5} 18

WORKPLANS

Date: June 2005

AMARILLO, TX 921 North Bivins Amarillo, TX 79107 806-467-0607

FAX: 806-467-0622

<u>AUSTIN, TX</u> 13009 Dessau Road Suite A Austin, TX 78754 512-989-3428 FAX: 512-989-3487

MIDLAND, TX #9 East Industrial Loop Midland, TX 79701 432-522-2133 FAX: 432-522-2180

NEW BRAUNFELS, TX

707 N. Walnut Ave., Suite 208 New Braunfels, TX 78130 210-579-0235 FAX: 210-568-2191

TULSA, OK

1439 East 41st Street Tulsa, OK 74105 918-742-0871 FAX: 918-742-0876

HOBBS, NM

318 East Taylor Street Hobbs, NM 88240 505-393-4261 FAX: 505-393-4658

<u>Environmental:</u> <u>Biologists</u> <u>Chemists</u> Corrective Action <u>Project Managers</u>

Star Walt

Same Se

100

<u>Engineers</u> <u>Geologists</u> <u>Scientists</u>

Toll Free: 866-742-0742 www.llano-permian.com June 24, 2005

Mr. Edwin E. Martin New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Soil Remediation Work Plan Plains Pipeline, L.P.
8" Moore to Jal #1 (Rcf #2002-10270) SE/4 NW/4 of Section 16, Township 17 South, Range 37 East Lea County, New Mexico NMOCD Ref. 1R-0380

Mr. Martin:

The 8" Moore to Jal #1 release site is located approximately 9.1 miles southeast of Lovington in Lea County, New Mexico, at an elevation of approximately 3,770 feet above mean sea level. The release occurred on property owned by the State of New Mexico and is utilized as pasture land. The site is located in a rural area within the West Lovington Oil Field, with no residences or surface water within a 1,000-foot radius of the facility.

In October 2002, a release of approximately 200 barrels of crude oil, of which there was no recovery, occurred at the site due to corrosion (internal and/or external) of the pipeline. Approximately 8,000 square feet (ft^2) of surface area was impacted by the release. Surficial soil saturated by the release was excavated and transported to a New Mexico Oil Conservation Division (NMOCD) approved land farm for treatment.

The details of the soil remediation and sampling activities are described in the attached Soil Remediation Work Plan. If you have any questions feel free to contact me at (505) 441-4835 or by E-mail at lsanchez@llano-permian.com. Thank you very much.

LLANO-PERMIAN ENVIRONMENTAL

Louis B. Sanchez Project Manager

Cc: Camille Reynolds, Plains All American Pipeline, L.P. Jeff Dann, Plains All American Pipeline, L.P.

AMARILLO, TX

An other

a circle a

Star Andrew

5.225.4

STATE OF

al man

1 (1997) I

1912-191 +

10.9-12-1

A. 1. 18.

C. LAND HAS

2 . VE RISA

921 North Bivins Amarillo, TX 79107 806-467-0607 FAX: 806-467-0622

AUSTIN, TX

13009 Dessau Road Suite A Austin, TX 78754 512-989-3428 FAX: 512-989-3487

MIDLAND, TX #9 East Industrial Loop Midland, TX 79701

432-522-2133 FAX: 432-522-2180

NEW BRAUNFELS, TX

707 N. Walnut Ave., Suite 208 New Braunfels, TX 78130 210-579-0235 FAX: 210-568-2191

TULSA, OK

1439 East 41st Street Tulsa, OK 74105 918-742-0871 FAX: 918-742-0876

HOBBS, NM

318 East Taylor Street Hobbs, NM 88240 505-393-4261 FAX: 505-393-4658

<u>Environmental:</u> <u>Biologists</u> <u>Chemists</u> Corrective Action <u>Project Managers</u>

Engineers Geologists Scientists Toll Free: 866-742-0742

www.llano-permian.com

8" Moore to Jal #1 Soil Remediation Work Plan

Plains Ref: 2002-10270 SE¼ of the NW¼ of Section 16, Township 17 South, Range 37 East Lea County, New Mexico

~9.1 Miles Southeast (136°) of Lovington, Lea County, New Mexico Latitude: N32° 50' 13.8" Longitude: W103° 15' 25.3"

June 2005

Prepared For:

ALL AMERICAN PIPELANE, L.P. 333 Clay Street, Suite 600 Houston, TX 77002

Prepared By: Llano-Permian Environmental 318 East Taylor Street Hobbs, New Mexico 88240 **Distribution** List

Name	Title	Company or Agency	Mailing Address	e-mail
Ed Martin	Environmental Engineer	NMOCD	1220 South St. Francis Drive Santa Fe, NM 87505	emartin@state.nm.us
Larry Johnson	Environmental Engineer	NMOCD	1625 French Dr. Hobbs, NM 88231	lwjohnson@state.nm.us
Camille Reynolds	Remediation Coordinator	Plains All American Pipeline	3112 West U.S. Hwy 82 Lovington, NM 88260	cjreynolds@paalp.com
Jeff Dann	Senior Environmental Specialist	Plains All American Pipeline	P. O. Box 4648 Houston, TX 77210-4648	jpdann@paalp.com
Daniel Bryant	Environmental Specialist	Plains All American Pipeline	P. O. Box 3119 Midland, TX 79702-3119	dmbryant@paalp.com
File		LPE	318 East Taylor Street Hobbs, New Mexico 88240	lsanchez@llano-permian.com

NMOCD - New Mexico Oil Conservation Division LPE - Llano-Permian Environmental

A STATE

1. 28 Acres

Starting Starting

States and

A Planter?

100 m 100

Contraction of the second

No 240

語言の語を

Coloradore S

a kakin

W. S.L.

The second

5.20 M

語をあり

1995 - 1945

SOILS REMEDIATION WORK PLAN

Introduction

The state of the s

2. 2. 1. 1. 2. 2. 2.

SHOT NET

R. . . . W

10.0

The 8" Moore to Jal #1 release site is located approximately 9.1 miles southeast of Lovington in Lea County, New Mexico, at an elevation of approximately 3,770 feet above mean sea level. The release occurred on property owned by the State of New Mexico and is utilized as pasture land. The site is located in a rural area within the West Lovington Oil Field, with no residences or surface water within a 1,000-foot radius of the facility (Figure 1).

In October 2002, a release of approximately 200 barrels of crude oil, of which there was no recovery, occurred at the site due to corrosion (internal and/or external) of the pipeline. Approximately 8,000 square feet (ft^2) of surface area was impacted by the release. Surficial soil saturated by the release was excavated and transported to a New Mexico Oil Conservation Division (NMOCD) approved land farm for treatment.

In an effort to delineate the extent of impacted soil at the site, six (6) soil borings were advanced, by Environmental Plus, Inc. (EPI), at the site to depths ranging from 15 to 60 feet below ground surface (bgs) in October 2002 (Figure 2). Field analysis of soil samples collected at discreet intervals indicated organic vapor concentrations exceeded 100 parts per million (ppm) at least to a depth of 55 feet bgs in soil boring BH-1 (Table 1).

Excavation activities commenced at the site by EPI in June 2003 in order to remove soil impacted above the New Mexico Oil Conservation Division (NMOCD) remedial thresholds. Approximately 2,800 cubic yards of soil were excavated and run through a screener to separate the rock from the soil. After the soil and rock had been separated, the soil (approximately 950 cubic yards) was spread out into two land treatment areas and the rock was stockpiled on site. Upon the completion of excavation activities, composite samples were collected from the north sidewall, south sidewall, east sidewall, west sidewall and bottom of the excavation to document the successful removal of soil impacted above NMOCD remedial thresholds (Figure 2). Laboratory analysis of the samples indicated soil impacted above the NMOCD remedial thresholds remained in all sampling locals, with the exception of the west sidewall (Table 2).

EPI installed one (1) monitor well in July of 2004, one (1) monitor well in September of 2004, and three (3) monitoring wells in October of 2004 (Figure 2). Soil samples were collected from MW-1, 2, 3 and 4 at various horizons during the boring process of the well installation. No soil samples were collected during the boring of MW-1A due to its close proximity to MW-1. The majority of the samples collected exceeded the NMOCD thresholds for the various analytes (Table 1).

As a result of the presence of phase separated hydrocarbons (PSH) in each monitoring well EPI performed PSH recovery activities from September of 2004 to April of 2005. In May of 2005, Llano-Permian Environmental (LPE) took over the PSH recovery activities. In an effort to accelerate the PSH recovery at the 8" Moore to Jal #1 site, LPE began bi-weekly PSH recovery upon commencement of PSH recovery activities in May 2005. Approximately seventy (70) gallons of PSH has been recovered on a weekly basis since the middle of May 2005.

The land treatment areas were sampled by EPI on December 15, 2004, in conjunction with the weekly site visit. Sampling results indicated contaminant levels in the land treatment area soil were above the NMOCD remedial thresholds for this site (Table 3). The land treatment areas have been turned to aerate the soils and accelerate the TPH degradation since the last sampling event and will continue until the implementation of the restoration activities that are generally described in the "Restoration Activities" section of this work plan. Sampling of the land treatment areas is slated for late June of 2005.

Excavation Activities

5. 4 8 A 3

ELC-MAC

1. 20. 2

1. 1. A.

1. 1. S. 1.

C. YEAR

5843 X.

Sec. 2.

1. S. C.

Due to the evidence of the excavation confirmation composite sampling (Table 2), the east sidewall of the excavation will be cut back an additional two feet (2'), and the north and south sidewalls will be cut back an additional one foot (1') (Figure 4). At that point a photo ionization detector (PID) will be used to determine if any portion of the three (3) sidewalls have remaining contaminated soil that requires excavation. If and when areas of concern are identified with the PID, they will be excavated until an acceptable PID reading (<100 ppm) is established in that area. The soils removed from the excavation will be placed in one of the land treatment areas. Large rocks removed from the east sidewall will be placed in the on-site rock pile.

Once no areas of concern are detected with the PID on the excavated sidewalls, then grab confirmation samples will be collected as outlined in the "Sampling Activities" section of this work plan. No excavation will be performed on the excavation floor or west side wall. Prior sampling activities have shown the west sidewall to be below the NMOCD Remedial Threshold of 100 mg/kg. Additional grab confirmation samples will be collected on the excavation floor as outlined in the "Sampling Activities" section of this work plan.

Sampling Activities

Confirmation grab samples will be collected on the east, north and south sidewalls, as well as the excavation floor after the completion of excavation activities on the east, north and south sidewalls (Figure 3). The confirmation samples on the excavation floor will be grab samples collected from a predetermined grid. The grid will be laid out as two (2) rows of six (6) samples running the length of the excavation. The samples in each row will be fifty feet (50') apart. The end samples will be thirty-five feet (35') from the north and south sidewalls.

The confirmation samples collected from the north, east, and south sidewalls will also be grab samples. On the east sidewall, four (4) grab confirmation samples will be collected along the length of the excavation. The sampling locations will be approximately one hundred fifteen feet (115') apart with the first and last samples being collected at the corner of the north and south sidewalls respectively. The general sampling locations along the east sidewall will be screened in the field with the PID. Following the field screening activities the east sidewall samples will be collected from the location of the maximum PID reading or at the base of the excavation wall if no PID readings are detected.

The north and south sidewalls will each have one (1) grab confirmation sample collected in addition to the first and last sample of the east sidewall. The north and south sidewalls will be

screened in the field with the PID. Following the field screening activities the additional north and south sidewall samples will be collected from the location of the maximum PID readings or on the west end at the base of the excavation sidewall if no PID readings are detected.

A total of eighteen (18) confirmation grab samples will be collected throughout the excavation. Each sample collected will be analyzed for benzene, toluene, ethylbenzene, and xylene (BTEX) by SW-846 Method 8021, and total petroleum hydrocarbons (TPH) by SW-846 Method 8015. Each sample will be collected using new disposable sampling equipment for each sample to prevent cross contamination. Any non-disposable sampling equipment that is used will be stainless steel, and will be decontaminated using a phosphate free surfactant and de-ionized water before the collection of each sample.

This section is submitted as a finalized sampling plan following the excavation activities, contingent on the approval of the NMOCD. Any changes requested by the NMOCD will be incorporated into the sampling activities of this work plan prior to implementation.

Soil Disposal Activities

No disposal activities are proposed at this time. All soils onsite will be placed back in the excavation, on top of the twelve millimeter (12 mill) black-on-black rock grade poly ethylene liner, as backfill. These activities are outlined in the "Restoration Activities" section of this work plan.

Modeling Activities

Prior to backfill activities a soil migration model will be run to evaluate the migration characteristics of the soils underneath the proposed liner. The installation of the liner is described in the "Restoration Activities" section of this work plan for illustration purposes. Current, historical, and the new data collected as part of this work plan will be utilized and evaluated in the model.

A seasonal compartment model, which simulates long-term pollutant fate and migration in the unsaturated soil zone, will be utilized to describe the following components of the site specific soil column which extends from the ground surface to the ground-water table.

- Pollutant concentrations and masses in the soil
- Pollutant migration to ground water.

The model will estimate all the above components on a monthly basis for 999 years of simulation time to perform a long-term leaching study. The following pollutant fate processes will be accounted for: Volatilization, Adsorption, Cation Exchange, Biodegradation, Hydrolysis, and Complexation.

Restoration Activities

The second

a to a state

1. A. X.

Same Baker

198.20 2

1. 14 . 25 . 10

10. 1 19. A

12 . A. L.

1. 250. 4

Prior to the initiation of the restoration activities, MW-1 will be plugged and abandoned according to the guidelines described by Mr. Edwin Martin in his April 14, 2005 letter concerning the recommendation in the 2004 Annual Monitoring Report. MW-1A will be vertically extended to a level above the top of the excavation, and the top of casing will be resurveyed. With the monitoring well extended to a level accessible after the backfill activities, the bottom of the excavation will be filled with an even six inch (6") layer of sand. A twelve millimeter (12 mill) black-on-black rock grade polyethylene liner will then be placed on the sand covering the base of the excavation. A small hole will be cut through the liner to encompass MW-1A which will be left in the excavation. Clay packing material will be utilized to seal the opening in the liner around the monitor well casing. An additional six inch (6") layer of sand will be placed on top of the liner.

With the poly liner in place, backfill of the excavated materials will begin. A layer of the rock material will first be carefully placed back in the excavation. Then a layer of the soils from the land treatment area will be placed on top of the first rock layer. The two layers will then be properly compacted. This alternating of layers and compacting activities will continue to the top of the excavation taking great care to insure the integrity of MW-1A and the pipeline. Only soils, no rock, will be place in the proximity of either the pipeline or MW-1A. Clean backfill will be used in during the backfill activities as needed.

Conclusion

Prior to any site restoration activities, the results of the additional excavation activities and confirmation soil sampling activities, as well as the modeling exercise will be presented to the NMOCD. Upon concurrence from the NMOCD that all soils activities are complete, a more detailed site restoration plan will be prepared and submitted to the NMOCD. The restoration activities presented in this plan are for informational purposes only. Soil aeration activities in the land treatment areas will continue until such time that the restoration activities commence.

Signatures

A BOAT Y

3. 5ah

NUT STOL

1. 2. 1. 1.

2. 1. A.

S. 25 ...

Para of

of Kinese

A Lat Soil

S 124 & 24

1. N. W. A.

A DOM T

Acres 143 1

20 1 632

125 - 12 - 1

Written By:

Louis B. Sanchez Jr. B.S Project Manager Llano-Permian Environmental

Reviewed By:

1ang C

Terry James B.S., M.S. Senior Project Manager Llano-Permian Environmental

Figures

14 25 % .

NY LAND

N. Barres

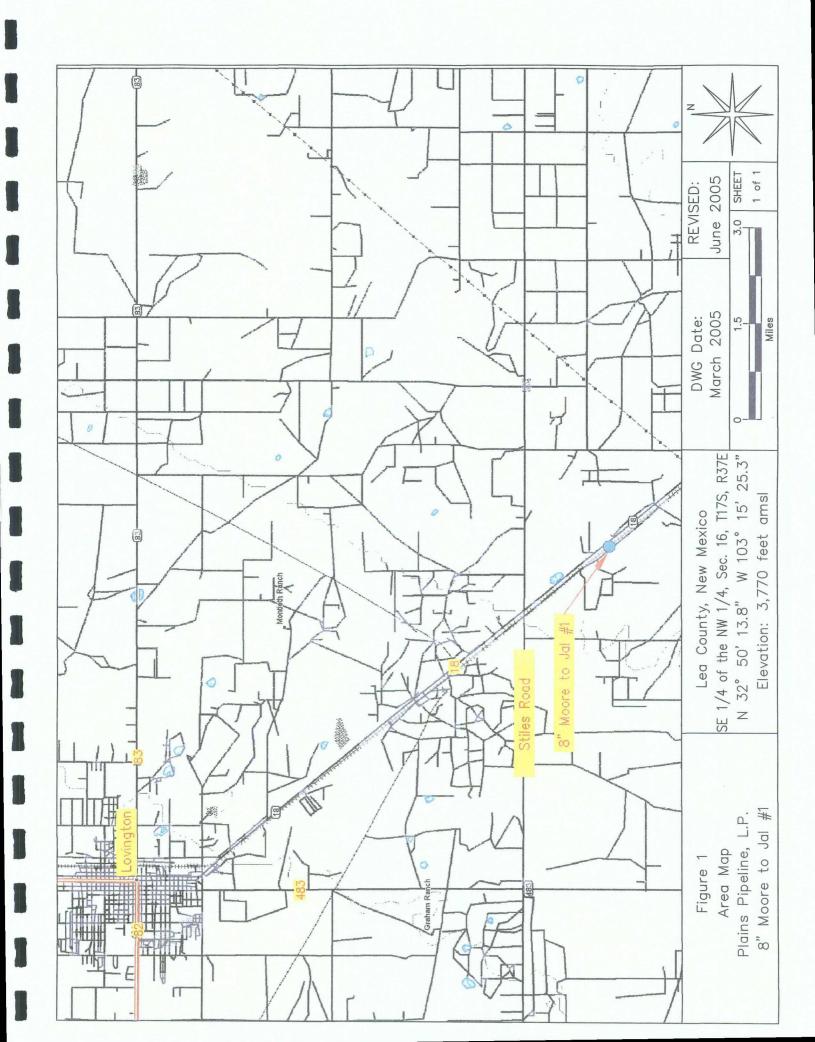
1. 20 1 2 m

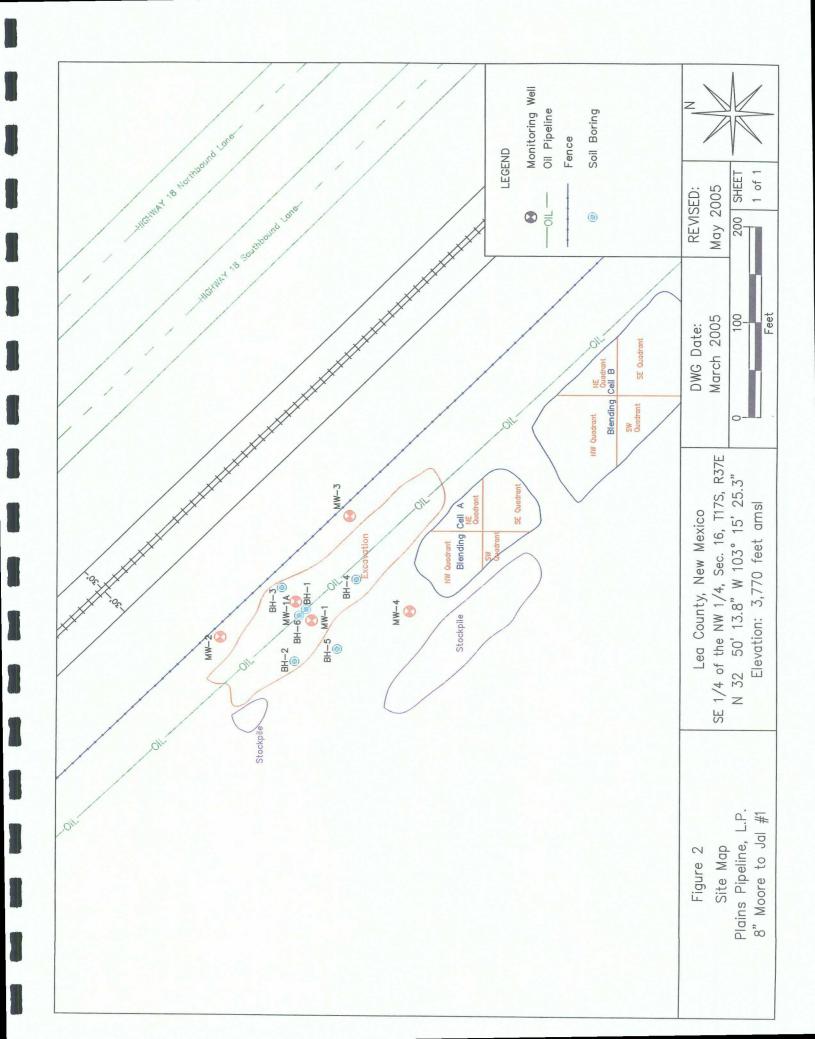
at the second

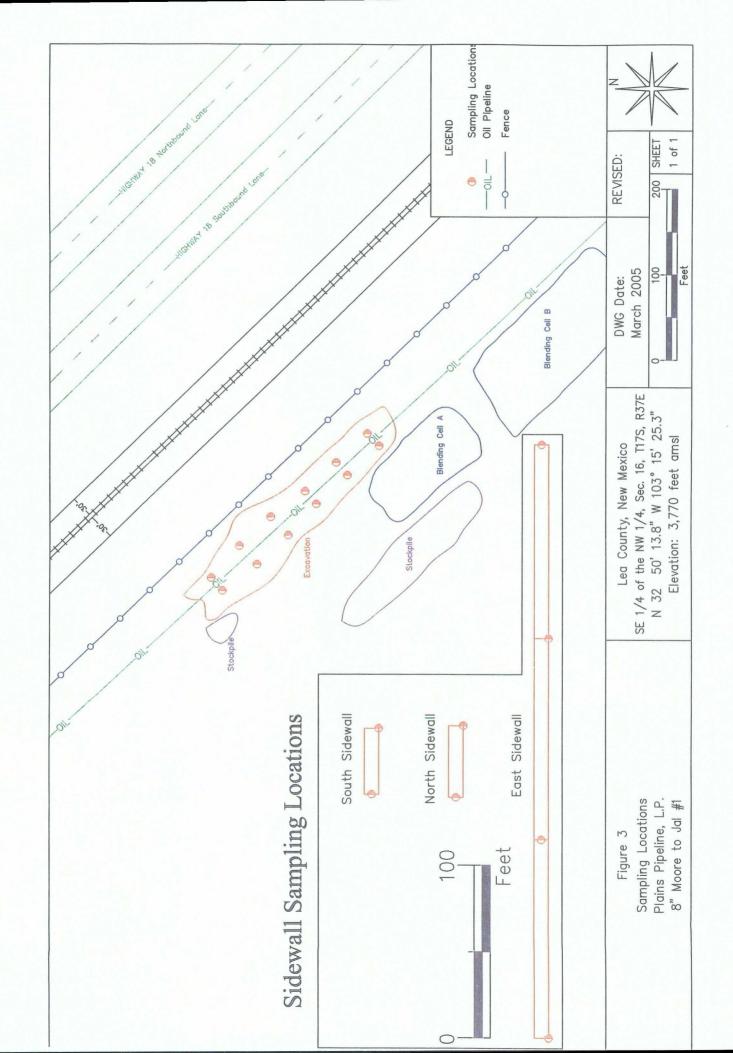
A Marine

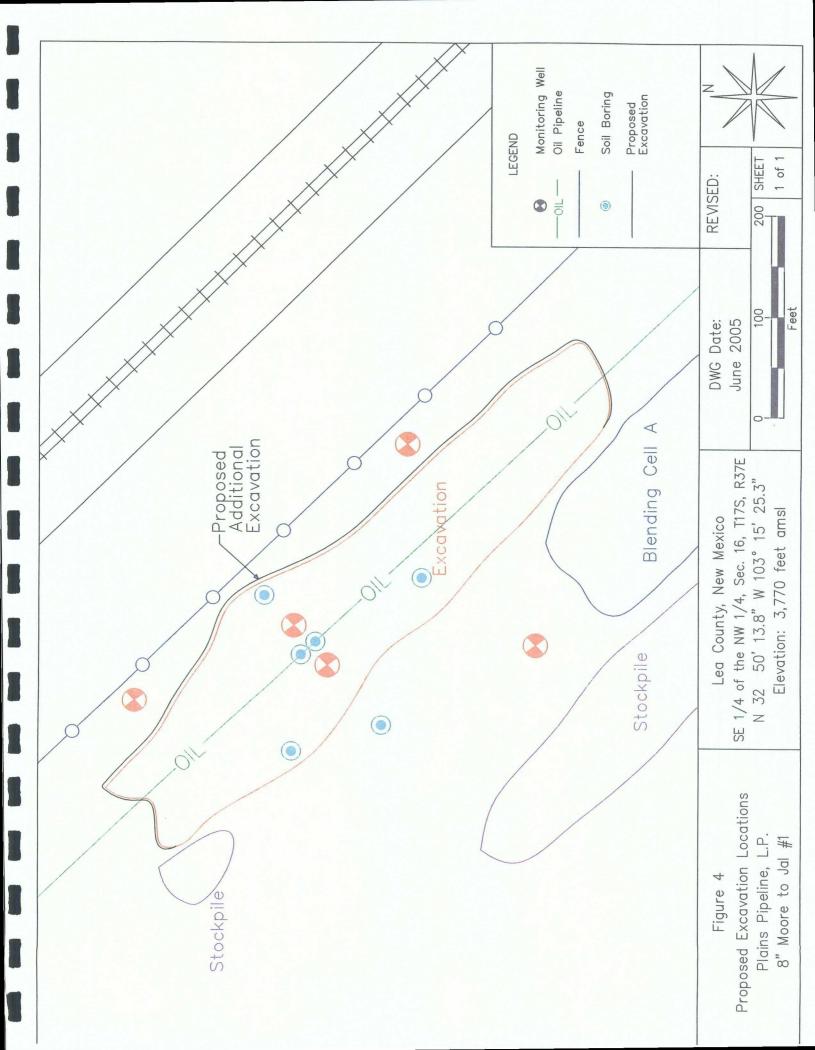
a south a line of the

1 90 178.


2 40 02


States of


1000


A. MARINE

100 - 20 - 24 200 - 20 - 24 200 - 20 - 20 - 24

AL 6 3 34 20. 2. 20. 1 200 17 24 John 17 24 18. A. 1. A. 1. 1 7 A ME 1.28 28.4 AND THE REAL (Arcark) the states 4.03.2 % 19. C. C. A. A. Eak the start

Tables

.

		NIMUS	SUMMARY OF	ENVIRO	DNMENT	AL BOR	ING RES	OF ENVIRONMENTAL BORING RESULTS (SOIL)	<u>)IL)</u>			
	A	lains Al	l America	ın Pipelin	e, LP 8'	" Moore t	0 Jal #1 -	Plains All American Pipeline, LP 8" Moore to Jal #1 - Ref #2002-10270	-10270			
Sample ID	Sample Date	Soil Boring	PID Readings	Benzene	Toluene	Ethyl . benzene	m,p- Xylenes	o-Xylene	Total BTEX	TPH (as gas)	TPH (as diesel)	Fotal TPH
		0	(mdd)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
SE8M102302BH1 (5-7)			695	29.7	168	88.6	151	59.2	497	6810	5950	12760
SE8M102302BH1 (10-12)			505	35.9	256	142	227	89.1	750	11400	9960	21360
SE8M102302BH1 (15-17)			306	19.8	241	165	225	92.1	743	9000	9220	18220
SE8M102302BH1 (20-22)			1,350	38.7	290	150	217	85.2	781	9450	8140	17590
SE8M102302BH1 (25-27)			1,223	94.6	500	251	359	142	1,347	14400	13400	27800
SE8M102302BH1 (30-32)	73 Oct 07	ри 1	682	114	342	174	285	109	1024	16600	10400	27000
SE8M102302BH1 (35-37)	70-100-07		510	62.9	302	157	292	113	929.9	16800	17400	34200
SE8M102302BH1 (40-42)			1,583	32	153	86.5	164	68.7	504.2	8440	11500	19940
SE8M102302BH1 (45-47)			384	30.2	210	118	207	82.2	647.4	8900	8180	17080
SE8M102302BH1 (50-52)			589	159	572	255	429	169	1584	20800	12700	33500
SE8M102302BH1 (55-57)			485	285	809	341	563	223	2221	40400	25200	65600
SE8M102302BH1 (60-62)			NA	449	1300	689	1180	496	4114	103000	79500	182500
SE8M102402BH2 (5-7)			1.6	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
(24-Oct-02	BH-2	2.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SE8M102402BH2 (15-17)			3.1	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	<5	<10
SE8M102402BH3 (5-7)			1.6	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	⊲5	<5	<10
SE8M102402BH3 (10-12)	24-Oct-02	BH-3	2.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	Ş	Ş	<10
SE8M102402BH3 (15-17)			1.3	<0.02	<0.02	<0.02	<0.02	<0.02	<0.1	<5	Ş	<10
SE8M102402BH4 (5-7)			46.4	191	628	300	374	151	1644	17100	10900	28000
SE8M102402BH4 (10-12)			225	175	494	270	395	160	1494	22800	11900	34700
SE8M102402BH4 (15-17)	24-Oct-02	RH-4	3.3	NS	NS	NS	NS	SN	NS	NS	NS	NS
SE8M102402BH4 (20-22)	70-100-17		NA	76.2	296	135	262	100	869.2	14700	10400	25100
SE8M102402BH4 (25-27)			3.0	NS	NS	NS	NS	SN	NS	NS	NS	NS
SE8M102402BH4 (30-32)			NA	140	442	228	420	163	1393	20600	15800	36400

States -

Llano-Permian Environmental 318 East Taylor Street, Hobbs, New Mexico 88240

Phone: 505/393-4261, FAX: 505/393-4658

Table 1

All Reality

a weeks

S. 20 1. 184

a Kala

	_		14900 30000	<2 <10	<5 <10	<5 <10	<5 <10	<5 <10	<5 <10	NA NA	NA NA	3,950 8,160	NA NA	NA NA	NA NA	6,450 14,200	NA NA	NA NA		NA NA	NA NA	2,870 5,150	<10.0 < <10.0	NA NA	NA NA	NA NA	~	NA NA		9,390 17,900	NA NA		17.4 17.4	NA NA	
NS	9040	29500	15100	ŝ	<u>ج</u>	\$	<5	<5	<5	NA	NA	4,210	NA	NA	NA	7,710	NA	NA	NA	NA	NA	2,280	 		NA	NA	<10.0	NA	NA	8,550	NA	NA	6.86 ⁴	NA	
NS	715.1	1999	1076.6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	NA	131	NA	NA	NA	438	NA	NA	NA	NA	NA	80.2	<0.125	NA	NA	NA	<0.125	NA	NA	1,140	NA	NA	<0.125	NA	
NS	55.5	196	136	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA	NA	15.4	NA	NA	NA	45.5	NA	NA	NA	NA	NA	9.56	<0.0250	NA	NA	NA	<0.0250	NA	NA	105	Ϋ́Α	NA	<0.0250	NA	
NS	157	486	347	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA	NA	34.3	NA	NA	NA	94.5	NA	NA	NA	NA	NA	20.0	<0.0250	NA	NA	NA	<0.0250	NA	NA	308	NA	NA	<0.0250	NA	
NS	93.6	344	176	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA	NA	23.3	NA	NA	NA	74.1	NA	NA	NA	NA	NA	13.9	<0.0250	NA	NA	NA	<0.0250	NA	NA	158	NA	NA	<0.0250	NA	
NS	291	749	347	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA	NA	43.6	NA	NA	NA	144	NA	NA	NA	NA	NA	25.1	<0.0250	NA	NA	NA	<0.0250	NA	NA	434	NA	NA	<0.0250	NA	
NS	118	224	70.6	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	NA	NA	14.6	NA	NA	NA	80.0	NA	NA	NA	NA	NA	11.6	<0.0250	NA	NA	NA	<0.0250	NA	NA	139	NA	NA	<0.0250	NA	
1.7	NA	3.0	1.3	0.0	NA	NA	NA	NA	NA	2,982	2,565	1,574	1,558	1,160	1,049	927	1,125	1,227	2,124	710	906	1.543	62.2	59.8	68.4	53.7	73.3	224	1,838	875	800	12.1	100	40.3	
BH-4	con't			BH-5				BH-6								MW-1											MW-2							MW-3	
74-0-10	70 100 17			25-Oct-02				25-Oct-02								26-Jul-04											23-Oct-04 MW-2							24-Oct-04 MW-3	-
SE8M102402BH4 (35-37)	SE8M102402BH4 (50-52)	SE8M102502BH5 (5-7)	SE8M102502BH5 (10-12)	SE8M102502BH5 (15-17)	SE8M102502BH5 (25-27)	SE8M102502BH5 (35-37)	SE8M102502BH6 (5-7)	SE8M102502BH6 (10-12)	SE8M102502BH6 (15-17)	2002-10270 (10-12)	2002-10270 (15-17)	2002-10270 (20-22)	2002-10270 (25-27)	2002-10270 (30-32)	2002-10270 (35-37)	2002-10270 (40-42)	2002-10270 (45-47)	2002-10270 (50-52)	2002-10270 (55-57)	2002-10270 (60-62)	2002-10270 (65-67)	2002-10270 (70-72)	MW-2 (20-25)	MW-2 (25-30)	MW-2 (30-35)	MW-2 (35-40)	MW-2 (40-45)	MW-2 (45-50)	MW-2 (50-55)	MW-2 (55-60)	MW-2 (60-65)	MW-3 (15-20)	MW-3 (20-25)	MW-3 (25-30)	

NA TRANSPORT All Marine NEW ROAD 14.2 M To Block Party 記事

- 200 T - 2 - 4

of the state

MW-3 (40-45)			216	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3 (45-50)		1 C 1111	350	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3 (50-55)	24-Oct-04 MW -3	M M	1,653	0.226	2.97	2.97	6.64	2.59	15.4	481	1,100	1,580
MW-3 (55-60)			534	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-3 (60-65)		•	740	139	252	107	159	58	715	4,930	5,790	10,720
MW-4 (15-20)			153	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.125	<10.0	7.84^{4}	<10.0
MW-4 (20-25)		.	18.3	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4 (25-30)		.	155	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4 (30-35)		·'	120	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4 (35-40)		•	67.3	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4 (40-45)	22-Oct-04 MW-4	MW-4	254	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4 (45-50)		L	186	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4 (50-55)		L	249	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-4 (55-60)		L	820	205	460	187	328	127	1,310	9,970	11,100	21,100
MW-4 (60-65)		·	596	NA	ΝA	AN	ΨN	NA	NA	NA	NA	NA
MW-4 (65-70)		•	447	0.295	0.253	0.0567	0.115	0.0419	0.762	81.9	165	247
NMOCD Remedial Thresholds	sholds			10				and the second	50	and the second of the second sec		100

A CARGO

303

A CARL

12. 20. 1

Section.

11

And and

不過於第

19. J. J.

and the second

dia at the

のない

¹ Bolded values are in excess of the NMOCD Remediation Thresholds ² NA : Not Analyzed ³ NS : No Sample Recovery

⁴ Detected, but below the Reporting Limit; therefore, result is an estimated concentration (CLP-J Flag).

ながあり States.

1. A. 164

No.

States.

128-189

の言語

Llano-Permian Environmental 318 East Taylor Street, Hobbs, New Mexico 88240 Phone: 505/393-4261, FAX: 505/393-4658

SUMMARY OF EXCAVATION ANALYTICAL RESULTS (SOIL) Table 2

Plains All American Pipeline, LP. - 8" Moore to Jal #1 - Ref #2002-10270

Analysis (mg/kg) (ppm) (mg/kg) (ppm) (mg/kg) (ppm) <25 1 NA 0.082 1 1 NA 0.025 1 NA 0.025 NA 0.025 NA 0.025 NA 0.035				Field PID	Benzene	Toluene	Ethylbenzene	Ethylbenzene m,p-Xylenes	o-Xylene	Total BTEX	HdT	HdT	Total TPH
I3-Mar-02 North Sidewall (ppm) (mg/kg) 13-Mar-02 Ramp <25 13-Mar-02 Ramp <25 13-May-02 Stockpile <15 <25 17-May-02 Bottom -3' <25 17-May-02 Bottom -3' <25 25-Nov-03 West Sidewall NA <0.025 25-Nov-03 Composite NA <0.082 25-Nov-03 Composite NA <0.025 25-Nov-03 South Sidewall NA <0.025 25-Nov-03 Composite NA <0.025 25-Nov-03 Bottomhole NA <0.025		mple Date	Sample Location	Analysis			•	•			(as gasoline)	(as diesel)	
13-Mar-02 North Sidewall ~25 13-Mar-02 Ramp ~25 13-May-02 Stockpile ~1 17-May-02 Bottom -3' ~25 17-May-02 Bottom -3' ~25 25-Nov-03 West Sidewall NA ~0.025 25-Nov-03 Composite NA ~0.025 25-Nov-03 South Sidewall NA ~0.025 25-Nov-03 Composite NA ~0.025 25-Nov-03 South Sidewall NA ~0.025 25-Nov-03 Bottomhole NA ~0.025				(mdd)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
13-Mar-02 Ramp <25		3-Mar-02	North Sidewall		<25	937	3,590	4,410	2,140	11,077	224	545	769
13-May-02 Stockpile <1	$\left\{ - \right\}$	1-Mar-02	Ramp		<25	<25	<25	<25	<25	<125	<10	<10	<10
17-May-02 Bottom -3' ~25 25-Nov-03 West Sidewall NA ~0.025 25-Nov-03 Composite NA ~0.025 25-Nov-03 East Sidewall NA ~0.082 25-Nov-03 Composite NA ~0.025 25-Nov-03 South Sidewall NA ~0.025 25-Nov-03 North Sidewall NA ~0.025 25-Nov-03 Bottomhole NA 0.235	$\left \right $	1-Mav-02	Stockpile		V	⊽	∠	V	<ا	NA	NA	NA	NA
25-Nov-03West Sidewall CompositeNA<0.02525-Nov-03CompositeNA<0.025	┢	⁷ -May-02	Bottom -3'		<25	<25	<25	<25	<25	<125	<10	<10	<10
25-Nov-03 East Sidewall NA 0.082 25-Nov-03 Composite NA 0.082 25-Nov-03 South Sidewall NA <0.025		5-Nov-03	West Sidewall Composite	NA	<0.025	<0.025	<0.025	0.040	<0.025	0.040	<10.0	74.2	74.2
25-Nov-03South SidewallNA<0.02525-Nov-03North SidewallNA<0.025		5-Nov-03	East Sidewall Composite	NA	0.082	0.679	0.558	1.14	0.423	2.88	144	2,420	2,564
25-Nov-03North SidewallNA<0.025CompositeNA<0.025		5-Nov-03	South Sidewall Composite	NA	<0.025	<0.025	<0.025	0.078	<0.025	0.078	<10.0	144	144
25-Nov-03 Bottomhole NA 0.235		5-Nov-03	North Sidewall Composite	NA	<0.025	0.179	0.197	0.577	0.230	1.18	49.1	317	366
Composite		5-Nov-03	Bottomhole Composite	NA	0.235	0.992	0.500	1.15	0.543	3.42	175	9,240	9,415
NMOCD Remedial Thresholds 10	NMOCD Remed	lial Thresh	olds		10					50			100

¹ Bolded values are in excess of the NMOCD Remediation Thresholds ² NA : Not Analyzed ³ NS : Not Sampled ⁴ Detected, but below the Reporting Limit; therefore, result is an estimated concentration (CLP-J Flag).

			Sum	mary of Land 8" Moore	Treatment Ai to Jal #1 - Ref	<u>nalytical R</u> (#2002-10	<u>cesults (S</u> 270	<u>(ii)</u>		
Sample Location	Sample Date	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylene	Total BTEX	TPH (as gasoline)	TPH (as diesel)	Total TPH
		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Northeast Quadrant of Cell A	15-Dec- 04	NA	NA	ΥN	NA	NA	NA	<5	1,310	1,310
Southeast Quadrant of Cell A	15-Dec- 04	NA	NA	NA	NA	NA	NA	° ° ∕	664	664
Southwest Quadrant of Cell A	15-Dec- 04	NA	NA	NA	NA	NA	NA	\$	542	542
Northwest Quadrant of Cell A	15-Dec- 04	NA	NA	NA	NA	NA	NA	\$	987	987
Southeast Quadrant of Cell B	15-Dec- 04	NA	NA	NA	NA	NA	NA	Ŷ	1,140	1,140
Southwest Quadrant of Cell B	15-Dec- 04	NA	NA	NA	NA	NA	NA	\Diamond	1,470	1,470
Northeast Quadrant of Cell B	15-Dec- 04	NA	NA	NA	NA	NA	NA	\diamond	1,240	1,240
Northwest Quadrant of Cell B	15-Dec- 04	NA	NA	NA	NA	NA	NA	Ŷ	1,170	1,170
Remedial Thu	resholds	10				-	50			100
¹ Bolded values are in excess of ² NA : Not Analyzed	f the NMOCD	Remediation	Thresholds	³ NS : Not Sample ⁴ Detected, but be	ed low the Reporting	Limit; therefor	e, result is a	m estimated co	mcentration	(CLP-J Flag).
	Sample LocationLocationLocationNortheast Quadrant of Cell ASoutheast Quadrant of Cell ASouthwest Quadrant of Cell BSouthwest Quadrant of Cell BSouthwest Quadrant of Cell BNorthwest Quadrant of Cell B	Imple IDSample LocationSample DateNE-ANorthcast Location15-Dec-NE-ANorthcast Quadrant of Cell A15-Dec-SE-AQuadrant of Quadrant of Cell A04SW-AQuadrant of Quadrant of Cell B04SW-AQuadrant of Quadrant of Cell A15-Dec-SW-BSouthwest Local B15-Dec-SW-BSouthwest Quadrant of Cell B15-Dec-NW-AQuadrant of Quadrant of Cell B04NW-BSouthwest Quadrant of Cell B15-Dec-NM-BQuadrant of Cell B04NM-BQuadrant of Quadrant of Cell B04NW-BQuadrant of Quadrant of Cell B04NW-BQuadrant of Cell B04NM-DCDNorthwest Cell B15-Dec-NMOCD Renedial Thresholds04MMOCD Renedial Thresholds04A : Not Analyzed04A : Not Analyzed04A : Not Analyzed04	Sample LocationSample DateBenzene (mg/kg)LocationDateBenzeneLocationDateRampleLocationDate(mg/kg)Northcast15-Dec-NAQuadrant of Cell A04NASouthwest15-Dec-NACell A04NACell A04NACell A04NACell A04NACell A04NACell B04NACell B04NACell B04NACell B04NACell B04NACell B04NASouthwest15-Dec-NACell B04NACell B04NASouthwest15-Dec-NACell B0404Northwest15-Dec-NAQuadrant of Cell B04NANorthwest15-Dec-NANorthwest15-Dec-NACell B0404Northwest15-Dec-NACell B0404Northwest15-Dec-NACell B0404Northwest15-Dec-NACell B0404Northwest15-Dec-NACell B0404Northwest15-Dec-NACell B0404Northwest15-Dec-NACell B0404 <td>Sample ocationSample DateSample mg/kg)Mag/kg)TolSample ocationDate DateDateTolMag/kg)(mgforthcast adrant of Cell A15-Dec- 04NANNoutheast adrant of Cell A15-Dec- 04NANNouthwest adrant of cell A15-Dec- 04NANNouthwest adrant of of thwest15-Dec- 04NANNOuthwest adrant of outhwest15-Dec- 04NANNCell A04NANANouthwest adrant of of of of of of datant of cell B15-Dec- 04NANouthwest adrant of of of of of datant of cell B15-Dec- NANANouthwest adrant of of of of of datant of cell B15-Dec- NANANorthwest adrant of of of of of datant of of of of of datant of</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Immary of Land Treatment Analytical Results (Soil) 8" Moore to Jal #1 - Ref #2002-10270 Bit Ethylbenzene m.p-Xylenes o-Xylene Total Ethylbenzene m.p-Xylenes o-Xylene Total TPH Ethylbenzene m.p-Xylenes o-Xylene Total TPH Rthylbenzene m.p-Xylenes o-Xylene Total TPH Rthylbenzene m.p-Xylenes o-Xylene Total TPH NA NA NA NA NA NA Sasoline NA NA NA NA NA NA Sasoline NA NA NA NA NA Sasoline NA NA <th< td=""></th<></td>	Sample ocationSample DateSample mg/kg)Mag/kg)TolSample ocationDate DateDateTolMag/kg)(mgforthcast adrant of Cell A15-Dec- 04NANNoutheast adrant of Cell A15-Dec- 04NANNouthwest adrant of cell A15-Dec- 04NANNouthwest adrant of of thwest15-Dec- 04NANNOuthwest adrant of outhwest15-Dec- 04NANNCell A04NANANouthwest adrant of of of of of of datant of cell B15-Dec- 04NANouthwest adrant of of of of of datant of cell B15-Dec- NANANouthwest adrant of of of of of datant of cell B15-Dec- NANANorthwest adrant of of of of of datant of of of of of datant of						Immary of Land Treatment Analytical Results (Soil) 8" Moore to Jal #1 - Ref #2002-10270 Bit Ethylbenzene m.p-Xylenes o-Xylene Total Ethylbenzene m.p-Xylenes o-Xylene Total TPH Ethylbenzene m.p-Xylenes o-Xylene Total TPH Rthylbenzene m.p-Xylenes o-Xylene Total TPH Rthylbenzene m.p-Xylenes o-Xylene Total TPH NA NA NA NA NA NA Sasoline NA NA NA NA NA NA Sasoline NA NA NA NA NA Sasoline NA NA <th< td=""></th<>

R. S. S.

1

のない

a states

12 A B

D. A. Balan

なるである

State of the second

Party States

Table 3

District I 1625 N. Frenc District II		NM 88240 esia, NM 88210		Energ	State of N y Minerals a				R	Form C-141 evised October 10, 2003
<u>District III</u> 1000 Rio Braz <u>District IV</u>	zos Road, Azte				Oil Conserv 1220 South Santa Fe,		s Dr.		District	Copies to appropriate Office in accordance vith Rule 116 on back side of form
		<u> </u>	Relea	nse No	otification	and Co	rrective 4	Action	<u></u>	
		RATOR	<u></u>			·····		Report	Final R	eport
Name of Co EOTT	ompany					Contact	: Hernandez			
Address						Telepho	one No.		···· ··· ··· ··· ··· ··· ··· ··· ··· ·	· · · · · · · · · · · · · · · · · · ·
PO Box 16 Facility Na		st Highway 80) Midland	l, Texas	79702	915.638 Facility				
8" Moore to							l Pipeline			
Surface Ow State of Ne					Mineral Own	ner			Lease N	0.
				71.1 <u>00</u>	LOCATION	JOERELE	CASE			
Unit Letter 16	Section 16	Township T17S	Range R37E	Feet fro		/South Line	Feet from the	East/West Lit	Lat. 32	Lea 2° 50' 12.36"N 3° 15' 26.234"W.
	1	_L		I	NATURE	OF RELEA	SF.	l		
Type of Rele	ease	·····				Volume of	Release		Volume Reco	
Crude Oil Source of Re	elease					200 bbls Date and H	barrels Iour of Occurre	ence	0 bbls barr Date and Ho	ur of Discovery
8" Steel Pipe Was Immedi						EOTT If YES, To	Whom?		10-18-02 @	8:00 AM
was immedi	late Notice G		Yes 🔲	No 🗌	Not Required	Paul Sheel				
By Whom? Pat McCasla	ind, EPI						lour @ 11:00 AM Pa d sent page to			
Was a Water	course Reac	hed? 🗌 Yes	No No			If YES, Vo NA				
If a Waterco NA	urse was Imp	pacted, Describe	e Fully.*							
		em and Remedia Il be delineated			ertical and horiz	ontal extents	of contaminati	on. Contamin	ated soil will	be blended on site or
8,000 sqft ~2	200' x 40' Sit sed of. Reme	dial Goals: TPI	ated to def	ermine t						will be blended on Ethyl Benzene,
regulations a public health should their health or the other federal	Il operators or the envir operations has environmen	are required to norment. The adaptive failed to adapt	report and cceptance equately in NMOCD a	for file co of a C-14 ivestigation icceptance	ertain release no 41 report by the e and remediate	tifications and NMOCD ma contaminatio	d perform corre rked as "Final on that pose a th	ective actions Report" does n reat to ground	for releases w not relieve the 1 water, surface	NMOCD rules and which may endanger e operator of liability ce water, human ompliance with any
Signature:							<u>OIL CO</u>	NSERVA'	TION DI	VISION
Printed Nam	e: Frank He	rnandez				Approve	ed by District S	upervisor:		
Title: Distri	ct Environm	ental Superviso	r			Approva	al Date:		Expiration I	Date:
Date: Oct	ober 23, 200	3		915.63	8.3799	Conditio	ons of Approva	1:		Attached
* Attacl	n Additiona	l Sheets If Neo	cessary							

「「「「」」

がある

第23887

1257

ALC: NO