Fracture Density Log

Wtnessed by: Jared Smith	Recorded by: Danielle Krebs	Equipment Location 9105 Mdland, TX	Max Rec. Temp. 174.75 deg F	Logger on Bottom 23:30:00	Circulation Stopped 00:00:00	Rm @BHT 0.0347157 @ 174.75 degF	Source: Rmf Rmc Calculated	Rnc @ Meas. Temp. -999.25 ohmm@ 68 degF	Rnf @Meas.Terrp. 0.08 ohmm@ 72 degF	Rm@ Meas.Temp. 0.08 ohmm@ 72 degF	Source of Sample Active Tank	pH Fluid loss 10 9 in3	Dens. Visc. 10 lbm/gal 41 s	Type Fluid in Hole Fresh Water	Bit Size 6 in	Casing-Logger 4702 ft	Casing-Driller 9.625 in @4696 ft	Top Log Interval 4702 ft	Btm Log Interval 13637 ft	Depth Logger (Schl) 13637 ft	Depth Driller 13622 ft	Run No. Run 1B	Date 30-Nov-2016

DS-2016-41710	OP Vers.: 2000-999	Process Date:12/26/2016	Center: Midland DS	Baseline: Techlog 2013.4	Log Analyst: Ofa Zened
Remarks:					

Image processing and Interpretation interval: 12675-13625 ft All the displayed logs have been depth matched to the FMI Image All completion decision should be made taking this into account.

Conductive Fracture Summary All 12676ft - 13621ft

Strike Rosette

Observations

The Conductive Continuous Fracture, Conductive Lith Bound Fracture, and Conductive Part Resistive Fracture dipsets are composed of hand traced conductive (open) natural fractures and are subdivided based on observed continuity. Conductive Continuous Fractures completely and continuously transect the wellbore. Conductive Part Resistive fractures conversely are partially healed or do not completely transect the wellbore. Conductive Lith Bound fractures terminate at an observable lithology contrast. 0 Conductive Continuous Fracture(s), 5 Conductive Lith Bound Fracture(s), and 6 Conductive Part Resistive Fracture(s) were identified within the interval from 12676ft to 13621ft. The strike rosette shows that the dominate strike orientation is NE-SW (55 Percent).

Interpretation

Few Natural open lithology-bound fractures were picked with a predominat strike orientation N50E-S50W. These features are generally interpreted as open fractures: The conductive appearance would reflect the invasion of the drilling fluid making them appear conductive. Only core data and fracture analysis on core would confirm if clay filled fractures are present. Fracture Aperture is then computed using mud filtrate resistivity. Fracture porosity computation and open fracture trace length can be used to identify the interval of major appearance of these features. However the predominant morphology observed here is partially-healed. These fractures are considered to be healed fractures with a partial aperture along some portion of the trace. They are interpreted as been partially reopened during the drilling process.

Most of these fractures are within the Chester formation

Resistive Fracture Summary All 12676ft - 13621ft

Strike Rosette

Observations

The Resistive Continuous Fracture and Resistive Lith Bound Fracture dipsets are composed of hand traced resistive (healed) natural fractures and are subdivided based on observed continuity. Resistive Continuous Fractures completely and continuously transect the wellbore. Resistive Lith Bound fractures terminate at an observable lithology contrast. 1 Resistive Continuous Fracture(s) and 15 Resistive Lith Bound Fracture(s) were identified within the interval from 12676ft to 13621ft. The strike rosette shows that the dominate strike orientation is NE-SW (88 Percent).

Dip Angle Histogram

Interpretation

Resistive fractures are interpreted as healed fractures, filled with cemented materianl rich in CaCO3 which would transfer the resistive appearance on the image. 16 resistive lithology-bound fractures and one continuous fracture were picked with a predominant NE-SW. Resistive fracture's strike can be used to identify past stress orientation if it is different from the present's day.

Most of these fractures were picked within the Woodford.

Conductive Fracture Summary Chester 12548ft - 12765ft

The Conductive Continuous Fracture, Conductive Lith Bound Fracture, and Conductive Part Resistive Fracture dipsets are composed of hand traced conductive (open) natural fractures and are subdivided based on observed continuity. Conductive Continuous Fractures completely and continuously transect the wellbore. Conductive Part Resistive fractures conversely are partially healed or do not completely transect the wellbore. Conductive Lith Bound fractures terminate at an observable lithology contrast. 0 Conductive Continuous Fracture(s), 4 Conductive Lith Bound Fracture(s), and 5 Conductive Part Resistive Fracture(s) were identified within the Chester interval from 12548ft to 12765ft. The strike rosette shows that the dominate strike orientation is NE-SW (67 Percent).

Dip Angle Histogram

Conductive Fracture Summary Osage 12929ft - 13499ft

100°

110°

120°

The Conductive Continuous Fracture, Conductive Lith Bound Fracture, and Conductive Part Resistive Fracture dipsets are composed of hand traced conductive (open) natural fractures and are subdivided based on observed continuity. Conductive Continuous Fractures completely and continuously transect the wellbore. Conductive Part Resistive fractures conversely are partially healed or do not completely transect the wellbore. Conductive Lith Bound fractures terminate at an observable lithology contrast. 0 Conductive Continuous Fracture(s), 1 Conductive Lith Bound Fracture(s), and 0 Conductive Part Resistive Fracture(s) were identified within the Osage interval from 12929ft to 13499ft. The strike rosette shows that the dominate strike orientation is NW-SE (100 Percent).

Dip Angle Histogram

Conductive Fracture Summary Woodfrod 13499ft - 13625ft

909

100°

10°

The Conductive Continuous Fracture, Conductive Lith Bound Fracture, and Conductive Part Resistive Fracture dipsets are composed of hand traced conductive (open) natural fractures and are subdivided based on observed continuity. Conductive Continuous Fractures completely and continuously transect the wellbore. Conductive Part Resistive fractures conversely are partially healed or do not completely transect the wellbore. Conductive Lith Bound fractures terminate at an observable lithology contrast. 0 Conductive Continuous Fracture(s), 0 Conductive Lith Bound Fracture(s), and 1 Conductive Part Resistive Fracture(s) were identified within the Woodfrod interval from 13499ft to 13625ft. The strike rosette shows that the dominate strike orientation is ENE-WSW (100 Percent).

Dip Angle Histogram

Resistive Fracture Summary Chester 12548ft - 12765ft

100°

110°

The Resistive Continuous Fracture and Resistive Lith Bound Fracture dipsets are composed of hand traced resistive (healed) natural fractures and are subdivided based on observed continuity. Resistive Continuous Fractures completely and continuously transect the wellbore. Resistive Lith Bound fractures terminate at an observable lithology contrast. 0 Resistive Continuous Fracture(s) and 3 Resistive Lith Bound Fracture(s) were identified within the Chester interval from 12548ft to 12765ft. The strike rosette shows that the dominate strike orientation is NE-SW (100 Percent).

Dip Angle Histogram

Resistive Fracture Summary Osage 12929ft - 13499ft

The Resistive Continuous Fracture and Resistive Lith Bound Fracture dipsets are composed of hand traced resistive (healed) natural fractures and are subdivided based on observed continuity. Resistive Continuous Fractures completely and continuously transect the wellbore. Resistive Lith Bound fractures terminate at an observable lithology contrast. 0 Resistive Continuous Fracture(s) and 6 Resistive Lith Bound Fracture(s) were identified within the Osage interval from 12929ft to 13499ft. The strike rosette shows that the dominate strike orientation is NE-SW (100 Percent).

Dip Angle Histogram

Resistive Fracture Summary Woodfrod 13499ft - 13625ft

90°

100°

110°

/120° 130° E

The Resistive Continuous Fracture and Resistive Lith Bound Fracture dipsets are composed of hand traced resistive (healed) natural fractures and are subdivided based on observed continuity. Resistive Continuous Fractures completely and continuously transect the wellbore. Resistive Lith Bound fractures terminate at an observable lithology contrast. 1 Resistive Continuous Fracture(s) and 6 Resistive Lith Bound Fracture(s) were identified within the Woodfrod interval from 13499ft to 13625ft. The strike rosette shows that the dominate strike orientation is NE-SW (71 Percent).

Dip Angle Histogram

90°

100°

110°

120°

130°

E

-1	11-
-1	11
-1	11
-1	11
-1	11
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-
-1	11-

COMPANY: DCP Midstream LP	
	Schlumberger
WELL:Zia AGI D2FIELD:AGI Devonian ExplorationCOUNTYLeaSTATE:New MexicoCOUNTRY:USA	

API No.: 30-025-42207

Date Processed: 12/26/2016