Data:

Source:

	Initial Reservoir Pressure:	3959 psi	Drill Stem Test
	Reservoir Pressure Gradient:	.403 ps1/10	
	Depth:	9842-48	O/H LOGS
	Initial Potential:	561 BOPD	
	Reservoir Drive Mechanism:	Water Drive	Fluid data, Trend
	Oil Gravity:	54 API	Fluid Sample
d	Oil Density:	.75 gm/cc	Calc.
R R	Water Density:	1.02 gm/cc	Calc/Sample
CAS"	Average Water Cut:	338	Prod. Data 4/28-5/5
	Avg. Tubing Hyd. Gradient:	.363	Calc.
5	Avg. Sfc. Flowing Tgb. P.:	175 psi	Sfc. Reading
	Avg. Bottomhole Flowing P .:	3748 psi+	Calc.
·.)	GOR	35 scf/bbl	Est. w/ Sfc. Data
	Oil Bubble Point Pressure:	149 psi	AIME 213 Chart
	Flow Capacity:	19.4 Darcy Ft.	Drill Stem Test
	Effective Oil Flow Capacity:	1.91 Darcy Ft	Calc. Darcy Eqn.
	Oil Viscosity:	.8 cp	AIME 165(103,110)Chart
	Water Viscosity:	.55 cp	SPE 127 Chart
	Recovery Efficiency	408+	SPE 2068 Nomograph

Conclusions:

- 1 High productivity rate reservoir;
- 2 Excellent flow capacity;
- 3 Limited reservoir pressure depletion required for high flow rates;
- 4 Excellent (high) recovery efficiency anticipated;
- 5 No evolution of solution gas in the reservoir, no secondary gas cap formation;
- 6 Water drive reservoir with normal initial pressures;
- 7 Ultimate recovery structurally dependant.

Recommendations:

1 Create field rules which allow for minimum well density requirements and high per well allowables in order to prevent waste and excessive well density while protecting correlative rights.

2 Create field rules which allow maximum flexibility in selecting optimal structural positions for drilling locations in order to prevent waste of updip attic oil.

Allow for review of field history and update of field rules after more data pecomes available.

10308