ROSAROMERO

Ruidoso, NM 88345 | 575 -590 -3459 | rosa4100@gmail.com

SKILLS PROFILE

- Supervisory Experience in both field and office setting.
- Skilled with field data collection and survey methods, including the use of backpack electrofishing units, bag seines, and gill nets, as well as radio telemetry, substrate and large woody debris data collection.
- Proficient using Field Data Recorders, GPS units, and other technical equipment.
- Recognized for quality use and experience of various software/hardware troubleshooting and instruction.
- Experience working/living in harsh conditions.
- Experience in teaching, advising in technical training programs and university coursework.
- FEMA Emergency Response Certifications 100, 200, 700 and 800, Emergency Management trained

EDUCATION

Bachelor's Degree

Western New Mexico University, Silver City, NM

BS Zoology & Botany minor -2007

EMPLOYMENTHISTORY

OCD Environmental Bureau Chief – New Mexico Office Energy Minerals & Natural Resource Dept.-04/2022-Present Artesia, NM

- Oversees and manages the Oil Conservation Divisions Environmental Bureau, including the Administrative Permitting Programs, the Environmental Incidents Program, and the Environmental Projects and Compliance group to ensure OCD goals and objectives are met.
- Recommends selection of applicants, conducts training of personnel, acts upon leave requests, conducts performance evaluations administers disciplinary actions.
- Coordinates and implements OCD programs with OCD staff to ensure legal requirements are met.
- Advises senior management on legal and management issues, policies and rules.
- Has an in depth familiarity with the Oil and Gas Act and Rules ad the Water Quality Act and Rules.

Water Resource Professional III - New Mexico Office of the State Engineer. -03/2019-04/2022

Roswell, NM

- Performed advanced water rights analyses for water right applications and made technical recommendations for administrative decisions for water right applications of a complex nature, including modeling parameters, model sensitivity analysis, validity and pertinence of water rights and documentation, analysis of variance requests for well construction and abandonment.
- Provided technical support to junior professionals. Communicated complex water right issues to other
 agency staff including public attorneys, hydrologists, and engineers from other bureau's. Oversaw and
 monitored agency compliancewith federal and state regulations, served as an expert witness on water
 resource matters.
- Determined appropriate actions for noncompliance issues. Completed investigations in which no agency specificquidelines existed.
- Performed water data collection and analysis, including groundwater and surface water analysis and calculation of irrigation water requirements. Reviewed and made recommendations on groundwater and surface water rights documents and applications in accordance with rules and regulations.
- Reviewed water resource permit applications and participated in special projects including field water level measurements, compliance issues and corrective actions, and drafted technical reports based on data collection and analysis.
- Performed stream flow measurements including steam gage operations, hydrologic calculations, data management and analysis. Groundwater and surface water analysis. Performed independent water inspections and investigations.
- Evaluated data, performed in depth data analysis using analytics, computer models and GIS databases.
- Participated in interagency water management and planning efforts to effectively manage water resources and the localregional and basin or interstate scale.

Environmental Scientist, State of New Mexico Environment Dept.-12/2013-03/2019

Ruidoso, NM

- Used knowledge of the natural sciences to protect the environment by identifying problems and finding solutionsthat minimize hazards to the health of the environment and the population.
- Analyzed measurements or observations of food, water, and soil to determine regulatory compliance.
- Understood the issues involved and found solutions to protect the environment from degradation, utilized thisunderstanding to design and monitor waste disposal sites, preserve water supplies.
- Conducted research and perform investigations for the purpose of identifying, abating, or eliminating sources of pollutantsor hazards that affect either the environment or the health of the population. Utilized knowledge of various scientific disciplines to collect, synthesize, study, report and take actions based on data derived from measurements or observations of food, soil, water, and other sources. Review plans and permit applications for regulatory compliance and issue construction permits for food, liquid waste, and pool facilities. Completed inspections of construction sites at food facilities and new aquatic facilities for regulatory compliance.
- New Mexico State Representative for the Counsel for the Model Aquatic Health Code, voting member for review of changes to upcoming codes.
- NSPF Certified Pool Operator, Field Service Professional, Inspector, and Recreational Water Illness Certifications, NLAFT, NSPF and ATI Qualified Operator Certified.
- Reviewed course certification materials for compliance with the MAHC
- NLAFT Certified Instructor for Qualified Operators
- Work on the 2-5K liquid waste team to permit and transfer liquid waste system to EHB from Groundwater
- Review and approve ATS liquid waste permits; monitor ATS maintenance.
- Certification and continuing educational in all areas of environmental health sciences.
- Educated the general public on federal and state environmental policies.

New Mexico State University, Adjunct Professor-08/2014-05/2015

Alamogordo, NM

- Developed and managed syllabus materials. Was responsible for selecting and compiling tests, assignments and/or onlinediscussion exercises that permit measurement of performance relative to standardized learning objectives.
- Coordinated courseware and curriculum, reviewing any textbook and other courseware changes with the academic department chair and other full-time faculty teaching the course.
- Facilitated Class Instruction and teaching the Human Biology Lab in accordance with learning objectives and session planoutlines specified by the NMSU and coordination of lab material with attached curriculum.
- Evaluated Student Performance. Administered evaluations of student performance based on course deliverables and course rubrics.

Wildlife Technician, United States Forest Service-05/2011-10/2012

Reserve, NM

- Participated in large scale ecosystem restoration project using NEPA guidelines to edit, and evaluate
 for the Burro Analysis for the Restoration of Forest Health project. Proofread for the final
 environmental assessment, comment analysis and analyzed effecter determinations for resident
 Mexican Spotted Owl, Chiricahua Leopard frog and Northern Goshawk populations.
- Planning, maintenance and recovery efforts in collaboration with the US Fish and Wildlife Services and
 private property owners for Chiricahua Leopard frog ranariums located within the reserve ranger
 districts. Extant populations captured, recovered and bred in captivity for reintroduction into the wild.
 Created training materials for statewide CLF survey protocols.
- Crew Leader and supervisor for 2-8 man crew performing inventory and monitoring of threatened and endangered species in the Gila National Forest with special focus on Mexican Spotted Owl, Chiricahua Leopard frog and Northern Goshawk.
- Federal trainings for fire, security awareness, defensive driving, first aid, CPR, horseback, ATV, and survey protocols for Mexican Spotted Owl, Chiricahua Leopard frog and Northern Goshawk.
 Participated in range monitoring, range transectsurveys and acted as contact person for department including inter and intra agency coordination.

 Maintained daily observation records of endangered species, feedings and facilities maintenance for breeding habitats and captive facilities, including the planning and construction of a sterile ranarium for endangered amphibians. Completed large scale breeding and reintroduction project and participated in housing design for salvaged garter snake population.

State of New Mexico Human Services Department-06/2008-04/2011 Silver City, NM

- Interpretation and utilization of Federal and State policies and procedures to ensure efficiency and accuracy of state andfederal benefits issued applicants. Documentation and accurate record keeping of confidential and legal data. Ensure statistical goals and deadlines are met.
- Head chair of the department's safety committee. Assessed working conditions and handled formal and informal complaints.
- Organized safety training and instructed employees on proper safety policies and procedures.
- Educated the general public in policies and procedures to obtain accurate data collection, handles client complaints, customer service and outreach programs.

Office Manager- Signal Peak, Inc.-02/2005-06/2008 Silver City, NM

- Distributed workload among employees and checked status and progress of work, making necessary adjustments. Served as the first-line interpreter of the protocol for employees. Assessed working conditions and ensured work is done safely and efficiently. Monitors performance and handled informal complaints among employees. Maintained reports on employee performance and recorded work time and leave of employees.
- Performs database review to assess errors and make appropriate corrections to database in Microsoft Access, Optigoldand led technical training and presentations on technical processes and procedures based on factual data.
- Created and maintained technical reports and summaries for business purposes, including
 instructions for technical processes and business reports for research of anticipated fluctuations in
 revenue, equipment and supply inventory, budgeting for business growth, and customer data.

Western New Mexico University – Project Assistant-12/2006-08/2007 Silver City, NM

- Assisted in identifying habitat selection cues among rodent communities along a desert riparian cienega. Trapped, handled, and identified rodent, fish, amphibian and mammal species. Surveyed vegetation and identified individual plantspecies.
- Data collected was analyzed using Microsoft Excel, Pc Ordination, and SAS software, and an oral and written report were given.
- Used commonly accepted fisheries and aquatic techniques to collect a variety of field data concerning
 watershed health including, but not limited to: surveying channel profiles, tallying wood occurrences,
 measuring substrate dimensions, searching for terrestrial amphibians, collecting biological samples
 and using water chemistry meters.
- Organized and reviews data from data sheets and field data recorders (FDR's) to identify missing, illegible
 and/or incorrect data, and make necessary corrections. Downloads data from FDR's, GPS units and water
 chemistry meters into electronic spreadsheets and/or tables using various software programs.

Western New Mexico University-Con Confianza-Laboratory Assistant/ Mentor- 08/2004-05/2005 Silver City, NM

- Mentoring, counseling, and tutoring of students, and coordination of events between various departments. Teachingproper surveying techniques, equipment maintenance, appropriate handling of chemical compounds, working with aerosols, and neutralization of acidic compounds and disposal of laboratory hazardous materials to students.
- Preparation of agar, slants and other test media, bacterial analysis, gram staining and incubation of media, the identification of micro-organisms and bacteria from water samples.
- Instruction of onsite water quality tests for temperature, pH, Dissolved Oxygen (DO), and conductivity and the detection of pathogenic bacteria in water samples.

Stream International – Senior Support Services Manager -10/2002-03/2004 Silver City, NM

- Supervised a team of representatives, and trained incoming representatives in technical processes, and office procedures for major corporations.
- Computer hardware repair and replacement of PC hardware components and became proficient in the use of Microsoft products and internet-based programs and various software needed to resolve PC hardware and software issues.
- Resolved conflicts with customer satisfaction issues.

Phelps Dodge Mining Company-Security - 11/2000-10/2002

Morenci, AZ

MSHA and HAZMAT trained safety training visitors to the mine, ensured security procedures were followed for the protection of property and employees.

- Trained in basic first aid and management of situations in which dangerous materials are exposed.
 Detected safetythreats and participated in the proper clean-up of hazardous materials.
- Dispatched for Fire, and accident EMS.

PROFESSIONAL PUBLICATIONS

- Lead author of a technical presentation and publication for The Wildlife Society, February 2013, entitled Quick ResponseExperimental Post-Wildfire Translocation on the Narrow Headed Gartersnake (Thamnophis rufipuntatus).
- Co-Presented a technical dissertation for New Mexico Network for Women in Science and Engineering annual meeting, October 28, 2006, entitled The Importance of the Preservation of Native Wildlife of the Southwest.

VOLUNTEER WORK

- Fort Stanton Cave Restoration Project. 2019-present
- Expanding Your Horizons in Science and Mathematics Annual Conference. 2005-2011
- New Mexico Network for Women in Science and Engineering 2007-2010

REFERENCES

Jack king State of New Mexico Environment Department Bureau Chief (Retired)

Contact Info: <u>Jack@king-projects.com</u> 575-937-8387

Eugene Knight State of New Mexico Environment Department Program Manager (Retired)

Contact Info: Eugene.knight56@gmail.com 575-808-7742

Howie Morales NM State Governors Office District 28

Contact info: 575-590-7804

Apache Corporation (873)

East Blinebry Drinkard Unit #37 (30-025-06556) Incident #nDHR1922141227 (1RP-5636)

Incident Timeline of Remediation and Subsurface Investigation

Presentation Overview

• This presentation provides a detailed timeline of events related to the remediation and investigation efforts for the East Blinebry Drinkard Unit #37 (EBDU #37) incident. The content for each slide is derived from comprehensive substance material and serves to chronologically document key milestones, decisions, and actions taken.

Structure:

- Initial discovery and incident description.
- Remediation plans and updates.
- Soil and groundwater sampling results.
- Stakeholder meetings and regulatory communications.
- Future plans and compliance strategies.

Note: The primary focus is on presenting a timeline of events rather than exhaustive technical details.

Nature and Volume of the release

Date of Discovery: July 14, 2019

Location: Corroded isolation valve at pipeline junction approximately 720 feet east of East Blinebry Drinkard Unit #37 (EBDU 37).

Initial C-141 Received Date: July 26, 2019

Released Volumes: Unknown amount of produced water and crude oil.

Remediation Plan

Date Received: November 7, 2019

• **Description of release:** "The spill occurred at a pipeline junction and flowed west about 675 feet. Approximately 350 feet west of the origin the release flowed south about 450 feet before terminating in a low lying area. The volume of the release is unknown. A volume of fluid recovered is unknown. The release is considered major due to the unknown volume of the release. The release covered an area measuring approximately 25,000 square feet or approximately 0.57 acres."

Soil Sampling

Soil sampling at the site occurred between July 17, 2019 and September 19, 2019. Numerous sample were reported above applicable closure criteria.

Groundwater Sampling

- August 1, 2019: Groundwater sample from the windmill, approximately 300 feet south of the terminal of the release collected.
- **September 24, 2019:** Samples collected from 2 groundwater monitoring wells drilling on September 19, 2019 and developed on September 23, 2019.

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
QCC Standar	d:	*0.01	*0.75	*0.75	*0.62	**250	**1,000
(') Windmill	8/1/2019	<0.001	<0.001	<0.001	< 0.003	232	732
(2) TMW-1	9/23/2019	<0.00800	<0.00200	< 0.00200	<0.00200	37.4	400
(2) TMW-2	9/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	338	1,220

Notes:

(') analysis performed by Cardinal Laboratories, Hobbs, New Mexico, by EPA SW-846 Method 8021B (BTEX) and titration methods (chloride and TDS)

(2) analysis performed by DHL Analytical, Round Rock, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride)

All values reported in milligrams per liter (mg/L) equivalent to parts per million (ppm) < values - denotes concentration is less than method reporting limit (RL).

* - Human health standard

** - Domestic water quality standard

OCD Ex. 2-0007

Soil Sample Analytical Data

Cample	Depth	Collection	Chatus	Benzene	BTEX	C6 - C12	C12 - C28	C28 - C35	TPH	Chloride
Sample	(Feet)	Date	Status	(mg/Kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Remediation		Date		10	50	(IIIg/ Ng/	(1116/116)	(1116/146)	100	600
BG 1	0	07/19/2019	In-situ							<16.0
501	1	0.71572015	In-situ	< 0.05	<0.600	<10.0	91.5	43.3	134.8	528
	2		In-situ							32.0
	3		In-situ							16.0
	4		In-situ							80.0
SP1	0	07/25/2019	In-situ	<0.05	<0.600	<10.0	<10.0	<10.0	<10.0	16,962.74
	5		In-situ	<0.05	<0.600	<10.0	<10.0	<10.0	<10.0	400
	10		In-situ	<0.05	<0.600	<10.0	<10.0	<10.0	<10.0	96.0
CD3	0	07/25/2019	In-situ	<0.05	2.713	<10.0	<10.0	<10.0	<10.0	28,800
SP2	5	07/25/2019	In-situ In-situ	<0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	1,150
	10	07/25/2019	In-situ	<0.05	<0.600	<10.0	<10.0	<10.0	<10.0	272
	10	07/25/2015	III Situ	10.05	٧٥.٥٥٥	110.0	110.0	10.0	10.0	2,2
SP3	0	07/25/2019	In-situ	< 0.05	<0.600	<10.0	<10.0	<10.0	<10.0	>10
5.5	5	07/25/2019	In-situ	< 0.05	<0.600	<10.0	<10.0	<10.0	<10.0	2,720
	10	07/25/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	192
	15	07/25/2019	In-situ	< 0.05	<0.600	<10.0	<10.0	<10.0	<10.0	80
SP4	0	07/17/2019	In-situ							17,322
	1		In-situ							8,757
	2		In-situ							5,143
	3		In-situ							>2.0
	3.5		In-situ							4,876
	4		In-situ							5,128
SP5	0	07/19/2019	In-situ	<0.05	<0.600	<10.0	996	339	1,335	10,100
		07/15/2015	In-situ	<0.05	<0.600	<10.0	<10.0	<10.0	<10.0	5,200
	7									
	2				< 0.600	<10.0	<10.0	<10.0	<10.0	4.240
	4		In-situ In-situ	<0.05 <0.05	<0.600 <0.600	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	4,240 10.100
			In-situ	<0.05	<0.600 <0.600 <0.600					4,240 10,100 9,330
	4 6 8	Collection	In-situ In-situ In-situ	<0.05 <0.05 <0.05	<0.600 <0.600	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	10,100 9,330
Sample	4 6 8 Depth	Collection Date	In-situ In-situ	<0.05 <0.05 <0.05 Benzene	<0.600 <0.600 BTEX	<10.0 <10.0 C6 - C12	<10.0 <10.0 C12 - C28	<10.0 <10.0	<10.0 <10.0 TPH	10,100 9,330 Chloride
Sample	4 6 8 Depth (Feet)		In-situ In-situ In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg	<0.600 <0.600	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	10,100 9,330
	4 6 8 Depth (Feet)		In-situ In-situ In-situ Status	<0.05 <0.05 <0.05 Benzene (mg/Kg	<0.600 <0.600 BTEX (mg/Kg) 50	<10.0 <10.0 C6 - C12 (mg/Kg)	<10.0 <10.0 C12 - C28 (mg/Kg)	<10.0 <10.0 C28 - C35 (mg/Kg)	<10.0 <10.0 TPH (mg/Kg)	10,100 9,330 Chloride (mg/Kg) 600
Sample	4 6 8 Depth (Feet) Level:		In-situ In-situ In-situ Status In-situ	<0.05 <0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600	<10.0 <10.0 C6 - C12 (mg/Kg)	<10.0 <10.0 C12 - C28 (mg/Kg)	<10.0 <10.0 C28 - C35 (mg/Kg)	<10.0 <10.0 TPH (mg/Kg) 100 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840
Sample	4 6 8 Depth (Feet)		In-situ In-situ In-situ Status	<0.05 <0.05 <0.05 Benzene (mg/Kg	<0.600 <0.600 BTEX (mg/Kg) 50	<10.0 <10.0 C6 - C12 (mg/Kg)	<10.0 <10.0 C12 - C28 (mg/Kg)	<10.0 <10.0 C28 - C35 (mg/Kg)	<10.0 <10.0 TPH (mg/Kg)	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420
Sample	4 6 8 Depth (Feet) Level:		In-situ In-situ In-situ Status In-situ In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600	<10.0 <10.0 C6 - C12 (mg/Kg)	<10.0 <10.0 C12 - C28 (mg/Kg) <10.0 <10.0	<10.0 <10.0 C28 - C35 (mg/Kg)	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840
Sample	4 6 8 Depth (Feet) Level:		In-situ In-situ In-situ Status In-situ In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600	<10.0 <10.0 C6 - C12 (mg/Kg)	<10.0 <10.0 C12 - C28 (mg/Kg) <10.0 <10.0	<10.0 <10.0 C28 - C35 (mg/Kg)	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420
Sample Remediation	4 6 8 Depth (Feet) Level: 10 12 14	Date	In-situ In-situ In-situ Status In-situ In-situ In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600	<10.0 <10.0 C6 - C12 (mg/Kg) <10.0 <10.0 <10.0	<10.0 <10.0 C12 - C28 (mg/Kg) <10.0 <10.0 <10.0	<10.0 <10.0 C28 - C35 (mg/Kg) <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420 3,532
Sample Remediation SP6	4 6 8 Depth (Feet) 1 12 14	07/19/2019	In-situ In-situ Status In-situ In-situ In-situ In-situ In-situ In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600	<10.0 <10.0 C6 - C12 (mg/Kg) <10.0 <10.0 <10.0	<10.0 <10.0 C12 - C28 (mg/kg) <10.0 <10.0 <10.0	<10.0 <10.0 C28 - C35 (mg/Kg) <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420 3,532 >2.0 >2.0
Sample Remediation	4 6 8 Depth (Feet) 10 12 14 0 1	Date	In-situ In-situ In-situ Status In-situ In-situ In-situ In-situ In-situ In-situ In-situ	<0.05 <0.05 <0.05 Senzene (mg/Kg 10 <0.05 <0.05 <0.05 <	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600	<10.0 <10.0 C6 - C12 (mg/Kg) <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 C12 - C28 (mg/kg) <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 C28 - C35 (mg/Kg) <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/kg) 100 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420 3,532 >2.0 >2.0
Sample Remediation SP6	4 6 8 Depth (Feet) 10 12 14 0 1	07/19/2019	In-situ In-situ Status In-situ In-situ In-situ In-situ In-situ In-situ In-situ In-situ In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 	<10.0 <10.0 <10.0 C6 - C12 (mg/kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 C12 - C28 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 C28 - C35 (mg/kg) <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0
Sample Remediation SP6	4 6 8 Depth (Feet) 10 12 14	07/19/2019	In-situ In-situ Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/kg 10 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 	<10.0 <10.0 C6 - C12 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 C12 - C28 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 C28 - C35 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 >2.0
Sample Remediation SP6	4 6 8 Depth (Feet) 10 12 14 0 1	07/19/2019	In-situ In-situ Status Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600 <0.600 	<10.0 <10.0 <10.0 C6 - C12 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 (10.0 (10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 C28 - C35 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 >2.0
Sample Remediation SP6	4 6 8 Depth (Feet) 10 12 14 0 1	07/19/2019	In-situ In-situ Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 (10.0 (10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 C12 - C28 (mg/kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 C28 - C35 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 \$2.0 \$5,758 6,777 5,998
Sample Remediation SP6	0 1 1 0 0 2 4 6 8 8 10 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0	07/19/2019	In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 C6 - C12 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/Kg) 600 3,840 1,420 >2.0 >2.0 >2.0 >2.0 >2.0 5,758 6,777 5,998 3,748
Sample Remediation SP6	4 6 8 Pepth (Feet) (Feet) 10 12 14 0 1 0 2 4 6 8 8 10 12	07/19/2019	In-situ In-situ Status Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 (10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 >2.0 3,089 6,777 5,998 3,748 4,026
Sample Remediation SP6	4 6 8 Depth (Feet) 10 12 14 0 1 0 2 4 6 8 10 12 14	07/19/2019	In-situ In-situ Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 (10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 C28 - C35 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 >2.0 >2.0 >2.0 >2.0 5,758 6,777 5,998 3,748 4,026 3,781
Sample Remediation SP6	4 6 8 Pepth (Feet) (Feet) 10 12 14 0 1 0 2 4 6 8 8 10 12	07/19/2019	In-situ In-situ Status Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 (10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 >2.0 3,089 6,777 5,998 3,748 4,026
Sample Remediation SP6	4 6 8 Depth (Feet) 10 12 14 0 1 0 2 4 6 8 10 12 14	07/19/2019	In-situ In-situ Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 (10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 C28 - C35 (mg/Kg) <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 >2.0 >2.0 >2.0 >2.0 5,758 6,777 5,998 3,748 4,026 3,781
Sample Remediation SP6 SP7	4 6 8 Pepth (Feet) 10 12 14 16 6 8 10 12 14 16 5 10 10	07/19/2019 07/22/2019	In-situ In-situ Status Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 >2.0 3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 2,240
Sample lemediation	4 6 8 Depth (Feet) 10 12 14 0 1 0 2 4 6 8 10 12 14 16	07/19/2019 07/22/2019	In-situ In-situ Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 >2.0 >2.0 >2.0 >2.0 >2.0 >5,758 6,775 5,998 3,748 4,026 4,482
Sample temediation SP6 SP7 SP8	4 6 8 Depth (Feet) 10 12 14 0 1 0 2 4 6 8 10 12 14 16	07/19/2019 07/22/2019 07/25/2019	In-situ In-situ Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 >2.0 >2.0 >2.0 >2.0 >5,758 6,777 5,998 3,748 4,026 4,240 2,240 1,090
Sample Remediation SP6 SP7	4 6 8 Pepth (Feet) 10 12 14 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07/19/2019 07/22/2019	In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 >2.0 3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 1,090 6,160
Sample temediation SP6 SP7 SP8	4 6 8 Pepth (Feet) 1 Level: 10 12 14 O 1 0 2 4 6 8 10 12 14 16 Feet 10 15 1	07/19/2019 07/22/2019 07/25/2019	In-situ In-situ Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 >2.0 >2.0 >2.0 3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 2,240 1,990 6,160 5,550
Sample temediation SP6 SP7 SP8	4 6 8 Pepth (Feet) 10 12 14 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07/19/2019 07/22/2019 07/25/2019	In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/Kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/Kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 >2.0 >2.0 >2.0 >2.0 >2.0 >3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 1,090 6,160
Sample Remediation SP6 SP7 SP8 SP8	4 6 8 Pepth (Feet) 10 12 14 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07/19/2019 07/22/2019 07/25/2019	In-situ In-situ Status Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 1,090 6,160 5,520 2,800
Sample Remediation SP6 SP7 SP8	4 6 8 Pepth (Feet) 1 Level: 10 12 14 O 1 0 2 4 6 8 10 12 14 16 Feet 10 15	07/19/2019 07/22/2019 07/25/2019	In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 TPH (mg/kg) 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 >2.0 >2.0 3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 2,240 1,090 6,160 5,520 2,800
Sample Remediation SP6 SP7 SP8 SP8	4 6 8 Pepth (Feet) 10 12 14 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07/19/2019 07/22/2019 07/25/2019	In-situ In-situ Status Status In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 1,090 6,160 5,520 2,800
Sample Remediation SP6 SP7 SP8 SP9 SP10	4 6 8 Pepth (Feet) 10 12 14 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07/19/2019 07/22/2019 07/25/2019 07/25/2019	In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 3,532 >2.0 >2.0 >2.0 3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 1,090 6,160 5,520 2,800 6,621 7,173
Sample stemediation SP6 SP7 SP8 SP8	4 6 8 Pepth (Feet) 1 Level: 10 12 14 O 1 0 2 4 6 8 10 12 14 16 Feet 10 15	07/19/2019 07/22/2019 07/25/2019	In-situ	<0.05 <0.05 <0.05 Benzene (mg/Kg 10 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.0	<0.600 <0.600 BTEX (mg/kg) 50 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600 <0.600	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	10,100 9,330 Chloride (mg/kg) 600 3,840 1,420 >2.0 >2.0 >2.0 3,089 5,758 6,777 5,998 3,748 4,026 3,781 4,482 4,240 2,240 1,090 6,160 5,520 2,800 6,621

Sample	Depth	Collection	Status	Benzene	BTEX	C6 - C12	C12 - C28	C28 - C35	TPH	Chloride
	(Feet)	Date		(mg/Kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Remediation	n Level:			10	50				100	600
SP-13	15	08/28/2019	In-Situ	*<0.050	*<0.600	*<10.0	*<10.0	*<10.0	*<10.0	2,880
(S-4/NB)	20	08/28/2019	In-Situ	*<0.050	*<0.600	*<10.0	*<10.0	*<10.0	*<10.0	4,600
	25	08/28/2019	In-Situ	*<0.050	*<0.600	*<10.0	*<10.0	*<10.0	*<10.0	3,120
	30	08/28/2019	In-Situ	*<0.050	*<0.600	*<10.0	*<10.0	*<10.0	*<10.0	4,360
	35	08/28/2019	In-Situ	*<0.050	*<0.600	*<10.0	*<10.0	*<10.0	*<10.0	5,280
	40	08/28/2019	In-Situ	*<0.050	*<0.600	*<10.0	*<10.0	*<10.0	*<10.0	3,040
	45	09/19/2018	In-Situ							160
	48	09/19/2018	In-Situ							128
					Excavation :	Samples				
В0	12	08/07/2019	In-situ	<0.05	<0.600	<10.0	<10.0	<10.0	<10.0	32.0
B1	12	08/07/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	32.0
B2	12	08/07/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	48.0
B10	12	08/07/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	16.0
B11	12	08/07/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	<16.0
B 15	13	08/08/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	720
	15	08/08/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	1,840
	17	08/08/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	1,950
	19	08/08/2019	In-situ	< 0.05	<0.600	<10.0	<10.0	<10.0	<10.0	3,800
1	21	08/08/2019	In-situ	< 0.05	< 0.600	<10.0	<10.0	<10.0	<10.0	544
1	2.1									

Notes: analysis performed by Cardinal Laboratories, Hobbs, New Mexico, by Method by EPA SW-846 Method 8021B (BTEX), 8015D (TPH) and SM4500cl-B (chloride) Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

Highlighted denotes concentration above chloride remediation level (600 mg/Kg) in Table 1 (19.15.29 NMAC)

Sample	Depth	Collection	Status	Chloride
	(Feet)	Date	(mg/Kg)	(mg/Kg)
Remediation Level:				600
S-1	0	08/27/2019	In-situ	67.6
	5		In-situ	58.3
	10		In-situ	16.1
	15		In-situ	9.81
	20		In-situ	14.0
	25		In-situ	11.0
	30		In-situ	12.9
	35		In-situ	5.65
	40		In-situ	8.16
	45		In-situ	21.0
	50		In-situ	3.90
S-2	0	08/27/2019	In-situ	10.1
	5		In-situ	22.3
	10		In-situ	9.43
	15		In-situ	1.28
	20		In-situ	2.46
	25		In-situ	<1.06
	30		In-situ	3.67
	35		In-situ	5.10
	40		In-situ	2.89
S-3	0	08/27/2019	In-Situ	2.62
	5		In-Situ	1.68
	10		In-Situ	1.31
	15		In-Situ	<1.01
	20		In-Situ	1.24
	25		In-Situ	<1.05
	30		In-Situ	<1.08
	35		In-Situ	<1.09
	40		In-Situ	1.23
N2-000 (Malysis perform	1		l	l

OCD Ex

Depth in feet below ground surface (bgs) mg/Kg: milligrams per kilogram equivalent to parts per million (ppm) < denotes concentration less than analytical method reporting limit

<: denotes concentration less than analytical method reporting limit

^{*} Represents possible cross contamination from trackhoe during sample collection

Remediation Plan Continued

Date: December 23, 2019 - Email from the operator's consultant (Larson & Associates, Inc.) was sent to OCD providing details of a telephone conversation held with former OCD employee, Mr. Bradford Billing, which occurred on December 20, 2019. This email served as an addendum to the remediation plan, which included:

- "Installing a boring in the bottom of the excavation to delineate the vertical extent of chloride in soil. Soil samples will be collected beginning at the bottom of the excavation and every five (5) feet thereafter until chloride decreases below 600 mg/Kg or ground water is encountered.
- Installation of two (2) additional monitoring wells at locations shown on the attached drawing. The monitoring wells will be constructed similar to monitoring well TMW-1 and TMW-2 with about 20 feet of screen placed above and below the groundwater level observed during drilling. Groundwater is expected to occur around 50 feet bgs therefore the borings will be advanced to around 70 feet bgs.
- Survey wells for top of elevation (top of casing and ground) for groundwater potentiometric surface elevation, flow direction and gradient.
- Close the excavation at Area 1 according to the remediation plan dated October 29, 2019.
- Close the excavation at Area 2, based on the laboratory results of samples from the boing to be placed in the bottom of the excavation, by filling the excavation to approximately 5 feet bgs with clean caliche, installing a 20 mill thickness polyethylene liner at approximately 5 feet bgs and backfilling to surface with clean topsoil.
- Seed Area 1 and Area 2 following remediation according to landowner requirements.
- Perform quarterly groundwater monitoring (5 wells) and reporting."2

OCD representative Mr. Bradford Billings approved the workplan addendum on December 23, 2019.

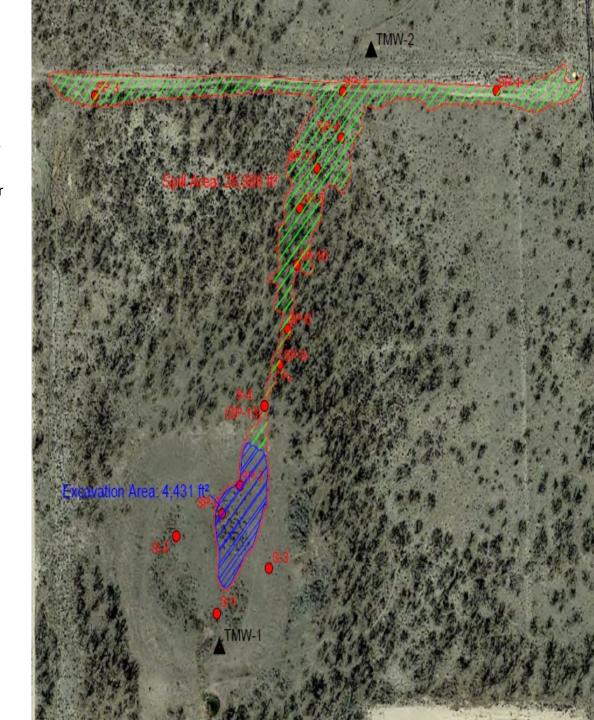
Date: July 01, 2020 - Correspondence between the OCD and Apache allowed a three (3) week extension to complete the soil remediation for the release. Extension was approved by OCD on July 8, 2020, with a new due date of July 27, 2020.

August 2020 Addendum to Remediation Plan

Date: August 7, 2020 - Email received indicating:

- Completion of backfilling the deep excavation (Area 2) with clean caliche to approximately five (5) feet bgs to allow access for a Geoprobe Model 7822DT to delineate the vertical extent of chloride in soil below the excavation at approximately 12 feet bgs.
- On August 3, 2020, soil samples collected near the center of the excavation (BH-1) and chloride results were:
 - 10 feet 11.6 mg/kg
 - 12 feet 13.3 mg/kg
 - 14 feet 13.4 mg/kg
 - 16 feet 22.9 mg/kg
 - 20 feet 24.7 mg/kg
- Email states previous samples from B15 collected August 8, 2019 indicated possible sample cross contamination (see slide 3).
- Approval requested for additional delineation samples to be collected via Geoprobe from four locations (north, south, east, and west) from BH-1 at depths of 10, 12, 14, 16, 18, and 20 feet and analyze the samples for chloride.
- Approval to forego installing the 20 mil thickness polyethylene liner at the bottom of the "large" excavation if chloride concentrations were below 600 mg/kg chloride (OCD closure criteria).
- OCD approved modification of remediation plan on August 10, 2020.

Date: August 13, 2020 - Email received indicating that soil sampling was completed on August 11, 2020 and chloride results were:

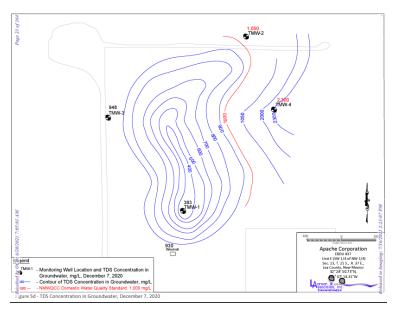

- BH-3 at 10 feet 774 mg/kg
- BH-3 at 12 feet 666 mg/kg
- BH-3 at 14 feet 419 mg/kg
- Forgo installing the 20 mil thickness polyethylene liner in the bottom of the large excavation and fill the remainder of the Area 2 excavation with caliche to approximately 3 feet bgs and with topsoil from 3 feet to ground surface.
- Drilling and installation of two (2) monitoring wells was scheduled for August 18, 2020.

August 2020 Addendum to Remediation Plan Continued

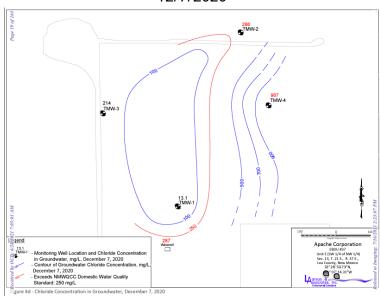
- Date: September 1, 2020 Email received as confirmation of telephone call:
 - NMOCD approved filling the remainder of the excavation to three (3) feet with clean caliche and to ground surface with topsoil.
 - Apache is finishing backfilling the north excavation with topsoil it will fill the excavation in the swale with topsoil from 5 feet to ground surface.
 - Notification will be submitted to NMOCD at least 7 days excluding weekends prior to installing monitoring wells.
- On September 1, 2020, OCD confirmed that the above was agreed to in the telephone conversation.

Remediation Closure Report

- Date: February 9, 2021 Remediation Closure Report received by OCD.
 - Spill Area 1 measured 26,886 square feet.
 - Spill Aea 2 measured 4,431 square feet.
 - Sidewall samples were collected every 200 square feet for a total of thirty-eight (38) five-point composite confirmation soil samples.
 - Total petroleum hydrocarbons (TPH) as gasoline range organics (GRO), diesel range organics (DRO), and oil range organics (ORO) were below OCD closure criteria.
 - BTEX concentrations were below OCD closure criteria.
 - Chloride concentrations were above OCD closure criteria in twenty (20) of the thirty-eight (38) five-point composite confirmation soil samples collected from the excavation sidewalls.
 - By August 4, 2020 all remaining excavation sidewall samples returned results below OCD closure criteria.
 - Excavation base composite confirmation soil samples were not collected.
 - Excavation base samples were collected as grab samples that were collected at 10, 12, 14, 16, 18, 20 and 25 feet bgs in BH-2, BH-3, and BH-4. Grab samples were collected at 10, 12, 14, 16, 18,999 except bgs in BH-1 BH-5.


Annual Groundwater Monitoring Report (December 2019 to December 2020)

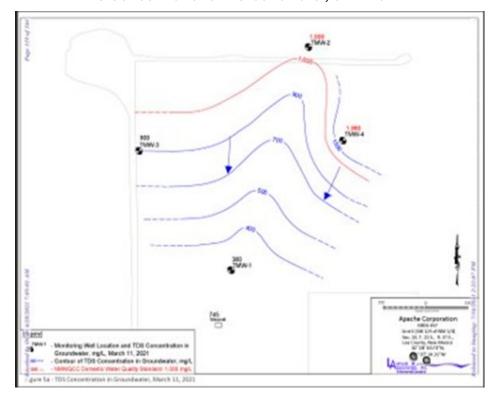
Date: Received June 28, 2021


- Samples were collected from four (4) groundwater monitor wells (TMW-1, TMW-2, TMW-3, and TMW-4) and the windmill.
- Samples were analyzed for:
 - BTEX
 - TDS
 - Chloride

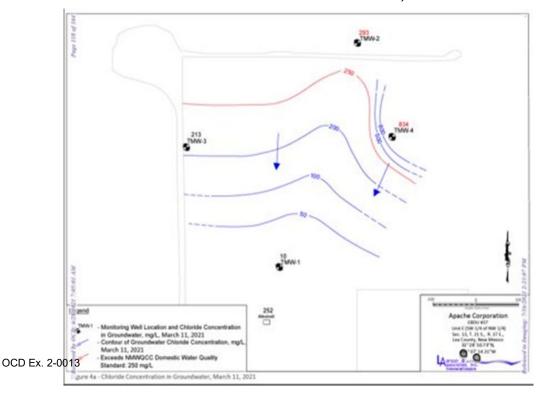
Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Depth To
55	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Water
NMWQCC Standard:		*0.01	*0.75	*0.75	*0.62	**250	**1,000	(Feet TOC)
Windmill	(') 08/01/2019	< 0.001	< 0.001	< 0.001	< 0.003	232	732	
	(2) 09/23/2019							
	(2) 12/26/2019	<0.000800	<0.00200	< 0.00200	<0.00200	259	688	
	(3) 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	274	730	
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	287	930	
TMW-1	(2) 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	37.4	400	46.18
	(²) 12/26/2019			<0.00200	<0.00200		390	48.9
	(3) 09/30/2020		< 0.00200	< 0.00200	<0.00200		390	49.31
	(³) 12/07/2020		<0.00200	<0.00200	<0.00200		383	49.42
TMW-2	(2) 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	338	1,220	55.8
	(²) 12/26/2019			<0.00200	<0.00200		1,170	57.5
	(3) 09/30/2020		0.00227	< 0.00200	<0.00200		1,040	58.01
	(³) 12/07/2020		<0.00200	<0.00200	<0.00200	298	1,050	58.06
TMW-3	09/23/2019							-
	12/26/2019							
	(3) 09/30/2020		0.00322	<0.00200	0.00448	212	891	57.62
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	214	948	57.68
TMW-4	09/23/2019			-				
	12/26/2019							
	(3) 09/30/2020	<0.00200	0.00314	<0.00200	<0.00200	1,020	2,040	57.39
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	987	2,300	57.45
DUP-1 (Windmill)	(³) 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	276	794	
DUP-1 (Windmill)	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	278	908	

TDS Concentrations in Groundwater, 12/7/2020

Chloride Concentrations in Groundwater, 12/7/2020



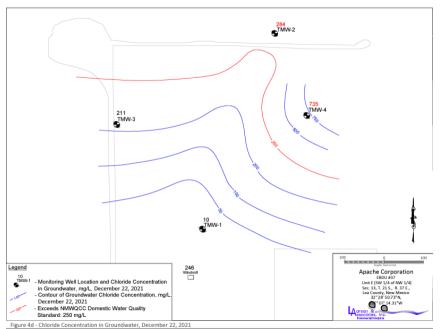
First Quarter 2021 Groundwater Monitoring Report (January-March)


Date: Received February 9, 2021

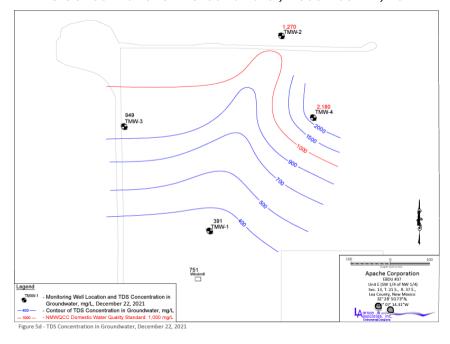
- Samples were collected from four (4) groundwater monitor wells (TMW-1, TMW-2, TMW-3, and TMW-4) and the windmill.
- Samples were analyzed for:
 - BTEX
 - TDS
 - Chloride
- Chloride concentrations were detected above the regulatory limits in TMW-2, TMW-4, Windmill, and DUP-1 (Windmill).
- TDS concentrations were detected above the regulatory limits in TMW-2 and TMW-4.

TDS Concentrations in Groundwater, 3/11/2021

Chloride Concentrations in Groundwater, 3/11/2021



2021 Annual Groundwater Monitoring Report


Date: February 28, 2022

- A report titled 2021 Annual Groundwater Monitoring Report was submitted via the OCD Permitting website but was subsequently rejected on March 1, 2022 due to the report being submitted under a C-141 application and not under a UF-GWA application. Operator was instructed to resubmit under the UF-GWA application. Groundwater samples were collected from TMW-1, TMW-2, TMW-3, TMW-4, and Windmill on October 11, 2021 and December 22, 2021 (samples collected in March and June 2021 were discussed on previous slide).
 - Chloride concentrations were detected above the regulatory standard in TMW-2 and TMW-4. The samples collected from the Windmill and DUP-1 (Windmill) returned chloride concentrations above the regulatory limits in the October 11, 2021 sampling event.
 - TDS concentrations were detected above the regulatory limits in TMW-2 and TMW-4.

Chloride Concentrations in Groundwater, December 22, 2021

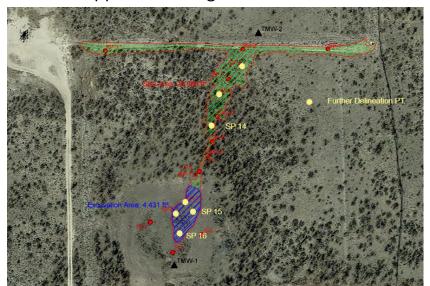
TDS Concentrations in Groundwater, December 22, 2021

OCD Ex. 2-0014

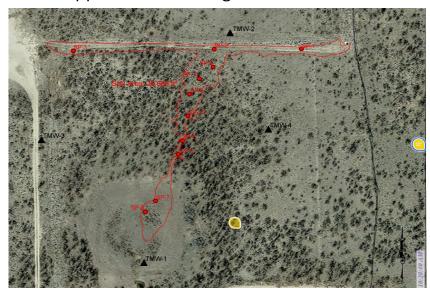
Communication between Landowner and OCD

- Date: June 3, 2022
 - Email titled *EBDU #37* received by OCD from legal counsel representing the landowner requesting a meeting and site inspection regarding the EBDU #37.
- **Date:** June 15, 2022
 - Landowner's legal counsel sent follow-up email requesting a meeting or telephone call.
 - OCD legal counsel responded that an internal OCD meeting with the Environmental Bureau staff was to be held tomorrow (June 16, 2022). OCD legal counsel also offered various date and times to schedule a meeting.
- **Date:** June 17, 2022
 - OCD sent email to landowner's legal counsel stating that an inspector would be sent to the site and requested any
 information the landowner had concerns about (i.e. water at the surface) the site as it is a buried flowline. Landowner
 concerns regarding the sampling report were going to be re-reviewed by OCD staff.
 - OCD Inspection group was provided information regarding the site location and instructed to photograph site and look for any additional releases that may be present at the EBDU #37 or along the previously remediated area.
- **Date:** June 23, 2022
 - Former OCD Compliance Officer, Kelly Fortner, inspected the Apache EBDU #37.
 - No signs of a leak and no petroleum product odor was observed.
 - Signs of water movement in the fresh sand used during the remediation process were observed but appeared to be from heavy rains the week before the inspection occurred.
 - An area of water pooled near an aboveground poly line but was dry and flaking during the inspection.

Communication between Landowner and OCD, continued

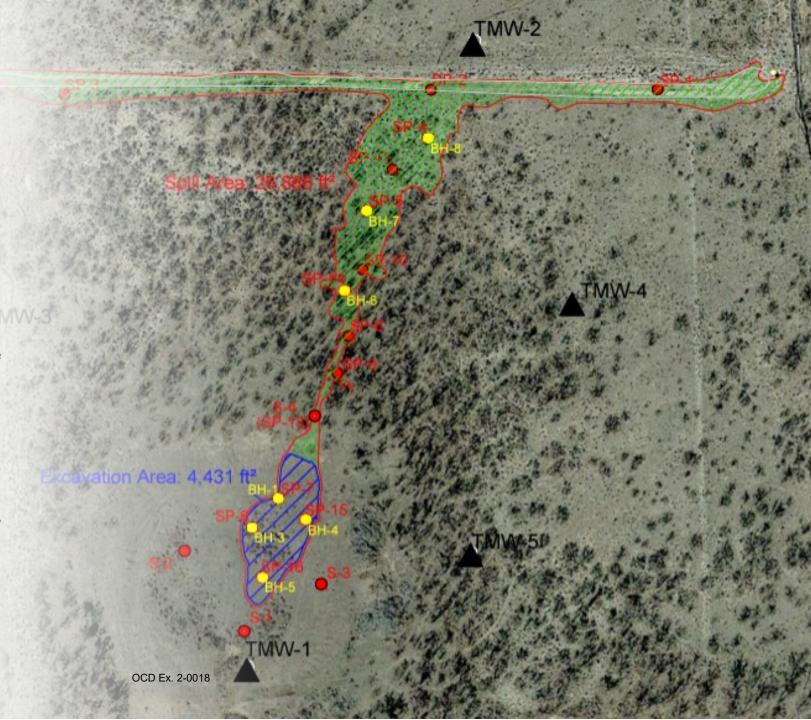

- **Date**: July 8, 2022
 - Email titled Stephens Ranch EBDU #37 received by former OCD director, Ms. Adrienne Sandoval, from Mr. David Gallegos, State Senate District 41. The email requested the person who would he should contact in order to get help with "this issue". The email also requested if there "is a chance" for a group meeting.
 - Email included a forwarded email from the landowner sent to Mr. Gallegos regarding the site they visited on July 8, 2022. The landowner indicated:
 - "Note the site assessment document: Some of the content within the report is inaccurate.
 - GW sampling data in MW 2, 4 are impacted above NMOCD guidelines.
 - The remediation plan should not have been approved since the release occurred in an environmentally sensitive area. Numerous triggers within the site data, reports and sampling data should have put this remediation into the most stringent remediation requirements of the NMOCD rule.
 - As requested, the NMOCD contacts we have been in contact with is Mike Bratcher, Jesse Tremaine, Kaitlyn Luck. Dylan Rose Coss approved the initial C-141, I believe he works in another division of OCD currently.
 - Cristina Eads approved the site assessment/characterization report and I think she has since left the NMOCD."
- Date: July 12 and 13, 2022
 - Additional communication between OCD Environmental Staff, Apache, and their consultants regarding contamination and remediation samples collected in the "top of the T of the excavation".
- Date: July 20, 2022
 - Email titled [EXTERNAL] EBDU 37 received by OCD which contained an attachment for "all the groundwater data from the sampling events of the monitor wells".

Further Soil Delineation and Additional Monitoring Well Locations 2022


Date: August 8, 2022

- Email received from Operator indicating that further vertical delineation was to occur at SP4, SP5, SP7, SP8, SP14, SP15, and SP16.
- Operator also asked OCD to advise on the placement of two additional monitoring wells.
- Email was sent to OCD again on September 16, 2022.
- OCD approved boring locations October 3, 2022 and required:
 - Field screening soils for chloride levels during drilling ops at a minimum of 5' increments, with each 10' increment obtained for lab analysis of chloride levels.
 - A formal update of activities sent to OCD by December 12, 2022.
 - Current monitoring activities to be continued on current schedule.

Approved Boring Locations


Approved Monitoring Well Locations

OCD Ex. 2-0017

Further Soil Delineation and Additional Monitoring Well Locations

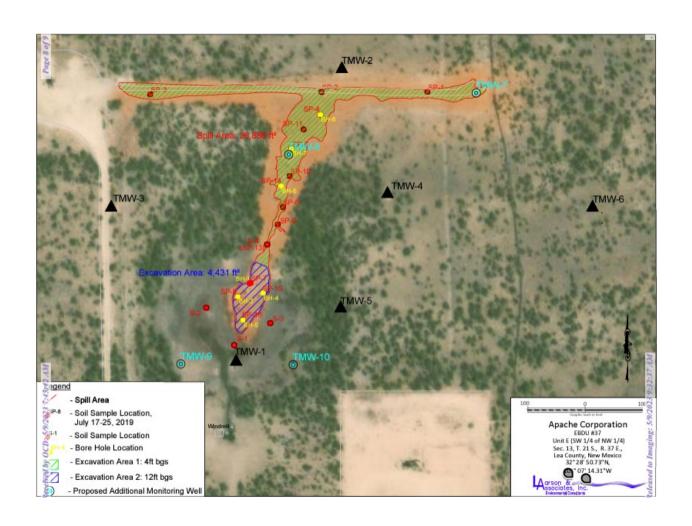
- **Date**: January 10, 2023 Email received from operator with delineation data collected.
 - Samples collected November 29 and 30, 2022.
 - Seven (7) boreholes drilled for soil sampling:
 - BH-1, BH-3, BH-4, BH-5: Located in the playa.
 - BH-6, BH-7, BH-8: Located in the release corridor north of the playa.
 - Soil analytical results provided on table show chloride concentrations above the NMOCD closure standard of 600 mg/kg in:
 - BH-3 at 10 and 12 feet bgs
 - BH-6 at 5, 10, 15, 20, 30, 35, 42, 45, and 50 feet bgs
 - BH-7 at 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 feet bgs
 - BH-8 at 5 and 10 feet bgs
 - Installation of two (2) monitoring wells (TMW-5 and TMW-6) east of the playa between November 28–30, 2022.

2022 Annual Groundwater Monitoring Report

Date: March 7, 2023

- A report titled 2022 Annual Groundwater Monitoring Report was submitted via email. The report was never resubmitted through the OCD Permitting website.
 - Groundwater samples were collected from TMW-1, TMW-2, TMW-3, TMW-4, and Windmill on March 1, 2022; May 23, 2022; August 16, 2022; and from MW-1, TMW-2, TMW-3, TMW-4, TMW-5, TMW-6 and Windmill December 15, 2022.

March 1, 2022	May 23, 2022	August 16, 2022	December 15, 2022
Chloride concentrations were above the regulatory limits in TMW-2, TMW-4 (both samples collected on 3/1/2022 and 3/29/2022), TMW-5, TMW-6, Windmill, Dup-1 (TMW-2), and Dup-2 (Windmill).	Chloride concentrations were above the regulatory limits in TMW-2 and TMW-4.	Chloride concentrations were above the regulatory limits in TMW-4, Windmill, and Dup-1 (Windmill).	Chloride concentrations were above the regulatory limits in TMW-4, TMW-5, TMW-6, and Dup-1 (TMW-5).
TDS concentrations were above the regulatory limits in TMW-2, TMW-4 (both samples collected on 3/1/2022 and 3/29/2022),and Dup-1 (TMW-2).	TDS concentrations were above the regulatory limits in TMW-2 and TMW-4	TDS concentrations were above the regulatory limits in TMW-3, TMW-4, Windmill, and Dup-1 (Windmill).	TDS concentrations were above the regulatory limits in TMW-4, TMW-5, TMW-6, and Dup-1 (TMW-5).


Date: March 27-31, 2023

• Email correspondence between OCD environmental bureau staff, Apache, and their consultants regarding a meeting. Meeting was set for April 4, 2023

Scope of Work for Additional Monitoring Wells 2023

Date: April 27, 2023

- Scope of Work for Additional Monitoring Wells received via email and the report was uploaded through the OCD Permitting website May 5, 2023.
 - · Scope of work included:
 - Installation of four (4) additional groundwater monitoring wells:
 - TMW-7
 - TMW-8
 - TMW-9
 - TMW-10
 - Analysis of the groundwater including:
 - BTEX
 - TDS
 - Cations (calcium, magnesium, potassium, and sodium)
 - Anions (chloride and sulfate)
 - Alkalinity
 - OCD approved the scope of work on May 5, 2023, with the following conditions:
 - Drilling must be performed within 30 days or an extension for cause shall be provided to the OCD for review and approval.
 - The reported findings must be supplied to the OCD within 30 days of the sampling activities or within 14 days of the receipt of the sampling results from the laboratory, whichever is greater.
 - Apache shall provide OCD the drilling schedule no later than 3 business days prior to starting.
 - Apache requested 15 day extension on May 24, 2023 which was approved by Michael Bratcher, OCD Incidents Supervisor on May 30, 2023.

Groundwater Analytical Results through September 2023

Date: July 6, 2023

- A Groundwater Sample Analytical Data Summary table and laboratory analytical results were submitted through the OCD Permitting website.
 - Table included sample results for all monitoring wells (TMW-1 through TMW-10) and windmill through June 22, 2023.
 - Groundwater analytical results were above regulatory limits for chloride (250 mg/kg) in the following wells during the June 2023 sampling event:
 - TMW-1, TWM-4, TMW-5, TMW-6, TMW-7, TMW-8, Windmill, and Dup-1 (Windmill)
 - Groundwater analytical results were above regulatory limits for TDS (1,000 mg/kg) in the following wells during the June 2023 sampling event:
 - TMW-2, TMW-3, TMW-4, TMW-5, TMW-6, TMW-7, TMW-8
 - Groundwater analytical results returned low results of toluene in all samples during the June 2023 sampling event.

Date: August 22, 2023

• Email titled [EXTERNAL] Apache Corp. EBDU #37 (1RP-5636 / nDHR1922141227) Groundwater Notice was received by OCD indicating that groundwater samples would be collected from ten monitoring wells and one windmill on September 6, 2023.

Date: September 19, 2023

- A Groundwater Sample Analytical Data Summary table, Aerial Map, and Groundwater Potentiometric Surface Elevation Map were submitted via email.
 - Table included sample results for all monitoring wells (TMW-1 through TMW-10) and windmill through September 6, 2023.
 - Groundwater analytical results were above regulatory limits for chloride (250 mg/kg) in the following wells during the June 2023 sampling event:
 - TMW-1, TMW-2, TWM-4, TMW-5, TMW-6, TMW-7, TMW-8, Windmill, and Dup-1 (TMW-5)
 - Groundwater analytical results were above regulatory limits for TDS (1,000 mg/kg) in the following wells during the June 2023 sampling event:
 - TMW-2, TMW-3, TMW-4, TMW-5, TMW-6, TMW-7, TMW-8, and Dup-1 (TMW-5)

OCD requests meeting with Apache - Took place on October 30, 2023

Participants:

- OCD
- Apache
- LAI (Consulting Group)

Meeting Overview:

- Additional Monitoring Wells Analysis
- Apache's proposal for the installation of new monitoring wells was partially contested due to technical disagreements.
- OCD emphasized compliance with comprehensive delineation requirements and outlined necessary conditions, including drilling schedules and detailed analytical results.

Key Outcomes:

• From prior sampling it appeared there may be additional groundwater contamination in the area which is undetermined if it is unrelated to the surface release. As a result of this appearance, OCD required several additional groundwater monitoring wells and additional investigation to be completed by Apache

Next Steps:

- Ensure adherence to OCD's specified conditions.
- Submit all reports within designated timelines for regulatory review and approval.
- Address any discrepancies or objections through established procedures.

November 10, 2023 via email:

- "Per the meeting on October 30, 2023, Larson & Associates, Inc. (LAI), on behalf of Apache Corporation (Apache), submits the attached scope of work (SOW) for installing additional monitoring wells (TMW-11 through TMW-16) at the East Blinebry Drinkard Unit (EBDU) #37 (Site)"
- *Scope of work is dated November 8, 2024. OCD responds via email (Bratcher), approving additional well installation and "OCD requests in addition to those proposed, one more well be installed approximately half way between TMW-5 and the proposed TMW-15 well."
- Apache responded on November 21, 2023 to inform OCD that the well installation was scheduled for November 28, 2023.

November 29, 2023 via email:

• Email titled [EXTERNAL] Re: Stephens v. Apache, NMOCE Incident NDHR1922141227/IRP-5636 received from legal counsel requesting information as "this matter is part of a lawsuit already". OCD Ex. 2-0022

December 4, 2023, via email titled [EXTERNAL] Re: OCD and Senator Gallegos from Ken Dugan to Dylan Fuge.

- Email is a request to "be kept in the loop on all of this".
- Email includes
 - Landowner's complaint against Apache filed with the 5th Judicial District Court
 - OSE Permit filed by Apache for additional monitoring well installation at the site
 - A copy of the Remediation Plan submitted to the OCD on November 7, 2019

January 9, 2024, via email from Apache,

Chloride/TDS concentration maps

January 16, 2024, via email from Mark Larson

- Figure 2 Aerial drawing
- Figure 3 Site drawing
- Figure 4 Groundwater potentiometric surface map, December 20 21, 2023
- Figure 5 Chloride isopleth map from groundwater samples, December 20 21, 2023
- Figure 6 TDS isopleth map from groundwater samples, December 20 21, 2023
- Figure 7 Combined groundwater potentiometric surface and chloride isopleth map, December 20 21, 2023
- Figure 8 Combined groundwater potentiometric surface and TDS isopleth map, December 20 21, 2023
- Table 1 Monitoring well completion and gauging summary
- Table 2 Groundwater sample laboratory analytical data summary
- Groundwater sample laboratory report 37226-1
- Groundwater sample laboratory report 37238-1

Detailed results for chloride, TDS, and other analytes show exceedance of regulatory limits in key monitoring wells.

Apache highlighted variability in groundwater flow direction and proposed collecting additional data to refine the conceptual site model.

Meeting requested by OCD, took place on April 1, 2024

Participants:

- OCD
- Apache
- LAI (Consulting Group)
- Dalva Mollenberg (Gallagher & Kennedy)

Meeting Objective:

- OCD/Apache discuss provided results. OCD requests further investigation and complete delineation of contaminants found during additional sampling to resolve technical disputes, clarify groundwater flow, determine background levels.
- OCD outlined clear expectations for comprehensive groundwater and soil investigation to characterize contamination.

Key Outcomes:

• A complete delineation is needed. OCD suggestions include additional soil and groundwater. OCD states that prior approval to any additional wells does not need to be explicit if needed to complete delineation.

Next Steps:

• Apache to finalize and submit revised Scope of Work incorporating OCD's feedback, collaborate with OCD to establish mutually agreeable investigative measures and proactively engage with all stakeholders to mitigate potential delays in remediation efforts.

April 12, 2024-Additional scope of work submitted via email, OCD requested a meeting date to discuss the submission.

Scope of Work for Additional Investigation, April 2024

- A report titled Apache Corp., EBDU #37 Incident NDHR1922141227 (1RP-5636) Scope of Work for Additional Investigation, Lea County, New Mexico was submitted via email on NEED TO FIND DATE.
 - The scope of work was submitted in response to the April 1, 2024 meeting between OCD, Apache, LAI (Consulting Group), and Dalva Mollenberg (Gallagher & Kennedy) which Apache states "During the call, NMOCD requested Apache to among other things:
 - Install additional monitoring north of TMW-11 and TMW-12 to establish the northern (upgradient) limit or background for chloride in groundwater.
 - Install additional monitoring well south of TMW-23 and TMW-24 to establish the southern extent for chloride background for chloride in groundwater.
 - Determine the source for chloride (5,850 mg/L) reported in the groundwater sample from monitoring well TMW-17.
 - Implement measures to prevent further impact to the onsite water well (windmill) from chloride.
 - Collect and analyze groundwater samples from the water well (windmill) for the entire list of constituents in 20.6.2.3102 NMAC including Human Health Standards in A (1) (a) through (tt), Other Standards for Domestic Water Supply in B. (1) through (10), and Standards for Irrigation Use in C (1) through (5)."
 - Apache's scope of work included
 - Collecting soil samples from a soil bore drilled in close proximity to the suspected point of such a leak, which most likely would have been around the junction box (suspected source of contamination). Soil samples to be collected and analyzed for chloride starting at surface and every five feet to approximately fifty-five feet bgs.
 - Install four (4) monitoring wells (TMW-25 through TMW-28).
 - Collect groundwater samples from TMW-1 through TMW-24 and the windmill and submit the samples to be analyzed for benzene, toluene, ethylbenzene, xylene (BTEX) according to EPA SW-846 Method SW-8260D, cations (calcium, magnesium, potassium, and sodium) by Method SW-6020B, anions (chloride and sulfate) by EPA Method 300, alkalinity by EPA Method M-2320B, and total dissolved solids (TDS) by EPA Method M-2540C.
 - Complete monitoring well TMW-27 for an aquifer test to test the feasibility of remediation. Depending upon the evaluations discussed below, TMW-27 may be converted in the future to a remediation well (RW-1).
 - Conduct semi-annual monitoring of groundwater monitoring wells.

Follow up meeting requested by OCD, took place on May 1, 2024

Participants:

- OCD
- Apache
- LAI (Consulting Group)
- Dalva Moellenberg (Gallagher & Kennedy)

Meeting Objective:

- Discission aimed at resolving technical disputes and determine reason delineation efforts have not been exhausted.
- OCD outlined clear expectations for comprehensive groundwater and soil investigation to characterize contamination.

Key Outcomes:

- OCD felt it was necessary to document and issue formal requirements through OCD Permitting.
- Soil testing was essential to determining whether there was anything still happening on the original site and where we are seeing additional contamination.
- Apache must continue to sample the windmill to monitor the potential effects on the landowner.
 - OCD requests Apache Leverage collaborative opportunities to align project outcomes with stakeholder expectations.
 - Ensure transparent communication and timely reporting to maintain regulatory compliance.

Next Steps:

- Apache committed to addressing OCD's conditions through iterative updates and technical justifications, emphasizing proactive monitoring and remediation efforts.
 - OCD scheduled follow up meeting May 16, 2024

Scope of Work for Additional Investigation, May 2024

Date: May 9, 2024

- Report titled Scope of Work for Additional Investigation was submitted through the OCD Permitting website. This report was submitted in
 response to video/telephone calls on April 1, 2024 and May 1, 2024, between Apache, OCD and LAI representatives (operators' consultant).
 OCD requested:
 - Install additional monitoring well (TMW-28) north of TMW-11 and TMW-12
 - Install additional monitoring well south (TMW-25) of TMW-23 and TMW-24
 - Determine the source for chloride (5,850 mg/L) reported in the groundwater sample from monitoring well TMW-17.
 - Implement measures to prevent further impact to the onside water well (windmill) from chloride.
 - Collect and analyze groundwater samples from the water well (windmill) for the entire list of constituents in 20.6.2.3102 NMAC including Human Health Standards in A (1) (a) through (tt), Other Standards for Domestic Water Supply in B. (1) through (10), and Standards for Irrigation Use in C (1) through (5).
 - Install a monitoring well (TMW-29) north (up gradient) from monitoring well TMW-13.
 - Update the analytical data table with complete analysis of the groundwater sample collected from the windmill on April 3, 2024.
 - Collect and analyze groundwater samples for barium from monitoring wells TMW-1, TMW-3, and TMW-21.
- Operator's scope of work includes:
 - Install bore hole near junction box and TMW-7 to investigate potential source of contamination. Collect samples at surface and every 5 feet to approximately 55 feet bgs.
 - Install 5 monitoring wells (TMW-25 through TMW-29). TMW-27 will be completed as a recovery test well.
 - Collect groundwater samples and analyze for BTEX, cations, anions, alkalinity, and TDS.
 - Remediation scope of work:
 - Evaluate TMW-27 by performing pump test.
 - Conduct semi-annual monitoring of TMW-1 through TMW-28 and RW-1. Analyze samples for BTEX, chloride, and TDS.
 - Submit annual monitoring report to OCD.
 - Discontinue sampling for WQCC human heath, domestic water quality and irrigation standards in 20.6.2.3103 from Windmill.

Overview of Groundwater Analytical Results 2023 submitted with Scope of Work for Additional Investigation, May 2024

Date: May 9, 2024

- Report titled Scope of Work for Additional Investigation was submitted through the OCD Permitting website.
 - Groundwater samples were collected:
 - March 14, 2023 at Windmill and TMW-1 through TMW-6.
 - June 22, 2023 at Windmill and TMW-1 through TMW-10.
 - September 7, 2023 at Windmill and TMW-1 through TMW-10.
 - December 20, 2023 at Windmill and TMW-1 through TMW-24.

March 14, 2023	June 22, 2023	September 7, 2023	December 20, 2023
Chloride concentrations were above the regulatory limits in Windmill, TMW-4 , TMW-5, TMW-6, and Dup-1 (Windmill).	Chloride concentrations were above the regulatory limits in Windmill, TMW-1, TMW-4, TMW- 5, TMW-6, TMW-7, TMW-8, and Dup-1 (Windmill).	Chloride concentrations were above the regulatory limits in Windmill, TMW-1, TMW-2, TMW- 4, TMW-5, TMW-6, TMW-7, TMW- 8, and Dup-1 (TMW-5).	Chloride concentrations were above the regulatory limits in Windmill, TMW-2, TMW-4, TMW-5, TMW-6, TMW-7, TMW-8, TMW-11, TMW-12, TMW-13, TMW-14, TMW-15, TMW-17, TMW-18, TMW-19, TMW-20, TMW-21, TMW-22, TMW-23, TMW-24, Dup-1 (TMW-17), and Dup-2 (TMW-2).
TDS concentrations were above the regulatory limits in Windmill, TMW-2, TMW-4, TMW-5, TMW-6, and Dup-1 (Windmill).	TDS concentrations were above the regulatory limits in TMW-2, TMW-3, TMW-4, TMW-5, TMW-6, TMW-7, and TMW-8.	TDS concentrations were above the regulatory limits in TMW-2, TMW-3, TMW-4, TMW-5, TMW-6, TMW-7, TMW-8, and Dup-1 (TMW-5).	TDS concentrations were above the regulatory limits in Windmill, TMW-2, TMW-3, TMW-4, TMW-5, TMW-6, TMW-7, TMW-8, MW-11, TMW-12, TMW-13, TMW-14, TMW-15, TMW-17, TMW-18, TMW-19, TMW-23, TMW-24, Dup-1 (TMW-17), and Dup-2 (TMW-2).

OCD Ex. 2-0028

Overview of Groundwater Analytical Results 2024 submitted with Scope of Work for Additional Investigation, May 2024

Date: May 9, 2024

- Report titled Scope of Work for Additional Investigation was submitted through the OCD Permitting website.
 - Groundwater samples were collected:
 - March 14, 2024 at Windmill and TMW-1 through TMW-24.
 - April 3, 2024 at Windmill and analyzed for all analytes found on the "3103 Table".
 - May 2, 2024 at Windmill, TMW-1, TMW-3, and TMW-21. Analysis included barium only.

March 14, 2024	April 3, 2024	May 2, 2024
Chloride concentrations were above the regulatory limits in Windmill, TMW-4, TMW-5, TMW-6, TMW-7, TMW-8, MW-11, TMW-12, TMW-13, TMW-14, TMW-15, TMW-17, TMW-18, TMW-19, TMW-20, TMW-21, TMW-22, TMW-23, TMW-24, Dup-1 (TMW-3), and Dup-2 (TMW-14).	Sample collected from the Windmill and analyzed for all Parameters of 20.6.2.3103 NMAC. Analysis that operator reported (on Table 3) above the regulatory standards for the parameters of 20.6.2.3103 NMAC: Barium (2.18 mg/L) Operator identified that this analysis was not performed for dissolved portion of the contaminate per 20.6.2.3103 NMAC. Chloride (440 mg/L)	Samples collected from Windmill, TMW-1, TMW-3, and TMW-21 and analyzed for barium only. Chain of Custody indicates samples to be lab filtered. All samples analyzed for dissolved barium using EPA Method 200.8.
TDS concentrations were above the regulatory limits in Windmill, TMW-4, TMW-5, TMW-6, TMW-7, TMW-8, MW-11, TMW-12, TMW-13, TMW-14, TMW-15, TMW-17, TMW-18, TMW-19, TMW-23, TMW-24, and Dup-2 (TMW-14).	OCD comments on this sampling event: • Barium results on laboratory analytical report are 0.218 mg/L. • Ethylene Dibromide/1,2-Dibromoethane (EDB) and phenols were reported as "less than the reporting limit" but the lab reporting limit is greater than the regulatory standard • Total naphthalene plus monomethylnaphthalenes; benzo-a-pyrene, pentachlorophenol, atrazine were reported as ug/L and the reporting limits were not converted on the table to mg/L. • PIPWa5xour094 hold time	All samples returned results below the regulatory limit of 2.0 mg/L

Follow up Meeting May 16, 2024

Participants:

- OCD
- Apache
- LAI (Consulting Group)
- Dalva Mollenberg (Gallagher & Kennedy)

Meeting Objective:

• Discuss OCD's review of the May 9, 2024, scope of work submitted by Apache

Key Outcomes:

- OCD demonstrated that the proposed work was not sufficient to provide complete delineation.
- OCD indicated that a thorough review would take place and formal Conditions of Approval (COA's) would likely be included in any approvals to meet investigative goals.

Next Steps:

OCD to complete final review.

OCD's Approval of Scope of Work for Additional Investigation, May 2024

Date: July 24, 2024

- OCD approved operator's Scope of Work for Additional Investigation, May 2024 which was received by the OCD on May 9, 2024 with conditions:
 - A current and up-to-date site map showing proposed monitoring wells in the SOW, and the OCD prescribed additional monitoring wells (see table below).
 - Any quarterly monitoring collected to the present (summary table and lab analyses are sufficient).
 - Sampling and analysis of barium at the windmill
 - Sampling and analysis of all human health standard constituents in the NM WQCC list in subsections A, B and C of 20.6.2.3103 NMAC in TMW-5
 and TMW-17
 - All additional wells (include those proposed by Apache and OCD) must have soil sample analyses for TPH, chloride, and BTEX in five (5) foot interval composite samples.
 - Drilling for all wells is required to commence within ninety (90) days from this date of approval.

Well ID	Location Description	Purpose	Coordinates
TMW-30	~ 430 feet east of TMW-28, 50 feet south	Better defining background concentrations	(32.482591, -103.120003)
TMW-31	~ 350 feet northwest of TMW-22	Reduces the distance between TMW-12 and TMW-22 for more precise characterization	(32.481806, -103.119008)
TMW-32	~ 275 feet east of TMW-12	Reduces distance between adjacent wells for more precise characterization	(32.481354, -103.119876)
TMW-33	~ 415 feet southwest of TMW-22	Reduces the distance between TMW-21 and TMW-13 for more precise characterization	(32.480643, -103.118728)
TMW-34	~ 350 feet west of TMW-14	Achieves more characterization near TMW-17 which conveys a high chloride level	(32.479492, -103.120080)
TMW-35	~ 190 feet northeast of TMW-15	Addresses more necessary characterization near TMW-17	(32.479341, -103.119302)
TMW-36	~ 175 feet southwest of TMW-17	Addresses need for more characterization near TMW-17	(32.478749, -103.120871)
TMW-37	~ 275 feet southeast of TMW-17	Addresses need for more characterization near TMW-17	(32.478577, -103.119850)
TMW-38	~ 300 feet northwest of proposed TMW-26	More characterization and assessment needed in the southeast region of the release area	(32.477683, -103.119429)
TMW-39	~ 200 feet southeast of TMW-18	The release area in southeast area needs tighter monitoring network of characterization and assessment for chloride	(32.477447, -103.120144)
TMW-40	~ 200 feet southeast of TMW-16	Addresses lack of characterization and assessment between MW-19 and MW-18	(32.477640, -103.121407)
TMW-41	~ 275 feet east of TMW-24	Addresses lack of characterization and assessment between TMW-24 and TMW-23	(32.476499, -103.121560)
TMW-42	~ 220 feet east of TMW-23	Addresses lack of characterization and assessment between TMW-25 and TMW-26	(32.476456, -103.119774)
TMW-43	~ 75 feet northeast of TMW-13	Addresses lack of characterization between TMW-13 and TMW-22	(32.4811185, -103.1189847)

Apache Contesting of OCD Conditions of Approval sent July 24, 2024

Date: August 6, 2024

- A letter titled Re: Apache Corp., EBDU #37 Incident NDHR1922141227 (1RP-5636) was received by the OCD via email and certified mail dated August 23, 2024. This letter outlined Apache's objection to some of the conditions stated in the email requiring the installation and monitoring of additional monitoring wells. The objections included:
 - Under what rules, the Oil Conservation Division ("Division") is acting in this matter as the submittal was not a Ground Water Abatement Plan and Apache has no record of receiving any other notice from the Division concerning Ground Water Abatement.
 - Apache states notice that the Division is requiring an abatement plan proposal under 19.15.30.13.A NMAC has not been received, nor has Apache submitted a proposal for voluntary abatement under 19.15.30.13.B NMAC.
 - Apache considers the conditions imposed by OCD as a request for additional information under 19.15.29.11.C NMAC.
 - Apache notes that, under this rule, the Division's request for additional information was not timely, as it was not made within 30 days of the submission of the May 8, 2024, proposal and therefore Apache objects to the request for additional information on that basis.
 - Consistent with what was discussed and agreed during the May 1, 2024 telephone conference, Apache submitted its proposal to install five additional monitoring wells (TM 25-29) on May 8, 2024.
 - Apache's states that several of the OCD additional monitor wells added in the conditions of approval are unnecessary because additional information to appropriately characterize groundwater can be derived either (1) from data from existing monitoring wells, or (2) from the installation of fewer monitoring wells in only a limited area.
 - Apache is willing to agree to the installation of two additional monitoring wells as identified in the conditions of approvalspecifically the location identified as TMW-39 and the location of TWM-42.'
 - Apache objects to the installation of wells TMW-32, -33, -31, -35, -36, -37, -38 and -40 as concentration isopach maps can be prepared using data from surrounding wells.
 - Apache's states the need for additional monitoring wells identified as TMW-30 and -34 should be described as conditional, depending upon the results of monitoring proposed TWM-28 and -29.
 - Apache objects to the installation of the well identified as TWM-42 as Apache believes that there is sufficient characterization.
 - Apache objects to the need of additional monitor well due to "significant differences in groundwater flow direction in the source area shown between Figure 5a and Figure 5b," as groundwater flow has consistently been generally to the South. The interpretation of the results of a single groundwater monitoring event, and are insufficient to justify significant additional work.
 - Apache proposes to collect at least one additional round of groundwater elevation measurements to evaluate
 groundwater flow direction. If there is still an unexplained difference in groundwater flow direction, then Apache may
 be willing to discuss whether there is a need for additional monitor wells.
 - Apache states that the Division should recognize that where characterization can be accomplished consistent with technical standards without the need for additional monitoring wells, due to costs, access issues and land disturbance.

Additional meeting, which took place on August 28, 2024, as requested by Apache

Participants:

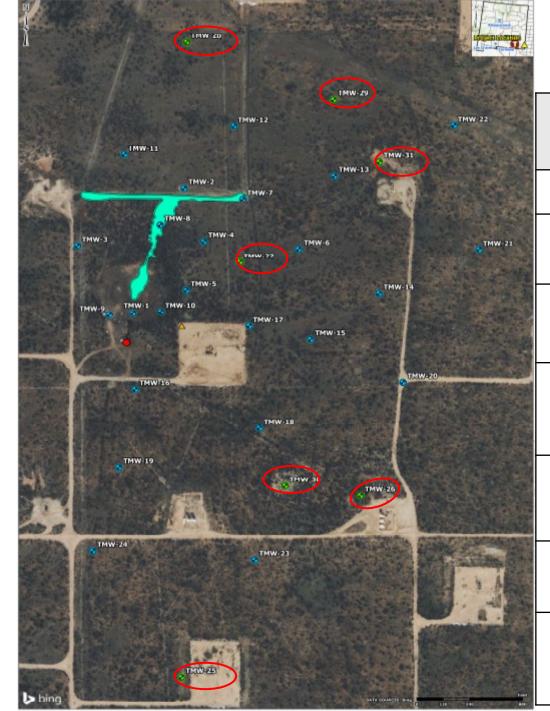
- OCD
- Apache
- LAI (Consulting Group)
- Dalva Mollenberg (Gallagher & Kennedy)

Meeting Objective:

To discuss the Scope of Work (COAs) necessary to address and remediate the identified incident.

Key Outcomes:

- Apache committed to resubmitting a revised Scope of Work, including a more detailed and comprehensive plan.
- OCD did not provide specific well locations but emphasized the need for substantial revisions to the proposed Scope of Work to ensure compliance. OCD clarified that the revised Scope of Work must include sufficient data to support a complete investigation to facilitate OCD's decision-making process.
- OCD reiterated its expectations and requirements as previously discussed during the April 26, 2024, meeting.
- Discussions emphasized the importance of a plan designed to fully delineate, characterize, and identify the point source of the release.


Next Steps:

Apache agreed to provide a revised plan that addresses all outlined requirements and incorporates the necessary revisions discussed during the meeting. OCD grants additional time to revise the workplan.

Additional Groundwater Delineation Workplan

Date: September 24, 2024

- A report titled Additional Groundwater Delineation Work Plan was received by the OCD via email. The scope of work provided in this plan included:
 - Installation of seven (7) additional monitoring wells:
 - TMW-25, TMW-26, TMW-27, TMW-28, TMW-29, TMW-30, and TMW-31.
 - At each of the monitoring well locations, soil samples will be collected at five-foot intervals and will be submitted to a laboratory for analyses for TPH, chloride, and BTEX.
 - Advance four soil borings to evaluate potential source areas for chlorides. Precise locations will be determined in consultation
 and agreement with NMOCD. Soil samples from the borings will be analyzed in the field using titration methods. Borings will be
 advanced to a depth of 30' and sampling will cease if no samples are found above RALs.
 - Collect groundwater samples in September from existing monitoring wells and windmill. Samples will be analyzed for chloride and TDS
 - Collect groundwater samples in December from the existing monitoring wells, windmill, and seven newly installed wells.
 Analyze all wells and windmill for TDS and chloride. The samples from the seven newly installed wells will be analyzed for BTEX and TPH. If BTEX and TPH are below detections limits, all additional sampling events will be analyzed for chloride and TDS.
 - Samples from the Windmill Well, TMW-5 and TMW-17 will be sampled for the human health standard constituents in the NM WQCC list in subsections A, B and C of 20.6.2.3103 NMAC.
 - Samples from the Windmill Well, TMW-1, TMW-3, and TMW-21 will also be sampled for Barium
 - TMW-17 will be purged dry (to maximum extent possible prior to sampling in September to ensure water being sampled is formation water and not related to water introduced when the well was installed.
 - TMW-27 will have a pump test performed to gauge the characteristics of the aquifer. Drawdown will be measured in the pumping well and select monitoring wells using pressure transducers.

Apache's proposed additional groundwater monitoring well locations and purposes

	Well ID (circled on map)	Purpose	Coordinates
	TMW-25	downgradient delineation	32.475248°, -103.121412°
年のから	TMW-26	downgradient and lateral delineation on southeast edge of the plume	32.477315°, -103.119178°
	TMW-27	confirm the chloride plume is continuous between the source (near TTMW-7) and TTMW-17	32.479989°, -103.120675°
建筑	TMW-28	upgradient Delineation wells located approximately 750 feet (TMW-28) and 550 feet (TMW- 29) upgradient of the source. The	32.482492°, -103.121341°
	TMW-29	average of these two wells is intended to serve as representative background conditions.	32.481836°, -103.119511°
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TMW-30	provide information on stratigraphy and groundwater chemistry in the space	32.477428°, -103.120114°
Time of the last	TMW-31 OCD Ex. 2-0035	downgradient and lateral (southeast) delineation of the plume	32.476425°, -103.119734°

OCD reviewed the revised work plan from Apache in response to the previously discussed Conditions of Approval (COAs). Following a thorough review by OCD's technical team and leadership, the plan was rejected on the grounds that it failed to demonstrate a good faith effort to meet OCD's requests for further delineation and substantive updates.

- OCD communicated its decision to cancel the meeting scheduled for the following day, stating that discussing the proposal would not be productive. OCD clarified that the submitted plan did not align with the previously outlined COAs and was viewed as a rejection of those conditions.
- OCD informed Apache that it had the option to contest the COAs by filing an application for a hearing under 19.15.29.12.C(5) NMAC.
 - Despite the expiration of the formal appeal period, OCD extended the opportunity for Apache to file such an application within seven days, in recognition of delays caused by ongoing discussions.
 - OCD further advised that failure to comply with the COAs or to file an application would likely result in a Notice of Violation.
- Subsequently, Apache prepared and submitted a revised work plan for discussion, including a compromise proposal that incorporated certain boring locations in lieu of monitoring wells.
- Apache reiterated objections to the COAs and asserted that portions of the requested work exceeded the scope of the incident.
- Additionally, Apache initiated a technical dispute resolution process under 19.10.30.20 NMAC and requested a 30-day extension of the resolution period due to delays in arranging further meetings.

Ultimately, Apache elected to pursue a hearing to contest the COAs.

CURRICULUM VITAE

BRANDON POWELL

SUMMARY

Mr. Powell is the Oil Conservation Division's (OCD) Deputy Director overseeing the Engineering and Environmental bureaus. He has served with OCD for more than eighteen years. He began his career in 2006 as an environmental specialist overseeing environmental releases and remediation. In 2011, he was promoted to inspection and enforcement supervisor for OCD's district office in Aztec. In that position, he supervised down-hole engineering and compliance with OCD rules. In 2019, he was promoted to District Supervisor, which involved oversight of day-to-day operations for the San Juan Basin. In 2020 he was promoted to the Engineering Bureau Chief and then in 2023 was promoted to Deputy Director. Mr. Powell has extensive experience applying OCD rules to all aspects of oil and gas development and has testified as an expert in OCC rulemakings, including the pit rule (19.15.17 NMAC), the produced water rule (19.15.34 NMAC), the release rule (19.15.29 NMAC) and the natural gas waste rules (19.15.27 and 19.15.28 NMAC).

EMPLOYMENT

May 2023- Current New Mexico Oil Conservation Division Deputy Director

- As Deputy Director, Mr. Powell provides oversight and management for the OCD's Engineering Bureau and Environmental Bureau. In his position he has 2 direct reports which are the Environmental Bureau Chief and Engineering Bureau Chief. He also has ~60 additional indirect reports in those groups.
 - The Engineering bureau is made up of 4 major groups Inspection Compliance Program, Underground Injection Control (UIC) Program, Administrative Permitting Program, Engineering Projects and Hearings group.
 - The environmental program contains 3 major groups, Permitting, Environmental Special Projects and Incident/Inspections.

November 2020 – May 2023 New Mexico Oil Conservation Division Chief, Engineering Bureau

- Oversight and Management of the OCD's Engineering Bureau which includes
 - o Administrative Compliance Program
 - o Underground Injection Control (UIC) Program
 - o Administrative Permitting Program.
- Ensures that OCD goals and objectives are met by assigning and directly supervising the work of the Administrative Compliance, UIC, and Administrative Permitting Programs.
- Conducts training and performance evaluations of personnel and acts upon leave requests. This position designs and develops programs to address new technical issues as they arise and as technical advances in the oil and gas industry are implemented.

May 2019- November 2020 New Mexico Oil Conservation Division District Supervisor

- Managed operations for OCD's Northern District, ensuring the proper management of more than 24,000 oil and gas wells and associated facilities to protect public health and the environment.
- Managed relations with four tribes and allottees, federal agencies including Bureau of Land Management, Bureau of Reclamation, and Forest Service, and private landowners.
- Supervised seven staff members, including geologist, compliance officers, and environmental specialists.
- Managed office assignments, fleet repair and maintenance, and the District's Reclamation Fund (RFA) plugging program.
- Coordinated with the Engineering and Environmental Bureaus to ensure consistency in permitting and enforcement across the state.
- Supervised the District's UIC activities and coordinated with the UIC Program Manager to ensure consistency in testing and compliance.
- Conducted training for OCD and District staff.
- Assisted in the tasks described below when necessary for District operations, particularly in the absence of staff
- Served as the District's representative on the New Mexico Oil and Gas Northwest Public Lands Committee.
- Assisted in development of standard operating procedures for wide range of OCD's business practices.
- Participated in strategic planning for OCD, including crisis management, electronic transition, enforcement, and rulemaking.

April 2011-May 2019

New Mexico Oil Conservation Division

Staff Manager & Inspection and Enforcement Supervisor

- Supervised four district compliance officers and their activities regarding oil, gas, injection, brine and
 non-hazardous waste wells to protect public health, fresh water and other natural resources, including
 the review and approval of applications the conduct of investigations, and the recommendation of
 engineering solutions.
- Supervised environmental specialists, geologists, and data managers when the District Supervisor was not available and after he retired.
- Substituted for the geologist and environmental specialists during their absence and position vacancy for two years, including reviewing pools, logs and formation tops.
- Reviewed drilling, production, and closure of wells and other oil and gas facilities to ensure compliance with OCD rules, including:
 - Scheduled and conducted field inspections;
 - o Initiated enforcement actions;
 - o Reviewed applications for well work-overs, completion and plugging; and
 - Observed field activities.
- Provided technical assistance to OCD staff and operators.
- Coordinated office activities, including the review and approval of personnel documents and the conduct of other supervisory duties on behalf of the District Supervisor.
- Assisted in the development of rules.
- Served as the District's representative for the New Mexico Oil and Gas Northwest Public Lands Committee.

April 2006 thru April 2011 New Mexico Oil Conservation Division

Environmental Specialist, Deputy Oil and Gas Inspector, and Loss Control Officer

- I Supervised industries operations to ensured proper remediation of releases.
- I would respond to urgent releases which endangered the environment or the public.
- Reviewed permits for work requested to be performed, and subsequent reports for work already performed.
- I would draft environmental compliance and enforcement documents
- Testify in environmental compliance and enforcement cases.
- Work with other governmental agencies to find solutions to problems that arise
- Prepare and give environmental training to industry and other agencies.
- Work with Companies to ensure their continual compliance.
- Track District internal injuries and incidents and prepare yearly OSHA forms.

Respond to citizen complaints.

June 2004-April 2006 Envirotech, Inc.

Sr. Environmental Technician, Soil Remediation Facility Manager, and Mold Inspector.

- Prepared reports for various agencies for the on-site documentation for various types of releases.
- Managed the soil remediation facility and subsequent personnel which averaged 1-3 people. I categorized waste to determine if waste was acceptable pursuant to the facility permits.
- Performed hazardous waste characterization and disposal of oil field and non-oilfield waste.
- Project manager and field supervisor which included supervising multiple people.
- Prepared job quotes and project summaries.

TESTIMONY IN RULEMAKING PROCEEDINGS

19.15.17 NMAC – Pits, Close-Loop Systems, Below-Grade Tanks and Sumps, 2008 and 2013

19.15.34 NMAC – Produced Water, Drilling Fluids, and Liquid Oil Field Waste, 2015

19.15.29 NMAC – Releases, 2018

19.15.27 NMAC – Venting and Flaring of Natural Gas, 2021

19.15.28 NMAC – Natural Gas Gathering Systems, 2021

19.15.7 NMAC-Forms and Reports, 2022

CERTIFICATIONS AND TRAINING

Hazardous Waste Management Certification, Lion Technologies, September 2004 Hazmat Site Supervisor Training, High Desert Safety, 2005 Confined Space Certification, High Desert Safety, 2005 Hot Work Certification, High Desert Safety, 2005 OSHA Forty Hour Certification, 2005

Surveillance Detection Course for Commercial Operators, Department of Homeland Security, 2008

EMNRD OCD Information

NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

OCD Overview

- > This presentation provides information received from Apache's history of investigations into this area. Specifically note during the presentation these specific points
 - The basic rules and principals of 19.15.29 NMAC.
 - At this point, the investigation area this release encompasses is over 4 million square feet or approximately 94 acres. This area contains a contaminated area of roughly 2.6 million square feet or approximately 60 acres. Both areas have the potential to continue growing until Apache fully delineates the release area and can start abatement.
 - The groundwater chloride limit is 250mg/L or background. The most contaminated area is over 20 times that limit.
 - Apache's groundwater flows and concentration contours drastically change after every new set of wells are set showing additional investigation is needed.
 - Groundwater in the area continues to potentially degrade and/or spread while Apache delays additional action.
- The goal of OCD's COA's is not to make any final determinations. The actions are an effort to continue to expedite the delineation of the release which is one of the very first steps that should be taken when classifying a release, a step Apache has taken years to perform so far and has not yet accomplished.

Specific Rules and Statues

19.15.29.11 NMAC Overview

- 19.15.29.11 SITE ASSESSMENT/CHARACTERIZATION: After the responsible party has removed all free liquids and recoverable materials, the responsible party must assess soils both vertically and horizontally for potential environmental impacts from any major or minor release containing liquids.
- A. Characterization requirements. The responsible party must submit information characterizing the release to the appropriate division district office within 90 days of discovery of the release or characterize the release by submitting a final closure report within 90 days of discovery of the release in accordance with Subsection E of 19.15.29.12 NMAC. The responsible party may seek an extension of time to submit characterization information for good cause as determined by the division. The responsible party must submit the following information to the division.

. . .

C. If the division determines that more information is needed to understand the character of the release and its potential impact on fresh water, public health and the environment, the division may request the responsible party submit additional information. Should the division request additional information, it must do so in writing to the responsible party within 30 days from receipt of the characterization report or remediation plan with what specific information the division is requesting and reasons why the additional information is needed. The responsible party has 14 days to respond to a written request for additional information. If the responsible party disagrees with the request for additional information, it may consult with the division, or file an application for hearing pursuant to 19.15.4 NMAC within 30 days of the issuance of the request for additional information.

19.15.5.11 NMAC Overview

19.15.5.11 ENFORCEABILITY OF PERMITS AND ADMINISTRATIVE ORDERS: A

person who conducts an activity pursuant to a permit, administrative order or other written authorization or approval from the division shall comply with every term, condition and provision of the permit, administrative order, authorization or approval.

19.15.29.12 NMAC Overview

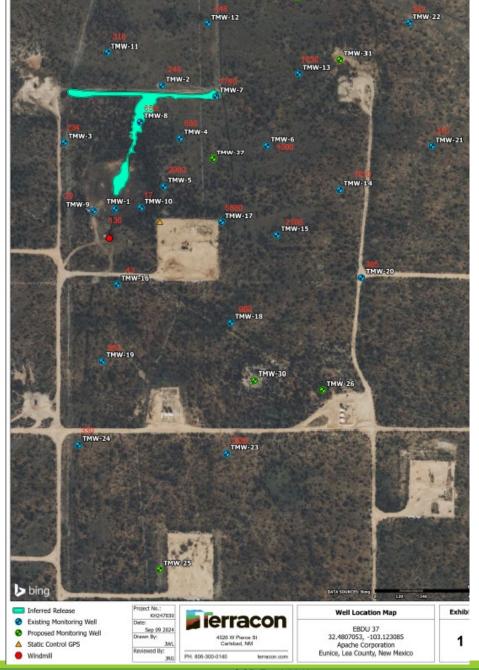
19.15.29.12 REMEDIATION AND CLOSURE:

- **A.** The responsible party must remediate all releases regardless of volume.
- **B.** Remediation requirements.
- (1) Unless remediation is completed, and a final closure report submitted, within 90 days of discovery of the release, the responsible party must complete division-approved remediation for releases either pursuant to a remediation plan approved pursuant to 19.15.29.12 NMAC or pursuant to an abatement plan in accordance with 19.15.30 NMAC. If the director determines that the release has caused water pollution in excess of the standards and requirements of 19.15.30 NMAC, the director may notify the responsible party that an abatement plan may be required pursuant to 19.15.30 NMAC.

70-2-12 NMSA Overview

70-2-11. Power of commission and division to prevent waste and protect correlative rights.

A. The division is hereby empowered, and it is its duty, to prevent waste prohibited by this act and to protect correlative rights, as in this act provided. To that end, the division is empowered to make and enforce rules, regulations and orders, and to do whatever may be reasonably necessary to carry out the purpose of this act, whether or not indicated or specified in any section hereof.


70-2-12. Enumeration of powers.

- A. The oil conservation division of the energy, minerals and natural resources department may:
 - (1) collect data;
 - (2) make investigations and inspections;
- B. The oil conservation division may make rules and orders for the purposes and with respect to the subject matter stated in this subsection:
- (15) to regulate the disposition, handling, transport, storage, recycling, treatment and disposal of produced water during, or for reuse in, the exploration, drilling, production, treatment or refinement of oil or gas, including disposal by injection pursuant to authority delegated under the federal Safe Drinking Water Act, in a manner that protects public health, the environment and fresh water resources;

Current State of Monitor Wells in the Area for Context

Overview of Apache's Groundwater Flows

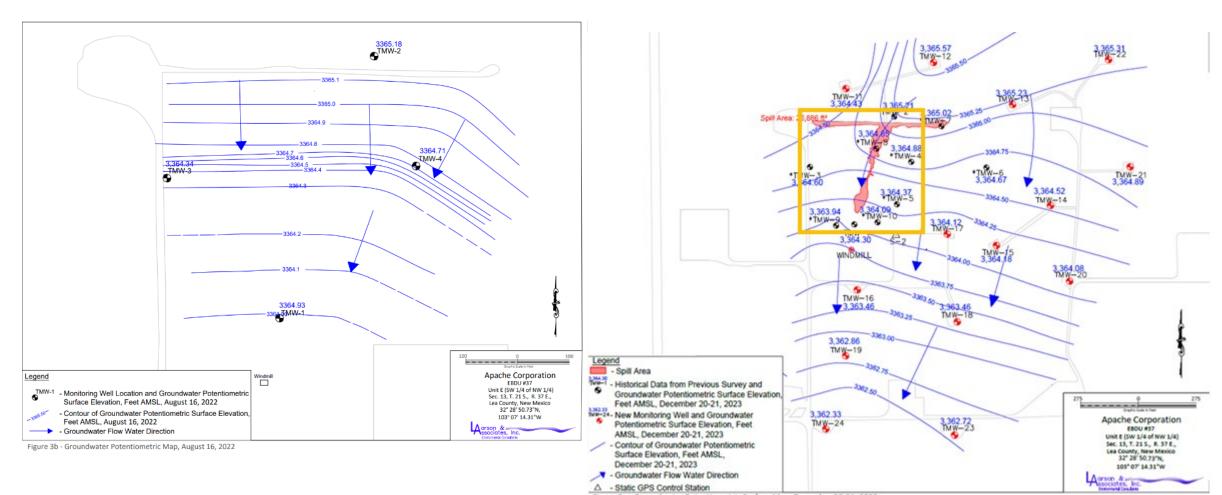
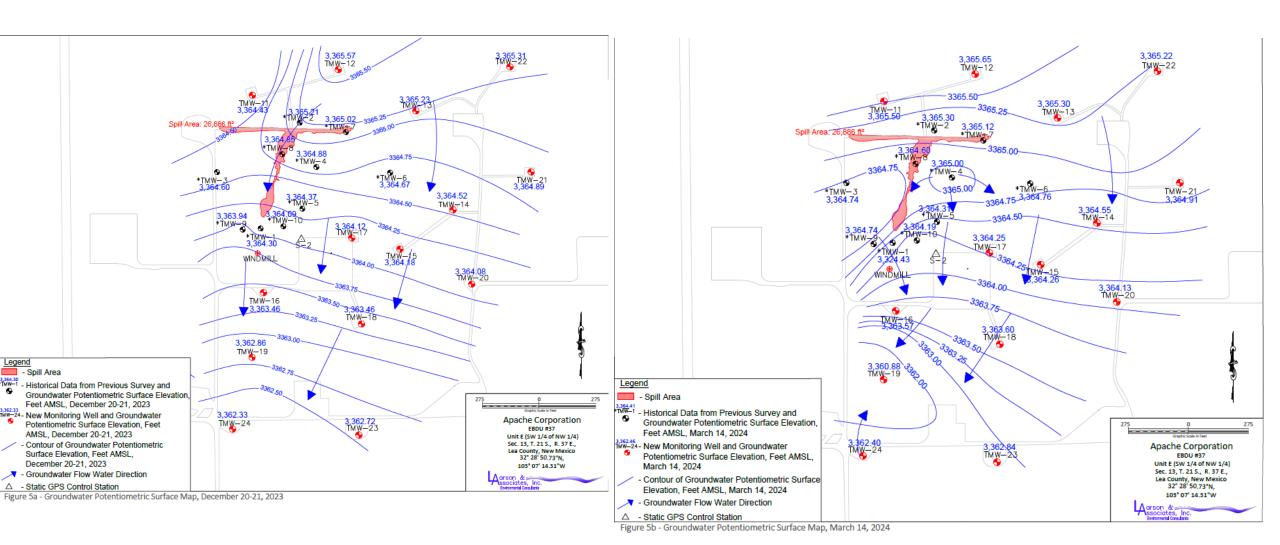
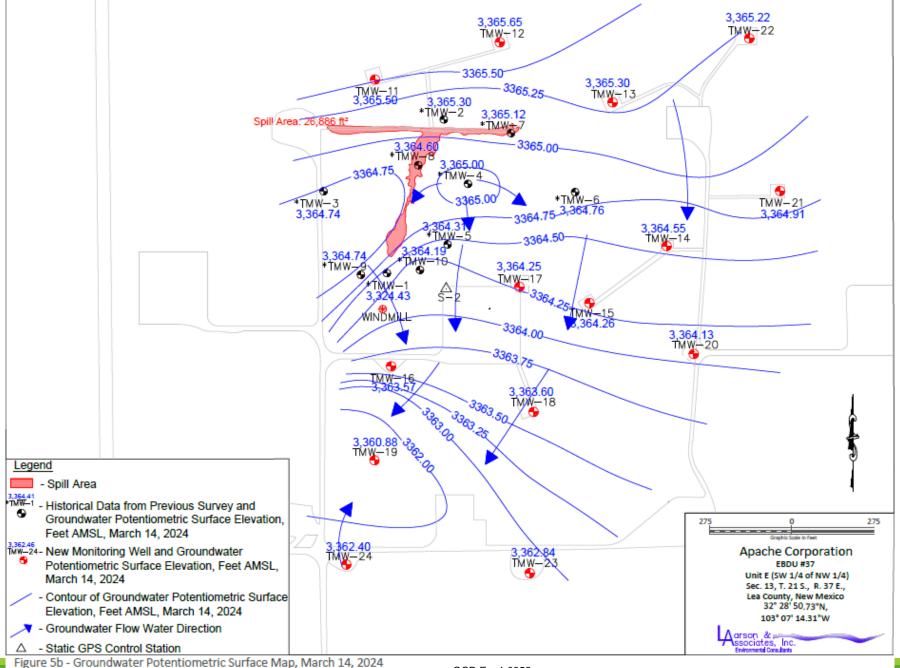
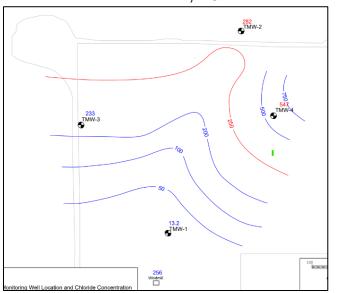
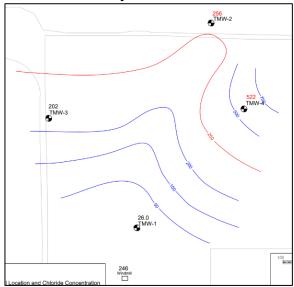
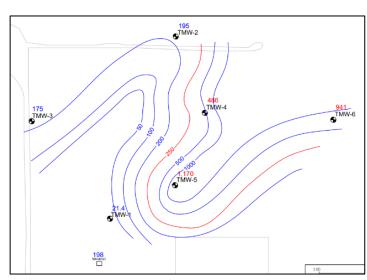




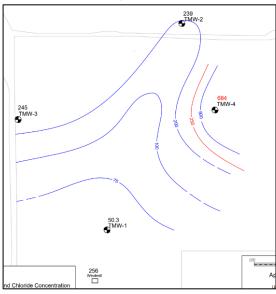
Figure 5a - Groundwater Potentiometric Surface Map, December 20-21, 2023

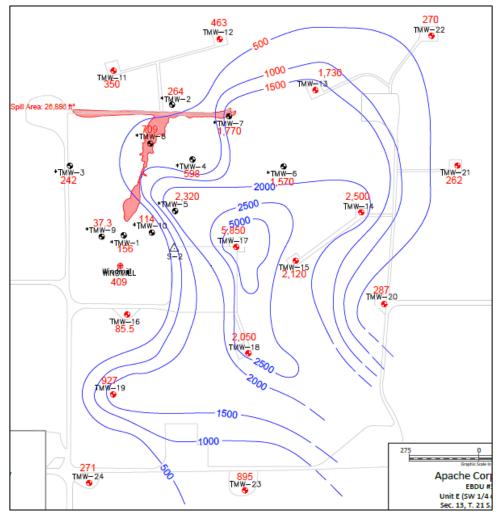



Overview of Apache's Chloride Concentration Contours

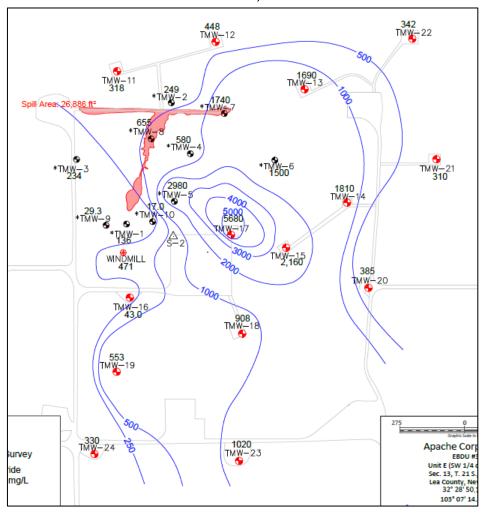


March 1, 2022


May 23, 2022


December 15, 2022

August 16, 2022



December 20-21, 2023

March 14, 2024

OCD's Conditions of Approval

Conditions of approval

- As a result of significant differences in groundwater flow direction at the source area shown between Figure 5a and Figure 5b from December 2023 to March 2024 in the SOW, a denser network of monitoring wells is necessary to better characterize the mass source in the area. Apache Corporation must develop the following within ninety (90) days of this approval date for additional well borings and the subsequent conditions of approval below. The coordinates for each additional monitoring well required for installation by OCD are included in conditions 1. (a through n).
- 1a. TMW-30 shall be installed approximately 430 feet east of the TMW-28 well proposal, and 50 feet south. Better defining background concentrations. (32.482591, -103.120003)
- 1b. TMW-31 shall be installed approximately 350 feet northwest of TMW-22. Reduces the distance between TMW-12 and TMW-22 for more precise characterization. (32.481806, -103.119008)
- 1c. TMW-32 shall be installed approximately 275 feet east of TMW-12. Reduces distance between adjacent wells for more precise characterization. (32.481354, -103.119876)
- 1d. TMW-33 shall be installed approximately 415 feet southwest of TMW-22. Reduces the distance between TMW-21 and TMW-13 for more precise characterization. (32.480643, -103.118728)
- 1e. TMW-34 shall be installed approximately 350 feet west of TMW-14. Achieves more characterization near TMW-17 which conveys a high chloride level. (32.479492, -103.120080)

Conditions of approval

- 1f. TMW-35 shall be installed approximately 190 feet northeast of TMW-15 Addresses more necessary characterization near TMW-17 (32.479341, -103.119302)
- 1g. TMW-36 shall be installed approximately 175 feet southwest of TMW-17. Addresses need for more characterization near TMW-17 (32.478749, -103.120871)
- 1h. TMW-37 shall be installed approximately 275 feet southeast of TMW-17. Addresses need for more characterization near TMW-17. (32.478577, -103.119850)
- 1i. TMW-38 shall be installed approximately 300 feet northwest of proposed TMW-26. More characterization and assessment needed in the southeast region of the release area. (32.477683, -103.119429)
- 1j. TMW-39 shall be installed approximately 200 feet southeast of TMW-18. The release area in southeast area needs tighter monitoring network of characterization and assessment for chloride. (32.477447, -103.120144)
- 1k. TMW-40 shall be installed approximately 200 feet southeast of TMW-16. Addresses lack of characterization and assessment between MW-19 and MW-18 (32.477640, -103.121407)

Conditions Continued

1I. TMW-41 shall be installed approximately 275 feet east of TMW-24. Addresses lack of characterization and assessment between TMW-24 and TMW-23 (32.476499, -103.121560)

1m. TMW-42 shall be installed approximately 220 feet east of TMW-23. Addresses lack of characterization and assessment between TMW-25 and TMW-26 (32.476456, -103.119774)

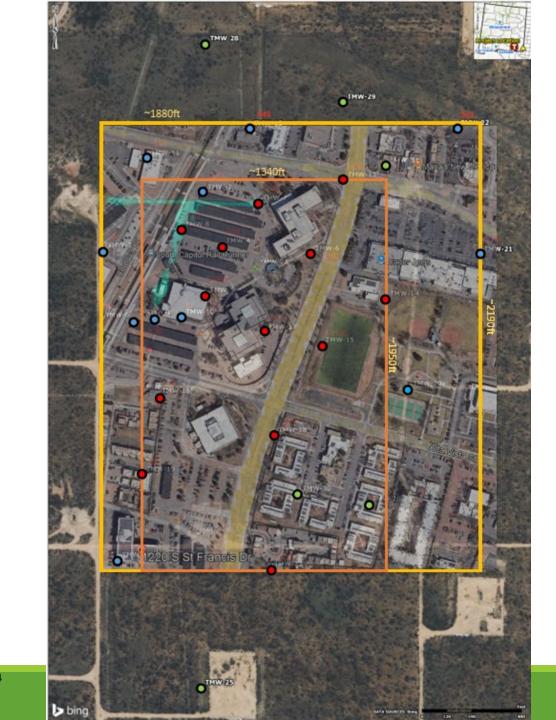
1n. TMW-42 shall be installed approximately 75 feet NE of TMW-13. Addresses lack of characterization between TMW-13 and TMW-22. (32.4811185, -103.1189847)

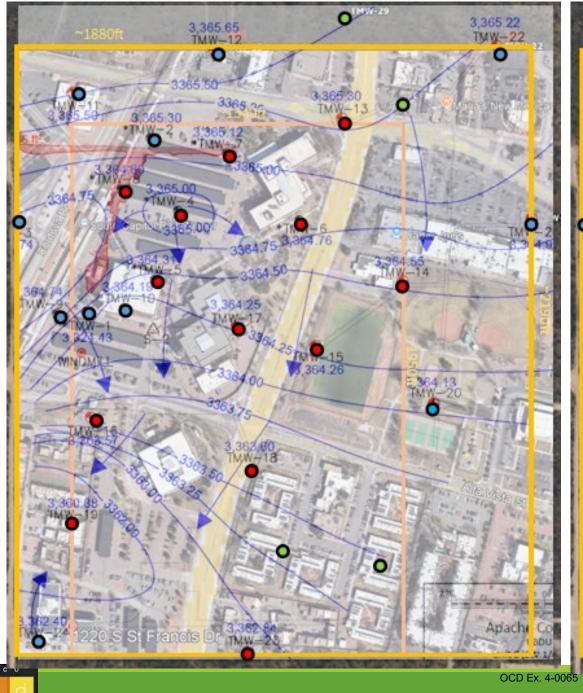
Conditions Continued

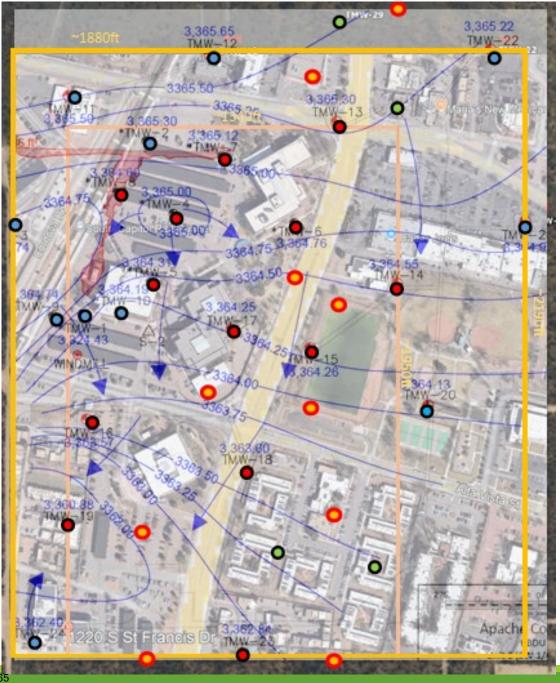
- 2. A current and up-to-date site map showing proposed monitoring wells in the SOW, and the additional thirteen (14) monitoring wells prescribed by OCD for further characterization and assessment of chlorides and BTEX.
- 3. Any quarterly monitoring collected to the present (summary table and lab analyses are sufficient).
- 4. The windmill well must be sampled and analyzed for barium in the next round of groundwater monitoring.
- 5. Both TMW #5 and TMW #17 must be sampled for all human health standard constituents in the NM WQCC list in subsections A, B and C of 20.6.2.3103 NMAC as these two wells had the highest concentrations of contamination.
- 6. All proposed monitoring wells in the Scope of Work for Additional Investigation and the additional required monitoring wells by OCD must have soil sample analyses for TPH, chloride, and BTEX by EPA Methods 8260, EPA Method 300 and EPA Method 8015. Five (5) foot interval composite samples are acceptable.
- 7. Drilling for all wells is required to commence within ninety (90) days from this date of approval.
- 8. 19.15.5.11 ENFORCEABILITY OF PERMITS AND ADMINISTRATIVE ORDERS: A person who conducts an activity pursuant to a permit, administrative order or other written authorization or approval from the division shall comply with every term, condition and provision of the permit, administrative order, authorization or approval. [19.15.5.11 NMAC Rp, 19.15.1.41 NMAC, 12/1/2008]

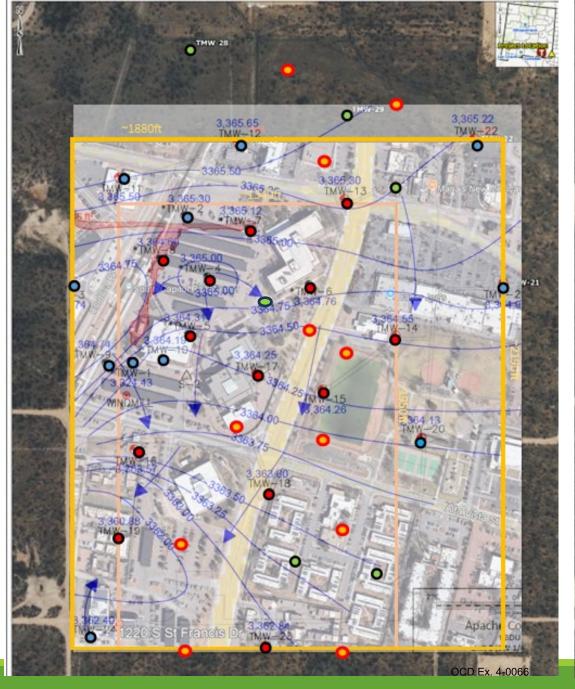
Well Locations and Area Overview and Examples for Context

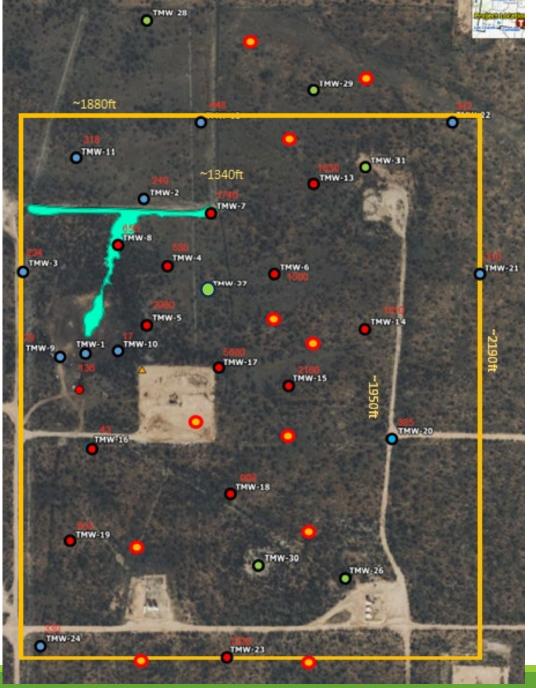
November 2024











e m

Page 1 of 330

Incident ID
District RP
Facility ID
Application ID

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.				
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office			
☐ Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)				
□ Description of remediation activities				
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and rer human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the coaccordance with 19.15.29.13 NMAC including notification to the Corinted Name:Larry Baker	nations. The responsible party acknowledges they must substantially notitions that existed prior to the release or their final land use in DCD when reclamation and re-vegetation are complete. Title: _Environmental Tech Sr			
Signature: <u>Larry Baker</u>	Date: 2/9/2021			
email:larry.baker@apachecorp.com	Telephone:432-631-6982			
Note: This is for the soil remediation only still conducting groundwater monitoring. OCD Only				
Received by:	Date:			
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.				
Closure Approved by:	Date:			
rinted Name: Title:				

1RP-5636 Closure Report East Blinebry Drinkard Unit #37 Produced Water Spill

Lea County, New Mexico

Latitude: N 32.47956° Longitude: W -103.12206°

LAI Project No. 19-0112-49

December 31, 2020

Prepared for:

Apache Corporation 303 Veterans Airpark Lane Midland, Texas 79705

Prepared by: Larson & Associates, Inc. 507 North Marienfeld Street, Suite 205 Midland, Texas 79701

Mark J. Larson, P.G.

Certified Professional Geologist #10490

Daniel St. Germain

Staff Geologist

This Page Intentionally Left Blank

Table of Contents

1.0 Introduction	1
1.1 Background	
1.2 Physical Setting	
1.3 Remediation Levels	
2.0 Remediation	
3.0 Variance	
4.0 Monitoring wells	
5.0 Closure Request	4

Tables

Table 1 **Confirmation Sample Analytical Data Summary**

Figures

Figure 1 Topographic Map Figure 2 Aerial Map of Spill Area

Figure 3 Aerial Map showing Monitoring Well Locations Figure 4 Site Map Showing Monitoring Well Locations

Appendices

Appendix A Initial C-141

Appendix B **Laboratory Reports** Appendix C **Photographs**

Appendix D **OCD Communications**

1RP-5636 Closure Report EBDU #37 Produced Water Spill December 31, 2020

1.0 INTRODUCTION

Larson & Associates, Inc. (LAI) has prepared this report on behalf of Apache Corporation (Apache) for closure of the excavation associated with a produced water spill at the East Blinebry Drinkard Unit (EBDU) #37 (Site) located in Unit E (SW/4, SW/4), Section 13, Township 21 South and Range 37 East, in Lea County, New Mexico. The geodetic position is North 32.479569° and West -103.122061°. The surface ownership is private. Figure 1 presents a topographic map.

1.1 Background

The spill occurred at a pipeline junction and flowed west about 675 feet. Approximately 350 feet west of the origin the release flowed south about 450 feet before terminating in a low-lying area. The volume of the release and volume of fluid recovered is unknown. The release is considered major due to the unknown volume of the release. The release covered an area measuring approximately 31,320 square feet or approximately 0.72 acres. Apache submitted form C-141 to OCD on July 26, 2019. Appendix A presents the initial C-141.

1.2 Physical Setting

The physical setting is as follows:

- The surface elevation is approximately 3,420 feet above mean sea level (msl).
- The topography slopes gently towards the southwest.
- The nearest surface water feature is a low-lying area about 500 feet southwest of the release origin.
- The soils are designated as "Kimbrough gravelly loam, dry, 0 to 3 percent slopes", consisting of about 3 inches of gravelly loam, underlain by about 7 inches of loam and cemented material (caliche) to about 80 inches below ground surface (bgs), in descending order.
- The soil is not considered prime farmland.
- According to the Texas Bureau of Economic Geology Geologic Atlas of Texas Hobbs Sheet, the surface geology is windblown sand (Holocene to middle Pleistocene) consisting of dark brown to grayish brown sand derived from the underlying Blackwater Draw formation.
- The Ogallala Formation (Tertiary) underlies the Blackwater Draw Formation and is comprised of fluvial sand, silt, clay and localized gravel, with indistinct to massive crossbeds.
- Groundwater occurs in the Ogallala formation between about 55 feet bgs near the point of release to about 47 feet bgs near the point of termination.
- A fresh water well (windmill) is located about 300 feet south of the point of termination for the release and is not shown on the New Mexico Office of the State Engineer (OSE) website.

1.3 Remediation Levels

The following remediation standards are based on closure criteria for soils impacted by a release of unknown volume as presented in Table 1 of 19.15.29 NMAC:

Benzene 10 mg/Kg
 BTEX 50 mg/Kg
 TPH 100 mg/Kg
 Chloride 600 mg/Kg

1RP-5636 Closure Report EBDU #37 Produced Water Spill December 31, 2020

Further, 19.15.29.13 NMAC (Restoration, Reclamation and Re-Vegetation) requires the operator to restore the impacted surface area that existed prior to the release or their final land use.

2.0 REMEDIATION

Beginning around June 9, 2020, DRG Oilfield Services, Inc. (DRG), Odessa, Texas, under the supervision from Apache, began excavating contaminated soil to 4.1 feet bgs from Spill Area 1 (26,886 square feet) and to 12 feet bgs from Spill Area 2 (4,431 square feet).

On July 13, 2020, LAI personnel collected thirty-eight (38) five-point composite confirmation soil samples for every 200 square feet of excavation sidewalls in Area 1 and Area 2. The samples were delivered under chain of custody and preservation to Xenco in Midland, Texas, which analyzed the samples for benzene, toluene, ethylbenzene and xylenes (BTEX), total petroleum hydrocarbons (TPH) including gasoline range (C6 to C-12) organics, diesel range (>C12 to C28) organics and oil range (>C28 to C35) organics, and chloride by EPA SW-846 Methods 8021B, 8015M, and Method 300, respectfully. Table 1 presents the confirmation soil sample analytical data summary. Figure 2 presents an aerial map showing the confirmation soil sample locations. Appendix B presents the laboratory reports.

The laboratory reported benzene, BTEX and TPH concentrations below the OCD remediation limits of 10 milligrams per kilogram (mg/Kg), 50 mg/Kg and 100 mg/Kg, respectfully. Chloride was reported above the OCD remediation limit of 600 mg/Kg in the following samples:

C-1	1,150 mg/Kg	C-12	626 mg/Kg
C-2	3,570 mg/Kg	C-17	927 mg/Kg
C-3	1,990 mg/Kg	C-21	1,290 mg/Kg
C-4	3,060 mg/Kg	C-22	704 mg/Kg
C-5	650 mg/Kg	C-23	6,200 mg/Kg
C-6	1,060 mg/Kg	C-24	1,110 mg/Kg
C-7	12,100 mg/Kg	C-26	5,280 mg/Kg
C-8	24,800 mg/Kg	C-27	1,210 mg/Kg
C-9	4,160 mg/Kg	C-28	8,280 mg/Kg
C-10	2,190 mg/Kg	C-32	867 mg/Kg

On July 27 and 29, 2020, DRG excavated additional soil to reduce the chloride concentrations at the above-referenced locations. On August 4, 2020, LAI personnel collected nineteen (19) composite confirmation samples. Soil was not excavated at sample C-1 due to its proximity to a gas pipeline owned by Targa Resources, Inc. Xenco analyzed the samples for chloride by EPA Method 300. Chloride exceeded the OCD remediation limit of 600 mg/Kg in samples C-22 (608 mg/Kg), C-23 (13,900 mg/kg), and C-28 (630 mg/kg). GRD excavated additional soil from C-22, C-23, and C-28.

On August 4, 2020, LAI personnel resampled location C-1, and collected samples from C-22, C-23, and C-28, following additional soil removal. Xenco analyzed all samples for chloride by EPA Method 300 and sample C-1 for TPH by EPA 846 Method SW8015M. The TPH concentration in sample C-1 was below the analytical method reporting limit (<50.3 mg/Kg). Chloride concentrations were below the OCD remediation limit of 600 mg/Kg.

1RP-5636 Closure Report EBDU #37 Produced Water Spill December 31, 2020

On August 3, 10, and 11, 2020, LAI personnel collected soil samples from five (5) borings (BH-1 through BH-5) installed in the bottom of the excavation at Area 2 after backfilling with caliche to approximately five (5) feet bgs. Soil samples were collected with a Geoprobe Model 7822DT direct push rig at 10, 12, 14, 16, 18, 20, and 25 feet bgs to confirm the vertical extent of chloride. A soil samples was also collected from 30 feet bgs at BH-1 in Area 2. Xenco analyzed the samples for chloride by EPA Method 300. Xenco reported chloride concentrations below the remediation limit of 600 mg/Kg in all samples. Appendix C presents photographs.

3.0 VARIANCE

On October 29, 2019, Apache submitted a remediation plan that proposed installing a 20-mil thickness polyethylene liner in the bottom of the excavation (12 feet bgs) at Area 2. On August 10 and 11, 2020, LAI personnel collected soil samples from five (5) borings (BH-1 through BH-5) installed in bottom of the excavation at Area 2 after backfilling the excavation to approximately 5 feet bgs with clean caliche. The laboratory reported chloride concentrations above 600 mg/Kg in two (2) samples: BH-3, 10 feet (774 mg/Kg) and BH-3, 12 feet (666 mg/Kg). During g a telephone call on September 11, 2020, OCD approved forgoing the 20-mil thickness liner and backfilling the excavation with clean caliche to three (3) feet bgs and to ground surface with topsoil, however, Apache completed backfilling the excavation with topsoil from five (5) feet to ground surface. Appendix D presents OCD communications.

4.0 MONITORING WELLS

On September 29, 2020, Scarborough Drilling, Inc. (SDI), under LAI supervision, drilled two (2) additional borings (TMW-3 and TWM-4). Monitoring well TMW-3 was installed west of the Area 2 excavation to approximately 68 feet bgs. Monitoring well TMW-4 was drilled east of the Area 2 excavation to approximately 70 feet bgs. Both monitoring well locations were moved with OCD notification due to a buried natural gas pipeline (TMW-3) and thick brush (TMW-4). Monitoring well TMW-3 was moved approximately 125 feet west and south from its proposed location. Monitoring well TMW-4 was moved approximately 25 feet south from its proposed location. Figure 3 presents an aerial drawing showing the monitoring well locations.

The monitoring wells were completed with two (2) inch threaded schedule 40 PVC casing and approximately twenty (20) feet 0.01-inch factory slotted screen. The screens were positioned above and below the groundwater level observed during drilling. On September 30, 2020 groundwater was recorded at 57.62 feet bgs in TMW-3 and 57.39 feet bgs in well TMW-4. The wells were developed using an electric submersible pump to remove to sediment disturbed and fresh water introduced during drilling. All monitor wells were surveyed for geodetic position and elevation, including surface elevation and top of casing (TOC) elevation, West Company, a New Mexico licensed professional surveyor (license number 23263). Figure 4 presents a Site drawing showing the monitoring well locations.

Apache will continue quarterly monitoring of groundwater in wells TMW-1 through TWM-4 and the windmill during 2021 with laboratory analysis of groundwater samples for BTEX, chloride and TDS. Notice will be provided to OCD in Hobbs and Santa Fe, New Mexico at least 7 working days prior to each groundwater monitoring event. The OCD will be notified immediately upon receipt laboratory analysis with significant increase of analyte concentrations.

Apache

1RP-5636 Closure Report EBDU #37 Produced Water Spill December 31, 2020

5.0 CLOSURE REQUEST

Apache requests no further action for this release.

Tables

Table 1
Confirmation Soil Sample Analytical Data Summary
Apache Corp., EBDU #37
Lea County, New Mexico

Page 1 of 3

Area	Sample ID	Location	Depth (feet)	Collection Date	Status	Benzene (mg/Kg)	BTEX (mg/Kg)	C6 - C12 (mg/Kg)	C12 - C28 (mg/Kg)	C28 - C35 (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
Remediat	tion Standar	d:				10	50				100/2,500	600/10,000
	Confirmation Composite Samples											
1												
				08/04/2020				<50.3	<50.3	<50.3	<50.3	338
1	C-2	Sidewall	0 - 4	07/13/2020		<0.00202	<0.00202	<49.8	<49.8	<49.8	<49.8	3,570
			0 - 4	07/27/2020								87
1	C-3	Sidewall	0 - 4	07/13/2020		<0.00202	<0.00202	<50.0	<50.0	<50.0	<50.0	1,990
				07/29/2020								39
1	C-4	Sidewall	0 - 4	07/13/2020		<0.00199	0.00262	<49.8	<49.8	<49.8	<49.8	3,060
			0 4	07/29/2020								21.8
1	C-5	Sidewall	0 - 4	07/13/2020		<0.00200	0.00205	<50.0	<50.0	<50.0	<50.0	650 F 75
			0 - 4	07/29/2020 07/13/2020		<0.00200	0.00262	 <50.0	 <50.0	 <50.0	 <50.0	5.75
1	C-6	Sidewall	0 - 4	07/13/2020		<0.00200	0.00262	<50.0	<50.0 	<50.0	<50.0 	1,060 162
1	C-7	Sidewall	0 - 4	07/29/2020		<0.00200	0.00378	<49.8	<49.8	<49.8	<49.8	102 12,100
	L-7	Sidewaii	0 - 4	07/29/2020			0.00378	\ 4 3.6	\ 4 5.8	\ 4 5.8	\ 4 5.8	11.5
1	C-8	Sidewall	0 - 4	07/13/2020		<0.00198	<0.00198	<50.0	<50.0	<50.0	<50.0	24,800
1 -	L-8	Sidewall	0 1	07/29/2020		~0.00138	<0.00138					19
1	C-9	Sidewall	0 - 4	07/13/2020		<0.00199	0.00438	<49.9	<49.9	<49.9	<49.9	4,160
_		Sidewaii		07/29/2020								200
1	C-10	Sidewall	0 - 4	07/13/2020		<0.00201	0.00336	<49.8	<49.8	<49.8	<49.8	2,190
				07/29/2020	In-Situ							126
1	C-11	Sidewall	0 - 4	07/13/2020	In-Situ	<0.00200	0.00539	<50.0	<50.0	<50.0	<50.0	44.8
1	C-12	Sidewall	0 - 4	07/13/2020		<0.00198	0.00415	<50.0	<50.0	<50.0	<50.0	626
				07/29/2020								17.6
2	C-13	Sidewall	0 - 4	07/13/2020		<0.00198	0.00252	<50.0	<50.0	<50.0	<50.0	44.1
2	C-14	Sidewall	0 - 4	07/13/2020		<0.00200	0.00570	<49.9	<49.9	<49.9	<49.9	14.1
2	C-15	Sidewall	0 - 4	07/13/2020		<0.00200	0.00254	<49.9	<49.9	<49.9	<49.9	24.3
2	C-16	Sidewall	0 - 4	07/13/2020		<0.00200	0.00552	<50.0	<50.0	<50.0	<50.0	229
2	C-17	Sidewall	0 - 4	07/13/2020		<0.00200	0.00275	<49.9	<49.9	<49.9	<49.9	927
				07/29/2020								9.8
2	C-18	Sidewall	0 - 4	07/13/2020		<0.00200	0.00722	<50.0	<50.0	<50.0	<50.0	227
1	C-19	Sidewall	0 - 4	07/13/2020	In-Situ	<0.00199	0.00557	<50.0	<50.0	<50.0	<50.0	60.6

Table 1
Confirmation Soil Sample Analytical Data Summary
Apache Corp., EBDU #37
Lea County, New Mexico

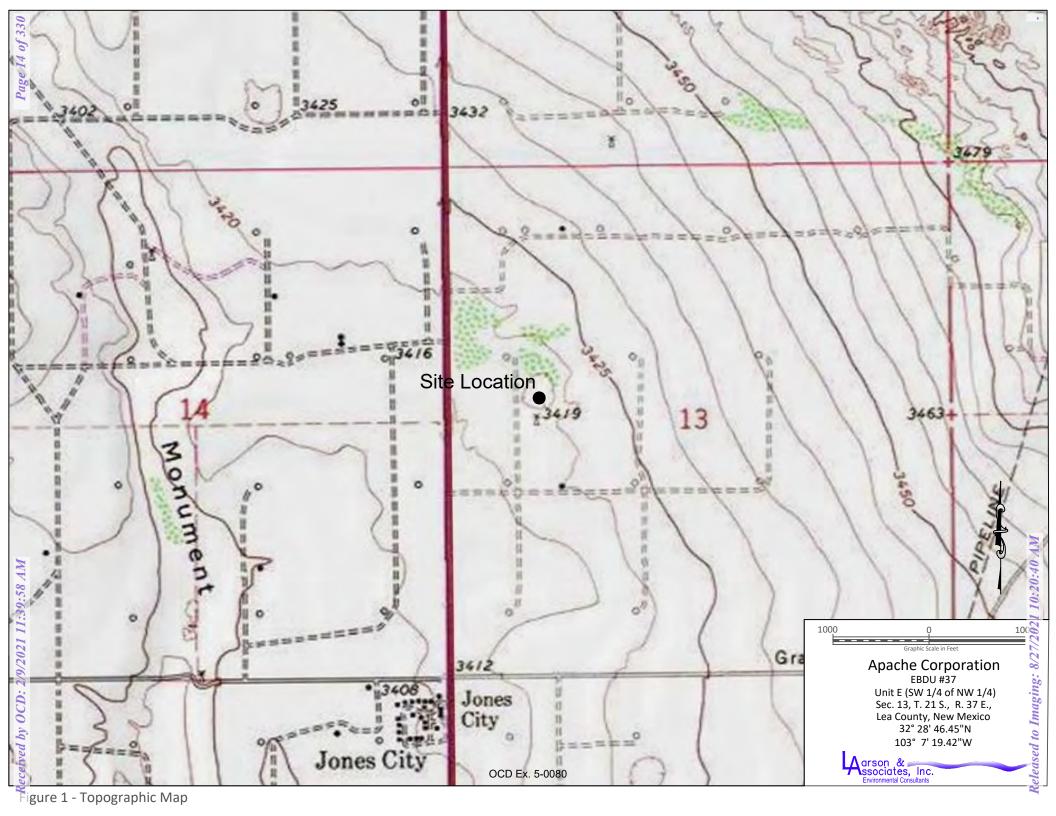
Page 2 of 3

1	C-20	Sidewall	0 - 4	07/13/2020	In-Situ	<0.00200	0.00968	<49.9	<49.9	<49.9	<49.9	44.3
1	C-21	Sidewall	0 - 4	07/13/2020	Excavated	<0.00200	0.00705	<50.0	<50.0	<50.0	<50.0	1,290
				07/29/2020								237
1	C-22	Sidewall	0 - 4	07/13/2020	Excavated	<0.00200	0.00493	<50.0	<50.0	<50.0	<50.0	704
				07/29/2020	Excavated							608
				8/04/2020	In-Situ							10.7
1	C-23	Sidewall	0 - 4	07/13/2020	Excavated	<0.00200	0.00339	<49.9	<49.9	<49.9	<49.9	6,200
				07/29/2020	Excavated							13,900
				8/04/2020	In-Situ							15.8
1	C-24	Sidewall	0 - 4	07/13/2020	Excavated	<0.00200	0.00732	<50.0	<50.0	<50.0	<50.0	1,110
				07/29/2020	In-Situ							37.4
1	C-25	Sidewall	0 - 4	07/13/2020	In-Situ	<0.00201	0.00464	<49.9	<49.9	<49.9	<49.9	254
1	C-26	Sidewall	0 - 4	07/13/2020		<0.00200	<0.00200	<50.0	<50.0	<50.0	<50.0	5,280
				07/29/2020	In-Situ							307
1	C-27	Sidewall	0 - 4	07/13/2020		<0.00200	0.00482	<49.9	<49.9	<49.9	<49.9	1,210
				07/29/2020								71.6
1	C-28	Sidewall	0 - 4	07/13/2020		<0.00200	<0.00200	<49.8	<49.8	<49.8	<49.8	8,280
				07/29/2020								630
				8/04/2020	In-Situ							415
1	C-29	Sidewall	0 - 4	07/13/2020		<0.00199	0.00906	<50.0	<50.0	<50.0	<50.0	197
1	C-30	Sidewall	0 - 4	07/13/2020		<0.00198		<50.0	<50.0	<50.0	<50.0	264
1	C-31	Sidewall	0 - 4	07/13/2020		<0.00200		<49.9	<49.9	<49.9	<49.9	42.1
1	C-32	Sidewall	0 - 4	07/13/2020		<0.00199	0.00325	<50.0	<50.0	<50.0	<50.0	867
				07/29/2020								30.8
1	C-33	Sidewall	0 - 4	07/13/2020		<0.00199	0.00712	<49.8	<49.8	<49.8	<49.8	553
1	C-34	Sidewall	0 - 4	07/13/2020		<0.00199	0.00781	<50.0	<50.0	<50.0	<50.0	242
1	C-35	Sidewall	0 - 4	07/13/2020		<0.00198	0.00876	<50.0	<50.0	<50.0	<50.0	9.23
1	C-36	Sidewall	0 - 4	07/13/2020		<0.00200	0.00478	<50.0	<50.0	<50.0	<50.0	64.4
1	C-37	Sidewall	0 - 4	07/13/2020		<0.00200	0.00502	<49.9	<49.9	<49.9	<49.9	14.6
1	C-38	Sidewall	0 - 4	07/13/2020	In-Situ	<0.00199	0.00857	<49.9	<49.9	<49.9	<49.9	28.7
					Soil	Boring Sam	ples					
2	BH-1	Bottom	10	8/03/2020	In-Situ							11.6
			12	8/03/2020	In-Situ							13.3
			14	8/03/2020	In-Situ							13.4
			16	8/03/2020	In-Situ							22.9
			18	8/03/2020	In-Situ							34.4
			20	8/03/2020	In-Situ							24.7

Table 1
Confirmation Soil Sample Analytical Data Summary
Apache Corp., EBDU #37
Lea County, New Mexico

Page 3 of 3

2	BH-2	Bottom	10	8/10/2020	In-Situ	 	 		 79.7
			12	8/10/2020	In-Situ	 	 		 18.4
			14	8/10/2020	In-Situ	 	 		 10.1
			16	8/10/2020	In-Situ	 	 		 10.3
			18	8/10/2020	In-Situ	 	 		 9.67
			20	8/10/2020	In-Situ	 	 		 9.64
			25	8/10/2020	In-Situ	 	 		 11.6
2	BH-3	Bottom	10	8/10/2020	In-Situ	 	 		 774
			12	8/10/2020	In-Situ	 	 		 666
			14	8/10/2020	In-Situ	 	 		 419
			16	8/10/2020	In-Situ	 	 		 60.2
			18	8/10/2020	In-Situ	 	 		 89.3
			20	8/10/2020	In-Situ	 	 		 227
			25	8/10/2020	In-Situ	 	 		 32.7
2	BH-4	Bottom	10	8/10/2020	In-Situ	 	 		 24
			12	8/10/2020	In-Situ	 	 		 12
			14	8/10/2020	In-Situ	 	 		 10.3
			16	8/10/2020	In-Situ	 	 		 15
			18	8/10/2020	In-Situ	 	 		 12.7
			20	8/10/2020	In-Situ	 	 		 11.8
			25	8/10/2020	In-Situ	 	 		 13.4
	DILE	Dattana	10	0/11/2020	In City				10.2
2	BH-5	Bottom	10 12	8/11/2020	In-Situ In-Situ	 	 		 10.2 9.94
			14	8/11/2020		 	 		
			14 16	8/11/2020 8/11/2020	In-Situ In-Situ	 	 		 9.78 12.2
			18	8/11/2020	In-Situ In-Situ	 	 		 9.3
			20	8/11/2020	In-Situ In-Situ	 	 		 9.3 9.77
			20	0/11/2020	เมา-วเเน	 	 	<u></u>	 10.5
									10.5


Notes: analysis performed by Xenco Laboratories, Midland, Texas, by SW-846 Method 8021B (BETX), Method 8015 (TPH) and Method 300 (chloride) Depth in feet below ground surface (bgs)

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

Bold and Highlighted exceeds OCD remediation action limits and excavated

<: denotes concentration less than analytical method reporting limit

Figures

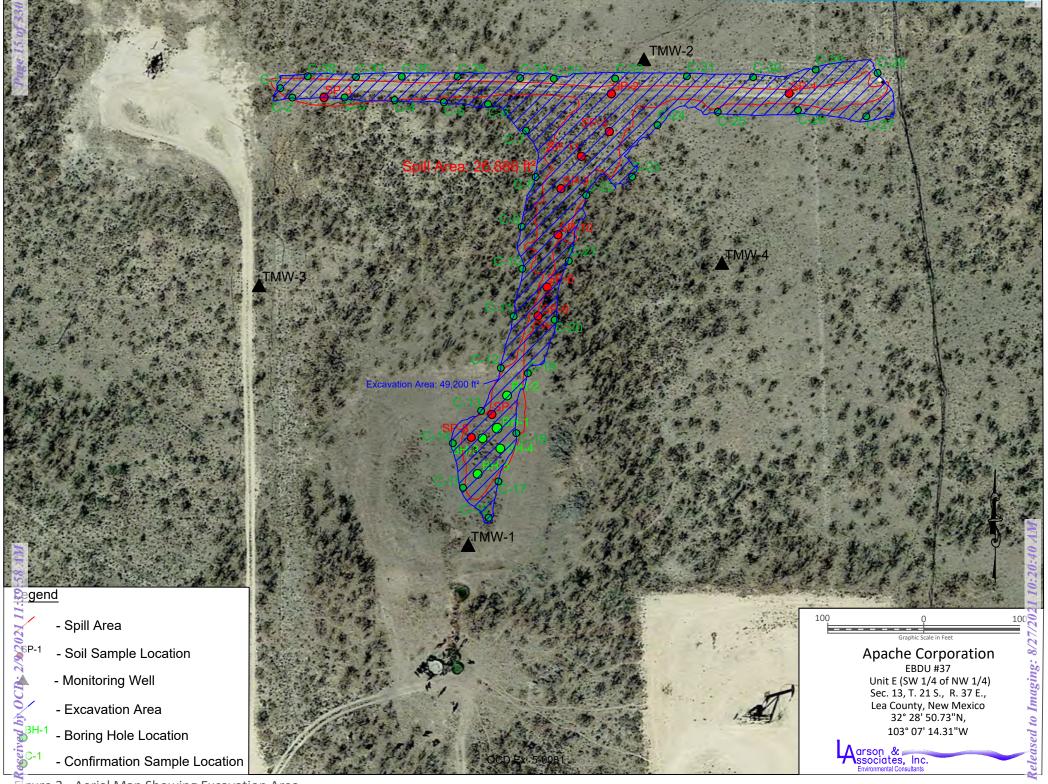


Figure 2 - Aerial Map Showing Excavation Area

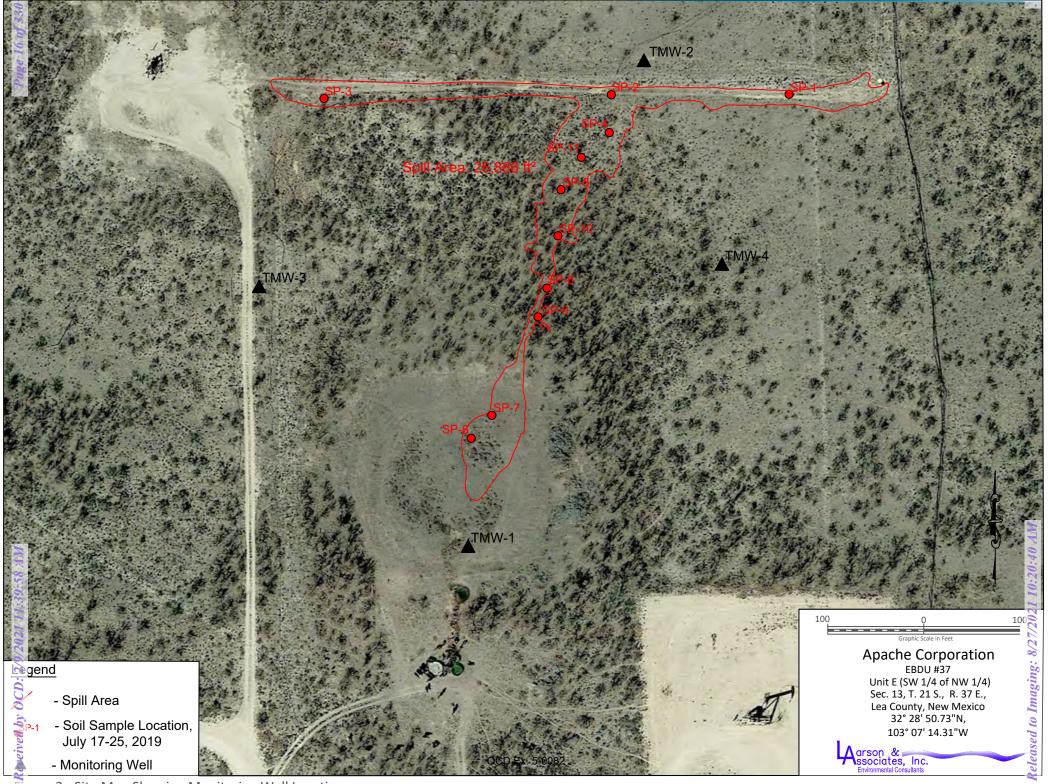


Figure 3 - Site Map Showing Monitoring Well Locations

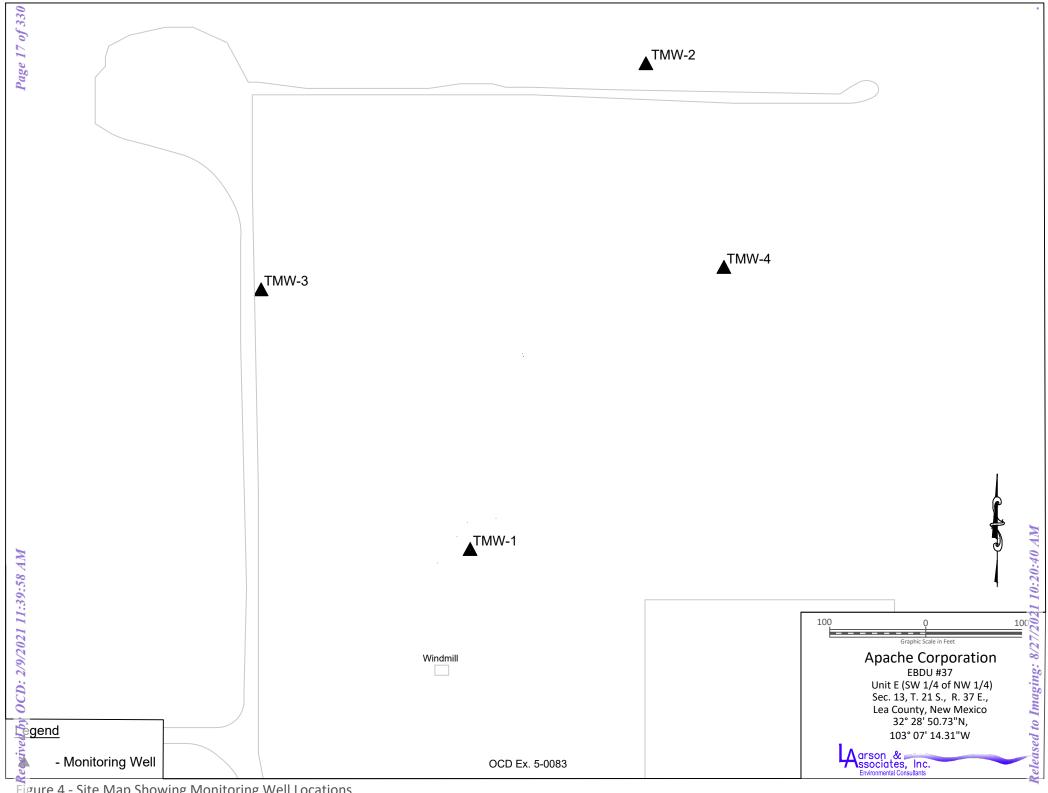


Figure 4 - Site Map Showing Monitoring Well Locations

Appendix A

Initial C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NDHR1922141227
District RP	1RP-5636
Facility ID	
Application ID	pDHR1922140928

Release Notification

Responsible Party

Responsible Party: Apache Corporation	OGRID 873
Contact Name: Bruce Baker	Contact Telephone: (432) 631-6982
Contact email: Larry.Baker@apachecorp.com	Incident # (assigned by OCD)
Contact Mailing Address: 2350 W. Marland Blvd, Hobbs, NM 88240	

Location of Release Source

Latitude: W 32.4807053 Longitude: N -103.123085

(NAD 83 in decimal degrees to 5 decimal places)

Site Name: E	BDU #37 W	/IW		Site Type: Water Injection Well						
Date Release	Discovered	: July 14, 2019		API # 3002506556						
Unit Letter	Section	Township	Range		County	7				
Е	12	21S	37E	LEA	<u> </u>	_				
Surface Owner: State Federal Tribal Private (Name: William Stephens)										

Nature and Volume of Release

Material	(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (Unknown bbls)	Volume Recovered (Unknown bbls)
Produced Water	Volume Released (Unknown bbls)	Volume Recovered (Unknown bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	☐ Yes ☑ No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
☐ Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		
Isolation valve failure due	e to internal corrosion.	

OCD Ex. 5-0085

Page 20 of 330

Incident ID
District RP
Facility ID
Application ID

NDHR1922141227
IRP-5636
pDHR1922140928

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
☐ Yes ⊠ No	
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? CD by Bruce Baker, Senior Environmental Technician, Apache Corporation
via chian given to ivivi o	by Bruce Baker, Semor Environmental Teenmenti, Apache Corporation
	Initial Response
The responsible p	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
The source of the rele	ase has been stopped.
	s been secured to protect human health and the environment.
	ve been contained via the use of berms or dikes, absorbent pads, or other containment devices.
☐ All free liquids and re	ecoverable materials have been removed and managed appropriately.
If all the actions described	l above have <u>not</u> been undertaken, explain why:
D 10.15.20.0 D (4) NIM	
	AC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred
within a lined containmen	t area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
	rnation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and required to report and/or file certain release notifications and perform corrective actions for releases which may endanger
public health or the environn	nent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have
	ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In f a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
and/or regulations.	
Printed Name: <u>Jeff Broom</u>	Title: Environmental Technician
Signature:	Date: <u>07/24/2019</u>
Email: <u>Jeffrey.Broom@ar</u>	pachecorp.com Telephone: (432) 664-4677
OCD Only	
Received by: Dylan Ro	ose-Coss Date: 08/09/2019
Dylail KC	Duic. 00/07/2017

Appendix B

Laboratory Reports

Certificate of Analysis Summary 667044

Larson and Associates, Inc., Midland, TX

Project Name: EBDU #37

Project Id:

19-0112-49

Date Received in Lab: Mon 07.13.2020 16:43

Mark Larson **Contact:**

Report Date: 07.24.2020 13:02

Page 22 of 330

Project Location:

Project Manager: Holly Taylor

Lab Id:		667044-001		667044-0	002	667044-003		667044-004		667044-005		667044-0	006
Analysis Requested	Field Id:	C-1		C-2		C-3		C-4		C-5		C-6	
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
Sampleo		07.13.2020	10:45	07.13.2020	10:35	07.13.2020	10:30	07.13.2020	10:27	07.13.2020	10:23	07.13.2020	10:20
BTEX by EPA 8021B	Extracted:	07.17.2020	14:30	07.17.2020	14:30	07.17.2020	14:30	07.17.2020	14:30	07.17.2020	14:30	07.17.2020	14:30
	Analyzed:	07.18.2020	02:55	07.18.2020	03:15	07.18.2020	03:36	07.18.2020	03:56	07.18.2020	04:17	07.18.2020	04:37
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200
Toluene		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202	0.00262	0.00199	0.00205	0.00200	0.00262	0.00200
Ethylbenzene		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200
m,p-Xylenes		< 0.00402	0.00402	< 0.00403	0.00403	< 0.00403	0.00403	< 0.00398	0.00398	< 0.00399	0.00399	< 0.00399	0.00399
o-Xylene		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200
Total Xylenes		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202	< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200
Total BTEX		< 0.00201	0.00201	< 0.00202	0.00202	< 0.00202	0.00202	0.00262	0.00199	0.00205	0.00200	0.00262	0.00200
Chloride by EPA 300	Extracted:	07.16.2020	11:30	07.16.2020 11:30		07.16.2020 11:30		07.16.2020 11:30		07.16.2020 11:30		07.16.2020 11:30	
	Analyzed:	07.16.2020	16:26	07.16.2020	16:32	07.16.2020 16:50		07.16.2020 16:57		07.16.2020 17:03		07.16.2020 17:09	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		1150	4.96	3570	24.9	1990	25.0	3060	25.2	650	4.96	1060	4.99
TPH by SW8015 Mod	Extracted:	07.16.2020	12:00	07.16.2020	12:00	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30
	Analyzed:	07.16.2020	14:05	07.16.2020	14:26	07.15.2020	12:50	07.15.2020	13:55	07.15.2020	14:17	07.15.2020	14:38
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<49.8	49.8	<49.8	49.8	< 50.0	50.0	<49.8	49.8	< 50.0	50.0	< 50.0	50.0
Diesel Range Organics (DRO)		83.3	49.8	<49.8	49.8	< 50.0	50.0	<49.8	49.8	< 50.0	50.0	<50.0	50.0
Motor Oil Range Hydrocarbons (MRO)		<49.8	49.8	<49.8	49.8	< 50.0	50.0	<49.8	49.8	< 50.0	50.0	< 50.0	50.0
Total TPH		83.3	49.8	<49.8	49.8	< 50.0	50.0	<49.8	49.8	<50.0	50.0	<50.0	50.0

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing

Certificate of Analysis Summary 667044

Larson and Associates, Inc., Midland, TX

Project Name: EBDU #37

Project Id: Contact:

19-0112-49

Date Received in Lab: Mon 07.13.2020 16:43

Mark Larson

Report Date: 07.24.2020 13:02 **Project Manager:** Holly Taylor

Project Location:

Lab Id:		667044-0	007	667044-0	008	667044-009		667044-010		667044-011		667044-0	012
Analysis Bosycatod	Field Id:	C-7		C-8		C-9		C-10		C-11		C-12	
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL		SOIL	
	Sampled:	07.13.2020	10:15	07.13.2020	10:10	07.13.2020	10:05	07.13.2020	10:00	07.13.2020	09:58	07.13.2020	09:55
BTEX by EPA 8021B	Extracted:	07.17.2020 14:30		07.17.2020	14:30	07.17.2020	14:30	07.17.2020	14:30	07.17.2020	14:30	07.17.2020	14:30
	Analyzed:	07.18.2020	07.18.2020 04:57		05:18	07.18.2020	05:38	07.18.2020	05:59	07.18.2020	11:01	07.18.2020	11:22
Units/I		mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198
Toluene		0.00378	0.00200	< 0.00198	0.00198	0.00438	0.00199	0.00336	0.00201	0.00539	0.00200	0.00415	0.00198
Ethylbenzene		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198
m,p-Xylenes		< 0.00400	0.00400	< 0.00397	0.00397	< 0.00398	0.00398	< 0.00402	0.00402	< 0.00399	0.00399	< 0.00396	0.00396
o-Xylene		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198
Total Xylenes		< 0.00200	0.00200	< 0.00198	0.00198	< 0.00199	0.00199	< 0.00201	0.00201	< 0.00200	0.00200	< 0.00198	0.00198
Total BTEX		0.00378	0.00200	< 0.00198	0.00198	0.00438	0.00199	0.00336	0.00201	0.00539	0.00200	0.00415	0.00198
Chloride by EPA 300	Extracted:	07.16.2020 11:30		07.16.2020 11:30		07.16.2020	11:30	07.20.2020	12:45	07.20.2020 12:45		07.20.2020	12:45
	Analyzed:	07.16.2020	17:15	07.16.2020 17:21		07.16.2020 17:27		07.21.2020 01:05		07.21.2020 01:26		07.21.2020 01:32	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride	·	12100	101	24800	250	4160	25.0	2190	24.9	44.8	5.01	626	5.03
TPH by SW8015 Mod	Extracted:	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30
	Analyzed:	07.15.2020	15:00	07.15.2020	15:22	07.15.2020	15:44	07.15.2020	16:06	07.15.2020	16:27	07.15.2020	16:49
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)	·	<49.8	49.8	< 50.0	50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	< 50.0	50.0
Diesel Range Organics (DRO)		<49.8	49.8	<50.0	50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	< 50.0	50.0
Motor Oil Range Hydrocarbons (MRO)		<49.8	49.8	<50.0	50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	< 50.0	50.0
Total TPH		<49.8	49.8	< 50.0	50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	< 50.0	50.0

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Received by OCD: 2/9/2021 11:39:58 AM

eurofins Environment Testing

Certificate of Analysis Summary 667044

Larson and Associates, Inc., Midland, TX

Project Name: EBDU #37

Project Id:

Contact:

19-0112-49 Mark Larson **Date Received in Lab:** Mon 07.13.2020 16:43

Report Date: 07.24.2020 13:02

Project Location:

Project Manager: Holly Taylor

	Lab Id:	667044-0	013	667044-0	014	667044-0	015	667044-	016	667044-017		667044-0	018
Analysis Requested	Field Id:	C-13		C-14		C-15		C-16		C-17		C-18	
Analysis Requested	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	07.13.2020	09:51	07.13.2020	09:48	07.13.2020	09:45	07.13.2020	09:48	07.13.2020	09:52	07.13.2020	09:56
BTEX by EPA 8021B	Extracted:	07.17.2020	07.17.2020 14:30		16:00	07.21.2020	16:00	07.21.2020	16:00	07.21.2020	16:00	07.21.2020	16:00
	Analyzed:	07.18.2020	07.18.2020 11:42		03:09	07.22.2020	03:29	07.22.2020	03:50	07.22.2020	04:10	07.22.2020	04:30
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00198	0.00198	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200
Toluene		0.00252	0.00198	0.00570	0.00200	0.00254	0.00200	0.00552	0.00200	0.00275	0.00200	0.00722	0.00200
Ethylbenzene		< 0.00198	0.00198	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200
m,p-Xylenes		< 0.00397	0.00397	< 0.00400	0.00400	< 0.00400	0.00400	< 0.00400	0.00400	< 0.00400	0.00400	< 0.00400	0.00400
o-Xylene		< 0.00198	0.00198	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200
Total Xylenes		< 0.00198	0.00198	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200
Total BTEX		0.00252	0.00198	0.00570	0.00200	0.00254	0.00200	0.00552	0.00200	0.00275	0.00200	0.00722	0.00200
Chloride by EPA 300	Extracted:	07.20.2020	12:45	07.20.2020 12:45		07.20.2020	12:45	07.20.2020 12:45		07.20.2020 12:45		07.20.2020 12:45	
	Analyzed:	07.21.2020	01:37	07.21.2020	01:53	07.21.2020	01:58	07.21.2020 02:03		07.21.2020 02:08		07.21.2020 02:13	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		44.1	4.99	14.1	4.97	24.3	4.96	229	5.04	927	5.03	227	5.00
TPH by SW8015 Mod	Extracted:	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30
	Analyzed:	07.15.2020	17:33	07.15.2020	17:55	07.15.2020	18:17	07.15.2020	18:38	07.15.2020	19:00	07.15.2020	19:22
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		< 50.0	50.0	<49.9	49.9	<49.9	49.9	<50.0	50.0	<49.9	49.9	< 50.0	50.0
Diesel Range Organics (DRO)		< 50.0	50.0	<49.9	49.9	<49.9	49.9	< 50.0	50.0	<49.9	49.9	< 50.0	50.0
Motor Oil Range Hydrocarbons (MRO)		< 50.0	50.0	<49.9	49.9	<49.9	49.9	< 50.0	50.0	<49.9	49.9	< 50.0	50.0
Total TPH		< 50.0	50.0	<49.9	49.9	<49.9	49.9	< 50.0	50.0	<49.9	49.9	< 50.0	50.0

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing

Certificate of Analysis Summary 667044

Larson and Associates, Inc., Midland, TX

Project Name: EBDU #37

Project Id:

19-0112-49

Date Received in Lab: Mon 07.13.2020 16:43

Contact: Mark Larson

Report Date: 07.24.2020 13:02 **Project Manager:** Holly Taylor

Project Location:

Lab Id:		667044-0)19	667044-0	020	667044-0)21	667044-	022	667044-023		667044-024	
	Field Id:	C-19		C-20		C-21		C-22		C-23		C-24	
Analysis Requested	Depth:	0.17		0.20						0 20		02.	
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	07.13.2020 10:10		07.13.2020	10:04	07.13.2020	10:08	07.13.2020	10:12	07.13.2020	10:18	07.13.2020	10:22
BTEX by EPA 8021B	Extracted:	07.22.2020	07.22.2020 08:00		16:00	07.21.2020	16:00	07.21.2020	16:00	07.21.2020	16:00	07.21.2020	16:00
	Analyzed:	07.22.2020	07.22.2020 09:17		04:51	07.22.2020	05:11	07.22.2020	05:32	07.22.2020	05:52	07.22.2020	06:13
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200
Toluene		0.00557	0.00199	0.00968	0.00200	0.00705	0.00200	0.00493	0.00200	0.00339	0.00200	0.00732	0.00200
Ethylbenzene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200
m,p-Xylenes		< 0.00398	0.00398	< 0.00400	0.00400	< 0.00400	0.00400	< 0.00400	0.00400	< 0.00400	0.00400	< 0.00400	0.00400
o-Xylene		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200
Total Xylenes		< 0.00199	0.00199	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200
Total BTEX		0.00557	0.00199	0.00968	0.00200	0.00705	0.00200	0.00493	0.00200	0.00339	0.00200	0.00732	0.00200
Chloride by EPA 300	Extracted:	07.20.2020	12:45	07.20.2020 12:45		07.20.2020 12:45		07.20.2020	12:45	07.20.2020 12:45		07.20.2020 12:45	
	Analyzed:	07.21.2020	02:19	07.21.2020	02:34	07.21.2020	02:40	07.21.2020 02:55		07.21.2020 03:00		07.21.2020 03:06	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		60.6	4.98	44.3	5.03	1290	4.96	704	4.99	6200	49.5	1110	4.97
TPH by SW8015 Mod	Extracted:	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020 08:30		07.15.2020	08:30
	Analyzed: 07.15.20		19:43	07.15.2020	20:04	07.15.2020	20:26	07.15.2020	20:47	07.15.2020 12:50		07.15.2020	13:55
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		< 50.0	50.0	<49.9	49.9	< 50.0	50.0	< 50.0	50.0	<49.9	49.9	< 50.0	50.0
Diesel Range Organics (DRO)		< 50.0	50.0	<49.9	49.9	< 50.0	50.0	< 50.0	50.0	<49.9	49.9	< 50.0	50.0
Motor Oil Range Hydrocarbons (MRO)		<50.0 50.0		<49.9	49.9	< 50.0	50.0	< 50.0	50.0	<49.9	49.9	< 50.0	50.0
Total TPH		< 50.0	50.0	<49.9	49.9	< 50.0	50.0	< 50.0	50.0	<49.9	49.9	< 50.0	50.0

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Received by OCD: 2/9/2021 11:39:58 AM curofins | Environment Testing

Certificate of Analysis Summary 667044

Larson and Associates, Inc., Midland, TX

Project Name: EBDU #37

Project Id: Contact: 19-0112-49

Date Received in Lab: Mon 07.13.2020 16:43

Mark Larson

Report Date: 07.24.2020 13:02

Project Location:

Project Manager: Holly Taylor

	Lab Id:	667044-0)25	667044-0	26	667044-0)27	667044-	028	667044-0	29	667044-0	030
Analysis Requested	Field Id:	C-25		C-26		C-27		C-28		C-29		C-30	
Anaiysis Requesieu	Depth:												
	Matrix:	SOIL		SOIL		SOIL	,	SOIL		SOIL		SOIL	
	Sampled:	07.13.2020	10:26	07.13.2020	07.13.2020 10:32 07.13.2020		10:36	07.13.2020	10:40	07.13.2020 10:44		07.13.2020 10:	
BTEX by EPA 8021B	Extracted:	07.22.2020	07.22.2020 16:30		16:30	07.22.2020	16:30	07.22.2020	16:30	07.22.2020	16:30	07.22.2020	16:30
	Analyzed:	07.22.2020	07.22.2020 21:47		22:08	07.22.2020	22:28	07.22.2020	22:49	07.22.2020	23:09	07.22.2020	23:30
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
Toluene		0.00464	0.00464 0.00201		0.00200	0.00482	0.00200	< 0.00200	0.00200	0.00906	0.00199	0.00556	0.00198
Ethylbenzene		< 0.00201	<0.00201 0.00201		0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
m,p-Xylenes		<0.00402 0.00402		< 0.00401	0.00401	< 0.00401	0.00401	< 0.00401	0.00401	< 0.00398	0.00398	< 0.00396	0.00396
o-Xylene		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
Total Xylenes		< 0.00201	0.00201	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00200	0.00200	< 0.00199	0.00199	< 0.00198	0.00198
Total BTEX		0.00464	0.00201	< 0.00200	0.00200	0.00482	0.00200	< 0.00200	0.00200	0.00906	0.00199	0.00556	0.00198
Chloride by EPA 300	Extracted:	07.20.2020	12:45	07.20.2020 12:45		07.20.2020	12:45	07.20.2020	12:45	07.16.2020 15:20		07.16.2020 15:20	
	Analyzed:	07.21.2020	03:11	07.21.2020 03:16		07.21.2020 03:27		07.16.2020 18:23		07.16.2020 18:0			
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		254	5.02	5280	25.0	1210	4.99	8280	49.7	197	5.03	264 X	4.96
TPH by SW8015 Mod	Extracted:	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30
	Analyzed:	07.15.2020	14:17	07.15.2020	14:38	07.15.2020	15:00	07.15.2020	15:22	07.15.2020	15:44	07.15.2020	16:06
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<49.9	49.9	< 50.0	50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	< 50.0	50.0
Diesel Range Organics (DRO)		<49.9	<49.9 49.9		50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	< 50.0	50.0
Motor Oil Range Hydrocarbons (MRO)		<49.9	<49.9 49.9		50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	< 50.0	50.0
Total TPH		<49.9	49.9	< 50.0	50.0	<49.9	49.9	<49.8	49.8	< 50.0	50.0	< 50.0	50.0

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Larson and Associates, Inc., Midland, TX

Project Name: EBDU #37

Project Id: Contact:

19-0112-49 Mark Larson **Date Received in Lab:** Mon 07.13.2020 16:43

Report Date: 07.24.2020 13:02

Page 27 of 330

Project Location:

Project Manager: Holly Taylor

	Lab Id:	667044-0	031	667044-0)32	667044-0	033	667044-	034	667044-0)35	667044-0)36
Analysis Requested	Field Id:	C-31		C-32		C-33		C-34		C-35		C-36	
Analysis Requesieu	Depth:												
	Matrix:	SOIL	.	SOIL		SOIL	,	SOIL		SOIL		SOIL	,
	Sampled:	07.13.2020	10:52	07.13.2020	07.13.2020 10:56		07.13.2020 11:00		11:05	07.13.2020 11:01		07.13.2020	10:52
BTEX by EPA 8021B	Extracted:	07.22.2020	07.22.2020 16:30		16:30	07.22.2020	16:30	07.22.2020	16:30	07.22.2020	16:30	07.22.2020	16:30
	Analyzed:	07.22.2020	07.22.2020 23:50		07.23.2020 00:11		07.23.2020	00:52	07.23.2020	02:14	07.23.2020	02:34	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Benzene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
Toluene		< 0.00200	<0.00200 0.00200		0.00199	0.00712	0.00199	0.00781	0.00199	0.00876	0.00198	0.00478	0.00200
Ethylbenzene		< 0.00200	<0.00200 0.00200		0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
m,p-Xylenes		<0.00400 0.00400		< 0.00398	0.00398	< 0.00398	0.00398	< 0.00398	0.00398	< 0.00397	0.00397	< 0.00400	0.00400
p-Xylene		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
Total Xylenes		< 0.00200	0.00200	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00199	0.00199	< 0.00198	0.00198	< 0.00200	0.00200
Total BTEX		< 0.00200	0.00200	0.00325	0.00199	0.00712	0.00199	0.00781	0.00199	0.00876	0.00198	0.00478	0.00200
Chloride by EPA 300	Extracted:	07.16.2020	15:20	07.16.2020 15:20		07.16.2020	15:20	07.16.2020	15:20	07.16.2020 15:20		07.16.2020 15:20	
	Analyzed:	07.16.2020	18:29	07.16.2020	18:35	07.16.2020	18:41	07.16.2020 18:59		07.16.2020 19:06		:06 07.16.2020 19:	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		42.1	4.99	867	4.97	553	4.99	242	5.00	9.23	5.03	64.4	5.05
TPH by SW8015 Mod	Extracted:	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30	07.15.2020	08:30
	Analyzed:	07.15.2020	16:27	07.15.2020	16:49	07.15.2020	17:33	07.15.2020	17:55	07.15.2020	18:17	07.15.2020	18:38
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Gasoline Range Hydrocarbons (GRO)		<49.9	49.9	< 50.0	50.0	<49.8	49.8	< 50.0	50.0	< 50.0	50.0	< 50.0	50.0
Diesel Range Organics (DRO)		<49.9	<49.9 49.9		50.0	<49.8	49.8	<50.0	50.0	< 50.0	50.0	< 50.0	50.0
Motor Oil Range Hydrocarbons (MRO)		<49.9	<49.9 49.9		50.0	<49.8	49.8	< 50.0	50.0	< 50.0	50.0	< 50.0	50.0
Total TPH		<49.9	49.9	< 50.0	50.0	<49.8	49.8	< 50.0	50.0	< 50.0	50.0	< 50.0	50.0

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Certificate of Analysis Summary 667044

Larson and Associates, Inc., Midland, TX

Project Name: EBDU #37

Project Id:

19-0112-49

Date Received in Lab: Mon 07.13.2020 16:43

Mark Larson **Contact:**

Report Date: 07.24.2020 13:02

Project Manager: Holly Taylor **Project Location:**

	Lab Id:	667044-037		667044-0)38		
Analysis Requested	Field Id:	C-37		C-38			
Anaiysis Requested	Depth:						
	Matrix:	SOIL		SOIL			
	Sampled:	07.13.2020 10:	52	07.13.2020	10:48		
BTEX by EPA 8021B	Extracted:	07.22.2020 16:	30	07.22.2020	16:30		
	Analyzed:	07.23.2020 02:	55	07.23.2020	03:15		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene			00200	< 0.00199	0.00199		
Toluene			00200	0.00857	0.00199		
Ethylbenzene		< 0.00200 0.0	00200	< 0.00199	0.00199		
m,p-Xylenes		<0.00401 0.0	00401	< 0.00398	0.00398		
o-Xylene		< 0.00200 0.0	00200	< 0.00199	0.00199		
Total Xylenes		< 0.00200 0.0	00200	< 0.00199	0.00199		
Total BTEX		0.00502 0.0	00200	0.00857	0.00199		
Chloride by EPA 300	Extracted:	07.16.2020 15:	20	07.16.2020	15:20		
	Analyzed:	07.16.2020 19:	30	07.16.2020	19:49		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		14.6 X	4.99	28.7	5.04		
TPH by SW8015 Mod	Extracted:	07.15.2020 08:	30	07.15.2020	08:30		
	Analyzed:	07.15.2020 19:	00	07.15.2020	19:22		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<49.9	49.9	<49.9	49.9		
Diesel Range Organics (DRO)		<49.9	49.9	<49.9	49.9		
Motor Oil Range Hydrocarbons (MRO)		<49.9	49.9	<49.9	49.9		
Total TPH		<49.9	49.9	<49.9	49.9		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Analytical Report 667044

for

Larson and Associates, Inc.

Project Manager: Mark Larson

EBDU #37 19-0112-49 07.24.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-36), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-25), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-17)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-7)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

07.24.2020

Project Manager: Mark Larson Larson and Associates, Inc. P. O. Box 50685 Midland, TX 79710

Reference: Eurofins Xenco, LLC Report No(s): 667044

EBDU #37
Project Address:

Mark Larson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 667044. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 667044 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

Holly Taylor

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 667044

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
C-1	S	07.13.2020 10:45		667044-001
C-2	S	07.13.2020 10:35		667044-002
C-3	S	07.13.2020 10:30		667044-003
C-4	S	07.13.2020 10:27		667044-004
C-5	S	07.13.2020 10:23		667044-005
C-6	S	07.13.2020 10:20		667044-006
C-7	S	07.13.2020 10:15		667044-007
C-8	S	07.13.2020 10:10		667044-008
C-9	S	07.13.2020 10:05		667044-009
C-10	S	07.13.2020 10:00		667044-010
C-11	S	07.13.2020 09:58		667044-011
C-12	S	07.13.2020 09:55		667044-012
C-13	S	07.13.2020 09:51		667044-013
C-14	S	07.13.2020 09:48		667044-014
C-15	S	07.13.2020 09:45		667044-015
C-16	S	07.13.2020 09:48		667044-016
C-17	S	07.13.2020 09:52		667044-017
C-18	S	07.13.2020 09:56		667044-018
C-19	S	07.13.2020 10:10		667044-019
C-20	S	07.13.2020 10:04		667044-020
C-21	S	07.13.2020 10:08		667044-021
C-22	S	07.13.2020 10:12		667044-022
C-23	S	07.13.2020 10:18		667044-023
C-24	S	07.13.2020 10:22		667044-024
C-25	S	07.13.2020 10:26		667044-025
C-26	S	07.13.2020 10:32		667044-026
C-27	S	07.13.2020 10:36		667044-027
C-28	S	07.13.2020 10:40		667044-028
C-29	S	07.13.2020 10:44		667044-029
C-30	S	07.13.2020 10:48		667044-030
C-31	S	07.13.2020 10:52		667044-031
C-32	S	07.13.2020 10:56		667044-032
C-33	S	07.13.2020 11:00		667044-033
C-34	S	07.13.2020 11:05		667044-034
C-35	S	07.13.2020 11:01		667044-035
C-36	S	07.13.2020 10:52		667044-036
C-37	S	07.13.2020 10:52		667044-037
C-38	S	07.13.2020 10:48		667044-038

CASE NARRATIVE

eurofins Environment Testing Xenco

Client Name: Larson and Associates, Inc.

Project Name: EBDU #37

 Project ID:
 19-0112-49
 Report Date:
 07.24.2020

 Work Order Number(s):
 667044
 Date Received:
 07.13.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3131896 Chloride by EPA 300

Lab Sample ID 667044-037 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 667044-029, -030, -031, -032, -033, -034, -035, -036, -037, -038.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3132080 BTEX by EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected.

Samples affected are: 667044-013.

Lab Sample ID 667044-001 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Benzene, Ethylbenzene, Toluene, m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 667044-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013. The Laboratory Control Sample for Toluene, Benzene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Batch: LBA-3132276 BTEX by EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected. Samples affected are: 667044-017,667044-018,667044-024,667044-022,667044-023,667044-020.

Batch: LBA-3132394 BTEX by EPA 8021B

Surrogate 4-Bromofluorobenzene recovered above QC limits. Matrix interferences is suspected.

Samples affected are: 667044-019.

CASE NARRATIVE

Client Name: Larson and Associates, Inc.

Project Name: EBDU #37

 Project ID:
 19-0112-49
 Report Date:
 07.24.2020

 Work Order Number(s):
 667044
 Date Received:
 07.13.2020

Batch: LBA-3132400 BTEX by EPA 8021B

Lab Sample ID 667044-031 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). m,p-Xylenes, o-Xylene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Ethylbenzene, Toluene recovered below QC limits in the Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 667044-025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038.

The Laboratory Control Sample for Toluene, m,p-Xylenes, Ethylbenzene, o-Xylene is within laboratory Control Limits, therefore the data was accepted.

Ethylbenzene Relative Percent Difference (RPD) between matrix spike and duplicate was above quality control limits.

Samples in the analytical batch are: 667044-025, -026, -027, -028, -029, -030, -031, -032, -033, -034, -035, -036, -037, -038

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-1 Matrix:

Date Prep:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-001

Date Collected: 07.13.2020 10:45

Prep Method: E300P

Tech:

Analyst:

Tech: Analyst:

Analytical Method: Chloride by EPA 300

% Moisture:

CHE

CHE

07.16.2020 11:30

Basis:

Wet Weight

Seq Number: 3131895

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1150	4.96	mg/kg	07.16.2020 16:26		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

DVM ARM

Date Prep:

% Moisture: 07.16.2020 12:00

Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	07.16.2020 14:05	U	1
Diesel Range Organics (DRO)	C10C28DRO	83.3	49.8		mg/kg	07.16.2020 14:05		1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	07.16.2020 14:05	U	1
Total TPH	PHC635	83.3	49.8		mg/kg	07.16.2020 14:05		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	105	%	70-130	07.16.2020 14:05		
o-Terphenyl		84-15-1	106	%	70-130	07.16.2020 14:05		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-1 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-001

Soil Date Collected: 07.13.2020 10:45

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL % Moisture:

KTL Analyst:

Date Prep: 07.17.2020 14:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	07.18.2020 02:55	UX	1
Toluene	108-88-3	< 0.00201	0.00201		mg/kg	07.18.2020 02:55	UX	1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	07.18.2020 02:55	UX	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	07.18.2020 02:55	UX	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	07.18.2020 02:55	UX	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	07.18.2020 02:55	U	1
Total BTEX		< 0.00201	0.00201		mg/kg	07.18.2020 02:55	U	1
Surrogate	Ca	as Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	115	%	70-130	07.18.2020 02:55	
1,4-Difluorobenzene	540-36-3	115	%	70-130	07.18.2020 02:55	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-2 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-002

Soil Date Collected: 07.13.2020 10:35

Analytical Method: Chloride by EPA 300

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Date Prep: 07.16.2020 11:30 Basis:

Wet Weight

Seq Number: 3131895

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	3570	24.9	mg/kg	07.16.2020 16:32		5

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep: 07.16.2020 12:00 Basis:

Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	07.16.2020 14:26	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	07.16.2020 14:26	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	07.16.2020 14:26	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	07.16.2020 14:26	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	97	%	70-130	07.16.2020 14:26		
o-Terphenyl		84-15-1	102	%	70-130	07.16.2020 14:26		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-2

Soil

Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-002

Date Collected: 07.13.2020 10:35

07.17.2020 14:30

Prep Method: SW5035A

Tech:

KTL

Analytical Method: BTEX by EPA 8021B

% Moisture:

Basis:

Wet Weight

KTL Analyst:

Date Prep:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202	mg/kg	07.18.2020 03:15	U	1
Toluene	108-88-3	< 0.00202	0.00202	mg/kg	07.18.2020 03:15	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202	mg/kg	07.18.2020 03:15	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403	mg/kg	07.18.2020 03:15	U	1
o-Xylene	95-47-6	< 0.00202	0.00202	mg/kg	07.18.2020 03:15	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202	mg/kg	07.18.2020 03:15	U	1
Total BTEX		< 0.00202	0.00202	mg/kg	07.18.2020 03:15	U	1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1,4-Difluorobenzene	540-36-3	117	%	70-130	07.18.2020 03:15	
4-Bromofluorobenzene	460-00-4	120	%	70-130	07.18.2020 03:15	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-3 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-003

Soil Date Collected: 07.13.2020 10:30

Analytical Method: Chloride by EPA 300

Prep Method: E300P

CHE Tech:

% Moisture:

Analyst:

CHE

Date Prep: 07.16.2020 11:30 Basis:

Wet Weight

Seq Number: 3131895

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1990	25.0	mg/kg	07.16.2020 16:50		5

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

07.15.2020 12:50

Tech: Analyst: DVM ARM

Date Prep: 07.15.2020 08:30 % Moisture: Basis:

70-130

Wet Weight

Seq Number: 3131823

o-Terphenyl

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 12:50	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 12:50	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 12:50	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 12:50	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	90	%	70-130	07.15.2020 12:50		

95

84-15-1

OCD Ex. 5-0104 Page 17 of 100

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-3 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-003

Soil Date Collected: 07.13.2020 10:30

Prep Method: SW5035A

Analytical Method: BTEX by EPA 8021B

% Moisture:

Tech: Analyst: KTL KTL

Date Prep: 07.17.2020 14:30 Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	07.18.2020 03:36	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	07.18.2020 03:36	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	07.18.2020 03:36	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	07.18.2020 03:36	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	07.18.2020 03:36	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	07.18.2020 03:36	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	07.18.2020 03:36	U	1
Surrogate	Ca	s Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1,4-Difluorobenzene	540-36-3	115	%	70-130	07.18.2020 03:36	
4-Bromofluorobenzene	460-00-4	116	%	70-130	07.18.2020 03:36	

Dil

5

Xenco

Certificate of Analytical Results 667044

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-4

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-004

Soil Date Collected: 07.13.2020 10:27

Prep Method: E300P

CHE Tech:

Analytical Method: Chloride by EPA 300

CHE Analyst:

Date Prep: 07.16.2020 11:30 Basis:

% Moisture:

Wet Weight

Seq Number: 3131895

Result **Parameter** Cas Number RLUnits **Analysis Date** Flag Chloride 16887-00-6 3060 25.2 mg/kg 07.16.2020 16:57

Matrix:

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep: 07.15.2020 08:30 Basis:

Wet Weight

Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	<49.8	49.8		mg/kg	07.15.2020 13:55	U	1
C10C28DRO	<49.8	49.8		mg/kg	07.15.2020 13:55	U	1
PHCG2835	<49.8	49.8		mg/kg	07.15.2020 13:55	U	1
PHC635	<49.8	49.8		mg/kg	07.15.2020 13:55	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	94	%	70-130	07.15.2020 13:55		
8	84-15-1	99	%	70-130	07.15.2020 13:55		
	PHC610 C10C28DRO PHCG2835 PHC635	PHC610 <49.8 C10C28DRO <49.8 PHCG2835 <49.8	PHC610	PHC610	PHC610 <49.8 49.8 mg/kg C10C28DRO <49.8	PHC610 <49.8 49.8 mg/kg 07.15.2020 13:55 C10C28DRO <49.8	PHC610 <49.8 49.8 mg/kg 07.15.2020 13:55 U C10C28DRO <49.8

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-4

Matrix:

Soil

07.17.2020 14:30

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-004

Analytical Method: BTEX by EPA 8021B

Date Collected: 07.13.2020 10:27

Prep Method: SW5035A

T I IZTI

% Moisture:

Tech: KTL

Analyst:

KTL Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	07.18.2020 03:56	U	1
Toluene	108-88-3	0.00262	0.00199		mg/kg	07.18.2020 03:56		1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	07.18.2020 03:56	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	07.18.2020 03:56	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	07.18.2020 03:56	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	07.18.2020 03:56	U	1
Total BTEX		0.00262	0.00199		mg/kg	07.18.2020 03:56		1
Surrogate	Ca	as Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	119	%	70-130	07.18.2020 03:56	
1,4-Difluorobenzene	540-36-3	114	%	70-130	07.18.2020 03:56	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-5 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-005

Soil Date Collected: 07.13.2020 10:23

Prep Method: E300P

Analysis Date

07.16.2020 17:03

Tech:

Analytical Method: Chloride by EPA 300 CHE

07.16.2020 11:30

% Moisture:

Wet Weight

Analyst:

Parameter

Chloride

Seq Number: 3131895

CHE

Date Prep:

RL

4.96

Basis:

Units

mg/kg

Flag

Dil

1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

650

Result

Cas Number

16887-00-6

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 14:17	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 14:17	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 14:17	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 14:17	U	1
Surrogate	(Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	92	%	70-130	07.15.2020 14:17
o-Terphenyl	84-15-1	98	%	70-130	07.15.2020 14:17

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-5 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-005

Soil Date Collected: 07.13.2020 10:23

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

KTL Tech:

% Moisture:

KTL Analyst:

Date Prep: 07.17.2020 14:30 Basis: Wet Weight

07.18.2020 04:17

Seq Number: 3132080

4-Bromofluorobenzene

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.18.2020 04:17	U	1
Toluene	108-88-3	0.00205	0.00200		mg/kg	07.18.2020 04:17		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.18.2020 04:17	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	07.18.2020 04:17	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.18.2020 04:17	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.18.2020 04:17	U	1
Total BTEX		0.00205	0.00200		mg/kg	07.18.2020 04:17		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	113	%	70-130	07.18.2020 04:17		

120

%

70-130

460-00-4

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-6

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-006

Date Collected: 07.13.2020 10:20

Prep Method: E300P

Prep N

% Moisture:

Tech:

Analyst:

Tech:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.16.2020 11:30

07.15.2020 08:30

Basis:

Wet Weight

Seq Number: 3131895

_

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1060	4.99	mg/kg	07.16.2020 17:09		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

ſ

DVM

% Moisture:

Basis: Wet Weight

Analyst: ARM Seq Number: 3131823

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 14:38	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 14:38	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 14:38	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 14:38	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	91	%	70-130	07.15.2020 14:38
o-Terphenyl	84-15-1	94	%	70-130	07.15.2020 14:38

Date Prep:

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-6

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-006

Date Collected: 07.13.2020 10:20

Prep Method: SW5035A

% Moisture:

Tech: Analyst: KTL KTL

Analytical Method: BTEX by EPA 8021B

Date Prep:

07.17.2020 14:30

Basis:

Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.18.2020 04:37	U	1
Toluene	108-88-3	0.00262	0.00200		mg/kg	07.18.2020 04:37		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.18.2020 04:37	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	07.18.2020 04:37	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.18.2020 04:37	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.18.2020 04:37	U	1
Total BTEX		0.00262	0.00200		mg/kg	07.18.2020 04:37		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	123	%	70-130	07.18.2020 04:37		
1,4-Difluorobenzene		540-36-3	114	%	70-130	07.18.2020 04:37		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-7

Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-007

Soil Date Collected: 07.13.2020 10:15

Analytical Method: Chloride by EPA 300

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Date Prep: 07.16.2020 11:30 Basis:

Wet Weight

Seq Number: 3131895

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	12100	101	mø/kø	07.16.2020.17:15		20

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	07.15.2020 15:00	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	07.15.2020 15:00	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	07.15.2020 15:00	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	07.15.2020 15:00	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	95	%	70-130	07.15.2020 15:00		
o-Terphenyl		84-15-1	101	%	70-130	07.15.2020 15:00		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-7

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-007

Date Collected: 07.13.2020 10:15

Prep Method: SW5035A

% Moisture:

Tech:

Analyst:

KTL KTL

Analytical Method: BTEX by EPA 8021B

Date Prep:

Matrix:

07.17.2020 14:30

Basis:

Wet Weight

Parameter	Cas Number	Result	\mathbf{RL}		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.18.2020 04:57	U	1
Toluene	108-88-3	0.00378	0.00200		mg/kg	07.18.2020 04:57		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.18.2020 04:57	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.18.2020 04:57	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.18.2020 04:57	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.18.2020 04:57	U	1
Total BTEX		0.00378	0.00200		mg/kg	07.18.2020 04:57		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1 Promofluorobonzono		460 00 4	126	0/-	70 120	07 18 2020 04:57		

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	126	%	70-130	07.18.2020 04:57	
1,4-Difluorobenzene	540-36-3	118	%	70-130	07.18.2020 04:57	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-8

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-008

Date Collected: 07.13.2020 10:10

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.16.2020 11:30

Basis:

Wet Weight

Seq Number: 3131895

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	24800	250	mg/kg	07.16.2020 17:21		50

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	07.15.2020 15:22	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 15:22	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 15:22	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 15:22	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	99	%	70-130	07.15.2020 15:22		
o-Terphenyl		84-15-1	106	%	70-130	07.15.2020 15:22		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-8

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-008

Date Collected: 07.13.2020 10:10

ac conceted: 07:13:2020 10:10

Prep Method: SW5035A % Moisture:

Tech: Analyst: KTL KTL

Analytical Method: BTEX by EPA 8021B

Date Prep:

07.17.2020 14:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	07.18.2020 05:18	U	1
Toluene	108-88-3	< 0.00198	0.00198		mg/kg	07.18.2020 05:18	U	1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	07.18.2020 05:18	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	07.18.2020 05:18	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	07.18.2020 05:18	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	07.18.2020 05:18	U	1
Total BTEX		< 0.00198	0.00198		mg/kg	07.18.2020 05:18	U	1
Surrogate	Ca	s Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Fla
1,4-Difluorobenzene	540-36-3	117	%	70-130	07.18.2020 05:18	
4-Bromofluorobenzene	460-00-4	127	%	70-130	07.18.2020 05:18	

Dil

5

Certificate of Analytical Results 667044

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-9

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-009

Date Collected: 07.13.2020 10:05

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE

Analytical Method: Chloride by EPA 300

CHE

Date Prep:

07.16.2020 11:30

07.15.2020 08:30

Basis:

Wet Weight

Seq Number: 3131895

Result **Parameter** Cas Number RLUnits **Analysis Date** Flag Chloride 16887-00-6 4160 25.0 mg/kg 07.16.2020 17:27

Analytical Method: TPH by SW8015 Mod

DVM

Tech: Analyst:

ARM

Seq Number: 3131823

Prep Method: SW8015P

% Moisture:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	07.15.2020 15:44	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 15:44	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	07.15.2020 15:44	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	07.15.2020 15:44	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

1-Chlorooctane 111-85-3 07.15.2020 15:44 90 70-130 o-Terphenyl 84-15-1 96 70-130 07.15.2020 15:44

Date Prep:

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-9

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-009

Analytical Method: BTEX by EPA 8021B

KTL

Date Collected: 07.13.2020 10:05

Prep Method: SW5035A

% Moisture:

Tech: KTL

Analyst:

Date Prep:

540-36-3

07.17.2020 14:30

%

70-130

Basis: Wet Weight

07.18.2020 05:38

Seq Number: 3132080

1,4-Difluorobenzene

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	07.18.2020 05:38	U	1
Toluene	108-88-3	0.00438	0.00199		mg/kg	07.18.2020 05:38		1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	07.18.2020 05:38	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	07.18.2020 05:38	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	07.18.2020 05:38	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	07.18.2020 05:38	U	1
Total BTEX		0.00438	0.00199		mg/kg	07.18.2020 05:38		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene	4	160-00-4	123	%	70-130	07.18.2020 05:38		

116

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-10

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-010

Date Collected: 07.13.2020 10:00

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

.

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 2190
 24.9
 mg/kg
 07.21.2020 01:05
 5

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech:
Analyst:

DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	<49.8	49.8		mg/kg	07.15.2020 16:06	U	1
C10C28DRO	<49.8	49.8		mg/kg	07.15.2020 16:06	U	1
PHCG2835	<49.8	49.8		mg/kg	07.15.2020 16:06	U	1
PHC635	<49.8	49.8		mg/kg	07.15.2020 16:06	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	93	%	70-130	07.15.2020 16:06		
:	84-15-1	98	%	70-130	07.15.2020 16:06		
	PHC610 C10C28DRO PHCG2835 PHC635	PHC610 <49.8 C10C28DRO <49.8 PHCG2835 <49.8	PHC610	PHC610	PHC610 <49.8 49.8 mg/kg C10C28DRO <49.8	PHC610 <49.8 49.8 mg/kg 07.15.2020 16:06 C10C28DRO <49.8	PHC610

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-10

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-010

Date Collected: 07.13.2020 10:00

07.17.2020 14:30

Prep Method: SW5035A

Analytical Method: BTEX by EPA 8021B

% Moisture:

Tech: KTL

Analyst:

KTL Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201		mg/kg	07.18.2020 05:59	U	1
Toluene	108-88-3	0.00336	0.00201		mg/kg	07.18.2020 05:59		1
Ethylbenzene	100-41-4	< 0.00201	0.00201		mg/kg	07.18.2020 05:59	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402		mg/kg	07.18.2020 05:59	U	1
o-Xylene	95-47-6	< 0.00201	0.00201		mg/kg	07.18.2020 05:59	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201		mg/kg	07.18.2020 05:59	U	1
Total BTEX		0.00336	0.00201		mg/kg	07.18.2020 05:59		1
Surrogate	Ca	as Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	128	%	70-130	07.18.2020 05:59	
1,4-Difluorobenzene	540-36-3	116	%	70-130	07.18.2020 05:59	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-11 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-011

Soil Date Collected: 07.13.2020 09:58

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil	
Chloride	16887-00-6	44.8	5.01	mg/kg	07.21.2020 01:26		1	

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	07.15.2020 16:27	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 16:27	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 16:27	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	07.15.2020 16:27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	88	%	70-130	07.15.2020 16:27		
o-Terphenyl		84-15-1	92	%	70-130	07.15.2020 16:27		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-11 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-011

Date Collected: 07.13.2020 09:58

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL % Moisture:

KTL

Analyst:

Date Prep:

07.17.2020 14:30

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.18.2020 11:01	U	1
Toluene	108-88-3	0.00539	0.00200		mg/kg	07.18.2020 11:01		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.18.2020 11:01	U	1
m,p-Xylenes	179601-23-1	< 0.00399	0.00399		mg/kg	07.18.2020 11:01	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.18.2020 11:01	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.18.2020 11:01	U	1
Total BTEX		0.00539	0.00200		mg/kg	07.18.2020 11:01		1
Surrogate	Ca	s Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	113	%	70-130	07.18.2020 11:01	
1,4-Difluorobenzene	540-36-3	111	%	70-130	07.18.2020 11:01	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-12 Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-012

Date Collected: 07.13.2020 09:55

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE

Analytical Method: Chloride by EPA 300

CHE

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

Result **Parameter** Cas Number RLChloride 16887-00-6 626

5.03

Units **Analysis Date** mg/kg 07.21.2020 01:32 Flag

Dil 1

Analytical Method: TPH by SW8015 Mod

Tech:

DVM

Analyst: ARM Date Prep:

07.15.2020 08:30

% Moisture:

Prep Method: SW8015P

Basis:

Wet Weight

Flag

Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PHC610	< 50.0	50.0	mg/kg	07.15.2020 16:49	U	1
C10C28DRO	< 50.0	50.0	mg/kg	07.15.2020 16:49	U	1
PHCG2835	< 50.0	50.0	mg/kg	07.15.2020 16:49	U	1
PHC635	< 50.0	50.0	mg/kg	07.15.2020 16:49	U	1
	PHC610 C10C28DRO PHCG2835	PHC610 <50.0 C10C28DRO <50.0 PHCG2835 <50.0	PHC610 <50.0 50.0 C10C28DRO <50.0 50.0 PHCG2835 <50.0 50.0	PHC610 <50.0 50.0 mg/kg C10C28DRO <50.0 50.0 mg/kg PHCG2835 <50.0 50.0 mg/kg	PHC610	PHC610 <50.0 50.0 mg/kg 07.15.2020 16:49 U C10C28DRO <50.0 50.0 mg/kg 07.15.2020 16:49 U PHCG2835 <50.0 50.0 mg/kg 07.15.2020 16:49 U

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	92	%	70-130	07.15.2020 16:49
o-Terphenyl	84-15-1	97	%	70-130	07.15.2020 16:49

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-12

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-012

Soil Date Collected: 07.13.2020 09:55

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL % Moisture:

KTL Analyst:

Date Prep:

Matrix:

07.17.2020 14:30

Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198	mg/kg	07.18.2020 11:22	U	1
Toluene	108-88-3	0.00415	0.00198	mg/kg	07.18.2020 11:22		1
Ethylbenzene	100-41-4	< 0.00198	0.00198	mg/kg	07.18.2020 11:22	U	1
m,p-Xylenes	179601-23-1	< 0.00396	0.00396	mg/kg	07.18.2020 11:22	U	1
o-Xylene	95-47-6	< 0.00198	0.00198	mg/kg	07.18.2020 11:22	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198	mg/kg	07.18.2020 11:22	U	1
Total BTEX		0.00415	0.00198	mg/kg	07.18.2020 11:22		1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	127	%	70-130	07.18.2020 11:22	
1,4-Difluorobenzene	540-36-3	116	%	70-130	07.18.2020 11:22	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-13

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-013

Date Collected: 07.13.2020 09:51

Prep Method: E300P

% Moisture:

Tech: C

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

Analyst:

seq Number. 3132130

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	44.1	4.99	mg/kg	07.21.2020 01:37		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech:
Analyst:

DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	< 50.0	50.0		mg/kg	07.15.2020 17:33	U	1
C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 17:33	U	1
PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 17:33	U	1
PHC635	<50.0	50.0		mg/kg	07.15.2020 17:33	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	99	%	70-130	07.15.2020 17:33		
;	84-15-1	106	%	70-130	07.15.2020 17:33		
	PHC610 C10C28DRO PHCG2835 PHC635	PHC610 <50.0 C10C28DRO <50.0 PHCG2835 <50.0	PHC610	PHC610	PHC610 <50.0 50.0 mg/kg C10C28DRO <50.0	PHC610 <50.0 50.0 mg/kg 07.15.2020 17:33 C10C28DRO <50.0	PHC610 <50.0 50.0 mg/kg 07.15.2020 17:33 U C10C28DRO <50.0

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-13

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-013

Date Collected: 07.13.2020 09:51

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL

% Moisture:

Analyst: KTL

Date Prep: 07.17.2020 14:30

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	07.18.2020 11:42	U	1
Toluene	108-88-3	0.00252	0.00198		mg/kg	07.18.2020 11:42		1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	07.18.2020 11:42	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	07.18.2020 11:42	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	07.18.2020 11:42	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	07.18.2020 11:42	U	1
Total BTEX		0.00252	0.00198		mg/kg	07.18.2020 11:42		1
Surrogate	Ca	s Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1,4-Difluorobenzene	540-36-3	117	%	70-130	07.18.2020 11:42	
4-Bromofluorobenzene	460-00-4	137	%	70-130	07.18.2020 11:42	**

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-14

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-014

Date Collected: 07.13.2020 09:48

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	14.1	4.97	mg/kg	07.21.2020 01:53		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech:
Analyst:

DVM

ARM

Date Prep: 07.15.2020 08:30

Basis:

Wet Weight

Cas Number	Result	\mathbf{RL}		Units	Analysis Date	Flag	Dil
PHC610	<49.9	49.9		mg/kg	07.15.2020 17:55	U	1
C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 17:55	U	1
PHCG2835	<49.9	49.9		mg/kg	07.15.2020 17:55	U	1
PHC635	<49.9	49.9		mg/kg	07.15.2020 17:55	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1	111-85-3	95	%	70-130	07.15.2020 17:55		
8	84-15-1	101	%	70-130	07.15.2020 17:55		
	PHC610 C10C28DRO PHCG2835 PHC635	PHC610 <49.9 C10C28DRO <49.9 PHCG2835 <49.9	PHC610	PHC610	PHC610 <49.9 49.9 mg/kg C10C28DRO <49.9	PHC610 <49.9 49.9 mg/kg 07.15.2020 17:55 C10C28DRO <49.9	PHC610

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-14 Lab Sample Id: 667044-014 Matrix: Soil

Date Received:07.13.2020 16:43

Da

Date Collected: 07.13.2020 09:48

Analytical Method: BTEX by EPA 8021B

AMF

Prep Method: SW5035A

Tech: AMF

Analyst:

% Moisture: Date Prep: 07.21.2020 16:00 Basis:

Seq Number: 3132276

Basis: Wet Weight

Cas Numbe	r Result	\mathbf{RL}		Units	Analysis Date	Flag	Dil
71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 03:09	U	1
108-88-3	0.00570	0.00200		mg/kg	07.22.2020 03:09		1
100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 03:09	U	1
179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 03:09	U	1
95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 03:09	U	1
1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 03:09	U	1
	0.00570	0.00200		mg/kg	07.22.2020 03:09		1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	540-36-3	100	%	70-130	07.22.2020 03:09		
	460-00-4	117	%	70-130	07.22.2020 03:09		
	71-43-2 108-88-3 100-41-4 179601-23-1 95-47-6	71-43-2 <0.00200 108-88-3 0.00570 100-41-4 <0.00200 179601-23-1 <0.00400 95-47-6 <0.00200 1330-20-7 <0.00200 0.00570 Cas Number 540-36-3	71-43-2	71-43-2	71-43-2	71-43-2	71-43-2

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-15 Lab Sample Id: 667044-015

Soil

Date Collected: 07.13.2020 09:45

Analytical Method: Chloride by EPA 300

Prep Method: E300P

CHE Tech:

CHE

% Moisture:

Date Prep: 07.20.2020 12:45 Basis:

Wet Weight

Date Received:07.13.2020 16:43

Seq Number: 3132156

Result **Parameter** Cas Number RLUnits **Analysis Date** Dil Flag Chloride 16887-00-6 24.3 4.96 mg/kg 07.21.2020 01:58 1

Matrix:

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst:

Analyst:

DVM ARM

Date Prep: 07.15.2020 08:30 Basis:

Wet Weight

Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	<49.9	49.9		mg/kg	07.15.2020 18:17	U	1
C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 18:17	U	1
PHCG2835	<49.9	49.9		mg/kg	07.15.2020 18:17	U	1
PHC635	<49.9	49.9		mg/kg	07.15.2020 18:17	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	93	%	70-130	07.15.2020 18:17		
:	84-15-1	99	%	70-130	07.15.2020 18:17		
	PHC610 C10C28DRO PHCG2835 PHC635	PHC610 <49.9 C10C28DRO <49.9 PHCG2835 <49.9	PHC610	PHC610	PHC610 <49.9 49.9 mg/kg C10C28DRO <49.9	PHC610 <49.9 49.9 mg/kg 07.15.2020 18:17 C10C28DRO <49.9	PHC610

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-15

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-015

Date Collected: 07.13.2020 09:45

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: AMF

% Moisture:

Analyst: AMF

Date Prep: 07.21.2020 16:00

Basis: Wet

Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 03:29	U	1
Toluene	108-88-3	0.00254	0.00200		mg/kg	07.22.2020 03:29		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 03:29	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 03:29	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 03:29	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 03:29	U	1
Total BTEX		0.00254	0.00200		mg/kg	07.22.2020 03:29		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	101	%	70-130	07.22.2020 03:29		
4-Bromofluorobenzene		460-00-4	121	%	70-130	07.22.2020 03:29		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-16

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-016

Date Collected: 07.13.2020 09:48

Prep Method: E300P

% Moisture:

Tech:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Analyst:

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	229	5.04	mg/kg	07.21.2020.02:03		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech:
Analyst:

DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 18:38	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 18:38	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 18:38	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	07.15.2020 18:38	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	98	%	70-130	07.15.2020 18:38		
o-Terphenyl		84-15-1	104	%	70-130	07.15.2020 18:38		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-16

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-016

Date Collected: 07.13.2020 09:48

Prep Method: SW5035A

% Moisture:

Tech: Al

AMF AMF

Analytical Method: BTEX by EPA 8021B

Date Prep: 07.21.2020 16:00

Basis:

Wet Weight

Analyst: AMF Seq Number: 3132276

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 03:50	U	1
Toluene	108-88-3	0.00552	0.00200		mg/kg	07.22.2020 03:50		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 03:50	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 03:50	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 03:50	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 03:50	U	1
Total BTEX		0.00552	0.00200		mg/kg	07.22.2020 03:50		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	130	%	70-130	07.22.2020 03:50		
1.4-Difluorobenzene		540-36-3	105	%	70-130	07.22.2020 03:50		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-17

Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-017

Matrix: Soil
Date Collected: 07.13.2020 09:52

Analytical Method: Chloride by EPA 300

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Date Prep: 07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 927
 5.03
 mg/kg
 07.21.2020 02:08
 1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

70-130

Tech: Analyst: DVM ARM

Date Prep: 07.15.2020 08:30

Basis: Wet Weight

07.15.2020 19:00

Seq Number: 3131823

o-Terphenyl

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	07.15.2020 19:00	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 19:00	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	07.15.2020 19:00	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	07.15.2020 19:00	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	94	%	70-130	07.15.2020 19:00		

100

84-15-1

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-17

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-017

Date Collected: 07.13.2020 09:52

Prep Method: SW5035A

Dro

70-130

% Moisture:

07.22.2020 04:10

Tech: AM

Analyst:

AMF AMF

Analytical Method: BTEX by EPA 8021B

Date Prep:

07.21.2020 16:00

%

Basis:

Wet Weight

Seq Number: 3132276

4-Bromofluorobenzene

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 04:10	U	1
Toluene	108-88-3	0.00275	0.00200		mg/kg	07.22.2020 04:10		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 04:10	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 04:10	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 04:10	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 04:10	U	1
Total BTEX		0.00275	0.00200		mg/kg	07.22.2020 04:10		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene	:	540-36-3	106	%	70-130	07.22.2020 04:10		

136

460-00-4

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-18

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-018

Date Collected: 07.13.2020 09:56

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

CHE

% Moisture:

Analyst:

CHE

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	227	5.00	mg/kg	07.21.2020 02:13		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	< 50.0	50.0		mg/kg	07.15.2020 19:22	U	1
C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 19:22	U	1
PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 19:22	U	1
PHC635	<50.0	50.0		mg/kg	07.15.2020 19:22	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	90	%	70-130	07.15.2020 19:22		
	84-15-1	93	%	70-130	07.15.2020 19:22		
	PHC610 C10C28DRO PHCG2835 PHC635	PHC610 <50.0 C10C28DRO <50.0 PHCG2835 <50.0	PHC610	PHC610	PHC610 <50.0 50.0 mg/kg C10C28DRO <50.0	PHC610 <50.0 50.0 mg/kg 07.15.2020 19:22 C10C28DRO <50.0	PHC610 <50.0 50.0 mg/kg 07.15.2020 19:22 U C10C28DRO <50.0

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-18 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-018

Soil Date Collected: 07.13.2020 09:56

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: **AMF**

% Moisture:

AMF Analyst:

Date Prep:

07.21.2020 16:00

Basis:

Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 04:30	U	1
Toluene	108-88-3	0.00722	0.00200		mg/kg	07.22.2020 04:30		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 04:30	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 04:30	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 04:30	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 04:30	U	1
Total BTEX		0.00722	0.00200		mg/kg	07.22.2020 04:30		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	105	%	70-130	07.22.2020 04:30		
4-Bromofluorobenzene		460-00-4	132	%	70-130	07.22.2020 04:30	**	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-19

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-019

Date Collected: 07.13.2020 10:10

Prep Method: E300P

% Moisture:

Tech: CH

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 60.6
 4.98
 mg/kg
 07.21.2020 02:19
 1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep: 07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	07.15.2020 19:43	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 19:43	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 19:43	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 19:43	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	89	%	70-130	07.15.2020 19:43		
o-Terphenyl		84-15-1	95	%	70-130	07.15.2020 19:43		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-19

KTL

Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-019

Date Collected: 07.13.2020 10:10

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL % Moisture:

Analyst:

Date Prep: 07.22.2020 08:00 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199	mg/kg	07.22.2020 09:17	U	1
Toluene	108-88-3	0.00557	0.00199	mg/kg	07.22.2020 09:17		1
Ethylbenzene	100-41-4	< 0.00199	0.00199	mg/kg	07.22.2020 09:17	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398	mg/kg	07.22.2020 09:17	U	1
o-Xylene	95-47-6	< 0.00199	0.00199	mg/kg	07.22.2020 09:17	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199	mg/kg	07.22.2020 09:17	U	1
Total BTEX		0.00557	0.00199	mg/kg	07.22.2020 09:17		1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	131	%	70-130	07.22.2020 09:17	**
1,4-Difluorobenzene	540-36-3	105	%	70-130	07.22.2020 09:17	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-20 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-020

Date Collected: 07.13.2020 10:04

Prep Method: E300P

% Moisture:

Wet Weight

CHE Tech:

Seq Number: 3132156

Analytical Method: Chloride by EPA 300

CHE

Date Prep:

Result

07.20.2020 12:45

Basis:

Parameter

Analyst:

Chloride

Cas Number 16887-00-6

RL44.3

5.03

mg/kg

Units

Analysis Date 07.21.2020 02:34

Dil Flag 1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM

ARM

Date Prep: 07.15.2020 08:30 Basis:

Wet Weight

Flag

Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
PHC610	<49.9	49.9	mg/kg	07.15.2020 20:04	U	1
C10C28DRO	<49.9	49.9	mg/kg	07.15.2020 20:04	U	1
PHCG2835	<49.9	49.9	mg/kg	07.15.2020 20:04	U	1
PHC635	<49.9	49.9	mg/kg	07.15.2020 20:04	U	1
]	PHC610 C10C28DRO PHCG2835	PHC610 <49.9 C10C28DRO <49.9 PHCG2835 <49.9	PHC610 <49.9 49.9 C10C28DRO <49.9 49.9 PHCG2835 <49.9 49.9	PHC610 <49.9 49.9 mg/kg C10C28DRO <49.9 49.9 mg/kg PHCG2835 <49.9 49.9 mg/kg	PHC610	PHC610

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date]
1-Chlorooctane	111-85-3	91	%	70-130	07.15.2020 20:04	
o-Terphenyl	84-15-1	95	%	70-130	07.15.2020 20:04	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-20 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-020

Date Collected: 07.13.2020 10:04

Prep Method: SW5035A

% Moisture:

AMF Tech:

Analyst:

AMF

Analytical Method: BTEX by EPA 8021B

Date Prep: 07.21.2020 16:00 Basis:

Wet Weight

Seq Number: 3132276

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 04:51	U	1
Toluene	108-88-3	0.00968	0.00200		mg/kg	07.22.2020 04:51		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 04:51	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 04:51	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 04:51	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 04:51	U	1
Total BTEX		0.00968	0.00200		mg/kg	07.22.2020 04:51		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	105	%	70-130	07.22.2020 04:51		
4-Bromofluorobenzene		460-00-4	136	%	70-130	07.22.2020 04:51	**	

Xenco

Certificate of Analytical Results 667044

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-21

Matrix:

Soil

07.20.2020 12:45

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-021

Date Collected: 07.13.2020 10:08

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Analyst:

Tech:

CHE Date Prep:

Basis:

Wet Weight

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1290	4.96	mg/kg	07.21.2020 02:40		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

DVM

% Moisture:

Analyst: ARM

Date Prep: 07.15.2020 08:30 Basis:

Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 20:26	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 20:26	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 20:26	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	07.15.2020 20:26	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	93	%	70-130	07.15.2020 20:26		
o-Terphenyl		84-15-1	97	%	70-130	07.15.2020 20:26		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-21 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-021

Date Collected: 07.13.2020 10:08

07.21.2020 16:00

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: **AMF**

Date Prep:

% Moisture:

Basis:

Wet Weight

AMF Analyst:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200	mg/kg	07.22.2020 05:11	U	1
Toluene	108-88-3	0.00705	0.00200	mg/kg	07.22.2020 05:11		1
Ethylbenzene	100-41-4	< 0.00200	0.00200	mg/kg	07.22.2020 05:11	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400	mg/kg	07.22.2020 05:11	U	1
o-Xylene	95-47-6	< 0.00200	0.00200	mg/kg	07.22.2020 05:11	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200	mg/kg	07.22.2020 05:11	U	1
Total BTEX		0.00705	0.00200	mg/kg	07.22.2020 05:11		1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	129	%	70-130	07.22.2020 05:11	
1,4-Difluorobenzene	540-36-3	103	%	70-130	07.22.2020 05:11	

Dil

1

Certificate of Analytical Results 667044

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-22 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-022

Soil Date Collected: 07.13.2020 10:12

4.99

mg/kg

70-130

70-130

Prep Method: E300P

Tech:

CHE CHE

Analytical Method: Chloride by EPA 300

% Moisture:

Basis:

Wet Weight

Seq Number: 3132156

Result **Parameter** Cas Number RLUnits **Analysis Date** Flag 704

16887-00-6

Date Prep:

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

07.15.2020 20:47

07.15.2020 20:47

07.21.2020 02:55

% Moisture:

Tech: Analyst:

Analyst:

Chloride

DVM ARM

Date Prep:

111-85-3

84-15-1

07.15.2020 08:30

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3131823

1-Chlorooctane

o-Terphenyl

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 20:47	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 20:47	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 20:47	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 20:47	U	1
Surrogate	C	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

91

95

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-22

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-022

Analytical Method: BTEX by EPA 8021B

AMF

Date Collected: 07.13.2020 10:12

Prep Method: SW5035A

% Moisture:

Tech: AMF

Analyst:

Date Prep:

07.21.2020 16:00

Basis:

Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 05:32	U	1
Toluene	108-88-3	0.00493	0.00200		mg/kg	07.22.2020 05:32		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 05:32	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 05:32	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 05:32	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 05:32	U	1
Total BTEX		0.00493	0.00200		mg/kg	07.22.2020 05:32		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	137	%	70-130	07.22.2020 05:32	**	
1,4-Difluorobenzene		540-36-3	103	%	70-130	07.22.2020 05:32		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-23 Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-023

Date Collected: 07.13.2020 10:18

Prep Method: E300P

CHE Tech:

Analytical Method: Chloride by EPA 300

% Moisture:

Analyst:

CHE

Date Prep:

07.20.2020 12:45

07.15.2020 08:30

Basis:

Wet Weight

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	6200	49.5	mg/kg	07.21.2020 03:00		10

Analytical Method: TPH by SW8015 Mod

DVM

Analyst: ARM Seq Number: 3131827

Tech:

Prep Method: SW8015P

% Moisture:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	07.15.2020 12:50	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 12:50	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	07.15.2020 12:50	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	07.15.2020 12:50	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	88	%	70-130	07.15.2020 12:50
o-Terphenyl	84-15-1	85	%	70-130	07.15.2020 12:50

Date Prep:

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-23 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-023

Date Collected: 07.13.2020 10:18

Prep Method: SW5035A

Tech:

AMF

Analytical Method: BTEX by EPA 8021B

% Moisture:

AMF Analyst:

Date Prep:

07.21.2020 16:00

Basis:

Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 05:52	U	1
Toluene	108-88-3	0.00339	0.00200		mg/kg	07.22.2020 05:52		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 05:52	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 05:52	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 05:52	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 05:52	U	1
Total BTEX		0.00339	0.00200		mg/kg	07.22.2020 05:52		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	134	%	70-130	07.22.2020 05:52	**	
1,4-Difluorobenzene		540-36-3	103	%	70-130	07.22.2020 05:52		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-24 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-024

Analytical Method: Chloride by EPA 300

Date Collected: 07.13.2020 10:22

07.20.2020 12:45

Prep Method: E300P

CHE Tech:

Analyst:

CHE Date Prep: % Moisture:

Basis:

Wet Weight

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1110	4.97	mg/kg	07.21.2020 03:06		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep: 07.15.2020 08:30 Basis: Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 13:55	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 13:55	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 13:55	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 13:55	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	81	%	70-130	07.15.2020 13:55		
o-Terphenyl		84-15-1	85	%	70-130	07.15.2020 13:55		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-24 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-024

Date Collected: 07.13.2020 10:22

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: **AMF** % Moisture:

AMF Analyst:

Date Prep: 07.21.2020 16:00 Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 06:13	U	1
Toluene	108-88-3	0.00732	0.00200		mg/kg	07.22.2020 06:13		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 06:13	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 06:13	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 06:13	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 06:13	U	1
Total BTEX		0.00732	0.00200		mg/kg	07.22.2020 06:13		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4 December of Lyanghamaana		160 00 1	122	0/	70.120	07 22 2020 06.12	ak ak	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	133	%	70-130	07.22.2020 06:13	**
1,4-Difluorobenzene	540-36-3	103	%	70-130	07.22.2020 06:13	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-25 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-025

Soil Date Collected: 07.13.2020 10:26

Prep Method: E300P

Tech:

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

CHE Analyst:

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	254	5.02	mg/kg	07.21.2020.03:11		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	07.15.2020 14:17	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 14:17	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	07.15.2020 14:17	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	07.15.2020 14:17	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	77	%	70-130	07.15.2020 14:17		
o-Terphenyl		84-15-1	80	%	70-130	07.15.2020 14:17		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-25 Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-025

Date Collected: 07.13.2020 10:26

07.22.2020 16:30

Prep Method: SW5035A

Tech:

KTL

Analytical Method: BTEX by EPA 8021B

Date Prep:

% Moisture:

Basis:

Wet Weight

KTL Analyst:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00201	0.00201	mg/kg	07.22.2020 21:47	U	1
Toluene	108-88-3	0.00464	0.00201	mg/kg	07.22.2020 21:47		1
Ethylbenzene	100-41-4	< 0.00201	0.00201	mg/kg	07.22.2020 21:47	U	1
m,p-Xylenes	179601-23-1	< 0.00402	0.00402	mg/kg	07.22.2020 21:47	U	1
o-Xylene	95-47-6	< 0.00201	0.00201	mg/kg	07.22.2020 21:47	U	1
Total Xylenes	1330-20-7	< 0.00201	0.00201	mg/kg	07.22.2020 21:47	U	1
Total BTEX		0.00464	0.00201	mg/kg	07.22.2020 21:47		1

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1,4-Difluorobenzene	540-36-3	115	%	70-130	07.22.2020 21:47	
4-Bromofluorobenzene	460-00-4	98	%	70-130	07.22.2020 21:47	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-26 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-026

Soil Date Collected: 07.13.2020 10:32

Prep Method: E300P

Tech:

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

CHE Analyst:

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	5280	25.0	mg/kg	07.21.2020 03:16		5

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep: 07.15.2020 08:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 14:38	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 14:38	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 14:38	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 14:38	U	1
Surrogate	C	as Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	89	%	70-130	07.15.2020 14:38
o-Terphenyl	84-15-1	91	%	70-130	07.15.2020 14:38

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-26 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-026

Soil Date Collected: 07.13.2020 10:32

07.22.2020 16:30

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech:

% Moisture:

KTL KTL Analyst:

Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 22:08	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	07.22.2020 22:08	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 22:08	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	07.22.2020 22:08	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 22:08	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 22:08	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	07.22.2020 22:08	U	1
Surrogate	Ca	as Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Fla
1,4-Difluorobenzene	540-36-3	116	%	70-130	07.22.2020 22:08	
4-Bromofluorobenzene	460-00-4	101	%	70-130	07.22.2020 22:08	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-27

Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-027

CHE

Soil Date Collected: 07.13.2020 10:36

Prep Method: E300P

Analytical Method: Chloride by EPA 300

CHE Tech:

% Moisture:

Wet Weight

Seq Number: 3132156

Analyst:

Date Prep: 07.20.2020 12:45 Basis:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	1210	4.99	mg/kg	07.21.2020 03:21		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM

ARM

Date Prep: 07.15.2020 08:30 Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	07.15.2020 15:00	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 15:00	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	07.15.2020 15:00	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	07.15.2020 15:00	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	87	%	70-130	07.15.2020 15:00		
o-Terphenyl		84-15-1	90	%	70-130	07.15.2020 15:00		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-27

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-027

Analytical Method: BTEX by EPA 8021B

Date Collected: 07.13.2020 10:36

Prep Method: SW5035A

07.22.2020 22:28

Tech: KTL

Date Prep:

07.22.2020 16:30 Basis

mg/kg

% Moisture: Basis:

Wet Weight

Analyst: KTL Seq Number: 3132400

Total BTEX

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200	mg/kg	07.22.2020 22:28	U	1
Toluene	108-88-3	0.00482	0.00200	mg/kg	07.22.2020 22:28		1
Ethylbenzene	100-41-4	< 0.00200	0.00200	mg/kg	07.22.2020 22:28	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401	mg/kg	07.22.2020 22:28	U	1
o-Xylene	95-47-6	< 0.00200	0.00200	mg/kg	07.22.2020 22:28	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200	mg/kg	07.22.2020 22:28	U	1

0.00200

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	107	%	70-130	07.22.2020 22:28	
1,4-Difluorobenzene	540-36-3	111	%	70-130	07.22.2020 22:28	

0.00482

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-28

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-028

Date Collected: 07.13.2020 10:40

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.20.2020 12:45

Basis:

Wet Weight

Seq Number: 3132156

_

 Parameter
 Cas Number
 Result
 RL
 Units
 Analysis Date
 Flag
 Dil

 Chloride
 16887-00-6
 8280
 49.7
 mg/kg
 07.21.2020 03:27
 10

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech:
Analyst:

DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	49.8		mg/kg	07.15.2020 15:22	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	49.8		mg/kg	07.15.2020 15:22	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	49.8		mg/kg	07.15.2020 15:22	U	1
Total TPH	PHC635	<49.8	49.8		mg/kg	07.15.2020 15:22	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	91	%	70-130	07.15.2020 15:22
o-Terphenyl	84-15-1	94	%	70-130	07.15.2020 15:22

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-28

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-028

Date Collected: 07.13.2020 10:40

Prep Method: SW5035A

% Moisture:

Tech: KTL

Analyst:

KTL

Analytical Method: BTEX by EPA 8021B

Date Prep: 07.22.2020 16:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 22:49	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	07.22.2020 22:49	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 22:49	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	07.22.2020 22:49	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 22:49	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 22:49	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	07.22.2020 22:49	U	1
Surrogate	Ca	s Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
1,4-Difluorobenzene	540-36-3	110	%	70-130	07.22.2020 22:49	
4-Bromofluorobenzene	460-00-4	108	%	70-130	07.22.2020 22:49	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-29 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-029

Soil Date Collected: 07.13.2020 10:44

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 07.16.2020 15:20 Basis:

Wet Weight

Seq Number: 3131896

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	197	5.03	mg/kg	07.16.2020 18:23		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep: 07.15.2020 08:30 Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 15:44	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 15:44	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 15:44	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	07.15.2020 15:44	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	88	%	70-130	07.15.2020 15:44		
o-Terphenyl		84-15-1	85	%	70-130	07.15.2020 15:44		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-29 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-029

Date Collected: 07.13.2020 10:44

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

KTL Tech:

% Moisture:

KTL

Analyst:

Date Prep: 07.22.2020 16:30 Basis: Wet Weight

07.22.2020 23:09

Seq Number: 3132400

1,4-Difluorobenzene

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	07.22.2020 23:09	U	1
Toluene	108-88-3	0.00906	0.00199		mg/kg	07.22.2020 23:09		1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	07.22.2020 23:09	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	07.22.2020 23:09	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	07.22.2020 23:09	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	07.22.2020 23:09	U	1
Total BTEX		0.00906	0.00199		mg/kg	07.22.2020 23:09		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	113	%	70-130	07.22.2020 23:09		

110

%

70-130

540-36-3

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-30 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-030

Date Collected: 07.13.2020 10:48

Analytical Method: Chloride by EPA 300

CHE

Prep Method: E300P

CHE Tech:

% Moisture:

Analyst:

Date Prep:

07.16.2020 15:20

07.15.2020 08:30

Basis:

Wet Weight

Seq Number: 3131896

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	264	4.96	mg/kg	07.16.2020 18:04	X	1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

Tech:

DVM

% Moisture:

Basis: Wet Weight

Analyst: ARM Seq Number: 3131827

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	07.15.2020 16:06	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 16:06	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 16:06	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 16:06	U	1
Surrogate	C	as Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	
1-Chlorooctane	111-85-3	82	%	70-130	07.15.2020 16:06	
o-Terphenyl	84-15-1	84	%	70-130	07.15.2020 16:06	

Date Prep:

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-30 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-030

Date Collected: 07.13.2020 10:48

Prep Method: SW5035A

% Moisture:

Tech:

KTL KTL

Analytical Method: BTEX by EPA 8021B

Date Prep: 07.22.2020 16:30 Basis: Wet Weight

Seq Number: 3132400

Analyst:

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	07.22.2020 23:30	U	1
Toluene	108-88-3	0.00556	0.00198		mg/kg	07.22.2020 23:30		1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	07.22.2020 23:30	U	1
m,p-Xylenes	179601-23-1	< 0.00396	0.00396		mg/kg	07.22.2020 23:30	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	07.22.2020 23:30	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	07.22.2020 23:30	U	1
Total BTEX		0.00556	0.00198		mg/kg	07.22.2020 23:30		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	111	%	70-130	07.22.2020 23:30		
4-Bromofluorobenzene		460-00-4	115	%	70-130	07.22.2020 23:30		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id:

C-31

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-031

Date Collected: 07.13.2020 10:52

Tech:

Analyst:

Analytical Method: Chloride by EPA 300

CHE

CHE

Date Prep:

07.16.2020 15:20

07.15.2020 08:30

% Moisture:

Basis:

Prep Method: E300P

Wet Weight

Seq Number: 3131896

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	42.1	4.99	mg/kg	07.16.2020 18:29		1

Analytical Method: TPH by SW8015 Mod

DVM Tech:

ARM

Analyst: Seq Number: 3131827 Prep Method: SW8015P

% Moisture:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	07.15.2020 16:27	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 16:27	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	07.15.2020 16:27	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	07.15.2020 16:27	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Date Prep:

111-85-3 07.15.2020 16:27 1-Chlorooctane 84 70-130 o-Terphenyl 84-15-1 84 70-130 07.15.2020 16:27

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-31 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-031

Date Collected: 07.13.2020 10:52

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL % Moisture:

KTL

Analyst:

Date Prep: 07.22.2020 16:30 Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.22.2020 23:50	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	07.22.2020 23:50	UX	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.22.2020 23:50	UXF	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.22.2020 23:50	UX	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.22.2020 23:50	UX	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.22.2020 23:50	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	07.22.2020 23:50	U	1
Surrogate	Ca	s Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	115	%	70-130	07.22.2020 23:50	
1,4-Difluorobenzene	540-36-3	106	%	70-130	07.22.2020 23:50	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-32

Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-032

Date Collected: 07.13.2020 10:56

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.16.2020 15:20

Basis:

Wet Weight

Seq Number: 3131896

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	867	4.97	mg/kg	07.16.2020 18:35		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 16:49	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 16:49	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 16:49	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	07.15.2020 16:49	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	89	%	70-130	07.15.2020 16:49		
o-Terphenyl		84-15-1	86	%	70-130	07.15.2020 16:49		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-32 Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-032

Date Collected: 07.13.2020 10:56

Prep Method: SW5035A

Tech: KTL

Analytical Method: BTEX by EPA 8021B

% Moisture:

Analyst:

KTL

Date Prep:

07.22.2020 16:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	07.23.2020 00:11	U	1
Toluene	108-88-3	0.00325	0.00199		mg/kg	07.23.2020 00:11		1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	07.23.2020 00:11	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	07.23.2020 00:11	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	07.23.2020 00:11	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	07.23.2020 00:11	U	1
Total BTEX		0.00325	0.00199		mg/kg	07.23.2020 00:11		1
Surrogate	Ca	as Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag
4-Bromofluorobenzene	460-00-4	118	%	70-130	07.23.2020 00:11	
1,4-Difluorobenzene	540-36-3	108	%	70-130	07.23.2020 00:11	

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-33

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-033

Date Collected: 07.13.2020 11:00

Analytical Method: Chloride by EPA 300

CHE

Prep Method: E300P

Tech: CHE

Analyst:

Date Prep:

% Moisture:

Basis:

Wet Weight

Seq Number: 3131896

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	553	4.99	mg/kg	07.16.2020 18:41		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech:

Analyst:

DVM ARM

Date Prep:

07.15.2020 08:30

07.16.2020 15:20

Basis:

Wet Weight

Parameter	Cas Numbe	er Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.8	3 49.8		mg/kg	07.15.2020 17:33	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.8	3 49.8		mg/kg	07.15.2020 17:33	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.8	3 49.8		mg/kg	07.15.2020 17:33	U	1
Total TPH	PHC635	<49.8	3 49.8		mg/kg	07.15.2020 17:33	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	85	%	70-130	07.15.2020 17:33		
o-Terphenyl		84-15-1	88	%	70-130	07.15.2020 17:33		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-33 Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-033

Date Collected: 07.13.2020 11:00

Prep Method: SW5035A

% Moisture:

Tech:

Analyst:

KTL KTL

Analytical Method: BTEX by EPA 8021B

Date Prep:

07.22.2020 16:30

Basis:

Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	07.23.2020 00:31	U	1
Toluene	108-88-3	0.00712	0.00199		mg/kg	07.23.2020 00:31		1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	07.23.2020 00:31	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	07.23.2020 00:31	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	07.23.2020 00:31	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	07.23.2020 00:31	U	1
Total BTEX		0.00712	0.00199		mg/kg	07.23.2020 00:31		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	118	%	70-130	07.23.2020 00:31		
1,4-Difluorobenzene		540-36-3	107	%	70-130	07.23.2020 00:31		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-34 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-034

Soil Date Collected: 07.13.2020 11:05

Prep Method: E300P

Tech:

Analyst:

Tech: Analyst: CHE

Analytical Method: Chloride by EPA 300

% Moisture:

CHE

Date Prep:

07.16.2020 15:20

07.15.2020 08:30

Basis:

Wet Weight

Seq Number: 3131896

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	242	5.00	mg/kg	07.16.2020 18:59		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

DVM

ARM

% Moisture:

Basis: Wet Weight

Seq Number: 3131827

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 17:55	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 17:55	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 17:55	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 17:55	U	1
Surrogate	(Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	88	%	70-130	07.15.2020 17:55
o-Terphenyl	84-15-1	88	%	70-130	07.15.2020 17:55

Date Prep:

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-34

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-034

Analytical Method: BTEX by EPA 8021B

KTL

Date Collected: 07.13.2020 11:05

07.22.2020 16:30

Prep Method: SW5035A

% Moisture:

Tech: KTL

Analyst:

Date Prep:

Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	07.23.2020 00:52	U	1
Toluene	108-88-3	0.00781	0.00199		mg/kg	07.23.2020 00:52		1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	07.23.2020 00:52	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	07.23.2020 00:52	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	07.23.2020 00:52	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	07.23.2020 00:52	U	1
Total BTEX		0.00781	0.00199		mg/kg	07.23.2020 00:52		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	123	%	70-130	07.23.2020 00:52		
1,4-Difluorobenzene		540-36-3	108	%	70-130	07.23.2020 00:52		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-35 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-035

Analytical Method: Chloride by EPA 300

Date Collected: 07.13.2020 11:01

Prep Method: E300P

CHE Tech:

% Moisture:

CHE Analyst:

Date Prep:

07.16.2020 15:20

Basis:

Wet Weight

Seq Number: 3131896

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.23	5.03	mg/kg	07.16.2020 19:06		1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Number	r Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<50.0	50.0		mg/kg	07.15.2020 18:17	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 18:17	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 18:17	U	1
Total TPH	PHC635	<50.0	50.0		mg/kg	07.15.2020 18:17	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	95	%	70-130	07.15.2020 18:17		
o-Terphenyl		84-15-1	93	%	70-130	07.15.2020 18:17		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-35

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-035

Analytical Method: BTEX by EPA 8021B

Date Collected: 07.13.2020 11:01

70-130

Prep Method: SW5035A

% Moisture:

Tech: KTL

Analyst:

ı: KTL lyst: KTL

Date Prep: 07.22.2020 16:30

Basis:

07.23.2020 02:14

Wet Weight

Seq Number: 3132400

4-Bromofluorobenzene

Parameter	Cas Number	Result	\mathbf{RL}		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00198	0.00198		mg/kg	07.23.2020 02:14	U	1
Toluene	108-88-3	0.00876	0.00198		mg/kg	07.23.2020 02:14		1
Ethylbenzene	100-41-4	< 0.00198	0.00198		mg/kg	07.23.2020 02:14	U	1
m,p-Xylenes	179601-23-1	< 0.00397	0.00397		mg/kg	07.23.2020 02:14	U	1
o-Xylene	95-47-6	< 0.00198	0.00198		mg/kg	07.23.2020 02:14	U	1
Total Xylenes	1330-20-7	< 0.00198	0.00198		mg/kg	07.23.2020 02:14	U	1
Total BTEX		0.00876	0.00198		mg/kg	07.23.2020 02:14		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	111	%	70-130	07.23.2020 02:14		

96

460-00-4

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-36 Matrix:

Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-036

Date Collected: 07.13.2020 10:52

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.16.2020 15:20

Basis:

Wet Weight

Seq Number: 3131896

Result **Parameter** Cas Number RLUnits **Analysis Date** Dil Flag Chloride 16887-00-6 64.4 5.05 mg/kg 07.16.2020 19:12 1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM

ARM

Date Prep: 07.15.2020 08:30 Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.0	50.0		mg/kg	07.15.2020 18:38	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.0	50.0		mg/kg	07.15.2020 18:38	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.0	50.0		mg/kg	07.15.2020 18:38	U	1
Total TPH	PHC635	< 50.0	50.0		mg/kg	07.15.2020 18:38	U	1
Surrogate	C	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	84	%	70-130	07.15.2020 18:38
o-Terphenyl	84-15-1	89	%	70-130	07.15.2020 18:38

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-36 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-036

Date Collected: 07.13.2020 10:52

Analytical Method: BTEX by EPA 8021B

Prep Method: SW5035A

Tech: KTL

% Moisture:

Analyst:

KTL

Date Prep: 07.22.2020 16:30 Basis: Wet Weight

Parameter	Cas Number	r Result	\mathbf{RL}		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.23.2020 02:34	U	1
Toluene	108-88-3	0.00478	0.00200		mg/kg	07.23.2020 02:34		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.23.2020 02:34	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	07.23.2020 02:34	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.23.2020 02:34	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.23.2020 02:34	U	1
Total BTEX		0.00478	0.00200		mg/kg	07.23.2020 02:34		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	118	%	70-130	07.23.2020 02:34		

3					0 0				
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.23.2020 02:34	U	1	
Total BTEX		0.00478	0.00200		mg/kg	07.23.2020 02:34		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
4-Bromofluorobenzene		460-00-4	118	%	70-130	07.23.2020 02:34			
1,4-Difluorobenzene		540-36-3	107	%	70-130	07.23.2020 02:34			

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-37 Matrix:

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-037

Soil Date Collected: 07.13.2020 10:52

Analytical Method: Chloride by EPA 300

Prep Method: E300P

CHE Tech:

% Moisture:

CHE

Analyst:

Date Prep: 07.16.2020 15:20 Basis:

Wet Weight

Seq Number: 3131896

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	14.6	4.99	mg/kg	07.16.2020 19:30	X	1

Analytical Method: TPH by SW8015 Mod

Prep Method: SW8015P

% Moisture:

Tech: Analyst: DVM ARM

Date Prep:

07.15.2020 08:30

Basis:

Wet Weight

Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
PHC610	<49.9	49.9		mg/kg	07.15.2020 19:00	U	1
C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 19:00	U	1
PHCG2835	<49.9	49.9		mg/kg	07.15.2020 19:00	U	1
PHC635	<49.9	49.9		mg/kg	07.15.2020 19:00	U	1
	Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
	111-85-3	84	%	70-130	07.15.2020 19:00		
	84-15-1	86	%	70-130	07.15.2020 19:00		
	PHC610 C10C28DRO PHCG2835 PHC635	PHC610 <49.9 C10C28DRO <49.9 PHCG2835 <49.9 PHC635 <49.9 Cas Number	PHC610	PHC610	PHC610 <49.9 49.9 mg/kg C10C28DRO <49.9	PHC610 <49.9 49.9 mg/kg 07.15.2020 19:00 C10C28DRO <49.9	PHC610

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-37 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-037

Analytical Method: BTEX by EPA 8021B

Date Collected: 07.13.2020 10:52

Prep Method: SW5035A

Tech: KTL

% Moisture:

KTL Analyst:

Date Prep:

07.22.2020 16:30

Basis: Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	07.23.2020 02:55	U	1
Toluene	108-88-3	0.00502	0.00200		mg/kg	07.23.2020 02:55		1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	07.23.2020 02:55	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	07.23.2020 02:55	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	07.23.2020 02:55	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	07.23.2020 02:55	U	1
Total BTEX		0.00502	0.00200		mg/kg	07.23.2020 02:55		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
4-Bromofluorobenzene		460-00-4	119	%	70-130	07.23.2020 02:55		
1,4-Difluorobenzene		540-36-3	106	%	70-130	07.23.2020 02:55		

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-38 Matrix: Soil Date Received:07.13.2020 16:43

Lab Sample Id: 667044-038

Date Collected: 07.13.2020 10:48

Prep Method: E300P

% Moisture:

CHE Tech:

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 07.16.2020 15:20 Basis:

Wet Weight

Seq Number: 3131896

Result **Parameter** Cas Number RLUnits **Analysis Date** Dil Flag Chloride 16887-00-6 28.7 5.04 mg/kg 07.16.2020 19:49 1

Analytical Method: TPH by SW8015 Mod

DVM

Analyst:

Tech:

ARM

Seq Number: 3131827

Prep Method: SW8015P % Moisture:

Date Prep: 07.15.2020 08:30

Basis:

Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<49.9	49.9		mg/kg	07.15.2020 19:22	U	1
Diesel Range Organics (DRO)	C10C28DRO	<49.9	49.9		mg/kg	07.15.2020 19:22	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	<49.9	49.9		mg/kg	07.15.2020 19:22	U	1
Total TPH	PHC635	<49.9	49.9		mg/kg	07.15.2020 19:22	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

111-85-3 07.15.2020 19:22 1-Chlorooctane 89 70-130 o-Terphenyl 84-15-1 93 70-130 07.15.2020 19:22

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-38

Matrix: Soil

Date Received:07.13.2020 16:43

Lab Sample Id: 667044-038

Analytical Method: BTEX by EPA 8021B

KTL

Date Collected: 07.13.2020 10:48

Prep Method: SW5035A

Tech: KTL

Analyst:

Date Prep: 07.22.2020 16:30

% Moisture: Basis:

Wet Weight

Parameter	Cas Numbe	r Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00199	0.00199		mg/kg	07.23.2020 03:15	U	1
Toluene	108-88-3	0.00857	0.00199		mg/kg	07.23.2020 03:15		1
Ethylbenzene	100-41-4	< 0.00199	0.00199		mg/kg	07.23.2020 03:15	U	1
m,p-Xylenes	179601-23-1	< 0.00398	0.00398		mg/kg	07.23.2020 03:15	U	1
o-Xylene	95-47-6	< 0.00199	0.00199		mg/kg	07.23.2020 03:15	U	1
Total Xylenes	1330-20-7	< 0.00199	0.00199		mg/kg	07.23.2020 03:15	U	1
Total BTEX		0.00857	0.00199		mg/kg	07.23.2020 03:15		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	108	%	70-130	07.23.2020 03:15		
4-Bromofluorobenzene		460-00-4	115	%	70-130	07.23.2020 03:15		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit. **ND** Not Detected.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

E300P

E300P

Units

Prep Method:

%RPD

Limite

QC Summary 667044

Larson and Associates, Inc.

EBDU #37

Analytical Method: Chloride by EPA 300 Prep Method: Seq Number: 3131895 Matrix: Solid Date Prep:

07.16.2020 7707476-1-BLK LCS Sample Id: 7707476-1-BKS LCSD Sample Id: 7707476-1-BSD MB Sample Id:

RPD MB Spike LCS LCS Limits %RPD Units Analysis LCSD LCSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date Chloride < 5.00 250 260 104 261 90-110 0 20 07.16.2020 14:29 104 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3131896 Matrix: Solid Date Prep: 07.16.2020

7707518-1-BKS LCSD Sample Id: 7707518-1-BSD 7707518-1-BLK LCS Sample Id: MB Sample Id:

MB Spike LCS LCS LCSD LCSD Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec %Rec Limit Date Result 20 07.16.2020 17:52 Chloride < 5.00 250 263 105 263 105 90-110 0 mg/kg

Analytical Method: Chloride by EPA 300

MR

07.20.2020 Seq Number: 3132156 Matrix: Solid Date Prep:

LCS

LCS Sample Id: 7707611-1-BKS LCSD Sample Id: 7707611-1-BSD MB Sample Id: 7707611-1-BLK LCS

Spike **RPD** Analysis LCSD LCSD Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec Chloride 250 232 93 3 20 07.21.2020 00:55 < 5.00 238 95 90-110 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3131895 Matrix: Soil 07.16.2020 Date Prep:

Parent Sample Id: 667048-075 MS Sample Id: 667048-075 S MSD Sample Id: 667048-075 SD

RPD Parent Spike MS MS MSD **MSD** Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec %Rec Result 07.16.2020 14:47 Chloride 20 73 9 249 364 117 345 109 90-110 5 mg/kg X

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3131895 Matrix: Soil 07.16.2020 Date Prep:

667048-085 S 667048-085 SD Parent Sample Id: 667048-085 MS Sample Id: MSD Sample Id:

Parent Spike MS MS Limits %RPD RPD Units Analysis MSD MSD Flag Parameter Result Limit Date Result Amount %Rec Result %Rec 07.16.2020 16:14 20 Chloride 424 250 703 112 702 111 90-110 0 mg/kg X

Analytical Method: Chloride by EPA 300

3131896 07.16.2020 Seq Number: Matrix: Soil Date Prep:

667044-030 S 667044-030 SD MS Sample Id: MSD Sample Id: Parent Sample Id: 667044-030

Spike %RPD RPD Parent MS MS **MSD** MSD Limits Units Analysis Flag **Parameter** Result Result Limit Date Amount %Rec %Rec Result 07.16.2020 18:10 20 Chloride 264 248 544 113 524 105 90-110 4 mg/kg X

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B $RPD = 200* \mid (C-E) \mid (C+E) \mid$ [D] = 100 * (C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

OCD Ex. 5-0177 Page 90 of 100

LCS = Laboratory Control Sample = Parent Result

B = Spike Added= MS/LCS Result D = MSD/LCSD % Rec = MSD/LCSD Result

Prep Method:

E300P

MS = Matrix Spike

Flag

Flag

RPD

Units

Units

Analysis

%RPD

%RPD

Limite

Limits

MSD

QC Summary 667044

Larson and Associates, Inc.

EBDU #37

MSD

E300P Analytical Method: Chloride by EPA 300 Prep Method: Seq Number: 3131896 Matrix: Soil Date Prep: 07.16.2020

MS

Parent

Spike

MS Sample Id: 667044-037 S MSD Sample Id: 667044-037 SD Parent Sample Id: 667044-037 MS

Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date Chloride 14.6 250 292 111 90-110 20 07.16.2020 19:36 281 107 4 X mg/kg

Analytical Method: Chloride by EPA 300 Prep Method: E300P

Seq Number: 3132156 Matrix: Soil Date Prep: 07.20.2020 667044-010 667044-010 S MS Sample Id: MSD Sample Id: 667044-010 SD Parent Sample Id:

Parent Spike MS MS MSD MSD Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec %Rec Limit Date Result

20 07.21.2020 01:11 Chloride 2190 1240 3340 93 3510 106 90-110 5 mg/kg

E300P Analytical Method: Chloride by EPA 300 Prep Method:

MS

Seq Number: 3132156 Matrix: Soil Date Prep: 07.20.2020

MS Sample Id: 667044-019 S MSD Sample Id: 667044-019 SD 667044-019 Parent Sample Id: MS

Spike **RPD** Parent MSD **MSD** Analysis Flag **Parameter** Result Result Limit Date Amount %Rec Result %Rec Chloride 20 07.21.2020 02:24 60.6 249 295 94 315 102 90-110 7 mg/kg

SW8015P Analytical Method: TPH by SW8015 Mod Prep Method:

3131823 Matrix: Solid Seq Number: Date Prep: 07.15.2020

MB Sample Id: 7707429-1-BLK LCS Sample Id: 7707429-1-BKS LCSD Sample Id: 7707429-1-BSD

MB Spike LCS LCS LCSD LCSD Limits %RPD **RPD** Units Analysis **Parameter** Result Limit Date Result Amount %Rec %Rec Result Gasoline Range Hydrocarbons (GRO) 07.15.2020 12:07 20 < 50.0 1000 1100 110 1100 110 70-130 0 mg/kg 07.15.2020 12:07 Diesel Range Organics (DRO) 1090 109 70-130 20 < 50.0 1000 1110 111 2 mg/kg

LCS MBMB LCS LCSD Limits Units Analysis LCSD **Surrogate** %Rec %Rec Flag Date Flag %Rec Flag 07.15.2020 12:07 1-Chlorooctane 101 106 109 70-130 % 07.15.2020 12:07 o-Terphenyl 113 111 113 70-130 %

SW8015P Analytical Method: TPH by SW8015 Mod Prep Method:

Seq Number: 3131827 Matrix: Solid Date Prep: 07.15.2020 LCS Sample Id: 7707430-1-BKS LCSD Sample Id: 7707430-1-BSD MB Sample Id: 7707430-1-BLK

MB Spike LCS LCS %RPD RPD Units Analysis LCSD LCSD Limits **Parameter** Limit Result Amount Result %Rec Date Result %Rec Gasoline Range Hydrocarbons (GRO) 07.15.2020 12:07 1000 958 96 888 8 20 < 50.0 89 70-130 mg/kg 07.15.2020 12:07 Diesel Range Organics (DRO) 1010 101 70-130 < 50.0 1000 904 90 11 20 mg/kg

MB MB LCS LCS LCSD Units Analysis LCSD Limits **Surrogate** Flag Date %Rec Flag %Rec %Rec Flag 07.15.2020 12:07 1-Chlorooctane 87 97 89 70-130 % 07.15.2020 12:07 o-Terphenyl 96 105 95 70-130 %

MS/MSD Percent Recovery [D] = 100*(C-A) / BRelative Percent Difference $RPD = 200* \mid (C-E) \mid (C+E) \mid$ [D] = 100 * (C) / [B]LCS/LCSD Recovery

Log Diff. = Log(Sample Duplicate) - Log(Original Sample) Log Difference = MSD/LCSD Result

OCD Ex. 5-0178 Page 91 of 100

LCS = Laboratory Control Sample = Parent Result

MS = Matrix Spike B = Spike Added = MS/LCS Result D = MSD/LCSD % Rec

Flag

D = MSD/LCSD % Rec

QC Summary 667044

Larson and Associates, Inc.

EBDU #37

Analytical Method:TPH by SW8015 ModPrep Method:SW8015PSeq Number:3131955Matrix:SolidDate Prep:07.16.2020MB Sample Id:7707520-1-BLKLCS Sample Id:7707520-1-BKSLCSD Sample Id:7707520-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbons (GRO)	< 50.0	1000	885	89	939	94	70-130	6	20	mg/kg	07.16.2020 11:54	
Diesel Range Organics (DRO)	< 50.0	1000	981	98	1000	100	70-130	2	20	mg/kg	07.16.2020 11:54	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1-Chlorooctane	102		ç	99		102		70	-130	%	07.16.2020 11:54	
o-Terphenyl	111		1	00		105		70	-130	%	07.16.2020 11:54	

Analytical Method:TPH by SW8015 ModPrep Method:SW8015PSeq Number:3131823Matrix:SolidDate Prep:07.15.2020

Seq Number: 3131823 Matrix: Solid Date Prep: MB Sample Id: 7707429-1-BLK

Parameter MB Units Analysis Flag
Result Date Flag

Motor Oil Range Hydrocarbons (MRO) <50.0 mg/kg 07.15.2020 11:46

Analytical Method: TPH by SW8015 Mod Prep Method: SW8015P

Seq Number: 3131827 Matrix: Solid Date Prep: 07.15.2020

MB Sample Id: 7707430-1-BLK

 Parameter
 MB Result
 Units Date
 Analysis Date
 Flag

 Motor Oil Range Hydrocarbons (MRO)
 <50.0</td>
 mg/kg
 07.15.2020 11:46
 07.15.2020 11:46

Analytical Method: TPH by SW8015 Mod Prep Method: SW8015P

Seq Number: 3131955 Matrix: Solid Date Prep: 07.16.2020

MB Sample Id: 7707520-1-BLK

 Parameter
 MB Result
 Units Date
 Analysis Plag
 Flag

 Motor Oil Range Hydrocarbons (MRO)
 <50.0</td>
 mg/kg
 07.16.2020 11:33
 97.16.2020 11:33

Analytical Method:TPH by SW8015 ModPrep Method:SW8015PSeq Number:3131823Matrix: SoilDate Prep:07.15.2020

Parent Sample Id: 667044-003 MS Sample Id: 667044-003 S MSD Sample Id: 667044-003 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Gasoline Range Hydrocarbons (GRO)	<49.9	997	959	96	862	86	70-130	11	20	mg/kg	07.15.2020 13:12
Diesel Range Organics (DRO)	<49.9	997	926	93	856	86	70-130	8	20	mg/kg	07.15.2020 13:12

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1-Chlorooctane	92		85		70-130	%	07.15.2020 13:12
o-Terphenyl	92		85		70-130	%	07.15.2020 13:12

MS/MSD Percent Recovery [D] = 100*(C-A) / B LCS = Laboratory Control Sample MS = Matrix Spike Relative Percent Difference RPD = 200* |(C-E) / (C+E)| A = Parent Result B = Spike Added

Relative Percent Difference RPD = $200^* | (C-E) / (C+E) |$ A = Parent Result LCS/LCSD Recovery [D] = $100^* (C) / [B]$ C = MS/LCS Result Log Difference Log Diff. = Log (Sample Duplicate) - Log (Original Sample) E = MSD/LCSD Result

OCD Ex. 5-0179
Page 92 of 100
Final 1.000

Flag

Flag

QC Summary 667044

Larson and Associates, Inc.

EBDU #37

Analytical Method:TPH by SW8015 ModPrep Method:SW8015PSeq Number:3131827Matrix:SoilDate Prep:07.15.2020

Parent Sample Id: 667044-023 MS Sample Id: 667044-023 S MSD Sample Id: 667044-023 SD

RPD **Parent** Spike MS MS Limits %RPD Units Analysis MSD MSD **Parameter** Result Amount Result %Rec Result %Rec Limit Date Gasoline Range Hydrocarbons (GRO) <49.9 997 911 91 20 07.15.2020 13:12 884 89 70-130 3 mg/kg 07.15.2020 13:12 70-130 20 Diesel Range Organics (DRO) <49.9 997 948 95 943 95 1 mg/kg

MSD Units MS MS MSD Limits Analysis **Surrogate** %Rec Flag Flag Date %Rec 07.15.2020 13:12 1-Chlorooctane 92 91 70-130 % 91 07.15.2020 13:12 o-Terphenyl 95 70-130 %

Analytical Method: TPH by SW8015 Mod Prep Method: SW8015P

 Seq Number:
 3131955
 Matrix:
 Soil
 Date Prep:
 07.16.2020

 Parent Sample Id:
 667184-001
 MS Sample Id:
 667184-001 S
 MSD Sample Id:
 667184-001 SD

RPD **Parent** Spike MS MS MSD Limits %RPD Units Analysis MSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date 07.16.2020 13:00 Gasoline Range Hydrocarbons (GRO) <49.9 96 20 997 959 949 95 70-130 1 mg/kg 07.16.2020 13:00 Diesel Range Organics (DRO) <49.9 997 1050 105 1040 104 70-130 1 20 mg/kg

MS MS MSD Limits Units MSD Analysis **Surrogate** Flag Date %Rec Flag %Rec 07.16.2020 13:00 1-Chlorooctane 106 104 70-130 % o-Terphenyl 07.16.2020 13:00 103 101 70-130 %

Analytical Method: BTEX by EPA 8021B Prep Method: SW5035A

 Seq Number:
 3132080
 Matrix:
 Solid
 Date Prep:
 07.17.2020

 MB Sample Id:
 7707661-1-BLK
 LCS Sample Id:
 7707661-1-BKS
 LCSD Sample Id:
 7707661-1-BSD

Parameter	MB	Spike	LCS Result	LCS	LCSD	LCSD	Limits	%RPD	RPD Limit	Units	Analysis Date
	Result	Amount	Kesuit	%Rec	Result	%Rec			Lillit		Date
Benzene	< 0.00200	0.100	0.0911	91	0.0799	80	70-130	13	35	mg/kg	07.18.2020 10:00
Toluene	< 0.00200	0.100	0.0962	96	0.0848	85	70-130	13	35	mg/kg	07.18.2020 10:00
Ethylbenzene	< 0.00200	0.100	0.0998	100	0.0861	86	70-130	15	35	mg/kg	07.18.2020 10:00
m,p-Xylenes	< 0.00400	0.200	0.194	97	0.167	84	70-130	15	35	mg/kg	07.18.2020 10:00
o-Xylene	< 0.00200	0.100	0.0984	98	0.0852	85	70-130	14	35	mg/kg	07.18.2020 10:00

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	115		95		94		70-130	%	07.18.2020 10:00
4-Bromofluorobenzene	108		103		98		70-130	%	07.18.2020 10:00

Page 93 of 100

A = Parent Result

LCS = Laboratory Control Sample

Flag

Flag

QC Summary 667044

Larson and Associates, Inc.

EBDU #37

Analytical Method:BTEX by EPA 8021BPrep Method:SW5035ASeq Number:3132276Matrix:SolidDate Prep:07.21.2020MB Sample Id:7707803-1-BLKLCS Sample Id:7707803-1-BKSLCSD Sample Id:7707803-1-BSD

•												
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.107	107	0.106	106	70-130	1	35	mg/kg	07.21.2020 20:39	
Toluene	< 0.00200	0.100	0.102	102	0.106	106	70-130	4	35	mg/kg	07.21.2020 20:39	
Ethylbenzene	< 0.00200	0.100	0.0995	100	0.104	104	70-130	4	35	mg/kg	07.21.2020 20:39	
m,p-Xylenes	< 0.00400	0.200	0.193	97	0.205	103	70-130	6	35	mg/kg	07.21.2020 20:39	
o-Xylene	< 0.00200	0.100	0.0934	93	0.0998	100	70-130	7	35	mg/kg	07.21.2020 20:39	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			imits	Units	Analysis Date	
1,4-Difluorobenzene	101		ç	97		95		70	-130	%	07.21.2020 20:39	
4-Bromofluorobenzene	109		g	95		102		70	-130	%	07.21.2020 20:39	

Analytical Method:BTEX by EPA 8021BPrep Method:SW5035ASeq Number:3132394Matrix: SolidDate Prep:07.22.2020

 Seq Number:
 3132394
 Matrix:
 Solid
 Date Prep:
 07.22.2020

 MB Sample Id:
 7707874-1-BLK
 LCS Sample Id:
 7707874-1-BKS
 LCSD Sample Id:
 7707874-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.00200	0.100	0.0974	97	0.0961	96	70-130	1	35	mg/kg	07.22.2020 07:14
Toluene	< 0.00200	0.100	0.108	108	0.106	106	70-130	2	35	mg/kg	07.22.2020 07:14
Ethylbenzene	< 0.00200	0.100	0.110	110	0.107	107	70-130	3	35	mg/kg	07.22.2020 07:14
m,p-Xylenes	< 0.00400	0.200	0.222	111	0.216	108	70-130	3	35	mg/kg	07.22.2020 07:14
o-Xylene	< 0.00200	0.100	0.109	109	0.107	107	70-130	2	35	mg/kg	07.22.2020 07:14
	MR	MR	T.	CS I	CS	LCSI	LCS	D Li	mite	Units	Analysis

Surrogate	MB %Rec	MB Flag	LCS %Rec	LCS Flag	LCSD %Rec	LCSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	101		92		93		70-130	%	07.22.2020 07:14
4-Bromofluorobenzene	115		115		114		70-130	%	07.22.2020 07:14

Analytical Method:BTEX by EPA 8021BPrep Method:SW5035ASeq Number:3132400Matrix:SolidDate Prep:07.22.2020

MB Sample Id: 7707878-1-BLK LCS Sample Id: 7707878-1-BSD

Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.00200	0.100	0.119	119	0.109	109	70-130	9	35	mg/kg	07.22.2020 19:44
Toluene	< 0.00200	0.100	0.0981	98	0.0973	97	70-130	1	35	mg/kg	07.22.2020 19:44
Ethylbenzene	< 0.00200	0.100	0.0922	92	0.0927	93	70-130	1	35	mg/kg	07.22.2020 19:44
m,p-Xylenes	< 0.00400	0.200	0.174	87	0.178	89	70-130	2	35	mg/kg	07.22.2020 19:44
o-Xylene	< 0.00200	0.100	0.0859	86	0.0877	88	70-130	2	35	mg/kg	07.22.2020 19:44
Surrogate	MB	MB			LCS	LCSI) LCS		mits	Units	Analysis

Surrogate	%Rec	Flag	%Rec	Flag	%Rec	Flag	Limits	Cints	Date
1,4-Difluorobenzene	112		108		102		70-130	%	07.22.2020 19:44
4-Bromofluorobenzene	89		93		96		70-130	%	07.22.2020 19:44
4-Bromofluorobenzene	89		93		96		70-130	%	07.22.2020 19

Page 94 of 100

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff = Log(Sample Duplic

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)
OCD Ex. 5-0181

c = MS/LCS Result ginal Sample) E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

LCS = Laboratory Control Sample

A = Parent Result

Flag

Flag

QC Summary 667044

Larson and Associates, Inc.

EBDU #37

 Analytical Method:
 BTEX by EPA 8021B
 Prep Method:
 SW5035A

 Seq Number:
 3132080
 Matrix:
 Soil
 Date Prep:
 07.17.2020

 Parent Sample Id:
 667044-001
 MS Sample Id:
 667044-001 S
 MSD Sample Id:
 667044-001 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.0480	48	0.0513	52	70-130	7	35	mg/kg	07.18.2020 01:32	X
Toluene	< 0.00200	0.100	0.0475	48	0.0550	55	70-130	15	35	mg/kg	07.18.2020 01:32	X
Ethylbenzene	< 0.00200	0.100	0.0392	39	0.0515	52	70-130	27	35	mg/kg	07.18.2020 01:32	X
m,p-Xylenes	< 0.00400	0.200	0.0735	37	0.0983	49	70-130	29	35	mg/kg	07.18.2020 01:32	X
o-Xylene	< 0.00200	0.100	0.0385	39	0.0509	51	70-130	28	35	mg/kg	07.18.2020 01:32	X

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	116		110		70-130	%	07.18.2020 01:32
4-Bromofluorobenzene	101		101		70-130	%	07.18.2020 01:32

Analytical Method: BTEX by EPA 8021B Prep Method: SW5035A

 Seq Number:
 3132276
 Matrix:
 Soil
 Date Prep:
 07.21.2020

 Parent Sample Id:
 667748-001
 MS Sample Id:
 667748-001 S
 MSD Sample Id:
 667748-001 S

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.00200	0.100	0.0779	78	0.0737	74	70-130	6	35	mg/kg	07.21.2020 21:20
Toluene	< 0.00200	0.100	0.0837	84	0.0843	84	70-130	1	35	mg/kg	07.21.2020 21:20
Ethylbenzene	< 0.00200	0.100	0.0828	83	0.0848	85	70-130	2	35	mg/kg	07.21.2020 21:20
m,p-Xylenes	< 0.00400	0.200	0.165	83	0.171	86	70-130	4	35	mg/kg	07.21.2020 21:20
o-Xylene	< 0.00200	0.100	0.0812	81	0.0832	83	70-130	2	35	mg/kg	07.21.2020 21:20

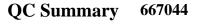
Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	94		90		70-130	%	07.21.2020 21:20
4-Bromofluorobenzene	104		105		70-130	%	07.21.2020 21:20

Analytical Method:BTEX by EPA 8021BPrep Method:SW5035ASeq Number:3132394Matrix: SoilDate Prep:07.22.2020

Parent Sample Id: 667044-019 MS Sample Id: 667044-019 S MSD Sample Id: 667044-019 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date
Benzene	< 0.00200	0.100	0.0750	75	0.0767	77	70-130	2	35	mg/kg	07.22.2020 07:55
Toluene	0.00557	0.100	0.0878	82	0.0875	82	70-130	0	35	mg/kg	07.22.2020 07:55
Ethylbenzene	< 0.00200	0.100	0.0829	83	0.0827	83	70-130	0	35	mg/kg	07.22.2020 07:55
m,p-Xylenes	< 0.00400	0.200	0.163	82	0.162	81	70-130	1	35	mg/kg	07.22.2020 07:55
o-Xylene	< 0.00200	0.100	0.0781	78	0.0782	78	70-130	0	35	mg/kg	07.22.2020 07:55

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	96		96		70-130	%	07.22.2020 07:55
4-Bromofluorobenzene	119		117		70-130	%	07.22.2020 07:55


Page 95 of 100

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff = Log(Sample Duplic

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)
OCD Ex. 5-0182

LCS = Laboratory Control Sample
A = Parent Result
C = MS/LCS Result
E = MSD/LCSD Result

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Larson and Associates, Inc.

EBDU #37

Prep Method: SW5035A Analytical Method: BTEX by EPA 8021B Seq Number: 3132400 Matrix: Soil Date Prep: 07.22.2020 Parent Sample Id: 667044-031 MS Sample Id: 667044-031 S MSD Sample Id: 667044-031 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00199	0.0996	0.0959	96	0.0764	77	70-130	23	35	mg/kg	07.22.2020 20:25	
Toluene	< 0.00199	0.0996	0.0793	80	0.0584	59	70-130	30	35	mg/kg	07.22.2020 20:25	X
Ethylbenzene	< 0.00199	0.0996	0.0693	70	0.0484	49	70-130	36	35	mg/kg	07.22.2020 20:25	XF
m,p-Xylenes	< 0.00398	0.199	0.132	66	0.0944	48	70-130	33	35	mg/kg	07.22.2020 20:25	X
o-Xylene	< 0.00199	0.0996	0.0653	66	0.0475	48	70-130	32	35	mg/kg	07.22.2020 20:25	X
				1 C 1	MS	MCT	MSI	о т	mite	Unite	Analysis	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1,4-Difluorobenzene	106		106		70-130	%	07.22.2020 20:25
4-Bromofluorobenzene	93		100		70-130	%	07.22.2020 20:25

R	eceive	ed by (OCD:	2/9/	2021	11:	39:5	8 A	И	1	T	<u> </u>	1	т -	T	Т	T	· T		т т			·	Т-		P	age	118	of 330
LABORATORY: X		RELINQUISHED BY:(Signature)	RELINCUISHED BY:(Signature)	TOTAL	6-15	6-14	C-13	6-112	C-11	6-10	C-9	6-8	<i>i-7</i>	6-6	5-7	1-7	6-3	Cot		Field Sample I.D.	Time zone/State:	TIME ZONE:	TRRP report?	Data Reported to:	Environmental Consultants	Aarson &	•	THE PROPERTY OF THE PROPERTY O	
x CJ Co	signature)	signature)	signature)							1										Lab#			S=SOIL W=WATER A=AIR		Consultan				
					j -														1113/20	Date					ਡ:'				
	DATE/TIME	DATE/TIME	T//3/cs		540	948	151	453	458	0001	1005	1010	1015	201	pres	1027	S. O.	78.2	24°2	Time		į	P=PAINT SL=SLUDGE OT=OTHER						
		m	Ī		1										National Property of the Party	-Worth States			۷	Matrix						\			
	RECE	RECE	THE STATE OF THE S		i										et.TOP Er petunion	no stiller _{en}			3	# of Con	tainers				7	07 N. 7			
	VED BY	VED BY	VED BY																THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PERSON N	HCI HNO ₃			PRESI		432-687-0901	Aarien Jana			
	RECEIVED BY: (Signature)	ŔECEIVED BY: (Signature	RECEIVED BY: (Signature)		i			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		danne.			TOTAL CONTRACTOR	rosponencia de la compansa de la com					×	H₂SO₄ ☐ ICE	NaOH	10	PRESERVATION		432-687-0901	507 N. Marienfeld, Ste.			
	ıre)	lre)			<i>f</i>	and the same of					torzegyption a		e all the second	***************************************			and the same of		$\overline{\mathbf{x}}$	UNPRES		ED	N N		_	e. 200			
			3		46	_	<i>≯</i>		<u>-</u>		144	ikw	4.16	~~\ -		boc.	AΔια	<u> </u>	×	ANAI, ROPERTOR	SK'S			 -					
					f-	***************************************													×	CASTO TO THE ARE				LAI PROJECT #:	PROJECT	1	DATE: *		
	OTHER 🔲	1 DAY 🔲	TURN ARO																		10 10 10 10 10 10 10 10 10 10 10 10 10 1			JECT			1	5	2
	σ,	_ _	JRN AROUND TIME																	[&X^&XQ		. \	. / /	#	ATION		120	2	
			D TIME																					0-6	LOCATION OR NAME:		V ,	チ	
H D H	ر ا ا	CUST	LABO																			5,7% 1%,		1 7	~ ~ ME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
☐ HAND DELIVERED	CARRIER BILL#	CUSTODY SEALS -	LABORATORY USE ONLY:																					12 t	FBOU	LAB W			
_IVERE	BILL#	EALS -	Y USE																					~	2	LAB WORK ORDER#		유	
			ONLY:	F								~~~~							×		RI SOLING OF THE SECTION OF THE SECT			COLLECTOR	# 37	ORDF		$\frac{\mathbb{A}}{\mathbb{A}}$	
		BROKEN INTA	3																				Can	CTOR	7	1	,	드 으	
		RM#:															to	サジ			136	OF THE PROPERTY OF THE PROPERT		1		7465	200	ე -''	No.
		T IZ NO	5														APROLE	2	A CONTRACTOR OF THE CONTRACTOR	FIELD NOTES				7400		5	,	CHAIN-OF-CUST	Nº 1 98
		BROKEN DINTACT NOT USED	ノ' 							Towns and the second				qc	CD E	ر د. 5-0	- 1	10/1		ΠES		\		1			^	, 	U
R	eleaso	ed to I	magir	ng: 8	/27/2	2021	10:	20:4	10 A	M	L		J.	Pag	e 97	of 10	0				F	inal	1.000					~	•

R	eceiv	ed by (QCD:	2/9,	202	1,11	39.	58 A	М_	Т		I		Γ		Т				- I		r			Pa	<u>e</u> 119	of 330
LABORATORY: X V	RELINQUISHED BY:(Signature)	RELINQUISHED BY:(Signature)	RELINGUISHED BY: (Signature)	TOTAL 15	1.30	L.	C-28	C-27	C-26	6-25	6-24	C-23	C-22	(-2)	6-20	61-7	C-18	C-17	6-16	Field Sample I.D.	TIME ZONE: Time zone/State:	TRRP report? ☐ Yes X No	Data Reported to:	Environmental Consultants	∆arson &		
XtnCa	signature)	signature)	signature)																	Lab#		S=SOIL W=WATER A=AIR		es, Inc. Inc.			
					*														11%	Date		P=PAINT SL=SLUE OT=OTHI					
	DATE/TIME	DATE/TIME	DATE/TIME		1048	1244	24.	1-36	1032	1026	1023	8101	7161	180d	1004	1010	456	182	148	Time		P=PAINT SL=SLUDGE OT=OTHER					
	ME	<u>M</u>			1		and the second								-	2899 - M. F 724		ſ	8	Matrix					(
	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	RECEIVED BY: (Signature)		F														λ χ	# of Conta HCI HNO ₃ H ₂ SO ₄ II ICE	NaOH C	ATIC NATION		Midland, TX 79701 432-687-0901	507 N. Marienfeld, Ste. 200		
			5		l-	~~	, Janu		\$	1	the set		~176	Ak/	·than	₩.	het	<u>~</u>	(8) >>	PROPERTY OF THE PROPERTY OF TH	(S			ַ ס			
	OTHER []	1 DAY	TURN AROUND TIME																x x		100 A		AI PROJECT #: 19-01	PROJECT LOCATION OR NAME:	DATE: 7/13/20	1010HZ	
☐ HAND DELIVERED		RECEIVING TEMP: 25/21, THERM#: 2007 USED	LABORATORY USE ONLY:		į										CDE		Medico	Pill Nifect	and the second second				COLLEC	ERIU #37	PAGE CORTE	CHAIN-OF-CUSTODY	Nº 197
R	•	ed to I	magii	ng: d	8/27/	202.	1 10.	:20:4	40 A	M					e 98						Fin	al 1.000	-	ı I	ſ	ΙŽ	

Page 120 of 330 RELINQUISHED BY (Signature) LABORATORY: RELINQUISHED BY:(Signature) RELINQUISHED BY:(Signature) C-34 TIME ZONE:
Time zone/State: TOTAL 6.33 Data Reported to: C-32 ついり Yes No TRRP report? Field Sample I.D. arson & 1 ssociates, Inc. Environmental Consultants くらんつ A=AIR S=SOIL W=WATER Lab# 2/11/1 Date SL=SLUDGE OT=OTHER P=PAINT DATE/TIME かんり 1882 200 Q -5 135 DATE/TIME DATE/TIME Time Matrix 507 N. Marienfeld, Ste. 200 REPORTED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY: (Signature) # of Containers Midland, TX 79701 432-687-0901 HCI PRESERVATION HNO, H,SO₄ ☐ NaOH ☐ **ICE** UNPRESSERVED DATE: LAI PROJECT #: PROJECT LOCATION OR NAME: 1 DAY 🗔 2 DAY □ NORMAL 🛣 OTHER [**TURN AROUND TIME** LABORATORY USE ONLY HAND DELIVERED CARRIER BILL # RECEIVING TEMP: 5.3 4.9 THERM#: 1000 CUSTODY SEALS - D BROKEN DINTACT TNOT USED E800 #3> CHAIN-OF-CUSTODY COLLECTOR: 77 \$ 05 _ PAGE 3_ OF 3 FIELD NOTES APRC4018 Released to Imaging: 8/27/2021 Page 99 of 100 Final 1.000

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Larson and Associates, Inc.

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 07.13.2020 04.43.00 PM

Air and Metal samples Acceptable Range: Ambient

Work Order #: 667044

Temperature Measuring device used: IR-8

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		4.9	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping contain	ner/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?		N/A	
#6*Custody Seals Signed and dated?		N/A	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		No	
#9 Chain of Custody signed when relinquish	ned/ received?	Yes	
#10 Chain of Custody agrees with sample la	abels/matrix?	Yes	
#11 Container label(s) legible and intact?		Yes	
#12 Samples in proper container/ bottle?		Yes	BTEX was in bulk container
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicated	test(s)?	Yes	
#16 All samples received within hold time?		Yes	
#17 Subcontract of sample(s)?		N/A	
#18 Water VOC samples have zero headsp	ace?	N/A	

* Must be completed for after-hours deliver	v of samp	oles prior to	placing in the	he refrigerator
made be completed for ditor medic deliver	<i>,</i> 0. 0ap	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p.aog t.	

Analyst:		PH Device/Lot#:	
	Checklist completed by:	Briuma Turf Brianna Teel	Date: <u>07.14.2020</u>
	Checklist reviewed by:	Holly Taylor Holly Taylor	Date: <u>07.16.2020</u>

Environment Testing

Page 122 of 330

Certificate of Analysis Summary 668318

Larson and Associates, Inc., Midland, TX

Project Name: EBDU #37

Project Id:

Contact:

eurofins :

19-0112-49 Mark Larson **Date Received in Lab:** Tue 07.28.2020 08:45

Report Date: 07.29.2020 15:48

Project Location:

Project Manager: Holly Taylor

	Lab Id:	668318-001			
Analysis Requested	Field Id:	C-2			
Analysis Requesieu	Depth:				
	Matrix:	SOIL			
	Sampled:	07.27.2020 14:15			
Chloride by EPA 300	Extracted:	07.29.2020 08:40			
	Analyzed:	07.29.2020 09:58			
	Units/RL:	mg/kg RL			
Chloride		86.5 5.04			

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Analytical Report 668318

for

Larson and Associates, Inc.

Project Manager: Mark Larson

EBDU #37 19-0112-49 07.29.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-36), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-25), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-17)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-7)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

07.29.2020

Project Manager: Mark Larson Larson and Associates, Inc. P. O. Box 50685 Midland, TX 79710

Reference: Eurofins Xenco, LLC Report No(s): 668318

EBDU #37
Project Address:

Mark Larson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 668318. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 668318 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

John Builes

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 668318

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample IdMatrixDate CollectedSample DepthLab Sample IdC-2S07.27.2020 14:15668318-001

Page 126 of 330

CASE NARRATIVE

eurofins
Environment Testing
Xenco

Client Name: Larson and Associates, Inc.

Project Name: EBDU #37

 Project ID:
 19-0112-49
 Report Date:
 07.29.2020

 Work Order Number(s):
 668318
 Date Received:
 07.28.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Larson and Associates, Inc., Midland, TX

EBDU #37

Sample Id: C-2

Matrix: Soil

Date Received:07.28.2020 08:45

Lab Sample Id: 668318-001

Date Collected: 07.27.2020 14:15

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 07.29.2020 08:40

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	86.5	5.04	mg/kg	07.29.2020 09:58		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit. **ND** Not Detected.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

MB Sample Id:

668318 **QC Summary**

Larson and Associates, Inc.

EBDU #37

Analytical Method: Chloride by EPA 300

Seq Number: 3132893

Matrix: Solid 7708262-1-BLK LCS Sample Id: 7708262-1-BKS

E300P Prep Method:

Date Prep: 07.29.2020

LCSD Sample Id: 7708262-1-BSD

LCS RPD MB Spike LCS LCSD Limits %RPD Units Analysis LCSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date

Chloride < 5.00 250 236 94 236 94 90-110 0 20 07.29.2020 09:45 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3132893 Matrix: Soil Date Prep: 07.29.2020

MS Sample Id: 668222-009 S MSD Sample Id: 668222-009 SD Parent Sample Id: 668222-009

Parent Spike MS MS MSD **MSD** Limits %RPD RPD Units Analysis **Parameter** Flag Result Amount Result %Rec Result %Rec Limit Date

20 07.29.2020 11:30 Chloride 1000 253 1210 83 1210 83 90-110 0 mg/kg X

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3132893 07.29.2020 Matrix: Soil Date Prep:

668318-001 S MS Sample Id: MSD Sample Id: 668318-001 SD Parent Sample Id: 668318-001

%RPD **RPD Parent** Spike MS MS Units Analysis MSD **MSD** Limits Flag **Parameter** Result Result %Rec Limit Date Amount Result %Rec 07.29.2020 10:04 Chloride 86.5 252 334 98 330 97 90-110 20 1 mg/kg

Nº 1257

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Larson and Associates, Inc.

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 07.28.2020 08.45.00 AM

Air and Metal samples Acceptable Range: Ambient

Work Order #: 668318

Temperature Measuring device used: IR-8

Sample Receipt Checkl	ist	Comments
#1 *Temperature of cooler(s)?	27.1	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	No	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ received?	Yes	
#10 Chain of Custody agrees with sample labels/matrix?	Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	N/A	
#18 Water VOC samples have zero headspace?	N/A	

' Must be completed for	after-hours deliver	y of samples	prior to placii	ng in the refrigerator

Analyst:		PH Device/Lot#:		
	Checklist completed by:	Bawa Tal Brianna Teel	Date: <u>07.28.2020</u>	
	Checklist reviewed by:	Holly Taylor Holly Taylor	Date: <u>07.28.2020</u>	

Page 132 of 330

Certificate of Analysis Summary 668607

Larson and Associates, Inc., Midland, TX

Project Name: EBDU 37

Project Id:

19-0112-49

Date Received in Lab: Thu 07.30.2020 09:20

Contact: Mark Larson

eurofins Environment Testing

Report Date: 07.31.2020 13:12

Project Location: NM Project Manager: Holly Taylor

	Lab Id:	668607-00)1	668607-00)2	668607-00)3	668607-0	04	668607-0	05	668607-00)6
Analysis Requested	Field Id:	C-3		C-4		C-5		C-6		C-7		C-8	
Analysis Requesieu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	07.29.2020	9:34	07.29.2020 (9:42	07.29.2020 (9:47	07.29.2020 (09:51	07.29.2020	09:56	07.29.2020 1	6:35
Chloride by EPA 300	Extracted:	07.30.2020 1	2:10	07.30.2020	2:10	07.30.2020	2:10	07.30.2020	12:10	07.30.2020	12:10	07.30.2020 1	2:10
	Analyzed:	07.30.2020 1	2:39	07.30.2020	2:57	07.30.2020	3:03	07.30.2020	13:10	07.30.2020	13:16	07.30.2020 1	3:34
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		39.0 X	5.02	21.8	4.99	5.75	4.97	162	5.04	11.5	4.95	19.0	4.95

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Hely Taylor

Environment Testing

Page 133 of 330

07.30.2020 14:23

17.6

RL

5.03

mg/kg

Certificate of Analysis Summary 668607

Larson and Associates, Inc., Midland, TX

Project Name: EBDU 37

07.30.2020 13:53

307

RL

4.96

mg/kg

07.30.2020 13:59

71.6

RL

4.99

mg/kg

Project Id:

Chloride

💸 eurofins

19-0112-49

Date Received in Lab: Thu 07.30.2020 09:20

Contact: Mark Larson

Report Date: 07.31.2020 13:12

07.30.2020 14:05

630

RL

5.00

mg/kg

NM Project Manager: Holly Taylor **Project Location:** Lab Id: 668607-007 668607-008 668607-009 668607-010 668607-011 668607-012 Field Id: C-9 C-10 C-26 C-27 C-28 C-12 Analysis Requested Depth: Matrix: SOIL SOIL SOIL SOIL SOIL SOIL Sampled: 07.29.2020 16:32 07.29.2020 16:30 07.29.2020 13:10 07.29.2020 12:28 07.29.2020 13:05 07.29.2020 13:23 Chloride by EPA 300 07.30.2020 12:10 07.30.2020 12:10 07.30.2020 12:10 07.30.2020 12:10 Extracted: 07.30.2020 12:10 07.30.2020 12:10

07.30.2020 13:46

126

RL

5.01

mg/kg

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Analyzed:

Units/RL:

07.30.2020 13:40

200

RL

5.04

mg/kg

Holy Taylor

Page 134 of 330

Certificate of Analysis Summary 668607

Larson and Associates, Inc., Midland, TX

Project Name: EBDU 37

Project Id:

Contact:

19-0112-49

Date Received in Lab: Thu 07.30.2020 09:20

Mark Larson

Report Date: 07.31.2020 13:12

Project Location: NM

eurofins Environment Testing

Project Manager: Holly Taylor

	Lab Id:	668607-01	13	668607-01	14	668607-01	15	668607-01	16	668607-0	17	668607-01	.8
Analysis Requested	Field Id:	C-17		C-32		C-21		C-22		C-23		C-24	
Anuiysis Requesieu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	07.29.2020 1	4:15	07.29.2020 1	4:00	07.29.2020 1	5:23	07.29.2020 1	6:45	07.29.2020	16:05	07.29.2020 1	6:00
Chloride by EPA 300	Extracted:	07.30.2020 1	2:10	07.30.2020 1	2:10	07.30.2020 1	2:10	07.30.2020 1	2:10	07.30.2020	12:10	07.30.2020 1	2:10
	Analyzed:	07.30.2020 1	4:29	07.30.2020 1	4:48	07.30.2020 1	4:54	07.30.2020 1	5:00	07.30.2020	15:06	07.30.2020 1	5:12
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		9.78	4.96	30.8	4.98	237	5.00	608	5.04	13900	99.2	37.4	4.98

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Hely Taylor

Analytical Report 668607

for

Larson and Associates, Inc.

Project Manager: Mark Larson

EBDU 37 19-0112-49 07.31.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-36), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-25), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-17)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-7)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

07.31.2020

Project Manager: Mark Larson Larson and Associates, Inc. P. O. Box 50685 Midland, TX 79710

Reference: Eurofins Xenco, LLC Report No(s): 668607

EBDU 37

Project Address: NM

Mark Larson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 668607. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 668607 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

Holly Taylor

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 668607

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
C-3	S	07.29.2020 09:34		668607-001
C-4	S	07.29.2020 09:42		668607-002
C-5	S	07.29.2020 09:47		668607-003
C-6	S	07.29.2020 09:51		668607-004
C-7	S	07.29.2020 09:56		668607-005
C-8	S	07.29.2020 16:35		668607-006
C-9	S	07.29.2020 16:32		668607-007
C-10	S	07.29.2020 16:30		668607-008
C-26	S	07.29.2020 13:10		668607-009
C-27	S	07.29.2020 12:28		668607-010
C-28	S	07.29.2020 13:05		668607-011
C-12	S	07.29.2020 13:23		668607-012
C-17	S	07.29.2020 14:15		668607-013
C-32	S	07.29.2020 14:00		668607-014
C-21	S	07.29.2020 15:23		668607-015
C-22	S	07.29.2020 16:45		668607-016
C-23	S	07.29.2020 16:05		668607-017
C-24	S	07.29.2020 16:00		668607-018

Page 138 of 330

CASE NARRATIVE

eurofins
Environment Testing
Xenco

Client Name: Larson and Associates, Inc.

Project Name: EBDU 37

 Project ID:
 19-0112-49
 Report Date:
 07.31.2020

 Work Order Number(s):
 668607
 Date Received:
 07.30.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3133114 Chloride by EPA 300

Lab Sample ID 668607-011 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 668607-001, -002, -003, -004, -005, -006, -007, -008, -009, -010, -011, -012, -013, -014, -015, -016, -017, -018.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-3

Matrix: Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-001

Analytical Method: Chloride by EPA 300

Date Collected: 07.29.2020 09:34

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Date Prep: 07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	39.0	5.02	mg/kg	07.30.2020 12:39	X	1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-4 Matrix:

Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-002

Analytical Method: Chloride by EPA 300

CHE

Date Collected: 07.29.2020 09:42

Prep Method: E300P

CHE

% Moisture:

Tech:

Analyst:

Date Prep:

07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	21.8	4.99	mg/kg	07.30.2020 12:57		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-5

Matrix: Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-003

Date Collected: 07.29.2020 09:47

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

07.30.2020 12:10

Basis:

Wet Weight

Seq Number: 3133114

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	5.75	4.97	mg/kg	07.30.2020 13:03		1

Date Prep:

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-6

Matrix:

Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-004

Date Collected: 07.29.2020 09:51

Prep Method: E300P

% Moisture:

Tech: C

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	162	5.04	mg/kg	07.30.2020 13:10		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-7

Matrix: Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-005

Date Collected: 07.29.2020 09:56

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	11.5	4.95	mg/kg	07.30.2020 13:16		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: **C-8** Matrix:

Soil

07.30.2020 12:10

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-006

Date Collected: 07.29.2020 16:35

Prep Method: E300P

Tech: CHE

Analytical Method: Chloride by EPA 300

CHE

% Moisture:

Analyst:

Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	19.0	4.95	mg/kg	07.30.2020 13:34		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-9 Matrix:

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-007

CHE

Soil Date Collected: 07.29.2020 16:32

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech: CHE % Moisture:

Analyst:

Date Prep: 07.30.2020 12:10 Basis: Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	200	5.04	mg/kg	07.30.2020 13:40		1

Larson and Associates, Inc., Midland, TX

EBDU 37

07.30.2020 12:10

Sample Id: C-10 Lab Sample Id: 668607-008 Matrix: Soil Date Received:07.30.2020 09:20

Date Collected: 07.29.2020 16:30

Analytical Method: Chloride by EPA 300

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	126	5.01	mg/kg	07.30.2020 13:46		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-26 Matrix: Soil Date Received:07.30.2020 09:20

Lab Sample Id: 668607-009

Analytical Method: Chloride by EPA 300

Date Collected: 07.29.2020 13:10

Prep Method: E300P

CHE

% Moisture:

Tech: CHE Analyst:

Date Prep:

07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	307	4.96	mg/kg	07.30.2020 13:53		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-27

Matrix:

Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-010

Date Collected: 07.29.2020 12:28

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	71.6	4.99	mg/kg	07.30.2020 13:59		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-28 Matrix:

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-011

Soil Date Collected: 07.29.2020 13:05

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 07.30.2020 12:10 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	630	5.00	mg/kg	07.30.2020 14:05		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-12 Lab Sample Id: 668607-012 Matrix: Soil

Date Received:07.30.2020 09:20

Date Collected: 07.29.2020 13:23

Analytical Method: Chloride by EPA 300

CHE

Prep Method: E300P

CHE

% Moisture:

Tech: CHE

Analyst:

Date Prep: 07.30.2020 12:10

Basis: V

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	17.6	5.03	mg/kg	07.30.2020 14:23		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-17

Matrix:

Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-013

Date Collected: 07.29.2020 14:15

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: CHE CHE

Date Prep:

07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.78	4.96	mg/kg	07.30.2020 14:29		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-32

Matrix:

Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-014

Date Collected: 07.29.2020 14:00

Prep Method: E300P

% Moisture:

Tech:

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	30.8	4.98	mg/kg	07.30.2020 14:48		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-21 Matrix: Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-015

CHE

Date Collected: 07.29.2020 15:23

Prep Method: E300P

Analytical Method: Chloride by EPA 300 CHE

% Moisture:

Tech:

Analyst:

Date Prep: 07.30.2020 12:10 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	237	5.00	mg/kg	07.30.2020 14:54		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Date Collected: 07.29.2020 16:45

Sample Id: C-22

Matrix: Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-016

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	608	5.04	mg/kg	07.30.2020 15:00		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-23

Matrix:

Soil

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-017

Date Collected: 07.29.2020 16:05

Prep Method: E300P

% Moisture:

Tech:

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

07.30.2020 12:10

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	13900	99.2	mg/kg	07.30.2020 15:06		20

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: C-24 Matrix:

Date Received:07.30.2020 09:20

Lab Sample Id: 668607-018

Soil Date Collected: 07.29.2020 16:00

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: CHE CHE

Date Prep: 07.30.2020 12:10 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	37.4	4.98	mg/kg	07.30.2020 15:12		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit. **ND** Not Detected.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

Xenco

668607 **QC Summary**

Larson and Associates, Inc.

EBDU 37

Analytical Method: Chloride by EPA 300

Seq Number: 3133114

7708388-1-BLK

Matrix: Solid LCS Sample Id:

7708388-1-BKS

E300P Prep Method:

Date Prep:

07.30.2020

LCSD Sample Id: 7708388-1-BSD

Analysis

Parameter Chloride

MB Sample Id:

MB Result

< 5.00

Parent

Result

39.0

LCS Result

246

LCS LCSD %Rec Result

98

LCSD Limits %Rec 99

90-110

%RPD Limit 0 20

RPD

Units Date 07.30.2020 12:27

Flag

Analytical Method: Chloride by EPA 300

Seq Number:

Parent Sample Id:

Parameter

Chloride

3133114 668607-001

Spike

250

Amount

Matrix: Soil MS Sample Id:

668607-001 S

315

247

Date Prep:

Prep Method:

RPD

07.30.2020

E300P

%RPD

MSD Sample Id: 668607-001 SD

Units

mg/kg

mg/kg

251

Spike MS Amount Result

319

%Rec 112

MS

MSD **MSD** Result %Rec

Limits 90-110

Limits

Limit 20 1

Units 07.30.2020 12:45 mg/kg

Analysis Flag Date

X

Analytical Method: Chloride by EPA 300

3133114

Matrix: Soil

250

668607-011 S

Prep Method: Date Prep:

E300P

07.30.2020 MSD Sample Id: 668607-011 SD

Parameter Chloride

Seq Number:

Parent Sample Id:

668607-011

Parent Spike Result Amount

630

MS MS Result %Rec 879 100

MS Sample Id:

MSD Result 876

MSD %Rec 98 90-110

110

0

%RPD

RPD Limit 20

07.30.2020 14:11

Analysis Flag Date

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

OCD Ex. 5-0224 Page 27 of 30

LCS = Laboratory Control Sample A = Parent Result

= MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

RELINQUISHED BY:(Signature) RELINQUISHED BY:(Signature) LABORATORY: RELINQUISHED BY:(Signature) TOTAL Data Reported to: 12-7 6-26 6-5 (-32 6-17 C-8 C-7 6-6 6-4 Time zone/State Yes 10 C-10 3 C-28 C-27 Field Sample I.D. TRRP report? TIME ZONE: i N No No ₹ U Sen<u>co</u> W=WATER A=AIR S=SOIL Lab# 7/29/20 0934 Date SL=SLUDGE OT=OTHER P=PAINT 0947 3460 0956 1510 7 1228 1632 1635 13/0 1323 502 1523 1400 630 DATE/TIME DATE/TIME DATE/TIME Time Matrix RECE(VED BY: (Signature) RECEINED BY: (Signature) RECEIVED BY: (Signature) # of Containers -HCI **PRESERVATION** HNO. H,SO, 🗅 NaOH 🗅 ICE UNPRESSERVED LAI PROJECT #: 19-01/2- 49 1 DAY 🔀 2 DAY □ NORMAL OTHER 🗋 TURN AROUND TIME RECEIVING TEMP: 25.2 HAND DELIVERED CARRIER BILL# CUSTODY SEALS - BROKEN DINTACT NOT USED COLLECTOR: TJ + DS THERM#: FIELD NOTES 18-21 18-21 OCD EX 5-0225

61215 NO 109899 CHAIN-OF-CUSTODY

Page 159 of 330

arson &

507 N. Marienfeld, Ste. 200

Midland, TX 79701

P0#: DATE:

LAB WORK ORDER#: FBDU 37

PAGE 1 OF 2

1/29/20

PROJECT LOCATION OR NAME:

432-687-0901

ssociates, Inc. Environmental Consultants

Page 28 of 30

Final 1.000

666607 Nº 1217

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Larson and Associates, Inc.

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 07.30.2020 09.20.00 AM

Air and Metal samples Acceptable Range: Ambient

Work Order #: 668607

Analyst:

Temperature Measuring device used: ir8

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		25.3	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping conta	iner/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?		N/A	
#6*Custody Seals Signed and dated?		N/A	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		No	
#9 Chain of Custody signed when relinquish	hed/ received?	Yes	
#10 Chain of Custody agrees with sample I	abels/matrix?	Yes	
#11 Container label(s) legible and intact?		Yes	
#12 Samples in proper container/ bottle?		Yes	
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicated	test(s)?	Yes	
#16 All samples received within hold time?		Yes	
#17 Subcontract of sample(s)?		N/A	
#18 Water VOC samples have zero headsp	pace?	N/A	

* Must be completed for after-hours deliver	v of samp	oles prior to	placing in the	he refrigerator
made be completed for ditor medic deliver	<i>,</i> 0. 0ap	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	p.aog t.	

Procing Varmer	

PH Device/Lot#:

Checklist completed by:

Jessica Kramer

Date: 07.30.2020

Checklist reviewed by: #cly Taylor

Date: 07.30.2020

OCD Ex. 5-0227

Environment Testing

Page 162 of 330

Certificate of Analysis Summary 668986

Larson and Associates, Inc., Midland, TX

Project Name: EBDU 37

Project Id:

19-0112-49

Date Received in Lab: Tue 08.04.2020 08:30

Contact:

eurofins 🌣

Mark Larson

Report Date: 08.04.2020 15:48

Project Manager: Holly Taylor **Project Location:**

	Lab Id:	668986-0	01	668986-00)2	668986-0	03	668986-0	04	668986-0	05	668986-00	06
Analysis Requested	Field Id:	BH-1 10'		BH-1 12'		BH-1 14'		BH-1 16'		BH-1 18'		BH-1 20'	
	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	08.03.2020	11:40	08.03.2020 1	1:42	08.03.2020	11:53	08.03.2020	11:55	08.03.2020	11:57	08.03.2020 1	12:24
Chloride by EPA 300	Extracted:	08.04.2020	10:45	08.04.2020 1	0:45	08.04.2020	10:45	08.04.2020	10:45	08.04.2020	10:45	08.04.2020 1	10:45
	Analyzed:	08.04.2020 11:53		08.04.2020 1	1:58	08.04.2020 12:03		12:08	08.04.2020 12:14		08.04.2020 1	12:19	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		11.6	5.00	13.3	5.00	13.4	5.03	22.9	4.95	34.4	4.99	24.7 X	5.05

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jessica Vramer

Page 163 of 330

Certificate of Analysis Summary 668986

Larson and Associates, Inc., Midland, TX

Project Name: EBDU 37

Project Id: Contact:

19-0112-49 Mark Larson

Date Received in Lab: Tue 08.04.2020 08:30

Report Date: 08.04.2020 15:48

Project Location:

Project Manager: Holly Taylor

	Lab Id:	668986-007	668986-008		
Analysis Requested	Field Id:	BH-1 25'	BH-1 30'		
	Depth:				
	Matrix:	SOIL	SOIL		
	Sampled:	08.03.2020 13:30	08.03.2020 13:33		
Chloride by EPA 300	Extracted:	08.04.2020 10:45	08.04.2020 10:45		
	Analyzed:	08.04.2020 12:35	08.04.2020 12:40		
	Units/RL:	mg/kg RL	mg/kg RL		
Chloride		31.0 5.00	31.5 5.04		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Jessica Vramer

Analytical Report 668986

for

Larson and Associates, Inc.

Project Manager: Mark Larson

EBDU 37 19-0112-49 08.04.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-36), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-25), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-17)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-7)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

08.04.2020

Project Manager: Mark Larson Larson and Associates, Inc. P. O. Box 50685 Midland, TX 79710

Reference: Eurofins Xenco, LLC Report No(s): 668986

EBDU 37 Project Address:

Mark Larson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 668986. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 668986 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jessica Kramer

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 668986

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH-1 10'	S	08.03.2020 11:40		668986-001
BH-1 12'	S	08.03.2020 11:42		668986-002
BH-1 14'	S	08.03.2020 11:53		668986-003
BH-1 16'	S	08.03.2020 11:55		668986-004
BH-1 18'	S	08.03.2020 11:57		668986-005
BH-1 20'	S	08.03.2020 12:24		668986-006
BH-1 25'	S	08.03.2020 13:30		668986-007
BH-1 30'	S	08.03.2020 13:33		668986-008

Page 167 of 330

CASE NARRATIVE

🍪 eurofins **Environment Testing** Xenco

Client Name: Larson and Associates, Inc.

Project Name: EBDU 37

Project ID: Report Date: 08.04.2020 19-0112-49 Work Order Number(s): 668986 Date Received: 08.04.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-3133486 Chloride by EPA 300

Lab Sample ID 668986-006 was randomly selected for Matrix Spike/Matrix Spike Duplicate (MS/MSD). Chloride recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Outlier/s are due to possible matrix interference. Samples in the analytical batch are: 668986-001, -002, -003, -004, -005, -006, -007, -008.

The Laboratory Control Sample for Chloride is within laboratory Control Limits, therefore the data was accepted.

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: BH-1 10'

Matrix:

Soil

Date Received:08.04.2020 08:30

Lab Sample Id: 668986-001

Date Collected: 08.03.2020 11:40

Prep Method: E300P

Prep Me

Tech:

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.04.2020 10:45

Basis:

% Moisture:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	11.6	5.00	mg/kg	08.04.2020 11:53		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: BH-1 12'

Matrix:

Soil

Date Received:08.04.2020 08:30

Lab Sample Id: 668986-002

Analytical Method: Chloride by EPA 300

CHE

Date Collected: 08.03.2020 11:42

Prep Method: E300P

Tech: CHE

Analyst:

Date Prep:

08.04.2020 10:45

Basis:

% Moisture:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	13.3	5.00	mg/kg	08.04.2020 11:58		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: BH-1 14' Matrix:

Soil

Date Received:08.04.2020 08:30

Lab Sample Id: 668986-003

Analytical Method: Chloride by EPA 300

Date Collected: 08.03.2020 11:53

Prep Method: E300P

Tech: CHE

% Moisture:

Analyst:

CHE Date Prep: 08.04.2020 10:45 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Units Analysis Date		Dil
Chloride	16887-00-6	13.4	5.03	mg/kg	08.04.2020 12:03		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: BH-1 16'

Matrix:

Soil

Date Received:08.04.2020 08:30

Lab Sample Id: 668986-004

Date Collected: 08.03.2020 11:55

Prep Method: E300P

% Moisture:

Tech:
Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.04.2020 10:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	22.9	4.95	mg/kg	08.04.2020 12:08		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: BH-1 18'

Matrix:

Soil

Date Received:08.04.2020 08:30

Lab Sample Id: 668986-005

Date Collected: 08.03.2020 11:57

Prep Method: E300P

Analytical Method: Chloride by EPA 300

CHE

% Moisture:

Tech: CHE

Analyst:

Date Prep:

08.04.2020 10:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	34.4	4.99	mg/kg	08.04.2020 12:14		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: BH-1 20' Matrix:

Date Received:08.04.2020 08:30

Lab Sample Id: 668986-006

Soil Date Collected: 08.03.2020 12:24

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.04.2020 10:45

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	24.7	5.05	mg/kg	08.04.2020 12:19	X	1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: BH-1 25' Matrix:

Date Received:08.04.2020 08:30

Lab Sample Id: 668986-007

Soil Date Collected: 08.03.2020 13:30

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: CHE CHE

Date Prep: 08.04.2020 10:45 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	31.0	5.00	mg/kg	08.04.2020 12:35		1

Larson and Associates, Inc., Midland, TX

EBDU 37

Sample Id: BH-1 30' Matrix:

Soil

08.04.2020 10:45

Date Received:08.04.2020 08:30

Lab Sample Id: 668986-008

Date Collected: 08.03.2020 13:33

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Analyst:

CHE Date Prep: Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	31.5	5.04	mg/kg	08.04.2020 12:40		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.

BRL Below Reporting Limit. **ND** Not Detected.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

668986 **QC Summary**

Larson and Associates, Inc.

EBDU 37

Solid

Analytical Method: Chloride by EPA 300

Seq Number: 3133486

E300P Prep Method:

Date Prep:

08.04.2020

MB Sample Id: 7708666-1-BLK LCS Sample Id: 7708666-1-BKS

Spike

250

LCSD Sample Id:

7708666-1-BSD

Parameter

Chloride

MB Result Amount

LCS LCS Result %Rec

LCSD LCSD Result %Rec

Limits

RPD %RPD Limit Units

Analysis Flag

297

< 5.00

267 107 268

90-110 107

0 20 mg/kg

Date 08.04.2020 10:55

Analytical Method: Chloride by EPA 300

3133486

Matrix: Soil

Matrix:

Prep Method: Date Prep:

20

E300P

Seq Number: Parent Sample Id:

668967-001

MS Sample Id: 668967-001 S MSD Sample Id:

08.04.2020 668967-001 SD

Parameter

Chloride

Parent Result

MS Result

3050

MS %Rec 110

MSD Result

3040

MSD Limits %Rec 109 90-110 %RPD RPD Limit

0

Units Analysis

Flag Date

Seq Number:

3133486

Analytical Method: Chloride by EPA 300

Spike

2510

Amount

Matrix:

Soil

Prep Method:

E300P

08.04.2020 Date Prep:

Units

mg/kg

Parent Sample Id:

668986-006

668986-006 S MS Sample Id: MS MS MSD

MSD Limits MSD Sample Id: 668986-006 SD **RPD**

Limit

08.04.2020 11:10

Analysis Flag Date

X

Parameter Chloride

Parent Spike Result Amount 24.7 253

Result 312

%Rec 114 Result 312 %Rec 90-110 114

0

%RPD

20

mg/kg

08.04.2020 12:24

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample) OCD Ex. 5-0243 Page 16 of 18

LCS = Laboratory Control Sample A = Parent Result = MS/LCS Result

E = MSD/LCSD Result

MS = Matrix Spike B = Spike AddedD = MSD/LCSD % Rec

Nº 1322

Final 1.000

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Larson and Associates, Inc.

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 08.04.2020 08.30.00 AM

Air and Metal samples Acceptable Range: Ambient

Work Order #: 668986

Analyst:

Temperature Measuring device used: IR-8

Sam	ple Receipt Checklist	Comments
#1 *Temperature of cooler(s)?	2.2	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ co	oler? N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6*Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Any missing/extra samples?	No	
#9 Chain of Custody signed when relinquished/ re-	ceived? Yes	
#10 Chain of Custody agrees with sample labels/n	natrix? Yes	
#11 Container label(s) legible and intact?	Yes	
#12 Samples in proper container/ bottle?	Yes	
#13 Samples properly preserved?	Yes	
#14 Sample container(s) intact?	Yes	
#15 Sufficient sample amount for indicated test(s)?	Yes	
#16 All samples received within hold time?	Yes	
#17 Subcontract of sample(s)?	N/A	
#18 Water VOC samples have zero headspace?	N/A	

' Must be completed for	after-hours deliver	y of samples	prior to placii	ng in the refrigerator

Checklist completed by:	Brianna Teel	Date: <u>08.04.2020</u>	
Checklist reviewed by:	Jessica Warmer Jessica Kramer	Date: <u>08.04.2020</u>	

PH Device/Lot#:

eurofins Environment Testing

Page 180 of 330

Certificate of Analysis Summary 669190

Larson and Associates, Inc., Midland, TX

Project Name: Apache -EBDu #37

Project Id:

19-0112-49

Mark Larson **Contact:**

Report Date: 08.06.2020 16:24

Date Received in Lab: Wed 08.05.2020 10:28

Project Manager: Holly Taylor **Project Location:**

	Lab Id:	669190-0	01	669190-0	02	669190-0	03	669190-0	04	
Analysis Requested	Field Id:	C-28		C-22		C-23		C-1		
Analysis Requested	Depth:									
	Matrix:	SOIL	SOIL		SOIL		SOIL			
	Sampled:	08.04.2020	08.04.2020 12:54 0		08.04.2020 14:04		08.04.2020 14:12		17:28	
Chloride by EPA 300	Extracted:	08.05.2020	8.05.2020 11:26 0		11:26	08.05.2020	11:26	08.05.2020 11:26		
	Analyzed:	08.05.2020	8.05.2020 12:29 08		08.05.2020 12:45		08.05.2020 12:51		12:57	
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	
Chloride		415	9.98	10.7	10.0	15.8	10.1	338	10.1	
TPH By SW8015 Mod	Extracted:							08.06.2020	10:30	
	Analyzed:							08.06.2020	10:45	
	Units/RL:							mg/kg	RL	
Gasoline Range Hydrocarbons (GRO)								< 50.3	50.3	
Diesel Range Organics (DRO)								<50.3	50.3	
Motor Oil Range Hydrocarbons (MRO)								<50.3	50.3	
Total TPH								<50.3	50.3	

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Hely Taylor

Analytical Report 669190

for

Larson and Associates, Inc.

Project Manager: Mark Larson

Apache -EBDu #37 19-0112-49 08.06.2020

Collected By: Client

1089 N Canal Street Carlsbad, NM 88220

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-36), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-25), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-17)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-7)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

08.06.2020

Project Manager: Mark Larson Larson and Associates, Inc. P. O. Box 50685 Midland, TX 79710

Reference: Eurofins Xenco, LLC Report No(s): 669190

Apache -EBDu #37 Project Address:

Mark Larson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 669190. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 669190 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

Holly Taylor

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 669190

Larson and Associates, Inc., Midland, TX

Apache -EBDu #37

Sample Id	Matrix	Date Collected Sample Depth	Lab Sample Id
C-28	S	08.04.2020 12:54	669190-001
C-22	S	08.04.2020 14:04	669190-002
C-23	S	08.04.2020 14:12	669190-003
C-1	S	08.04.2020 17:28	669190-004

Page 184 of 330

CASE NARRATIVE

eurofins

Environment Testing
Xenco

Client Name: Larson and Associates, Inc.

Project Name: Apache -EBDu #37

 Project ID:
 19-0112-49
 Report Date:
 08.06.2020

 Work Order Number(s):
 669190
 Date Received:
 08.05.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Larson and Associates, Inc., Midland, TX

Apache -EBDu #37

Sample Id: C-28 Lab Sample Id: 669190-001 Matrix: Soil

Date Received:08.05.2020 10:28

Date Collected: 08.04.2020 12:54

Analytical Method: Chloride by EPA 300

Prep Method: E300P

% Moisture:

Tech: M

Analyst:

MAB MAB

Date Prep: 08.05.2020 11:26

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	415	9.98	mg/kg	08.05.2020 12:29		1

Larson and Associates, Inc., Midland, TX

Apache -EBDu #37

Sample Id: C-22 Lab Sample Id: 669190-002 Matrix: Soil

Date Received:08.05.2020 10:28

Date Collected: 08.04.2020 14:04

Analytical Method: Chloride by EPA 300

Prep Method: E300P

% Moisture:

Tech: MA

Analyst:

MAB MAB

Date Prep: 08.05.2020 11:26

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10.7	10.0	mg/kg	08.05.2020 12:45		1

Larson and Associates, Inc., Midland, TX

Apache -EBDu #37

Sample Id: C-23

Matrix:

Soil

Date Received:08.05.2020 10:28

Lab Sample Id: 669190-003

Date Collected: 08.04.2020 14:12

Prep Method: E300P

% Moisture:

Tech: Analyst: MAB MAB

Analytical Method: Chloride by EPA 300

Date Prep:

08.05.2020 11:26

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	15.8	10.1	mg/kg	08.05.2020 12:51		1

Larson and Associates, Inc., Midland, TX

Apache -EBDu #37

Sample Id: C-1 Matrix:

Date Received:08.05.2020 10:28

Lab Sample Id: 669190-004

Soil Date Collected: 08.04.2020 17:28

Units

Prep Method: E300P

Analysis Date

% Moisture:

Tech:

Parameter

MAB

Analytical Method: Chloride by EPA 300

Basis:

Wet Weight

MAB Analyst:

Seq Number: 3133628

Date Prep: 08.05.2020 11:26

Flag

Dil

Chloride 16887-00-6 338 10.1 mg/kg 08.05.2020 12:57 1

RL

Result

Cas Number

Analytical Method: TPH By SW8015 Mod

Prep Method: SW8015P

Tech:

DTH

% Moisture:

Analyst: DTH Date Prep: 08.06.2020 10:30 Basis:

Wet Weight

Parameter	Cas Number	Result	Result RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	< 50.3	50.3		mg/kg	08.06.2020 10:45	U	1
Diesel Range Organics (DRO)	C10C28DRO	< 50.3	50.3		mg/kg	08.06.2020 10:45	U	1
Motor Oil Range Hydrocarbons (MRO)	PHCG2835	< 50.3	50.3		mg/kg	08.06.2020 10:45	U	1
Total TPH	PHC635	< 50.3	50.3		mg/kg	08.06.2020 10:45	U	1
Surrogate	(Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	

Surrogate	Cas Number	% Recovery	Units	Limits	Analysis Date
1-Chlorooctane	111-85-3	106	%	70-135	08.06.2020 10:45
o-Terphenyl	84-15-1	112	%	70-135	08.06.2020 10:45

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit. **ND** Not Detected.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

Flag

Flag

Flag

QC Summary 669190

Larson and Associates, Inc.

Apache -EBDu #37

Analytical Method: Chloride by EPA 300

Seg Number: 3133628

7708772-1-BLK

Matrix: Solid

E300P Prep Method:

Date Prep:

08.05.2020

LCS Sample Id: MB Sample Id:

7708772-1-BKS

LCSD Sample Id: 7708772-1-BSD

mg/kg

LCS RPD MB Spike LCS Limits %RPD Units Analysis LCSD LCSD **Parameter** Result Amount Result %Rec Result %Rec Limit Date Chloride <10.0 250 270 108 90-110 0 20 08.05.2020 12:17 269 108

Analytical Method: Chloride by EPA 300

Seq Number:

3133628

Matrix: Soil

Prep Method: Date Prep:

E300P 08.05.2020

Parent Sample Id:

669190-001

669190-001 S MS Sample Id:

MSD Sample Id: 669190-001 SD

Parameter

Parent Spike Result Amount

MS MS Result %Rec

MSD MSD %Rec Result

Limits 90-110

107

RPD Units Limit

Analysis Flag Date

Chloride

415

7708781-1-BLK

629 107

LCS Sample Id:

629

7708781-1-BKS

%RPD

0

20

08.05.2020 12:34

Analytical Method: TPH By SW8015 Mod

Seq Number: MB Sample Id:

MB Sample Id:

3133666

Matrix: Solid

200

Prep Method:

SW8015P

Date Prep: 08.05.2020 LCSD Sample Id: 7708781-1-BSD

mg/kg

MB Spike **RPD** LCS LCS %RPD Units LCSD LCSD Limits Analysis Parameter Result %Rec Limit Date Result Amount Result %Rec 08.05.2020 15:25 Gasoline Range Hydrocarbons (GRO) 993 99 35 < 50.0 1000 1000 100 70-135 1 mg/kg Diesel Range Organics (DRO) < 50.0 1000 1040 104 1040 70-135 0 35 08.05.2020 15:25 104 mg/kg

MB MB LCS LCS LCSD Limits Units Analysis LCSD **Surrogate** Flag Flag Flag %Rec %Rec %Rec Date 120 08.05.2020 15:25 1-Chlorooctane 104 120 70-135 % o-Terphenyl 104 112 110 70-135 % 08.05.2020 15:25

Analytical Method: TPH By SW8015 Mod

Seq Number: 3133751

7708853-1-BLK

Matrix: Solid

LCS Sample Id: 7708853-1-BKS

Prep Method:

SW8015P

Date Prep: 08.06.2020

LCSD Sample Id: 7708853-1-BSD

%RPD RPD MB Spike LCS LCS LCSD LCSD Limits Units Analysis **Parameter** %Rec Result Limit Result Date Amount Result %Rec Gasoline Range Hydrocarbons (GRO) 08.06.2020 10:04 < 50.0 1000 1020 102 1030 103 70-135 1 35 mg/kg 08.06.2020 10:04 1060 1090 70-135 3 Diesel Range Organics (DRO) < 50.0 1000 106 109 35 mg/kg

MB MB LCS LCS LCSD Limits Units Analysis LCSD **Surrogate** Flag %Rec Flag %Rec %Rec Flag Date 08.06.2020 10:04 107 124 1-Chlorooctane 124 70-135 % 08.06.2020 10:04 o-Terphenyl 113 116 70-135 % 109

Analytical Method: TPH By SW8015 Mod

Seq Number: 3133666 Matrix: Solid

Prep Method: Date Prep: SW8015P 08.05.2020

MS = Matrix Spike

MB Sample Id: 7708781-1-BLK

MB **Parameter** Result

Units

Analysis Flag

Date Motor Oil Range Hydrocarbons (MRO) 08.05.2020 15:05 < 50.0 mg/kg

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / BRPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

OCD Ex. 5-0256 Page 11 of 15

LCS = Laboratory Control Sample = Parent Result = MS/LCS Result

= MSD/LCSD Result

B = Spike Added D = MSD/LCSD % Rec

Final 1.000

QC Summary 669190

Larson and Associates, Inc.

Apache -EBDu #37

Analytical Method: TPH By SW8015 Mod

Seq Number: 3133751 Matrix: Solid

Prep Method: SW8015P

Date Prep:

08.06.2020

MB Sample Id: 7708853-1-BLK

Parameter MB Units Analysis Flag
Result Date

 $Motor Oil Range Hydrocarbons (MRO) \\ < 50.0 \\ mg/kg \\ 08.06.2020 09:44$

Analytical Method:TPH By SW8015 ModPrep Method:SW8015PSeq Number:3133666Matrix:SoilDate Prep:08.05.2020

Parent Sample Id: 669190-001 MS Sample Id: 669190-001 S MSD Sample Id: 669190-001 SD

%RPD Parent Spike MS MS MSD **MSD** Limits RPD Units Analysis **Parameter** Flag Result Amount Result %Rec %Rec Limit Date Result Gasoline Range Hydrocarbons (GRO) 35 08.05.2020 16:26 < 50.0 1000 939 94 915 92 70-135 3 mg/kg mg/kg 08.05.2020 16:26 Diesel Range Organics (DRO) < 50.0 1000 967 97 962 96 70-135 1 35

MS MSD Units MS MSD Limits Analysis Surrogate %Rec Flag Flag Date %Rec 1-Chlorooctane 118 116 70-135 % 08.05.2020 16:26 08.05.2020 16:26 106 107 70-135 % o-Terphenyl

Analytical Method: TPH By SW8015 Mod Prep Method: SW8015P

 Seq Number:
 3133751
 Matrix:
 Soil
 Date Prep:
 08.06.2020

 Parent Sample Id:
 669190-004
 MS Sample Id:
 669190-004 S
 MSD Sample Id:
 669190-004 SD

Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbons (GRO)	< 50.1	1000	981	98	946	95	70-135	4	35	mg/kg	08.06.2020 11:05	
Diesel Range Organics (DRO)	< 50.1	1000	1020	102	985	99	70-135	3	35	mg/kg	08.06.2020 11:05	

Surrogate	MS %Rec	MS Flag	MSD %Rec	MSD Flag	Limits	Units	Analysis Date
1-Chlorooctane	122		119		70-135	%	08.06.2020 11:05
o-Terphenyl	112		109		70-135	%	08.06.2020 11:05

Page 13 of 15

Final 1.000

Nº 1258

Inter-Office Shipment

IOS Number : **68404**

Date/Time: 08.06.2020

Created by:

Martha Castro

Please send report to: Holly Taylor

Lab# From: **Carlsbad** Delivery Priority:

1089 N Canal Street

Lab# To: Midland

Air Bill No.:

E-Mail:

Address:

holly.taylor@xenco.com

Sample Id	Matrix Client Sample Id	Sample Collection	Method	Method Name	Lab Due	HT Due	PM	Analytes	Sign
669190-004	S C-1	08.04.2020 17:28	TX1005	TPH by Texas1005	08.06.2020	08.18.2020	HTA P	HCC12C28 PHCC28C35	

Inter Office Shipment or Sample Comments:

Relinquished By:

Martha Castro

Date Relinquished:

08.06.2020

Received By:

Date Received:

Cooler Temperature:

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Larson and Associates, Inc.

Date/ Time Received: 08.05.2020 10.28.00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 669190

Analyst:

Temperature Measuring device used: T-NM-007

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		3	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping contain	iner/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?		Yes	
#6*Custody Seals Signed and dated?		Yes	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		No	
#9 Chain of Custody signed when relinquish	ned/ received?	Yes	
#10 Chain of Custody agrees with sample la	abels/matrix?	Yes	
#11 Container label(s) legible and intact?		Yes	
#12 Samples in proper container/ bottle?		Yes	
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicated	test(s)?	Yes	
#16 All samples received within hold time?		Yes	
#17 Subcontract of sample(s)?		No	
#18 Water VOC samples have zero headsp	pace?	N/A	

' Must be completed for	after-hours deliver	y of samples	prior to placii	ng in the refrigerator

Checklist completed by:	Elizabeth McClellan	Date: <u>08.05.2020</u>
Checklist reviewed by:	Octab.	Date: <u>0</u> 8.06.2020

Martha Castro

PH Device/Lot#:

Environment Testing

Page 195 of 330

Certificate of Analysis Summary 669750

Larson and Associates, Inc., Midland, TX

Project Name: EBOU 37

Project Id:

Project Location:

19-0112-49

Date Received in Lab: Tue 08.11.2020 15:56

Contact:

💸 eurofins

Mark Larson

Project Manager: Holly Taylor

Report Date: 08.12.2020 17:13

o									•	0			
	Lab Id:	669750-0	01	669750-00)2	669750-00	03	669750-0	04	669750-0	05	669750-00	06
Analysis Requested	Field Id:	BH-2 10)'	BH-2 12'		BH-2 14'		BH-2 16'		BH-2 18'		BH-2 20'	
Analysis Requested	Depth:												
	Matrix:	SOIL	SOIL		SOIL		SOIL			SOIL		SOIL	
	Sampled:	08.10.2020	08.10.2020 11:01		08.10.2020 11:03		11:05	08.10.2020	11:09	08.10.2020	11:10	08.10.2020	11:11
Chloride by EPA 300	Extracted:	08.11.2020	16:39	08.11.2020 16:39		08.11.2020	16:39	08.11.2020	16:39	08.11.2020 16:39		08.11.2020 16:3	
	Analyzed:	08.11.2020	08.11.2020 18:27		08.11.2020 18:42		08.11.2020 18:48		08.11.2020 18:53		18:58	08.11.2020	19:14
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		79.7	4.97	18.4	5.02	10.1	4.98	10.3	4.99	9.67	4.96	9.64	4.95

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing

Page 196 of 330

Certificate of Analysis Summary 669750

Larson and Associates, Inc., Midland, TX

Project Name: EBOU 37

Project Id: Contact:

19-0112-49 Mark Larson **Date Received in Lab:** Tue 08.11.2020 15:56

Report Date: 08.12.2020 17:13

Project Location:

Project Manager: Holly Taylor

	Lab Id:	669750-0	07	669750-00	08	669750-0	09	669750-0	10	669750-0	11	669750-0	12
Analysis Requested	Field Id:	BH-2 25	,	BH-4 10'		BH-4 12'		BH-4 14'		BH-4 16'		BH-4 18'	
Anaiysis Requesieu	Depth:												
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	08.10.2020	08.10.2020 11:20		08.10.2020 13:05		08.10.2020 13:50		13:55	08.10.2020 14:05		08.10.2020	14:10
Chloride by EPA 300	Extracted:	08.11.2020	16:39	08.11.2020 16:39		08.11.2020	16:39	08.11.2020	16:39	08.11.2020	16:39	08.11.2020	16:39
	Analyzed:	08.11.2020	08.11.2020 19:19		08.11.2020 19:25		19:30	08.11.2020 19:35		08.11.2020	19:40	08.11.2020	19:56
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		11.6	4.98	24.0	5.04	12.0	5.01	10.3	4.97	15.0	5.00	12.7	5.03

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 197 of 330

Certificate of Analysis Summary 669750

Larson and Associates, Inc., Midland, TX

Project Name: EBOU 37

Project Id:

eurofins 🌣

19-0112-49

Date Received in Lab: Tue 08.11.2020 15:56

Contact: Mark Larson

Environment Testing

Report Date: 08.12.2020 17:13

Project Location:

Project Manager: Holly Taylor

	Lab Id:	669750-01	13	669750-01	4	669750-01	.5	669750-0	16	669750-0	17	669750-01	18
Analysis Requested	Field Id:	BH-4 20	'	BH-4 25'		BH-3 10'		BH-3 12'		BH-3 14'		BH-3 16'	
Anaiysis Requesieu	Depth:												
	Matrix:	SOIL	SOIL			SOIL		SOIL		SOIL		SOIL	
	Sampled:	08.10.2020 1	08.10.2020 14:40		08.10.2020 14:45		9:50	08.11.2020 ()9:55	08.11.2020	09:59	08.11.2020 1	0:00
Chloride by EPA 300	Extracted:	08.11.2020 1	6:39	08.11.2020 16:39		08.11.2020 1	6:39	08.11.2020	16:39	08.11.2020	16:39	08.11.2020 1	16:39
	Analyzed:	08.11.2020 2	08.11.2020 20:01		0:17	08.11.2020 2	0:23	08.11.2020 2	20:28	08.11.2020	20:33	08.11.2020 2	20:38
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		11.8	5.05	13.4	4.99	774	4.96	666	4.97	419	4.97	60.2	4.97

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

eurofins Environment Testing

Page 198 of 330

Certificate of Analysis Summary 669750

Larson and Associates, Inc., Midland, TX

Project Name: EBOU 37

Project Id:

Contact:

19-0112-49

Date Received in Lab: Tue 08.11.2020 15:56

Mark Larson

Report Date: 08.12.2020 17:13

Project Location:

Project Manager: Holly Taylor

	Lab Id:	669750-0	19	669750-0	20	669750-0	21	669750-02	22	669750-0	23	669750-02	24
Analysis Requested	Field Id:	BH-3 18	.	BH-3 20	,	BH-3 25'		BH-5 10'		BH-5 12'		BH-5 14'	
Anaiysis Requesieu	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	08.11.2020	10:15	08.11.2020	10:20	08.11.2020	10:25	08.11.2020	10:56	08.11.2020	10:58	08.11.2020 1	11:00
Chloride by EPA 300	Extracted:	08.11.2020	16:39	08.11.2020	16:39	08.11.2020	16:43	08.11.2020	16:43	08.11.2020	16:43	08.11.2020 1	16:43
	Analyzed:	08.11.2020	20:44	08.11.2020	20:49	08.11.2020	21:21	08.11.2020 2	21:36	08.11.2020	21:42	08.11.2020 2	21:47
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		89.3	5.02	227	5.05	32.7	5.01	10.2	4.99	9.94	5.00	9.78	5.04

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Page 199 of 330

Certificate of Analysis Summary 669750

Larson and Associates, Inc., Midland, TX

Project Name: EBOU 37

Project Id:

19-0112-49

Date Received in Lab: Tue 08.11.2020 15:56

Mark Larson **Contact:**

eurofins Environment Testing

Report Date: 08.12.2020 17:13

Project Location:

Project Manager: Holly Taylor

	Lab Id:	669750-02	25	669750-02	26	669750-02	27	669750-0	28		
Analysis Requested	Field Id:	BH-5 16'		BH-5 18	'	BH-5 20'		BH-5 25'			
Anatysis Requested	Depth:										
	Matrix:	SOIL		SOIL		SOIL		SOIL			
	Sampled:	08.11.2020 1	1:16	08.11.2020 1	1:18	08.11.2020 1	1:20	08.11.2020	11:30		
Chloride by EPA 300	Extracted:	08.11.2020 1	6:43	08.11.2020 1	6:43	08.11.2020 1	6:43	08.11.2020	16:43		
	Analyzed:	08.11.2020 2	1:52	08.11.2020 2	22:08	08.11.2020 2	22:13	08.11.2020	22:19		
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL		
Chloride		12.2	5.02	9.30	4.97	9.77	4.96	10.5	4.98		

BRL - Below Reporting Limit

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Analytical Report 669750

for

Larson and Associates, Inc.

Project Manager: Mark Larson

EBOU 37 19-0112-49 08.12.2020

Collected By: Client

1211 W. Florida Ave Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-20-36), Arizona (AZ0765), Florida (E871002-33), Louisiana (03054) Oklahoma (2019-058), North Carolina (681), Arkansas (20-035-0)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-20-25), Arizona (AZ0809)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-20-17)
Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-20-22)
Xenco-Midland (EPA Lab Code: TX00158): Texas (T104704400-19-19)
Xenco-Carlsbad (LELAP): Louisiana (05092)
Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-20-7)
Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)
Xenco-Tampa: Florida (E87429), North Carolina (483)

08.12.2020

Project Manager: Mark Larson Larson and Associates, Inc. P. O. Box 50685 Midland, TX 79710

Reference: Eurofins Xenco, LLC Report No(s): 669750

EBOU 37 Project Address:

Mark Larson:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the Eurofins Xenco, LLC Report Number(s) 669750. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by Eurofins Xenco, LLC. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 669750 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting Eurofins Xenco, LLC to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

thely Taylor

Holly Taylor

Project Manager

A Small Business and Minority Company

Houston - Dallas - Midland - Tampa - Phoenix - Lubbock - San Antonio - El Paso - Atlanta - New Mexico

Sample Cross Reference 669750

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
BH-2 10'	S	08.10.2020 11:01		669750-001
BH-2 12'	S	08.10.2020 11:03		669750-002
BH-2 14'	S	08.10.2020 11:05		669750-003
BH-2 16'	S	08.10.2020 11:09		669750-004
BH-2 18'	S	08.10.2020 11:10		669750-005
BH-2 20'	S	08.10.2020 11:11		669750-006
BH-2 25'	S	08.10.2020 11:20		669750-007
BH-4 10'	S	08.10.2020 13:05		669750-008
BH-4 12'	S	08.10.2020 13:50		669750-009
BH-4 14'	S	08.10.2020 13:55		669750-010
BH-4 16'	S	08.10.2020 14:05		669750-011
BH-4 18'	S	08.10.2020 14:10		669750-012
BH-4 20'	S	08.10.2020 14:40		669750-013
BH-4 25'	S	08.10.2020 14:45		669750-014
BH-3 10'	S	08.11.2020 09:50		669750-015
BH-3 12'	S	08.11.2020 09:55		669750-016
BH-3 14'	S	08.11.2020 09:59		669750-017
BH-3 16'	S	08.11.2020 10:00		669750-018
BH-3 18'	S	08.11.2020 10:15		669750-019
BH-3 20'	S	08.11.2020 10:20		669750-020
BH-3 25'	S	08.11.2020 10:25		669750-021
BH-5 10'	S	08.11.2020 10:56		669750-022
BH-5 12'	S	08.11.2020 10:58		669750-023
BH-5 14'	S	08.11.2020 11:00		669750-024
BH-5 16'	S	08.11.2020 11:16		669750-025
BH-5 18'	S	08.11.2020 11:18		669750-026
BH-5 20'	S	08.11.2020 11:20		669750-027
BH-5 25'	S	08.11.2020 11:30		669750-028

Page 203 of 330

CASE NARRATIVE

eurofins
Environment Testing
Xenco

Client Name: Larson and Associates, Inc.

Project Name: EBOU 37

 Project ID:
 19-0112-49
 Report Date:
 08.12.2020

 Work Order Number(s):
 669750
 Date Received:
 08.11.2020

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-2 10' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-001

Soil Date Collected: 08.10.2020 11:01

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	79.7	4.97	mg/kg	08.11.2020 18:27		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-2 12' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-002

Soil Date Collected: 08.10.2020 11:03

Prep Method: E300P

Analytical Method: Chloride by EPA 300

CHE

% Moisture:

Tech: CHE

Analyst:

Date Prep:

08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	18.4	5.02	mg/kg	08.11.2020 18:42		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-2 14' Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-003

Analytical Method: Chloride by EPA 300

CHE

Date Collected: 08.10.2020 11:05

Prep Method: E300P

Tech: CHE

% Moisture:

Analyst:

Date Prep:

08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10.1	4.98	mg/kg	08.11.2020 18:48		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-2 16'

Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-004

Date Collected: 08.10.2020 11:09

Prep Method: E300P

% Moisture:

Tech: CF

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep:

08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10.3	4.99	mg/kg	08.11.2020 18:53		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-2 18' Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-005

Analytical Method: Chloride by EPA 300

CHE

Date Collected: 08.10.2020 11:10

Prep Method: E300P

CHE

% Moisture:

Tech:

Analyst:

Date Prep: 08.11.2020 16:39 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.67	4.96	mg/kg	08.11.2020 18:58		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-2 20' Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-006

Analytical Method: Chloride by EPA 300

CHE

Date Collected: 08.10.2020 11:11

Prep Method: E300P

Tech: CHE % Moisture:

Analyst:

Date Prep: 08.11.2020 16:39 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.64	4.95	mg/kg	08.11.2020 19:14		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-2 25' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-007

Soil Date Collected: 08.10.2020 11:20

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Analyst:

CHE

Date Prep: 08.11.2020 16:39 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	11.6	4.98	mg/kg	08.11.2020 19:19		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-4 10'

Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-008

Date Collected: 08.10.2020 13:05

Prep Method: E300P

Pren

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	24.0	5.04	mg/kg	08.11.2020 19:25		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-4 12' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-009

Soil Date Collected: 08.10.2020 13:50

Prep Method: E300P

Analytical Method: Chloride by EPA 300 Tech: CHE

% Moisture:

CHE Analyst:

Date Prep:

08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	12.0	5.01	mg/kg	08.11.2020 19:30		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-4 14' Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-010

Analytical Method: Chloride by EPA 300

CHE

Date Collected: 08.10.2020 13:55

Prep Method: E300P

CHE

% Moisture:

Tech:

Analyst:

Date Prep:

08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10.3	4.97	mg/kg	08.11.2020 19:35		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-4 16' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-011

Soil Date Collected: 08.10.2020 14:05

Analytical Method: Chloride by EPA 300

Prep Method: E300P

Tech:

Analyst:

CHE

% Moisture:

CHE

Date Prep: 08.11.2020 16:39 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	15.0	5.00	mg/kg	08.11.2020 19:40		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-4 18' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-012

Soil Date Collected: 08.10.2020 14:10

Prep Method: E300P

Analytical Method: Chloride by EPA 300

CHE

% Moisture:

Wet Weight

Analyst:

Seq Number: 3134219

Tech:

CHE

Date Prep:

08.11.2020 16:39

Basis:

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	12.7	5.03	mo/ko	08 11 2020 19:56		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-4 20'

Matrix:

Date Prep:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-013

Date Collected: 08.10.2020 14:40

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Analyst:

CHE

08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	11.8	5.05	mg/kg	08.11.2020 20:01		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-4 25'

Matrix:

Date Prep:

Soil

08.11.2020 16:39

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-014

Date Collected: 08.10.2020 14:45

Prep Method: E300P

Tech: CHI

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

% Moi

% Moisture:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	13.4	4.99	mg/kg	08.11.2020 20:17		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-3 10' Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-015

Date Collected: 08.11.2020 09:50

Prep Method: E300P

CHE

% Moisture:

Tech:

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.11.2020 16:39 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	774	4.96	mg/kg	08.11.2020 20:23		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-3 12' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-016

Soil Date Collected: 08.11.2020 09:55

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: Analyst: CHE CHE

Date Prep: 08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	666	4.97	mg/kg	08.11.2020 20:28		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-3 14' Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-017

Date Collected: 08.11.2020 09:59

Prep Method: E300P

% Moisture:

Tech:

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.11.2020 16:39 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	419	4.97	mg/kg	08.11.2020 20:33		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-3 16'

Matrix: Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-018

Date Collected: 08.11.2020 10:00

Prep Method: E300P

% Moisture:

Tech: CH

Analyst:

CHE CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	60.2	4.97	mg/kg	08.11.2020 20:38		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-3 18' Matrix:

08.11.2020 16:39

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-019

Soil Date Collected: 08.11.2020 10:15

Prep Method: E300P

CHE

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Analyst:

Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	89.3	5.02	mg/kg	08.11.2020 20:44		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-3 20' Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-020

Date Collected: 08.11.2020 10:20

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE CHE

Analyst:

Date Prep:

08.11.2020 16:39

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	227	5.05	mg/kg	08.11.2020 20:49		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-3 25' Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-021

Date Collected: 08.11.2020 10:25

Prep Method: E300P

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Analyst:

CHE

Date Prep:

08.11.2020 16:43

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	32.7	5.01	mg/kg	08.11.2020 21:21		1

Dil

1

Certificate of Analytical Results 669750

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-5 10' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-022

Soil Date Collected: 08.11.2020 10:56

Prep Method: E300P

08.11.2020 21:36

Analytical Method: Chloride by EPA 300

% Moisture:

Tech: CHE

Seq Number: 3134222

Analyst:

CHE

Date Prep: 08.11.2020 16:43

4.99

Basis:

mg/kg

Wet Weight

Flag

Parameter Result Cas Number RLUnits **Analysis Date** Chloride

10.2

16887-00-6

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-5 12'

Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-023

Date Collected: 08.11.2020 10:58

Prep Method: E300P

Pr

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.11.2020 16:43

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.94	5.00	mg/kg	08.11.2020 21:42		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-5 14' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-024

Analytical Method: Chloride by EPA 300

CHE

Soil Date Collected: 08.11.2020 11:00

08.11.2020 16:43

Prep Method: E300P

CHE

% Moisture:

Tech:

Analyst:

Date Prep:

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.78	5.04	mg/kg	08.11.2020 21:47		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-5 16' Matrix:

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-025

Soil Date Collected: 08.11.2020 11:16

Analytical Method: Chloride by EPA 300

Prep Method: E300P

% Moisture:

Tech: Analyst: CHE CHE

Date Prep: 08.11.2020 16:43 Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	12.2	5.02	mg/kg	08.11.2020 21:52		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-5 18'

Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-026

Date Collected: 08.11.2020 11:18

Prep Method: E300P

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.11.2020 16:43

Basis:

% Moisture:

Wet Weight

Parameter	Cas Number	Result	RL	Units A	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.30	4.97	mg/kg 08	.11.2020 22:08		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-5 20'

Matrix:

Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-027

Analytical Method: Chloride by EPA 300

CHE

Date Collected: 08.11.2020 11:20

Prep Method: E300P

Tech: CHE

Analyst:

% Moisture:

Date Prep:

08.11.2020 16:43

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	9.77	4.96	mg/kg	08.11.2020 22:13		1

Larson and Associates, Inc., Midland, TX

EBOU 37

Sample Id: BH-5 25'

Matrix: Soil

Date Received:08.11.2020 15:56

Lab Sample Id: 669750-028

Date Collected: 08.11.2020 11:30

Prep Method: E300P

% Moisture:

Tech: CHE

Analyst:

CHE

Analytical Method: Chloride by EPA 300

Date Prep: 08.11.2020 16:43

Basis:

Wet Weight

Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	10.5	4.98	mg/kg	08.11.2020 22:19		1

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit. **ND** Not Detected.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

SMP Client Sample BLK Method Blank

BKS/LCS Blank Spike/Laboratory Control Sample BKSD/LCSD Blank Spike Duplicate/Laboratory Control Sample Duplicate

MD/SD Method Duplicate/Sample Duplicate MS Matrix Spike MSD: Matrix Spike Duplicate

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

^{**} Surrogate recovered outside laboratory control limit.

QC Summary 669750

Larson and Associates, Inc.

EBOU 37

E300P Analytical Method: Chloride by EPA 300 Prep Method: 3134219 Seg Number: Matrix: Solid Date Prep: 08.11.2020

7709203-1-BLK LCS Sample Id: 7709203-1-BKS LCSD Sample Id: 7709203-1-BSD MB Sample Id:

RPD MB Spike LCS LCS Limits %RPD Units Analysis LCSD LCSD Flag **Parameter** Result Amount Result %Rec Result %Rec Limit Date Chloride < 5.00 250 106 267 90-110 0 20 08.11.2020 18:16 266 107 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: Seq Number: 3134222 Matrix: Solid Date Prep: 08.11.2020

7709204-1-BLK 7709204-1-BKS 7709204-1-BSD LCS Sample Id: LCSD Sample Id: MB Sample Id:

MB Spike LCS LCS LCSD LCSD Limits %RPD RPD Units Analysis **Parameter** Flag %Rec Result Amount Result %Rec Limit Date Result 20 08.11.2020 21:10 Chloride < 5.00 250 266 106 265 106 90-110 0 mg/kg

Analytical Method: Chloride by EPA 300

Prep Method: 3134219 Seq Number: Matrix: Soil Date Prep: 08.11.2020

MS Sample Id: 669750-001 S MSD Sample Id: 669750-001 SD Parent Sample Id: 669750-001

Spike **RPD Parent** MS MS %RPD Units MSD **MSD** Limite Analysis Flag **Parameter** Result Result Limit Date Amount %Rec Result %Rec Chloride 107 0 20 08.11.2020 18:32 79.7 249 347 347 107 90-110 mg/kg

Analytical Method: Chloride by EPA 300

E300P Prep Method: 3134219 Matrix: Soil 08.11.2020 Seq Number: Date Prep:

Parent Sample Id: 669750-011 MS Sample Id: 669750-011 S MSD Sample Id: 669750-011 SD

RPD Parent Spike MS MS MSD MSD Limits %RPD Units Analysis Flag **Parameter** Result Limit Date Result Amount %Rec %Rec Result 08.11.2020 19:46 20 Chloride 15.0 250 288 109 289 110 90-110 0 mg/kg

Analytical Method: Chloride by EPA 300

Seq Number: 3134222 Matrix: Soil 08.11.2020 Date Prep:

669700-003 S 669700-003 SD Parent Sample Id: 669700-003 MS Sample Id: MSD Sample Id: MS

MS

MS

Spike Flag **Parameter** Result Limit Date Result Amount %Rec Result %Rec 08.12.2020 09:52 7940 10400 20 Chloride 2510 98 10500 102 90-110 1 mg/kg

MSD

Analytical Method: Chloride by EPA 300

Parent

Parent

Prep Method: 3134222 08.11.2020 Seq Number: Matrix: Soil Date Prep:

669750-021 S 669750-021 SD MS Sample Id: MSD Sample Id: Parent Sample Id: 669750-021 MS

Spike **MSD** MSD Flag **Parameter** Result Result Limit Date Amount %Rec %Rec Result $08.11.2020\ 21:26$ 20 Chloride 32.7 251 307 109 305 108 90-110 1 mg/kg

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference

[D] = 100*(C-A) / B $RPD = 200* \mid (C-E) \mid (C+E) \mid$ [D] = 100 * (C) / [B]

Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

OCD Ex. 5-0299 Page 39 of 42

LCS = Laboratory Control Sample = Parent Result = MS/LCS Result

= MSD/LCSD Result

Limits

Limits

MSD

%RPD

%RPD

MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

E300P

E300P

E300P

Analysis

Analysis

Units

Units

Prep Method:

RPD

RPD

Page 235 of 330 Received by O BH-5 8H-5 BH-5 8 H-5 BH-3 8 H-3 BH-> 8H-3 BH-5 BH-5 BH-3 RELINQUISHED BY:(Signature) LABORATORY: XC1CO RELINQUISHED BY:(Signature) RELINQUISHED BY:(Signature) TOTAL TIME ZONE:
Time zone/State:

M5T Data Reported to: ☐ Yes 🛚 📜 No TRRP report? Field Sample I.D. arson & ssociates, Inc. Environmental Consultants 20' 25' 25 20 8 74 A=AIR W=WATER S=SOIL Lab# Date 111/20 0955 SL=SLUDGE OT=OTHER P=PAINT DATE/TIME 8/11/29 6560 750 1015 0 25 1058) o 20 1100 1118 1116 000 1130 1120 DATE/TIME DATE/TIME Time Matrix 507 N. Marienfeld, Ste. 200 RECEIVED BY: (Signature) RECEIVED BY: (Signature) RECEIVED BY (Signature) SY # of Containers Midland, TX 79701 432-687-0901 **PRESERVATION** HCI HNO H,SO₄ □ NaOH □ UNPRESSERVED DATE: PROJECT LOCATION OR NAME: PO#: LAI PROJECT #: 2 DAY 🔲 1 DAY 🕱 NORMAL 🔲 OTHER **TURN AROUND TIME** LABORATORY USE ONLY: HAND DELIVERED □ CARRIER BILL # CUSTODY SEALS - D BROKEN DINTACT NOT USED RECEIVING TEMP: 353/344ERM#: LAB WORK ORDER#: CHAIN-OF-CUSTODY COLLECTOR: TJ + 03 t PAGE 2 OF 2 Nº 1220 FIELD NOTES Page 41 of 42 Final 1.000

Eurofins Xenco, LLC

Prelogin/Nonconformance Report- Sample Log-In

Client: Larson and Associates, Inc.

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 08.11.2020 03.56.00 PM

Air and Metal samples Acceptable Range: Ambient

Work Order #: 669750

Analyst:

Temperature Measuring device used: IR-8

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		24.9	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		No	
#4 *Custody Seals intact on shipping contain	ner/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?		N/A	
#6*Custody Seals Signed and dated?		N/A	
#7 *Chain of Custody present?		Yes	
#8 Any missing/extra samples?		No	
#9 Chain of Custody signed when relinquish	ed/ received?	Yes	
#10 Chain of Custody agrees with sample la	bels/matrix?	Yes	
#11 Container label(s) legible and intact?		Yes	
#12 Samples in proper container/ bottle?		Yes	
#13 Samples properly preserved?		Yes	
#14 Sample container(s) intact?		Yes	
#15 Sufficient sample amount for indicated to	est(s)?	Yes	
#16 All samples received within hold time?		Yes	
#17 Subcontract of sample(s)?		N/A	
#18 Water VOC samples have zero headspa	ace?	N/A	

' Must be completed for	after-hours deliver	y of samples	prior to placii	ng in the refrigerator

Checklist completed by:	Britanna Teel	Date: <u>08.11.2020</u>	
Checklist reviewed by:	Hely Taylor	Date: 08.12.2020	

Holly Taylor

PH Device/Lot#:

Appendix C

Photographs

Liner in Spill Area 2, facing south.

Seeding backfilled excavation, facing south.

Backfilled excavation, facing west.

Backfilled excavation, facing northeast.

Page **2** of **3**

Backfilled excavation, facing east.

Backfilled excavation, facing west.

Page 3 of 3

Appendix D

OCD Communications

From: <u>Billings, Bradford, EMNRD</u>

To: Mark Larson

Cc: Baker, Larry; Robert Nelson

Subject: RE: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Date: Tuesday, September 1, 2020 4:10:21 PM

09/01/2020

Mark,

As stated below was agreed in our phone conversation.

Bradford Billings

EMNRD/OCD

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations

From: Mark Larson < Mark@laenvironmental.com>

Sent: Tuesday, September 1, 2020 10:48 AM

To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>

Cc: Baker, Larry < Larry.Baker@apachecorp.com>; Robert Nelson < rnelson@laenvironmental.com>

Subject: [EXT] FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

This email confirms our call today, September 1, 2020, for approval to complete backfilling the excavation in the swale at EBDU #37. As discussed the excavation is currently backfilled with caliche to approximately 5 feet below ground surface (bgs). NMOCD approved filling the remainder of the excavation to three (3) feet with clean caliche and to ground surface with topsoil. Since Apache is finishing backfilling the north excavation with topsoil it will fill the excavation in the swale with topsoil from 5 feet to ground surface. Notification will be submitted o NMOCD at least 7 days excluding weekends prior to installing monitoring wells. Please let me know if this is not consistent with our discussion. Please contact Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com or me if you have questions.

Thank you,

Mark J. Larson, P.G.

President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 202

Midland, Texas 79701

Office - 432-687-0901

Cell - 432-556-8656

Fax – 432-687-0456 mark@laenvironmental.com

From: Mark Larson

Sent: Thursday, August 13, 2020 8:26 AM

To: 'Bradford.Billings@state.nm.us' < <u>Bradford.Billings@state.nm.us</u>>

Cc: Baker, Larry <<u>Larry.Baker@apachecorp.com</u>>; Robert Nelson <<u>rnelson@laenvironmental.com</u>>

Subject: FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

Soil sampling at EBDU #37 was completed on August 11, 202. The laboratory reported chloride above the OCD closure criteria of 600 milligrams per kilogram (mg/Kg) in two (2) samples: BH-3, 10 feet (774 mg/Kg) and 12 feet (666 mg/Kg). Chloride was 419 mg/Kg in the sample from 14 feet. Apache would like to forgo installing the 20 mil thickness polyethylene liner in the bottom of the large excavation and fill the remainder of the Area 2 excavation with caliche to approximately 3 feet bgs and with top soil from 3 feet to ground surface. The excavation north of the large excavation will be completed per the approved remediation plan. Please see the attached drawing (Figure 2) for the boring locations. Table 4 presents the confirmation composite sample locations. Drilling and installation for two (2) monitoring wells is scheduled for Monday, August 18th.

Your approval is this remediation plan modification is requested. Please contact Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com or me if you have questions.

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432-556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

From: Billings, Bradford, EMNRD < <u>Bradford.Billings@state.nm.us</u>>

Sent: Monday, August 10, 2020 10:51 AM **To:** Mark Larson < <u>Mark@laenvironmental.com</u>>

Cc: Baker, Larry < <u>Larry.Baker@apachecorp.com</u>>; Robert Nelson < <u>rnelson@laenvironmental.com</u>>

Subject: RE: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

08/10/2020

Hello M. Baker (Apache) and Mr. Larson (LAI),

As OCD has been informed you are looking to proceed on the site tomorrow, the following:

OCD approves the modifications as indicated in attached email form LAI. If the circumstances occur as is possible, there would be no need for the liner, and OCD agrees. OCD appreciates the desire to generate accurate data and is please for your efforts along those lines. If field data indicates a modification please attempt to contact me on phone or email.

Thank you and please be safe and careful.

Sincerely,

Bradford Billings EMNRD/OCD

From: Mark Larson < <u>Mark@laenvironmental.com</u>>

Sent: Monday, August 10, 2020 8:49 AM

To: Billings, Bradford, EMNRD < <u>Bradford.Billings@state.nm.us</u>>

Cc: Baker, Larry <<u>Larry.Baker@apachecorp.com</u>>; Robert Nelson <<u>rnelson@laenvironmental.com</u>>

Subject: [EXT] FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

I am following up on the email below to see if you have had a moment to review.

Thank you,

Mark

From: Mark Larson

Sent: Friday, August 7, 2020 11:45 AM

To: Billings, Bradford, EMNRD < <u>Bradford.Billings@state.nm.us</u>>

Cc: Baker, Larry < Larry.Baker@apachecorp.com; Robert Nelson rnelson@laenvironmental.com

Subject: FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

Apache Corporation has completed backfilling the deep excavation (Area 2) at EBUD #37 (1RP-5636) with clean caliche to approximately five (5) feet below ground surface (bgs) to allow access for a Geoprobe Model 7822DT to delineate the vertical extent of chloride in soil below the excavation at approximately 12 feet bgs. Personnel from Larson & Associates, Inc. (LAI) collected soil samples at the proposed boring location (BH-1) near the center of the excavation at 10, 12, 14, 16, 18 and 20 feet bgs, on August 3, 2020. The laboratory reported chloride at 11.6 mg/Kg (10 feet), 13.3 mg/Kg (12 feet), 13.4 mg/Kg (14 feet), 22.9 mg/Kg (16 feet), 34.4 mg/Kg (18 feet) and 24.7 mg/Kg at 20 feet bgs. Previous bottom samples from B15 collected on August 8, 2019, from 13, 15, 17, 19, 21 and 22 feet bgs, reported chloride at 720 mg/Kg, 1,840 mg/Kg, 1,950 mg/Kg, 3,800 mg/Kg, 544 mg/Kg, and 3,440 mg/Kg, respectively, and suggested possible sample cross contamination. Benzene, BTEX and TPH were the analytical method reporting limits. LAI personnel collected composite sidewall samples from the excavation to approximately 5 feet that were analyzed for benzene, BTEX and TPH. The final concentrations are below the OCD cleanup levels in Table 1 (19.15.29 NMAC).

Apache requests approval from OCD to collect additional delineation soil samples with the Geoprobe from four (4) locations (north, south, east and west) from location BH-1 at the same depths (10, 12,14,16,18 and 20 feet) and analyze the samples for chloride. Apache would like to forgo installing the 20 mil thickness polyethylene liner in the bottom of the large excavation If chloride concentrations are below the OCD remediation limit (600 mg/Kg). Apache will fill the remainder of the Area 2 excavation with caliche to approximately 3 feet bgs and with top soil from 3 feet to ground surface. The excavation north of the large excavation will be completed per the approved remediation plan. Please see the attached drawing (Figure 2) for the proposed borings BH-2 through BH-5. Figure 2a presents the composite soil sample locations. Table 4 presents the confirmation composite sample locations.

Your approval is this remediation plan modification is requested. Please contact Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com or me if you have questions.

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432-556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

From: Mark Larson < <u>Mark@laenvironmental.com</u>>

Sent: Monday, December 23, 2019 1:58 PM

To: Bradford.Billings@state.nm.us

Cc: Baker, Larry <<u>Larry.Baker@apachecorp.com</u>>; Rachel Owen <<u>rowen@laenvironmental.com</u>>;

Mark Larson < <u>Mark@laenvironmental.com</u>>

Subject: Re: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Dear Bradford,

This email will confirm our phone conversation on December 20, 2019 for the EBDU #37 produced water release:

- Apache will install a boring in the bottom of the excavation to delineate the vertical extent of chloride in soil. Soil samples will be collected beginning at the bottom of the excavation and every five (5) feet thereafter until chloride decreases below 600 mg/Kg or groundwater is encountered;
- Apache will install two (2) additional monitoring wells at locations shown on the attached drawing. The monitoring wells will be constructed similar to monitoring well TMW-1 and TMW-2 with about 20 feet of screen placed above and below the groundwater level observed during drilling. Groundwater is expected to occur around 50 feet bgs therefore the borings will be advanced to around 70 feet bgs;
- Survey wells for top of elevation (top of casing and ground) for groundwater potentiometric surface elevation, flow direction and gradient;
- Apache will close the excavation at Area 1 according to the remediation plan dated October 29, 2019;
- Apache will close the excavation at Area 2, based on the laboratory results of samples from the boring to be placed in the bottom of the excavation, by filling the excavation to approximately 5 feet bgs with clean caliche, installing a 20 mill thickness polyethylene liner at approximately 5 feet bgs and backfilling to surface with clean topsoil;
- Seed Area 1 and Area 2 following remediation according to landowner requirements;
- Perform quarterly groundwater monitoring (5 wells) and reporting.

Your approval is this addendum remediation plan is requested. Please contact Bruce Baker with Apache or me if you have questions.

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432-556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

1RP-5636 **2021**

First (1st) Quarter GROUNDWATER MONITORING REPORT (January – March)

East Blinebry Drinkard Unit #37 Lea County, New Mexico

> Latitude: N 32.47956° Longitude: W -103.12206°

LAI Project No. 19-0112-49

April 20, 2021

Prepared for:

Apache Corporation 303 Veterans Airpark Lane Midland, Texas 79705

Prepared by:

Larson & Associates, Inc. 507 North Marienfeld Street, Suite 202 Midland, Texas 79701

Mark J. Larson, P.G.
Certified Professional Geologist #10490

Daniel A. St. Germain Staff Geologist

Samuel &

This Page Intentionally Left Blank

Table of Contents

1.0 Executive Summary	1
,	
2.0 Introduction	. 1
2.1 Background	2
2.2 Monitoring Well Installations	
3.0 DEPTH TO GROUNDWATER AND GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION	
4.0 Groundwater Samples and Analysis	
4.1 Organic Analysis	
4.2 Inorganic Analysis	
5.0 Conclusions	. 4

Tables

Table 1	Monitor Well Construction and Gauging Summary
Table 2	Groundwater Sample Analytical Data Summary

Figures

Figure 1 Topographic Map

Figure 2 Aerial Map

Figure 3 Groundwater Potentiometric Map, March 11, 2021

Figure 4 Chloride Concentration in Groundwater Map, March 11, 2021 Figure 5 TDS Concentration in Groundwater Map, March 11, 2021

Appendices

Appendix A Initial C-141

Appendix B OCD Communications

Appendix C Boring Logs

Appendix D Laboratory Report

1.0 EXECUTIVE SUMMARY

Larson & Associates, Inc. (LAI) has prepared this first quarter groundwater monitoring report on behalf of Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (OCD) District 1 in Hobbs and Santa Fe, New Mexico. This report presents the 2021 first quarter (January – March) groundwater gauging summary and laboratory analysis of groundwater samples collected from four (4) monitor wells (TMW-1, TMW-2, TMW-3, and TMW-4) and a windmill at the East Blinebry Drinkard Unit (EBDU) #37 (Site) located in Lea County, New Mexico. The geodetic position is North 32.479569° and West -103.122061°.

The following groundwater monitoring activities occurred on March 11, 2021:

- Gauged depth to ground water in four (4) monitor wells (TMW-1 through TMW-4).
- > Purged and collected groundwater samples from four (4) monitor wells (TMW-1 through TMW-4).
- > Collect groundwater samples from a windmill located south from the Site.
- Analyzed groundwater samples for benzene, toluene, ethylbenzene, and xylenes (BTEX), total dissolved solids (TDS), and chloride.

The following observations are documented in this report:

- No significant changes were observed in potentiometric surface elevation, flow direction, or gradient during the monitoring period.
- ➤ Groundwater flow was from north to south at gradients between 0.0012 feet per foot (ft/ft) and 0.0019 ft/ft.
- ➤ BTEX was not reported above the analytical method reporting limits (RL) or New Mexico Water Quality Control Commission (WQCC) human health standards in groundwater samples collected on March 11, 2021.
- Chloride was reported above the WQCC domestic water quality standard of 250 milligrams per liter (mg/L) in groundwater samples collected from wells TMW-2 (293 mg/L), TMW-4 (834 mg/L), and the windmill (252 mg/L).
- TDS was reported above the WQCC domestic water quality standard of 1,000 mg/L in the groundwater sample collected from well TMW-4 (1960 mg/L).

Apache will continue quarterly monitoring of groundwater in wells TMW-1 through TMW-4 and the windmill during 2021 with laboratory analysis of groundwater samples for BTEX, TDS, and chloride. Notice will be provided to OCD in Hobbs and Santa Fe, New Mexico at least 5 working days prior to each groundwater monitoring event. OCD will be notified immediately upon receipt laboratory analysis with significant increase of analyte concentrations.

2.0 INTRODUCTION

Larson & Associates, Inc. (LAI), on behalf of Apache Corporation (Apache), has prepared this first quarter groundwater monitoring report for submittal to the New Mexico Oil Conservation Division (OCD) District 1 in Hobbs and Santa Fe, New Mexico. This report presents the first quarter laboratory analysis of groundwater samples collected from monitor wells (TMW-1, TMW-2, TMW-3, TMW-4) and a windmill at the East Blinebry Drinkard Unit (EBDU) #37 (Site) located in Lea County, New Mexico. The geodetic

position is North 32.479569° and West -103.122061°. Figure 1 presents a topographic map. Figure 2 presents an aerial map.

2.1 Background

The spill originated from a flowline at a pipeline junction located about 720 feet east from Well #37. Produced fluids (oil and water) flowed west about 350 feet west from the release origin, and south about 450 feet before terminating in low-lying area. The volume of the release and recovered fluid are unknown. The spill is designated as a major release due to the unknown volume of the release. The spill covered an area measuring about 31,320 square feet or about 0.72 acres. The initial C-141 was submitted on July 26, 2019 and was assigned remediation permit number 1RP-5636. Appendix A presents the initial C-141.

On October 29, 2019, Apache submitted to the OCD a remediation plan titled, "1RP-5636 REMEDIATION PLAN, East Blinebry Drinkard Unit #37 Produced water Spill, Lea County, New Mexico, October 29, 2019". On December 23, 2019, OCD approved an addendum to the remediation plan based on a telephone call on December 20, 2019, with the following conditions:

- Apache will install a boring in the bottom of the excavation to delineate the vertical extent of chloride in soil. Soil samples will be collected beginning at the bottom of the excavation and every five (5) feet thereafter until chloride decreases below 600 mg/Kg or groundwater is encountered.
- Apache will install two (2) additional monitoring wells at locations shown on the attached drawing. The monitoring wells will be constructed similar to monitoring well TMW-1 and TMW-2 with about 20 feet of screen placed above and below the groundwater level observed during drilling. Groundwater is expected to occur around 50 feet bgs therefore the borings will be advanced to around 70 feet bgs.
- Survey wells for top of elevation (top of casing and ground) for groundwater potentiometric surface elevation, flow direction and gradient.
- Apache will close the excavation at Area 1 according to the remediation plan dated October 29, 2019.
- Apache will close the excavation at Area 2, based on the laboratory results of samples from the boring to be placed in the bottom of the excavation, by filling the excavation to approximately 5 feet bgs with clean caliche, installing a 20-mill thickness polyethylene liner at approximately 5 feet bgs and backfilling to surface with clean topsoil.
- Seed Area 1 and Area 2 following remediation according to landowner requirement.
- Perform quarterly groundwater monitoring (5 wells) and reporting.

Appendix B presents the OCD communications.

2.2 Monitoring Well Installations

On September 29, 2019, Scarborough Drilling Inc. (SDI), under LAI supervision, installed two (2) monitoring wells (TMW-1 and TMW-2) under permits issued by the State of New Mexico Office of the State Engineer. Monitoring wells TMW-3 and TMW-4 were repositioned to avoid removing thick vegetation and/or crossing underground pipelines. Monitoring well TMW-3 was repositioned about 100 feet west from its original location. Monitoring well TMW-4 was repositioned about 30 feet east from its original location. OCD approved the relocation of the monitoring wells September 22, 2020. Appendix B presents OCD communications.

Monitoring wells TMW-3 and TMW-4 were drilled to approximately 68.41 feet bgs and 70.09 feet bgs, respectively. Both wells were completed with two (2) inch threaded schedule 40 PVC casing and approximately twenty (20) feet of 0.01-inch factory slotted screen. The screens were positioned above and below the groundwater level observed during drilling. Graded silica sand was placed around the well screens to about two (2) feet above the screens. The remaining annulus above the screens was filled to about 1-foot bgs with bentonite chips and hydrated with potable water. The wells are secured with locking steel covers.

The monitor wells (TMW-1 through TMW-4) were surveyed by West Company, a State of New Mexico Licensed Professional Land Surveyor (LPS Number 23263) for geodetic position and elevation, including surface elevation and top of casing (TOC) elevation. Figure 2 presents the monitoring well locations. Appendix C presents the boring logs and monitoring well completion records.

3.0 DEPTH TO GROUNDWATER AND GROUNDWATER POTENTIOMETRIC SURFACE ELEVATION

On March 11, 2021, depth to groundwater was gauged in wells TMW-1 through TMW-4. Groundwater was measured at 49.41 (TMW-1), 58.0 (TMW-2), 57.59 (TMW-3), and 57.4 (TMW-4) feet below top of casing (TOC). The groundwater potentiometric surface elevation ranged from 3,366.16 feet above mean sea level (MSL) at TMW-2 (up gradient) to 3,365.16 above MSL at TMW-1 (down gradient). Groundwater flow from north to south at gradients between 0.0012 feet per foot (ft/ft) and 0.0019 ft/ft.

No significant changes in potentiometric surface elevation, flow direction, or gradient were observed on March 11, 2021. Figure 3 presents the groundwater potentiometric surface map on March 11, 2021. Table 1 presents monitor well construction and gauging summary.

4.0 GROUNDWATER SAMPLES AND ANALYSIS

On March 10, 2021 LAI personnel collected groundwater samples from monitoring wells TMW-1 through TMW-4, using the low stress or low flow method following EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017) where an environmental pump is submerged near the middle of the water column and the well is pumped at a low flow rate until environmental parameters stabilize.

Groundwater samples were collected from discharge through dedicated disposable Tygon tubing. The tubing was discarded after each use and the pump was thoroughly cleaned with a solution of potable water and laboratory grade detergent (alconox) and rinsed with distilled water. The samples were transferred to labeled laboratory containers, packed in an ice chest filled with ice, and delivered under chain of custody control to Xenco Laboratories (Xenco), a National Environmental Laboratory Accreditation Conference (NELAC) accredited laboratory, located in Midland, Texas. A duplicate sample was collected from the windmill for laboratory quality assurance and quality control (QA/QC).

Xenco analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX) according to EPA SW-846 Method SW-8260D, total dissolved solids (TDS) by Method SM 2540C, and chloride by EPA Method 300. Table 2 presents the laboratory analytical summary. Appendix B presents the laboratory report.

4.1 Organic Analysis

Xenco reported BTEX concentrations below the laboratory analytical reporting limit (RL) and New Mexico Water Quality Control Commission (WQCC) human health standards in groundwater samples from TMW-1 through TMW-4 and windmill March 11, 2021. The results are consistent with the results from previous groundwater monitoring events.

4.2 Inorganic Analysis

Chloride concentrations remain above the WQCC domestic water quality standard (250 mg/L) in samples collected from monitoring wells TMW-2 (293 mg/L), TMW-4 (834 mg/L), and the windmill (252 mg/L). Chloride concentrations were below WQCC domestic water quality standards in monitoring wells TMW-1 (10.9 mg/L) and TMW-2 (213 mg/L), and consistent with previous monitoring events. The duplicate (QA/QC) sample (Dup-1) collected from the windmill is within 2.8 percent (259 mg/L) of the original chloride value (252 mg/L) for the windmill. No data quality exceptions were noted in Xenco case narratives. Figure 4 presents the chloride isopleth map for March 11, 2021.

TDS concentrations remain above the WQCC domestic water quality standard (1,000 mg/L) in samples collected from TMW-2 (1,000 mg/L) and TMW-4 (1,960 mg/L). TDS concentrations remain below the WQCC domestic water quality standards in monitoring wells TMW-1 (360 mg/L), TMW-3, (900 mg/L), and the windmill (745 mg/L). Figure 5 presents the TDS isopleth map for March 11, 2021.

5.0 CONCLUSIONS

The following observations are made in this report:

- The groundwater flow direction was from north to south at gradients between approximately 0.0012 and 0.0019 ft/ft.
- No significant changes were observed in potentiometric surface elevation, flow direction, or gradient during the monitoring period.
- BTEX was reported below the analytical reporting limit and WQCC human health standards in groundwater samples collected from TMW-1 through TMW-4.
- Chloride concentrations were reported above WQCC domestic water quality standard (250 mg/L) in groundwater samples collected from TMW-2 (293 mg/L), TMW-4 (834 mg/L), and the windmill (252 mg/L).
- TDS concentrations were reported above the WQCC domestic water quality standard (1,000 mg/L) in groundwater samples collected from TMW-2 (1,000 mg/L) and TMW-4 (1,960 mg/L).
- Apache will continue quarterly monitoring of groundwater in wells TMW-1 through TMW-4 and the windmill during 2021 with laboratory analysis of groundwater samples for BTEX, chloride and TDS.

Notice will be provided to OCD in Hobbs and Santa Fe, New Mexico at least 7 working days prior to each groundwater monitoring event. The OCD will be notified immediately upon receipt of laboratory analysis with significant increase of analyte concentrations.

Tables

Table 1 1RP-5636

Monitoring Well Completion and Gauging Summary Apache Corportaion, EBDU #37 Lea County, New Mexico

Well Information								Groundwater Data					
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
TMW-1	09/19/2019	74.36	71.00	2	3411.21	42.32 - 61.97	3.36	3,414.57	09/23/2019 12/26/2019 09/30/2020 12/07/2020 03/11/2021	46.18 48.90 49.31 49.42 49.41	42.82 45.54 45.95 46.06 46.05	28.18 26.27 25.05 24.94 24.95	3,368.39 3,365.67 3,365.26 3,365.15 3,365.16
TMW-2	09/19/2019	82.86	80.00	2	3421.30	47.50 - 67.50	2.86	3,424.16	09/23/2019 12/26/2019 09/30/2020 12/07/2020 03/11/2021	55.80 57.50 58.01 58.08 58.00	52.94 54.64 55.15 55.22 55.14	27.06 25.36 24.85 24.78 24.86	3,368.36 3,366.66 3,366.15 3,366.08 3,366.16
TWM-3	09/29/2020	71.29	68.41	2	3420.33	49.96 - 68.41	2.88	3,423.21	09/23/2019 12/26/2020 09/30/2020 12/07/2020 03/11/2021	 57.62 57.68 57.59	 54.74 54.80 54.71	 13.67 13.61 13.70	 3,365.59 3,365.53 3,365.62
TMW-4	09/29/2020	73.25	70.09	2	3420.03	49.96 - 69.76	3.16	3,423.19	09/23/2019 12/26/2019 09/30/2020 12/07/2020 03/11/2021	 57.39 57.45 57.40	 54.23 54.29 54.24	 15.86 15.80 15.85	 3,365.80 3,365.74 3,365.79

Notes: monitoring wells installed by Environ-Drill, Albuquerque, New Mexico with 2 inch schedule 40 PVC casing and screen

bgs: below ground surface

TOC: top of casing

AMSL: denotes elevation in feet above mean sea level

1RP-5636
Groundwater Sample Analytical Data Summary
Apache Corporation, EBDU 37, Lea County, New Mexico

Table 2

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Depth To
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Water
NMWQCC Standard:		*0.005	*1	*0.7	*0.62	**250	**1,000	(Feet TOC)
Windmill	(') 08/01/2019	<0.001	<0.001	<0.001	<0.003	232	732	
	(²) 09/23/2019							
	(²) 12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	259	688	
	(³) 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	274	730	
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	287	930	
	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	252	745	
TMW-1	(²) 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	37.4	400	46.18
	(²) 12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	21.1	390	48.9
	(³) 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	22.6	390	49.31
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	13.1	383	49.42
	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	10.9	360	
TMW-2	(²) 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	338	1,220	55.8
	(²) 12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	307	1,170	57.5
	(³) 09/30/2020	<0.00200	0.00227	<0.00200	<0.00200	314	1,040	58.01
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	298	1,050	58.06
	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	293	1,000	
TMW-3	09/23/2019							
	12/26/2019							
	(³) 09/30/2020	<0.00200	0.00322	<0.00200	0.00448	212	891	57.62
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	214	948	57.68
	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	213	900	
TMW-4	09/23/2019							
	12/26/2019							
	(³) 09/30/2020	<0.00200	0.00314	<0.00200	<0.00200	1,020	2,040	57.39
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	987	2,300	57.45
	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	834	1,960	
DUP-1 (Windmill)	(³) 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	276	794	
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200		908	
	(³) 03/11/2021	<0.00200	<0.00200		<0.00400		798	

Table 2 1RP-5636

Groundwater Sample Analytical Data Summary Apache Corporation, EBDU 37, Lea County, New Mexico

Notes:

('): analysis performed by Cardinal Laboratories, Hobbs, New Mexico, by EPA SW-846 Method 8021B (BTEX) and titration methods (chloride and TDS).

(²): analysis performed by DHL Analytical, Round Rock, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride).

(3): analysis performed by Xenco Laboratories, Midland, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride).

(4): anaylis performed by Eurofins-Xenco, Midland, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride). Units reported as ug/L in report, converted to mg/L.

< values: concentration is less than method reporting limit (RL).

- *: NMWQCC Human Health Standard
- **: NMWQCC Domestic Water Quality Standard
- --: no data available

TOC: top of casing

All values reported in milligrams per liter (mg/L) equivalent to parts per million (ppm)

Bold and highlighted denotes analyte concentration exceeds NMWQCC domestic water quality standard

Figures

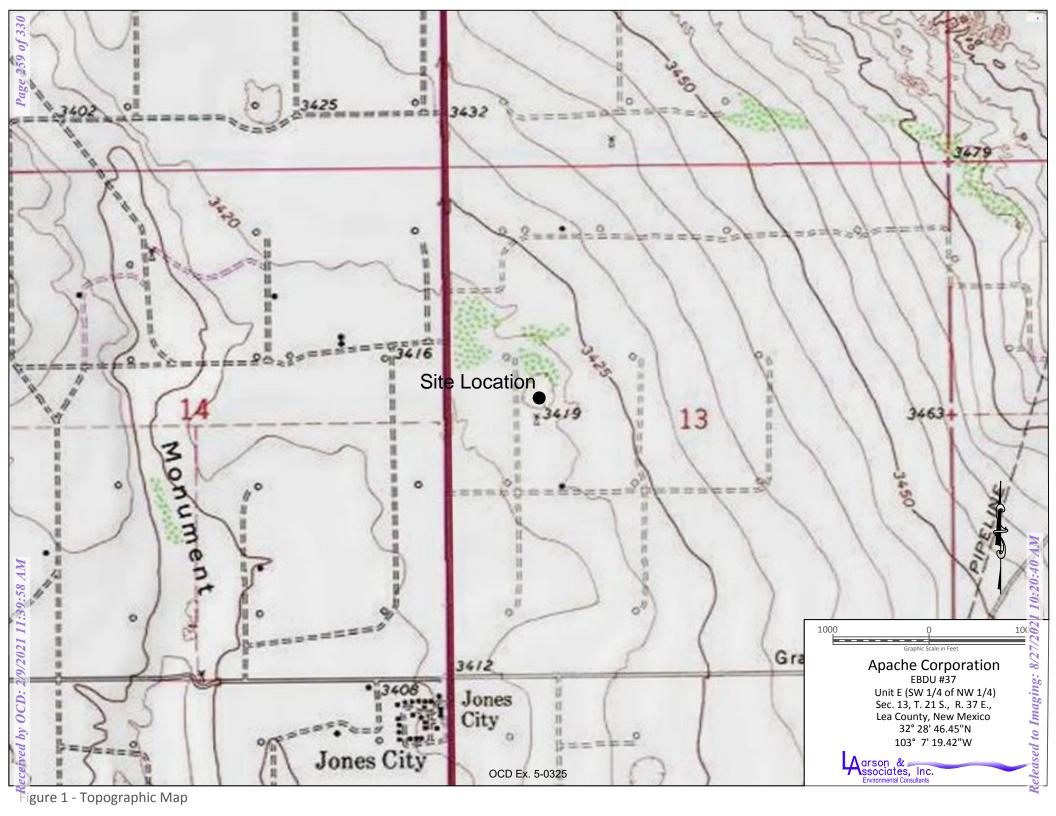


Figure 2 - Aerial Map

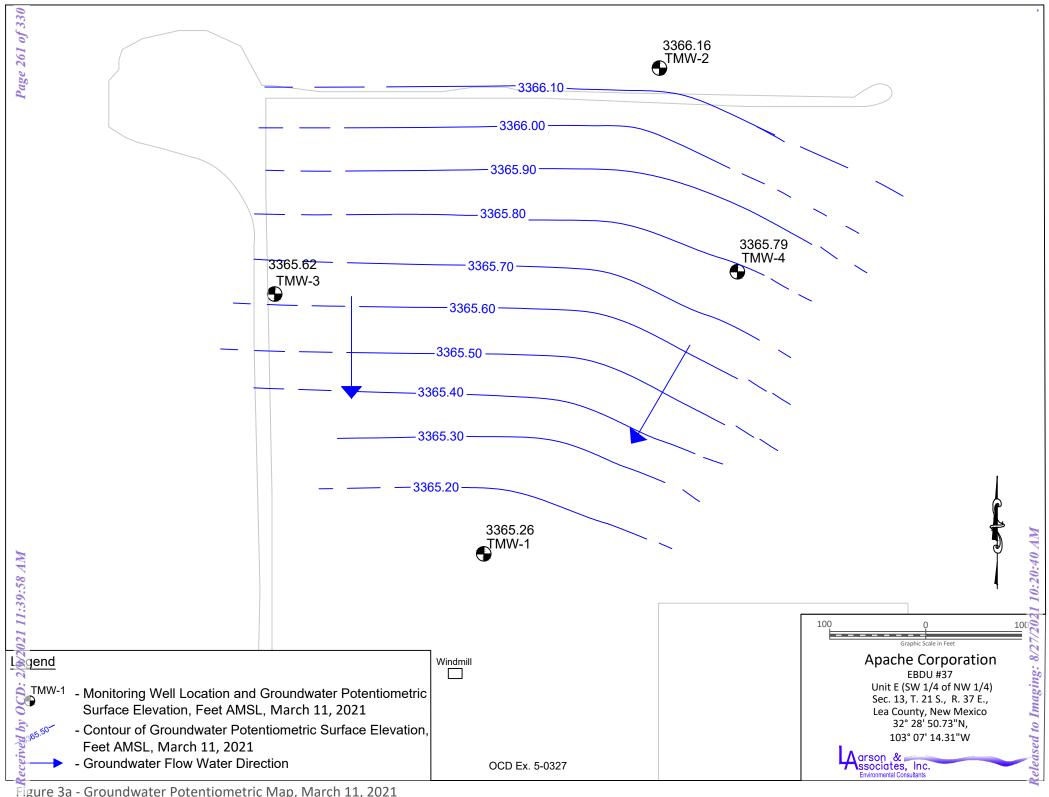


Figure 3a - Groundwater Potentiometric Map, March 11, 2021

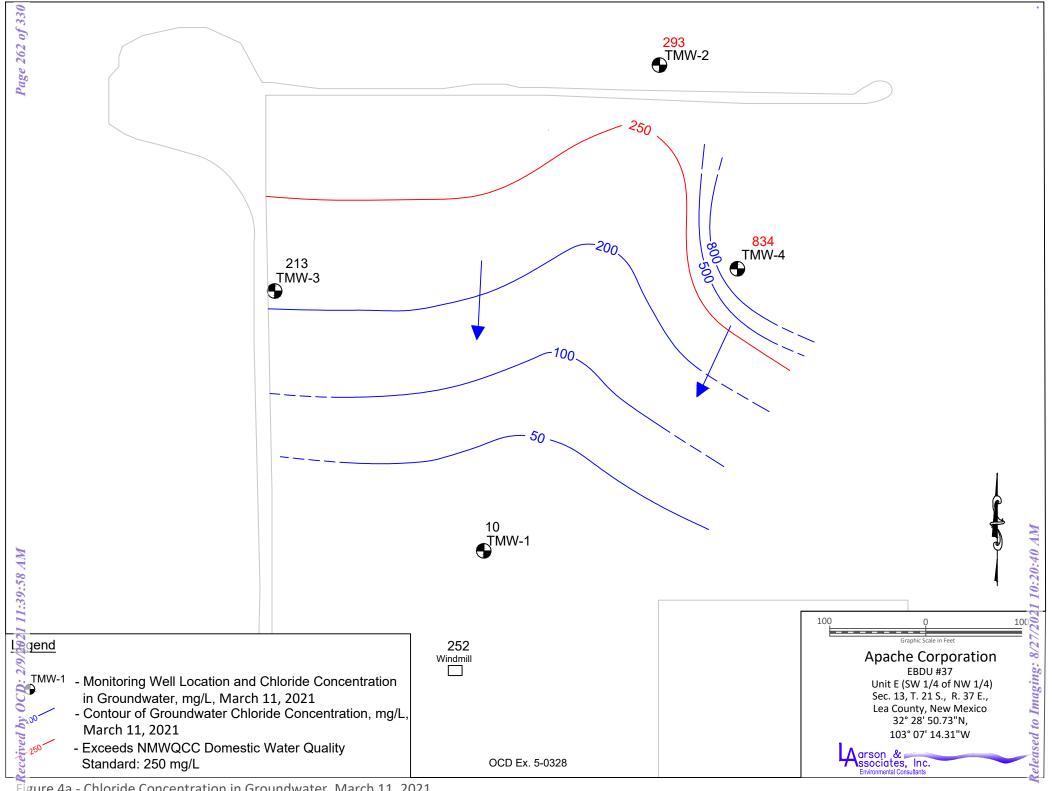


Figure 4a - Chloride Concentration in Groundwater, March 11, 2021

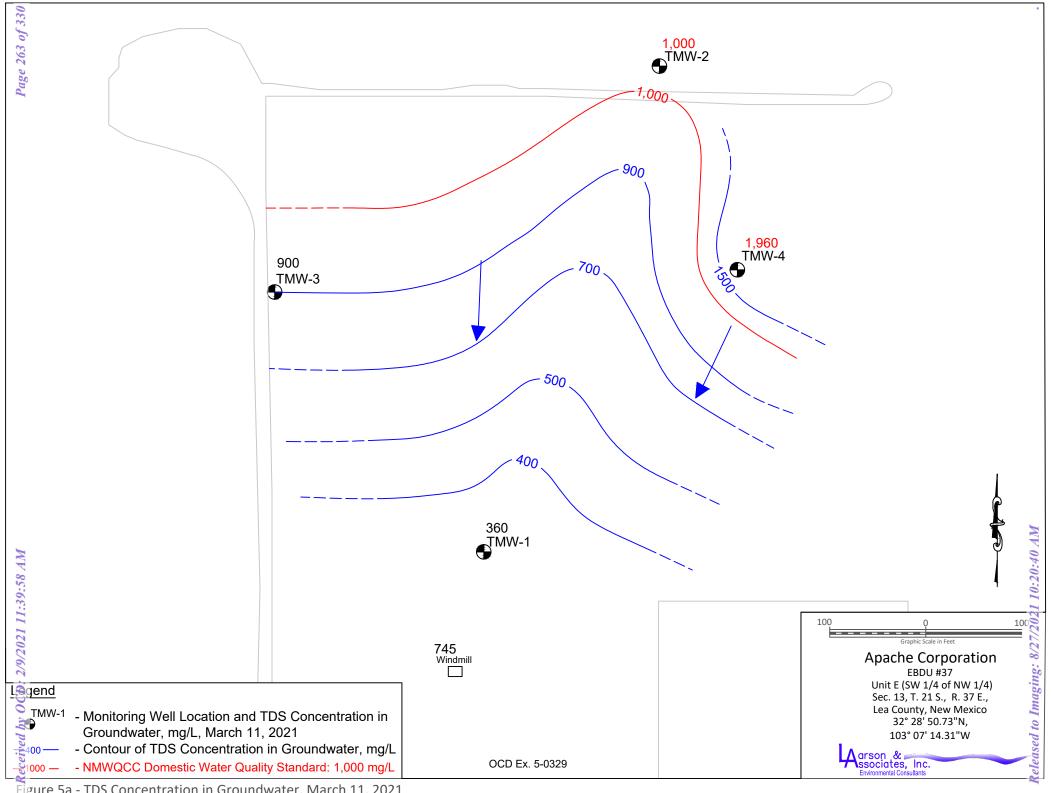


Figure 5a - TDS Concentration in Groundwater, March 11, 2021

Appendix A

Initial C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	NDHR1922141227
District RP	1RP-5636
Facility ID	
Application ID	pDHR1922140928

Release Notification

Responsible Party

Responsible Party: Apache Corporation	OGRID 873
Contact Name: Bruce Baker	Contact Telephone: (432) 631-6982
Contact email: Larry.Baker@apachecorp.com	Incident # (assigned by OCD)
Contact Mailing Address: 2350 W. Marland Blvd, Hobbs, NM	
88240	

Location of Release Source

Latitude: W 32.4807053 Longitude: N -103.123085

(NAD 83 in decimal degrees to 5 decimal places)

Site Name: E	BDU #37 W	TW		Site Type: Water Injection Well					
Date Release	Discovered:	July 14, 2019		API # 3002506556					
						1			
Unit Letter	Section	Township	Range		County				
Е	12	21S	37E	LEA	L				

Surface Owner: State Federal Tribal Private (Name: William Stephens)

Nature and Volume of Release

Material	l(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (Unknown bbls)	Volume Recovered (Unknown bbls)
□ Produced Water	Volume Released (Unknown bbls)	Volume Recovered (Unknown bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	☐ Yes ☒ No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		
Isolation valve failure due	e to internal corrosion.	

Page 266 of 330

Incident ID	NDHR 1922141227
District RP	1RP-5636
Facility ID	
Application ID	nDHR 1922140928

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	11 125, 161 what reason(6) assist the responsible party constact this a major release.
19.15.29.7(A) NMAC?	
☐ Yes ⊠ No	
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
Via email given to NM O	CD by Bruce Baker, Senior Environmental Technician, Apache Corporation
	Initial Response
The responsible p	party must undertake the following actions immediately unless they could create a safety hazard that would result in injury
The source of the rele	ase has been stopped.
The impacted area has	s been secured to protect human health and the environment.
Released materials ha	we been contained via the use of berms or dikes, absorbent pads, or other containment devices.
All free liquids and re	ecoverable materials have been removed and managed appropriately.
If all the actions described	l above have <u>not</u> been undertaken, explain why:
D 1015 20 0 D (A) ND 4	
	AC the responsible party may commence remediation immediately after discovery of a release. If remediation a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred
	t area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.
	rmation given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and
	required to report and/or file certain release notifications and perform corrective actions for releases which may endanger nent. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have
failed to adequately investiga	ate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws
and/or regulations.	ta C-141 report does not reneve the operator of responsionity for comphance with any other federal, state, or local laws
Printed Name: Jeff Broom	Title: Environmental Technician
<u> </u>	
Signature:	Date: <u>07/24/2019</u>
Email: <u>Jeffrey.Broom@ar</u>	pachecorp.com Telephone: (432) 664-4677
OCD Only	
OCD Only	
Received by: <u>Dylan Ro</u>	ose-Coss Date: <u>08/09/2019</u>

Appendix B

OCD Communications

From: <u>Billings, Bradford, EMNRD</u>

To: Mark Larson

Cc: Baker, Larry; Rachel Owen

Subject: RE: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Date: Monday, December 23, 2019 3:21:06 PM

12/23/2019

Apache Corp. – Larry Baker Larson Environmental

RE: 1RP-5636/EBDU #37, the following:

The attached/stringed email as an addendum to offered Work Plan is approved, including the location of proposed monitor wells, as was discussed recently on the telephone.

Please keep a copy of this communication for your records, as NO paper copy will follow. It may take some days for this to be uploaded to The Oil Conservation Division (OCD) data base,

ODE appreciates your efforts.

Sincerely,

Bradford Billings EMNRD/OCD Santa Fe, NM

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations

From: Mark Larson < Mark@laenvironmental.com>

Sent: Monday, December 23, 2019 12:58 PM

To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>

Cc: Baker, Larry <Larry.Baker@apachecorp.com>; Rachel Owen <rowen@laenvironmental.com>;

Mark Larson < Mark@laenvironmental.com>

Subject: [EXT] Re: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Dear Bradford.

This email will confirm our phone conversation on December 20, 2019 for the EBDU #37 produced water release:

- Apache will install a boring in the bottom of the excavation to delineate the vertical extent of chloride in soil. Soil samples will be collected beginning at the bottom of the excavation and every five (5) feet thereafter until chloride decreases below 600 mg/Kg or groundwater is encountered:
- Apache will install two (2) additional monitoring wells at locations shown on the attached drawing. The monitoring wells will be constructed similar to monitoring well TMW-1 and TMW-2 with about 20 feet of screen placed above and below the groundwater level observed during drilling. Groundwater is expected to occur around 50 feet bgs therefore the borings will be advanced to around 70 feet bgs;
- Survey wells for top of elevation (top of casing and ground) for groundwater potentiometric surface elevation, flow direction and gradient;
- Apache will close the excavation at Area 1 according to the remediation plan dated October 29, 2019;
- Apache will close the excavation at Area 2, based on the laboratory results of samples from the boring to be placed in the bottom of the excavation, by filling the excavation to approximately 5 feet bgs with clean caliche, installing a 20 mill thickness polyethylene liner at approximately 5 feet bgs and backfilling to surface with clean topsoil;
- Seed Area 1 and Area 2 following remediation according to landowner requirements;
- Perform quarterly groundwater monitoring (5 wells) and reporting.

Your approval is this addendum remediation plan is requested. Please contact Bruce Baker with Apache or me if you have questions.

Mark J. Larson, P.G. President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 202 Midland, Texas 79701 Office - 432-687-0901 Cell - 432-556-8656 Fax - 432-687-0456

mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

From: <u>Billings, Bradford, EMNRD</u>

To: Mark Larson

Cc: <u>Baker, Larry</u>; <u>Robert Nelson</u>

Subject: RE: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Date: Tuesday, September 1, 2020 4:10:21 PM

09/01/2020

Mark,

As stated below was agreed in our phone conversation.

Bradford Billings

EMNRD/OCD

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to ground water, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, local laws and/or regulations

From: Mark Larson < Mark@laenvironmental.com>

Sent: Tuesday, September 1, 2020 10:48 AM

To: Billings, Bradford, EMNRD < Bradford. Billings@state.nm.us>

Cc: Baker, Larry < Larry.Baker@apachecorp.com>; Robert Nelson < rnelson@laenvironmental.com>

Subject: [EXT] FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

This email confirms our call today, September 1, 2020, for approval to complete backfilling the excavation in the swale at EBDU #37. As discussed the excavation is currently backfilled with caliche to approximately 5 feet below ground surface (bgs). NMOCD approved filling the remainder of the excavation to three (3) feet with clean caliche and to ground surface with topsoil. Since Apache is finishing backfilling the north excavation with topsoil it will fill the excavation in the swale with topsoil from 5 feet to ground surface. Notification will be submitted o NMOCD at least 7 days excluding weekends prior to installing monitoring wells. Please let me know if this is not consistent with our discussion. Please contact Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com or me if you have questions.

Thank you,

Mark J. Larson, P.G.

President/Sr. Hydrogeologist 507 N. Marienfeld St., Suite 202

Midland, Texas 79701

Office - 432-687-0901

Cell - 432-556-8656

Fax – 432-687-0456 mark@laenvironmental.com

From: Mark Larson

Sent: Thursday, August 13, 2020 8:26 AM

To: 'Bradford.Billings@state.nm.us' < <u>Bradford.Billings@state.nm.us</u>>

Cc: Baker, Larry <<u>Larry.Baker@apachecorp.com</u>>; Robert Nelson <<u>rnelson@laenvironmental.com</u>>

Subject: FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

Soil sampling at EBDU #37 was completed on August 11, 202. The laboratory reported chloride above the OCD closure criteria of 600 milligrams per kilogram (mg/Kg) in two (2) samples: BH-3, 10 feet (774 mg/Kg) and 12 feet (666 mg/Kg). Chloride was 419 mg/Kg in the sample from 14 feet. Apache would like to forgo installing the 20 mil thickness polyethylene liner in the bottom of the large excavation and fill the remainder of the Area 2 excavation with caliche to approximately 3 feet bgs and with top soil from 3 feet to ground surface. The excavation north of the large excavation will be completed per the approved remediation plan. Please see the attached drawing (Figure 2) for the boring locations. Table 4 presents the confirmation composite sample locations. Drilling and installation for two (2) monitoring wells is scheduled for Monday, August 18th.

Your approval is this remediation plan modification is requested. Please contact Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com or me if you have questions.

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432-556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

From: Billings, Bradford, EMNRD < <u>Bradford.Billings@state.nm.us</u>>

Sent: Monday, August 10, 2020 10:51 AM **To:** Mark Larson < <u>Mark@laenvironmental.com</u>>

Cc: Baker, Larry < <u>Larry.Baker@apachecorp.com</u>>; Robert Nelson < <u>rnelson@laenvironmental.com</u>>

Subject: RE: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

08/10/2020

Hello M. Baker (Apache) and Mr. Larson (LAI),

As OCD has been informed you are looking to proceed on the site tomorrow, the following:

OCD approves the modifications as indicated in attached email form LAI. If the circumstances occur as is possible, there would be no need for the liner, and OCD agrees. OCD appreciates the desire to generate accurate data and is please for your efforts along those lines. If field data indicates a modification please attempt to contact me on phone or email.

Thank you and please be safe and careful.

Sincerely,

Bradford Billings EMNRD/OCD

From: Mark Larson < <u>Mark@laenvironmental.com</u>>

Sent: Monday, August 10, 2020 8:49 AM

To: Billings, Bradford, EMNRD < <u>Bradford.Billings@state.nm.us</u>>

Cc: Baker, Larry <<u>Larry.Baker@apachecorp.com</u>>; Robert Nelson <<u>rnelson@laenvironmental.com</u>>

Subject: [EXT] FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

I am following up on the email below to see if you have had a moment to review.

Thank you,

Mark

From: Mark Larson

Sent: Friday, August 7, 2020 11:45 AM

To: Billings, Bradford, EMNRD < <u>Bradford.Billings@state.nm.us</u>>

Cc: Baker, Larry < Larry.Baker@apachecorp.com; Robert Nelson rnelson@laenvironmental.com

Subject: FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

Apache Corporation has completed backfilling the deep excavation (Area 2) at EBUD #37 (1RP-5636) with clean caliche to approximately five (5) feet below ground surface (bgs) to allow access for a Geoprobe Model 7822DT to delineate the vertical extent of chloride in soil below the excavation at approximately 12 feet bgs. Personnel from Larson & Associates, Inc. (LAI) collected soil samples at the proposed boring location (BH-1) near the center of the excavation at 10, 12, 14, 16, 18 and 20 feet bgs, on August 3, 2020. The laboratory reported chloride at 11.6 mg/Kg (10 feet), 13.3 mg/Kg (12 feet), 13.4 mg/Kg (14 feet), 22.9 mg/Kg (16 feet), 34.4 mg/Kg (18 feet) and 24.7 mg/Kg at 20 feet bgs. Previous bottom samples from B15 collected on August 8, 2019, from 13, 15, 17, 19, 21 and 22 feet bgs, reported chloride at 720 mg/Kg, 1,840 mg/Kg, 1,950 mg/Kg, 3,800 mg/Kg, 544 mg/Kg, and 3,440 mg/Kg, respectively, and suggested possible sample cross contamination. Benzene, BTEX and TPH were the analytical method reporting limits. LAI personnel collected composite sidewall samples from the excavation to approximately 5 feet that were analyzed for benzene, BTEX and TPH. The final concentrations are below the OCD cleanup levels in Table 1 (19.15.29 NMAC).

Apache requests approval from OCD to collect additional delineation soil samples with the Geoprobe from four (4) locations (north, south, east and west) from location BH-1 at the same depths (10, 12,14,16,18 and 20 feet) and analyze the samples for chloride. Apache would like to forgo installing the 20 mil thickness polyethylene liner in the bottom of the large excavation If chloride concentrations are below the OCD remediation limit (600 mg/Kg). Apache will fill the remainder of the Area 2 excavation with caliche to approximately 3 feet bgs and with top soil from 3 feet to ground surface. The excavation north of the large excavation will be completed per the approved remediation plan. Please see the attached drawing (Figure 2) for the proposed borings BH-2 through BH-5. Figure 2a presents the composite soil sample locations. Table 4 presents the confirmation composite sample locations.

Your approval is this remediation plan modification is requested. Please contact Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com or me if you have questions.

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432-556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

From: Mark Larson < <u>Mark@laenvironmental.com</u>>

Sent: Monday, December 23, 2019 1:58 PM

To: Bradford.Billings@state.nm.us

Cc: Baker, Larry <<u>Larry.Baker@apachecorp.com</u>>; Rachel Owen <<u>rowen@laenvironmental.com</u>>;

Mark Larson < <u>Mark@laenvironmental.com</u>>

Subject: Re: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Dear Bradford,

This email will confirm our phone conversation on December 20, 2019 for the EBDU #37 produced water release:

- Apache will install a boring in the bottom of the excavation to delineate the vertical extent of chloride in soil. Soil samples will be collected beginning at the bottom of the excavation and every five (5) feet thereafter until chloride decreases below 600 mg/Kg or groundwater is encountered;
- Apache will install two (2) additional monitoring wells at locations shown on the attached drawing. The monitoring wells will be constructed similar to monitoring well TMW-1 and TMW-2 with about 20 feet of screen placed above and below the groundwater level observed during drilling. Groundwater is expected to occur around 50 feet bgs therefore the borings will be advanced to around 70 feet bgs;
- Survey wells for top of elevation (top of casing and ground) for groundwater potentiometric surface elevation, flow direction and gradient;
- Apache will close the excavation at Area 1 according to the remediation plan dated October 29, 2019;
- Apache will close the excavation at Area 2, based on the laboratory results of samples from
 the boring to be placed in the bottom of the excavation, by filling the excavation to
 approximately 5 feet bgs with clean caliche, installing a 20 mill thickness polyethylene liner at
 approximately 5 feet bgs and backfilling to surface with clean topsoil;
- Seed Area 1 and Area 2 following remediation according to landowner requirements;
- Perform quarterly groundwater monitoring (5 wells) and reporting.

Your approval is this addendum remediation plan is requested. Please contact Bruce Baker with Apache or me if you have questions.

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432-556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

From: <u>Billings, Bradford, EMNRD</u>

To: Mark Larson

Cc: Baker, Larry; Robert Nelson

Subject: RE: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Date: Monday, August 10, 2020 11:03:12 AM

08/10/2020

Hello M. Baker (Apache) and Mr. Larson (LAI),

As OCD has been informed you are looking to proceed on the site tomorrow, the following:

OCD approves the modifications as indicated in attached email form LAI. If the circumstances occur as is possible, there would be no need for the liner, and OCD agrees. OCD appreciates the desire to generate accurate data and is please for your efforts along those lines. If field data indicates a modification please attempt to contact me on phone or email.

Thank you and please be safe and careful.

Sincerely,

Bradford Billings EMNRD/OCD

From: Mark Larson < Mark@laenvironmental.com>

Sent: Monday, August 10, 2020 8:49 AM

To: Billings, Bradford, EMNRD < Bradford. Billings@state.nm.us>

Cc: Baker, Larry < Larry.Baker@apachecorp.com>; Robert Nelson < rnelson@laenvironmental.com>

Subject: [EXT] FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford,

I am following up on the email below to see if you have had a moment to review.

Thank you,

Mark

From: Mark Larson

Sent: Friday, August 7, 2020 11:45 AM

To: Billings, Bradford, EMNRD < <u>Bradford.Billings@state.nm.us</u>>

Cc: Baker, Larry <<u>Larry.Baker@apachecorp.com</u>>; Robert Nelson <<u>rnelson@laenvironmental.com</u>>

Subject: FW: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Hello Bradford.

Apache Corporation has completed backfilling the deep excavation (Area 2) at EBUD #37 (1RP-5636) with clean caliche to approximately five (5) feet below ground surface (bgs) to allow access for a Geoprobe Model 7822DT to delineate the vertical extent of chloride in soil below the excavation at approximately 12 feet bgs. Personnel from Larson & Associates, Inc. (LAI) collected soil samples at the proposed boring location (BH-1) near the center of the excavation at 10, 12, 14, 16, 18 and 20 feet bgs, on August 3, 2020. The laboratory reported chloride at 11.6 mg/Kg (10 feet), 13.3 mg/Kg (12 feet), 13.4 mg/Kg (14 feet), 22.9 mg/Kg (16 feet), 34.4 mg/Kg (18 feet) and 24.7 mg/Kg at 20 feet bgs. Previous bottom samples from B15 collected on August 8, 2019, from 13, 15, 17, 19, 21 and 22 feet bgs, reported chloride at 720 mg/Kg, 1,840 mg/Kg, 1,950 mg/Kg, 3,800 mg/Kg, 544 mg/Kg, and 3,440 mg/Kg, respectively, and suggested possible sample cross contamination. Benzene, BTEX and TPH were the analytical method reporting limits. LAI personnel collected composite sidewall samples from the excavation to approximately 5 feet that were analyzed for benzene, BTEX and TPH. The final concentrations are below the OCD cleanup levels in Table 1 (19.15.29 NMAC).

Apache requests approval from OCD to collect additional delineation soil samples with the Geoprobe from four (4) locations (north, south, east and west) from location BH-1 at the same depths (10, 12,14,16,18 and 20 feet) and analyze the samples for chloride. Apache would like to forgo installing the 20 mil thickness polyethylene liner in the bottom of the large excavation If chloride concentrations are below the OCD remediation limit (600 mg/Kg). Apache will fill the remainder of the Area 2 excavation with caliche to approximately 3 feet bgs and with top soil from 3 feet to ground surface. The excavation north of the large excavation will be completed per the approved remediation plan. Please see the attached drawing (Figure 2) for the proposed borings BH-2 through BH-5. Figure 2a presents the composite soil sample locations. Table 4 presents the confirmation composite sample locations.

Your approval is this remediation plan modification is requested. Please contact Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com or me if you have questions.

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432-556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

From: Mark Larson < Mark@laenvironmental.com>

Sent: Monday, December 23, 2019 1:58 PM

To: Bradford.Billings@state.nm.us

Cc: Baker, Larry < <u>Larry.Baker@apachecorp.com</u>>; Rachel Owen < <u>rowen@laenvironmental.com</u>>;

Mark Larson < <u>Mark@laenvironmental.com</u>>

Subject: Re: 1RP-5636 - EBDU #37 Addendum to Remediation Plan

Dear Bradford,

This email will confirm our phone conversation on December 20, 2019 for the EBDU #37 produced water release:

- Apache will install a boring in the bottom of the excavation to delineate the vertical extent of chloride in soil. Soil samples will be collected beginning at the bottom of the excavation and every five (5) feet thereafter until chloride decreases below 600 mg/Kg or groundwater is encountered;
- Apache will install two (2) additional monitoring wells at locations shown on the attached drawing. The monitoring wells will be constructed similar to monitoring well TMW-1 and TMW-2 with about 20 feet of screen placed above and below the groundwater level observed during drilling. Groundwater is expected to occur around 50 feet bgs therefore the borings will be advanced to around 70 feet bgs;
- Survey wells for top of elevation (top of casing and ground) for groundwater potentiometric surface elevation, flow direction and gradient;
- Apache will close the excavation at Area 1 according to the remediation plan dated October 29, 2019;
- Apache will close the excavation at Area 2, based on the laboratory results of samples from
 the boring to be placed in the bottom of the excavation, by filling the excavation to
 approximately 5 feet bgs with clean caliche, installing a 20 mill thickness polyethylene liner at
 approximately 5 feet bgs and backfilling to surface with clean topsoil;
- Seed Area 1 and Area 2 following remediation according to landowner requirements;
- Perform quarterly groundwater monitoring (5 wells) and reporting.

Your approval is this addendum remediation plan is requested. Please contact Bruce Baker with Apache or me if you have questions.

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432-556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

Appendix C

Boring Logs

				I	BORING	RECORD					_
		Start: 11	:40		N O)G	Surface Ele TOC Elecat				REMARKS
05010010	DEDTU	Finish: 1	2:58		IPTION SS	GRAPHIC LOG		✓ Vented Cap	~	≿	BACKGROUND
GEOLOGIC UNIT	DEPTH				DESCRIPTI	H.	F	Riser	BEF	ECOVERY	PID READING
		DES	CRIPTION LITHOLO	OGIC)ES	RA	\	Bentonite		낊[SOIL:PPM
	0	Silty Cla	7 EVD E/1 C	Prov.		///	7/		Z		<u> </u>
	_		ıy, 7.5YR, 5/1, 0 ne Grained Qua		CL					1	
	_	Sand, D		ΙίΖ	Caliche						
	5 —		, 7.5YR, 7/1 to 7	7/2	Caliche	· · · · · · · · · · · · · · · · · · ·					_
	_		Gray, Sandy, Fi		1					5	` <u> </u>
	_		ne Grained Qua								-
	10—	Sand, D									
	_	Silty Sa	nd, 10YR, 6/4, L	_ight	SM					10	
	_	Yellowis	sh, Very Fine	to							_
	15		ained Quartz Sa	-							
	_		Sorted, Subroun	ded,						15	5
	_	Loose	0/0 5 1 1 1 1 1								_
	20		6/6, Reddish Ye								
		Round	0', Poorly Sorte	a,	1			Sodium		20	
	_		7/4, Very Pale B	rown				Bentonite		2	-
	25—	Below 1	•	IOWII							_
	_		/R, 5/6 to 6/6,		SW						
	_		h Red to Reddis	sh	000					2	_
	30—		Very Fine Grain								_
	_		Sand, Poorly Soi								
	_		Moist, Very Mois							30	0 _
	35—	Below 3	5'		 						_
	_	Sandsto	ne, 5YR, 6/6, Re	eddish							
	_		Very Fine Graine							3	5
	40—	Quartz S	and,Poorly Sort	ted,			40.00				_
	_		ely Well Cemen	ted to			42.32	- 💹			_
	_	Well Cer	mented					Graded	. 1	40	
46.72	45				Sand			Silica Sand			_
	_				Stone			- 💹			-
	_							2" Sch. 4(,	4	5
	50—							PVC Threaded		"	<u> </u>
	_							0.0.0" Slotted			_
								Screw			
		Gravelly	Sand, 7.5YR, 6	/6.				- 100			_
	_	11	Yellow, Fine to					- 💹			
	60-		Quartz Sand, R					- 1			
	_		to 40mm		SP	BLA	61.97			60	_
	_		ΓD: 62'				62.65	Cap			_
	_							Α .	Щ		-
ON	NE CONTINU	JOUS AUGER	SAMPLER —	WATER TAE	BLE (TIME	OF BORING)				/ 19-0112-49
ST	ANDARD PI	ENETRATION	TEST _	LABORATO	RY TEST L	OCATION	HOLE DIA			5" \-	
UN	IDISTURBE	O SAMPLE	+	PENETROM	IETER (TO	NS/ SQ. FT)	LOCATION				
— w	ATER TABLI	E (24 HRS)	NR	NO RECOVI	ERY		LAI GEOL	ogist <u>: M. La</u>	arso	on	
↑arson &			DRILL DATE :			NUMBER :	DRILLING	CONTRACTO	R :_		
Aarson & ssociates, I	nc.		9-19-2019		IM	W-1	DRILLING	METHOD :	SR/\	ΝR	

				Е	BORING	RECORD								
		Start: 15	5:02		NO	00	Surface Elevation: 3,563.50' TOC Elecation: 3,566,23' REMARKS							
GEOLOGIC	DEPTH	Finish:	15:55		DESCRIPTION USCS	3RAPHIC LOG)						
UNIT		DES	CRIPTION LITHOLOGIC		SCF	APH	Vented Cap Riser Bentonite PID READING SOIL: SOIL:	_PPM						
					DE	GR	SOIL:	_PPM						
	0 —		ay, 10YR, 5/6, Ash		CL	1444	15:02							
	_	Brown,	•					Ⅎ						
			, 7.5YR, 8/2, Pinkis	sh			 							
	5 —		Sandy to Moderate				15:03	4						
	_	Very Fir Sand	ne Grained Quartz		Caliche			\exists						
		Sanu			Callelle	1	+ <i> </i>	╛						
	_						1	┨						
	10—						15:05	_						
								1						
	_		nd, 7.5YR, 7/2,					\exists						
	15 <u></u>		Gray, Very Fine				15:10							
	_	Sorted,	l Quartz Sand, Poo	oriy				4						
	_	Cortca,	ыу		SM			\exists						
								4						
	20						15:15	\dashv						
		Sand 5	YR, 6/0, Reddish				Sodium	Ⅎ						
			Very Fine Grained				Bentonite	4						
	25		Sand, Poorly Sorte				15:17	\exists						
	25_	Dry	, ,	,										
	_							\exists						
	-							\exists						
	30_						15:22	4						
	_				SW			\exists						
	_							4						
	35						15:23	\dashv						
	_							\exists						
	40_						15:28							
	_		YR, 6/6, Reddish					\exists						
	-		Moderate Well	_				\exists						
		Cement	ted, Poorly Sorted,	ا Dry		:		1						
	45						45.5	\dashv						
	-				SW			\exists						
							47.5 Graded	4						
	-	ķ	*Continue*				Silica Sand	\exists						
					LE (TIMF	OF BORING	IOP NUMBER: Anache Corn / 10-0112-40	二						
\square		ENETRATION T			RY TEST L		HOLE DIAMETER : 5"	_[
UNDISTURBED SAMPLE + PENETROM							LOCATION : EBDU #37	_[
— w	ATER TABLE	(24 HRS)	NR NO F	RECOVE	RY		LAI GEOLOGIST : M. Larson	_[
arson_& ==			DRILL DATE :		BORING I	NUMBER :	DRILLING CONTRACTOR : SDC	-						
7 ssociates, Environmental Consult	Agrsoft & 9-20-2019 Ssociates, Inc. Environmental Consultants						DRILLING METHOD : Air Rotary							

				BORING	RECORE								
		Start: 15	5:02	N O	90	Surface Elevation: 3,563.50 TOC Elecation: 3,566.23)'		REMARKS				
GEOLOGIC	DEPTH	Finish:	15:55	DESCRIPTION USCS	GRAPHIC LOG		2	Z Z	BACKGROUND				
UNIT		DESC	CRIPTION LITHOLOGIC	SCR	PH	*********	IBE	RECOVERY DEPTH	PID READING				
		DLO	JAN HON ENHOLOGIC		GR/	*Continue*	$\frac{1}{2}$		SOIL :PF				
	50	,	*Continue*										
									-				
									-				
						Graded Silica Sand			-				
									-				
	55 —		d Clayey Below 50',						_				
		Moist at	. 33		$\left\{ \left\{ \left\{ \left\{ \right\} \right\} \right\} \right\} \right\}$				-				
									-				
									-				
						2" Sch. 40			-				
	60 —					PVC Threaded			_				
						0.0.0"			-				
				SM-SC		Slotted Screw			-				
				SIVI-SC					-				
									-				
	65 —								_				
									-				
	_					67.85 Cap			-				
									-				
	70								-				
	/ 0 —								_				
									-				
									-				
									-				
	75								-				
	'								_				
			7.5YR, 4/3, Light						_				
			Poorly Sorted,	GW					_				
		Round,	Red Bed										
	80		TD: 79'			80.00			_				
10	NE CONTINU	IOUS AUGER S	SAMPLER — WATER TA	ABLE (TIME	OF BORING	JOB NUMBER : Apache	Cor	p. /	19-0112-49				
ST	ΓANDARD PE	ENETRATION T		ORY TEST L		HOLE DIAMETER :		5	5"				
UN UN	NDISTURBE	SAMPLE	+ PENETRO	METER (TO	NS/ SQ. FT)	LOCATION : EBDU #3							
w.	ATER TABLE	(24 HRS)	NR NO RECOV			LAI GEOLOGIST : M							
Agrson &	nc		DRILL DATE :	BORING	NUMBER :	DRILLING CONTRACTO			SDC				
Agrson & SSOCiates, Inc. Environmental Consultaris					1-2	DRILLING METHOD :A	DRILLING METHOD : Air Rotary						

				BORING	RECORD												
		Start: 09	9:35 MST	NO O		PID READING						SA	AMP			REMARKS	
GEOLOGIC	DEPTH	Finish: 1	0:30 MST	DESCRIPTION USCS	SRAPHIC LOG	Р	PM	Χ_					2	PID READING	₽Y	DEPTH	BACKGROUND PID READING
UNIT			CRIPTION LITHOLOGIC	SS	AP	2 4	1 6	8	10 12	2 14	16	18	/BE	REAI	0	ΤН	SOIL: PPM
	_	520	5141 11614 E11116E6616	Ä	GR/								NUMBER	J OIC	ZEC)EP	SOIL:PPM
	0	Sand, 7.	5YR 4/4, Brown, Fine	SM			\Box						1		-	1	_
	_		Fine Quartz														=
	5 _	Sand,Qı	uartz and Feldspar										2			5	
	_	1	e to Well Sorted, Sub														=
	10 —		d to Well Rounded	Caliche													
	10 =		7.5YR 8/2, Pinkish										3			10	=
	=		andy, Fine to Very Fine	!													\exists
	15 _		Well Sorted, Well										4		-	15	
		Rounded	J.														3
	20 _	-	YR 8/2, Very Pale														
	_		Quartz Rich Sand, Well										5			20	\exists
	_		to Very Well Rounded	, SM													=
	25 _	_	ell Sorted, Fine to Very	Oivi									6			25	
	_		ined Quartz Sand														=
	30 —		/6, Strong Brown,														
			I, Quartz Rich, Well										7			30	_
			d to Very Well Rounded ell Sorted, Fine to Very	,													
	35 _	_	ined Quartz Sand with										8			35	
	=		in Depth Lithology														_
	40 _		the Same										9			40	<u>-</u>
	=		comes Silty to Very										9			40	_
	45 _	_	ined Quartz Sand to														=
	43 _	65'											10			45	_
	=																=
	50 _												11			50	· <u> </u>
																	3
	55 —			SM													
	=												12			55	_
	_ =																_
	60 —												13			60	_
	=																7
	65 —												14			65	
	_	_	Sand, 7.5YR, Strong	SP													
	70 —		Fine to Very Fine										15			68	_=
	Coarse Sand, Quartz and Feldspar, Oxidized, Sub 75 — Angular to Sub Rounded,																=
																	<u> </u>
		. •	-15mm), Poorly Sorted														_
	=	_ = =: =: (0	TD: 68.41'														
					OF BORING)	J	 1 BC	νU	MB	L ER	:_	/ <i>P</i>	\pa	che	e/	19	-0112-49
		ENETRATION T		,	,	, ,	OLE								5"		
						L	OCA	TIC	NC	:	E	В	<u>)U</u>	#37	7		
WATER TABLE (24 HRS) NR NO RECOV					WILTER (TONS) SQ.TT)								Τ. 、	Jac	ks	on	
.			DRILL DATE :		NUMBER :												SDC
Agrson & DRILL DATE: 09-29-2020 Environmental Consultants				TM		DRILLING CONTRACTOR : SDC DRILLING METHOD : Air Rotary											

				BORING	RECORE)						
		Start:12:	45	NO	90	PID I	READIN	IG SAI	MPL	LE	REMAI	RKS
GEOLOGIC	DEPTH	Finish13	h13:40		GRAPHIC LOG			✓ Vented Cap		ΡY	BACKGR	
UNIT		DESC	CRIPTION LITHOLOGIC	DESCRIPTION USCS	H H			Riser	MBER	COVER	PID REA	DING
	_	DLOC	SKII TION ETTIOLOGIC	DE	GR/			Bentonite		SEC.	SOIL:	PPM
	0	Caliche,	7.5YR 8/2, Pinkish		ĦŤŦ				1	ш,	1	
	_ =	White, M	edium to Very Fine,]						_
	5 _		orted, Sub Angular to	Caliche					2		5	_
	-	Sub Rou	nded	Callerie								=
	10 _										40	_
	-					-			3		10	_
	15 <u> </u>	Sand, 10	YR 8/2, Very Pale		· · · · ·							=
	'0 _		uartz Rich Sand, Well						4	1	15	_
	=		to Very Well Rounded,	,								4
	20 _		Sorted, Fine to Very	SM					5	2	20	\exists
		Fine Qua	irtz Sand									3
	25 —	7 5YR 5/1	6, Strong Brown,						Ш			_
			, Quartz Rich Sand,						6	2	25	
			ular to Sub Rounded,									= =
	30 _	Poorly So	orted, Coarse to Fine						7	;	30	_
	=		Quartz Sand with									=
	35 _	Increase	•						8		35	
			nology Remained and Grain Size									3
	40 _	ł	ed to Fine to Very Fine						Ш			_
		4	and, Well Sorted,			45.96		Sodium	9	4	40	_
	45 <u> </u>		to Well Rounded		·: · · ·	47.96		Bentonite				
	45 _				3	49.96			10	4	45	_
	=						$\exists X$					=
	50 _						$\exists X$		11		50	\exists
	_							2" Sch. 40				=
	55 —			SM			$\equiv 8$	PVC Threaded	12		55	_=
	=	Cand 75	EVD. Ctrana Drawn				= 8	0.0.0" Slotted	'	(00	=
	60 —		5YR, Strong Brown, vel, Fine to Very				$\equiv 8$	Screw				\exists
	00 _		Quartz Sand, Quartz				$\vDash 8$	3	13	6	60	_
			spar, Oxidized, Sub					***				=
	65 —	Angular t	o Sub Rounded,				$\exists X$		14	6	65	7
	=	Gravel (5	i-15mm), Poorly Sorted			60.76						3
	70 –		TD: 70.09'	+		69.76 70.09	***	≦ — Cap	15	-	70	\exists
	=		12.70.00									=
	75 –											一日
	-											3
	_							Λ		/ 1	0.0442.4	
01	NE CONTINU	JOUS AUGER S	SAMPLER — WATER TA	BLE (TIME	OF BORING			-		<u>:/ 1</u> 5"	9-0112-4	y
STANDARD PENETRATION TEST L LABORATOR					OCATION	HOLE D						
UNDISTURBED SAMPLE + PENETROM					NS/ SQ. FT)			EBDU #			n.	
— w	ATER TABL	E (24 HRS)	NR NO RECOV	_				ST : T. J				
Aarson & ssociates, I	nc.		DRILL DATE : 09-29-2020		NUMBER : W-4			NTRACTOF THOD : <u>A</u> i			SDC	
Environmental Consulta	ants		1 22 20 2020	1	-	PKILLIN	IG IVIE	1 1 OD :	1110	otal	у	

Appendix D

Laboratory Report

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-387-1

Client Project/Site: Apache-EBDU #37

For:

Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Attn: Mr. Mark J Larson

Holly Taylor

Authorized for release by: 3/26/2021 9:50:23 AM

Holly Taylor, Project Manager (806)794-1296

holly.taylor@eurofinset.com

Review your project

·····LINKS ·······

results through
Total Access

Have a Question?

www.eurofinsus.com/Env

Visit us at:

Released to Imaging: 8/27/2021 10:20:40 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

3

4

6

2

10

13

10

Client: Larson & Associates, Inc.

Project/Site: Apache-EBDU #37

Laboratory Job ID: 880-387-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

3

4

6

8

10

12

15

Definitions/Glossary

Client: Larson & Associates, Inc. Job ID: 880-387-1 Project/Site: Apache-EBDU #37

Qualifiers

GC VOA

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Subcontract

Qualifier **Qualifier Description**

K Sample analyzed outside of recommended hold time.

U Analyte was not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CFU** Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RI Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Released to Imaging: 8/27/2021 10:20:40 AM

Eurofins Xenco, Midland

Case Narrative

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Job ID: 880-387-1

Job ID: 880-387-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-387-1

Comments

No additional comments.

Receipt

The samples were received on 3/15/2021 9:18 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.5° C.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract non-Sister

See attached subcontract report.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TDS: This method was subcontracted to Eurofins Stafford. The subcontract laboratory certification is different from that of the facility issuing the final report.

387-1

2

3

4

5

6

0

13

14

15

Detection Summary

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Job ID: 880-387-1

Client Sample ID: TWM-1

Client Sample ID: TW	IVI-1			Lab Sample II	D: 880-387-1
Γ	5 K 6 K			505 5 1 1 11	
Analyte	Result Qualifier	RI	Unit	Dil Fac D Method	Prep Type

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	10.9	0.500	mg/L		300.0	Total/NA
Total Dissolved Solids	360 K	5.00	mg/L	1	TDS	Total/NA

Client Sample ID: TWM-3 Lab Sample ID: 880-387-2

Analyte	Result Qualific	er RL	Unit	Dil Fac	D Method	Prep Type
Chloride	213	5.00	mg/L	10	300.0	Total/NA
Total Dissolved Solids	900 K	5.00	mg/L	1	TDS	Total/NA

Client Sample ID: TWM-2 Lab Sample ID: 880-387-3

Analyte	Result Qualifier	RL	Unit	Dil Fac [Method	Prep Type
Chloride	293	5.00	mg/L	10	300.0	Total/NA
Total Dissolved Solids	1000 K	5.00	mg/L	1	TDS	Total/NA

Client Sample ID: TWM-4 Lab Sample ID: 880-387-4

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Chloride	834	10.0	mg/L	20	300.0	Total/NA
Total Dissolved Solids	1960 K	5.00	mg/L	1	TDS	Total/NA

Lab Sample ID: 880-387-5 **Client Sample ID: Windmill**

Analyte	Result (Qualifier	RL	Unit	Dil Fac	O Method	Prep Type
Chloride	252		2.50	mg/L	5	300.0	Total/NA
Total Dissolved Solids	745 k	<	5.00	mg/L	1	TDS	Total/NA

Client Sample ID: Dup-1 Lab Sample ID: 880-387-6

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Chloride	259	2.50	mg/L	5	300.0	Total/NA
Total Dissolved Solids	798 K	5.00	mg/L	1	TDS	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 880-387-1

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Lab Sample ID: 880-387-1 Client Sample ID: TWM-1

Date Collected: 03/11/21 08:53 **Matrix: Water** Date Received: 03/15/21 09:18

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00		ug/L			03/24/21 02:09	1
Ethylbenzene	<2.00	U	2.00		ug/L			03/24/21 02:09	1
Toluene	<2.00	U	2.00		ug/L			03/24/21 02:09	1
Total BTEX	<2.00	U	2.00		ug/L			03/24/21 02:09	1
Xylenes, Total	<4.00	U	4.00		ug/L			03/24/21 02:09	1
m-Xylene & p-Xylene	<4.00	U	4.00		ug/L			03/24/21 02:09	1
o-Xylene	<2.00	U	2.00		ug/L			03/24/21 02:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130					03/24/21 02:09	1
1,4-Difluorobenzene (Surr)	102		70 - 130					03/24/21 02:09	1
Method: 300.0 - Anions, Io	n Chromatogra	phy							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.9		0.500		mg/L			03/17/21 23:08	1
- Method: TDS - SM 2540C 1	Total Dissolved	Solids (TI	OS)						
Analyte		Qualifier	, RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Nesuit	Quanner	11	IVIDE	Oilit		i icpaica	Allulyzou	Diriac

Lab Sample ID: 880-387-2 **Client Sample ID: TWM-3** Date Collected: 03/11/21 09:12 **Matrix: Water**

Date Received: 03/15/21 09:18

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier Unit RL D Prepared Analyzed Dil Fac <2.00 U 2.00 Benzene ug/L 03/20/21 10:50 Ethylbenzene <2.00 U 2.00 ug/L 03/20/21 10:50 Toluene <2.00 U 2.00 ug/L 03/20/21 10:50 Total BTEX <2.00 U 2.00 ug/L 03/20/21 10:50 Xylenes, Total <4.00 U 4.00 ug/L 03/20/21 10:50 m-Xylene & p-Xylene <4.00 U 4.00 ug/L 03/20/21 10:50 o-Xylene <2.00 U 2.00 ug/L 03/20/21 10:50 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 102 70 - 130 03/20/21 10:50 1,4-Difluorobenzene (Surr) 99 70 - 130 03/20/21 10:50 Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL Unit D **Prepared** Analyzed Dil Fac Chloride 5.00 03/17/21 23:17 10 213 mg/L

Method: TDS - SM 2540C Total	Dissolved	Solids (TI	DS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	900	K	5.00		mg/L		03/21/21 12:30	03/21/21 12:30	1

Eurofins Xenco, Midland

Job ID: 880-387-1

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Client Sample ID: TWM-2

Lab Sample ID: 880-387-3

Matrix: Water

Date Collected: 03/11/21 09:36 Date Received: 03/15/21 09:18

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00		ug/L			03/20/21 11:11	1
Ethylbenzene	<2.00	U	2.00		ug/L			03/20/21 11:11	1
Toluene	<2.00	U	2.00		ug/L			03/20/21 11:11	1
Total BTEX	<2.00	U	2.00		ug/L			03/20/21 11:11	1
Xylenes, Total	<4.00	U	4.00		ug/L			03/20/21 11:11	1
m-Xylene & p-Xylene	<4.00	U	4.00		ug/L			03/20/21 11:11	1
o-Xylene	<2.00	U	2.00		ug/L			03/20/21 11:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130					03/20/21 11:11	1
1,4-Difluorobenzene (Surr)	101		70 - 130					03/20/21 11:11	1
Method: 300.0 - Anions, lo	n Chromatogra	phy							
Analyte	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	293		5.00		mg/L			03/17/21 23:26	10
Method: TDS - SM 2540C 1	otal Dissolved	Solids (TE	OS)						
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1000		5.00		mg/L		03/21/21 12:30	03/21/21 12:30	

Client Sample ID: TWM-4 Lab Sample ID: 880-387-4

Date Collected: 03/11/21 10:05

Date Received: 03/15/21 09:18

Matrix: Water

Method: 8021B - Volatile	: Organic Compou	unds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00	ug/L			03/20/21 11:31	1
Ethylbenzene	<2.00	U	2.00	ug/L			03/20/21 11:31	1
Toluene	<2.00	U	2.00	ug/L			03/20/21 11:31	1
Total BTEX	<2.00	U	2.00	ug/L			03/20/21 11:31	1
Xylenes, Total	<4.00	U	4.00	ug/L			03/20/21 11:31	1
m-Xylene & p-Xylene	<4.00	U	4.00	ug/L			03/20/21 11:31	1
o-Xylene	<2.00	U	2.00	ug/L			03/20/21 11:31	1
Surrogate	%Recovery	Qualifier	l imits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prej	pared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			03/20/21 11:31	1
1,4-Difluorobenzene (Surr)	101		70 - 130			03/20/21 11:31	1

Method: 300.0 - Anions	, Ion Chromatography
A maluda	Desuit Ousli

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	834	10.0	mg/L			03/17/21 23:35	20

Method:	TDS - SM	2540C	Total	Dissolved	Solids	(TDS)
metriou.	1 DO - ON	20700	lotai	DISSUIVEU	Oulus	(DO)

Analyte	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1960	K	5.00	m		_	03/21/21 12:30	03/21/21 12:30	1

Eurofins Xenco, Midland

Job ID: 880-387-1

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Lab Sample ID: 880-387-5 **Client Sample ID: Windmill**

Date Collected: 03/12/21 13:26 **Matrix: Water**

Date Received: 03/15/21 09:18

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00		ug/L			03/20/21 11:52	1
Ethylbenzene	<2.00	U	2.00		ug/L			03/20/21 11:52	1
Toluene	<2.00	U	2.00		ug/L			03/20/21 11:52	1
Total BTEX	<2.00	U	2.00		ug/L			03/20/21 11:52	1
Xylenes, Total	<4.00	U	4.00		ug/L			03/20/21 11:52	1
m-Xylene & p-Xylene	<4.00	U	4.00		ug/L			03/20/21 11:52	1
o-Xylene	<2.00	U	2.00		ug/L			03/20/21 11:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130					03/20/21 11:52	1
1,4-Difluorobenzene (Surr)	101		70 - 130					03/20/21 11:52	1
Method: 300.0 - Anions, lo	n Chromatogra	phy							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	252		2.50		mg/L			03/18/21 00:02	5
Method: TDS - SM 2540C 1	otal Dissolved	Solids (TI	OS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
							03/21/21 12:30	03/21/21 12:30	

Client Sample ID: Dup-1 Lab Sample ID: 880-387-6 Date Collected: 03/12/21 00:00 **Matrix: Water**

Date Received: 03/15/21 09:18

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00		ug/L			03/24/21 02:30	1
Ethylbenzene	<2.00	U	2.00		ug/L			03/24/21 02:30	1
Toluene	<2.00	U	2.00		ug/L			03/24/21 02:30	1
Total BTEX	<2.00	U	2.00		ug/L			03/24/21 02:30	1
Xylenes, Total	<4.00	U	4.00		ug/L			03/24/21 02:30	1
m-Xylene & p-Xylene	<4.00	U	4.00		ug/L			03/24/21 02:30	1
o-Xylene	<2.00	U	2.00		ug/L			03/24/21 02:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130					03/24/21 02:30	1
1,4-Difluorobenzene (Surr)	101		70 - 130					03/24/21 02:30	1
Method: 300.0 - Anions, lo	n Chromatogra	phy							
Analyte	_	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	259		2.50		mg/L			03/18/21 00:11	5
Chloride Method: TDS - SM 2540C T		Solids (TI			mg/L			03/18/21 00:11	
Analyte	Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil F

5.00

mg/L

03/21/21 12:30 03/21/21 12:30

798 K

Total Dissolved Solids

Surrogate Summary

Client: Larson & Associates, Inc. Job ID: 880-387-1 Project/Site: Apache-EBDU #37

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

		BFB1	DFBZ1	nt Surrogate Recove
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
820-139-B-4 MS	Matrix Spike	93	99	
820-139-B-4 MSD	Matrix Spike Duplicate	97	101	
880-387-1	TWM-1	91	102	
880-387-2	TWM-3	102	99	
880-387-3	TWM-2	108	101	
880-387-4	TWM-4	107	101	
880-387-5	Windmill	108	101	
880-387-6	Dup-1	95	101	
890-344-A-1 MS	Matrix Spike	100	98	
890-344-A-1 MSD	Matrix Spike Duplicate	103	95	
LCS 880-592/3	Lab Control Sample	100	100	
LCS 880-750/33	Lab Control Sample	94	94	
LCSD 880-592/4	Lab Control Sample Dup	100	100	
LCSD 880-750/34	Lab Control Sample Dup	97	100	
MB 880-592/8	Method Blank	102	97	
MB 880-598/5-A	Method Blank	111	95	
MB 880-750/39	Method Blank	115	96	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Eurofins Xenco, Midland

Client: Larson & Associates, Inc.

Job ID: 880-387-1

Project/Site: Apache-EBDU #37

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-592/8

Matrix: Water

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 592

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00	ug/L			03/19/21 10:29	1
Ethylbenzene	<2.00	U	2.00	ug/L			03/19/21 10:29	1
Toluene	<2.00	U	2.00	ug/L			03/19/21 10:29	1
Total BTEX	<2.00	U	2.00	ug/L			03/19/21 10:29	1
Xylenes, Total	<4.00	U	4.00	ug/L			03/19/21 10:29	1
m-Xylene & p-Xylene	<4.00	U	4.00	ug/L			03/19/21 10:29	1
o-Xylene	<2.00	U	2.00	ug/L			03/19/21 10:29	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130		03/19/21 10:29	1
1,4-Difluorobenzene (Surr)	97		70 - 130		03/19/21 10:29	1

Lab Sample ID: LCS 880-592/3

Matrix: Water

Analysis Batch: 592

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS LCS			%R	Rec.	
Analyte	Added	Result Qualifier	Unit	D %F	Rec Lin	nits	
Benzene	100	104.1	ug/L		104 70	- 130	_
Ethylbenzene	100	114.1	ug/L		114 70.	₋ 130	
Toluene	100	110.0	ug/L		110 70	- 130	
m-Xylene & p-Xylene	200	233.0	ug/L		117 70	- 130	
o-Xylene	100	112.0	ug/L		112 70.	- 130	

Spike

Added

100

100

100

200 100

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: LCSD 880-592/4

Matrix: Water

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 592

Client Sample	ID: Lab	Control	Sample Dup
		Prep Ty	/pe: Total/NA

LCSD	LCSD				%Rec.		RPD
Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
110.6		ug/L		111	70 - 130	6	20
119.9		ug/L		120	70 - 130	5	20
115.8		ug/L		116	70 - 130	5	20
244.2		ug/L		122	70 - 130	5	20
117.1		ug/L		117	70 - 130	4	20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1.4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 890-344-A-1 MS

Matrix: Water

Analysis Batch: 592

Alialysis Dalcii. 332										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<2.00	U F1	100	114.4		ug/L		114	70 - 130	

Eurofins Xenco, Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

OCD Ex. 5-0360 Page 10 of 23

QC Sample Results

Spike

Added

100

100

200

100

Client: Larson & Associates, Inc. Job ID: 880-387-1

Project/Site: Apache-EBDU #37

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<2.00 U F1

<2.00 UF1

<4.00 UF1

<2.00 UF1

Result Qualifier

Lab Sample ID: 890-344-A-1 MS **Matrix: Water**

Analysis Batch: 592

Analyte

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Client Sample ID: Matrix Spike Prep Type: Total/NA

%Rec. %Rec Limits 121 70 - 130 118 70 - 13070 - 130 124

70 - 130

119

MS MS %Recovery Surrogate Qualifier Limits 70 - 130 4-Bromofluorobenzene (Surr) 100 1,4-Difluorobenzene (Surr) 98 70 - 130

Lab Sample ID: 890-344-A-1 MSD

Matrix: Water Analysis Batch: 592

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

MS MS

121.0

118.2

247.1

119.3

Result Qualifier

Unit

ug/L

ug/L

ug/L

ug/L

Sample Sample Spike MSD MSD %Rec. **RPD** Limit Result Qualifier Added Result Qualifier %Rec Limits **RPD Analyte** Unit D Benzene <2.00 U F1 100 <2.00 UF1 0 70 - 130 NC 25 ug/L Ethylbenzene <2.00 UF1 100 <2.00 UF1 ug/L 0 70 - 130 NC 25 Toluene <2.00 UF1 100 <2.00 UF1 0 70 - 130 NC 25 ug/L 200 0 70 - 130 NC 25 m-Xylene & p-Xylene <4.00 U F1 <4.00 U F1 ug/L o-Xylene <2.00 UF1 100 <2.00 UF1 ug/L 0 70 - 130NC 25

MSD MSD Surrogate %Recovery Qualifier Limits 70 - 130 4-Bromofluorobenzene (Surr) 103 1,4-Difluorobenzene (Surr) 95 70 - 130

Lab Sample ID: MB 880-598/5-A

Matrix: Water

Analysis Batch: 750

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 598

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene <2.00 U 2.00 ug/L 03/23/21 10:55 03/23/21 14:21 Ethylbenzene <2.00 U 2.00 ug/L 03/23/21 10:55 03/23/21 14:21 Toluene <2.00 U 2.00 ug/L 03/23/21 10:55 03/23/21 14:21 Total BTEX 2.00 03/23/21 10:55 03/23/21 14:21 <2.00 U ug/L <4.00 U 4.00 03/23/21 10:55 03/23/21 14:21 Xylenes, Total ug/L <4.00 U 03/23/21 10:55 03/23/21 14:21 m-Xylene & p-Xylene 4 00 ug/L o-Xylene <2.00 U 2.00 ug/L 03/23/21 10:55 03/23/21 14:21

	МВ	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130	03/23/21 10:55	03/23/21 14:21	1
1,4-Difluorobenzene (Surr)	95		70 - 130	03/23/21 10:55	03/23/21 14:21	1

Lab Sample ID: MB 880-750/39

Matrix: Water

Analysis Batch: 750

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<2.00	U	2.00	ug/L			03/24/21 01:27	1
Ethylbenzene	<2.00	U	2.00	ug/L			03/24/21 01:27	1

Eurofins Xenco, Midland

Prep Type: Total/NA

Client Sample ID: Method Blank

OCD Ex. 5-0361 Page 11 of 23

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Job ID: 880-387-1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

96

Lab Sample ID: MB 880-750/39

Matrix: Water Analysis Batch: 750

Client	Sample ID: Method Blank
	Prep Type: Total/NA

03/24/21 01:27

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	<2.00	U	2.00	ug/L			03/24/21 01:27	1
Total BTEX	<2.00	U	2.00	ug/L			03/24/21 01:27	1
Xylenes, Total	<4.00	U	4.00	ug/L			03/24/21 01:27	1
m-Xylene & p-Xylene	<4.00	U	4.00	ug/L			03/24/21 01:27	1
o-Xylene	<2.00	U	2.00	ug/L			03/24/21 01:27	1

MB MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 115 70 - 130 03/24/21 01:27

Lab Sample ID: LCS 880-750/33 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

70 - 130

Analysis Batch: 750

1,4-Difluorobenzene (Surr)

Surrogate

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	100	96.25		ug/L		96	70 - 130	
Ethylbenzene	100	93.87		ug/L		94	70 - 130	
Toluene	100	99.05		ug/L		99	70 - 130	
m-Xylene & p-Xylene	200	191.1		ug/L		96	70 - 130	
o-Xylene	100	93.23		ug/L		93	70 - 130	

LCS LCS %Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 94 70 - 130 1,4-Difluorobenzene (Surr) 94 70 - 130

Lab Sample ID: LCSD 880-750/34 Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA Matrix: Water**

Analysis Batch: 750

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	100	93.34		ug/L		93	70 - 130	3	20
Ethylbenzene	100	93.86		ug/L		94	70 - 130	0	20
Toluene	100	98.22		ug/L		98	70 - 130	1	20
m-Xylene & p-Xylene	200	183.2		ug/L		92	70 - 130	4	20
o-Xylene	100	92.33		ug/L		92	70 - 130	1	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 820-139-B-4 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 750

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<2.00	U	100	96.80		ug/L		97	70 - 130	
Ethylbenzene	<2.00	U	100	95.39		ug/L		95	70 - 130	
Toluene	<2.00	U	100	101.2		ug/L		101	70 - 130	

Eurofins Xenco, Midland

OCD Ex. 5-0362 Page 12 of 23

Job ID: 880-387-1

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 820-139-B-4 MS **Matrix: Water**

Client Sample ID: Matrix Spike Prep Type: Total/NA

Analysis Batch: 750

	Sample	Sample	Бріке	M2	IVIS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	<4.00	U	200	190.3		ug/L		95	70 - 130	
o-Xylene	<2.00	U	100	91.70		ug/L		92	70 - 130	

MS MS %Recovery Qualifier Limits 93 70 - 130 99 70 - 130

Lab Sample ID: 820-139-B-4 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

Surrogate

Analysis Batch: 750

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<2.00	U	100	99.07		ug/L		99	70 - 130	2	25
Ethylbenzene	<2.00	U	100	101.1		ug/L		101	70 - 130	6	25
Toluene	<2.00	U	100	104.3		ug/L		104	70 - 130	3	25
m-Xylene & p-Xylene	<4.00	U	200	201.7		ug/L		101	70 - 130	6	25
o-Xylene	<2.00	U	100	98.08		ug/L		98	70 - 130	7	25

MSD MSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 70 - 130 97 1,4-Difluorobenzene (Surr) 101 70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-549/3 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 549

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride <0.500 U 0.500 mg/L 03/17/21 22:13

Lab Sample ID: LCS 880-549/4 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 549

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits 25.0 Chloride 23.89 mg/L 96 90 - 110

Lab Sample ID: LCSD 880-549/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 549

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	25.0	23.77		mg/L		95	90 - 110	1	20

Job ID: 880-387-1

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Prep Batch: 3154281_P

Prep Batch: 3154281_P

Prep Type: Total/NA

Client Sample ID: Duplicate

Client Sample ID: Lab Control Sample Dup

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-415-A-1 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 549

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	51.0		25.0	75.29		ma/L		97	90 - 110	

Lab Sample ID: 880-415-A-1 MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 549

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	51.0		25.0	75.26		mg/L		97	90 - 110	0	20

Method: TDS - SM 2540C Total Dissolved Solids (TDS)

Lab Sample ID: 3154281-1-BLK **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: WATER

Analysis Batch: 3154281

BLANK BLANK

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<5 U	5	mg/L		03/21/21 12:30	03/21/21 12:30	1

Lab Sample ID: 3154281-1-BKS **Client Sample ID: Lab Control Sample Matrix: WATER** Prep Type: Total/NA

Analysis Batch: 3154281

LCS LCS Spike %Rec.

Added Result Qualifier Unit Limits Analyte D %Rec **Total Dissolved Solids** 1000 987 mg/L 99 80 - 120

Lab Sample ID: 3154281-1-BSD

Matrix: WATER

Analysis Batch: 3154281						P	rep Batch	: 31542	281_P
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Dissolved Solids	1000	955		ma/L		96	80 - 120	3	10

Lab Sample ID: 692017-006 D

Matrix: WATER							Prep Ty	e: Tot	al/NA
Analysis Batch: 3154281							Prep Batch:	31542	281_P
-	Sample	Sample	DUP	DUP					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Dissolved Solids	798		 742		mg/L			7	10

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Job ID: 880-387-1

GC VOA

Analysis Batch: 592

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-387-2	TWM-3	Total/NA	Water	8021B	
880-387-3	TWM-2	Total/NA	Water	8021B	
880-387-4	TWM-4	Total/NA	Water	8021B	
880-387-5	Windmill	Total/NA	Water	8021B	
MB 880-592/8	Method Blank	Total/NA	Water	8021B	
LCS 880-592/3	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-592/4	Lab Control Sample Dup	Total/NA	Water	8021B	
890-344-A-1 MS	Matrix Spike	Total/NA	Water	8021B	
890-344-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

Prep Batch: 598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-598/5-A	Method Blank	Total/NA	Water	5035	

Analysis Batch: 750

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-387-1	TWM-1	Total/NA	Water	8021B	_
880-387-6	Dup-1	Total/NA	Water	8021B	
MB 880-598/5-A	Method Blank	Total/NA	Water	8021B	598
MB 880-750/39	Method Blank	Total/NA	Water	8021B	
LCS 880-750/33	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-750/34	Lab Control Sample Dup	Total/NA	Water	8021B	
820-139-B-4 MS	Matrix Spike	Total/NA	Water	8021B	
820-139-B-4 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

HPLC/IC

Analysis Batch: 549

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-387-1	TWM-1	Total/NA	Water	300.0	
880-387-2	TWM-3	Total/NA	Water	300.0	
880-387-3	TWM-2	Total/NA	Water	300.0	
880-387-4	TWM-4	Total/NA	Water	300.0	
880-387-5	Windmill	Total/NA	Water	300.0	
880-387-6	Dup-1	Total/NA	Water	300.0	
MB 880-549/3	Method Blank	Total/NA	Water	300.0	
LCS 880-549/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-549/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-415-A-1 MS	Matrix Spike	Total/NA	Water	300.0	
880-415-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Subcontract

Analysis Batch: 3154281

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-387-1	TWM-1	Total/NA	Water	TDS	3154281_P
880-387-2	TWM-3	Total/NA	Water	TDS	3154281_P
880-387-3	TWM-2	Total/NA	Water	TDS	3154281_P
880-387-4	TWM-4	Total/NA	Water	TDS	3154281_P
880-387-5	Windmill	Total/NA	Water	TDS	3154281_P
880-387-6	Dup-1	Total/NA	Water	TDS	3154281_P
3154281-1-BLK	Method Blank	Total/NA	WATER	TDS	3154281_P

QC Association Summary

Client: Larson & Associates, Inc. Job ID: 880-387-1 Project/Site: Apache-EBDU #37

Subcontract (Continued)

Analysis Batch: 3154281 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
3154281-1-BKS	Lab Control Sample	Total/NA	WATER	TDS	3154281_P
3154281-1-BSD	Lab Control Sample Dup	Total/NA	WATER	TDS	3154281_P
692017-006 D	Duplicate	Total/NA	WATER	TDS	3154281_P

Prep Batch: 3154281_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-387-1	TWM-1	Total/NA	Water	NONE	·
880-387-2	TWM-3	Total/NA	Water	NONE	
880-387-3	TWM-2	Total/NA	Water	NONE	
880-387-4	TWM-4	Total/NA	Water	NONE	
880-387-5	Windmill	Total/NA	Water	NONE	
880-387-6	Dup-1	Total/NA	Water	NONE	
3154281-1-BLK	Method Blank	Total/NA	WATER	***DEFAULT PREP***	
3154281-1-BKS	Lab Control Sample	Total/NA	WATER	***DEFAULT PREP***	
3154281-1-BSD	Lab Control Sample Dup	Total/NA	WATER	***DEFAULT PREP***	
692017-006 D	Duplicate	Total/NA	WATER	***DEFAULT PREP***	

10

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Client Sample ID: TWM-1 Date Collected: 03/11/21 08:53

Date Received: 03/15/21 09:18

Lab Sample ID: 880-387-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	750	03/24/21 02:09	PXS	XM
Total/NA	Analysis	300.0		1	549	03/17/21 23:08	СН	XM
Total/NA	Prep	NONE		1	3154281_P	03/21/21 12:30		XS
Total/NA	Analysis	TDS		1	3154281	03/21/21 12:30	DTN	XS

Lab Sample ID: 880-387-2

Matrix: Water

Date Collected: 03/11/21 09:12 Date Received: 03/15/21 09:18

Client Sample ID: TWM-3

Prep Type Total/NA	Batch Type Analysis	Batch Method 8021B	Run	Dilution Factor	Batch Number 592	Prepared or Analyzed 03/20/21 10:50	Analyst MR	Lab XM
Total/NA	Analysis	300.0		10	549	03/17/21 23:17	СН	XM
Total/NA	Prep	NONE		1	3154281_P	03/21/21 12:30		XS
Total/NA	Analysis	TDS		1	3154281	03/21/21 12:30	DTN	XS

Client Sample ID: TWM-2 Lab Sample ID: 880-387-3 Date Collected: 03/11/21 09:36

Matrix: Water

Date Received: 03/15/21 09:18

Batch Batch Dilution Batch Prepared **Prep Type** Method Number or Analyzed Analyst Type Run **Factor** Lab Total/NA 8021B 592 03/20/21 11:11 MR XM Analysis 549 03/17/21 23:26 CH XM Total/NA Analysis 300.0 10 Total/NA NONE XS Prep 3154281 P 03/21/21 12:30 1 Total/NA **TDS** 3154281 03/21/21 12:30 DTN XS Analysis 1

Client Sample ID: TWM-4 Lab Sample ID: 880-387-4 Date Collected: 03/11/21 10:05

Matrix: Water Date Received: 03/15/21 09:18

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	592	03/20/21 11:31	MR	XM
Total/NA	Analysis	300.0		20	549	03/17/21 23:35	СН	XM
Total/NA	Prep	NONE		1	3154281_P	03/21/21 12:30		XS
Total/NA	Analysis	TDS		1	3154281	03/21/21 12:30	DTN	XS

Client Sample ID: Windmill Lab Sample ID: 880-387-5

Date Collected: 03/12/21 13:26 **Matrix: Water** Date Received: 03/15/21 09:18

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	592	03/20/21 11:52	MR	XM
Total/NA	Analysis	300.0		5	549	03/18/21 00:02	СН	XM
Total/NA	Prep	NONE		1	3154281_P	03/21/21 12:30		XS
Total/NA	Analysis	TDS		1	3154281	03/21/21 12:30	DTN	XS

Lab Chronicle

Client: Larson & Associates, Inc.

Job ID: 880-387-1

Project/Site: Apache-EBDU #37

Lab Sample ID: 880-387-6

Matrix: Water

Client Sample ID: Dup-1 Date Collected: 03/12/21 00:00 Date Received: 03/15/21 09:18

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	750	03/24/21 02:30	PXS	XM
Total/NA	Analysis	300.0		5	549	03/18/21 00:11	СН	XM
Total/NA	Prep	NONE		1	3154281_P	03/21/21 12:30		XS
Total/NA	Analysis	TDS		1	3154281	03/21/21 12:30	DTN	XS

Laboratory References:

XM = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

XS = Eurofins Stafford, 4147 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

8

4.0

11

13

15

Accreditation/Certification Summary

Client: Larson & Associates, Inc. Job ID: 880-387-1

Project/Site: Apache-EBDU #37

Laboratory: Eurofins Xenco, Midland

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-20-21	06-30-21

Laboratory: Eurofins Stafford

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704215-21-39	06-30-21

Method Summary

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Job ID: 880-387-1

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XM
300.0	Anions, Ion Chromatography	MCAWW	XM
2540C	SM 2540C Total Dissolved Solids (TDS)	SM	XS
5030B	Purge and Trap	SW846	XM

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XM = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440 XS = Eurofins Stafford, 4147 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

4

Ė

6

0

9

11

12

14

15

Sample Summary

Client: Larson & Associates, Inc. Project/Site: Apache-EBDU #37

Job ID: 880-387-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset II
880-387-1	TWM-1	Water	03/11/21 08:53	03/15/21 09:18	
880-387-2	TWM-3	Water	03/11/21 09:12	03/15/21 09:18	
880-387-3	TWM-2	Water	03/11/21 09:36	03/15/21 09:18	
880-387-4	TWM-4	Water	03/11/21 10:05	03/15/21 09:18	
880-387-5	Windmill	Water	03/12/21 13:26	03/15/21 09:18	
880-387-6	Dup-1	Water	03/12/21 00:00	03/15/21 09:18	

3

4

7

10

11

13

14

15

LABORATORY XONCO	RELINQUISHED BY (Signature) DATE/TIME	RELINQUISHED BY (Signature) DATE/TIME	RELINQUISHED BY (Signature) 3/15/2/ 9/8						windmice 3/12/21/1326 +	TMW-4 1005		3	TMW-1 3/11/21 0853 W	Field Sample I D Lab # Date Time Matrix	MST	TIME ZONE Time zone/State	TRRP report? S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER	Data Reported to	Environmental Consultants	dison &	880-387 Chain of Custody			1 2 3 4 5 6 7 8
	RECEIVED BY (Signature)	RECEIVED BY (Signature)	RECEIVED BY (Signature)					- - -					9	# of Co HCI X HNO ₃ H ₂ SO ₄ ICE X UNPRE	N 2 ESSE	aOH C	ATION	LAIF	432-687-0901 PRO	. 200	DATE:		1 1 1	
	OTHER []	1 DAY []	TURN AROUND TIME															LAI PROJECT #: 19-011	PROJECT LOCATION OR NAME:		3/15/2021			
☐ HAND DELIVERED		ا ا	LABORATORY USE ONLY:					OG	3 VOA + D.) EN	10 05C, 250, 500	372	٠ ا				17. Res 28. 2. 20. 20. 20. 20. 20. 20. 20. 20. 20.			•		PAGE_1_OF_1	CHAIN-OF-CUSTODY	Nº → 53	

Released to Imaging: 8/27/2021 10:20:40 AM

Login Sample Receipt Checklist

Client: Larson & Associates, Inc. Job Number: 880-387-1

Login Number: 387 List Source: Eurofins Midland

List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

3

4

5

Ω

3

11

13

14

15

Table 2 1RP-5636

Groundwater Sample Analytical Data Summary Apache Corporation, EBDU 37, Lea County, New Mexico

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Depth To
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Water
NMWQCC Stand		*0.005	*1	*0.7	*0.62	**250	**1,000	(Feet TOC)
Windmill	(') 08/01/2019		<0.001	<0.001	<0.003	232	732	
	(²) 09/23/2019							
	(²) 12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	259	688	
	(³) 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200		730	
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	287	930	
	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	252	745	
	(³) 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	255	781	
TMW-1	(²) 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	37.4	400	46.18
	(²) 12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	21.1	390	48.90
	(³) 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	22.6	390	49.31
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	13.1	383	49.42
	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	10.9	360	49.41
	(³) 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	14.5	360	49.67
TMW-2	(²) 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	338	1,220	55.80
	(²) 12/26/2019		<0.00200	<0.00200	<0.00200	307	1,170	57.50
	(³) 09/30/2020	<0.00200	0.00227	<0.00200	<0.00200	314	1,040	58.01
	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	298	1,050	58.06
	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400		1,000	58.00
	(³) 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	267	1,050	58.12
TMW-3	09/23/2019							
	12/26/2019							
	(³) 09/30/2020		0.00322	<0.00200	0.00448	212	891	57.62
	(³) 12/07/2020				<0.00200		948	57.68
	(³) 03/11/2021			<0.00200	<0.00400		900	57.59
	(³) 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	180	934	57.90
TN 4) A / 4	09/23/2019							
TMW-4	12/26/2019							
	(³) 09/30/2020	<0.00200	0.00314	<0.00200	<0.00200	1,020	2,040	57.39
	(°) 09/30/2020 (°3) 12/07/2020		<0.00314	<0.00200	<0.00200		2,040	57.39 57.45
	(°) 12/07/2020 (°) 03/11/2021		<0.00200	<0.00200	<0.00200		2,300 1,960	57.45 57.40
	(°) 03/11/2021 (°3) 06/11/2021		<0.00200	<0.00200	<0.00400		1,960	57.40 57.60
	() 00/11/2021	\0.0020U	\U.UUZUU	\U.UUZUU	~0.00 4 00	743	1,150	37.00

Table 2 1RP-5636

Groundwater Sample Analytical Data Summary Apache Corporation, EBDU 37, Lea County, New Mexico

DUP-1 (Windmill)	(³) 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	276	794	
DUP-1 (Windmill)	(³) 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	278	908	
DUP-1 (Windmill)	(³) 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	259	798	
DUP-1 (Windmill)	(³) 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	256	781	

Notes:

('): analysis performed by Cardinal Laboratories, Hobbs, New Mexico, by EPA SW-846 Method 8021B (BTEX) and titration methods (chloride and TDS).

(2): analysis performed by DHL Analytical, Round Rock, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride).

(3): analysis performed by Xenco Laboratories, Midland, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride).

(4): anaylis performed by Eurofins-Xenco, Midland, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride). Units reported as ug/L in report, converted to mg/L.

< values: concentration is less than method reporting limit (RL).

- *: NMWQCC Human Health Standard
- **: NMWQCC Domestic Water Quality Standard
- --: no data available

TOC: top of casing

All values reported in milligrams per liter (mg/L) equivalent to parts per million (ppm)

Bold and highlighted denotes analyte concentration exceeds NMWQCC domestic water quality standard

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-3001-1

Laboratory Sample Delivery Group: 19-0112-49

Client Project/Site: Apache - EBDU #37

For:

Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Attn: Mr. Mark J Larson

Holly Taylor

Authorized for release by: 6/21/2021 7:31:18 AM

Holly Taylor, Project Manager (806)794-1296

holly.taylor@eurofinset.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env
Released to Imaging: 8/27/2021 10:20:40 AM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

5

6

0

9

11

12

12

OCD Ex. 5-0376

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37 Laboratory Job ID: 880-3001-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receint Checklists	19

2

3

4

6

8

40

11

12

14

Definitions/Glossary

Job ID: 880-3001-1 Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37 SDG: 19-0112-49

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier Qualifier Description

Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid Colony Forming Unit CFU **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent Positive / Present POS

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TFF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc. Job ID: 880-3001-1 SDG: 19-0112-49 Project/Site: Apache - EBDU #37

Job ID: 880-3001-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-3001-1

Receipt

The samples were received on 6/14/2021 8:37 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 6.0°C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

OCD Ex. 5-0379 Page 4 of 19

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37

Job ID: 880-3001-1

SDG: 19-0112-49

Lab Sample ID: 880-3001-1

Matrix: Water

Date Collected: 06/10/21 10:23 Date Received: 06/14/21 08:37

Client Sample ID: TMW-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/21 15:31	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/21 15:31	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/21 15:31	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/L			06/14/21 15:31	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/21 15:31	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/21 15:31	1
Total BTEX	<0.00400	U	0.00400	mg/L			06/14/21 15:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130		-		06/14/21 15:31	1
1,4-Difluorobenzene (Surr)	103		70 - 130				06/14/21 15:31	1
Method: 300.0 - Anions, Ion C	hromatography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	14.5		0.500	mg/L			06/15/21 15:43	1
General Chemistry								
	Desult	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quanner						

Lab Sample ID: 880-3001-2 Client Sample ID: TMW-2 Date Collected: 06/10/21 12:00

Date Received: 06/14/21 08:37

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/21 15:57	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/21 15:57	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/21 15:57	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/L			06/14/21 15:57	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/21 15:57	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/21 15:57	1
Total BTEX	<0.00400	U	0.00400	mg/L			06/14/21 15:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130		-		06/14/21 15:57	1
1,4-Difluorobenzene (Surr)	102		70 - 130				06/14/21 15:57	1
Method: 300.0 - Anions, Ion C	hromatography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	267		2.50	mg/L			06/15/21 15:49	5
General Chemistry								
Analyte	5 "	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

50.0

mg/L

1050

Eurofins Xenco, Midland

06/16/21 18:56

Total Dissolved Solids

Job ID: 880-3001-1

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37 SDG: 19-0112-49

Client Sample ID: TMW-3 Lab Sample ID: 880-3001-3

Date Collected: 06/10/21 11:05 Matrix: Water Date Received: 06/14/21 08:37

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/21 16:22	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/21 16:22	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/21 16:22	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/L			06/14/21 16:22	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/21 16:22	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/21 16:22	1
Total BTEX	<0.00400	U	0.00400	mg/L			06/14/21 16:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130		-		06/14/21 16:22	1
1,4-Difluorobenzene (Surr)	107		70 - 130				06/14/21 16:22	1
Method: 300.0 - Anions, Ion C	hromatography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	180		2.50	mg/L			06/15/21 15:56	5
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
raidiyto								

Client Sample ID: TMW-4 Lab Sample ID: 880-3001-4 **Matrix: Water**

Date Collected: 06/11/21 10:50 Date Received: 06/14/21 08:37

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/21 16:48	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/21 16:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/21 16:48	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/L			06/14/21 16:48	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/21 16:48	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/21 16:48	1
Total BTEX	<0.00400	U	0.00400	mg/L			06/14/21 16:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130		-		06/14/21 16:48	1
1,4-Difluorobenzene (Surr)	105		70 - 130				06/14/21 16:48	1
Method: 300.0 - Anions, Ion C	hromatography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	745		10.0	mg/L			06/15/21 16:18	20
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1990		100	mg/L			06/16/21 18:56	1

Job ID: 880-3001-1

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37 SDG: 19-0112-49

Client Sample ID: Windmill Lab Sample ID: 880-3001-5 Date Collected: 06/10/21 12:26 Matrix: Water

Date Received: 06/14/21 08:37

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/21 17:13	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/21 17:13	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/21 17:13	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/L			06/14/21 17:13	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/21 17:13	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/21 17:13	1
Total BTEX	<0.00400	U	0.00400	mg/L			06/14/21 17:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130		-		06/14/21 17:13	1
1,4-Difluorobenzene (Surr)	102		70 - 130				06/14/21 17:13	1
Method: 300.0 - Anions, Ion C	hromatography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	255		2.50	mg/L			06/15/21 16:25	5
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids			50.0	mg/L			06/16/21 18:56	

Client Sample ID: Dup-1 Lab Sample ID: 880-3001-6

Date Collected: 06/10/21 00:00 **Matrix: Water** Date Received: 06/14/21 08:37

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/21 18:57	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/21 18:57	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/21 18:57	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/L			06/14/21 18:57	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/21 18:57	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/21 18:57	1
Total BTEX	<0.00400	U	0.00400	mg/L			06/14/21 18:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130		-		06/14/21 18:57	1
1,4-Difluorobenzene (Surr)	88		70 - 130				06/14/21 18:57	1
- Method: 300.0 - Anions, Ion C	hromatography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	256		2.50	mg/L			06/15/21 16:32	5
- General Chemistry								
	DI4	Qualifier	RL	Unit		Duamanad	Amalumad	Dil Fac
Analyte	Result	Qualifier	KL	Unit	D	Prepared	Analyzed	DII Fac

Surrogate Summary

Client: Larson & Associates, Inc. Job ID: 880-3001-1 Project/Site: Apache - EBDU #37 SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
380-2930-A-1 MS	Matrix Spike	99	104	
880-2930-A-1 MSD	Matrix Spike Duplicate	100	101	
880-3001-1	TMW-1	108	103	
380-3001-2	TMW-2	105	102	
880-3001-3	TMW-3	112	107	
880-3001-4	TMW-4	110	105	
880-3001-5	Windmill	107	102	
880-3001-6	Dup-1	116	88	
CS 880-4074/3	Lab Control Sample	104	104	
CSD 880-4074/4	Lab Control Sample Dup	99	107	
	Method Blank	71	84	

DFBZ = 1,4-Difluorobenzene (Surr)

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37

Job ID: 880-3001-1 SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-4074/8

Matrix: Water

Analysis Batch: 4074

Client Sam	ple ID: Method Blank
	Prep Type: Total/NA

MR MR

	INID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			06/14/21 12:59	1
Toluene	<0.00200	U	0.00200	mg/L			06/14/21 12:59	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			06/14/21 12:59	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/L			06/14/21 12:59	1
o-Xylene	<0.00200	U	0.00200	mg/L			06/14/21 12:59	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			06/14/21 12:59	1
Total BTEX	<0.00400	U	0.00400	mg/L			06/14/21 12:59	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 06/14/21 12:59 4-Bromofluorobenzene (Surr) 71 70 - 130 1,4-Difluorobenzene (Surr) 84 06/14/21 12:59

Lab Sample ID: LCS 880-4074/3 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 4074

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09419		mg/L		94	70 - 130	
Toluene	0.100	0.1038		mg/L		104	70 - 130	
Ethylbenzene	0.100	0.1078		mg/L		108	70 - 130	
m-Xylene & p-Xylene	0.200	0.1914		mg/L		96	70 - 130	
o-Xylene	0.100	0.09672		mg/L		97	70 - 130	

LCS LCS %Recovery Qualifier Limits 104 70 - 130 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 70 - 130 104

Lab Sample ID: LCSD 880-4074/4

Matrix: Water

Analysis Batch: 4074

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09313		mg/L		93	70 - 130	1	20
Toluene	0.100	0.1006		mg/L		101	70 - 130	3	20
Ethylbenzene	0.100	0.1055		mg/L		106	70 - 130	2	20
m-Xylene & p-Xylene	0.200	0.1875		mg/L		94	70 - 130	2	20
o-Xylene	0.100	0.09438		mg/L		94	70 - 130	2	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: 880-2930-A-1 MS

Released to Imaging: 8/27/2021 10:20:40 AM

Matrix: Water

Analysis Batch: 4074

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.00880		0.100	0.1055		mg/L		97	70 - 130	

Eurofins Xenco, Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

OCD Ex. 5-0384

Page 9 of 19

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37

Job ID: 880-3001-1 SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-2930-A-1 MS **Matrix: Water**

Analysis Batch: 4074

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	0.0123		0.100	0.1165		mg/L		104	70 - 130	
Ethylbenzene	<0.00200	U	0.100	0.1064		mg/L		106	70 - 130	
m-Xylene & p-Xylene	0.00594		0.200	0.1952		mg/L		95	70 - 130	
o-Xylene	<0.00200	U	0.100	0.09681		mg/L		96	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 880-2930-A-1 MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Analysis Batch: 4074

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.00880		0.100	0.09846		mg/L		90	70 - 130	7	25
Toluene	0.0123		0.100	0.1114		mg/L		99	70 - 130	4	25
Ethylbenzene	<0.00200	U	0.100	0.1028		mg/L		103	70 - 130	3	25
m-Xylene & p-Xylene	0.00594		0.200	0.1878		mg/L		91	70 - 130	4	25
o-Xylene	<0.00200	U	0.100	0.09330		mg/L		92	70 - 130	4	25

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1,4-Difluorobenzene (Surr)	101	70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-4120/3 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 4120

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.500	U	0.500	mg/L			06/15/21 14:49	1

Lab Sample ID: LCS 880-4120/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 4120

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	25.0	23.77		mg/L		95	90 - 110	

Lab Sample ID: LCSD 880-4120/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 4120

	Spike		.CSD			%Rec.		RPD	
Analyte	Added	Result Q	Qualifier Unit	D	%Rec	Limits	RPD	Limit	
Chloride	25.0	23.31	mg/L		93	90 - 110	2	20	

QC Sample Results

Job ID: 880-3001-1 Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-3041-A-1 MS Client Sample ID: Matrix Spike **Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 4120

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier %Rec Limits Unit D Chloride 16.4 25.0 40.52 mg/L 96 90 - 110

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 4120

Matrix: Water

Lab Sample ID: 880-3041-A-1 MSD

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier RPD Analyte Added Result Qualifier Unit D %Rec Limits Limit Chloride 16.4 25.0 41.69 mg/L 101 90 - 110 3 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 880-4150/1 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA

Analysis Batch: 4150

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total Dissolved Solids <25.0 U 25.0 mg/L 06/16/21 18:56

Lab Sample ID: LCS 880-4150/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 4150

Spike LCS LCS %Rec. Analyte Added Qualifier Unit %Rec Limits Result Total Dissolved Solids 1000 989.0 80 - 120 mg/L

Lab Sample ID: LCSD 880-4150/3 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 4150

Spike LCSD LCSD %Rec. RPD Added Qualifier Analyte Result Unit %Rec Limit Total Dissolved Solids 1000 997.0 100 80 - 120 mg/L

Lab Sample ID: 880-3001-1 DU Client Sample ID: TMW-1

Matrix: Water Analysis Batch: 4150

DU DU RPD Sample Sample Result Qualifier Result Qualifier RPD Limit Analyte Unit D Total Dissolved Solids 360 363.0 8.0 10 mg/L

QC Association Summary

Client: Larson & Associates, Inc. Job ID: 880-3001-1 Project/Site: Apache - EBDU #37 SDG: 19-0112-49

GC VOA

Analysis Batch: 4074

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-3001-1	TMW-1	Total/NA	Water	8021B	
880-3001-2	TMW-2	Total/NA	Water	8021B	
880-3001-3	TMW-3	Total/NA	Water	8021B	
880-3001-4	TMW-4	Total/NA	Water	8021B	
880-3001-5	Windmill	Total/NA	Water	8021B	
880-3001-6	Dup-1	Total/NA	Water	8021B	
MB 880-4074/8	Method Blank	Total/NA	Water	8021B	
LCS 880-4074/3	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-4074/4	Lab Control Sample Dup	Total/NA	Water	8021B	
880-2930-A-1 MS	Matrix Spike	Total/NA	Water	8021B	
880-2930-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

HPLC/IC

Analysis Batch: 4120

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-3001-1	TMW-1	Total/NA	Water	300.0	
880-3001-2	TMW-2	Total/NA	Water	300.0	
880-3001-3	TMW-3	Total/NA	Water	300.0	
880-3001-4	TMW-4	Total/NA	Water	300.0	
880-3001-5	Windmill	Total/NA	Water	300.0	
880-3001-6	Dup-1	Total/NA	Water	300.0	
MB 880-4120/3	Method Blank	Total/NA	Water	300.0	
LCS 880-4120/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-4120/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-3041-A-1 MS	Matrix Spike	Total/NA	Water	300.0	
880-3041-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 4150

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-3001-1	TMW-1	Total/NA	Water	SM 2540C	_
880-3001-2	TMW-2	Total/NA	Water	SM 2540C	
880-3001-3	TMW-3	Total/NA	Water	SM 2540C	
880-3001-4	TMW-4	Total/NA	Water	SM 2540C	
880-3001-5	Windmill	Total/NA	Water	SM 2540C	
880-3001-6	Dup-1	Total/NA	Water	SM 2540C	
MB 880-4150/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-4150/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-4150/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-3001-1 DU	TMW-1	Total/NA	Water	SM 2540C	

Eurofins Xenco, Midland

6/21/2021

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37

> Lab Sample ID: 880-3001-1 **Matrix: Water**

Client Sample ID: TMW-1

Date Collected: 06/10/21 10:23 Date Received: 06/14/21 08:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	4074	06/14/21 15:31	MR	XEN MID
Total/NA	Analysis	300.0		1			4120	06/15/21 15:43	CH	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	4150	06/16/21 18:56	SC	XEN MID

Lab Sample ID: 880-3001-2

Matrix: Water

Client Sample ID: TMW-2 Date Collected: 06/10/21 12:00 Date Received: 06/14/21 08:37

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	4074	06/14/21 15:57	MR	XEN MID
Total/NA	Analysis	300.0		5			4120	06/15/21 15:49	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	4150	06/16/21 18:56	SC	XEN MID

Client Sample ID: TMW-3 Lab Sample ID: 880-3001-3 Date Collected: 06/10/21 11:05

Matrix: Water

Matrix: Water

Date Received: 06/14/21 08:37

Dil Initial Final Batch Batch Batch Prepared Prep Type Type Method Run Factor Amount Amount Number or Analyzed Analyst Lab 8021B 4074 Total/NA Analysis 5 mL 5 mL 06/14/21 16:22 MR XEN MID Total/NA Analysis 300.0 5 4120 06/15/21 15:56 СН XEN MID XEN MID Total/NA Analysis SM 2540C 100 mL 06/16/21 18:56 SC 1 200 mL 4150

Client Sample ID: TMW-4 Lab Sample ID: 880-3001-4

Date Collected: 06/11/21 10:50 Date Received: 06/14/21 08:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	4074	06/14/21 16:48	MR	XEN MID
Total/NA	Analysis	300.0		20			4120	06/15/21 16:18	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	4150	06/16/21 18:56	SC	XEN MID

Client Sample ID: Windmill Lab Sample ID: 880-3001-5 Date Collected: 06/10/21 12:26 **Matrix: Water**

Date Received: 06/14/21 08:37

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	4074	06/14/21 17:13	MR	XEN MID
Total/NA	Analysis	300.0		5			4120	06/15/21 16:25	CH	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	4150	06/16/21 18:56	SC	XEN MID

Lab Chronicle

Job ID: 880-3001-1 Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37 SDG: 19-0112-49

Client Sample ID: Dup-1

Date Received: 06/14/21 08:37

Lab Sample ID: 880-3001-6 Date Collected: 06/10/21 00:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	4074	06/14/21 18:57	MR	XEN MID
Total/NA	Analysis	300.0		5			4120	06/15/21 16:32	CH	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	4150	06/16/21 18:56	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: Apache - EBDU #37

Job ID: 880-3001-1

SDG: 19-0112-49

Laboratory: Eurofins Xenco, Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date			
Texas	NE	ELAP	T104704400-20-21	06-30-21			
The following analytes	are included in this report, bu	it the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for t			
the agency does not of	fer certification.						
the agency does not of Analysis Method	fer certification. Prep Method	Matrix	Analyte				

- 5

4

10

11

13

14

Method Summary

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37 Job ID: 880-3001-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
SM 2540C	Solids, Total Dissolved (TDS)	SM	XEN MID
5030B	Purge and Trap	SW846	XEN MID

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc. Project/Site: Apache - EBDU #37 Job ID: 880-3001-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
880-3001-1	TMW-1	Water	06/10/21 10:23	06/14/21 08:37	
880-3001-2	TMW-2	Water	06/10/21 12:00	06/14/21 08:37	
880-3001-3	TMW-3	Water	06/10/21 11:05	06/14/21 08:37	
880-3001-4	TMW-4	Water	06/11/21 10:50	06/14/21 08:37	
880-3001-5	Windmill	Water	06/10/21 12:26	06/14/21 08:37	
880-3001-6	Dup-1	Water	06/10/21 00:00	06/14/21 08:37	

∆ arson &				880-3	3001 Cr								 ATE: O#:	6	-	-	70) <u>a</u>	1									N [©] PAGE	215 CUS	TOI	— D Y /202/
Aarson & ssociate Environment	t es, in c al Consulta	C.				aian 432-)		PI	O#: LAB WORK ORDER#:_ ROJECT LOCATION OR NAME: FDDU#37 AI PROJECT #: 19-012-49 COLLECTOR: MB, TJ, T								_										
Data Reported to.	Γ				T	т	***********					L/	N PR	OJE	CT:	#:	19	<u>- E</u>	21/8	}~-		19			COL	LE	СТС)R:_ <i>/</i> L	13/	TOI	\overline{P}
TRRP report?	S=SOIL W=WATE A=AIR		AINT SLUDGE OTHER			PR	П	RVA		-			,	<u> </u>				/								\\ \\ \\					4
TIME ZONE Time zone/State					ners			AaoH		ERVE		15/			Z						38/										
Field Sample I D	Lab#	Date	Time	Matrix	# of Containers	HCI L	HNO3	H ₂ SO ₄ □ NaOH □	イン	UNPRESSERVED	ALIA PARA					<u>/</u> /§ /§													FIELD	NOTES	
Tmw-I		6/10/21		W	5				X		1							Ì	f	f	Ť	Ť	T	Ť	Ź	Ť	f	DV	est	Bal	
TMW-J		9/10/d							1	_	\prod												П		li				afr		
TMW-3		(0/10/2)	1			-		\dashv	╫	+	₩		-	-		_	4	-	\dashv	\dashv	_		ot	\bot	\dashv	_	-	<u> </u>			Dage 18 of 19
TMW-4		(1)(A)			+			\dashv	+	+	╫			-		-	-	-	_	\dashv	\dashv	-	-	+	+	+	+	-			<u>ā</u>
WINDMILL		6/10/h)	1946		+	+	-	-	#	+	\oplus			-		\dashv	-	\dashv	_	-	\dashv	$-\!\!\!\!/$	+	\perp	+	-	+			-	
Day -		9710101						\dashv	\dashv	\dashv	+		_	+			\dashv	\dashv	\dashv	\dashv		+	+	+	- -	╫	+	 			
								1	1				\top	T			\exists		7	1		T	\dagger			T					
														T			\top	\top		\top	1		\top	\top	T	T					
																								\top							
								_	_	_	4																				
									_	_	4									_		_	_					ļ			
								_	_	_	_				<u> </u>				\dashv	_	\dashv	_	_	_	_	_	_	ļ			
						+		+	\dashv	+	+	+	_				\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	-	+	+	+	 			
TOTAL				<u> </u>		+	-	\dashv	+	+	+	-	-	-	\vdash		\dashv	\dashv	_	\dashv	-	\dashv	+	-	+	-	-	-			
RELINQUISHED BY	W al	(biro	DATÉ/TI DATÉ/TI		RECE	SP 8					0'	23-	<u> </u>		I RN A RMA			TIM	IE						ONL 5,5)	HERM#		28	
RELINQUISHED BY (***************************************			ATE/TIME RECEIVED BY (Signature) 1 DAY 2 DAY 1 CUSTODY SEALS - BROKEN OCD Ex. 5-0393 RECEIVING TEMP 1 OCUSTODY SEALS - BROKEN CUSTODY SEALS - CARRIER BILL #						☐ INTA		ŕ																			
LABORATORY X	NCO											0 00					······································		_	Þ	HAN	ID D	ELI\	/ERE	D						

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-3001-1

SDG Number: 19-0112-49

Login Number: 3001 List Source: Eurofins Xenco, Midland

List Number: 1

Creator: Phillips, Kerianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

1

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

COMMENTS

Action 17562

COMMENTS

Operator:	OGRID:
APACHE CORPORATION	873
303 Veterans Airpark Ln	Action Number:
Midland, TX 79705	17562
	Action Type:
	[C-141] Release Corrective Action (C-141)

COMMENTS

Created By	Comment	Comment Date
chensley	Waiting on 1&2 quarter reports	8/5/2021

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 17562

CONDITIONS

Operator:	OGRID:
APACHE CORPORATION	873
303 Veterans Airpark Ln	Action Number:
Midland, TX 79705	17562
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

	Created By	Condition	Condition Date
I	chensley	None	8/27/2021

May 8, 2024

VIA EMAIL: RosaM.Romero@emnrd.nm.gov

Michael.Buchanan@emnrd.nm.gov mike. batcher @emnrd.nm.gov

Ms. Rosa M. Romero Environmental Bureau Chief State of New Mexico – Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

Re: Apache Corp., EBDU #37 Incident NDHR1922141227 (1RP-5636) - Scope of Work for Additional Investigation, Lea County, New Mexico

Dear Ms. Romero:

Larson & Associates, Inc. (LAI), on behalf of Apache Corp. (Apache), has prepared this scope of work (SOW) for the produced water release at the East Blinebry Drinkard Unit (EBDU) #37 (Site) located in Unit E (SW/4, SW/4), Section 13, Township 21 South and Range 37 East in Lea County, New Mexico. The geodetic position is North 32.479569° and West - 103.122061°. Mr. William "Bill" Stevens is the surface owner. Figure 1 presents a topographic map.

The SOW is in response to video/telephone calls on April 1, 2024 and May 1, 2024, between Apache, New Mexico Oil Conservation Division (NMOCD) and LAI representatives. During the call on April 1, 2024, NMOCD requested Apache to:

- Install additional monitoring well (TMW-28) north of TMW-11 and TMW-12 to establish the northern (upgradient) limit or background for chloride in groundwater.
- Install additional monitoring well south (TMW-25) of TMW-23 and TMW-24 to establish the southern extent for chloride in groundwater.
- Determine the source for chloride (5,850 mg/L) reported in the groundwater sample from monitoring well TMW-17.
- Implement measures to prevent further impact to the onside water well (windmill) from chloride.
- Collect and analyze groundwater samples from the water well (windmill) for the entire list of constituents in 20.6.2.3102 NMAC including Human Health Standards in A (1) (a) through (tt), Other Standards for Domestic Water Supply in B. (1) through (10), and Standards for Irrigation Use in C (1) through (5).

On May 1, 2024, the following was requested:

- Install a monitoring well (TMW-29) north (up gradient) from monitoring well TMW-13.
- Update the analytical data table with complete analysis of the groundwater sample collected from the windmill on April 3, 2024.
- Collect and analyze groundwater samples for barium from monitoring wells TMW-1, TMW-3, and TMW-21.

507 North Marienfeld, Suite 202 ♦ Midland, Texas 79701 ♦ Ph. (432) 687-0901 ♦ Fax (432) 687-0456

Background

On July 14, 2019, Apache reported a produced water release from a flowline at a pipeline junction located about 720 feet east from EBDU Well #37. Produced fluids (oil and water) flowed west about 350 feet west from the release origin, and south about 450 feet before terminating in low-lying area. The volume of the release and recovered fluid are unknown. Appendix A presents the initial C-141.

The spill area was remediated according to a remediation plan titled, "1RP-5636 REMEDIATION PLAN, East Blinebry Drinkard Unit #37 Produced water Spill, Lea County, New Mexico", submitted to the NMOCD October 29, 2019. On December 23, 2019, NMOCD approved the remediation plan addendum based on a telephone call on December 20, 2019 (Bradford Billings) with following conditions:

- Installed four (4) monitoring wells (TMW-1 through TMW-4).
- Performed quarterly (4 times per year) groundwater monitoring from monitoring wells and a water well (windmill).

In all, Apache has spent over \$750,000 to ensure the remediation was thorough and properly done in accordance with the NMOCD approved plan.

Investigations

Between November 28 and 30, 2022, at NMOCD's request, Apache installed two (2) monitoring wells (TMW-5 and TMW-6) east of the playa where the release terminated. Soil samples were collected from seven (7) bores including BH-1, BH-3, BH-4, and BH-5 located in the playa with the remaining bores (BH-6, BH-7, and BH-8) located in the release corridor north of the playa.

Following a conference call with NMOCD On April 4, 2023, Apache installed four (4) additional monitoring wells (TMW-7 through TMW-10) near the sources for the release (TMW-7), north of the playa (TMW-8) and west (TMW-9) and east (TMW-10) of TMW-1 near the south end of the playa. Figure 2 presents an aerial map for the soil borings and monitoring wells.

Apache requested LAI to prepare a plan for installing additional monitoring wells following a call with NMOCD on October 30, 2023. The plan was submitted to NMOCD on November 10, 2023. Between November 29, 2023 and December 13, 2023, Scarborough Drilling Inc. (SDI), under LAI oversight, installed fourteen (14) additional monitoring wells (TMW-11 through TMW-24) at locations specified in the scope of work (SOW) approved by NMOCD on November 14, 2023. NMOCD specified a monitoring well (TMW-17) be installed halfway between existing monitoring well TMW-5 and proposed monitoring well TMW-15. SDI drilled the inner ring of monitoring wells (TMW-11 through TMW-16) prior to installing the outer ring of monitoring wells (TMW-18 through TMW-22) based on laboratory analysis of groundwater samples for chloride. Two (2) additional wells (TMW-23 and TMW-24) installed south of TMW-18 and TMW-19 based on field chloride tests. Figure 2 presents the monitoring well locations. Appendix B presents NMOCD communications. Appendix C presents the laboratory chloride analysis.

507 North Marienfeld, Suite 202 ◆ Midland, Texas 79701 ◆ Ph. (432) 687-0901 ◆ Fax (432) 687-0456

Ms. Rosa M. Romero November 8, 2024 Page 3

SDI installed the monitoring wells in 5-inch diameter borings that were advanced with an air rotary rig between about sixty (60) feet (TMW-24) and eighty-nine (89) feet bgs. The monitoring wells were constructed in accordance with ASTM Designation: D5092 - Reapproved 2010 (Standard Practice for Design and Installation of Groundwater Monitoring Wells) with 2-inch diameter schedule 40 PVC casing and twenty (20) feet of 0.010-inch factory slotted screen that was positioned above and below the groundwater level observed during drilling. Graded silica sand was placed in the annuls between the borehole and well to about 2-feet above the screen. The remained of the annulus was filled to about 1-foot bs with bentonite chips and hydrated with potable water. The wells were secured with locking steel covers anchored concrete. Land Point Surveying, Midland, Texas, a State of New Mexico licensed professional land surveying firm, surveyed the wells for location and elevation including ground surface and top of casing (TOC). Drill cuttings were examined based on the Unified Soil Classification System (USCS) according to ASTM Designation: D2487 (Standard Practice for Classification of Soils for Engineering Purposes). Table 1 presents the monitoring well drilling and completion details. Appendix D presents the lithologic logs and well completion records.

Monitoring wells TMW-20 through TMW-24 terminated in silty clay (red bed) of the Triassic-age Chinle Formation (Dockum Group) between about sixty-three (63) feet bgs (TMW-24) and seventy-eight (78) feet bgs (TMW-20). An unconformity occurs between the silty clay (Chinle Formation) and overlying Ogallala Formation, consisting of fine-to-fine grained quartz sand. There are few distinctions between the Ogallala Formation and overlying Blackwater Draw Formation with color being a distinction from reddish yellow to reddish orange. The sand thickness increases from east to west towards Monument Draw and is mostly controlled by the eroded Chinle Formation. A layer of carbonate-indurated sand (caliche) likely caused where a zone of illuviation where carbonate dust accumulated from surface transportation by meteoric water movement, occurs above the sand and extends from near the surface and to about twenty (20) feet bgs. Figure 3 presents an aerial drawing showing the monitoring well locations lines of geological cross sections. Figure 3a through Figure 3d present the geological cross sections.

On December 20 and 21, 2023, groundwater was recorded in the Ogallala Formation between about 46.91 feet bgs (TMW-1) and 65.97 feet bgs (TMW-22). The saturated thickness ranged from about 6.97 feet (TMW-24) to greater than 26.22 feet (TMW-18). The groundwater potentiometric surface elevation ranged between 3,365.57 feet above mean sea level (MSL) at TMW-12 (up gradient) and 3,362.33 feet above MSL at TMW-24 (down gradient). The groundwater flow direction was generally from north to south at a gradient of about 0.003 feet per foot. Figure 4 presents the groundwater saturated thickness map for December 20 and 21, 2023. Figure 5a presents the groundwater potentiometric surface map for December 20 and 21, 2023.

On March 14, 2024, groundwater was recorded in the Ogallala Formation between about 46.78 feet bgs (TMW-1) and 65.96 feet bgs (TMW-22). Between December 21, 2023 and March 14, 2024, depth to groundwater decreased (rising aquifer conditions) between 0.01 feet (TMW-22) and 1.38 feet (TMW-11). During this same period, depth to groundwater increased 0.06 feet (TMW-05) and 0.98 feet (TMW-19) which represents falling aquifer conditions. The rising and lowering groundwater conditions are likely the result of seasonal fluctuation in the aquifer. On March 14, 2024, the groundwater potentiometric surface elevation ranged between 3,365.65 feet above mean sea level (MSL) at TMW-12 (up gradient) and 3,362.84 feet above MSL at TMW-23 (down gradient). The groundwater flow direction was generally from north to south at a gradient of about 0.003 feet per foot. Groundwater mounding near well TMW-4 from a slightly elevated groundwater potentiometric surface elevation causes groundwater to flow to the west, east and south. A slight reversal in the groundwater flow direction was observed in the vicinity of TMW-19 and TMW-24, from increased (rising) groundwater

507 North Marienfeld, Suite 202 ♦ Midland, Texas 79701 ♦ Ph. (432) 687-0901 ♦ Fax (432) 687-0456

potentiometric surface elevation in TMW-24 (3,362.40 feet) and decreased (falling) groundwater potentiometric surface elevation at TMW-19 3,361.88 feet) causes groundwater to flow towards TMW-19. Figure 5b presents the groundwater potentiometric surface map for March 14, 2024.

Groundwater samples were collected from monitoring wells with the TMW-1 through TMW-24 and the windmill on December 20 and 21, 2023 and March 14, 2024. Duplicate samples were collected for laboratory quality assurance and quality control (QA/QC) from wells TMW-17 and TMW-2 on December 20 and 21, 2023, respectively, from TMW-3 and TMW-14 on March 14, 2024. The groundwater samples, except from the windmill, were collected using the low stress or low flow method, according to EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017). The low stress or low flow method where an environmental pump was submerged near the middle of the water column and the well was pumped at a low rate until environmental parameters stabilized. Groundwater samples were collected from the discharge of the dedicated disposable Tygon® tubing. Groundwater samples from the windmill were collected from the end of the discharge pipe before the stock tank. The Tygon® tubing was discarded after each use and the pump was thoroughly cleaned with a solution potable water and laboratory grade detergent (Alconox®) and rinsed with distilled water. The samples were delivered under preservation and chain of custody to Eurofins Xenco Laboratories, Midland, Texas, which analyzed the samples for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA SW-846 Method 8021B, chloride by EPA Method 300 and total dissolved solids (TDS) by Method SM2540C. Table 2 presents the laboratory analytical data summary. Appendix E presents the laboratory reports.

BTEX compounds were not reported in the groundwater samples at concentrations above the analytical reporting limits (RP) in samples including duplicate samples collected on December 20 and 21, 2023 or March 14, 2024.

On December 20 and 21, 2023, chloride was reported in groundwater samples from monitoring wells TMW-1 through TMW-24 and the windmill at concentrations from 37.3 mg/L in monitoring well TMW-10 to 5,850 mg/L in groundwater from monitoring well TMW-17. The background chloride concentration was 463 mg/L (TMW-12). The chloride concentration in the windmill sample was 409 mg/L. On March 14, 2024, chloride was reported in groundwater samples at concentrations from 17.0 mg/L (TMW-10) to 5,680 mg/L (TMW-17). The background chloride concentration was 448 mg/L from monitoring well TMW-12. The chloride concentration in the windmill sample was 471 mg/L. Figure 6a and Figure 6b present isopleth maps for chloride concentrations in groundwater samples collected on December 20 and 21, 2033 and March 14, 2024, respectively.

On December 20 and 21, 2023, TDS was reported in groundwater samples from the monitoring wells and windmill at concentrations from 404 mg/L (TMW-9) and 10,300 mg/L (TMW-17). The background TDS concentration was 1,520 mg/L (TMW-12). The TDS concentration in the windmill sample was 1,010 mg/L. On March 14, 2024, chloride was reported in at concentrations from 373 mg/L (TMW-9) to 8,930 mg/L (TMW-17). The background TDS concentration was 1,390 mg/L from monitoring well TMW-12. The TDS concentration in the windmill sample was 1,080 mg/L. Figure 7a and Figure 7b present isopleth maps for TDS concentrations in groundwater samples collected on December 20 and 21, 2033 and March 14, 2024, respectively.

On April 3, 2024, at the request of NMOCD, Apache requested LAI personnel to collect a groundwater sample from the windmill for analysis of New Mexico Water Quality Control Commission (WQCC) human heath, domestic water quality and irrigation "3103" parameters in 20.6.2.3103 NMAC. The sample was collected from the discharge pipe near the windmill

507 North Marienfeld, Suite 202 ◆ Midland, Texas 79701 ◆ Ph. (432) 687-0901 ◆ Fax (432) 687-0456

and delivered under preservation and chain of custody to Xenco laboratories located in Midland, Texas. Table 3 presents the laboratory data summary. Appendix F presents the laboratory reports.

The laboratory reported barium (2.18 mg/L) and chloride (440 mg/L) above the WQCC human health and domestic water quality standards of 2.0 mg/L and 250 mg/L, respectively, on April 3, 2024.

On May 2, 2024, following the video/telephone call on May 1, 2024, LAI personnel collected groundwater samples from monitoring wells TMW-1, TMW-3, TMW-21, and windmill. The samples were delivered under preservation and COC to Xenco, which analyzed the samples for dissolved barium by EPA SW-846 Method 6020B. Table 2 presents the monitoring well and windmill analytical data summary. According to 20.6.2.3103, "the standards apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the publication "methods for chemical analysis of water and waste of the U.S. environmental protection agency", with the exception that standards for mercury, organic compounds and non-aqueous liquids shall apply to the total nonfiltered concentrations of the contaminants". The initial sample from the windmill (April 3, 2024) was an unfiltered (total) analysis and therefore not valid for comparison to the standards in 20.6.2.3103NMAC. Samples collected on May 2, 2024, were filtered by the laboratory, and represent dissolved barium concentrations which are below the NMWQCC human health standard of 2.0 mg/L in 20.6.2.3103A(1) NMAC. The dissolved barium concentrations reported between 0.0299 mg/L (TMW-3) and 0.445 mg/L (TMW-1). The dissolved barium concentration in the windmill sample on May 2, 2024, was 0.220 mg/L.

Apache does not believe the any additional analysis is necessary and will discontinue collecting samples from the windmill for the "3103" parameters.

Scope of Work

Apache suspects the source of the chloride in groundwater from TMW-17 to be the same source for the spill. The source may have begun as an undetected pin-hole leak that migrated vertically to groundwater resulting in a density-driven chloride plume that migrated southward along the lower contact with the Triassic Dockum Group. To investigate this possible source scenario, boring BH-9 will be drilled near the junction box and monitoring well TMW-7. The soil samples will be collected with an air rotary rig beginning at ground surface and every five (5) feet to approximately fifty-five (55) feet bgs. The samples will be submitted to Xenco under chain of custody and analyzed for chloride by EPA Method 300. Figure 8 presents the approximate boring location.

Apache will install five (5) additional monitoring wells (TMW-25 through TMW-29) at locations shown on Figure 8a and Figure 8b. Monitoring well TMW-25 will be installed about 500 feet south of TMW-23 and TMW-24 to establish the downgradient limit of chloride in groundwater. Monitoring well TMW-26 will be installed about halfway between TMW-20 and TMW-23 to establish the downgradient and cross gradient concentration of chloride in groundwater. Monitoring well TMW-27 will be installed about 275 feet north-northwest of TMW-17 to confirm if chloride in groundwater is migrating southward from the junction box and is a suspect source for the release. This well will be completed as a recovery test well further described below. Monitoring well TMW-28 will be installed about 375 feet north of TMW-11 and TMW-12 to establish the up gradient or background chloride concentration in groundwater. Monitoring well TMW-29 will be installed about 375 feet north of TMW-13 to evaluate an additional source for the chloride and to establish the up gradient or background chloride concentration in groundwater.

507 North Marienfeld, Suite 202 ◆ Midland, Texas 79701 ◆ Ph. (432) 687-0901 ◆ Fax (432) 687-0456

Applications will be prepared and submitted to the State of New Mexico Office of the State Engineering (NMOSE) for approval and prior to installing monitoring wells TMW-25 through TMW-29. The wells will be installed about twenty (20) feet into the uppermost groundwater unit calculated to occur at depths between about fifty-five (55) feet at TMW-27 and TMW-28 and sixty (60) feet bgs at the remaining locations. Drilling will terminate about two (2) feet into the lower confining unit (Triassic Dockum Group), if encountered. The wells will be completed in a nominal 5-inch diameter bore except MW-27 that will be advanced with an air rotary rig. Potable water may be introduced during drilling to remove drill cuttings from the boreholes. The lithologies will be described and logs prepared according to ASTM D-2487 (Standard Practice for Classification of Soils for Engineering Purposes). The wells will be secured with locking steel covers anchored into a concrete apron measuring about 3 by 3 feet and about 4-inches thick. Land Point Surveying, Midland, Texas, will survey the wells for position and elevation including natural ground and top of casing (TOC). The following is a summary of the calculated depth to groundwater, proposed drilling and well screen depths:

Monitoring Well	Depth to Groundwater, Feet	*Well Depth, Feet bgs	Well Screen Interval,
	bgs		Feet bgs
TMW-25	60	80	60 – 80
TMW-26	60	80	60 – 80
TMW-27	55	95	75 - 95
TMW-28	55	75	55 – 75
TMW-29	60	80	60 - 80

^{*}Drilling will terminate about 2 feet into the lower confining unit (red bed) if encountered.

The wells will be developed by pumping with an electric submersible or mechanical pump to remove sediment disturbed during drilling and well installation. The pump will be fitted with new polyethene discharge tubing that will be discarded between wells. The foot valve will be thoroughly cleaned between wells with a solution of laboratory-grade detergent (Alconox®) and rinsed distilled water. Purged water and sediment will be captured in 55-gallon drums for disposal in a NMOCD permitted Class II commercial salt-water disposal (SWD) well.

Groundwater will be allowed to recover to near the pre-development level before collecting groundwater samples. Depth to groundwater will be gauged at TOC with an electronic water level meter. Groundwater samples will be collected from each monitoring well including the existing monitoring wells (TMW-1 through TMW-24) using the low stress or low flow method according to EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017) where an environmental pump is submerged near the middle of the water column and the well is pumped at a low rate until environmental parameters stabilize. Groundwater samples were collected from discharge through disposable Tygon® tubing. The tubing was discarded after each use and the pump was thoroughly cleaned with a solution of potable water and Alconox® and rinsed with distilled water. The sample from the windmill will be collected from the pump discharge pipe. The samples will be transferred to labeled laboratory containers, packed in an ice chest filled with ice, and delivered under chain of custody Xenco in Midland, Texas. Two (2) duplicate samples will be collected for laboratory quality assurance and quality control (QA/QC). Xenco will analyze the samples for benzene, toluene, ethylbenzene, xylene (BTEX) according to EPA SW-846 Method SW-8260D, cations (calcium, magnesium, potassium, and sodium) by Method SW-6020B, anions (chloride and sulfate) by EPA Method 300, alkalinity by EPA Method M-2320B, and total dissolved solids (TDS) by EPA Method M-2540C.

Remediation

Apache proposes to complete monitoring well TMW-27 as a remediation test well (RW-1). The well will be installed in an appropriately sized borehole that will be advanced using air and water rotary drilling methods to near the top of the lower confining unit (red bed) estimated to occur between about eighty-five (85) and ninetyfive (95) feet bgs. Potable water will be used to remove drill cuttings from the boreholes. The well will be constructed with a 5- inch schedule 40 PVC casing and screen with glued joints as no organic compounds (i.e., BTEX) have been detected in groundwater samples. The well screen approximately 20 to 25 feet in length will be 0.020-inch factory slotted and will be positioned near the bottom of the borehole. The well screen will be surrounded with graded silica sand or gravel compatible with the screen opening (0.020 inches) and will extend from near the bottom of the well to about 2 feet above the screen. The remaining annulus above the sand will be filled with bentonite chips to approximately 1-foot bgs and hydrated with potable water. An electric submersible pump will be used to evaluate the well yield and radius of influence during a pumping test. Water from drilling and pumping the well will be captured in portable (frac) tanks and disposed of in an NMOCD permitted commercial saltwater disposal (SWD) well. Options for managing the pump discharge during remediation will be evaluated based on the pumping test. Apache will work with the State of New Mexico Office of the State Engineer (OSE) for authorization to produce water from the recovery well for the remediation project. Apache will conduct semi-annual (twice yearly) monitoring of groundwater in the monitoring wells (TMW-1 through TMW-28 and recovery well (RW-1). The samples will be analyzed for BTEX, chloride, and TDS. It is anticipated that the groundwater remediation system will be operated between approximately 3 and 5 years. Apache will submit the remediation program results to the NMOCD in annual (once per year) reports that will include a summary of water volumes recovered and treated, laboratory analytical data summary tables, groundwater potentiometric surface maps, iosopleth maps for chloride and TDS, and laboratory reports. Apache will provide notification to NMOCD and landowner at least 7 days in advance of each event, excluding weekends.

Apache will discontinue monitoring groundwater from the windmill for WQCC human heath, domestic water quality and irrigation standards in 20.6.2.3103, based on only barium (2.18 mg/L) and chloride (440 mg/L) being detected above the WQCC human health and domestic water quality standards of 2.0 mg/L and 250 mg/L, respectively, on April 3, 2024.

Your approval of this SOW for additional investigation and proposed remediation test well is requested. Please contact Barrett Bole with Apache at (432) 818-1108 or email Barrett.Bole@apachecorp.com, Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com, Daniel St. Germain at (432) 664-5357 or <a href="mailto:dstearnage-dstearna

Larson & Associates, Inc.

Respectively,

Mark J. Larson, P.G.

President/Sr. Hydrogeologist

Certified Professional Geologist #10490

Encl.

507 North Marienfeld, Suite 202 ◆ Midland, Texas 79701 ◆ Ph. (432) 687-0901 ◆ Fax (432) 687-0456

Tables

Table 1
Monitoring Well Completion and Gauging Summary
Apache Corporation, EBDU 37
Incident ID: nDHR1922141227

			We	ll Informatio	n	200.000	y, New Mexi				Groundwa	ter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
TMW-1	9/19/2019	65.85	62.50	2	3,411.21	42.32 - 61.97	3.36	3,414.57	09/23/2019	46.18	42.82	28.18	3,368.39
									12/26/2019	48.90	45.54	26.27	3,365.67
									09/30/2020	49.31	45.95	16.54	3,365.26
									12/07/2020	49.42	46.06	16.43	3,365.15
									03/11/2021	49.41	46.05	16.44	3,365.16
									06/10/2021	49.67	46.31	16.18	3,364.90
									10/11/2021	50.90	47.54	14.95	3,363.67
									12/22/2021	49.95	46.59	15.90	3,364.62
									03/01/2022	49.92	46.56	15.93	3,364.65
									05/23/2022	50.25	46.89	15.60	3,364.32
									08/16/2022	50.64	47.28	15.21	3,363.93
									12/15/2022	50.18	46.82	15.67	3,364.39
									03/14/2023	50.16	46.80	15.69	3,364.41
									06/22/2023	47.09	43.73	18.76	3,367.48
									09/06/2023	50.31	46.95	15.54	3,364.26
									12/21/2023	50.27	46.91	15.58	3,364.30
									03/14/2024	50.14	46.78	15.71	3,364.43
TMW-2	9/19/2019	70.85	80.00	2	3,421.30	47.50 - 67.17	2.86	3,424.16	09/23/2019	55.80	52.94	15.05	3,368.36
									12/26/2019	57.50	54.64	13.35	3,366.66
									09/30/2020	58.01	55.15	12.84	3,366.15
									12/07/2020	58.08	55.22	12.77	3,366.08
									03/11/2021	58.00	55.14	12.85	3,366.16
									06/10/2021	58.12	55.26	12.73	3,366.04
									10/11/2021	58.54	55.68	12.31	3,365.62
									12/22/2021	58.50	55.64	12.35	3,365.66
									03/01/2022	58.48	55.62	12.37	3,365.68

Table 1
Monitoring Well Completion and Gauging Summary
Apache Corporation, EBDU 37
Incident ID: nDHR1922141227

			We	ll Informatio	n		, New Mexi				Groundwa	ter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
									05/23/2022	58.62	55.76	12.23	3,365.54
									08/16/2022	58.98	56.12	11.87	3,365.18
									12/15/2022	58.76	55.90	12.09	3,365.40
									03/14/2023	58.70	55.84	12.15	3,365.46
									06/22/2023	58.27	55.41	12.58	3,365.89
									09/06/2023	59.05	56.19	11.80	3,365.11
									12/21/2023	58.95	56.09	11.90	3,365.21
									03/14/2024	58.86	56.00	11.99	3,365.30
TWM-3	9/29/2020	71.29	68.41	2	3,420.33	49.96 - 69.76	2.88	3,423.21	09/23/2019				
	5, 25, 2525				,			-,	12/26/2020				
									09/30/2020	57.62	54.74	13.67	3,365.59
									12/07/2020	57.68	54.80	13.61	3,365.53
									03/11/2021	57.59	54.71	13.70	3,365.62
									06/10/2021	57.90	55.02	13.39	3,365.31
									10/11/2021	58.31	55.43	12.98	3,364.90
									12/22/2021	58.18	55.30	13.11	3,365.03
									03/01/2022	58.14	55.26	13.15	3,365.07
									05/23/2022	58.41	55.53	12.88	3,364.80
									08/16/2022	58.87	55.99	12.42	3,364.34
									12/15/2022	58.44	55.56	12.85	3,364.77
									03/14/2023	58.36	55.48	12.93	3,364.85
									06/22/2023	57.53	54.65	13.76	3,365.68
									09/06/2023	58.85	55.97	12.44	3,364.36
									12/21/2023	58.61	55.73	12.68	3,364.60
									03/14/2024	58.47	55.59	12.82	3,364.74
TMW-4	9/29/2020	73.25	70.09	2	3,420.03	49.96 - 69.76	3.16	3,423.19	09/23/2019				

Table 1
Monitoring Well Completion and Gauging Summary
Apache Corporation, EBDU 37
Incident ID: nDHR1922141227

			We	ll Informatio	n		y, New Mexi				Groundwa	iter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
									12/26/2019				
									09/30/2020	57.39	54.23	15.86	3,365.80
									12/07/2020	57.45	54.29	15.80	3,365.74
									03/11/2021	57.40	54.24	15.85	3,365.79
									06/10/2021	57.60	54.44	15.65	3,365.59
									10/11/2021	57.99	54.83	15.26	3,365.20
									12/22/2021	57.90	54.74	15.35	3,365.29
									03/01/2022	57.87	54.71	15.38	3,365.32
									03/29/2022	57.89	54.73	15.36	3,365.30
									05/23/2022	58.05	54.89	15.20	3,365.14
									08/16/2022	58.48	55.32	14.77	3,364.71
									12/15/2022	58.15	54.99	15.10	3,365.04
									03/14/2023	58.07	54.91	15.18	3,365.12
									06/22/2023	57.28	54.12	15.97	3,365.91
									09/06/2023	58.45	55.29	14.80	3,364.74
									12/20/2023	58.31	55.15	14.94	3,364.88
									03/14/2024	58.19	55.03	15.06	3,365.00
TD 4) A / F	44 /20 /2022	78.59	75.50	2	3,418.91	54.37 - 74.32	2.95	2 424 00	42/45/2022	57.04	54.06	20.50	2 262 25
TMW-5	11/28/2022	78.59	75.50	2	3,418.91	54.37 - 74.32	2.95	3,421.86	12/15/2022	57.91	54.96	20.68	3,363.95
									03/14/2023	57.27	54.32	21.32	3,364.59
									06/22/2023	55.63	52.68	22.96	3,366.23
									09/06/2023	57.63	54.68	20.96	3,364.23
									12/20/2023	57.49	54.54	21.10	3,364.37
									03/14/2024	57.55	54.60	21.04	3,364.31
TNAVALE	11/28/2022	72.10	73.00	2	3,424.13	54.37 - 74.32	2.42	3,426.55	12/15/2022	62.17	F0.7F	0.03	2 204 20
TMW-6	11/28/2022	/2.10	/3.00	۷	3,424.13	34.37 - 74.3Z	2.42	3,420.33	12/15/2022	62.17	59.75	9.93	3,364.38
									03/14/2023	62.08	59.66	10.02	3,364.47

OCD Ex. 6-0407 Page 3 of 6

Table 1
Monitoring Well Completion and Gauging Summary
Apache Corporation, EBDU 37
Incident ID: nDHR1922141227

			We	ll Informatio	n						Groundwa	ter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
									06/22/2023	61.41	58.99	10.69	3,365.14
									09/06/2023	61.95	59.53	10.15	3,364.60
									12/20/2023	61.88	59.46	10.22	3,364.67
									03/14/2024	61.79	59.37	10.31	3,364.76
TMW-7	6/13/2023	83.85	80.99	2	3,423.07	61.29 - 80.78	2.86	3,425.93	06/19/2023	60.35	57.49	23.50	3,365.58
									06/22/2023	63.34	60.48	20.51	3,362.59
									09/06/2023	60.98	58.12	22.87	3,364.95
									12/20/2023	60.91	58.05	22.94	3,365.02
									03/14/2024	60.81	57.95	23.04	3,365.12
TMW-8	6/12/2023	76.55	73.75	2	3,417.28	53.83 - 73.74	2.80	3,420.08	06/20/2023	54.04	51.24	22.51	3,366.04
									06/22/2023	54.02	54.00	22.53	3,366.06
									09/06/2023	55.39	52.59	21.16	3,364.69
									12/20/2023	55.23	52.43	21.32	3,364.85
									03/14/2024	55.12	52.32	21.43	3,364.60
TMW-9	6/13/2023	71.90	69.03	2	3,414.62	49.41 - 68.72	2.87	3,417.49	06/21/2023	51.11	48.24	20.79	3,366.38
									06/22/2023	51.14	48.27	20.76	3,366.35
									09/06/2023	53.66	50.79	18.24	3,363.83
									12/21/2023	53.55	50.68	18.35	3,363.94
									03/14/2024	53.45	50.58	18.45	3,364.76
TMW-10	6/14/2023	72.76	69.81	2	3,415.26	49.68 - 68.99	2.95	3,418.21	06/20/2023	51.57	48.62	21.19	3,366.64
									06/22/2023	51.61	48.66	21.15	3,366.60
									09/06/2023	54.21	51.26	18.55	3,364.00
									12/21/2023	54.12	51.17	18.64	3,364.09
									03/14/2024	54.02	51.07	18.74	3,364.19
TMW-11	11/29/2023	76.75	73.95	2	3,421.56	53.30 - 73.27	2.80	3,424.35	12/21/2023	59.92	57.12	16.83	3,364.43
									03/14/2024	58.85	56.05	17.90	3,365.50

OCD Ex. 6-0408 Page 4 of 6

Table 1
Monitoring Well Completion and Gauging Summary
Apache Corporation, EBDU 37
Incident ID: nDHR1922141227

			We	ll Informatio	n		y, New Mexi				Groundwa	ater Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
TMW-12	11/30/2023	85.73	82.81	2	3,424.30	60.16 - 82.13	2.92	3,427.22	12/21/2023 03/14/2024	61.65 61.57	58.73 58.65	24.08 24.16	3,365.57 3,365.65
TMW-13	12/4/2023	86.67	83.90	2	3,426.21	63.24 - 83.21	2.77	3,428.98	12/20/2023 03/14/2024	63.75 63.68	60.98 60.91	22.92 22.99	3,365.23 3,365.30
TMW-14	12/1/2023	88.64	85.61	2	3,426.78	64.96 - 84.93	2.76	3,429.54	12/20/2023 03/14/2024	65.02 64.99	62.26 62.23	23.62 23.38	3,364.52 3,364.55
TMW-15	11/30/2023	83.14	79.62	2	3,423.18	58.97 - 78.94	2.79	3,425.97	12/20/2023 03/14/2024	61.79 61.71	59.00 58.92	21.35 58.92	3,364.18 3,364.26
TMW-16	11/29/2023	84.82	81.79	2	3,420.73	59.14 - 81.11	2.92	3,423.65	12/20/2023 03/14/2024	60.19 60.08	57.27 57.16	24.63 24.63	3,363.46 3,363.57
TMW-17	11/28/2023	84.68	81.46	2	3,422.52	60.81 - 80.78	3.16	3,425.68	12/20/2023 03/14/2024	61.56 61.43	58.40 58.27	23.12 23.19	3,364.12 3,364.25
TMW-18	12/5/2023	88.57	85.05	2	3,422.29	64.57 - 84.51	3.32	3,425.61	12/20/2023 03/14/2024	62.15 62.01	58.83 58.69	26.42 26.56	3,363.46 3,363.60
TMW-19	12/5/2023	83.50	80.31	2	3,420.79	59.66 - 79.63	2.99	3,423.78	12/20/2023 03/14/2024	60.92 61.90	57.93 59.91	22.58 20.60	3,362.86 3,361.88
TMW-20	12/6/2023	77.50	74.52	2	3,426.46	53.90 - 73.87	2.88	3,429.34	12/20/2023 03/14/2024	65.26 65.21	62.38 62.33	12.24 12.91	3,364.08 3,364.13
TMW-21	12/7/2023	74.22	71.80	2	3,429.87	51.15 - 71.12	2.33	3,432.20	12/20/2023 03/14/2024	67.31 67.29	64.98 64.96	6.91 6.84	3,364.89 3,364.91
TMW-22	12/7/2023	73.01	70.02	2	3,431.29	49.37 - 69.34	2.89	3,434.17	12/20/2023 03/14/2024	68.86 68.85	65.97 65.96	4.15 4.06	3,365.31 3,365.22

OCD Ex. 6-0409 Page 5 of 6

Table 1

Monitoring Well Completion and Gauging Summary

Apache Corporation, EBDU 37 Incident ID: nDHR1922141227

						Lea Count	y, New Mexi	со					
			We	ll Informatio	n						Groundwa	iter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Denth	Well Diameter (inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (feet TOC)	Depth to Water (feet BGS)	Water Column Height (feet)	Groundwater Elevation (feet AMSL)
TMW-23	12/13/2023	72.34	69.35	2	3,421.28	48.69 - 68.66	2.95	3,424.23	12/20/2023	61.51	58.56	10.83	3,362.72
									03/14/2024	61.39	58.44	10.91	3,372.84
TMW-24	12/13/2023	63.02	59.98	2	3,418.54	39.33 - 59.30	3.20	3,421.74	12/20/2023	59.41	56.21	3.61	3,362.33
									03/14/2024	59.28	56.08	3.90	3,362.46

Notes:

Monitoring wells installed by Scarborough Drilling Inc., Lamesa, Texas, with 2-inch schedule 40 PVC casing and screen.

bgs: below ground surface

TOC: top of casing

AMSL: above mean sea level

Table 2 Groundwater Sample Analytical Data Summary Apache Corporation, EBDU #37 Lea County, New Mexico

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
VQCC Standard:		*0.005	*1	*0.7	*0.62	**250	**1,000	2.0
Windmill	¹ 08/01/2019 ² 00/22/2010	<0.001	<0.001	<0.001	<0.003	232	732	
	09/23/2019							
	² 12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	259	688	
	2							
	³ 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	274	730	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	287	930	
	3 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	252	745	
	³ 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	255	781	
	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	251	800	
	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	246	751	
	4 03/03/2022	<0.00200	<0.00200	<0.00200	<0.00400	256	828	
	4 05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	222	738	
	4 08/16/2022	<0.00200	<0.00200	<0.00200	<0.00400	256	1,190	
	4 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	198	508	
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	401	1,130	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	276	852	
	4 09/07/2023	<0.00200	<0.00200	<0.00400	<0.00400	350	981	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	409	1,010	
	,,	10.00200	10.00200	10.00200	10.00400	403	1,010	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	471	1,080	
	04/03/2024							2.18
	05/02/2024							0.220
	03/02/2024							0.220
TMW-1	² 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	37.4	400	
I IAIAA-T	² 12/26/2019							
	12/20/2019	<0.00800	<0.00200	<0.00200	<0.00200	21.1	390	
	3 00/20/2020	0.00000	0.00000	0.00000	0.00000	22.5	200	
	09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	22.6	390	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	13.1	383	
	3 02/11/2021							
	03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	10.9	360	
	06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	14.5	360	
	3 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	17.5	358	
	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	10.3	391	
	4 03/01/2022	<0.00200	<0.00200	<0.00200	<0.00400	13.2	343	
	4 05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	26.0	369	
	4 08/16/2022	<0.00200	<0.00200	<0.00200	<0.00400	50.3	404	
	4 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	21.4	216	
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	41.9	358	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	275	845	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	277	830	
	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	156	662	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00404	136	551	
	05/02/2024							0.445
	-5, 52, 2024							55
TMW-2	² 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	338	1,220	
110100-2	² 12/26/2019	<0.00800	<0.00200	<0.00200	<0.00200	307	1,170	
	22/20/2013	-0.00000	.5.00200	.0.00200	.5.00200	30,	2,21	
	³ 09/30/2020	<0.00200	0.00227	<0.00200	<0.00200	314	1,040	
	09/30/2020						· ·	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	298	1,050	
	3 02/11/2021	40 00300	±0.00300	40,00000	*0.00 *00	202	1.000	
	03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	293	1,000	
	. 00/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	267	1,050	
	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	263	1,030	
	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	284	1,270	
			ı	1		1	1	
	4 03/01/2022							

Table 2 Groundwater Sample Analytical Data Summary Apache Corporation, EBDU #37 Lea County, New Mexico

Comple	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
Sample	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
QCC Standard:	2460	*0.005	*1	*0.7	*0.62	**250	**1,000	2.0
gee standard.	4 05/23/2022	<0.00200	<0.00200	<0.00400	<0.00400	256	1,070	
		<0.00200				239	940	
	08/10/2022		<0.00200	<0.00400	<0.00400			
	4 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	195	985	
	4 03/14/2023	0.00400	0.00400	0.00400	0.00400	211	1.000	
	03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	211	1,060	
	00/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	248	1,120	
	09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	270	1,050	
	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	264	1,100	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	249	992	
TMW-3	09/23/2019							
	12/26/2019							
	³ 09/30/2020	<0.00200	0.00322	<0.00200	0.00448	212	891	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	214	948	
	,,							
	³ 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	213	900	
	³ 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	180	934	
	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	192	967	
	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	211	949	
	12/22/2021	10.00200	10.00200	10.00200	10.00400	211	343	
	4 03/01/2022	<0.00200	<0.00200	<0.00200	<0.00400	233	944	
	4 05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	202	955	
		<0.00200	<0.00200		<0.00400	245		
	00/10/2022			<0.00200			1,100	
	4 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	175	808	
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	233	940	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	229	1,020	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	240	1,010	
	4 12/21/2023	<0.00100	<0.00200	<0.00200	<0.0100	242	1,020	
	12,21,2023	\0.00100	<0.00100	<0.00100	\0.0100	242	2,020	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	234	959	
	05/02/2024	<0.00200	<0.00200				939	0.0299
	03/02/2024							0.0233
TMW-4	09/23/2019							
	12/26/2019							
	³ 09/30/2020	<0.00200	0.00314	<0.00200	<0.00200	1,020	2,040	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	987	2,300	
	³ 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	834	1,960	
	³ 06/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	745	1,990	
	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	689	1,990	
	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	735	2,180	
	12, 22, 2021	10.00200	10.00200	10100200	10.00 100	765	2,200	
	4 03/01/2022	<0.00200	<0.00200	<0.00200	<0.00400	1,610	2,080	
	4 03/29/2022	<0.00200	<0.00200	<0.00200	0.00700	547	1,930	
	4 05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	522	1,930	
	4 08/16/2022	<0.00200	<0.00200	<0.00200	<0.00400	684	2,000	
	4 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	486	1,940	
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	703	1,850	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	673	1,900	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	625	1,810	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	598	1,750	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	580	1,750	
TMW-5	⁴ 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	1,170	4,950	
-								
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	2,890	5,200	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	2,790	5,380	

Table 2 Groundwater Sample Analytical Data Summary Apache Corporation, EBDU #37 Lea County, New Mexico

				ea County, New Me				
Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
WQCC Standard:		*0.005	*1	*0.7	*0.62	**250	**1,000	2.0
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,700	4,590	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,320	4,250	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	2,980	5,360	
TMW-6	4 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	941	3,160	
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	2,270	3,200	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	1,550	3,260	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,630	2,820	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,570	3,070	
	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,370	3,070	
	4 03/14/2024	.0.00200	-0.00200	-0.00200	-0.00400	1 500	2 200	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,500	3,280	
	4 06/22/2023					4 770	2.000	
TMW-7	00/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	1,770	3,980	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,870	3,880	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,770	3,720	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,740	3,690	
TMW-8	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	974	2,410	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,130	2,470	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00200	709	1,840	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	655	1,830	
TMW-9	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	18.0	373	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	41.8	390	
	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	37.3	404	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	29.3	373	
	, .	10.00200	10100200	10.00200	10.00100			
TMW-10	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	9.89	525	
110100 10	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	67.0	514	
	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	114.0	666	
	12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	114.0	000	
	4 03/14/2024	40.00300	*0.00300	±0.00200	<0.00400	17.0	405	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	17.0	405	
	4 12/21/2023	0.00100	0.00400	0.00100	0.0100	350	1 100	
TMW-11	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	350	1,190	
	4 03/14/2024					240	4 000	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	318	1,090	
	4							
TMW-12	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	463	1,520	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	448	1,390	
TMW-13	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,730	3,680	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,690	3,480	
TMW-14	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,500	5,140	
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,810	2,820	
TMW-15	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,120	3,870	
-								
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	2,160	3,400	
		3.00200	3.55255	5.55250	3.55 750		2,	
TMW-16	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	85.5	495	
I IAIAA-TO	12, 20, 2023	<0.00200	<0.00200	<0.00200	<0.00400	00.5	733	
			1	1	1	1	1	1
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	43.0	380	

Groundwater Sample Analytical Data Summary Apache Corporation, EBDU #37 Lea County, New Mexico

C		Collection	D	T-1	Falsodlessesses	W. Janaa	Ohlanida.	TDC	Da uluuu
Sample		Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
		Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
WQCC Standard:			*0.005	*1	*0.7	*0.62	**250	**1,000	2.0
TMW-17	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	5,850	10,300	
	4	03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	5,680	8,930	
TMW-18	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,050	6,430	
	4	03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	908	1,650	
TMW-19	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	927	1,860	
	4	03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	553	1,070	
TMW-20	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	287	927	
	4	03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	385	937	
TMW-21	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	262	885	
	4	03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	310	902	
		05/02/2024							0.0471
TMW-22	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	270	939	
	4	03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	342	918	
TMW-23	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	895	1,980	
	4	03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,020	2,020	
TMW-24	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	271	1,050	
	4	03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	330	1,060	
DUP-1 (Windmill)	3	09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	276	794	
DUP-1 (Windmill)	3	12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	278	908	
	,								
DUP-1 (Windmill)	3	03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	259	798	
DUP-1 (Windmill)	3	06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	256	781	
DUP-1 (Windmill)	4	10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	250	830	
DUP-1 (Windmill)	4	12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	243	796	
Dup-1 (TMW-2)	4	03/01/2022	<0.00200	<0.00200	<0.00200	<0.00400	297	1,010	
Dup-2 (Windmill)	4	03/03/2022	<0.00200	<0.00200	<0.00200	<0.00400	491	787	
Dup-1 (Windmill)	4	05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	215	729	
Dup-1 (Windmill)	4	08/16/2022	<0.00200	<0.00200	<0.00200	<0.00400	283	1,120	
Dup-1 (TMW-5)	4	12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	1,410	4,520	
Dup-1 (Windmill)	4	03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	413	1,130	
Dup-1 (Windmill)	4	06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	273	855	
Dup-1 (TMW-5)	4	09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	3,030	5,850	
Dup-1 (TMW-17)	4	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	5,830	10,300	
Dup-2 (TMW-2)	4	12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	265	1,010	
	_								
Dup-1 (TMW-3)	4	03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	328	986	
Dup-2 (TMW-14)		03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,330	2,530	

- ('): analysis performed by Cardinal Laboratories, Hobbs, New Mexico, by EPA SW-846 Method 8021B (BTEX) and titration methods (chloride and TDS).
- (2): analysis performed by DHL Analytical, Round Rock, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride).
- (3): analysis performed by Xenco Laboratories, Midland, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride).
- (): analysis performed by Eurofins-Xenco, Midland, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride). << concentration is less than analytical method reporting limit (RL).
- *: NMWQCC Human Health Standard
- **: NMWQCC Domestic Water Quality Standard

Table 3 20.6.2.3101 NMAC

Laboratory Analytical Data Summary Windmill, EBDU 37, Lea County, New Mexico

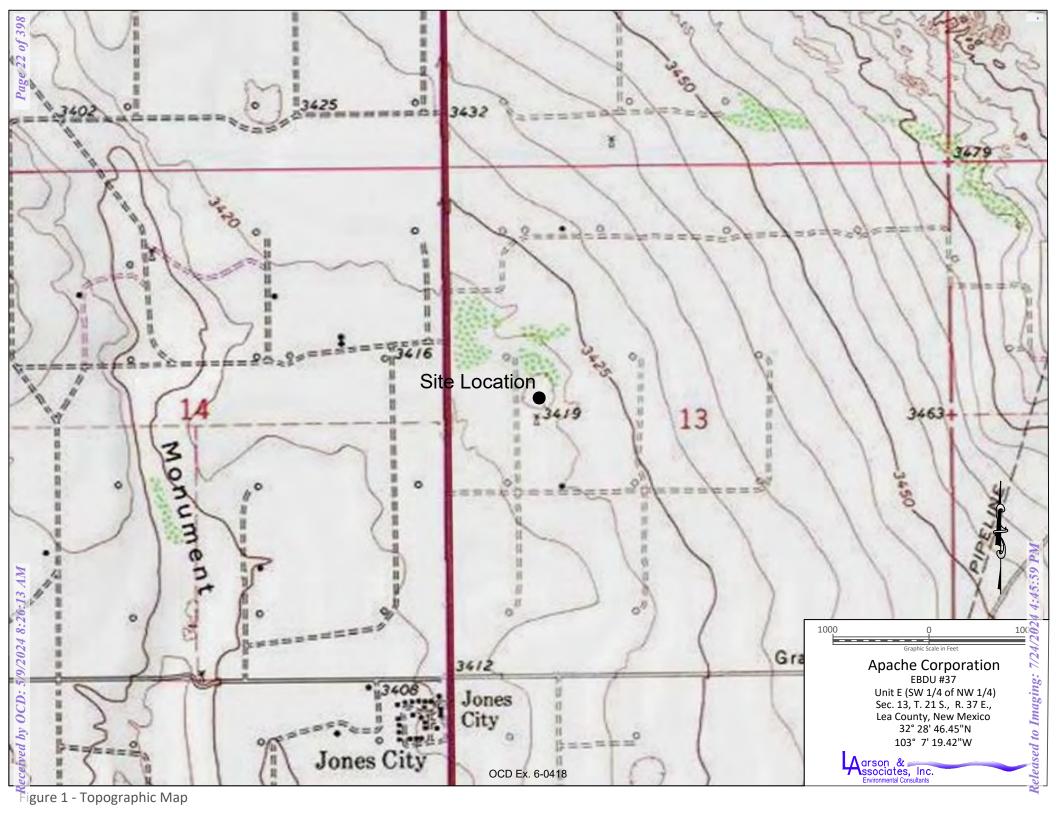
Page 1 of 2

			, Lea Count	•		Page 1 of 2
_			/IAC - Huma		andards	
Α.	Parameter	mg/L	4/3/2024	5/2/2024		
(a)	Antimony	0.006	<0.00400			
(b)	Arsenic	0.01	<0.00400	*0.220		
(c)	Barium	2.0	2.18	*0.220		
(d)	Beryllium	0.004	<0.00200			
(e)	Cadmium	0.005	<0.00200			
(f)	Chromium	0.05	<0.00400			
(g)	Cyanide	0.2	<0.00500			
(h)	Fluoride	1.6	<1.00			
(i)	Lead	0.015	<0.00200			
(j)	Mercury (Total)	0.002	<0.000200			
(k)	Nitrate	10.0	2.78			
(1)	Nitrite	1.0	<0.100			
(m)	Selenium	0.05	<0.00200			
(n)	Silver	0.05	<0.00200			
(o)	Thallium	0.002	<0.00200			
(p)	Uranium	0.03	0.00315			
(q)	Radioactivity	5.0	0.945			
	(combined R226 and R228)					
(r)	Benzene	0.005	< 0.00100			
(s)	Polchlorinated biphenyls (PCB)	0.0005	< 0.000262			
(t)	Toluene	1.0	< 0.00100			
(u)	Carbon Tetrachloride	0.005	<0.00500			
(v)	1,2-dichloroethane (EDC)	0.005	<0.00100			
(w)	1,1-dichloroethylene	0.007	< 0.00100			
(x)	Tetrachloroethylene (PCE)	0.005	<0.00100			
(y)	Trichloroethylene (TCE)	0.005	<0.00500			
(z)	Ethylbenzene	0.70	<0.00100			
	Xylenes (Total)	0.62	< 0.0100			
	Methylene Chloride	0.005	<0.00500			
(cc)	Chloroform	0.1	<0.00100			
	1,1-Dichloroethane	0.025	<0.00100			
	Ethylene Dibromide (EDB)	0.00005	<0.00500			
	1,1,1-trichloroethane	0.20	<0.00100			
	1,1,2-trichloroethane	0.005	<0.00100			
	1,1,2,2-tetrachloroethane	0.01	<0.00100			
`(ii) [′]	vinyl chloride	0.002	< 0.002			
(¡ij)	PAHs: total naphthalene	0.03	< 0.571			
())/	plus monomethylnapthalenes					
(kk)	benzo-a-pyrene	0.0002	<0.571			
(II)	cis-1,2-dichloroethene	0.07	<0.00100			
	trans-1,2-dichloroethene	0.1	<0.00100			
٠,	1,2-dichloropropane (PDC)	0.005	< 0.00500			
٠,	Styrene	0.1	< 0.00100			
	1,2-dichlorobenzene	0.60	<0.00100			
	1,4-dichlorobenzene	0.075	<0.00100			
	1,2,4-trichlorobenzene	0.07	< 0.00500			
(ss)	pentachlorophenol	0.001	<1.14			
(tt)	atrazine	0.003	<0.500			
()		2.303	10.000			

Table 3 20.6.2.3101 NMAC

Laboratory Analytical Data Summary Windmill, EBDU 37, Lea County, New Mexico

Page 2 of 2


20.6.2.3103 NMAC - Standards for Domestic Water Supply							
В.	Parameter	mg/L	4/3/2024				
(1)	Chloride	250.0	440				
(2)	Copper	1.0	0.00509				
(3)	Iron	1.0	<0.100				
(4)	Manganese	0.2	<0.00200				
(5)	Phenols	0.005	<0.0100				
(6)	Sulfate	600.0	56.5				
(7)	Total Dissolved Solids (TDS)	1,000.0	1,000				
(8)	Zinc	10.0	0.00465				
(9)	рН	6 - 9	7.3				
(10)	Methy tertiary-butyl ether (MTBE)	0.1	<0.00500				
20.6.2.3103 NMAC - Standards for Irrigation Use							
В.	Parameter	mg/L	4/3/2024	5/2/2024			
(1)	Aluminum	5.0	<0.0200				
(2)	Boron	0.75	0.154				
(3)	Cobalt	0.05	<0.00200				
(4)	Molybdenum	1.0	<0.00200				
(5)	Nickel	0.2	<0.00200				

Notes: Analysis performed by Eurofins Xenco Laboratories, Midland, Texas, by EPA SW-846 Methods.

Bold indicates analyte concentration exceeds the reporting limit (RL) but below the regulatory limit Bold and highlighted indicates analyte concentration exceeds RL and regulatory limit

All values reported in milligrams per liter (mg/L) equivalent to parts per million (ppm) < Indicates analyte concentration is less than reporting limit (RL)

Figures

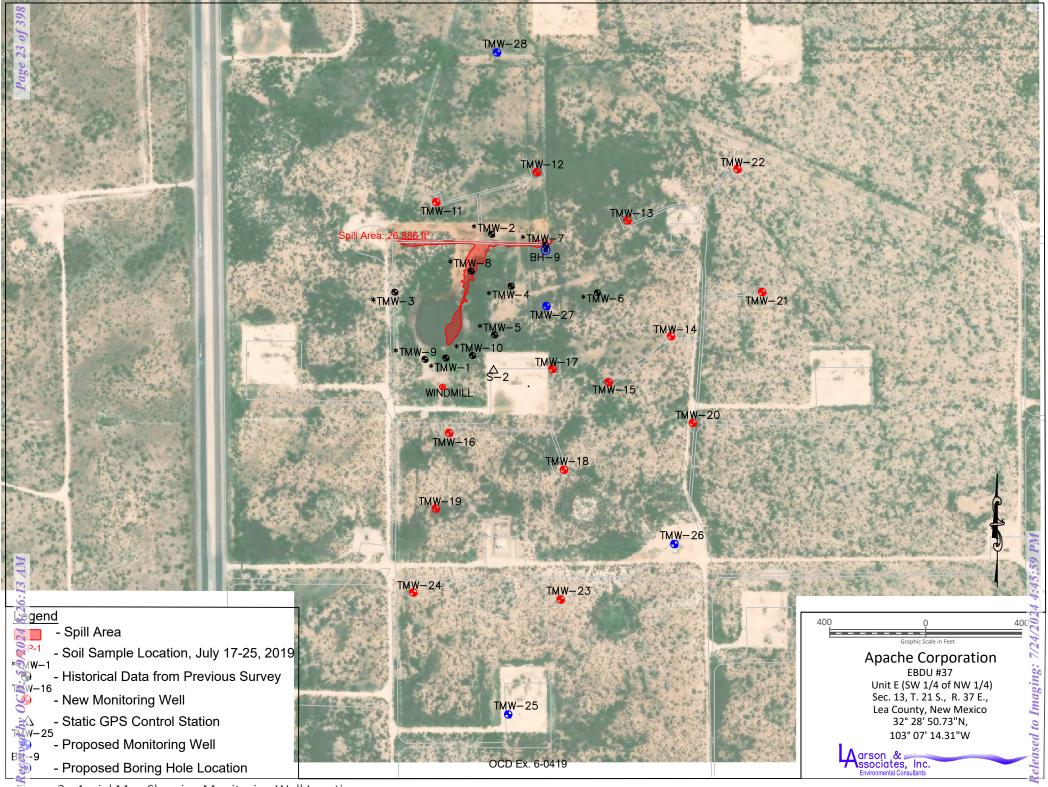


Figure 2 - Aerial Map Showing Monitoring Well Locations

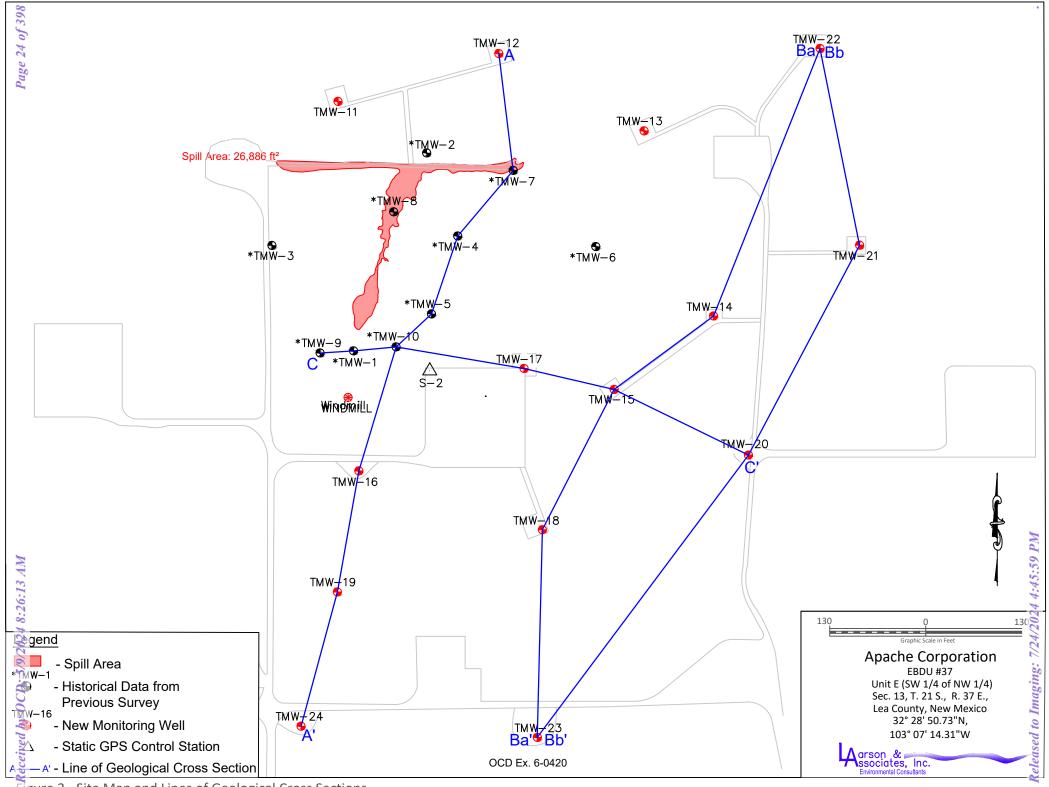


Figure 3 - Site Map and Lines of Geological Cross Sections

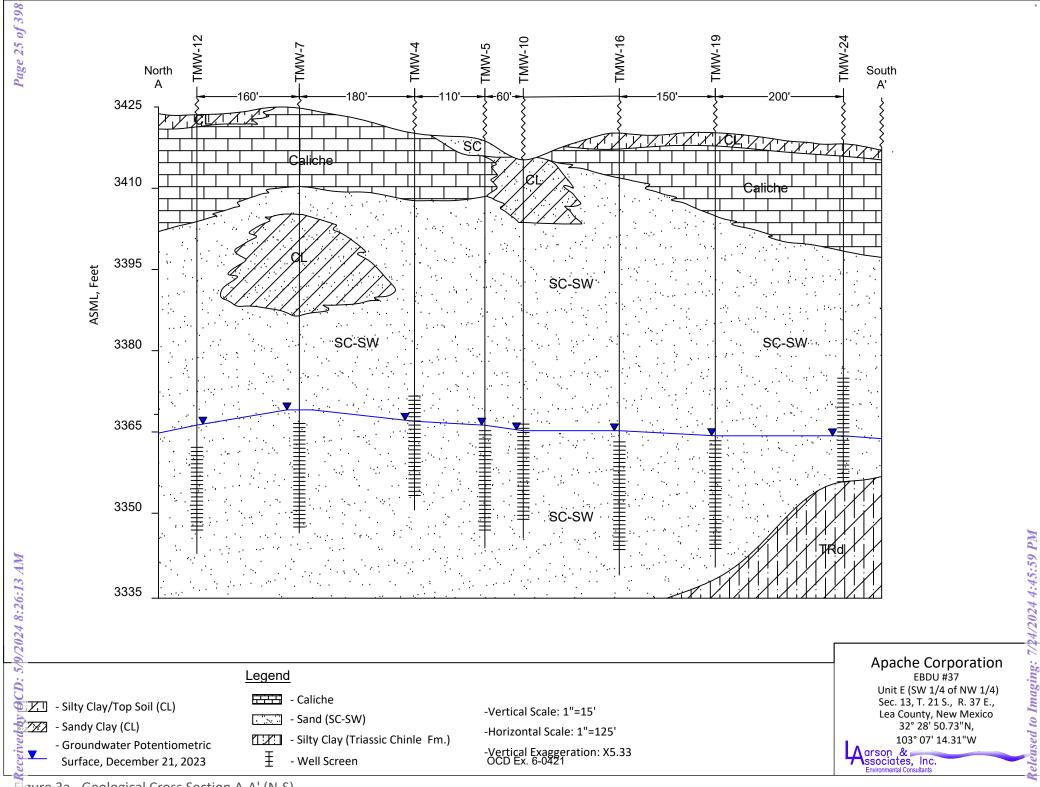


Figure 3a - Geological Cross Section A-A' (N-S)



Figure 3b - Geological Cross Section Ba-Ba' (N-S)

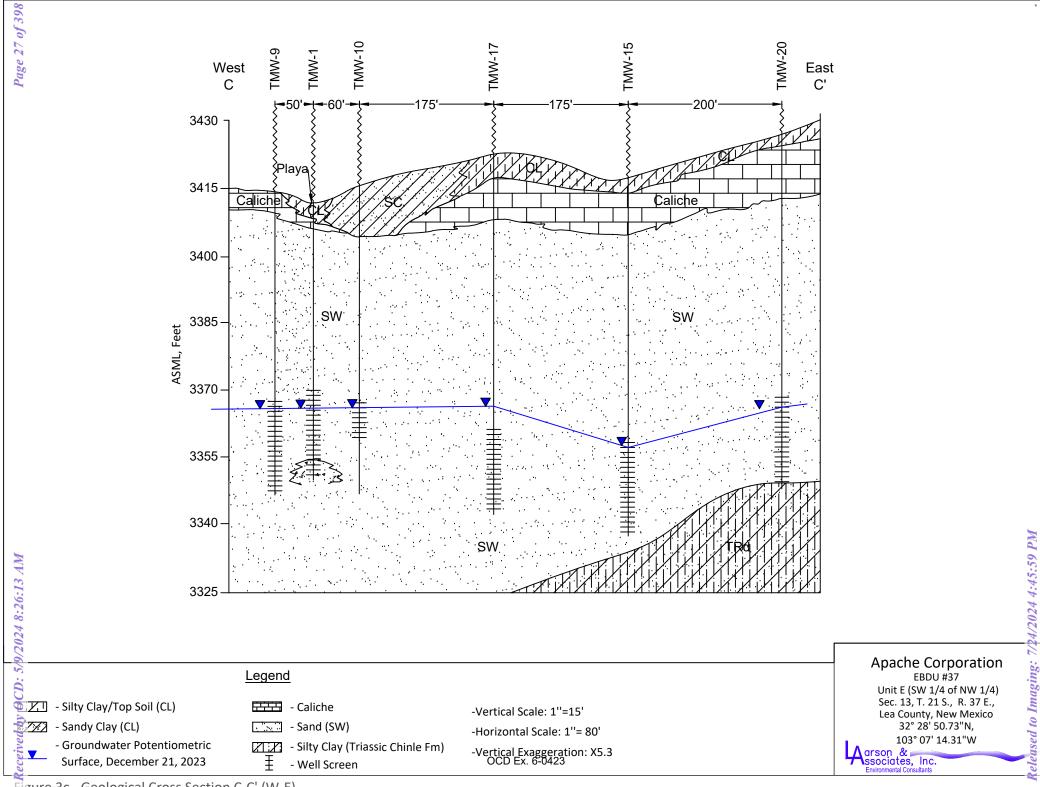
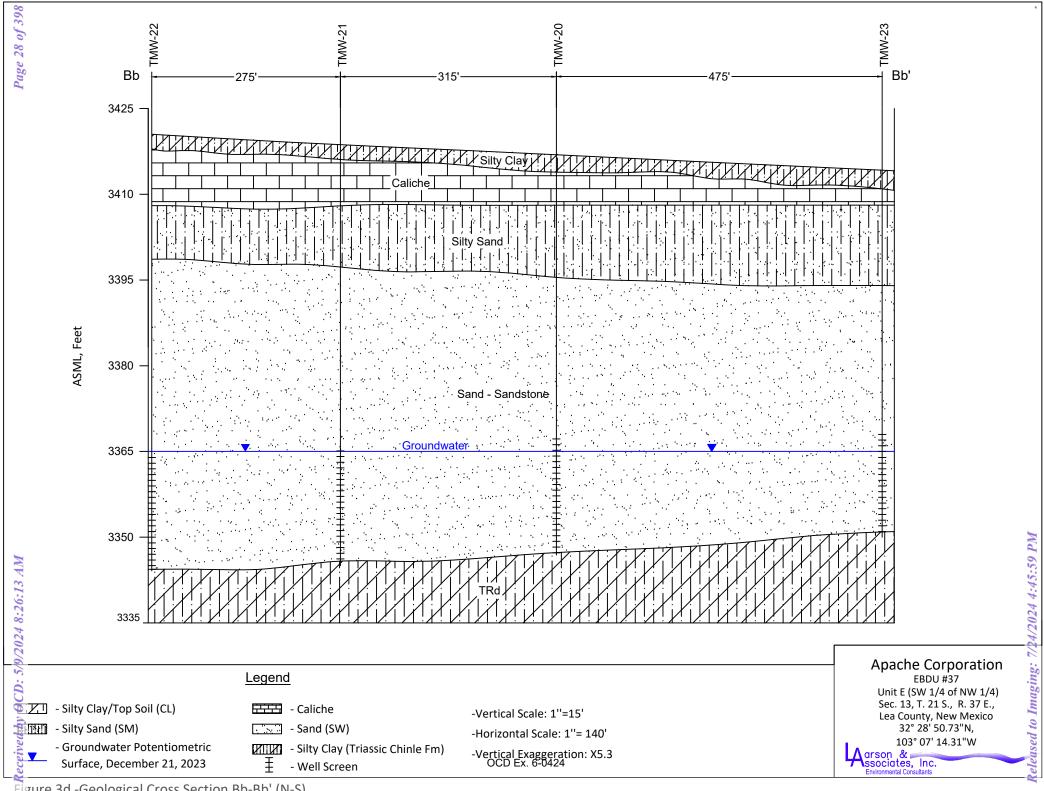
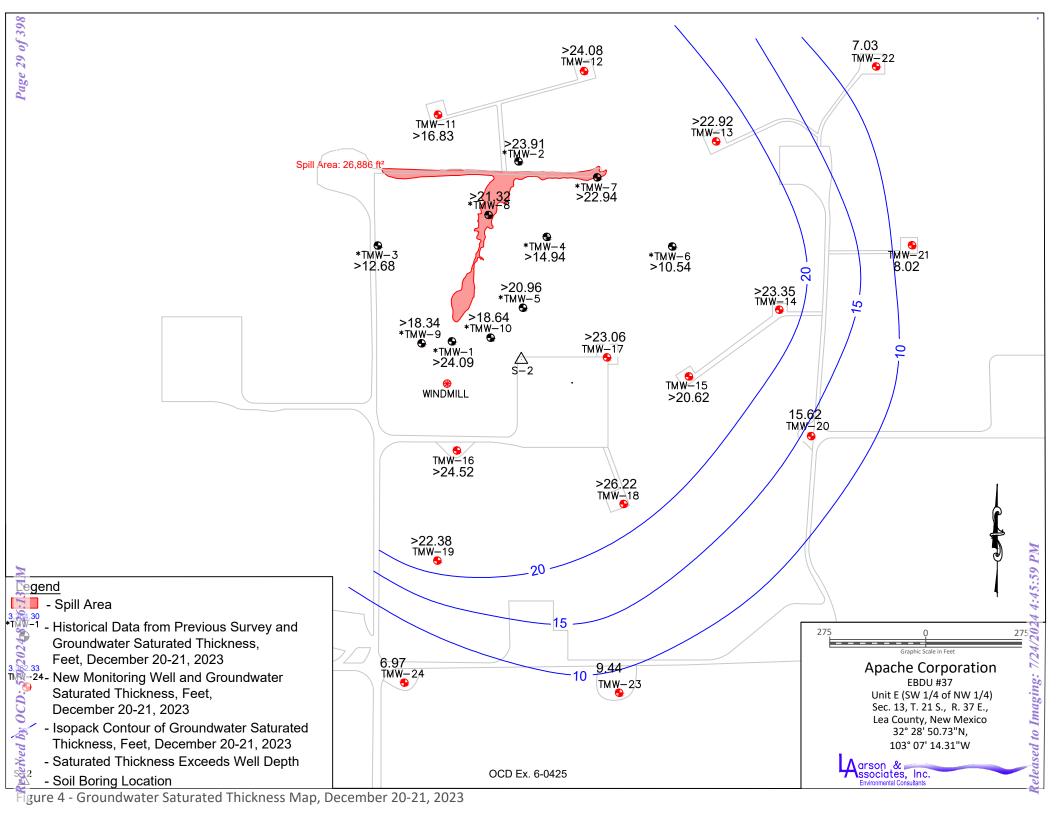
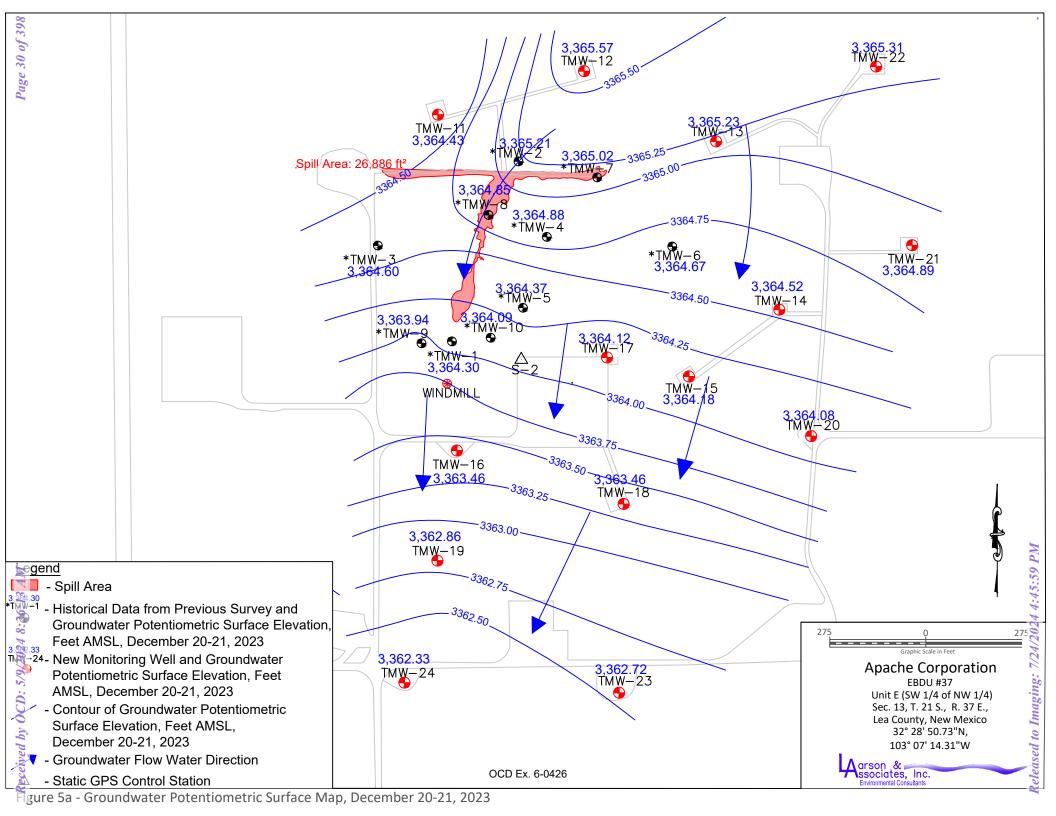
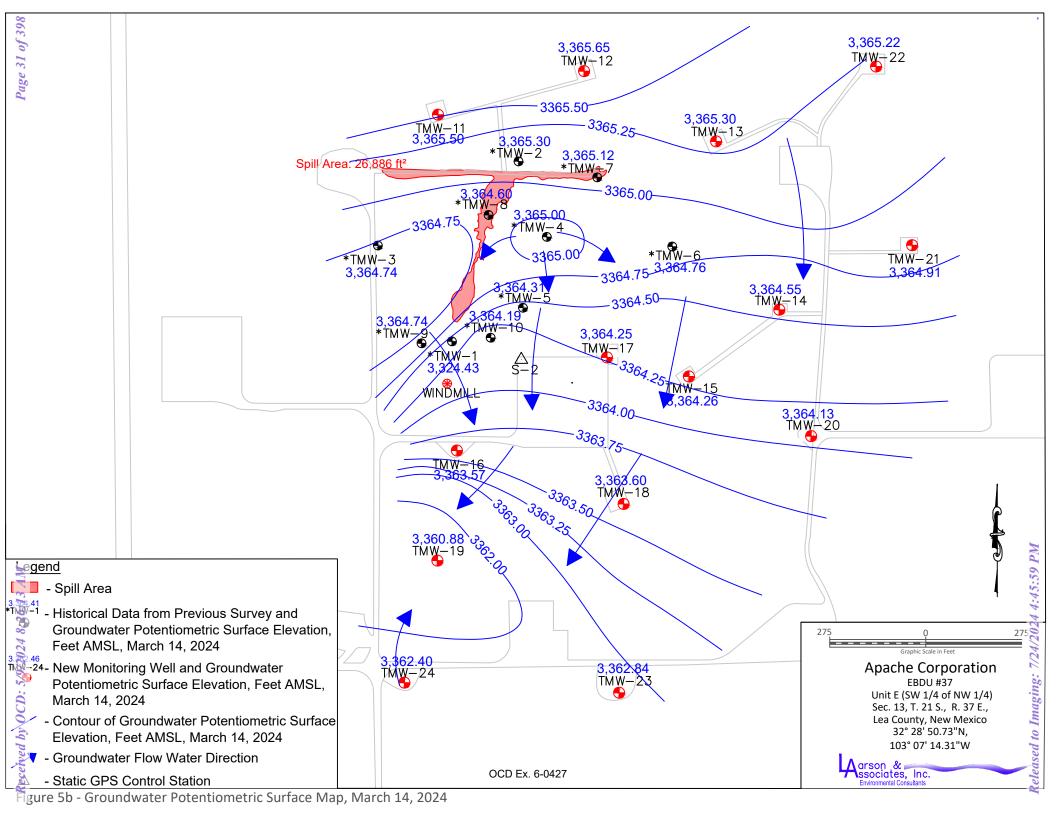
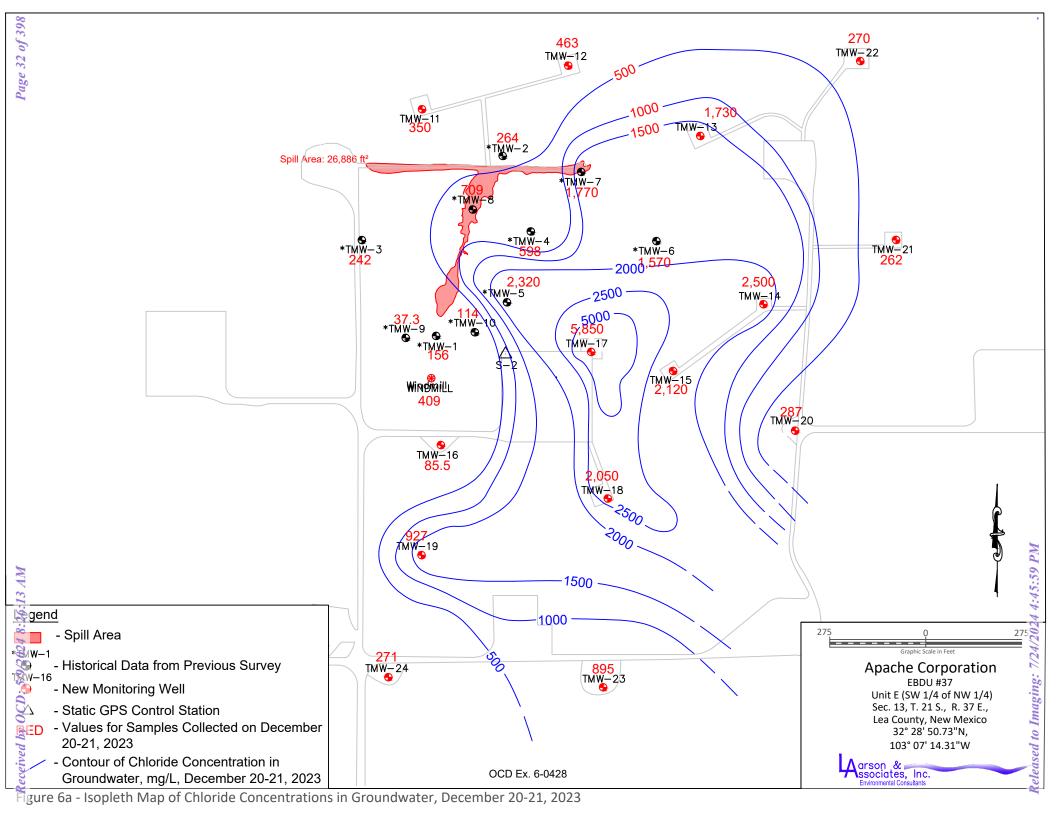
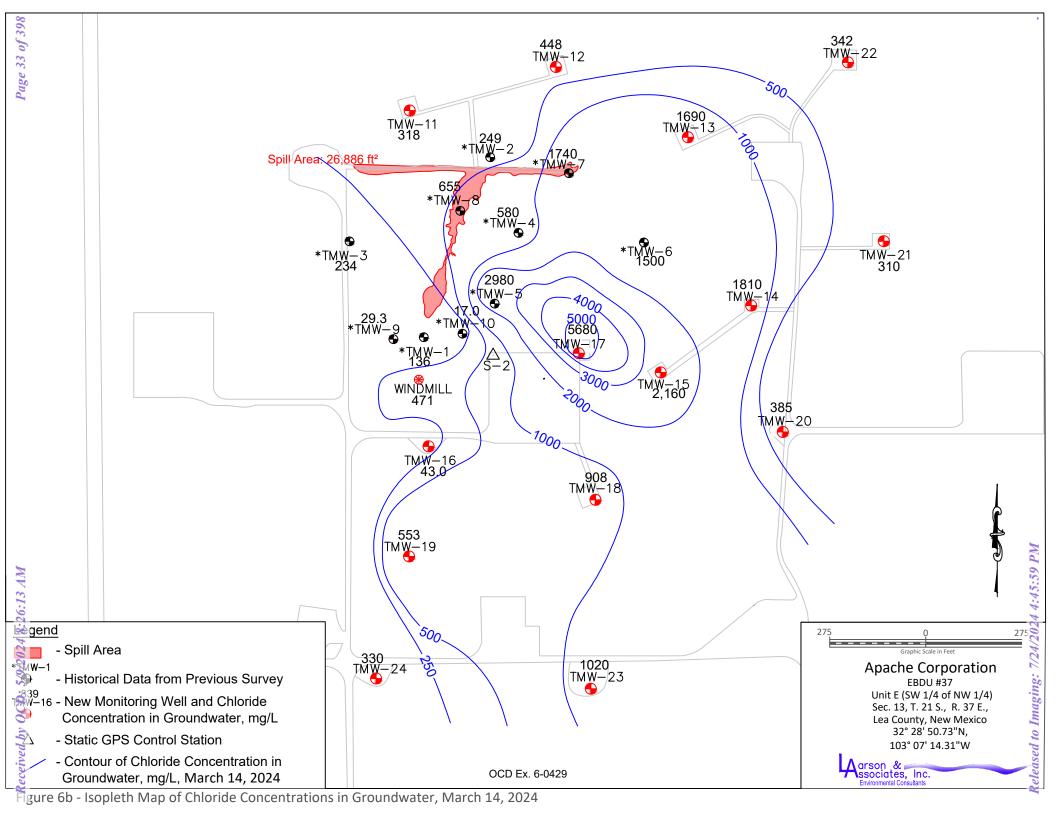
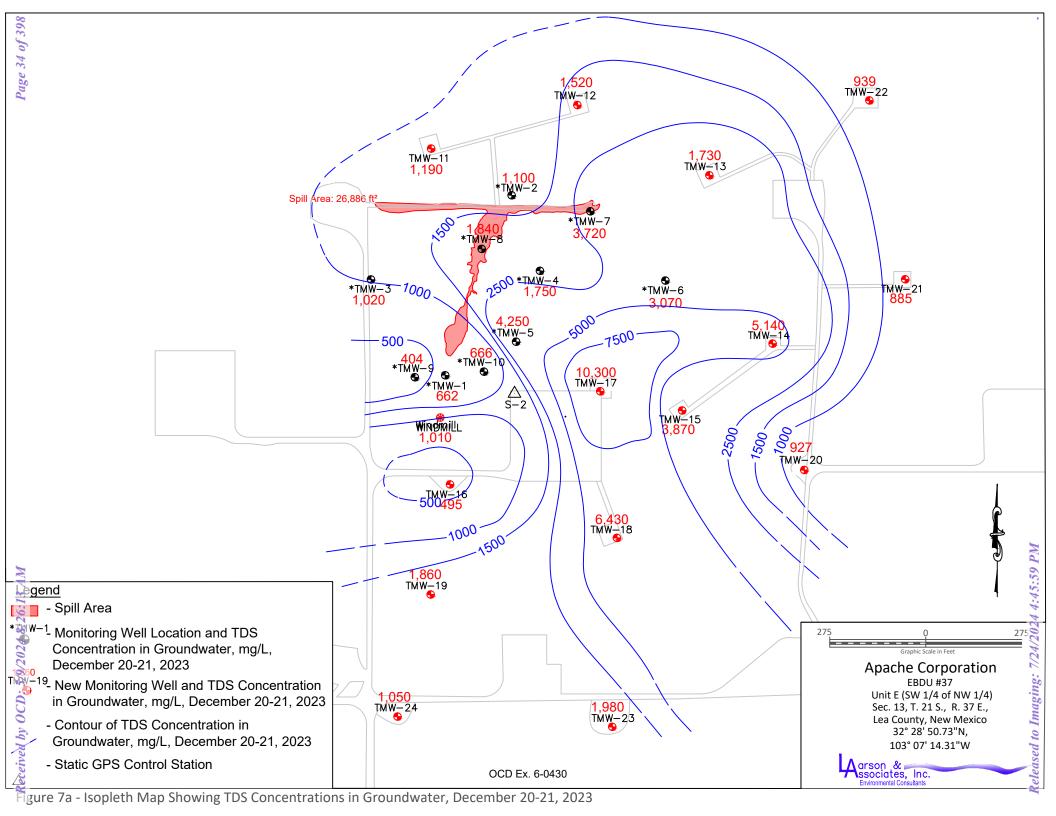
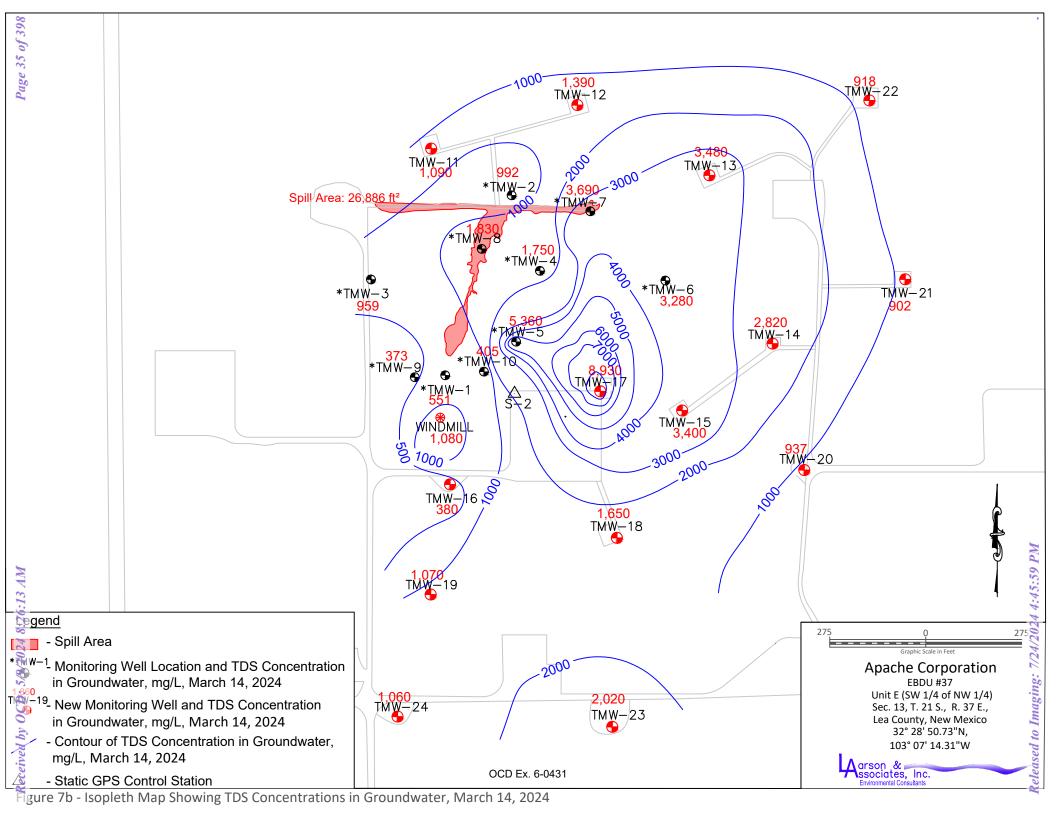


Figure 3c - Geological Cross Section C-C' (W-E)


Figure 3d -Geological Cross Section Bb-Bb' (N-S)





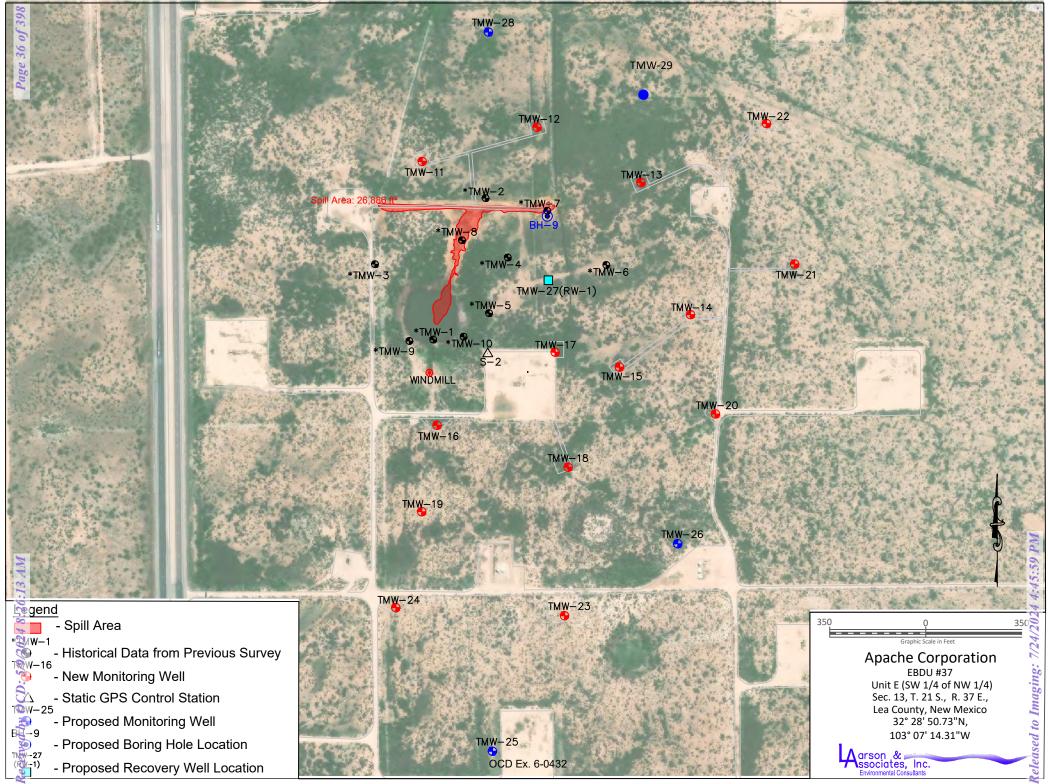


Figure 8a - Aerial Map Showing Monitoring Well Locations

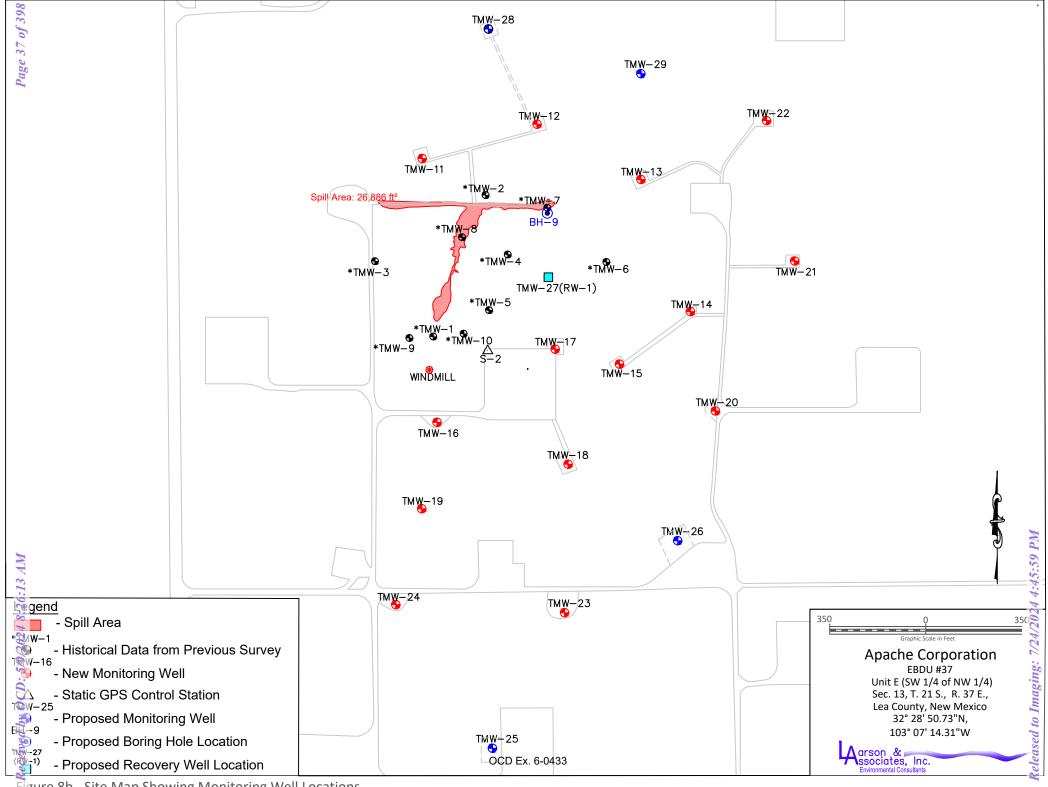


Figure 8b - Site Map Showing Monitoring Well Locations

Attachment A Initial C-141

Page 39 of 398

Incident ID	NDHR1922141227
District RP	1RP-5636
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	47_(ft bgs)					
Did this release impact groundwater or surface water?	Yes X No					
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	Yes X No					
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	Yes X No					
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	Yes X No					
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	X Yes No					
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	Yes X No					
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	Yes X No					
Are the lateral extents of the release within 300 feet of a wetland?	Yes X No					
Are the lateral extents of the release overlying a subsurface mine?	Yes X No					
Are the lateral extents of the release overlying an unstable area such as karst geology?	Yes X No					
Are the lateral extents of the release within a 100-year floodplain?	Yes X No					
Did the release impact areas not on an exploration, development, production, or storage site?	Yes X No					
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.						

Characterization Report Checklist: Each of the following items must be included in the report.

- X Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- X Field data
- X Data table of soil contaminant concentration data
- x Depth to water determination
- ▼ Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- X Boring or excavation logs
- X Photographs including date and GIS information
- Topographic/Aerial maps
- X Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 5/9/2024 8:26:13 AM State of New Mexico Oil Conservation Division Page 4

Page 40 of 39	98
NDHR1922141227	

Incident ID	NDHR1922141227
District RP	1RP-5636
Facility ID	
Application ID	

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.						
Printed Name: Bruce Baker Title: Sr. Environmental Tech						
Signature:	Date: 10/29/2019					
email: Larry.Baker@apachecorp.com Telephone: 432-631-6982						
OCD Only						
Received by:	Date:					

ived by OCD: 5/9/2024 8:26:13 AM n C-141 State of New Mexico

Incident ID	NDHR1922141227
District RP	1RP-5636
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be	e included in the plan.					
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 						
Deferral Requests Only: Each of the following items must be con-	nfirmed as part of any request for deferral of remediation.					
Contamination must be in areas immediately under or around p deconstruction.	roduction equipment where remediation could cause a major facility					
Extents of contamination must be fully delineated.						
Contamination does not cause an imminent risk to human healt	h, the environment, or groundwater.					
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.						
Printed Name: Bruce Baker	Title: Sr. Environmental Tech					
Signature:	Date: 10/29/2019					
email: Larry.Baker@apachecorp.com Telephone: 432-631-6982						
OCD Only						
Received by:	Date:					
Approved Approved with Attached Conditions of	Approval					
Signature:	<u>Date:</u>					

Attachment B NMOCD Communications

From: Bratcher, Michael, EMNRD

To: Mark Larson; Romero, Rosa, EMNRD; Buchanan, Michael, EMNRD; Powell, Brandon, EMNRD

Cc: <u>Bole, Barrett; "Larry.Baker@apachecorp.com"; Robert Nelson</u>

Subject: RE: [EXTERNAL] FW: Apache Corporation, EBDU 37 (Incident NDHR1922141227/1RP-5636) - Scope of Work for

Additional Monitoring Wells

Date: Tuesday, November 14, 2023 12:08:50 PM

Attachments: <u>image001.png</u>

Mark,

Your proposal (scope of work) dated November 8, 2023, for the installation of additional investigatory/monitor wells, is approved with one additional well installation requested. OCD requests in addition to those proposed, one more well be installed approximately half way between TMW-5 and the proposed TMW-15 well.

Thank you,

Mike Bratcher ● Incident Supervisor
Environmental Bureau
EMNRD - Oil Conservation Division
506 W. Texas Ave | Artesia, NM 88210
(575) 626-0857 | mike.bratcher@emnrd.nm.gov
http://www.emnrd.nm.gov/ocd

From: Mark Larson < Mark@laenvironmental.com>

Sent: Friday, November 10, 2023 8:20 AM

To: Romero, Rosa, EMNRD <RosaM.Romero@emnrd.nm.gov>; Buchanan, Michael, EMNRD <Michael.Buchanan@emnrd.nm.gov>; Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>

Cc: Bole, Barrett <Barrett.Bole@apachecorp.com>; 'Larry.Baker@apachecorp.com' <Larry.Baker@apachecorp.com>; Robert Nelson <rnelson@laenvironmental.com>

Subject: [EXTERNAL] FW: Apache Corporation, EBDU 37 (Incident NDHR1922141227/1RP-5636) - Scope of Work for Additional Monitoring Wells

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Ms. Rosa M. Romero, Mr. Michael Buchanan, Mr. Mike Bratcher,

Per the meeting on October 30, 2023, Larson & Associates,, Inc. (LAI), on behalf of Apache Corporation (Apache), submits the attached scope of work (SOW) for installing additional monitoring wells (TMW-11 through TMW-16) at the East Blinebry Drinkard Unit (EBDU) #37 (Site) located in Unit E (SW/NW), Section 13, Township 21 South, Range 37 East, Lea County, New Mexico. Please contact Barrett Bole with Apache at (432) 818-1108 or email Barrett.Bole@apachecorp.com, Bruce Baker with Apache at (432) 631-6982 or email Larry.Baker@apachecorp.com, Robert Nelson at (432) 687-0901 or rnelson@laenvironmental.com or me to discuss any questions you may have.

Respectfully,

Mark J. Larson, P.G.
President/Sr. Hydrogeologist
507 N. Marienfeld St., Suite 202
Midland, Texas 79701
Office – 432-687-0901
Cell – 432- 556-8656
Fax – 432-687-0456
mark@laenvironmental.com

"Serving the Permian Basin Since 2000"

Attachment C

Laboratory Report (Chloride Analysis)

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 12/4/2023 9:53:16 AM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-36346-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/4/2023 9:53:16 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

L

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Laboratory Job ID: 880-36346-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	
Client Sample Results	
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	15

vj 390

2

3

4

6

8

10

11

4

Definitions/Glossary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDI	

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1 SDG: 19-0112-49

Job ID: 880-36346-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36346-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/1/2023 9:14 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 880-68117 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-36346-1

mg/L

SDG: 19-0112-49

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Client Sample ID: TMW-11 Date Collected: 11/30/23 09:23 Date Received: 12/01/23 09:14

Lab Sample ID: 880-36346-1

Matrix: Water

Matrix: Water

Matrix: Water

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 5.00 Chloride 360 mg/L 12/01/23 17:35 10

Client Sample ID: TMW-12 Lab Sample ID: 880-36346-2

Date Collected: 11/30/23 12:16

Date Received: 12/01/23 09:14

Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared Chloride 5.00 12/01/23 12:45

Client Sample ID: Tote Lab Sample ID: 880-36346-3

437 F1 F2

Date Collected: 11/30/23 08:15 **Matrix: Water**

Date Received: 12/01/23 09:14

Method: EPA 300.0 - Anions, Ion Chromatography

Result Qualifier Analyte RL Unit D Analyzed Dil Fac Chloride 948 50.0 12/01/23 13:25 100 mg/L

Client Sample ID: Tote Lab Sample ID: 880-36346-4

Date Collected: 11/30/23 11:30

Date Received: 12/01/23 09:14

Method: EPA 300.0 - Anions, Ion Chromatography

Result Qualifier Analyte RL Unit D Prepared Analyzed Dil Fac 2.50 12/01/23 17:27 Chloride mg/L 11.7

Eurofins Midland

10

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68106/3 **Matrix: Water**

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 68106

мв мв

Analyte Result Qualifier RLUnit Prepared Analyzed Dil Fac Chloride <0.500 U 0.500 mg/L 12/01/23 14:18

Lab Sample ID: LCS 880-68106/4 Client Sample ID: Lab Control Sample **Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 68106

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	25.0	25.37		mg/L		101	90 - 110

Lab Sample ID: LCSD 880-68106/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

% Poc

Analysis Batch: 68106

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	25.0	25.79		mg/L		103	90 - 110	2	20

Lab Sample ID: MB 880-68112/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68112

мв мв

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.500	U	0.500	mg/L			12/01/23 16:52	1

Lab Sample ID: LCS 880-68112/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68112

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	25.0	25.51		mg/L	_	102	90 - 110	

Snika

Lab Sample ID: LCSD 880-68112/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 68112

	Opine	LOOD	LOOD				701100		INI D	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	25.0	25.61		mg/L		102	90 - 110	0	20	

ICSD ICSD

Lab Sample ID: 880-36346-4 MS **Client Sample ID: Tote** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68112

	Sample Sample	Spike	MS	MS				%Rec
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chloride	11.7	125	134.7		mg/L		98	90 - 110

Lab Sample ID: 880-36346-4 MSD **Client Sample ID: Tote** Prep Type: Total/NA

Matrix: Water

Released to Imaging: 7/24/2024 4:45:59 PM

Analysis Batch: 68112											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	11.7		125	135.3		mg/L		99	90 - 110		20

Eurofins Midland

PPN

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68117/3

Matrix: Water

Analysis Batch: 68117

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: TMW-12

Prep Type: Total/NA

мв мв Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <0.500 U 0.500 mg/L 12/01/23 12:04

Lab Sample ID: LCS 880-68117/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 68117

Spike LCS LCS %Rec Added Qualifier Analyte Result Unit D %Rec Limits Chloride 25.0 25.61 mg/L 102 90 - 110

Lab Sample ID: LCSD 880-68117/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 68117

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 25.0 25.68 103 90 - 110 20 mg/L

Lab Sample ID: 880-36346-2 MS Client Sample ID: TMW-12 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68117

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 437 F1 F2 528.4 F1 Chloride 250 90 - 110 mg/L

Lab Sample ID: 880-36346-2 MSD

Matrix: Water

Analysis Batch: 68117

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 437 F1 F2 250 725.0 F1 F2 mg/L 115 90 - 110 31 20

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-36346-1 SDG: 19-0112-49

HPLC/IC

Analysis Batch: 68106

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
880-36346-1	TMW-11	Total/NA	Water	300.0
MB 880-68106/3	Method Blank	Total/NA	Water	300.0
LCS 880-68106/4	Lab Control Sample	Total/NA	Water	300.0
LCSD 880-68106/5	Lab Control Sample Dup	Total/NA	Water	300.0

Analysis Batch: 68112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36346-4	Tote	Total/NA	Water	300.0	
MB 880-68112/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68112/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68112/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36346-4 MS	Tote	Total/NA	Water	300.0	
880-36346-4 MSD	Tote	Total/NA	Water	300.0	

Analysis Batch: 68117

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36346-2	TMW-12	Total/NA	Water	300.0	
880-36346-3	Tote	Total/NA	Water	300.0	
MB 880-68117/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68117/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68117/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36346-2 MS	TMW-12	Total/NA	Water	300.0	
880-36346-2 MSD	TMW-12	Total/NA	Water	300.0	

6

7

10

11

11:

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Client Sample ID: TMW-11

Date Collected: 11/30/23 09:23 Date Received: 12/01/23 09:14 Lab Sample ID: 880-36346-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL	10 mL	68106	12/01/23 17:35	CH	EET MID

Client Sample ID: TMW-12 Date Collected: 11/30/23 12:16

Lab Sample ID: 880-36346-2

Matrix: Water

Date Received: 12/01/23 09:14

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	300.0		10	10 mL	10 mL	68117	12/01/23 12:45	CH	EET MID

Client Sample ID: Tote

Lab Sample ID: 880-36346-3

Date Collected: 11/30/23 08:15 Date Received: 12/01/23 09:14 **Matrix: Water**

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	300.0		100	10 mL	10 mL	68117	12/01/23 13:25	СН	EET MID

Client Sample ID: Tote

Lab Sample ID: 880-36346-4

Date Collected: 11/30/23 11:30 Date Received: 12/01/23 09:14 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	10 mL	10 mL	68112	12/01/23 17:27	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-36346-1	TMW-11	Water	11/30/23 09:23	12/01/23 09:14
880-36346-2	TMW-12	Water	11/30/23 12:16	12/01/23 09:14
880-36346-3	Tote	Water	11/30/23 08:15	12/01/23 09:14
880-36346-4	Tote	Water	11/30/23 11:30	12/01/23 09:14

No. 3173

25376

Login Sample Receipt Checklist

Job Number: 880-36346-1 Client: Larson & Associates, Inc. SDG Number: 19-0112-49

Login Number: 36346 **List Source: Eurofins Midland**

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 12/4/2023 9:53:16 AM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-36346-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/4/2023 9:53:16 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296 Client: Larson & Associates, Inc. Project/Site: EBDU #37

Laboratory Job ID: 880-36346-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receint Checklists	15

4

2

3

4

6

8

10

4.0

13

Definitions/Glossary

Client: Larson & Associates, Inc. Job ID: 880-36346-1 Project/Site: EBDU #37 SDG: 19-0112-49

Qualifiers

HPLC/IC	
Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
F2	MS/MSD RPD exceeds control limits
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
1401	

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) Method Detection Limit MDL

ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1 SDG: 19-0112-49

Job ID: 880-36346-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36346-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/1/2023 9:14 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.3°C

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 880-68117 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-36346-1

SDG: 19-0112-49

Client Sample ID: TMW-11

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Date Collected: 11/30/23 09:23 Date Received: 12/01/23 09:14 Lab Sample ID: 880-36346-1

Matrix: Water

Matrix: Water

Matrix: Water

Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	360		5.00	mg/L			12/01/23 17:35	10

Lab Sample ID: 880-36346-2 Client Sample ID: TMW-12

Date Collected: 11/30/23 12:16 Date Received: 12/01/23 09:14

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte	Result Qua		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	437 F1 F	2 5.00	mg/L	_		12/01/23 12:45	10

Client Sample ID: Tote Lab Sample ID: 880-36346-3

Date Collected: 11/30/23 08:15

Date Received: 12/01/23 09:14

method: EPA 300.0 - Anions, ion Chromatography							
Analyte	Result Qualifie	r RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	948	50.0	mg/L			12/01/23 13:25	100

Client Sample ID: Tote Lab Sample ID: 880-36346-4 **Matrix: Water**

Date Collected: 11/30/23 11:30

Date Received: 12/01/23 09:14

Method: EPA 300.0 - Anions, Ion Chromatography								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.7		2.50	mg/L			12/01/23 17:27	5

Method: 300.0 - Anions, Ion Chromatography

Dil Fac

Client: Larson & Associates, Inc.

Lab Sample ID: MB 880-68106/3

Lab Sample ID: LCS 880-68106/4

Matrix: Water

Matrix: Water

Analyte

Chloride

Analyte

Chloride

Analysis Batch: 68106

Analysis Batch: 68106

Project/Site: EBDU #37

Job ID: 880-36346-1 SDG: 19-0112-49

Client Sample ID: Method Blank

Prep Type: Total/NA

12/01/23 14:18

Analyzed

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Tote

Client Sample ID: Tote

Prep Type: Total/NA

Prep Type: Total/NA

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits 25.0 25.37 mg/L 101 90 - 110

Unit

mg/L

D

Prepared

Lab Sample ID: LCSD 880-68106/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

RL

0.500

Analysis Batch: 68106

Spike LCSD LCSD RPD %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 25.0 25.79 mg/L 103 90 - 110

Lab Sample ID: MB 880-68112/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68112

мв мв

мв мв

<0.500 U

Result Qualifier

Result Qualifier Analyte RL Unit D Prepared Analyzed Dil Fac 0.500 Chloride <0.500 12/01/23 16:52 mg/L

Lab Sample ID: LCS 880-68112/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68112

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Chloride 25.0 25.51 mg/L 102 90 - 110

Lab Sample ID: LCSD 880-68112/5

Matrix: Water

Analysis Batch: 68112

Spike LCSD LCSD %Rec RPD Added RPD Analyte Result Qualifier Unit D %Rec Limits Limit Chloride 25.0 25.61 mg/L 102 90 - 110

Lab Sample ID: 880-36346-4 MS

Matrix: Water

Analysis Batch: 68112

MS MS %Rec Sample Sample Spike Result Qualifier Result Qualifier Added Limits Analyte Unit D %Rec Chloride 11.7 125 134.7 mg/L 98 90 - 110

Lab Sample ID: 880-36346-4 MSD

Matrix: Water

Analysis Batch: 68112

MSD MSD %Rec RPD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 11.7 125 135.3 mg/L 99 90 - 110 20

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68117/3

Lab Sample ID: LCS 880-68117/4

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 68117

Matrix: Water

мв мв

Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <0.500 U 0.500 mg/L 12/01/23 12:04

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68117

Spike LCS LCS %Rec Added Qualifier Analyte Result Unit D %Rec Limits Chloride 25.0 25.61 mg/L 102 90 - 110

Lab Sample ID: LCSD 880-68117/5 Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 68117

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit

Chloride 25.0 25.68 103 90 - 110 20 mg/L

Lab Sample ID: 880-36346-2 MS Client Sample ID: TMW-12

Matrix: Water Prep Type: Total/NA **Analysis Batch: 68117**

MS MS %Rec Sample Sample Spike

Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 437 F1 F2 528.4 F1 Chloride 250 90 - 110 mg/L

Lab Sample ID: 880-36346-2 MSD Client Sample ID: TMW-12 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 68117

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 437 F1 F2 250 725.0 F1 F2 mg/L 115 90 - 110 31 20

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

HPLC/IC

Analysis Batch: 68106

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36346-1	TMW-11	Total/NA	Water	300.0	
MB 880-68106/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68106/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68106/5	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 68112

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36346-4	Tote	Total/NA	Water	300.0	
MB 880-68112/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68112/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68112/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36346-4 MS	Tote	Total/NA	Water	300.0	
880-36346-4 MSD	Tote	Total/NA	Water	300.0	

Analysis Batch: 68117

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36346-2	TMW-12	Total/NA	Water	300.0	<u> </u>
880-36346-3	Tote	Total/NA	Water	300.0	
MB 880-68117/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68117/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68117/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36346-2 MS	TMW-12	Total/NA	Water	300.0	
880-36346-2 MSD	TMW-12	Total/NA	Water	300.0	

Project/Site: EBDU #37

Lab Sample ID: 880-36346-1

Matrix: Water

Client Sample ID: TMW-11 Date Collected: 11/30/23 09:23

Matrix: Water Date Received: 12/01/23 09:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL	10 mL	68106	12/01/23 17:35	СН	EET MID

Client Sample ID: TMW-12 Lab Sample ID: 880-36346-2

Date Collected: 11/30/23 12:16 Date Received: 12/01/23 09:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	10 mL	10 mL	68117	12/01/23 12:45	CH	EET MID

Client Sample ID: Tote Lab Sample ID: 880-36346-3 **Matrix: Water**

Date Collected: 11/30/23 08:15 Date Received: 12/01/23 09:14

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		100	10 mL	10 mL	68117	12/01/23 13:25	СН	EET MID

Client Sample ID: Tote Lab Sample ID: 880-36346-4 **Matrix: Water**

Date Collected: 11/30/23 11:30

Date Received: 12/01/23 09:14

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	10 mL	10 mL	68112	12/01/23 17:27	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

2

А

4

7

ö

10

11

12

13

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36346-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-36346-1	TMW-11	Water	11/30/23 09:23	12/01/23 09:14
880-36346-2	TMW-12	Water	11/30/23 12:16	12/01/23 09:14
880-36346-3	Tote	Water	11/30/23 08:15	12/01/23 09:14
880-36346-4	Tote	Water	11/30/23 11:30	12/01/23 09:14

No. 3173

25376

CHAIN-OF-CUSTODY CUSTODY SEALS - 🛭 BROKEN 🔏 INTACT 🗖 NOT USED Direct bill to - B FIELD NOTES 24482 40acho PAGE LABORATORY USE ONLY, 4. THERM# _ 880-36346 Chain of Custody COLLECTOR LAB WORK ORDER# M. HAND DELIVERED E60 a ☐ CARRIER BILL# -0112-PROJECT LOCATION OR NAME **TURN AROUND TIME** 1 DAY & RUSH!! 12/11/2023 NORMAL [] OTHER [LAI PROJECT # 2 DAY DATE 507 N. Marienfeld, Ste. 202 RECEIVED BY (Signature) **PRESERVATION** Signature RECEIVED BY (Signature) Midland, TX 79701 ICE 432-687-0901 ☐ HOBN ☐ JOS2H RECEIVED BY ONH HCI # of Containers Matrix DATE/TIME Ž 6 3 DATE/TIME DATE/TIME 9:73 15116 11:30 SL=SLUDGE OT=OTHER P=PAINT 11/30/13 Date SSOCIOTES, Inc. Environmental Consultants S=SOIL W=WATER Robert Kenco RELINQUISHED BY (Signature) RELINQUISHED BY (Signature) Lab# A=AIR ARK INDUISHED BY Data Reported to TIME ZONE Time zone/State ☐ Yes ☐ No シンナノイシア TRRP report? LABORATORY Field Sample I D 132 July -TOTAL

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-36346-1

SDG Number: 19-0112-49

List Source: Eurofins Midland

List Number: 1

Login Number: 36346

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

3

4

o

9

44

12

13

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 12/6/2023 1:35:17 PM

JOB DESCRIPTION

EDBU #37 19-0112-49

JOB NUMBER

880-36575-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/6/2023 1:35:17 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Client: Larson & Associates, Inc. Project/Site: EDBU #37

Laboratory Job ID: 880-36575-1 SDG: 19-0112-49

Table of Contents

Cover Page	
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	
QC Sample Results	
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

4

2

3

4

6

8

10

4.0

13

Definitions/Glossary

Job ID: 880-36575-1 Client: Larson & Associates, Inc. Project/Site: EDBU #37 SDG: 19-0112-49

Qualifiers

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36575-1

SDG: 19-0112-49

Job ID: 880-36575-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36575-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/6/2023 10:17 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 6.3°C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Larson & Associates, Inc.

Client Sample ID: TMW-13

Date Collected: 12/05/23 12:13

Date Received: 12/06/23 10:17

Project/Site: EDBU #37

Job ID: 880-36575-1 SDG: 19-0112-49

Lab Sample ID: 880-36575-1

Matrix: Water

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Chloride 25.0 12/06/23 12:57 1920 mg/L 50

Client Sample ID: TMW-18 Lab Sample ID: 880-36575-2

Date Collected: 12/05/23 15:30 **Matrix: Water**

Date Received: 12/06/23 10:17

Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 2800 25.0 12/06/23 13:16 50 mg/L

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: EDBU #37

Job ID: 880-36575-1

Prep Type: Total/NA

Client Sample ID: TMW-13

Prep Type: Total/NA

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68488/3

Matrix: Water

Analysis Batch: 68488

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <0.500 U 0.500 mg/L 12/06/23 12:37

Lab Sample ID: LCS 880-68488/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 68488

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits

Chloride 25.0 25.97 mg/L 104 90 - 110

Lab Sample ID: LCSD 880-68488/5 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 68488

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 25.0 25.35 101 20 mg/L 90 - 110

Lab Sample ID: 880-36575-1 MS Client Sample ID: TMW-13 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68488

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Qualifier Unit %Rec Result D Limits 1250 3226 Chloride 1920 105 90 - 110 mg/L

Lab Sample ID: 880-36575-1 MSD

Matrix: Water

Analysis Batch: 68488

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 1250 Chloride 1920 3229 mg/L 105 90 - 110 0 20

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36575-1

SDG: 19-0112-49

HPLC/IC

Analysis Batch: 68488

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36575-1	TMW-13	Total/NA	Water	300.0	
880-36575-2	TMW-18	Total/NA	Water	300.0	
MB 880-68488/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68488/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68488/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36575-1 MS	TMW-13	Total/NA	Water	300.0	
880-36575-1 MSD	TMW-13	Total/NA	Water	300.0	

4

5

7

Ŏ

46

11

Lab Chronicle

Client: Larson & Associates, Inc.

Date Received: 12/06/23 10:17

Project/Site: EDBU #37

Job ID: 880-36575-1 SDG: 19-0112-49

Lab Sample ID: 880-36575-1

Client Sample ID: TMW-13 Date Collected: 12/05/23 12:13

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		50	10 mL	10 mL	68488	12/06/23 12:57	SMC	EET MID

Client Sample ID: TMW-18 Lab Sample ID: 880-36575-2 **Matrix: Water**

Date Collected: 12/05/23 15:30

Date Received: 12/06/23 10:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		50	10 mL	10 mL	68488	12/06/23 13:16	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36575-1 SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36575-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36575-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-36575-1	TMW-13	Water	12/05/23 12:13	12/06/23 10:17
880-36575-2	TMW-18	Water	12/05/23 15:30	12/06/23 10:17

No. 3039

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-36575-1

SDG Number: 19-0112-49

Login Number: 36575 List Source: Eurofins Midland

List Number: 1

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

5

4

6

8

10

46

13

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 12/5/2023 3:13:18 PM

JOB DESCRIPTION

EBDU 37 19-0112-49

JOB NUMBER

880-36445-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/5/2023 3:13:18 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

5

6

8

3

12

R

Client: Larson & Associates, Inc. Project/Site: EBDU 37

Laboratory Job ID: 880-36445-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

Definitions/Glossary

Client: Larson & Associates, Inc. Job ID: 880-36445-1 SDG: 19-0112-49 Project/Site: EBDU 37

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Ciocoary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive

QC **Quality Control**

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Job ID: 880-36445-1 Project/Site: EBDU 37 SDG: 19-0112-49

Job ID: 880-36445-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36445-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 12/5/2023 8:34 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.6°C

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 880-68424 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

The associated samples are: TMW-14 (880-36445-1), (880-36445-A-1 MS) and (880-36445-A-1 MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Larson & Associates, Inc.

Job ID: 880-36445-1

Project/Site: EBDU 37

SDG: 19-0112-49

Client Sample ID: TMW-14 Date Collected: 12/04/23 13:15

Matrix: Water

Date Received: 12/05/23 08:34

Lab Sample ID: 880-36445-1

Method: EPA 300.0 - Anions, Ion Chromatography Result Qualifier RL Unit Chloride 6010 F1 50.0

Analyzed Dil Fac

mg/L 12/05/23 12:49 100

Prepared

D

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU 37

Job ID: 880-36445-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68424/3

Matrix: Water

Analysis Batch: 68424

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: TMW-14

Prep Type: Total/NA

 Analyte
 Result
 Qualifier
 RL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Chloride
 <0.500</td>
 U
 0.500
 mg/L
 12/05/23 12:30
 1

Lab Sample ID: LCS 880-68424/4

Matrix: Water

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

trix: Water Properties 2010

Analysis Batch: 68424

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 25.0 26.38 mg/L 106 90 - 110

Lab Sample ID: LCSD 880-68424/5 Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 68424

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 25.0 25.02 100 90 - 110 20 mg/L

Lab Sample ID: 880-36445-1 MS Client Sample ID: TMW-14

Matrix: Water

Analysis Batch: 68424

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 2500 Chloride 6010 F1 8919 F1 116 90 - 110 mg/L

Lab Sample ID: 880-36445-1 MSD

Matrix: Water

Analysis Batch: 68424

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 6010 F1 2500 8916 F1 mg/L 116 90 - 110 0 20

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU 37

Job ID: 880-36445-1 SDG: 19-0112-49

HPLC/IC

Analysis Batch: 68424

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36445-1	TMW-14	Total/NA	Water	300.0	
MB 880-68424/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68424/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68424/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36445-1 MS	TMW-14	Total/NA	Water	300.0	
880-36445-1 MSD	TMW-14	Total/NA	Water	300.0	

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: EBDU 37

Job ID: 880-36445-1

SDG: 19-0112-49

Client Sample ID: TMW-14

Date Collected: 12/04/23 13:15 Date Received: 12/05/23 08:34 Lab Sample ID: 880-36445-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		100	10 mL	10 mL	68424	12/05/23 12:49	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU 37

Job ID: 880-36445-1

SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU 37

Job ID: 880-36445-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU 37

Job ID: 880-36445-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-36445-1	TMW-14	Water	12/04/23 13:15	12/05/23 08:34

Released to Imaging: 7/24/2024 4:45:59 PM

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-36445-1

SDG Number: 19-0112-49

Login Number: 36445 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

2

4

6

8

10

13

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Robert Nelson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 12/5/2023 9:09:53 AM

JOB DESCRIPTION

EBDU #32 19-0112-49

JOB NUMBER

880-36386-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/5/2023 9:09:53 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Client: Larson & Associates, Inc. Project/Site: EBDU #32 Laboratory Job ID: 880-36386-1 SDG: 19-0112-49

Table of Contents

Cover Page	
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	
QC Sample Results	
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

4

2

3

4

6

8

10

13

Definitions/Glossary

Client: Larson & Associates, Inc.

Project/Site: EBDU #32

Job ID: 880-36386-1

SDG: 19-0112-49

Qualifiers

HPLC/IC

 Qualifier
 Qualifier Description

 F1
 MS and/or MSD recovery exceeds control limits.

 U
 Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Recovery

CFL

Contains Free Liquid

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Job ID: 880-36386-1 Project/Site: EBDU #32 SDG: 19-0112-49

Job ID: 880-36386-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36386-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 12/4/2023 9:25 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.8°C

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 880-68296 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Dil Fac 50

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #32

Job ID: 880-36386-1 SDG: 19-0112-49

Client Sample ID: TMW-15

Lab Sample ID: 880-36386-1

Date Collected: 12/01/23 12:08 Date Received: 12/04/23 09:25

Matrix: Water

Method: EPA 300.0 - Anions, Ion Chromatography								
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
	Chloride	3850	F1	25.0	mg/L			12/04/23 16:57

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #32

Job ID: 880-36386-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68296/3

Matrix: Water

Analysis Batch: 68296

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <0.500 U 0.500 mg/L 12/04/23 16:25

Lab Sample ID: LCS 880-68296/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 68296

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits

25.0

мв мв

Lab Sample ID: LCSD 880-68296/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

25.11

mg/L

100

90 - 110

Client Sample ID: TMW-15

Prep Type: Total/NA

Analysis Batch: 68296

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 25.0 25.06 100 20 mg/L 90 - 110

Lab Sample ID: 880-36386-1 MS Client Sample ID: TMW-15 Prep Type: Total/NA

Matrix: Water

Chloride

Analysis Batch: 68296

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1250 Chloride 3850 5370 F1 122 90 - 110 mg/L

Lab Sample ID: 880-36386-1 MSD

Matrix: Water

Analysis Batch: 68296

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 3850 F1 1250 5377 F1 122 mg/L 90 - 110 0 20

Eurofins Midland

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: EBDU #32

Job ID: 880-36386-1

SDG: 19-0112-49

HPLC/IC

Analysis Batch: 68296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36386-1	TMW-15	Total/NA	Water	300.0	
MB 880-68296/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68296/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68296/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36386-1 MS	TMW-15	Total/NA	Water	300.0	
880-36386-1 MSD	TMW-15	Total/NA	Water	300.0	

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: EBDU #32

Date Received: 12/04/23 09:25

Job ID: 880-36386-1 SDG: 19-0112-49

Client Sample ID: TMW-15 Lab Sample ID: 880-36386-1 Date Collected: 12/01/23 12:08

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		50	50 mL	50 mL	68296	12/04/23 16:57	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #32

Job ID: 880-36386-1 SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #32

Job ID: 880-36386-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #32

Job ID: 880-36386-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-36386-1	TMW-15	Water	12/01/23 12:08	12/04/23 09:25

8

9

11

12

13

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-36386-1 SDG Number: 19-0112-49

List Source: Eurofins Midland

List Number: 1

Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

3

7

6

8

9

11

12

13

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 11/30/2023 11:43:37 AM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-36265-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 11/30/2023 11:43:37 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Laboratory Job ID: 880-36265-1

SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

3

4

6

8

10

11

12

Definitions/Glossary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1

SDG: 19-0112-49

Qualifiers

HPLC/IC

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery

CFL Contains Free Liquid

CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Midland

Case Narrative

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1 SDG: 19-0112-49

Job ID: 880-36265-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36265-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/30/2023 8:11 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.7°C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1 SDG: 19-0112-49

Client Sample ID: TMW-16

Lab Sample ID: 880-36265-1

Matrix: Water

Date Collected: 11/29/23 12:53 Date Received: 11/30/23 08:11

Method: EPA 300.0 - Anions, Ion Chromatography

Result Qualifier RL Unit Dil Fac D Prepared Analyzed Chloride 10.0 mg/L 11/30/23 11:06 839 20

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-67820/3

Matrix: Water

Analysis Batch: 67820

Analyte

Chloride

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Dil Fac Result Qualifier RL Unit D Prepared Analyzed <0.500 U 0.500 mg/L 11/29/23 19:53

Lab Sample ID: LCS 880-67820/4 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 67820

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 25.0 25.46 mg/L 102 90 - 110

Lab Sample ID: LCSD 880-67820/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 67820

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit Limits **RPD** Limit Chloride 25.0 25.49 102 90 - 110 20 mg/L

Eurofins Midland

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1

SDG: 19-0112-49

HPLC/IC

Analysis Batch: 67820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36265-1	TMW-16	Total/NA	Water	300.0	
MB 880-67820/3	Method Blank	Total/NA	Water	300.0	
LCS 880-67820/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-67820/5	Lab Control Sample Dup	Total/NA	Water	300.0	

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1 SDG: 19-0112-49

Client Sample ID: TMW-16

Date Received: 11/30/23 08:11

Date Collected: 11/29/23 12:53

Lab Sample ID: 880-36265-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		20	10 mL	10 mL	67820	11/30/23 11:06	СН	EET MID

5

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

G

9

10

12

13

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1

SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

5

7

0

10

11

12

13

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36265-1

SDG: 19-0112-49

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 880-36265-1
 TMW-16
 Water
 11/29/23 12:53
 11/30/23 08:11

4

5

Q

9

11

12

13

Page 13 of 14

Released to Imaging: 7/24/2024 4:45:59 PM

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job

Job Number: 880-36265-1

SDG Number: 19-0112-49

Login Number: 36265 List Source: Eurofins Midland

List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

OCD Ex. 6-0527 Page 14 of 14 **Environment Testing**

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 11/30/2023 10:03:46 AM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-36200-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 11/30/2023 10:03:46 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296 Client: Larson & Associates, Inc. Laboratory Job ID: 880-36200-1 Project/Site: EBDU #37

SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Chacklists	14

Definitions/Glossary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36200-1

SDG: 19-0112-49

Qualifiers

HPI L./IL.	

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
E	Result exceeded calibration range.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

MDO	William Detectable Con
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limi

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present
PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Midland

Eurofins Midland

11/30/2023

Case Narrative

Client: Larson & Associates, Inc.

Job ID: 880-36200-1 Project/Site: EBDU #37 SDG: 19-0112-49

Job ID: 880-36200-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36200-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 11/29/2023 8:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

OCD Ex. 6-0532 Page 5 of 14

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36200-1 SDG: 19-0112-49

Client Sample ID: TMW-17

Lab Sample ID: 880-36200-1

Matrix: Water

Date Collected: 11/28/23 15:21 Date Received: 11/29/23 08:15

Method: EPA 300.0 - Anions, Ion Chromatography

Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 50.0 mg/L 11/29/23 23:13 100 11200

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-36200-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-67820/3

Matrix: Water

Analysis Batch: 67820

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: TMW-17

Prep Type: Total/NA

мв мв Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride <0.500 U 0.500 mg/L 11/29/23 19:53

Lab Sample ID: LCS 880-67820/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 67820

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chloride 25.0 25.46 mg/L 102 90 - 110

Lab Sample ID: LCSD 880-67820/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 67820

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 25.0 25.49 102 20 mg/L 90 - 110

Lab Sample ID: 880-36200-1 MS Client Sample ID: TMW-17 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 67820

MS MS Sample Sample Spike %Rec Analyte Qualifier Added Result Qualifier Unit %Rec Result D Limits 1250 12390 E 4 Chloride 11200 90 - 110 mg/L

Lab Sample ID: 880-36200-1 MSD

Matrix: Water

Analysis Batch: 67820

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 1250 12370 E 4 Chloride 11200 mg/L 97 90 - 110 0 20

Eurofins Midland

QC Association Summary

Client: Larson & Associates, Inc.
Project/Site: EBDU #37

Job ID: 880-36200-1 SDG: 19-0112-49

HPLC/IC

Analysis Batch: 67820

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36200-1	TMW-17	Total/NA	Water	300.0	
MB 880-67820/3	Method Blank	Total/NA	Water	300.0	
LCS 880-67820/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-67820/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36200-1 MS	TMW-17	Total/NA	Water	300.0	
880-36200-1 MSD	TMW-17	Total/NA	Water	300.0	

2

3

-

6

8

9

11

12

13

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36200-1 SDG: 19-0112-49

Client Sample ID: TMW-17

Date Collected: 11/28/23 15:21 Date Received: 11/29/23 08:15 Lab Sample ID: 880-36200-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		100	10 mL	10 mL	67820	11/29/23 23:13	CH	EET MID

5

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

7

8

10

11

13

Eurofins Midland

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36200-1 SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

	Authority	Program	Identification Number	Expiration Date
ı	Texas	NELAP	T104704400-23-26	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36200-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36200-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-36200-1	TMW-17	Water	11/28/23 15:21	11/29/23 08:15	

Page 13 of 14

000 T

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-36200-1

SDG Number: 19-0112-49

Login Number: 36200 List Source: Eurofins Midland

List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

4

2

3

4

6

8

11

12

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 12/7/2023 3:03:15 PM

JOB DESCRIPTION

EDBU #37 19-0112-49

JOB NUMBER

880-36641-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Page 1 of 14

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/7/2023 3:03:15 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296 Client: Larson & Associates, Inc.
Project/Site: EDBU #37

Laboratory Job ID: 880-36641-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

1

2

3

4

6

8

10

12

Definitions/Glossary

Job ID: 880-36641-1 Client: Larson & Associates, Inc. Project/Site: EDBU #37 SDG: 19-0112-49

Qualifiers

HPLC/IC

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF**

Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCI MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36641-1 SDG: 19-0112-49

Job ID: 880-36641-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36641-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/7/2023 9:28 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.5°C

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 880-68588 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Client Sample ID: TMW-19

Lab Sample ID: 880-36641-1

Date Collected: 12/06/23 10:38 Date Received: 12/07/23 09:28

Matrix: Water

Job ID: 880-36641-1

SDG: 19-0112-49

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Chloride 25.0 12/07/23 15:00 1520 F1 mg/L 50

Client Sample ID: TMW-20 Lab Sample ID: 880-36641-2

Date Collected: 12/06/23 14:07 **Matrix: Water**

Date Received: 12/07/23 09:28

Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 5.00 12/07/23 15:20 10 289 mg/L

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36641-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68588/3

Matrix: Water

Analysis Batch: 68588

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: TMW-19

Prep Type: Total/NA

мв мв Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Chloride <0.500 U 0.500 mg/L 12/07/23 14:40

Lab Sample ID: LCS 880-68588/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 68588

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 25.0 26.06 mg/L 104 90 - 110

Lab Sample ID: LCSD 880-68588/5 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 68588

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 25.0 25.40 102 90 - 110 20 mg/L

Lab Sample ID: 880-36641-1 MS Client Sample ID: TMW-19 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 68588

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 1250 Chloride 1520 3078 F1 124 90 - 110 mg/L

Lab Sample ID: 880-36641-1 MSD

Matrix: Water

Analysis Batch: 68588

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 1520 F1 1250 3073 F1 124 mg/L 90 - 110 0 20

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

QC Association Summary

Client: Larson & Associates, Inc. Job ID: 880-36641-1 Project/Site: EDBU #37

SDG: 19-0112-49

HPLC/IC

Analysis Batch: 68588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36641-1	TMW-19	Total/NA	Water	300.0	
880-36641-2	TMW-20	Total/NA	Water	300.0	
MB 880-68588/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68588/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68588/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36641-1 MS	TMW-19	Total/NA	Water	300.0	
880-36641-1 MSD	TMW-19	Total/NA	Water	300.0	

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36641-1

SDG: 19-0112-49

Client Sample ID: TMW-19

Date Collected: 12/06/23 10:38 Date Received: 12/07/23 09:28

Lab Sample ID: 880-36641-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		50			68588	12/07/23 15:00	СН	EET MID

Lab Sample ID: 880-36641-2

Client Sample ID: TMW-20 Date Collected: 12/06/23 14:07 **Matrix: Water**

Date Received: 12/07/23 09:28

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Factor Amount Amount Number or Analyzed Analyst Run Lab Total/NA Analysis 300.0 10 68588 12/07/23 15:20 СН EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Job ID: 880-36641-1 Project/Site: EDBU #37 SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Texas	NELAP	T104704400-23-26	06-30-24	

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36641-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-36641-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-36641-1	TMW-19	Water	12/06/23 10:38	12/07/23 09:28	
880-36641-2	TMW-20	Water	12/06/23 14:07	12/07/23 09:28	

Released to Imaging: 7/24/2024 4:45:59 PM

12 13

No. 3226

Login Sample Receipt Checklist

Job Number: 880-36641-1 Client: Larson & Associates, Inc. SDG Number: 19-0112-49

List Source: Eurofins Midland

Login Number: 36641 List Number: 1

Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 12/13/2023 5:25:36 PM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-36791-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/13/2023 5:25:36 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296 Client: Larson & Associates, Inc.
Project/Site: EBDU #37

Laboratory Job ID: 880-36791-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

2

3

4

6

8

11

12

Definitions/Glossary

Client: Larson & Associates, Inc. Job ID: 880-36791-1 Project/Site: EBDU #37 SDG: 19-0112-49

Qualifiers

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: Larson & Associates, Inc. Job ID: 880-36791-1 Project/Site: EBDU #37

SDG: 19-0112-49

Job ID: 880-36791-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36791-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 12/12/2023 8:51 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.5°C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36791-1 SDG: 19-0112-49

Client Sample ID: TMW-22

Lab Sample ID: 880-36791-1

Date Collected: 12/11/23 10:47 **Matrix: Water** Date Received: 12/12/23 08:51

Method: EPA 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 268 5.00 mg/L 12/12/23 17:14

10

QC Sample Results

Unit

mg/L

LCS LCS

LCSD LCSD

MS MS

MSD MSD

Result Qualifier

Result Qualifier

Unit

Unit

mg/L

Result Qualifier

25.61

25.52

528.5

529.9

Result Qualifier

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-36791-1 SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-68938/3

Matrix: Water

Analysis Batch: 68938

Spike

Added

25.0

Spike

Added

25.0

Spike

Added

Spike

Added

250

250

Sample Sample

268

Result Qualifier

MB MB

Result Qualifier RL Analyte 0.500 Chloride <0.500 U

Lab Sample ID: LCS 880-68938/4 **Matrix: Water**

Analysis Batch: 68938

Analyte

Chloride Lab Sample ID: LCSD 880-68938/5

Matrix: Water

Analysis Batch: 68938

Analyte

Chloride

Lab Sample ID: 880-36791-1 MS **Matrix: Water**

Analysis Batch: 68938

Analyte

Chloride

Lab Sample ID: 880-36791-1 MSD **Matrix: Water**

Analysis Batch: 68938

Sample Sample Analyte Result Qualifier Chloride 268

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyzed Dil Fac D Prepared 12/12/23 16:54

%Rec

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

D %Rec Limits Unit 90 - 110 mg/L 102

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

%Rec **RPD** Limits **RPD** Limit Unit D %Rec 102 90 - 110 20 mg/L

Client Sample ID: TMW-22

Prep Type: Total/NA

%Rec %Rec Limits 90 - 110 mg/L 104

Client Sample ID: TMW-22

Prep Type: Total/NA

RPD %Rec %Rec Limits RPD Limit 105 90 - 110 20 0

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36791-1

SDG: 19-0112-49

HPLC/IC

Analysis Batch: 68938

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36791-1	TMW-22	Total/NA	Water	300.0	
MB 880-68938/3	Method Blank	Total/NA	Water	300.0	
LCS 880-68938/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-68938/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-36791-1 MS	TMW-22	Total/NA	Water	300.0	
880-36791-1 MSD	TMW-22	Total/NA	Water	300.0	

4

5

7

10

11

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-36791-1 SDG: 19-0112-49

Client Sample ID: TMW-22 Lab Sample ID: 880-36791-1

Date Collected: 12/11/23 10:47

Date Received: 12/12/23 08:51

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method **Factor** Number or Analyzed Analyst **Prep Type** Type Run **Amount Amount** Lab Total/NA Analysis 300.0 10 10 mL 10 mL 68938 12/12/23 17:14 CH EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

2

3

5

O

8

10

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Job ID: 880-36791-1 Project/Site: EBDU #37 SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Texas	NELAP	T104704400-23-26	06-30-24	

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36791-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-36791-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-36791-1	TMW-22	Water	12/11/23 10:47	12/12/23 08:51

2

3

5

8

10

Login Sample Receipt Checklist

Job Number: 880-36791-1 Client: Larson & Associates, Inc.

SDG Number: 19-0112-49

Login Number: 36791 **List Source: Eurofins Midland**

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	True	
ooler Temperature is acceptable.	True	
ooler Temperature is recorded.	True	
OC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
here are no discrepancies between the containers received and the COC.	True	
camples are received within Holding Time (excluding tests with immediate ITs)	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 12/19/2023 12:26:12 PM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-37049-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/19/2023 12:26:12 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Client: Larson & Associates, Inc.
Project/Site: EBDU #37

Laboratory Job ID: 880-37049-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

3

4

6

8

10

11

12

1.

Definitions/Glossary

Client: Larson & Associates, Inc. Job ID: 880-37049-1 Project/Site: EBDU #37

SDG: 19-0112-49

Qualifiers

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: Larson & Associates, Inc.

Project: EBDU #37

Job ID: 880-37049-1

Job ID: 880-37049-1

Eurofins Midland

Job Narrative 880-37049-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 12/18/2023 10:42 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8° C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

1

2

3

4

5

7

8

11

Client Sample Results

Client: Larson & Associates, Inc.

Job ID: 880-37049-1 SDG: 19-0112-49

Project/Site: EBDU #37

Lab Sample ID: 880-37049-1 Matrix: Water

Date Collected: 12/15/23 13:40 Date Received: 12/18/23 10:42

Client Sample ID: TMW-24

 Method: EPA 300.0 - Anions, Ion Chromatography

 Analyte
 Result Chloride
 Qualifier Qualifier
 RL St. On Result RL St. On Resu

4

5

7

8

40

11

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-37049-1

SDG: 19-0112-49

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: TMW-24

Client Sample ID: TMW-24

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-69322/3

Matrix: Water

Analysis Batch: 69322

MB MB

Result Qualifier RL Unit Analyzed Dil Fac Analyte D Prepared 0.500 12/18/23 17:43 Chloride <0.500 U mg/L

Lab Sample ID: LCS 880-69322/4

Matrix: Water

Analysis Batch: 69322

Spike LCS LCS %Rec Analyte Added Result Qualifier D %Rec Limits Unit 25.0 25.54 90 - 110 Chloride mg/L 102

Lab Sample ID: LCSD 880-69322/5

Matrix: Water

Analysis Batch: 69322

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Limits **RPD** Limit **Analyte** Unit D %Rec Chloride 25.0 25.72 103 90 - 110 20 mg/L

Lab Sample ID: 880-37049-1 MS

Matrix: Water

Analysis Batch: 69322

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 262 250 533.3 90 - 110 mg/L 108

Lab Sample ID: 880-37049-1 MSD

Matrix: Water

Analysis Batch: 69322

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Unit %Rec Limits RPD Result Qualifier Limit Chloride 262 250 532.4 108 90 - 110 20 mg/L 0

QC Association Summary

 Client: Larson & Associates, Inc.
 Job ID: 880-37049-1

 Project/Site: EBDU #37
 SDG: 19-0112-49

HPLC/IC

Analysis Batch: 69322

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37049-1	TMW-24	Total/NA	Water	300.0	
MB 880-69322/3	Method Blank	Total/NA	Water	300.0	
LCS 880-69322/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-69322/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-37049-1 MS	TMW-24	Total/NA	Water	300.0	
880-37049-1 MSD	TMW-24	Total/NA	Water	300.0	

4

9

7

8

4.0

11

12

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Date Received: 12/18/23 10:42

Job ID: 880-37049-1 SDG: 19-0112-49

Lab Sample ID: 880-37049-1

Client Sample ID: TMW-24 Date Collected: 12/15/23 13:40

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Method **Factor** Number or Analyzed Analyst **Prep Type** Type Run **Amount Amount** Lab Total/NA Analysis 300.0 10 69322 12/18/23 18:03 CH EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Job ID: 880-37049-1 Project/Site: EBDU #37 SDG: 19-0112-49

Laboratory: Eurofins Midland

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37049-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

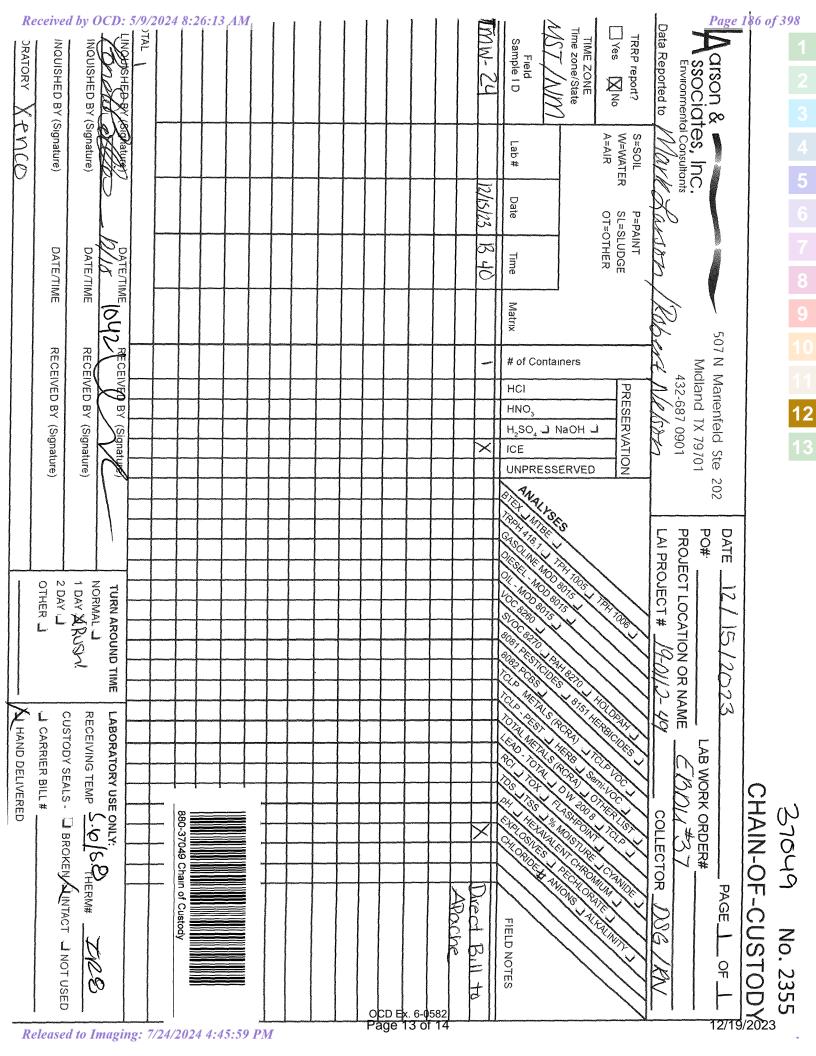
Job ID: 880-37049-1 SDG: 19-0112-49

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 880-37049-1
 TMW-24
 Water
 12/15/23 13:40
 12/18/23 10:42

4

6


8

9

11

12

1:

Login Sample Receipt Checklist

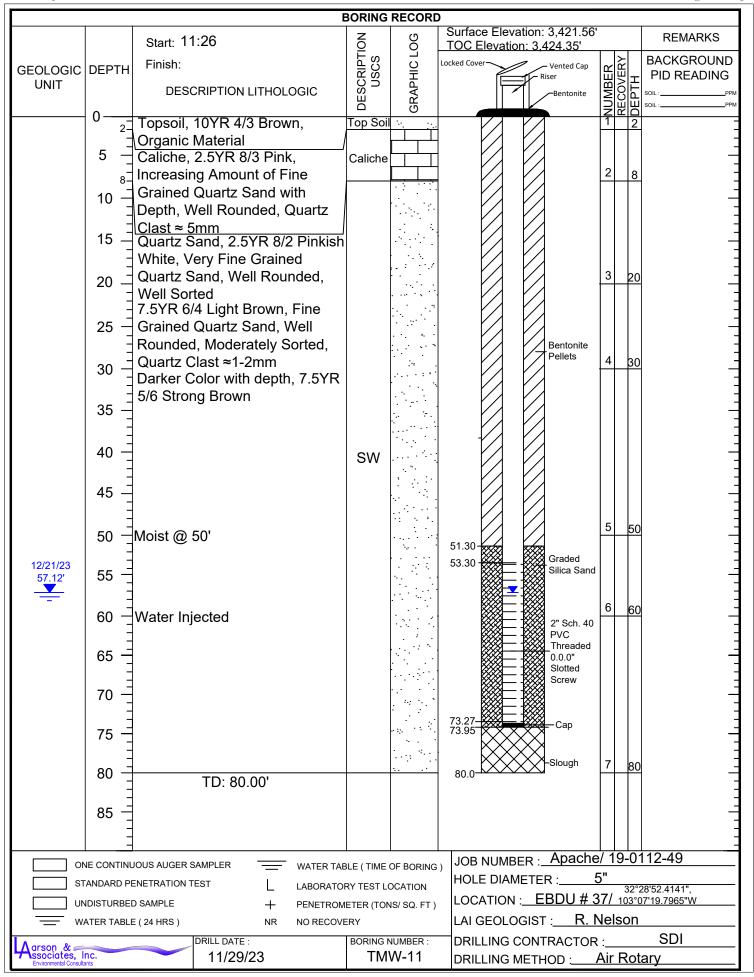
Client: Larson & Associates, Inc.

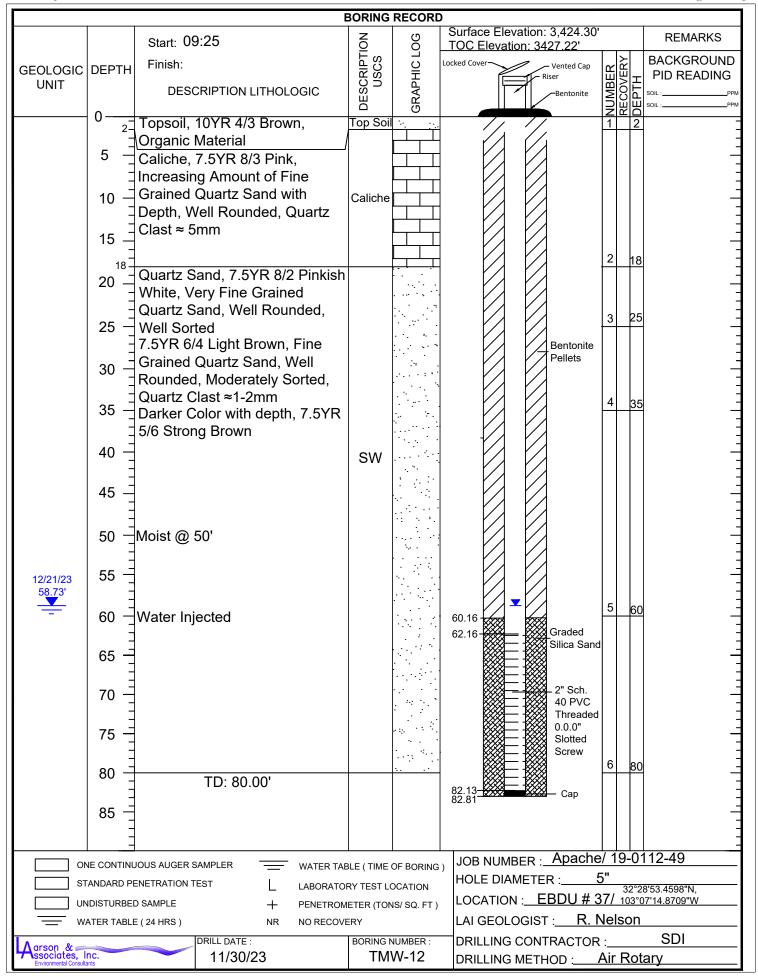
Job Number: 880-37049-1 SDG Number: 19-0112-49

Login Number: 37049 **List Source: Eurofins Midland**

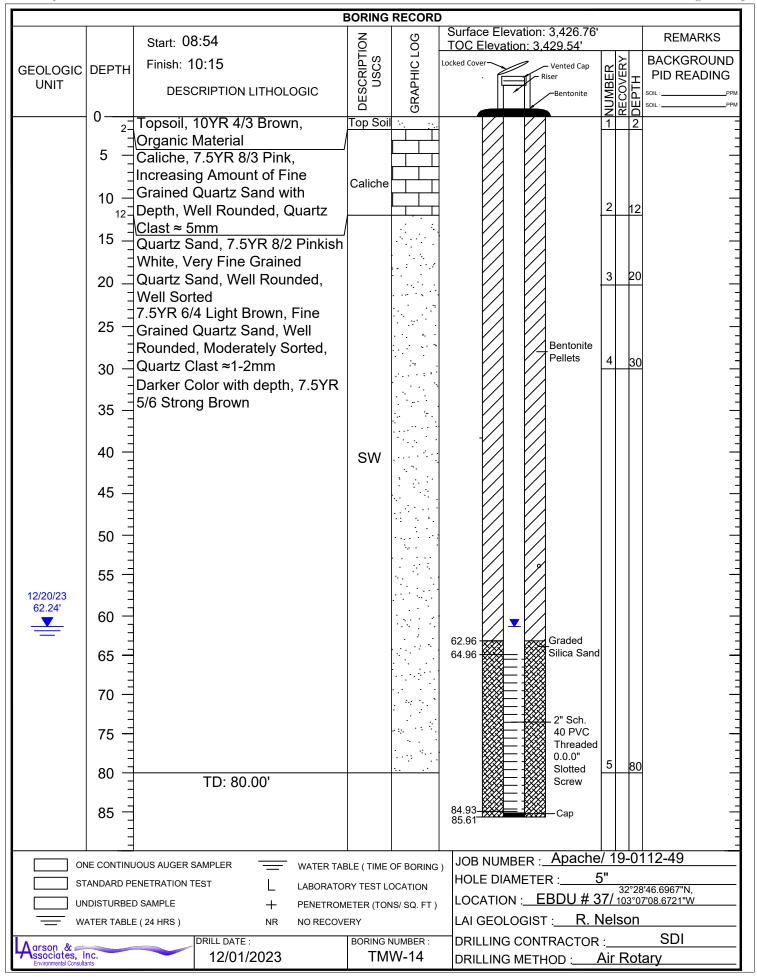
List Number: 1

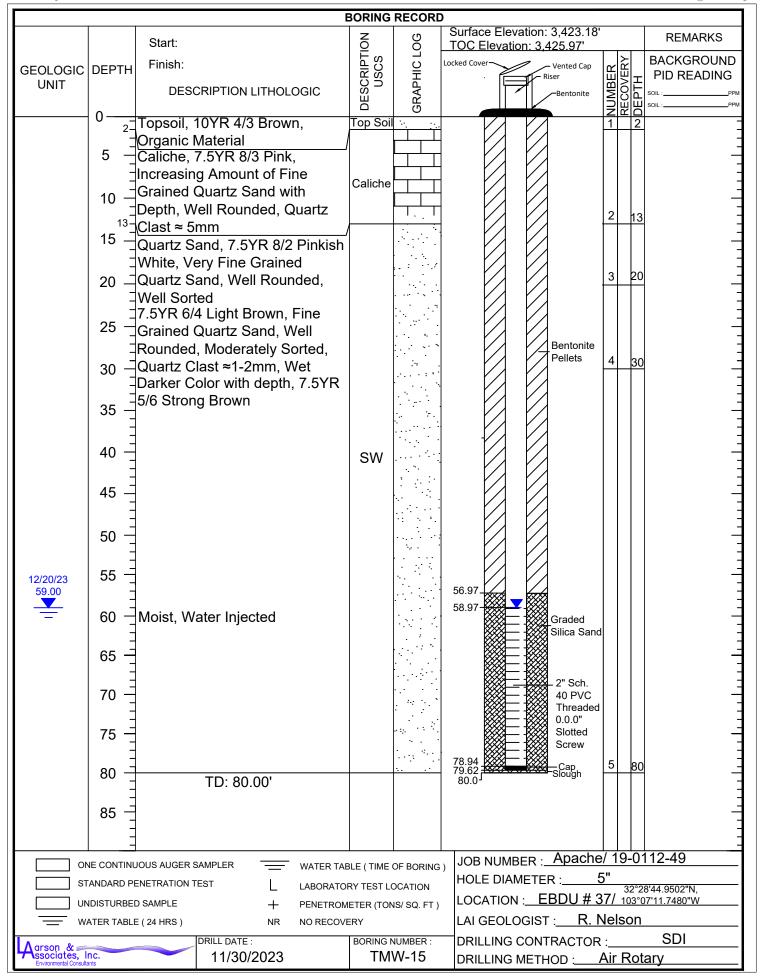
Creator: Rodriguez, Leticia

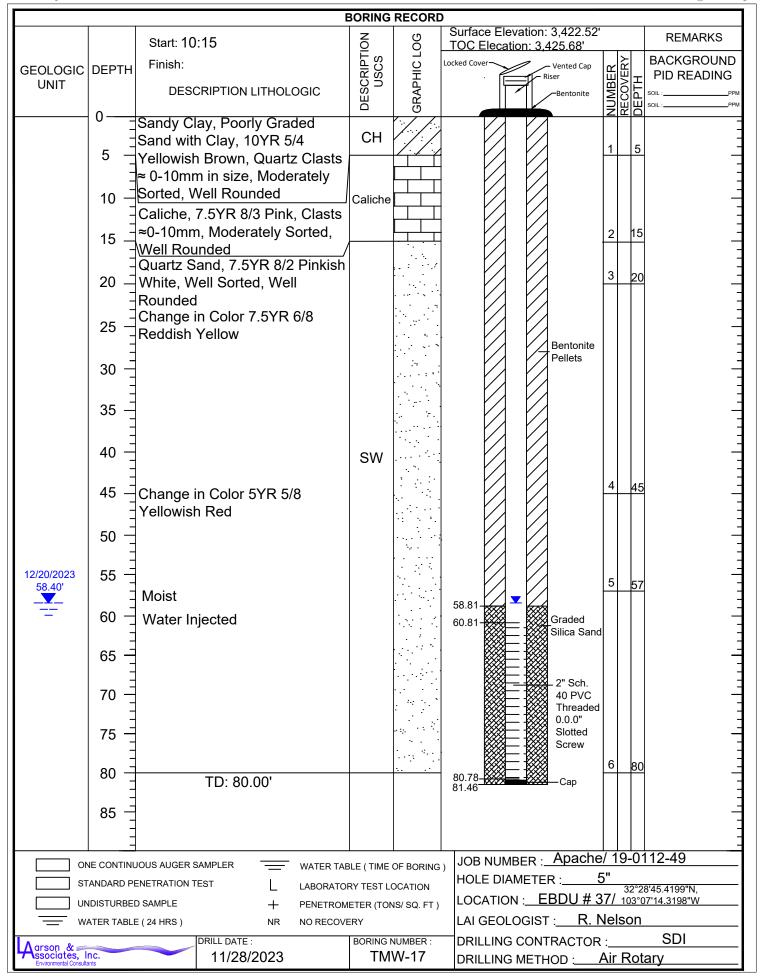

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

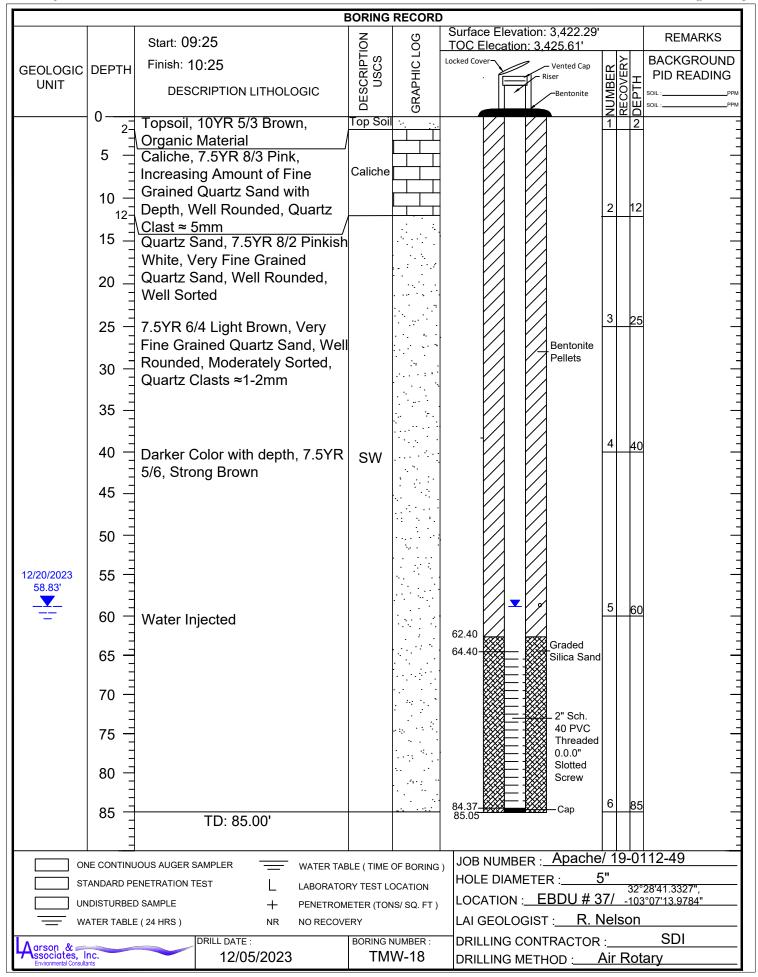

Eurofins Midland

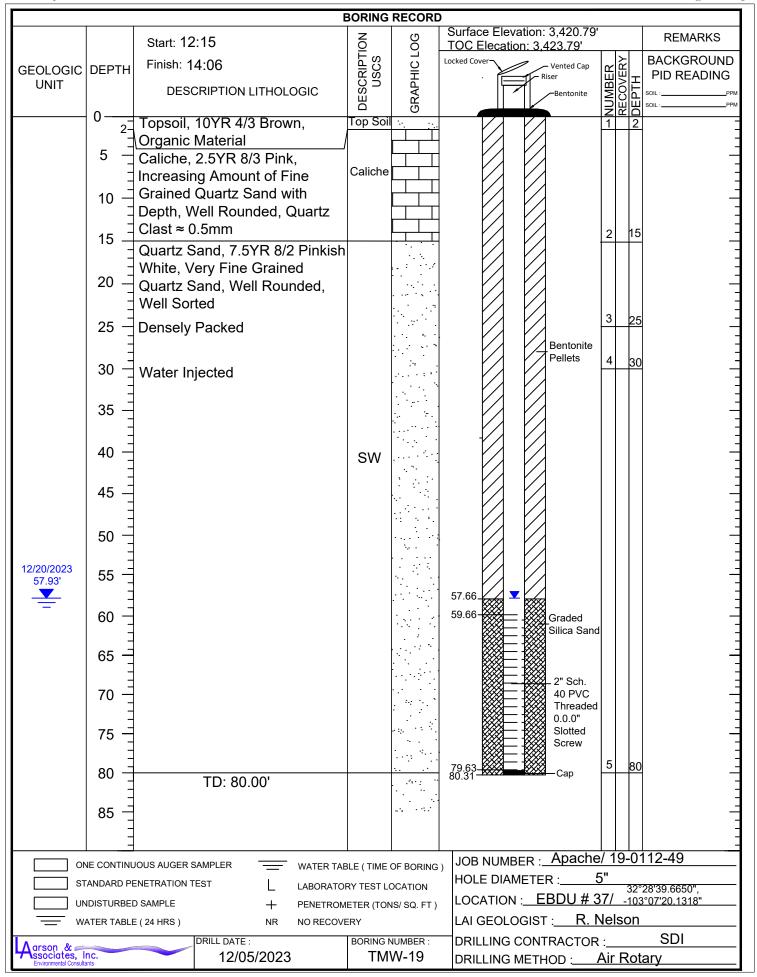
Released to Imaging: 7/24/2024 4:45:59 PM

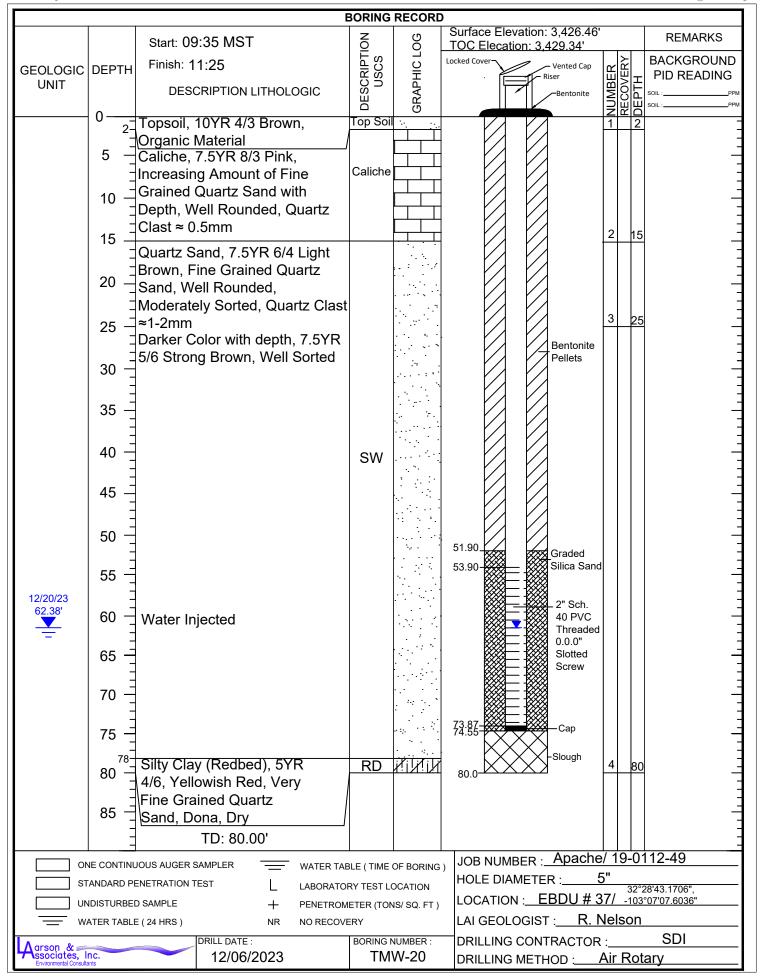

Attachment D

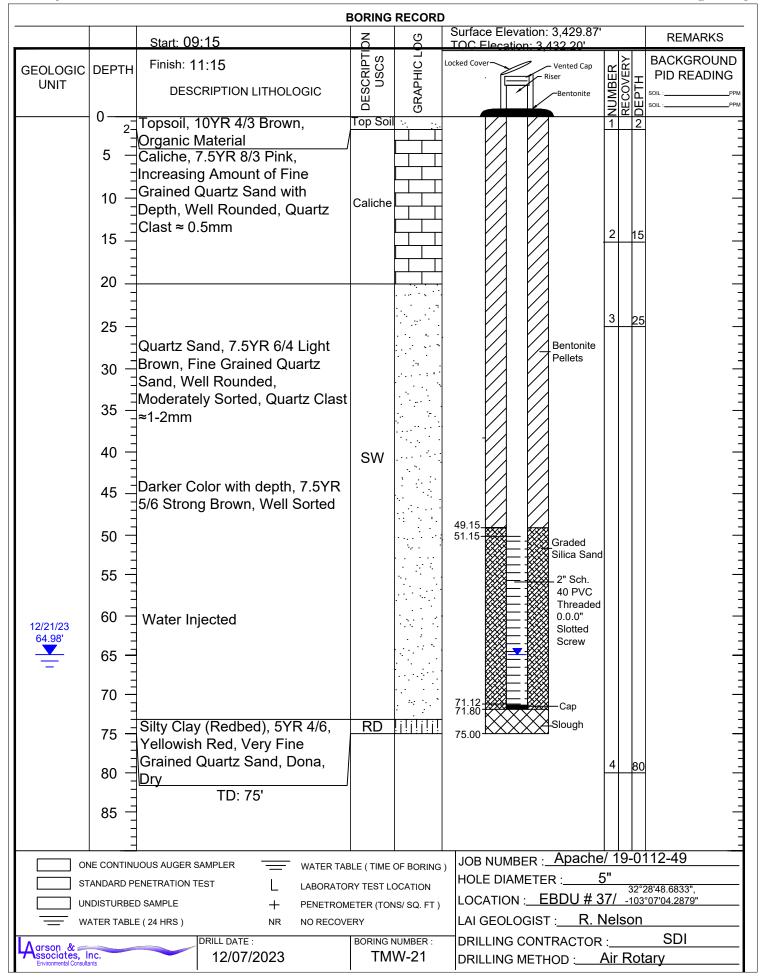

Boring Logs and Well Completion Records

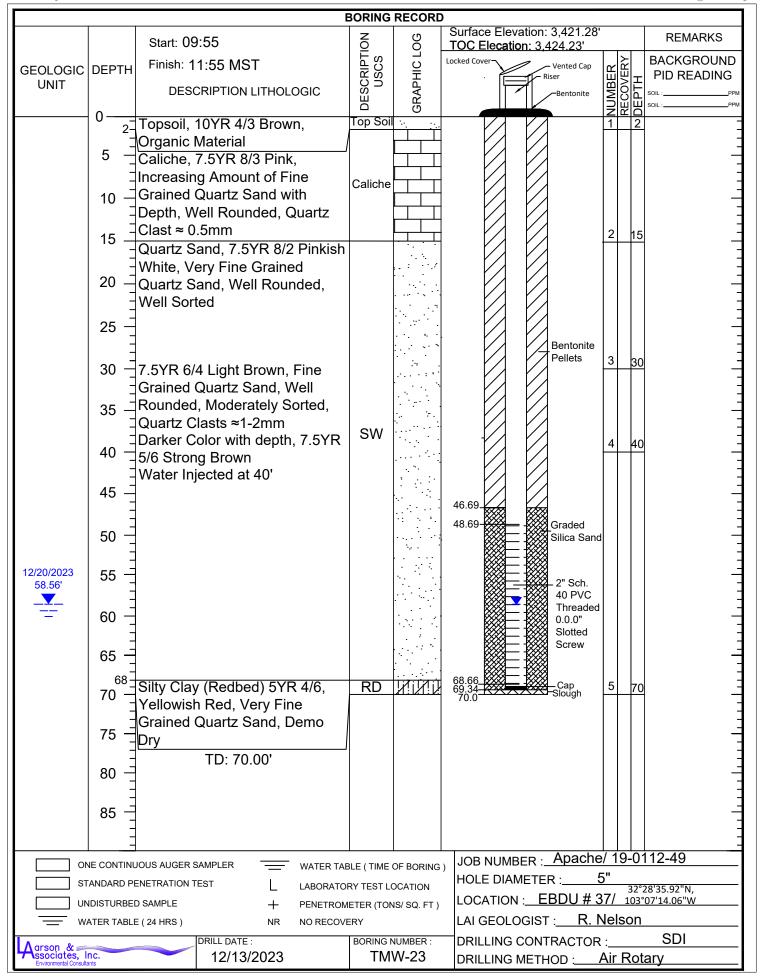


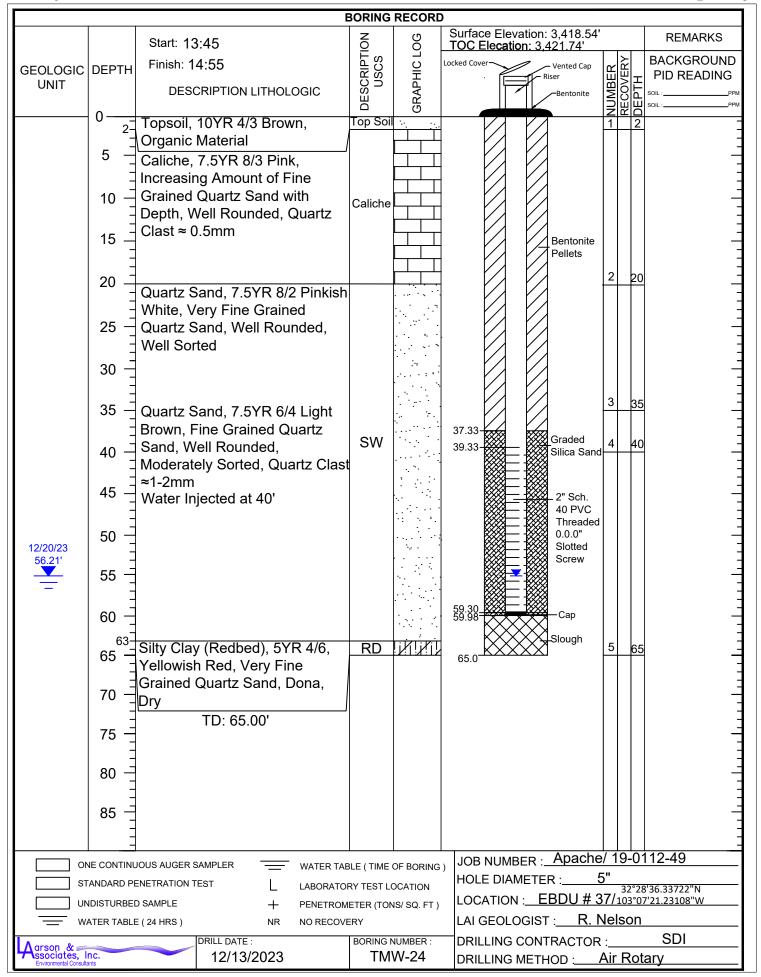

			BORING	RECORD		
		Start: 09:25	Z O	90	Surface Elevation: 3,426.21' TOC Elevation: 3428.98'	REMARKS
GEOLOGIC	DEPTH	Finish: 11:13 MST	DESCRIPTION USCS	3RAPHIC LOG		BACKGROUND
UNIT	DEI 111	DESCRIPTION LITHOLOGIC	SCR	\ HPH	Riser W Bentonite	BACKGROUND PID READING SOLL PPM
	0				Bentonite S	SOIL: PPM
	0	Topsoil, 10YR 4/3 Brown,	Top Soi	`·		2
	5 —	Organic Material Caliche, 7.5YR 8/3 Pink,	4			
		Increasing Amount of Fine	0-11-1-			. =
	10 -	Grained Quartz Sand with	Caliche			<u>-</u>
		Depth, Well Rounded, Quartz				15
	15 _	Clast ≈ 0.5mm				
	_	Quartz Sand, 7.5YR 8/2 Pinkish White, Very Fine Grained		/		.
	20 —	Quartz Sand, Well Rounded,				. -
	=	Well Sorted				
	25 -	7.5YR 6/4 Light Brown, Fine			3	25
	-	Grained Quartz Sand, Well			Bentonite Pellets	,
	30 -	Rounded, Moderately Sorted, Quartz Clasts ≈1-2mm				_
						35
	35 —	Darker Color with depth, 7.5YR				
	40	5/6 Strong Brown				
	40 —		SW			,
	45 -					
	-					, -
	50 -					. _=
	-					.
	55 -					<u>-</u>
12/20/23 60.98'					5	
00.90	60 _	Water Injected			61.24	60
	GE -				63.24 Graded	.
	65 -				Silica Sand	,
	70 -				2" Sch.	_
					40 PVC Threaded	,
	75 -				0.0.0" Slotted	_
					Screw	,
	80 -					.
	85 —				83.21 Cap 6	85
	- 00 -	TD: 85.00'			85.0 85.0	_
					JOB NUMBER : Apache/ 1	0-0112 40
		THETPATION TEST		OF BORING	HOLE DIAMETER : Apache/ 1	<u></u>
	ANDARD PI IDISTURBEI		ORY TEST L		LOCATION: EBDU # 37/	32°28'51.4724", -103°07'10.5589"
		D SAMPLE + PENETROI E (24 HRS) NR NO RECON		NS/ SQ. FT)	LAI GEOLOGIST : R. Nel	
I -		DRILL DATE :	BORING	NUMBER :	DRILLING CONTRACTOR :	
Agrson & Ssociates, In Environmental Consulta	nc.	12/04/2023	TM	W-13	DRILLING METHOD : Air	Rotary






			BORING	RECORD				
		Start: 09:35	Z O)G	Surface Elevation: 3,420.73 TOC Elecation: 3,423.65'			REMARKS
0501 0010	DEDTU	Finish: 10:17	DESCRIPTION USCS	GRAPHIC LOG	Locked Cover Vented Cap	1_2	<u>}</u>	BACKGROUND
GEOLOGIC UNIT	DEPTH		CRIPT	H	Riser	NUMBER		PID READING
		DESCRIPTION LITHOLOGIC)ES	3RA	Bentonite			SOIL :PPM
	0	Topsoil, 10YR 4/3 Brown,	Top Soi	_				-
	3-	Calcihe Clast ≈ 10-20mm,				1	3	-
	5 –	Organic Material	Caliche					
	8-	Caliche, 7.5YR 8/3 Pink,				2	8	
	10 -	Increasing Amount of Fine Grained Quartz Sand with	1					
	=	Depth, Well Rounded, Quartz						:
	15 _	Clast ≈ 5mm				3	15	
	=	Quartz Sand, 7.5YR 8/2 Pinkish	n					
	20 _	White, Very Fine Grained				4	20	
	=	Quartz Sand, Well Rounded, Well Sorted						-
	25 -	7.5YR 6/4 Light Brown, Fine						
		Grained Quartz Sand, Well			Bentonite			
	30 -	Rounded, Moderately Sorted,			Pellets			
		Quartz Clast ≈1-2mm						
	35 -	Darker Color with depth, 7.5YR						
		5/6 Strong Brown						
	40 -		SW					_
	_		300					
	45 -							
	50 -							
40/00/0000								
12/20/2023 57.27	55 -	Moist				5	55	
] = 3							
_	60 -	Water Injected			59.14 Graded			_
] =				Silica Sand	1		
	65 -							_
	=				2" Sch.			
	70 -				40 PVC			-
					0.0.0"			
	75 –				Slotted Screw			_
						6	80	
	80 -	TD: 80.00'			81.11 Cap	\prod] -
	85 -				-			
	00							-
							\perp	140.40
ON	NE CONTINU	JOUS AUGER SAMPLER ——— WATER TA	BLE (TIME	OF BORING			<u> 1-0</u>	112-49
ST	ANDARD PI	ENETRATION TEST LABORATO	RY TEST L	OCATION		5"	32°2	8'42.8747"N,
	IDISTURBEI	,	•	NS/ SQ. FT)	LOCATION : EBDU # 3			
— w	ATER TABLI	E (24 HRS) NR NO RECOV		III IN ISSE	LAI GEOLOGIST : R. I			SDI
Aarson & ssociates, I	nc.	DRILL DATE: 11/29/2023		NUMBER : W-16	DRILLING CONTRACTOR			
Environmental Consulta	ants	11/20/2020	1 171	v v - 1 U	DRILLING METHOD :	/\II	VOL	.aı y





				BORING	RECOR	
		Start: 13	:26	NO	90	Surface Elevation: 3,431.29' TOC Elecation: 3,434.17' REMARKS
GEOLOGIC	DEPTH	Finish: 1	4:56	DESCRIPTION USCS	3RAPHIC LOG	
UNIT		DESC	CRIPTION LITHOLOGIC	SCR	APH	Riser PID READING
	0			_	_	
	2-		10YR 4/3 Brown,	Top Soi	:- : 	
	5 -	Organic I Caliche.	Materiai 7.5YR 8/3 Pink,			
	=		g Amount of Fine	Caliche		
	10 -		Quartz Sand with	Canonic		
	=	Depth, W Clast ≈ 0	/ell Rounded, Quartz			
	15 _		and, 7.5YR 8/2 Pinkish			2 15
	=		ery Fine Grained		/	
	20 _		and, Well Rounded,			
	_	Well Sor				3 25
	25 –		4 Light Brown, Fine			
			Quartz Sand, Well l, Moderately Sorted,			Bentonite Pellets 4 30
	30 -		lasts ≈1-2mm			
	35 -		olor with depth, 7.5YR			5 35
	=	5/6 Stron	ig Brown jected at 35'			
	40 -	vvalei iii	jecieu ai 33			
	=					1
	45 _			SW		
	=					47.37 Graded
	50 -					49.37 Silica Sand
	=					
	55 -					2" Sch. 40 PVC
	60 =					Threaded 0.0.0"
12/20/23	00 =					Slotted Screw
65.97'	65 -					
_	=					
	70 -					Cap
	73-	Silty Clav	/ (Redbed), 5YR 4/6,	RD		-Slough 6 75
	75 -	Yellowish	n Red, Very Fine			75.0
	80 =	Grained	Quartz Sand, Dry			
	=		TD: 75.00'			
	85 -					
	=					
10	NE CONTINU	JOUS AUGER S	SAMPLER — WATER TAE	BLE (TIMF	OF BORING	JOB NUMBER : Apache/ 19-0112-49
		ENETRATION T				HOLE DIAMETER : 5" 32°28'53.5612".
UN UN	NDISTURBE	O SAMPLE	+ PENETROM	ETER (TO	NS/ SQ. FT)) LOCATION : EBDU # 37/-103°07'05.2315"w
— w	ATER TABLI	E (24 HRS)	NR NO RECOVE			LAI GEOLOGIST : R. Nelson
Aarson & Ssociates, I	nc.		DRILL DATE: 12/07/2023		NUMBER : W-22	DRILLING CONTRACTOR : SDI DRILLING METHOD : Air Rotary
Environmental Consult	antS		= = =			

Appendix E

Monitoring Well Laboratory Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 3/22/2024 9:58:33 AM

JOB DESCRIPTION

EBDU #37 19-01112-49

JOB NUMBER

880-40887-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 3/22/2024 9:58:33 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Laboratory Job ID: 880-40887-1 SDG: 19-01112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	14
QC Sample Results	15
QC Association Summary	19
Lab Chronicle	21
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	29

3

4

6

8

10

13

14

Definitions/Glossary

Job ID: 880-40887-1 Client: Larson & Associates, Inc. Project/Site: EBDU #37 SDG: 19-01112-49

Qualifiers

GC VOA

Qualifier **Qualifier Description** LCS and/or LCSD is outside acceptance limits, high biased. S1-Surrogate recovery exceeds control limits, low biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Percent Recovery

Indicates the analyte was analyzed for but not detected.

Glossary

%R

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project: EBDU #37

Job ID: 880-40887-1

Job ID: 880-40887-1

Eurofins Midland

Job Narrative 880-40887-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/15/2024 8:55 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C.

Receipt Exceptions

The following samples were submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): TMW-1 (880-40887-1), TMW-2 (880-40887-2), TMW-3 (880-40887-3), TMW-4 (880-40887-4), TMW-5 (880-40887-5), TMW-6 (880-40887-6), TMW-7 (880-40887-7), TMW-8 (880-40887-8), TMW-9 (880-40887-9), TMW-10 (880-40887-10), TMW-11 (880-40887-11), TMW-12 (880-40887-12), TMW-13 (880-40887-13), Windmill (880-40887-14) and Dup-01 (880-40887-15) Sample 15

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: Windmill (880-40887-14). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample duplicate (LCSD) for analytical batch 880-75949 recovered outside control limits for the following analytes: o-Xylene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 880-75765 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

SDG: 19-01112-49

Lab Sample ID: 880-40887-1

Matrix: Water

Job ID: 880-40887-1

Client Sample ID: TMW-1 Date Collected: 03/14/24 09:54

Date Received: 03/15/24 08:55

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/19/24 21:52	1
Toluene	<0.00200	U	0.00200	mg/L			03/19/24 21:52	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/19/24 21:52	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/19/24 21:52	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/19/24 21:52	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/19/24 21:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76		70 - 130		_		03/19/24 21:52	1
1,4-Difluorobenzene (Surr)	92		70 - 130				03/19/24 21:52	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - T Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> .	Prepared	Analyzed 03/19/24 21:52	Dil Fac
Analyte	<0.00400	Qualifier U			<u> </u>	Prepared		Dil Fac
Analyte Total BTEX	Result <0.00400 Chromatograp	Qualifier U			D -	Prepared Prepared		Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	03/19/24 21:52	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		•	03/19/24 21:52 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 136	Qualifier U	0.00400	mg/L Unit		•	03/19/24 21:52 Analyzed	1 Dil Fac

Client Sample ID: TMW-2 Lab Sample ID: 880-40887-2 Matrix: Water Date Collected: 03/14/24 10:42

Date Received: 03/15/24 08:55

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/19/24 22:13	1
Toluene	<0.00200	U	0.00200	mg/L			03/19/24 22:13	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/19/24 22:13	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/19/24 22:13	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/19/24 22:13	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/19/24 22:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130		-		03/19/24 22:13	1
1,4-Difluorobenzene (Surr)	88		70 - 130				03/19/24 22:13	1
Method: TAL SOP Total BTEX - To	otal BTEX Calc	culation						
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX - Total BTEX		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> -	Prepared	Analyzed 03/19/24 22:13	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u>D</u> -	Prepared	. <u> </u>	
Analyte	Result <0.00400 Chromatograp	Qualifier U			<u>D</u> -	Prepared Prepared	. <u> </u>	
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	03/19/24 22:13	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		•	03/19/24 22:13 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 249	Qualifier U	0.00400 RL	mg/L Unit		•	03/19/24 22:13 Analyzed	1 Dil Fac

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Client: Larson & Associates, Inc.

Date Received: 03/15/24 08:55

Project/Site: EBDU #37

Job ID: 880-40887-1 SDG: 19-01112-49

Client Sample ID: TMW-3 Lab Sample ID: 880-40887-3 Date Collected: 03/14/24 10:20

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/19/24 22:33	1
Toluene	<0.00200	U	0.00200	mg/L			03/19/24 22:33	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/19/24 22:33	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/19/24 22:33	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/19/24 22:33	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/19/24 22:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130		-		03/19/24 22:33	1
1,4-Difluorobenzene (Surr)	87		70 - 130				03/19/24 22:33	1
- /								
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
- ´		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - To		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> .	Prepared	Analyzed 03/19/24 22:33	Dil Fac
Method: TAL SOP Total BTEX - To Analyte Total BTEX	<0.00400	Qualifier U			<u>D</u> .	Prepared	- <u> </u>	Dil Fac
Method: TAL SOP Total BTEX - To Analyte	Result <0.00400 Chromatograp	Qualifier U			D .	Prepared Prepared	- <u> </u>	Dil Fac
Method: TAL SOP Total BTEX - To Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	03/19/24 22:33	1
Method: TAL SOP Total BTEX - Total BTEX Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		•	03/19/24 22:33 Analyzed	1 Dil Fac
Method: TAL SOP Total BTEX - To Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result 234	Qualifier U	0.00400	mg/L Unit		•	03/19/24 22:33 Analyzed	1 Dil Fac

Client Sample ID: TMW-4 Lab Sample ID: 880-40887-4 Date Collected: 03/14/24 12:49 **Matrix: Water**

Date Received: 03/15/24 08:55

Released to Imaging: 7/24/2024 4:45:59 PM

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/19/24 22:54	1
Toluene	<0.00200	U	0.00200	mg/L			03/19/24 22:54	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/19/24 22:54	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/19/24 22:54	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/19/24 22:54	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/19/24 22:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82	-	70 - 130		-		03/19/24 22:54	1
1,4-Difluorobenzene (Surr)	84		70 - 130				03/19/24 22:54	1
-								
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier		Unit mg/L	<u>D</u> _	Prepared	Analyzed 03/19/24 22:54	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u> </u>	Prepared		
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U			D -	Prepared Prepared		
Method: TAL SOP Total BTEX - Total BTEX - Total BTEX Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	03/19/24 22:54	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		•	03/19/24 22:54 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 580	Qualifier U	0.00400 RL	mg/L Unit		•	03/19/24 22:54 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

SDG: 19-01112-49

Client Sample ID: TMW-5

Lab Sample ID: 880-40887-5

Date Collected: 03/14/24 13:03 Date Received: 03/15/24 08:55 Matrix: Water

Job ID: 880-40887-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/19/24 23:14	1
Toluene	<0.00200	U	0.00200	mg/L			03/19/24 23:14	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/19/24 23:14	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/19/24 23:14	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/19/24 23:14	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/19/24 23:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130		-		03/19/24 23:14	1
1,4-Difluorobenzene (Surr)	86		70 - 130				03/19/24 23:14	1
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			03/19/24 23:14	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2980	F1	25.0	mg/L			03/15/24 18:30	50
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: TMW-6

Date Collected: 03/14/24 13:16

Lab Sample ID: 880-40887-6

Matrix: Water

Date Received: 03/15/24 08:55

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/19/24 23:35	1
Toluene	<0.00200	U	0.00200	mg/L			03/19/24 23:35	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/19/24 23:35	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/19/24 23:35	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/19/24 23:35	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/19/24 23:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130		-		03/19/24 23:35	1
1,4-Difluorobenzene (Surr)	90		70 - 130				03/19/24 23:35	1
 Method: TAL SOP Total BTEX 	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			03/19/24 23:35	1
- Method: EPA 300.0 - Anions,	lon Chromatograp	hy						
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

25.0

RL

200

mg/L

Unit

mg/L

D

Prepared

Eurofins Midland

03/15/24 18:49

Analyzed

03/15/24 20:09

1500

3280

Result Qualifier

Dil Fac

9

11

12

1 3

14

Chloride

Analyte

General Chemistry

Total Dissolved Solids (SM 2540C)

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

SDG: 19-01112-49

Lab Sample ID: 880-40887-7

Job ID: 880-40887-1

Matrix: Water

Client Sample ID: TMW-7 Date Collected: 03/14/24 12:35

Date Received: 03/15/24 08:55

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/19/24 23:55	1
Toluene	<0.00200	U	0.00200	mg/L			03/19/24 23:55	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/19/24 23:55	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/19/24 23:55	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/19/24 23:55	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/19/24 23:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		70 - 130		-		03/19/24 23:55	1
1,4-Difluorobenzene (Surr)	92		70 - 130				03/19/24 23:55	1
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - To Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unitmg/L	<u>D</u> .	Prepared	Analyzed 03/19/24 23:55	Dil Fac
Analyte	<0.00400	Qualifier U			<u>D</u> -	Prepared		
Analyte Total BTEX	Result <0.00400	Qualifier U			<u>D</u> _	Prepared Prepared		
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U	0.00400	mg/L		·	03/19/24 23:55	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		·	03/19/24 23:55 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 1740	Qualifier U	0.00400	mg/L Unit		·	03/19/24 23:55 Analyzed	1 Dil Fac

Client Sample ID: TMW-8 Lab Sample ID: 880-40887-8 Date Collected: 03/14/24 11:00 **Matrix: Water**

Date Received: 03/15/24 08:55

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/20/24 00:16	1
Toluene	<0.00200	U	0.00200	mg/L			03/20/24 00:16	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/20/24 00:16	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/20/24 00:16	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/20/24 00:16	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/20/24 00:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130		_		03/20/24 00:16	1
1,4-Difluorobenzene (Surr)	87		70 - 130				03/20/24 00:16	1
- Method: TAL SOP Total BTEX - To	otal RTEX Cale	culation						
WELLIOU. TAL SUP TOTAL BIEX - IN	Otal BILA Call	Julution						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.00400	<mark>Unit</mark> mg/L	<u>D</u> -	Prepared	Analyzed 03/20/24 00:16	Dil Fac
Analyte Total BTEX	Result < 0.00400	Qualifier U			<u>D</u> -	Prepared	. <u> </u>	Dil Fac
Analyte	Result <0.00400 Chromatograp	Qualifier U			D -	Prepared Prepared	. <u> </u>	Dil Fac Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	03/20/24 00:16	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		•	03/20/24 00:16 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result 655	Qualifier U	0.00400 RL	mg/L Unit		•	03/20/24 00:16 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Date Received: 03/15/24 08:55

Job ID: 880-40887-1 SDG: 19-01112-49

Lab Sample ID: 880-40887-9

Client Sample ID: TMW-9

Date Collected: 03/14/24 10:03

Lab Sample

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/20/24 00:36	1
Toluene	<0.00200	U	0.00200	mg/L			03/20/24 00:36	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/20/24 00:36	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/20/24 00:36	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/20/24 00:36	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/20/24 00:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130		_		03/20/24 00:36	1
1,4-Difluorobenzene (Surr)	78		70 - 130				03/20/24 00:36	1
- Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
T-4-LDTEV	<0.00400	U	0.00400	mg/L			03/20/24 00:36	
Total BTEX	*****							1
- -		hy						1
Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp	ohy Qualifier	RL	Unit	D	Prepared	Analyzed	1 Dil Fac
Method: EPA 300.0 - Anions, Ion	Chromatograp	•		<mark>Unit</mark> mg/L	<u>D</u> -	Prepared	Analyzed 03/15/24 19:20	1
Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp Result	•			D -	Prepared	. <u> </u>	
Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 29.3	•			D -	Prepared Prepared	. <u> </u>	

Client Sample ID: TMW-10

Date Collected: 03/14/24 09:44

Lab Sample ID: 880-40887-10

Matrix: Water

Date Received: 03/15/24 08:55

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/20/24 00:57	1
Toluene	<0.00200	U	0.00200	mg/L			03/20/24 00:57	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/20/24 00:57	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/20/24 00:57	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/20/24 00:57	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/20/24 00:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130		-		03/20/24 00:57	1
1,4-Difluorobenzene (Surr)	86		70 - 130				03/20/24 00:57	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> _	Prepared	Analyzed 03/20/24 00:57	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U	0.00400	mg/L		·	03/20/24 00:57	1
Analyte	Result <0.00400	Qualifier U			<u>D</u> _	Prepared Prepared	- <u> </u>	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400	Qualifier U	0.00400	mg/L		·	03/20/24 00:57	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		·	03/20/24 00:57 Analyzed	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp Result 17.0	Qualifier U	0.00400	mg/L Unit		·	03/20/24 00:57 Analyzed	Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-40887-1 SDG: 19-01112-49

Client Sample ID: TMW-11

Date Collected: 03/14/24 11:14 Date Received: 03/15/24 08:55 Lab Sample ID: 880-40887-11

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/20/24 02:20	1
Toluene	<0.00200	U	0.00200	mg/L			03/20/24 02:20	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/20/24 02:20	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/20/24 02:20	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/20/24 02:20	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/20/24 02:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130		-		03/20/24 02:20	1
1,4-Difluorobenzene (Surr)	90		70 - 130				03/20/24 02:20	1
- -								
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - To Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unit mg/L	<u>D</u> .	Prepared	Analyzed 03/20/24 02:20	Dil Fac
Analyte	<0.00400	Qualifier U			<u>D</u> -	Prepared	. <u> </u>	
Analyte Total BTEX	Result <0.00400 Chromatograp	Qualifier U			<u>D</u> .	Prepared Prepared	. <u> </u>	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		·	03/20/24 02:20	
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L		·	03/20/24 02:20 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 318	Qualifier U	0.00400	mg/L		·	03/20/24 02:20 Analyzed	1 Dil Fac

Client Sample ID: TMW-12 Lab Sample ID: 880-40887-12 Matrix: Water

Date Collected: 03/14/24 11:30

Date Received: 03/15/24 08:55

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/20/24 02:41	1
Toluene	<0.00200	U	0.00200	mg/L			03/20/24 02:41	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/20/24 02:41	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/20/24 02:41	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/20/24 02:41	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/20/24 02:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	77		70 - 130		-		03/20/24 02:41	1
1,4-Difluorobenzene (Surr)	90		70 - 130				03/20/24 02:41	1
- Method: TAL SOP Total BTEX - To	otal RTEX Calc	culation						
Welliou. TAL SOF Total BTLA - T	Otal BILA Call	Julation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	<mark>Unit</mark> mg/L	<u>D</u> _	Prepared	Analyzed 03/20/24 02:41	Dil Fac
Analyte	Result < 0.00400	Qualifier U			<u> </u>	Prepared	. <u> </u>	Dil Fac
Analyte Total BTEX	Result <0.00400	Qualifier U			D -	Prepared Prepared	. <u> </u>	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U	0.00400	mg/L		•	03/20/24 02:41	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		•	03/20/24 02:41 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 448	Qualifier U	0.00400 RL	mg/L Unit		•	03/20/24 02:41 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Date Collected: 03/14/24 13:29

Date Received: 03/15/24 08:55

Project/Site: EBDU #37

Client Sample ID: TMW-13

Lab Sample ID: 880-40887-13

03/20/24 03:01

Matrix: Water

Job ID: 880-40887-1

SDG: 19-01112-49

Method: SW846 8021B - Volatile Organic Compounds (GC)

gaine comp	ounus (GC)						
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00200	U	0.00200	mg/L			03/20/24 03:01	1
<0.00200	U	0.00200	mg/L			03/20/24 03:01	1
<0.00200	U	0.00200	mg/L			03/20/24 03:01	1
<0.00400	U	0.00400	mg/L			03/20/24 03:01	1
<0.00200	U *+	0.00200	mg/L			03/20/24 03:01	1
<0.00400	U	0.00400	mg/L			03/20/24 03:01	1
%Recovery	Qualifier	Limits		_	Prepared	Analyzed	Dil Fac
78		70 - 130				03/20/24 03:01	1
	Result <0.00200 <0.00200 <0.00200 <0.00400 <0.00200 <0.00400 %Recovery	Result Qualifier	<pre><0.00200 U</pre>	Result Qualifier RL Unit <0.00200	Result Qualifier RL Unit D <0.00200	Result Qualifier RL Unit D Prepared <0.00200	Result Qualifier RL Unit mg/L D Prepared Analyzed <0.00200 U

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			03/20/24 03:01	1

70 - 130

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1690		25.0	mg/L			03/15/24 19:44	50
_								

General Chemistry

1,4-Difluorobenzene (Surr)

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	3480	200	mg/L			03/15/24 20:09	1

Client Sample ID: Windmill

Date Received: 03/15/24 08:55

Lab Sample ID: 880-40887-14 Date Collected: 03/14/24 09:30

Matrix: Water

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/20/24 03:22	1
Toluene	<0.00200	U	0.00200	mg/L			03/20/24 03:22	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/20/24 03:22	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/20/24 03:22	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/20/24 03:22	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/20/24 03:22	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analvzed	Dil Fac

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	92		70 - 130		03/20/24 03:22	1
l	1,4-Difluorobenzene (Surr)	69	S1-	70 - 130		03/20/24 03:22	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			03/20/24 03:22	1

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	471	5.00	mg/L			03/15/24 19:50	10

General Chemistry

Johnson Janoninon y							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1080	50.0	mg/L			03/15/24 20:09	1

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Client Sample ID: Dup-01

Date Collected: 03/14/24 00:00

Date Received: 03/15/24 08:55

Job ID: 880-40887-1

SDG: 19-01112-49

Lab Sample ID: 880-40887-15

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/20/24 03:42	1
Toluene	<0.00200	U	0.00200	mg/L			03/20/24 03:42	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/20/24 03:42	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/20/24 03:42	1
o-Xylene	<0.00200	U *+	0.00200	mg/L			03/20/24 03:42	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/20/24 03:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130		_		03/20/24 03:42	1
1,4-Difluorobenzene (Surr)	90		70 - 130				03/20/24 03:42	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	
								Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			03/20/24 03:42	Dil Fac
- -			0.00400	mg/L			03/20/24 03:42	Dil Fac
Method: EPA 300.0 - Anions, Ion	Chromatograp		0.00400 RL	mg/L Unit	D	Prepared	03/20/24 03:42 Analyzed	Dil Fac Dil Fac
Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp	ohy		Ü	D	Prepared		1
Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp Result	ohy	RL	Unit	<u>D</u> _	Prepared	Analyzed	1 Dil Fac
Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 328	ohy	RL	Unit	D -	Prepared Prepared	Analyzed	1 Dil Fac

Released to Imaging: 7/24/2024 4:45:59 PM

Surrogate Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-40887-1

SDG: 19-01112-49

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

		DED4	DED74	Percent Surrogate Re	С
		BFB1	DFBZ1		
_ab Sample ID	Client Sample ID	(70-130)	(70-130)		_
380-40887-1	TMW-1	76	92		
880-40887-1 MS	TMW-1	112	100		
880-40887-1 MSD	TMW-1	117	112		
880-40887-2	TMW-2	82	88		
380-40887-3	TMW-3	81	87		
380-40887-4	TMW-4	82	84		
380-40887-5	TMW-5	81	86		
380-40887-6	TMW-6	78	90		
880-40887-7	TMW-7	80	92		
380-40887-8	TMW-8	83	87		
380-40887-9	TMW-9	95	78		
380-40887-10	TMW-10	79	86		
380-40887-11	TMW-11	78	90		
380-40887-12	TMW-12	77	90		
380-40887-13	TMW-13	78	89		
380-40887-14	Windmill	92	69 S1-		
380-40887-15	Dup-01	78	90		
_CS 880-75949/34	Lab Control Sample	112	90		
_CSD 880-75949/35	Lab Control Sample Dup	117	107		
MB 880-75818/5-A	Method Blank	71	92		
MB 880-75949/39	Method Blank	71	90		
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Client: Larson & Associates, Inc. Job ID: 880-40887-1 Project/Site: EBDU #37 SDG: 19-01112-49

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-75818/5-A

Matrix: Water

Analysis Batch: 75949

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 75818

IVID IVID

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L		03/18/24 10:27	03/19/24 10:55	1
Toluene	<0.00200	U	0.00200	mg/L		03/18/24 10:27	03/19/24 10:55	1
Ethylbenzene	<0.00200	U	0.00200	mg/L		03/18/24 10:27	03/19/24 10:55	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L		03/18/24 10:27	03/19/24 10:55	1
o-Xylene	<0.00200	U	0.00200	mg/L		03/18/24 10:27	03/19/24 10:55	1
Xylenes, Total	< 0.00400	U	0.00400	mg/L		03/18/24 10:27	03/19/24 10:55	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71		70 - 130	03/18/24 10:27	03/19/24 10:55	1
1,4-Difluorobenzene (Surr)	92		70 - 130	03/18/24 10:27	03/19/24 10:55	1

Lab Sample ID: MB 880-75949/39

Matrix: Water

Analysis Batch: 75949

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/19/24 21:31	1
Toluene	<0.00200	U	0.00200	mg/L			03/19/24 21:31	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/19/24 21:31	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/19/24 21:31	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/19/24 21:31	1
Xvlenes Total	<0.00400	U	0.00400	ma/l			03/19/24 21:31	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71		70 - 130		03/19/24 21:31	1
1,4-Difluorobenzene (Surr)	90		70 - 130		03/19/24 21:31	1

Spike

Added

0.100

0.100

0.100

0.200

0.100

Spike

Added

0.100

Lab Sample ID: LCS 880-75949/34

Matrix: Water

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m,p-Xylenes

Analysis Batch: 75949

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec Result Qualifier Unit %Rec Limits 0.08666 mg/L 87 70 - 130 0.09146 mg/L 91 70 - 130 0.1067 mg/L 107 70 - 130 0.2117 106 70 - 130 mg/L 0.1070 107 70 - 130

mg/L

LCS LCS

Surrogate	%Recovery Qu	ıalifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	90		70 - 130

Lab Sample ID: LCSD 880-75949/35

Matrix: Water

Analyte

Benzene

Analysis Batch: 75949

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

			%Rec		RPD	
Jnit	D	%Rec	Limits	RPD	Limit	
ma/l		104	70 130	10	20	

Eurofins Midland

LCSD LCSD Result Qualifier

0.1043

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-40887-1

SDG: 19-01112-49

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-75949/35

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 75949

	Бріке	LC2D	LC2D				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Toluene	0.100	0.09786		mg/L		98	70 - 130	7	20	
Ethylbenzene	0.100	0.1096		mg/L		110	70 - 130	3	20	
m,p-Xylenes	0.200	0.2154		mg/L		108	70 - 130	2	20	
o-Xylene	0.100	0.1307	*+	mg/L		131	70 - 130	20	20	

LCSD LCSD %Recovery Qualifier Limits Surrogate 70 - 130 4-Bromofluorobenzene (Surr) 117 1,4-Difluorobenzene (Surr) 107 70 - 130

Client Sample ID: TMW-1

Matrix: Water

Lab Sample ID: 880-40887-1 MS

Analysis Batch: 75949

Prep Type: Total/NA

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.1035 Benzene <0.00200 0.100 mg/L 103 70 - 130 Toluene <0.00200 U 0.100 0.1054 105 70 - 130 mg/L 0.100 Ethylbenzene <0.00200 U 0.1257 mg/L 126 70 - 130 <0.00400 U 0.200 122 70 - 130 m,p-Xylenes 0.2430 mg/L 70 - 130 o-Xylene <0.00200 U*+ 0.100 0.1228 mg/L 123

MS MS

Surrogate	%Recovery Qualific	er Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: 880-40887-1 MSD

Matrix: Water

Analysis Batch: 75949

Client Sample ID: TMW-1 Prep Type: Total/NA

Sample Sample MSD MSD RPD Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Benzene <0.00200 U 0.100 0.1121 mg/L 112 70 - 130 8 25 Toluene <0.00200 U 0.100 0.1080 mg/L 108 70 - 130 2 25 Ethylbenzene <0.00200 U 0.100 0.1257 mg/L 126 70 - 130 O 25 0.200 0.2522 25 m,p-Xylenes <0.00400 U mg/L 126 70 - 1300.100 o-Xylene <0.00200 U*+ 0.1274 mg/L 127 70 - 130 25

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	117	70 - 130
1,4-Difluorobenzene (Surr)	112	70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-75676/3

Matrix: Water

Analysis Batch: 75676

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Chloride <0.500 U 0.500 03/19/24 05:58 mg/L

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

%Rec

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-75676/4 **Matrix: Water**

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 75676

Spike LCS LCS Analyte Added Result Qualifier Unit D

%Rec Limits

104 90 - 110

Lab Sample ID: LCSD 880-75676/5

Lab Sample ID: MB 880-75765/3

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample Dup

Matrix: Water

Chloride

Analysis Batch: 75676

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: TMW-5

Spike LCSD LCSD %Rec RPD Limit Analyte Added Result Qualifier Unit D %Rec Limits RPD Chloride 25.0 25.97 mg/L 104 90 - 110 0

25.93

25.0

Client Sample ID: Method Blank

Matrix: Water

Analyte

Chloride

Analysis Batch: 75765

мв мв

Result Qualifier RL Unit D Prepared Analyzed Dil Fac <0.500 U 0.500 03/15/24 16:46

mg/L

mg/L

Lab Sample ID: LCS 880-75765/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 75765

LCS LCS %Rec Spike Added Analyte Result Qualifier Unit %Rec Limits Chloride 25.0 24.00 90 - 110 mg/L

Lab Sample ID: LCSD 880-75765/5

Matrix: Water

Analysis Batch: 75765

LCSD LCSD Spike %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 25.0 23.04 mg/L 92 90 - 110 20

Lab Sample ID: 880-40887-5 MS

Matrix: Water Prep Type: Total/NA

Analysis Batch: 75765

Sample Sample Spike MS MS %Rec Qualifier Added Analyte Result Result Qualifier Unit D %Rec Limits Chloride 2980 F1 1250 4453 F1 mg/L 118 90 - 110

Lab Sample ID: 880-40887-5 MSD Client Sample ID: TMW-5 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 75765

MSD MSD %Rec RPD Sample Sample Spike Result Qualifier RPD Added Result Qualifier Limits Limit Analyte Unit D %Rec Chloride 2980 F1 1250 4385 F1 mg/L 112 90 - 110 20

Eurofins Midland

Job ID: 880-40887-1 SDG: 19-01112-49

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-40887-1

SDG: 19-01112-49

Prep Type: Total/NA

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 880-75768/1

Matrix: Water

Analysis Batch: 75768

Client Sample ID: Method Blank

Prep Type: Total/NA

Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed 03/15/24 20:09 Total Dissolved Solids <25.0 U 25.0 mg/L

Lab Sample ID: LCS 880-75768/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

MB MB

Analysis Batch: 75768

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 1000 981.0 mg/L 98 80 - 120

Lab Sample ID: LCSD 880-75768/3 Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 75768

LCSD LCSD %Rec RPD Spike Added Result Qualifier Unit %Rec Limits **RPD** Limit Total Dissolved Solids 1000 984.0 mg/L 80 - 120

Lab Sample ID: 880-40887-8 DU Client Sample ID: TMW-8

Matrix: Water

Analysis Batch: 75768

DU DU Sample Sample RPD Analyte Result Qualifier Result Qualifier Unit RPD Limit 1830 1798 Total Dissolved Solids 10 mg/L

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-40887-1

SDG: 19-01112-49

GC VOA

Prep Batch: 75818

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-75818/5-A	Method Blank	Total/NA	Water	5035	

Analysis Batch: 75949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40887-1	TMW-1	Total/NA	Water	8021B	
880-40887-2	TMW-2	Total/NA	Water	8021B	
880-40887-3	TMW-3	Total/NA	Water	8021B	
880-40887-4	TMW-4	Total/NA	Water	8021B	
880-40887-5	TMW-5	Total/NA	Water	8021B	
880-40887-6	TMW-6	Total/NA	Water	8021B	
880-40887-7	TMW-7	Total/NA	Water	8021B	
880-40887-8	TMW-8	Total/NA	Water	8021B	
880-40887-9	TMW-9	Total/NA	Water	8021B	
880-40887-10	TMW-10	Total/NA	Water	8021B	
880-40887-11	TMW-11	Total/NA	Water	8021B	
880-40887-12	TMW-12	Total/NA	Water	8021B	
880-40887-13	TMW-13	Total/NA	Water	8021B	
880-40887-14	Windmill	Total/NA	Water	8021B	
880-40887-15	Dup-01	Total/NA	Water	8021B	
MB 880-75818/5-A	Method Blank	Total/NA	Water	8021B	75818
MB 880-75949/39	Method Blank	Total/NA	Water	8021B	
LCS 880-75949/34	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-75949/35	Lab Control Sample Dup	Total/NA	Water	8021B	
880-40887-1 MS	TMW-1	Total/NA	Water	8021B	
880-40887-1 MSD	TMW-1	Total/NA	Water	8021B	

Analysis Batch: 76087

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40887-1	TMW-1	Total/NA	Water	Total BTEX	-
880-40887-2	TMW-2	Total/NA	Water	Total BTEX	
380-40887-3	TMW-3	Total/NA	Water	Total BTEX	
880-40887-4	TMW-4	Total/NA	Water	Total BTEX	
880-40887-5	TMW-5	Total/NA	Water	Total BTEX	
880-40887-6	TMW-6	Total/NA	Water	Total BTEX	
380-40887-7	TMW-7	Total/NA	Water	Total BTEX	
380-40887-8	TMW-8	Total/NA	Water	Total BTEX	
380-40887-9	TMW-9	Total/NA	Water	Total BTEX	
380-40887-10	TMW-10	Total/NA	Water	Total BTEX	
380-40887-11	TMW-11	Total/NA	Water	Total BTEX	
380-40887-12	TMW-12	Total/NA	Water	Total BTEX	
380-40887-13	TMW-13	Total/NA	Water	Total BTEX	
380-40887-14	Windmill	Total/NA	Water	Total BTEX	
380-40887-15	Dup-01	Total/NA	Water	Total BTEX	

HPLC/IC

Analysis Batch: 75676

Lab Sample ID 880-40887-15	Client Sample ID Dup-01	Prep Type Total/NA	Matrix Water	Method 300.0	Prep Batch
MB 880-75676/3	Method Blank	Total/NA	Water	300.0	
LCS 880-75676/4	Lab Control Sample	Total/NA	Water	300.0	

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Associates, Inc.

Job ID: 880-40887-1 SDG: 19-01112-49

HPLC/IC (Continued)

Analysis Batch: 75676 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-75676/5	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 75765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-40887-1	TMW-1	Total/NA	Water	300.0	
880-40887-2	TMW-2	Total/NA	Water	300.0	
880-40887-3	TMW-3	Total/NA	Water	300.0	
880-40887-4	TMW-4	Total/NA	Water	300.0	
880-40887-5	TMW-5	Total/NA	Water	300.0	
880-40887-6	TMW-6	Total/NA	Water	300.0	
880-40887-7	TMW-7	Total/NA	Water	300.0	
880-40887-8	TMW-8	Total/NA	Water	300.0	
880-40887-9	TMW-9	Total/NA	Water	300.0	
880-40887-10	TMW-10	Total/NA	Water	300.0	
880-40887-11	TMW-11	Total/NA	Water	300.0	
880-40887-12	TMW-12	Total/NA	Water	300.0	
880-40887-13	TMW-13	Total/NA	Water	300.0	
880-40887-14	Windmill	Total/NA	Water	300.0	
MB 880-75765/3	Method Blank	Total/NA	Water	300.0	
LCS 880-75765/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-75765/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-40887-5 MS	TMW-5	Total/NA	Water	300.0	
880-40887-5 MSD	TMW-5	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 75768

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40887-1	TMW-1	Total/NA	Water	SM 2540C	
880-40887-2	TMW-2	Total/NA	Water	SM 2540C	
880-40887-3	TMW-3	Total/NA	Water	SM 2540C	
880-40887-4	TMW-4	Total/NA	Water	SM 2540C	
880-40887-5	TMW-5	Total/NA	Water	SM 2540C	
880-40887-6	TMW-6	Total/NA	Water	SM 2540C	
880-40887-7	TMW-7	Total/NA	Water	SM 2540C	
880-40887-8	TMW-8	Total/NA	Water	SM 2540C	
880-40887-9	TMW-9	Total/NA	Water	SM 2540C	
880-40887-10	TMW-10	Total/NA	Water	SM 2540C	
880-40887-11	TMW-11	Total/NA	Water	SM 2540C	
880-40887-12	TMW-12	Total/NA	Water	SM 2540C	
880-40887-13	TMW-13	Total/NA	Water	SM 2540C	
880-40887-14	Windmill	Total/NA	Water	SM 2540C	
880-40887-15	Dup-01	Total/NA	Water	SM 2540C	
MB 880-75768/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-75768/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-75768/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-40887-8 DU	TMW-8	Total/NA	Water	SM 2540C	

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-40887-1 SDG: 19-01112-49

Client Sample ID: TMW-1

Lab Sample ID: 880-40887-1

Date Collected: 03/14/24 09:54 Date Received: 03/15/24 08:55

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/19/24 21:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/19/24 21:52	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	75765	03/15/24 18:06	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Lab Sample ID: 880-40887-2

Matrix: Water

Date Collected: 03/14/24 10:42 Date Received: 03/15/24 08:55

Client Sample ID: TMW-2

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/19/24 22:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/19/24 22:13	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	75765	03/15/24 18:12	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: TMW-3 Lab Sample ID: 880-40887-3

Matrix: Water

Date Collected: 03/14/24 10:20 Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/19/24 22:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/19/24 22:33	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	75765	03/15/24 18:18	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: TMW-4 Lab Sample ID: 880-40887-4

Date Collected: 03/14/24 12:49 **Matrix: Water** Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/19/24 22:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/19/24 22:54	SM	EET MID
Total/NA	Analysis	300.0		20	10 mL	10 mL	75765	03/15/24 18:24	СН	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: TMW-5 Lab Sample ID: 880-40887-5

Date Collected: 03/14/24 13:03 **Matrix: Water** Date Received: 03/15/24 08:55

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/19/24 23:14	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/19/24 23:14	SM	EET MID
Total/NA	Analysis	300.0		50	10 mL	10 mL	75765	03/15/24 18:30	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Job ID: 880-40887-1 SDG: 19-01112-49

Project/Site: EBDU #37

Lab Sample ID: 880-40887-6

Client Sample ID: TMW-6 Date Collected: 03/14/24 13:16

Matrix: Water

Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/19/24 23:35	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/19/24 23:35	SM	EET MID
Total/NA	Analysis	300.0		50	10 mL	10 mL	75765	03/15/24 18:49	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Lab Sample ID: 880-40887-7 **Matrix: Water**

Date Collected: 03/14/24 12:35 Date Received: 03/15/24 08:55

Client Sample ID: TMW-7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/19/24 23:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/19/24 23:55	SM	EET MID
Total/NA	Analysis	300.0		50	10 mL	10 mL	75765	03/15/24 18:55	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: TMW-8 Lab Sample ID: 880-40887-8

Matrix: Water

Date Collected: 03/14/24 11:00 Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/20/24 00:16	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/20/24 00:16	SM	EET MID
Total/NA	Analysis	300.0		20	10 mL	10 mL	75765	03/15/24 19:13	СН	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: TMW-9 Lab Sample ID: 880-40887-9 Date Collected: 03/14/24 10:03

Date Received: 03/15/24 08:55

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/20/24 00:36	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/20/24 00:36	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	75765	03/15/24 19:20	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: TMW-10 Lab Sample ID: 880-40887-10 Date Collected: 03/14/24 09:44 **Matrix: Water**

Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/20/24 00:57	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/20/24 00:57	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	75765	03/15/24 19:26	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Job ID: 880-40887-1

SDG: 19-01112-49

Client Sample ID: TMW-11

Date Received: 03/15/24 08:55

Lab Sample ID: 880-40887-11 Date Collected: 03/14/24 11:14

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 8021B 75949 Total/NA Analysis 5 mL 5 mL 03/20/24 02:20 MNR **EET MID** Total/NA Analysis Total BTEX 1 76087 03/20/24 02:20 SM **EET MID** Total/NA 300.0 10 75765 03/15/24 19:32 СН **EET MID** Analysis 10 mL 10 mL 03/15/24 20:09 Total/NA Analysis SM 2540C 100 mL 200 mL 75768 SMC EET MID

Client Sample ID: TMW-12 Lab Sample ID: 880-40887-12 Date Collected: 03/14/24 11:30

Matrix: Water

Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/20/24 02:41	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/20/24 02:41	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	75765	03/15/24 19:38	CH	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: TMW-13 Lab Sample ID: 880-40887-13

Date Collected: 03/14/24 13:29 **Matrix: Water**

Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/20/24 03:01	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/20/24 03:01	SM	EET MID
Total/NA	Analysis	300.0		50	10 mL	10 mL	75765	03/15/24 19:44	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: Windmill Lab Sample ID: 880-40887-14 Date Collected: 03/14/24 09:30 **Matrix: Water**

Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/20/24 03:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/20/24 03:22	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	75765	03/15/24 19:50	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Client Sample ID: Dup-01 Lab Sample ID: 880-40887-15

Date Collected: 03/14/24 00:00 **Matrix: Water** Date Received: 03/15/24 08:55

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	75949	03/20/24 03:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76087	03/20/24 03:42	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	75676	03/19/24 08:16	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	75768	03/15/24 20:09	SMC	EET MID

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Lab Chronicle

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-40887-1 SDG: 19-01112-49

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Job ID: 880-40887-1 Project/Site: EBDU #37 SDG: 19-01112-49

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date 06-30-24	
Texas	NELAF)	T104704400-23-26		
The following analytes	are included in this report hu	it the laboratory is not certif	ied by the governing authority. This lies	t may include analyte	
,	are included in this report, bu ses not offer certification.	It the laboratory is not certif	ied by the governing authority. This lis	t may include analyte	
,	• •	it the laboratory is not certif Matrix	ied by the governing authority. This lis	t may include analyte	

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-40887-1

SDG: 19-01112-49

,- U	ı	ı	12-49	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET MID
5030B	Purge and Trap	SW846	EET MID

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

__

6

9

10

46

13

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-40887-1 SDG: 19-01112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-40887-1	TMW-1	Water	03/14/24 09:54	03/15/24 08:55
880-40887-2	TMW-2	Water	03/14/24 10:42	03/15/24 08:55
880-40887-3	TMW-3	Water	03/14/24 10:20	03/15/24 08:55
880-40887-4	TMW-4	Water	03/14/24 12:49	03/15/24 08:55
880-40887-5	TMW-5	Water	03/14/24 13:03	03/15/24 08:55
880-40887-6	TMW-6	Water	03/14/24 13:16	03/15/24 08:55
880-40887-7	TMW-7	Water	03/14/24 12:35	03/15/24 08:55
880-40887-8	TMW-8	Water	03/14/24 11:00	03/15/24 08:55
880-40887-9	TMW-9	Water	03/14/24 10:03	03/15/24 08:55
880-40887-10	TMW-10	Water	03/14/24 09:44	03/15/24 08:55
880-40887-11	TMW-11	Water	03/14/24 11:14	03/15/24 08:55
880-40887-12	TMW-12	Water	03/14/24 11:30	03/15/24 08:55
880-40887-13	TMW-13	Water	03/14/24 13:29	03/15/24 08:55
880-40887-14	Windmill	Water	03/14/24 09:30	03/15/24 08:55
880-40887-15	Dup-01	Water	03/14/24 00:00	03/15/24 08:55

Л

5

Ω

9

10

12

13

3/14/2024		
PAG	CHAIN-OF-CUSTODY	001
, atura	CUSTODY	
	S	2
	7	
-	9	
3/	22/2	02

LABORATORY Xenco	RELINQUISHED BY (Signature)	RELINQUISHED BY (Signature)	KEZINOUSHE DE CHOTO	TOTAL 14		Windmill	true -13	Theore	TMW-!	7 mw -10	tmw= a	TMW-8	Thus -)	Two-C	Tru - 5	Tuw-4	Tww-3	Trant	TMW-1	Field Sample I D La	NST/NM	TIME ZONE Time zone/State	TRRP report? Yes Anno A=AIR	Data Reported to Man	Environmental Consultants	SCOCIOTOS SCOCIOTOS	1
					H	0.0	1329	//30	1111	6	10				/3	/2	10	_	3/14/24/09	Lab# Date 1			S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR OT=OTHER	we lawson/	insultants		
	DATE/TIME	DATE/TIME	DATE/TIME 1/5 05%			0930 1	2	80	h.	6944	1603	1100	1235	13/6	/303	1249	1010	1044	0954 W	Time Matrix)GE ER	Robert N			7
	RECEIVED BY (Signature)	RECEIVED BY (Signature)	RECEIVED BY (Signature)			7 1 1													ケ × ×	# of Co HCI HNO ₃ H ₂ SO ₄ ICE UNPRE	□ N ESSI	IaOH C		rison	432-687-0901	Midland IX 79701	17 NI MAGRICONTOIN CTO 200
	2 DAY 🗌 OTHER 🗍	1 DAY	TURN AROUND TIME						L I I I I I I I														Tropic Control	LAI PROJECT# 19-0112	PROJECT LOCATION OR NAME	PO#	DATE 3/14/12014
HAND DELIVERED		CUSTODY SEALS. THERM# 1001 USED	LABORATORY USE ONLY:			\$									CD Ex	. 6-00		2141	×								PAGE__OF_\

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-40887-1

SDG Number: 19-01112-49

Login Number: 40887 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Received extra samples not listed on COC.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

3

J

4

6

0

IU

12

13

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 3/27/2024 10:54:02 AM

JOB DESCRIPTION

EDBU #37 19-0112-49

JOB NUMBER

880-40975-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 3/27/2024 10:54:02 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

14

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central 4.C, a company within Eurofins Environment Testing Group of Companies
Page 2 of 26
3/27/2024

Client: Larson & Associates, Inc.
Project/Site: EDBU #37

Laboratory Job ID: 880-40975-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	19
Certification Summary	22
Method Summary	23
Sample Summary	24
Chain of Custody	25
Receipt Checklists	26

Eurofins Midland 3/27/2024

Definitions/Glossary

Job ID: 880-40975-1 Client: Larson & Associates, Inc. Project/Site: EDBU #37 SDG: 19-0112-49

Qualifiers

GC VOA

Qualifier **Qualifier Description** S1-Surrogate recovery exceeds control limits, low biased. U Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **PQL Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project: EDBU #37

Job ID: 880-40975-1

Job ID: 880-40975-1

Eurofins Midland

Job Narrative 880-40975-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/18/2024 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.3°C.

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-76563/8). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 880-76122 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

TMW-14 (880-40975-1), TMW-15 (880-40975-2), TMW-16 (880-40975-3), TMW-17 (880-40975-4), TMW-18 (880-40975-5), TMW-19 (880-40975-6), TMW-20 (880-40975-7), TMW-21 (880-40975-8), TMW-22 (880-40975-9), TMW-23 (880-40975-10), (880-40975-B-1 MS) and (880-40975-B-1 MSD)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

2

3

4

6

_

9

11

13

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1

SDG: 19-0112-49

Client Sample ID: TMW-14

Date Collected: 03/15/24 09:09 Date Received: 03/18/24 09:00

Lab Sample ID: 880-40975-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 12:18	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 12:18	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 12:18	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 12:18	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 12:18	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 12:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130		-		03/26/24 12:18	1
1,4-Difluorobenzene (Surr)	81		70 - 130				03/26/24 12:18	1
., ()	01		70 - 700				05/20/24 12.10	,
Method: TAL SOP Total BTEX -		culation	70 - 700				00/20/24 72.70	,
- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Total BTEX Cald	culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX -	Total BTEX Cald	Qualifier		Unit mg/L	<u>D</u> .	Prepared		·
Method: TAL SOP Total BTEX - Analyte	Total BTEX Calc Result <0.00400	Qualifier U	RL		<u>D</u> .	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: EPA 300.0 - Anions, Ior	Total BTEX Calc Result <	Qualifier U	RL		D .	Prepared Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX	Total BTEX Calc Result <	Qualifier U Dhy Qualifier	RL 0.00400	mg/L			Analyzed 03/26/24 12:18	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: EPA 300.0 - Anions, Ior Analyte	Total BTEX Calc Result <0.00400 n Chromatograp Result	Qualifier U Dhy Qualifier		mg/L Unit			Analyzed 03/26/24 12:18 Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: EPA 300.0 - Anions, lor Analyte Chloride	Total BTEX Calc Result <0.00400 Chromatograp Result 1810	Qualifier U Dhy Qualifier		mg/L Unit			Analyzed 03/26/24 12:18 Analyzed	Dil Fac

Client Sample ID: TMW-15 Lab Sample ID: 880-40975-2 Date Collected: 03/15/24 09:30

Date Received: 03/18/24 09:00

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L		· · · · · · · · · · · · · · · · · · ·	03/26/24 12:45	
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 12:45	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 12:45	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 12:45	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 12:45	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 12:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130		-		03/26/24 12:45	1
1,4-Difluorobenzene (Surr)	79		70 - 130				03/26/24 12:45	1

Allalyte	Result	Qualifier	NL.	Oilit		riepaieu	Allalyzeu	DII Fac
Total BTEX	<0.00400	U	0.00400	mg/L			03/26/24 12:45	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	hy						
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2160		25.0	mg/L			03/20/24 17:38	50
General Chemistry								
General Chemistry								

Result Qualifier Unit Prepared Analyzed Dil Fac Total Dissolved Solids (SM 2540C) 3400 200 mg/L 03/19/24 18:00

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

SDG: 19-0112-49

Job ID: 880-40975-1

Client Sample ID: TMW-16

Date Collected: 03/15/24 10:15 Date Received: 03/18/24 09:00

Lab Sample ID: 880-40975-3

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 13:12	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 13:12	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 13:12	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 13:12	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 13:12	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 13:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130		-		03/26/24 13:12	1
1,4-Difluorobenzene (Surr)	84		70 - 130				03/26/24 13:12	1
Method: TAL SOP Total RTEX - To	ntal RTFX Cald	culation						
Method: TAL SOP Total BTEX - To Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unitmg/L	<u>D</u> -	Prepared	Analyzed 03/26/24 13:12	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u>D</u> -	Prepared	- <u> </u>	Dil Fac
Analyte	Result <0.00400	Qualifier U			<u>D</u> _	Prepared Prepared	- <u> </u>	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U	0.00400	mg/L	- -		03/26/24 13:12	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit	- -		03/26/24 13:12 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 43.0	Qualifier U	0.00400	mg/L Unit	- -		03/26/24 13:12 Analyzed	Dil Fac Dil Fac 5

Client Sample ID: TMW-17 Lab Sample ID: 880-40975-4 **Matrix: Water** Date Collected: 03/15/24 10:00

Date Received: 03/18/24 09:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 13:39	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 13:39	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 13:39	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 13:39	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 13:39	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 13:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130		-		03/26/24 13:39	1
1,4-Difluorobenzene (Surr)	85		70 - 130				03/26/24 13:39	1
Method: TAL SOP Total BTEX - To	otal RTFY Cale	culation						
Method. IAL SOF Idial BILA - IC	otal BIER Gal	Julution						
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.00400	Unit mg/L	<u>D</u>	Prepared	Analyzed 03/26/24 13:39	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u>D</u> -	Prepared		Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U			D -	Prepared Prepared		Dil Fac Dil Fac
Analyte	Result <0.00400	Qualifier U	0.00400	mg/L		•	03/26/24 13:39	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		•	03/26/24 13:39 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result 5680	Qualifier U	0.00400 RL	mg/L Unit		•	03/26/24 13:39 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1 SDG: 19-0112-49

Client Sample ID: TMW-18

Date Collected: 03/15/24 09:40 Date Received: 03/18/24 09:00 Lab Sample ID: 880-40975-5

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 14:06	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 14:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 14:06	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 14:06	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 14:06	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 14:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130		-		03/26/24 14:06	1
			70 400				00/00/04 44 00	
1,4-Difluorobenzene (Surr)	94		70 - 130				03/26/24 14:06	1
-		culation	70 - 130				03/26/24 14:06	7
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation Qualifier	70 - 130 RL	Unit	D	Prepared	03/26/24 14:06 Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Total BTEX Total BTEX	otal BTEX Cald	Qualifier		Unit mg/L	<u>D</u> -	Prepared		•
Method: TAL SOP Total BTEX - To Analyte	Cotal BTEX Calc Result <0.00400	Qualifier U	RL		<u>D</u> -	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX Total BTEX Method: EPA 300.0 - Anions, Ion	cotal BTEX Calc Result <0.00400	Qualifier U	RL		D -	Prepared Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX Total BTEX	cotal BTEX Calc Result <0.00400	Qualifier U	RL	mg/L			Analyzed 03/26/24 14:06	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	cotal BTEX Calc Result <0.00400 Chromatograp Result	Qualifier U		mg/L Unit			Analyzed 03/26/24 14:06 Analyzed	Dil Fac Dil Fac
Method: TAL SOP Total BTEX - Total BTEX Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	cotal BTEX Calc Result <0.00400 Chromatograp Result 908	Qualifier U		mg/L Unit			Analyzed 03/26/24 14:06 Analyzed	Dil Fac Dil Fac

Client Sample ID: TMW-19 Lab Sample ID: 880-40975-6 Date Collected: 03/15/24 10:35 Matrix: Water

Date Received: 03/18/24 09:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 14:32	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 14:32	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 14:32	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 14:32	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 14:32	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 14:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130		-		03/26/24 14:32	1
1,4-Difluorobenzene (Surr)	82		70 - 130				03/26/24 14:32	1
-	~-						00/20/24 14.02	,
		culation					00/20/24 14.52	,
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX	Total BTEX Cald	Qualifier		Unit mg/L	D -	Prepared		,
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX	Total BTEX Calc Result <0.00400	Qualifier U	RL		<u>D</u> _	Prepared	Analyzed	,
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Fotal BTEX Calc Result <0.00400 Chromatograp	Qualifier U	RL		D .	Prepared Prepared	Analyzed	,
Method: TAL SOP Total BTEX - 1 Analyte	Fotal BTEX Calc Result <0.00400 Chromatograp	Qualifier U	RL 0.00400	mg/L		·	Analyzed 03/26/24 14:32	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Fotal BTEX Calc Result <0.00400 Chromatograp Result	Qualifier U		mg/L Unit		·	Analyzed 03/26/24 14:32 Analyzed	Dil Fac Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 553	Qualifier U		mg/L Unit		·	Analyzed 03/26/24 14:32 Analyzed	Dil Fac Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Date Received: 03/18/24 09:00

Job ID: 880-40975-1 SDG: 19-0112-49

Lab Sample ID: 880-40975-7

Client Sample ID: TMW-20 Date Collected: 03/15/24 12:15

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 14:59	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 14:59	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 14:59	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 14:59	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 14:59	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 14:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130		-		03/26/24 14:59	1
1,4-Difluorobenzene (Surr)	82		70 - 130				03/26/24 14:59	1
-	02		70 - 700				03/20/27 17.03	,
Method: TAL SOP Total BTEX - 1		culation	70 - 700				03/20/24 14.09	,
- ' -	Total BTEX Cald	culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	Qualifier		Unit mg/L	D .	Prepared		,
Method: TAL SOP Total BTEX - 1 Analyte	Total BTEX Calc Result <0.00400	Qualifier U	RL		<u>D</u> .	Prepared	Analyzed	,
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Fotal BTEX Calc Result <0.00400 Chromatograp	Qualifier U	RL		D .	Prepared Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX	Fotal BTEX Calc Result <0.00400 Chromatograp	Qualifier U	RL 0.00400	mg/L		•	Analyzed 03/26/24 14:59	Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp	Qualifier U		mg/L Unit		•	Analyzed 03/26/24 14:59 Analyzed	Dil Fac Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 385	Qualifier U		mg/L Unit		•	Analyzed 03/26/24 14:59 Analyzed	Dil Fac Dil Fac

Client Sample ID: TMW-21 Lab Sample ID: 880-40975-8 Date Collected: 03/15/24 12:29 Matrix: Water

Date Received: 03/18/24 09:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 15:26	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 15:26	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 15:26	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 15:26	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 15:26	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 15:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130		-		03/26/24 15:26	1
1,4-Difluorobenzene (Surr)	89		70 - 130				03/26/24 15:26	1
- Method: TAL SOP Total BTEX - '	Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total BTEX	Result < 0.00400		RL 0.00400	Mg/L	<u>D</u> .	Prepared	Analyzed 03/26/24 15:26	Dil Fac
Total BTEX	<0.00400	U			<u>D</u> -	Prepared		Dil Fac
Total BTEX Method: EPA 300.0 - Anions, Ior	<0.00400	U			D -	Prepared Prepared		Dil Fac Dil Fac
	<0.00400	U Dhy	0.00400	mg/L		·	03/26/24 15:26	1
Total BTEX Method: EPA 300.0 - Anions, Ior Analyte Chloride	<0.00400 n Chromatograp Result	U Dhy	0.00400 RL	mg/L Unit		·	03/26/24 15:26 Analyzed	1 Dil Fac
Total BTEX Method: EPA 300.0 - Anions, Ior Analyte	<0.00400 n Chromatograp Result 310	U Dhy	0.00400 RL	mg/L Unit		·	03/26/24 15:26 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1

SDG: 19-0112-49

Client Sample ID: TMW-22

Date Collected: 03/15/24 13:30 Date Received: 03/18/24 09:00

Lab Sample ID: 880-40975-9

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 15:53	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 15:53	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 15:53	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 15:53	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 15:53	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 15:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130		_		03/26/24 15:53	1
1,4-Difluorobenzene (Surr)	94		70 - 130				03/26/24 15:53	1
_								
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - T Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> _	Prepared	Analyzed 03/26/24 15:53	Dil Fac
Analyte	<0.00400	Qualifier U			D -	Prepared	. <u> </u>	
Analyte Total BTEX	Result <0.00400 Chromatograp	Qualifier U			<u>D</u> _	Prepared Prepared	. <u> </u>	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		·	03/26/24 15:53	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L		·	03/26/24 15:53 Analyzed	
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 342	Qualifier U	0.00400 RL	mg/L		·	03/26/24 15:53 Analyzed	1 Dil Fac

Client Sample ID: TMW-23 Lab Sample ID: 880-40975-10

Date Collected: 03/15/24 12:00

Date Received: 03/18/24 09:00

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 16:20	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 16:20	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 16:20	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 16:20	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 16:20	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 16:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130		-		03/26/24 16:20	1
1,4-Difluorobenzene (Surr)	85		70 - 130				03/26/24 16:20	1
-								
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation						
		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX		Qualifier	RL	Unitmg/L	<u>D</u> _	Prepared	Analyzed 03/26/24 16:20	Dil Fac
Analyte	Result <0.00400	Qualifier U			<u> </u>	Prepared		
Analyte Total BTEX	Result <0.00400	Qualifier U			D -	Prepared Prepared		
Analyte Total BTEX Method: EPA 300.0 - Anions, lor	Result <0.00400	Qualifier U	0.00400	mg/L		·	03/26/24 16:20	1
Analyte Total BTEX Method: EPA 300.0 - Anions, lor Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		·	03/26/24 16:20 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, lor Analyte Chloride	Result -0.00400 1 Chromatograp Result 1020	Qualifier U	0.00400 RL	mg/L Unit		·	03/26/24 16:20 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

SDG: 19-0112-49

Job ID: 880-40975-1

Client Sample ID: TMW-24

Lab Sample ID: 880-40975-11

Matrix: Water

Date Collected: 03/15/24 11:45 Date Received: 03/18/24 09:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 18:08	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 18:08	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 18:08	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 18:08	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 18:08	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 18:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130		-		03/26/24 18:08	1
1,4-Difluorobenzene (Surr)	89		70 - 130				03/26/24 18:08	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - T Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unit mg/L	<u>D</u> _	Prepared	Analyzed 03/26/24 18:08	Dil Fac
Analyte	Result < 0.00400	Qualifier U			D _	Prepared	- <u> </u>	
Analyte Total BTEX	Result <0.00400 Chromatograp	Qualifier U			D -	Prepared Prepared	- <u> </u>	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		·	03/26/24 18:08	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		·	03/26/24 18:08 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 330	Qualifier U	0.00400	mg/L Unit		·	03/26/24 18:08 Analyzed	

Client Sample ID: Dup-2 Lab Sample ID: 880-40975-12 Date Collected: 03/15/24 00:00

Date Received: 03/18/24 09:00

Matrix: Water

Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00200	U	0.00200	mg/L			03/26/24 18:33	1
<0.00200	U	0.00200	mg/L			03/26/24 18:33	1
<0.00200	U	0.00200	mg/L			03/26/24 18:33	1
<0.00400	U	0.00400	mg/L			03/26/24 18:33	1
<0.00200	U	0.00200	mg/L			03/26/24 18:33	1
<0.00400	U	0.00400	mg/L			03/26/24 18:33	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
87		70 - 130		-		03/26/24 18:33	1
85		70 - 130				03/26/24 18:33	1
<0.00400	Qualifier U		Unit ma/L	D	Prepared	Analyzed 03/26/24 18:33	Dil Fac
<0.00400	U	0.00400	mg/L			03/26/24 18:33	1
<0.00400 hromatograp Result	U	0.00400 RL	mg/L Unit	D -	Prepared Prepared	03/26/24 18:33 Analyzed	Dil F
<0.00400 Chromatograp Result 1330	U	0.00400	mg/L			03/26/24 18:33	Dil Fac
	<0.00200 <0.00200 <0.00400 <0.00200 <0.00400 %Recovery 87 85	<0.00200 U <0.00200 U <0.00400 U <0.00200 U <0.00400 U <0.00400 U %Recovery Qualifier 87	<0.00200 U 0.00200 <0.00200 U 0.00200 <0.00400 U 0.00400 <0.00200 U 0.00200 <0.00400 U 0.00400 **Recovery Qualifier Limits 87 70 - 130 85 70 - 130	<0.00200	<0.00200	<0.00200	<0.00200

Surrogate Summary

Client: Larson & Associates, Inc. Job ID: 880-40975-1 Project/Site: EDBU #37 SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-40975-1	TMW-14	82	81	
880-40975-1 MS	TMW-14	85	94	
880-40975-1 MSD	TMW-14	84	75	
880-40975-2	TMW-15	86	79	
880-40975-3	TMW-16	91	84	
880-40975-4	TMW-17	89	85	
880-40975-5	TMW-18	99	94	
880-40975-6	TMW-19	87	82	
880-40975-7	TMW-20	86	82	
880-40975-8	TMW-21	92	89	
880-40975-9	TMW-22	95	94	
880-40975-10	TMW-23	93	85	
880-40975-11	TMW-24	90	89	
880-40975-12	Dup-2	87	85	
LCS 880-76563/3	Lab Control Sample	80	93	
LCSD 880-76563/4	Lab Control Sample Dup	83	92	
MB 880-76563/8	Method Blank	54 S1-	85	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Client: Larson & Associates, Inc. Project/Site: EDBU #37

Job ID: 880-40975-1

SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-76563/8

Matrix: Water

Analysis Batch: 76563

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MR						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			03/26/24 11:52	1
Toluene	<0.00200	U	0.00200	mg/L			03/26/24 11:52	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			03/26/24 11:52	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			03/26/24 11:52	1
o-Xylene	<0.00200	U	0.00200	mg/L			03/26/24 11:52	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			03/26/24 11:52	1

MB MB

MD MD

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	54	S1-	70 - 130	_		03/26/24 11:52	1
1,4-Difluorobenzene (Surr)	85		70 - 130			03/26/24 11:52	1

Lab Sample ID: LCS 880-76563/3

Matrix: Water

Analysis Batch: 76563

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1017 mg/L 102 70 - 130 Toluene 0.100 0.1065 mg/L 107 70 - 130 0.100 0.1016 Ethylbenzene mg/L 102 70 - 130 0.200 103 70 - 130 m,p-Xylenes 0.2051 mg/L 0.100 0.1056 106 70 - 130 o-Xylene mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	80		70 - 130
1,4-Difluorobenzene (Surr)	93		70 - 130

Lab Sample ID: LCSD 880-76563/4

Matrix: Water

Analysis Batch: 76563

Client Sample ID: L	ab Control Sample Dup
	Drop Type, Total/NA

Prep Type: Total/NA

	Spike	LCSD	LUSD				70KeC		KPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.08710		mg/L		87	70 - 130	15	20	
Toluene	0.100	0.09196		mg/L		92	70 - 130	15	20	
Ethylbenzene	0.100	0.08790		mg/L		88	70 - 130	14	20	
m,p-Xylenes	0.200	0.1814		mg/L		91	70 - 130	12	20	
o-Xylene	0.100	0.09050		mg/L		91	70 - 130	15	20	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	83		70 - 130
1.4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: 880-40975-1 MS

Client Sample ID: TMW-14 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 76563 %Rec Sample Sample Spike MS MS

Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits <0.00200 U 0.100 0.08796 87 70 - 130 Benzene mg/L Toluene <0.00200 U 0.100 0.09427 mg/L 94 70 - 130

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1

Prep Type: Total/NA

Client Sample ID: TMW-14

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-40975-1 MS **Matrix: Water**

Analysis Batch: 76563

	Sample	Sample	Spike	INIO	M2				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	<0.00200	U	0.100	0.08690		mg/L		87	70 - 130
m,p-Xylenes	<0.00400	U	0.200	0.1747		mg/L		87	70 - 130
o-Xylene	<0.00200	U	0.100	0.09102		mg/L		91	70 - 130
	***	***							
	MS	MS							

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	85	70 - 130
1,4-Difluorobenzene (Surr)	94	70 - 130

Lab Sample ID: 880-40975-1 MSD

Analysis Batch: 76563

Client Sample ID: TMW-14 **Matrix: Water** Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Result Qualifier Limits RPD Limit Analyte %Rec Unit Benzene <0.00200 U 0.100 0.07976 mg/L 79 70 - 130 10 25 <0.00200 U 70 - 130 Toluene 0.100 0.08910 mg/L 88 6 25 Ethylbenzene <0.00200 U 0.100 0.07970 80 70 - 130 9 25 mg/L <0.00400 U 0.200 70 - 130 25 m,p-Xylenes 0.1630 mg/L 82 <0.00200 U 0.100 0.08579 86 70 - 130 o-Xylene mg/L 6

MSD MSD

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	84		70 - 130
1,4-Difluorobenzene (Surr)	75		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-76122/3

Matrix: Water

Analysis Batch: 76122

MR MR

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.500	U	0.500	mg/L			03/20/24 15:35	1

Lab Sample ID: LCS 880-76122/4

Matrix: Water Analysis Batch: 76122

Analysis balcii. 70122									
	s	pike	LCS	LCS				%Rec	
Analyte	Ad	lded	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 	25.0	24.16		mg/L		97	90 - 110	

Lab Sample ID: LCSD 880-76122/5

Released to Imaging: 7/24/2024 4:45:59 PM

Matrix: Water

Analysis Batch: 76122									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	 25.0	24.18		mg/L		97	90 - 110		20

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-40975-1 MS Client Sample ID: TMW-14

Matrix: Water Prep Type: Total/NA

Analysis Batch: 76122

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits Chloride 1810 F1 1250 2879 F1 mg/L 85 90 - 110

Lab Sample ID: 880-40975-1 MSD Client Sample ID: TMW-14

Matrix: Water Prep Type: Total/NA

Analysis Batch: 76122

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Added Qualifier Analyte Result Unit D %Rec Limits RPD Limit Chloride 1810 F1 1250 2821 F1 mg/L 81 90 - 110

Lab Sample ID: MB 880-76126/3 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 76126

мв мв

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride <0.500 U 0.500 03/20/24 19:10 mg/L

Lab Sample ID: LCS 880-76126/4 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 76126

LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Chloride 25.0 24.61 90 - 110 mg/L

Lab Sample ID: LCSD 880-76126/5 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 76126

LCSD LCSD Spike %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 25.0 24.59 mg/L 98 90 - 110 20

Lab Sample ID: 880-40975-11 MS Client Sample ID: TMW-24 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 76126

Sample Sample Spike MS MS %Rec Result Qualifier Added Analyte Result Qualifier Unit D %Rec Limits Chloride 330 250 578.5 mg/L 90 - 110

Lab Sample ID: 880-40975-11 MSD Client Sample ID: TMW-24 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 76126

MSD MSD %Rec RPD Sample Sample Spike Result Qualifier Added Analyte Result Qualifier Limits RPD Limit Unit D %Rec Chloride 330 250 578.0 mg/L 99 90 - 110 20

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1

SDG: 19-0112-49

03/19/24 18:00

Method: SM 2540C - Solids, Total Dissolved (TDS)

<25.0 U

Lab Sample ID: MB 880-76041/1

Matrix: Water

Analysis Batch: 76041

Total Dissolved Solids

Analyte

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL Unit D Prepared Analyzed

mg/L

Lab Sample ID: LCS 880-76041/2 Client Sample ID: Lab Control Sample **Matrix: Water**

25.0

Prep Type: Total/NA

Analysis Batch: 76041

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 1000 983.0 mg/L 98 80 - 120

Lab Sample ID: LCSD 880-76041/3 Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 76041

LCSD LCSD %Rec RPD Spike Added Result Qualifier Unit D %Rec Limits **RPD** Limit

Total Dissolved Solids 1000 1020 102 80 - 120 mg/L

Lab Sample ID: 880-40975-1 DU Client Sample ID: TMW-14 Prep Type: Total/NA

Matrix: Water Analysis Batch: 76041

DU DU RPD Sample Sample

Result Qualifier Qualifier Limit Analyte Result Unit 2820 Total Dissolved Solids 2824 10 mg/L

Client Sample ID: TMW-24 Lab Sample ID: 880-40975-11 DU Prep Type: Total/NA

Matrix: Water

Analysis Batch: 76041

DU DU Sample Sample RPD Analyte Result Qualifier Result Qualifier Unit RPD Limit Total Dissolved Solids 1060 1091 mg/L 10

Eurofins Midland

Dil Fac

QC Association Summary

Client: Larson & Associates, Inc. Job ID: 880-40975-1 Project/Site: EDBU #37 SDG: 19-0112-49

GC VOA

Analysis Batch: 76563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40975-1	TMW-14	Total/NA	Water	8021B	_
880-40975-2	TMW-15	Total/NA	Water	8021B	
880-40975-3	TMW-16	Total/NA	Water	8021B	
880-40975-4	TMW-17	Total/NA	Water	8021B	
880-40975-5	TMW-18	Total/NA	Water	8021B	
880-40975-6	TMW-19	Total/NA	Water	8021B	
880-40975-7	TMW-20	Total/NA	Water	8021B	
880-40975-8	TMW-21	Total/NA	Water	8021B	
880-40975-9	TMW-22	Total/NA	Water	8021B	
880-40975-10	TMW-23	Total/NA	Water	8021B	
880-40975-11	TMW-24	Total/NA	Water	8021B	
880-40975-12	Dup-2	Total/NA	Water	8021B	
MB 880-76563/8	Method Blank	Total/NA	Water	8021B	
LCS 880-76563/3	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-76563/4	Lab Control Sample Dup	Total/NA	Water	8021B	
880-40975-1 MS	TMW-14	Total/NA	Water	8021B	
880-40975-1 MSD	TMW-14	Total/NA	Water	8021B	

Analysis Batch: 76704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-40975-1	TMW-14	Total/NA	Water	Total BTEX	-
880-40975-2	TMW-15	Total/NA	Water	Total BTEX	
880-40975-3	TMW-16	Total/NA	Water	Total BTEX	
880-40975-4	TMW-17	Total/NA	Water	Total BTEX	
880-40975-5	TMW-18	Total/NA	Water	Total BTEX	
880-40975-6	TMW-19	Total/NA	Water	Total BTEX	
880-40975-7	TMW-20	Total/NA	Water	Total BTEX	
880-40975-8	TMW-21	Total/NA	Water	Total BTEX	
880-40975-9	TMW-22	Total/NA	Water	Total BTEX	
880-40975-10	TMW-23	Total/NA	Water	Total BTEX	
880-40975-11	TMW-24	Total/NA	Water	Total BTEX	
880-40975-12	Dup-2	Total/NA	Water	Total BTEX	

HPLC/IC

Analysis Batch: 76122

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-40975-1	TMW-14	Total/NA	Water	300.0	
880-40975-2	TMW-15	Total/NA	Water	300.0	
880-40975-3	TMW-16	Total/NA	Water	300.0	
880-40975-4	TMW-17	Total/NA	Water	300.0	
880-40975-5	TMW-18	Total/NA	Water	300.0	
880-40975-6	TMW-19	Total/NA	Water	300.0	
880-40975-7	TMW-20	Total/NA	Water	300.0	
880-40975-8	TMW-21	Total/NA	Water	300.0	
880-40975-9	TMW-22	Total/NA	Water	300.0	
880-40975-10	TMW-23	Total/NA	Water	300.0	
MB 880-76122/3	Method Blank	Total/NA	Water	300.0	
LCS 880-76122/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-76122/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-40975-1 MS	TMW-14	Total/NA	Water	300.0	

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1 SDG: 19-0112-49

HPLC/IC (Continued)

Analysis Batch: 76122 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40975-1 MSD	TMW-14	Total/NA	Water	300.0	

Analysis Batch: 76126

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40975-11	TMW-24	Total/NA	Water	300.0	
880-40975-12	Dup-2	Total/NA	Water	300.0	
MB 880-76126/3	Method Blank	Total/NA	Water	300.0	
LCS 880-76126/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-76126/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-40975-11 MS	TMW-24	Total/NA	Water	300.0	
880-40975-11 MSD	TMW-24	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 76041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-40975-1	TMW-14	Total/NA	Water	SM 2540C	_
880-40975-2	TMW-15	Total/NA	Water	SM 2540C	
880-40975-3	TMW-16	Total/NA	Water	SM 2540C	
880-40975-4	TMW-17	Total/NA	Water	SM 2540C	
880-40975-5	TMW-18	Total/NA	Water	SM 2540C	
880-40975-6	TMW-19	Total/NA	Water	SM 2540C	
880-40975-7	TMW-20	Total/NA	Water	SM 2540C	
880-40975-8	TMW-21	Total/NA	Water	SM 2540C	
880-40975-9	TMW-22	Total/NA	Water	SM 2540C	
880-40975-10	TMW-23	Total/NA	Water	SM 2540C	
880-40975-11	TMW-24	Total/NA	Water	SM 2540C	
880-40975-12	Dup-2	Total/NA	Water	SM 2540C	
MB 880-76041/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-76041/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-76041/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-40975-1 DU	TMW-14	Total/NA	Water	SM 2540C	
880-40975-11 DU	TMW-24	Total/NA	Water	SM 2540C	

Job ID: 880-40975-1 SDG: 19-0112-49

Client Sample ID: TMW-14

Lab Sample ID: 880-40975-1

Date Collected: 03/15/24 09:09 Date Received: 03/18/24 09:00 Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 12:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 12:18	SM	EET MID
Total/NA	Analysis	300.0		50	10 mL	10 mL	76122	03/20/24 17:19	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Lab Sample ID: 880-40975-2

Matrix: Water

Date Collected: 03/15/24 09:30 Date Received: 03/18/24 09:00

Client Sample ID: TMW-15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 12:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 12:45	SM	EET MID
Total/NA	Analysis	300.0		50	10 mL	10 mL	76122	03/20/24 17:38	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Client Sample ID: TMW-16 Lab Sample ID: 880-40975-3

Matrix: Water

Date Collected: 03/15/24 10:15 Date Received: 03/18/24 09:00

Matrix. Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 13:12	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 13:12	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	76122	03/20/24 17:44	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Client Sample ID: TMW-17 Lab Sample ID: 880-40975-4

Date Collected: 03/15/24 10:00 Matrix: Water
Date Received: 03/18/24 09:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 13:39	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 13:39	SM	EET MID
Total/NA	Analysis	300.0		50	10 mL	10 mL	76122	03/20/24 18:02	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	10 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Client Sample ID: TMW-18 Lab Sample ID: 880-40975-5

Date Collected: 03/15/24 09:40

Date Received: 03/18/24 09:00

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 14:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 14:06	SM	EET MID
Total/NA	Analysis	300.0		20	10 mL	10 mL	76122	03/20/24 18:09	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Client: Larson & Associates, Inc. Project/Site: EDBU #37

Job ID: 880-40975-1 SDG: 19-0112-49

Client Sample ID: TMW-19

Date Received: 03/18/24 09:00

Lab Sample ID: 880-40975-6 Date Collected: 03/15/24 10:35

Matrix: Water

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 8021B 76563 Total/NA Analysis 5 mL 5 mL 03/26/24 14:32 MNR **EET MID** Total/NA Analysis Total BTEX 1 76704 03/26/24 14:32 SM **EET MID** Total/NA 300.0 10 10 mL 76122 03/20/24 18:15 SMC **EET MID** Analysis 10 mL 03/19/24 18:00 Total/NA Analysis SM 2540C 1 100 mL 200 mL 76041 SMC **EET MID**

Client Sample ID: TMW-20 Lab Sample ID: 880-40975-7 Date Collected: 03/15/24 12:15

Matrix: Water

Date Received: 03/18/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 14:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 14:59	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	76122	03/20/24 18:21	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Client Sample ID: TMW-21 Lab Sample ID: 880-40975-8

Matrix: Water

Date Collected: 03/15/24 12:29 Date Received: 03/18/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 15:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 15:26	SM	EET MID
Total/NA	Analysis	300.0		5	10 mL	10 mL	76122	03/20/24 18:27	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Client Sample ID: TMW-22 Lab Sample ID: 880-40975-9

Date Collected: 03/15/24 13:30 **Matrix: Water** Date Received: 03/18/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 15:53	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 15:53	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	76122	03/20/24 18:33	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Client Sample ID: TMW-23 Lab Sample ID: 880-40975-10

Date Collected: 03/15/24 12:00 **Matrix: Water** Date Received: 03/18/24 09:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 16:20	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 16:20	SM	EET MID
Total/NA	Analysis	300.0		20	10 mL	10 mL	76122	03/20/24 18:39	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: EDBU #37

245 0... 0... 0.0

Job ID: 880-40975-1 SDG: 19-0112-49

Client Sample ID: TMW-24

Lab Sample ID: 880-40975-11

Matrix: Water

Date Collected: 03/15/24 11:45 Date Received: 03/18/24 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 18:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 18:08	SM	EET MID
Total/NA	Analysis	300.0		10	10 mL	10 mL	76126	03/20/24 19:28	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Client Sample ID: Dup-2

Date Collected: 03/15/24 00:00

Date Received: 03/18/24 09:00

Lab Sample ID:	880-40975-12
	Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	76563	03/26/24 18:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			76704	03/26/24 18:33	SM	EET MID
Total/NA	Analysis	300.0		20	10 mL	10 mL	76126	03/20/24 19:47	SMC	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	76041	03/19/24 18:00	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1 SDG: 19-0112-49

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date 06-30-24	
Texas	NELA)	T104704400-23-26		
The fell and a second date					
i ne following analytes	are included in this report, bu	it the laboratory is not certi	fied by the governing authority. This lis	t may include analyt	
• •	are included in this report, bu oes not offer certification.	it the laboratory is not certi	fied by the governing authority. This lis	t may include analyt	
• •	•	it the laboratory is not certi Matrix	fied by the governing authority. This lis Analyte	t may include analyt	

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1

SDG: 19-0112-49

Laboratory	

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET MID
5030B	Purge and Trap	SW846	EET MID

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EDBU #37

Job ID: 880-40975-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-40975-1	TMW-14	Water	03/15/24 09:09	03/18/24 09:00
880-40975-2	TMW-15	Water	03/15/24 09:30	03/18/24 09:00
880-40975-3	TMW-16	Water	03/15/24 10:15	03/18/24 09:00
380-40975-4	TMW-17	Water	03/15/24 10:00	03/18/24 09:00
80-40975-5	TMW-18	Water	03/15/24 09:40	03/18/24 09:00
880-40975-6	TMW-19	Water	03/15/24 10:35	03/18/24 09:00
80-40975-7	TMW-20	Water	03/15/24 12:15	03/18/24 09:00
0-40975-8	TMW-21	Water	03/15/24 12:29	03/18/24 09:00
80-40975-9	TMW-22	Water	03/15/24 13:30	03/18/24 09:00
30-40975-10	TMW-23	Water	03/15/24 12:00	03/18/24 09:00
30-40975-11	TMW-24	Water	03/15/24 11:45	03/18/24 09:00
30-40975-12	Dup-2	Water	03/15/24 00:00	03/18/24 09:00

No. 3285

SLADH

CHAIN-OF-CUSTODY ☐ BROKEN JANTACT ☐ NOT USED TR8 , 10 Direct Bill to PAGE___OF__ FIELD NOTES RN +051 Mache LABORATORY USE ONLY, $3.4\sqrt{3.5}$ RECEIVING TEMP $3.4\sqrt{3.5}$ COLLECTOR LAB WORK ORDER# EBDu #3> W HAND DELIVERED CUSTODY SEALS -CARRIER BILL # 5h-t110-6 PROJECT LOCATION OR NAME **TURN AROUND TIME** 3/18/202-1 880-40975 Chain of Custody NORMAL 🗹 LAI PROJECT # OTHER 🗓 1 DAY 2 DAY 13 DATE #0d 507 N. Marienfeld, Ste. 202 Rignantine) RECEIVED BY (Signature) **PRESERVATION** NNPRESSERVED RECEIVED BY (Signature) Midland, TX 79701 432-687-0901 $\mathsf{ICE} X \mathcal{F}$ □ HO®N □ ¹OS³H RECEIVED BY EONH √> ıoн # of Containers Matrix 3/19 DATE/TIME DATE/TIME DATE/TIME 06730 6909 8 77/ 1015 000/ 6940 1330 Time 1035 SL=SLUDGE 1215 123 OT=OTHER P=PAINT 3/15/24 Date SSOCIATES, Inc. Environmental Consultants W=WATER S=SOIL SHED BY (Signature) RELINQUISHED BY (Signature) RELINQUISHED BY (Signature) A=AIR Lab# LABORATORY XENCO arson & Data Reported to いいてノグル True - 20 とかーかり Trum-27 TIME ZONE Time zone/State Thu-15 71- THE Page 2 12- Cury TRRP report? TALL - 14 25 mm 18 True - 23 17 mm -17 97m-18 Field Sample I D RELINO TOTAL

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-40975-1

SDG Number: 19-0112-49

Login Number: 40975 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

3

5

7

9

12

13

14

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 1/2/2024 8:18:03 AM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-37226-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 1/2/2024 8:18:03 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296 7 UJ 370

2

3

4

6

<u>۾</u>

4.6

4 4

12

14

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Laboratory Job ID: 880-37226-1

SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	16
QC Sample Results	17
QC Association Summary	21
Lab Chronicle	24
Certification Summary	28
Method Summary	29
Sample Summary	30
Chain of Custody	31
Receipt Checklists	33

2

3

4

6

0

10

12

13

14

Definitions/Glossary

Job ID: 880-37226-1 Client: Larson & Associates, Inc. Project/Site: EBDU #37 SDG: 19-0112-49

Qualifiers

GC VOA Qualifier

F2 MS/MSD RPD exceeds control limits

Qualifier Description

S1-Surrogate recovery exceeds control limits, low biased. U

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery Contains Free Liquid CFL Colony Forming Unit CFU **CNF** Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL Minimum Detectable Activity (Radiochemistry) MDA Minimum Detectable Concentration (Radiochemistry) MDC

MDI Method Detection Limit Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit **PQL**

PRFS Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project: EBDU #37

Job ID: 880-37226-1

Job ID: 880-37226-1

Eurofins Midland

Job Narrative 880-37226-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/21/2023 9:42 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 8.5°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: TMW-17 (880-37226-1), TMW-16 (880-37226-2), TMW-19 (880-37226-3), TMW-24 (880-37226-4), TMW-23 (880-37226-5), Windmill (880-37226-6), TMW-20 (880-37226-7), TMW-21 (880-37226-8), TMW-22 (880-37226-9), TMW-18 (880-37226-10), TMW-15 (880-37226-11), TMW-13 (880-37226-12), TMW-14 (880-37226-13), TMW-6 (880-37226-14), TMW-5 (880-37226-15), TMW-4 (880-37226-16), TMW-7 (880-37226-17), TMW-8 (880-37226-18) and Dup-1 (880-37226-19).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with analytical batch 880-69717 was outside the upper control

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 880-69667 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

Client Sample ID: TMW-17

Date Collected: 12/20/23 08:45 Date Received: 12/21/23 09:42 Lab Sample ID: 880-37226-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U F2	0.00200	mg/L			12/23/23 21:06	1
Toluene	<0.00200	U	0.00200	mg/L			12/23/23 21:06	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/23/23 21:06	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/23/23 21:06	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/23/23 21:06	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/23/23 21:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130		-		12/23/23 21:06	1
1,4-Difluorobenzene (Surr)	93		70 - 130				12/23/23 21:06	1
- Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - To Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	<mark>Unit</mark> mg/L	<u>D</u> .	Prepared	Analyzed 12/23/23 21:06	Dil Fac
Analyte	<0.00400	Qualifier U			<u>D</u> -	Prepared	. <u> </u>	Dil Fac
Analyte Total BTEX	Result <0.00400 Chromatograp	Qualifier U			<u>D</u> .	Prepared Prepared	. <u> </u>	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	12/23/23 21:06	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		•	12/23/23 21:06 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 5850	Qualifier U	0.00400	mg/L Unit		•	12/23/23 21:06 Analyzed	1 Dil Fac

Client Sample ID: TMW-16 Lab Sample ID: 880-37226-2

Date Collected: 12/20/23 08:59 Matrix: Water

Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/23/23 21:32	1
Toluene	<0.00200	U	0.00200	mg/L			12/23/23 21:32	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/23/23 21:32	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/23/23 21:32	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/23/23 21:32	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/23/23 21:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130		-		12/23/23 21:32	1
1,4-Difluorobenzene (Surr)	111		70 - 130				12/23/23 21:32	1
-								
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
		Culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX - Total BTEX Total BTEX		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> -	Prepared	Analyzed 12/23/23 21:32	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u> </u>	Prepared	- <u> </u>	
Analyte	Result <0.00400	Qualifier U			D -	Prepared Prepared	- <u> </u>	
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U	0.00400	mg/L		·	12/23/23 21:32	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		·	12/23/23 21:32 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 85.5	Qualifier U	0.00400 RL	mg/L Unit		·	12/23/23 21:32 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

SDG: 19-0112-49

Job ID: 880-37226-1

Client Sample ID: TMW-19

Lab Sample ID: 880-37226-3

Date Collected: 12/20/23 09:20 Date Received: 12/21/23 09:42

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/23/23 21:58	1
Toluene	<0.00200	U	0.00200	mg/L			12/23/23 21:58	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/23/23 21:58	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/23/23 21:58	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/23/23 21:58	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/23/23 21:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130		-		12/23/23 21:58	1
1,4-Difluorobenzene (Surr)	90		70 - 130				12/23/23 21:58	1
-								
Method: TAL SOP Total BTEX - T		culation	70 - 700				, = = 0, = 0 = 1.100	,
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
- '	otal BTEX Cald	Qualifier		Unit mg/L	<u>D</u> -	Prepared		Dil Fac
Method: TAL SOP Total BTEX - T Analyte	Cotal BTEX Cald Result <	Qualifier U	RL		<u>D</u> _	Prepared	Analyzed	
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	cotal BTEX Calc Result <0.00400	Qualifier U	RL		D -	Prepared Prepared	Analyzed	
Method: TAL SOP Total BTEX - T Analyte Total BTEX	cotal BTEX Calc Result <0.00400	Qualifier U	RL 0.00400	mg/L		·	Analyzed 12/23/23 21:58	1
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	cotal BTEX Calc Result <0.00400 Chromatograp Result	Qualifier U	RL 0.00400	mg/L Unit		·	Analyzed 12/23/23 21:58 Analyzed	1 Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	cotal BTEX Calc Result <0.00400 Chromatograp Result 927	Qualifier U	RL 0.00400	mg/L Unit		·	Analyzed 12/23/23 21:58 Analyzed	1 Dil Fac

Client Sample ID: TMW-24 Lab Sample ID: 880-37226-4 Date Collected: 12/20/23 09:35 **Matrix: Water**

Date Received: 12/21/23 09:42

Released to Imaging: 7/24/2024 4:45:59 PM

Analyte

Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier Analyte RL Unit D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 mg/L 12/23/23 22:24 Toluene <0.00200 U 0.00200 12/23/23 22:24 mg/L Ethylbenzene <0.00200 U 0.00200 mg/L 12/23/23 22:24 mg/L 12/23/23 22:24 m,p-Xylenes <0.00400 U 0.00400 12/23/23 22:24 o-Xylene <0.00200 U 0.00200 mg/L <0.00400 U 12/23/23 22:24 Xylenes, Total 0.00400 mg/L Qualifier Dil Fac Surrogate %Recovery Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 129 70 - 130 12/23/23 22:24 1,4-Difluorobenzene (Surr) 71 70 - 130 12/23/23 22:24 Method: TAL SOP Total BTEX - Total BTEX Calculation

Total BTEX	<0.00400	U	0.00400	mg/L		12/23/23 22:24	1
Method:	EPA 300.0 - Anions, Ion Chromatogra	phy					
Analyte	Result	Qualifier	RL	Unit [Prepared	Analyzed	Dil Fac
Chloride	271		5.00	mg/L		12/23/23 00:46	10

RL

Unit

D

Prepared

General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1050	50.0	mg/L			12/22/23 12:48	1

Eurofins Midland

Analyzed

Dil Fac

Result Qualifier

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

SDG: 19-0112-49

Job ID: 880-37226-1

Client Sample ID: TMW-23

Lab Sample ID: 880-37226-5

Date Collected: 12/20/23 09:45 Date Received: 12/21/23 09:42 **Matrix: Water**

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/23/23 22:51	1
Toluene	<0.00200	U	0.00200	mg/L			12/23/23 22:51	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/23/23 22:51	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/23/23 22:51	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/23/23 22:51	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/23/23 22:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130		_		12/23/23 22:51	1
1,4-Difluorobenzene (Surr)	90		70 - 130				12/23/23 22:51	1
- Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - T Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> _	Prepared	Analyzed 12/23/23 22:51	Dil Fac
Analyte	Result < 0.00400	Qualifier U			<u> </u>	Prepared	<u>-</u>	Dil Fac
Analyte Total BTEX	Result <0.00400	Qualifier U			D -	Prepared Prepared	<u>-</u>	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U	0.00400	mg/L		·	12/23/23 22:51	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		·	12/23/23 22:51 Analyzed	Dil Fac Dil Fac 20
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 895	Qualifier U	0.00400	mg/L Unit		·	12/23/23 22:51 Analyzed	1 Dil Fac

Client Sample ID: Windmill Lab Sample ID: 880-37226-6 Date Collected: 12/20/23 09:15 Matrix: Water

Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/23/23 23:17	1
Toluene	<0.00200	U	0.00200	mg/L			12/23/23 23:17	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/23/23 23:17	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/23/23 23:17	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/23/23 23:17	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/23/23 23:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130		-		12/23/23 23:17	1
1,4-Difluorobenzene (Surr)	95		70 - 130				12/23/23 23:17	1
-								
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX Total BTEX		Qualifier	RL 0.00400	Unit mg/L	D	Prepared	Analyzed 12/23/23 23:17	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u>D</u> -	Prepared	- <u> </u>	
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U			D -	Prepared Prepared	- <u> </u>	
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	12/23/23 23:17	1
Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		•	12/23/23 23:17 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 409	Qualifier U	0.00400 RL	mg/L Unit		•	12/23/23 23:17 Analyzed	1 Dil Fac

Released to Imaging: 7/24/2024 4:45:59 PM

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

SDG: 19-0112-49

Lab Sample ID: 880-37226-7

Matrix: Water

Job ID: 880-37226-1

Client Sample ID: TMW-20 Date Collected: 12/20/23 10:14 Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/23/23 23:44	1
Toluene	<0.00200	U	0.00200	mg/L			12/23/23 23:44	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/23/23 23:44	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/23/23 23:44	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/23/23 23:44	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/23/23 23:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130		-		12/23/23 23:44	1
1,4-Difluorobenzene (Surr)	108		70 - 130				12/23/23 23:44	1
-								
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - To Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unit mg/L	<u>D</u> .	Prepared	Analyzed 12/23/23 23:44	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u>D</u> -	Prepared		
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U			D -	Prepared Prepared		
Analyte	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		·	12/23/23 23:44	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		·	12/23/23 23:44 Analyzed	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result 287	Qualifier U	0.00400	mg/L Unit		·	12/23/23 23:44 Analyzed	1 Dil Fac

Client Sample ID: TMW-21 Lab Sample ID: 880-37226-8 Matrix: Water

Date Collected: 12/20/23 10:30 Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 00:10	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 00:10	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 00:10	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 00:10	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 00:10	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 00:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130		-		12/24/23 00:10	1
1,4-Difluorobenzene (Surr)	85		70 - 130				12/24/23 00:10	1
_								
Method: TAL SOP Total BTEX - T	Total BTEX Cald	culation						
Method: TAL SOP Total BTEX - T Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unit mg/L	<u>D</u> .	Prepared	Analyzed 12/24/23 00:10	Dil Fac
Analyte Total BTEX	Result <0.00400	Qualifier U			<u>D</u> -	Prepared	. <u></u>	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U			D -	Prepared Prepared	. <u></u>	1
Analyte	Result <0.00400	Qualifier U	0.00400	mg/L		·	12/24/23 00:10	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit		·	12/24/23 00:10 Analyzed	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result 262	Qualifier U	0.00400	mg/L Unit		·	12/24/23 00:10 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

SDG: 19-0112-49

Job ID: 880-37226-1

Client Sample ID: TMW-22

Date Received: 12/21/23 09:42

Lab Sample ID: 880-37226-9 Date Collected: 12/20/23 10:44

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 00:36	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 00:36	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 00:36	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 00:36	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 00:36	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 00:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130		-		12/24/23 00:36	1
1,4-Difluorobenzene (Surr)	74		70 - 130				12/24/23 00:36	1
-								
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX		Qualifier	RL 0.00400	<mark>Unit</mark> mg/L	D -	Prepared	Analyzed 12/24/23 00:36	Dil Fac
Analyte Total BTEX	Result < 0.00400	Qualifier U			<u>D</u> -	Prepared	- <u> </u>	
Analyte	Result <0.00400	Qualifier U			D .	Prepared Prepared	- <u> </u>	
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400	Qualifier U	0.00400	mg/L	- -		12/24/23 00:36	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400	mg/L Unit	- -		12/24/23 00:36 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp Result 270	Qualifier U	0.00400	mg/L Unit	- -		12/24/23 00:36 Analyzed	1 Dil Fac

Lab Sample ID: 880-37226-10 **Client Sample ID: TMW-18** Date Collected: 12/20/23 11:25 Matrix: Water

Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 01:03	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 01:03	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 01:03	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 01:03	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 01:03	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 01:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121	-	70 - 130		-		12/24/23 01:03	1
1,4-Difluorobenzene (Surr)	103		70 - 130				12/24/23 01:03	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation						
Method: TAL SOP Total BTEX - T Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> _	Prepared	Analyzed 12/24/23 01:03	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u>D</u> -	Prepared	. <u> </u>	Dil Fac
Analyte	Result <0.00400 Chromatograp	Qualifier U			<u>D</u> _	Prepared Prepared	. <u> </u>	Dil Fac Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		·	12/24/23 01:03	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		·	12/24/23 01:03 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result 2050	Qualifier U	0.00400 RL	mg/L Unit		·	12/24/23 01:03 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

Client Sample ID: TMW-15 Date Collected: 12/20/23 11:42

Lab Sample ID: 880-37226-11

Date Received: 12/21/23 09:42

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 02:48	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 02:48	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 02:48	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 02:48	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 02:48	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 02:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130		-		12/24/23 02:48	1
1,4-Difluorobenzene (Surr)	70		70 - 130				12/24/23 02:48	1
=								
Method: TAL SOP Total BTEX - T	Total BTEX Cald	culation						
Method: TAL SOP Total BTEX - T Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier		Unit mg/L	<u>D</u> .	Prepared	Analyzed 12/24/23 02:48	Dil Fac
Analyte Total BTEX	Result <0.00400	Qualifier U			<u> </u>	Prepared	. <u> </u>	Dil Fac
Analyte	Result <0.00400	Qualifier U			D -	Prepared Prepared	. <u> </u>	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U Ohy Qualifier	0.00400	mg/L			12/24/23 02:48	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp Result	Qualifier U Ohy Qualifier	0.00400	mg/L Unit			12/24/23 02:48 Analyzed	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result 2120	Qualifier U Ohy Qualifier	0.00400	mg/L Unit			12/24/23 02:48 Analyzed	1 Dil Fac

Lab Sample ID: 880-37226-12 **Client Sample ID: TMW-13**

Date Collected: 12/20/23 12:16

Date Received: 12/21/23 09:42

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 03:15	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 03:15	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 03:15	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 03:15	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 03:15	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 03:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130		-		12/24/23 03:15	1
1,4-Difluorobenzene (Surr)	68	S1-	70 - 130				12/24/23 03:15	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			12/24/23 03:15	1
- Method: EPA 300.0 - Anions, I	on Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Midland

Analyzed

12/22/23 12:48

RL

200

Unit

mg/L

Prepared

Result Qualifier

3680

Dil Fac

General Chemistry

Total Dissolved Solids (SM 2540C)

Analyte

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1 SDG: 19-0112-49

Lab Sample ID: 880-37226-13

Client Sample ID: TMW-14 Date Collected: 12/20/23 12:00

Matrix: Water

Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 03:41	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 03:41	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 03:41	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 03:41	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 03:41	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 03:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130		-		12/24/23 03:41	1
	440		70 - 130				12/24/23 03:41	1
1,4-Difluorobenzene (Surr)	118		70 - 130				12/24/23 03.41	,
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - To		culation	70 - 130				12/24/23 03.41	,
-	otal BTEX Cald	culation Qualifier	70 - 730 RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - To	otal BTEX Cald	Qualifier		Unit mg/L	<u>D</u> -	Prepared		
Method: TAL SOP Total BTEX - To Analyte	otal BTEX Cald Result <0.00400	Qualifier U	RL		<u>D</u> -	Prepared	Analyzed	
Method: TAL SOP Total BTEX - Total BTEX Total BTEX Method: EPA 300.0 - Anions, Ion	otal BTEX Cald Result <0.00400 Chromatograp	Qualifier U	RL		D _	Prepared Prepared	Analyzed	
Method: TAL SOP Total BTEX - To Analyte Total BTEX	otal BTEX Cald Result <0.00400 Chromatograp	Qualifier U	RL	mg/L	- -	•	Analyzed 12/24/23 03:41	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	otal BTEX Calc Result <0.00400 Chromatograp Result	Qualifier U		mg/L Unit	- -	•	Analyzed 12/24/23 03:41 Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Total BTEX Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	otal BTEX Calc Result <0.00400 Chromatograp Result 2500	Qualifier U		mg/L Unit	- -	•	Analyzed 12/24/23 03:41 Analyzed	Dil Fac

Client Sample ID: TMW-6 Lab Sample ID: 880-37226-14 Date Collected: 12/20/23 12:30 Matrix: Water

Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 04:08	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 04:08	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 04:08	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 04:08	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 04:08	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 04:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130		-		12/24/23 04:08	1
1,4-Difluorobenzene (Surr)	85		70 - 130				12/24/23 04:08	1
Mathadi TAL COD Tatal DTEV T	otal PTEV Cale	culation						
Method: IAL SUP Total BTEX - IC	DIALDIEN CAR	Julation						
Method: TAL SOP Total BTEX - To Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total BTEX		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> .	Prepared	Analyzed 12/24/23 04:08	Dil Fac
Analyte Total BTEX	<0.00400	Qualifier U			<u> </u>	Prepared		Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400 Chromatograp	Qualifier U			D .	Prepared Prepared		Dil Fac Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400 Chromatograp	Qualifier U	0.00400	mg/L		•	12/24/23 04:08	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		•	12/24/23 04:08 Analyzed	1 Dil Fac
Analyte	Result <0.00400 Chromatograp Result 1570	Qualifier U	0.00400 RL	mg/L Unit		•	12/24/23 04:08 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Date Received: 12/21/23 09:42

Project/Site: EBDU #37

SDG: 19-0112-49

Client Sample ID: TMW-5 Lab Sample ID: 880-37226-15 Date Collected: 12/20/23 12:43

Matrix: Water

Job ID: 880-37226-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 04:34	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 04:34	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 04:34	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 04:34	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 04:34	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 04:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		70 - 130		-		12/24/23 04:34	1
1,4-Difluorobenzene (Surr)	100		70 - 130				12/24/23 04:34	1
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/L			12/24/23 04:34	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2320		25.0	mg/L			12/23/23 03:00	50
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	4250		200	mg/L			12/22/23 12:48	

Lab Sample ID: 880-37226-16 Client Sample ID: TMW-4 Date Collected: 12/20/23 13:00 **Matrix: Water**

Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 05:01	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 05:01	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 05:01	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 05:01	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 05:01	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 05:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130		_		12/24/23 05:01	1
1,4-Difluorobenzene (Surr)	121		70 - 130				12/24/23 05:01	1
	atal DTEV Cal	vulation						
Method: TAL SOP Total BTEX - T	Otal BIEX Cald	uiation						
Method: TAL SOP Total BTEX - Total Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX		Qualifier	RL 0.00400	Unit mg/L	<u>D</u> -	Prepared	Analyzed 12/24/23 05:01	Dil Fac
Analyte Total BTEX	Result <0.00400	Qualifier U			<u> </u>	Prepared		Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.00400	Qualifier U			D -	Prepared Prepared		Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result <0.00400	Qualifier U	0.00400	mg/L		·	12/24/23 05:01	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.00400 Chromatograp Result	Qualifier U	0.00400 RL	mg/L Unit		·	12/24/23 05:01 Analyzed	1 Dil Fac
Analyte	Result <0.00400 Chromatograp Result 598	Qualifier U	0.00400 RL	mg/L Unit		·	12/24/23 05:01 Analyzed	1 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1 SDG: 19-0112-49

Client Sample ID: TMW-7

Date Collected: 12/20/23 13:13 Date Received: 12/21/23 09:42 Lab Sample ID: 880-37226-17

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 05:27	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 05:27	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 05:27	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 05:27	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 05:27	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 05:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130		-		12/24/23 05:27	1
1,4-Difluorobenzene (Surr)	94		70 - 130				12/24/23 05:27	1
<u>-</u> ′ ′								
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation						
Method: TAL SOP Total BTEX - Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unit mg/L	<u>D</u> .	Prepared	Analyzed 12/24/23 05:27	Dil Fac
Analyte	Result < 0.00400	Qualifier U			<u>D</u> .	Prepared		Dil Fac
Analyte Total BTEX	Result < 0.00400 n Chromatograp	Qualifier U			D .	Prepared Prepared		Dil Fac Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, lo	Result < 0.00400 n Chromatograp	Qualifier U	0.00400	mg/L		•	12/24/23 05:27	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ionalyte	Result <0.00400 n Chromatograp Result	Qualifier U	0.00400	mg/L Unit		•	12/24/23 05:27 Analyzed	1 Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, los Analyte Chloride	Result <0.00400 n Chromatograp Result 1770	Qualifier U	0.00400	mg/L Unit		•	12/24/23 05:27 Analyzed	1 Dil Fac

Client Sample ID: TMW-8 Lab Sample ID: 880-37226-18 Date Collected: 12/20/23 13:32 Matrix: Water

Date Received: 12/21/23 09:42

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 05:54	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 05:54	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 05:54	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 05:54	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 05:54	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 05:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130		-		12/24/23 05:54	1
1,4-Difluorobenzene (Surr)	98		70 - 130				12/24/23 05:54	1
- Control of the cont	90		70 - 130				12/24/20 00:04	,
Method: TAL SOP Total BTEX - 1 Analyte	Fotal BTEX Cald	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX	Fotal BTEX Cald Result <0.00400	Qualifier U		Unit mg/L	<u> </u>	Prepared		Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Fotal BTEX Calc Result <	Qualifier U	RL	mg/L		·	Analyzed 12/24/23 05:54	1
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result < 0.00400 Chromatograp Result	Qualifier U	RL 0.00400	mg/L Unit	<u>D</u> .	Prepared Prepared	Analyzed 12/24/23 05:54 Analyzed	1 Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Fotal BTEX Calc Result <	Qualifier U	RL	mg/L		·	Analyzed 12/24/23 05:54	1 Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Result < 0.00400 Chromatograp Result	Qualifier U	RL 0.00400	mg/L Unit		·	Analyzed 12/24/23 05:54 Analyzed	1 Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Fotal BTEX Calc Result <	Qualifier U	RL 0.00400	mg/L Unit		·	Analyzed 12/24/23 05:54 Analyzed	Dil Fac Dil Fac 20 Dil Fac

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

Client Sample ID: Dup-1

Date Collected: 12/20/23 00:00 Date Received: 12/21/23 09:42 Lab Sample ID: 880-37226-19

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/23 06:20	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/23 06:20	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/23 06:20	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/23 06:20	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/23 06:20	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/23 06:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	116		70 - 130		-		12/24/23 06:20	1
4 4 Difference bearing (0)	102		70 - 130				12/24/23 06:20	1
1,4-Difiuoropenzene (Surr)	102		70 - 730				12/24/25 00.20	,
-		culation	70 - 130				12/24/23 00:20	ı
Method: TAL SOP Total BTEX - 1	otal BTEX Cald	culation Qualifier	70 - 730 RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte	otal BTEX Cald	Qualifier		Unit mg/L	D -	Prepared		Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX	Total BTEX Calc Result <0.00400	Qualifier U	RL		<u> </u>	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Fotal BTEX Calc Result <0.00400 Chromatograp	Qualifier U	RL		D .	Prepared Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Fotal BTEX Calc Result <0.00400 Chromatograp	Qualifier U	RL 0.00400	mg/L		•	Analyzed 12/24/23 06:20	1
Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp	Qualifier U		mg/L Unit		•	Analyzed 12/24/23 06:20 Analyzed	1 Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - 1 Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride General Chemistry Analyte	Chromatograp Result 5830	Qualifier U		mg/L Unit		•	Analyzed 12/24/23 06:20 Analyzed	1 Dil Fac

Surrogate Summary

Client: Larson & Associates, Inc. Job ID: 880-37226-1 Project/Site: EBDU #37 SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Water Prep Type: Total/NA

		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-37226-1	TMW-17	92	93
880-37226-1 MS	TMW-17	129	113
880-37226-1 MSD	TMW-17	108	111
880-37226-2	TMW-16	120	111
880-37226-3	TMW-19	95	90
880-37226-4	TMW-24	129	71
880-37226-5	TMW-23	108	90
880-37226-6	Windmill	114	95
880-37226-7	TMW-20	112	108
880-37226-8	TMW-21	107	85
880-37226-9	TMW-22	96	74
880-37226-10	TMW-18	121	103
880-37226-11	TMW-15	81	70
880-37226-12	TMW-13	123	68 S1-
880-37226-13	TMW-14	113	118
880-37226-14	TMW-6	103	85
880-37226-15	TMW-5	119	100
880-37226-16	TMW-4	114	121
880-37226-17	TMW-7	112	94
880-37226-18	TMW-8	101	98
880-37226-19	Dup-1	116	102
LCS 880-69717/3	Lab Control Sample	100	95
LCSD 880-69717/4	Lab Control Sample Dup	121	108
MB 880-69717/8	Method Blank	60 S1-	88

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-69717/8

Matrix: Water

Analysis Batch: 69717

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

i e e e e e e e e e e e e e e e e e e e								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/23/23 20:40	1
Toluene	<0.00200	U	0.00200	mg/L			12/23/23 20:40	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/23/23 20:40	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/23/23 20:40	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/23/23 20:40	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/23/23 20:40	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	60	S1-	70 - 130		12/23/23 20:40	1
1,4-Difluorobenzene (Surr)	88		70 - 130		12/23/23 20:40	1

Lab Sample ID: LCS 880-69717/3

Matrix: Water

Analysis Batch: 69717

Client Sample ID: Lab Control Sample Prep Type: Total/NA

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.07869 mg/L 79 70 - 130 Toluene 0.100 0.07281 mg/L 73 70 - 130 74 Ethylbenzene 0.100 0.07420 mg/L 70 - 130 76 70 - 130 m,p-Xylenes 0.200 0.1528 mg/L 0.100 0.07922 70 - 130 o-Xylene mg/L 79

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCSD 880-69717/4

Matrix: Water

Analysis Batch: 69717

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.08671		mg/L		87	70 - 130	10	20	
Toluene	0.100	0.08545		mg/L		85	70 - 130	16	20	
Ethylbenzene	0.100	0.09013		mg/L		90	70 - 130	19	20	
m,p-Xylenes	0.200	0.1740		mg/L		87	70 - 130	13	20	
o-Xylene	0.100	0.08666		mg/L		87	70 - 130	9	20	

LCSD LCSD

Surrogate	%Recovery C	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	121		70 - 130		
1.4-Difluorobenzene (Surr)	108		70 - 130		

Released to Imaging: 7/24/2024 4:45:59 PM

Lab Sample ID: 880-37226-1 MS						Client Sample ID: TMW-17
Matrix: Water						Prep Type: Total/NA
Analysis Batch: 69717						
	Sample	Sample	Spike	MS	MS	%Rec

Result Qualifier Result Qualifier Analyte Added Unit %Rec Limits <0.00200 U F2 104 70 - 130 Benzene 0.100 0.1037 mg/L Toluene <0.00200 U 0.100 0.08379 mg/L 84 70 - 130

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-37226-1 MS Client Sample ID: TMW-17 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 69717

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U	0.100	0.09322		mg/L		93	70 - 130	
m,p-Xylenes	<0.00400	U	0.200	0.1651		mg/L		83	70 - 130	
o-Xylene	<0.00200	U	0.100	0.1004		mg/L		100	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	129	70 - 130
1,4-Difluorobenzene (Surr)	113	70 - 130

Lab Sample ID: 880-37226-1 MSD Client Sample ID: TMW-17 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 69717

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F2	0.100	0.07590	F2	mg/L		76	70 - 130	31	25
Toluene	<0.00200	U	0.100	0.08334		mg/L		83	70 - 130	1	25
Ethylbenzene	<0.00200	U	0.100	0.08083		mg/L		81	70 - 130	14	25
m,p-Xylenes	<0.00400	U	0.200	0.1639		mg/L		82	70 - 130	1	25
o-Xylene	<0.00200	U	0.100	0.08708		mg/L		87	70 - 130	14	25

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	108	70 - 130
1.4-Difluorobenzene (Surr)	111	70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-69667/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 69667

1	Tulaly old Batolii doddi								
		MB	MB						
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	<0.500	U	0.500	mg/L			12/22/23 23:43	1

Lab Sample ID: LCS 880-69667/4 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 69667

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 25.0	23.63		mg/L		95	90 - 110	

Lab Sample ID: LCSD 880-69667/5 Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA

Analysis Batch: 69667

7 mm, y 0.0 = 0.00 m 00 00 0								
	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier U	Jnit D	%Rec	Limits	RPD	Limit
Chloride	25.0	23.60		ng/L	94	90 - 110		20

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-37226-1 MS Client Sample ID: TMW-17 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 69667

Spike MS MS %Rec Sample Sample Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits Chloride 5850 1250 6811 4 mg/L 77 90 - 110

Lab Sample ID: 880-37226-1 MSD Client Sample ID: TMW-17 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 69667

Sample Sample Spike MSD MSD %Rec RPD Result Qualifier Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 5850 1250 6795 4 mg/L 76 90 - 110 0

Lab Sample ID: 880-37226-11 MS Client Sample ID: TMW-15 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 69667

MS MS Spike %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride 2120 F1 1250 3322 mg/L 90 - 110

Lab Sample ID: 880-37226-11 MSD Client Sample ID: TMW-15 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 69667

•	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2120	F1	1250	3195	F1	mg/L		86	90 - 110	4	20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 880-69658/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 69658

MB MB

Result Qualifier Unit Dil Fac Analyte RL Prepared Analyzed Total Dissolved Solids <25.0 U 25.0 12/22/23 12:48 mg/L

Lab Sample ID: LCS 880-69658/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 69658

LCS LCS Spike %Rec Added Result Qualifier Analyte Unit D %Rec Limits 1000 **Total Dissolved Solids** 970.0 mg/L 97 80 - 120

Lab Sample ID: LCSD 880-69658/3 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 69658

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Total Dissolved Solids 1000 985.0 mg/L 80 - 120 10

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

Prep Type: Total/NA

Lab Sample ID: 880-37226-1 DU **Client Sample ID: TMW-17**

Matrix: Water

Analysis Batch: 69658

Sample Sample DU DU RPD Result Qualifier Result Qualifier RPD Limit Analyte Unit Total Dissolved Solids 10300 10340 mg/L 0.6

Lab Sample ID: 880-37226-11 DU **Client Sample ID: TMW-15** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 69658

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RP		Limit
Total Dissolved Solids	3870		3948		mg/L			2	10

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

GC VOA

Analysis Batch: 69717

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37226-1	TMW-17	Total/NA	Water	8021B	
880-37226-2	TMW-16	Total/NA	Water	8021B	
880-37226-3	TMW-19	Total/NA	Water	8021B	
880-37226-4	TMW-24	Total/NA	Water	8021B	
880-37226-5	TMW-23	Total/NA	Water	8021B	
880-37226-6	Windmill	Total/NA	Water	8021B	
880-37226-7	TMW-20	Total/NA	Water	8021B	
880-37226-8	TMW-21	Total/NA	Water	8021B	
880-37226-9	TMW-22	Total/NA	Water	8021B	
880-37226-10	TMW-18	Total/NA	Water	8021B	
880-37226-11	TMW-15	Total/NA	Water	8021B	
880-37226-12	TMW-13	Total/NA	Water	8021B	
880-37226-13	TMW-14	Total/NA	Water	8021B	
880-37226-14	TMW-6	Total/NA	Water	8021B	
880-37226-15	TMW-5	Total/NA	Water	8021B	
880-37226-16	TMW-4	Total/NA	Water	8021B	
880-37226-17	TMW-7	Total/NA	Water	8021B	
880-37226-18	TMW-8	Total/NA	Water	8021B	
880-37226-19	Dup-1	Total/NA	Water	8021B	
MB 880-69717/8	Method Blank	Total/NA	Water	8021B	
LCS 880-69717/3	Lab Control Sample	Total/NA	Water	8021B	
LCSD 880-69717/4	Lab Control Sample Dup	Total/NA	Water	8021B	
880-37226-1 MS	TMW-17	Total/NA	Water	8021B	
880-37226-1 MSD	TMW-17	Total/NA	Water	8021B	

Analysis Batch: 69798

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-37226-1	TMW-17	Total/NA	Water	Total BTEX	
880-37226-2	TMW-16	Total/NA	Water	Total BTEX	
880-37226-3	TMW-19	Total/NA	Water	Total BTEX	
880-37226-4	TMW-24	Total/NA	Water	Total BTEX	
880-37226-5	TMW-23	Total/NA	Water	Total BTEX	
880-37226-6	Windmill	Total/NA	Water	Total BTEX	
880-37226-7	TMW-20	Total/NA	Water	Total BTEX	
880-37226-8	TMW-21	Total/NA	Water	Total BTEX	
380-37226-9	TMW-22	Total/NA	Water	Total BTEX	
880-37226-10	TMW-18	Total/NA	Water	Total BTEX	
380-37226-11	TMW-15	Total/NA	Water	Total BTEX	
880-37226-12	TMW-13	Total/NA	Water	Total BTEX	
880-37226-13	TMW-14	Total/NA	Water	Total BTEX	
880-37226-14	TMW-6	Total/NA	Water	Total BTEX	
880-37226-15	TMW-5	Total/NA	Water	Total BTEX	
880-37226-16	TMW-4	Total/NA	Water	Total BTEX	
880-37226-17	TMW-7	Total/NA	Water	Total BTEX	
380-37226-18	TMW-8	Total/NA	Water	Total BTEX	
880-37226-19	Dup-1	Total/NA	Water	Total BTEX	

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

HPLC/IC

Analysis Batch: 69667

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-37226-1	TMW-17	Total/NA	Water	300.0	
880-37226-2	TMW-16	Total/NA	Water	300.0	
880-37226-3	TMW-19	Total/NA	Water	300.0	
880-37226-4	TMW-24	Total/NA	Water	300.0	
880-37226-5	TMW-23	Total/NA	Water	300.0	
880-37226-6	Windmill	Total/NA	Water	300.0	
880-37226-7	TMW-20	Total/NA	Water	300.0	
880-37226-8	TMW-21	Total/NA	Water	300.0	
880-37226-9	TMW-22	Total/NA	Water	300.0	
880-37226-10	TMW-18	Total/NA	Water	300.0	
880-37226-11	TMW-15	Total/NA	Water	300.0	
880-37226-12	TMW-13	Total/NA	Water	300.0	
880-37226-13	TMW-14	Total/NA	Water	300.0	
880-37226-14	TMW-6	Total/NA	Water	300.0	
880-37226-15	TMW-5	Total/NA	Water	300.0	
880-37226-16	TMW-4	Total/NA	Water	300.0	
880-37226-17	TMW-7	Total/NA	Water	300.0	
880-37226-18	TMW-8	Total/NA	Water	300.0	
880-37226-19	Dup-1	Total/NA	Water	300.0	
MB 880-69667/3	Method Blank	Total/NA	Water	300.0	
LCS 880-69667/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-69667/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-37226-1 MS	TMW-17	Total/NA	Water	300.0	
880-37226-1 MSD	TMW-17	Total/NA	Water	300.0	
880-37226-11 MS	TMW-15	Total/NA	Water	300.0	
880-37226-11 MSD	TMW-15	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 69658

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-37226-1	TMW-17	Total/NA	Water	SM 2540C	
880-37226-2	TMW-16	Total/NA	Water	SM 2540C	
880-37226-3	TMW-19	Total/NA	Water	SM 2540C	
880-37226-4	TMW-24	Total/NA	Water	SM 2540C	
880-37226-5	TMW-23	Total/NA	Water	SM 2540C	
880-37226-6	Windmill	Total/NA	Water	SM 2540C	
880-37226-7	TMW-20	Total/NA	Water	SM 2540C	
880-37226-8	TMW-21	Total/NA	Water	SM 2540C	
880-37226-9	TMW-22	Total/NA	Water	SM 2540C	
880-37226-10	TMW-18	Total/NA	Water	SM 2540C	
880-37226-11	TMW-15	Total/NA	Water	SM 2540C	
880-37226-12	TMW-13	Total/NA	Water	SM 2540C	
880-37226-13	TMW-14	Total/NA	Water	SM 2540C	
880-37226-14	TMW-6	Total/NA	Water	SM 2540C	
880-37226-15	TMW-5	Total/NA	Water	SM 2540C	
880-37226-16	TMW-4	Total/NA	Water	SM 2540C	
880-37226-17	TMW-7	Total/NA	Water	SM 2540C	
880-37226-18	TMW-8	Total/NA	Water	SM 2540C	
880-37226-19	Dup-1	Total/NA	Water	SM 2540C	
MB 880-69658/1	Method Blank	Total/NA	Water	SM 2540C	

Eurofins Midland

1

6

8

10

12

13

_ _ _

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1 SDG: 19-0112-49

General Chemistry (Continued)

Analysis Batch: 69658 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-69658/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-69658/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-37226-1 DU	TMW-17	Total/NA	Water	SM 2540C	
880-37226-11 DU	TMW-15	Total/NA	Water	SM 2540C	

3

4

6

8

9

11

12

14

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-37226-1 SDG: 19-0112-49

Client Sample ID: TMW-17

Lab Sample ID: 880-37226-1

Matrix: Water

Date Collected: 12/20/23 08:45 Date Received: 12/21/23 09:42

Client Sample ID: TMW-16

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/23/23 21:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/23/23 21:06	AJ	EET MID
Total/NA	Analysis	300.0		50	50 mL	50 mL	69667	12/23/23 00:07	СН	EET MID
Total/NA	Analysis	SM 2540C		1	10 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Lab Sample ID: 880-37226-2

Matrix: Water

Date Collected: 12/20/23 08:59 Date Received: 12/21/23 09:42

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8021B 5 mL 5 mL 69717 12/23/23 21:32 MNR EET MID Total/NA Analysis Total BTEX 69798 12/23/23 21:32 ΑJ EET MID Total/NA 300.0 5 69667 Analysis 50 mL 50 mL 12/23/23 00:31 CH **EET MID** Total/NA Analysis SM 2540C 100 mL 200 mL 69658 12/22/23 12:48 SMC **EET MID**

Client Sample ID: TMW-19 Lab Sample ID: 880-37226-3

Date Collected: 12/20/23 09:20 **Matrix: Water**

Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/23/23 21:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/23/23 21:58	AJ	EET MID
Total/NA	Analysis	300.0		20	50 mL	50 mL	69667	12/23/23 00:38	СН	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: TMW-24 Lab Sample ID: 880-37226-4

Date Collected: 12/20/23 09:35 **Matrix: Water** Date Received: 12/21/23 09:42

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/23/23 22:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/23/23 22:24	AJ	EET MID
Total/NA	Analysis	300.0		10	50 mL	50 mL	69667	12/23/23 00:46	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: TMW-23 Lab Sample ID: 880-37226-5

Date Collected: 12/20/23 09:45 **Matrix: Water** Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/23/23 22:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/23/23 22:51	AJ	EET MID
Total/NA	Analysis	300.0		20	50 mL	50 mL	69667	12/23/23 00:54	СН	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1 SDG: 19-0112-49

Lab Sample ID: 880-37226-6

Client Sample ID: Windmill

Date Collected: 12/20/23 09:15 Date Received: 12/21/23 09:42

Matrix: Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/23/23 23:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/23/23 23:17	AJ	EET MID
Total/NA	Analysis	300.0		10	50 mL	50 mL	69667	12/23/23 01:18	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Lab Sample ID: 880-37226-7

Matrix: Water

Date Collected: 12/20/23 10:14 Date Received: 12/21/23 09:42

Client Sample ID: TMW-20

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Analysis 8021B 5 mL 5 mL 69717 12/23/23 23:44 MNR EET MID Total/NA Analysis Total BTEX 69798 12/23/23 23:44 ΑJ **EET MID** 10 Total/NA 300.0 69667 Analysis 50 mL 50 mL 12/23/23 01:26 CH **EET MID** Total/NA Analysis SM 2540C 100 mL 200 mL 69658 12/22/23 12:48 SMC **EET MID**

Client Sample ID: TMW-21 Lab Sample ID: 880-37226-8

Date Collected: 12/20/23 10:30 **Matrix: Water**

Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 00:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 00:10	AJ	EET MID
Total/NA	Analysis	300.0		10	50 mL	50 mL	69667	12/23/23 01:33	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: TMW-22 Lab Sample ID: 880-37226-9 Date Collected: 12/20/23 10:44 **Matrix: Water**

Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 00:36	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 00:36	AJ	EET MID
Total/NA	Analysis	300.0		10	50 mL	50 mL	69667	12/23/23 01:41	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: TMW-18 Lab Sample ID: 880-37226-10

Date Collected: 12/20/23 11:25 **Matrix: Water** Date Received: 12/21/23 09:42

=	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 01:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 01:03	AJ	EET MID
Total/NA	Analysis	300.0		50	50 mL	50 mL	69667	12/23/23 01:49	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-37226-1 SDG: 19-0112-49

Client Sample ID: TMW-15

Lab Sample ID: 880-37226-11

Lab Sample ID: 880-37226-12

Matrix: Water

Date Collected: 12/20/23 11:42 Date Received: 12/21/23 09:42

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 02:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 02:48	AJ	EET MID
Total/NA	Analysis	300.0		50	50 mL	50 mL	69667	12/23/23 01:57	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: TMW-13

Date Collected: 12/20/23 12:16

Matrix: Water

Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 03:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 03:15	AJ	EET MID
Total/NA	Analysis	300.0		50	50 mL	50 mL	69667	12/23/23 02:20	CH	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: TMW-14

Lab Sample ID: 880-37226-13 Date Collected: 12/20/23 12:00

Matrix: Water

Matrix: Water

Date Received: 12/21/23 09:42

Dil Initial Final Batch Batch Batch Prepared Method Number Prep Type Туре Run Factor Amount Amount or Analyzed Analyst Lab 8021B 69717 EET MID Total/NA 12/24/23 03:41 MNR Analysis 5 mL $5\,mL$ Total/NA Analysis Total BTEX 69798 12/24/23 03:41 AJ EET MID 300.0 Total/NA Analysis 50 69667 12/23/23 02:28 CH **EET MID** 50 mL 50 mL Total/NA Analysis SM 2540C 25 mL 200 mL 69658 12/22/23 12:48 SMC EET MID

Client Sample ID: TMW-6

Lab Sample ID: 880-37226-14 Date Collected: 12/20/23 12:30

Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 04:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 04:08	AJ	EET MID
Total/NA	Analysis	300.0		50	50 mL	50 mL	69667	12/23/23 02:52	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: TMW-5

Date Collected: 12/20/23 12:43

Date Received: 12/21/23 09:42

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 04:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 04:34	AJ	EET MID
Total/NA	Analysis	300.0		50	50 mL	50 mL	69667	12/23/23 03:00	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Lab Sample ID: 880-37226-15

Eurofins Midland

Matrix: Water

Job ID: 880-37226-1

SDG: 19-0112-49

Client Sample ID: TMW-4

Lab Sample ID: 880-37226-16

Matrix: Water

Date Collected: 12/20/23 13:00 Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 05:01	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 05:01	AJ	EET MID
Total/NA	Analysis	300.0		20	50 mL	50 mL	69667	12/23/23 03:08	СН	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Lab Sample ID: 880-37226-17

Matrix: Water

Date Collected: 12/20/23 13:13 Date Received: 12/21/23 09:42

Client Sample ID: TMW-7

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 05:27	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 05:27	AJ	EET MID
Total/NA	Analysis	300.0		50	50 mL	50 mL	69667	12/23/23 03:16	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: TMW-8 Lab Sample ID: 880-37226-18

Date Collected: 12/20/23 13:32 **Matrix: Water**

Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 05:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 05:54	AJ	EET MID
Total/NA	Analysis	300.0		20	50 mL	50 mL	69667	12/23/23 03:23	СН	EET MID
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Client Sample ID: Dup-1 Lab Sample ID: 880-37226-19

Date Collected: 12/20/23 00:00 **Matrix: Water** Date Received: 12/21/23 09:42

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	69717	12/24/23 06:20	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			69798	12/24/23 06:20	AJ	EET MID
Total/NA	Analysis	300.0		50	50 mL	50 mL	69667	12/23/23 03:31	CH	EET MID
Total/NA	Analysis	SM 2540C		1	10 mL	200 mL	69658	12/22/23 12:48	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1 SDG: 19-0112-49

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA)	T104704400-23-26	06-30-24
The following analytes	are included in this report, bu	t the laboratory is not certif	fied by the governing authority. This lis	t may include analyt
0 ,	' '	t the laboratory is not certif	fied by the governing authority. This lis	t may include analyt
for which the agency d	oes not offer certification.	,	, , ,	t may include analyt
0 ,	' '	it the laboratory is not certii Matrix	fied by the governing authority. This lis Analyte	t may include analyt

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37226-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET MID
5030B	Purge and Trap	SW846	EET MID

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

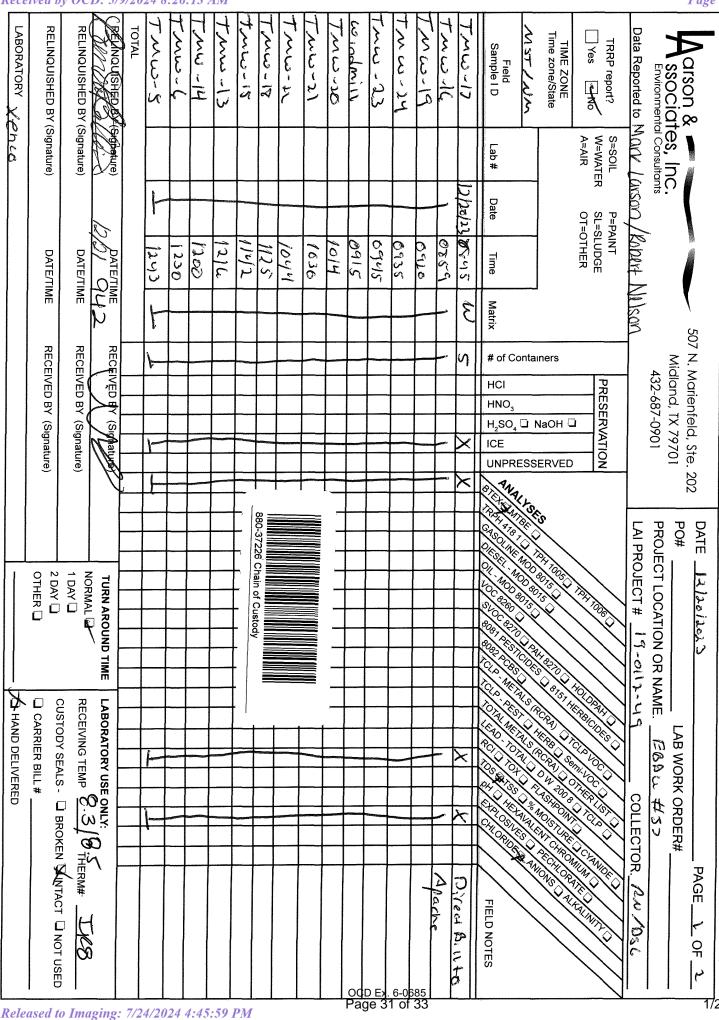
Client: Larson & Associates, Inc.

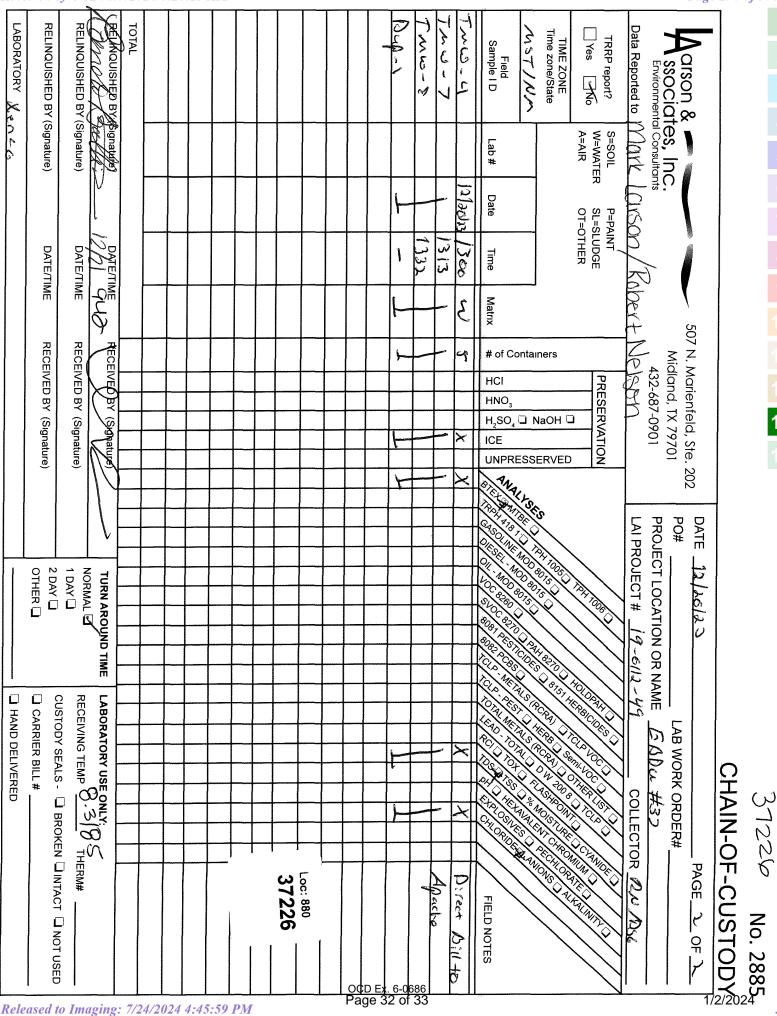
Project/Site: EBDU #37

Job ID: 880-37226-1 SDG: 19-0112-49

Lab Camula ID	Client Commis ID	Matuis	Collected	Dessived
Lab Sample ID	Client Sample ID	Matrix		Received
880-37226-1	TMW-17	Water	12/20/23 08:45	12/21/23 09:42
880-37226-2	TMW-16	Water	12/20/23 08:59	12/21/23 09:42
880-37226-3	TMW-19	Water	12/20/23 09:20	12/21/23 09:42
880-37226-4	TMW-24	Water	12/20/23 09:35	12/21/23 09:42
880-37226-5	TMW-23	Water	12/20/23 09:45	12/21/23 09:42
880-37226-6	Windmill	Water	12/20/23 09:15	12/21/23 09:42
880-37226-7	TMW-20	Water	12/20/23 10:14	12/21/23 09:42
880-37226-8	TMW-21	Water	12/20/23 10:30	12/21/23 09:42
880-37226-9	TMW-22	Water	12/20/23 10:44	12/21/23 09:42
880-37226-10	TMW-18	Water	12/20/23 11:25	12/21/23 09:42
880-37226-11	TMW-15	Water	12/20/23 11:42	12/21/23 09:42
880-37226-12	TMW-13	Water	12/20/23 12:16	12/21/23 09:42
880-37226-13	TMW-14	Water	12/20/23 12:00	12/21/23 09:42
880-37226-14	TMW-6	Water	12/20/23 12:30	12/21/23 09:42
880-37226-15	TMW-5	Water	12/20/23 12:43	12/21/23 09:42
880-37226-16	TMW-4	Water	12/20/23 13:00	12/21/23 09:42
880-37226-17	TMW-7	Water	12/20/23 13:13	12/21/23 09:42
880-37226-18	TMW-8	Water	12/20/23 13:32	12/21/23 09:42
880-37226-19	Dup-1	Water	12/20/23 00:00	12/21/23 09:42

- 3


7


0

10

40

11

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-37226-1 SDG Number: 19-0112-49

List Source: Eurofins Midland

Login Number: 37226 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	False	Refer to Job Narrative for details.
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

4

6

8

10

12

13

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 1/2/2024 12:48:10 PM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-37238-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 1/2/2024 12:48:10 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Laboratory Job ID: 880-37238-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	25

1

2

5

4

6

8

9

11

14

Definitions/Glossary

Job ID: 880-37238-1 Client: Larson & Associates, Inc. Project/Site: EBDU #37 SDG: 19-0112-49

Qualifiers

GC/MS VOA

ISTD response or retention time outside acceptable limits. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

Qualifier Description

HPLC/IC

Qualifier

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%P	Percent Recovery

Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **PQL Practical Quantitation Limit**

PRES Presumptive

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project: EBDU #37

Job ID: 880-37238-1

Job ID: 880-37238-1

Eurofins Midland

Job Narrative 880-37238-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/21/2023 1:49 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.5°C

GC/MS VOA

Method 8260C: Internal standard (ISTD) response for 1,4-Dichlorobenzene-d4 for the following samples in analytical batch 860-136702 was outside acceptance criteria: TMW-10 (880-37238-1), TMW-1 (880-37238-2) and TMW-9 (880-37238-3). This ISTD does not correspond to any of the requested target compounds reported from this analytical batch; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

-

3

1

5

7

10

12

13

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37238-1 SDG: 19-0112-49

Client Sample ID: TMW-10 Lab Sample ID: 880-37238-1 Date Collected: 12/21/23 08:35

Matrix: Water

Date Received: 12/21/23 13:49

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			12/27/23 12:32	
Toluene	<0.00100	U	0.00100	mg/L			12/27/23 12:32	
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/27/23 12:32	
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/27/23 12:32	
o-Xylene	<0.00100	U	0.00100	mg/L			12/27/23 12:32	
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/27/23 12:32	•
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	92		63 - 144		-		12/27/23 12:32	
4-Bromofluorobenzene (Surr)	123	*3	74 - 124				12/27/23 12:32	
Dibromofluoromethane (Surr)	102		75 - 131				12/27/23 12:32	
Toluene-d8 (Surr)	120		80 - 120				12/27/23 12:32	
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.0100	U	0.0100	mg/L			12/27/23 12:32	
Method: EPA 300.0 - Anions, Io	on Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride			0.500	mg/L			12/23/23 07:45	-

Client Sample ID: TMW-1 Lab Sample ID: 880-37238-2 Date Collected: 12/21/23 08:58 **Matrix: Water**

RL

10.0

Unit

mg/L

D

Prepared

Result Qualifier

666

Date Received: 12/21/23 13:49

Total Dissolved Solids (SM 2540C)

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			12/27/23 12:53	1
Toluene	<0.00100	U	0.00100	mg/L			12/27/23 12:53	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/27/23 12:53	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/27/23 12:53	1
o-Xylene	<0.00100	U	0.00100	mg/L			12/27/23 12:53	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/27/23 12:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		63 - 144		-		12/27/23 12:53	1
4-Bromofluorobenzene (Surr)	121	*3	74 - 124				12/27/23 12:53	1
Dibromofluoromethane (Surr)	101		75 - 131				12/27/23 12:53	1
Toluene-d8 (Surr)	119		80 - 120				12/27/23 12:53	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0100	U	0.0100	mg/L			12/27/23 12:53	1
- Method: EPA 300.0 - Anions, Id	on Chromatograp	hy						
Analyte	• .	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	156		0.500	mg/L			12/23/23 07:58	

Eurofins Midland

Dil Fac

Analyzed

12/26/23 17:40

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37238-1 SDG: 19-0112-49

Client Sample ID: TMW-1

Lab Sample ID: 880-37238-2

Date Collected: 12/21/23 08:58 Date Received: 12/21/23 13:49 **Matrix: Water**

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	662		10.0	mg/L			12/26/23 17:40	1

Client Sample ID: TMW-9 Lab Sample ID: 880-37238-3 Date Collected: 12/21/23 09:26

Date Received: 12/21/23 13:49

Matrix: Water

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

monitori etti etti etti etti etti etti etti et	notified of the following of guillo compounds by coming								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00100	U	0.00100	mg/L			12/27/23 13:13	1	
Toluene	<0.00100	U	0.00100	mg/L			12/27/23 13:13	1	
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/27/23 13:13	1	
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/27/23 13:13	1	
o-Xylene	<0.00100	U	0.00100	mg/L			12/27/23 13:13	1	
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/27/23 13:13	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	98		63 - 144		_		12/27/23 13:13	1	

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		63 - 144	_		12/27/23 13:13	1
4-Bromofluorobenzene (Surr)	125	S1+ *3	74 - 124			12/27/23 13:13	1
Dibromofluoromethane (Surr)	101		75 - 131			12/27/23 13:13	1
Toluene-d8 (Surr)	117		80 - 120			12/27/23 13:13	1
	1,2-Dichloroethane-d4 (Surr) 1-Bromofluorobenzene (Surr) Dibromofluoromethane (Surr)	1,2-Dichloroethane-d4 (Surr) 98 1-Bromofluorobenzene (Surr) 125 Dibromofluoromethane (Surr) 101	1,2-Dichloroethane-d4 (Surr) 98 1-Bromofluorobenzene (Surr) 125 S1+ *3 Dibromofluoromethane (Surr) 101	1,2-Dichloroethane-d4 (Surr) 98 63 - 144 1-Bromofluorobenzene (Surr) 125 S1+ *3 74 - 124 Dibromofluoromethane (Surr) 101 75 - 131	1,2-Dichloroethane-d4 (Surr) 98 63 - 144 1-Bromofluorobenzene (Surr) 125 S1+ *3 74 - 124 Dibromofluoromethane (Surr) 101 75 - 131	1,2-Dichloroethane-d4 (Surr) 98 63 - 144 1-Bromofluorobenzene (Surr) 125 S1+*3 74 - 124 Dibromofluoromethane (Surr) 101 75 - 131	1,2-Dichloroethane-d4 (Surr) 98 63 - 144 12/27/23 13:13 1-Bromofluorobenzene (Surr) 125 S1+*3 74 - 124 12/27/23 13:13 Dibromofluoromethane (Surr) 101 75 - 131 12/27/23 13:13

Method: TAL SOP	Total BTEX - Total BTE	X Calculation

Analyte	Result Qua	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0100 U	0.0100	mg/L			12/27/23 13:13	1

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	37.3	0.500	mg/L			12/23/23 08:10	1

General	Chemistry
	•

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	404		10.0	mg/L			12/26/23 17:40	1

Client Sample ID: TMW-3

Lab Sample ID: 880-37238-4 Date Collected: 12/21/23 09:36 **Matrix: Water**

Date Received: 12/21/23 13:49

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			12/28/23 15:48	1
Toluene	<0.00100	U	0.00100	mg/L			12/28/23 15:48	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/28/23 15:48	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/28/23 15:48	1
o-Xylene	<0.00100	U	0.00100	mg/L			12/28/23 15:48	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/28/23 15:48	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		63 - 144	_		12/28/23 15:48	1
4-Bromofluorobenzene (Surr)	89		74 - 124			12/28/23 15:48	1
Dibromofluoromethane (Surr)	105		75 - 131			12/28/23 15:48	1
Toluene-d8 (Surr)	99		80 - 120			12/28/23 15:48	1

Job ID: 880-37238-1

SDG: 19-0112-49

Client Sample ID: TMW-3

Lab Sample ID: 880-37238-4

Date Collected: 12/21/23 09:36 Date Received: 12/21/23 13:49 **Matrix: Water**

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0100	U	0.0100	mg/L			12/28/23 15:48	1
Method: EPA 300.0 - Anions, Ion Cl	nromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	242		0.500	mg/L			12/23/23 08:23	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1020		10.0	mg/L			12/26/23 17:40	1

Matrix: Water

Date Collected: 12/21/23 09:56 Date Received: 12/21/23 13:49

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

Welliou. Syvo46 6260C - ve	Diatile Organic Compo	ounds by GC/NS						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			12/28/23 16:09	1
Toluene	<0.00100	U	0.00100	mg/L			12/28/23 16:09	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/28/23 16:09	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/28/23 16:09	1
o-Xylene	<0.00100	U	0.00100	mg/L			12/28/23 16:09	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/28/23 16:09	1

Surrogate	%Recovery Qualified	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	63 - 144		12/28/23 16:09	1
4-Bromofluorobenzene (Surr)	88	74 - 124		12/28/23 16:09	1
Dibromofluoromethane (Surr)	100	75 - 131		12/28/23 16:09	1
Toluene-d8 (Surr)	100	80 - 120		12/28/23 16:09	1

Method: TAL SOP Total BTEX - Total BTEX Calculation									
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.0100	U	0.0100	mg/L			12/28/23 16:09	1

Method: EPA 300.0 - Anions, Ion Chromatography								
	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	264	0.500	mg/L			12/23/23 08:35	1

General Chemistry							
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1100	10.0	mg/L			12/26/23 17:40	1

Client Sample ID: TMW-11 Lab Sample ID: 880-37238-6 Date Collected: 12/21/23 10:11 **Matrix: Water**

Date Received: 12/21/23 13:49

Method: SW846 8260C - Volatile Organic Compounds by GC/MS									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00100	U	0.00100	mg/L			12/28/23 16:30	1	
Toluene	<0.00100	U	0.00100	mg/L			12/28/23 16:30	1	
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/28/23 16:30	1	
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/28/23 16:30	1	
o-Xylene	<0.00100	U	0.00100	mg/L			12/28/23 16:30	1	

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37238-1

SDG: 19-0112-49

Client Sample ID: TMW-11

Date Collected: 12/21/23 10:11 Date Received: 12/21/23 13:49

Lab Sample ID: 880-37238-6

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/28/23 16:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		63 - 144		_		12/28/23 16:30	1
4-Bromofluorobenzene (Surr)	89		74 - 124				12/28/23 16:30	1
Dibromofluoromethane (Surr)	99		75 - 131				12/28/23 16:30	1
Toluene-d8 (Surr)	100		80 - 120				12/28/23 16:30	1
Method: TAL SOP Total BTEX - T			DI.	l lmi4		Drawarad	Amalumad	Dil Faa
		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier	RL	Unit mg/L	<u>D</u> _	Prepared	Analyzed 12/28/23 16:30	Dil Fac
Analyte Total BTEX	<0.0100	Qualifier U			D -	Prepared	- <u> </u>	Dil Fac
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion	Result <0.0100	Qualifier U			<u>D</u> _	Prepared Prepared	- <u> </u>	1
Analyte	Result <0.0100	Qualifier U	0.0100	mg/L			12/28/23 16:30	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte Chloride	Result <0.0100 Chromatograp Result	Qualifier U	0.0100	mg/L Unit			12/28/23 16:30 Analyzed	1
Analyte Total BTEX Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp Result 350	Qualifier U	0.0100	mg/L Unit			12/28/23 16:30 Analyzed	Dil Fac Dil Fac Dil Fac

Client Sample ID: TMW-12 Lab Sample ID: 880-37238-7

Date Collected: 12/21/23 10:29

Date Received: 12/21/23 13:49

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			12/28/23 16:50	1
Toluene	< 0.00100	U	0.00100	mg/L			12/28/23 16:50	1
Ethylbenzene	< 0.00100	U	0.00100	mg/L			12/28/23 16:50	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/28/23 16:50	1
o-Xylene	< 0.00100	U	0.00100	mg/L			12/28/23 16:50	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/28/23 16:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		63 - 144		-		12/28/23 16:50	1
4-Bromofluorobenzene (Surr)	87		74 - 124				12/28/23 16:50	1
Dibromofluoromethane (Surr)	98		75 - 131				12/28/23 16:50	1
Toluene-d8 (Surr)	100		80 - 120				12/28/23 16:50	1
Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0100	U	0.0100	mg/L			12/28/23 16:50	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	463		0.500	mg/L			12/23/23 09:13	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Client Sample ID: Dup-2

Date Collected: 12/21/23 00:00

Date Received: 12/21/23 13:49

Job ID: 880-37238-1 SDG: 19-0112-49

Lab Sample ID: 880-37238-8

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			12/28/23 17:11	1
Toluene	<0.00100	U	0.00100	mg/L			12/28/23 17:11	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/28/23 17:11	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/28/23 17:11	1
o-Xylene	<0.00100	U	0.00100	mg/L			12/28/23 17:11	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/28/23 17:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		63 - 144				12/28/23 17:11	1
4-Bromofluorobenzene (Surr)	89		74 - 124				12/28/23 17:11	1
Dibromofluoromethane (Surr)	99		75 - 131				12/28/23 17:11	1
Toluene-d8 (Surr)	101		80 - 120				12/28/23 17:11	1
- Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0100	U	0.0100	mg/L			12/28/23 17:11	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	265		0.500	mg/L			12/23/23 09:01	1
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	1010		10.0	mg/L			12/26/23 17:40	1

Surrogate Summary

Client: Larson & Associates, Inc. Job ID: 880-37238-1 Project/Site: EBDU #37 SDG: 19-0112-49

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)
880-37238-1	TMW-10	92	123 *3	102	120
880-37238-1 MS	TMW-10	114	90	99	99
880-37238-2	TMW-1	96	121 *3	101	119
880-37238-3	TMW-9	98	125 S1+ *3	101	117
880-37238-4	TMW-3	106	89	105	99
880-37238-5	TMW-2	103	88	100	100
880-37238-6	TMW-11	107	89	99	100
880-37238-7	TMW-12	98	87	98	100
880-37238-8	Dup-2	99	89	99	101
LCS 860-136702/3	Lab Control Sample	111	86	95	96
LCS 860-138343/3	Lab Control Sample	91	96	99	94
LCSD 860-136702/4	Lab Control Sample Dup	110	89	98	97
LCSD 860-138343/4	Lab Control Sample Dup	96	94	104	96
MB 860-136702/8	Method Blank	89	121 *3	98	117
MB 860-138343/8	Method Blank	95	88	96	100

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-37238-1 SDG: 19-0112-49

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 860-136702/8

Matrix: Water

Analysis Batch: 136702

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			12/27/23 12:12	1
Toluene	<0.00100	U	0.00100	mg/L			12/27/23 12:12	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/27/23 12:12	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/27/23 12:12	1
o-Xylene	<0.00100	U	0.00100	mg/L			12/27/23 12:12	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/27/23 12:12	1

		MB	MB				
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	89		63 - 144		12/27/23 12:12	1
	4-Bromofluorobenzene (Surr)	121	*3	74 - 124		12/27/23 12:12	1
	Dibromofluoromethane (Surr)	98		75 ₋ 131		12/27/23 12:12	1
İ	Toluene-d8 (Surr)	117		80 - 120		12/27/23 12:12	1

Lab Sample ID: LCS 860-136702/3

Matrix: Water

Analysis Batch: 136702

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Benzene	0.0500	0.04541		mg/L		91	75 - 125	
	Toluene	0.0500	0.04036		mg/L		81	70 - 130	
	Ethylbenzene	0.0500	0.04206		mg/L		84	75 - 125	
İ	m,p-Xylenes	0.0500	0.04026		mg/L		81	75 - 125	
	o-Xylene	0.0500	0.04314		mg/L		86	75 - 125	
н									

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)			63 - 144
4-Bromofluorobenzene (Surr)	86		74 - 124
Dibromofluoromethane (Surr)	95		75 ₋ 131
Toluene-d8 (Surr)	96		80 - 120

Lab Sample ID: LCSD 860-136702/4

Matrix: Water

Analysis Batch: 136702

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.0500	0.04397		mg/L		88	75 - 125	3	25
Toluene	0.0500	0.03959		mg/L		79	70 - 130	2	25
Ethylbenzene	0.0500	0.04133		mg/L		83	75 - 125	2	25
m,p-Xylenes	0.0500	0.03911		mg/L		78	75 - 125	3	25
o-Xylene	0.0500	0.04234		mg/L		85	75 - 125	2	25

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	110		63 - 144
4-Bromofluorobenzene (Surr)	89		74 - 124
Dibromofluoromethane (Surr)	98		75 - 131
Toluene-d8 (Surr)	97		80 - 120

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-37238-1 SDG: 19-0112-49

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 880-37238-1 MS

Lab Sample ID: MB 860-138343/8

Matrix: Water

Analysis Batch: 138343

Matrix: Water

Analysis Batch: 136702

Client Sample ID: TMW-10 Prep Type: Total/NA

Sample Sample Spike MS MS %Rec Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Benzene <0.00100 U 0.0500 0.05456 mg/L 109 66 - 142 Toluene <0.00100 U 0.0500 0.05081 mg/L 102 59 - 139 Ethylbenzene <0.00100 U 0.0500 0.05310 mg/L 106 75 - 125 <0.0100 U 0.0500 0.05001 100 75 - 125 m,p-Xylenes mg/L 0.0500 o-Xylene <0.00100 U 0.05414 mg/L 108 75 - 125

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	114		63 - 144
4-Bromofluorobenzene (Surr)	90		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	99		80 - 120

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/L			12/28/23 12:17	1
Toluene	<0.00100	U	0.00100	mg/L			12/28/23 12:17	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			12/28/23 12:17	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			12/28/23 12:17	1
o-Xylene	<0.00100	U	0.00100	mg/L			12/28/23 12:17	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			12/28/23 12:17	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		63 - 144		12/28/23 12:17	1
4-Bromofluorobenzene (Surr)	88		74 - 124		12/28/23 12:17	1
Dibromofluoromethane (Surr)	96		75 - 131		12/28/23 12:17	1
Toluene-d8 (Surr)	100		80 - 120		12/28/23 12:17	1

Lab Sample ID: LCS 860-138343/3

Matrix: Water

Analysis Batch: 138343

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.06051		mg/L		121	75 - 125	
Toluene	0.0500	0.05702		mg/L		114	70 - 130	
Ethylbenzene	0.0500	0.05760		mg/L		115	75 - 125	
m,p-Xylenes	0.0500	0.05797		mg/L		116	75 - 125	
o-Xylene	0.0500	0.05664		mg/L		113	75 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		63 - 144
4-Bromofluorobenzene (Surr)	96		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	94		80 - 120

Lab Sample ID: LCSD 860-138343/4

QC Sample Results

Client: Larson & Associates, Inc. Job ID: 880-37238-1 Project/Site: EBDU #37 SDG: 19-0112-49

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 138343

Matrix: Water

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.0500	0.04994		mg/L		100	75 - 125	19	25	
Toluene	0.0500	0.04755		mg/L		95	70 - 130	18	25	
Ethylbenzene	0.0500	0.04807		mg/L		96	75 - 125	18	25	
m,p-Xylenes	0.0500	0.04812		mg/L		96	75 - 125	19	25	
o-Xylene	0.0500	0.04772		mg/L		95	75 - 125	17	25	

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		63 - 144
4-Bromofluorobenzene (Surr)	94		74 - 124
Dibromofluoromethane (Surr)	104		75 - 131
Toluene-d8 (Surr)	96		80 - 120

Method: 300.0 - Anions, Ion Chromatography

Client Sample ID: Method Blank Lab Sample ID: MB 860-136466/3 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 136466

MB MB

Analyte	Result	Qualifier	KL	Unit	U	Prepared	Analyzea	DII Fac
Chloride	<0.500	U	0.500	mg/L			12/22/23 17:14	1

Lab Sample ID: MB 860-136466/47 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 136466

MB MB

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.500	U	0.500	mg/L			12/23/23 02:30	1

Lab Sample ID: LCS 860-136466/48 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 136466

	Spil	ke LCS	LCS				%Rec	
Analyte	Adde	ed Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	5.0	00 4.826		ma/L	_	97	90 - 110	

Lab Sample ID: LCSD 860-136466/49 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 136466

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	5.00	4.755		mg/L		95	90 - 110	1	20

Lab Sample ID: LLCS 860-136466/7 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 136466

LLCS LLCS Spike %Rec Analyte Added Result Qualifier Limits Unit %Rec Chloride 0.500 0.5214 104 50 - 150 mg/L

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37238-1

SDG: 19-0112-49

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 860-136563/1 Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 136563

Matrix: Water

MB MB Dil Fac Analyte Result Qualifier RL Unit D Prepared Analyzed Total Dissolved Solids <5.00 U 5.00 mg/L 12/26/23 17:40

Lab Sample ID: LCS 860-136563/2 **Client Sample ID: Lab Control Sample Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 136563

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 1000 1107 mg/L 111 80 - 120

Lab Sample ID: LCSD 860-136563/3 Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 136563

LCSD LCSD %Rec RPD Spike Added Result Qualifier Unit Limits **RPD** Limit Total Dissolved Solids 1000 1108 111 80 - 120 10 mg/L

QC Association Summary

Client: Larson & Associates, Inc.
Project/Site: EBDU #37

Job ID: 880-37238-1 SDG: 19-0112-49

GC/MS VOA

Analysis Batch: 136702

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37238-1	TMW-10	Total/NA	Water	8260C	
880-37238-2	TMW-1	Total/NA	Water	8260C	
880-37238-3	TMW-9	Total/NA	Water	8260C	
MB 860-136702/8	Method Blank	Total/NA	Water	8260C	
LCS 860-136702/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-136702/4	Lab Control Sample Dup	Total/NA	Water	8260C	
880-37238-1 MS	TMW-10	Total/NA	Water	8260C	

Analysis Batch: 138343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37238-4	TMW-3	Total/NA	Water	8260C	
880-37238-5	TMW-2	Total/NA	Water	8260C	
880-37238-6	TMW-11	Total/NA	Water	8260C	
880-37238-7	TMW-12	Total/NA	Water	8260C	
880-37238-8	Dup-2	Total/NA	Water	8260C	
MB 860-138343/8	Method Blank	Total/NA	Water	8260C	
LCS 860-138343/3	Lab Control Sample	Total/NA	Water	8260C	
LCSD 860-138343/4	Lab Control Sample Dup	Total/NA	Water	8260C	

Analysis Batch: 138894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37238-1	TMW-10	Total/NA	Water	Total BTEX	
880-37238-2	TMW-1	Total/NA	Water	Total BTEX	
880-37238-3	TMW-9	Total/NA	Water	Total BTEX	
880-37238-4	TMW-3	Total/NA	Water	Total BTEX	
880-37238-5	TMW-2	Total/NA	Water	Total BTEX	
880-37238-6	TMW-11	Total/NA	Water	Total BTEX	
880-37238-7	TMW-12	Total/NA	Water	Total BTEX	
880-37238-8	Dup-2	Total/NA	Water	Total BTEX	

HPLC/IC

Analysis Batch: 136466

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37238-1	TMW-10	Total/NA	Water	300.0	_
880-37238-2	TMW-1	Total/NA	Water	300.0	
880-37238-3	TMW-9	Total/NA	Water	300.0	
880-37238-4	TMW-3	Total/NA	Water	300.0	
880-37238-5	TMW-2	Total/NA	Water	300.0	
880-37238-6	TMW-11	Total/NA	Water	300.0	
880-37238-7	TMW-12	Total/NA	Water	300.0	
880-37238-8	Dup-2	Total/NA	Water	300.0	
MB 860-136466/3	Method Blank	Total/NA	Water	300.0	
MB 860-136466/47	Method Blank	Total/NA	Water	300.0	
LCS 860-136466/48	Lab Control Sample	Total/NA	Water	300.0	
LCSD 860-136466/49	Lab Control Sample Dup	Total/NA	Water	300.0	
LLCS 860-136466/7	Lab Control Sample	Total/NA	Water	300.0	

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37238-1

SDG: 19-0112-49

General Chemistry

Analysis Batch: 136563

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-37238-1	TMW-10	Total/NA	Water	SM 2540C	
880-37238-2	TMW-1	Total/NA	Water	SM 2540C	
880-37238-3	TMW-9	Total/NA	Water	SM 2540C	
880-37238-4	TMW-3	Total/NA	Water	SM 2540C	
880-37238-5	TMW-2	Total/NA	Water	SM 2540C	
880-37238-6	TMW-11	Total/NA	Water	SM 2540C	
880-37238-7	TMW-12	Total/NA	Water	SM 2540C	
880-37238-8	Dup-2	Total/NA	Water	SM 2540C	
MB 860-136563/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 860-136563/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 860-136563/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	

4

5

b

8

9

10

11

13

Client: Larson & Associates, Inc.

Job ID: 880-37238-1 SDG: 19-0112-49

Project/Site: EBDU #37

Client Sample ID: TMW-10 Lab Sample ID: 880-37238-1 Date Collected: 12/21/23 08:35

Matrix: Water

Date Received: 12/21/23 13:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	136702	12/27/23 12:32	NA	EET HOU
Total/NA	Analysis	Total BTEX		1			138894	12/27/23 12:32	AN	EET HOU
Total/NA	Analysis	300.0		1			136466	12/23/23 07:45	WP	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	136563	12/26/23 17:40	SA	EET HOU

Client Sample ID: TMW-1 Lab Sample ID: 880-37238-2 Date Collected: 12/21/23 08:58 **Matrix: Water**

Date Received: 12/21/23 13:49

Dil Batch Batch Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 8260C 5 mL 5 mL 136702 12/27/23 12:53 NA EET HOU Analysis Total/NA Analysis Total BTEX 138894 12/27/23 12:53 ΑN **EET HOU** WP Total/NA Analysis 300.0 1 136466 12/23/23 07:58 **EET HOU** Total/NA Analysis SM 2540C 100 mL 200 mL 136563 12/26/23 17:40 SA **EET HOU**

Client Sample ID: TMW-9 Lab Sample ID: 880-37238-3

Date Collected: 12/21/23 09:26

Date Received: 12/21/23 13:49

Matrix: Water

Dil Final Batch Batch Initial Batch Prepared Method Number Prep Type Type Run Factor Amount Amount or Analyzed Analyst Lab 8260C 136702 12/27/23 13:13 EET HOU Total/NA Analysis 5 mL NA 5 mL Total/NA Total BTEX 138894 12/27/23 13:13 **EET HOU** Analysis ΑN Total/NA 300.0 12/23/23 08:10 WP **EET HOU** Analysis 136466 Total/NA Analysis SM 2540C 100 mL 200 mL 136563 12/26/23 17:40 SA **EET HOU**

Client Sample ID: TMW-3 Lab Sample ID: 880-37238-4 Date Collected: 12/21/23 09:36 **Matrix: Water**

Date Received: 12/21/23 13:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138343	12/28/23 15:48	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			138894	12/28/23 15:48	AN	EET HOU
Total/NA	Analysis	300.0		1			136466	12/23/23 08:23	WP	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	136563	12/26/23 17:40	SA	EET HOU

Client Sample ID: TMW-2 Lab Sample ID: 880-37238-5

Date Collected: 12/21/23 09:56

Date Received: 12/21/23 13:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138343	12/28/23 16:09	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			138894	12/28/23 16:09	AN	EET HOU
Total/NA	Analysis	300.0		1			136466	12/23/23 08:35	WP	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	136563	12/26/23 17:40	SA	EET HOU

Eurofins Midland

Matrix: Water

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-37238-1 SDG: 19-0112-49

Client Sample ID: TMW-11

Lab Sample ID: 880-37238-6

Date Collected: 12/21/23 10:11 Date Received: 12/21/23 13:49 **Matrix: Water**

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138343	12/28/23 16:30	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			138894	12/28/23 16:30	AN	EET HOU
Total/NA	Analysis	300.0		1			136466	12/23/23 08:48	WP	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	136563	12/26/23 17:40	SA	EET HOU

Lab Sample ID: 880-37238-7

Matrix: Water

Date Collected: 12/21/23 10:29 Date Received: 12/21/23 13:49

Client Sample ID: TMW-12

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138343	12/28/23 16:50	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			138894	12/28/23 16:50	AN	EET HOU
Total/NA	Analysis	300.0		1			136466	12/23/23 09:13	WP	EET HOU
Total/NA	Analysis	SM 2540C		1	50 mL	200 mL	136563	12/26/23 17:40	SA	EET HOU

Lab Sample ID: 880-37238-8 Client Sample ID: Dup-2 Date Collected: 12/21/23 00:00

Matrix: Water

Date Received: 12/21/23 13:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	138343	12/28/23 17:11	AN	EET HOU
Total/NA	Analysis	Total BTEX		1			138894	12/28/23 17:11	AN	EET HOU
Total/NA	Analysis	300.0		1			136466	12/23/23 09:01	WP	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	136563	12/26/23 17:40	SA	EET HOU

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37238-1 SDG: 19-0112-49

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	P	T104704215-23-53	06-30-24
The following englytee				
The following analytes	are included in this report, bu	it the laboratory is not certii	fied by the governing authority. This lis	t may include analyte
,	are included in this report, bu bes not offer certification .	it the laboratory is not certil	fied by the governing authority. This lis	t may include analyte
0 ,		it the laboratory is not certii Matrix	fied by the governing authority. This lis Analyte	t may include analyte

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-37238-1

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	EET HOU
Total BTEX	Total BTEX Calculation	TAL SOP	EET HOU
300.0	Anions, Ion Chromatography	EPA	EET HOU
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET HOU
5030C	Purge and Trap	SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Dup-2

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

880-37238-8

Job ID: 880-37238-1 SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-37238-1	TMW-10	Water	12/21/23 08:35	12/21/23 13:49
880-37238-2	TMW-1	Water	12/21/23 08:58	12/21/23 13:49
880-37238-3	TMW-9	Water	12/21/23 09:26	12/21/23 13:49
880-37238-4	TMW-3	Water	12/21/23 09:36	12/21/23 13:49
880-37238-5	TMW-2	Water	12/21/23 09:56	12/21/23 13:49
880-37238-6	TMW-11	Water	12/21/23 10:11	12/21/23 13:49
880-37238-7	TMW-12	Water	12/21/23 10:29	12/21/23 13:49

Water

12/21/23 00:00

12/21/23 13:49

1

5

6

8

9

10

12

13

Rece	vived l	by O (CD: 5	/9/20	24 8	:26	:13	AM															
LABORATORY X	RELINQUISHED BY (Signature)	RELINQUISHED BY (Signature)	RELINQUISHED BY	TOTAL &								DUP-Z	TI-MMT	1 50 W. 1	TMW-2	TMN-3	TMW-9	TMW- 1	7 MW-10	الله له لرات الله الله الله الله الله الله الله ال	TIME ZONE Time zone/State	TRRP report? ☐ Yes	Data Reported to
XENCO	Signature)	Signature)	Signature)																	Lab#		S=SOIL W=WATER A=AIR	
			(1)									4_							2/21/23	Date		P=PAINT SL=SLUDGI OT=OTHER	
	DATE/TIME	DATE/TIME	DATE/TIME									1	1029	1191	6956	D434	_ይ ያ አላ	15 y a	5550	Time		P=PAINT SL=SLUDGE OT=OTHER	
			~									Ź	٤	٤	٤	٤	٤	\$	٤	Matrix			
	RECEIVED BY (Signature)	RECEIVED BY	REGEIVED W									٨	~	a	4	Ŋ	2	ഗ	5	# of Conta	iners] ,
	VED	VED																		HCI			102,007,070
	BY (S			\vdash																HNO ₃	NaOH 🗅	SER	
	ignatı	(Signature)	(Signath re									7	*	メ	*	ブ	メ	メ	*	ICE		PRESERVATION	2
	ure)	ire)	1/2	$igdate{}$)Å	メ	×	×	×	×	×	×	×	UNPRESS		Ž	-
			$ \rangle$	4	-, '	_			' —		*			^	^		_	Ĥ	·	ANALYSI PROJECTOR			
					1 1 1				_											A SANTAL MANAGER	is .		5
					- 238																		LAI PROJE
	2 D.	1 0	ر ای خ		- Chain				-											11/1/00			O'E
	2 DAY	ΑΥ 🗆	TURN ARO		Chain of Custody				_													A TOP OF THE PROPERTY OF THE P	12 3
		_ i	TURN AROUND TIME		stody .				,														1
			ND T	H					1														19-0112-
			M																				12.
K	□ 8		Σ						_														49
HANI	CARF	STON	30R/		\dashv		\dashv																1
DEL	NER E	RECEIVING TEMP	TOR									×	4	*	*	メ	×	×	×				
CHAND DELIVERED	CARRIER BILL#	EMP	/ USE																	100/4/		(4)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	╿
Ü	_		ر 'No''			_						メ	メ	×	X	*	×	メ					
						\neg						<u> </u>								THE STATE OF THE S			
			<i>Υ</i> ((Sq.)	N N
		RM#	LABORATORY USE ONLY:														ľ	3	Divect	FIEL STATE OF THE			Ž
		ار	4							ĺ								APACHE	50	FIELD NOTE			1/4
																	Î	Z Z	χi	FIELD NOTES			SC
	C CONTRACT C NOT OSED		ا بر															Ī	_	ES			
	1 6	<i>i</i>												0¢	D Ex	. 6-0 3 of	710			į			
Rele	ased t	to Im	aging	: 7/2	4/20	24	4:45	:59	PM					· a	gu 2	5 01	20						

Chain of Custody Record

Eurofins Midland

1211 W Florida Ave Midland, TX 79701 Phone: 432-704-5440

Client Information (Sub Contract Lab)	Sampler			Lab PM: Telefor	Lab PM: Taylor Holly				.Camer Tracking No(s):	.(s)oN GL	<u> </u>	COC No:	
Clear Contract:	O. C. C.			- L	5							000-01	
Outen Condect Shipping/Receiving	7.00 E			E-Mail: Holl∨	e-Maii: Hollv Tavlor@et.eurofinsus.com	eurofins	mos.com		State of Ongin: New Mexico	0 بـ		Page: Page 1 of 1	
, company													
Eurofins Environment Testing South Centr				<u></u>	Accreditations Required (See note) NELAP Texas	ons kequired Texas	(see note):				<u>, w</u>	Job #: 880-37238-1	
Address:	Due Date Requested:	ij.					:	: :			Ī	Preservation Codes	١.
4145 Greendriar Ur	12/25/2023						Analy	Analysis Kequested	uested			HCH	
City Stafford	TAT Requested (days):	ys):										B NaOH C Zn Acetate	
State, Zp: TX, 77477	<u> </u>			- Spierce				_			hyga. Igidili		P Nazo4S Q Nazs03 R Nazs03
Phone: 281-240-4200(Tel)	#0d											F MeOH G Amchlor H Ascorbio Acid	•
Email:	, #O, #			3.02.020						·			U Acetone V MCAA
Project Name: EBDU #37	Project #: 88000515				. ' \	_	epho					K EDTA L EDA	Y Trizma Z other (specify)
Site:	SSOW#.			2004	,4.4. ₁ .		D) CPI					Other	
			Sample Type	IVIATITX (W=water, S=solid, O=wasteloll,	SIE030C BJ	BTEX C_Calcd	ORGFM_28				1/4/00/0187		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, G=grab)	1	(4.7		300				(20°)	Special Ins	Special Instructions/Note:
								á					
MW-10 (880-37238-1)	12/21/23	08.35 Mountain		Water	×	×	×						
TRW-1 (880-37238-2)	12/21/23	08:58 Mountain		Water	×	×	×				i ariv		
नुष्यं (880-37238-3)	12/21/23	09:26 Mountain		Water	×	×	×				irv.		
TMW-3 (880-37238-4)	12/21/23	09:36 Mountain		Water	×	×	×						
TMW-2 (880-37238-5)	12/21/23	09:56 Mountain		Water	×	×	×				(
TMW-11 (880-37238-6)	12/21/23	10:11 Mountain		Water	×	×	×				6 62		
IMW-12 (880-37238-7)	12/21/23	10:29 Mountain		Water	×	×	×					Temp 3.	Temp 3 C IR ID HOU-369
Dup-2 (880-37238-8)	12/21/23	Mountain		Water	×	×	×				500	- C/F -0 0 Corrected T	C/r -0 0 Corrected Temp. 3O
			-									ì)
			1	1]	1]		-	1	N. Carlon		

Vote. Since aboratory acceditations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratory or other instructions will be provided. Any changes to aboratory does not currently maintain accreditation in the State of Origin listed above for analysis/sests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.

Months company : Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mont
Special Instructions/QC Requirements. Date/Tipe: Date/Time: Method of Shipment: Cooler Temperature(s) "C and Other Remarks. Received by: Received by: Received by: <u>I</u> Primary Deliverable Rank. 2 Date/Time Deliverable Requested I, II, III, IV Other (specify) Possible Hazard Identification Empty Kit Relinquished by: elinquished by: Relinquished by: elinquished by: Jnconfirmed

13

Released to Imaging: 7/24/2024 4:45:59 PM

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-37238-1

SDG Number: 19-0112-49

Login Number: 37238 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

3

Л

5

0

9

11

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-37238-1

SDG Number: 19-0112-49

List Source: Eurofins Houston

List Creation: 12/22/23 03:42 PM

Login Number: 37238 List Number: 2 Creator: Garcia, Yailet

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

1

2

4

6

8

3

<u> 11</u>

13

14

<6mm (1/4").

Appendix F

Windmill Laboratory Report

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 4/30/2024 4:30:51 PM

JOB DESCRIPTION

Apache/EBDU 37 19-0112-49

JOB NUMBER

880-41793-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 4/30/2024 4:30:51 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296 Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Laboratory Job ID: 880-41793-1 SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	22
Lab Chronicle	25
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	35

2

3

4

6

8

11

13

Definitions/Glossary

Client: Larson & Associates, Inc. Job ID: 880-41793-1 Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC/MS Semi VOA

Qualifier **Qualifier Description** S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Metals

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

General Chemistry

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
HF	Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.
U	Indicates the analyte was analyzed for but not detected.

Glossary

NC

ND

NEG

POS

PQL

QC **RER**

RL

PRES

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit

Eurofins Midland

Not Calculated

Negative / Absent

Positive / Present

Presumptive **Quality Control**

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Definitions/Glossary

Client: Larson & Associates, Inc. Job ID: 880-41793-1 Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project: Apache/EBDU 37

Job ID: 880-41793-1

Job ID: 880-41793-1

Eurofins Midland

Job Narrative 880-41793-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 4/3/2024 2:48 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.5°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS Semi VOA

Method 8270E QQQ: Three surrogates are used for this analysis. The laboratory's SOP allows one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: Windwill (880-41793-1). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

PCRs

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The followings samples were analyzed at a dilution for Chloride due to the Matrix Conductivity Threshold (MCT) of the instrument: Windwill (880-41793-1), (860-71138-B-1), (860-71138-B-1 MS) and (860-71138-B-1 MSD). The reporting limits have been adjusted accordingly.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

Method 420.4_NP: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for analytical batch 860-154711 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method SM4500 H+: This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following sample has been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: Windwill (880-41793-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Client Sample Results

Client: Larson & Associates, Inc. Job ID: 880-41793-1 Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Client Sample ID: Windwill

Lab Sample ID: 880-41793-1 Date Collected: 04/03/24 10:15 Date Received: 04/03/24 14:48

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.00500	U	0.00500	mg/L			04/08/24 12:45	1
1,1,2,2-Tetrachloroethane	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
1,1,2-Trichloroethane	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
1,1-Dichloroethane	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
1,1-Dichloroethene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
1,2,4-Trichlorobenzene	<0.00500	U	0.00500	mg/L			04/08/24 12:45	1
1,2-Dichlorobenzene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
1,2-Dichloroethane	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
1,2-Dichloropropane	<0.00500	U	0.00500	mg/L			04/08/24 12:45	1
1,4-Dichlorobenzene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
Benzene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
Carbon tetrachloride	<0.00500	U	0.00500	mg/L			04/08/24 12:45	1
Chloroform	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
cis-1,2-Dichloroethene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			04/08/24 12:45	1
Methylene Chloride	<0.00500	U	0.00500	mg/L			04/08/24 12:45	1
o-Xylene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
Styrene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
Tetrachloroethene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
Toluene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
trans-1,2-Dichloroethene	<0.00100	U	0.00100	mg/L			04/08/24 12:45	1
Trichloroethene	<0.00500	U	0.00500	mg/L			04/08/24 12:45	1
Vinyl chloride	<0.00200	U	0.00200	mg/L			04/08/24 12:45	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			04/08/24 12:45	1
1,2-Dibromoethane	<0.00500	U	0.00500	mg/L			04/08/24 12:45	1
MTBE	<0.00500	U	0.00500	mg/L			04/08/24 12:45	1
Surrogate	%Recovery	Qualifier	Limits		_	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		63 - 144		-		04/08/24 12:45	1
4-Bromofluorobenzene (Surr)	103		74 - 124				04/08/24 12:45	1
Dibromofluoromethane (Surr)	98		75 ₋ 131				04/08/24 12:45	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
2-Methylnaphthalene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Acenaphthene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Acenaphthylene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Anthracene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Benzo[a]anthracene	<0.0286	U	0.0286	ug/L		04/04/24 16:00	04/12/24 16:15	1
Benzo[a]pyrene	<0.0571	U	0.0571	ug/L		04/04/24 16:00	04/16/24 00:21	1
Benzo[b]fluoranthene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/16/24 00:21	1
Benzo[g,h,i]perylene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/16/24 00:21	1
Benzo[k]fluoranthene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/16/24 00:21	1
Chrysene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Dibenz(a,h)anthracene	<0.114	U	0.114	ug/L		04/04/24 16:00	04/16/24 00:21	1
Fluoranthene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Fluorene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1

80 - 120

Eurofins Midland

04/08/24 12:45

Toluene-d8 (Surr)

Client Sample Results

Client: Larson & Associates, Inc. Job ID: 880-41793-1 Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Client Sample ID: Windwill

Date Collected: 04/03/24 10:15 Date Received: 04/03/24 14:48

Lab Sample ID: 880-41793-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Indeno[1,2,3-cd]pyrene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/16/24 00:21	1
Naphthalene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Phenanthrene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Pyrene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/12/24 16:15	1
Atrazine	<0.500	U	0.500	ug/L		04/04/24 16:00	04/12/24 16:15	1
Pentachlorophenol	<1.14	U	1.14	ug/L		04/04/24 16:00	04/12/24 16:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	88		43 - 130			04/04/24 16:00	04/12/24 16:15	1
2-Fluorobiphenyl (Surr)	86		43 - 130			04/04/24 16:00	04/16/24 00:21	1
Nitrobenzene-d5 (Surr)	83		37 - 133			04/04/24 16:00	04/12/24 16:15	1
Nitrobenzene-d5 (Surr)	142	S1+	37 - 133			04/04/24 16:00	04/16/24 00:21	1
p-Terphenyl-d14 (Surr)	78		47 - 130			04/04/24 16:00	04/12/24 16:15	1
p-Terphenyl-d14 (Surr)	96		47 - 130			04/04/24 16:00	04/16/24 00:21	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.000260	U	0.000260	mg/L		04/04/24 21:01	04/05/24 16:32	1
PCB-1221	<0.000520	U	0.000520	mg/L		04/04/24 21:01	04/05/24 16:32	1
PCB-1232	<0.000520	U	0.000520	mg/L		04/04/24 21:01	04/05/24 16:32	1
PCB-1242	<0.000260	U	0.000260	mg/L		04/04/24 21:01	04/05/24 16:32	1
PCB-1248	<0.000520	U	0.000520	mg/L		04/04/24 21:01	04/05/24 16:32	1
PCB-1254	<0.000520	U	0.000520	mg/L		04/04/24 21:01	04/05/24 16:32	1
PCB-1260	<0.000260	U	0.000260	mg/L		04/04/24 21:01	04/05/24 16:32	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	70		52 - 134	_	04/04/24 21:01	04/05/24 16:32	1
DCB Decachlorobiphenyl (Surr)	41		28 - 94		04/04/24 21:01	04/05/24 16:32	1

Method: EPA 300.0 - Anions,								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<1.00	U	1.00	mg/L			04/25/24 16:53	1
Nitrate as N	2.78		0.100	mg/L			04/04/24 19:41	1
Nitrite as N	<0.100	U	0.100	mg/L			04/04/24 19:41	1
Sulfate	56.5		0.500	mg/L			04/04/24 19:41	1
Chloride	440		2.50	mg/L			04/04/24 19:24	5

Chloride	440		2.50	mg/L			04/04/24 19:24	5
- Method: SW846 6020B	- Metals (ICP/MS)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	<0.0200	U	0.0200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Antimony	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 17:36	1
Arsenic	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 17:36	1
Barium	0.218		0.00400	mg/L		04/08/24 10:30	04/08/24 17:36	1
Beryllium	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Boron	0.154		0.0100	mg/L		04/08/24 10:30	04/08/24 17:36	1
Cadmium	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Chromium	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 17:36	1
Cobalt	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Copper	0.00509		0.00400	mg/L		04/08/24 10:30	04/08/24 17:36	1
Iron	<0.100	U	0.100	mg/L		04/08/24 10:30	04/08/24 17:36	1
Lead	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1

Client Sample Results

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1

SDG: 19-0112-49

Client Sample ID: Windwill

Date Collected: 04/03/24 10:15 Date Received: 04/03/24 14:48 Lab Sample ID: 880-41793-1

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Manganese	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Molybdenum	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Nickel	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Selenium	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Silver	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Thallium	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 17:36	1
Uranium	0.00315		0.00100	mg/L		04/08/24 10:30	04/08/24 17:36	1
Zinc	0.00465		0.00400	mg/L		04/08/24 10:30	04/08/24 17:36	1
Method: SW846 7470A - Mercury								
- -	(CVAA)	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 7470A - Mercury	(CVAA) Result		RL	Unit mg/L	<u>D</u>	Prepared 04/08/24 23:16	Analyzed 04/09/24 17:16	Dil Fac
Method: SW846 7470A - Mercury Analyte Mercury	(CVAA) Result				<u>D</u>			Dil Fac
Method: SW846 7470A - Mercury Analyte Mercury General Chemistry	(CVAA) Result <0.000200				<u>D</u>			Dil Fac Dil Fac
Method: SW846 7470A - Mercury Analyte Mercury General Chemistry	(CVAA) Result <0.000200 Result	U Qualifier	0.000200	mg/L	=	04/08/24 23:16	04/09/24 17:16	1
Method: SW846 7470A - Mercury Analyte Mercury General Chemistry Analyte Phenols, Total (EPA 420.4)	(CVAA) Result <0.000200 Result	Qualifier U F1	0.000200	mg/L Unit	=	04/08/24 23:16	04/09/24 17:16 Analyzed	1
Method: SW846 7470A - Mercury Analyte Mercury General Chemistry Analyte Phenols, Total (EPA 420.4)	(CVAA) Result <0.000200 Result <0.0100	Qualifier U F1	0.000200 RL 0.0100	mg/L Unit mg/L	=	04/08/24 23:16	04/09/24 17:16 Analyzed 04/12/24 11:33	1
Method: SW846 7470A - Mercury Analyte Mercury General Chemistry Analyte Phenols, Total (EPA 420.4) Cyanide, Total (EPA Kelada 01)	(CVAA) Result <0.000200 Result <0.0100 <0.00500	Qualifier U F1	0.000200 RL 0.0100 0.00500	mg/L mg/L mg/L	=	04/08/24 23:16	04/09/24 17:16 Analyzed 04/12/24 11:33 04/11/24 11:25	1

Surrogate Summary

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Job ID: 880-41793-1

SDG: 19-0112-49

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Sui	rogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(63-144)	(74-124)	(75-131)	(80-120)
880-41793-1	Windwill	105	103	98	99
LCS 860-153663/3	Lab Control Sample	100	105	99	100
LCSD 860-153663/4	Lab Control Sample Dup	100	102	99	98
MB 860-153663/10	Method Blank	106	102	99	102

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Su
		FBP	NBZ	TPHd14
Lab Sample ID	Client Sample ID	(43-130)	(37-133)	(47-130)
880-41793-1	Windwill	88	83	78
880-41793-1	Windwill	86	142 S1+	96
LCS 860-153448/2-A	Lab Control Sample	86	95	90
LCSD 860-153448/3-A	Lab Control Sample Dup	92	101	104
MB 860-153448/1-A	Method Blank	92	94	96

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		TCX1	DCB1					
Lab Sample ID	Client Sample ID	(52-134)	(28-94)					
880-41793-1	Windwill	70	41					
LCS 860-153141/4-A	Lab Control Sample	72	40					
LCSD 860-153141/5-A	Lab Control Sample Dup	77	43					
MB 860-153141/1-A	Method Blank	71	42					

Surrogate Legend

TCX = Tetrachloro-m-xylene

DCB = DCB Decachlorobiphenyl (Surr)

Client: Larson & Associates, Inc. Job ID: 880-41793-1 Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Method: 8260D - Volatile Organic Compounds by GC/MS

MB MB

Lab Sample ID: MB 860-153663/10

Matrix: Water

Analysis Batch: 153663

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.00500	U	0.00500	mg/L			04/08/24 10:41	1
1,1,2,2-Tetrachloroethane	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
1,1,2-Trichloroethane	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
1,1-Dichloroethane	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
1,1-Dichloroethene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
1,2,4-Trichlorobenzene	<0.00500	U	0.00500	mg/L			04/08/24 10:41	1
1,2-Dichlorobenzene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
1,2-Dichloroethane	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
1,2-Dichloropropane	<0.00500	U	0.00500	mg/L			04/08/24 10:41	1
1,4-Dichlorobenzene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
Benzene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
Carbon tetrachloride	<0.00500	U	0.00500	mg/L			04/08/24 10:41	1
Chloroform	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
cis-1,2-Dichloroethene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
Ethylbenzene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
m,p-Xylenes	<0.0100	U	0.0100	mg/L			04/08/24 10:41	1
Methylene Chloride	<0.00500	U	0.00500	mg/L			04/08/24 10:41	1
o-Xylene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
Styrene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
Tetrachloroethene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
Toluene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
trans-1,2-Dichloroethene	<0.00100	U	0.00100	mg/L			04/08/24 10:41	1
Trichloroethene	<0.00500	U	0.00500	mg/L			04/08/24 10:41	1
Vinyl chloride	<0.00200	U	0.00200	mg/L			04/08/24 10:41	1
Xylenes, Total	<0.0100	U	0.0100	mg/L			04/08/24 10:41	1
1,2-Dibromoethane	<0.00500	U	0.00500	mg/L			04/08/24 10:41	1
MTBE	<0.00500	U	0.00500	mg/L			04/08/24 10:41	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		63 - 144		04/08/24 10:41	1
4-Bromofluorobenzene (Surr)	102		74 - 124		04/08/24 10:41	1
Dibromofluoromethane (Surr)	99		75 - 131		04/08/24 10:41	1
Toluene-d8 (Surr)	102		80 - 120		04/08/24 10:41	1

Lab Sample ID: LCS 860-153663/3

Matrix: Water

Analysis Batch: 153663

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	0.0500	0.05193		mg/L		104	70 - 130	
1,1,2,2-Tetrachloroethane	0.0500	0.05345		mg/L		107	74 - 125	
1,1,2-Trichloroethane	0.0500	0.05090		mg/L		102	75 - 130	
1,1-Dichloroethane	0.0500	0.05092		mg/L		102	71 - 130	
1,1-Dichloroethene	0.0500	0.05549		mg/L		111	50 - 150	
1,2,4-Trichlorobenzene	0.0500	0.05211		mg/L		104	75 - 135	
1,2-Dichlorobenzene	0.0500	0.05026		mg/L		101	75 - 125	
1,2-Dichloroethane	0.0500	0.04960		mg/L		99	72 - 130	
1,2-Dichloropropane	0.0500	0.04806		mg/L		96	74 - 125	

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Job ID: 880-41793-1

SDG: 19-0112-49

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 860-153663/3

Matrix: Water

Analysis Batch: 153663

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 1,4-Dichlorobenzene 0.0500 0.04974 99 75 - 125 mg/L Benzene 0.0500 0.04930 mg/L 99 75 - 125 Carbon tetrachloride 0.0500 0.04790 70 - 125 mg/L 96 Chloroform 0.0500 0.04981 mg/L 100 70 - 121 0.0500 cis-1,2-Dichloroethene 0.05158 103 75 - 125 mg/L Ethylbenzene 0.0500 0.05097 mg/L 102 75 - 125 m,p-Xylenes 0.0500 0.05079 mg/L 102 75 - 125 Methylene Chloride 0.0500 0.04779 mg/L 96 71 - 125 0.0500 o-Xylene 0.05061 mg/L 101 75 - 125 Styrene 0.0500 0.04926 mg/L 99 75 - 125 Tetrachloroethene 103 0.0500 0.05132 mg/L 71 - 125 0.0500 0.04963 75 - 130 Toluene mg/L 99 trans-1,2-Dichloroethene 0.0500 105 75 - 125 0.05266 mg/L Trichloroethene 0.0500 0.05056 mg/L 101 75 - 135 Vinyl chloride 0.0500 0.05348 mg/L 107 60 - 140 1,2-Dibromoethane 0.0500 0.04969 mg/L 99 73 - 125 MTBE 0.0500 0.05189 104 65 - 135 mg/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		63 - 144
4-Bromofluorobenzene (Surr)	105		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	100		80 - 120

Lab Sample ID: LCSD 860-153663/4

Matrix: Water

Analysis Batch: 153663

Client Sample ID: Lab	Control Sample Dup
	Prep Type: Total/NA

Analysis Datch. 100000									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1-Trichloroethane	0.0500	0.04893		mg/L		98	70 - 130	6	25
1,1,2,2-Tetrachloroethane	0.0500	0.04965		mg/L		99	74 - 125	7	25
1,1,2-Trichloroethane	0.0500	0.04916		mg/L		98	75 - 130	3	25
1,1-Dichloroethane	0.0500	0.04906		mg/L		98	71 - 130	4	25
1,1-Dichloroethene	0.0500	0.05105		mg/L		102	50 - 150	8	25
1,2,4-Trichlorobenzene	0.0500	0.04764		mg/L		95	75 - 135	9	25
1,2-Dichlorobenzene	0.0500	0.04581		mg/L		92	75 - 125	9	25
1,2-Dichloroethane	0.0500	0.04886		mg/L		98	72 - 130	2	25
1,2-Dichloropropane	0.0500	0.04683		mg/L		94	74 - 125	3	25
1,4-Dichlorobenzene	0.0500	0.04502		mg/L		90	75 - 125	10	25
Benzene	0.0500	0.04757		mg/L		95	75 - 125	4	25
Carbon tetrachloride	0.0500	0.04459		mg/L		89	70 - 125	7	25
Chloroform	0.0500	0.04804		mg/L		96	70 - 121	4	25
cis-1,2-Dichloroethene	0.0500	0.04959		mg/L		99	75 - 125	4	25
Ethylbenzene	0.0500	0.04784		mg/L		96	75 - 125	6	25
m,p-Xylenes	0.0500	0.04759		mg/L		95	75 - 125	6	25
Methylene Chloride	0.0500	0.04531		mg/L		91	71 - 125	5	25
o-Xylene	0.0500	0.04767		mg/L		95	75 - 125	6	25
Styrene	0.0500	0.04700		mg/L		94	75 - 125	5	25

Job ID: 880-41793-1 Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-153663/4

Matrix: Water

Analysis Batch: 153663

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Tetrachloroethene 0.0500 0.04748 71 - 125 25 mg/L 95 8 Toluene 0.0500 0.04702 mg/L 94 75 - 130 5 25 trans-1,2-Dichloroethene 0.0500 0.05018 75 - 125 25 mg/L 100 5 Trichloroethene 0.0500 0.04854 mg/L 97 75 - 135 25 25 0.0500 0.05079 Vinyl chloride 102 60 - 140 mg/L 1,2-Dibromoethane 0.0500 0.04810 mg/L 96 73 - 125 3 25 MTBE 0.0500 0.05101 mg/L 102 65 - 135 25

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		63 - 144
4-Bromofluorobenzene (Surr)	102		74 - 124
Dibromofluoromethane (Surr)	99		75 - 131
Toluene-d8 (Surr)	98		80 - 120

Method: 8270E - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 860-153448/1-A

Matrix: Water

Analysis Batch: 154192

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 153448**

Analysis Batch: 154192							Prep Batch:	153448
		MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	< 0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
2-Methylnaphthalene	< 0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Acenaphthene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Acenaphthylene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Anthracene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Benzo[a]anthracene	<0.0286	U	0.0286	ug/L		04/04/24 16:00	04/10/24 20:26	1
Benzo[a]pyrene	<0.0571	U	0.0571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Benzo[b]fluoranthene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Benzo[g,h,i]perylene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Benzo[k]fluoranthene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Chrysene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Dibenz(a,h)anthracene	<0.114	U	0.114	ug/L		04/04/24 16:00	04/10/24 20:26	1
Fluoranthene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Fluorene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Indeno[1,2,3-cd]pyrene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Naphthalene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Phenanthrene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Pyrene	<0.571	U	0.571	ug/L		04/04/24 16:00	04/10/24 20:26	1
Atrazine	<0.500	U	0.500	ug/L		04/04/24 16:00	04/10/24 20:26	1
Pentachlorophenol	<1.14	U	1.14	ug/L		04/04/24 16:00	04/10/24 20:26	1
	440	440						

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	92	·	43 - 130	04/04/24 16:00	04/10/24 20:26	1
Nitrobenzene-d5 (Surr)	94		37 - 133	04/04/24 16:00	04/10/24 20:26	1
p-Terphenyl-d14 (Surr)	96		47 - 130	04/04/24 16:00	04/10/24 20:26	1

Job ID: 880-41793-1 Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 860-153448/2-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 153448** Analysis Batch: 154192

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1-Methylnaphthalene	2.86	2.454		ug/L		86	52 - 130	
2-Methylnaphthalene	2.86	2.398		ug/L		84	25 - 175	
Acenaphthene	2.86	2.352		ug/L		82	60 - 132	
Acenaphthylene	2.86	2.722		ug/L		95	54 - 126	
Anthracene	2.86	2.146		ug/L		75	43 - 135	
Benzo[a]anthracene	2.86	3.391		ug/L		119	42 - 133	
Benzo[a]pyrene	2.86	2.685		ug/L		94	32 - 148	
Benzo[b]fluoranthene	2.86	3.247		ug/L		114	42 - 140	
Benzo[g,h,i]perylene	2.86	1.891		ug/L		66	25 _ 195	
Benzo[k]fluoranthene	2.86	2.950		ug/L		103	25 - 146	
Chrysene	2.86	2.529		ug/L		89	47 - 130	
Dibenz(a,h)anthracene	2.86	2.082		ug/L		73	32 - 200	
Fluoranthene	2.86	2.646		ug/L		93	43 - 130	
Fluorene	2.86	2.424		ug/L		85	70 - 120	
Indeno[1,2,3-cd]pyrene	2.86	1.961		ug/L		69	29 _ 151	
Naphthalene	2.86	2.612		ug/L		91	36 - 120	
Phenanthrene	2.86	2.415		ug/L		85	65 - 120	
Pyrene	2.86	2.594		ug/L		91	70 - 130	
Atrazine	2.86	2.577		ug/L		90	70 - 130	
Pentachlorophenol	2.86	1.929		ug/L		68	38 - 152	

LCSD LCSD

2.561

2.402

2.394

3.010

2.547

3.582

2.928

3.222

2.300

3.282

2.660

2.367

2.982

2.609

2.301

2.565

2.636

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

Result Qualifier

Spike

Added

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

2.86

LCS LCS

Surrogate	%Recovery Qual	ifier Limits
2-Fluorobiphenyl (Surr)	86	43 - 130
Nitrobenzene-d5 (Surr)	95	37 - 133
p-Terphenyl-d14 (Surr)	90	47 - 130

Lab Sample ID: LCSD 860-153448/3-A

Matrix: Water

1-Methylnaphthalene

2-Methylnaphthalene

Acenaphthene

Acenaphthylene

Benzo[a]pyrene

Benzo[a]anthracene

Benzo[b]fluoranthene

Benzo[g,h,i]perylene

Benzo[k]fluoranthene

Dibenz(a,h)anthracene

Indeno[1,2,3-cd]pyrene

Released to Imaging: 7/24/2024 4:45:59 PM

Anthracene

Chrysene

Fluorene

Fluoranthene

Naphthalene

Phenanthrene

Analyte

Analysis Batch: 154192

Unit	D	%Rec	Limits	RPD	Limit
ug/L	_	90	52 - 130	4	30
ug/L		84	25 - 175	0	30
ug/L		84	60 - 132	2	30
ug/L		105	54 - 126	10	30
ug/L		89	43 - 135	17	30
ug/L		125	42 - 133	5	30
ug/L		102	32 - 148	9	30
ug/L		113	42 - 140	1	30
ug/L		81	25 - 195	20	30
ug/L		115	25 - 146	11	30
ug/L		93	47 - 130	5	30

32 - 200

43 - 130

70 - 120

29 - 151

36 - 120

65 - 120 **Eurofins Midland**

13

12

7

16

2

30

30

30

30

30

30

OCD Ex. 6-0728 Page 14 of 37

4/30/2024

%Rec

83

104

91

81

92

Prep Type: Total/NA

Prep Batch: 153448

RPD

Pentachlorophenol

QC Sample Results

Job ID: 880-41793-1 Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Method: 8270E - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 860-153448/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA Analysis Batch: 154192 **Prep Batch: 153448** Spike LCSD LCSD %Rec **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit D 2.86 2.821 ug/L 99 70 - 130 30 Pyrene 8 Atrazine 2.86 2.784 ug/L 97 70 - 130 8 30

2.160

ug/L

76

38 _ 152

11

2.86

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	92		43 - 130
Nitrobenzene-d5 (Surr)	101		37 - 133
p-Terphenyl-d14 (Surr)	104		47 - 130

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 860-153141/1-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Prep Batch: 153141**

Analysis Batch: 153438

MB MB Result Qualifier D Prepared Dil Fac Analyte RL Unit Analyzed PCB-1016 <0.000262 0.000262 04/03/24 18:17 04/05/24 11:06 U mg/L PCB-1221 0.000524 04/03/24 18:17 04/05/24 11:06 <0.000524 U mg/L PCB-1232 <0.000524 U 0.000524 04/03/24 18:17 04/05/24 11:06 mg/L PCB-1242 0.000262 04/03/24 18:17 04/05/24 11:06 <0.000262 U mg/L PCB-1248 <0.000524 U 0.000524 mg/L 04/03/24 18:17 04/05/24 11:06 PCB-1254 <0.000524 U 0.000524 mg/L 04/03/24 18:17 04/05/24 11:06 PCB-1260 <0.000262 U 0.000262 mg/L 04/03/24 18:17 04/05/24 11:06

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	71	52 - 134	04/03/24 18:17	04/05/24 11:06	1
DCB Decachlorobiphenyl (Surr)	42	28 - 94	04/03/24 18:17	04/05/24 11:06	1

Lab Sample ID: LCS 860-153141/4-A **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 153438 Prep Batch: 153141 LCS LCS Spike %Rec

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
PCB-1016	0.00520	0.005895		mg/L		113	43 - 130
PCB-1260	0.00520	0.004034		mg/L		78	50 - 95

	LUS	LUS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	72		52 - 134
DCB Decachlorobiphenyl (Surr)	40		28 - 94

Lab Sample ID: LCSD 860-153141/5-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 153438 **Prep Batch: 153141** Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit PCB-1016 0.00525 0.005950 113 43 - 130 20 mg/L PCB-1260 0.00525 0.004268 50 - 95 mg/L 81

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1 SDG: 19-0112-49

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCSD 860-153141/5-A **Matrix: Water**

Analysis Batch: 153438

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 153141

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

LCSD LCSD

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 77 52 - 134 DCB Decachlorobiphenyl (Surr) 43 28 - 94

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 400-669273/53

Matrix: Water Analysis Batch: 669273

MB MB

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac 1.00 Fluoride <1.00 U mg/L 04/25/24 12:13

Lab Sample ID: LCS 400-669273/54

Matrix: Water

Analysis Batch: 669273

LCS LCS Spike %Rec Added Qualifier Analyte Result Unit %Rec Limits Fluoride 10.0 9.997 100 90 - 110 mg/L

Lab Sample ID: LCSD 400-669273/55

Matrix: Water

Analysis Batch: 669273

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Limits RPD Limit Unit %Rec Fluoride 10.0 9.940 90 - 110 mg/L

Lab Sample ID: MB 880-77357/3

Matrix: Water

Analysis Batch: 77357

MB MB

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	<0.500	U	0.500	mg/L			04/04/24 12:19	1
Chloride	<0.500	U	0.500	mg/L			04/04/24 12:19	1

Lab Sample ID: LCS 880-77357/4

Matrix: Water

Analysis Batch: 77357

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Sulfate 25.0 24.28 97 90 - 110 mg/L Chloride 25.0 25.03 mg/L 100 90 - 110

Lab Sample ID: LCSD 880-77357/5

Matrix: Water

Analysis Batch: 77357

Allalysis Datcii. 11331									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Sulfate	25.0	24.46		mg/L		98	90 - 110	1	20
Chloride	25.0	24.95		mg/L		100	90 - 110	0	20

Eurofins Midland

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Job ID: 880-41793-1

SDG: 19-0112-49

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 880-77358/3

Matrix: Water

Analysis Batch: 77358

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrate as N	<0.100	U	0.100	mg/L			04/04/24 12:19	1
Nitrite as N	<0.100	U	0.100	mg/L			04/04/24 12:19	1

Lab Sample ID: LCS 880-77358/4

Matrix: Water

Analysis Batch: 77358

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Nitrate as N	5.00	4.974		mg/L		99	90 - 110	
Nitrite as N	5.00	5.063		mg/L		101	90 - 110	

Lab Sample ID: LCSD 880-77358/5

Matrix: Water

Analysis Batch: 77358

Analysis Daton. 11000									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Nitrate as N	5.00	4.967		mg/L		99	90 - 110	0	20
Nitrite as N	5.00	5.049		mg/L		101	90 - 110	0	20

Method: 6020B - Metals (ICP/MS)

Lab Sample ID: MB 860-153717/1-A

Matrix: Water

Analysis Batch: 153799

17/1-A	Client Sample ID: Method Blank
	Prep Type: Total/NA
	Prep Batch: 153717
MB MB	

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Aluminum	<0.0200	U	0.0200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Antimony	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 16:42	1
Arsenic	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 16:42	1
Barium	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 16:42	1
Beryllium	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Boron	<0.0100	U	0.0100	mg/L		04/08/24 10:30	04/08/24 16:42	1
Cadmium	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Chromium	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 16:42	1
Cobalt	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Copper	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 16:42	1
Iron	<0.100	U	0.100	mg/L		04/08/24 10:30	04/08/24 16:42	1
Lead	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Manganese	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Molybdenum	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Nickel	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Selenium	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Silver	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Thallium	<0.00200	U	0.00200	mg/L		04/08/24 10:30	04/08/24 16:42	1
Uranium	<0.00100	U	0.00100	mg/L		04/08/24 10:30	04/08/24 16:42	1
Zinc	<0.00400	U	0.00400	mg/L		04/08/24 10:30	04/08/24 16:42	1

Eurofins Midland

1

2

3

<u>-</u>5

6

1

9 10

11

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Job ID: 880-41793-1

SDG: 19-0112-49

Method: 6020B - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 860-	-153717/2-A		Client Sample ID: Lab Control Sample
Matrix: Water			Prep Type: Total/NA
Analysis Batch: 153799			Prep Batch: 153717
	Spike	LCS LCS	%Rec

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aluminum	0.500	0.4977		mg/L		100	80 - 120
Antimony	0.100	0.09738		mg/L		97	80 - 120
Arsenic	0.100	0.09919		mg/L		99	80 - 120
Barium	0.100	0.09745		mg/L		97	80 - 120
Beryllium	0.100	0.09822		mg/L		98	80 - 120
Boron	0.100	0.09577		mg/L		96	80 - 120
Cadmium	0.100	0.09956		mg/L		100	80 - 120
Chromium	0.100	0.1005		mg/L		101	80 - 120
Cobalt	0.100	0.09972		mg/L		100	80 - 120
Copper	0.100	0.09952		mg/L		100	80 - 120
Iron	0.500	0.5145		mg/L		103	80 - 120
Lead	0.100	0.09749		mg/L		97	80 - 120
Manganese	0.100	0.09918		mg/L		99	80 - 120
Molybdenum	0.100	0.09914		mg/L		99	80 - 120
Nickel	0.100	0.09964		mg/L		100	80 - 120
Selenium	0.100	0.09675		mg/L		97	80 - 120
Silver	0.0500	0.04944		mg/L		99	80 - 120
Thallium	0.100	0.09858		mg/L		99	80 - 120
Uranium	0.0249	0.02495		mg/L		100	80 - 120
Zinc	0.100	0.09938		mg/L		99	80 - 120

Lab Sample ID: LCSD 860-153717/3-A

Matrix: Water

Analysis Batch: 153799

Client Sample ID: Lab Control Sample Dup							
Prep Type: Total/NA							
			Prep Batch: 153717				
			%Rec		RPD		
nit	D	%Rec	Limits	RPD	Limit		

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aluminum	0.500	0.4962		mg/L		99	80 - 120	0	20
Antimony	0.100	0.09982		mg/L		100	80 - 120	2	20
Arsenic	0.100	0.09960		mg/L		100	80 - 120	0	20
Barium	0.100	0.09735		mg/L		97	80 - 120	0	20
Beryllium	0.100	0.09948		mg/L		99	80 - 120	1	20
Boron	0.100	0.09964		mg/L		100	80 - 120	4	20
Cadmium	0.100	0.1002		mg/L		100	80 - 120	1	20
Chromium	0.100	0.1006		mg/L		101	80 - 120	0	20
Cobalt	0.100	0.09981		mg/L		100	80 - 120	0	20
Copper	0.100	0.09957		mg/L		100	80 - 120	0	20
Iron	0.500	0.5113		mg/L		102	80 - 120	1	20
Lead	0.100	0.09835		mg/L		98	80 - 120	1	20
Manganese	0.100	0.09927		mg/L		99	80 - 120	0	20
Molybdenum	0.100	0.09951		mg/L		100	80 - 120	0	20
Nickel	0.100	0.09984		mg/L		100	80 - 120	0	20
Selenium	0.100	0.09643		mg/L		96	80 - 120	0	20
Silver	0.0500	0.04992		mg/L		100	80 - 120	1	20
Thallium	0.100	0.09997		mg/L		100	80 - 120	1	20
Uranium	0.0249	0.02525		mg/L		102	80 - 120	1	20
Zinc	0.100	0.09918		mg/L		99	80 - 120	0	20

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1 SDG: 19-0112-49

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 860-153844/1-A

Lab Sample ID: LCS 860-153844/2-A

Matrix: Water

Analysis Batch: 154012

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 153844

Prep Batch: 153844

мв мв

Dil Fac Analyte Result Qualifier RLUnit D Prepared Analyzed Mercury <0.000200 U 0.000200 mg/L 04/08/24 23:16 04/09/24 16:50

> Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154012

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits

Analyte Mercury 0.00200 0.002040 mg/L 102 80 - 120

Lab Sample ID: LCSD 860-153844/3-A Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA

Analysis Batch: 154012 **Prep Batch: 153844** LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit

0.00200 0.002039 Mercury mg/L 102 80 - 120 20

Method: 420.4 - Phenolics, Total Recoverable

Lab Sample ID: MB 860-154711/16 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154711

мв мв

Analyte Result Qualifier RL Unit D Dil Fac Prepared Analyzed Phenols, Total <0.0100 U 0.0100 04/12/24 10:55 mq/L

Lab Sample ID: LCS 860-154711/17 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154711

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Phenols, Total 0.100 0.09790 90 - 110 mg/L

Lab Sample ID: LCSD 860-154711/18 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 154711

LCSD LCSD Spike %Rec RPD Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D 0.100 Phenols, Total 0.1020 20 mg/L 102 90 - 110

Lab Sample ID: 880-41793-1 MS Client Sample ID: Windwill Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154711

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Phenols, Total <0.0100 U F1 0.100 <0.0100 UF1 mg/L 90 _ 110

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1

SDG: 19-0112-49

Method: 420.4 - Phenolics, Total Recoverable (Continued)

Lab Sample ID: 880-41793-1 MSD Client Sample ID: Windwill Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154711

MSD MSD %Rec RPD Sample Sample Spike Result Qualifier Analyte Added Result Qualifier D %Rec Limits RPD Limit Unit Phenols, Total <0.0100 UF1 0.100 <0.0100 UF1 mg/L 0 90 - 110 NC 20

Method: Kelada 01 - Cyanide, Total, Acid Dissociable and Thiocyanate

Lab Sample ID: MB 860-154355/24 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154355

MB MB

Result Qualifier RL Unit Dil Fac Analyte D Prepared Analyzed 04/11/24 10:30 <0.00500 U 0.00500 Cyanide, Total mg/L

Lab Sample ID: MB 860-154355/65 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 154355

MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Cyanide, Total <0.00500 U 0.00500 mg/L 04/11/24 12:26

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 860-154355/26

Matrix: Water

Analysis Batch: 154355

Spike LCS LCS %Rec Analyte Added Qualifier %Rec Limits Result Unit Cyanide, Total 0.100 0.09006 mg/L 90 - 110

Lab Sample ID: LCSD 860-154355/67

Matrix: Water

Analysis Batch: 154355

Spike LCSD LCSD RPD %Rec Added Qualifier Analyte Result Unit %Rec Limit Cyanide, Total 0.100 0.1073 107 90 - 110 mg/L

Lab Sample ID: LLCS 860-154355/25

Matrix: Water

Analysis Batch: 154355

LLCS LLCS Spike %Rec Added Result Qualifier %Rec Analyte Unit D Limits 0.0100 Cyanide, Total 0.01167 50 - 150 mg/L 117

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 880-77416/1

Matrix: Water

Analysis Batch: 77416 MB MB Result Qualifier RL Unit Dil Fac Analyte D Prepared Analyzed **Total Dissolved Solids** <25.0 U 25.0 mg/L 04/04/24 20:44

Eurofins Midland

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Client: Larson & Associates, Inc. Job ID: 880-41793-1 Project/Site: Apache/EBDU 37

SDG: 19-0112-49

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 880-77416/2 **Matrix: Water**

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 77416

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 1000 998.0 mg/L 100 80 - 120

Lab Sample ID: LCSD 880-77416/3

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Matrix: Water Analysis Batch: 77416

Spike LCSD LCSD %Rec RPD Added RPD Limit Analyte Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 1000 1000 mg/L 100 80 - 120 0

DU DU

1003

Result Qualifier

Unit

mg/L

Lab Sample ID: 880-41793-1 DU

Client Sample ID: Windwill

Matrix: Water

Analysis Batch: 77416

Prep Type: Total/NA

RPD

Analyte Result Qualifier Total Dissolved Solids 1000

Sample Sample

RPD Limit 10

Method: SM 4500 H+ B - pH

Lab Sample ID: 880-41793-1 DU

Client Sample ID: Windwill

Prep Type: Total/NA

Matrix: Water

Analysis Batch: 77415

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	7.3	HF	7.3		S.U.		 0.1	10
Temperature	22.0	HF	22.1		Deg. C		0.5	10

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1 SDG: 19-0112-49

GC/MS VOA

Analysis Batch: 153663

Lab Sample ID 880-41793-1	Client Sample ID Windwill	Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch
MB 860-153663/10	Method Blank	Total/NA	Water	8260D	
LCS 860-153663/3	Lab Control Sample	Total/NA	Water	8260D	
LCSD 860-153663/4	Lab Control Sample Dup	Total/NA	Water	8260D	

GC/MS Semi VOA

Prep Batch: 153448

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	3511	
MB 860-153448/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-153448/2-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-153448/3-A	Lab Control Sample Dup	Total/NA	Water	3511	

Analysis Batch: 154192

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 860-153448/1-A	Method Blank	Total/NA	Water	8270E	153448
LCS 860-153448/2-A	Lab Control Sample	Total/NA	Water	8270E	153448
LCSD 860-153448/3-A	Lab Control Sample Dup	Total/NA	Water	8270E	153448

Analysis Batch: 154487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	8270E	153448

Analysis Batch: 154867

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	8270E	153448

GC Semi VOA

Prep Batch: 153141

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	3511	
MB 860-153141/1-A	Method Blank	Total/NA	Water	3511	
LCS 860-153141/4-A	Lab Control Sample	Total/NA	Water	3511	
LCSD 860-153141/5-A	Lab Control Sample Dup	Total/NA	Water	3511	

Analysis Batch: 153438

Lab Sample ID 880-41793-1	Client Sample ID Windwill	Prep Type Total/NA	Matrix Water	Method 8082A	Prep Batch 153141
MB 860-153141/1-A	Method Blank	Total/NA	Water	8082A	153141
LCS 860-153141/4-A	Lab Control Sample	Total/NA	Water	8082A	153141
LCSD 860-153141/5-A	Lab Control Sample Dup	Total/NA	Water	8082A	153141

HPLC/IC

Analysis Batch: 77357

La	b Sample ID	Client Sample ID	Prep Type	Matrix	Method Pre	p Batch
88	0-41793-1	Windwill	Total/NA	Water	300.0	
88	0-41793-1	Windwill	Total/NA	Water	300.0	
ME	3 880-77357/3	Method Blank	Total/NA	Water	300.0	
LC	S 880-77357/4	Lab Control Sample	Total/NA	Water	300.0	

Eurofins Midland

2

3

4

6

8

10

12

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1 SDG: 19-0112-49

HPLC/IC (Continued)

Analysis Batch: 77357 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-77357/5	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 77358

La	ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
88	80-41793-1	Windwill	Total/NA	Water	300.0	
М	IB 880-77358/3	Method Blank	Total/NA	Water	300.0	
L	CS 880-77358/4	Lab Control Sample	Total/NA	Water	300.0	
L	CSD 880-77358/5	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 669273

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	300.0	
MB 400-669273/53	Method Blank	Total/NA	Water	300.0	
LCS 400-669273/54	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-669273/55	Lab Control Sample Dup	Total/NA	Water	300.0	

Metals

Prep Batch: 153717

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	3010A	
MB 860-153717/1-A	Method Blank	Total/NA	Water	3010A	
LCS 860-153717/2-A	Lab Control Sample	Total/NA	Water	3010A	
LCSD 860-153717/3-A	Lab Control Sample Dup	Total/NA	Water	3010A	

Analysis Batch: 153799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	6020B	153717
MB 860-153717/1-A	Method Blank	Total/NA	Water	6020B	153717
LCS 860-153717/2-A	Lab Control Sample	Total/NA	Water	6020B	153717
LCSD 860-153717/3-A	Lab Control Sample Dup	Total/NA	Water	6020B	153717

Prep Batch: 153844

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	7470A	
MB 860-153844/1-A	Method Blank	Total/NA	Water	7470A	
LCS 860-153844/2-A	Lab Control Sample	Total/NA	Water	7470A	
LCSD 860-153844/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	

Analysis Batch: 154012

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	7470A	153844
MB 860-153844/1-A	Method Blank	Total/NA	Water	7470A	153844
LCS 860-153844/2-A	Lab Control Sample	Total/NA	Water	7470A	153844
LCSD 860-153844/3-A	Lab Control Sample Dup	Total/NA	Water	7470A	153844

General Chemistry

Analysis Batch: 77415

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	SM 4500 H+ B	
880-41793-1 DU	Windwill	Total/NA	Water	SM 4500 H+ B	

Eurofins Midland

2

3

4

_

0

9

10

12

. .

QC Association Summary

Client: Larson & Associates, Inc.
Project/Site: Apache/EBDU 37

Job ID: 880-41793-1 SDG: 19-0112-49

General Chemistry

Analysis Batch: 77416

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	SM 2540C	
MB 880-77416/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-77416/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-77416/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-41793-1 DU	Windwill	Total/NA	Water	SM 2540C	

5

Analysis Batch: 154355

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	Kelada 01	
MB 860-154355/24	Method Blank	Total/NA	Water	Kelada 01	
MB 860-154355/65	Method Blank	Total/NA	Water	Kelada 01	
LCS 860-154355/26	Lab Control Sample	Total/NA	Water	Kelada 01	
LCSD 860-154355/67	Lab Control Sample Dup	Total/NA	Water	Kelada 01	
LLCS 860-154355/25	Lab Control Sample	Total/NA	Water	Kelada 01	

8

Analysis Batch: 154711

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	420.4	
MB 860-154711/16	Method Blank	Total/NA	Water	420.4	
LCS 860-154711/17	Lab Control Sample	Total/NA	Water	420.4	
LCSD 860-154711/18	Lab Control Sample Dup	Total/NA	Water	420.4	
880-41793-1 MS	Windwill	Total/NA	Water	420.4	
880-41793-1 MSD	Windwill	Total/NA	Water	420.4	

14

16

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Client Sample ID: Windwill

Date Collected: 04/03/24 10:15

Date Received: 04/03/24 14:48

Job ID: 880-41793-1 SDG: 19-0112-49

Lab Sample ID: 880-41793-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	153663	04/08/24 12:45	NA	EET HOU
Total/NA	Prep	3511			35.00 mL	2.00 mL	153448	04/04/24 16:00	DR	EET HOU
Total/NA	Analysis	8270E		1	1 mL	1 mL	154487	04/12/24 16:15	EM	EET HOU
Total/NA	Prep	3511			35.00 mL	2.00 mL	153448	04/04/24 16:00	DR	EET HOU
Total/NA	Analysis	8270E		1	1 mL	1 mL	154867	04/16/24 00:21	EM	EET HOU
Total/NA	Prep	3511			48.1 mL	5 mL	153141	04/04/24 21:01	DS	EET HOU
Total/NA	Analysis	8082A		1			153438	04/05/24 16:32	WP	EET HOU
Total/NA	Analysis	300.0		5	10 mL	10 mL	77357	04/04/24 19:24	SMC	EET MID
Total/NA	Analysis	300.0		1	10 mL	10 mL	77357	04/04/24 19:41	SMC	EET MID
Total/NA	Analysis	300.0		1	10 mL	10 mL	77358	04/04/24 19:41	SMC	EET MID
Total/NA	Analysis	300.0		1	10 mL	10 mL	669273	04/25/24 16:53	LHB	EET PEN
Total/NA	Prep	3010A			50 mL	50 mL	153717	04/08/24 10:30	MD	EET HOU
Total/NA	Analysis	6020B		1			153799	04/08/24 17:36	SHZ	EET HOU
Total/NA	Prep	7470A			50 mL	50 mL	153844	04/08/24 23:16	AGR	EET HOU
Total/NA	Analysis	7470A		1			154012	04/09/24 17:16	SHZ	EET HOU
Total/NA	Analysis	420.4		1	10 mL	10 mL	154711	04/12/24 11:33	ADL	EET HOU
Total/NA	Analysis	Kelada 01		1	50 mL	50 mL	154355	04/11/24 11:25	ADL	EET HOU
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	77416	04/04/24 20:44	SMC	EET MID
Total/NA	Analysis	SM 4500 H+ B		1			77415	04/04/24 20:18	SMC	EET MID

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Accreditation/Certification Summary

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1 SDG: 19-0112-49

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority	Prograr	n	Identification Number	Expiration Date
as	NELAP		T104704400-23-26	06-30-24
The following analytes	are included in this report, but	the laboratory is not certif	fied by the governing authority. This lis	st may include analyte
,	are included in this report, but loes not offer certification.	the laboratory is not certi	fied by the governing authority. This lis	st may include analyte
,		the laboratory is not certi Matrix	fied by the governing authority. This lis Analyte	st may include analyte

Laboratory: Eurofins Houston

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	P	T104704215	06-30-24
,	rtes are included in this report, bucy does not offer certification.	it the laboratory is not certif	ied by the governing authority. This list	t may include analyte
Analysis Method		Matrix	Analyto	
Analysis Method	Prep Method	Matrix	Analyte	
Analysis Method 420.4		Matrix Water	Analyte Phenols, Total	

Laboratory: Eurofins Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-24
ANAB	ISO/IEC 17025	L2471	02-22-26
Arkansas DEQ	State	88-00689	08-01-24
California	State	2510	06-30-24
Florida	NELAP	E81010	06-30-24
Georgia	State	E81010(FL)	06-30-24
Illinois	NELAP	200041	10-09-24
Kansas	NELAP	E-10253	10-31-24
Kentucky (UST)	State	53	06-30-24
Louisiana (All)	NELAP	30976	06-30-24
Louisiana (DW)	State	LA017	12-31-24
North Carolina (WW/SW)	State	314	12-31-24
Oklahoma	NELAP	9810	08-31-24
Pennsylvania	NELAP	68-00467	01-31-25
South Carolina	State	96026	06-30-24
Tennessee	State	TN02907	06-30-24
Texas	NELAP	T104704286	09-30-24
US Fish & Wildlife	US Federal Programs	A22340	06-30-24
USDA	US Federal Programs	FLGNV23001	01-08-26
USDA	US Federal Programs	P330-21-00056	05-17-24
√irginia	NELAP	460166	06-14-24
West Virginia DEP	State	136	03-31-25

Method Summary

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1 SDG: 19-0112-49

3DG. 19-0112-49	
Laboratory	
EET HOU	
EET HOU	
EET HOU	
EET MID	

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET HOU
8270E	Semivolatile Organic Compounds (GC/MS)	SW846	EET HOU
8082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	EET HOU
300.0	Anions, Ion Chromatography	EPA	EET MID
300.0	Anions, Ion Chromatography	EPA	EET PEN
6020B	Metals (ICP/MS)	SW846	EET HOU
7470A	Mercury (CVAA)	SW846	EET HOU
420.4	Phenolics, Total Recoverable	EPA	EET HOU
Kelada 01	Cyanide, Total, Acid Dissociable and Thiocyanate	EPA	EET HOU
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET MID
SM 4500 H+ B	pH	SM	EET MID
3010A	Preparation, Total Metals	SW846	EET HOU
3511	Microextraction of Organic Compounds	SW846	EET HOU
5030C	Purge and Trap	SW846	EET HOU
7470A	Preparation, Mercury	SW846	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

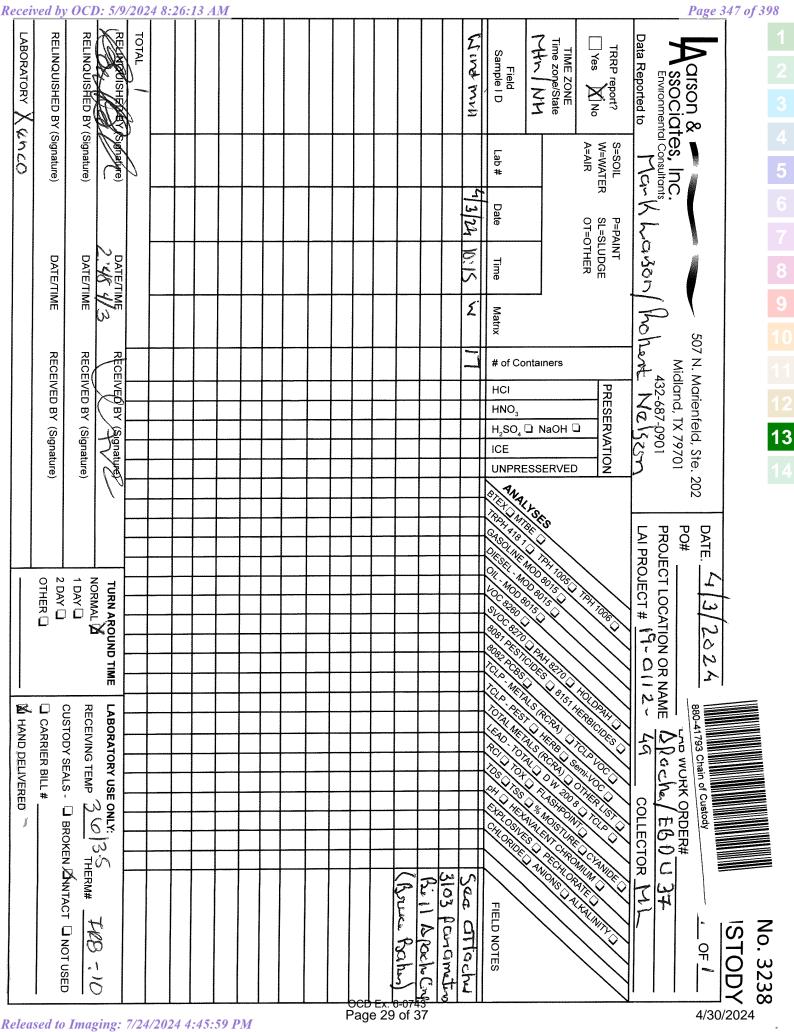
SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001


Sample Summary

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-41793-1	Windwill	Water	04/03/24 10:15	04/03/24 14:48

20 6.2 NMAC

61

I\gm 20 0 Chromium (Ct) (CAS 7440-47-3) **(1)** Cadmium (Cd) (CAS 7440-43-9) (9-2-9-43-9) **(9)**

Arsenic (As) (CAS 7440-38-2)

Barium (Ba) (CAS 7440-39-3)

Beryllium (be) (CAS 7440-41-7)..... 0 004 mg/l (p) **(3)**

I\gm 10 0 Antimony (Sb) (CAS 7440-36-0) I\gm 800 0

(q) (B) Numerical Standards

Human Health Standards

the aquiter,

contaminants to develop appropriate protocol for monitoring contaminants that have the potential to migrate through being followed, the discharger may be required to test for both filtered and nonfiltered portions of morganic facilitated contaminant transport by colloids or organic macromolecules, or that proper filtration procedures are not nonfiltered concentrations of the contaminants If the secretary determines that there is a reasonable probability of the exception that standards for mercury, organic compounds and non-aqueous phase liquids shall apply to the total publication "methods for chemical analysis of water and waste of the US environmental protection agency," with apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the for present or reasonably foreseeable future use in excess of the standards of this section. These standards shall limit, provided that the discharge at such concentrations will not result in concentrations at any place of withdrawal standard specified in Subsection A, B, or C of this section, the existing pH or concentration shall be the allowable contaminant present in ground water, when an existing pH or concentration of any water contaminant exceeds the in Subsection E of Section 20 6 2 3109 NMAC Regardless of whether there is one contaminant or more than one water for the contaminants specified unless the existing condition exceeds the standard or unless otherwise provided LESS: The following standards are the allowable pH range and the maximum allowable concentration in ground STANDARDS FOR GROUND WATER OF 10,000 mg/1 TDS CONCENTRATION OR £01E.2.3.02

[12-1-95, 20 6.2 3102 NMAC - Rn, 20 NMAC 6.2 III 3102, 1-15-01]

20.6.2.3102: [RESERVED]

[2-18-77; 20 6.2 3101 NMAC - Rn, 20 NMAC 6 2 III 3101, 1-15-01]

contained shall be constitued as limiting the use of waters containing higher ranges and concentrations

The standards are not intended as maximum ranges and concentrations for use, and nothing herein

water contaminants in the ground water which still allow for the present and future use of ground water resources Ground water standards are numbers that represent the pH range and maximum concentrations of

be allowed. standard of Section 20 6 2 3103 MMAC, no degradation of the ground water beyond the existing concentration will

if the existing concentration of any water contaminant in ground water exceeds the

allowed; and

with the standard of 20.6.2.3103 MMAC, degradation of the ground water up to the limit of the standard will be if the existing concentration of any water contaminant in ground water is in conformance

written so that in general.

designated in the New Mexico Water Quality Standards Sections 20 6 2 3000 through 20 6 2 3114 NMAC are

supply, and to protect those segments of surface waters which are gaining because of ground water inflow, for uses concentration of 10,000 mg/l or less TDS, for present and potential future use as domestic and agricultural water below the surface of the ground is to protect all ground water of the state of New Mexico which has an existing The purpose of Sections 20 6 2.3000 through 20 6 2 3 114 VMAC controlling discharges onto or

> PURPOSE: 1015.2.3.02 [12-1-95, 20 6 2 3001 - 20 6 2 3100 NMAC - Rn, 20 NMAC 6 2 II 2202-3100, 1-15-01]

> 20.6.2.3001 - 20.6.2.3100: [RESERVED]

[12-1-95, 20 6 2 3000 NMAC - Rn, 20 NMAC 6 2 III, 1-15-01] *PERMITTING AND GROUND WATER STANDARDS:*

[17-1-95, 20 6 2 2202 - 20 6 2 2999 NMAC - Rn, 20 NMAC 6 2 II 2202-3100, 1-15-01]

20.6.2.2202 - 20.6.2.2999: [RESERVED]

880-41793 Chain of Custody

OCD Ex. 6-0744 Page 30 of 37

4/30/2024

Released to Imaging: 7/24/2024 4:45:59 PM

20

20 6.2 NMAC

I\gm 0 I ... Iron (Fe) (CAS 7439-89-6) **(£)** I/gm 0 I Copper (Cu) (CAS 7440-50-8) **(7)** Chloride (Cl) (CAS 16887-00-6). (1) B. Other Standards for Domestic Water Supply present floating atop of or immersed within ground water, as can be reasonably measured. Standards for Non-Aqueous Phase Liquids. Non-aqueous phase liquid shall not be risk of more than one cancer per 100,000 exposed persons physiological malfunctions or physical deformations in such organisms or their offspring, or (2) creates a lifetime melude death, histopathologic change, clinical symptoms of disease, behavioral abnormalities, genetic mutation, cultivated or protected for use by man for food or economic benefit; as used in this definition injuries to health unreasonably threatens to injure human health, or the health of animals or plants which are commonly hatched, bred, ingestion, or assimilation either directly from the environment or indirectly by ingestion through food chains" (1) currently available to the public, to have potential for causing one or more of the following effects upon exposure, concentration shown by credible scientific data and other evidence appropriate under the Water Quality Act, Standards for Toxic Pollutants. A toxic pollutant shall not be present at a attazine (CAS 1912-24-9) 1\gm £00 0 (11) pentachlorophenol (CAS 87-86-5). (ss) I\gm 100 0 1,2,4-trichlorobenzene (CAS 120-82-1) (LL) I\gm 70 0 (bb) [\gm 270 0 1,4-dichlorobenzene (CAS 106-46-7) (dd) I\gm 0 0 1,2-dichlorobenzene (CAS 95-50-1) I\gm 10. styrene (CAS 100-42-5) (00)1/gm 200 0 1,2-dichloropropane (PDC) (CAS 78-87-5) (uu) 1/gm 1 0 trans-1,2-dichloroethene (CAS 156-60-5) (ww) cis-1,2-dichloroethene (CAS 156-59-2) I\gm \70 0 (II) benzo-a-pyrene (CAS 50-32-8). 1/gm 2000 0 (KK) I/9m 50 0 . sons and the sons of the sons vinyl chloride (CAS 75-01-4) (ii) I\gm 200 0 1\gm 100 (44) 1,1,2,2-tetrachloroethane (CAS 79-34-5) (2-00-97 ZAD) anatharotolicity. (79-00-5) (88) 1\gm \cdot 00.0 [\gm 2 0 (3-52-17 CAS) anatheorothane (CAS 71-55-6) (\mathfrak{y}) I\gm 20000 0 ethylene dibromide (EDB) (CAS 106-93-4) (99) 1,1-dichloroethane (CAS 75-34-3) (pp) I\gm 220 0 I\gm I 0 chloroform (CAS 67-66-3) (33) 1\gm 200 0 methylene chloride (CAS 75-09-2) (qq) 1/gm 20 0 total xylenes (CAS 1330-20-7) (sa) 1/gm 7 0 ethylbenzene (CAS 100-41-4) **(z)** 1/gm c00 0 trichloroethylene (TCE) (CAS 79-01-6). (Λ) (x) I\gm 200 0 tetrachloroethylene (PCE) (CAS 127-18-4). 1,1-dichloroethylene (1,1-DCE) (CAS 75-35-4) (M) I\gm \700 0 . 1,2-dichloroethane (EDC) (CAS 107-06-2) I/gm 200 0. (A) Carbon Tetrachloride (CAS 56-23-5) (n) 1/gm 200 0. Toluene (CAS 108-88-3) (1) l mg/l Polychlorinated biphenyls (PCB's) (CAS 1336-36-3) 0 0005 mg/l **(s)** Benzene (CAS 71-43-2) (L) 1\2m \cdot 00 0. Radium-228 (CAS 15262-20-1) 5 pCi/l Radioactivity Combined Radium-226 (CAS 13982-63-3) and (b) Uranium (U) (CAS 7440-61-1) (d) 1/gm £0 0 Thallium (TI) (CAS 7440-28-0) (o) 1\gm \center 00 0 (u) 1/gm 20 0 Silver (Ag) (CAS 7440-224) (w) 1\gm 20 0 Selenium (Se) (CAS 7782-49-2) Nitrite (NO2 as N) (CAS 10102-44-0) (1) 1/gm () I (K) Nitrate (NO₃ as N) (CAS 14797-55-8) 1\gm 0 01 Total Mercury (Hg) (CAS 7439-97-6) **(**j) I\gm 200 0 (i) 1/8m 2100 Lead (Pb) (CAS 7439-92-1)

Fluoride (F) (CAS 16984-48-8)

Cyanide (CN) (CAS 57-12-5)

(4)

(g)

I\gm 8 I

[\gm 2 0

17

50 6 2 NMAC

in this section,

health may result;

[81-12-21 'Y '+0

source of the water diverted was not mine workings, and that the secretary has not determined that a hazard to public diverted has not had added to it after the point of diversion any effluent received from a sewerage system, that the Discharges resulting from the transport or storage of water diverted, provided that the water received directly from any sewerage system, irrigation for a period not to exceed five years for the revegetation of any disturbed land area, unless that water is Water used for irrigated agriculture, for watering of lawns, trees, gardens or shrubs, or for C' regulations, Effluent which is regulated pursuant to 20 7 3 NMAC, "Liquid Waste Disposal and Treatment" B. to obtain the appropriate samples, this exemption shall not apply, agency may take samples of the solution before or after seepage If for any reason the agency does not have access into ground water; provided that if the discharge is by seepage through non-natural or altered natural materials, the may be taken by the agency before the effluent or leachate is discharged so that it may move directly or indirectly 20 6 2 3 103 NMAC and has a total nitrogen concentration of 10 mg/l or less. To determine conformance, samples Effluent or leachate which conforms to all the standards in Subsections A, B, and C of Section 20 6 2 3 106 NMAC do not apply to the following EXEMPTIONS FROM DISCHARGE PERMIT REQUIREMENT: Sections 20 6 2 3104 and 20.6.2.3105 [2-18-77, 12-24-87, 12-1-95, Rn & A, 20.6.2 3104 WMAC - 20 WMAC 6.2.III 3104, 1-15-01, A, 12-1-01] under such permit, provided that the transferee has complied with Section 20 6 2 3111 MMAC, regarding transfers or possession of a facility for which a discharge permit is in effect, the transferee shall have authority to discharge must be consistent with the terms and conditions of the permit In the event of a transfer of the ownership, control, is discharging pursuant to a discharge permit issued by the secretary When a permit has been issued, discharges cause or allow effluent or leachate to discharge so that it may move directly or inducetly into ground water unless he DISCHARGE PERMIT REQUIRED: Unless otherwise provided by this Part, no person shall

[Note. For purposes of application of the amended numeric uranium standard to past and current water discharges

[5-18-11, 1-29-82, 11-17-83, 3-3-86, 12-1-95, 20 6 2 3103 NMAC - Rn, 20 NMAC 6.2.111 3103, 1-15-01, A, 9-26-

carbon tetrachloride, EDC, PCE, TCE, ethylbenzene, methylene chloride, EDB, 1,1,2-trichloroethane and benzo-athe amended numeric standards for arsenic, cadmium, lead, combined radium-226 & radium-228, benzene, PCBs, has approved an abatement completion report as of the effective date of this rule pursuant to $20.624112\,\mathrm{MMAC}$, 1, 2017), the new standards will not become effective until July 1, 2020 With regard to sites for which the secretary

baceue spall not apply unless the secretary notifies the responsible person that the site is a source of these

(as of 9-26-04), the new standard will not become effective until lune 1, 2007.]

contaminants in ground water that pose a hazard to public health

arroyos and ephemeral streams are not exempt from the discharge permit requirement, except as otherwise provided

Effluent which is discharged to a watercourse which is naturally perennial; discharges to dry

methylene chloride, EDB, 1,1,2-trichloroethane and benzo-a-pyrene, to past and current water discharges (as of July combined radium-226 & radium-228, benzene, PCBs, carbon tetrachloride, EDC, PCE, TCE, ethylbenzene, For purposes of application of the amended numeric standards for arsenic, cadmium, lead, Mickel (MI) (CAS 7440-02-0) (ς) Molybdenum (Mo) (CAS 7439-98-7) **(1)** Cobalt (Co) (CAS 7440-48-4) (£)

I\gm 2.0 I\gm 0 I 1\gm 20 0 [/gm 27 0 Boron (B) (CAS 7440-42-8) (7)Aluminum (A1) (CAS 7429-90-5) 1/gm 0 c (1)

and C of this section unless otherwise provided.

. Standards for Irrigation Use - Ground water shall meet the standards of Subsection A, B,

Methyl tertiary-butyl ether (MTBE) (CAS 1634-04-4) 1/gm [0 between 6 and 9 (6) 1\gm 0 01 Zinc (Zn) (CAS 7440-66-6) (8) Total Dissolved Solids (TDS) TDS (7) 1\gm 0 0001 (9) Sulfate (SO₄) (CAS 14808-79-8) I\gm 0 000 (5) 1/gm 200 0 Phenols 1/gm 2 0 Manganese (Mn) (CAS 7439-96-5)

£6714

7oc: 880

Environment Testing

💸 eurofins

Chain of Custody Record

Eurofins Midland

1211 W. Florida Ave Midland, TX 79701 Phone: 432-704-5440 1

2

3

4

5 6

8

10 11

13

	Sampler	I ah PM		Camer Tracking Note)	Self COO	
Client Information (Sub Contract Lab)		Taylor, Holly		(c) or 6 1000	880-9762.1	
Client Contact: Shipping/Receiving	Phone	E-Mail: Holly.T	E-Mait Holly. Taylor@et.eurofinsus.com	State of Origin: New Mexico	Page 1 of 1	
Company TestAmerica Laboratories, Inc.		Ä Z	Accreditations Required (See note): NELAP - Texas		Job #: 880-41793-1	
Address 13715 Rider Trail North,	Due Date Requested: 4/10/2024		Analysis Requested	uested	Ö	SS:
City	TAT Requested (days):					One
Editi City State Zp MAC GOALE	*				C - Zn Acetate C - Z D - Nitric Acid P - N	0 - AsivaO2 P - Na2O4S Q - Na2SO3
MV., 02045 Phone 314-298-8566(Tel) 314-298-8757(Fax)	PO#;					R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate
1	#OM	ON JO		8.	H - Ascorbic Acid I - Ice J - DI Water	U - Acetone V - MCAA
Project Name Apache/EBDU 37	Project #; 88000254	(Ve	526 88 Of	ienish	K - EDTA L - EDA	w - pH 4-5 Y - Trizma Z - other (specify)
Site	#MOSS	dens	SD (Y	N CON	Other:	
	Sample	Matrix Newater, Seolid	0 ⁻ deSca. 0-deSca. 1987 W3	nmber		
Sample Identification - Client ID (Lab ID)	Sample Date Time G=grab)	O=waste/oil, BT=Tissue, A=Alt)	ท <i>อ</i> กอร์ เร\0.£0e	N HaloT	Special Instructions/Note:	tions/Note:
	Pag N	Preservation Code:	X	×		
Windwill (880-41793-1)	4/3/24 Mountain	Water	×	2		
Note. Since laboratory accreditations are subject to change. Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/fests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC aboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.	t Testing South Central, LLC places the ov ove for analysis/tests/matrix being analyze. ntral, LLC attention immediately. If all requ	vnership of method, analy d, the samples must be st lested accreditations are o	e & accreditation compliance upon our subcon ipped back to the Eurofins Environment Testin urrent to date, return the signed Chain of Cust	ract laboratories. This sample shipm g South Central, LLC laboratory or oth ody attesting to said compliance to Eu	ent is forwarded under chain- ner instructions will be provide rofins Environment Testing S	of-custody. If the d. Any changes to outh Central, LLC.
Possible Hazard Identification			Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	sessed if samples are retain	ned longer than 1 mon	th)
Unconfirmed			Return To Client D	oosal By Lab	Archive For M	Months
Deliverable Requested: I, II, IV, Other (specify)	Primary Deliverable Rank: 2		Special Instructions/QC Requirements	:S		
Empty Kit Relinguished by:	Date:	П	Time:	Method of Shipment:		
Relinquished by V	Date∕Time	Company	Receiver Tichard Thornley	APR 3	2024 OXOS COM	Company FTA STC
Reinquished by	Date/Time:	Company	Received by:	Date/Time		any
Relinquished by	Date/Time:	Company	Received by:	Date/Time:	Company	any

13

Environment Testing

Custody Seals Intact: Custody Seal No.	Reinquished by	Religiquished by	Relinquished by	Empty Kit Relinquished by:	Deliverable Requested: I II III, IV Other (specify)	Possible Hazard Identification Unconfirmed	laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.	Note: Since laboratory accreditations are subject to change, Eurofins E						Windwill (880-41793-1)	Sample Identification - Client ID (Lab ID)	Site:	Project Name: Apache/EBDU 37	Email:	Phone: 281-240-4200(Tel)	State, Zip: TX, 77477	Stafford	Address: 4145 Greenbriar Dr	Eurofins Environment Testing South Centr	ntact: g/Receiving	Client Information (Sub Contract Lab)	1211 W Florida Ave Midland TX 79701 Phone: 432-704-5440
-	Date/Time:	Date/Time:	Date∕Time:	Date:	Primary Deliverable Rank: 2		in listed above for analysis/tests/matrix South Central, LLC attention immediate	invironment Testing South Central, LLC						4/3/24 10.15 Mountain	Sample Date Time	SSOV#	Project #: 88000254	WO #	TC #		TAT Requested (days):	Due Date Requested: 4/9/2024		Phone:	Sampler	
	Company	Company	Company]	ank: 2		peing analyzed, the samples must be ely If all requested accreditations are	places the ownership of method, ana						15 Water	Sample (viewates, Type Sesolid, (C=comp, ET=Tissue, G=grab) A-Air)			*****						E-Mail: Holly	Lab PM: Taylor	Chain of Custody Record
Cooler Temperature(s) °C and Other Remarks:	Received by:	Received by	Received by every	Time:	Special Instructions/QC Requirements:	Sample Disposal (A fee may Return To Client	shipped back to the Eurofins Environmer e current to date, return the signed Chain	lyte & accreditation compliance upon our						× × × ×	Kelada_01/ Cya 6020B/3010A M 7470A/7470A_F 8260D/6030C F 8082A/3511 Sta 8270E_QQQ/35 Hydrocarbons	anide Metals (Prep M Full Lier andard	19) + L ercury I VOCs PCBs	J		natic	-	Analysis	Accreditations Required (See note): NELAP Texas	Taylor@et.eurofins	vr. Holly	ecord
the:Remarks:	Date/Time:	Date/Time:	Baker	Method of Shipment:	rements:	may be assessed if samples a	nt Testing South Central, LLC labors of Custody attesting to said complia	subcontract laboratories. This same						×	420.4_NP						-	Requested		State of Origin: New Mexico	Camer Tracking No(s):	
			4/4/2024 9:27			are retained longer than 1 Archive For	atory or other instructions will be p ance to Eurofins Environment Tes	nple shipment is forwarded under o				事ち		PAH + Atrizine, Pentachlorophenol	Special Ins	Other		ر <u>-</u> _		E NaHSO4	B NaOH C Zn Acetate		300 # 880-41793-1	Page: Page 1 of 1	COC No: 880-9763.1	ॐ eurofins
	Сотрапу	Company	Company EX			month) Months	sting South Central, LLC.	chain-of-custody If the		7, K	8 N	368	OCD Page		Special Instructions/Note:		Y Trizma Z other (specify)	V MCAA W pH 4-5	T TSP Dodecahydrate	Q Na2SO3 R Na2S2O3						Environment Testing 4/30/202

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-41793-1

SDG Number: 19-0112-49

Login Number: 41793 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

2

3

4

6

8

9

11

13

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-41793-1

SDG Number: 19-0112-49

Login Number: 41793
List Source: Eurofins Houston
List Number: 2
List Creation: 04/04/24 12:52 PM

Creator: Baker, Jeremiah

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

,

3

4

6

0

9

11

14

<6mm (1/4").

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-41793-1

SDG Number: 19-0112-49

List Source: Eurofins Pensacola
List Number: 4
List Creation: 04/22/24 03:02 PM

Creator: Earnest, Tamantha

oreator. Larnest, ramantila		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.0°C IR8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

3

4

6

4 4

12

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 5/3/2024 10:38:04 AM

JOB DESCRIPTION

Apache/EBDU 37 19-0112-49

JOB NUMBER

880-41793-2

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 5/3/2024 10:38:04 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central 44 C, a company within Eurofins Environment Testing Group of Companies
Page 2 of 19
5/3/2024

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Laboratory Job ID: 880-41793-2

SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Tracer Carrier Summary	7
QC Sample Results	8
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	18

2

3

4

6

9

10

12

13

Definitions/Glossary

Job ID: 880-41793-2 Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37 SDG: 19-0112-49

Qualifiers

Rad

Qualifier **Qualifier Description**

Result is less than the sample detection limit.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Case Narrative

Client: Larson & Associates, Inc.

Project: Apache/EBDU 37

Job ID: 880-41793-2

Eurofins Midland Job ID: 880-41793-2

> Job Narrative 880-41793-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 4/3/2024 2:48 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.5°C.

Gas Flow Proportional Counter

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-2

SDG: 19-0112-49

Client Sample ID: Windwill

Lab Sample ID: 880-41793-1

Matrix: Water

Date Collected: 04/03/24 10:15	
Date Received: 04/03/24 14:48	

) - Radium-226	(GFPC)								
	`	Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.344		0.154	0.157	1.00	0.159	pCi/L	04/08/24 10:35	04/30/24 09:42	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
90.5		30 - 110					04/08/24 10:35	04/30/24 09:42	1
	Result 0.344 %Yield	%Yield Qualifier	Count Uncert.	Count Total Uncert. Uncert. Uncert. Uncert.	Count Total Uncert. Uncert. Uncert.	Count Total Uncert. Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.344 O.154 O.157 O.159 PCi/L	Count Total Uncert. Count Total Uncert.		
Method: EPA 904.0) - Radium-228	(GFPC)							
-------------------	----------------	-----------	----------	---------	------	-------	-------	----------------	----------------
			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed
Radium-228	0.601		0.402	0.406	1.00	0.596	pCi/L	04/08/24 10:40	04/28/24 11:39
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed
Ba Carrier	90.5		30 - 110					04/08/24 10:40	04/28/24 11:39
Y Carrier	70.3		30 - 110					04/08/24 10:40	04/28/24 11:39

Tracer/Carrier Summary

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Job ID: 880-41793-2

SDG: 19-0112-49

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water Prep Type: Total/NA

_			Percent Yield (Acceptance Limits)
		Ва	
Lab Sample ID	Client Sample ID	(30-110)	
880-41793-1	Windwill	90.5	
LCS 160-655852/2-A	Lab Control Sample	94.0	
MB 160-655852/1-A	Method Blank	102	
Tracer/Carrier Legend			
Ba = Ba Carrier			

Method: 904.0 - Radium-228 (GFPC)

Matrix: Water Prep Type: Total/NA

				Percent Yield (Acceptance Limits)
		Ва	Υ	
Lab Sample ID	Client Sample ID	(30-110)	(30-110)	
880-41793-1	Windwill	90.5	70.3	
LCS 160-655853/2-A	Lab Control Sample	94.0	86.0	
MB 160-655853/1-A	Method Blank	102	89.3	
Tracer/Carrier Legend				
Ba = Ba Carrier				

Ba = Ba Carrier

Y = Y Carrier

QC Sample Results

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Job ID: 880-41793-2

SDG: 19-0112-49

Method: 903.0 - Radium-226 (GFPC)

Lab Sample ID: MB 160-655852/1-A

Matrix: Water

Analysis Batch: 659273

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 655852

Analysis Batch: 65	9273								Prep Batch:	655852
			Count	Total						
	МВ	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.07913	U	0.0935	0.0938	1.00	0.152	pCi/L	04/08/24 10:35	04/30/24 09:41	1
	МВ	MB								
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		30 - 110					04/08/24 10:35	04/30/24 09:41	1

Lab Sample ID: LCS 160-655852/2-A

Matrix: Water

Analysis Batch: 659273

Spike LCS LCS Uncert.

Analyte Added Result Qual (2σ+/-) RL MDC Unit %Rec Limits

Radium-226

11.3 9.865

1.14 1.00 0.146 pCi/L 87 75-125

Analyte			Added	Result	Quai	(20+/-)	KL	MDC	Unit	%Rec	Limits	
Radium-226			11.3	9.865		1.14	1.00	0.146	pCi/L	87	75 - 125	
	LCS	LCS										
Carrier	%Yield	Qualifier	Limits									

Method: 904.0 - Radium-228 (GFPC)

94.0

30 - 110

Ba Carrier

Lab Sample ID: MB 160-655853/1-A

Matrix: Water

Analysis Batch: 659062

Count

Count

Count

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 655853

	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.08801	U	0.276	0.276	1.00	0.490	pCi/L	04/08/24 10:40	04/28/24 11:39	1
	MB	MB								
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		30 _ 110					04/08/24 10:40	04/28/24 11:39	1
Y Carrier	89.3		30 - 110					04/08/24 10:40	04/28/24 11:39	1

Lab Sample ID: LCS 160-655853/2-A

Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA
Analysis Batch: 659062 Prep Batch: 655853

				Total				
	Spike	LCS	LCS	Uncert.				%Rec
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits
Radium-228	8.99	9.634		1.28	1.00	0.435 pCi/L	107	75 - 125

	LCS LCS	
Carrier	%Yield Qualifier	Limits
Ba Carrier	94.0	30 - 110
Y Carrier	86.0	30 - 110

QC Association Summary

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Job ID: 880-41793-2

SDG: 19-0112-49

Rad

Prep Batch: 655852

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	PrecSep-21	
MB 160-655852/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-655852/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	

Prep Batch: 655853

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-41793-1	Windwill	Total/NA	Water	PrecSep_0	
MB 160-655853/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-655853/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	

10

4.0

13

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-2

SDG: 19-0112-49

Client Sample ID: Windwill

Date Collected: 04/03/24 10:15 Date Received: 04/03/24 14:48 Lab Sample ID: 880-41793-1

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			999.46 mL	1.0 g	655852	04/08/24 10:35	KAK	EET SL
Total/NA	Analysis	903.0		1	1.0 mL	1.0 mL	659273	04/30/24 09:42	SCB	EET SL
Total/NA	Prep	PrecSep_0			999.46 mL	1.0 g	655853	04/08/24 10:40	KAK	EET SL
Total/NA	Analysis	904.0		1			659062	04/28/24 11:39	SCB	EET SL

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

10

13

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: Apache/EBDU 37

Job ID: 880-41793-2

SDG: 19-0112-49

Laboratory: Eurofins St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	20-001	05-06-25
ANAB	Dept. of Defense ELAP	L2305	04-06-25
ANAB	Dept. of Energy	L2305.01	04-08-25
ANAB	ISO/IEC 17025	L2305	04-06-25
Arizona	State	AZ0813	12-08-24
California	Los Angeles County Sanitation Districts	10259	06-30-22 *
California	State	2886	06-30-24
Connecticut	State	PH-0241	03-31-25
Florida	NELAP	E87689	06-30-24
HI - RadChem Recognition	State	n/a	06-30-24
Illinois	NELAP	200023	11-30-24
lowa	State	373	12-01-24
Kansas	NELAP	E-10236	10-31-24
Kentucky (DW)	State	KY90125	12-31-24
Kentucky (WW)	State	KY90125 (Permit KY0004049)	12-31-24
Louisiana	NELAP	04080	06-30-22 *
Louisiana (All)	NELAP	04080	06-30-24
Louisiana (DW)	State	LA011	12-31-24
Maryland	State	310	09-30-24
Massachusetts	State	M-MO054	06-30-24
MI - RadChem Recognition	State	9005	06-30-24
Missouri	State	780	06-30-25
Nevada	State	MO00054	07-31-24
New Jersey	NELAP	MO002	06-30-24
New Mexico	State	MO00054	06-30-24
New York	NELAP	11616	03-31-25
North Carolina (DW)	State	29700	07-31-24
North Dakota	State	R-207	06-30-24
Oklahoma	NELAP	9997	08-31-24
Oregon	NELAP	4157	09-01-24
Pennsylvania	NELAP	68-00540	02-28-25
South Carolina	State	85002001	06-30-24
Texas	NELAP	T104704193	07-31-24
US Fish & Wildlife	US Federal Programs	058448	07-31-24
USDA	US Federal Programs	P330-17-00028	05-18-26
Utah	NELAP	MO00054	07-31-24
Virginia	NELAP	10310	06-15-25
Washington	State	C592	08-30-24
West Virginia DEP	State	381	10-31-24

Eurofins Midland

Released to Imaging: 7/24/2024 4:45:59 PM

Δ

R

10

11

13

 $^{^{\}star}\, \text{Accreditation/Certification renewal pending - accreditation/certification considered valid}.$

Method Summary

Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-2

SDG: 19-0112-49

Method	Method Description	Protocol	Laboratory
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

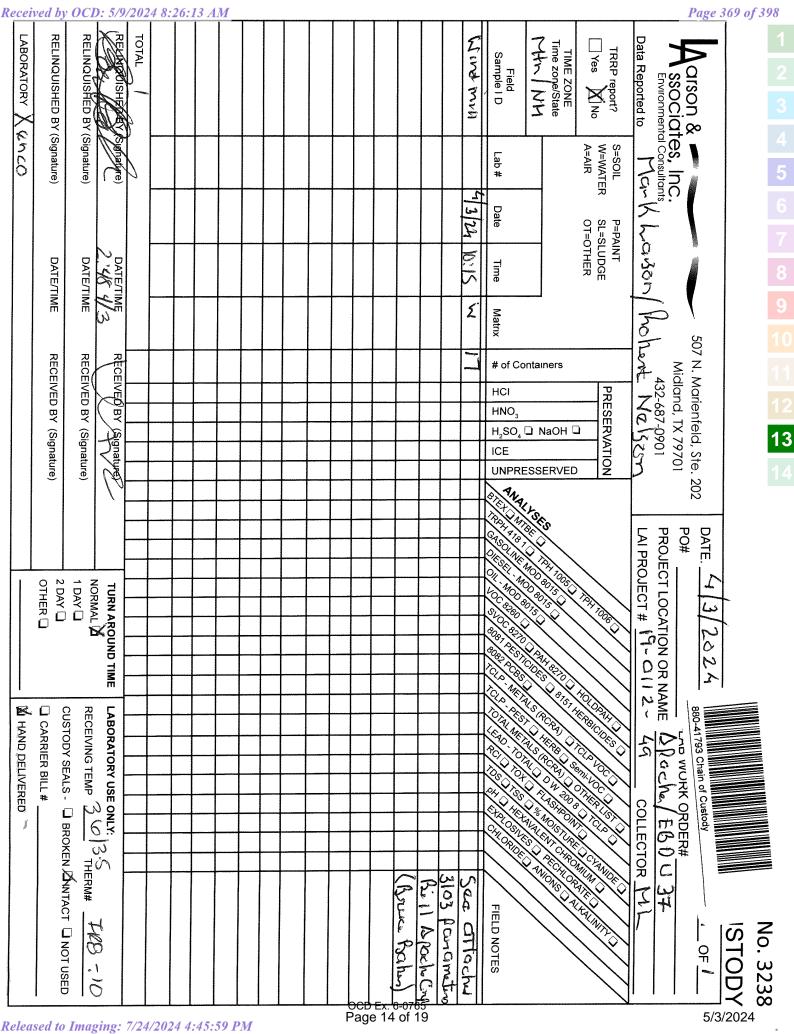
Client: Larson & Associates, Inc. Project/Site: Apache/EBDU 37

Job ID: 880-41793-2

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-41793-1	Windwill	Water	04/03/24 10:15	04/03/24 14:48

4


6

8

9

11

12

I\gm 20 0

I\gm 10 0

I\gm 800 0

Chromium (Ct) (CAS 7440-47-3)

Antimony (Sb) (CAS 7440-36-0)

STANDARDS FOR GROUND WATER OF 10,000 mg/1 TDS CONCENTRATION OR

The standards are not intended as maximum ranges and concentrations for use, and nothing herein

Ground water standards are numbers that represent the pH range and maximum concentrations of

if the existing concentration of any water contaminant in ground water exceeds the

if the existing concentration of any water contaminant in ground water is in conformance

contaminants to develop appropriate protocol for monitoring contaminants that have the potential to migrate through

being followed, the discharger may be required to test for both filtered and nonfiltered portions of morganic facilitated contaminant transport by colloids or organic macromolecules, or that proper filtration procedures are not nonfiltered concentrations of the contaminants If the secretary determines that there is a reasonable probability of the exception that standards for mercury, organic compounds and non-aqueous phase liquids shall apply to the total publication "methods for chemical analysis of water and waste of the US environmental protection agency," with apply to the dissolved portion of the contaminants specified with a definition of dissolved being that given in the for present or reasonably foreseeable future use in excess of the standards of this section. These standards shall limit, provided that the discharge at such concentrations will not result in concentrations at any place of withdrawal standard specified in Subsection A, B, or C of this section, the existing pH or concentration shall be the allowable contaminant present in ground water, when an existing pH or concentration of any water contaminant exceeds the in Subsection E of Section 20 6 2 3109 NMAC Regardless of whether there is one contaminant or more than one water for the contaminants specified unless the existing condition exceeds the standard or unless otherwise provided LESS: The following standards are the allowable pH range and the maximum allowable concentration in ground

Cadmium (Cd) (CAS 7440-43-9) (9-2-9-43-9)

Arsenic (As) (CAS 7440-38-2)

Barium (Ba) (CAS 7440-39-3)

Beryllium (be) (CAS 7440-41-7)..... 0 004 mg/l

61

20 6.2 NMAC

the aquiter,

£01E.2.3.02

be allowed.

allowed; and

(1)

(9)

(p) **(3)**

(q)

(B)

Human Health Standards

[12-1-95, 20 6.2 3102 NMAC - Rn, 20 NMAC 6.2 III 3102, 1-15-01]

[2-18-77; 20 6.2 3101 NMAC - Rn, 20 NMAC 6 2 III 3101, 1-15-01]

Numerical Standards

supply, and to protect those segments of surface waters which are gaining because of ground water inflow, for uses

written so that in general.

20.6.2.3102: [RESERVED]

concentration of 10,000 mg/l or less TDS, for present and potential future use as domestic and agricultural water below the surface of the ground is to protect all ground water of the state of New Mexico which has an existing The purpose of Sections 20 6 2.3000 through 20 6 2 3 114 VMAC controlling discharges onto or PURPOSE: 1015.2.3.02

contained shall be constitued as limiting the use of waters containing higher ranges and concentrations

water contaminants in the ground water which still allow for the present and future use of ground water resources

standard of Section 20 6 2 3103 MMAC, no degradation of the ground water beyond the existing concentration will

with the standard of 20.6.2.3103 VMAC, degradation of the ground water up to the limit of the standard will be

designated in the New Mexico Water Quality Standards Sections 20 6 2 3000 through 20 6 2 3114 NMAC are

[12-1-95, 20 6 2 3001 - 20 6 2 3100 NMAC - Rn, 20 NMAC 6 2 II 2202-3100, 1-15-01] 20.6.2.3001 - 20.6.2.3100: [RESERVED]

[12-1-95, 20 6 2 3000 NMAC - Rn, 20 NMAC 6 2 III, 1-15-01]

PERMITTING AND GROUND WATER STANDARDS:

[17-1-95, 20 6 2 2202 - 20 6 2 2999 NMAC - Rn, 20 NMAC 6 2 II 2202-3100, 1-15-01]

20.6.2.2202 - 20.6.2.2999: [RESERVED]

880-41793 Chain of Custody

20

20 6.2 NMAC

I\gm 0 I ... Iron (Fe) (CAS 7439-89-6) **(£)** I/gm 0 I Copper (Cu) (CAS 7440-50-8) **(7)** Chloride (Cl) (CAS 16887-00-6). (1) B. Other Standards for Domestic Water Supply present floating atop of or immersed within ground water, as can be reasonably measured. Standards for Non-Aqueous Phase Liquids. Non-aqueous phase liquid shall not be tisk of more than one cancer per 100,000 exposed persons physiological malfunctions or physical deformations in such organisms or their offspring, or (2) creates a lifetime melude death, histopathologic change, clinical symptoms of disease, behavioral abnormalities, genetic mutation, cultivated or protected for use by man for food or economic benefit; as used in this definition injuries to health unreasonably threatens to injure human health, or the health of animals or plants which are commonly hatched, bred, ingestion, or assimilation either directly from the environment or indirectly by ingestion through food chains" (1) currently available to the public, to have potential for causing one or more of the following effects upon exposure, concentration shown by credible scientific data and other evidence appropriate under the Water Quality Act, Standards for Toxic Pollutants. A toxic pollutant shall not be present at a attazine (CAS 1912-24-9) 1\gm £00 0 (11) (ε-88-γ8 RAD) lonahdorolhastnaq (ss) I\gm 100 0 1,2,4-trichlorobenzene (CAS 120-82-1) (LL) I\gm 70 0 (bb) [\gm 270 0 1,4-dichlorobenzene (CAS 106-46-7) (dd) I\gm 0 0 1,2-dichlorobenzene (CAS 95-50-1) I\gm 10. styrene (CAS 100-42-5) (00)1/gm 200 0 1,2-dichloropropane (PDC) (CAS 78-87-5) (uu) 1/gm 1 0 trans-1,2-dichloroethene (CAS 156-60-5) (ww) cis-1,2-dichloroethene (CAS 156-59-2) I\gm \70 0 (II) benzo-a-pyrene (CAS 50-32-8). 1/gm 2000 0 (KK) I/9m 50 0 . sons and the sons of the solution vinyl chloride (CAS 75-01-4) (ii) I\gm 200 0 1\gm 100 (44) 1,1,2,2-tetrachloroethane (CAS 79-34-5) (2-00-97 ZAD) anatharotolicity. (79-00-5) (88) 1\gm \cdot 00.0 [\gm 2 0 (3-52-17 CAS) anatheorothane (CAS 71-55-6) (\mathfrak{y}) I\gm 20000 0 ethylene dibromide (EDB) (CAS 106-93-4) (99) 1,1-dichloroethane (CAS 75-34-3) (pp) I\gm 220 0 I\gm I 0 chloroform (CAS 67-66-3) (33) 1\gm 200 0 methylene chloride (CAS 75-09-2) (qq) 1/gm 20 0 total xylenes (CAS 1330-20-7) (sa) 1/gm 7 0 ethylbenzene (CAS 100-41-4) **(z)** 1/gm c00 0 trichloroethylene (TCE) (CAS 79-01-6). (Λ) (x) 1\gm 200 0 tetrachloroethylene (PCE) (CAS 127-18-4). 1,1-dichloroethylene (1,1-DCE) (CAS 75-35-4) (M) I\gm \700 0 . 1,2-dichloroethane (EDC) (CAS 107-06-2) I/gm 200 0. (A) Carbon Tetrachloride (CAS 56-23-5) (n) 1/gm 200 0. Toluene (CAS 108-88-3) (1) l mg/l Polychlorinated biphenyls (PCB's) (CAS 1336-36-3) 0 0005 mg/l **(s)** Benzene (CAS 71-43-2) (L) 1\2m \cdot 00 0. Radium-228 (CAS 15262-20-1) 5 pCi/l Radioactivity Combined Radium-226 (CAS 13982-63-3) and (b) Uranium (U) (CAS 7440-61-1) (d) 1/gm £0 0 Thallium (TI) (CAS 7440-28-0) (o) 1\gm \center 00 0 (u) 1/gm 20 0 Silver (Ag) (CAS 7440-224) (w) 1\gm 20 0 Selenium (Se) (CAS 7782-49-2) Nitrite (NO2 as N) (CAS 10102-44-0) (1) 1/gm () I (K) Nitrate (NO₃ as N) (CAS 14797-55-8) 1\gm 0 01 Total Mercury (Hg) (CAS 7439-97-6) **(**j) I\gm 200 0 (i) 1/8m 2100 Lead (Pb) (CAS 7439-92-1)

EbLIH

Released to Imaging: 7/24/2024 4:45:59 PM

I\gm 8 I

[\gm 2 0

Fluoride (F) (CAS 16984-48-8)

Cyanide (CN) (CAS 57-12-5)

(4)

(g)

17

50 6 2 NMAC

in this section,

health may result;

C' regulations,

B.

received directly from any sewerage system,

(6)

(8)

(7)

(9)

(5)

Phenols

to obtain the appropriate samples, this exemption shall not apply,

20 6 2 3 103 NMAC and has a total nitrogen concentration of 10 mg/l or less. To determine conformance, samples Effluent or leachate which conforms to all the standards in Subsections A, B, and C of Section 20 6 2 3 106 NMAC do not apply to the following EXEMPTIONS FROM DISCHARGE PERMIT REQUIREMENT: Sections 20 6 2 3104 and 2015.2.3.02 [2-18-77, 12-24-87, 12-1-95, Rn & A, 20.6.2 3104 WMAC - 20 WMAC 6.2.III 3104, 1-15-01, A, 12-1-01] under such permit, provided that the transferee has complied with Section 20 6 2 3111 MMAC, regarding transfers or possession of a facility for which a discharge permit is in effect, the transferee shall have authority to discharge must be consistent with the terms and conditions of the permit In the event of a transfer of the ownership, control, is discharging pursuant to a discharge permit issued by the secretary When a permit has been issued, discharges cause or allow effluent or leachate to discharge so that it may move directly or inducetly into ground water unless he DISCHARGE PERMIT REQUIRED: Unless otherwise provided by this Part, no person shall (as of 9-26-04), the new standard will not become effective until lune 1, 2007.] [Note. For purposes of application of the amended numeric uranium standard to past and current water discharges [81-12-21 'Y '+0 [5-18-11, 1-29-82, 11-17-83, 3-3-86, 12-1-95, 20 6 2 3103 NMAC - Rn, 20 NMAC 6.2.111 3103, 1-15-01, A, 9-26contaminants in ground water that pose a hazard to public health baceue spall not apply unless the secretary notifies the responsible person that the site is a source of these carbon tetrachloride, EDC, PCE, TCE, ethylbenzene, methylene chloride, EDB, 1,1,2-trichloroethane and benzo-athe amended numeric standards for arsenic, cadmium, lead, combined radium-226 & radium-228, benzene, PCBs, has approved an abatement completion report as of the effective date of this rule pursuant to $20.624112\,\mathrm{MMAC}$, 1, 2017), the new standards will not become effective until July 1, 2020 With regard to sites for which the secretary methylene chloride, EDB, 1,1,2-trichloroethane and benzo-a-pyrene, to past and current water discharges (as of July combined radium-226 & radium-228, benzene, PCBs, carbon tetrachloride, EDC, PCE, TCE, ethylbenzene, For purposes of application of the amended numeric standards for arsenic, cadmium, lead, I\gm 2.0 Mickel (MI) (CAS 7440-02-0) (ς) I\gm 0 I Molybdenum (Mo) (CAS 7439-98-7) **(1)** 1\gm 20 0 Cobalt (Co) (CAS 7440-48-4) (£) [/gm 27 0 Boron (B) (CAS 7440-42-8) (7)Aluminum (A1) (CAS 7429-90-5) 1/gm 0 c (1)and C of this section unless otherwise provided. . Standards for Irrigation Use - Ground water shall meet the standards of Subsection A, B,

arroyos and ephemeral streams are not exempt from the discharge permit requirement, except as otherwise provided

source of the water diverted was not mine workings, and that the secretary has not determined that a hazard to public diverted has not had added to it after the point of diversion any effluent received from a sewerage system, that the

irrigation for a period not to exceed five years for the revegetation of any disturbed land area, unless that water is

agency may take samples of the solution before or after seepage If for any reason the agency does not have access into ground water; provided that if the discharge is by seepage through non-natural or altered natural materials, the may be taken by the agency before the effluent or leachate is discharged so that it may move directly or indirectly

Effluent which is discharged to a watercourse which is naturally perennial; discharges to dry

Discharges resulting from the transport or storage of water diverted, provided that the water

Water used for irrigated agriculture, for watering of lawns, trees, gardens or shrubs, or for

Effluent which is regulated pursuant to 20 7 3 NMAC, "Liquid Waste Disposal and Treatment"

£6714 7oc: 880 Methyl tertiary-butyl ether (MTBE) (CAS 1634-04-4)

Zinc (Zn) (CAS 7440-66-6)

Total Dissolved Solids (TDS) TDS

Manganese (Mn) (CAS 7439-96-5)

Sulfate (SO₄) (CAS 14808-79-8)

1/gm [0

1\gm 0 01

1\gm 0 0001

I\gm 0 000

1/gm 200 0

1/gm 2 0

between 6 and 9

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number

Job Number: 880-41793-2 SDG Number: 19-0112-49

Login Number: 41793 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	

1

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-41793-2

SDG Number: 19-0112-49

List Source: Eurofins St. Louis

List Creation: 04/04/24 03:25 PM

Login Number: 41793 List Number: 3

Creator: Thornley, Richard W

Creator: I norniey, Richard W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6 mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Released to Imaging: 7/24/2024 4:45:59 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Generated 5/8/2024 10:26:17 AM

JOB DESCRIPTION

EBDU #37 19-0112-49

JOB NUMBER

880-43023-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

EO L

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 5/8/2024 10:26:17 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Laboratory Job ID: 880-43023-1

SDG: 19-0112-49

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	
Chain of Custody	13
Receipt Checklists	14

3

6

8

10

Definitions/Glossary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-43023-1

SDG: 19-0112-49

Qualifiers

Metals

 Qualifier
 Qualifier Description

 J
 Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Recovery

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Larson & Associates, Inc.

Project: EBDU #37

Job ID: 880-43023-1

Job ID: 880-43023-1

Eurofins Midland

Job Narrative 880-43023-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/3/2024 8:24 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.4°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

1

-

5

7

ŏ

10

Client Sample Results

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-43023-1

SDG: 19-0112-49

Client Sample ID: Windmill

Date Collected: 05/02/24 13:09 Date Received: 05/03/24 08:24

Lab Sample ID: 880-43023-1

Matrix: Water

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.220	0.00400	mg/L		05/07/24 12:00	05/07/24 18:39	1

Lab Sample ID: 880-43023-2 Client Sample ID: TMW -1 **Matrix: Water**

Date Collected: 05/02/24 13:18

Date Received: 05/03/24 08:24

Method: EPA 200.8 - Metals (ICP/M	S) - Dissolved						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Barium	0.445	0.00400	mg/L		05/07/24 12:00	05/07/24 18:54	

Client Sample ID: TMW -3 Lab Sample ID: 880-43023-3

Date Collected: 05/02/24 13:28

Date Received: 05/03/24 08:24

Matrix: Water

Method: EPA 200.8 - Metals (ICP/MS) - Dissolved

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Barium	0.0299	0.00400	mg/L		05/07/24 12:00	05/07/24 18:56	1

Client Sample ID: TMW -21 Lab Sample ID: 880-43023-4

Date Collected: 05/02/24 13:45

Date Received: 05/03/24 08:24

Matrix: Water

Method: EPA 200.8 - Metals (ICP/MS) - Dissolved

Result Qualifier Analyte RL Unit Prepared Analyzed Dil Fac 05/07/24 12:00 05/07/24 18:58 0.00400 mg/L **Barium** 0.0470

Eurofins Midland

Fac

QC Sample Results

Client: Larson & Associates, Inc.
Project/Site: EBDU #37

Job ID: 880-43023-1 SDG: 19-0112-49

Method: 200.8 - Metals (ICP/MS)

Lab Sample ID: LLCS 860-158872/4-A

Matrix: Water

Analysis Batch: 158963

Spike

Client Sample ID: Lab Control Sample

Prep Type: Total Recoverable

Prep Batch: 158872

Kee

Rec

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 Barium
 0.00400
 0.003274
 J
 mg/L
 82
 50 - 150

Lab Sample ID: MB 860-158841/1-B Client Sample ID: Method Blank

Matrix: Water Prep Type: Dissolved Analysis Batch: 158963 Prep Batch: 158872

 MB MB

 Analyte
 Result Barium
 Qualifier
 RL Result RL Result Rule
 Unit Description
 Prepared Prepared Rule
 Analyzed Prepared Rule
 Dil Fac Rule

 Barium
 <0.00400</td>
 U
 0.00400
 mg/L
 05/07/24 12:00
 05/07/24 18:33
 1

Lab Sample ID: LCS 860-158841/2-B Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Dissolved** Analysis Batch: 158963 **Prep Batch: 158872** LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Barium 0.100 0.09549 85 - 115 mg/L

Lab Sample ID: LCSD 860-158841/3-B Client Sample ID: Lab Control Sample Dup **Matrix: Water Prep Type: Dissolved** Analysis Batch: 158963 **Prep Batch: 158872** Spike LCSD LCSD RPD %Rec Added Result Qualifier %Rec Limit Analyte Unit D Limits RPD Barium 0.100 0.09538 85 - 115 20 mg/L

Lab Sample ID: 880-43023-1 MS

Matrix: Water

Analysis Batch: 158963

Client Sample ID: Windmill
Prep Type: Dissolved
Prep Batch: 158872

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits 0.100 Barium 0.220 0.3177 mg/L 98 70 - 130

0.100

0.220

Lab Sample ID: 880-43023-1 MSD

Client Sample ID: Windmill

Matrix: Water

Prep Type: Dissolved

Analysis Batch: 158963 **Prep Batch: 158872** Sample Sample Spike MSD MSD %Rec **RPD** Added Result Qualifier Qualifier RPD Limit Analyte Result Unit D %Rec Limits

0.3228

mg/L

103

70 - 130

20

Barium

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: EBDU #37

Job ID: 880-43023-1 SDG: 19-0112-49

Metals

Filtration Batch: 158841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43023-1	Windmill	Dissolved	Water	Filtration	_
880-43023-2	TMW -1	Dissolved	Water	Filtration	
880-43023-3	TMW -3	Dissolved	Water	Filtration	
880-43023-4	TMW -21	Dissolved	Water	Filtration	
MB 860-158841/1-B	Method Blank	Dissolved	Water	Filtration	
LCS 860-158841/2-B	Lab Control Sample	Dissolved	Water	Filtration	
LCSD 860-158841/3-B	Lab Control Sample Dup	Dissolved	Water	Filtration	
880-43023-1 MS	Windmill	Dissolved	Water	Filtration	
880-43023-1 MSD	Windmill	Dissolved	Water	Filtration	

Prep Batch: 158872

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43023-1	Windmill	Dissolved	Water	200.8	158841
880-43023-2	TMW -1	Dissolved	Water	200.8	158841
880-43023-3	TMW -3	Dissolved	Water	200.8	158841
880-43023-4	TMW -21	Dissolved	Water	200.8	158841
MB 860-158841/1-B	Method Blank	Dissolved	Water	200.8	158841
LCS 860-158841/2-B	Lab Control Sample	Dissolved	Water	200.8	158841
LCSD 860-158841/3-B	Lab Control Sample Dup	Dissolved	Water	200.8	158841
LLCS 860-158872/4-A	Lab Control Sample	Total Recoverable	Water	200.8	
880-43023-1 MS	Windmill	Dissolved	Water	200.8	158841
880-43023-1 MSD	Windmill	Dissolved	Water	200.8	158841

Analysis Batch: 158963

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43023-1	Windmill	Dissolved	Water	200.8	158872
880-43023-2	TMW -1	Dissolved	Water	200.8	158872
880-43023-3	TMW -3	Dissolved	Water	200.8	158872
880-43023-4	TMW -21	Dissolved	Water	200.8	158872
MB 860-158841/1-B	Method Blank	Dissolved	Water	200.8	158872
LCS 860-158841/2-B	Lab Control Sample	Dissolved	Water	200.8	158872
LCSD 860-158841/3-B	Lab Control Sample Dup	Dissolved	Water	200.8	158872
LLCS 860-158872/4-A	Lab Control Sample	Total Recoverable	Water	200.8	158872
880-43023-1 MS	Windmill	Dissolved	Water	200.8	158872
880-43023-1 MSD	Windmill	Dissolved	Water	200.8	158872

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Client Sample ID: Windmill

Job ID: 880-43023-1 SDG: 19-0112-49

Lab Sample ID: 880-43023-1

Matrix: Water

Date Collected: 05/02/24 13:09 Date Received: 05/03/24 08:24

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 158841 Dissolved Filtration Filtration 250 mL 250 mL 05/06/24 09:53 AGR **EET HOU** 50 mL Dissolved Prep 200.8 50 mL 158872 05/07/24 12:00 MD **EET HOU** Dissolved Analysis 200.8 1 158963 05/07/24 18:39 DP **EET HOU**

Client Sample ID: TMW -1

Date Collected: 05/02/24 13:18 Date Received: 05/03/24 08:24

Lab Sample ID: 880-43023-2

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Filtration	Filtration			250 mL	250 mL	158841	05/06/24 09:53	AGR	EET HOU
Dissolved	Prep	200.8			50 mL	50 mL	158872	05/07/24 12:00	MD	EET HOU
Dissolved	Analysis	200.8		1			158963	05/07/24 18:54	DP	EET HOU
_										

Client Sample ID: TMW -3

Date Collected: 05/02/24 13:28

Date Received: 05/03/24 08:24

Lab Sample ID: 880-43023-3

Matrix: Water

EET HOU

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Dissolved	Filtration	Filtration			250 mL	250 mL	158841	05/06/24 09:53	AGR	EET HOU
Dissolved	Prep	200.8			50 mL	50 mL	158872	05/07/24 12:00	MD	EET HOU
Dissolved	Analysis	200.8		1			158963	05/07/24 18:56	DP	EET HOU

Initial

Amount

250 mL

50 mL

Final

Amount

250 mL

50 mL

158963

Dil

1

Factor

Run

Client Sample ID: TMW -21

Date Collected: 05/02/24 13:45

Batch

Туре

Prep

Filtration

Analysis

Date Received: 05/03/24 08:24

Lab Sample ID: 880-43023-4 **Matrix: Water**

Batch Prepared Number or Analyzed Analyst Lab 158841 05/06/24 09:53 AGR EET HOU 158872 05/07/24 12:00 MD**EET HOU**

DP

05/07/24 18:58

Laboratory References:

Prep Type

Dissolved

Dissolved

Dissolved

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Batch

Method

Filtration

200.8

200.8

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Job ID: 880-43023-1 Project/Site: EBDU #37 SDG: 19-0112-49

Laboratory: Eurofins Houston

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704215	06-30-24

Method Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-43023-1

S

SDG:	1	9-	01	11	2-49	

Method	Method Description	Protocol	Laboratory
200.8	Metals (ICP/MS)	EPA	EET HOU
200.8	Preparation, Total Recoverable Metals	EPA	EET HOU
Filtration	Sample Filtration	None	EET HOU

Protocol References:

EPA = US Environmental Protection Agency

None = None

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

Sample Summary

Client: Larson & Associates, Inc.

Project/Site: EBDU #37

Job ID: 880-43023-1

SDG: 19-0112-49

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-43023-1	Windmill	Water	05/02/24 13:09	05/03/24 08:24
880-43023-2	TMW -1	Water	05/02/24 13:18	05/03/24 08:24
880-43023-3	TMW -3	Water	05/02/24 13:28	05/03/24 08:24
880-43023-4	TMW -21	Water	05/02/24 13:45	05/03/24 08:24

LABORATORY Xenco RELINQUISHED BY (Signature) TOTAL RELINQUISHED BY (Signature) RELINQUISHED BY (Signature) TIME ZONE
Time zone/State Data Reported to Mimbries TM0.3 TMW-1 Yes No raw-21 Field Sample I D んらじんろん TRRP report? arson & SSOCIATES, Inc. Environmental Consultants S=SOIL W=WATER A=AIR Lab# 572124 Date SL=SLUDGE OT=OTHER P=PAINT \$15124 0524 5 h C/ 1318 1309 328 DATE/TIME DATE/TIME DATE/TIME Time Matrix E 507 N. Marienfeld, Ste. 202 RECEIVED BY (Signature) RECEIVED BY (Signature) REGEIVED BY # of Containers Midland, TX 79701 432-687-0901 12 13 HCI PRESERVATION HNO. (Signature) H₃SO, 🗓 NaOH 🗓 UNPRESSERVED P0# DATE: 5/3/1624 PROJECT LOCATION OR NAME LAI PROJECT # OTHER 🔲 2 DAY NORMAL L 1 DAY Towal TURN AROUND TIME 19-0112-49 ☐ HAND DELIVERED RECEIVING TEMP 556 THERM# ☐ CARRIER BILL# CUSTODY SEALS - BROKEN DINTACT NOT USED LABORATORY USE ONLY LAB WORK ORDER# EBD - #37 CHAIN-OF-CUSTODY24 COLLECTOR PAGE__OF lab 1)/rect 18/11 to Meche B FIELD NOTES No. 3311 2 Her bcd Ex. 6-0785 Page 13 of 15

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Job Number: 880-43023-1

SDG Number: 19-0112-49

Login Number: 43023 List Source: Eurofins Midland

List Number: 1

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

1

3

4

6

8

10

46

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Containers requiring zero headspace have no headspace or bubble is

Job Number: 880-43023-1

SDG Number: 19-0112-49

List Source: Eurofins Houston
List Number: 2
List Creation: 05/04/24 11:25 AM

Creator: Baker, Jeremiah

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

True

1

Eurofins Midland

<6mm (1/4").

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
QCC Standard:		*0.005	*1	*0.7	*0.62	**250	**1,000	2.0
Windmill	¹ 08/01/2019	<0.001	<0.001	<0.001	<0.003	232	732	
· · · · · · · · · · · · · · · · · · ·	² 09/23/2019							
	² 12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	259	688	
	12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	259	088	
	3 00/20/2020		0.0000	0.0000	0.0000		700	
	09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	274	730	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	287	930	
	2							
	³ 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	252	745	
	³ 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	255	781	
	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	251	800	
	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	246	751	
	4 03/03/2022	<0.00200	<0.00200	<0.00200	<0.00400	256	828	
	4 05/23/2022	<0.00200	<0.00200	<0.00200	< 0.00400	222	738	
	4 08/16/2022	<0.00200	<0.00200	<0.00200	<0.00400	256	1,190	
	⁴ 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	198	508	
	12/13/2022	<0.00100	<0.00100	\0.00100	<0.00100	198	308	
	4 02/14/2022	10.004.00	10.00100	10.004.00	10.00100	404	4.420	
	03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	401	1,130	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	276	852	
	4 09/07/2023	<0.00200	<0.00200	<0.00400	<0.00400	350	981	
	⁴ 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	409	1,010	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	471	1,080	
	04/03/2024							2.18
	05/02/2024							0.220
TMW-1	² 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	37.4	400	
	² 12/26/2019	<0.000800	<0.00200	<0.00200	<0.00200	21.1	390	
	, , ,							
	³ 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	22.6	390	
	_							
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	13.1	383	
	3							
	³ 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	10.9	360	
	³ 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	14.5	360	
	³ 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	17.5	358	
	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	10.3	391	
	4 03/01/2022	<0.00200	<0.00200	<0.00200	< 0.00400	13.2	343	
	4 05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	26.0	369	
	4 08/16/2022		<0.00200			50.3	404	
		<0.00200		<0.00200	<0.00400			
	⁴ 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	21.4	216	
	4 22 42 - 12							
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	41.9	358	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	275	845	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	277	830	
	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	156	662	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00404	136	551	
	05/02/2024							0.445
	, , , , , , , ,							
TMW-2	² 09/23/2019	<0.00800	<0.00200	<0.00200	<0.00200	338	1,220	
	² 12/26/2019	<0.00800	<0.00200	<0.00200	<0.00200	307	1,170	
	12,20,2019	\U.UUU0UU	<u> </u>	\U.UU2UU	\U.UUZUU	307	1,170	
	3 00/20/2020	<0.00200	0.00337	*0.00300	<0.00000	24.4	1.040	
	09/30/2020	<0.00200	0.00227	<0.00200	<0.00200	314	1,040	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	298	1,050	
	³ 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	293	1,000	
	³ 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	267	1,050	
	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	263	1,030	
	⁴ 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	284	1,270	
	12, 22, 2021	-5.55265	10.00200	10.00200	10.00100		-,-,	
	4 02/01/2022	<0.00200	<0.00200	<0.00200	~0.00400	202	1.020	
	4 03/01/2022	<0.00200	<0.00200	<0.00200	<0.00400	282	1,030	
	4 05/23/2022	<0.00200	<0.00200	<0.00400	< 0.00400	256	1,070	
	4 08/16/2022	<0.00200	<0.00200	<0.00400	<0.00400	239	940	

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
'QCC Standard:		*0.005	*1	*0.7	*0.62	**250	**1,000	2.0
	4 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	195	985	
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	211	1,060	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	248	1,120	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	270	1,050	
	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	264	1,100	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	249	992	
TMW-3	09/23/2019							
	12/26/2019							
	³ 09/30/2020	<0.00200	0.00322	<0.00200	0.00448	212	891	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	214	948	
	³ 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	213	900	
	³ 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	180	934	
	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	192	967	
	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	211	949	
	12/22/2021	\0.00200	\0.00200	\0.00200	\0.00400	211	343	
	4 03/01/2022	<0.00200	<0.00200	<0.00200	<0.00400	233	944	
	⁴ 05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	202	955	
	4 08/16/2022	<0.00200	<0.00200	<0.00200	<0.00400	245		
							1,100	
	⁴ 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	175	808	
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	233	940	
	4 06/22/2023					229		
	_	<0.00200	<0.00200	<0.00200	<0.00200		1,020	
	09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	240	1,010	
	⁴ 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	242	1,020	
	4 02/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	234	959	
	⁴ 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	254	959	0.0299
	05/02/2024							0.0299
TMW-4	09/23/2019							
	12/26/2019							
	³ 09/30/2020	<0.00200	0.00314	<0.00200	<0.00200	1,020	2,040	
	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	987	2,300	
	3 02/11/2021							
	03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	834	1,960	
	³ 06/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	745	1,990	
	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	689	1,990	
	⁴ 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	735	2,180	
	4 03/01/2022	<0.00200	<0.00200	<0.00200	<0.00400	1,610	2,080	
	4 03/29/2022	<0.00200				547		
	03/29/2022		<0.00200	<0.00200	0.00700		1,930	
	⁴ 05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	522	1,930	
	4 08/16/2022	<0.00200	<0.00200	<0.00200	<0.00400	684	2,000	
	⁴ 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	486	1,940	
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	703	1,850	
	4 06/22/2023	<0.00100	<0.00100	<0.00100	<0.00100	673	1,900]
	4 09/06/2023		<0.00200			625	1,810	
	l .	<0.00200		<0.00200	<0.00400	598		
	12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	338	1,750	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	580	1,750	
TMW-5	⁴ 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	1,170	4,950	
	4							
	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	2,890	5,200	
	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	2,790	5,380	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,700	4,590	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,320	4,250	
]
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	2,980	5,360	

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
'QCC Standard:		*0.005	*1	*0.7	*0.62	**250	**1,000	2.0
	4 42/45/2022					0.11	2.152	
TMW-6	⁴ 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	941	3,160	
	⁴ 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	2 270	3,200	
	4 06/22/2023	<0.00100 <0.00200	<0.00100 <0.00200	<0.00100 <0.00200	<0.00100 <0.00200	2,270 1,550	3,260	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00200	1,630	2,820	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,570	3,070	
	12,20,2023	10.00200	\0.00200	\0.00200	\0.00400	1,370	3,070	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,500	3,280	
		30.00200	30.00200	10.00200	10.00 100	_,,	5, 225	
TMW-7	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	1,770	3,980	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,870	3,880	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,770	3,720	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,740	3,690	
TMW-8	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	974	2,410	
	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,130	2,470	
	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00200	709	1,840	
	4							
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	655	1,830	
	4 06/22/2022					10.0	272	
TMW-9	⁴ 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	18.0	373	
	09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	41.8	390	
	⁴ 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	37.3	404	
	⁴ 03/14/2024	<0.00200	<0.00200	40 00200	<0.00400	29.3	373	
	03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	29.5	3/3	
TMW-10	⁴ 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	9.89	525	
110100-10	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00200	67.0	514	
	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	114.0	666	
	12,21,2023	(0.00100	(0.00100	10.00100	10.0100	114.0	000	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	17.0	405	
TMW-11	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	350	1,190	-
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	318	1,090	
TMW-12	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	463	1,520	
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	448	1,390	
TMW-13	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	1,730	3,680	
	4 4							
	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,690	3,480	
TRAMA 4.4	4 42/20/2022	<0.0000S	-0.0000	-0.00000	-0.00400	2.500	F (10	
TMW-14	⁴ 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,500	5,140	
	4 02/15/2024	10.00200	10,00200	10.00200	10.00400	1 910	2 020	
	⁴ 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,810	2,820	
TMW-15	⁴ 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	2,120	3,870	
	12,20,2023	~0.00200	30.00200	30.00200	\0.00 4 00	2,120	3,070	
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	2,160	3,400	
		.0.00200	.5.55255	.5.55255	.5.55 .65	_,	3,100	
TMW-16	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	85.5	495	
		-						
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	43.0	380	
TMW-17	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	5,850	10,300	
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	5,680	8,930	
	ı l							

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
WQCC Standard:		*0.005	*1	*0.7	*0.62	**250	**1,000	2.0
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	908	1,650	
TMW-19	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	927	1,860	
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	553	1,070	
	4							
TMW-20	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	287	927	
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	385	937	
TMW-21	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	262	885	
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	310	902	
	05/02/2024							0.0471
TMW-22	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	270	939	
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	342	918	
TMW-23	⁴ 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	895	1,980	
	⁴ 03/15/2024	40.00300	~0.00300	<0.00300	z0.00400	1.020	2.020	
	03/13/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,020	2,020	
TMW-24	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	271	1,050	
	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	330	1,060	
DUP-1 (Windmill)	3 09/30/2020	<0.00200	<0.00200	<0.00200	<0.00200	276	794	
DUP-1 (Windmill)	³ 12/07/2020	<0.00200	<0.00200	<0.00200	<0.00200	278	908	
DUP-1 (Windmill)	3 03/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	259	798	
DUP-1 (Windmill)	³ 06/10/2021	<0.00200	<0.00200	<0.00200	<0.00400	256	781	
DUP-1 (Windmill)	4 10/11/2021	<0.00200	<0.00200	<0.00200	<0.00400	250	830	
DUP-1 (Windmill)	4 12/22/2021	<0.00200	<0.00200	<0.00200	<0.00400	243	796	
Dup-1 (TMW-2)	4 03/01/2022	<0.00200	<0.00200	<0.00200	<0.00400	297	1,010	
Dup-2 (Windmill)	4 03/03/2022	<0.00200	<0.00200	<0.00200	<0.00400	491	787	
Dup-1 (Windmill)	4 05/23/2022	<0.00200	<0.00200	<0.00200	<0.00400	215	729	
Dup-1 (Windmill)	4 08/16/2022	<0.00200	<0.00200	<0.00200	<0.00400	283	1,120	
Dup-1 (TMW-5)	4 12/15/2022	<0.00100	<0.00100	<0.00100	<0.00100	1,410	4,520	
Dup-1 (Windmill)	4 03/14/2023	<0.00100	<0.00100	<0.00100	<0.00100	413	1,130	
Dup-1 (Windmill)	4 06/22/2023	<0.00200	<0.00200	<0.00200	<0.00200	273	855	
Dup-1 (TMW-5)	4 09/06/2023	<0.00200	<0.00200	<0.00200	<0.00400	3,030	5,850	
Dup-1 (TMW-17)	4 12/20/2023	<0.00200	<0.00200	<0.00200	<0.00400	5,830	10,300	
Dup-2 (TMW-2)	4 12/21/2023	<0.00100	<0.00100	<0.00100	<0.0100	265	1,010	
Dup-1 (TMW-3)	4 03/14/2024	<0.00200	<0.00200	<0.00200	<0.00400	328	986	
Dup-2 (TMW-14)	4 03/15/2024	<0.00200	<0.00200	<0.00200	<0.00400	1,330	2,530	
-								

Notes:

('): analysis performed by Cardinal Laboratories, Hobbs, New Mexico, by EPA SW-846 Method 8021B (BTEX) and titration methods (chloride and TDS).

All values reported in milligrams per liter (mg/L) equivalent to parts per million (ppm)

Bold and highlighted denotes analyte concentration exceeds WQCC domestic water quality standard

⁽²): analysis performed by DHL Analytical, Round Rock, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride).

^{(3):} analysis performed by Xenco Laboratories, Midland, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride).

^{(4):} anaylis performed by Eurofins-Xenco, Midland, Texas, by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride). <: concentration is less than analytical method reporting limit (RL).

^{*:} NMWQCC Human Health Standard

^{**:} NMWQCC Domestic Water Quality Standard

^{--:} no data available

Received by OCD: 5/9/2024 8:26:13 AM

Table 2 Groundwater Sample Analytical Data Summary Apache Corporation, EBDU #37

Lea County, New Mexico

Sample	Collection Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)	TDS (mg/L)	Barium (mg/L)
WQCC Standard:		*0.005	*1	*0.7	*0.62	**250	**1,000	2.0

Received by OCD: 5/9/2024 8:26:13 AM

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS	Barium
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
WQCC Standard:	-	*0.005	*1	*0.7	*0.62	**250	**1.000	2.0

Table 3 20.6.2.3101 NMAC

Laboratory Analytical Data Summary Windmill, EBDU 37, Lea County, New Mexico

Page 1 of 2

	20.6	20.6.2.3103 NMAC - Human Health Standards								
Α.	Parameter	mg/L	4/3/2024							
(a)	Antimony	0.006	<0.00400							
(b)	Arsenic	0.01	<0.00400							
(c)	Barium	2.0	2.18	*0.220						
(d)	Beryllium	0.004	<0.00200							
(e)	Cadmium	0.005	<0.00200							
(f)	Chromium	0.05	<0.00400							
(g)	Cyanide	0.2	<0.00500							
(h)	Fluoride	1.6	<1.00							
(i)	Lead	0.015	<0.00200							
(j)	Mercury (Total)	0.002	<0.000200							
(k)	Nitrate	10.0	2.78							
(1)	Nitrite	1.0	<0.100							
(m)	Selenium	0.05	<0.00200							
(n)	Silver	0.05	<0.00200							
(o)	Thallium	0.002	<0.00200							
(p)	Uranium	0.03	0.00315							
(q)	Radioactivity	5.0	0.945							
	(combined R226 and R228)									
(r)	Benzene	0.005	<0.00100							
(s)	Polchlorinated biphenyls (PCB)	0.0005	<0.000262							
(t)	Toluene	1.0	<0.00100							
(u)	Carbon Tetrachloride	0.005	<0.00500							
(v)	1,2-dichloroethane (EDC)	0.005	<0.00100							
(w)	1,1-dichloroethylene	0.007	<0.00100							
(x)	Tetrachloroethylene (PCE)	0.005	<0.00100							
(y)	Trichloroethylene (TCE)	0.005	<0.00500							
(z)	Ethylbenzene	0.70	<0.00100							
	Xylenes (Total)	0.62	<0.0100							
(bb)	Methylene Chloride	0.005	<0.00500							
(cc)	Chloroform	0.1	<0.00100							
(dd)	1,1-Dichloroethane	0.025	<0.00100							
	Ethylene Dibromide (EDB)	0.00005	<0.00500							
(ff)	1,1,1-trichloroethane	0.20	<0.00100							
(gg)	1,1,2-trichloroethane	0.005	<0.00100							
(hh)	1,1,2,2-tetrachloroethane	0.01	<0.00100							
(ii)	vinyl chloride	0.002	<0.002							
(jj)	PAHs: total naphthalene	0.03	<0.571							
	plus monomethylnapthalenes									
(kk)	benzo-a-pyrene	0.0002	<0.571							
(II)	cis-1,2-dichloroethene	0.07	<0.00100							
-	trans-1,2-dichloroethene	0.1	<0.00100							
(nn)	1,2-dichloropropane (PDC)	0.005	<0.00500							
(00)	Styrene	0.1	<0.00100							
(pp)	1,2-dichlorobenzene	0.60	<0.00100							
(qq)	1,4-dichlorobenzene	0.075	<0.00100							
(rr)	1,2,4-trichlorobenzene	0.07	<0.00500							
(ss)	pentachlorophenol	0.001	<1.14							
(tt)	atrazine	0.003	<0.500							

Table 3 20.6.2.3101 NMAC

Laboratory Analytical Data Summary Windmill, EBDU 37, Lea County, New Mexico

Page 2 of 2

	20.6.2.3103 NMAC - Standards for Domestic Water Supply							
В.	Parameter	mg/L	4/3/2024					
(1)	Chloride	250.0	440					
(2)	Copper	1.0	0.00509					
(3)	Iron	1.0	<0.100					
(4)	Manganese	0.2	<0.00200					
(5)	Phenols	0.005	<0.0100					
(6)	Sulfate	600.0	56.5					
(7)	Total Dissolved Solids (TDS)	1,000.0	1,000					
(8)	Zinc	10.0	0.00465					
(9)	рН	6 - 9	7.3					
(10)	Methy tertiary-butyl ether (MTBE)	0.1	<0.00500					
	20.6.	2.3103 NV	1AC - Standa	rds for Irriga	tion Use			
В.	Parameter	mg/L	4/3/2024	5/2/2024				
(1)	Aluminum	5.0	<0.0200					
(2)	Boron	0.75	0.154					
(3)	Cobalt	0.05	<0.00200					
(4)	Molybdenum	1.0	<0.00200					
(5)	Nickel	0.2	<0.00200					

Notes: Analysis performed by Eurofins Xenco Laboratories, Midland, Texas, by EPA SW-846 Methods.

Bold indicates analyte concentration exceeds the reporting limit (RL) but below the regulatory limit Bold and highlighted indicates analyte concentration exceeds RL and regulatory limit

All values reported in milligrams per liter (mg/L) equivalent to parts per million (ppm) < Indicates analyte concentration is less than reporting limit (RL)

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 342416

CONDITIONS

Operator:	OGRID:
APACHE CORPORATION	873
303 Veterans Airpark Ln	Action Number:
Midland, TX 79705	342416
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	As a result of significant differences in groundwater flow direction at the source area shown between Figure 5a and Figure 5b from December 2023 to March 2024 in the SOW, a denser network of monitoring wells is necessary to better characterize the mass source in the area. Apache Corporation must develop the following within ninety (90) days of this approval date for additional well borings and the subsequent conditions of approval below. The coordinates for each additional monitoring well required for installation by OCD are included in conditions 1. (a through n). 1a. TMW-30 shall be installed approximately 430 feet east of the TMW-28 well proposal, and 50 feet south. Better defining background concentrations. (32.482591, -103.120003)	7/24/2024
michael.buchanan	1b. TMW-31 shall be installed approximately 350 feet northwest of TMW-22. Reduces the distance between TMW-12 and TMW-22 for more precise characterization. (32.481806, -103.119008) 1c. TMW-32 shall be installed approximately 275 feet east of TMW-12. Reduces distance between adjacent wells for more precise characterization. (32.481354, -103.119876) 1d. TMW-33 shall be installed approximately 415 feet southwest of TMW-22. Reduces the distance between TMW-21 and TMW-13 for more precise characterization. (32.480643, -103.118728) 1e. TMW-34 shall be installed approximately 350 feet west of TMW-14. Achieves more characterization near TMW-17 which conveys a high chloride level. (32.479492, -103.120080) 1f. TMW-35 shall be installed approximately 190 feet northeast of TMW-15 Addresses more necessary characterization near TMW-17 (32.479341, -103.119302)	7/24/2024
michael.buchanan	1g. TMW-36 shall be installed approximately 175 feet southwest of TMW-17. Addresses need for more characterization near TMW-17 (32.478749, -103.120871) 1h. TMW-37 shall be installed approximately 275 feet southeast of TMW-17. Addresses need for more characterization near TMW-17. (32.478577, -103.119850) 1i. TMW-38 shall be installed approximately 300 feet northwest of proposed TMW-26. More characterization and assessment needed in the southeast region of the release area. (32.477683, -103.119429) 1j. TMW-39 shall be installed approximately 200 feet southeast of TMW-18. The release area in southeast area needs tighter monitoring network of characterization and assessment for chloride. (32.477447, -103.120144) 1k. TMW-40 shall be installed approximately 200 feet southeast of TMW-16. Addresses lack of characterization and assessment between MW-19 and MW-18 (32.477640, -103.121407)	7/24/2024
michael.buchanan	11. TMW-41 shall be installed approximately 275 feet east of TMW-24. Addresses lack of characterization and assessment between TMW-24 and TMW-23 (32.476499, -103.121560) 1m. TMW-42 shall be installed approximately 220 feet east of TMW-23. Addresses lack of characterization and assessment between TMW-25 and TMW-26 (32.476456, -103.119774) 1n. TMW-42 shall be installed approximately 75 feet NE of TMW-13. Addresses lack of characterization between TMW-13 and TMW-22. (32.4811185, -103.1189847) 2. A current and up-to-date site map showing proposed monitoring wells in the SOW, and the additional thirteen (14) monitoring wells prescribed by OCD for further characterization and assessment of chlorides and BTEX. 3. Any quarterly monitoring collected to the present (summary table and lab analyses are sufficient).	7/24/2024
michael.buchanan	4. The windmill well must be sampled and analyzed for barium in the next round of groundwater monitoring. 5. Both TMW #5 and TMW #17 must be sampled for all human health standard constituents in the NM WQCC list in subsections A, B and C of 20.6.2.3103 NMAC as these two wells had the highest concentrations of contamination. 6. All proposed monitoring wells in the Scope of Work for Additional Investigation and the additional required monitoring wells by OCD must have soil sample analyses for TPH, chloride, and BTEX by EPA Methods 8260, EPA Method 300 and EPA Method 8015. Five (5) foot interval composite samples are acceptable. 7. Drilling for all wells is required to commence within ninety (90) days from this date of approval.	7/24/2024
michael.buchanan	8. 19.15.5.11 ENFORCEABILITY OF PERMITS AND ADMINISTRATIVE ORDERS: A person who conducts an activity pursuant to a permit, administrative order or other written authorization or approval from the division shall comply with every term, condition and provision of the permit, administrative order, authorization or approval. [19.15.5.11 NMAC - Rp, 19.15.1.41 NMAC, 12/1/2008]	7/24/2024

September 23, 2024

New Mexico Oil Conservation Division (NMOCD) EMNRD/OCD 8801 Horizon Blvd NE, Suite 260 Albuquerque, NM 87113

Attn: Mr. Michael Buchanan P 505-490-0798

E Michael.buchanan@emnrd.nm.gov

RE: Additional Groundwater Delineation Work Plan

Apache Corporation

EBDU #37

Case No. (1R-5636), Incident ID NDHR192214227

Lea County, New Mexico

Terracon Project No. KH247030

Dear Mr. Buchanan:

Terracon Consultants, Inc. (Terracon) and Apache Corporation (Apache) have prepared this work plan describing additional site investigation activities planned for the above-reference site. The scope of work is intended to provide additional information to delineate the extent of groundwater impacts and provide additional information on the hydraulic properties of the groundwater system.

Additional Monitoring Wells

Seven additional monitoring wells will be installed as described below:

- TMW-25 (32.475248°, -103.121412°) will provide downgradient delineation
- TMW-26 (32.477315°, -103.119178°) will provide downgradient and lateral delineation on the southeast edge of the plume
- TMW-27 (32.479989°, -103.120675°) will serve to confirm the chloride plume is continuous between the source (near TTMW-7) and TTMW-17, which has shown elevated chlorides in recent sampling. TMW-27 will be completed as a six-inch diameter well suitable for use as a recovery well if needed.
- TMW-28 (32.482492°, -103.121341°) and TMW-29 (32.481836°, -103.119511°) will provide upgradient delineation. These wells will be located approximately 750 feet (TMW-28) and 550 feet (TMW-29) upgradient of the source. The average of these two wells is intended to serve as representative background conditions.
- TMW-30 (32.477428°, -103.120114°) will be located approximately 200 feet southeast of TMW-18 to provide information on stratigraphy and groundwater chemistry in the space between current TMW-18, TMW-23, and proposed TMW-26. This is the location identified as TMW-39 from the OCD approval letter.
- TMW-31 (32.476425°, -103.119734°) will provide downgradient and lateral (southeast) delineation of the plume. This is the location identified as TMW-42 from the OCD approval letter.
- At each of the monitoring well locations soil samples will be collected at five-foot intervals and will be submitted to a laboratory for analyses for TPH, chloride, and BTEX by EPA Methods 8260, EPA Method 300 and EPA Method 8015.

Soil Borings

Four soil borings will be advanced to evaluate potential source areas for chlorides. Precise locations will be determined in consultation and agreement with NMOCD. Soil samples from the borings will be analyzed in the field using titration methods to aid in directing the field work. Borings will be advanced to a depth of 30' and sampling will cease if no samples are found above RALs.

Groundwater Sampling

- Two groundwater sampling events for all wells and the windmill will be done in September and December. The September event will sample the existing monitoring wells and the windmill well. The December sampling event will include the newly installed seven wells as well as the existing monitoring wells and the windmill well.
- Samples from all wells will be analyzed for Chlorides and TDS
- Samples from the newly installed seven wells will also be analyzed for BTEX/TPH. If these parameters are below sample detection limits as they have been in all wells sampled to date, then future sampling events at these locations will be for chloride and TDS.
- Samples from the Windmill Well, TMW-5 and TMW-17 will be sampled for the human health standard constituents in the NM WQCC list in subsections A, B and C of 20.6.2.3103 NMAC.
- Samples from the Windmill Well, TMW-1, TMW-3, and TMW-21 will also be sampled for Barium
- Prior to the first sampling event, TMW-17 will be purged dry, to the maximum extent possible, to
 ensure water being sampled is formation water and not related to water introduced when the well
 was installed.

Aquifer Characterization

A pump test will be performed at TMW-27 to gauge the characteristics of the aquifer. The well will be pumped for 24-48 hours. Drawdown will be measured in the pumping well and select monitoring wells using pressure transducers. Evaluation of the data will provide information needed to evaluate the effectiveness and requirements for future remedial activities.

Field Methods

The monitoring wells will be installed using air rotary drilling techniques. Precise location, depth and screened intervals may be adjusted in the field based on site conditions and observed groundwater levels while drilling.

Monitoring Well	Anticipated Depth to Groundwater (feet bgs)	Approximate well Depth* (feet bgs)	Approximate Screened Interval (feet bgs)
TMW-25	60	80	60 - 80
TMW-26	60	80	60 – 80
TMW-27 (6" - Well)	55	95	75 – 95
TMW-28	55	75	55 – 75
TMW-29	60	80	60 – 80
TMW-30	60	80	60 – 80
TMW-31	60	80	60 – 80

Additional Groundwater Delineation Work Plan Apache EBDU#37 | Lea County, New Mexico September 23, 2024 | Terracon Project No. KH247030

All monitoring wells with the exception of TMW-27 (RW-1) will be constructed with 20 feet of 2-inch diameter, 0.010-inch machine-slotted polyvinyl chloride (PVC) well screen with a threaded bottom cap and 2-inch diameter, threaded, flush-joint PVC riser pipe to the surface. The annular space will be backfilled with pre-sieved 20/40-grade silica sand around the well screen from the bottom of the boring to approximately 2 feet above the top of the well screen. A minimum of 2 feet of hydrated bentonite pellets will be placed above the sand pack and cement/bentonite slurry to the surface. The wells will be completed with a 4-inch diameter above grade protective casing set in a concrete pad. The locations of the proposed monitoring wells are presented in the attached Exhibit 1. The new monitoring wells will be developed by surging and removing groundwater until fluids appear relatively free of fine-grained sediment.

TMW-27 will be completed using 6" diameter 0.035 continuous slot screen with 8/16 Brady Sand filter pack. We anticipate installing a 20' length screen as shown in the table above but will evaluate more carefully as we design the aquifer test.

Groundwater samples will be collected using HydraSleeve passive samplers. The samplers will be introduced one day, then samples will be retrieved the following day. The HydraSleeve will be set up to sample the lower 10 feet of each well.

Investigation-Derived Waste (IDW)

The proposed monitoring wells will be located in areas of the site removed from the spill; therefore, soils are not anticipated to be impacted. The soil cuttings generated during installation will be dispersed at the location of each respective proposed monitoring well. Groundwater collected during well development and from the purging and sampling process will be collected in a poly tank and left on-site until lab results are analyzed to determine a suitable alternative for disposition.

Schedule

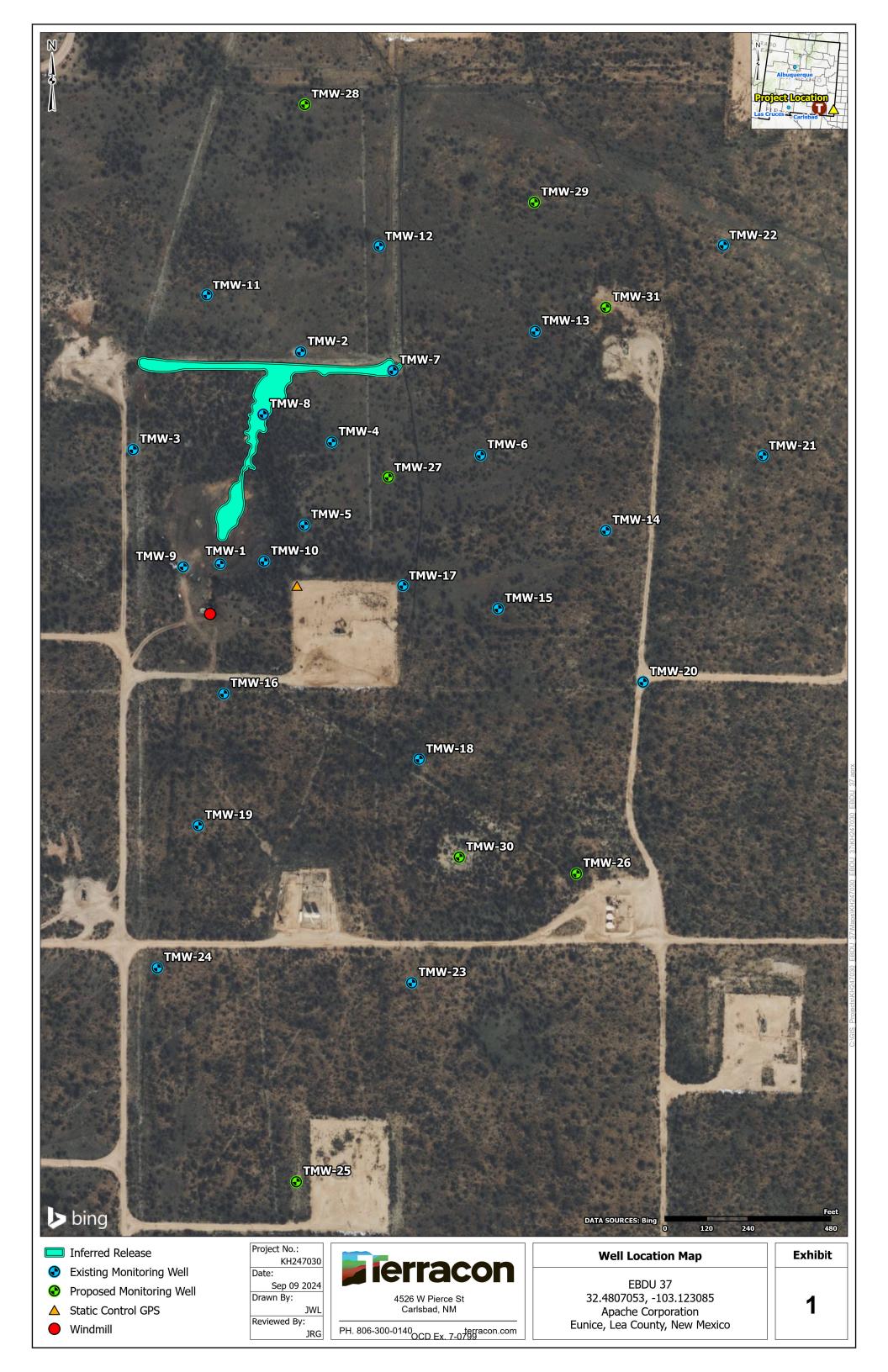
The well installation and sampling event is scheduled to begin on the week of October 15, 2024 and anticipated to be completed October 25, 2024. However, initiation of the work is contingent on obtaining a drilling permit from the New Mexico Office of State Engineer. Should you have any questions regarding this work plan, please contact me at (612) 865-4899 or John.Grams@terracon.com.

Sincerely,

Terracon

John Grams, P.G. (Texas)

Project Hydrogeologist


cc: Barrett Bole, Apache Corp.

Attachment – Exhibit 1, Site Map

Joseph Guesnier

Office Manager, Carlsbad, NM

EXHIBIT 1SITE MAP

