CASE NO. 14292 OCD EXHIBIT 8

Trench Release Wodeling for

) (

Conducted by

Environmental Bureau
Oil Conservation Division

New Mexico Energy, Mineral and Natural Resources Department

Hydrologic Evaluation of Landfill Performance (HELP) Model

- including: run-off, evaporation, transpiration, soil water storage, etc. Developed by the U.S. ACE for the U.S. EPA Water balance model with several computer codes

Multimedia Exposure Assessment (MULTIMED) Mode

- Pseudo two-dimensional computer codes including: vadose zone and aquifer transport
- Developed by the U.S. EPA

Predictive Models

HELP Model

- Uses actual daily weather data
- and lined trenches Determination of release rates at the bottom of unlined pits
- waste disposal areas One of the most accurate predictors of release rates from
- Used by other States and industry

MULTIMED Model

- parameter (i.e., the infiltration rate Use of HELP's output for the input of the most sensitive
- Determination of release concentrations over time in the
- A conservative predictor of release concentrations and times

Weather data

- Daily precipitation
- Daily temperatures
- Daily solar radiation indexes
- Daily evaporation indexes

Soils data

- Number of layers
- Type of layer
- Layer thickness
- Soil type
- Soil porosity
- Soil field capacity
- Soil wilting point
 Soil initial moisture
- Soil saturated hydraulic conductivity
- Quality of liner installation
- Type of cover material
- Slope of cover material

T Conceptual Mod

One set of weather data* for 50 years (1951 - 2000):

*ClimatedataTM by Hydrosphere Data Products, Inc. (data obtained from National Climate Data Center)

**The Permian Basin having pit contents with the higher chloride concentrations in New Mexico as demonstrated through the chloride sampling results below:

TELT Conceptual Model

- A release from an unlined pit
- 2 feet of soil cover (with poor vegetation)
- waste
- A release from an on-site trench burial
- 4 feet of soil cover (with poor vegetation)
- Liner* on top of the waste
- Waste
- Liner* at the bottom (and sides) of the waste

*assuming the liners are installed in accordance with Part 17

Unlined Pit

On-site Trench Burial

- Annual average of release rate:
- at the bottom of an unlined pit ("Unlined Pit")
- (Permian Basin: 1.2"/y); or
- through the bottom of a well installed liner of an on-site trench burial ("**Good Liner**" in accordance with Part 17) (Permian Basin: 0.09"/y);
- This output was used for the input value for the infiltration rate in the MULTIMED model.

- Source specific variables
- Infiltration rate
- Initial concentration
- Area of waste disposal unit
- Duration of pulse

Vadose Zone variables

- Thickness
- Saturated hydraulic conductivity
- Effective porosity
- Residual water content
- Longitudinal dispersivity
- Bulk density of soil Percent organic matter
- Biological decay coefficient

Aquifer specific variables

- Mixing Zone
 Well distance from site
- Effective porosity
- **Bulk density**
- Thickness
- Conductivity
- Gradient

and the second s

- Infiltration Rate
- Output from HELP model
- 100' feet of vadose zone (bottom of trench to groundwater)
- Including type of soil
- 10' Mixing Zone
- Based on OCC Final Deliberations regarding Part 17
- Chloride concentration of release
- For the Permian Basin using 60,000 mg/L initial concentrations

Chloride concentration of release

- that occur in pit contents in New Mexico (with allowable would include the reasonable maximum chloride concentrations 3,000 mg/L Synthetic Precipitation Leaching Procedure SPLP) chloride concentration (proposed amendment to rule)
- 3,000 mg/L chloride concentration using the SPLP is equivalent to 60,000 mg/Kg in trench contents because that procedure requires a 1:20 dilution (trench contents : leaching solution) and chloride is very soluble
- 60,000 mg/Kg in trench contents may be the equivalent of up to 240,000 mg/Kg chloride concentration in the initial pit 60,000 mg/Kg) clean soils (for legitimate stabilization), which reduces the contents because the pit contents can be mixed 1:3 with chloride concentration by 4X (i.e., from 240,000 mg/Kg to
- contents equates to 60,000 mg/L in the leachate 60,000 mg/Kg chloride concentration in the "stabilized" trench

))	
	5,290.0	MAX NW		•	SOLI		OCD SAI
	5,290.0 226,000.0 mg/Kg 15,000.0 420,000.0 mg/Kg 7,810.0 244,000.0 mg/L	MAX NW MAX SE UNITS NW MAX SE MAX UNITS	CONTENTS	SOLID/SLUDGE PIT	FOR	OCD SAMPLING RESULTS	
	mg/Kg	UNITS			PIT		STANS
	15,000.0	NW MAX		TOTAL FRACTION	CONTENTS	SOLID/SLUDGE PIT	INDUSTRY COMMITTEE
	420,000.0	SE MAX					
	mg/Kg	UNITS					
	7,810.0	MAX NW				FOR LIQ	OCD SA
	244,000.0	MAX NW MAX SE UNITS				FOR LIQUID PIT CONTENTS	OCD SAMPLING RESULTS
	mg/L	STINU				ONTENTS	ESULTS
		NW MAX	ANALY	SOLU	PIT CONTENTS	SOLID/SLUDGE	INDUSTRY COMMITTEE
The second secon		NW MAX SE MAX UN	ANALYZED AFTER TCL	SOLUBLE FRACTION			
		LIND	RICLE	NOIT			

SI

(outputs

Chloride concentration over time in the groundwater that is 1 meter from the downgradient edge of the trench

After ~2,000 years the groundwater standard for chloride will be exceeded if the trench contents has a chloride concentration of 3,000 mg/L (SPLP).

*assuming 50 mg/L chloride background concentration in groundwater

Conclusion

 On-site trench burials with a chloride and construction, operational, and environment given the siting, design closure requirements of Part 17. concentration of 3,000 mg/L (SPLP) or protective of human health and the less in the trench contents will be

References

- U.S. EPA, 1997. Hydrologic Evaluation of Landfill Performance (HELP) Model, version 3.07
- U.S. EPA, 1994. Hydrologic Evaluation of Landfill Performance (HELP) Model, Engineering Documentation of Version 3
- U.S. EPA, 1994. Hydrologic Evaluation of Landfill Performance (HELP) Model, User's Guide for Version 3
- U.S. EPA, 1991. Multimedia Exposure Assessment Model (MULTIMED), version 1.01
- U.S. EPA, 1990. Multimedia Exposure Assessment Model (MULTIMED) for Evaluating the Land Disposal of Wastes Model Theory, by Salhotra, et al.
- U.S. EPA, 1990. A Subtitle D Landfill Application Manual for the Multimedia Exposure Assessment Model (MULTIMED), by Sharp-Hansen, et al.
- U.S. EPA, 1993. User Manual Supplement: Using MULTIMED to Evaluate Subtitle D Landfill Designs, by T. L. Allison

