CHECKLIST for ADMINISTRATIVE INJECTION APPLICATIONS

Operator: J.K. EDWARDS ASSOC, INC. Well: BENGAL A NO. 1
Operator: T.K. EDWARPS ASSOC, INC. Well: BENGAL A NO. 1 (RICK) Contact: RICHARD LEWIS Title: LANDMAN Phone: 307.298.1400
DATE IN 3.15.95 RELEASE DATE 3.27.98 DATE OUT 3.28.98
Proposed Injection Application is for:WATERFLOOD Expansion Initial
Original Order: R Secondary Recovery Pressure Maintenance
SENSITIVE AREAS <u>K</u> SALT WATER DISPOSAL
WIPP Capitan Reef Commercial Operation
Data is complete for proposed well(s)? <u>4t</u> Additional Data
AREA of REVIEW WELLS
\bigcirc Total # of AOR \bigcirc # of Plugged Wells
$\nu \not \parallel$ Tabulation Complete $\nu \not \parallel$ Schematics of P & A's
N/A Cement Tops Adequate AOR Repair Required
INJECTION INFORMATION
Injection Formation(s)
Source of Water <u>FRUITLAND</u> (2K-10K PPM) Compatible 445
Copy of Legal Notice Information Printed Correctly
Correct Operators Copies of Certified Mail Receipts
Objection Received Set to Hearing Date
NOTES:
APPLICATION QUALIFIES FOR ADMINISTRATIVE APPROVAL
1st Contact:TelephonedLetterDete Neture of Discussion
2nd Contact: Telephoned Letter Date Nature of Discussion 3rd Contact: Telephoned Date Nature of Discussion

STATE OF NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION PO BOX 2088 SANTA FE, NM 87504-2088

ぶ・27・ Revised 7-1-81

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: Application qualifies f	Secondary Recovery Pressure Maintenance D for administrative approval?YesNo	isposal Storage
II.	OPERATOR:	J. K. EDWARDS ASSOCIATES, INC.	
	ADDRESS:	1401 17th Street, Suite 1400, Denver, CO	80202
	CONTACT PARTY:	J. Keith Edwards	(303) 298-1400 PHONE:

III. WELL DATA: Complete the data required on the reverse side of this form for each well processed for injection. Additional sheets may be attached if necessary.

- IV. Is this an expansion of an existing project: <u>Yes</u> No If yes, give the Division order number authorizing the project
- V. Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
- VI. Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
- VII. Attach data on the proposed operation, including:
 - 1. Proposed average and maximum daily rate and volume of fluids to be injected;
 - 2. Whether the system is open or closed;
 - 3. Proposed average and maximum injection pressure;
 - 4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and
 - 5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
- *VIII. Attach appropriate geological data on the injection zone including appropriate lithologic detail, geological name, thickness and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/1 or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
 - IX. Describe the proposed stimulation program, if any.
- * X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted.)
- * XI. Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
- XII. Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground source of drinking water.
- XIII. Applicants must complete the "Proof of Notice" section on the reverse side of this form.
- XIV. Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.

NAME:		TITLE:
SIGNATURE:	1. This Then	DATE: 2-27-95
	1/	

If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstance of the earlier submittal.

APPLICATION FOR AUTHORIZATION TO INJECT Form c-108 Supplemental Data Bengal A #1

I. Water Disposal

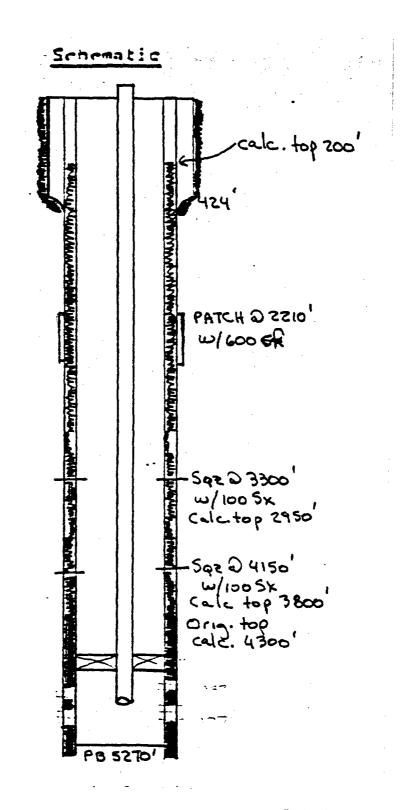
• •

- II. J. K. Edwards Associates, Inc. 1401 17th Street, Suite 1400 Denver, CO 80202 Contact: Keith Edwards (303) 298-1400
- III. Well data is attached.
- IV. This is not an expansion of an existing project.
- V. Map with area of review is attached.
- VI. There are no wells within the area of review that penetrate the proposed Basin Dakota injection zone.
- VII. Data on proposed injection operations:
 - Average injection rate 500 bwpd Maximum injection rate - 1000 bwpd
 - 2. Closed system. Water would be trucked or piped into tanks on location.
 - 3. Average injection pressure 750 psi Maximum injection pressure - 1100 psi
 - Produced Fruitland Coal water with TDS of 2000 to 10000 ppm will be injected into the Basin Dakota zone in the Bengal Bengal A #1 well. Analyses of coal water in the area are attached.
 - 5. Chemical analysis of water in the Basin Dakota zone will be submitted after deepening the well from its current TD of 5252' in the Gallegos Gallup zone.

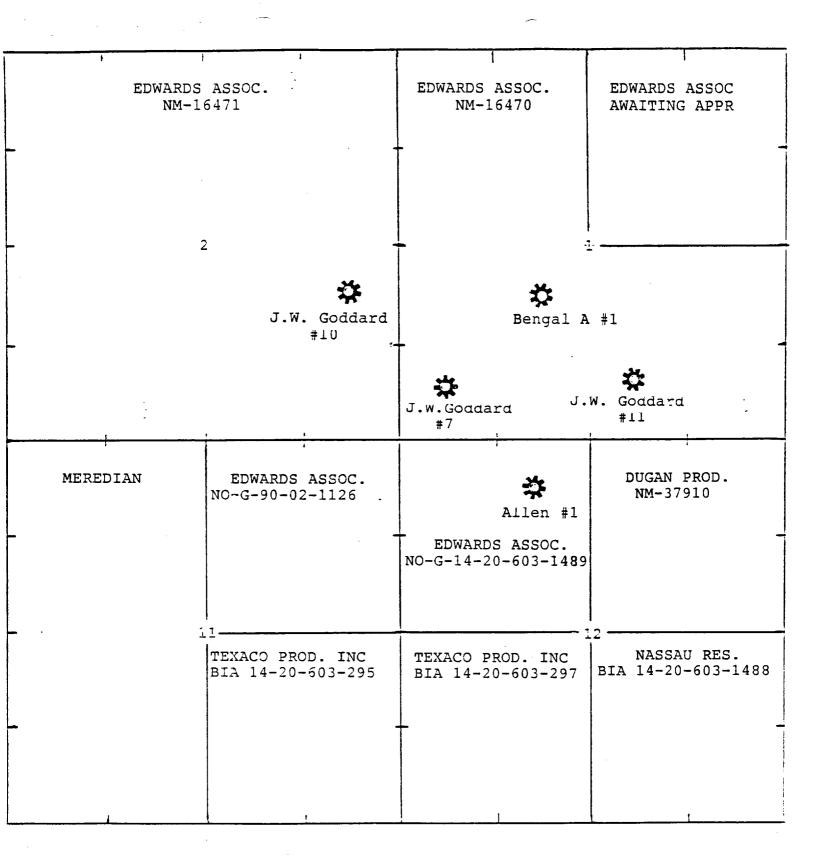
VIII. Geologic and Lithologic data on injection zone.

- Injection zone Basin Dakota at approximately 5990' -6175' (logs will be submitted after deepening of the well).
- 2. Lithology Dakota sands.

APPLICATION FOR AUTHORIZATION TO INJECT C-108 BENGAL A#1 WELL Page 2


- 3. Overlying aquifer Point Lookout
- 4. Underlying aquifer Morrison
- IX. Perforate and acidize prior to injection operations.
- X. Logs traversing the Gallegos Gallup zone have been submitted previously; logs for the Basin Dakota zone will be submitted after deepening the well into said zone.
- XI. No known sources of potable water exist in the immediate area of the well.
- XII. Geologic studies of the area do not indicate fault communication between the proposed injection zone and any underground potential sources of drinking water.
- XIII. Proof of notice is attached.
- XIV. Certification is signed.

· · ·


PARION	1000 ECT 10	0 EWT	1	26N	12W	
NGAL A #1 ELL NU.	1980 FSL, 19 FUUTACE LICATION	 	SECTION	TUWNSHILP	RANUE	
		<u></u>				
Schema	tic			Tabular Data		
8	· ·	Sur	face Casinn	•		
	calc. top :	oo' Siz	<u>= 10 3/4</u>	_ Comented v	.ith <u>440</u> sx.	
			Surface	_ feet determined	by Circulated	
	424	Hal	e size <u>15"</u>		· ·	
	PATCH 2 2210'	Int	errediate Casing -	- CASING PATCH	OVER ORIGINAL ST	TUB
	DI PATCH 2 2210	 51z:	e 5 1/2		$\frac{600 \text{ cur}}{150 (60/40)}$	sic
	- ω/ 600 επ		2001	-	TOU CLASS C by <u>Calculation</u>	
			e size 8 3/4"	_		
					•	-
			<u>e string</u>		250	•
	- Sq2 2 3300'		$\frac{51/2}{4200}$		with 250 ex.	
	Calcitop 2950		4200		sy calculated Squeezed from	
	592 2 4150		e size <u>8 3/4</u>		- 4100'-3200' w/20)0s
	W/100 SX Cale top 3800	Tati	al depth 5313	1	Class B	
	Oria. top cal2. 4300'	Inj	ection interval			
				ts 5174 perf		
		(pe:	ciarated ar apen-	nale, indicate whi	len)	
PB :	1210,1					
	2 3/8"	lined with	Plastic co	Dated	set in a	
Ba	ker Set Down		packer		feet.	
-	1 and model)					
ar describe .	iny other cosing-t	ubing seal	L]•			
ther Data		. в	ASIN DAKOTA			
-	ne injection forma					
. Name of F	ield or Pool (if a	pplicsple) <u>Gailegos Ga</u>	llup		
	new well drilled					
If no, fo	r what purpose was	the well	originally drill	cd? Oil & Gas	Producer/Gallup	
· ·	•	· · · , · · · · · · · · · · · · · · · ·		·	· · · · · · · · · · · · · · · · · · ·	
. Has the w	ell ever been perf plugging detsil (s	orated in acks of co	any other zone(s ment or bridge p)? List all such lug(s) used)	perforated intervals	• • • •
•					· · ·	
A17						

•

INJECTION WELL DATA SHEET

WILL DEEPEN THROUGH DAKOTA WITH 4 3/4" HOLE AND RUN AND SET 4" OR 3 1/2" CASING CEMENTED BACK TO EXISTING CASING STRING.

APPLICATION FOR AUTHORIZATION TO INJECT FORM C-108 AREA OF REVIEW PROXIMITY MAP

BENGAL A #1 WELL 1980' FSL, 1980'FWL, SECTION 1-T26N-R12W SAN JUAN COUNTY, NEW MEXICO

AFFIDAVIT OF PUBLICATION

No. 34358

STATE OF NEW MEXICO County of San Juan:

VICKI SHORTER being duly sworn says: That he is the Classified Manager of THE DAILY TIMES, a daily newspaper of general circulation published in English at Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication on the following day(s):

TUESDAY, FEBRUARY 14, 1995

and the cost of publication was: \$18.37

On $\frac{1}{2}/\frac{5}{2}$ ICKI SHORTER appeared before me, whom I know personally to be the person who signed the above document.

MAI

My Commission Expires March 21, 1998.

COPY OF PUBLICATION

J.K. Edwards Associates, Inc., 1401 17th Street, Suite 1400, Denver, CO 80202 (303) 298-1400 whose agent is Keith Edwards, hereby notifies all interested parties that the following well is to be despened and converted to a water disposal well. Injection will be into the Basie Dakota interval at approgramming SB00' - 6175'. Meanurin well rate will be 1000 Bwpd at tass that 1100 psi. Any requests for information or any objections aliguid be filed with the Oli Conservation Division, State Land Office Building, P.O. Box 2088, Santa Fe, NM 67501 within 15 days of this notice.

Gallegos Gallup Field, Bengal A #1, NE/4, SW/4 Section 1, T26N-R12W, San Juan County, New Mexico.

Legal No. 34358 published in The Daily Times, Farmington, New Mexico, Tuesday, February 14, 1995.

۷.

J.K. EDWARDS ASSOCIATES, INC.

OIL & GAS PROPERTIES 1401 17th Street / Suite 1400 Denver, Colorado 80202 303/298-1400 FAX 303/298-0757

CERTIFIED MAIL-RETURN RECEIPT

February 9, 1995

DUGAN PRODUCTION COMPANY Attn: Land Department P.O. Box 420 Farmington, NM 87499

Re: Application to Inject Bengal A #1 Well SW/4 Section 1-T26N-R12W San Juan County, NM

Gentlemen and Ladies:

Pursuant to the regulations of the NMOCD, you are advised of JKEAI's intention to deepen the referenced well to the Basin Dakota formation and use it as a salt water disposal well. I am enclosing a copy of the application for your reference.

Any request for information or any objections should be filed with the Oil Conservation Division, State Land Office Building, P.O. Box 2088, Santa Fe, NM 87501 within 15 days of publication in the Farmington Daily Times.

<u>Ver</u>y truly yours,

Richard L. Lewis Contract Landman

RLL:11 encls.

PS Form 3800, June 1990 Postage Janman (MM J1499 Sent to Street & No P.O., State & ZIP Code Return Receipt Showing to Whom & Date Delivered Return Receipt Showing to Whom, Date, & Address of Delivery **Restricted Delivery Fee** Special Delivery Fee Certified Fee & Fees Postmark or Date TOTAL Postage land deept UNITED STATES , No Insurance Coverage Provided Do not use for International Mail -rp 879 671 an frod-Co 02 h 29 g 3-10-95 \$ 124 \$344 1.10 .10 5

SENDER:	also wish to receive the
 Complete items 1 and/or 2 for additional services. Complete items 3, and 4a & b. 	following services (for an extra
 Print your name and address on the reverse of this form so that 	
return this card to you.	
 Attach this form to the front of the mailplece, or on the back i does not permit. 	
 Write "Return Receipt Requested" on the malipiece below the article 	
 The Return Receipt will show to whom the article was delivered a 	ind the date
delivered.	Consult postmaster for fee.
3. Article Addressed to:	4a. Article Number
DUGAN PRODUCTION COMPANY	P 879 671 588
ATTN: LAND DEPARTMENT	4b. Service Type
2 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -	Registered Insured
420 BOX 420	X Certified
FARMINGTON NM 87499	Express Mail Return Receipt for
	Merchandise
	7. Date of Delivery
	2//3
5. Signature (Addressee)	8. Addressee's Address (Only if requested
4. Orginature (new cossee)	and fee is paid)
Vini Kunt	
6. Signature (Agent)	
Vini Kunt	

J.K. EDWARDS ASSOCIATES, INC.

OIL & GAS PROPERTIES

1401 17th Street / Suite 1400 Denver, Colorado 80202 303/298-1400 FAX 303/298-0757

CERTIFIED MAIL-RETURN RECEIPT

February 9, 1995

N. I. I. P. 304 North Auburn, #B Farmington, NM 87401

Re: Application to Inject Bengal A #1 Well SW/4 Section 1-T26N-R12W San Juan County, NM

Gentlemen and Ladies:

Pursuant to the regulations of the NMOCD, you are advised of JKEAI's intention to deepen the referenced well to the Basin Dakota formation and use it as a salt water disposal well. I am enclosing a copy of the application for your reference. Any request for information or any objections should be filed with the Oil Conservation Division, State Land Office Building, P.O. Box 2088, Santa Fe, NM 87501 within 15 days of publication in the Farmington Daily Times.

.

· · · · · ·

المحمد المالية المراجع الحاري والمتحريمة المحمد المالية المحافظ الم

Very truly yours

Richard L. Lewis Contract Landman

المراجي المرجعة أفرجت وتصحر والانتار الالحاج العادية

RLL:11 encls.

1010110	000,	Julie	990									•••
	& Fees Postmark or Date	Return Receipt Showing to Whom, Date, & Address of Delivery	Return Receipt Showing to Whom & Date Delivered	Restricted Delivery Fee	Special Delivery Fee	Certified Fee	Postage <i>0</i>	Moun ton	1 0	1~ 0	No Insurance Co Do not use for Ir Do not use for Ir (See Reverse)	T29 629 8
٨٨.	\$		/				\$	HIC	Ê		over nterr	
7/ 5/6/2	ų		1			1.1	Ļ.	2	tu		Mail Receip Coverage Provide International Mail	5.1 H
197	2		0			0	je.	8740	San		Pro nal	Ţ
r 7								10	#		Mail Receipt Coverage Provided r International Mail	
			L					L	12	I	- ă 🏔	

H DOMESTIC RETURN RECEIPT	PS Form 3811, December 1991 Aus. GPO: 1983-362-7
	IIII UBGELTH (Juegel entrender
besteenbes 's verse vers	5. Signature (Addressee)
7. Date of Delivery	
Certified Merchandise Express Mail COD Merchandise	304 NORTH AUBURN #B 304 NORTH AUBURN #B 10478 MN NOTONIMAA
48. Article Number 49. Service Type	d'I'N
	does not permit. • Write "Return Receipt Requested"' on the mailplece below the articl • The Return Receipt will show to whom the article was delivered and delivered.
We can [66]:	 Print your name and address on the reverse of this form so that return this card to you. Attach this form to the front of the mailpiece, or on the back if
1 also wish to receive the following services (for an extra	 Complete items 1 and/or 2 for additional services. Complete items 3, and 4s & b.

PS Form 3800, June 1990

7. Methods for Handl _ Waste Disposal

A. Waste materials will be contained/disposed of as follows:

- 1) Cuttings: Reserve pit.
- 2) Drilling fluids: Reserve pit.
- 3) Produced fluids (oil, water): Reserve pit.
- 4) Sewage: Drilling contractor will provide facilities.
- 5) Garbage and other waste material: Operator will provide a trash pit suitable to prevent wind scattering trash before being burned or buried; any materail to be buried will be at least 24 inches under the surface.
- 6) Operator will be responsible for proper cleanup when the rig is moved.
- 7) Reserve pits will be fenced on three sides during the drilling operations and on four sides when the rig is moved from location.
- 8. <u>Ancillary facilites</u> No permanent camp is planned; a trailer house will be used on location while drilling. No airstrip is planned.
- 9. <u>Well site layout</u> is shown on Exhibit C. Pits are to be lined.
- 10. Plans for restoration of surface upon completion of operations: If the well is productive, areas not used in production will be contoured and seeded with stipulated seed mixture. Production equipment will be painted the color designated by the surface managing agency. When the well is abandoned, the location and access road will be cleaned and restored to the original topographical contours as much as possible. The area will be reseeded with the appropriate seed mixture.
- 11. <u>Surface Ownership</u> Navajo Indian Irrigation Project Attn: Leo Soukup 3539 E. 30th St. Northwest Energy Bldg., Rm 103 Farmington, N.M. 87401

NIIP is using surrounding fields for growing products, but our proposed well site is not located in their fields.

12. Other Information

Refer to the archaeological report for a description of the topography, flora, fauna, soil characteristics, dwellings, historical and cultural sites.

Proximity of:

- 1) Water 3 miles
- 2) Occupied dwellings 2 miles
- 3) Archeological See archeological report.
- 4) Historical or cultural sites See archeological report.

13. Lessee's or Operator's Representative

James S. Hazen Nassau Resources, Inc. P O Box 809 Farmington, NM 87499-0809 Gary Johnson Nassau Resources, Inc. 650 Cherry St. # 1225 Denver, CO 80222

NASSAU RESOURCES, INC. Cowsaround 1 #11 Exhibit A

ANALYSIS NO. 53-35-91

FIELD RECEIPT NO.

PI FORM 45-1

API WATER ANALYSIS REPORT FORM

Сотралу	Giant	E+P			Sampie No.	Date Sampled 08-07-91
Fleid			Legni Description		County or Par	
Lease or U: Bich (2001 3	Weil	#]	Depth	Formation	Water, B/D
Typs of W	ater (Produce Produce	ed, Suppiy	, stc.) Sampling	Point		Sampled By

ISSOLVED SOLIDS

vdroxide.

ATIONS dium, Na (cale.) dicium, Ca agnesium, Mg urium, Ba ptasatum, K	98	<u>a37.95</u> <u>7.00</u> <u>5.00</u> <u></u> <u></u> <u></u>
NIONS Ilorida, Cl Ifata, SO4 Irbonnta, CO3 Inrbonnta, ECO3	8010 0 1617	225.96 0 26.50

0

0

1

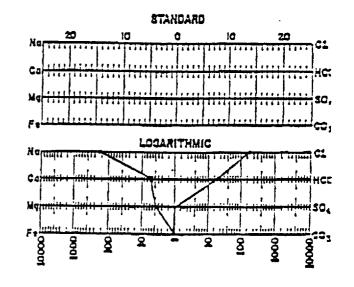
cal Dissolved Solids (calc.) 15 399

OH

n. Fe (total)	<u>25 com</u>
fide. an E-S	<u>n20</u>

MARES & RECOMMENDATIONS:

EASE REFER ANY QUESTIONS TO:


E WESTERN CO. OF NORTH AMERICA RMINGTON, N.M. LAN AULT-District Engineer 505) 327-6222

OTHER PROPERTIES

•

pE	7.25
Specific Gravity, 80/60 F. 74 F. Remistivity (ohm-meters). 74 F.	1.010
Total Hardness	600

WATER PATTERNS - ms/l

ANALYST: LLOC

Table 3. Chemical analyses of produced Fruitland coalbed waters.

Will Party Ind Souther Souther <th< th=""><th>Sample Number</th><th>-</th><th>7</th><th>••</th><th>Ŧ</th><th>0</th><th>Ð</th><th>~</th><th>0</th><th></th><th>91</th></th<>	Sample Number	-	7	••	Ŧ	0	Ð	~	0		91
30.38/16W 33.38/16W 13.31/16W 33.31/16W 33.33/16W 33.33/16W 33.33/16W 33.33/16W 33.33/11W 35.23/17/2 35.00 2777.2 2100 2777.2 2101 2700.2 2717.2 1011.102 1 9601-1440 1988.2.028 2.400.2.4/18 2.500.2.7/17 3.101 3.101 3.200.2 2.177.2 11.31 2.700.2 3.140 404/haad wellhead	Well	Perry Land GUB1	Shoemaker 1-34	Southern Ule 12U-1	Mayfield- Multon GU 1	NEBU 432	NEBU 218	Ealum Gas Com C 18	Elfott Gas Com Y 1	Bisti Coal 36-1	Rick
$ \begin{bmatrix} 1304 \cdot 1,400 & 665 2026 & 2,402 \cdot 2,117 & 3,004 & 3,006 & 2,777 \cdot 2,813 & 2,790 \cdot 4,1074 \cdot 1,092 & 1,000 & 3,06 & 0,100 & 2,010 & 1,41300 & 1,000 & 3,06 & 1,000 & 2,010 & 1,41300 & 1,000 & 2,010 & 1,013 & 2,050 & 5,020 &$	Location	30 35N 6W	34 35N BW	12 34N BW	We NEE 1	ML NOE L	16 31N 7W	33 32N 10W	M6 NOE 6	36 25N 12W	WEI N92 8
wollhand wollhand reparator separator separator <th< td=""><td>Production Interval</td><td>1,304-1,480</td><td>1,896-2,026</td><td>2,400-2,478</td><td>2,530-2,747</td><td>3,004- 3,216 (OH)</td><td>3,200- 3,346 (OH)</td><td>2,777-2,813</td><td>2,790-2,944</td><td>1,074-1,092</td><td>1,383-1,427</td></th<>	Production Interval	1,304-1,480	1,896-2,026	2,400-2,478	2,530-2,747	3,004- 3,216 (OH)	3,200- 3,346 (OH)	2,777-2,813	2,790-2,944	1,074-1,092	1,383-1,427
5,820 1,360 2,650 6,220 2,1970 1,300 2,010 2,820 6,1430 6,133 $1,600$ 3,6 5,6 5,8 5,1 3,17 2,14 3,33 2,25 5,20 5,1 $2,8$ 5,1 3,17 2,14 1,13 2,15 1,13 3,14 5,20 5,13 3,13 2,25 5,1 3,14 5,20 5,13 3,12 2,15 3,14 5,20 5,13 3,14 5,20 5,13 3,14 5,20 5,13 3,14 5,20 5,13 3,14 5,20 5,13 3,14 5,20 5,13 3,14 5,20 5,13 3,14 5,20 5,13 3,14 5,20 5,11 3,24 3,14 5,20 5,14 1,13 5,11 1,13 5,11 1,13 5,11 1,13 5,11 5,11 1,13 1,13 5,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11 1,11	Source	wellhead	wellhead	wellhead	separator ^a	separator ^a	wollhead	wellhead	wellhead	wellhead	wolihaad
	. 105	5,820	1,360	2,650	6,220	21,970	13,030	20,110	28,210	14,330	16.190
00 4.3 5.6 5.1 19.5 13.2 33.3 53.1 22.5 6.2 1.2 <t< td=""><td>a K</td><td>1,600</td><td>349</td><td>698</td><td>1,670</td><td>6,160</td><td>3,560</td><td>5,820</td><td>8,140</td><td>5.290</td><td>5,750</td></t<>	a K	1,600	349	698	1,670	6,160	3,560	5,820	8,140	5.290	5,750
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×	<u>6</u> .9	4.3	5.8	5.4	19.5	13.2	33.3	53.1	22.5	27.5
62 12 4.2 27.4 17.3 16.5 15.1 36.4 65 0.7 1.1 6.1 62.9 27.1 13.2 12.4 6.9 0.12 0.03 0.04 0.05 0.64 0.72 12.4 0.59 0.51 0.12 0.03 0.01^{1} 0.01 0.0	C	28.8	6.5	5.8	15.1	37.7	24.4	23.6	28.1	128	246
4.3 0.6 0.7 5.0 17.7 13.2 12.3 19.4 6.9 0.12 0.03 0.04 0.05 0.64 0.72 1.14 0.59 0.51 8.4 0.12 0.03 0.04 0.05 0.04 0.01 <t< td=""><td>BM</td><td>6.2</td><td>1.2</td><td>1.2</td><td>4.2</td><td>27.4</td><td>17.3</td><td>15.5</td><td>15.1</td><td>36.4</td><td>57.7</td></t<>	BM	6.2	1.2	1.2	4.2	27.4	17.3	15.5	15.1	36.4	57.7
65 0.7 1.1 6.1 $6.2.9$ 2.11 36.2 51.5 8.4 0.12 0.03 0.01 0.05 0.64 0.72 1.24 0.59 0.57 0.08 0.03 0.01 0.05 0.64 0.72 1.13 0.57 0.49 0.08 0.21 0.63 1.55 2.15 0.98 0.11 1.1 0.11 0.11 0.11 0.11 0.11 0.21 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 2.17 2.11 2.12 0.50 0.12 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 $0.$	ŝ	4.3	0.6	0.7	5.0	17.7	13.2	12.3	19.4	6.9	12.3
0.12 0.80 0.04 0.05 0.64 0.72 1.24 0.59 0.57 0.08 0.03 0.01 ^b 0.01 0.01 0.01 0.01 0.49 1.08 0.21 0.63 1.54 1.53 2.15 2.66 2.71 2.61 1.13 21.0 22.8 26.1 31.55 2.66 2.71 2.61 1.25 4 21.0 22.8 26.1 31.55 2.66 2.71 2.61 1.25 4 3.943 955 1.954 4.333 14,601 8.940 12,893 17,255 7/22 4 270 270 210 330 34,601 8.940 17,265 1/25 1/26 270 273 14,601 8.940 17,863 7/22 4 270 150 11.11 4.47 11.3 8.57 8.13 17,265 1/20 270 26 45 1.661	8	6.5	0.7	1.1	6.1	62.9	21.1	36.2	51.5	8.4	7.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	0.12	0.80	0.04	0.05	0.64	0.72	1.24	0.59	0.57	2.37
0.88 0.34 0.94 1.54 1.39 1.11 0.58 1.13 0.50 1.08 0.21 0.63 1.55 2.15 0.98 8.54 9.17 1.18 21.0 22.8 26.1 31.5 2.65 27.1 24.7 26.1 12.5 3943 955 1,854 4,333 14,601 8,940 12,863 17,255 722 4 270 220 220 330 330 210 330 210 230 330 210 230 131 1.150 1.26 4,99 270 230 330 210 330 210 230 230 210 230 150 1.26 4,99 039 0.78 0.86 1.04 1.145 1.150 0.60 6.9 7.64 26 <5	Mn	0.06	0.03	0.03	0.01 ^b	0.01	0.01	0.03	0.01	0.49	0.15
1.08 0.21 0.63 1.55 2.15 0.98 8.54 9.17 1.18 21.0 22.8 26.1 31.5 26.6 27.1 24.7 26.1 12.5 3943 955 1,854 4,333 14,601 8,940 12,893 17,295 722 4 270 283 1,50 1,11 4,47 11.3 8,57 8,13 16.50 120 20 120 120 273 6.5 -55 25 1,04 1,45 1,13 8,57 8,13 16.50 0.60 9,55 253 1.50 1.11 4,47 1,13 8,57 8,13 16.2 4,99 0.39 0.78 0.86 1.00 1,45 1,49 16.2 4,99 183 16 1,14 1,13 8,57 8,13 1,500 0,50 2,50 0,50 2,56 45 2,56 6,99 0,50 2,56 5,5<		0.88	0.34	0.94	1.54	1.39	1111	0.58	1.13	0.50	0.53
210 228 26.1 31.5 26.6 27.1 24.7 26.1 12.5 3.943 956 1,854 4,333 14,601 8,940 12,883 17,295 722 4 270 230 230 330 330 210 230 330 72 4 994 12,893 17,295 722 4 270 233 1,50 1,11 4,47 11.3 8,57 9,13 16,20 12	æ	1.08	0.21	0.63	1.55	2.15	0.98	8.54	9.17	1.18	1.09
3943 956 1,854 4,333 14,601 8,940 12,883 17,235 722 46 270 220 220 210 330 330 210 210 220 120 16 270 223 1,50 1,11 4,47 11,3 8,57 9,13 16,2 4,99 253 1,50 1,11 4,47 11,3 8,57 9,13 16,2 4,99 255 45 45 1,04 1,45 1,49 1,50 0,60 9,59 1,50 0,60 9,59 193 16 5,6 45 $-5,5$ $-5,5$ $-5,5$ $-5,5$ 4,99 -56^6 -56 -55 $-1,5$ $-1,5$ $-55,6$ 9,00 9,50 $-10,0$ 0,11 0,50 0,61 0,61 7,64 7,64 $-14,6$ $-14,1$ $-14,1$ $-7,4$ $-7,9$ $-7,1$ $-7,6$ $7,6$ 7	slo ₂	21.0	22.8	26.1	31.5	26.6	27.1	24.7	26.1	12.5	15.0
270 220 210 330 330 330 210 220 120 120 16 2.53 1.50 1.11 4.47 11.3 8.57 9.13 16.2 4.99 2.53 1.60 1.04 1.45 1.59 0.85 1.50 0.60 9.39 6.5 5.6 1.94 1.45 1.20 2.550 8.090 9.55 $<5^5$ <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Fleid alkalinity (as HCO3 ⁻)	3,943	956	1,854	4,333	14,601	8,940	12,883	17,295	722	468
2.53 1.50 1.11 4.47 11.3 8.57 9.13 16.2 4.99 0.39 0.78 0.85 1.04 1.45 1.59 0.85 1.50 0.60 193 6 56 138 1.00 396 1.240 2.550 8.090 9.55 $<5^{\circ}$ <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <td>Organic acida (as Cil3COOH)</td> <td>270</td> <td>220</td> <td>210</td> <td>330</td> <td>088</td> <td>210</td> <td>210</td> <td>220</td> <td>120</td> <td>8</td>	Organic acida (as Cil3COOH)	270	220	210	330	088	210	210	220	120	8
0.39 0.78 0.85 1.04 1.45 1.59 0.85 1.50 0.60 6.5 5.6 5.8 1.04 1.45 1.240 2.550 $8,090$ 9.55 $<5^{G}$ <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <td>6HN</td> <td>2.53</td> <td>1.50</td> <td>1.11</td> <td>4.47</td> <td>11.3</td> <td>8.57</td> <td>. 9.13</td> <td>16.2</td> <td>4.99</td> <td>6.20</td>	6HN	2.53	1.50	1.11	4.47	11.3	8.57	. 9.13	16.2	4.99	6.20
193 16 56 138 1,000 396 1,240 2,550 8,090 9,55 $<5^{6}$ <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	organic-N	0.39	0.78	0.85	1.04	1.45	1.59	0.85	1.50	0.60	0.48
$< 5^{G}$ < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	ច	193	16	56	138	1,000	396	1,240	2,550	060'8	065'8
0.85 0.14 0.50 0.76 4.65 3.49 3.99 6.19 7.64 0.38 0.10 0.33 1.13 0.41 0.11 0.52 0.87 0.60 7.65 8.21 8.23 7.73 7.62 7.89 8.06 8.02 7.39 -14.0 -14.6 -14.1 -7.4 -7.9 -7.7 -7.6 -10.8 -1 -85 -98 -102 -85 -32 -43 -28 -36 -81 -6 +23.5 +17.5 +16.7 +24.0 +25.6 +24.7 +26.0 +24.9 +19.7 +1 71.94 15.73 30.92 74.03 273.71 158.30 257.14 359.07 240.27 26 70.28 16.13 31.98 74.95 277.14 359.07 240.27 26 26 26 26 26 26 26 26 26 26 26 26 26 26<	\$04	< 5 ^c	<5	ŝ	ςΩ Υ	`ي دي	2 <u>9</u>	. 35 .	< 22 .	ŝ	10.4
0.38 0.10 0.33 1.13 0.41 0.11 0.62 0.87 0.60 7.65 8.21 8.23 7.73 7.62 7.89 8.06 8.02 7.39 -14.0 -14.6 -14.1 -7.4 -7.9 -7.7 -7.6 7.39 -14.0 -14.6 -14.1 -7.4 -7.9 -7.7 -7.6 7.39 -85 -98 -102 -85 -32 -43 -28 -36 -81 -6 +23.5 +17.5 +16.7 +24.0 +25.6 +24.7 +26.0 +24.9 +19.7 +1 71.94 15.73 30.92 74.03 273.71 158.30 257.14 359.07 240.27 26 70.28 16.13 31.98 74.95 267.66 157.78 246.25 239.96 27 26 26 27 26 26 26 26 26 26 26 240.27 26 26	Br	0.85	0.14	0.50	0.76	4.65	3.49	3.99	6.19	7.64	8,68
7.65 8.21 8.23 7.73 7.62 7.89 8.06 8.02 7.39 -14.0 -14.6 -14.1 -7.4 -7.9 -7.7 -7.6 -10.8 -85 -98 -102 -85 -32 -43 -28 -36 -81 +23.5 +17.5 +16.7 +24.0 +25.6 +24.7 +26.0 +24.9 +19.7 71.94 15.73 30.92 74.03 273.71 158.30 257.14 359.07 240.27 70.28 16.13 31.98 74.95 267.66 157.78 246.25 239.96	-	0.38	0.10	0.33	1.13	0.41	0.11	. 0.52	0.87	0.60	0.56
-14.0 -14.6 -14.1 -7.4 -7.9 -7.7 -7.6 -10.8 -65 -98 -102 -65 -32 -43 -28 -36 -81 -85 -102 -65 -32 -43 -28 -36 -81 +23.5 +17.5 +16.7 +24.0 +25.6 +24.7 +26.0 +24.9 +19.7 71.94 15.73 30.92 74.03 273.71 158.30 257.14 359.07 240.27 70.28 16.13 31.98 74.95 267.66 157.78 246.25 355.55 239.98	Field pH	7.65	8.21	8.23	7.73	7.62	7.89	8.06	8.02	7.39	7.33
-85 -98 -102 -85 -32 -43 -28 -36 -81 +23.5 +17.5 +16.7 +24.0 +25.6 +24.7 +26.0 +24.9 +19.7 71.94 15.73 30.92 74.03 273.71 158.30 257.14 359.07 240.27 70.28 16.13 31.98 74.95 267.66 157.78 246.25 335.55 239.98	5 ¹⁸ 0d	-14.0	-14.6	-14.6	-14.1	-7.4	-7.9	1.1-	-7.6	-10.8	-10.5
+23.5 +17.5 +16.7 +24.0 +25.6 +24.7 +26.0 +24.9 +19.7 71.94 15.73 30.92 74.03 273.71 158.30 257.14 359.07 240.27 70.28 16.13 31.98 74.95 267.66 157.78 246.25 355.55 239.98	5D	ଥ ୍ୟ ଅ	8 6-	-102	58-	ង	Ŧ	-28	<u>8</u>	18-	8
71.94 15.73 30.92 74.03 273.71 158.30 257.14 359.07 240.27 70.28 16.13 31.98 74.95 267.66 157.78 246.25 355.55 239.98	8 ¹³ C ⁶	+23.5	+17.5	+16.7	+24.0	+25.6	+24.7	+26.0	+24.9	+19.7	+ 19.5
70.28 16.13 31.98 74.95 267.66 157.78 246.25 355.55 239.98	L cellons (meq/L)	71.94	15.73	30.92	74.03	273.71	158.30	257.14	359.07	240.27	268.10
	L anlons (meq/L)	70.28	16.13	31.98	74.95	267.66	157.78	246.25	355.55	239.96	278.33

.

326

! :

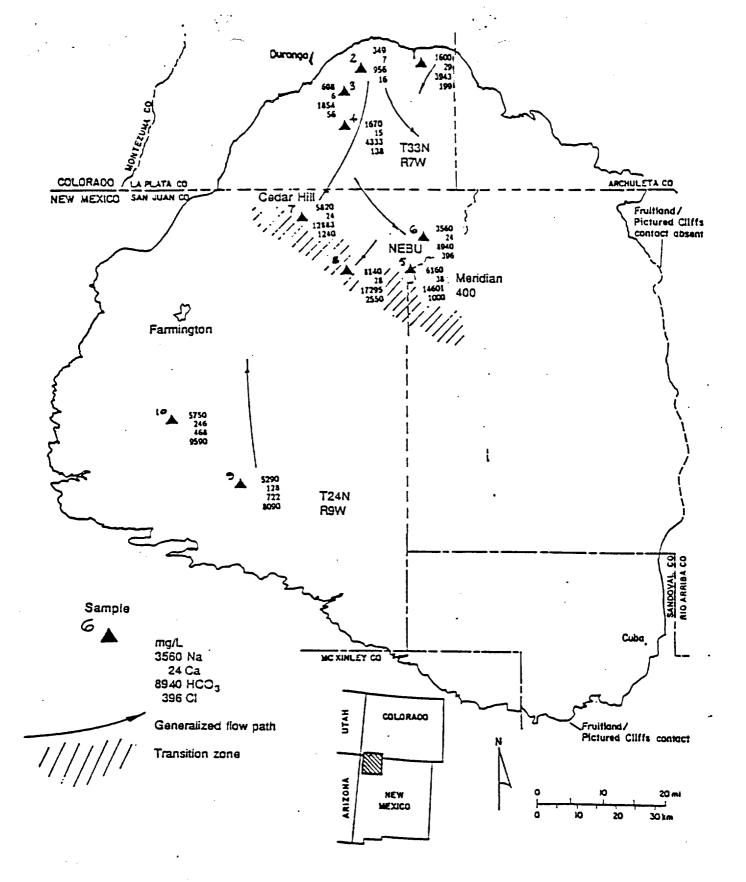
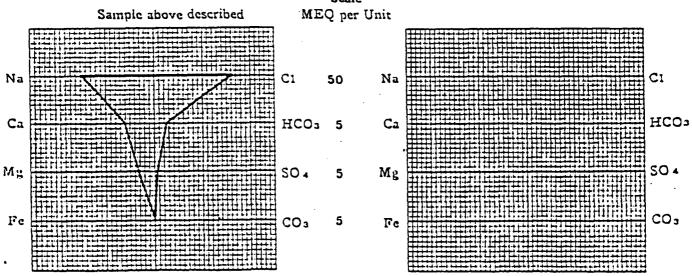


Figure 16. Location of GRI/BEG Fruitland coalbed water samples. In the north-central part of the basin, Na⁺ and HCO3⁻ increase down flow path, reaching their highest concentration in the transition zone. Southern waters are enriched in Cl- and Ca²⁺. The transition zone is a regional facies, potentiometric, pressure, and hydrochemical boundary. Complete chemical analyses in table 3.

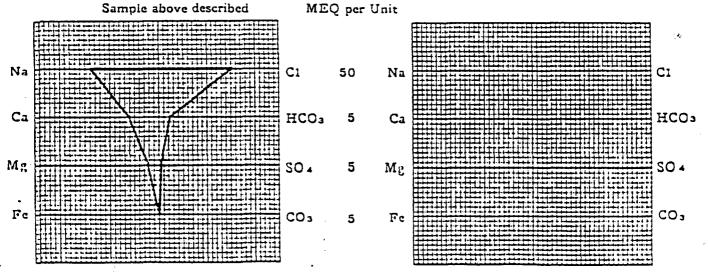

	ci (+1517					
•	CHEI	JAL & GI	EOLOGI	CAL LABOR	'ORIES	
•	Casper Farmington		gton	Glendive	Sterling	
	V	VATER A	ANALY	SIS REPOR	T	
Field	Bisti, New Me	xico		'cil No	CBU No. 29	
Operator	Sunray: Mid-Co	ntinent Oil	Сощралу	Location.	NE SE 8-25N-12W	
Sampled by		•• ·				
Formation	Gallup	Deptiis (1750 - 48	BOO How same	pled From Treater	
Other pertiner	nt data Sample	No. 2			· · · · · · · · · · · · · · ·	
			•		·····	
Analyzed by	DM & DS		. Date	October 2,	1959 Lab. No. 14747-2	
CONSTITUE	NTS PPM	MEO.	MEQ.%	. TOTAL SOLI	DS IN PARTS PER MILLION	
Sodium	18,064	. 785.37	. 47.15	By evaporat	ion- 49,490	
Calcium	<u> </u>	_32.24	_1.94	After igniti	on48,400	
Magnesium -	185	_ 15.21	_0.91	Calculated_	48,350	
Sulfate	10	0.21	0.01	PROPERTIES	OF REACTION IN PERCENT	
Chloride	29,000	817.80	49.10	Primary sal	inity94.30	
Carbonate -	• • • •				salinity3.92	
Bicarbonate	<u> </u>	14.81	0.89		alinity0.00	
Hydroxide -	• • • • • • • •				lkalinity 1.78	
نیب متر ، مستبنی ، ی	· ·	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		99.98	
• Observed pH.	Resistivi 7.2ohms/m	1			nity0.02	
Remarks Co	orrelates with	Gallup wat	er from	this area and	with water from CBU No. 2	

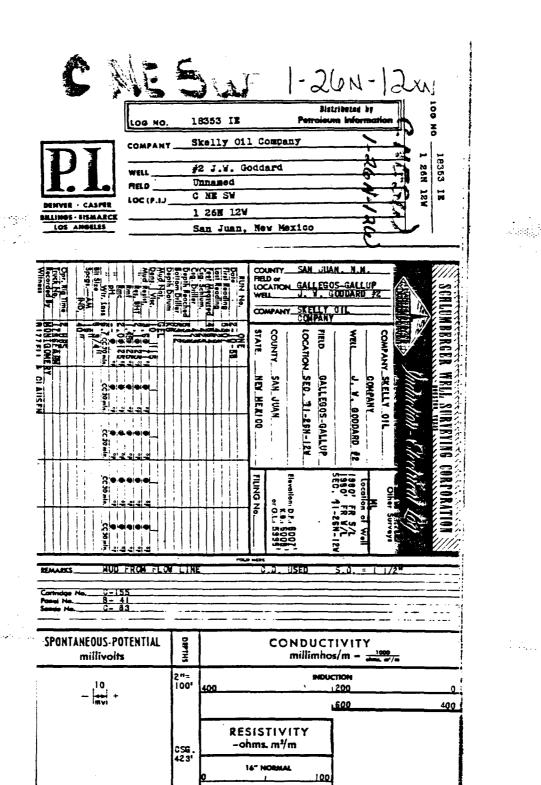
sampled as known Gallup water.

Note: PPM=Milligrams per liter (1 PPM is equivalent to 0.0001% by weight). MEQ=Milliequivalents per liter. MEQ%=Milliequivalents per liter in percent.

WATER ANALYSIS PATTERN

Scale


CLI-12A PRAIRIE MILLISHING CL 61917									
CHE									
Casper	Farmingtor	Glendive	Sterling						
WATER ANALYSIS REPORT									
Field Bisti, New	Mexico	Well No.	CBU No. 28						
Operator Sunray Mid-Continent Oil Company Location NW SW 9-25N-12W									
Sampled by	· · · ·	Date	• • • • • • • • • • • • • • • • • • •						
Formation Gallup	Depths 4750) - 4800 How sam	upled From treater						
Other pertinent data Samp	le No. 1	• .	· · · · · · · · · · · · · · ·						
•		•• •	· · ···· ·						
Analyzed by DM & DS	· · · ·	Date October 2,	1959 Lab. No. 14747-1						
CONSTITUENTS PPM	MEQ. ME	D.% TOTAL SOLI	DS IN PARTS PER MILLION:						
Sodium16,789	729.95 4	.18 By evapora	46,030 .						
Calcium 608	30.34	.96 After ignit	ion447,560						
Magnesium 162	13.32	0.86 Calculated	44,929						
Sulfate = <u>10</u>	0.21	1.01 PROPERTIES	OF REACTION IN PERCENT:						
Chloride 27,000	761.40 49	9.21 Primary sa	linity94.36						
Carbonate		-	salinity4.08						
Bicarbonate 732		1-78	kalinity0.00						
Hydroxide	·	- Secondary	alkalinity1.56						
		Chloride sa	linity99.98						
Resist	vity @ 68°F.	Sulfate sali	0.02						
Observed pH. 7.6 _ohms/meter 0.190									
RemarksSampled as	known Gallup wa	er.							

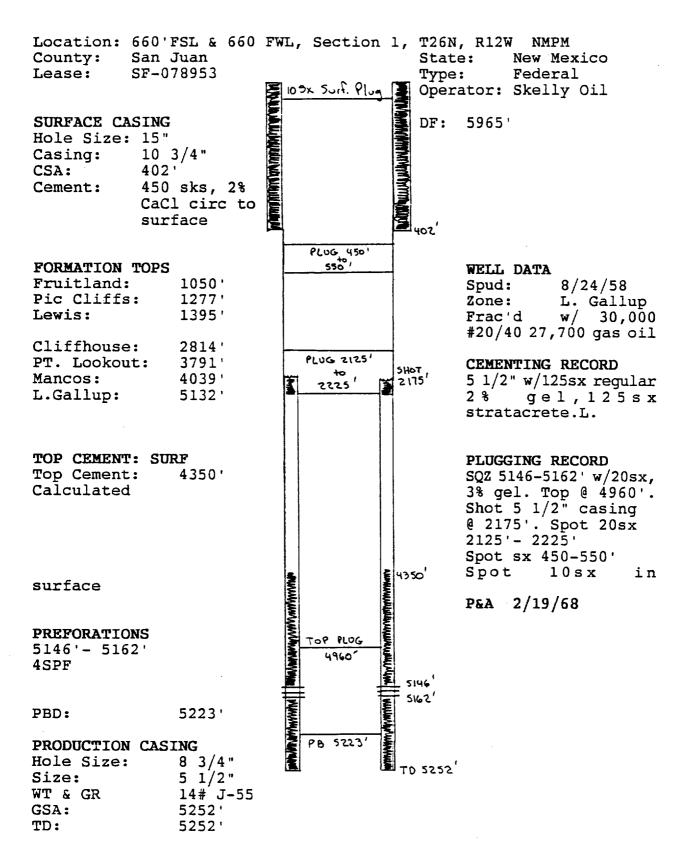

Note: PPM=Milligrams per liter (1 PPM is equivalent to 0.0001% by weight). MEQ=Milliequivalents per liter. MEQ%=Milliequivalents per liter in percent.

WATER ANALYSIS PATTERN

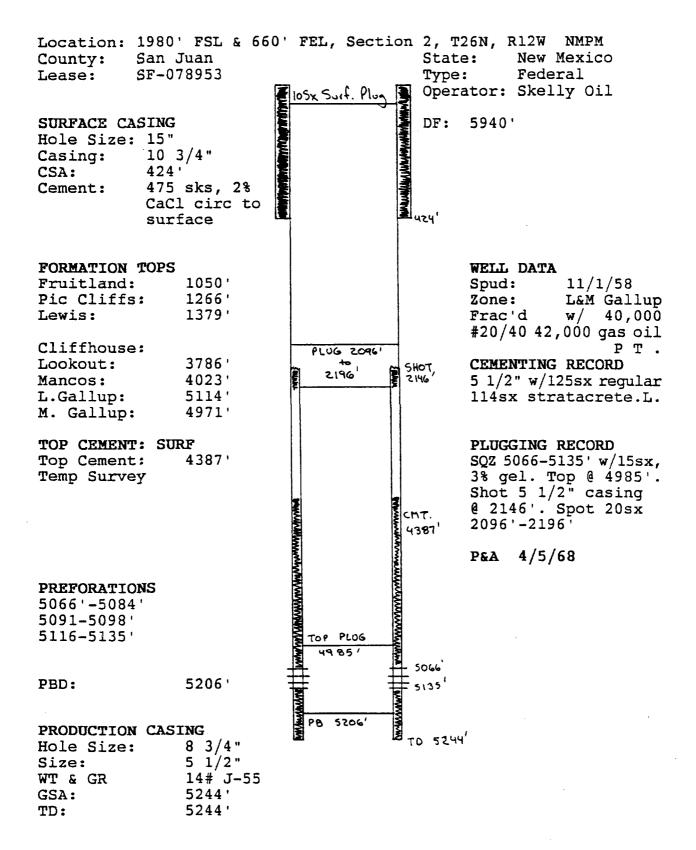
Scale

.

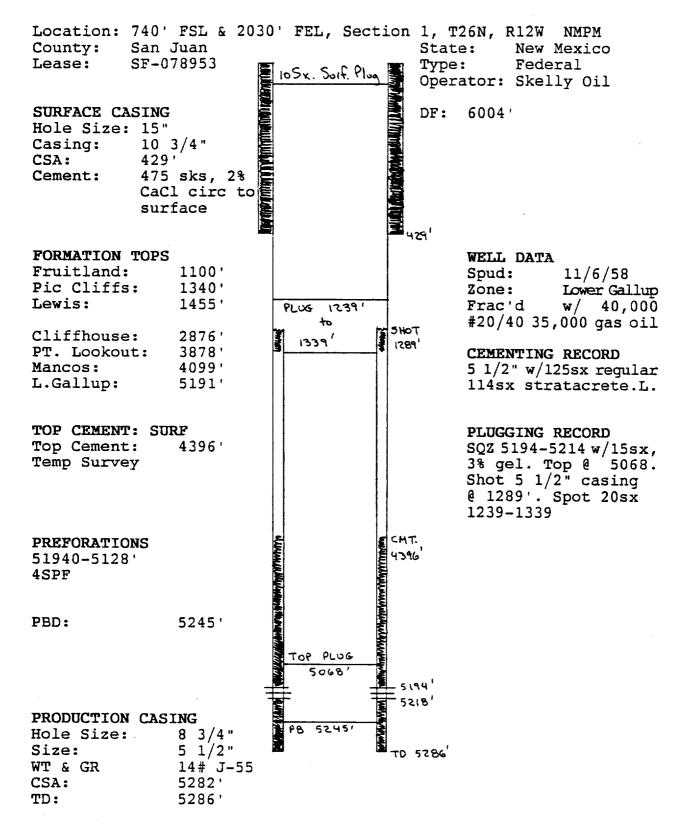
000

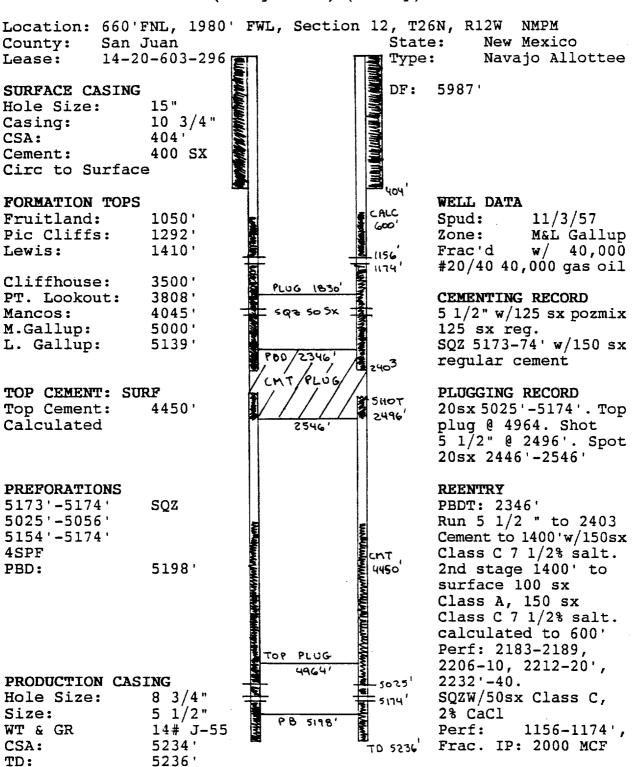

· · · · · · · · · · · ·

۰.


. .

بهام والمحمد العالم


و درفو را


Well Name: J.W. Goodard #7

Well Name: J.W. Goodard #10

Well Name: J.W. Goodard #11

Well Name: J.K. Edwards Allen #1 (Navajo F #1) (Skelly)

Santa Fe 057521

The United States of America,

ILLEGIBLE

In all to whom these presents shall come, Greeting:

WHEREAS, a schedule of alforments approved by the Secretary of the Interior has been deposited in the General Land Office, whereby it appears that Wod Yazzie, a Navajo Indian,

as been allotted the following-described land:

The southwest quarter of Section one in Township twenty-six north of Range twelve west of the New Mexico Meridian, New Mexico, containing one hundred sixty acres:

NOW KNOW YE, That the UNITED STATES OF AMERICA, in consideration of the premises, has allotted, and by these presents dors allot, unto the said Indian the Land above described, and hereby declares that it does and will hold the Land thus slicited (subject to alt statutory provisions and restrictions) for the period of twenty-five years, in trust for the sole use and benefit of the said Indian and at In fee, discharged of said trust and free the expiration of said period the United States will, convey the same by patent to said Indian from all charge and incumbrance whatsoever; but in the event said Indian ... dies before the expiration of said trust period, the Secretary of the interior shall ascertain the legal heirs of said indian and either issue to them in their names a patent in fee for said Land, or cause said Land to be sold for the benefit of said heirs as provided by laws and there is reserved from the lands hereby allotted, a right of way thereon for ditches or canals constructed by the authority of the United States; reserving, also, to the United States all coal in the lands so granted, and to it, or persons authorized by it, the right to prospect for, mine, and remove coal from the same upen compliance with the conditions from the children is a start of the Art of the 2 i 1010 (36 Sut. 58). Excepting and reserving, also it, or persons authorized by it, the fight to prospect for, mine, and remove such debosits from the same upon compliance with the conditions and remove to the provisions and limitations of the Act of July 17, 1914 (38 Stat. 509) 38 Stat.509) IN TESTIMONY WHEREOF, I. Herbert Hoover,

President of the United States of America, have caused these letters to be made

Patent; and the Seal of the General Land Office to be hereunto affixed.

GIVEN under my hand, in the District of Columbia, the

(SEAL)

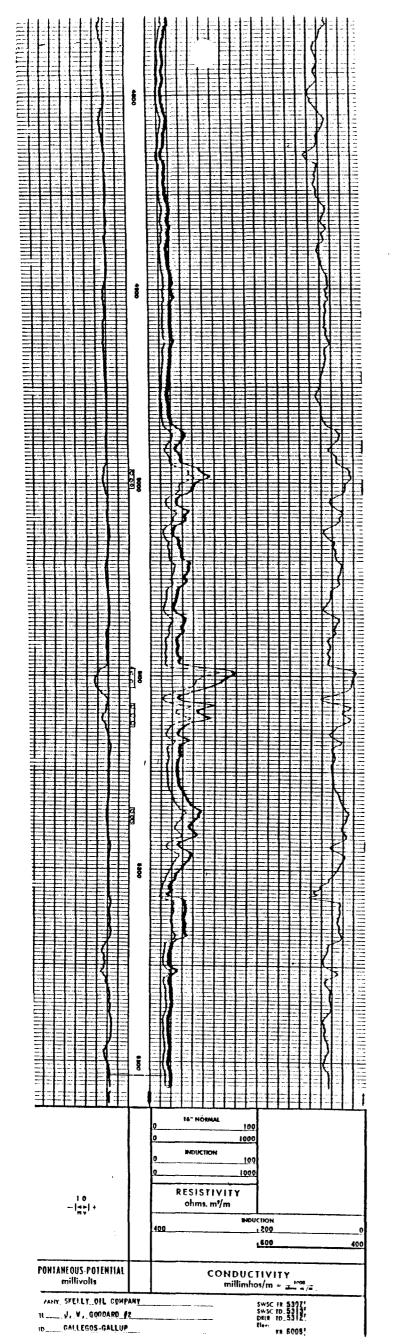
in the year of our Lord one thousand

TENTH

TWENTY-NINE

and of the independence of the

FIFTY-THIND United States the one hundred and Herbert Nover


JUNE

By the Presidents

day of

nine hundred and

1028346

