PETROLOGIC INVESTIGATION OF THE GALLUP FORMATION IN THE MALLON OIL COMPANY DAVIS FEDERAL 3-15
RIO ARRIBA COUNTY, NEW MEXICO

BEFORE THE
CIL CONSERVATION COMMISSION
Sasta Fo, New Mexico
Com Ma 913 Edibit No. 7
Secretary 1988
Flagmag Days

TerraTek

Terra Tek Core Services

University Research Park 360 Wakara Way Salt Lake City, Utah 84108, U.S.A.

RESERVOIR POTENTIAL AND SENSITIVITY

The lack of matrix porosity in the sandstones of the Gallup Formation indicates that production from the cored interval must come from the large, open or partially filled fractures that characterize this zone. Some additional production could certainly result from the abundant microfractures revealed by fluorescence microscopy, although the influence of these fractures may be minimal under reservoir conditions. As is the case with many Cretaceous reservoirs, other locations may encounter these Gallup sandstones where carbonate cementation is not quite so pervasive. Unfortunately, we do not have the means to make any accurate predictions at this time.

Reservoir treatment with strong acid is not recommended under most circumstances. Iron-rich carbonates, pyrite, and glauconite could react with the acid, and if the acid is allowed to "spend" itself chemically, insoluble iron hydroxide gels could precipitate in existing pores and fractures. If acid is used for clean-up purposes only, the acid should be circulated out of the borehole while still in a somewhat concentrated state. Iron hydroxides should not form under these circumstances.

In spite of relatively large amounts of expandable illite/smectite occuring in the sandstone reservoir, much of that clay seems protected by abundant kerogen coatings and might not react with fresh water drilling fluids. Nonetheless, Terra Tek can perform a simple, inexpensive test to determine the degree of water sensitivity. We do recommend that Mallon Oil pursue this procedure if fresh muds are being used. Otherwise, KCl drilling fluid is preferred.

If hydraulic fracturing is a common completion procedure in this area, liberation of clay material might present a problem. This migration of fines often results in pore bridging clays finding their final resting place in pore throats or packs, thereby reducing permeability. If fracturing is performed in the

	The state of the s
	ESFORE THE
	CHURCHY ATTONICS FIREIN
	Samu Fa, Maw Ma
	Com 12 Ruz Edibit No. 8
CONCLUSION	S olandred by
	Hearing Date
	1

- 1. Structural mapping and cross-sections indicate the three primary structural elements the Gavilan "nose", syncline, and monocline in the Pool are genetically related and behave as a single, unified structural entity.
- 2. Dip rates along the east side of the Unit range from 2 to 6 degrees, while dips throughout most of the Unit and Gavilan are generally less than 1.5 degrees. With the exception of the crest of the Gavilan nose and the bottom of the syncline, nonzero dips exist throughout the Pool area.
- 3. The (Laramide) tectonic forces responsible for the development of the "nose", syncline, and monocline are also responsible for the development of a pool-wide fracture system.
- 4. Landsat and photogeologic interpretations show a widespread distribution of multi-directional fractures: a conjugate system oriented NW-SE and NE-SW, and regional fractures at oblique angles to the conjugate set. No one fracture direction dominates or results in a barrier to flow.
- 5. A representative induction log cross-section through sixteen wells depicts the pronounced stratigraphic uniformity in the Niobrara producing intervals across the Pool.
- 6. Core photographs and descriptions of fractures and lithology identified several discrete, highly-laminated and thin-bedded intervals in the Niobrara "B" which are preferentially fractured relative to adjacent units. These highly anisotropic

and brittle zones range from 2 to 20 feet in thickness, are generally encased in more massive (plastic) lithologies, and behave, despite extreme vertical and horizontal heterogeneity, as a single, reservoir response unit.

- 7. Although a multi-directional fracture distribution similar to that observed on the surface exists at reservoir depths, the plastic, healing nature of the massive lithologies encasing the brittle zones has created a series of discrete reservoir intervals behaving in a highly-compartmentalized and stratified fashion.
- 8. Core photomicrographs show that reservoir storage capacity and permeability derives from a system of large open fractures fed by a network of microfractures. The photos suggest the reason why oil saturations and minor fluorescence occur in certain plug samples: oil migrating through open fractures resulted in minor saturations along grain contacts adjacent to the fractures.
- 9. Analyzed porosities and permeabilities in the core indicate a distinct lack of matrix contribution to production.

CAVILAN MANCOS POOL AREA Rio Arriba County, New Mexico

Mallon Oil Davis Fed Com 3-15 Fisher Fed 2-1 Howard Fed 1-8 Howard Fed 1-11 Johnson Fed 12-5 Post Fed 13-6 Ribeyowids Fed 2-16 SUBTOTAL	Dugan Production Corp. Divide #1 Divide #2 Divide #3 Lindrith #1 Tapacitos #2 Tapacitos #3 Tapacitos #4 Wendy #1 SUBTOTAL	Amoco Production Co. Oso Canyon Fed #1 Oso Canyon Fed A-1 Oso Canyon Fed B-1 Oso Cny Gas Com C-1 Siefert Gas Com #1 SUBTOTAL	OPERATOR/WELL NAME
0 3-25N-2W A 2-25N-2W H 1-25N-2W K 1-25N-2W E 12-25N-2W F 13-25N-2W P 2-25N-2W	H 35-26N-2W P 35-26N-2W K 35-26N-2W O 36-25N-2W L 25-26N-2W D 36-26N-2W O 36-26N-2W A 26-26N-2W	E 24-24N-2W F 14-24N-2W F 11-24N-2W F 15-24N-2W D 22-26N-2W	LOCATION U-S-T-R
01/03/87 06/17/85 07/18/85 11/18/85 10/24/85 03/18/86 02/11/85	05/13/83 Location 12/26/86 11/19/84 10/30/80 Location 03/01/86 Location	12/10/84 02/03/85 02/05/85 Location Completing	COMPLETION DATE
302 242 264 82 91 88 1069	1 26 8 16 153	0 1 1 0 0 0	ворр
320 768 1073 393 108 270 2932	6 - 38 58 90 - 105	0 1 1 0 0 0	12/86 F MCFD
1061 3172 4063 4817 1190 3077	9307a 1465 7142a 5714 - 692	1 1 1 1	PRODUCTION GOR
31 22 22 30 30 31	8 31 29	1 1 0 0 0	DAYS
141.3 127.6 123.6 22.0 17.2 72.9 504.6	0.1 0.2 5.3 27.0 25.9	1.6 0 2.2 -	CUMULATIVE 01/01/87
116.7 167.9 213.8 70.7 29.4 78.9 677.4	0.1 0.2 30.7 24.5 17.4	N N O R	01/01/87 MMCF

NMOCC CASE NO. 9//3

March 30, 1987

DUGAN PRODUCTION CORP./ JEROME P. McHUGH & ASSOC.

GAVILAN MANCOS POOL AREA Rio Arriba County, New Mexico

OPERATOR/WELL NAME

LOCATION U-S-T-R

COMPLETION DATE

BOPD

12/86 PRODUCTION GOR

DAYS

CUMULATIVE 01/01/8

SUBTOTAL	right Way	ldfir	ilight Zone	acitos Cany	ohie Tigg	Horizon #	ive Son #	ive Son #	ive Son #	er Lode	ode #	∀	L L	⁺	t #	t #	stead Ranc	Adve	gh Adventur	ener Grass	1 Sail	Full Sail #3	1 Sail	1 Sail	r 0's	T. #1	Daddy-0 #	ey Bartlet	tinental Di	Boyt & Lola #2	t & Lola #	ome P. McHu k's Babbitt	ı :
			#1	()	#1												h #2	#2	#1	#1								#1	vide #1			9h #1	-
	2-24N-	26-26N-	12-24N-	4-26N-	27-26N-	2-24N-	33-25N-	27-25N-	34-25N-	3-24N-	3-24N-	20-25N-	5-24N-	21-25N-	21-25N-	27-25N-	34-25N-	9-25N-	8-25N-	10-24N-	30-25N-	29-25N-	28-25N-	29-25N-	19-25N-	28-25N-	33-25N-	4-25N-	12-25N-	D >	11-24N-	17-25N-	
	29/83	plet	/21/85	ıp⊺et	atio	/01/8	/21/8	/18/8	/07/8	/23/8	/02/8	/30/8	/21/8	/18/8	/01/8	/17/8	/16/8	/11/87	mplet	/20/85	nplet	/01/8	/24/8	/15/8	catio	/19/8	/16/8	/11/8	catio	10	/03/8	/15/8	
1806	44	1	4	1	1	7	98	7	S	109	57	75	0	70	77	32	281		i	95				81	•	33	91	ŧ	ı	ഗ	2	158	
6160		ı	14	1	ı	28	4. 6	\sim	1.3	~	233	\sim	0	~ 1	/	~ 1	423		1	31	ı	122		6	1	(77	113	1	1	11	œ	187	
3411	1580	1	3150a	ı	1	4005	9353	3549	1515	3353	4060	3821	1	2448	5767	11829	1506	ı	1	329		6093	6330	2055	ı	13708	1246	ı	ı	2258	3623	1181	
	31	ı	14	1	ı	31	32	0	21	18	27	16	0	31	15	20	14	1	ı	31	1	. 29	13	31	i	20	31	ì	1	31	31	24	
15/2.6	105.6	ı	2.2		1	2.2	18.5	356.7	726.8	13.1	163.6	1.4	3.9	14.5	125.2	132.9	122.0	i	1	17.0	1	•	•	123.4	ı	5	10.0		1		•		
1654.5	86.5	ı	5. ₂		1	•	•	•	•	•	166.8	•	•	•	•	•	•		ı	5.6		•	•	127.9		•	15.4		t		•	4.	

GAVILAN MANCOS POOL AREA Rio Arriba County, New Mexico

Prowler #2 Rucker Lake #2 Rucker Lake #3 SUBTOTAL	Mesa Grande Resources Bearcat #1 Brown #1 Gavilan #1 *Gavilan #2 Gavilan-Howard #1 Hatley Hawkeye #1 Hellcat #1 Invader Fed #1 Intruder #1 Marauder #1 Phantom #1 Phantom #1	Merrion Oil and Gas Krystina #1 Oso Canyon Gas Com C-1 Rocky Mountain #1 SUBTOTAL	Meridian Oil Company Hawk Federal #2 Hawk Federal #3 Hill Federal #2Y Hill Federal #3 SUBTOTAL
K 24-25N-2W K 25-25N-2W L 25-25N-2W	00000000000000000000000000000000000000	K 14-24N-2W F 13-24N-2W N 24-24N-2W	LOCATION U-S-T-R U-S-25N-2W C 35-25N-2W K 35-25N-2W F 24-25N-2W G 25-25N-2W D 36-25N-2W
08/26/83 08/10/83	04/21/86 03/20/85 03/21/82 03/21/85 02/14/85 07/23/83 04/23/84 Location 10/19/85 05/04/86 Location 04/17/86 Location	01/07/85 01/11/85 01/22/85	COMPLETION DATE 03/25/84 01/03/85 09/17/85 01/10/86 01/09/86
85 88 523	24 24 24 24 24 24	0000	86 97 462
283 101 2579	239 438 358 130 137 494 - 219 0 310	0000	12/86 P MCFD 389 186 916 237 91 1819
3339 1147 4931	2754 7492 15203 38381 6448 9016 9124 - 3859	1 1 1	PRODUCTION GOR 3543 2113 2113 35922 2765 937 3937
31	27 20 30 30 30 27 27	. 00	DAYS 20 29 24 26 31 130
147.6 108.8 519.8	15.0 26.4 84.3 1.7 34.7 90.5 1.1	2.1 2.1 8.3	CUMULATIVE 01/01 MB0 M 86.1 221 139.5 186 7.2 62 4.6 13 9.1 6 246.5 489
129.0 109.7 1643.7	35.9 49.7 549.7 47.9 258.1 455.5 28.1 2.3 25.7	20.9 6.2 12.5 39.6	E 01/01/8 MMC 221.0 186.3 62.4 13.5 6.6 489.8

^{*}Operated by E. Alex Phillips of Mesa Grande Resources

GAVILAN MANCOS POOL AREA Rio Arriba County, New Mexico

	LOCATION	COMPLETION	7	12/86 F	86 PRODUCTION	P NVC	CUMULATIVE 01/01/8	01/01/8
OPERATOR/WELL NAME	U-S-T-R	DATE	BOPD	MCFD	GOR	DAYS	MBO	MMC
Mobil Oil Corp.								
B Unit		01/29/86	93		3188	25	18.4	5/.8
B Unit		01/29/86	43		7269	31	23.9	64.8
indrith B Unit		06/03/86	19	172	8935	23	4.6	43.0
indrith R Unit		Completing	ì		ı	ľ	•	ſ
B Unit		Completing	ı	ı	ı	ı	i	ſ
B	A 9-24N-2W	Completing	1	ı	1	i	1	1
SUBTOTAL			155	784	5058		46.9	165.6
a nd						·		
Reading and Bates Davis Federal 24-10	N 10-25N-2W	Location	ı	i	ı	I	1	1
Green Lee Fed 41-24		Location	1	1	ı	ı	1	ſ
Howard Fed 43-15	I 15-25N-2W	03/04/86	14	383	28248	30	1.6	11.5
Ingram Fed 34-16		Location	ı	1	ı	1	1	1
Sherman Fed 22-34	F 34-26N-2W	Location	1	1	ı	1	•	ı
SUBTOTAL			14	383	28248		1.6	11.5
TOTAL GAVILAN POOL AREA			3163	10377	3281	1	2964.5	4804.0

Notes: a = Well producing during 12/86, but rates not representative. Rate indicated is from a representative month.

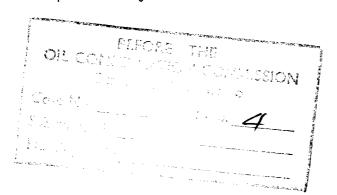
MANCOS POOL

Reservoir Simulation Study

ASSUMPTIONS

RESERVOIR CONDITIONS AND PROPERTIES

° Initial Pressure	1534 psia @ +370'
° Initial Saturation Pressure	1534 psia (C.O.U. L-11)
° Temperature	162° F
° Porosity	1.0%±
° Net Pay	2-30' Zones (1 zone Modeled)
° Initial Water Saturation	10%
° Irreducible Water Saturation	10%
° Residual Oil Saturation	10%
° Critical Gas Saturation	1.0%
° 00IP	3000 STB/acre (BMG Calculation,
	0thers) 10 x 10 ⁻⁶ 1/psi
° Rock Compressibility	
	(Gavilan Tech. Comm., Mobil
	Lindrith B Unit #38)
° Relative Permeability	See Exhibit 3
° Permeability	10 Darcy-Feet (BMG, Sun
	Calculations)


FLUID PROPERTIES

<u>0i1</u>

° Obtained from C.O.U. L-11)	See Exhibit 4
° Initial Saturation Pressure	1534 psia
° Initial FVF	1.297
° Initial Solution Gas-Oil Ratio	478 SCF/STB

Water

° Density	1.021 gm/cc
° FVF	1.021
° Viscosity	0.44 CP c
° Compressiblity	3.2×10^{-6} 1/psi

