethane)
5005	Naphihalene
4435	n-Bulyibenzens
5080	n-Propyloenzene
5260	o-Xylene
4440	sec-Butylbenzene
6100	Styrene
4445	teri-Bulyibenzene
6115	Telrachioroethylene (Perchioroethyleno)
5140	Toluene

ORELAP ID: NM100001 EPA CODE: NM00036 Certificate: NM100001 - 007

Hall Environmental Analysis Laboratory, Inc.

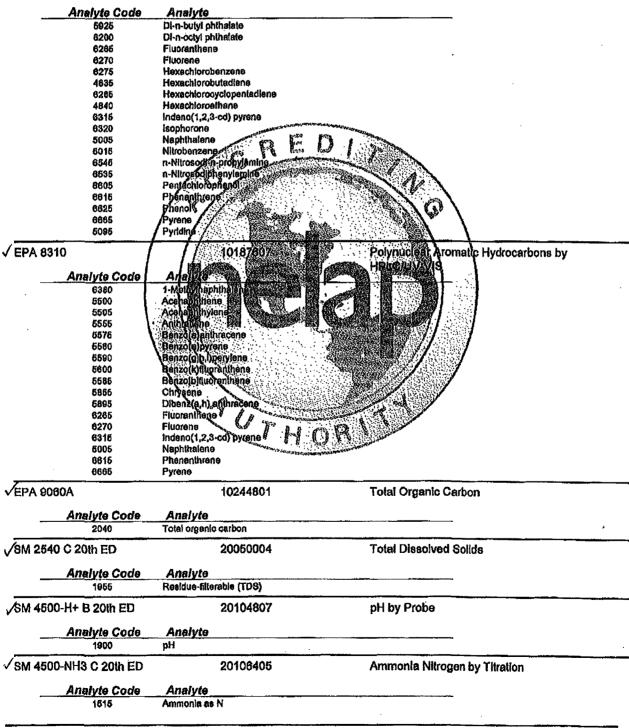
4901 Hawkins Rd. NE, Suite D Albuquergue NM 87109

Issue Date: 03/01/2010 Expiration Date: 02/28/2011

As of ^{03/01/2010} this list supercedes all previous lists for this certificate number. Customers, PLease verify the current accreditation standing with ORELAP.

	4700 4686	trans-1,2-Dichioroethylene trans-1,3-Dichioropropylene	
	6170	Trichloroethene (Trichloroethylene)	
	6176	Trichlorofiluoromethane (Fluorotrichloromethane, Freen 11)	
	6235	Vinyi chloride	
	5260	Xylene (total)	
A 8270C		10185805 Semivolatile Organic compounds by GC/MS	
An	alyte Code	Analyte	
	5155	1,2,4-Trichlorobenzene	
	4810	Les stomotorentientes & 6	
	4615	1,3-Dichlofopenzene 1,4-Diehlofopenzene	
	4820 8835	1,4-Diphicrobenzone	
	6840		
	6000	2,4 o Tricolo conerto 2,4-Dichigo phenologia	
	6130	2,4-Dimethylohend	
	6175	2,4-Dinkophenol	
	6185	2,4-Dihlyotoluena (2,40) The second state of t	
	6190	2,6-Dinitrotokiene (2,6 DNT)	
	5795	2-Criteron minimum 2-Criteron minimum	
	5600	2-Childrenie a	
	0360	2-Met VII4.8-ola li dovenov de u Dalla 2-metav pilenovi	
	6385 6400	2-MallyThephthalana	
	6460	2-Martiphenol (CCN ton)	
	6490	2.Nilvohenoi	
	6412	3 8.4 Methylchanol	
	6945	3.3*Dichloropenzidine	
	6465	3-Nilloanille	
	5660	4 Bromophanyl phenyl etter	
	6700	4-Chloro-3-methylphenol	
	5745	4-Childroaniling	
	5825	4-Chlorophenyl phonyleither	
	6470 6500	4-Nitroanillate	
	5500	Acenephthene	
	6505	Acenaphthylene	
	5545	Aniline	
	6665	Anthrecene	
	5562	Azobenzene	
	6576	Benzo(a)anthracene	
	5580	Benzo(a)pyrene	
	5590	Benzo(g.h.i)perviene Benzo(k)fluoranthene	
	5600 5585	Benzo(k)iluoranthene	
	5587	Benzofluoranthene	
	5810	Benzolo add	
	5830	Benzyl alcohol	
	5760	bis(2-Chibroethoxy)methane	
	6765	bis(2-Chlozoethyi) ether	
	6780	bis(2-Chloroisopropyi) ether	
	5670	Butyl benzyl phihaiate	
	5680	Cerbazole	
	5865	Chrysene	
	8065	Di(2-ethylhexyl) phthalate (bis(2-Ethylhexyl)phthalate, DEHP)	1
	5895 5805	Dibenz(e,h) anthracene Dibenzofuran	
	6070	Diethyl phihalais	

ORELAP ID: NM100001 EPA CODE: NM00035 Certificate: NM100001 - 007


ORELAP ID: NM100001 EPA CODE: NM00035 Certificate: NM100001 - 007

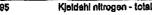
Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd.	NE, Suite D	
Albuquerque	NM 87109	

Issue Date: 03/01/2010 Expiration Date: 02/28/2011

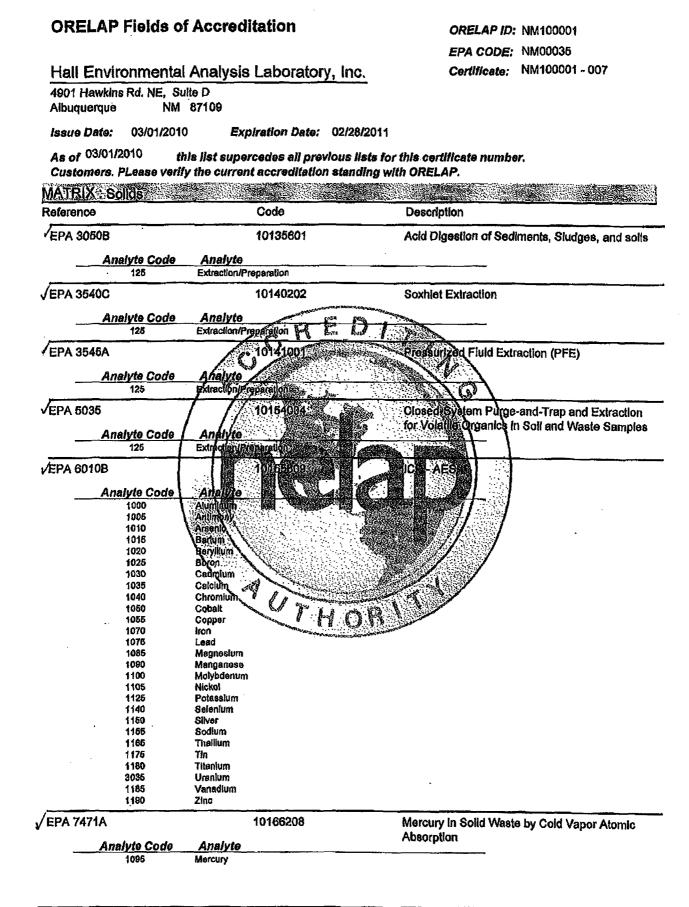
As of 03/01/2010 this list supercedes all previous lists for this certificate number. Customers. PLease verify the current accreditation standing with ORELAP.

ORELAP ID: NM100001 EPA CODE: NM00035 Certificate: NM100001 - 007


Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109

Expiration Date: 02/28/2011 03/01/2010 Issue Date:


As of 03/01/2010 this list supercedes all previous lists for this certificate number. Customers. PLease verify the current accreditation standing with ORELAP.

SM 4500-Norg C 20th ED	20119602	Nitrogen (Organic) by Semi-micro Kjeldahi Method	
Analyte Code	Analyte		
1795	Kjeldahl nitrogen - total		

OREL	AP Fields o	f Accreditation	ORELAP ID: NM100001
1 I _ 11 I ^m		I Americato I alequatema Inc.	EPA CODE: NM00035 Cartificata: NM100001 - 007
÷		Analysis Laboratory, Inc.	Certificate: NM100001 - 007
4901 Ha Albuque	wkins Rd. NE, Su rque NM	uite D 87109	
Issue Di	ate: 03/01/201	0 Expiration Date: 02/28/	2011
		his list supercedes all previous li ly the current accreditation stand	
EPA 801		10173601	Non-halogenated organics using GC/FID
	Analyte Code	Analyte	·
	9369 9408	Diesel range organics (DRO) Gasoline range organics (GRO)	
	9409 9499	Motor Oil	
/ EPA 802	21B	10174808	Aromatic and Halogenated Volatiles by GC with PID and/or ECD Purge & Trap
	Analyte Code	Analyte	· · · · · · · · · · · · · · · · · · ·
	4375 4765	Benzene Ethylbenzene	
	624 0	m+p-xylene	
	5000	Methyl terf-bulyl ether (MTBE)	
	6250 5140	o-Xviene	
	5140 5260	Xylone (lotal)	A CARACTER AND A CARACTER ANTER ANTER ANTER ANTER ANTER
EPA 808	1A	10178608	Organochlorine Pasticides by GC/ECD
	Analyte Code	Analyte	
	7355 ·	4.4-20D	
	7360 7365	4,4 ⁻ D	
	7025	Aldan	
	7110	elpha-BHC (alphail-faxachlorocycloffaxat	
	7115	belal Bill (beta Baxaci procidine and	
	7105	Official office	
	7470 7510	Endosulan I	
	7515	Endosulfan II	
	7520	Endosullangullate	
	7540	Endrin Endrin eldehyde	
	7530 7120	gamma BHC (Lindane) gamma Hexachi	IncrucionexanE
	7685	Haplachlon	
	7890	Heptachlor epoxide	RUP
EPA 808		Methoxychlor 10179007	Polychlorinated Biphenyls (PCBs) by GC/ECD
	Analyte Code	Analyte	
	8880	Arocior-1016 (PCB-1018)	
	8885	Aroclor-1221 (PCB-1221)	
	8890	Aroclor-1232 (PCB-1232)	
	8895 8900	Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248)	
	8906	Arocior-1264 (PCB-1266) Arocior-1264 (PCB-1266)	
	8910	Arocior-1280 (PCB-1280)	
/ EPA 828	0B	10184802	Volatile Organic Compounds by purge and trap
	Analyte Code	Anaiyte	GC/MS
	5105	1,1,1,2-Tetrachloroethane	
	5160	1,1,1-Trichloroelhans	
	5110	1,1,2,2-Tetrachloroethane	
	5165	1,1,2-Trichloroethene	
	4630 4640	1,1-Dichloraethene 1,1-Dichloraethylene	
		· · · · · · · · · · · · · · · · · · ·	
	4670	1,1-Dichloropropens	

. .

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Sulte D

Albuquerque NM 87109

Issue Date: 03/01/2010. Expiration Date: 02/28/2011

As of 03/01/2010 this list supercedes all previous lists for this certificate number. Customers. PLease verify the current accreditation standing with ORELAP.

Analyte Code	Analyte
5180	1,2,3-Trichloropropane
8155	1,2,4-Trichlorobenzene
5210	1,2,4-Trimethylbanzene
4570	1,2-Dibromo-3-chloropropane (DBCP)
4585	1,2-Dibromosthane (EDB, Ethylene dibromide)
4610	1,2-Dichlorobenzene
4635	1,2-Dichloroethene (Eihylene dichloride)
4655	1,2-Dichloropropane
5215	1,3,5-Trimethylbenzene
4615	1,8-Dichlorobenzene
4660	1,3-Dichioropropane
4620	
6380	1-Methylnabhthalenb
4665 4410	2.2-Didilioropropane 2-Bylanone (Mgthy) ethyl Kelone, MEK)
4535	
4860	Z-tendorotowene zast
8385	2-Methylnephithelene
4640	4-Chlopotoluene
4910	4-isopropylioluene (p:Cymene)
4995	4-Methyl-2-pantanone (MIB)
4315	Aceibaer Joseph Aceibaer Aceibaer Aceibaer Aceibaer
4375	Benzena
4385	Brondhenzene
4390	Bromochoromeline
4395	Bronodkhlommellane
4400	Brondidim
4450	Carpon disuinde
4465	Carbon tetrachloride
4475	Chlorobenzene
4676	Chlorodiblomemethene
4485	Chloroethane (Ethyl chloride)
4605	Chilocoform
4045	cis-1,2-Dichioroethylene
4680	cle-1,3-Dichlolopropana
4696	Dibromomethane (Methylene promide)
4625	Dichlorodifiuoromethane (Fredh: 22)
4785 4835	Ethylbenzene
4800	Hexachiorobutadiene Isopropylbenzene
5240	m+p-xylens
4950	Methyl bromide (Bromomsthane)
4960	Methyl chloride (Chloromethane)
5000	Methyl tert-butyl other (MTBE)
4975	Methylene chloride (Dichloromethane)
5005	Naphihalana
4435	n-Bulyibanzene
5090	n-Propylbenzene
5250	o-Xylane
4440	sec-Bulyibenzene
6100	Styrene
4445	tert-Bulyibenzene
5115	Tetrachloroethylene (Perchloraethylene)
5140	Toluene
4700	trans-1,2-Dichloroethylene
4685	trans-1,3-Dichloropropylana
5170	Trichloroethene (Trichloroethylene)
5175	Trichlorofiuoromethane (Fluoroirichloromethane, Freon 11)
6235	Vinyl chloride
5260	Xylene (total)

ORELAP ID: NM100001 EPA CODE: NM00035 Certificate: NM100001 - 007

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109

Issue Date: 03/01/2010 Expiration Date: 02/28/2011

ORELAP ID: NM100001 EPA CODE: NM00035 Certificate: NM100001 - 007

As of 03/01/2010 this list supercedes all previous lists for this certificate number. Customers. PLease verify the current accreditation standing with ORELAP.

EPA 8270C	10185805 Semivolatile Organic compounds by GC/MS
Analyte Code	Analyte
5165	1,2,4-Trichlorobenzene
4610	1,2-Dichlorobenzene
4615	1,3-Dkhlorobenzene
4820	1,4-Dichlorobenzene
6835	2,4,5-Trichlorophenol
6840	2,4,6-Trichlorophenol
6000	2,4-Dichlorophenol
6130	2,4-Dimelhylphenol
6175	2,4-Dinitrophenol
6185	2,4-Dinitrotolumer(2,4-DNT)
6190	2,6-Dinipolojueně (2,6-DNT)
5795	2-Chlorondiphyhalana 2-Chloropharge
5800	2-Chlorophengle
6360	2, Mathy 4, 8 Guillophanoi (4, 8-Dintro-2-mathy phanoi)
6365	2-Methylnophihetene
6400	2-Methylphenol (o-Cristol)
6460	2-Nitroanilina
6490	2-Nitopland
6412	3 & 4 Mathylphenol
5945	9,3-Dimensional and a second
6465	3-Niromiline
6660	4-Stoniophenyl Die Milestan Kal
5700	
6745	
5625	A Onlogophenyl plienylethers
6470	34 Nilroaniline
6500	4-Nilroonenol
5500	Acenaphthene
5505	Acenaphthylehe
5545	Aduling
5555	Antifiracene
5562	Azobehzene
6675	Benzo(a)en(h/aceste)
5580	Benzo(a)pyrého
5590	Benzo(g,h,i)perviene
6600	Benzo(k) fluoranthene
5586	Benzojbjiluoranthene
5610	Benzoic acid
5630	Benzyl alcohol
5760	bis(2-Chiorosihoxy)methans
5765	bis(2-Chioroethyi) ether
5780	bis(2-Chiorolsopropyl) ether
6670	Bulyi benzyi phthalate
6680	Carbazole
5855	Chrysene
6065	DI(2-ethylhexyl) phthelate (bis(2-Ethylhexyl) phthalate, DEHP)
5695	Dibenz(e,h) anihracene
5905	Dibenzofuran
6070	Disthyl phihalate
6135	Dimelhyi phthalale
5925	DI-n-butyi phihalate
6200	Di-n-ootyi phihalate
6285	Fluoranthène
6270	Fluorene
6275	Hexachiorobenzene
4835	Hexachlorobuladiene
6285	Hexachiorocyclopentadiene
4840	Hexachloroethane

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE, Suite D Albuquerque NM 87109

Issue Date: 03/01/2010 Expiration Date: 02/28/2011

As of 03/01/2010 this list supercedes all previous lists for this certificate number. Customers. PLease verify the current accreditation standing with ORELAP.

Analyte Code	Analyte	
6315	Indeno(1,2,3-cd) pyrane	
6320	Isopharone	
5005	Ngphthalene	
6015	Nilrobenzene	
6530	n-Nilrosodiməthylaminə	•
8545	n-Nilrosodi-n-propylamine	
8535	n-Nilrosodiphenylemine	
6605	Pentachiorophenol	
6615	Phenanihrene	
6625	Phenol	
6665	Pyrene Pyridine	
5095	Pyridine	*
VEPA 8310	10187607 Rolyhucjear Aromatic Hydrocarbons b	У
Analyte Code	Analyte	
6380	1-Methylnephthelepe	
6385	2-Methylhaphlhatene	
5500	Acenaphtrene	
5505	Acenephthylene	
5555	Anthfacene	
5575	Benfore)antifiédene	
5580	Benzole byrene a berzelet a	
5590	Benzolich, ilpenziel de entre al	
5600	Benzol Muoran III no	·
5585	Bentol (I) horan II shaka a sha	
68 5 5	Chrysene All Chrysene Contraction of the Chrysene Chrysen	
5895	Dibeng(e,h) anthracene	
6285	Fluoranthana	
6270	Fillorene	
6315	Indeno(1,2,2-cd) pyrene	
6005	Nephthalono	
6615	Phonenthrena	
6665	Pyrenb.	
	~ 0	

ORELAP ID: NM100001 EPA CODE: NM00035 Certificate: NM100001 - 007

BILL RICHARDSON Governor State of New Mexico ENVIRONMENT DEPARTMENT Water & Wastewater Infrastructure Development Division DRINKING WATER BUREAU 525 Camino de Los Marguez, Suite 4

525 Camino de Los Marquez, Suite 4 Santa Fe, New Mexico 87505 Phone (505) 476-8620 • Fax (505) 476-8656 Toll Free 1-877-654-8720 <u>www.nmenv.state.nm.us/dwb</u>

RON CURRY Secretary

Sarah Cottrell Deputy Secretary

Karen E. Gallegos Director

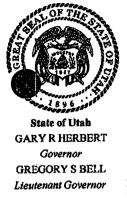
June 17, 2010

Andy Freeman Hall Environmental Analysis Laboratory, Inc. 4901 Hawkins Road NE, Suite D Albuquerque, NM 87109

Dear Mr. Freeman:

The Drinking Water Bureau of the New Mexico Environment Department (NMED-DWB) has received and reviewed your NELAP certification /accreditation information from the state of Oregon. The documentation is acceptable and your New Mexico certification is now valid through February 28, 2011.

This certification is to perform drinking water analysis in compliance with the Federal Safe Drinking Water Act, pursuant to 40CFR Part 141, and the New Mexico Environment Department Drinking Water Regulations for the Primary Regulated contaminants, including contaminants as listed in your Oregon Scope Accreditation.


You must advise NMED-DWB of any change in your accreditation by the State of Oregon and continue to provide this office with performance evaluation results. You are also required to provide evidence of renewal of accreditation by the state of Oregon to continue certification past February 28, 2011.

Laboratories certified by New Mexico can be purged from the list if there is no evidence that they are performing drinking water compliance sample analysis for public water supply systems in New Mexico.

If you have any questions or require additional information, please contact me at 505-476-8648.

Sincerely.

Oneva Rivéra Data/ Lab Coordinator oneva.rivera@state.nm.us

Utah Department of Health David N. Sundwall, MD Executive Director

Disease Control and Prevention Patrick F. Luedtke, MD, MPH. Director Unified State Labs: Public Health

Bureau of Laboratory Improvement David B Mendenhall, MPA, MT (ASCP) Bureau Director

STATE OF UTAH DEPARTMENT OF HEALTH

ENVIRONMENTAL LABORATORY CERTIFICATION PROGRAM

CERTIFICATION

is hereby granted to

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Rd. NE Albuquerque NM 87109-4337

Scope of accreditiation is limited to the State of Utah Accredited Fields of Accreditiation Which accompanies this Certificate

Continued accredited status depends on successful Ongoing particitpation in the program

EPA Number: Expiration Date: NM00035 2/28/2011

Patrick F. Luedtke, MD, MPH. Director Unified State Laboratories: Public Health

State of Utah GARY R HERBERT Governor GREGORY S BELL Lieutenant Governor

3/11/2010

Utah Department of Health David N. Sundwall, MD Executive Director

Disease Control and Prevention Patrick F. Luedtke, MD, MPH. Director Unified State Laboratories: Public Health

Bureau of Laboratory Improvement David B Mendenhall, MPA, MT (ASCP) Bureau Director

Hall Environmental Analysis Laboratory, Inc. Andy Freeman 4901 Hawkins Rd. NE Albuquergue NM 87109-4337

Director,

In recognition of your NELAP accreditation and in compliance with the ELCP requirements, the laboratory listed is certified for environmental monitoring under the Clean Water Act and authorized to perform the following methods, for the analytes and matrix listed:

Non-Potable Water

Inorganics and Metals				
300.0 [1993]	Bromide			
300.0 [1993]	Chloride			
300.0 [1993]	Fluoride			
300.0 [1993]	Nitrate			
300.0 [1993]	Nitrite			
300.0 [1993]	ortho-Phosphate			
300.0 [1993]	Sulfate :			
300.0 [1993]	Nitrate/Nitrite			

The effective date of this certificate letter is: 3/1/2010.

The analytes by method which a laboratory is authorized to perform at any given time will be those indicated in the most recent certificate letter. The most recent certification letter supersedes all previous certification or authorization letters. It is the certified laboratory's responsibility to review this letter for discrepancies. The certified laboratory must document any discrepancies in this letter and send notice to this bureau within 15 days of receipt. This certificate letter will be recalled in the event your laboratory's certification is revoked.

Respectfully,

Patrick F. Luedtke, MD, MPH. Director Unified State Laboratories: Public Health

The expiration for the laboratory's certification is 2/28/2011. The Utah Environmental Laboratory Certification Program (ELCP) encourages clients and data users to verify the most current certification letter for the authorized method.

ID # HEAL EPA ID: NM00035

State of Utah GARY R HERBERT Governor GREGORY S BELL Lieutenant Governor

3/11/2010

Hall Environmental Analysis Laboratory, Inc. Andy Freeman 4901 Hawkins Rd. NE Albuquerque NM 87109-4337

Bureau Director

Utah Department of Health David N. Sundwall, MD Executive Director

Disease Control and Prevention Patrick F. Luedtke, MD, MPH.

Director Unified State Labs: Public Health

Bureau of Laboratory Improvement

David B Mendenhall, MPA, MT (ASCP)

Director,

In recognition of your NELAP accreditation and in compliance with the ELCP requirements, the laboratory listed is certified for environmental monitoring under the Resource Conservation and Recovery Act and authorized to perform the following methods, for the analytes and matrix listed:

<u>Metal Dice</u>	Solid	Non- Potable Water	
3005 A	L		Acid Digestion Total Recoverable or Dissolved Metals
<u>Metals</u>		Non-	
		Potable	
	Solid	Water	
6010 B			Aluminum
6010 B			Antimony
6010 B			Arsenic
6010 B			Barlum
6010 B		\checkmark	Beryllium
6010 B		\checkmark	Boron
6010 B			Cadmium
6010 B		\mathbf{V}	Calcium
6010 B			Chromium
6010 B			Cobalt
6010 B			Iron
6010 B			Lead
6010 B			Magnesium
6010 B			Manganese
6010 B			Molybdenum
6010 B		. 🔽	Nickel
6010 B			Potassium
6010 B			Selenium
6010 B			Silver
6010 B			Sodium
6010 B			Thallium
6010 B			Tin
6010 B		_	Titanlum
6010 B			Vanadium

The expiration for the laboratory's certification is 2/28/2011. The Utah Environmental Laboratory Certification Program (ELCP) encourages clients and data users to verify the most current certification letter for the authorized method.

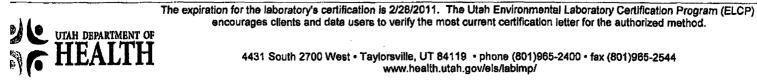
ID # HEAL EPA ID: NM00035

Hall Environmental Analysis Laboratory, Inc. Resource Conservation and Recovery Act Page 2 of 5

Fage 2 UI			
<u>Metals</u>		Non-	
		Potable	
	Solid	Water	
6010 B		\checkmark	Zinc
<u>Organic E</u>	xtractic	n.	
		Non-	
	Dalid	Potable Water	
2540.0	Solid		Separatory Funnel Liquid-Liquid Extractions
3510 C			Opparatory I winter Educational Contractions
<u>Organic Ir</u>	<u>nan nuna</u>	Non-	
		Potable	
	Solid	Water	
8015 B			Diesel Range Organics (DROs)
8015 B			Gasoline Range Organics (GROs)
8260 B			1,1,1,2-Tetrachioroethane
8260 B			1,1,1-Trichloroethane
8260 B			1,1,2,2-Tetrachloroethane
8260 B			1,1,2-Trichloroethane
8260 B		\mathbf{V}	1,1-Dichloroethane
8260 B			1,1-Dichloroethylene (-ethene)
8260 B		\checkmark	1,1-Dichloropropene
8260 B			1,2,3-Trichlorobenzene
8260 B			1,2,3-Trichloropropane
8260 B			1,2,4-Trichlorobenzene
8260 B			1,2,4-Trimethylbenzene
8260 B			1,2-Dibromo-3-chloropropane (DBCP, Dibromochloropropane)
8260 B			1,2-Dibromoethane (EDB, Ethylene dibromide)
8260 B			1,2-Dichlorobenzene
8260 B			1,2-Dichloroethane
8260 B			1,2-Dichloropropane
8260 B			1,3,5-Trimethylbenzene
8260 B			1,3-Dichlorobenzene
8260 B			1,3-Dichloropropane
8260 B	$\overline{\Box}$		1,4-Dichlorobenzene
8260 B			2,2-Dichloropropane
8260 B	$\overline{\Box}$		2-Chlorotoluene
8260 B	ō		2-Hexanone
8260 B	n		2-Methylnaphthalene
8260 B	Ē		4-Chlorotoluene
8260 B	ñ		4-Methyl-2-pentanone (MIBK, Isopropylacetone, Hexone)
8260 B	ñ		Acetone
8260 B	ñ		Benzene
8260 B	ñ	$\mathbf{\overline{\mathbf{N}}}$	Bromobenzene
8260 B	П		Bromochloromethane
8260 B			Bromodichloromethane
8260 B	П	$\mathbf{\Sigma}$	Bromoform
8260 B	Ξ		Carbon Disulfide
8260 B	ñ	$\mathbf{\overline{\mathbf{N}}}$	Carbon Tetrachloride
8260 B	. []		Chlorobenzene
8260 B	h		Chlorodibromomethane [Dibromochloromethane]
	П		Chloroethane
8260 B			Chloroform
8260 B			cis-1,2-Dichloroethene (-ethylene)
8260 B][
8260 B	<u> </u>		cis-1,3-dichloropropene

The expiration for the laboratory's certification is 2/28/2011. The Utah Environmental Laboratory Certification Program (ELCP) encourages clients and data users to verify the most current certification letter for the authorized method.

Hall Environmental Analysis Laboratory, Inc. Resource Conservation and Recovery Act Page 3 of 5


Organic Instrumentation Non-Potable Water Solid Dibromomethane 8260 B V 8260 B Dichlorodifluoromethane V 8260 B Dichloromethane (DCM, Methylene chloride) V \Box 8260 B Ethylbenzene V 8260 B Hexachlorobutadiene 8260 B Isopropylbenzene \Box Methyl bromide [Bromomethane] 8260 B 8260 B Methyl chloride [Chloromethane] Methyl Ethyl Ketone (MEK, 2-Butanone) 8260 B \square Methyl-t-Butyl Ether (MTBE) 8260 B V 8260 B Naphthalene V n-Butylbenzene 8260 B 8260 B n-Propylbenzene 8260 B ortho-Xylene 8260 B p-isopropyltoluene 8260 B sec-Butylbenzene Styrene 8260 B 8260 B tert-Butylbenzene V Tetrachloroethylene (Perchloroethylene -ethene) 8260 B 8260 B Toluene 8260 B trans-1,2-Dichloroethylene (-ethene) 8260 B trans-1,3-Dichloropropylene (-propene) Trichloroethene (Trichloroethylene) 8260 B V 8260 B Trichlorofluoromethane \checkmark Vinyl Chloride 8260 B Y 8260 B Volatile Organic Compounds V Xylenes, Total 8260 B 8270 C 1,2,4-Trichlorobenzene 8270 C 1,2-Dichlorobenzene 8270 C 1,3-Dichlorobenzene \Box 8270 C 1,4-Dichlorobenzene \square V 8270 C 2,4,5-Trichlorophenol \checkmark 2,4,6-Trichlorophenol 8270 C 2,4-Dichlorophenol 8270 C 8270 C 2,4-Dimethylphenol 8270 C 2,4-Dinitrophenol 8270 C $\mathbf{\nabla}$ 2,4-Dinitrotoluene (2,4-DNT) V 8270 C 2,6-Dinitrotoluene (2,6-DNT) V 2-Chloronaphthalene 8270 C 8270 C 2-Chlorophenol 8270 C 2-Methyl-4,6-dinitrophenol (4,6-Dinitro-2-methylphenol) \mathbf{Z} 2-Methyinaphthalene 8270 C 2-Methylphenol (o-cresol, 2-Hydroxytoluene) 8270 C V 2-Nitroaniline 8270 C 2 8270 C 2-Nitrophenol 8270 C V 3,3'-Dichlorobenzidine V 8270 C 3-Nitroaniline Z 8270 C **4-Bromophenyl Phenyl Ether** 8270 C 4-Chloro-3-methylphenol \mathbf{Z} 4-Chloroaniline 8270 C 1 8270 C 4-Chlorophenyl Phenyl Ether

The expiration for the laboratory's certification is 2/28/2011. The Utah Environmental Laboratory Certification Program (ELCP) encourages clients and data users to verify the most current certification letter for the authorized method.

Organi	ic Instrume	ntation Non-		
		Potable		
	Solid	Water		
8270 C	Ц		4-Nitroaniline	
8270 C			4-Nitrophenol	
8270 C			Acenaphthene	
8270 C			Acenaphihylene	
8270 C			Aniline	
8270 C			Anthracene	
8270 C			Azobenzerie	
8270 C			Benzo(a)anthracene	
8270 C			Benzo(a)pyrene	
8270 C			Benzo(b)fluoranthene	
8270 C			Benzo(g,h,i)perylene	
8270 C			Benzo(k)fluoranthene	
8270 C			Benzoic Acid	
8270 C			Benzyl alcohol	
8270 C			bis(2-chloroethoxy)methane	
8270 C			bis(2-Chloroethyl)ether	
8270 C			bis(2-chlorolsopropyi)ether	
8270 C			bis(2-Ethylhexyl) phthalate (DEHP)	
8270 C			Butyl Benzyl Phthalate	
8270 C			Carbazole	
8270 C			Chrysene Discussion blackbase	
8270 C			Dibenzo(a,h)anthracene	
8270 C		\mathbf{Y}	Dibenzofuran	_
8270 C			Diethyl Phthalate	
8270 C			Dimethyl Phthalate	
8270 C			Di-n-butyl phthalate	
8270 C			Di-n-octyl Phthalate Fluoranthene	
8270 C 8270 C		F -	Fluorannene	
8270 C 8270 C		<u> </u>	Hexachlorobenzene	
8270 C			Hexachlorobutadiene	
8270 C 8270 C			Hexachlorocyclopentadiene	
8270 C			Hexachloroethane	
8270 C			Indeno(1,2,3-cd)pyrsne	
8270 C		<u> </u>	Isophorane	
8270 C	$\overline{\Box}$	_	Naphthalene	
8270 C	n		Nirobenzene	
8270 C	$\overline{\Box}$		n-Nitroso-di-n-Propylamine	
8270 C			n-Nitrosodiphenyiamine	
8270 C			Pentachlorophenol	
8270 C			Phenanthrene	
8270 C		\checkmark	Phenol	
8270 C			Pyrené	
8270 C			Pyridine	
8270 C			Semivolatile Organic Compounds	
Volatile	Organic Pr	eparatio	n	
		ion- Potable		
		Vater		
5030 B			Purge-and-Trap for Aqueous Samples	
uuun µ	<i>i</i>		· ····································	10.00
				1000

Hall Environmental Analysis Laboratory, Inc. Resource Conservation and Recovery Act Page 5 of 5

The effective date of this certificate letter is: 3/1/2010.

The analytes by method which a laboratory is authorized to perform at any given time will be those indicated in the most recent certificate letter. The most recent certification letter supersedes all previous certification or authorization letters. It is the certified laboratory's responsibility to review this letter for discrepancies. The certified laboratory must document any discrepancies in this letter and send notice to this bureau within 15 days of receipt. This certificate letter will be recalled in the event your laboratory's certification is revoked.

Respectfully,

Patrick F. Luedtke, MD, MPH. Director Unified State Laboratories: Public Health

The expiration for the laboratory's certification is 2/28/2011. The Utah Environmental Laboratory Certification Program (ELCP) encourages clients and data users to verify the most current certification letter for the authorized method.

Bryan W. Shaw, Ph.D., Chairman Buddy Garcia, Commissioner Carlos Rubinstein, Commissioner Mark R. Vickery, P.G., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

June 30, 2010

CERTIFIED MAIL

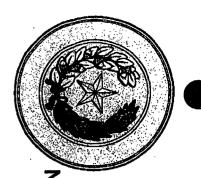
91 7108 2199 9995 2006 9293

Ms. Carolyn Swanson Hall Environmental Analysis Laboratory, Inc. 4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Dear Ms. Swanson:

I am writing to congratulate you and the staff of Hall Environmental Analysis Laboratory, Inc. Based on your application and primary NELAP accreditation from the State of Oregon, pursuant to authorization from the Executive Director of the Texas Commission on Environmental Quality, the Program Manager of the Quality Assurance Section has issued your laboratory secondary NELAP accreditation according to the attached Fields of Accreditation.

I am enclosing the accreditation certificate and Fields of Accreditation listing. Please review the enclosures for accuracy and completeness. Your laboratory's accreditation is valid for one year, contingent on continued compliance with the requirements of the State of Texas as well as those of your primary Accreditation Authority.


If I may be of further assistance, please contact me at (512) 239-3754 or e-mail at fiamison@tceq.state.tx.us.

Sincerely,

Frank Jamison Records Specialist

Enclosures

P.O. Box 13087 • Austin, Texas 78711-3087 • 512-239-1000 • www.tceq.state.tx.us

NELAP-Recognized Laboratory Accreditation is hereby awarded to

Hall Environmental Analysis Laboratory, Inc. 4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

in accordance with Texas Water Code Chapter 5, Subchapter R, Title 30 Texas Administrative Code Chapter 25, and the National Environmental Laboratory Accreditation Program.

The laboratory's scope of accreditation includes the fields of accreditation that accompany this certificate. Continued accreditation depends upon successful ongoing participation in the program. The Texas Commission on Environmental Quality urges customers to verify the laboratory's current accreditation status for particular methods and analyses

Certificate Number: T104704424-10-1 Effective Date: 7/1/2010 Expiration Date: 6/30/2011

Marvia

Executive Director Texas Complission on Environmental Quality

NELAP - Recognized Laboratory Fields of Accreditation

Hall Environmental Analysis Laboratory, Inc.

Certificate: Expiration Date: issue Date: T104704424-10-1 6/30/2011 7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Natrix: Drinking Water	المحمد الم		•
Method EPA 200.7		A	
Analyte	AB OR	Analyte ID	Method ID
Aluminum		1000	10013806
Barium	OR	1015	10013806
Beryllium	OR	1020	10013806
Boron	OR	1025	10013806
Cadmium	OR	1 030	10013806
Calcium	OR	1035	10013806
Chromium	OR	1040	10013806
Copper	OR	1055	10013806
Iron	OR	1070	10013806
Lead	OR	1075	10013806
Magnesium	OR	1085	10013806
Manganese	OR	1090	10013806
Molybdenum	OR	1100	10013806
Nickel	OR	1105	10013806
Potassium	OR	1125	10013806
Silver	OR	1150	10013806
Sodium	OR	1155	10013806
Tin	OR	1175	10013806
Titanium	OR	1180	10013806
Vanadium	OR	1185	10013806
Zinc	OR	1190	10013806
lethod EPA 245.1			
Analyte	AB	Analyte ID	Method ID
Mercury	OR	1095	10036609
lethod EPA 300.0	0 	American 100	
Analyte	AB OR	Analyte ID 1575	Method ID
hloride	OR		10053006
Fluoride	OR	1730	10053006
Nitrate as N	UK UK	1810	10053006

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D	issue Date:	7/1/2010
Albuquerque, NM 87109-4337		

Natrix: Drinking Water		•	
Nitrite as N	OR	1840	10053006
Orthophosphate as P	OR	1870	10053006
Sulfate	OR	2000	10053006
Method EPA 504.1			
Analyte	AB	Analyte ID	Method ID
1,2-Dibromo-3-chloropropane (DBCP)	OR	4570	10082801
1,2-Dibromoethane (EDB, Ethylene dibromide)	OR	458 5	10082801
Method EPA 524.2			
Analyte	AB	Analyte ID	Method ID
1,1,1-Trichloroethane	OR	5160	10089006
1,1,2-Trichioroethane	OR	5165	10089006
1,1-Dichloroethylene (1,1-Dichloroethene)	OR	4640	10089006
1,2,4-Trichlorobenzene	OR	5155	10089006
1,2-Dichlorobenzene	OR ·	4610	10089006
1,2-Dichloroethane	OR	4635	10089006
1,2-Dichloropropane	OR	4655	10089006
1,4-Dichlorobenzene	OR	4620	10089006
Benzene	OR	4375	10089006
Carbon tetrachloride	OR	4455	10089006
Chlorobenzene	OR	4475	10089006
cis-1,2-Dichloroethylene	OR	4645	10089006
Dichloromethane (DCM, Methylene chloride)	OR	4650	10089006
Ethylbenzene	OR	4765	10089006
Styrene	OR	5100	10089006
Tetrachloroethylene (Perchloroethylene)	OR	5115	10089006
Toluene	OR	5140	10089006
trans-1,2-Dichloroethylene	OR	4700	10089006
Trichloroethene (Trichloroethylene)	OR	5170	10089006
Vinyl chloride	OR	5235	10089006
Xylene (total)	OR	5260	10089006

NELAP - Recognized Laboratory Fields of Accreditation

Hall Environmental Analysis Laboratory, inc.

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Certificate: Expiration Date: Issue Date: T104704424-10-1 8/30/2011 7/1/2010

These fields of accreditation supercedeall previous fields. The Texas Commission on Environmental Quality urges customers to verify the laboratory's current accreditation status for particular methods and analyses.

Matrix: Drinking Water

lethod SM 2540 C			
Analyte	AB	Analyte ID	Method ID
Residue-filterable (TDS)	OR	1955	20004404

NELAP - Recognized Laboratory Fields of Accreditation

Hall Environmental Analysis Laboratory, Inc.

Certificate: Expiration Date: Issue Date: T104704424-10-1 6/30/2011 7/1/2010

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

Natrix: Non Potable Water	,		
Method EPA 300.0	·		
Analyte	AB	Analyte ID	Method ID
Bromide	OR	1540	10053006
Chloride	OR	1575	10053006
Fluoride	OR	1730	10053006
Nitrate as N	OR	1810	10053006
Nitrite as N	OR	1840	10053006
Orthophosphate as P	OR	1870	10053006
Sulfate	OR	2000	10053006
Method EPA 6010			
Analyte	AB	Analyte ID	Method ID
Aluminum	OR	1000	10155201
Antimony	OR	1005	10155201
Arsenic	OR	1010	10155201
Barium	OR	1015	10155201
Beryllium	OR	1020	10155201
Boron	OR	1025	10155201
Cadmium	OR	1030	10155201
Calcium	OR	1035	10155201
Chromium	OR	1040	10155201
Cobait	OR	1050	10155201
Iron	OR	1070	10155201
Lead	QR	1075	10155201
Magnesium	OR	1085	10155201
Manganese	OR	1090	10155201
Molybdenum	OR	1100	10155201
Nickel	OR	1105	10155201
Potassium	OR	1125	10155201
Selenium	OR	1140	10155201
Silver	OR	1150	10155201
Sodium	OR	1155	10155201

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T1047044	24-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	6/3	30/2011
4901 Hawkins Road NE, Suite D	issue Date:	· 7	/1/2010

Matrix: Non Potable Water			
Thallium	OR	1165	10155201
Tin	OR	1175	10155201
Titanium	OR	1180	10155201
Vanadium	OR	1185	10155201
Zinc	OR	1190	10155201
Method EPA 7470			
Analyte	AB	Analyte ID	Method ID
Mercury	OR	1095	10165603
Hethod EPA 8015			
Phalyte	AB	Analyte ID	Method ID
Diesel range organics (DRO)	OR	9369	10173203
Gasoline range organics (GRO)	OR	9408	10173203
Method EPA 8021			
Analyte	AB	Analyte ID	Method ID
1,2,4-Trimethylbenzene	OR	5210	10174400
1,3,5-Trimethylbenzene	OR	5215	10174400
Benzene	OR	4375	10174400
Ethylbenzene	OR	4765	10174400
m+p-xylene	OR	5240	10174400
Methyl tert-butyl ether (MTBE)	OR	5000	10174400
o-Xylene	OR	5250	10174400
Toluene	OR	5140	10174400
Xylene (total)	OR	5260	10174400
lethod EPA 8081			
Analyte	AB	Analyte ID	Method ID
4,4'-DDD	OR	7355	10178402
4,4'-DDE	OR	7360	10178402
4,4'-DDT	OR	7365	10178402
Idrin	OR	7025	10178402
alpha-BHC (alpha-Hexachlorocyclohexane)	OR	7110	10178402
beta-BHC (beta-Hexachlorocyclohexane)	OR	7115	10178402

NELAP - Recognized Laboratory Fields of Accreditation

L

	Certificate:	T104704424-10-1
Hail Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D	issue Date:	7/1/2010
Albuquerque, NM 87109-4337		•

Matrix: Non Potable Water				
delta-BHC (delta-Hexachlorocyclohexane)	OR	7105	10178402	
Dieldrin	OR	74 7 0	10178402	
Endosulfan I	OR	7510	10178402	
Endosulfan II	OR	7515	10178402	
Endosulfan sulfate	OR	7520	10178402	
Endrin	OR	7540	10178402	
Endrin aldehyde	OR	7530	10178402	
gamma-BHC (Lindane, gamma-Hexachlorocyclohexane)	OR	7120	10178402	
Heptachlor	OR	76 8 5	10178402	
Heptachlor epoxide	OR	7690	10178402	
Methoxychior	OR	7810	10178402	
Method EPA 8082				
Analyte	AB	Analyte ID	Method ID	
Aroclor-1016 (PCB-1016)	ÓR	8880	10179007	
Aroclor-1221 (PCB-1221)	OR	888 5	10179007	
Aroclor-1232 (PCB-1232)	OR	8890	10179007	
Aroclor-1242 (PCB-1242)	OR	8895	10179007	
Aroclor-1248 (PCB-1248)	OR	8900	10179007	
Aroclor-1254 (PCB-1254)	OR	8905	10179007	
Aroclor-1260 (PCB-1260)	OR	8910	10179007	
Method EPA 8260				
Analyte	AB	Analyte ID	Method ID	
1,1,1,2-Tetrachloroethane	OR	5105	10184404	
1,1,1-Trichloroethane	OR	5160	10184404	
1,1,2,2-Tetrachloroethane	OR	5110	10184404	
1,1,2-Trichloroethane	OR	5165	10184404	
1,1-Dichloroethane	OR	4630	10184404	
1,1-Dichloroethylene (1,1-Dichloroethene)	OR	4640	10184404	
1,1-Dichloropropene	, OR	4670	10184404	
1,2,3-Trichlorobenzene	OR	5150	10184404	
1,2,3-Trichloropropane	OR	5180	10184404	
Pres 6 of 10				

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T	104704424-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:		6/30/2011
4901 Hawkins Road NE, Suite D	Issue Date:	. •	7/1/2010
Albuquerque, NM 87109-4337		•	

Matrix: Non Potable Water			•
1,2,4-Trichlorobenzene	OR	5155	10184404
1,2,4-Trimethylbenzene	OR	5210	10184404
1,2-Dibromo-3-chloropropane (DBCP)	OR	4570	10184404
1,2-Dibromoethane (EDB, Ethylene dibromide)	OR	4585	10184404
1,2-Dichlorobenzene	OR	4610	10184404
1,2-Dichloroethane	OR	4635	10184404
1,2-Dichloropropane	OR	4655	10184404
1,3,5-Trimethylbenzene	OR	5215	10184404
1,3-Dichlorobenzene	OR	4615	10184404
3-Dichloropropane	OR	4660	10184404
1,4-Dichlorobenzene	OR	4620	10184404
2,2-Dichloropropane	OR	4665	10184404
2-Butanone (Methyl ethyl ketone, MEK)	OR	4410	10184404
2-Chlorotoluene	OR	4535	10184404
2-Hexanone	OR	4860	10184404
4-Chlorotoluene	OR	4540	10184404
4-Isopropyltoluene	OR	4915	10184404
4-Methyl-2-pentanone (MIBK)	OR	4995	10184404
Acetone	OR	4315	10184404
Benzene	OR	4375	10184404
Bromobenzene	OR	4385	10184404
Bromochloromethane	OR	4390	10184404
Bromodichloromethane	OR	4395	10184404
Bromoform	OR	4400	10184404
Bromomethane (Methyl bromide)	OR	4950	10184404
Carbon disulfide	OR	4450	10184404
Carbon tetrachloride	OR	4455	10184404
Chlorobenzene	OR	4475	10184404
oroethane	OR	4485	10184404
Chloroform	OR	4505	10184404

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T104704424-10)-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/20	11
4901 Hawkins Road NE, Suite D	Issue Date:	7/1/20	110
Albuquerque, NM 87109-4337			

Matrix: Non Potable Water				
Chloromethane (Methyl chloride)	OR	4960	10184404	
cis-1,2-Dichloroethylene	OR	4645	10184404	
cis-1,3-Dichloropropylene	OR	4680	10184404	
Dibromochloromethane	OR	4575	10184404	
Dibromomethane	OR	4595	10184404	
Dichlorodifluoromethane	OR	4625	10184404	
Ethylbenzene	OR	4765	10184404	
Hexachlorobutadiene	OR	4835	10184404	
Isopropylbenzene	OR	4900	10184404	
m+p-xylene	OR	5240	10184404	
Methyl tert-butyl ether (MTBE)	OR	5000	10184404	
Methylene chloride	OR	4975	10184404	
Naphthalene	OR	5005	10184404	
n-Butylbenzene	OR	4435	10184404	
n-Propylbenzene	OR	5090	10184404	
o-Xylene	OR	5250	10184404	
sec-Butylbenzene	OR	4440	10184404	
Styrene	OR	5100	10184404	
tert-Butylbenzene	OR	4445	10184404	
Tetrachloroethylene (Perchloroethylene)	ÓR	5115	10184404	
Toluene	OR	5140	10184404	
trans-1,2-Dichloroethylene	OR	4700	10184404	
trans-1,3-Dichloropropylene	OR	4685	10184404	
Trichloroethene (Trichloroethylene)	OR	5170	10184404	
Trichlorofluoromethane	OR	5175	10184404	
Vinyl chloride	OR	5235	10184404	
Xylene (total)	OR	5260	10184404	
Method EPA 8270				
Analyte	AB	Analyte ID	Method ID	
1,2,4-Trichlorobenzene	OR	5155	10185203	
1,2-Dichlorobenzene	OR	4610	10185203	
Pa	ge 8 of 19			

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D	Issue Date:	7/1/2010

Albuquerque, NM 87109-4337

trix: Non Potable Water			
1,3-Dichlorobenzene	OR	4615	10185203
1,4-Dichlorobenzene	OR	4620	10185203
2,4,5-Trichlorophenol	OR	6835	10185203
2,4,6-Trichlorophenol	OR	6840	10185203
2,4-Dichlorophenol	OR	6000	10185203
2,4-Dimethylphenol	OR	6130	10185203
2,4-Dinitrophenol	OR	6175	10185203
2,4-Dinitrotoluene (2,4-DNT)	OR	6185	10185203
2,6-Dinitrotoluene (2,6-DNT)	OR	6190	10185203
2-Chloronaphthalene	OR	5795	10185203
2-Chiorophenol	OR	5800	10185203
2-Methyl-4,6-dinitrophenol	OR	6360	10185203
2-Methylnaphthalene	OR	6385	10185203
2-Methylphenol (o-Cresol)	OR	6400	10185203
2-Nitroaniline	OR	6460	10185203
2-Nitrophenol	OR	6490	10185203
3,3'-Dichlorobenzidine	OR	5945	10185203
3-Methylphenol (m-Cresol)	OR	6405	10185203
3-Nitroaniline	OR	6465	10185203
4-Bromophenyl phenyl ether	OR	5660	10185203
4-Chloro-3-methylphenol	OR	5700	10185203
4-Chloroaniline	OR	5745	10185203
4-Chlorophenyl phenylether	OR	5825	10185203
4-Methylphenol (p-Cresol)	OR	6410	10185203
4-Nitroaniline	OR	6470	10185203
4-Nitrophenol	OR	6500	10185203
Acenaphthene	OR	5500	10185203
cenaphthylene	OR	5505	10185203
niline	OR	5545	10185203
Anthracene	OR	5555	10185203

NELAP - Recognized Laboratory Fields of Accreditation

· · ·	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D	Issue Date:	7/1/2010
Albuquerque, NM 87109-4337		•

Azobenzene	OR	5562	10185203
Benzo(a)anthracene	OR	5575	10185203
Benzo(a)pyrene	OR	5580	10185203
Benzo(b)fluoranthene	OR	5585	10185203
Benzo(g,h,i)perylene	OR	5590	10185203
Benzo(k)fluoranthene	OR	5600	10185203
Benzoic acid	OR	5610	10185203
Benzyl alcohol	OR	5630	10185203
ois(2-Chloroethoxy)methane	OR	5760	10185203
bis(2-Chloroethył) ether	OR	5765	10185203
bis(2-Chloroisopropyl) ether	OR	5780	10185203
bis(2-Ethylhexyl) phthalate (DEHP)	OR	6255	10185203
Butyl benzyi phthalate	OR	5670	10185203
Carbazole	OR	5680	10185203
Chrysene	OR	5855	10185203
Dibenz(a,h) anthracene	OR	5 895	10185203
Dibenzofuran	OR	5 9 05	10185203
Diethyl phthalate	ÓR	6070	10185203
Dimethyl phthalate	OR	6135	10185203
)i-n-butyl phthalate	OR	5925	10185203
Di-n-octyl phthalate	OR	6200	10185203
luoranthene	OR	6265	10185203
luorene	OR	6270	10185203
iexachlorobenzene	OR	6275	10185203
lexachlorobutadiene	OR	4835	10185203
exachlorocyclopentadiene	OR	6285	10185203
exachloroethane	OR	4840	10185203
deno(1,2,3-cd) pyrene	OR	6315	10185203
ophorone	OR	6320	10185203
aphthalene	OR	5005	10185203

NELAP - Recognized Laboratory Fields of Accreditation

· · · ·	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D	Issue Date:	7/1/2010

Albuquerque, NM 87109-4337

atrix: Non Potable Water			
Nitrobenzene	OR	5015	10185203
n-Nitrosodi-n-propylamine	OR	6545	10185203
n-Nitrosodiphenylamine	OR	6535	10185203
Pentachlorophenol	OR	6605	10185203
Phenanthrene	OR	6615	10185203
Phenol	OR	6625	10185203
Pyrene	OR	6665	10185203
Pyridine	OR	5095	10185203
EPA 8310			
e alyte	AB	Analyte ID	Method ID
Acenaphthene	OR	5500	10187607
Acenaphthylene	OR	5505	10187607
Anthracene	OR	5555	10187607
Benzo(a)anthracene	OR	5575	10187607
Benzo(a)pyrene	OR	5580	10187607
Benzo(b)fluoranthene	OR	5 <u>5</u> 85	10187607
Benzo(g,h,i)perylene	OR	5590	10187607
Benzo(k)fluoranthene	OR	5600	101 87607
Chrysene	OR	5855	10187607
Dibenz(a,h) anthracene	ÒR	58 95	10187607
Fluoranthene	OR	6265	10187607
Fluorene	OR	6270	10187607
Indeno(1,2,3-cd) pyrene	OR	6315	10187607
Naphthalene	OR	5005	10187607
Phenanthrene	OR	6615	10187607
Pyrene	OR	6665	10187607

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T104704424-10-1
Hail Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D	issue Date:	7/1/2010

Albuquerque, NM 87109-4337

These fields of accreditation supercedeall previous fields. The Texas Commission on Environmental Quality urges customers to verify the laboratory's current accreditation status for particular methods and analyses.

Matrix: Solid & Hazardous Material Method EPA 6010 AB **Analyte ID** Method ID Analyte OR 1000 Aluminum 10155201 OR 1005 10155201 Antimony OR 1010 Arsenic 10155201 OR Barium 1015 10155201 **OR** 1020 **Bervilium** 10155201 OR 1025 10155201 Boron OR 1030 Cadmium 10155201 OR Calcium 1035 10155201 OR 1040 Chromium 10155201 OR 1050 Cobalt 10155201 OR Copper 1055 10155201 OR Iron 1070 10155201 OR 1075 10155201 Lead OR Magnesium 1085 10155201 OR Manganese 1090 10155201 OR 1100 Molybdenum 10155201 OR Nickel 1105 10155201 OR Potassium 1125 10155201 OR Selenium 1140 10155201 OR Silver 1150 10155201 Sodium OR 1155 10155201 OR Thallium 1165 10155201 OR Tin 1175 10155201 Titanium ÓR 1180 10155201 OR Vanadium 1185 10155201 OR Zinc 1190 10155201 Method EPA 7471 AB Analyte ID Method ID Analyte OR Mercury 1095 10166004

NELAP - Recognized Laboratory Fields of Accreditation

Hall Environmental Analysis Laboratory, Inc.

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337 Certificate: Expiration Date: issue Date: T104704424-10-1 6/30/2011 7/1/2010

Watrix: Solid & Hazardous Material			•
Method EPA 8015			
	AB	Analyte ID	Method ID
Diesel range organics (DRO)	OR	9369	10173203
Gasoline range organics (GRO)	OR	9408	10173203
Method EPA 8021			
Analyte	AB	Analyte ID	Method ID
Benzene	OR	4375	10174400
Ethylbenzene	OR	4765	10174400
m+p-xylene	OR	5240	10174400
Methyl tert-butyl ether (MTBE)	OR	5000	10174400
o-Xylene	OR	5250	10174400
Toluene	OR	5140	10174400
Xylene (total)	OR	5260	10174400
Nethod EPA 8081			
Analyte	AB	Analyte ID	Method ID
4,4'-DDD	OR	7355	10178402
4,4'-DDE	OR	7360	10178402
4,4'-DDT	OR	7365	10178402
Aldrin	OR	7025	10178402
alpha-BHC (alpha-Hexachlorocyclohexane)	OR	7110	10178402
beta-BHC (beta-Hexachlorocyclohexane)	OR	7115	10178402
delta-BHC (delta-Hexachlorocyclohexane)	OR	7105	10178402
Dieldrin	OR	7470	10178402
Endosulfan I	OR	7510	10178402
Endosulfan II	OR	7515	10178402
Endosulfan sulfate	OR	7520	10178402
Endrin	OR	7540	10178402
Endrin aldehyde	OR	7530	10178402
amma-BHC (Lindane, gamma-Hexachlorocyclohexane)	OR	7120	10178402
Heptachlor	OR	7685	10178402
Heptachlor epoxide	OR '	7690	10178402

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D	issue Date:	7/1/2010
Albuquerque, NM 87109-4337		•

These fields of accreditation supercedeall previous fields. The Texas Commission on Environmental Quality urges customers to verify the laboratory's current accreditation status for particular methods and analyses.

Matrix: Solid & Hazardous Material			
Methoxychlor	OR	7810	10178402
Method EPA 8082			•
Analyte	AB	Analyte ID	Method ID
Aroclor-1016 (PCB-1016)	OR	8880	10179007
Aroclor-1221 (PCB-1221)	ÓR	8885	10179007
Aroclor-1232 (PCB-1232)	OR	8890	10179007
Arocior-1242 (PCB-1242)	OR	8895	10179007
Aroclor-1248 (PCB-1248)	OR	8900	10179007
Aroclor-1254 (PCB-1254)	OR	8905	10179007
Aroclor-1260 (PCB-1260)	OR	8910	10179007
Method EPA 8260			
Analyte	AB	Analyte ID	Method ID
1,1,1,2-Tetrachloroethane	OR	5105	10184404
1,1,1-Trichloroethane	OR	5160	10184404
1,1,2,2-Tetrachloroethane	OR	5110	10184404
1,1,2-Trichloroethane	OR	5165	10184404
1,1-Dichloroethane	OR	4630	10184404
1,1-Dichloroethylene (1,1-Dichloroethene)	OR	4640	10184404
1,1-Dichloropropene	OR	4670	101 8 4404
1,2,3-Trichlorobenzene	OR	5150	10184404
1,2,3-Trichloropropane	OR	5180	10184404
1,2,4-Trichlorobenzene	OR	5155	10184404
1,2,4-Trimethylbenzene	OR	5210	101 8 4404
1,2-Dibromo-3-chloropropane (DBCP)	OR	4570	101 8 4404
1,2-Dibromoethane (EDB, Ethylene dibromide)	ÓR	45 85	10184404
1,2-Dichlorobenzene	OR	4610	10184404
1,2-Dichloroethane	OR	4635	10184404
1,2-Dichloropropane	OR	4655	10184404
1,3,5-Trimethylbenzene	OR	5215	10184404
1,3-Dichlorobenzene	OR	4615	10184404
1,3-Dichloropropane	OR	4660	10184404

Page 14 of 19

Texas Commission on Environmental Quality

NELAP - Recognized Laboratory Fields of Accreditation

· ·	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	8/30/2011
	issue Date:	7/1/2010
4901 Hawkins Road NE, Suite D		

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

1,4-Dichlorobenzene	OR	4620	10184404
2,2-Dichloropropane	OR	4665	10184404
2-Butanone (Methyl ethyl ketone, MEK)	OR	4410	10184404
2-Chlorotoluene	OR	4535	101 8 4404
2-Hexanone	OR	4860	10184404
4-Chlorotoluene	OR	4540	10184404
4-Isopropyltoluene	OR	4915	10184404
4-Methyi-2-pentanone (MIBK)	OR	4995	10184404
Acetone	OR	4315	10184404
enzene	OR	4375	10184404
Bromobenzene	OR	4385	10184404
Bromochloromethane	OR	4390	10184404
Bromodichloromethane	OR	4395	10184404
Bromoform	OR	4400	101 8440 4
Bromomethane (Methyl bromide)	OR	4950	10184404
Carbon disulfide	OR	. 4450	101 84404
Carbon tetrachloride	OR	4455	101 8440 4
Chlorobenzene	OR	4475	10184404
Chloroethane	OR	4485	10184404
Chloroform	OR	4505	10184404
Chloromethane (Methyl chloride)	OR	4960	10184404
cis-1,2-Dichloroethylene	OR	4645	10184404
cis-1,3-Dichloropropylene	ØR	4680	10184404
Dibromochloromethane	OR	4575	10184404
Dibromomethane	OR	4595	10184404
Dichlorodifluoromethane	OR	4625	10184404
Ethylbenzene	OR	4765	10184404
Hexachlorobutadiene	OR	48 35	10184404
opropylbenzene	OR	4900	10184404
m+p-xylene	OR	5240	10184404

Texas Commission on Environmental Quality

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D	issue Date:	7/1/2010
A 10		

Albuquerque, NM 87109-4337

Methyl tert-butyl ether (MTBE)	OR	5000	10184404	
Methylene chloride	OR	4975	10184404	
Naphthalene	OR	5005	10184404	
n-Butylbenzene	OR	4435	10184404	
n-Propylbenzene	OR	5090	10184404	
o-Xylene	OR	5250	10184404	
sec-Butylbenzene	OR	4440	10184404	
Styrene	OR	5100	10184404	
tert-Butylbenzene	OR	4445	10184404	
Tetrachloroethylene (Perchloroethylene)	OR	5115	10184404	
Toluene	OR	5140	1 0184404	
trans-1,2-Dichloroethylene	OR	4700	10184404	
trans-1,3-Dichloropropylene	OR	4685	10184404	
Trichloroethene (Trichloroethylene)	OR	5170	10184404	
Trichlorofluoromethane	OR	5175	10184404	
Vinyl chloride	OR	5235	10184404	
Xyiene (total)	OR	5260	10184404	
Nethod EPA 8270				
Analyte	AB	Analyte ID	Method ID	
1,2,4-Trichlorobenzene	OR	5155	10185203	
1,2-Dichlorobenzene	OR	4610	10185203	
1,3-Dichlorobenzene	OR	4615	10185203	
1,4-Dichlorobenzene	OR	4620	10185203	
2,4,5-Trichlorophenol	OR	6835	10185203	
2,4,6-Trichlorophenol	OR	6840	10185203	
2,4-Dichlorophenol	OR	6000	10185203	
2,4-Dimethylphenol	OR	6130	10185203	
2,4-Dinitrophenol	OR	6175	10185203	
2,4-Dinitrotoluene (2,4-DNT)	OR	6185	10185203	(
2,6-Dinitrotoluene (2,6-DNT)	OR	6190	10185203	, '
2-Chloronaphthalene	OR	5795	10185203	

NELAP - Recognized Laboratory Fields of Accreditation

·	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337	Issue Date:	7/1/2010
Nimeral and a second seco		

rix: Solid & Hazardous Material 2-Chlorophenol	OR	5800	10185203
2-Chloropheno: 2-Methyl-4,6-dinitrophenol	OR	6360	10185203
•	OR	6385	10185203
2-Methylnaphthalene	OR	6400	10185203
2-Methylphenol (o-Cresol)	OR	6460	10185203
2-Nitroaniline	OR	6490	10185203
2-Nitrophenol	OR	5945	10185203
3,3'-Dichlorobenzidine	OR	6405	10185203
3-Methylphenol (m-Cresol)	OR	6465	10185203
3-Nitroaniline	OR	5660	10185203
-Bromophenyl phenyl ether	OR	5700	10185203
4-Chloro-3-methylphenol	OR	5745	10185203
4-Chioroaniline	OR	5825	10185203
4-Chlorophenyl phenylether	OR	6410	10185203
4-Methylphenol (p-Cresol)	OR	6470	10185203
4-Nitroaniline	OR	6500	10185203
4-Nitrophenol	OR	5500	10185203
Acenaphthene	OR	5505	10185203
Acenaphthylene	OR	5545	10185203
Aniline	OR	5555	10185203
Anthracene	OR	5562	10185203
Azobenzene	OR	5575	10185203
Benzo(a)anthracene	OR	5580	10185203
Benzo(a)pyrene	OR	5585	10185203
Benzo(b)fluoranthene	OR	5585	10185203
Benzo(g,h,i)perylene	OR	5590	
Benzo(k)fluoranthene	OR		10185203
Benzoic acid		5610	10185203
Benzyl alcohol	OR	5630	10185203
s(2-Chloroethoxy)methane	OR	5760	10185203
bis(2-Chloroethyl) ether	OR	5765	10185203

Texas Commission on Environmental Quality

NELAP - Recognized Laboratory Fields of Accreditation

	Certificate:	T104704424-10-1
Hall Environmental Analysis Laboratory, inc.	Expiration Date:	6/30/2011
·	issue Date:	7/1/2010
4901 Hawkins Road NE, Suite D		•

4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337

trix: Solid & Hazardous Material		والمتعادية والمعادية والمعادية	
bis(2-Chloroisopropyl) ether	OR	5780	10185203
bis(2-Ethylhexyl) phthalate (DEHP)	OR	6255	10185203
Butyl benzyl phthalate	OR	5670	10185203
Carbazole	OR	56 8 0	10185203
Chrysene	ÓR	5855	10185203
Dibenz(a,h) anthracene	OR	5895	10185203
Dibenzofuran	OR	5905	10185203
Diethyl phthalate	OR	6070	10185203
Dimethyl phthalate	OR	6135	10185203
Di-n-butyl phthalate	OR	5925	10185203
Di-n-octyl phthalate	OR	6200	10185203
Fluoranthene	OR	6265	10185203
Fluorene	OR	6270	10185203
Hexachlorobenzene	OR	6275	10185203
Hexachlorobutadiene	OR	4835	10185203
Hexachlorocyclopentadiene	OR	628 5	10185203
Hexachloroethane	ÓR	4840	10185203
Indeno(1,2,3-cd) pyrene	OR	6315	10185203
Isophorone	OR	6320	10185203
Naphthalene	OR	5005	10185203
Nitrobenzene	OR	5015	10185203
n-Nitrosodimethylamine	OR	6530	10185203
n-Nitrosodi-n-propylamine	OR	6545	10185203
n-Nitrosodiphenylamine	OR	6535	10185203
Pentachlorophenol	OR	6605	10185203
Phenanthrene	OR	6615	10185203
Phenol	OR	6625	10185203
Pyrene	OR	6665	10185203
Pyridine	OR	5095	10185203
thod EPA 8310			
Analyte	AB	Analyte ID	Method ID

Texas Commission on Environmental Quality

NELAP - Recognized Laboratory Fields of Accreditation

	Certificave:	T104704424-10-1
Hail Environmental Analysis Laboratory, Inc.	Expiration Date:	6/30/2011
4901 Hawkins Road NE, Suite D Albuquerque, NM 87109-4337	Issue Date:	7/1/2010

atrix: Solid & Hazardous Material			
Acenaphthene	OR	5500	10187607
Acenaphthylene	ÔR	5505	10187607
Anthracene	OR	5555	10187607
Benzo(a)anthracene	OR	5575	10187607
Benzo(a)pyrene	OR	5580	10187607
Benzo(b)fluoranthene	OR	5585	10187607
Benzo(g,h,i)perylene	ÔR	5590	10187607
Benzo(k)fluoranthene	OR	5600	10187607
Chrysene	OR	5855	10187607
bibenz(a,h) anthracene	ÓR	5895	10187607
Fluoranthene	OR	6265	10187607
Fluorene	OR	6270	10187607
Indeno(1,2,3-cd) pyrene	OR	6315	10187607
Naphthalene	OR	5005	10187607
Phenanthrene	OR	6615	10187607
Pyrene	OR	6665	10187607

ENVIRONMENTAL LABORATORY LICENSE

Issued to:

Owner/Representative: Laboratory Director:

Scott Hallenbeck Andy Freeman

Hall Environmental Analysis Laboratory AZ0682

is in compliance with Environmental Laboratory's applicable standards for the State of Arizona and maintains on file a List of Parameters for which the laboratory is certified to perform analysis.

PERIOD OF LICENSURE FROM: 10/20/2010 TO: 10/19/2011

Steven D. Baker, Chief

Office of Laboratory Services Bureau of State Laboratory Services

Arizona Department of Health Services Office of Laboratory Licensure, Certification & Training 250 North 17th Avenue, Phoenix, AZ 85007

Wednesday, September 22 2010

AZ License:	AZ0682	Lab Name: Hall Env	sis Laboratory,	
Lab Director: Mr. Scott Hallenbeck			Phone	: (505) 345-3975
			Fax	: (505) 345-4107
Program	HW			
			Dilling Code	

Parameter	EPA Method	Billing Code	Cert Date
Aluminum	EPA 6010B	MTL3	10/20/05
Aromatic & Halogenated Vocs By Gc	EPA 8021B	OC8	10/20/05
Arsenic	EPA 6010B	MTL3	10/20/05
Barium	EPA 6010B	MTL3	10/20/05
Beryllium	EPA 6010B	MTL3	10/20/05
C10-C32 Hydrocarbons	8015AZ1	OC4	03/21/07
Cadmium	EPA 6010B	MTL3	10/20/05
Calcium	EPA 6010B	MTL3	10/20/05
Chromium, Total	EPA 6010B	MTL3	10/20/05
Closed System Purge And Trap Extract. Vocs	EPA 5035A	PREP2	12/05/06
Copper	EPA 6010B	MTL3	10/20/05
Dissolved In Water	EPA 3005A	PREP1	08/21/08
Iron	EPA 6010B	MTL3	10/20/05
Lead	EPA 6010B	MTL3	10/20/05
Magnesium	EPA 6010B	MTL3	10/20/05
Manganese	EPA 6010B	MTL3	10/20/05
Mercury	EPA 7470A	MTL5	10/20/05
Mercury	EPA 7471A	MTL5	10/20/05
Nickel	EPA 6010B	MTL3	10/20/05
Pahs	EPA 8310	OC13	03/21/07
Pcbs By Gc	EPA 8082	OC9	03/21/07
Potassium	EPA 6010B	MTL3	10/20/05
Pressurized Fluid Extraction	EPA 3545	PREP2	12/05/06
Purge And Trap For Aqueous Samples	EPA 5030C	PREP2	12/05/06
Sediments, Sludges And Soils	EPA 3050B	PREP1	06/05/07
Setenium	EPA 6010B	MTL3	09/06/06
Semivolatile Compounds By Gc/Ms	EPA 8270C	OC16	07/26/07
Separatory Funnel Liquid-Liquid Extraction	EPA 3510C	PREP2	06/05/07
Silver	EPA 6010B	MTL3	10/20/05
Sodium	EPA 6010B	MTL3	10/20/05
Vocs By Gc/Ms	EPA 8260B	OC8	10/20/05
Zinc	EPA 6010B	MTL3	10/20/05
otal Licensed Parameters in this Program: 32			

^{>} rogram	SDW			
	Parameter	EPA Method	Billing Code	Cert Date
	Alkalinity	SM 2320B	NIA1	02/26/08
	Antimony	EPA 200.8	MTL7	09/22/10
	Arsenic	EPA 200.8	MTL7	09/22/10

Arizona Department of Health Services Office of Laboratory Licensure, Certification & Training 250 North 17th Avenue, Phoenix, AZ 85007

Wednesday, September 22 2010

Lab Name: Hall Environmental Analysis Laboratory,

Program	SDW			· · · · · · · · · · · · · · · · · · ·
	Parameter	EPA Method	Billing Code	Cert Date
	Copper	EPA 200.8	MTL7	09/22/10
•	Edb/Dbcp	EPA 504.1 (1.1)	OC4	06/20/08
	Edb/Dbcp - Additional	EPA 504.1 (1.1)	OC34	06/20/08
	Lead	EPA 200.8	MTL7	09/22/10
	Selenium	EPA 200.8	MTL7	09/22/10
	Thallium	EPA 200.8	MTL7	09/22/10
	Uranium	EPA 200.8	MTL7	09/22/10

Program WW

Parameter	EPA Method	Billing Code	Cert Date
Alkalinity, Total	SM 2320B	NIA1	07/26/07
Chloride	EPA 300.0	NIIIA1	07/26/07
Fluoride	EPA 300.0	NIIIA1	07/26/07
Nitrate (As N)	EPA 300.0	NIIIA1	07/26/07
Nitrite (As N)	EPA 300.0	NIIIA1	07/26/07
Orthophosphate	EPA 300.0	NIIIA1	07/26/07
Residue, Filterable	SM 2540C	NIA8	07/26/07
Specific Conductance	EPA 120.1	NIA7	02/27/09
Sulfate	EPA 300.0	NIIIA1	07/26/07

Total Licensed Parameters in this Program: 9

Instruments	Quantity	Date
GAS CHROMATOGRAPH/MASS SPECTROMETER	3	08/11/08
GAS CHROMATOGRAPH	2	09/06/06
HIGH PERFORMANCE LIQUID CHROMATOGRAPH	2	08/11/08
ION CHROMATOGRAPH	2	08/11/08
INDUCTIVELY COUPLED PLASMA SPECTROMETER	1	08/11/05
INDUCTIVELY COUPLED PLASMA/MASS SPECTROMETER	1	09/15/10
MERCURY ANALYZER	1	08/11/05
Softwares		
VARIAN STAR - GCMS		
PERKIN ELMER - ICP		
PERKIN ELMER - ICP/MS		
VARIAN GALAXIE AND CUSTOM WRITTEN-GC		

Section 10.0 Chemical Analytical Reports

<u>Title</u>	Tab Number
Groundwater First Quarter 2010	
Groundwater Second Quarter 2010	13
Groundwater Third Quarter 2010	14
Groundwater Fourth Quarter 2010	15
Soil Gas First Quarter 2010	16
Soil Gas Second Quarter 2010	17
Soil Gas Third Quarter 2010	18
Soil Gas Fourth Quarter 2010	19
GAC Analysis – January to December 2010	20

			4901 Hawk	LC	Analysis	(Þ 	no ssé s9iŪ\a	н (Сез)))	11 19 19 19 19 19 19 19 19 19 19 19 19 1	40/ (108 (108 (108 (108 (108 (108 (108) (108) (108) (108) (108) (108)) (108)(108)(108)(108)(108)(108)(108)(108)	TEX + MTE TEX + MTE TEX + MTE TEX + MTE TPH Method TPH	L L L L L L				×		X					Remarks:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be dearly notated on the analytical report.
Tum-Around Time:	⊡∕Standard ⊡ Rush		River Terrace Tom-2010	Project #:		Project Manager:	A.M.	Semilar AL / Daw /		Sample remperature	Container Preservative Type and # Type	410A HCL 1	1-Riber Ambyr 1	1-50ml HN03 1	4-VOA HCL 2	1-liter the 2	HNOZ	4 WA HOU 3	1-Piter Ander 3	1-Sound HND3 3	t		Received by: $3 q _{k}$ Date time Received by: Date Time	intracted to other accredited laboratories. This serves as notice
Cham-of-Custody Record		Elosurfield Repriser V	Mailing Address: #50 Road 4990	Bloomfuld, NM 87413	Phone #: 5-05-632-4161	email or Fax#: 505-633 < 391/	QA/QC Package:	5	D NELAP D Other	EDD (Type)	Date Time Matrix Sample Request ID	318/10 1456/ Hav 7P-9		/	2357			ayon TP-8FD		-	 U THUD DIAN U	Date: Time: ReiMinished hv.	Relinquished by:	If necessary, samples submitted to Hall Environmental may be subco

Anal Environmental Com Anal YSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel 505-345-3075 Eav 5075-345-4107	and a Analysis	(lesei((leseit	₽O4]/se	1101 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	AOA ((((((((((((((((((TTK + X3T8 TFK + X718 TFH Method TPH Method TPH (Metho TPH (Metho S310 (PUA d S310 (PUA d S310 (PUA d S310 (PUA d S310 (PUA d S310 (VOA S310 (Semi- Ma d S310 (X			×			×				Remarks:		Time: Relinquished by: Received by Date Time Date Time
Turn-Around Time:		Project Manager:	~~	Sample () / / ////	Satiple Fingeration	Container Preservative Type and # Type	4-VOR HCU 5	1- liter Aur 5	1-500me 41N0-3 5	4-VOA HEL (0	1-Xiturhuhr (2	1-seme HNO3 W	4-VOA- HCU 7	1. SitzAnk- 7	-C HNO3	1	1-co. 0 11. ho 2			Received by Date Time
Chan-of-Custody Record Client Westom Refine Sou Hulst Inc Bloom field Referency Mailing Address #50 Road 4990 Bloom Field NW 82413		email or Fax#: 575-632-391/ QA/QC Package:	K Level 4 (Full Validation)	Accreditation	D EDD (Type)	Date Time Matrix Sample Request ID	3/08/10/10/ 4/20 TP-2			1-dt. 044 85116			11450 77-60			+ -		Date: Time: Religouished by:	Hutado	

	ר א ג ר								(<u>1</u> 1	o Y)	səlc	ir Bubl	₫		-												
0	HALL ENVIRONMENTAL ANA! YSIS I ARORATORY				2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2					Ş	102	3	<u>OSC</u>		×			X			×			×				
	ш 2 5	2	109					70	8	4	2	90	1478			×			X			X			×]		
	ź) ·	M 87	4107						(\	ΌΛ	-imə	S) 027	8														1
	0 a		N S	345-	uest						(\	40V	8092	9														
			erqu	505-345-4107	Req		s'8(ЪС	280	37	səp	ioitse	9 180	3														
	ENVIRONMEN VSIS LARORAT	www.hallenvironmental.com	Albuquerque, NM 87109	Fax		(*()S(,	Ю	10 ⁵ '	1 [,] ,	DN'	(F,CI	suoju	1										ļ				
	μž	llen	AL A		Anal								3 AADS	<u> </u>						 			L			2		
•	HALL		ШZ	975									910 (P	- [ļ	y		
	a Z I a		kins	45-3								_	M) 803	_	·									<u> </u>				
		•	4901 Hawkins NE-	505-345-3975	1								м) на.												 	Jan Jan		
			901	Tel 5	15 60								WH4.	1			X			\times			\star		 			
			4								_		+ X3TE	<u> </u>												Remarks		
				т <u> </u>		. (120	8) 2		1 + 13893	- 38 1369	ITM ITM	+ X3T8				X			X]		\mathbf{X}			Re		_
0		Virv	2 B. T. Wall							E NO CONSE					_	1	જ	r	ଝ	3	ε	б	ナ	ד	ア	Date Time	Date Time	
t Time:	d 🗆 Rush		terrace			lager:			FRUL	i <u>to</u> vies	Delotes		Type	Hcl	and er	HNO3	HCI	amber	HN03	HCI	amber	HNO3	Hcl	amber		4/11/2		
Turn-Around Time:	X Standard	Project Name:	Piver-	Project #:	T	Project Man			Sampler	On too a	Samplemen	Contrainer	Type and #	3-VOA	1-500ml	1-500m	3-VOA	1-500m	1-500ml	3-VoA	1-500m	1-500m	3-VOA	1- 500ml	5am	Received by:	Received by.	
Chan-of-Custody Record	Client: Western Repuervy		Mailing Address: #50 CR 4990	compield, NM 874/3	82-4161	at: 505-632-3911		rd X Level 4 (Full Validation)			ype)		Time Matrix Sample Request ID	8304 H20 TP-2			5 TP-1			930 TP-6			948, TP-8			Alla Curden Muntadio	Relinquished by	
CF	Client: We		Mailing Ad	R	Phone #:	email or Fax#:	QA/QC Package:	Standard	Accreditation		EDD (Type)		Date]	6 01-027			<u> </u>			9			<u> </u>		Ť	0	·	_

.

.≻	λ οι Ν)) səlddu8 (i									+		
HALL ENVIRONMENTAL ANALYSIS LABORATOR www.hallenvironmental.com ktins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107	29 (c' Ba	1 0492			X	•							al report.
ENVIRONME YSIS LABORA environmental.com Albuquerque, NM 87109 Fax 505-345-4107 Talysis Request	_516	Dec- 81		X	-		X						nalytic
TIRONN S LABO nental.com erque, NM 87 505-345-4107 Request		/-im92) 0728											n the a
LAI Le, N Le		(AOV) 80828	 								+		ated 0
VI Verqueros SRes	tes / 8082 PCB's										+		ar'y noi
HALL ENVIRON INALYSIS LABC www.hallenvironmental.com ins NE - Albuquerque, NM (45-3975 Fax 505-345-41) 45-3975 Fax 505-345-41	NO ³ 'NO ⁵ 'ЬO ⁴ '2O ⁴)											.	2 2 9 2 9
		о АИЧ) 0168 19М 8 АЯОЯ	┠──┤	-		-	-				+-+		:::::::::::::::::::::::::::::::::::::
HALL ANAL www.hall 4901 Hawkins NE - Tel. 505-345-3975		EDB (Method	├										C
A Wkins -345		DodtaM) H9T		-+							+	_	o to
505	\sim	borthem HqTi				X		_	$\overline{\mathbf{v}}$		+		A sub-
1 430, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		BTEX + MTB	\square			7			4		╋╍┥		Page Page
	E + 4021)	atm + Xata	X			X			X				Remarks:
							-						af this
DR-Zuo-W			S	3	S	و	٩	9	~	\$			Date Time عرار کر کر کر Date Time s. This serves as notice o
Time:	ger:	Preservative Type	Acc		Fant	HC L		FUNDS	Har				$\frac{\sqrt{2t}}{2}$
Turn-Around Time: K Standard [Project Name: River Terral Project #:	Project Manager Sampler	Container Type and #	3-104	1-500m	1-520ml	-407, E	1-Scen	1-Same	3-104-				Received by: Received by:
Record	email or Fax#: 305 - 632 - 59 17 QA/QC Package: Candard Cather Cather	le Request ID	4-2015 HED TP-7			toto TP-9			alm 1 Field Blenk	Our Blenk			Date: Time: Relindvished by: Remarks: Date Time Remarks: C C Hall: Time: Relinquished by: Muthod Muthod Muthod Muthod Muthod Date: Time: Relinquished by: Muthod Muthod Muthod Muthod If necessary. semples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

	HALL ENVIRONMENTAL		WWW.Nauenvironmental.com 4001 Howkins NE Alburustans NM 97100	FIRE 345-345 Eav EVE 345-4107	Analyšis			(L) (L) (L) (L) (L) (L) (L) (L) (L) (L)	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	i bou liste N,IC (Ad SB SB	TPH (Meth EDB (Meth 8310 (PUA 8310 (PUA 8081 Pestic 8081 Pestic 8250 (VO 8250 (VO 8250 (VO 8250 (VO 8250 (VO 8250 (VO 8250 (VO 8250 (PUDBLES 757 A 757					×	X		X	×			X X		
und Time:	ard D Rush		Towns of An - with				(1508). (1508)	F RWL			d # Type BTEX + Method BTEX + M	Hel I X	al Amber 1	m HNO3 1	Hel	Ind Amber 2	HN03	HC (Amber		A HCI 4 X X	M Amber y	A HUOZ 4	1 4 21 1.0 103 c	Date
Crean-of-Custody Record Tun-Around Time:		Project Name:	Mailing Address: # 56 C.R. 4990 River	NIM RT413	32-4/	email or Fax#: 55-633-39/ Project Manager.	QA/QC Package:				Date Time Matrix Sample Request ID Container	4-30-10 11AM H2D TP-5 3-VOA	1-5com	mag-1 1-200m	165 TP-5,FD 3-10A	1-50m		115 3-10A	mag-1 / 1-2am		NU 2-VOA	1-500	1-5001	245 Curdy Hurtado	Date: Time: Relinquished by: Received by:

- 1	HALL ENVIRONMENTAL					2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4			(N	(ot	() sə	ir Bubbl	√														
0	HALL ENVIRONMENT	ζ	σ	2		8			د ۲	דס זימ	8	DRA		X			X			メ			X]		Any sub-contracted data will be clearly notated on the analytical report.
	Ē	ב ב	Albuminenia NM 87109	201		_		Þ	<u></u>		<u>л-іш</u>	92) 072	,		X	 		X			\times			\geq			e analyt
			www.nauenvilonnienai.com	505-345-4107	vsis Request	· 						v) 8092	_			-											d on the
	<u>מ</u>]		נבוומ עווים	95-30	(equ	*	CB's	ح ک	808			eq 180	_				<u> </u>	-									notate
	> 5			Eax 5		(Þ	 OS'*C)d'a	^z ON'	ON	l'IO'=	I) snoin/	1			1											clearly
	Ξ×			ц Ц	, nalý	5 0 2				sje	stəM	8 AAD2	ł														will be
			- Ц ИЦ И	1975							_	1310 (PI															ed data
			ww rkins	345-2		e #						EDB (We		ļ											N		ontracte
			4901 Hawkins NF	505-345-3975		é (19		280				PH (Mé		<u> </u>		1			メ						4		Sub-oc
		•	4901	Tel S								H X H L		 		\prec			~			\times			larks:	•	y. Any
					10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							3TEX +				X			X			×	-		Remarks		ossibilit
Turm-Around Time:	Standard 🗆 Rush	Project Name:	River Terrace Mar 2010-10th			Project Manager:			Sampler 74 'ML			Container Preservative Container Preservative Container Type and # Type	3-10A HCI 1	1-500ml Anber 1	HNO3	3-VOA HCI 2	R	1-500ml HNO2 2	·	al Auber	1-500ml HND= 3	Hui		(HWD3	Sceived by, Date Time	Receiver Date Time	acted to other accredited laboratories. This serves as notice of this possibility.
Hon-of-Custody Record	Client: Western Refining		Mailing Address: #50 CP 4990		114	7	QA/QC Package:		DINELAP Other			Date Time Matrix Sample Request ID	421710 910A H20 To-3			4344 10-11			455 TQ-12			1015 17P-13			1215 Muchan dry Hundo	Time: Relifiquished by:	if necessary, samples submitted to Hall Environmental may be subcontracted to other

2 5. N Ē.

		\square		-					1	Air Bubbles	s (X or N)	·····					-	.>	
-																	2	AALL ENVIKUNMEN I AL ANAI YSIS I ABOBATODY	-
		\downarrow				 ·	\geq		1	1 refor	591	28	[, ,	~	C	ENVIKUNMEN	
		++	┼─┼	╂—		 		\succ	4	<u>11100/0170</u>	5108		ļ		2. 20	3710	5		1
		╞╌╞╴	+			 		-		AOV) 80828 -im92) 0728				Star	5.41		j		i
-		╉─╌┼─	╉╌╂		+	 				8081 Pestici		904 78		Reques	505-345-4107		5	¥ 2	ſ
4		╉┯╋╸	+	+	+	 				O, F) snoinA			·	1.	Fax 5(Albringterdite NM 87109		ΞĽ	ļ
1		$f \rightarrow f$	+	\uparrow	-{	 				ACRA 8 Me				halys	ů	www.italietivitofififietital.com ns NF - Albirofierrite NM 8	<u>ן</u>	Ξy u	Î
6				-	1					ANG) 0168	(HA9 10)	<u></u>				ч Ц		, V	•
4										EDB (Wethc					345-30	ww Nans N			1
8						 				odieM) H9T					505-34	- Awk -			1
zere 2 f	_					 \preceq]	$ \times$	TPH Methox					Tel 5	4901 Hawkins NF			
Remarks				+						BTEX + MT				0 5 4 4		4	, i		
<u> </u>		\vdash	$\left\{ \cdots \right\}$			 <u>×</u>			$ \times$	BTEX + MT		1808) 2481))				<u> </u>
Date Time						e.	ស	2	L.							The ZOID-Wate			
> ec/h						 HCL	CONT		ACL	Preservative Type		1 Pall	ager:			Terraco / 20	e:	_ Bush_	und Time:
Received by:						3-107	1-5002D	1-500ml	3-104	Container Type and #	Sampler (A Onice Sample Ten	Campler	Project Manager:		Project #:	Riverter	Project Name:	Standard	Turn-Around
Date: Time: Renquished by: 421-10 1215 We with the logen of the Remarks: Page 2 f 2 Date: Time: Relinquished by: Received by 4/22/22/22 Page 2 f 2 If necession compare inherited by: Received by 4/22/22/22 Date Time						1040 Field Blank	· · ·	BAD	10 1045 Hed TP-10	late Time Matrix Sample Request ID	Type)	vuc Package: Standard <u>A</u> Level 4 (Full Validation) Other	nail or Fax#: 505-633 - 39 1/	ione #: 505-632-416/	0146			Western Ferning	Custody Record
						- Field	· · ·	Hodio isito	1-9-1-	Matrix			email or Fax#: 505-633-39 1/	Phone #: 505-632-4161	Clownfold NM 87	Mailing Address: # 50 C/L 4990	Blond I De La	Client: Western Ferning	Clon-of-Custody Re

.

ANALYSIS LABORATORY	ellace 3 an - 2010 - water 4901 Hawkins NE - Albuquerque, NM 87109	Tei. 505-345-3975 Fax 505-345-4107	(⊖ ≉ € (∧́ uc	S' [†] Oc	082 082 1))	17 + 3 18 + 1 1.8 +	ВТЕХ + МТВ ВТЕХ + МТВ ВТЕХ + МТВ ВТЕХ + МТВ ВТРН (Меthod ТРН (Меthod ВСВВ (Меthod ВСВ (Меtho				2	2	2	3 X X		3		×	Date The Remarks: $gg of Z$	Date Time	
Record Turn-Arol Let, Inc Project N	Rifer J	Phone #: 575- 632-4161	email or Fax#: 505- 632 - 39// Project Manag	Contracted Contracted (Full Validation)		EDD (Type) Content of the c	Date Time Matrix Sample Request ID Container Preservative Type and # Type	7-20-10 730 HDO TP-2 3-10A	1-5 aune	1-520 al	72-1 3-VOA	1-290.48	1 - 5000 Ask	820 TP-6 3-YOA	2000 12-1	1-520,2 AN	840 TP-8 3-VOA	Brues-1 / /	0 215p	Date: Time: Relinquished by: Received by:	

		4901 Hawkins NF - Alburulemia NM 87100		Analysis	6)	eei(leas lease lea	1100 (1) 1100 (01.3 100 100 100 100 100 100 100 100 100 10	Air Bubbles () Air Bubbles ()	X			XXX		X					Remarks: pg 2 of 2		If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical remon
Tum-Around Time:	🕅 Standard 🗆 Rush	 Riler Terrace 3rd re-2010-vieter			Project Manager.			Sampler: (A RM/C	Samole Temperature	Container Preservative Type and # Type	HCL	1-Soon HNO3 S	1-smert S	3.Vor Acc 6	a) cont on nos-1	1-soul	3-10A-HCL 3				107407100	Received by. Date Time	tracted to other accredited laboratories. This serves as notice of t
	<u> </u>	1 4990	1 NM 87413	Phone #: SDS-1032. 4161	- 391/	QA/QC Package:	Standard Standard K Level 4 (Full Validation)	Accreditation	EDD (Type)	Matrix Sample Request ID	720-10, 845, 42, TP-8FD			910 TP-7			-1 1135 Field Blank nog	High Burg Burg Har		Date: Time: Rei 6 Onitished by:) 215p (wich Hurtzalo	Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcon

_ ~ ~ }								(N 	01	Y) selddug 1										<u> </u>			-		
R.	WWW hallenvironmental com				»			M		12 070				<u> </u>	ļ						\geq				
ENVIRONMEN	5	ą	6						90	18-000	<u>-</u>	<u>x</u>	>			Ļ	╞		\vdash		╂─-	$\not\vdash$			
Ϋ́	j,	1.871(101		.					V-Ime2) 075		+	1-	1	\uparrow]	+		†	1 Pratie	· 				
Ō			SUS-SAS.A107							(AOV) 8039	:8	1			1			1				·].		
E.	L test		505							bisiteeq f8(
N		Albumentie NM 87109	han ta	Proposist Reputes	* (7	OS'	*Oc	I ^{'²} ON		4,10,7) enoir			<u> </u>									 			
まずしょう	WWW hallenvironmental com	ξı		N THE				(H		TO AN9) 016 BJ9M 8 A위3				+	┼										
HALL		ls NE	345-3975		1)					borteM) 80	-			+	<u> </u>					 	 		1		
1	¢ 3	4901 Hawkins NE	5-34					(1)	814	borteM) Ha	1		1							×			1		
		0 H	Tel 505-				\sim			i boriteM Hq		1		×	ξ		×	<u> </u>					3		
		49	: F							TEX + MTBI		-	ļ	H									Remarks:		
			<u></u>		· · · ·	120			+ =	TEX + MTB							X			<u> </u>	<u>ـــــ</u>		Å.	~	1
sh		Colloce 5 202-2010 - WA REK						ab bab						e	9	0	ß	ß	Ś	7	5	۲	Date Time		
🗆 Rush	200	6 2 2 2			er.					Preservative Type	HCL	HNQ3		HCL	HNO3		HCL	RNOS		Her	HN0-			2	
لللا Standard	Project Name:		Project #.	. 4	Project Manager.		<	Sampler W		Container F	3-104	1-5202	Some	3-104	1-520LD	1-5000	3-Vo.A	1-50m	Junes-(3-104-	1-50m	6-mars-1	Received by	Received by:	
t Iac	1		4990	- 416)	email or Fax#: 505-1032-391/		C/Level 4 (Full Validation)			Sample Request ID	MW #49		/	P-9-			1P-5		~	1# MQ		,	Hut h		
Client: Niskan Robin	Sloonfie		# 50 Rodo	Phone #: 505-632-416	50-202					Matrix	New									~		1.1.0		Relinquished	
lestern		Mailing Address:	#	# 505	r Fax#:	QA/QC Package:	Idard	itation AP	C EDD (Type)	Time	gson			1016	\rightarrow		070	\leq	\ \ -	1125		Time.	3%	Time:	f nervectant
Client		Mailing		Phone	email o	QAQC	Standard	Accreditation		Date	7-20-10	-										jap		Date	

Time: Image: Contract of the con	PTEX + MTBE + TMB's (8021) BTEX + MTBE + TMB's (8021) BTEX + MTBE + TMB's (8021) TPH (Method 8015B (35 Only) TPH (Method 504.1) EDB (Method 504.1) B310 (PUA or PAH) B310 (PUA or PAH)	- > B - B <th>- Z</th> <th></th> <th>1007 0 1004 4</th> <th>Date Time Remarks: pg i of Z (0//4/10/1/30) Date Time Remarks: pg i of Z Date Time free. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the an</th>	- Z		1007 0 1004 4	Date Time Remarks: pg i of Z (0//4/10/1/30) Date Time Remarks: pg i of Z Date Time free. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the an
Turn-Around Time: B -Standard Project Name: R ¹ /v Project #:	Project Manager: Sampler: C. L. Container Pre Type and #	3-10A	1-2004 1	1-500~1 -500~2	1-52020	1-Satin Amber Received by: Moli MUTDAD Received by: Received by:
	or Fax#: 505-632- Package: Idation AP □ Other D (Type) Time Matrix Samp	lorero lays Ha.O TP-2	130 TP-2FD	1-22 132 1 1-22	1 - a - a - a - a - a - a - a - a - a -	Date: Time: Reinquished by: Date: Time: Reinquished by: Date: Time: Reinquished by: Date: Time: Reinquished by:

Ine: Image: State of the	BTEX + MTBE + TPH (Gas only) BTEX + MTBE + TPH (Gas only) TPH Method 8015B (Gas Only) TPH (Method 504.1) EDB (Method 504.1) EDB (Method 504.1) SCRA 8 Metals Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)		X		Time Remarks: A B C 2	dat dat
Turn-Around Time: A Standard C Rush Project Name: <i>Raine (11/102- (14)</i> , 27), Project #:	Project Manager: Sampler. (Th. P.M. Sampler. (Th. P.M. Sampler. (The Preservative Type and # Type	3- VOR 4103	242		3-Veft ACL Received by:	Received by: Received by: Intracted to other accredited laboration
ody Record	ther	10-15-10 210 14:00 TP-B	235 77-9	S-dL	305 hild Blank	Date: Time: Relinquished by Wurdate R Date: Ine: Relinquished by Wurdate R If necessary, samples submitted to Hall Environmental may be subcont

	4901 Hawkins NE - Albuquerque, NM 87109		× width	205'*00	HPH (1.1)	108 814 k 49 h 202 k 202 k 200 k 20	ETEX + XER BTEX + XER BTEX + ME BTEX + Method TPH Method TPH (Method EDB (Method B210 (PUA o B210 (PUA o B208 (VOA o AOV) 8081 Pesticio AOV (Semi-) CAO AOV (Semi-) CAOV (Semi-) CAO AOV (Semi-) CAOV (Semi-) CA									× ×			Remarks:		No.	nis serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	 River Terrace 4th QTR-2010	Project #.	Project Manager		Sampler: CFI RM/C		Container Preservative Type and # Type	3-VOR HCL	1 - Soul Amber	1- CONH MASSI	3- 40A HEL -2	1-Scort Amber -2	HNO2 -	3-194 HCL]	E CANH MAD	3-VAA HOL -U	-	Received by: Date Time	Referenday: M Pate Time	the al	credited laboratories. TI
Chen-of-Custody Record	Mailing Address # 50 CR 4 990	N M 82413	at 505-632 - 39/	ALEvel 4 (Full Validation)	1		Request ID	12-9-10 HZU -7-2-7			64 MW 451			240 DW-1			1 245 1 Freid Flak		Reinquished by:	Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be discontacted to other and	Innone an Andi Initiatiliatiliatiliatiliatilia in Lian an Anna

		Ż			1	· · · · · · · · · · · · · · · · · · ·			(N	, or	() !	Air Bubblea	/														
	Ē					e				ব		- <u>R</u> 2101									×				, ,		eport.
		5	60							नट		DR0-1		×		\ 		$ $ \times					X				This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
	Σ, ζ	5	n 871	107		*			 (¥0,	ري !-/\	m92) 0728		<u> -</u>	1		\times			W.			-		-	÷	he ana
	0		NN .	45-4	lest							0V) 80828	1												1		ed on t
	<u> </u>		nenta sraue	505-345-4107	Request		s'8	ЬС	2808	/ SƏ	pic	biteag 1808													1		/ notate
	Z	ANALTOLO	www.nailenvironmental.com ns NE - Albuquergue, NM 87109	Eax Eax		_	os"	[₱] Od	' ^z ON'	ÒN	110),∃) anoinA	']0		clearly
	ΞŠ		llenv - Alb		naly							M 8 AADA													95		will be
	HALL		ч. Л Ш	975	1 P							AN9) 0168													0		ed data
	₹Z I ¢		www.n 4901 Hawkins NE	505-345-3975								HiəM) 803													a		ntracte
			Hawl	05-3		1.5						TPH (Meth													Pase	•	sub-co
			901	- Ter T				1					×			X			\times			\times			1		. Any
		ale se	4						HOL			RTEX + M	J			Х			X						Remarks	4	ssibility
<u> </u>				1		<u> </u>					孔		\vdash									X			æ		this pot
													5			5			5		i	5-			e ک		tice of 1
			010										70												Time		Ses no
			2									(64) (10)	1010864												Date	Date	serves
)		272									dia de 18	10														
	Rush		刊(2)									iti e									5			^	.	18	oratories.
			Terrace + 4 the 2010						NY I			Preservative Type	HCL	Anker	02	Ŀ	Amler	HND3	5	Ander	4ND-3	HCC	Ande	FUNH			ogen a
Time			joci			ger:	,					Pre	Ŧ	Ą	ANDZ	HC4	م	μ	ACC	Ł	7	Ţ.	₹	I.			z red (
Tum-Around Time:	d/Standard	Project Name:				Project Manager:		4	A.			d#	Ι,	3		1	ð	9	-L-	9	Æ	1	2	Z	ž		ther ac
Arc	Stan	ect	River	Project #		ect N			Samplek			Container Type and #	3-104	1-500m	1-sconl	3-104	1-500;	1-500 ml	3-104	1-soul	1-sound	3-10A	-500ml	1-500rl	ived t	Beceived	E E
Tun	<u></u>		Ž	Proj		Proj		•	San			ŏ ≱	Ń			m	~		3	-		ŝ	-	-	Rece	Berg	ontract
			ł	Ar				(uo				₽	х													1/20	e stroo
pro			0					Level 4 (Full Validation)	1.			Sample Request ID													۱.		d h
e C C	N S	\		474		à	}	il Va				redn													- pr		nental
Ř	N.		1×480	ø	16	39		4 (Fu				le R	3			1			2			m			mtade		Inviron
_√p<	14	+	R	NM	14-	1		evel				amp	79-3	\mathbf{i}		1-41			1-2-		~	2	Y	~	F		Hall
stc	Refining	*		2	5	633	,	ЪĽ				Ň	, -									df.			ä S	d by	itted to
о С	2		100	Ŷ	4n 1a	١ <u>٦</u>			D Other			trix	0											-	Relinquished by:	uishe	mdus s
ģ	L L		#	3	ΙŢ	1g						Matrix	CON	·+										Ì	Relific	Relinquished by	ample
	ts		ress	Ý	0	Ť,	age:		C	De)		Time	7			9					,						sary, s
Chan-of-Custody Record	3	Í	J Adc	201	*	or Fa:	Pack	ndarc	Jitatic _AP	È c	1		- Sa	\rightarrow	\leq	930	$ \rightarrow $	\geq	62	\downarrow	~	102		-	33, 33,	Time:	If necessary, samples submitted to Hall Environmental riay be subcontracted to
J	Client: WESTERN		Mailing Address:#50	R/OOMF 21 &	Phone #: 505-6	email or Fax#: 5	QA/QC Package:	Standard	Accreditation			Date	0												19-10	Date:	_
	ΙO	1	2	V-	<u>م</u> ا	<u></u>	Ø	Ц	∢⊔	ΙU	ł	_	01-57-01	ן		-			1	7	T	T			10-19-10	ŭ	

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107	TPH (Method 418.1) EDB (Method 504.1) 8310 (PVA or PAH) RCRA 8 Metals Anions (F,CI,VO ₃ ,VO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides / 8082 PCB's 8260B (VOA) 8270 (Semi-VOA) 7 O (AC) – 8015 T O (AC) – 8015 T O (AC) – 8015 T O (AC) 7 N	5				Date Time Remarks: Date Time Remarks: Date Time Date Time Date 2 0 F 2.
me: - Rush се 44. Qrn- 2018	Treservative BTEX + MTBE + TPH (Gas only) BTEX + MTBE + TPH (Gas only)		HNOS	HCL -1e		Date Time Remarks: Date Time Remarks: Date Time PA
Custody Record Turn-Aro Sef jw jw 9 Moject N Froject N Mer C N M 874/2 Project #	Level 4 (Full Validation) Project Management Y Level 4 (Full Validation) Sampler ON ther Sampler ON in Sampler ON in Sampler And in Sampler And in Type and #	10-14-10 1050 140 7-1-10 3-104 4	1-Second	Trip Blanks Mu 3 F		Time: Relinduished by: 325 Refinquished by: Time: Relinquished by: Beceived by: Be

		 Www.hallenvironmental.com 4901 Hawkins NE - Albuquercute, NM 87109 	Tel. 505-345-3975	Analysis Red	(\7() ()) ()	(Ga	8085 1) 1) 1)	7 + 3 f (4 0, 1, ₅ C 1, ₅ C 3 / ₅ 8 / ₅	4 4 1, NC 1, NC	ATEX + MH TEX + MH TEX + MH TEH Methoc TPH Methoc B310 (PUA d B310 (PUA d B310 (PUA d B310 (PUA d C B310 (PUA d C C C C C C C C C C C C C C C C C C C										Remarks:	ier accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	ient i	Rifer Terraco 15t Die-2010	3		Project Manager.		Sampler	On loop the leves to be North when	Sample Temporature	Container Preservative Type and # Type	1-ted/or		3		10))	7			 Received by Sala Time Time Received by Date Time	racted to other accredited laboratories. This serves as notice of
Chent of-Custody Record			EI hts		//	C Standard C Level 4 (Full Validation)	uo voi		EDD (Type)	Date Time Matrix Sample Request ID	3/08/10 10304 Vara TP-Z	ILAM	1 TPC	Fat Taz	132 72.9	den TP-8'	1 210 1 TP-8 FD			20010 Fm Remquished by. 30010 Fm Reinquished by. Date: Trime: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to off

	d 504.1) 5r PAH) fals , NO ₃ , NO ₂ , PO ₄ , SO ₄) des / 8082 PCB's , (AOV) (AOV)	ите + ХЭТВ ронаеро трн (меtho трн (меtho В310 (РИА о В310 (РИА о В310 (РИА о РОВ 8 Мен СТА 8 Мен СТА 8 Мен					Min Date Time Remarks: Date Time Remarks: Date Time accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time: Standard I Rush Project Name: River Torrace - 15 are VS Project #:	Project Manager: Sampler: A./ Z.n/C On Too Manager E.Moatone Sample: Fearip ratione	Container Preservative Type and # Type	1-tedlar 1	6.	5	,	
1-of-Custody Record In Rehaine Southinet The Storm Field Referency Elarmy Field, NM 87413 5-633-414	email or Fax#: SDS-632-3911 P QA/QC Package: Standard <u>V</u> Level 4 (Full Validation) Accreditation Standard	Time Matrix Sample Request ID	39/10 9514 VANN 7P-5	mA U	1104 Field Shark		Date: Time: Relinquished by: Plate: Time: Received by: Date: Time: Received by:

2 * Au <u>,</u> ä. edite

		4901 Hawkins NE - Albuqueroue, NM 87109		Analysis	(fæ	*0d	0 ^{3'}	11 - 11 1.8 1.4.1 1.4.1 1.4.1 1.4.1 1.8 1.4.1 1.4.1 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	100 100 100 100 100 100 100 100	MTE ethod ethod MA o MA o MAt (F,Cl, (F,Cl, MOA VOA	ir Bubi 3TEX + 10000 22008 22008 22008 22008 22008 22008 22008 22008 2009 2009	F × ×										XXX	Remarks:		If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	Project Name:	River Terraced me-VS			Project Manager:		Sampler CAR	Optices and the Vision and the Visio	Same & we may a support of the second se		Type and # Type = 2 100 Type =	1-Tedlar		3	7	10		L	2	σ	0)	-	Time	Parenter of the test of te	Intracted to other accredited laboratories. This serves as notice of this p
Cremt: Western Regining		0 CR 4990	5413	:33-	email or Fax#: 525- 632- 39//	Standard Standard KLevel 4 (Full Validation)	uo	D NELAP D Other	D EDD (Type)		Date Time Matrix Sample Request ID	4-20-10 820A VADET 7P-2	8404 72-1	9104 TP-6		9.54 TP-7	1025 TP-9	losy TP-5		1350 MW 49	135 Dr #1	1 145 1 Field Blank	1 Ime: Keingquished tyy	Time: Refinduished hv	If necessary, samples submitted to Hall Environmental may be subcor

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com kins NE - Albuquerque, NM 87109 345-3975 Fax 505-345-4107 Analysis Request	EDB (Method 504.1) 8310 (PNA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides / 8082 PCB's 8260B (VOA) 8270 (Semi-VOA) 8270 (Semi-VOA)		cted data will be clearly notated on the analytical report.
ard Time:	TPH (Method 418.1) TPH Method 418.1) TPH Method 418.1) TPH Method 418.1) Type and # Type	XXXXXX	Time: Relinquished by: Mutual Received by Date Time Time: Relinquished by: Mutual Received by U Date Time Time: Relinquished by: Mutual Ecceived by U Date Time Time: Relinquished by: Mutual Ecceived by U Date Time Time: Relinquished by: Mutual Ecceived by U Date Time Time: Relinquished by: Mutual Ecceived by U Date Time Time: Relinquished by: Mutual Ecceived by U Date Time
-of-Custody Record en Refining ##50 CR 4990 348, NM 87413 55-632-4161	r Fax#: 555-632-39// F Package: Idard XLevel 4 (Full Validation) itation AP Other 0 (Type) 0 Time Matrix Sample Request ID	4-21-10 9Am VAPOL TP-3 1- 921A TP-11 10050 TP-12 1020 TP-10 1035 Field Blank	Date: Time: Relinquished by: Late: Time: Received by: Late: Time: Received by: Date: Time: Received by: Date: Time: Received by: If necessary, samples submitted to Hall Environmental may be subcontracted to other

ENVIRONMENTAL YSIS LABORATORY environmental.com Albuquerque, NM 87109	ويون ما ويدهم مارد کې د د د مار د د ورو د ويار د ويو ورو ورو و و د و د و د ورو د ويار د ورو ورو ورو و و و و و و و			(N		∕ir Bubbles (`													
ENVIRONME YSIS LABOR/ environmental.com Albuquerque, NM 87109	505-345-4107 Request			((rice v) 20028				 									
IALL ENVIRON NALYSIS LAB www.hallenvironmental.com ins NE - Albuquerque, NM 6	Fax 505-345- nalysis Request	S	PCB'	2808 J		AOV) 8081 Pesticic			-	<u> </u>						+	├		
HALL ENVI ANALYSIS www.hallenvironme kins NE - Albuquen	Fax 5 ysis F	(*0	PO4,S	^{'z} ON' ^s	ON	,IO,∃) anoinA	1												
	. 61					BAR 8 Met		ļ			ļ					+	<u> </u>		
HALI ANA www.h kins NE	-3975 					o ANG) (PNA o		-											
awkin y D T	505-345-3975					TPH (Method										-			
ANA www.h			\rightarrow			PPH Method		X	×	X	×	X	Х	~>	<7	$\langle \times$		ŝ	
¥	Te		208) s 				- 											Remarks	
		(14	CO8) 2			etw +(xejj)			\sim	\times	$\left \right\rangle$	\times	\mathbf{X}	<u> </u>	XX		ŕ	å.	<u> </u>
5/10-2010-VS								a	8	٦	S	9	2	800		\$ 4			
d Time: d Ime: ne: ne:		lager:		4 RMK	moerature	Preservative													
Turn-Around T K Standard Project Name: Rief Frie		Project Manager:		Sampler	Sample Temp	Container Type and #	1-ted hr											Received by:	Received by
Red. Red.	- 416, MN 8741	505-632-3911	🕇 Level 4 (Full Validation)			Sample Request ID	TP.A	19-1	TP-60	79-8	+10-8FD	7-7-	ht mw	2-1-2-1-	Du #1	Field Blank		1 Mutulo	d by:
Client: Western Reference Solution	DIODATERO , NI 505-632-416,	505-6		□ Other		Matrix	VAPOR						_					I we have a	Relinquished by:
Client: Wts-44-4		email or Fax#: 04/00 Package:	ndard	itation AP	EDD (Type)	Time	725/	7502	BIS	63	83	GAM	93.6	10200	IIAm	1115		330	Time:
Client: Mailing	Phone #:	email c	□ Standard	Accreditation		Date	9-08+									 	Date.	730-10	Date:

-6	ENVIRONMENTAL	ANALYSIS LABORATORY			101 11:15 - 20 44 - 20 20 20 - 20 - 20 - 20					·····	ir Bubbles ()														analytical report.
	Z	n	www.italieftvilofifileftal.com		Seconasies						(AOV) 8082 V-im98) 072				_	-			\vdash				-	4	on the
	ĽĽ			uue, DE 2,		1 1	S,E	ЬСЕ	2808		081 Pesticic			 	┼								ļ		notated
		ר ק		ian da	vsis r	_					,IO,A) enoin	_					<u> </u>				i			- -	clearly
	Ш			5 U (naiv					SIE	tem 8 ARD	<u>ы</u> .											÷	-	will be c
	HALL			075 075	V.	80					010 (PNA o]	d data v
	H		ww kine l	745.2075							DB (Wetpoo		<u> </u>												Itracte
	,		4901 Hawkins NF								PH (Method		ļ.,	<u> </u>	<u> </u>				-						sub-coi
		5	1001	Tel T		<u> </u>		~			PH Method				X		\geq	X	4	-				:;	. Any
					¥1	è					HTEX + MTE				$\frac{1}{2}$			×	\times					Remarks:	ssibility
		T			- 16.								1×		Ļ	7	Y on	-				_		<u>r</u>	ttis po
Turn-Around Time:	D Rush	Project Name:	of erlow - 44 are 2010-VS			Project Manager:	5		I. E. P. M.		iner Preservative Type		2	8	4	5			8					Received by: Date Time M.W.M.J.C.Y.S. J.O.II9/10 1/35 Received by: Date Time	other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
Turn-A	sta	Project	River	Project #:	1	Project	` 			Samplement		i-Tedkar							 					Received by Received by Received by	bcontracted to
Chem-of-Custody Record	Refune.	& Rhen			1-4161	"22 - 3911		VLevel 4 (Full Validation)	er		Sample Request ID	1P-2	TP-2FD	TP-1	9-22	12.8	78-9	TP,S	FuldBlack					on Nutado	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories.
-of-C		Bloomful	s:#501	Bloomfuld	505-632-416	505-632			□ Other		Matrix	Ners-											Baildonich	Relinquished by:	samples sub
Creen	Western	Bu	Mailing Address: _# 5の	Ø		email or Fax#:	QA/QC Package:	Standard	Accreditation	🗆 EDD (Type)	Time	1230	1233	115	9	200	20 20 1	250	22				Timo.	330 Time:	If necessary,
-	Client:		Mailin		Phone #	email	QAQC	□ Sta	Accreditati		Date	10-18-10							_				Date.		

		UK1							(N	1 10) (vir Bubbles	√													ou.
0		ABUKAIOK	ő											-												ytical rep
	Σį	Ď	environmental.com Albuquerque NM 87109	107	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					()	ΟΛ-!	m92) 072	8		· ·										.*	he ana
	05	מ מ	al.co. NN	45.4	lest						(\	OV) 8095	8	<u> </u>		+				1-						ed on 1
	μ,]	nenta roue	505-345-4107	Request		e'8	ЪС	2808	/ 9	sepic	bitseq 180	8		1	+										y notat
		NTOL	ironn	Tay a			05"	ЪО	' ^z ON	' ^ɛ C)N'IC	D, F) enoin/	1		1	Ī	1									cleart
		/): 	llenv Alb		\nal\						etals	M 8 AADS	Ч													will be
			www.hallenvironmental.com ns NF - Albuquerque NM 8	3975								AN9) 0168			<u> </u>		ļ	<u> </u>								ed data
	HALI		ww kins l	345-3		•						diəm) adi	-		<u> </u>			 								Intracte
			Hawk	505-3		, /.=	_	E				Hd.	_	 	<u> </u>	<u> </u>	<u> </u>									sub-co
			www.h 4901 Hawkins NF	ים בי היים		}							<u> </u>	<u> </u>				<u> </u>		ĮΧ	\times			rks:		/. Any
			4		р. 1							TEX + MI TEX + MI			<u> </u>		X	×						Remarks:		ssibility
		<u> </u>		1	a										<u> </u>				$ $ \times	†	×		 	<u>az</u>		this po
			Dio-VS										0862-1	12	1 N	1-		9 -	L-	1	1		i	Date Time	Date , Time	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
	🗆 Rush		y Higher 2 min-						r k			Preservative	1010											Δ	a Cin	ler accredited laboratories. This
Time			entace			ger:)	;	2			L L L														and the second
Tum-Around Time:	M Standard	Project Name:	Rupeten	Project #:		Project Manager:			Samplei	Jalice: 25	Samperen	Container Type and #	1-Tedlar											Received by:	Redered by:	
Clenn-of-Custody Record			24990		4/6/	//		XLevel 4 (Full Validation)			m.se	Sample Request ID	17	Ć,	11-	21	-/3	12-10	19	#	Bluk			the local states of the lo		If necessary, samples submitted to Hall Environmental may be supcontracted to o
ustodv	Ker		\mathcal{P}	NN 874/3	633-4	email or Fax#: うごら (33-55		X Level		 			7-9-	E-97	TP-11	21-02	TP-13	A	M.W) 49	# M Q	500		 	hed by:	red by	mitted to Hall
-of-Cl	ERN		Mailing Address: #50			505- (Matrix	Vapor										 	Relinquished by	Relinquished by	samples sub
Sec. 1	West		3 Address	Room ield	Phone #: 505	or Fax#:č	QA/QC Package:	ndard	Accreditation	5	C EDD (Type)	Time	835	853	920	945	jois	1040	0°C/	205	312		 		Time:	If necessary.
	Client:		Mailing	<i>A</i>	Phone	email (QAQC	□ Standard	Accreditati			Date	10-9-01									.	1	Date:	Date	

			4001 Howkins NE _ Alkingtonia ANA 02100	nhnniv	ter. 000-040-3573 rax 000-345-410/	əl) (2850) (4,00) H())))	11 - 11 () () () () () () () () () () () () ()	+ 38 08 17 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	HTR nod thoc thoc Mets Vets (Cl, Cl, Cl, Cl, Ticio (OA)	A + X3 Heth Hath Heth Heth Heth Heth Heth Heth Heth He	ВТ ТР 833 826 833 808 833 808 808 833 808 808 833 808 833 808 833 808 833 833									Remarks:		If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	ttv Standard □ Rush	Project Name:	64C - 15ton. 700	Project #:	- 1	Project Manager:			Sampler: P. J. J. J. J. J.		Conference (2.1) and a second		Container Preservative Type and # Type x Type		3-VOA- Hec 1	2							Received by: N:(N) S 0	Received by: U Date Time	Intracted to other accredited laboratories. This serves as notice of this po
Ch	Client: Weskin Refining		Mailing Address: #50 R/490	Blambeld NM 87413	1011	email or Fax#: 525-632-391/	QA/QC Package:	□ Standard Validation		C EDD (Type)			Date Time Matrix Sample Request ID		14410 2301 HED GAC INPUT	1 Will 1 GAC lead	V DOM 1 GAC 123	-				Date: Time: Boliner(Abd hur) 1	10 Jozen	Date: Time: Relinquished by:	I necessary, samples submitted to Hall Environmental may be subox

		S LABORA I ORY	environmental.com Albummeration NM 87100	ENE 21E 1103	ax 200-545-410/ Sis Request			()	⊀0∧ (səp	8081 Pestfoid AOV) 80358 /-im92) 0728 /ir Bubbles (3								riv notated on the analytical report.
I		ANALTOIO	www.hallenvironmental.com	·	adding and analy	(19:	səiQ\ss	15B (G	912 94 50 94 71 960	 TEX + MTE TPH Method TPH (Method TPH (Method TPH (Method TPH (PUA d TPH (PUA d			· · · · · · · · · · · · · · · · · · ·				 irks:		iy. Any sub-contracted data will be clear
Turn-Around Time:	ar Standard	Project Name:	(5.4C - 03-2010	Project #:				Cindry F		er Preservative the transformer of the Type of the transformer of the	-						2/3/10		If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
Che -of-Custody Record			Mailing Address #57 PJ 4990	blowfield, NM 87413		email or Fax#: 505-632-3911	QA/QC Package: □ Standard	Accreditation	CI EDD (Type)	Date Time Matrix Sample Request ID	2-2-10 1115A ArU GAC-Lead						1070 lot under Huntado	Date: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subci

-6	HALL ENVIRONMENAL				an and the second				(ι N)	о Л 	ir Bubbles (4					 							
	ME	EX.		201 - 20	11 12					,													· ·		
1				505 345 4107	Analysis Request					(\		-ime2) 072											<u> </u>		
ĺ	×.	WALYJIJ LADU		446,-	enpe		<u> </u>	<u></u>	790	18/		AOV) 8092			 .	-									
1	Ξų	<u>מ</u>		24	∕	د. • (۲						IO, I) snoin		<u> </u>		<u> </u>						-			
ļ	С ў Ц Ц	, inde			alys	<u> </u>						Per 8 Met						<u> </u>				 			
•			, 5	10	An An							o ANG) 016	_									 			
ļ			n su	5.20					(1.40)9 P	odieM) 80		<u> </u>				<u> </u>				 •			ľ
1			4901 Hawkins NF	505_345_3075								PH (Metho													
			H 0			(lə	səiC]/se	ອ) (891	08	PPH Method	-	X										id	
		đ.	49			ć						BTEX + MTE	_											Remarks	
	J L			- -		• (120)8) - 9			- 38	BTEX + MTE												Ren	'
													1^{n}											Date Time	
d Time:	d 🗆 Rush	le:	3-2010			lager.	ı	•	-ma/to	<u>i : : : : : : : : : : : : : : : : : : </u>		Preservative <i>t</i> Type	Her	4										11:01	and best best of the second
Turn-Around Time:	Standard	Project Name:	040	Project #:	Ţ	Project Manager:	· ·		Sampler: C	Opploe	Same	Container Type and #	3-104	250ml-Jac										Redered by:	
Chen-of-Custody Record	L L L L L L L L L L L L L L L L L L L	K Cherry	499	ield NM AP413	-4161	32-391/		K Level 4 (Full Validation)				Sample Request ID	GAC-LEAS											ad by thurtado	ff necessary samples summitted in Hall Environmental mark to contracted to other samples summitted in the summer statement of the summer statem
-of-Cl	Client: Western Rufining	Bloomfeld	Mailing Address: #50 𝕅	Bloomfie	505-632	505-632-						Matrix	440	\mathbf{n}										Relindushed by: Relinquished by:	samples subn
	West	B100	g Addres:			email or Fax#:	QA/QC Package:	ndard	er	□ EDD (Type)		Time	1145	\mathbf{n}										Time:	f necessary
	Client:		Mailin		Phone #:	email (QAQC	🗆 Standard	□ Other			Date	30910	\bigvee									ļ	31910 Date:	

									(or N	۲)	selddu 8 riA	/	<u> </u>											
ا لہ	KONMENCAL LABORATORY				1.																				
E)											 												report.
	ENVIRONMENS	5	60							_S,	108	3-0210	+	V	<u>├</u> ──	×		Х	 						alytical
1		ξε	Albuqueraue. NM 87109	1107								im92) 0728	!	7		ŕ									the and
į		<u>a</u> 8	د. N	345-z	uest-				·		(A	OV) 80928													ted on
	_	0	erque	505-345-4107	Req		s'B	5 PC	280	8/s	ebk	oitse9 1808									·				ty nota
	Z	viron	pndn	Fax	Analysis-Request-	(*(28'	'Od'	10 ⁵	•••••••		⊃,∃) anoinA													e clear
l	ш ў	allen	- A		Anal							RCRA 8 Me													
	HALL ENVI ANALYSTS	www.halienvironmental.com	4901 Hawkins NE -	505-345-3975	1.1							EDB (Metho AN9) 0168										-			ted da
1		\$	vkins	-345	1							Hqt (Methoday	_								·				contrac
		2	1 Ha∖	505	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(jö.	ieic	h/se:				odieM HqT	X		×		X		 					• •	-dus Yr
			490.	Tel.								TM + XJT8												arks:	lty. Ar
												TM + X3T8			X		×							Remarks:	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
																									of this
			0									୍ ଚାର୍ଚ୍ଚ												Time	notice
			20	•					Ì			。 11 - 2			3	6								234	rves as
3			2							No.					• 0		\sim	(0)						Date Date	This se
			QTR- 2010						Ι.	D.	Ň	e A	╄──┤						 		_			C	ones
	🗆 Rush	94	4						ANV.		Ċ,	servativ Type	ر ا	۱				,						21	laborat
ime:	U		R			er:			12	ЭŴ		Preservative Type	H H	Antes		Za									edited
L pu	ard	ame:	AC SC			Project Manager:			R					4 گر		L de		8							e - a 900
-Arol	K Standard	Project Name:	N.	¥ S		Sct W			pler:	0	D C L	Container Type and <i>ŧ</i>	40	1-500	4-VOA	1-sound h	64	Isound						Received by	d to of
Turn-Around Time:	¥	Proje		Project #:		Proje			Sampler	Oalce	S S	Typ Co	4. 10.4	1-6	4-1	1-5	4-10.4	15						Received b Received	intracte
	J							(uc				Ω													s subco
pro	4	. 2	_	Elhts				t Level 4 (Full Validation)				Sample Request ID								ĺ					may be
90.0	67	4 y		6				II Va				requ	NLe		ad		D							R	mental
Å	Hun	\mathbb{R}	0834	MM/	4141	911	-	4 (Fu				ole R		\mathbf{n}	Lea		L							- A	Environ
ody	N3	19	49			3		evel				amp	She	·	GAC	\backslash	SAC							<u> </u>	o Hall I
Iste	; 1	t's	Rel	ul	32	633		L A				0					<u> </u>								nitted t
ប៊	しょう	Pro M	So	twee	6	SUS-632-3911						Matrix HeD	A REAL		A A		J.	H20						Refinguished by Relinquished by	es subi
-of	5	Bloomfield Refinen	# ;s	Blownfuld	505-632-	R					-				F		Ŧ	I	 _					Reli	samp.
Ch	3		ldres	T	Ś	aX#:	skage	p		ype)		Time	Ref 1	$\overline{\}$	11 20		E V	\triangleleft						Time:	If recessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories.
Ch	Client Vesters Rehine Sulhuch Inc		Mailing Address: # 50 Rel		ie #:	email or Fax#:	QA/QC Package:	□ Standard	ther_	EDD (Type)	┝	·			-	\rightarrow		-	 	_					If ne
	Clier		Maili		Phone #:	emai	QAQ	U N			·	Date	4-20-10	_ +	÷									Date: Date:	
													~										-	3	

	ا بر السر	≿								(N	Y OL) səld	ir Bubi	/]
¢.	NAI	ANALYSIS LABORATOR				1																			toport.
	Ē	\$		50		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								+	 	 		 			 ·	-			httical
	Σ	Ö	ε	1871	107	8) 8) 8)				(۷O/	√-im∍	S) 0728	3		 		 							the ang
	ō	A A	al.col	NZ NZ	345-4	lest					i	(AOV) 80928	3			 	 							, uo pa
	R		nent	srque	505-345-4107	Redu		s,g;	ЪС	2808	(səj	sticio	91 P808	3							· .				v notat
	ENVIRONMEN		ironn	Albuquerque, NM 87109	Fax	nalysis Request	• (*()S'*	Ю	' ^z ON' ⁱ	ON	(F,CI,	snoin/	/			 								cleart
	Ē	>	www.hallenvironmental.com	- Alb	EL:	\nal}							3 AADF												ad Iliw
	HALL	Z	w.ha	ЧЦ	<u> 3</u> 975	1							9310 (P	_				 							ed data
	H	A	Š	4901 Hawkins NE	505-345-3975	54.8 Y							W) 803			 		 							ontracti
	- 1	-	-	Haw	505-(1	1/100		(53000				нен (м 		1	 	 	 				ŀ.			sub-or
				t901	Tel.		· ·		51	Ω			+ X∃TE		×	 	 	 					rks:		V. Anv
				V									+ X3T6	+			 	 					Remarks:		ssibilit
							<u>`</u>										 	 					<u>œ</u>	T	this po
				3-10									ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:										S 5 4 1A	Date	s. This serves as notice of this possibility
Time:	Г			5			ager			<u>30 b</u>	ocrature		Type	Hci	~					-			N 9:55		ccredited laboratories
Tum-Around Time:	Ctondord	Project Name		GAC	Project #:		Project Manager:			Sampler:	Samole Tenor		Type and #	3-10A	Seem					-		~	Received by:	Received by:	ontracted to other a
Charlent-Custody Record	Client: P.D. T. D. P. W.	SNIAL		2 4990	N 87413	`	2-3911		Level 4 (Full Validation)				Sample Request ID	CAC - Leed	GAC -Lead								Kakon)		If necessary, samples submitted to Hall Environmental may be subcontracted to oth
st.		ľ		ΰ	N	633-	632-	•	¥	_			<u>ິ</u>	5	Th								No Rest	sd by:	nitted to
of-Cu		ern.		Mailing Address: # 50 CR	Bloom Sield, NM	5-6.							Matrix	Hao	Hac								Kelinquished by:	Relinquished by	samples subn
Share	1124	15.3		I Address	Juna	# 505-	email or Fax#:505-	QA/QC Package:	ndard	litation AP	a EDD (Type)		Time	5:340 1020	5-2-10 1020	 	 						5-3-10 2:30	Time:	f necessary.
	Client:			Mailing	Ĝ	Phone #:	email c	QA/QC	Standard	Accreditation			Date	5:340	5-2-10			ĺ					5-3-10	Date:	

. ÷ <u>R</u>

	.>					с.			(N J	0 X) səldduB .	IA	-		-		<u> </u>		·							
-	HALL ENVIRONMENTAL ANALYSTS LABODATOD	2			1														 							ort.
	ENVIRONMEN	ζ	Ø				· · · · ·									-		ļ	ļ			 			: :	tical rep
i		2	Albuquerque, NM 87109	107	dr	÷		<u> </u>		100	'-ime2) 07:	70			+											e analy
i			WN	45-4		4		<i>,</i>			AOV) 803:		-	+	+	+						<u> </u>				d on the
	R I		rque,	505-345-4107	lequi	*	CB's	9 2 F	180		isitee9 18			+	-	+										notate
			www.riairerivicoinitiental.conti ins NE - Albuquerque, NM {	Fax 5		(*	05"20	0 ^{5°} b	ON ^{'8}	ON'	IO,F) anoir	1A	Î			<u> </u>		<u> </u>						r		clearly
	μŅ		Albi	LL.	Inaly	4				sle	təM 8 AAC	ы					1									will be
i I	HALL		NE N	975	A	·					o ANG) 018											·				d data
1	e z H		ww kins l	345-3							odieM) 80				_				L							Intracte
			4901 Hawkins NE	505-345-3975		40					odtaM) He															sub-cc
			4901	Tel. (8 57 5	•					TEX + MTE				ŀ			ĺ						rks:		y. Any
		ŧ	7		A 100					_	TEX + MTE		<u> </u>	-							·			Remarks	· ·	ssibilit
			<u>.</u>	<u> </u>	8				234															<u>ir</u>		this po
			0-1-0						November 201	~	HEAL No	<u></u>	4								•		-	Date Time	Date Time	lis serves as notice of
Time:	□ Rush		MONTH 14 C			ger:			し 立 で と の し し し し し し し し し し し し し	oeratüre 了,	Preservative Type													D 10:25		coredited laboratories. T
Turn-Around Time:	∯ Standard	Project Name:	GAC N			Project Manager:			On loe:	Sample Temperatüre	Container Type and #	3-16A	500 m											Received by:	Received by:	ontracted to other ac
Chice-of-Custody Record	Client: WesterN Refining		Mailing Address: 450 Cでで 4990	Bloomfield, NM 89413		email or Fax#: 505-632-39//		ALEVEL 4 (FUIL VAILUALIOIL)	□ Other		Matrix Sample Request ID	Had GAC Lead								· · · · · ·				Relinquismed by: References	Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
ha the old	Nester		Address:	outie	# 505	Fax#: So	ackage:	ation		(Type)	Time N	9:00 #	9:00 H											8	Time: Reli	iecessary, samp
<u>0</u>	Client:		Mailing,	Ble	Phone #:	email or	QA/QC Package:	Accreditation		□ EDD (Type)	Date	6-1-0	01-1-9											0		lf n

2 ity. J

	, 	≿								(N	, oi	r Bubbles ()	iA	1-			-							 	-		
Ş	ENVIRONMENT					4															 					troot	
×	EN	E S	ę	23							<u>\$1</u>	150 - 80	<u>.</u> دا	×	•	X		5								other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report	
	Σ	Ō	E 1	Env FOF 215 1103		B. 1						V-Ime2) 072	2		+	Ê	+	\uparrow	1							the ama	
	ō				Sup-345-4107							(AOV) 8092	:8	-			\uparrow				1					uo pe	
	Ë;			ynbia			8,8	PCB	128	08	/ se	oioitae9 180	8													y notat	
	22		www.raiicitviconiriteritai.com	infund	rax Vsis-		'os	¹⁷ Oc	- ² ,г)N'	^e ON	,IO,F) anoin	۷													ceart	
	ΞŞ				Anal∿							teM 8 AAO			ļ	ļ										A i∄w s	
	HALL				0.00					_		o AN9) 015		<u> </u>	ļ	 	ļ		ļ							edicat	
	H	5	ن چې د کې		0.00-040		L					DB (Method		<u> </u>			ļ						****			ontract	
	ו ריי		AQA1 Howkins NE			- 1.1	2001	1/8				PH Method				 										sub c	
			1001		- Ci.	ł									\mathbf{P}	· 	\square								arks:	ty. Am	
					د ۲۰۱۶ م	£						TIM + X3T			X	 	X								Remarks	-Hequissoo	
_		1		Τ		II			Τ							 									0		
																										otice o	
			_												وا	9	~	d	đ							u se se	
	3		0%0										6	6			•	Ĭ								Serv.	
			Ņ								i fi fii				,										Defe Defe	E S	
	🗆 Rush		QTR-2010						J			Preservative Type			1		3								evinene .	oraton	
gi gi			5						IS			sserva Type	Her	۲	HCL	ار ا	ACL	2				l	4	-	AC	ited lat	
L I	σ	ie s	S.			Manager.	J							AL		ALL		Jan H	·		-			<u> </u>	-	acored	
Turn-Around Time:	ndar	Project Name:	Q	#		Mar						Container Type and #	*	2	¥		ŧ	300							<u>s</u>	other	
A PE	sta Sta) diect	AC	Project :		Project	•					Contr	4-104-	1-500	4-V0A	1-Sound	4-VOA	Samo	_	-					Received	cted to	
E	T	LE_			1	<u>6</u>		<u> </u>	1				3	~		7	2		- 61						<u> </u>	poorti-	
77	R			M				ation)				t D													,	y be su	
Š	4	t r	ł	1hts				/alid				sent	E		Cad		5		J On						2	ital ma	
Zec Zec	Kuls	2	0			~		Full				Re	ちっして		20		LAG		9					-	mtado	ronner	
₹		Rehven	0324	AM.		391	ı.	A Level 4 (Full Validation)				Sample Request ID	1 1		<u>.</u>		0	Y	Tey blonk					-	B	alt Erwi	
50	. 5		~	11	416	2-		Ē				Sar	GAC		GRC		GRC		2						-0-1	2 2 2	
Sn	Refines Sulputer Inc	ie/a	Pa	i Ge	3	1.63		4]	her _		×			4	 -			<u>'</u>	-					wow shed by:	domitte	
Ch		Bloomfield	Mailing Address: #50	BloomBeld	505-632-4161	505-632-3911						Matrix	40											Relindvished hur	Relinquished	If necessary, samples submitted to Halt Environmental may be subcontracted to	
The second secon	J J	B/a	SSS:	13	Å									\square			5		-+	-+	-+-		+	<u> </u>		- 188 . - 128	
ų.	Ves		Addr			Fax	acka	dard	tation	ት	Ē	Time	5	Ņ.	<u>`</u>	\mathbf{N}	£€ (Time:	778 Time:	Stabel	
ပ	Client Western		lling		Phone #:	email or Fax#:	QA/QC Package:	C Standard	Accreditation		🗆 EDD (Type)	Date		7	-	-			-							15	
	່ວີ		Ma	ſ	£	5	8		Å0			۵ ا	7-20-10					1						Date:	1-10 Date:		

								(N -	10 Y) səlqqr	, B 1iA											li report.
HALL ENVIRONMENTAL		www.rialierivirolitrierial.com ns NF - Alhisquernue, NM 87109	505-345-4107	alysis Request :		S.R.S.	-1 79		(Pestició AOV) 8 /-im92)	0928											lotated on the analytics
			Fax 50	sis R	, (7					IO,न) sr				 								cleanty n
				P P				(1)		tem 8 A		L					 					ta will be
AL		4901 Hawkins NF	Tel. 505-345-3975	10.20 A						o ANG)				 	-			-+	-			acted da
I		v lawkin	5-345	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1						odteM)				、								ub-contra
		901 H	Cel. 50	100			••			podieM		×	X				 			ks:		Any su
	e F	4	- I							атм +) 				 	 	 				Kemarks:		ssibility
Turn-Around Time:	Project Name:	FAC MUTLY R-10-10			Project Manager:			- Circly	Sample Temperature: 3, AV	ative HEA No #	I ype to the second secon	3-104 Hc/ /	500ml - 1								Received by:	ocontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Client Western Ref. Ning		1655: 50 CR 4	BLOOMPIEL NN B7413	505-637-41	d	000		NELAP Other	EDD (Type)	Date Time Matrix Sample Request ID		8-170 9145 HD GAC-Lead	8-10-10 9:45 H20 " "						Date: Time: Relianuished hv.	10 3 i @	Date: Time: Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to oth

.

			www.hallenvironmental.com 4901 Hawkins NF - Alhimmental NM 87100		rei. 2000-2013 rax 300-2434 [U/		səjŪ\s) (082 F	(H) (H) (H) (H) (H) (H) (H) (H) (H) (H)	108 108 1002 k 1002 k 1008 k 1	The first of the f		X						Remarks:	······································	lifty. Any sub-contracted data will be deanly notated on the analytical renort
Tum-Around Time:	Standard D Rush	Project Name:	GAC MoNTULY 9-27-10			Project Manager.		BL			Container Preservative American Ameri American American A	3-10A HC1 1009052-1 X	1- 1-1 -1							ľ	If necessary, samples submitted to Hail Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the an
Crem-of-Custody Record			Mailing Address: #50 CP 4990	Bloomfield. NM BD#13	m	email or Fax#. 5 25-633-39//	QAVQC Package:	LO	D NELAP D Other	EDD (Type)	Date Time Matrix Sample Request ID	9-57-10 40 H2D GAC Lead	11 11 0-41 04 01 01-26-8					Date: Dationished to:	3.0	Date: Tame: Reinquished by:	If necessary, samples submitted to Hall Environmental may be subc

. •

.

		ENVIRONMENTAL VSTS I AROPATODV		Albuqueratie NM 87109	505-345-4107	Jest a set a set of the set of the				8	A0\ 되()	(AOV) 80828 2520 (Semi-Y 272 (Semi-Y) 272 (Semi-Y) 252 (S		×		X		X							ed on the analytical report.
-		HALL ENVIRONMENTAL ANALYSTS LAROPATOD	www hallenvironmental com	4901 Hawkins NE - Albuquerqu		Análysis	(*((1.4) (H)	oð t r PA als slø	TPH (Methoo EDB (Methoo B310 (PNA o Anions (F,Cl, Anions (F,Cl, B081 Pesticio													This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
				4901 Ha	Tel. 505	A TRANSPORT	۱۸)	uo si	6Ð)) 89 Нат	804 804	9TEX + XJT8 9TM + XJT8 9DM H9T	\times		X	-	××		×			Remarks:			possibility. Any sub-
	Turn-Around Time:	🖉 Standard 🗆 Rush	Project Name: 4 11 QRT	GAC-10-10-10-10	Project #:		Project Manager:			Sampler: Holf & Cunly		Container Preservative Type	3-10A Hcl -1	1-500 ml auter - 1	3-WA HC1 -2	1-50m ander - 2	3-WA HCI -3	1-50m/ amber - 3	2- VOA HCI -4			Received by: Date Time		Hecewood by: Date Time	conditional laborationes.
	ustody Record	Client WESTERN REFINING		50 CR 4990		632-416	email or Fax#: 525-633-391	ige:	Candard Standard Cevei 4 (Full Validation)	Accreditation	🗆 EDD (Type)	Matrix Sample Request ID	GAC-Lead	1210 Had GAC-Lead	Han GAC-LAG	IZN Had GAC-LAG	1220 Had GAC- inlet	1 1230 Had BAC- INLET	TAP ANK	-		Time: Revinquished by	Pate Time Belinvicted his		If necessary, samples submitted to Hail Environmental may be subcontracted to other at

						د بریر برید ۱۹۹۰ ۱۹۹۰ ۱۹۹۰ ۱۹۹۰ ۱۹۹۰			(N	r or) səlddu8 1	∀									 			
-0	HALL ENVIRONMENTAL	5	ç	5	·				Q	I.T.	BSIRE				<u> </u>						 			sub-contracted data will be clearly notated on the analytical report
	Σ	בֿ כ	F .	Albuquerque, NM 87109	1107						/-im92) 072				+	-		╞		 	 			he anal
	ō a		al.co	ZZ ZZ	345-4	lest					(AOV) 8092	8	1		-			1			· ·			ed on t
	R -		nenu	erque	505-345-4107	Kequesi	s,{	ЪСЕ	2808	/ SƏ	081 Pesticic	18				1				 				y notat
	Z		lion	inbno	Fax.	Vsis	⁺OS	'*Oc	' ^z ON'	^E ON	,IO,F) anoin	V												e clear
	ШŞ					Analysis					CRA 8 Met							ļ		 	 \square			a will b
			www.rialienvironmental.com	Ľ	505-345-3975						0 (PNA) 80					 		ļ		 	 			ted dat
	I			VKINS	345	1					DodieW) HQ			· ·						 	 _			pontrac
	••			4301 Hawkins INE	505	. (I		g/se			PH Method				\vdash			-		 	 			y sub-c
			Č,	430	Tel	5. e.					8TM + X <u></u> T						}			 	 	Remarks:		lty. An
i						`. 	(†2	08) :		+ 3	atm + xat		<u> </u>		<u> </u>			1			 	Ren No		possibil
	□ Rush		ALL LAN ME. M. O.				<u></u>		26	cites a sub-	Preservative Type	Hc/ -1	auber - 2									ALPAN, tabila Ine R	Date Time	edited laboratories. This serves as notice of this possibility. Any
Turn-Around Time	M Standard	Project Name:	(Jul 1 - 1 - 2 - 0	Project #:					Sampler:	Sample Temperati	Container P Type and #	3-104										M I M	Received by:	I ontracted to other accre
Cherry Docord	Client WESTERN REFINING		25:H50 CR 4997	Ø VI		η_{i}		KLevel 4 (Full Validation)	□ Other		Matrix Sample Request ID	5 H2D GK-Lead	H20 GAC-								Dalimentichad bur		Relinquished by:	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories.
	Client: We		Mailing Address: <i>it</i> 50	AL. O	Phono #	6	QAQC Package:	□ Standard	Accreditation	□ EDD (Type)	Date	11-31-102:55	11-31-10 2:55								Data:	9	Date: Time:	If necessar

		AALL ENVIKONMEN IAL ANAI YSTS I ARORATORY							(N	Y or) səldduð ir	/										sport.
, K			5	601	3	1. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-		8	510	DP0 8		X						 '		:	alyticat r
		ŻŻ		Alburnerual MM 87109	505-245-4107	Analysis Request 2	1		(AO/	/-im92) 0728	3	1						 			the an
	9	₿ 8		פוינע	245-	uest	5			(AOV) 80828	3										tted on
		ŧ.		eron.	505	Req		PCB's	8082	/ səp	8081 Pesticio	3					[-	1	¹ y nota
		ZĽ			Fay Fay	ysis'	(*	05'*00	' ^z ON'		Anions (F,Cl,					 					1	e clear
	L	HALL ENVI ANAI YSTS				Anal	á				CRA 8 Met	-		 			 	 	 			a will b
			, d		Tel 505-345-3975		ŧ 1	· · ·			0 AN9) 0168			 					 			ted dat
				4901 Hawkins NF	345-						EDB (Method Podiam) H91			 			 		 			ontract
	-	-1 [Hav	505-		(18	Sectors	~		PPH Method	-			-		 		 	• •		y sub-c
				4901			·				TEX + MTE	<u> </u>		 			 	 	 	arks:		ty. An
											atm + Xate			 			 		 	Remarks		ossibili
	[]					.е 	8							 					 	B		f this p
	Turn-Around Time:	🖌 Standard 🛛 Rush	Project Name:	GRC-MUTHY Dec 2010		.	Project Manager:			Sample Temperature	Container Preservative Type and # Type	3-wA HCI	1-500m Amber 1						1	Received by Date Time		bcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report
	Chan-of-Custody Record	Client WesterN Refining	·	Mailing Address:#50 CR4990	(Bloomfield, NM B7413	632-	email or Fax# 555-632-39//	QA/QC Package: □ Standard	Accreditation	D EDD (Type)	Date Time Matrix Sample Request ID	12-13-20 10:10 HSD GAC-Lead	GAC-1						Dates IIImos Ballanut the A	Q		If necessary, samples submitted to Hall Environmental may be subcontracted to oth