1RP-400

4th QTR 2010 GW Mon. Results

DATE: 03.31.11

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 303-595-3331 303-605-2226 *FAX*

March 31, 2011

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 4th Quarter 2010 Groundwater Monitoring Results DCP X-Line Pipeline Release (1RP-400-0) Unit B, Section 7, T15S, R34E (Lat 33° 02' 11", Long 103° 32' 48")

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 4th Quarter 2010 Groundwater Monitoring Results for the DCP X-Line Pipeline Release located within the Etcheverry Ranch, Lea County, New Mexico.

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me <u>swweathers@dcpmidstream.com</u>.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG Principal Environmental Specialist

cc: Mrs. Etcheverry, Landowner - Certified Mail 91 7108 2133 3931 3377 2078 Larry Johnson, OCD Hobbs District Office (Copy on CD) Environmental Files March 24, 2011

Mr. Stephen Weathers DCP Midstream, LP 370 Seventeenth Street, Suite 2500 Denver, Colorado 80202

Re: Fourth Quarter 2010 Groundwater Monitoring Summary X-Line Pipeline Release, Etcheverry Ranch, Lea County, New Mexico Unit B, Section 7, Tøwnship 15 South, Range 34 East (1RP-400-0)

Dear Mr. Weathers:

This letter summarizes the results of the fourth quarter groundwater monitoring activities completed December 9, 2010 for DCP Midstream, LP (DCP) at the X-Line Pipeline Release on the Etcheverry Ranch at 33.0364° north, 103.5467° west (Figure 1).

The eight monitoring well locations are shown on Figure 2. Wells MW-1 through MW-7 were sampled. The soil vapor extraction (SVE) system was operating on MW-8 even though no free phase hydrocarbons (FPH) were present to attempt to accelerate remediation within the limited remaining affected area. Well construction information is summarized in Table 1.

The depths to water were measured in each well prior to purging. This data was used to calculate well casing-volume storage. The wells were then purged and sampled using dedicated bailers. Well purging consisted of removing a minimum of three casing volumes of water and, as necessary, continuing bailing until the field parameters temperature, pH and conductivity stabilized. The field sampling forms are attached.

Unfiltered samples were collected from upon stabilization from each of the seven wells that were sampled. Each sample was analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) using EPA Method SW-846, 8260B. A matrix spike/matrix spike duplicate was analyzed from MW-7. A field duplicate was collected from MW-3.

The samples were placed in an ice-filled chest immediately upon collection and documented using standard chain-of-custody protocol. The samples were delivered to AccuTest Laboratories in Wheat Ridge, Colorado. All affected purge water was stored on site for ultimate disposal.

The groundwater elevation measurements for all sampling episodes are summarized in Table 2. Well MW-8 is not included because its casing elevation has not been established. Hydrographs for wells MW-1 through MW-7 are shown on Figure 3. Figure 3 shows that the water-table elevations both increased across the site in a relatively consistent fashion. The water-table elevations remain at the upper end of the fluctuation range measured over the duration of this project, and they appear to be gradually rising.

Mr. Stephen Weathers DCP X-Line March 24, 2011 Page 2

No FPH were measured in MW-8. The FPH thickness values that were measured in MW-8 during the monitoring program are summarized in Table 3. FPH has not been detected in MW-8 at a thickness greater than 0.01 feet since December 2008.

A water-table contour map based upon the sampling event measurements was generated using the Surfer program with a kriging option (Figure 4). The water-table configuration reflects the historical conditions of general eastward flow.

The laboratory report is attached. The quality control data for the sampling event was reviewed. Important quality control evaluations include:

- The samples were all analyzed within the required 14-day holding time;
- None of the individual surrogate spikes were outside their control ranges;
- The method blank and blank spike evaluations were within their respective control limits.
- The matrix spike and the matrix spike duplicate results for MW-7 were all within their acceptable ranges.
- There were no BTEX detections in the primary and duplicate samples from MW-3.
- There were no BTEX detections in the trip blank.

The above results establish that the samples are suitable for routine groundwater monitoring evaluation.

Table 4 summarizes the sampling results for this event. A copy of the laboratory report is attached. Examination of Table 4 indicates that:

- 1. No benzene was detected above the method reporting limit in wells MW-1 through MW-7.
- 2. No toluene was detected above the method reporting limit in wells MW-1 through MW-7.
- 3. The ethylbenzene concentrations that were measured in MW-2 and MW-7 were at least an order of magnitude below the New Mexico Water Quality Control Commission (NMWQCC) groundwater standard.
- 4. Xylenes were only measured in MW-2 at a concentration that was substantially below the NMWQCC groundwater standard.

Mr. Stephen Weathers DCP X-Line March 24, 2011 Page 3

All of the historical data for benzene, toluene, ethylbenzene and total xylenes are summarized in Tables 5, 6, 7, and 8 respectively. There have been no exceedances of the NMWQCC Groundwater Standards since October 2004 for MW-2 and March 2005 for MW-3. There have never been any exceedances in MW-1, MW-4, MW-5, MW-6 and MW-7.

The iSOC® (short for in-situ Submerged Oxygen Curtain) device that was installed in April 2007 in MW-8 to increase the dissolved oxygen in the groundwater continues to operate along with the SVE system.

The next monitoring episode is scheduled for the first quarter of 2011. Do not hesitate to contact me if you have any questions or comments on this report.

Respectfully submitted, AMERICAN ENVIRONMENTAL CONSULTING, LLC

Muchael H. Stewart

Michael H. Stewart, P.E. Principal Engineer

MHS:tbm

TABLES

137° 4.

R. C. & S. 19

1.912.240

A. Martin

1. 2. 2. 2. S.

5 Jongly No.

and the second

1 40 - 20 A

Star and

Sec. 34

A Same

N.A.

き 焼き

1.000.62

Comp.

will. W

ż

	Date	Well	Completion	Top of
Well	Installed	Depth	Interval	Sand
MW-1	3/02	91	71-91	68
MW-2	3/02	88	68-88	62
MW-3	3/02	91	71-91	61
MW-4	4/02	91	71-91	68
MW-5	4/02	89	69-89	56
MW-6	4/02	90	70-90	68
MW-7	5/02	85	65-85	59
MW-8	5/09	84	49-84	45

Table 1 – Monitoring Well Completions

Notes: Units are Feet

Hydrocarbon extraction well (MW-8) completed between approximately 80 and 100 feet

v.

ż

Table 2 - Measured Water Table Elevations

State State

1.80 Y

1. a.e.

いただい

Strain B.

堂を教育部

and the

「「「読む

お男

A state

·1344

12.20

1983-5-14

市話見

2.740.54 ·

a state

3/3/05	4089.34	4089.68	4089.24	4088.79	4088.73	4088.83	4087.78	
12/09/04	4089.18	4089.03	4088.82	4088.71	4088.62	4088.68	4087.65	
10/18/04	4089.22	4089.06	4088.84	4088.73	4088.63	4088.71	4087.68	
6/25/04	4089.12	4089.03	4088.81	4088.70	4088.60	4088.66	4087.63	
2/18/04	4089.19	4088.90	4088.82	4088.74	4088.65	4088.69	4087.66	
11/20/03	4088.59	4089.13	4088.95	4088.78	4088.70	4088.74	4088.08	
10/29/03	4088.60	4089.11	4088.90	4088.78	4088.70	4088.74	4088.08	
9/22/03	4088.53	4089.06	4088.84	4088.71	4088.65	4088.68	4088.03	
8/20/03	4088.54	4089.09	4088.87	4088.72	4088.66	4088.70	4088.04	
7/17/03	4088.52	4089.04	4088.82	4088.70	4088.63	4088.66	4088.01	
6/19/03	4088.55	4089.07	4088.85	4088.73	4088.65	4088.69	4088.04	
4/28/03	4088.55	4089.05	4088.86	4088.73	4088.67	4088.70		
9/6/02	4088.53	4089.03	4088.86	4088.73	4088.68	4088.71		
5/1/02	 4088.54	4089.02	4088.83	4088.63	4088.60	4088.69		
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	

9/15/08	4089.28	4089.14	4088.92	4088.82	4088.72	4088.77	4087.75	
6/27/08	4089.36	4089.21	4089.00	4088.84	4088.76	4088.89	4087.81	
3/20/08	4089.37	4089.22	4089.01	4088.88	4088.76	4088.84	4087.79	
12/27/07	4089.27	4089.11	4088.86	4088.75	4088.66	4088.71	4087.70	
S/5/07	4089.26	4089.10	4088.89	4088.77	4088.68	4088.74	4087.71	
6/26/07	4089.24	4089.08	4088.87	4088.75	4088.66	4088.73	4087.71	
3/13/07	4089.20	4089.05	4088.85	4088.72	4088.62	4088.70	4087.66	
12/21/06	4089.24	4089.09	4088.88	4088.76	4088.66	4088.73	4087.69	
9/28/06	4089.16	4089.00	4088.84	4088.73	4088.62	4088.66	4087.62	
6/26/06	4089.22	4089.05	4088.85	4088.73	4088.63	4088.70	4087.67	
3/1/06	4089.23	4089.08	4088.88	4088.75	4088.66	4088.72	4087.70	
12/12/05	4089.23	4089.07	4088.88	4088.76	4088.66	4088.73	4087.70	
9/28/05	4089.25	4089.10	4088.89	4088.77	4088.67	4088.74	4087.70	
6/3/05	4089.26	4089.10	4088.91	4088.79	4088.68	4088.75	4087.71	
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	

Well	12/1/08	3/11/09	5/27/09	9/24/09	12/18/09	3/25/10	6/30/10	9/16/10	12/9/10
MW-1	4089.37	4089.27	4089.35	4089.33	4089.37	4089.28	4089.34	4089.34	4089.40
MW-2	4089.19	4089.13	4089.24	4089.20	4089.25	4089.19	4089.20	4089.20	4089.25
MW-3	4088.99	4088.92	4088.07	4088.98	4088.98	4088.97	4088.92	4088.97	4089.03
MW-4	4088.84	4088.79	4088.91	4088.87	4088.90	4088.81	4088.85	4088.84	4088.89
MW-5	4088.77	4088.69	4088.80	4088.75	4088.79	4088.71	4088.73	4088.72	4088.82
MW-6	4088.84	4088.77	4088.87	4088.82	4088.87	4088.80	4088.78	4088.82	4088.85
MW-7	4087.82	4087.76	4087.80	4087.90	4087.82	4087.75	4087.87	4087.79	4087.83
Notes:	Units are fee	et.							

Units are reet Blank cells: Wells not installed

	Product
Measurement	Thickness
Date	(feet)
09/06/02	5.20
04/28/03	5.65
06/19/03	4.01
07/17/03	3.93
09/22/03	3.42
10/29/03	1.42
11/20/03	0.79
06/25/04	0.03
10/18/04	3.26
12/09/04	2.71
03/03/05	0.00
06/03/05	0.12
09/28/05	1.01
12/12/05	0.00
03/01/06	0.04
06/26/06	0.03
09/28/06	0.00
12/21/06	0.28
03/13/07	0.01
06/26/07	1.22
09/05/07	0.40
12/27/07	0.03
03/20/08	0.00
06/27/08	0.00
09/15/08	0.00
12/01/08	0.33
03/11/09	0.00
08/07/09	0.00
09/24/09	0.00
12/18/09	0.00
03/25/10	0.01
06/30/10	0.00
09/16/10	0.00
12/9/10	0.00

Table 3 – Summary of Free Phase Hydrocarbon Thickness in MW-8

Units are feet

2 4 2 M 1.2.2 m 言語語言 2.425.5 小教教 the state 雪翻記 14. 2. 30 No the 5. Y. S. Ser a AND A - Essert 5 3 2000 2 Sr 4 2 -1.8.1

The states

				Xylenes
Well	Benzene	Toluene	Ethlbenzene	(total)
NMWQCC	and the second	Section of the sectio	an a	
Standards	. 0.01	0.75	0.75	0.62
MW-1	< 0.001	< 0.002	< 0.002	< 0.004
MW-2	0.00049J	< 0.002	0.0147	0.1317
MW-3	< 0.001	< 0.002	< 0.002	< 0.004
MW-3 Dup	< 0.001	< 0.002	< 0.002	< 0.004
MW-4	< 0.001	< 0.002	< 0.002	< 0.004
MW-5	< 0.001	< 0.002	< 0.002	< 0.004
MW-6	< 0.001	< 0.002	< 0.002	< 0.004
MW-7	< 0.001	< 0.002	0.00056J	< 0.004
Trip Blank	< 0.001	< 0.002	< 0.002	< 0.004

Table 4 – Fourth Quarter 2010 Groundwater Monitoring Results

Notes: Units are mg/l

J: Estimated value between the method detection limit and the reporting limit NMWQCC Standards: New Mexico Water Quality Control Commission Groundwater Standards Bold values exceed standards

	_								
12/12/05		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.561
9/28/05		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
6/3/05		<0.001	<0.001	0.00332	<0.001	<0.001	<0.001	<0.001	FPH
3/3/05		<0.001	<0.001	0.00167	<0.001	<0.001	<0.001	<0.001	NS
12/9/04		<0.001	0.00342	0.006137	<0.001	<0.001	<0.001	<0.001	FPH
10/18/04		<0.001	0.0103	.00584	<0.001	<0.001	<0.001	<0.001	FPH
6/25/04		<0.001	0.00156	0.0173	<0.001	<0.001	<0.001	<0.001	FPH
2/18/04		<0.001	<0.001	0.0280	<0.001	<0.001	<0.001	<0.001	FPH
11/20/03		<0.001	0.013	0.048	<0.001	<0.001	<0.001	0.001	FPH
10/29/03		<0.001	0.001	0.044	<0.001	<0.001	<0.001	0.001	FPH
9/22/03		<0.001	0.022	0.049	<0.001	<0.001	<0.001	<0.001	FPH
8/20/03		<0.001	0.024	0.017	<0.001	<0.001	<0.001	< 0.001	FPH
7/17/03		<0.001	0.155	0.063	<0.001	< 0.001	<0.001	<0.001	FPH
6/19/03		<0.001	0.074	0.047	<0.001	<0.001	< 0.001	<0.001	FPH
4/28/03		<0.001	0.182	0.099	<0.001	0.005	0.003	< 0.001	FPH
5/21/02		0.002	0.145	0.176	<0.002	<0.002	0.002		
4/24/02		<0.002	0.0255	0.061	<0.002	<0.002	<0.002		1
Well		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8

3/25/10	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.691
12/18/09 3	<0.002 -	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.409
9/24/09*	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.775
5/27/09	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.719*
3/11/09	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.219
12/1/08	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	FPH
9/15/08	<0.002	0.00096	<0.002	<0.002	<0.002	<0.002	<0.002	0.14
5/27/08	<0.002	0.00096	<0.002	<0.002	<0.002	<0.002	<0.002	0.18
3/20/08	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.28
12/27/07	 0.00093	0.00057	<0.002	0.00053	<0.002	0.00074	<0.002	FPH
9/5/07	 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	FPH
6/26/07	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
3/13/07	<0.001	0.000674	<0.001	<0.001	<0.001	<0.001	<0.001	0.42
2/21/06	 <0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	FPH
9/28/06 1	<0.001	0.0007	<0.001	<0.001	< 0.001	<0.001	<0.001	0.24
6/26/06	<0.001	0.0006	<0.001	<0.001	< 0.001	<0.001	<0.001	FPH
3/1/06	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001	<0.001	FPH
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8

Well	6/30/10	9/16/10	12/9/10
NW-I	<0.0003	<0.001	<0.001
MW-2	< 0.0003	<0.001	0.00049
MW-3	< 0.0003	<0.001	<0.001
MW-4	<0.0003	<0.001	<0.001
MW-5	< 0.0003	<0.001	<0.001
MW-6	<0.0003	<0.001	<0.001
MW-7	< 0.0003	<0.001	<0.001
MW-8	0.594	0.653	NS
Notes:	Units are	mg/l: Du	iplicate sai

Units are mg/l: Duplicate sample results were averaged together: Indicators for estimated (J) values not shown: FPH: Free phase hydrocarbons present, no sample collected: * Sample collected 8/7/09: NS: well not sampled.

A WER

書記録

25 8 M

いたるの

Mar Inter

New York

、「「「

and the

美花花地

12.22

38 M

ALARY.

のないの

Street,

天きりが

Table 5 – Summary of Laboratory Data for Benzene

Table	6 – Sun	nmary c	of Labor	atory D	ata for	Toluen	e										
Well	4/24/02	5/21/02	4/28/03	6/19/03	7/17/03	8/20/03	9/22/03	10/29/0	3 11/20/0	3 2/18/0	4 6/25/04	1 0/1 8/0	4 12/9/04	3/3/05	6/3/05	9/28/05	12/12/05
MW-1	<0.002	0.003	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.00	1 <0.0(01 <0.00	1 <0.00	1 <0.0(01 < 0.00	1 < 0.001	<0.001	<0.001	<0.001
MW-2	0.107	0.833	0.092	0.066	0.15	0.092	0.051	0.00	0.0	17 0.0065	2 0.0010	8 0.006	18 0.0020	6 < 0.001	<0.001	<0.001	<0.001
MW-3	<0.002	0.004	0.005	<0.001	0.002	<0.001	<0.001	<0.00	0.00	<u>)3 <0.00</u>	0.00015	58 <0.00	01 <0.00	1 <0.001	<0.001	0.000482	< 0.001
MW-4	<0.002	<0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.00	1 <0.0(01 < 0.00	1 <0.00	1 <0.0(01 <0.00	1 < 0.001	<0.001	<0.001	<0.001
MW-5	<0.002	<0.002	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.00	1 <0.00	01 <0.00	1 <0.00	0.0(1 < 0.00	1 < 0.001	< 0.001	<0.001	<0.001
MW-6	<0.002	<0.002	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.00	1 <0.0(01 < 0.00	1 <0.00	0.0(01 <0.00	1 < 0.001	< 0.001	<0.001	< 0.001
MW-7	1		<0.001	<0.001	<0.001	<0.001	<0.001	0.00	1 <0.0(01 <0.00	1 <0.00	1 < 0.0()1 <0.00	1 < 0.001	<0.001	<0.001	<0.001
MW-8			НdЭ	FPH	FPH	FPH	FPH	FP	H FP	H FP	H FP	H FP	H FPI	SN H	FPH	FPH	2.98
Well	3/1/06	6/26/06	9/28/06 1	2/21/06	3/13/07 (5/26/07 5)/5/07 12	2/27/073/	20/08 6/2	7/08 9/15/	08 1 2/1/08	3/11/09	5/27/09	9/24/09	12/18/09	3/25/10	
MW-1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	<0.002 (0.002 <	0.002 < 0.	002 <0.0	02 < 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
MW-2	<0.001 (0.00114	0.00137	<0.001 (0.00512	0.0102 0	0.0075 0	.0039	0.03 0.0	073 0.0	3 0.0135	0.0048	0.010	<0.002	<0.002	<0.002	
MW-3	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	<0.002 0	.0012 <	0.002 < 0.	002 <0.0	02 < 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
MW-4	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	<0.002 (0.001 <	0.002 <0.	002 <0.0	02 < 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
MW-5	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	<0.002 0.	> 86000	0.002 <0.	002 <0.0	02 < 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
MW-6	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	<0.002 0.	.0013J <	0.002 0.00	$0.0 \le 0.0$	02 < 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
MW-7	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <	<0.002 <	0.002 <	0.002 <0.	002 < 0.0	02 < 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
MW-8	FPH	FPH	0.791	FPH	0.977	FPH	FPH	FPH	0.35 0.3	388 0.2	5 FPH	0.257	2.00*	2.52	1.11	63.4	

1998

は言語を

ALCONT OF

13 C

記録使

NEW W

ないない

and the

Sec.

「いい」

a state of

素の読

Standard Sta

Well	6/30/10	9/16/10	12/9/10
1-WM	< 0.001	<0.002	<0.00
MW-2	< 0.001	<0.002	<0.002
MW-3	<0.001	<0.002	<0.002
MW-4	< 0.001	<0.002	<0.002
MW-5	< 0.001	<0.002	<0.002
9-MM	<0.001	<0.002	<0.00
7-WM	<0.001	<0.002	<0.00
8-WM	1.48	1.07	NS
Notes:	Units are	: mg/l: Du	plicate s

(J) values not shown:	VS: well not sampled.
: Indicators for estimated	Sample collected 8/7/09:]
Units are mg/l: Duplicate sample results were averaged together:	FPH: Free phase hydrocarbons present, no sample collected: * S.

r

or Ethylbenzene	03 8/20/03 9/22/03 10/29/03 11/20/03 2/18/04 6/25/04 10/18/04 3/2/9/04 3/3/05 6/3/05 9/28/05 12/12/05	01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	12 0.012 0.012 0.002 0.005 0.00301 0.0005 0.00336 0.00122 <0.001 <0.001 <0.001 <0.001 <0.001	23 0.006 0.02 0.018 0.017 0.0138 0.0136 0.00692 0.00884 0.00167 0.00574 0.00101 <0.001	01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<u>04 <0.001 <0.00</u>	01 <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	PH FPH FPH FPH FPH FPH FPH FPH FPH FPH F	3/07 6/26/07 9/5/07 12/27/07 3/20/08 6/27/08 9/15/08 12/1/08 3/11/09 5/27/09 9/24/09 12/18/09 3/25/10	
	10/18/04	<0.001	0.00336	0.00692	<0.001	<0.001	<0.001	<0.001	FPH	2/1/08 3/	
	6/25/04	<0.001	0.0005	0.0136	<0.001	<0.001	<0.001	<0.001	FPH	9/15/08	
	2/18/04	<0.001	0.00301	0.0138	<0.001	<0.001	<0.001	<0.001	HdH	6/27/08	
Ethylbenzene	11/20/03	<0.001	0.005	0.017	<0.001	<0.001	<0.001	<0.001	FPH	7 3/20/08	
	10/29/03	<0.001	0.002	0.018	<0.001	<0.001	<0.001	0.001	FPH	12/27/0	
	9/22/03	<0.001	0.012	0.02	<0.001	<0.001	<0.001	<0.001	Hdf	7 9/5/07	
	8/20/03	<0.001	0.012	0.006	<0.001	<0.001	<0.001	<0.001	FPH	7 6/26/0	
Data for	3/17/03	<0.001	9 0.112	2 0.023	<0.001	<0.001	0.004	<0.001	H FPH	06 3/13/0	
atory Data	6/19/03	<0.001	0.065	0.02	<0.001	<0.001	<0.001	<0.001	FPH	12/21/0	
of Labo	4/28/03	<0.001	0.121	0.03	<0.001	<0.001	0.002	<0.001	FPH	9/28/06	
ımary c	5/21/02	<0.002	0.062	0.023	<0.002	<0.002	0.002			6/26/06	
7 – Surr	4/24/02	<0.002	0.013	0.023	<0.002	<0.002	0.004		1	3/1/06	
Table	Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	Well	

N. A.L.

Signal a

C. Statement

16.28

ないない

(13.2.12.)

を思

S. Mars

1. B.

るのの

1. Y. W. W.

ANT THE

20,000

N. A. D. A.

S. Seal ?

いない

Ser and a ser and a ser a s

	 r	1	1					
3/25/10	<0.002	0.0087	<0.002	<0.002	<0.002	<0.002	<0.002	45.6
12/18/09	<0.002	0.0086	<0.002	<0.002	<0.002	<0.002	<0.002	0.114
9/24/09	<0.002	0.0096	<0.002	<0.002	<0.002	<0.002	<0.002	0.238
5/27/09	<0.002	0.010	<0.002	<0.002	<0.002	<0.002	<0.002	0.233*
3/11/09	<0.002	0.0123	<0.002	<0.002	<0.002	<0.002	<0.002	0.133
12/1/08	<0.002	0.0147	<0.002	<0.002	<0.002	<0.002	<0.002	FPH
9/12/08	 <0.002	0.02	<0.002	<0.002	<0.002	0.0031	<0.002	0.17
6/27/08	<0.002	0.0229	<0.002	<0.002	<0.002	<0.002	<0.002	0.0971
3/20/08	<0.002	0.01	<0.002	<0.002	< 0.002	<0.002	<0.002	0.15
12/27/07	<0.002	0.00076J	<0.002	<0.002	<0.002	0.0033	<0.002	FPH
9/5/07	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	FPH
6/26/07	<0.001	0.0024	<0.0011	<0.001	< 0.001	<0.001	<0.001	FPH
3/13/07	<0.001	0.00120	<0.001	<0.001	<0.001	<0.001	<0.001	0.437
12/21/06	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	FPH
9/28/06	<0.001	0.0003	<0.001	<0.001	<0.001	0.001	<0.001	0.239
6/26/06	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	FPH
3/1/06	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
Well	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8

Well	6/30/10	9/16/10	12/9/10
I-WM	<0.0003	<0.002	<0.002
MW-2	0.0062	0.007	0.0147
MW-3	<0.0003	<0.002	<0.002
MW-4	<0.0003	<0.002	<0.002
MW-5	<0.0003	<0.002	<0.002
MW-6	<0.0003	<0.002	<0.002
MW-7	<0.0003	<0.002	0.00056
MW-8	0.145	0.165	NS
Notes:	Units are	mg/l: Du	iplicate sai

Units are mg/l: Duplicate sample results were averaged together: Indicators for estimated (J) values not shown: FPH: Free phase hydrocarbons present, no sample collected: * Sample collected 8/7/09: NS: well not sampled.

į.

Table	8 – Sum	imary o	f Labor	atory Dɛ	ata for X	kylenes											
Well	4/24/02	5/21/02	4/28/03	6/19/03	7/17/03	8/20/03	9/22/03	10/29/03	11/20/03	2/18/04	6/25/04	10/18/04	12/9/04	3/3/05	6/3/05	9/28/05	12/12/05
										- - - - - - - - - - - - - - - - - - -			1				
MW-I	<0.006	<0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.0514	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-2	0.38	1.27	0.133	0.103	0.186	0.179	0.079	0.017	0.034	0.00067	0.00106	0.0052	<0.001	<0.001	<0.001	<0.001	<0.001
MW-3	0.189	0.451	0.039	0.006	0.007	0.001	0.001	0.001	0.004	<0.001	0.000118	0.0015	<0.001	0.00044	0.00173	0.000997	<0.001
MW-4	<0.006	<0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-5	0.011	<0.006	0.003	0.003	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-6	0.123	0.047	0.01	<0.001	0.004	<0.001	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-7			<0.001	<0.001	<0.001	<0.001	<0.001	0.006	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MW-8			FPH	НdН	FPH	FPH	FPH	FPH	FPH	FPH	FPH	FPH	FPH	NS	FPH	FPH	9.89
Well	3/1/06 (5/26/06	9/28/06	12/21/06	3/13/07	6/26/07	9/5/07	2/27/073/	20/08 6/2	7/08 9/15/	08/12/1/08	3/11/09 5	27/09 9/	24/09 12	60/81/2	3/25/10	
									-								
MW-1	<0.001	<0.001	<0.001	<0.001	<0.001	<0.002	<0.004	0.0028 <(0.006 < 0.	002 < 0.0	06 < 0.006	<0.006 <	<0.006 ·	<0.006	<0.006	<0.004	
MW-2	<0.001 (0.00125	0.0014	<0.001	0.00770	0.013	0.0078	0.0051 (0.06 0.0	229 0.1	2 0.143	0.12	0.16	0.103	0.0916	0.0923	
N/13/ 2	/ 100 0/	100 0/	100 07	10000	100 0/	00000	100 07	7000	0/ 200 0	0 07 000	200 02 20	200 02	200 02	200.02	200 02	1000	

\$/25/10	<0.004	0.0923	<0.004	<0.004	<0.004	<0.004	<0.004	2220
2/18/09 3	<0.006	0.0916	<0.006	<0.006	<0.006	<0.006	<0.006	5.24
9/24/09 1	<0.006	0.103	<0.006	<0.006	<0.006	<0.006	<0.006	5.10
5/27/09	<0.006	0.16	<0.006	<0.006	<0.006	<0.006	<0.006	4.72*
3/11/09	<0.006	0.12	<0.006	<0.006	<0.006	<0.006	<0.006	3.76
12/1/08	<0.006	0.143	<0.006	<0.006	<0.006	<0.006	<0.006	FPH
9/12/08	<0.006	0.12	<0.006	<0.006	<0.006	<0.006	<0.006	2.42
6/27/08	<0.002	0.0229	<0.002	<0.002	<0.002	<0.002	<0.002	0.388
3/20/08	<0.006	0.06	<0.006	<0.006	<0.006	<0.006	<0.006	2.80
2/27/07	0.0028	0.0051	<0.006	0.0016	<0.006	<0.006	<0.006	FPH
9/5/07	<0.004	0.0078	<0.004	<0.004	<0.004	<0.004	<0.004	FPH
6/26/07	<0.002	0.013	<0.002	<0.002	<0.002	<0.002	<0.002	FPH
3/13/07	<0.001	0.00770	<0.001	<0.001	<0.001	<0.001	<0.001	3.35
12/21/06	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
9/28/06	<0.001	0.0014	<0.001	<0.001	<0.001	<0.001	<0.001	2.27
6/26/06	<0.001	0.00125	<0.001	<0.001	<0.001	<0.001	<0.001	FPH
3/1/06	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	FPH
Well	I-WM	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8

Well	6/30/10	9/16/10	1.2/9/10
I-WM	< 0.0006	<0.004	<0.004
MW-2	0.0417	0.0786	0.1317
MW-3	<0.0006	< 0.004	<0.004
MW-4	<0.0006	<0.004	<0.004
MW-5	<0.0006	<0.004	<0.004
MW-6	<0.0006	< 0.004	<0.004
MW-7	< 0.0006	<0.004	<0.004
MW-8	3.49	6.37	NS
Notes:	Inits are	mo/l- Di	inlicate sai

Units are mg/l: Duplicate sample results were averaged together: Indicators for estimated (J) values not shown: FPH: Free phase hydrocarbons present, no sample collected: * Sample collected 8/7/09: NS: well not sampled.

 \dot{r}

R. B. B. B. S.

S. Acres

State and

新教法

家族

Stark.

1

1000

199730

and the

S. 1. 1.

1.2. The

A BASE 2

Profess.

と言語

15-22

FIGURES

ř

. . .

FIELD SAMPLING FORMS AND LABORATORY ANALYTICAL REPORT

ŕ

Show Co.

「御を設え

日間

Sec. 62

1.00

. S. S. S.

States of

1.26 B C

. O. 85 6

State Street

調査

と思い

14.42.02 C

1.985.64

A. 2. 2. 10

A 62 14

San San San

WELL SAMPLING DATA FORM

.

. . .

**

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-1
S	ITE NAME:	X Line ((Etcheverry	Ranch)	_	DATE:	12/9/2010
PRO	DJECT NO.				_	SAMPLER:	N Quevedo
PURGINO	G METHOD:		⊡ Hand Ba	iled 🗌 Pu	mp If Pur	mp, Type:	Dedicated Bailer
SAMPLIN):	☑ Dedicate	d Bailer [Direct fr	om Dischar	ge Hose Dther:
DESCRIB	BE EQUIPMI	ENT DECO	NTAMINATI	ON METHO	DD BEFOR	RE SAMPL	ING THE WELL:
Glove	s 🗌 Alcono	x 🗌 Distill	led Water Ri	nse 🔽 C	Other:		
TOTAL DI DEPTH T HEIGHT (WELL DI	EPTH OF W O WATER: OF WATER AMETER:	/ELL: COLUMN: 2.0	91.00 77.29 13.71 Inch	Feet Feet Feet		6.7	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.8	17.9	0.479	7.58			
	5.6	17.3	0.48	7.63			
1500	7.4	17.6	0.48	7.63			
	ļ						
ļ			ļ]		
						· · · · · · · · · · · · · · · · · · ·	
	ļ						
		l	<u> </u>	<u> </u>	<u> </u>]]]
SAMP	LE NO.:	MW-1					
ANAL	LYSES:	BIFX (856	0)				
COM	MENTS:			<u> </u>			
	,						

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-2			
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	12/9/2010			
PR	DJECT NO.				_	SAMPLER:	N Quevedo			
PURGINC SAMPĻIN DESCRIB ☑ Glove	G METHOD: IG METHOD BE EQUIPME s Alcono): ENT DECOI x Distill	Hand Bai Dedicate NTAMINATIO	led Pu d Bailer ON METHC nse C	mp If Pu Direct fr DD BEFO Dther:	mp, Type: om Dischar RE SAMPL	Dedicated Bailer ge Hose Other: ING THE WELL:			
TOTAL D DEPTH T HEIGHT (WELL DI/	EPTH OF W O WATER: OF WATER AMETER:	/ELL: COLUMN: 2.0	88.00 77.27 10.73 Inch	Feet Feet Feet		5.3	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)			
TIME	VOLUME PURGED	темр. ° с	COND. <i>m</i> S/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
	2.1	17.9	0.655	7.19						
	4.2	17.4	0.66	7.15						
1530	6.3	17.5	0.66	7.16	L					
					<u> </u>					
· · · · · · · · · · · · · · · · · · ·					<u> </u>		, 			
SAMP		 MW-2			L					
ΔΝΔΙ	YSES	BTEX (826)))							
COM	 /FNTS									
0000										

1

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstre	am		WELL ID:	MW-3				
S	ITE NAME:	X Line (Etcheverry	Ranch)		DATE:	12/9/2010				
PRC	DJECT NO.				. :	SAMPLER:	N Quevedo				
PURCING		[-	Hand Bai		mp. If Dur		Dedicated Pailor				
						np, rype.					
SAMPLIN			Dedicated	b Baller	Direct tr	om Dischar	ge Hose Other:				
Gloves	s Alcono	x Distill	ed Water Ri		D BEFOI						
TOTAL DE DEPTH TO HEIGHT O WELL DIA	EPTH OF W O WATER: OF WATER METER:	/ELL: COLUMN: 2.0	91.00 77.3 13.70 Inch	Feet Feet Feet		6.7	Minimum Gallons to purge 3 well volumes				
		TEMP.	COND.				(Water Column Height x 0.49)				
TIME	PURGED	°C	m S/cm	pН	mg\L	Turb	REMARKS				
	2.6	18.1	0.58	7.14							
	5.2	18.0	0.575	7.15							
1420	7.8	17.8	0.580	7.16							
	_										
•											
	· · · · · · · · · · · · · · · · · · ·										
					Ì						
SAMP	LE NO.:	MW-3									
ANAL	YSES:	BTEX (826	0)								
COM	MENTS:	DUP.									
					_						

Surger C 1. 行款公 3.95 A Barton H P I WAL 10.10 言語 19 AN 20 語な、悪い 14. C. 20 126.00 1. 2 2 2 4 3 V The Wa

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-4				
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	12/9/2010				
PR	DJECT NO.					SAMPLER:	N Quevedo				
					-						
PURGING	METHOD:		Hand Bai	led Pu	mp If Pui	mp, Type:	Dedicated Bailer				
SAMPLIN	IG METHOD):	Dedicate	d Bailer	Direct fr	om Dischar	ge Hose Other:				
DESCRIE	SE EQUIPMI	ENT DECOI	NTAMINATI ed Water Ri	ON METHO	DD BEFO	RE SAMPL	ING THE WELL:				
TOTAL D DEPTH T HEIGHT (WELL DI	EPTH OF W O WATER: OF WATER AMETER:	/ELL: COLUMN: 2.0	91.00 77.44 13.56 Inch	Feet Feet Feet		6.6	Minimum Gallons to purge 3 well volumes				
TIME	VOLUME	TEMP.	COND.	лH	DO	Turb	PHYSICAL APPEARANCE AND				
	PURGED	<u>°C</u>	<i>m</i> S/cm	pri	mg\L	Turb	REMARKS				
	2.7	16.9	0.476	7.55		<u></u>					
	5.4	17.5	0.477	7.59	 						
1340	8.1	17.6	0.477	7.60							
L											
					_						
	[]						· · · · · · · · · · · · · · · · · · ·				
CAMD											
SAIVIP											
ANAL	.1000	DIEX (8260	<u></u>			<u></u>					
COM	AENTS:										

1. C. C. C.

のない

To Arts

And A.

1100

Mar I'm

2. 1. 1. 1

ないの

20.828 r. 1

1. M. S.

Co.A.C

and the second

The states

1. 2. C. S. S.

1. 2.

1. A.

WELL SAMPLING DATA FORM

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-5
S	ITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	12/9/2010
PRO	DJECT NO.				- 5	SAMPLER:	N Quevedo
PURGING SAMPLIN DESCRIB Gloves	G METHOD: G METHOD E EQUIPME s Alcono:		Hand Bai Dedicated NTAMINATIC ed Water Ri	led Pu d Bailer ON METHC nse C	mp If Pur Direct fro DD BEFOF Dther:	np, Type: om Dischar RE SAMPL	Dedicated Bailer ge Hose Other:
TOTAL DE DEPTH TO HEIGHT (WELL DIA	EPTH OF W O WATER: OF WATER AMETER:	COLUMN:	89.00 77.08 11.92 Inch	Feet Feet Feet		5.8	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. ° C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.3	18.9	0.558	7.27			
	4.6	18.0	0.54	7.30			
1255	7	18.0	0.54	7.32			
SAMP ANAL COMN	LE NO.: _YSES: MENTS:	MW-5 BTEX (826	0)				

WELL SAMPLING DATA FORM

.

	CLIENT:	DC	P Midstre	am	-	WELL ID:	MW-6			
S		X Line (Etcheverry	Ranch)	-	DATE:	12/9/2010			
PR	DJECT NO.				_ :	SAMPLER:	N Quevedo			
PURGING SAMPLIN DESCRIB Glove	G METHOD: G METHOD E EQUIPME S Alcono	⊡ ENT DECOI x Distill	Hand Bai Dedicated NTAMINATIO ed Water Ri	led Pu d Bailer ON METHC nse C	mp If Pur Direct fr DD BEFOI Dther:	mp, Type: om Dischar RE SAMPL	Dedicated Bailer ge Hose Other: ING THE WELL:			
DEPTH T HEIGHT (WELL DIA	O WATER: OF WATER AMETER:	COLUMN: 2.0	77.04 12.96	Feet Feet		6.3	Minimum Gallons to purge 3 well volumes			
TIME	VOLUME PURGED	TEMP. ° C	COND. <i>m</i> S/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
	2.7	17	0.474	7.49						
	5.4	16.3	0.48	7.53						
1650	8.1	16.9	0.47	7.51						
-										
	· · · · · · · · · · · · · · · · · · ·									
						·· · , , , , , , , , , , , , , , , , ,				
SAMP	LE NO.:	MW-6								
ANAL	YSES:	BTEX (826	0)							
COM	MENTS:									

S. Reality

- States

WELL SAMPLING DATA FORM

	CLIENT:	DCP Midstream			WELL ID: MW-7					
S	ITE NAME:	X Line (Etcheverry	Ranch)		DATE:	12/9/2010			
PRO	DJECT NO.				-	SAMPLER:	N Quevedo			
PURGING SAMPLIN DESCRIB	PURGING METHOD: Image: Hand Bailed Pump If Pump, Type: Dedicated Bailer SAMPLING METHOD: Image: Dedicated Bailer Direct from Discharge Hose Other: DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL: Image: Distilled Water Rinse Other:									
TOTAL DEPTH OF WELL: 85.00 Feet DEPTH TO WATER: 76.60 Feet HEIGHT OF WATER COLUMN: 8.40 Feet WELL DIAMETER: 2.0 Inch purge 3 well volumes (Water Column Height x 0.49)										
TIME	VOLUME PURGED	TEMP. ° C	COND. mS/cm	рН	DO ma\L	Turb	PHYSICAL APPEARANCE AND REMARKS			
	2.7	22.7	0.65	7.57						
	5.4	21.7	0.63	7.61						
1620	8.1	20.0	0.62	7.59						
		 M\\/_7			I	1				
ANAI	YSES:	BTEX (826	0)							
COM	MENTS:	Collected s	ample for m	atrix-spike/i	matrix spi	ke duplicate	e evaluation			
			<u></u>							

4 Take 1 States -STERNAL ST 1944 1. C.W. 5. Bart 2.4. B. 1. A. B. A. 御湯 武 1. 2 M C .

No.

ある時

AND AND A

A. Mary

W.A.K

WELL SAMPLING DATA FORM

è

CLIENT: DCP Midstream		WELL ID: MW-8								
S	SITE NAME:	X Line (Etcheverry	Ranch)	_	DATE:	12/9/2010			
PR	OJECT NO.				_ :	SAMPLER:	N Quevedo			
PURGING SAMPLIN DESCRIE	PURGING METHOD: Hand Bailed Pump If Pump, Type: SAMPLING METHOD: Disposable Bailer Direct from Discharge Hose Other: DESCRIBE EQUIPMENT DECONTAMINATION METHOD BEFORE SAMPLING THE WELL: Gloves Alconox Distilled Water Rinse Other:									
TOTAL DEPTH OF WELL: 84.00 Feet DEPTH TO WATER: 77.20 Feet HEIGHT OF WATER COLUMN: 6.80 Feet 13.3 Minimum Gallons to WELL DIAMETER: 4.0 Inch purge 3 well volumes (Water Column Height x 1.96)										
TIME	VOLUME PURGED	°C	COND. mS/cm	pН	DO ma\l	Turb	PHYSICAL APPEARANCE AND REMARKS			
							N/A			
							N/A			
							N/A			
ļ										
ļ										
	<u> </u>									
 					i					
	L									
SAMF ANAI COMI	LE NO.: LYSES: MENTS:	Well not sa BTEX (826	mpled 0)							
						·				

1. 1. J. A. ANY A 「「 語言 過ぎれ Ser. Se Safety. のない 575

See.

A. 25 &

Sec. Sec.

12/28/10

\$1. 1. C.

1.20.34

E STATES

17. MA

100

たが

No.

S. Walt

1. 18 A

2. 6. 19.

1 of 20

Technical Report for

DCP Midstream, LP AECCOL: Xline Etcheverry Ranch Proj#400228028 GN00 Accutest Job Number: D19661

Sampling Date: 12/09/10

Report to:

American Environmental Consulting, LLC

mstewart@aecdenver.com

ATTN: Michael Stewart

Total number of pages in report: 20

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

John Hamilton

Laboratory Director

Client Service contact: Amanda Kissell 303-425-6021

Certifications: CO, ID, NE, NM, ND (R-027) (PW) UT (NELAP CO00049) This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Mountain States • 4036 Youngfield St. • Wheat Ridge, CO 80033-3862 • tel: 303-425-6021 • fax: 303-425-6854 • http://www.accutest.com

.

D19661

ACCUTES

Table of Contents

S. A. S. A. S.

X: A: 23

1. S. C. D.

M. Sha

South States

" Stranger

1000

にない

a factor

the the

1. A.

1. A. A.

-

N. A.R.

1. S. O.

-1-

Section 1: Sample Summary	3						
Section 2: Case Narrative/Conformance Summary	4						
Section 3: Sample Results	5						
3.1: D19661-1: MW-1	6						
3.2: D19661-2: MW-2	7						
3.3: D19661-3: MW-3	8						
3.4: D19661-4: MW-4	9						
3.5: D19661-5: MW-5	10						
3.6: D19661-6: MW-6	11						
3.7: D19661-7: MW-7	12						
3.8: D19661-8: DUP	13						
3.9: D19661-9: TRIP BLANK	14						
Section 4: Misc. Forms	15						
4.1: Chain of Custody	16						
Section 5: GC/MS Volatiles - QC Data Summaries	17						
5.1: Method Blank Summary	18						
5.2: Blank Spike Summary							
5.3: Matrix Spike/Matrix Spike Duplicate Summary	20						

Sample Summary

DCP Midstream, LP

Job No: D19661

A. & 4.

Sec. 300

1 . a . a . . .

- 1. 34. 3

189.8.8

Service States

加度大

Sec. alter

a land

、「ある」

1. A A A A

A. 200 A.

Star Star

100.22.20

AECCOL: Xline Etcheverry Ranch Proj#400228028 Project No: GN00

Sample Number	Collected Date	Time	By	Received	Matri Code	х Туре	Client Sample ID
D19661-1-	12/09/10	15:00	NQT	12/10/10	AQ	Ground Water	MW-1
D19661-2	12/09/10	15:30	NQT	12/10/10	AQ	Ground Water	MW-2
D19661-3	12/09/10	14:20	NQT	12/10/10	AQ	Ground Water	MW-3
D19661-4	12/09/10	13:40	NQT	12/10/10	AQ	Ground Water	MW-4
D19661-5	12/09/10	12:55	NQT	12/10/10	AQ	Ground Water	MW-5
D19661-6	12/09/10	16:50	NQT	12/10/10	AQ	Ground Water	MW-6
D19661-7	12/09/10	16:10	NQT	12/10/10	AQ	Ground Water	MW-7
D19661-7D	12/09/10	16:10	NQT	12/10/10	AQ	Water Dup/MSD	MW-7
D19661-7M	12/09/10	16:10	NQT	12/10/10	AQ	Water Matrix Spike	MW-7
D19661-8	12/09/10	00:00	NQT	12/10/10	AQ	Ground Water	DUP
D19661-9	12/09/10	00:00	NQT	12/10/10	AQ	Trip Blank Water	TRIP BLANK

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:	DCP Midstream, LP	Job No	D19661
Site:	AECCOL: Xline Etcheverry Ranch Proj#400228028	Report Dat	12/22/2010 9:22:16 AM

On 12/10/2010, eight (8) samples, 1 Trip Blank, and 0 Field Blanks were received at Accutest Mountain States (AMS) at a temperature of 2.1°C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D19661 was assigned to the project. The lab sample IDs, client sample IDs, and dates of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix	AQ	Batch ID:	V5V687	
L				

a All samples were analyzed within the recommended method holding time.

The method blank for this batch meets method specific criteria.

Samples D19661-7MS and D19661-7MSD were used as the QC samples indicated.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Page 1 of 1

愛望を

1. 2. 4. 1. A.

Sold and

34 A & 24

State T

1. 6. 2 B.

States .

and they

T. SPAR

1

調える

4 . C. F.

Sample Results

Report of Analysis

ř

	Page 1 of					
Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW-1 e ID: D19661-1 AQ - Ground Wat SW846 8260B AECCOL: Xline	ter Etcheverry Ranc	h Proj#400	Date Sampled Date Received Percent Solids 228028		
Run #1 Run #2	File ID DF 5V11999.D 1	Analyzed 12/13/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V687
Run #1 Run #2	Purge Volume 5.0 ml					·······
Purgeable	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene o Yukasa	ND ND ND ND	0.0010 0.0020 0.0020 0.0040	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l		
95-47-6 CAS No.	o-Xylene Surrogate Recoveries	Run# 1	Run# 2	Limits		
17060-07-0 2037-26-5	1,2-Dichloroethane-D4 Toluene-D8	109% 105%	:	63-130% 68-130%		

96%

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

4-Bromofluorobenzene

E = Indicates value exceeds calibration range

J = Indicates an estimated value

61-130%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

of 1

460-00-4

r

				5		8
Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW-2 e ID: D19661-2 AQ - Ground Wa SW846 8260B AECCOL: Xline	ter Etcheverry Ran	ch Proj#400	Date Sampled: Date Received: Percent Solids: 228028	12/09/10 12/10/10 n/a	
Run #1 Run #2	File ID DF 5V12000.D 1	Analyzed 12/13/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V687
Run #1 Run #2	Purge Volume 5.0 ml					
Purgeable A	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene	0.00049 ND 0.0147 0.0923	0.0010 0.0020 0.0020 0.0040	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l 0.00060 mg/l	J	
95-47-6	o-Xylene	0.0394	0.0020	0.00060 mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	108% 102% 98%		63-130% 68-130% 61-130%		

Report of Analysis

Page 1 of 1

199 C

1. See

Top Barrie

8-4-10.0

R. S. S.

12.20

1. 1 . 1 . 1 . 1

1. N. T.

3.80

Sec. 3.

A STATE

Sec. Sala

言語は大

ND = Not detected MDL - Method Detection Limit RL = Reporting LimitE = Indicates value exceeds calibration range J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

の変要の

Sec. 1

Seat.

1000

10.00

ALC ALC

1. S. . . .

1. Carlon V

Sec. 20

12.94

1.00

New York

Report of Analysis

				1		5			8
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: e ID:	MW-3 D19661 AQ - Gr SW846 AECCO	-3 ound Wat 8260B L: Xline	ier Etcheverry Ran	ch Proj#400	Date Sa Date Ro Percent 228028	mpled: eceived: Solids:	12/09/10 : 12/10/10 : n/a	
Run #1 Run #2	File ID 5V12001	1.D ř	DF 1	Analyzed 12/13/10	By DC	Prep Da n/a	te	Prep Batch n/a	Analytical Batch V5V687
Run #1 Run #2	Purge V 5.0 ml	olume							
Purgeable	Aromatic	s							
CAS No.	Compo	ound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4 95-47-6	Benzen Toluene Ethylbe m,p-Xy o-Xyler	e enzene vlene 1e		ND ND ND ND	0.0010 0.0020 0.0020 0.0040 0.0020	$\begin{array}{c} 0.00030\\ 0.0010\\ 0.00030\\ 0.00060\\ 0.00060\end{array}$	mg/l mg/l mg/l mg/l mg/l		
CAS No.	Surrog	ate Reco	overies	Run# 1	Run# 2	Limit	S		

110%

104%

95%

ND = Not detected MDL - Method Detection Limit

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

RL = Reporting Limit

17060-07-0

2037-26-5

460-00-4

E = Indicates value exceeds calibration range

J = Indicates an estimated value

63-130%

68-130%

61-130%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

	Report of Analysis											
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: MW-4 e ID: D19661 AQ - G SW846 AECCC	-4 round Wate 8260B DL: Xline I	er Etcheverry Ran	Date Sampled: 12/09/10 r Date Received: 12/10/10 Percent Solids: n/a tcheverry Ranch Proj#400228028								
Run #1 Run #2	File ID 5V12002.D	DF 1	Analyzed 12/13/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V687					
Run #1 Run #2	Purge Volume 5.0 ml											
Purgeable	Aromatics											
CAS No.	Compound		Result	RL	MDL Ur	nits Q						
71-43-2 108-88-3 100-41-4 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		ND ND ND ND	0.0010 0.0020 0.0020 0.0040 0.0020	0.00030 mg 0.0010 mg 0.00030 mg 0.00060 mg 0.00060 mg	g/1 g/1 g/1 g/1 g/1						
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Limits							
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroet Toluene-D8 4-Bromofluoro	hane-D4 benzene	111% 103% 95%		63-130% 68-130% 61-130%							

MDL - Method Detection Limit ND = Not detectedRL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

- All sector

45. E.S.

雪影

1.23

NY NG

States -

1. A. A.

10 miles

1000

100

Part and a start

	Report of Analysis										
Client Sample Lab Sample Matrix: Method: Project:	ple ID: MW e ID: D19 AQ SW8 AEC	/-5 /661-5 - Ground Wa 846 8260B CCOL: Xline	ter Etcheverry Rand	ch Proj#400	Date Sa Date R Percen 228028	ampled: eceived: t Solids:					
Run #1 Ryn #2	File ID 5V12003.D	DF 1	Analyzed 12/13/10	By DC	Prep Da n/a	ite	Prep Batch n/a	Analytical Batch V5V687			
Run #1 Run #2	Purge Volur 5.0 ml	ne									
Purgeable A	Aromatics										
CAS No.	Compound		Result	RL	MDL	Units	Q				
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzer m,p-Xylene	ne	ND ND ND ND	0.0010 0.0020 0.0020 0.0020 0.0040	0.00030 0.0010 0.00030 0.00060	mg/l mg/l mg/l mg/l					
95-47-6	o-Xylene		ND	0.0020	0.00060	mg/l					
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	Limit	ts					
17060-07-0 2037-26-5 460-00-4	1,2-Dichlor Toluene-D8 4-Bromoflu	roethane-D4 S orobenzene	· 114% 103% 95%		63-13 68-13 61-13	80% 80% 80%					

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ך ר

з.5

		-		•		0
Client Sam Lab Sample Matrix: Method: Project:	ple ID: MW-6 e ID: D19661-6 AQ - Ground W SW846 8260B AECCOL: Xline	ater e Etcheverry Ran	ch Proj#400	Date Sampled Date Received Percent Solids 228028	: 12/09/10 : 12/10/10 : n/a	
Run #1 Run #2	File ID DF 5V12004.D 1	Analyzed 12/13/10	By DC	Prep Date n/a	Prep Batch n/a	Analytical Batch V5V687
Run #1 Run #2	Purge Volume 5.0 ml					
Purgeable A	Aromatics					
CAS No.	Compound	Result	RL	MDL Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m.n.Xulana	ND ND ND	0.0010 0.0020 0.0020	0.00030 mg/l 0.0010 mg/l 0.00030 mg/l		
95-47-6	o-Xylene	ND	0.0040	0.00060 mg/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	108% 96% 88%		63-130% 68-130% 61-130%		

Report of Analysis

Page 1 of 1

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

1.433 See See

1.5.4.24

1. 18.

100

Street L

54.4.5.2

1.4.5

SULTER S

Sec. 3

17

Sec. 14

Same Same

1. S. S. C.

5.4

San Ar

	Report of Analysis										
Client Sam Lab Sampl Matrix: Method: Project:	ple ID: e ID:	MW-7 D1966 AQ - C SW846 AECC	1-7 Ground Wat 5 8260B OL: Xline J	: 12/09/10 : 12/10/10 : n/a							
Run #1 Run #2	File ID 5V1199)6.D	DF 1	Analyzed 12/13/10	By DC	Prep Da n/a	ite	Prep Batch n/a	Analytical Batch V5V687		
Run #1 Run #2	Purge 5.0 ml	Volume									
Purgeable	Aromati	cs									
CAS No.	Comp	ound		Result	RL	MDL	Units	Q			
71-43-2 108-88-3 100-41-4	Benzer Toluer Ethylb	ne ne enzene		ND ND 0.00056	0.0010 0.0020 0.0020	0.00030 0.0010 0.00030	mg/l mg/l mg/l	J			
95-47-6	m,p-X o-Xyl€	ylene ene		ND ND	0.0040	0.00060 0.00060	mg/l mg/l				
CAS No.	Surro	gate Re	coveries	Run# 1	Run# 2	Limi	ts				
17060-07-0 2037-26-5 460-00-4	1,2-Di Toluer 4-Bror	ichloroe ne-D8 nofluoro	thane-D4 obenzene	108% 105% 96%		63-13 68-13 61-13	80% 80% 80%				

ND = Not detected MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

- J = Indicates an estimated value
- B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

語言を読

ALC: Notice

	Report of Analysis												
Client Sam Lab Sample Matrix: Method: Project:	ple ID: DUP e ID: D1966 AQ - C SW846 AECC	DUPDate Sampled:12/09/10D19661-8Date Sampled:12/10/10AQ - Ground WaterDate Received:12/10/10SW846 8260BPercent Solids:n/aAECCOL:Xline Etcheverry Ranch Proj#400228028											
Run #1 Run #2	File ID 5V12005.D	DF 1	Analyzed 12/13/10	By DC	Prep Da n/a	te	Prep Batch n/a	Analytical Batch V5V687					
Run #1 Run #2	Purge Volume 5.0 ml							An an an a					
Purgeable	Aromatics												
CAS No.	Compound		Result	RL	MDL	Units	Q						
71-43-2 108-88-3 100-41-4 95-47-6	Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene		ND ND ND ND ND	0.0010 0.0020 0.0020 0.0040 0.0020	0.00030 0.0010 0.00030 0.00060 0.00060	mg/l mg/l mg/l mg/l mg/l							
CAS No.	Surrogate Red	coveries	Run# 1	Run# 2	Limit	ts							
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroet Toluene-D8 4-Bromofluoro	hane-D4 benzene	113% 103% 95%		63-13 68-13 61-13	80% 80% 80%							

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

1. CO 7. B.

1. A. 1.

1. A. M. C.

1. 2. C.

South State

NA CO

Server Bar

· Sara

2.9 Ge .

1.25

× 2. 4. 4.

10 24

a start and

A. 84%

			Repor	t of An	alysis			Page 1 of 1
Client Sample Lab Sample Matrix: Method: Project:	ple ID: TRIP BLA 2 ID: D19661-9 AQ - Trip SW846 82 AECCOL:	ANK Blank Wa 260B : Xline Ete	nter cheverry Ranc	h Proj#400	Date Sa Date R Percen 228028	ampled: eceived: t Solids:	12/09/10 12/10/10 n/a	
Run #1 Run #2	File ID I 5V12006.D 1	DF I	Analyzed 12/13/10	By DC	Prep Da n/a	ite	Prep Batch n/a	Analytical Batch V5V687
Run #1 Run #2	Purge Volume 5.0 ml							
Purgeable A	Aromatics							
CAS No.	Compound		Result	RL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene m,p-Xylene		ND ND ND ND	0.0010 0.0020 0.0020 0.0040	0.00030 0.0010 0.00030 0.00060	mg/l mg/l mg/l mg/l		
95-47-6	o-Xylene		ND	0.0020	0.00060	mg/l		
CAS No.	Surrogate Recove	eries	Run# 1	Run# 2	Limit	ts		
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethan Toluene-D8 4-Bromofluoroben	ne-D4 nzene	117% 102% 95%		63-13 68-13 61-13	0% 0% 0%		

ND = Not detected MDL - Method Detection Limit RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

L'E.S. S. 1.18 Sine S 12 140 1. 10 Mar 2 2 Heren S. St. State A. 168.40 A State 2.16. L (*) 10 40 K the state of 1. 1. C. 2. 2. 2. 2. A set 100

100 July

14.12 S

3.9

È

3-18 3

「おけた」

1. are 3.

1. 1. 1. 1.

1. S. M.

Sec.

14 A.

S. S. S. S.

3° 24 20 35;

· Starting

and the second

17.00

読むい

L. 8 ...

1.200

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	ACCUTEST				CHAI	N C	OF C	CUST	[0]	DY				FED-E)		16	26]	Bottle Onder	AGE	1		
	Labbratories				2235 TEL. 732-3	Route 130 29-0200	FAX: 73	NJ 08810 2-329-3499	/3480					Accuse	Quole #			. <u> </u>	Acculters: Job	*			
	Client / Reporting Information	.	4. 162		Project	Informa	tion		176 (S	.	3			1	Requ	ested #	nalysis	(see T	EST CODE	sheet)		Warg **	Matrix Co
Company	y Name	Pro	oject Name:	Location:														Т			Γ		
DCP	Midstream	xn	71-8	Etcheverry Ra	nch									Į –							ļ	(DW - Drinking GW - Ground
Street Ad	Idress	Stre	80!			343.0- Y	40. 4	¥ 👷 🖓	A	758		e	-49n	1							[WW - War SW - Surface
370 1	17th Street, Suite 2500				Piece-	Billing	Informatio	n (H diffe	rent fro	m Rep	ort to)			1							Į	Į	SO - So
City	Sale D		,y		State	Compan	Same							ł			1			1	1	i i	SED-Sedin
Project C	iontact E4	60202 mail Pro	oject #	GN00		Street A	odress																DI-O# LIQ-OtherL
Sten	hen Weathers SWWeat	hers@dcomi	idstream.com	n		1								1		- 1	1	1			1	1	AIR - Ai
Phone #	Fa	ax # Clu	ent Purchase (Order #		City			SL	ale		Zi	0	1		8					1		WP - Wi
303-	805-1718					1								4		928			1 1		1	1	EB-Equipmen
Sampler((s) Name(s) P	none# Pro	oject Manager			Allemior	1 1							1		A A					Į		RB-Rinse E 78-7rip Bla
					Collection	Step	nen we:	thers		Number	of prese	wed Bo	tties	5		For					I.	l l	
Acculate Sampia 3	Field ID / Point of Collection		EOH/DI Vial #	Date	Time	Sampled by	Matrix	# of bottles	HCi NaOH	CONH	NONE	DI Weter	ENCORE	BTEX 82		DSWSW							LAB USE C
	MW-1			12/9	1500	MOT	GW	3	×	TT		1	\square	x							<u> </u>	-	61
	MW-2			11/5	1530	1	GW			11		+	$\uparrow \uparrow$	Y		-	-	-				<u> </u>	07
	MW-3			12/9	1420	1	GW	3	x	f †	+	-	┼┼	Îx		-+			┼╌┼╴	+	-		03
	MW-4			12/5	1340		GW	3	×	$\uparrow \uparrow$		-	11	x						1			64
	MW-5			12/4	1255	Π	GW	3	x	Π				x				-			<u> </u>		05
	MW-6			R/4	1690		GW	3	x	\mathbf{T}			TT	x		1						1	UC
	MW-7			12/9	ISIC		GW	3	×	TT		Τ	TT	x		-				1	1-	-	07
	MW-8			NA		\square	GW	3	×		Π	Т	Π	x						100	5 A ~	PLE	Set a
	DUP			12/9	600		GW	3	x	Π				x									2000
	MW-7 MS/MSD			12/4	1610		GW	6	×	LT						X .							67m
	Trip Blank						GW	1	×	Π	\Box			X				Τ.					1400
							L			Ц			LL							1			
1993 (S	Turnamund Time (Business days)							Data (Peliven	able Int	ormati	on		97			্ৰৈছা ও	Сол	ments / Spe	cial Instru	ctions	1.194	ANT THE
	Std. 10 Business Days (by Contract only)	~#P	ILOWED BY (MCCU	and for); s clare:			Commerc	uatia≻i(L Lai*B*/L	evel 2)		H	NYA	SP Cate	IORY A		iteoner	send my	ers at U	CP (SWW)	eatners/o	opy or	result Kästnea	5 10 m com)
Ē	10 Day RUSH	·					FULLT1 (Level 3+4)			State	Forms	, -	F				<u>, (a</u> ,				
Ē	5 Day RUSH						HJ Reduc	ed			$\overline{\Box}$	EDÐ	Format		\								
Ē	3 Day EMERGENCY	_					Commerc	lai "C"				Othe	r										
L	1 Day EMERGENCY					l l		Commerce	al "A" = ol "B" -	Result	s Oniy	Surr			ŀ								
Emerg	gency & Rush T/A data available VIA Lablink							NJ Reduc	nd = R	sults +	GC Su	mmar	y + Partis	Rawd	ata								
t State			Sar	nple Custody mu	st be docum	ented be	low each	time sar	nples	hang	poss	essio	n, inclu	ding co	urier del	ivery.			X4	9. E		開始	
1	Alado	12710	ľ	1 OLD R	Dova	1400	10;	50	2	nshind E	y:					P	te Time:		Neceived By	:			
Raling	uished by Sampler. Day	se Time:		Received By:	-1-1	_			Relings	ished B	y:					Da	te Timé:		Received By:				
3			i	3					4		-40]4				

D19661: Chain of Custody Page 1 of 1 4.1

r

6 Ja 2. . .

Mart and

1.000

W. W. Street

the second

Surger State

ALC: N

.

の調査の行き

2. Set 543. P.

S.K. Wash

THE TRA

1. 1. 1. 1. V.

ঙ

A. 2. 3. 86

S. Salar

and the

ALC: NOT

Real and a state

S. S.

See. Soft

N. S.

いいの

27.434

Method Blank Summary

Job Number:	D19661
Account:	DCPMCODN DCP Midstream, LP
Project:	AECCOL: Xline Etcheverry Ranch Proj#400228028

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V5V687-MB1	5V11990A	D1	12/13/10	DC	n/a	n/a	V5V687

The QC reported here applies to the following samples:

Method: SW846 8260B

D19661-1, D19661-2, D19661-3, D19661-4, D19661-5, D19661-6, D19661-7, D19661-8, D19661-9

Result	RL	MDL	Units Q
ND	1.0	0.30	ug/l
ND	2.0	0.30	ug/l
ND	2.0	1.0	ug/l
ND	4.0	0.60	ug/l
ND	2.0	0.60	ug/l
	Result ND ND ND ND	Result RL ND 1.0 ND 2.0 ND 2.0 ND 4.0 ND 2.0	Result RL MDL ND 1.0 0.30 ND 2.0 0.30 ND 2.0 1.0 ND 2.0 1.0 ND 2.0 0.60 ND 2.0 0.60

CAS No.	Surrogate Recoveries		Limits	
17060-07-0	1,2-Dichloroethane-D4 Toluene-D8	112% 103%	63-130% 68-130%	
460-00-4	4-Bromofluorobenzene	94%	61-130%	

5.1.1 5

Blank Spike Summary Page 1 of 1 Job Number: D19661 Account: DCPMCODN DCP Midstream, LP Project: AECCOL: Xline Etcheverry Ranch Proj#400228028 Sample File ID DF Prep Batch Analyzed Prep Date Analytical Batch By V5V687-BS1 5V11991A.D1 12/13/10 DC V5V687 n/a n/a The QC reported here applies to the following samples: Method: SW846 8260B D19661-1, D19661-2, D19661-3, D19661-4, D19661-5, D19661-6, D19661-7, D19661-8, D19661-9 Spike BSP BSP CAS No. Compound ug/1 ug/1 % Limits

71-43-2	Benzene	50	50.1	100	70-130
100-41-4	Ethylbenzene	50	49.8	100	70-130
108-88-3	Toluene	50	48.1	96	70-140
	m,p-Xylene	50	47.4	95	55-134
95-47-6	o-Xylene	50	47.9	96	55-134
CAS No.	Surrogate Recoveries	BSP	Li	mits	
17060-07-0	1 2-Dichloroethane-D4	105%	63	-130%	
2037-26-5	Toluene-D8	101%	68	-130%	
460-00-4	4-Bromofluorobenzene	106%	61	-130%	

No.

5. J. 40

Sec. 18

See and

C. C. C.

1.2 A B

States -

Sec.

Sulling the

と 時代的

Parts -

1. and 1.

Strates

______ 19 of 20___

JTES

D19661

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: D19661 DCPMCODN DCP Midstream, LP Account: AECCOL: Xline Etcheverry Ranch Proj#400228028 Project:

64. P. P.

50.00

372.25

「「「「

1. S. .

S TAKE

- 要調理。

Mr. Frenz

Sec. And

N. Sale

のいい

1. C. 1. 2. C.

Sec. 2

No.

140.24

Section St

P. Sugar

(CE23)

う 湯 湯

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
D19661-7MS	5V11997.D	1	12/13/10	DC	n/a	n/a	V5V687
D19661-7MSD	5V11998.D	1	12/13/10	DC	n/a	n/a	V5V687
D19661-7	5V11996.D	1	12/13/10	DC	n/a	n/a	V5V687

The QC reported here applies to the following samples:

Method: SW846 8260B

D19661-1, D19661-2, D19661-3, D19661-4, D19661-5, D19661-6, D19661-7, D19661-8, D19661-9

CAS No.	Compound	D19661-7 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3	Benzene Ethylbenzene Toluene m.p-Xylene	ND 0.56 J ND ND	50 50 50 50	51.8 53.5 51.2 51.1	104 106 102 102	52.5 53.9 51.7 51.4	105 107 103 103	1 1 1 1	59-132/30 68-130/30 56-142/30 36-146/30
95-47-6	o-Xylene	ND	50	51.3	103	52.7	105	3	36-146/30
CAS No.	Surrogate Recoveries	MS	MSD	D1	9661-7	Limits			
17060-07-0 2037-26-5 460-00-4) 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	107% 106% 110%	105% 106% 109%	108 105 969	3% 5%	63-1309 68-1309 61-1309	% % %		

D19661

5.3.1 ල