

PHILLIPS PETROLEUM COMPANY

FARMINGTON, NEW MEXICO 87401 5525 HWY. 64 NBU 3004

February 27, 1998

MAR - 3 1998

Re: 29-6 #1 CPD Off-Lease Measurement 29-6 #2 CPD Off-Lease Measurement Amendment For 29-6 #1 & #2 CPDs

State of New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505

fec. 114

Attn: David Catanach

Phillips Petroleum Company respectfully requests New Mexico Oil Conservation approval for off-lease measurement/commingling of gas through the subject central points of delivery (CPDs) located in Rio Arriba County, New Mexico. The original application for each of the CPDs was approved by the BLM on March 23, 1995 and the allocation method was approved by the OCD on April, 10 1995. The amendment for the 29-6 #1 and #2 CPDs was approved by the BLM on February 29, 1996 and the allocation method was approved by the OCD on February 13, 1998. A copy of the following documents are attached for your reference:

- 1) Original application for the 29-6 #1 CPD dated February 23, 1995 and approved by the BLM on March 23, 1995
- 2) Approval of the allocation method for the 29-6 #1 CPD by Frank Chavez of the OCD dated April 10, 1995.
- 3) Original application for the 29-6 #2 CPD dated February 23, 1995 and approved by the BLM on March 23, 1995.
- 4) Approval of the allocation method for the 29-6 #2 CPD by Frank Chavez of the OCD dated April 10, 1995.
- 5) Amendment to the 29-6 #1 and #2 CPDs dated February 13, 1996 and approved by the BLM on February 29, 1996.
- 6) Approval of the allocation method for the amendment to the 29-6 #1 and #2 CPDs by Frank Chavez of the OCD dated February 13, 1998.

There are 10 wells connected to the 29-6 #1 CPD. There are 24 wells connected to the 29-6 #2 CPD. There are 4 wells involved in the amendment to the 29-6 #1 and #2 CPDs.

29-6 #1 CPD Off-Lease Measurement 29-6 #2 CPD Off-Lease Measurement Amendment For 29-6 #1 & #2 CPDs February 27, 1998 Page 2

As we discussed by phone last year, Phillips has several cases where off-lease measurement/commingling approval was obtained from the BLM without approval from the OCD in Santa Fe. This was unintentional. We did obtain approval for the allocation method on these cases from the OCD office in Aztec. It was not known at that time that additional approval was needed from the OCD in Santa Fe.

If you have any questions concerning this, please call me at (505) 599-3450.

Sincerely,

Phillips Petroleum Company

Doyle Pruden

Accounting Specialist

cc: Frank Chavez-OCD Aztec, NM Danny Jaap

February 23, 1995

Bureau of Land Management ATTN: Mr. Mike Pool 1235 La Plata Highway Farmington, NM 87401

29-6 #1 CPD Off-Lease Measurement of Gas

Dear Mr. Pool:

Phillips Petroleum Company requests approval for off-lease measurement/commingling of gas through the subject central point of delivery (CPD) located in Rio Arriba County, New Mexico. Our original request for approval was submitted on August 31, 1994. Due to additional information requests and changes in our proposal, a complete new application is being submitted.

The required information for this application is attached. Phillips is the only operator participating in this CPD which contains only 29-6 Unit Fruitland Coal wells. If additional wells are proposed to be added to the system, prior approval will be obtained.

If you have any questions or if additional information is required, please contact me at 599-3460.

Sincerely,

PHILLIPS PETROLEUM COMPANY

Ed Hasely

4) Hasely

Environmental/Regulatory Engineer

attachments

cc: Frank Chavez - OCD Aztec, NM

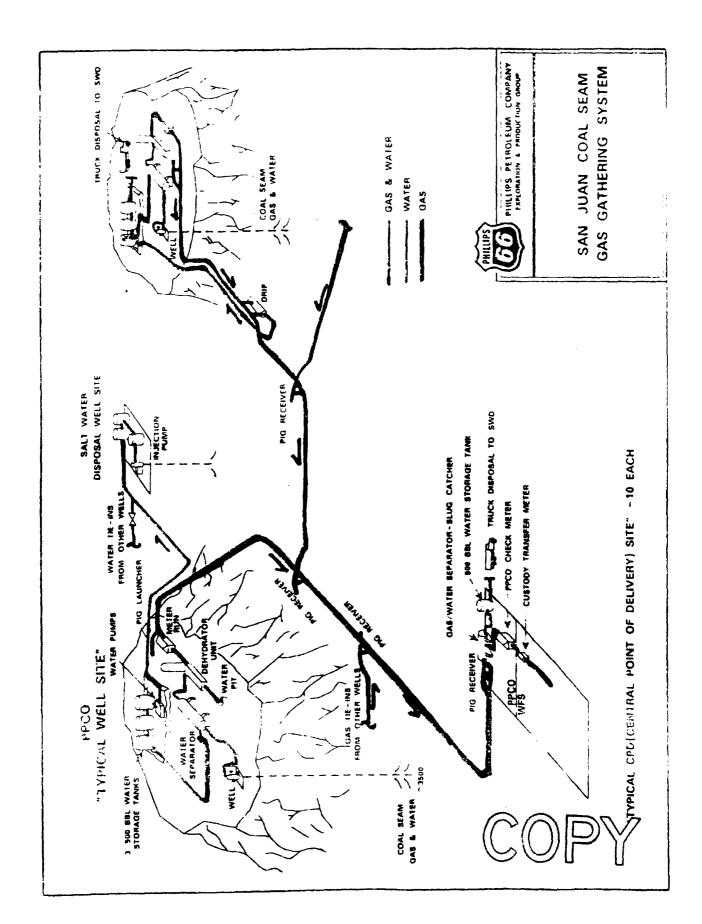
J. W. Taylor

leh\296#1cpd.mea

APPROVED

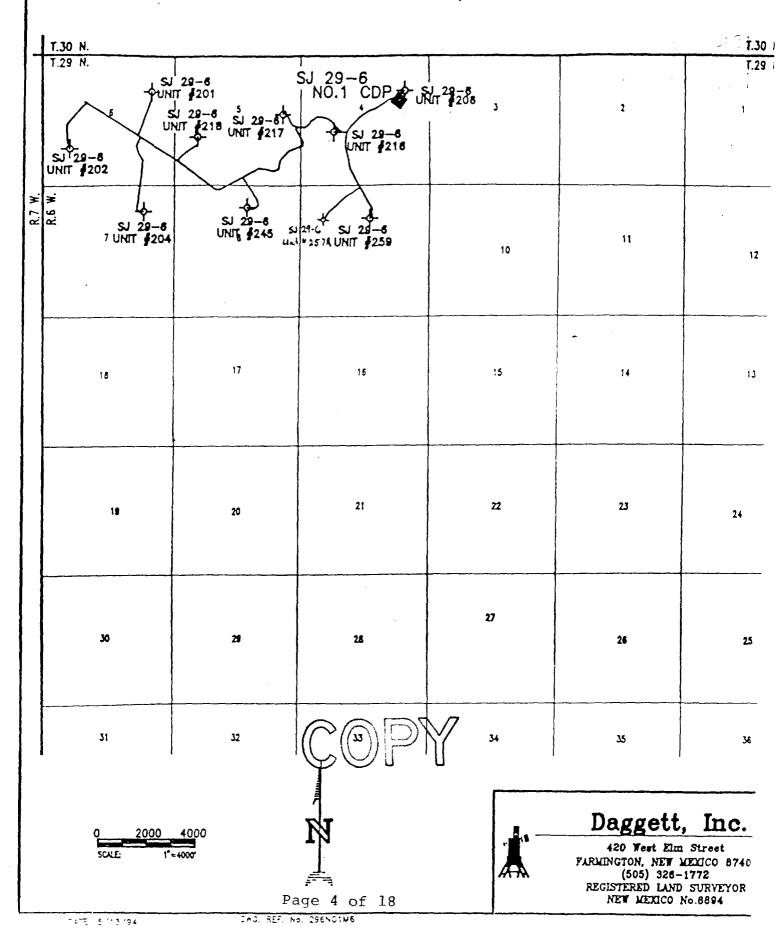
Page 1 of 182/

OPERATOR


MAR 23 1995
DISTRICT MANAGER

Off Lease Measurement/Commingling Application

Contents:


General Well/CPD Schematic Map showing wells and CPD List of wells with Lease/Agreement Number Description of System Mechanical Integrity Narrative Equipment Specifications Narrative Equipment List Burner Size List Allocation Details Fuel Gas Letter Monthly Production Narrative Evidence on Federal Royalties Narrative Economic Justification 1995 Projected Gas Volumes Allocation Examples Produced Water Disposition List Onshore Oil and Gas Order No. 5 Statement

Page 3 of 18

S.J. 29-6 No.1 C.D.P. GATHERING T.29 N., R.6 W., N.M.P.M., RIO ARRIBA COUNTY, NEW MEXICO

PHILLIPS PETROLEUM COMPANY FARMINGTON AREA

			CF			M/FI I	CONNECT	LEASE OR	
		 	LOCA			WELL	CONNECT	AGREEMENT	CPD
	UNIT	SEC	TWN	RNG	Q/Q	#	DATE	NUMBER	OWNER
	CPD #1 29-6	4	29N	6W	SINE		04/07/93		WILLIAMS FIELD SERVICE
**	S. J. 29-6	6	29	6	SEINE	201		891000439D	
	S. J. 29-6	6	29	6	NW/SW	202	08/10/93	891000439D	
	S. J. 29-6	7	29	Le_	NEINE	204	07/28/93	891 00 0439 D	
	S. J. 29-6	4	29	6	SE/NE	206	04/07/93	891000439D	
	S. J. 29-6	4	29	4	NEISW	216	04/07/93	891000439D	
	S. J. 29-6	5	29	4	SE/ME	217	04/07/93	891000439D	
**	S. J. 29-6	5	29	4	NEISW	218		891000439D	
**	S. J. 29-6	8-1	29	4	NW/NE	245		891000439D	
	S. J. 29-6	9-2	9	Le 2	<u>Sw/1964</u>	257 R	12/15/94	SF080377	
	S. J. 29-6	9	.29	le 1	NW/NE	259	07/02/93	891000439X	

^{**} INDICATES WELLS THAT HAVE NOT PRODUCED THROUGH CPD BUT COULD AT LATER DATE.

Description of System

Fruitland Coal wells, operated by Phillips Petroleum, are tied into a Phillips gathering system. The gathering system delivers gas to the Central Point of Delivery (CPD) which is operated by Williams Field Service (WFS). The CPD is the point of interconnection on WFS's Manzanares System where WFS receives Phillips Petroleum's gas for gathering. (See Attached Map)

Each of the wells are equipped with a separator, a dehydrator and an electronic flow gas meter. Some wells may also have a small compressor on location. The gas is produced through the separator to remove excess water. The water is stored in water storage tanks on location prior to disposal. The gas is further dried by the dehydrator prior to measurement. Fuel gas required to operate the well equipment (separator, dehydrator, compressors and tank heaters) is taken from the dehydrator prior to measurement. The gas leaving the well location is measured through Phillips Petroleum's electronic flow meter.

After the gas is measured at the individual well locations, the combined gas enters the gathering system which is operated by Phillips Petroleum. The gathering system delivers the gas to the CPD.

At the CPD, the gas enters a gas/water separator which separates any free water that drops out in the pipeline. Since all the gas flows through dehydrators on individual well locations prior to entering the gathering system, this water volume is normally negligible. The gas then goes through Phillips Petroleum's check meter (electronic flow meter) and directly through WFS's CPD meter. Williams compresses the gas downstream of the CPD meter. No gas is removed for fuel between Phillips Petroleum's allocation gas meters on the individual wells and the CPD meter.

Mechanical Integrity

All lines downstream of the meter runs on the individual well locations to the CPDs have been pressure tested with either water or nitrogen.

Equipment Specifications

A sheet is attached that lists the size and make of all fuel burning equipment on each well location. A separate sheet details the burner size for each type of equipment. The equipment list is subject to change as operational needs vary over time. Equipment changes will be reflected in our fuel gas calculations.

PHILLIPS PETROLEUM COMPANY

WELL	PROD SEP		DEHY		TANK #1	TANK #2	TANK #3	RENTAL COMP.
NUMBER	MFG	SIZE	MFG	SIZE	MFG	MFG	MFG	НР
CPD # 1 29-6				ļ				
29-6 #201 039 . 24	597 P&A	6 MM	P&A	6 MM	WESTERN	WESTERN		
29-6 #202 2.4	899 PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN	PERMIAN	
29-6 #204 2-4	3 2-2 PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN	PERMIAN	
29-6 #206 24	721 P&A	2 MM	P & A	2 MM	WESTERN	WESTERN		
29-6 #216 246	PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN		
216	P&A	2 MM	P & A	2 MM				
29-6#217 2.47	94 PESCO	6 MM	PESCO	6 MM	PERMIAN	PERMIAN		
29-6 #218 247	46 PESCO	6 MM	PESCO	6 MM	PERMIAN	PERMIAN	PERMIAN	i
29-6 #245 2-49	(Ô P&A	4 MM	P & A	4 MM	PALMER	PALMER	PALMER	
29-6 #259 247	63 P&A	2 MM	P & A	2 MM	PALMER	PALMER	PALMER	•
29-6 #257 R 254	56 PESCO	4 MM	PESCO	4 MM	PESCO			

BURNER SIZES

	Size (MMCF/D)	Manufacturer	Burner Size (BTU/HR)
Separators			
	2	P&A	250,000
	2	Pesco	250,000
	2	Enertek	250,000
	4	P&A	400,000
	4	Pesco	400,000
	4	Enertek	400,000
	4	American Tank	400,000
	6	P&A	450,000
	6	Pesco	450,000
Dehydrators			
	2	P&A	150,000
	2	Pesco	125,000
	4	P&A	250,000
-	4	Pesco	125,000
	4	Enertek	250,000
	6	P&A	350,000
	6	Pesco	200,000
Tank Heaters			
·	N/A	All	350,000

ALLOCATION DETAILS

Basically, the gas sales volume (mcf) will be allocated on a volume basis and the gas sales MMBTUs will be allocated on an MMBTU basis.

The gas sales volume (mcf) from an individual well is determined by first calculating a ratio by dividing its metered volume (mcf) by the sum of the metered volumes (mcf) of all wells connected to the CPD. This ratio is then multiplied by the total CPD volume (mcf). The gas production volume for an individual well is determined by adding the well's estimated fuel gas volume and the "Flared or Vented" gas volume to the well's allocated sales volume.

The fuel gas volumes are based upon the type and size of equipment on each well location and the number of producing days for each well. The fuel gas usage for the equipment was detailed in Phillips Petroleum's August 17, 1994 letter addressed to Mr. Mike Pool (attached).

The MMBTUs assigned to an individual well is determined by first calculating a ratio by dividing its metered MMBTUs by the sum of the metered MMBTUs of all wells connected to the CPD. This ratio is then multiplied by the total CPD MMBTUs. The individual well BTU value (MMBTU/mcf) will be calculated by dividing the allocated MMBTUs by the allocated volume (mcf).

If a section of line is blown down, the calculated volume of blowdown gas will be allocated to the affected wells. This allocated blowdown volume will be reported as "Flared or Vented" gas.

Since all the gas flows through dehydrators on individual well locations prior to entering the gathering system, water volumes at the CPD are normally negligible. If these water volumes become significant, they will be allocated to the wells.

Allocation examples using actual data for the months October, November and December, 1994 are attached.

August 17, 1994

Bureau of Land Management 1235 La Plata Hwy. Farmington, NM 87041 Attn: Mike Pool

> Gas Used on Lease As Reported On Form MMS-3160 (Monthly Report of Operations)

Dear Mr. Pool:

It has been brought to our attention that there are volume discrepancies between gas used on lease as reported by Phillips Petroleum Company on Form MMS-3160 and gas used on lease as calculated by Mike Wade of your office. This was found during the recent Production Accountability Inspections conducted by Mike Wade. The most notable volume discrepancy is the gas used by water tank heaters on our coal seam wells. We have not been calculating or reporting any gas used on lease volumes for these tank heaters.

I am proposing that effective with August 1994 production. Phillips Petroleum Company report gas used on lease based on the attached table for all leases that we operate in the area that your office administers. I would also like to recommend for your approval that we not be required to make retroactive corrections prior to August 1994 for gas used on lease as reported on the Form MMS-3160. The reasoning behind this request is the manpower involved for both Phillips Petroleum Company and the federal agencies to process these corrections, the relatively small gas volumes as compared to the produced volumes, and the fact that volumes are not royalty bearing.

Please let me know your decision concerning this as early as possible to allow our Production Accounting personnel time to make adjustments prior to August's production reports. My phone number is 599-3460 if you would like to discuss.

Sincerely.

PHILLIPS PETROLEUM COMPANY

Ed Hasely

Environmental/Regulatory Engineer

cc:

J. W. Taylor

E. D. Pruden

leh\mms3160.gas

FUEL USE EQUIPMENT

(All factors at 15.025 Pressure Base)

<u>SEPARATORS</u>	$\leq 2 \text{ MM}$	-	4.3	mcf/producing day
·	4 MM	-	6.9	mcf/producing day
	6 MM	-	7.7	mcf/producing day
	·			
DEHYDRATORS	≤ 2 MM	-	2.4	mcf/producing day
	4 MM	-	3.2	mcf/producing day
	6 MM	-	4.7	mcf/producing day

10 MM

TANK HEATERS

1.8 mcf/producing day/tank

6.0 mcf/producing day

Note:

Anticipate tank heaters to operate from November through March, but this may vary year to year.

COMPRESSORS	50 HP	•	8	mcf/producing day
	80 HP	-	13	mcf/producing day
	100 HP	•	16	mcf/producing day
	120 HP	-	19	mcf/producing day
	165 HP	-	26	mcf/producing day

BLOWDOWN GAS

0.7 mcf/minute of blowdown Fruitland Sand & Mesaverde

1.0 mcf/minute of blowdown Dakota

Monthly Production

Sheets are attached that show the estimated 1995 production for each of the wells connected to the CPD. The allocation examples show the BTU content of the gas from the individual wells, as well as the BTU content of the combined gas at the CPD. Since all the gas is produced from wells completed in the same formation and in the same general area, the BTU content of the gas does not vary substantially.

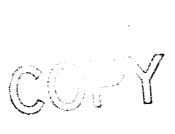
Evidence on Federal Royalties

Gas volumes and MMBTU quantities are allocated to the wells from the CPD because the most accurate volumes and MMBTU quantities available are from the CPD. The reasons for this, such as measurement errors, stable flow rates, BTU content, etc., have been discussed on numerous occasions. The inherently greater accuracy of the CPD volume, as compared to the sum of the individual well metered volumes, warrants the acceptance of the CPD volume as representative of the total sales volume from the individual wells. It is then necessary only to reduce the total sales volume to its individual components through the proposed allocation method.

Sheets are attached (Allocation Examples) that compare the allocated sales volume with the metered volume for the months October, November and December, 1994. The results vary well by well, month by month, and CPD by CPD, but overall the volumes are extremely close. At the 29-6 #1 CPD, the sum of the allocate MMBTUs were 3.2% lower than sums of the individual well's metered MMBTUs for these three months.

Economic Justification

The CPD system utilizing off-lease gas measurement will extend the economic life of all affected wells due to the reduction of back pressure on the wells. Without the system, the gas would have been produced into a conventional gas pipeline operated at a substantially higher pressure. The higher pipeline pressure would decrease the recoverable reserves from each well or force Phillips to install compressors on each well location. Either scenario will reduce the economic life of the wells.



Il volumes and BTU values assume a 14.73 Pressure Base.

ALLOCATION EXAMPLE 29-6 #1, CPD DECEMBER, 1994

08-Feb-95

	-6.24%	-6.93%		513,766	1	547,930		573,399	1	616,070		TOTAL
0.74%	-6.24%	-6.93%	0.917	33,064	0.064356	35,263	0.910	36,075	0.062915	38,760	259	J. 29-6
				0	0	0	0.000	6,366	0.0111015	6,839	257R	J. 29-6
				0	0	0	0.000	0	0	0	245	J. 29-6
				0	0	0	0.000	0	0	0	218	J. 29-6
0.74%	-6.24%	-6.93%	0.906	223,462	0.43495	238,322	0.900	246,589	0.4300483	264,940	217	J. 29-6
0.74%	-6.24%	-6.93%	0.917	64,673	0.12588	68,974	0.910	70,563	0.1230616	75,815	216	J. 29-6
0.74%	-6.24%	-6.93%	0.901	82,225	0.160044	87,693	0.894	91,254	0.1591459	98,045	206	J. 29-6
0.74%	-6.24%	-6.93%	0.903	51,586	0.100407	55,016	0.896	57,119	0.0996152	61,370	204	J. 29-6
0.74%	-6.24%	-6.93%	0.898	58,756	0.114363	62,663	0.891	65,432	0.1141125	70,301	202	J. 29-6
				0	0	0	0	0	0	0	201	J. 29-6
						513,766	0.896			573,399	CPD	-6 #1 CPD
(%)	(%)	(%)	AWLOE				VALUE	(mcf)		(mcf)	#	UNIT
WELL BTO		DIFFERENCE DIFFERENCE	WELL BTU	ALLOCATED MMBTU	RATIO	METERED MMBTU's	¥×	ALLOCATED GAS	VOLUME RATIO	WELL GAS VOLUME	WELL	

ALLOCATION EXAMPLE 29-6 #1 CPD NOVEMBER, 1994

<u>_</u>

c	7
č	'n
	1
•	T
(0
ζ	3
	ł
<	c
(Ì

	-2.31%	-4.84%		394,751	1	404,094		442,050	1	464,519		TOTAL
2.65%	-2.31%	-4.84%	0.898	28,808	0.072978	29,490	0.875	32,073	0.0725562	33,704	259	29-6
				0	0	0	0.000	0	0	0	257R	29-6
				0	0	0	0.000	0	0	0	245	29-6
				0	0	0	0.000	0	0	0	218	29-6
2.65%	-2.31%	-4.84%	0.898	130,932	0.331684	134,031	0.875	145,774	0.329768	153,184	217	29-6
2.65%	-2.31%	-4.84%	0.900	56,240	0.142469	57,571	0.877	62,469	0.1413156	65,644	216	29-6
2.65%	-2.31%	-4.84%	0.880	75,665	0.191677	77,456	0.858	85,950	0.1944361	90,319	206	29-6
2.65%	-2.31%	-4.84%	0.897	49,217	0.124679	50,382	0.874	54,860	0.1241044	57,649	204	29-6
2.65%	-2.31%	-4.84%	0.885	53,889	0.136513	55,164	0.862	60,923	0.1378198	64,020	202	29-6
				0	0	0	0	0	0	0	201	29-6
						394,751	0.893			442,050	CPD	#1 CPD
(%)	(%)	(%)						ı		(mcf)	#	UNIT
DIFFERENCE			VALUE				VALUE	VOLUME				
VALUE	DIFFERENCE	DIFFERENCE DIFFERENCE	WELL BTU	MMBTU	RATIO	MMBTU's	WELL BTU	GAS		WELL GAS VOLUME	WELL	
WELL BTU	MMBTU	I VOLUME I	ALLOCATED	I UTLOCATED I	UTBMM	METERED	GENSVEW	ALLOCATED	VOLUME 1	CERED		

olumes and BTU values assume a 14.73 Pressure Base.

ALLOCATION EXAMPLE 29-6 #1 CPD OCTOBER, 1994

07-Feb-95

	-0.09%	-2.70%		415,975	1	416,364		465,818	1	478,764		TOTAL
2.68%	-0.09%	-2.70%	0.898	29,732	0.071474	29,759	0.875	33,092	0.0710408	34,012	259	29-6
				0	0	0	0.000	0	0	0	257R	29-6
				0	0	0	0.000	0	0	0	245	29-6
				0	0	0	0.000	0	0	0	218	29-6
2.68%	-0.09%	-2.70%	0.898	123,587	0.297102	123,703	0.875	137,556	0.2952996	141,379	217	29-6
2.68%	-0.09%	-2.70%	0.901		0.159428	66,380	0.877	73,641	0.1580905	75,688	216	29-6
2.68%	-0.09%	-2.70%	0.881	85,287	0.20503	85,367	0.858	96,853	0.2079197	99,544	206	29-6
2.68%	-0.09%	-2.70%	0.897	52,607	0.126467	52,656	0.874	58,622	0.1258469	60,251	204	29-6
2.68%	-0.09%	-2.70%	0.885	58,444	0.140499	58,499	0.862	66,054	0.1418025	67,890	202	29-6
				0	0	0	0	0	0	0	201	29-6
						415,975	0.893			465,818	CPD	6 #1 CPD
(%)	(%)	(%)	4 7 LO L				47F0F	(mct)		(mcf)	#	TINU
VALUE		DIFFERENCE DIFFERENCE	WELL BTU	MMBTU	RATIO	MMBTU's	WELL BTU	GAS	RATIO	GAS VOLUME	WELL	

1995 PROJECTED CPD VOLUMES

cpd95pjt.wk3

CPD			YEARLY	CPD
NUMBER	UNIT	WELL	MMCF	TOTAL
29-6 #1 CPD				
	S.J. $29-6$	201	1,460	
	S.J. 29-6	202	1,369	
	S.J. $29-6$	204	949	
	S.J. 29-6	206	876	
	S.J. 29 – 6	216	757	
	S.J. 29-6	217	2,008	
İ	S.J. 29-6	218	949	
	S.J. 29-6	245	1,022	
	S.J. 29-6	257 R	912	İ
	S.J. 29-6	259	438	
		TOTAL		10,740

PHILLIPS PETROLEUM COMPANY FARMINGTON AREA

UNIT	WELL #	PIPELINE WATER	TRUCKED WATER	SWD LOCATION
CPD #1 29-6	#	WAIER	WATER	LOCATION
S. J. 29-6	201	X		29-6 SWD
S. J. 29-6	202	X		29-6 SWD
S. J. 29-6	204	х -		29-6 SWD
S. J. 29-6	206	X		29-6 SWD
S. J. 29-6	216	X		29-6 SWD
S. J. 29-6	217	X		29-6 SWD
S. J. 29-6	218	X		29-6 SWD
S. J. 29-6	245	X		29-6 SWD
S. J. 29-6	259	X		29-6 SWD
S. J. 29-6	257 R		X	29-6 SWD

October 19, 1994

PHILLIPS PETROLEUM COMPANY San Juan Basin, New Mexico Off-Lease Measurement of Gas Applications

STATEMENT: The allocation meters are calibrated and gas samples are collected in accordance with Onshore Oil and Gas Order No. 5.

MECHANICAL INTEGRITY

All lines downstream of the meter runs on the individual well locations to the CPDs have been pressure tested with either water or nitrogen. The lines were pressured to 750 psi and held overnight.

Estimate of Blowdown Volume Dakota Formation

Assumptions: Ideal Gas Law (2=1)

23/8 Tubing at 7200 fl

Pressure = 350 psis

Temperature = Constant CO°

Two Tubing Volumes for Blowdown

Average Blowdown = 8 minutes

P, V, = Psc Vsc P, = 3CH psie

Psc : 141.7 psie

V, : 2 (7200') (.0217 Pt3/ft)

= 312 Pt3

V₆c = (3c4) (312) = 772c Pt³ ≈ 7.7 MCF 7.7 MCF in 8 minutes ≈ 1 MCF/Min

Dakota Formation = 1.0 MCF/Min

トモエ

Estimate of Blowdown Volumes Mesa Verda i Fruitland Sand Formations

Assumptions: I dees Ges Law (Z=1)

238" Tubing at coopf.

Pressure = 300 peig

Temperature = Constant 60°

Two Tubing Volumes for Blowdown

Averge Blowdown = 8 minutes

 $P_{1} V_{1} = P_{50} V_{50}$ $P_{50} = 314 p_{510}$ $P_{50} = 141.7 p_{510}$ $V_{1} = 2 (600) (.0217 ft)$ $= 260 ft^{3}$

 $V_{SC} = \left(\frac{314}{14.7}\right)(200) = 5554 \text{ ft}^3 \approx 5.6 \text{ MCF}$ 5.6 MCF in 8 minutes = 0.7 MCF/Min

Mesa Verde + Fruitland Sand = 0.7 MCF/min

COF

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE

GARY E. JOHNSON GOVERNOR JENNIFER A. SALISBURY CABINET SECRETARY 1000 RIO BRAZOS ROAD AZTEC, NEW MEXICO 87410 (505) 334-6178 FAX: (505) 334-6170

April 10, 1995

Mr Ed Hasely Phillips Petroleum Company 5525 Hwy 64 NBU 3004 Farmington NM 87401

Re: 29-6 #1 CPD

Dear Mr. Hasely:

As per Rule 403.C. your application for the approval of the allocation method to be used at the referenced CPD is hereby approved.

Sincerely,

Frank T. Chavez Supervisor District III

FTC/sh

February 23, 1995

Bureau of Land Management ATTN: Mr. Mike Pool 1235 La Plata Highway Farmington, NM 87401

> 29-6 #2 CPD Off-Lease Measurement of Gas

Dear Mr. Pool:

Phillips Petroleum Company requests approval for off-lease measurement/commingling of gas through the subject central point of delivery (CPD) located in Rio Arriba County, New Mexico. Our original request for approval was submitted on August 31, 1994. Due to additional information requests and changes in our proposal, a complete new application is being submitted.

The required information for this application is attached. Phillips is the only operator participating in this CPD which contains only Fruitland Coal wells. If additional wells are proposed to be added to the system, prior approval will be obtained.

If you have any questions or if additional information is required, please contact me at 599-3460.

Sincerely,

PHILLIPS PETROLEUM COMPANY

Ed Hasely

2) Harry

Environmental/Regulatory Engineer

attachments

cc: Frank Chavez - OCD Aztec, NM

J. W. Taylor

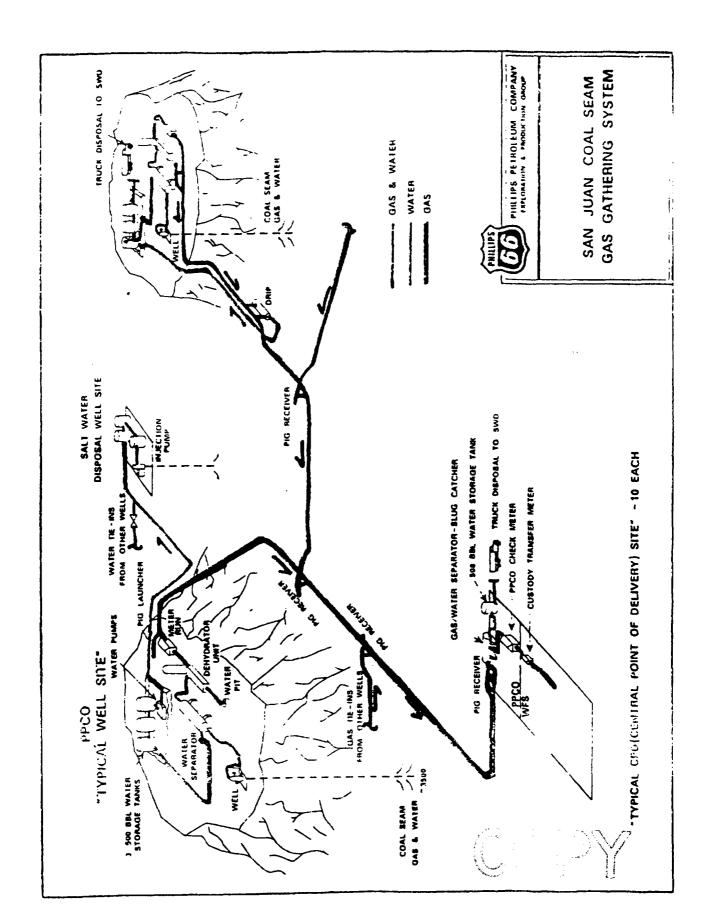
leh\296#2cpd.mea

APPROVED

MAR 23 1995

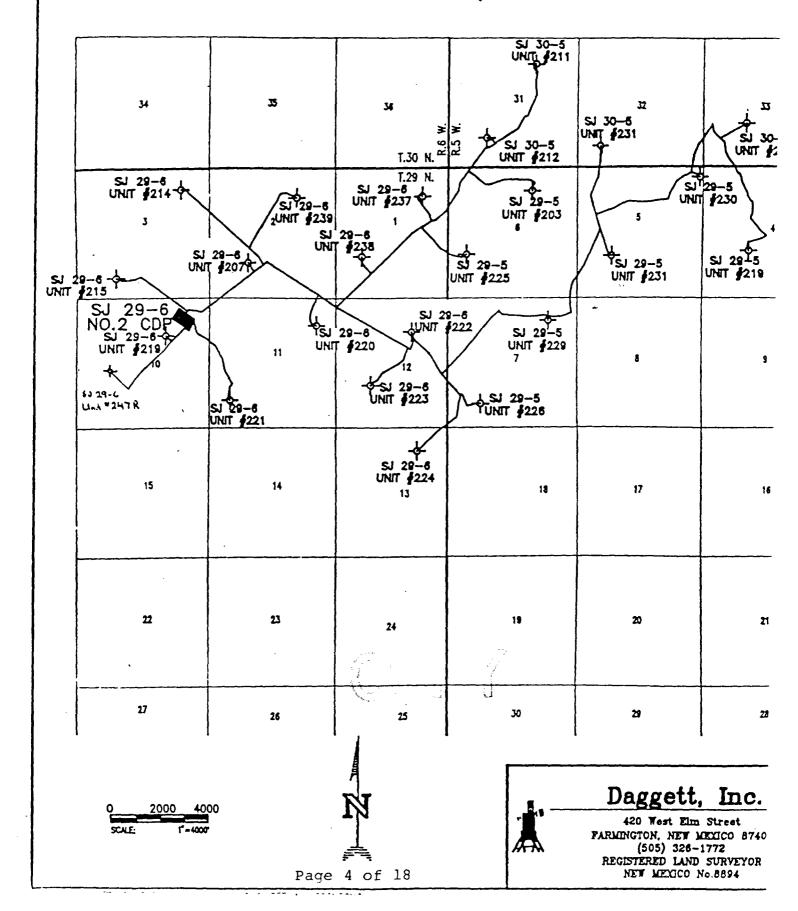
DISTRICT MANAGER

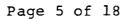
Page 1 of 18


OPERATOR

Off Lease Measurement/Commingling Application

Contents:


General Well/CPD Schematic Map showing wells and CPD List of wells with Lease/Agreement Number Description of System Mechanical Integrity Narrative Equipment Specifications Narrative Equipment List Burner Size List Allocation Details Fuel Gas Letter Monthly Production Narrative Evidence on Federal Royalties Narrative Economic Justification 1995 Projected Gas Volumes Allocation Examples Produced Water Disposition List Onshore Oil and Gas Order No. 5 Statement


Page 3 of 18

PHILLIPS PLIKULEUM CO.
S.J. 29-6 No.2 C.D.P. GATHERING
T.29 N., R.6 W., R.5 W., N.M.P.M.,
T.30 N., R.5 W., N.M.P.M.,
RIO ARRIBA COUNTY, NEW MEXICO

PHILLIPS PETROLEUM COMPANY FARMINGTON AREA

	UNIT	SEC	LOCA TWN	PD TION RNG	Q/Q	WELL #	CONNECT DATE	LEASE OR AGREEMENT NUMBER	CPD OWNER
	CPD #2 29-6	10		6W			12/29/92	NUMBER	WILLIAMS FIELD SERVICE
	S. J. 29-5	6	29	5	NW/NE	203	12/29/92	NMSF078410 \	24535
	S. J. 29-5	10	29	6	SW/NE	219	05/25/93	NMSF081114	25081
	S. J. 29-5	6	29	4	NW/SW	225	05/15/93	NMSF078305	25086
	S. J. 29-5	7	29		SE/SW	226	04/14/93	891000437X	25076
	S. J. 29-5	7	29	5	NE/NE	229	12/20/93	NMSF078277	25227
	S. J. 29-5	5	29 5	5	NE/NE	230	05/24/93	NMSF078343	25226
	S. J. 29-5	32	30	5	SW/SW	231	12/20/93	NMSF078642	25075
5	S. J. 29-6	2	29	4	NE/SW	207	12/29/92	891000439D	24516
Λ	S. J. 29-6	3		6	NEINE	214	12/29/92	891000439D	24606
\prod	S. J. 29-6	3	29 6	6	SE/SW	215	12/29/92	891000439D	24726
	S. J. 29-6	10	29 (SW/NE	219	12/29/92	891000439D	24608
\mathbf{H}	S. J. 29-6	11		6	NE/NE	220	12/29/92	891000439D	· Z4690
\parallel	S. J. 29-6	11	29 6		5W/SW	221	12/29/92	891000439D	24680
	S. J. 29-6	12	29	4	SW/NE	222	12/29/92	891000439D	- C4758
	S. J. 29-6	12	29	4	NE/SW	223	12/29/92	891000439D	29681
	S. J. 29-6	13	29	6	NE/NE	224	04/16/93	891000439D	24759
	S. J. 29-6		29		NE/NE	237	12/29/92	891000439D	24804
	S. J. 29-6				NW/SW	238	12/29/92	891000439D	24803
	S. J. 29-6	-			NW/ME	239	12/29/92	891000439D	24705
	S. J. 29-6	10	29 6	/	NE/SW	247 R	12/30/94	SF078278	25414
	S. J. 30-5	31	30 5	- ,	NW/NE	211	12/31/92	NMNM012331	24720
	S. J. 30-5		30 5		SE/SW	212	12/29/92	NMNM012335	24721
	S. J. 30-5		30		sw/sw	231	06/08/93	891000346X	24893
	S. J. 30-5	33	30.		NE/SW	233	05/25/93	NMSF078739	25195

Description of System

Fruitland Coal wells, operated by Phillips Petroleum, are tied into a Phillips gathering system. The gathering system delivers gas to the Central Point of Delivery (CPD) which is operated by Williams Field Service (WFS). The CPD is the point of interconnection on WFS's Manzanares System where WFS receives Phillips Petroleum's gas for gathering. (See Attached Map)

Each of the wells are equipped with a separator, a dehydrator and an electronic flow gas meter. Some wells may also have a small compressor on location. The gas is produced through the separator to remove excess water. The water is stored in water storage tanks on location prior to disposal. The gas is further dried by the dehydrator prior to measurement. Fuel gas required to operate the well equipment (separator, dehydrator, compressors and tank heaters) is taken from the dehydrator prior to measurement. The gas leaving the well location is measured through Phillips Petroleum's electronic flow meter.

After the gas is measured at the individual well locations, the combined gas enters the gathering system which is operated by Phillips Petroleum. The gathering system delivers the gas to the CPD.

At the CPD, the gas enters a gas/water separator which separates any free water that drops out in the pipeline. Since all the gas flows through dehydrators on individual well locations prior to entering the gathering system, this water volume is normally negligible. The gas then goes through Phillips Petroleum's check meter (electronic flow meter) and directly through WFS's CPD meter. Williams compresses the gas downstream of the CPD meter. No gas is removed for fuel between Phillips Petroleum's allocation gas meters on the individual wells and the CPD meter.

Mechanical Integrity

All lines downstream of the meter runs on the individual well locations to the CPDs have been pressure tested with either water or nitrogen.

Equipment Specifications

A sheet is attached that lists the size and make of all fuel burning equipment on each well location. A separate sheet details the burner size for each type of equipment. The equipment list is subject to change as operational needs vary over time. Equipment changes will be reflected in our fuel gas calculations.

PHILLIPS PETROLEUM COMPANY

	PROD		-					RENTAL
WELL	SEP		DEHY		TANK #1	TANK #2	TANK #3	COMP.
NUMBER	MFG	SIZE	MFG	SIZE	MFG	MFG	MFG	НР
CPD # 2 29-6				ţ			;	
29-5 #203	P & A	2 MM	P & A	2 MM	WESTERN	WESTERN		*
29-5 #219	PESCO	2 MM	PESCO	; 2 MM	PERMIAN	PERMIAN		100
29-5 #225	P & A	2 MM	P & A	2 MM	PESCO	PESCO		
29-5 #226	PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN	:	
29-5 #229	PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN		
29-5 #230	P & A	2 MM	P & A	2 MM	PERMIAN	PERMIAN		!
29-5 #231	PESCO	2 MM	PESCO	2 MM	PERMIAN	PESCO		
29-6 #207	P & A	6 MM	P & A	6 MM	WESTERN	WESTERM		
29-6 #214	PESCO	6 MM	PESCO	6 MM	WESTERN	WESTERN	WESTERN	t 1
	PESCO	4 MM	PESCO	4 MM			:	
29-6 #215	PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN		
29-6 #219	PESCO	4 MM	PESCO	4 MM	WESTERN	WESTERN		
29-6 #220	PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN		
29-6 #221	PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN		
	P & A	2 MM	P & A	2 MM		1		
29-6 #222	P&A	4 MM	P & A	4 MM	PALMER	PALMER		
29-6 #223	PESCO	6 MM	PESCO	6 MM	PERMIAN	PERMIAN	PERMIAN	
29-6 #224	P & A	2 MM	P & A	2 MM	PALMER	PALMER		
	P & A	2 MM	P & A	2 MM				
29-6 #237	P & A	2 MM	P & A	2 MM	PALMER	PALMER		
29-6 #238	P & A	2 MM	P & A	2 MM	PALMER	PALMER		
29-6 #239	P & A	2 MM	P & A	2 MM	PALMER	PALMER		
30-5 #211	PESCO	6 MM	PESCO	6 MM	PERMIAN	PERMIAN	PERMIAN	
30-5 #212	PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN		
30-5 #231	PESCO	2 MM	PESCO	2 MM	PESCO	PESCO	PERMIAN	
30-5 #233	P&A	2 MM	P & A	2 MM	PERMIAN	PERMIAN		80
29-6 #247 R	PESCO	2 MM	P & A	2 MM	PESCO	PESCO		

BURNER SIZES

	Size (MMCF/D)	Manufacturer:	Burner Size [BTU/HR]
Separators			
	2	P&A	250,000
	2	Pesco	250,000
	2	Enertek	250,000
. ·	4	P&A	400,000
	4	Pesco	400,000
	4	Enertek	400,000
	4	American Tank	400,000
	6	P&A	450,000
	6	Pesco	450.000
Dehydrators			
	2	P&A	150,000
	2	Pesco	125,000
	4	P&A	250,000
-	4	Pesco	125,000
	4	Enertek	250,000
	6	P&A	350,000
	6	Pesco	200,000
Tank Heaters			
	N/A	All	350,000

ij

ALLOCATION DETAILS

Basically, the gas sales volume (mcf) will be allocated on a volume basis and the gas sales MMBTUs will be allocated on an MMBTU basis.

The gas sales volume (mcf) from an individual well is determined by first calculating a ratio by dividing its metered volume (mcf) by the sum of the metered volumes (mcf) of all wells connected to the CPD. This ratio is then multiplied by the total CPD volume (mcf). The gas production volume for an individual well is determined by adding the well's estimated fuel gas volume and the "Flared or Vented" gas volume to the well's allocated sales volume.

The fuel gas volumes are based upon the type and size of equipment on each well location and the number of producing days for each well. The fuel gas usage for the equipment was detailed in Phillips Petroleum's August 17, 1994 letter addressed to Mr. Mike Pool (attached).

The MMBTUs assigned to an individual well is determined by first calculating a ratio by dividing its metered MMBTUs by the sum of the metered MMBTUs of all wells connected to the CPD. This ratio is then multiplied by the total CPD MMBTUs. The individual well BTU value (MMBTU/mcf) will be calculated by dividing the allocated MMBTUs by the allocated volume (mcf).

If a section of line is blown down, the calculated volume of blowdown gas will be allocated to the affected wells. This allocated blowdown volume will be reported as "Flared or Vented" gas.

Since all the gas flows through dehydrators on individual well locations prior to entering the gathering system, water volumes at the CPD are normally negligible. If these water volumes become significant, they will be allocated to the wells.

Allocation examples using actual data for the months October, November and December, 1994 are attached.

August 17, 1994

Bureau of Land Management 1235 La Plata Hwy. Farmington, NM 87041 Attn: Mike Pool

> Gas Used on Lease As Reported On Form MMS-3160 (Monthly Report of Operations)

Dear Mr. Pool:

It has been brought to our attention that there are volume discrepancies between gas used on lease as reported by Phillips Petroleum Company on Form MMS-3160 and gas used on lease as calculated by Mike Wade of your office. This was found during the recent Production Accountability Inspections conducted by Mike Wade. The most notable volume discrepancy is the gas used by water tank heaters on our coal seam wells. We have not been calculating or reporting any gas used on lease volumes for these tank heaters.

I am proposing that effective with August 1994 production, Phillips Petroleum Company report gas used on lease based on the attached table for all leases that we operate in the area that your office administers. I would also like to recommend for your approval that we not be required to make retroactive corrections prior to August 1994 for gas used on lease as reported on the Form MMS-3160. The reasoning behind this request is the manpower involved for both Phillips Petroleum Company and the federal agencies to process these corrections, the relatively small gas volumes as compared to the produced volumes, and the fact that volumes are not royalty bearing.

Please let me know your decision concerning this as early as possible to allow our Production Accounting personnel time to make adjustments prior to August's production reports. My phone number is 599-3460 if you would like to discuss.

Sincerely,

PHILLIPS PETROLEUM COMPANY

Ed Hasely

Environmental/Regulatory Engineer

cc:

J. W. Taylor

E. D. Pruden

lch\mms3160.gas

FUEL USE EQUIPMENT

(All factors at 15.025 Pressure Base)

SEPARATORS	≤ 2 MM 4 MM 6 MM		6.9	mcf/producing day mcf/producing day mcf/producing day	
DEHYDRATORS	≤ 2 MM 4 MM 6 MM 10 MM			mcf/producing day mcf/producing day	
TANK HEATERS	·	-	1.8	mcf/producing day/tank	
Note:	Anticipate tank heaters to operate from November through March, but this may vary year to year.				

COMPRESSORS	50 HP	-	8	mcf/producing day
	80 HP	-	13	mcf/producing day
	100 HP	` •	16	mcf/producing day
	120 HP	-	19	mcf/producing day
	165 HP	-	26	mcf/producing day

BLOWDOWN GAS

Fruitland Sand & Mesaverde - 0.7 mcf/minute of blowdown

Dakota - 1.0 mcf/minute of blowdown

Monthly Production

Sheets are attached that show the estimated 1995 production for each of the wells connected to the CPD. The allocation examples show the BTU content of the gas from the individual wells, as well as the BTU content of the combined gas at the CPD. Since all the gas is produced from wells completed in the same formation and in the same general area, the BTU content of the gas does not vary substantially.

Evidence on Federal Royalties

Gas volumes and MMBTU quantities are allocated to the wells from the CPD because the most accurate volumes and MMBTU quantities available are from the CPD. The reasons for this, such as measurement errors, stable flow rates, BTU content, etc., have been discussed on numerous occasions. The inherently greater accuracy of the CPD volume, as compared to the sum of the individual well metered volumes, warrants the acceptance of the CPD volume as representative of the total sales volume from the individual wells. It is then necessary only to reduce the total sales volume to its individual components through the proposed allocation method.

Sheets are attached (Allocation Examples) that compare the allocated sales volume with the metered volume for the months October, November and December, 1994. The results vary well by well, month by month, and CPD by CPD, but overall the volumes are extremely close. At the 29-6 #2 CPD, the sum of the allocated MMBTUs were 2.9% higher than sums of the individual well's metered MMBTUs for these three months. This computes to higher overall royalties by following the described off-lease measurement practice.

Economic Justification

The CPD system utilizing off-lease gas measurement will extend the economic life of all affected wells due to the reduction of back pressure on the wells. Without the system, the gas would have been produced into a conventional gas pipeline operated at a substantially higher pressure. The higher pipeline pressure would decrease the recoverable reserves from each well or force Phillips to install compressors on each well location. Either scenario will reduce the economic life of the wells.

1995 PROJECTED CPD VOLUMES

CPD	and a Mark		YEARLY	CPD
NUMBER	UNIT	WELL	MMCF	TOTAL
29-6 #2 CPD	S.J. 29-5	203	913	
	S.J. 29-5	219	164	
	S.J. 29 – 5	225	365	
	S.J. 29-5	226	730	
	S.J. 29-5	229	0	
	S.J. 29 – 5	230	438	
	S.J. 29-5	231	9	
	S.J. 29-6	207	2,008	
	S.J. 29-6	214	2,555	
	S.J. 29-6	215	584	
	S.J. 29-6	219	1,059	
	S.J. 29-6	220	548	• '
	S.J. 29-6	221	694	
	S.J. 29-6	222	784	
	S.J. 29-6	223	1,241	
	S.J. 29-6	224	730	
	S.J. 29-6	237	485	
	S.J. 29-6	238	438	
	S.J. 29-6	239	475	
	S.J. 29-6	247 R	547	
	S.J. $30-5$	211	1,643	
	S.J. $30-5$	212	211	
	S.J. 30-5	231	110	
	S.J. 30-5	233	219	
		TOTAL		16,950

ALLOCATION EXAMPLE 29-6 #2 CPD OCTOBER, 1994

Ġ

T-'

TOTAL	J.	-	. 1	S. J. 29-5	S. J. 29-5	J.	ا بــا	' 1	اب	اب	٠.	اء:	٠.	J. 29	٠.	S. J. 29-6	1	S. J. 29-6	J. 29-	ŗ.	S. J. 29-6	S. J. 29-6	S. J. 29-6	S. J. 29-5		29-6 #2 CPD	LINO	
۸L	247R	233	231	230	229	226	225	219	231	212	211	239	238	237	224	223	222	221	220	219	215	214	207	203	-	 CPD	*	WELL
761,303	0	18,380	269	21,811	0	37,676	4,363	10,294	9,570	15,705	83,659	40,759	36,398	40,200	58,558	97,901	68,625	0	41,984	0	0	0	128,405	46,746		786,581	(mcf)	GAS
1	0	0.0241426	0.0003537	0.0286499	0	0.0494884	0.0057305	0.0135217	0.0125704	0.0206296	0.1098886	0.0535388	0.0478096	0.0528046	0.0769177	0.1285968	0.090142	0	0.0551479	0	0	0	0.1686648	0.0614023				RATIO
786,581	0	18,990	278	22,535	0	38,927	4,508	10,636	9,888	16,227	86,436	42,113	37,606	41,535	60,502	101,152	70,904	0	43,378	0	0	0.	132,669	48,298			(mct)	ALLOCATED GAS VOLUME
	0.000	0.922	1.026	0.954	0.000	0.880	0.897	0.887	0.919	0.892	0.914	0.867	0.874	0.888	0.890	0.855	0.860	0.000	0.867	0.000	0.000	0.000	0.856	0.897		0.906		WELL BTU VALUE
669,327	0	16,947	276	20,803	0	33,158	3,915	9,133	8,795	14,015	76,452	35,330	31,810	35,709	52,135	83,657	58,992	0	36,391	0	0	0	109,854	41,954		712,642		ME LEKED
1	0	0.02532	0.000413	0.03108	0	0.049539	0.00585	0.013646	0.013139	0.020939	0.114223	0.052784	0.047525	0.053351	0.077892	0.124987	0.088136	0	0.05437	0	0	0	0.164126	0.06268				RATIO
712,642	0	18,044	294	22,149	0	35,304	4,169	9,725	9,364	14,922	81,400	37,616	33,868	38,020	55,509	89,071	62,810	0	38,746	0	0	0	116,963	44,669				MMBTU
		0.950	1.058	0.983		0.907	0.925	0.914	0.947	0.920	0.942	0.893	0.901	0.915	0.917	0.881	0.886		0.893				0.882	0.925				WELL BTU VALUE
F	1		Ī	1	1	T	I	I	T	1.2			*	<u></u>							1 20							0
3.32%		3.32%	3.32%	3.32%		3.32%	3.32%	3.32%	3.32%	3.32%	3.32%	3.32%	3.32%	3.32%	3.32%	3.32%	3.32%		3.32%				3.32%	3.32%			(6)	DIFFERENCE
6.41%		6.47%			200	0.4/%	6.47%								6.4/%	6.4/%	6.47%		6.4/%				6.47%	6.47%			120	DIFFERENCE
		3.05%				3.03%	3.05%							3.05%					3.03%				3.05%				72	VALUE DIFFERENCE

Page 14 of 18

07-Feb-95

ALLOCATION EXAMPLE 29-6 #2 CPD NOVEMBER, 1994

0
~
1
т
Φ
Ö
Į
9
Ü
-

	6.06%	3.00%	_	716,121		675,191		790,420	1	767,366		TOTAL
					0	0		0	0	0	247R	1. 29-
2.97%	6.06%	3.00%	0.949	19,744	0.027571	18,616	0.922	20,796	0.02631	20,189	233	<u>,- </u>
2.97%	6.06%	3.00%	1.057	299	0.000417	282	1.026	283	0.0003576	274	231	اب
2.97%	6.06%	3.00%	0.982	25,219	0.035217	23,778	0.954	25,679	0.0324884	24,930	230	- 1
				0	0	0	0.000	0	0	0	229	اب:
2.91%	6.06%	3.00%	0.906	34,942	0.048794	32,945	0.880	38,559	0.0487824	37,434	226	S. J. 29-5
2.97%	6.06%	3.00%	0.924	6,303	0.008802	5,943	0.897	6,821	0.0086295	6,622	225	اب:
2.97%	6.06%	3.00%	0.914	10,010	0.013978	9,438	0.887	10,956	0.0138615	10,637	219	اب
2.97%	6.06%	3.00%	0.946	9,222	0.012878	8,695		9,746	0.0123302	9,462	231	<u>-</u>
2.97%	6.06%	3.00%	0.919	17,734	0.024764	16,720	0.892	19,300	0.0244171	18,737	212	۱۳.
2.97%	6.06%	3.00%	0.941	81,116		76,480	0.914	86,203	0.1090602	83,689	211	<u> </u>
2.97%	6.06%	3.00%	0.893	37,605	0.052513	35,456		42,134	0.0533059	40,905	239	-
2.97%	6.06%	3.00%	0.900	33,151	0.046292	31,256		36,839	0.0466064	35,764	238	اب
2.97%	6.06%	3.00%	0.915	38,774	0.054145	36,558	0.888	42,392	0.0536329	41,156	237	۱-
2.97%	6.06%	3.00%	0.917	58,438	0.081603	55,098	0.890	63,744	0.080646	61,885	224	اء:
2.97%	6.06%	3.00%	0.880	83,157	0.116121			94,510	0.1195693	91,753	223	اب:
2.97%	6.06%	3.00%	0.885	59,251	0.082738	55,864	0.860	66,939	0.0846883	64,987	222	اب:
						0	0.000	0	0	0	221	اب:
2.97%	6.06%	3.00%	0.893	41,111	0.057409	38,762		46,062	0.058276	44,719	220	اب.
				0			0.000	0	0	0	219	٠.
					0	0		0	0	0	215	
				0	0		0.000	0	0	0	214	اب:
2.97%	6.06%	3.00%	0.881	118,181	0.16503	111,427	0.856	134,156	0.1697275	130,243	207	J. 29-
2.97%	6.06%	3.00%	0.924	41,863	0.058458	39,470	0.897	45,300	0.0573109	43,978	203	S. J. 29-5
											1	
						716,121	0.906			790,420	СРД	29-6 #2 CPD
(%)	(10)	(%)						(mct)		(mcf)	*	UNIT
-	W)	NCE	VALUE	MMBTO	RATIO	MMBTU's	WELL BTU	GAS VOLUME	RATIO	ଦ	WELL	
WELL BTU	MMBTU	VOLUME	ALLOCATED	ALLOCATED	UTBMM	METERED	MEASURED	ALLOCATED	VOLUME		1	

ALLOCATION EXAMPLE 29-6 #2 CPD DECEMBER, 1994

08-Feb-95

TOTAL	L	٠.	ا بر	S. J. 29-5	S. J. 29-5	S. J. 29-5	ب.	<u> </u>	- 1		-	اب:	<u>.</u> -	ب.	اب:	ب.	ب.	S. J. 29-6	i	-		S. J. 29-6	S. J. 29-6	S. J. 29-5		29-6 #2 CPD	UNIT	
AL	247R	233	231	230	229	226	225	219	231	212	211	239	238	237	224	223	222	221	220	219	215	214	207	203	-	D CPD	#	WELL
894,741		22,	260	30,194	0	5 44,367											2 74,307	0	53,423	0	5 0	0	7 154,435	3 47,348		D 871,461	(mcf)	METERED L GAS VOLUME
1	0	0.0248104	0.0002907	0.0337459	0	0.0495865	0.0089606	0.0135891	0.011659	0.0238641	0.122889	0.0529986	0.04254	0.0516534	0.0808779	0.1142578	0.0830485	0	0.0597077	0	0	0	0.1726032	0.0529177				VOLUME RATIO
871,461	0	21,621	253	29,408	0	43,213	7,809	11,842	10,160	20,797	107,093	46,186	37,072	45,014	70,482	99,571	72,374	0	52,033	0	0	0	150,417	46,116			(mcf)	ALLOCATED ALLOCATED
	0.000	0.922	1.026	0.940	0.000	0.913	0.922	0.918	0.919	0.931	0.915	0.902	0.895	0.921	0.890	0.905	0.887	0.000	0.903	0.000	0.000	0.000	0.892	0.925		0.905		MEASURED WELL BTU VALUE
810,329	0	20,468	267	28,396	0	40,500	7,392	11,161	9,587	19,884	100,595	42,753	34,083	42,566	64,428	92,483	65,929	0	48,220	0	0	0	137,813	43,802		788,672		METERED MMBTU's
1-1-	0	0.025259	0.000329	0.035043	0	0.04998	0.009123	0.013774	0.011831	0.024539	0.124141	0.05276	0.04206	0.05253	0.079509	0.114131	0.081361	0	0.059506	0	0	0	0.170071	0.054055				MMBTU RATIO
788,672	0	19,921	260	27,637	0	39,418	7,195	10,863	9,330	19,353	97,907	41,610	33,172	41,429	62,706	90,012	64,167	0	46,931	0	0	0	134,130	42,631		2		ALLOCATED MMBTU
		0.921	1.026	0.940		0.912	0.921	0.917	0.918	0.931	0.914	0.901	0.895	0.920	0.890	0.904	0.887		0.902				0.892	0.924				WELL BTU VALUE
F			-					-					ă.											X			F	DIF
-2.60%		-2.60%	-2.60%	-2.60%		- 2.60%	-2.60%	-2.60%	-2.60%	-2.60%	-2.60%	-2.60%	-2.60%	-2.60%	-2.60%	-2.60%	-2.60%		-2.60%				-2.60%	-2.60%			(%)	NCE
-2.67%		-2.67%	-2.67%	-2.6/%		- 2.61%	-2.6/%	-2.67%	-2.67%	-2.67%	-2.67%	-2.67%	-2.67%	-2.67%	-2.67%	-2.67%	-2.67%		-2.67%				-2.6/%	-2.67%			(%)	NCE
		-0.07%	-0.07%	-0.07%	2012	-0.07%	-0.01%	-0.07%	-0.07%	-0.07%	-0.07%	-0.07%	-0.07%	-0.07%	-0.07%	-0.07%	-0.07%		-0.07%				-0.07%	-0.07%			(%)	WELL BIO VALUE DIFFERENCE

PHILLIPS PETROLEUM COMPANY FARMINGTON AREA

	1		I	
	WELL	PIPELINE	TRUCKED	SWD
UNIT	#	WATER	WATER	LOCATION
CPD #2 29-6				
S. J. 29-5	203	X		29-6 SWD
S. J. 29-6	207	X		29-6 SWD
S. J. 29-6	214	Χ.		29-6 SWD
S. J. 29-6	215	X		29-6 SWD
S. J. 29-6	219	X		29-6 SWD
S. J. 29-6	220	Х		29-6 SWD
S. J. 29-6	221	X		29-6 SWD
S. J. 29-6	222	X		29-6 SWD
S. J. 29-6	223	Х		29-6 SWD
S. J. 29-6	224	X		29-6 SWD
S. J. 29-6	237	X		29-6 SWD
S. J. 29-6	238	X		29-6 SWD
S. J. 29-6	239	X		29-6 SWD
S. J. 30-5	211	X		29-6 SWD
S. J. 30-5	212	X		29-6 SWD
S. J. 30-5	231	X		29-6 SWD
S. J. 29-5	219	X		29-6 SWD
S. J. 29-5	225	X		29-6 SWD
S. J. 29-5	226	X		29-6 SWD
S. J. 29-5	229		X	29-6 SWD
S. J. 29-5	230	X		29-6 SWD
S. J. 29-5	231		х	29-6 SWD
S. J. 30-5	233	X		29-6 SWD
S. J. 29-6	247 R		X	29-6 SWD

October 19, 1994

PHILLIPS PETROLEUM COMPANY
San Juan Basin, New Mexico
Off-Lease Measurement of Gas Applications

STATEMENT: The allocation meters are calibrated and gas samples are collected in accordance with Onshore Oil and Gas Order No. 5.

CUMY

MECHANICAL INTEGRITY

All lines downstream of the meter runs on the individual well locations to the CPDs have been pressure tested with either water or nitrogen. The lines were pressured to 750 psi and held overnight.

Estimate of Blowdown Volumes Mesa Verda i Fruitland Sand Formations

Assumptions: I dees Gas Law (Z=1)

23/8" Tubing at 6000 ft.

Pressure: 300 paig

Temperature: Constant 60°

Two Tubins Volumes for Blowdown

Averge Blowdown: 8 minutes

 $P_{1} V_{1} = P_{5c} V_{5c}$ $P_{5c} = 314 p_{5ia}$ $V_{1} = 2 (600) (.0217 ft)$ $= 260 ft^{3}$

 $V_{SL} = \frac{314}{14.7}(200) = 5554 \text{ ft}^3 \approx 5.6 \text{ MCF}$ 5.6 MCF = 0.7 MCF/Min

Mesa Verde + Fruitland Sand = 0.7 MCF/Min

Estimite of Blowdown Volume Pakota Formation

Assumptions: Ideal Gas Law (2=1)

23/8 Tubing at 7200 fl

Pressure = 350 psis

Temperature = Constant 60°

Two Tubing Volumes for Blowdown

Average Blowdown = 8 minutes

P, V, = Psc Vsc P, = 3CH psia

V, : 2 (7200') (.0217 \$13/\$t)

= 312 \$tt^3\$

V₈c = (3c4) (312) = 772c Pt³ ≈ 7.7 MCF 7.7 MCF in 8 minutes ≈ 1 MCF/Min

Dakota Formation = 1.0 MCF/Min

(Cumbon)

LEH 3/:6/95

STATE OF NEW MEXICO

No. Maria DRUG FREE Risa State of Hind!

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE

GARY E. JOHNSON GOVERNOR

JENNIFER A. SALISBURY CABINET SECRETARY

1000 RIO BRAZOS ROAD AZTEC, NEW MEXICO 87410 (505) 334-6178 FAX: (505) 334-6170

April 10, 1995

Mr Ed Hasely Phillips Petroleum Company 5525 Hwy 64 NBU 3004 Farmington NM 87401

Re: 29-6 #2 CPD

Dear Mr. Hasely:

As per Rule 403.C. your application for the approval of the allocation method to be used at the referenced CPD is hereby approved.

Sincerely,

Frank T. Chavez, Supervisor District III

FTC/sh

			قائمیک	IAME ACT	
PHILLIPS 66	PHILLIPS PETROLEUM FARMINGTON, NEW MEXICO 87401 5525 HWY. 64 NBU 3004		SO FERENCE	RR	
		February 13, 1996	0/ŷ- <i>i</i>	AN, IM PAO = SUPR = SUPR =	
reau of Lar n: Mr. Mik			ه حسیب ه منبسب سنسیب	FILE	

Bur Attr 1235 La Plata Hwy. Farmington, NM 87401

> Amendment - Off Lease Measurement San Juan 29-6 #1 & #2 CPDs

Dear Mr. Pool:

Phillips Petroleum Company proposes to amend our approved off lease measurement/ commingling applications for the two subject Central Points of Delivery (CPDs). The original applications were approved by the BLM on March 23, 1995 and by the NMOCD on April 10, 1995.

The proposal is to convert several water lines to gas service which will allow four wells that currently flow to the 29-6 CPD#1 to flow gas to the 29-6 CPD #2. The proposed system will permit Phillips to selectively flow gas to either CPD #1 or CPD #2, but not both at the same time. We do not expect to be switching CPDs on a frequent basis. Currently CPD #2 has additional capacity and CPD #1 is at full capacity. By flowing excess gas from the CPD #1 system to CPD #2, we will be able to maximize production from the area. If in the future, volumes and capacities are such that additional gas volumes are needed at CPD #1, the flow will be redirected.

As shown on the attached map, the four wells are:

29-6 #206 NE Sec. 4, T29N, R6W 29-6 #216 SE Sec. 4, T29N, R6W 29-6 #257R NW Sec. 9, T29N, R6W 29-6 #259 NE Sec. 9, T29N, R6W

Phillips is the only operator participating in 29-6 #1 and #2 CPDs which contain only Fruitland Coal wells. The water lines will be pressure tested prior to converting them to gas service. Gas allocation will be handled in the same manner as described in our approved application of the ED only change is that the sales volume for the four wells will be allocated back from whichever CPD they flowed to for the time period. FEB 2 9 1996

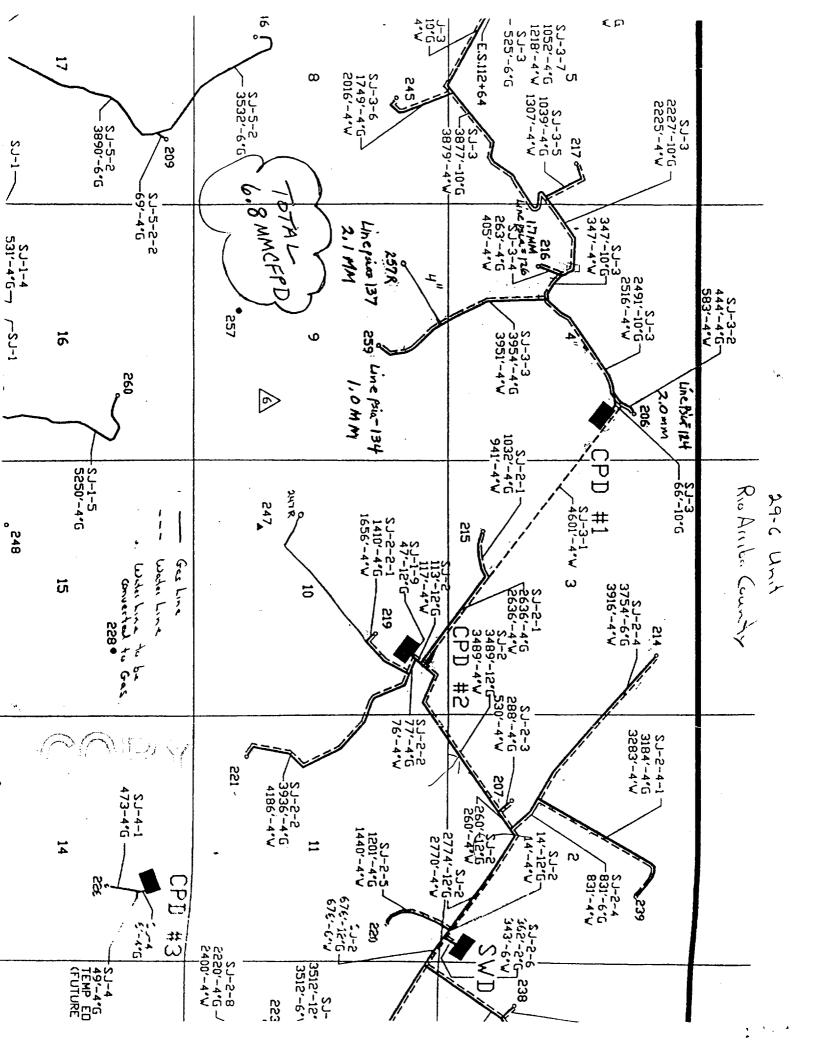
Amendment - Off Lease Measurement San Juan 29-6 #1 & #2 CPDs February 13, 1996 Page 2

Phillips Petroleum will appreciate your timely response concerning our proposal. If you have any questions or if additional information is required, please contact me at 599-3460.

Sincerely,

PHILLIPS PETROLEUM COMPANY

Ed Hasely


1 Hosely

Environmental/Regulatory Engineer

attachment

cc: Frank Chavez (NMOCD)

leh\OLMamd.296

OIL CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
AZTEC NM 87410
(505) 334-6178 FAX: (505) 334-6170
http://lemnrd.state.nm.us/ocd/District Ill/3distric.htm

GARY E. JOHNSON

Jennifer A. Salisbury

February 13, 1998

Doyle Pruden Phillips Pet Co 5525 Hwy 64 NBU 3004 Farmington NM 87401

Re:

Aztec CPD

San Juan 29-6 CPD #1 and #2

32-8 CPD #1, #2, and #3

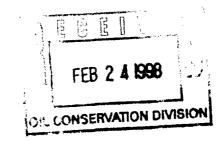
Dear Doyle:

Your recommended allocation procedures for the listed CPD's are hereby approved.

Sincerely,

Frank T. Chavez District Supervisor

FTC\sh



February 20, 1998

Re: 29-6 #3 CPD
Off-Lease Measurement of Gas

State of New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division 2040 S. Pacheco Santa Fe, NM 87505

Attn: David Catanach

Phillips Petroleum Company respectfully requests New Mexico Oil Conservation approval for off-lease measurement/commingling of gas through the subject central point of delivery (CPD) located in Rio Arriba County, New Mexico. The original application was approved by the BLM on March 23, 1995 and the allocation method was approved by the OCD on April, 10 1995. A copy of the following documents are attached for your reference:

- 1) Original application for the 29-6 #3 CPD dated February 23,1995 and approved by the BLM on March 23, 1995
- 2) Approval of the allocation method for the 29-6 #3 CPD by Frank Chavez of the OCD dated April 10, 1995.

There is only 1 well connected to this central delivery point.

As we discussed by phone last year, Phillips has several cases where off-lease measurement/commingling approval was obtained from the BLM without approval from the OCD in Santa Fe. This was unintentional. We did obtain approval for the allocation method on these cases from the OCD office in Aztec. It was not known at that time that additional approval was needed from the OCD in Santa Fe. I will be forwarding for approval these additional applications in the coming weeks.

If you have any questions concerning this, please call me at (505) 599-3450.

Sincerely,

Phillips Petroleum Company

Doyle Pruden

Accounting Specialist

cc: Frank Chavez-OCD Aztec, NM Danny Jaap

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE

GARY E. JOHNSON GOVERNOR JENNIFER A. SALISBURY CABINET SECRETARY

1000 RIO BRAZOS ROAD AZTEC, NEW MEXICO 87410 (505) 334-6178 FAX: (505) 334-6170

April 10, 1995

COPY

Mr Ed Hasely Phillips Petroleum Company 5525 Hwy 64 NBU 3004 Farmington NM 87401

Re: 29-6 #3 CPD

Dear Mr. Hasely:

As per Rule 403.C. your application for the approval of the allocation method to be used at the referenced CPD is hereby approved.

Sincerely,

Frank T. Chavez, Supervisor District III

FTC/sh

February 23, 1995

Bureau of Land Management ATTN: Mr. Mike Pool 1235 La Plata Highway Farmington, NM 87401 CON

29-6 #3 CPD Off-Lease Measurement of Gas

Dear Mr. Pool:

Phillips Petroleum Company requests approval for off-lease measurement/commingling of gas through the subject central point of delivery (CPD) located in Rio Arriba County, New Mexico. Our original request for approval was submitted on August 31, 1994. Due to additional information requests and changes in our proposal, a complete new application is being submitted.

The required information for this application is attached. Phillips is the only operator participating in this CPD which contains only one 29-6 Unit Fruitland Coal well. We would like the one well CPD system approved in order to facilitate approvals if additional wells are proposed for the system.

If you have any questions or if additional information is required, please contact me at 599-3460.

Sincerely,

PHILLIPS PETROLEUM COMPANY

Ed Hasely

4 Hasely

Environmental/Regulatory Engineer

attachments

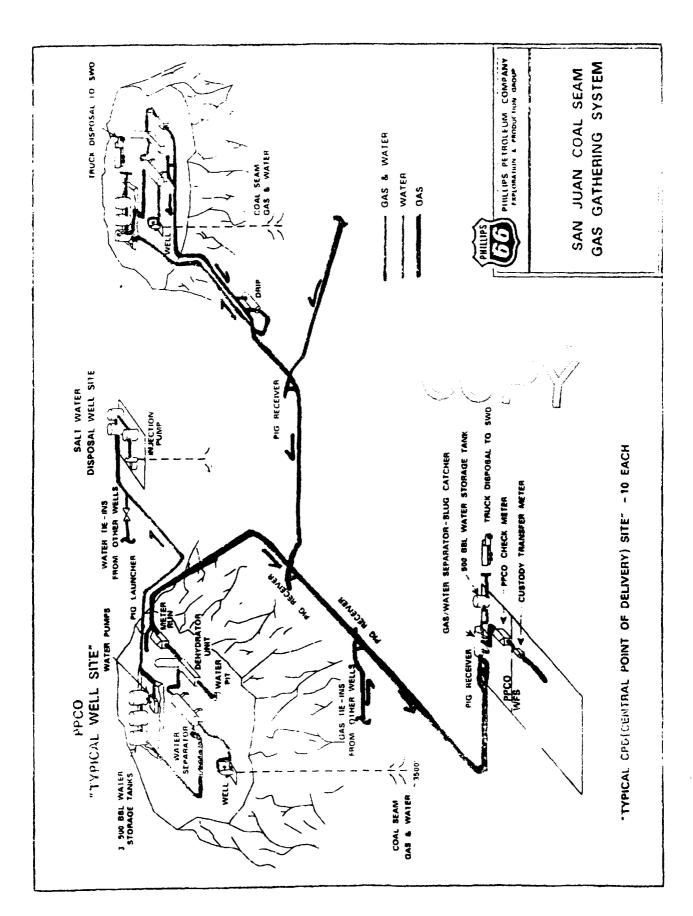
cc: Frank Chavez - OCD Aztec, NM

J. W. Taylor

leh\296#3cpd.mea

APPROVED

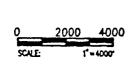
MAR 23 1995


DISTRICT MANAGER

PAREERATOR 21

Off Lease Measurement/Commingling Application

Contents:


General Well/CPD Schematic Map showing wells and CPD List of wells with Lease/Agreement Number Description of System Mechanical Integrity Narrative Equipment Specifications Narrative Equipment List Burner Size List Allocation Details Fuel Gas Letter Monthly Production Narrative Evidence on Federal Royalties Narrative **Economic Justification** 1995 Projected Gas Volumes Allocation Examples Produced Water Disposition List Onshore Oil and Gas Order No. 5 Statement

Page 3 of 18

PHILLIPS PEIRULEUM CO. S.J. 29-6 No.3 C.D.P. GATHERING T.29 N., R.6 W., N.M.P.M., RIO ARRIBA COUNTY, NEW MEXICO

T.30 N.					T.30
T.30 N.					Т.29
6	5	4	3	2	
7	6	9	10	11 SJ 29-6	12
18	17	16	15	SJ 29-6 NO.3 CDP SJ 29-6 UNIT \$228	13
19	20	21	22	23	24
30	29	28	27	26	25

Page 4 of 18

Daggett, Inc.

420 West Elm Street
FARMINGTON, NEW MEXICO 8740
(505) 326-1772
REGISTERED LAND SURVEYOR
NEW MEXICO No.8894

PHILLIPS PETROLEUM COMPANY FARMINGTON AREA

		CI LOCA	-		WELL	CONNECT	LEASE OR AGREEMENT	СРД
UNIT	SEC	TWN	RNG	Q/Q	#	DATE	NUMBER	OWNER
CPD #3 29-6	14	29N	6W	W/NE		05/07/93		WILLIAMS FIELD SERVICE
S. J. 29-6	14	29	6	SW/NE	226	05/07/93	NMSF078278	

Description of System

Fruitland Coal wells, operated by Phillips Petroleum, are tied into a Phillips gathering system. The gathering system delivers gas to the Central Point of Delivery (CPD) which is operated by Williams Field Service (WFS). The CPD is the point of interconnection on WFS's Manzanares System where WFS receives Phillips Petroleum's gas for gathering. (See Attached Map)

Each of the wells are equipped with a separator, a dehydrator and an electronic flow gas meter. Some wells may also have a small compressor on location. The gas is produced through the separator to remove excess water. The water is stored in water storage tanks on location prior to disposal. The gas is further dried by the dehydrator prior to measurement. Fuel gas required to operate the well equipment (separator, dehydrator, compressors and tank heaters) is taken from the dehydrator prior to measurement. The gas leaving the well location is measured through Phillips Petroleum's electronic flow meter.

After the gas is measured at the individual well locations, the combined gas enters the gathering system which is operated by Phillips Petroleum. The gathering system delivers the gas to the CPD.

At the CPD, the gas enters a gas/water separator which separates any free water that drops out in the pipeline. Since all the gas flows through dehydrators on individual well locations prior to entering the gathering system, this water volume is normally negligible. The gas then goes through Phillips Petroleum's check meter (electronic flow meter) and directly through WFS's CPD meter. Williams compresses the gas downstream of the CPD meter. No gas is removed for fuel between Phillips Petroleum's allocation gas meters on the individual wells and the CPD meter.

Mechanical Integrity

egrity

All lines downstream of the meter runs on the individual well locations to the CPDs have been pressure tested with either water or nitrogen.

Equipment Specifications

A sheet is attached that lists the size and make of all fuel burning equipment on each well location. A separate sheet details the burner size for each type of equipment. The equipment list is subject to change as operational needs vary over time. Equipment changes will be reflected in our fuel gas calculations.

PHILLIPS PETROLEUM COMPANY

WELL	PROD SEP		DEHY		TANK#1	TANK #2	TANK#3	RENT
NUMBER	MFG	SIZE	MFG	SIZE	MFG	MFG	MFG	HP
CPD # 3 29-6								
29-6 #226	PESCO	6 MM	PESCO	6 MM	PESCO	PALMER	PALMER	

is established

Dama 7 - 5 10

BURNER SIZES

	Size (MMCF/D)	Manufacturer	Burner Size (BTU/HR)
Separators			
	2	P&A	250,000
	2	Pesco	250,000
	2	Enertek	250,000
	4	P&A	400,000
	4	Pesco	400,000
	4	Enertek	400,000
	4	American Tank	400,000
	6	P&A	450,000
w v	6	Pesco	450,000
Dehydrators			
	2	P&A	150,000
	2	Pesco	125,000
	4	P&A	250,000
	4	Pesco	125,000
	4	. Enertek	250,000
	6	P&A	350,000
	6	Pesco	200,000
Tank Heaters			
	N/A	All	350,000

ALLOCATION DETAILS

Basically, the gas sales volume (mcf) will be allocated on a volume basis and the gas sales MMBTUs will be allocated on an MMBTU basis.

The gas sales volume (mcf) from an individual well is determined by first calculating a ratio by dividing its metered volume (mcf) by the sum of the metered volumes (mcf) of all wells connected to the CPD. This ratio is then multiplied by the total CPD volume (mcf). The gas production volume for an individual well is determined by adding the well's estimated fuel gas volume and the "Flared or Vented" gas volume to the well's allocated sales volume.

The fuel gas volumes are based upon the type and size of equipment on each well location and the number of producing days for each well. The fuel gas usage for the equipment was detailed in Phillips Petroleum's August 17, 1994 letter addressed to Mr. Mike Pool (attached).

The MMBTUs assigned to an individual well is determined by first calculating a ratio by dividing its metered MMBTUs by the sum of the metered MMBTUs of all wells connected to the CPD. This ratio is then multiplied by the total CPD MMBTUs. The individual well BTU value (MMBTU/mcf) will be calculated by dividing the allocated MMBTUs by the allocated volume (mcf).

If a section of line is blown down, the calculated volume of blowdown gas will be allocated to the affected wells. This allocated blowdown volume will be reported as "Flared or Vented" gas.

Since all the gas flows through dehydrators on individual well locations prior to entering the gathering system, water volumes at the CPD are normally negligible. If these water volumes become significant, they will be allocated to the wells.

Allocation examples using actual data for the months October, November and December, 1994 are attached.

August 17, 1994

Bureau of Land Management 1235 La Plata Hwy. Farmington, NM 87041 Attn: Mike Pool

> Gas Used on Lease As Reported On Form MMS-3160 (Monthly Report of Operations)

Dear Mr. Pool:

It has been brought to our attention that there are volume discrepancies between gas used on lease as reported by Phillips Petroleum Company on Form MMS-3160 and gas used on lease as calculated by Mike Wade of your office. This was found during the recent Production Accountability Inspections conducted by Mike Wade. The most notable volume discrepancy is the gas used by water tank heaters on our coal seam wells. We have not been calculating or reporting any gas used on lease volumes for these tank heaters.

I am proposing that effective with August 1994 production. Phillips Petroleum Company report gas used on lease based on the attached table for all leases that we operate in the area that your office administers. I would also like to recommend for your approval that we not be required to make retroactive corrections prior to August 1994 for gas used on lease as reported on the Form MMS-3160. The reasoning behind this request is the manpower involved for both Phillips Petroleum Company and the federal agencies to process these corrections, the relatively small gas volumes as compared to the produced volumes, and the fact that volumes are not royalty bearing.

Please let me know your decision concerning this as early as possible to allow our Production Accounting personnel time to make adjustments prior to August's production reports. My phone number is 599-3460 if you would like to discuss.

Sincerely.

PHILLIPS PETROLEUM COMPANY

Ed Hasely

Environmental/Regulatory Engineer

cc:

J. W. Taylor E. D. Pruden

leh\mms3160.gas

FUEL USE EQUIPMENT

(All factors at 15.025 Pressure Base)

SEPARATORS	≤ 2 MM 4 MM 6 MM	-	4.3 6.9 7.7	mcf/producing day mcf/producing day mcf/producing day
DEHYDRATORS	≤ 2 MM 4 MM 6 MM 10 MM	-	2.4 3.2 4.7 6.0	mcf/producing day mcf/producing day
TANK HEATERS		-	1.8	mcf/producing day/tank
Note:	-	om N	ovem	heaters to ber through y vary year
COMPRESSORS	50 HP 80 HP 100 HP 120 HP 165 HP	-	8 13 16 19 26	mcf/producing day mcf/producing day mcf/producing day mcf/producing day mcf/producing day

BLOWDOWN GAS

Fruitland Sand & Mesaverde -0.7 mcf/minute of blowdown

Dakota 1.0 mcf/minute of blowdown

Monthly Production

Sheets are attached that show the estimated 1995 production for each of the wells connected to the CPD. The allocation examples show the BTU content of the gas from the individual wells, as well as the BTU content of the combined gas at the CPD. Since all the gas is produced from wells completed in the same formation and in the same general area, the BTU content of the gas does not vary substantially.

Evidence on Federal Royalties

Gas volumes and MMBTU quantities are allocated to the wells from the CPD because the most accurate volumes and MMBTU quantities available are from the CPD. The reasons for this, such as measurement errors, stable flow rates, BTU content, etc., have been discussed on numerous occasions. The inherently greater accuracy of the CPD volume, as compared to the sum of the individual well metered volumes, warrants the acceptance of the CPD volume as representative of the total sales volume from the individual wells. It is then necessary only to reduce the total sales volume to its individual components through the proposed allocation method.

Sheets are attached (Allocation Examples) that compare the allocated sales volume with the metered volume for the months October, November and December, 1994. The results vary well by well, month by month, and CPD by CPD, but overall the volumes are extremely close. At the 29-6 #3 CPD, the sum of the allocated MMBTUs were 3.1% higher than sums of the individual well's metered MMBTUs for these three months. This computes to higher overall royalties by following the described off-lease measurement practice.

6611

Economic Justification

The CPD system utilizing off-lease gas measurement will extend the economic life of all affected wells due to the reduction of back pressure on the wells. Without the system, the gas would have been produced into a conventional gas pipeline operated at a substantially higher pressure. The higher pipeline pressure would decrease the recoverable reserves from each well or force Phillips to install compressors on each well location. Either scenario will reduce the economic life of the wells.

1995 PROJECTED CPD VOLUMES

cpd95pjt.wk3

!		
T WELL	MMCF	TOTAL
226	2,420	
TOTAL		2,420
	5 226	5 226 2,420

ALLOCATION EXAMPLE 29-6 #3 CPD OCTOBER, 1994

07-Feb-95

	WELL	METERED WELL GAS VOLUME	VOLUME RATIO	ALLOCATED GAS VOLUME	MEASURED WELL BTU VALUE	METERED MMBTU's	MMBTU RATIO	ALLOCATED MMBTU	ALLOCATED WELL BTU VALUE		VOLUME MMBTU DIFFERENCE		WELL BTU VALUE DIFFERENCE
UNIT	#	(mcf)		(mcf)						<u> </u>	(%)	(%)	(%)
29-6 #3 CPD	СРД	186,308			0.883	164,510							
										- A			
S. J. 29-6	226	183,870		186,308	0.848	155,989		164,510	0.883		1.33%	5.46%	4.08%
TOTAL		183,870	1	186,308		155,989		164,510			1.33%	5.46%	

ALLOCATION EXAMPLE 29-6 #3 CPD NOVEMBER, 1994

07-Feb-95

	WELL	METERED WELL GAS VOLUME	VOLUME RATIO	ALLOCATED MEASURED GAS WELL BTU	MEASURED WELL BTU	METERED MMBTU's	MMBTU RATIO	MMBTU WELL BTU	WELL BTU	VOLUME MMBTU DIFFERENCE DIFFERENCE		WELL BTU VALUE
TINU	#	(mcf)		(mcf)	VALUE				VALUE	(%)	(%)	(%)
29-6 #3 CPD CPD	CPD	175,407		, case fa	0.882	154,709						
S. J. 29-6	226	169,822	1	175,407	0.848	144,071		154,709	0.882	3.29%	7.38%	3.96%
TOTAL		169,822	1	175,407		144.071	_	154,709		3.29%	7.38%	

** All volumes and BTU values assume a 14.73 Pressure Base.

ALLOCATION EXAMPLE 29-6 #3 CPD DECEMBER, 1994

0
œ
1
П
Ø
Φ
i
ဖ
Ğ

	-2.57%	-3.13%			173,124	1	177,689		196,732	1	203,079		TOTAL	
0.57%	-2.57%	-3.13%		0.880	173,124	1 1	177,689	0.875	196,732		203,079	226		S. J. 29-6
		:	19 4 (8									,		
							173.124	0.880			196.732	CPD	CPD	29-6 #3 CPD CPD
(%)	(%)	(%)				e ja			(mci)		(aici)	*		ONL
DIFFERENCE		è		VALUE				VALUE	VOLUME		`	k	Ī	
VALUE		DIFFERENCE DIFFERENCE		WELL BTU	MMBTU	RATIO	MMBTU's	WELL BTU	GAS	RATIO	WELL GAS VOLUME	WELL		
WELL BTO	MMBTU	VOLUME		ALLOCATED	ALLOCATED ALLOCATED	DIBMM	METERED	MEASURED	ALLOCATED MEASURED	VOLUME	METERED			

. Q

مسرد»

Page 16 of 18

PHILLIPS PETROLEUM COMPANY FARMINGTON AREA

UNIT	WELL #	PIPELINE WATER	TRUCKED WATER	SWD LOCATION
CPB #3 29-6				
S. J. 29-6	226		X	29-6 SWD

October 19, 1994

PHILLIPS PETROLEUM COMPANY
San Juan Basin, New Mexico
Off-Lease Measurement of Gas Applications

STATEMENT: The allocation meters are calibrated and gas samples are collected in accordance with Onshore Oil and Gas Order No. 5.

MECHANICAL INTEGRITY

All lines downstream of the meter runs on the individual well locations to the CPDs have been pressure tested with either water or nitrogen. The lines were pressured to 750 psi and held overnight.

Estimate of Blowdown Volume Dakota Formation

Assumptions: Ideal Gas Law (2=1)

23/8 Tubing at 7200 fl

Pressure = 350 psis

Temperature = Constant CO°

Two Tubing Volumes for Blandown

Average Blowdown = 8 minutes

 $P_{1} \vee 1 = P_{SC} \vee SC$ $P_{1} = 3CH psia$ $P_{SC} = 1+1.7psia$ $V_{1} = 3(7200')(.0217)$ $V_{2} = 312$ $V_{3} = 312$

V₆c = (3CH) (312) = 772c \$t³ ≈ 7.7 MCF 7.7 MCF in 8 minutes ≈ 1 MCF/Min

Dakote Formation = 1.0 MCF/Min

16/95

Estimate of Blowdown Volumes Mesa Verda i Fruitland Sand Formations

Assumptions: Ideas Ges Law (Z=1)

23/8" Tubing at 6000 ft.

Pressure = 300 paig

Temperature = Constant 60°

Two Tubing Volumes for Blowdown

Averge Blowdown = 8 minutes

PiV1 = Psc Vsc P1 = 314 psia

Psc = 14.7 psia

V1 = 2 (6000') (.0217 ft)

= 260 ft3

 $V_{SC} = \left(\frac{3141}{14.7}\right)(200) = 5554 \text{ ft}^3 \approx 5.6 \text{ MCF}$ 5.6 MCF in 8 minutes = 0.7 MCF/Min

Mesa Verde + Fruitland Send = 0.7 MCF/Min

LEH 3/16/95

February 19, 1998

FEB 2 3 1999

Re: 29-6 #4 CPD

Off-Lease Measurement of Gas

State of New Mexico
Energy, Minerals & Natural Resources Dept.
Oil Conservation Division
2040 S. Pacheco
Santa Fe, NM 87505

Attn: David Catanach

Phillips Petroleum Company respectfully requests New Mexico Oil Conservation approval for off-lease measurement/commingling of gas through the subject central point of delivery (CPD) located in Rio Arriba County, New Mexico. The original application was approved by the BLM on March 23, 1995 and the allocation method was approved by the OCD on April, 10 1995. A copy of the following documents are attached for your reference:

- 1) Original application for the 29-6 #4 CPD dated February 23,1995 and approved by the BLM on March 23, 1995
- 2) Approval of the allocation method for the 29-6 #4 CPD by Frank Chavez of the OCD dated April 10, 1995.

There are a total of 14 wells connected to this central delivery point.

As we discussed by phone last year, Phillips has several cases where off-lease measurement/commingling approval was obtained from the BLM without approval from the OCD in Santa Fe. This was unintentional. We did obtain approval for the allocation method on these cases from the OCD office in Aztec. It was not known at that time that additional approval was needed from the OCD in Santa Fe. I will be forwarding for approval these additional applications in the coming weeks.

If you have any questions concerning this, please call me at (505) 599-3450.

Sincerely,

Phillips Petroleum Company

Doyle Pruden

Accounting Specialist

cc: Frank Chavez-OCD Aztec, NM Danny Jaap

February 23, 1995

Bureau of Land Management ATTN: Mr. Mike Pool 1235 La Plata Highway Farmington, NM 87401

29-6 #4 CPD
Off-Lease Measurement of Gas

Dear Mr. Pool:

Phillips Petroleum Company requests approval for off-lease measurement/commingling of gas through the subject central point of delivery (CPD) located in Rio Arriba County, New Mexico. Our original request for approval was submitted on August 31, 1994. Due to additional information requests and changes in our proposal, a complete new application is being submitted.

The required information for this application is attached. Phillips is the only operator participating in this CPD which contains only 29-6 Unit Fruitland Coal wells. If additional wells are proposed to be added to the system, prior approval will be obtained.

If you have any questions or if additional information is required, please contact me at 599-3460.

Sincerely,

PHILLIPS PETROLEUM COMPANY

Ed Hasely

2) Harty

Environmental/Regulatory Engineer

attachments

cc: Frank Chavez - OCD Aztec, NM

J. W. Taylor

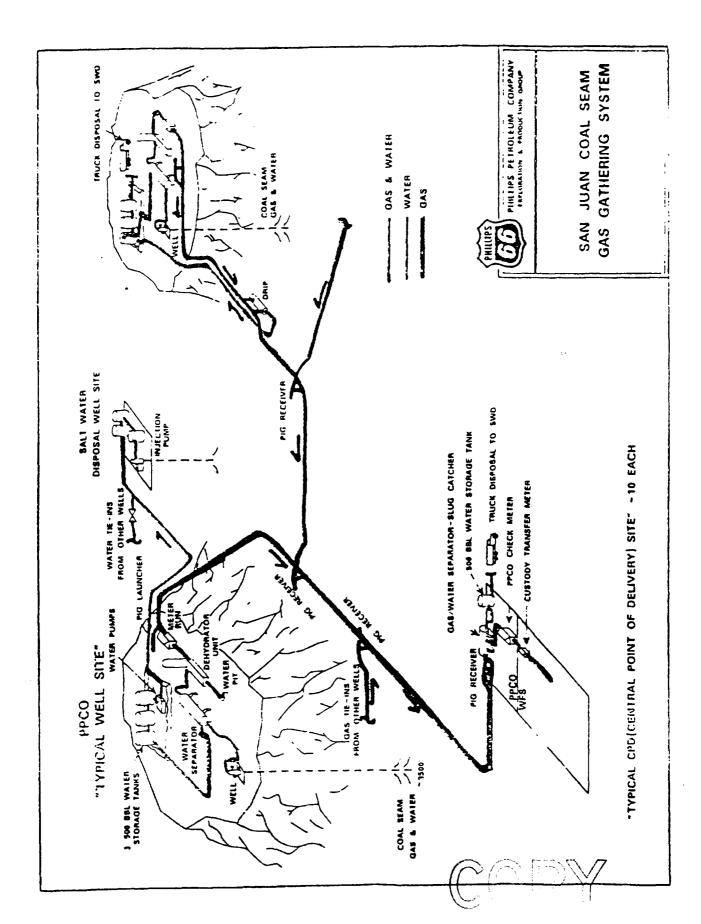
leh\296#4cpd.mea

COPY

APPROVED

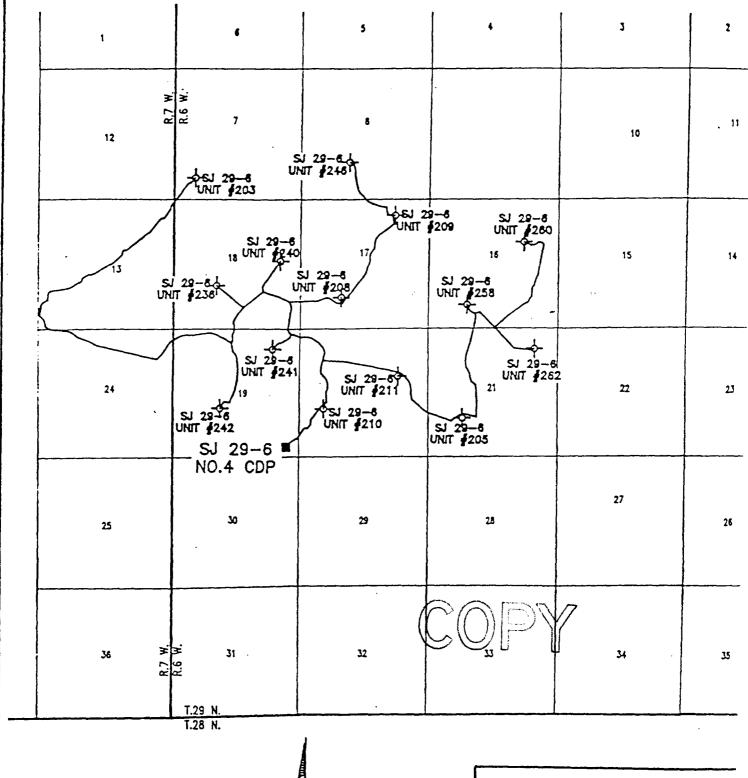
MAR 23 1995

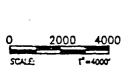
DISTRICT MANAGER


Page 1 of 18²/OPERATOR

Off Lease Measurement/Commingling Application

Contents:


General Well/CPD Schematic Map showing wells and CPD List of wells with Lease/Agreement Number Description of System Mechanical Integrity Narrative Equipment Specifications Narrative Equipment List Burner Size List Allocation Details Fuel Gas Letter Monthly Production Narrative Evidence on Federal Royalties Narrative Economic Justification 1995 Projected Gas Volumes Allocation Examples Produced Water Disposition List Onshore Oil and Gas Order No. 5 Statement



Page 3 of 18

PHILLIPS PETROLEUM CO. S.J. 29-6 No.4 C.D.P. GATHERING T.29 N., R.7 W., R.6 W., N.M.P.M., RIO ARRIBA COUNTY, NEW MEXICO

Page 4 of 18

Daggett, Inc.

420 West Elm Street
FARMINGTON, NEW MEXICO 8740
(505) 325-1772
REGISTERED LAND SURVEYOR
NEW MEXICO No.8894

PHILLIPS PETROLEUM COMPANY FARMINGTON AREA

UNIT	CPD LOCATION SEC TWN R	NG Q/Q	WELL #	CONNECT DATE	LEASE OR AGREEMENT NUMBER	CPD OWNER
CPD #4 29-6	19 29N 6	W SEISE		05/11/93		WILLIAMS FIELD SERVICE
S. J. 29-6	7 29N 6	w Sw/sw	203	05/14/93	891000439X	24735
S. J. 29-6	21 292 6	W NEISW	205	05/11/93	891000439D	24931
S. J. 29-6	17 29N 60	N SE/SW	208	05/11/93	891000439D	24599
S. J. 29-6	17 292 60	J NW/NE	209	05/11/93	891000439D	24380
S. J. 29-6	20 29N bu	we/sw	210	05/19/93	891000439D	24747
S. J. 29-6	20 29 W 4W	SE/NE	211	05/19/93	891000439D	24723
S. J. 29-6	18 29N 6W		236	05/18/93	891000439D	24729
S. J. 29-6	18 29 ~ LW	SE/NE	240	05/18/93	891000439D	24932
S. J. 29-6	19 29N 6W	NEINE	241	05/18/93	891000439D	24933
S. J. 29-6	19 29N 6W	NE/SW	242	05/18/93	891000439D	24730
S. J. 29-6	8 29× 6W	NE/Sw	246	05/12/93	891000439D	-24824
S. J. 29-6	1629N6W	5 <i>E</i> /SW	258	05/11/93	891000439X	24766
S. J. 29-6	16 29N 6W	Sw/HE	260	05/12/93	891000439X	24767
S. J. 29-6	21 29× 6W	NE/HF	262	05/11/93	NMSF080379A	25090

Description of System

Fruitland Coal wells, operated by Phillips Petroleum, are tied into a Phillips gathering system. The gathering system delivers gas to the Central Point of Delivery (CPD) which is operated by Williams Field Service (WFS). The CPD is the point of interconnection on WFS's Manzanares System where WFS receives Phillips Petroleum's gas for gathering. (See Attached Map)

Each of the wells are equipped with a separator, a dehydrator and an electronic flow gas meter. Some wells may also have a small compressor on location. The gas is produced through the separator to remove excess water. The water is stored in water storage tanks on location prior to disposal. The gas is further dried by the dehydrator prior to measurement. Fuel gas required to operate the well equipment (separator, dehydrator, compressors and tank heaters) is taken from the dehydrator prior to measurement. The gas leaving the well location is measured through Phillips Petroleum's electronic flow meter.

After the gas is measured at the individual well locations, the combined gas enters the gathering system which is operated by Phillips Petroleum. The gathering system delivers the gas to the CPD.

At the CPD, the gas enters a gas/water separator which separates any free water that drops out in the pipeline. Since all the gas flows through dehydrators on individual well locations prior to entering the gathering system, this water volume is normally negligible. The gas then goes through Phillips Petroleum's check meter (electronic flow meter) and directly through WFS's CPD meter. Williams compresses the gas downstream of the CPD meter. No gas is removed for fuel between Phillips Petroleum's allocation gas meters on the individual wells and the CPD meter.

Mechanical Integrity

All lines downstream of the meter runs on the individual well locations to the CPDs have been pressure tested with either water or nitrogen.

Equipment Specifications

A sheet is attached that lists the size and make of all fuel burning equipment on each well location. A separate sheet details the burner size for each type of equipment. The equipment list is subject to change as operational needs vary over time. Equipment changes will be reflected in our fuel gas calculations.

PHILLIPS PETROLEUM COMPANY

	PROD							RENT
WELL	SEP		DEHY		TANK #1	TANK #2	TANK#3	COM
NUMBER	MFG	SIZE	MFG	SIZE	MFG	MFG	MFG	HI
CPD # 4 29-6								
29-6 #203	PESCO	6 MM	PESCO	6 MM	PALMER	PALMER	PALMER	
29-6 #205	P&A	2 MM	P&A	2 MM	PALMER	PALMER	PALMER	
29-6 #208	P & A	4 MM	P&A	4 MM	WESTERN	WESTERN	WESTERN	
29-6 #209	PESCO	4 MM	PESCO	4 MM	WESTERN	PERMIAN	WESTERN	
29-6 #210	P & A	2 MM	P&A	2 MM	PESCO	PESCO		
29-6 #211	P & A	2 MM	P & A	2 MM	PESCO	PESCO		<u> </u>
29-6 #236	PESCO	4 MM	PESCO	4 MM	PALMER	PALMER	PALMER	
29-6 #240	PESCO	4 MM	PESCO	4 MM	PALMER	PALMER	PALMER	
79-6 #241	P & A	2 MM	P & A	2 MM	PALMER	PALMER	PALMER	
29-6 #242	P & A	2 MM	P & A	2 MM	PALMER	PALMER	PALMER	
29-6 #246	PESCO	2 MM	PESCO	2 MM	PERMIAN	PESCO	PESCO	
29-6 #258	PESCO	6 MM	PESCO	6 MM	PALMER	PALMER	PALMER	
29-6 #260	PESCO	2 MM	PESCO	2 MM	PERMIAN	PERMIAN		
29-6 #262	PESCO	6 MM	PESCO	6 MM	PESCO	PESCO	PESCO	

BURNER SIZES

	Size (MMCF/D)	Manufacturer	Burner Size (BTU/HR)
Separators	•		
	2	P&A	250,000
	2	Pesco	250,000
	2	Enertek	250,000
	4	P&A	400,000
	4	Pesco	400,000
	4	Enertek	400,000
	4	American Tank	400,000
	6	P&A	450,000
	6	Pesco	450,000
Dehydrators			
	2	P&A	150,000
	2	Pesco	125,000
	4	P&A	250,000
	4	Pesco	125,000
	4 .	Enertek	250,000
	6	P&A	350,000
	6	Pesco	200.000
Tank Heaters			
·	N/A	All	350,000

ALLOCATION DETAILS

Basically, the gas sales volume (mcf) will be allocated on a volume basis and the gas sales MMBTUs will be allocated on an MMBTU basis.

The gas sales volume (mcf) from an individual well is determined by first calculating a ratio by dividing its metered volume (mcf) by the sum of the metered volumes (mcf) of all wells connected to the CPD. This ratio is then multiplied by the total CPD volume (mcf). The gas production volume for an individual well is determined by adding the well's estimated fuel gas volume and the "Flared or Vented" gas volume to the well's allocated sales volume.

The fuel gas volumes are based upon the type and size of equipment on each well location and the number of producing days for each well. The fuel gas usage for the equipment was detailed in Phillips Petroleum's August 17, 1994 letter addressed to Mr. Mike Pool (attached).

The MMBTUs assigned to an individual well is determined by first calculating a ratio by dividing its metered MMBTUs by the sum of the metered MMBTUs of all wells connected to the CPD. This ratio is then multiplied by the total CPD MMBTUs. The individual well BTU value (MMBTU/mcf) will be calculated by dividing the allocated MMBTUs by the allocated volume (mcf).

If a section of line is blown down, the calculated volume of blowdown gas will be allocated to the affected wells. This allocated blowdown volume will be reported as "Flared or Vented" gas.

Since all the gas flows through dehydrators on individual well locations prior to entering the gathering system, water volumes at the CPD are normally negligible. If these water volumes become significant, they will be allocated to the wells.

Allocation examples using actual data for the months October, November and December, 1994 are attached.

August 17, 1994

Bureau of Land Management 1235 La Plata Hwy. Farmington, NM 87041 Attn: Mike Pool

> Gas Used on Lease As Reported On Form MMS-3160 (Monthly Report of Operations)

Dear Mr. Pool:

It has been brought to our attention that there are volume discrepancies between gas used on lease as reported by Phillips Petroleum Company on Form MMS-3160 and gas used on lease as calculated by Mike Wade of your office. This was found during the recent Production Accountability Inspections conducted by Mike Wade. The most notable volume discrepancy is the gas used by water tank heaters on our coal seam wells. We have not been calculating or reporting any gas used on lease volumes for these tank heaters.

I am proposing that effective with August 1994 production. Phillips Petroleum Company report gas used on lease based on the attached table for all leases that we operate in the area that your office administers. I would also like to recommend for your approval that we not be required to make retroactive corrections prior to August 1994 for gas used on lease as reported on the Form MMS-3160. The reasoning behind this request is the manpower involved for both Phillips Petroleum Company and the federal agencies to process these corrections, the relatively small gas volumes as compared to the produced volumes, and the fact that volumes are not royalty bearing.

Please let me know your decision concerning this as early as possible to allow our Production Accounting personnel time to make adjustments prior to August's production reports. My phone number is 599-3460 if you would like to discuss.

Sincerely.

PHILLIPS PETROLEUM COMPANY

Ed Hasely

Environmental/Regulatory Engineer

cc:

J. W. Taylor

E. D. Pruden

kh\mms3160.gas

FUEL USE EQUIPMENT

(All factors at 15.025 Pressure Base)

SEPARATORS	≤ 2 MM 4 MM 6 MM	•	4.3 6.9 7.7	mcf/producing day mcf/producing day mcf/producing day
DEHYDRATORS	≤ 2 MM 4 MM 6 MM 10 MM	-	2.4 3.2 4.7 6.0	mcf/producing day mcf/producing day mcf/producing day mcf/producing day

Note:

TANK HEATERS

Anticipate tank heaters to operate from November through March, but this may vary year to year.

1.8 mcf/producing day/tank

COMPRESSORS	50 HP	-	8	mcf/producing day
	80 HP	-	13	mcf/producing day
	100 HP	•	16	mcf/producing day
	120 HP	-	19	mcf/producing day
	165 HP	-	26	mcf/producing day

BLOWDOWN GAS

Fruitland Sand & Mesaverde - 0.7 mcf/minute of blowdown

Dakota - 1.0 mcf/minute of blowdown

Monthly Production

Sheets are attached that show the estimated 1995 production for each of the wells connected to the CPD. The allocation examples show the BTU content of the gas from the individual wells, as well as the BTU content of the combined gas at the CPD. Since all the gas is produced from wells completed in the same formation and in the same general area, the BTU content of the gas does not vary substantially.

Evidence on Federal Royalties

Gas volumes and MMBTU quantities are allocated to the wells from the CPD because the most accurate volumes and MMBTU quantities available are from the CPD. The reasons for this, such as measurement errors, stable flow rates, BTU content, etc., have been discussed on numerous occasions. The inherently greater accuracy of the CPD volume, as compared to the sum of the individual well metered volumes, warrants the acceptance of the CPD volume as representative of the total sales volume from the individual wells. It is then necessary only to reduce the total sales volume to its individual components through the proposed allocation method.

Sheets are attached (Allocation Examples) that compare the allocated sales volume with the metered volume for the months October, November and December, 1994. The results vary well by well, month by month, and CPD by CPD, but overall the volumes are extremely close. At the 29-6 #4 CPD, the sum of the allocate MMBTUs were 10.5% higher than sums of the individual well's metered MMBTUs for these three months. This computes to higher overall royalties by following the described off-lease measurement practice.

Economic Justification

The CPD system utilizing off-lease gas measurement will extend the economic life of all affected wells due to the reduction of back pressure on the wells. Without the system, the gas would have been produced into a conventional gas pipeline operated at a substantially higher pressure. The higher pipeline pressure would decrease the recoverable reserves from each well or force Phillips to install compressors on each well location. Either scenario will reduce the economic life of the wells.

1995 PROJECTED CPD VOLUMES

cpd95pjt,wk3

CPD			YEARLY	CPD
NUMBER	UNIT	WELL	MMCF	TOTAL
29-6 #4 CPD	S.J. 29-6	203	1,862	
	S.J. 29-6	205	281	
	S.J. 29-6	208	1,095	
	S.J. 29-6	209	876	
	S.J. 29-6	210	533	
	S.J. $29 - 6$	211	472	
	S.J. 29-6	236	728	
	S.J. 29-6	240	1,553	
	S.J. 29-6	241	712	
	S.J. 29-6	242	536	
	S.J. 29-6	246	456	
	S.J. 29-6	258	1,606	
	S.J. 29-6	260	249	
	S.J. 29-6	262	1,424	
		TOTAL		12,383
Argungsky, Arkens (

ALLOCATION EXAMPLE 29-6 #4 CPD OCTOBER, 1994

_
0
~1
1
71
Ø
Q.
ı
9
Ġ

	10.77%	9.01%		729,062	1-1	656.878		810,970	1 —4	739,840		TOTAL
	20000	0.01.75	0.072	T	0.02//6	18,248	0.881	22.701	0.0279925	20.710	260	S. J. 29-6
1.25%	10.99%	0 610%	0 807		00770		0.004	20,701	0.1270020	54,000	707	3. J. 29-0
1.25%	10.99%	9.61%	0.897	92,466	0.126829	83.311	0 886	103 044	0 1270626	900 70	2/2	0. 4. 4.)
1.40%	10.55%	9.01%	0.887	75,040	0.102927	67,610	0.876	84,601	0.1043212	77.181	258	S-1 70-6
1750%	20000	9.01%	0.898		0.051611	33,902	0.887	41,884	0.0516463	38,210	246	S. J. 29-6
1.25%	10.000	20170	0.900				0.889	48,139	0.0593601	43,917	242	S. J. 29-6
1 250%	10.00%	9.01%	0.884		0.072505	47,627	0.873	59,806	0.0737457	54,560	241	S. J. 29-6
1 25%	10.00%	7.01%	0.893		0.138255		0.882	112,849	0.1391531	102,951	240	S. J. 29-6
1 25%	10.00%	7.01.70	0.894		0.033448		0.883	27,270	0.0336262	24,878	236	S. J. 29-6
1 25%	10.00%	7.01.70	0.903		0.020582			16,588	0.0204544	15,133	211	S. J. 29-6
1 25%	10.00%	2.10.7	0.906		0.025342	16,647	0.894	20,401	0.0251568	18,612	210	S. J. 29-6
1 25%	10.00%	2,01%	0.696		0.09/696	64,174	0.887	79,283	0.097763	72,329	209	S. J. 29-6
1.25%	10 99%	06102	0000		0.126234		0.903	100,700	0.1241728	91,868	208	S. J. 29-6
1.25%	10 99%	0610%	0.017		0.01000			12,828	0.0158183	11, /03	205	S. J. 29-6
1.25%	10.99%	9.61%	0 907		0 01 5053			12 020	0.000	127,102	202	
1.25%	10.99%	9.61%	0.914	73,914	0.101382	66.596	0.903	80 876	0 099727	73 782	202	
<u></u>						729,062	0.899			810,970	CPD	29-6 #4 CPD
(%)	(%)	(%)	1				VALUE	(mcf)		(mcf)	*	2
VALUE DIFFERENCE	m	m	WELL BIU		RATIO	MMBTU's	WELL BTU	ALLOCATED GAS	RATIO	GAS VOLUME	WELL	
MELL BIU	UBMM	TOP TIME	ATTOMATED I	יאון איא זבא	THE BUILD				•			

Page 14 of 18

ALLOCATION EXAMPLE 29-6 #4 CPD DECEMBER, 1994

08-Feb-95

	11.94%	11.03%		945.523	1	844.678		1,043,624	1-4	939,990		TOTAL
0.82%	11.94%	11.03%	0.921	11,207	0.011852	10,011	0.914	12,163	0.0116544	10,955	260	S. J. 29-6
0.82%	11.94%	11.03%	0.920	85,361	0.090279	76,257	0.913	92,748	0.0888712	83,538	262	S. J. 29-6
0.82%	11.94%	11.03%	0.914	124,340	0.131504	111,079	0.907	136,016	0.1303301	122,509	258	S. J. 29-6
0.82%	11.94%	11.03%	0.916	39,732	0.042021	35,495	0.909	43,365	0.0415526	39,059	246	S. J. 29-6
0.82%	11.94%	11.03%	0.897	42,686	0.045145	38,133	0.889	47,608	0.0456175	42,880	242	S. J. 29-6
0.82%	11.94%	11.03%	0.880	62,780	0.066397	56,084	0.873	71,331	0.0683497	64,248	241	S. J. 29-6
0.82%	11.94%	11.03%	0.889	102,042	0.107922	91,159	0.882	114,732	0.1099363	103,339	240	S. J. 29-6
0.82%	11.94%	11.03%	0.890	82,757	0.087525	73,930	0.883	92,940	0.0890552	83,711	236	S. J. 29-6
0.82%	11.94%	11.03%	0.901	20,555	0.021739	18,363	0.893	22,820	0.0218662	20,554	211	S. J. 29-6
0.82%	11.94%		0.902	24,476	0.025887	21,866	0.894	27,142	0.0260077	24,447	210	S. J. 29-6
. 0.82%	11.94%	11.03%	0.914	89,417	0.094569	79,880	0.907	97,813	0.0937244	88,100	209	S. J. 29-6
0.82%	11.94%	11.03%	0.914	86,073	0.091032	76,892	0.907	94,155	0.090219	84,805	208	S. J. 29-6
0.82%	11.94%	11.03%	0.929	23,633	0.024995	21,113	0.921	25,450	0.0243864	22,923	205	S. J. 29-6
0.82%	11.94%	11.03%	0.910	150,465	0.159135	134,418	0.903	165,341	0.1584293	148,922	203	S. J. 29-6
						945,523	0.906			1,043,624	CPD	29-6 #4 CPD
(%)	(%)	(%)						(mcf)		(mcf)	*	TINU
WELL BTU VALUE DIFFERENCE	MMBTU DIFFERENCE	DIFFERENCE	WELL BTU WALLOCATED VAI UF	ALLOCATED	MMBTU RATIO	METERED MMBTU's	WEASURED WELL BTU	ALLOCATED GAS VOLUME	RATIO	GAS VOLUME	WELL	

Page 16 of 18

ALLOCATION EXAMPLE 29-6 #4 CPD NOVEMBER, 1994

07-Feb-95

	0.3770	0.43%		874.534]	805,332		965,269		906,980		TOTAL
	0 500	7.42.6	0.033	19.80/	0.022649	18.240	0.881	22,031	0.0228241	20,701	260	S. J. 29-6
2.04%	% 65 8	70 EV 9	0000	10 007	000000		0.000	75,720	0.0700011	07,000	707	3. J. 29-0
2.04%	8.59%	6.43%	0.904	86.292	0.098672	79 464	0 886	95 428	0 0000611	277 00	262	
2.04%	8.39%	6.43%	0.894	117,635	0.134512	108,327	0.876	131,608	0.1363437	123.661	258	- 1
2016	8.39%	0.43%	0.905	38,344	0.043845	35,310	0.887	42,355	0.0438786	39,797	246	S. J. 29-6
2.04%	0.50%	0.43%	0.907	42,711	0.048838	39,331	0.889	47,069	0.0487629	44.227	242	S. J. 29-6
20102	0,500	0.43%	168.0	60,191	0.068826	55,428	0.873	67,578	0.0700093	63,497	241	S. J. 29-6
7 046	0.50%	0.43%	0.900	99,133	0.113355		0.882	110,137	0.1140995	103,486	240	S. J. 29-6
2.04%	0.50%	0.43%	0.901	56,413	0.064507		0.883	62,602	0.0648548	58,822	236	S. J. 29-6
2.04%	8.59%	0.43%	0.912	17,800	0.020353	16,391	0.893	19,526	0.0202287	18,347	211	S. J. 29-6
20462	8.59%	6.43%	0.913	25,951	0.029675	23,898	0.894	28,436	0.0294593	26,719	210	S. J. 29-6
2010	8.59%	6.43%	0.905	76,546	0.087527	70,489	0.887	84,552	0.087594	79,446	209	S. J. 29-6
2016	0.50%	0.43%	0.921	72,352	0.082732	66,627	0.903	78,560	0.0813866	73,816	208	S. J. 29-6
2016	0.00.0	0.43%	0.914	21,014	0.024029		0.895	23,000	0.0238274	21,611	205	S. J. 29-6
2 02%	2002	6.130		2,047	0.100479		0.903	132,387	0.15/8/01	143,185	203	S. J. 29-6
2.04%	8.59%	6 43%	0 921	272 071	0 1 60 470		0000	4 60 000				
											1	
						874,534	0.906			965,269	CPD	29-6 #4 CPD
		(20)						(mct)		(mct)	#	TINU
OFFERENCE (%)	<u> </u>	æ,	VALUE				VALUE	VOLUME			:	
VALUE	DIFFERENCE	DIFFERENCE	WELL BTU	ALLOCATED MMBTU	MMBTU RATIO	METERED MMBTU's		ALLOCATED	VOLUME RATIO	METERED GAS VOLUME	WELL	
WEITER												

Page 15 of 18

so and BTII values accume a 11 72 Droceure Base

PHILLIPS PETROLEUM COMPANY FARMINGTON AREA

	 			
UNIT	WELL #	PIPELINE WATER	TRUCKED WATER	SWD LOCATION
CPD#4 29-6				
S. J. 29-6	203		X	29-6 SWD
S. J. 29-6	205		X	29-6 SWD
S. J. 29-6	208	•	X	29-6 SW'D
S. J. 29-6	209		X	29-6 SWD
S. J. 29-6	210		X	29-6 SWD
S. J. 29-6	211		X	29-6 SWD
S. J. 29-6	236		X	29-6 SWD
S. J. 29-6	240		X	29-6 SWD
S. J. 29-6	241		_ X	29-6 SWD
S. J. 29-6	242		X	29-6 SWD
S. J. 2 9-6	246		X	29-6 SWD
S. J. 29-6	258		X	29-6 SWD
S. J. 29-6	262		X	29-6 SWD
S. J. 29-6	260		X	29-6 SWD

October 19, 1994

PHILLIPS PETROLEUM COMPANY
San Juan Basin, New Mexico
Off-Lease Measurement of Gas Applications

STATEMENT: The allocation meters are calibrated and gas samples are collected in accordance with Onshore Oil and Gas Order No. 5.

MECHANICAL INTEGRITY

All lines downstream of the meter runs on the individual well locations to the CPDs have been pressure tested with either water or nitrogen. The lines were pressured to 750 psi and held overnight.

Estimate of Blowdown Volume Dakota Formation

Assumptions: Ideal Gas Law (2=1)

23/8 Tubing at 7200 fl

Pressure = 350 psis

Temperature = Constant 60°

Two Tubing Volumes for Blowdown

Average Blowdown = 8 minutes

P, V, = Psc Vsc P, = 3CH psia

Psc : 141.7 psia

V, : 2 (7200') (.0217 ft3/ft)

= 312 ft3

V6c = (3CH)(312) = 772c ft3 ≈ 7.7 MCF 7.7 MCF in 8 minutes ≈ [1 MCF/Min]

Dakota Formation = 1.0 MCF/Min

LEH 3/16/95

Estimate of Blowdown Volumes Mesa Verda ! Fruitland Sand Formations

Assumptions: Ideas Ges Law (Z=1)

23/8" Tubing at 6000 ft.

Pressure: 300 peig

Temperature: Constant 60°

Two Tubing Volumes for Blowdown

Averge Blowdown: 8 minutes

 $P_{i} V_{i} = P_{sc} V_{sc}$ $P_{i} = 314 p_{sia}$ $P_{sc} = 141.7 p_{sia}$ $V_{i} = 2 (com') (.0217 ft)$ $= 260 ft^{3}$

 $V_{SC} = \left(\frac{3141}{14.7}\right) \left(200\right) = 5554 \text{ ft}^3 \approx 5.6 \text{ MCF}$ 5.6 MCF in 8 minutes = 0.7 MCF/Min

Mesa Verde + Fruitland Sand = 0.7 MCF/Min

STATE OF NEW MEXICO

ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE

GARY E. JOHNSON GOVERNOR

JENNIFER A. SALISBURY CABINET SECRETARY

1000 RIO BRAZOS ROAD AZTEC, NEW MEXICO 87410 (508) 334-6178 FAX: (508) 334-6170

April 10, 1995

Mr Ed Hasely Phillips Petroleum Company 5525 Hwy 64 NBU 3004 Farmington NM 87401

Re: 29-6 #4 CPD

Dear Mr. Hasely:

As per Rule 403.C. your application for the approval of the allocation method to be used at the referenced CPD is hereby approved.

Sincerely,

Frank T. Chavez, Supervisor District III

FTC/sh