HIGH CAPACITY FRACTURE SYSTEM TIGHT BLOCK DRAINED BY (Not To Scale) TIGHT BLOCK DRAINED INTERN' 4L WELL (Not To Scale)

TIGHT BLOCK DRAINED BY CENTRALLY LOCATED WELL Initial Production Rate (flow system steady state)

TIGHT BLOCK DRAINED BY HIGH CAPACITY FRACTURE SYSTEM

(FLOW SYSTEM UNSTEADY STATE)

χe = 1000'

f. $\lambda w = 100' (1/4 \text{ of } 400' \text{ fracture})$ $\Delta P = 1500 \#$

 $\mu = .68 \text{ cp}$ $\beta = 1.29$

Ko/K = .3

Kh = .0635 darcy feet

 $Q = \frac{(3.07)(kh)(\Delta P)}{\mu B \log_{10}(\pi e/\mu w)} \times (Ko/K)$

= 100 BOPD

Instantaneous initial flow rate from 900' to 1000' radius (per steady state relation)

A. for same pressure drawdown as for centrally located well (1500#) and Ko/K = .3

 $Q = \frac{(3.07)(.0635)(1500)(.3)}{(.68)(1.29)(\log_{10} 1000/900)}$

= 2200 BOPD

(7300 BOPD for Ko/K = 1) Pressure differential required to allow 100 BOPD at K $_{
m O}$ /K = 1

В.

(100)(.68)(1.29)(log₁₀ l000/900) (3.07)(.0635)(1)

= 20#

MAXIMUM TIME REQUIRED TO REACH STEADY STATE CONDITIONS FOR TIGHT BLOCK DRAINED BY HIGH CAPACITY FRACTURE SYSTEM

For $K/\phi = 1$ (probable minimum value for fractured formation)

(Ref. Exhibit I Case 3455 November 16, 1966 and Case 6997 August 6, 1980)

1. At pressures just above the bubble point

2. At pressure just below the bubble point

$$\mathcal{R} = \frac{(6.328)(K)}{(6.325)(1)}$$

$$= \frac{(6.325)(1)}{(40 \times 10^{-6})(.68)} = 2.3 \times 10^{5}$$

$$\mathcal{L} = \frac{\chi^{2}}{4 \, \eta} = \frac{(1000)^{2}}{(4)(2.3 \times 10^{5})}$$

$$= 1.1 \, \text{days}$$

(Ce =
$$\pm 400 \times 10^{-6}$$
)
 \mathcal{R} = 10 × above
 \mathcal{E} = 10 × above = ± 11 days

0 dibamod ---SCHEMATIC FRACTURE SYSTEM Fracture Blocks ± 80 Ac. SYSTEM

1-1/2 Mile