GRARIDGE CORPORATION

IBEX BUILDING POST OFFICE BOX 752

BRECKENRIDGE, TEXAS

November 29, 1962

Oil Conservation Commission State of New Mexico State Capitol Building Sarta Fe, New Mexico

> Re: Application for Administrative Approval to Convert One Well to Water Injection Well in Artesia Flood No. 3, Eddy County, New Mexico

-125

Gentlemen:

In accordance with Commission Order No. R-966-E, Graridge Corporation respectively requests administrative approval to convert the following well to a water injection well.

LEASE	WELL NO.	LOCATION
Resler Yates State	355	Unit A, Section 32, TI8S, R28E

The following data pertinent to the proposed expansion are given:

(1) The proposed injection well is directly offset by a producing well which has shown response to the waterflood project. See attached Form C-II6 and Exhibit No. 1.

(2) Exhibit No. 1 indicates all offset operators and injection wells in Artesia Flood No. 3. A copy of this application and a waiver form is being sent to Kersey and Company as they are the offset operators to the proposed expansion. This waiver will be forwarded to you as soon as it is received.

(3) Exhibit No. 2 indicates present injection well data. It is evicent that some of the injection wells are not as receptive to water injection as others, thus, it is desirable to place wells on injection as early as responses warrant in order to maintain a flood balance.

(4) Exhibit No. 3 gives performance curves for the overall waterflood project. Oil Conservation Commission November 29, 1962 Page 2

Resler Yates Well No. 355 was completed in the following manner:

7", 20# surface casing is set at 509' and cemented with 100 sacks of one-one posmix and 50 sacks regular neat cement. The hole was drilled to a total depth of 2064'. New $4\frac{1}{2}$ ", 9.5# J-55 casing is set at 2061' and cemented with 100 sacks of one-one posmix and 25 sacks of regular neat cement. The casing was perforated in the First Grayburg from 2021 $\frac{1}{2}$ ' to 2036' with two sand jet perforations per foot. The well was frac'd with a single stage of 9,500 gallons slick water containing 9,000# 20/40 sand and 3,000# 10/20 sand and 150# SCP-2 (gyp preventative). The well has been equipped with 2-3/8" cement lined tubing and tension type packer set at approximately 2000' - well below the depth of the top of the cement outside the $4\frac{1}{2}$ " casing. Water is to be injected down the tubing, through the casing perforations into the First Grayburg formation.

Any consideration by the Commission in expediting this matter will be greatly appreciated.

Yours very truly,

GRARIDGE CORPORATION

B. G. Harrison Manager of Secondary Recovery

BGH:vw Attachments (4)

cc: Oil Conservation Commission P. O. Drawer DD Artesia, New Mexico

Mr. Frank Irby

NEW MEXICO OIL CONSERVATION COMMISSION

GAS-OIL RATIO REPORT

OPERATOR	Graridge Corporation	POOL	Artesia		
	Box 752, Breckenridge, Texa				
SCHEDULED TI	EST COMPLETION TEST	Г	SPECIAL TEST	X	(Check One)
	(See Instruct	tions on Reverse Side)		

				<u> </u>		Daily	Production During Test			GOR
Lease	Well No.	Date of Test	Producing Method	Choke Size	Test Hours	Allowable Bbls.	Water Bbls.	Oil Bbls.	Gas MCF	Cu. Ft. Per Bbl.
BEFORE WATE	RFLOOD	RESPO	NSE							
Resler Y ates State	20	9/24/6	2 Pump		24	2	0	2	TSTM	TSTM
AFTER WATER	FLOOD	RESPON	<u>SE</u>							
Resler Y ates State	20	10/28/	62 Pump		24	2	0	í I	TSTM	TSTM
	20	11/15/	62 Pump		24	2	0	18.5	TSTM	TSTM
	ł .				1					

No well will be assigned an allowable greater than the amount of oil produced on the official test.

During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned increased allowables when authorized by the Commission.

Gas volumes must be reported in MCF measured at a pressure base of 15.025 psia and a temperature of 60 degrees F. Specific gravity base will be 0.60.

Mail original and one copy of this report to the district office of the New Mexico Oil Conservation Commission. In accordance with Rule 301 and Appropriate Pool Rules.

(I certify that the information given is true and complete to the best of my knowledge.)

Date____November 29, 1962

GRARIDGE CORPORATION					
Company					
By Antonicon					
B. G. Harrison					
Manager of Secondary Recovery					
Ţitle					

<u>GRARIDGE</u> <u>CORPORATION</u>

MONTHLY WATER FLOOD REPORT

Page II

Injection Well Data

Project:_____Artesia Flood No. 3

•

Month:____October 1962

Total Water Input Injection Pressure Cumulative I Resler Yates State 5,735 185 1035 354,466 5 SHUT IN 206,549 206,549 6 1,200 39 1120 173,615 7 3,768 122 1050 212,421 34 1,506 49 1100 84,588 341 1,750 56 1105 81,010 349 5,369 173 1060 107,325 FLOOD TOTAL (7) 19,328 624 1080(avg) 1,219,974		
State 4 5,735 185 1035 354,466 5 SHUT IN 206,549 6 1,200 39 1120 173,615 7 3,768 122 1050 212,421 34 1,506 49 1100 84,588 341 1,750 56 1105 81,010 349 5,369 173 1060 107,325	Input	
5 SHUT IN 206,549 6 1,200 39 1120 173,615 7 3,768 122 1050 212,421 34 1,506 49 1100 84,588 341 1,750 56 1105 81,010 349 5,369 173 1060 107,325		
6 1,200 39 1120 173,615 7 3,768 122 1050 212,421 34 1,506 49 1100 84,588 341 1,750 56 1105 81,010 349 5,369 173 1060 107,325		
34 1,506 49 1100 84,588 341 1,750 56 1105 81,010 349 5,369 173 1060 107,325		
341 1,750 56 1105 81,010 349 5,369 173 1060 107,325		
349 5,369 173 1060 107,325		
FLOOD TOTAL (7) 19,328 624 1080(avg) 1,219,974		
FLOOD TOTAL (7) 19,328 624 1080(avg) 1,219,974		

	Date Receive	DEC 10 1962
GRARIDGE CORPORATIO	N ROUTE TO	ROUTE TO
IBEX BUILDING POST OFFICE BOX 752		DATE
BRECKENRIDGE, TEXAS	LC	T.R. CHECKED
November 29, 1962	ОНА ТА	ARA
		Ball JAW JWC
	Cws	0110
	dail To: Craham	FILE:
ersey and Company '		TUR

Kε Booker Building P. O. Box 316 Artesia, New Mexico

Gentlemen:

It is the desire of Graridge Corporation to expand the water injection program in the Artesia No. 3 Flood in Eddy County, New Mexico. The expansion is to include the following well:

LEASE	WELL NO.	LOCATION
Resler Yates State	355	Unit A, Section 32, TI8S, R28E

A fifteen day waiting period is set up by the Commission unles waivers are obtained from all offset operators.

In order to expedite matters, please sign and return one copy of this letter to this office if you have no objection to the proposed expansion.

Yours very truly,

GRARIDGE CORPORATION

4. Formeon

B. G. Harrison Manager of Secondary Recovery

BGH:vw Enclosures

SIGNED BY Haved Kersey FOR Kersey & G. DATE Dec. 5, 1962

STATE OF NEW MEXICO

STATE ENGINEER OFFICE SANTA FE

S. E. REYNOLDS STATE ENGINEER ••••••

December 14, 1962

ADDRESS CORRESPONDENCE TO: STATE CAPITOL SANTA FE, N. M.

Mr. A. L. Porter, Jr. Secretary-Director Oil Conservation Commission Santa Fe, New Mexico

Dear Mr. Porter:

Reference is made to the application of the Graridge Corporation dated November 29, 1962, which seeks administrative approval to convert one well, Resler Yates State, Well No. 355, Unit A, Section 32, Township 18 South, Range 28 East, Eddy County New Mexico, to water injection well.

In view of the statement that injection will be through 2 3/8" cement lined tubing and tension type packer set at approximately 2000 feet well below the depth of the top of the cement outside the $4\frac{1}{2}$ " casing, it appears that there will be no threat of contamination to the fresh waters which may exist in the area. Therefore, this office offers no objection to the granting of this application.

Very truly yours,

S. E. Reynolds State Engineer

By: Gran

Frank E. Irby Chief Water Rights Division

ma cc-Graridge Corp. F. H. Hennighausen

WATER INJECTION, BELS/DAY

INJECTION PRESSURE, PSIG.

OIL PRODUCTION, BBLS/MD.

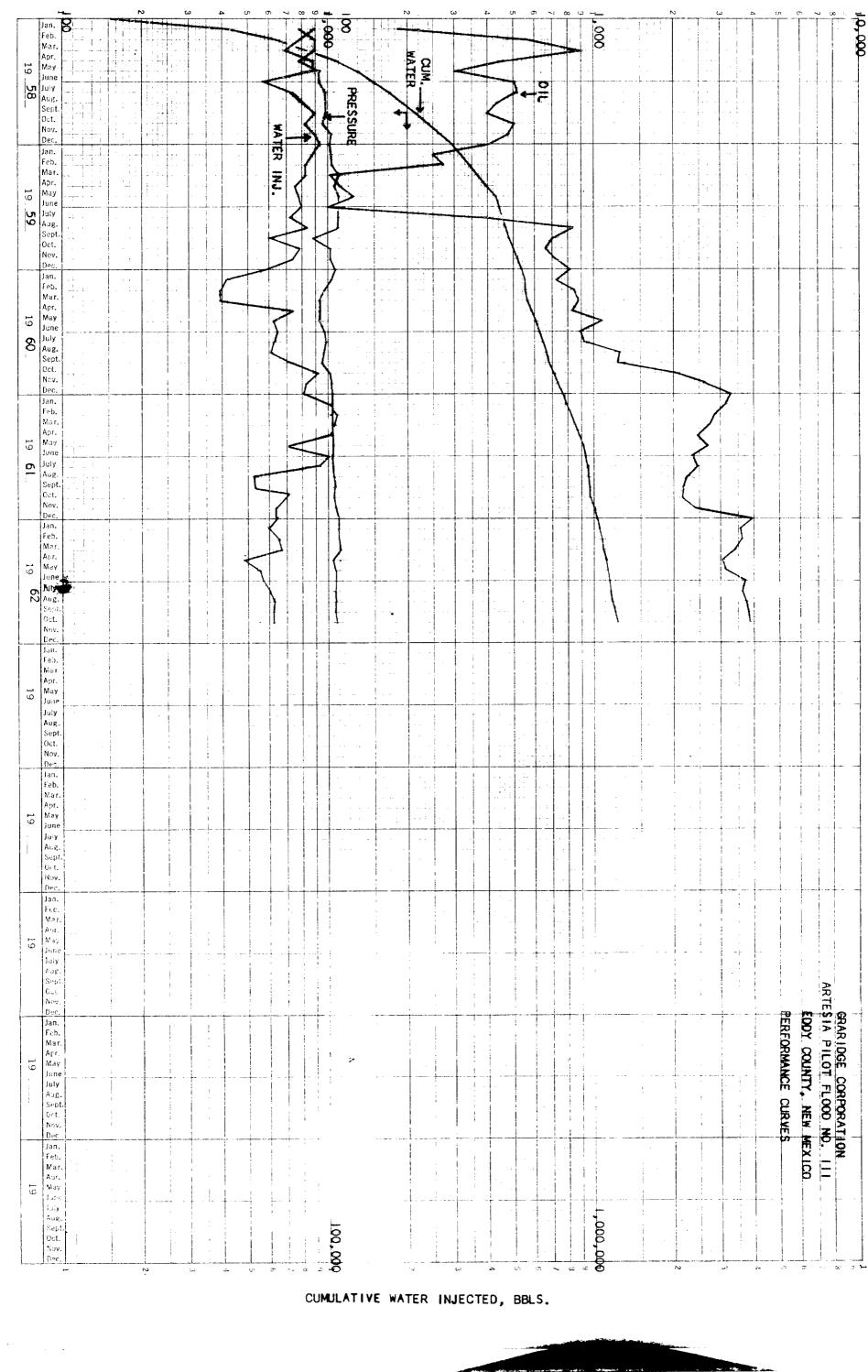


EXHIBIT NO. 3

1

А,

. Lä