
Petroleum Reservoir Engineering
DALLAS, TEXAS 75207
March 22, 1972

RESERVOIR FLUID DIVISION

The Petroleum Corporation 3303 Lee Parkway Dallas, Texas 75219

Attention: Mr. Larry C. Shannon

Subject: Reservoir Fluid Study

Tenneco Federal No. 1 Well

Wildcat

Lea County, New Mexico

Our File Number: RFL 72119

Gentlemen:

Samples of separator liquid and vapor were collected from the subject well during production testing on March 6, 1972. The samples were forwarded to our Dallas laboratory to be used in the performance of a reservoir fluid study. Presented in the following report are the results of this study as requested by The Petroleum Corporation.

After correction for the factors shown on page one, the producing gasliquid ratio was calculated to be 8774 cubic feet of primary separator gas at 14.65 psia and 60° F. per barrel of stock tank liquid at 60° F. In the laboratory this ratio was determined to be equivalent to 6504 standard cubic feet of primary separator gas per barrel of primary separator liquid at 620 psig and 60° F. The hydrocarbon composition of the well stream material was calculated on the basis of the producing gas-liquid ratio and is given on page two of the report, along with the measured separator liquid and separator vapor compositions.

The separator samples were physically recombined in their producing gasliquid ratio and the resulting mixture was examined in a visual cell at the reported reservoir temperature of 158° F. During a constant composition expansion at this temperature, the fluid exhibited a retrograde dew point at 4676 psig. The results of the pressure-volume measurements, as well as the measured deviation factor at the dew point pressure and above, are presented on page three of the report. Given on page four are the data concerning the retrograde liquid accumulation as reservoir pressure declines.

It has been a pleasure to perform these determinations for you. If you have any questions regarding these data or if we may be of further assistance in any manner, please feel free to contact us.

Very truly yours,

Core Laboratories, Inc. Reservoir Fluid Analysis

P. L. Moses (JF)

Manager

PLM:JF:dl 7 cc. - Addressee

Petroleum Reservoir Engineering
DALLAS, TEXAS

		P	$age_{\underline{}1}$ of	6
		F	ile RFL	72119
Company The Petroleum Corporation	Data Samal	Marc	h 6. 1972	
m - The least No. 1		~		
Well	_ County		Mexico	
FieldWildcat	_ State	Mew	Mexico	
FORMATION CHA	RACTERIST	TCS		
Formation Name			urger	·
Date First Well Completed				
Original Reservoir Pressure				Ft.
Original Produced Gas-Liquid Ratio				SCF/Bbl
Production Rate				Bbls/Day
Separator Pressure and Temperature		600	PSIG _	<u>82</u> ° F.
Liquid Gravity at 60° F.				° API
Datum				Ft. Subsea
WELL CHARA	CTERISTICS			
Elevation				Ft.
Total Depth	•	11/2/		Ft.
Producing Interval			11828	Ft.
Tubing Size and Depth		2-3/0		11110 Ft.
Open Flow Potential		4729		MMSCF/Day *Ft.
Last Reservoir Pressure			_	, 19
Date Reservoir Temperature		158	° F @	* Ft.
Status of Well				
Pressure Gauge				
SAMPLING C	ONDITIONS			
Flowing Tubing Pressure	01.0111	2530		PSIG
Flowing Bottom Hole Pressure				PSIG
Primary Separator Pressure		_620		PSIG
Primary Separator Temperature		_82		° F.
Secondary Separator Pressure				PSIG
Secondary Separator Temperature				° F.
Field Stock Tank Liquid Gravity			°	API @ 60° F.
Primary Separator Gas Production Rate Pressure Base 14.	65 DOTA	985.3		MSCF/Day
110000110 2000				
Temperature Dase	° F.			
Compression of Lactor (L pv)				
das draving (Edisoratory)	9413			
Gas Gravity Factor (F _g) Stock Tank Liquid Production Rate @ 60° F.		112.3		Bbls/Day
Primary Separator Gas Stock Tank Liquid Ratio		8774		SCF/Bbl
or		113.97		_Bbls/MMSCF
Core Laboratories, Inc., Engineer			er, Inc.	
REMARKS: * DST Depth = 11706-11800 Ft.		_		

Petroleum Reservoir Engineering DALLAS, TEXAS

Page	2	of	6	
File	RFL 7	2119		
¥¥7.11	Tennec	n Feder	al No.	1

Hydrocarbon Analyses of Separator Products and Calculated Well Stream

	Separator Liquid	Separator (Gas	Well Stre	
Component	Mol Per Cent	Mol Per Cent	GPM	Mol Per Cent	GPM
		_ <i>,</i>			
Hydrogen Sulfide	Nil	Nil		Nil	
Carbon Dioxide	0.06	0.14		0.13	•
Nitrogen	0.09	1.64		1.43	
Methane	15.93	83.91		74.63	
Ethane	7.95	8.48		8.41	
Propane	10.24	3.70	1.012	4.59	1.256
iso-Butane	1.58	0.25	0.081	0.43	0.140
n-Butane	8.71	1.07	0.335	2.11	0.661
iso-Pentane	2.10	0.12	0.044	0.39	0.142
n-Pentane	6.74	0.30	0.108	1.18	0.425
Mexanes	6.93	0.13	0.053	1.06	0.430
Heptanes plus	39.67	0.26	0.117	5.64	3.494
	100.00	100.00	1.750	100.00	6.548
Properties of Heptanes plus					
API gravity @ 60° F.	52.3				
Specific gravity @ 60/60° F.	0.7698	•		0.768	
Molecular weight	153	103		151	
Calculated separator gas gravity Calculated gross heating value for per cubic foot of dry gas @ 14.	or separator gas =				
	-	. 02			•
Primary separator gas collected	- /	0.0			
Primary separator liquid collecte	$\mathbf{d} = 620$ psig an	d82• F .			
Primary separator gas/separator		04 SCF/Bbl @	-	***	
Primary separator liquid/stock t	•	349 Bbls @ 60°			
Primary separator gas/well stream		3.39 MSCF/MM			
Stock tank liquid/well stream ra	t io _98	40 Bbls/MMS	CF		

Petroleum Reservoir Engineering
DALLAS, TEXAS

Page_	3	_of	6_		
File	RFI	7211	9		
Well	Teni	neco I	<u>Pedera</u>	al No.	1_

Pressure-Volume Relations of Reservoir Fluid at 158° F. (Constant Composition Expansion)

Pressure PSIG	Relative Volume	Deviation Factor
7000	0.8817	1.253
6400	0.9034	1.174
5900	0.9253	1.108
5500	0.9454	1.056
5200	0.9630	1.017
5000	0.9766	0.992
4900	0.9834	0.979
4800	0.9907	0.966
4729 Reservoir Pressure	0.9961	0.957
4700	0.9982	0.953
4676 Dew Point Pressure	1.0000	0.950
4650	1.0020	
4600	1.0058	
4500	1.0155	
4300	1.0368	
4000	1.0756	
3600	1.1451	
3100	1.2725	
2600	1.4744	
2100	1.8109	
1861	2.0505	
1680	2.2899	
1408	2.7707	
1200	3.3001	
1077	3.7170	
961	4.2027	

Petroleum Reservoir Engineering

n		E I	LA	c	~	_	v	٨	_
U.	А	ᆫ	L- /-	۱Þ	1	ᄄ	Л	м	. 0

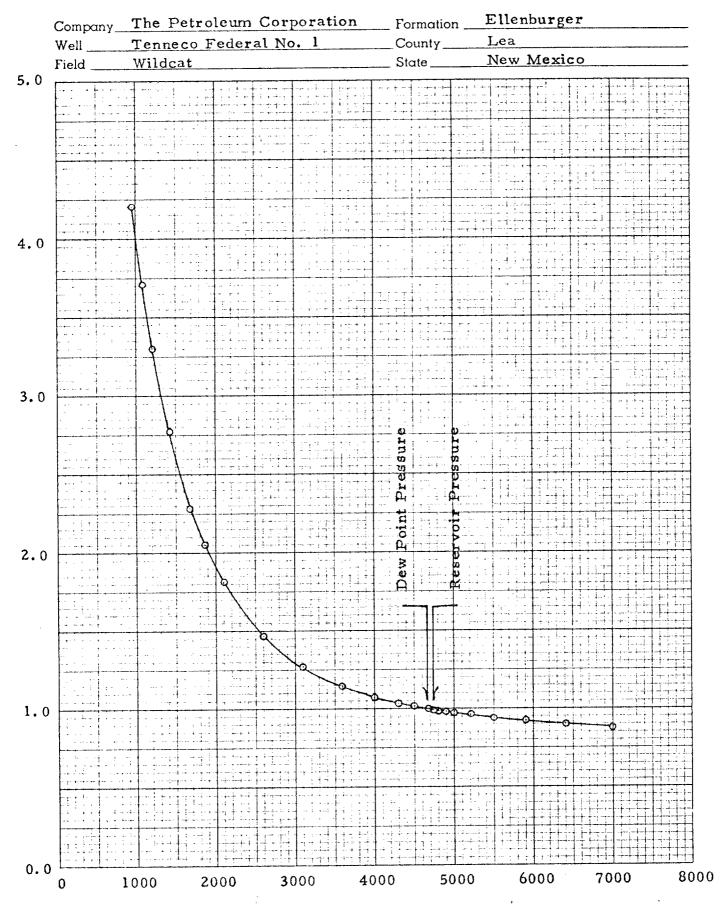
Page_	4 of	66		-
File	RFL 721	19		_
Well	Tenneco	Federal	No.	1

Retrograde Condensation During Gas Depletion at 158° F.

Pressure PSIG	Retrograde Liquid Volume Per Cent of Hydrocarbon Pore Space
4676 Dew Point Pressure	0.0
4650	0.2
4600	0.6
4500	2.0
4300	5 . 5
4000 First Depletion Level	9.5
3100	16.3
2100	17.6
1200	16.3
700	15.0
0	12.6

Core Laboratories, Inc. Reservoir Fluid Analysis

P. L. Moses

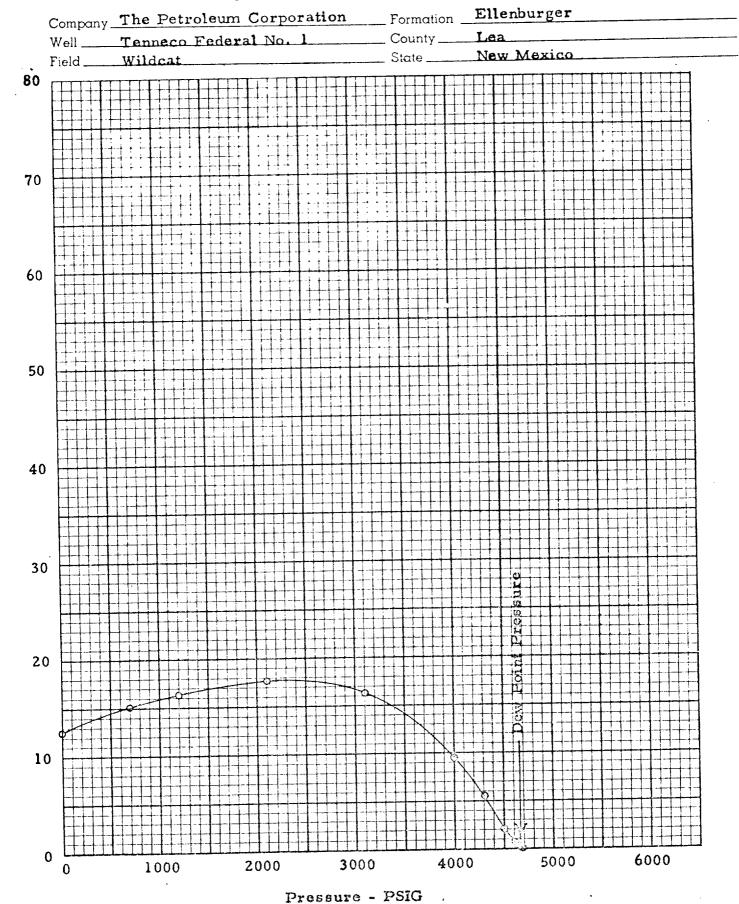

P. L. Moses

Manager

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page <u>5</u> of <u>6</u> File <u>RFL 72119</u>

Pressure-Volume Relations of Reservoir Fluid at 158° F.



Retrograde Liquid Volume - Percent of Hydrocarbon Pore Space

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Page 6 of 6 File RFL 72119

Retrograde Condensation During Depletion

REQUEST FOR PERMANENT FIELD RULES THE PETROLEUM CORPORATION OF DELAWARE

NO CHANGE

TENNECO FEDERAL WELL NO. 1 DUBLIN ELLENBERGER POOL LEA COUNTY, NEW MEXICO

May 8, 1974

House Dos

			Cond.	Static		
·	Production Production	Gas Production	$\frac{\text{Yield}}{\text{B/M}}^2$	Surface Pressure	Average Flowing Pressure	
1973						
January February				2,898 (DW)		
March	951	5,918	161		2,400	
April	5,204	56,684	92	2,700	2,350	
May	5,140	49,106	105	,	2,325	
June	4,426	45,078	98	2,550	2,300	
July	4,047	43,698	93	2,500	2,275	
August	4,100	45,136	91	2,540 (DW)	2,200	
September	4,058	44,353	92	2,500	2,100	
October	4,013	44,598	90	2,500	2, 100	
November	2,202	20,467	108		1,900	
December	4,353	37,225	117	2,200	1,800	
1973 Total	38,494	392,263				
1974 anuarv	4.598	35.317	130	2.200	1,800	
February March	4,099 4,382	27,010 29,070	152 151	2,200 2,200	1,750 1,700	
1974 Total To Date	51,573	483,660				

NEW MEXICO OIL CONSERVATION COMMISSION ATTN A L PORTER JR BOX 2088 SANTE FE NM 87501

REFERENCE: CASE 4790

PLEASE BE ADVISED THAT TENNECO OIL COMPANY WISHES TO SUPPORT THE POSITION OF THE PETROLEUM CORPORATION IN THAT THE CURRENT TEMPORARY FIELD RULES FOR THE DUBLIN ELLENBURGER GAS POOL, ORDER R-4370. SHOULD BE MADE PERMANENT.

TENNECO OIL COMPANY D D MYERS 1860 LINCOLN ST SUITE 1200 DENVER CO 80203

1732 EDT

MGMABQC ABQ

DOCKET: EXAMINER HEARING - WEDNESDAY - MAY 8, 1974

9 A.M. - OIL CONSERVATION COMMISSION CONFERENCE ROOM, STATE LAND OFFICE BUILDING - SANTA FE, NEW MEXICO

The following cases will be heard before Richard L. Stamets, Examiner, or Daniel S. Wutter, Alternate Examiner:

CASE 4790: (Reopened) (Continued from April 10, 1974, Examiner Hearing)

In the matter of Case No. 4790 being reopened pursuant to the provisions of Order No. R-4370, which order established temporary rules for the Dublin-Ellenburger Gas Pool, Lea County, New Mexico, including a provision for 640-acre spacing. All interested parties may appear and show cause why said pool should not be developed on 320-acre spacing units.

CASE 5220: (Continued from the April 25, 1974, Examiner Hearing)

Application of Atlantic Richfield Company for an unorthodox gas well location and non-standard proration unit, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval for the unorthodox location of its McDonald State WN Well No. 24 located 1780 feet from the North line and 660 feet from the West line of Section 25, Township 22 South, Range 36 East, Jalmat Gas Pool, Lea County, New Mexico, to be dedicated to a 320-acre non-standard gas proration unit comprising the N/2 of said Section 25.

- CASE 5229: Application of Texas International Petroleum Corporation for a dual completion, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks approval for the dual completion (conventional) of its Lowe-Federal Well No. 1 located in Unit H of Section 31, Township 20 South, Range 30 East, Golden Lane Field, Eddy County, New Mexico, in such a manner as to produce Strawn and Morrow gas through parallel strings of tubing.
- CASE 5230: Application of Gulf Oil Corporation for the amendment of Order No. R-4079, Lea County, New Mexico. Applicant, in the above-styled cause, seeks the amendment of Order No. R-4079 which authorized the commingling of Hobbs Grayburg-San Andres and Hobbs-Blinebry production from its W. D. Grimes "A" and "B" leases in Sections 32 and 33, Township 18 South, Range 38 East, Lea County, New Mexico, to include in said commingling authority Bowers-Seven Rivers production.
- CASE 5231: Application of Mesa Petroleum Company for a unit agreement, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks approval of the Nash Unit Area comprising 5,124 acres, more or less, of State, Federal and fee lands in Township 23 South, Ranges 29 and 30 East, Eddy County, New Mexico.
- CASE 5232: Application of Texas Pacific Oil Company, Inc. for a unit agreement, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks approval of the Phantom Draw Unit Area comprising 8,465 acres, more or less, of Federal, State and fee lands in Township 26 South, Range 31 East, Eddy County, New Mexico.

- CASE 5233: Application of Burleson & Huff for compulsory pooling, Lea County, New Mexico. Applicant, in the above-styled cause, seeks an order pooling all mineral interests down to and including the Queen formation underlying the SW/4 of Section 29, Township 25 South, Range 37 East, Langlie-Mattix Pool, Lea County, New Mexico, to be dedicated to its Jenkins Well No. 3 located 760 feet from the South line and 1980 feet from the West line of said Section 29. Also to be considered will be the cost of recompleting and equipping said well and the allocation of such costs, as well as actual operating costs and charges for supervision. Also to be considered is the designation of applicant as operator of the well and a charge for risk involved in recompleting and equipping said well.
- CASE 5234: Application of Atlantic Richfield for a non-standard gas proration unit, Lea County, New Mexico. Applicant, in the above-styled cause, seeks approval for a 320-acre non-standard gas proration unit comprising the S/2 of Section 14, Township 22 South, Range 36 East, Jalmat Gas Pool, Lea County, New Mexico, to be simultaneously dedicated to its McDonald WN State Wells Nos. 1 and 27 located in Units L and O, respectively, of said Section 14.
- CASE 5235: Application of Atlantic Richfield Company for compulsory pooling, Eddy County, New Mexico. Applicant, in the above-styled cause, seeks an order pooling all mineral interests in the Pernsylvanian formation underlying the N/2 of Section 9, Township 21 South, Range 26 East, Eddy County, New Mexico, to form a standard 320-acre unit to be dedicated to a well to be drilled at a standard location for said unit, and pooling all mineral interests in the Pennsylvanian formation underlying the S/2 of said Section 9 to form a standard 320-acre unit to be dedicated to a well to be drilled at a standard location for said unit, if it is determined that said Section 9 should be developed on 320-acre spacing. Applicant further seeks a provision in said order that would pool all mineral interests in the Pennsylvanian formation underlying all of said Section 9 to form a standard 640-acre unit to be dedicated to a well to be drilled at a standard location for said unit if it is determined that said Section 9 should be developed on 640-acre spacing. Also to be considered will be the cost of drilling and completing said well, or wells, and the allocation of such costs, as well as actual operating costs and charges for supervision. Also to be considered is the designation of applicant as operator of the well, or wells, and a charge for risk involved in drilling said well, or wells.
- CASE 5236: Application of Atlantic Richfield Company for five unorthodox oil well locations and an administrative procedure, San Juan County, New Mexico. Applicant, in the above-styled cause, seeks approval for the unorthodox location of five oil wells in the Horseshoe-Gallup Oil Pool in Township 31 North, Range 16 West, San Juan County, New Mexico, to be drilled at the following points: