3R - 069

2013 AGWMR

03 / 21 / 2014

Terry S. Lauck Program Manager

ConocoPhillips Company Risk Management & Remediation 1380G Plaza Office Building 315 Johnstone Avenue Bartlesville, OK 74004 Phone: 918.661.0935

E-mail: Terry.S.Lauck@cop.com

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

March 21, 2014

Re: NMOCD Case No. 3RP-069, 2013 Annual Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed is the 2013 Annual Groundwater Monitoring Report for the Hampton No. 4M site. This report, prepared by Conestoga-Rovers & Associates (CRA), contains the results of the mobile dual phase extraction event and annual groundwater monitoring conducted during August and September 2013, respectively.

Please let me know if you have any questions.

Sincerely,

Terry S. Lauck

Enc

www.CRAworld.com

Report

2013 Annual Groundwater Monitoring Report

ConocoPhillips Hampton No. 4M San Juan County, New Mexico API# 30-045-25810 NMOCD# 3R-069

Prepared for: ConocoPhillips Risk Management and Remediation

Conestoga-Rovers & Associates

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110

Table of Contents

		Page
Section 1.0	Introduction	
Section 2.0	Mobile Dual Phase Extraction	2
Section 3.0	Groundwater Sampling Methodology and Analytical Results	2
Section 4.0	Conclusions and Recommendations	3
	<u>LIST OF FIGURES</u> (Following Text)	
Figure 1	Site Location Map	
Figure 2	Site Plan	
Figure 3	Geological Cross Section	
Figure 4	September 2013 Groundwater Potentiometric Surface Map	
	<u>LIST OF TABLES</u> (Following Text)	
Table 1	Site History Timeline	
Table 2	Monitor Well Specifications and Groundwater Elevations	
Table 3	Groundwater Laboratory Analytical Results Summary	

LIST OF APPENDICES

Appendix A	Diagram of Former Excavation Area

Appendix B August 2013 Acuvac Mobile Dual Phase Extraction Report

Appendix C September 2013 Annual Groundwater Sampling Field Forms

Appendix D September 2013 Annual Groundwater Laboratory Analytical Report

Section 1.0 Introduction

This report details the results of a mobile dual phase extraction (MDPE) event and annual groundwater monitoring conducted by Conestoga-Rovers & Associates (CRA) during August and September 2013, respectively, at the ConocoPhillips Company (ConocoPhillips) Hampton No. 4M site (Site) located in Unit Letter N, Section 13, Township 30N, Range 11W, of San Juan County, New Mexico.

The Site is located on federal land approximately ¼ mile south of Hampton Arroyo and 2 miles southeast of Aztec, New Mexico off Hwy 173 on Hampton Canyon Road. The Site consists of a gas well and associated equipment and installations. The location and general features of the Hampton No. 4M site are presented as **Figure 1** and **Figure 2**, respectively.

1.1 Background

The Hampton No. 4M gas well was spudded on November 22, 1983 by Southland Royalty Company (Southland). Burlington Resources, Inc. (Burlington) acquired Southland in January of 1996; Burlington was subsequently acquired by ConocoPhillips in March of 2006.

Public Service Company of New Mexico (PNM) operated a dehydration unit and an unlined earthen pit at the site from 1990 to 1996. Closure of the dehydrator pit in 1996 revealed impacted soil and groundwater. While drilling a monitor well upgradient of the former pit in January 1997, impacted groundwater was encountered adjacent to Burlington equipment. A groundwater seep was discovered near the well pad in April 1997. PNM, Burlington, and the New Mexico Oil Conservation Division (NMOCD) agreed on the installation of a collection trench. In March 2000, the NMOCD named Burlington responsible party of impacts upgradient of the pit, while PNM was named responsible party of impacts downgradient of the pit. Burlington excavated approximately 120 cubic yards of impacted soil from the vicinity of MW-13 and MW-14 in mid-2000, destroying both monitor wells in the process. Maps outlining the excavation area for these activities, as well as a former excavation conducted by Burlington in December 1997 are provided in **Appendix A**.

Tetra Tech Inc. (Tetra Tech) began conducting monitoring events at the Site in November 2007. The existing monitor well network consists of 9 wells: MW-1, MW-5, MW-7, MW-9, MW-11, MW-12, MW-15, MW-16, and TMW-1. Monitoring of the groundwater seep is also part of the current program to evaluate natural attenuation at the Site. A generalized geologic cross section for the Site is provided as **Figure 3**. On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to CRA of Albuquerque, NM. Currently annual groundwater sampling takes place during September of each year. During August of 2013 a Mobile Dual Phase Extraction (MDPE) event was conducted at the Site.

Detailed Site history is presented in **Table 1**.

Section 2.0 Mobile Dual Phase Extraction

In addition to annual groundwater sampling during September 2013, CRA provided oversight for an MDPE event conducted on August 26th 2013 by AcuVac of Houston, TX. MDPE is a process combining soil vapor extraction (SVE) with groundwater depression to maximize mass removal of liquid and vapor phase hydrocarbons. A submersible pump is used to simultaneously remove dissolved-phase contaminated groundwater, induce a hydraulic gradient toward the extraction well, and to create the groundwater depression, exposing the capillary fringe or smear zone to SVE. Recovered liquids were discharged to the on-site produced water tank. Recovered vapors were used as fuel and burned in the MDPE internal combustion engine (ICE). Power generated by the ICE is used to create the induced vacuum for SVE.

During the August 26th MDPE event at the Site approximately 0.92 gallons of hydrocarbons were extracted from Monitor Well MW-16 in 3.5 hours and approximately 0.07 gallons of hydrocarbons were extracted from Monitor Well MW-12 in 4 hours. In addition, at Monitor Well MW-12, 500 gallons of dissolved-phase hydrocarbon impacted groundwater were pumped and disposed into the onsite produced water tank during the MDPE event. Data from the September 2013 groundwater monitoring event indicate that the benzene concentrations in MW-12 and in down-gradient MW-5 have decreased since the 2012 annual monitoring event and recent MDPE event; however, it was noted during the MDPE event that the vapor recovery rates were low indicating there is very little light non-aqueous phase liquid (LNAPL) in the surrounding soil. The complete report for MDPE activities performed at the Site was provided by AcuVac and is included as **Appendix B**.

Section 3.0 Groundwater Sampling Methodology and Analytical Results

3.1 Groundwater Sampling Methodology

Groundwater Elevation Measurements

On September 18, 2013 groundwater elevation measurements were collected from Monitor Wells MW-1, MW-5, MW-7, MW-9, MW-11, MW-12, MW-15, MW-16, and TMW-1 using an oil/water interface probe. Groundwater elevations are detailed in Table 2. A groundwater potentiometric surface map is presented as Figure 4. Based on September 2013 monitoring event data, groundwater flow is to the north and is consistent with historical records at this Site.

Groundwater sampling

Monitor Wells MW-1, MW-5, MW-9, MW-11, MW-12, and MW-15 were sampled on September 18, 2013. Monitor Wells MW-7, TMW-1, and the groundwater seep were dry at the time of the 2013 sampling event. Monitor Well MW-7 appeared to have sustained damage at the surface and to the subsurface casing; likely from heavy rain events and resulting erosion that occurred during the summer months of 2013. MW-16 was not sampled due to the presence of approximately 0.81 feet of LNAPL.

Approximately three well volumes were purged from each monitor well with a 1.5 inch dedicated polyethylene disposable bailer prior to sampling. Purge water was disposed of in the on-site evaporation tank. Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Pace Analytical Services, Inc. of Lenexa, KS. Samples were analyzed for the presence of benzene, toluene, ethylbenzene, and xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260. CRA groundwater sampling field forms are included as **Appendix C**.

3.2 Groundwater Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitor wells are discussed below. Results are summarized in **Table 3**. The corresponding laboratory analytical report for the September 2013 sampling event is included as **Appendix D**.

Benzene

The NMWQCC standard for benzene is 0.010 milligrams per liter (mg/L). The groundwater sample collected from MW-5 during September 2013 contained benzene at a concentration of 0.0359 mg/L; the groundwater sample collected from MW-12 contained a concentration of 0.202 mg/L.

Total Xylenes

The NWQCC standard for total xylenes is 0.620 mg/L. The groundwater sample collected from MW-5 contained total xylenes at a concentration of 1.320 mg/L.

Section 4.0 Conclusions and Recommendations

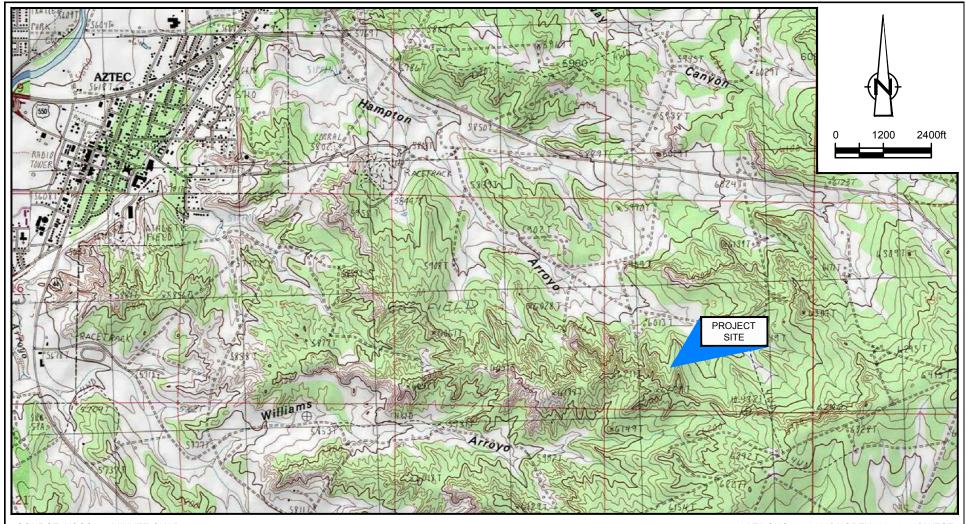
Dissolved-phase contamination has decreased notably in Monitor Wells MW-5 and MW-12 based on September 2013 monitoring results. These results may be attributable to the removal of dissolved-phase hydrocarbon impacted groundwater during the August MDPE event. This apparent dissolved-phase plume "shrinking" affect was noted at other sites undergoing this treatment in the San Juan Basin during August 2013. The longevity of this phenomenon will be revealed in subsequent groundwater monitoring events.

The mass removal accomplished via the SVE portion of the MDPE method, as measured in the aforementioned total LNAPL recovery, was less than anticipated, and is likely due to short-circuiting to the atmosphere based on the location of the MDPE extraction wells, MW-12 and MW-16, adjacent to

the steep edges of the natural gas well pad on which the Site is located. The potential for SVE short-circuiting was noted by the AccuVac engineer on Site during the MDPE event.

Additional monitoring events will be necessary to determine whether or not the removal of 500 gallons of dissolved-phase hydrocarbon impacted groundwater during the MDPE event will have a sustaining affect on reducing contaminant concentrations in Site monitoring wells. However, based on the minimal LNAPL recovery via the MDPE method, and the persistence of LNAPL in MW-16, MDPE may not be a cost-effective method for LNAPL removal or for soil and groundwater remediation at the Site.

LNAPL was encountered in MW-16 quarterly during December 2012 and March, June and September 2013. On each occasion CRA bailed one quarter to one half gallon of product from MW-16 and replaced oil absorbent socks.


CRA recommends continued annual groundwater sampling from Monitor Wells MW-5 and MW-12, and quarterly free product removal from MW-16. Annual groundwater sampling from Monitor Wells MW-1, MW-9, MW-11 and MW-15 will be discontinued. BTEX constituents have not been detected in these wells over the last several years. The seep, which has been dry during the past two annual sampling events, will be checked quarterly for the presence of water. Once all monitored groundwater quality parameters approach compliance levels, CRA will begin sampling from all Site wells on a quarterly basis. When eight consecutive quarters of data within compliance levels have been achieved, remediation Site closure will be requested.

CRA also recommends the plugging and abandonment of MW-7, which was damaged by the heavy rain events of September 2013. Groundwater samples from this well did not contain BTEX in excess of NMWQCC standards in 2009 or 2010 and the well was dry during 2011 through 2013 groundwater monitoring events.

Figures

SOURCE: USGS 7.5 MINUTE QUAD "AZTEC, NEW MEXICO"

LAT/LONG: 36.8089° NORTH, 107.9463° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO WEST

Figure 1

SITE LOCATION MAP HAMPTON No. 4M SITE SECTION 13, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

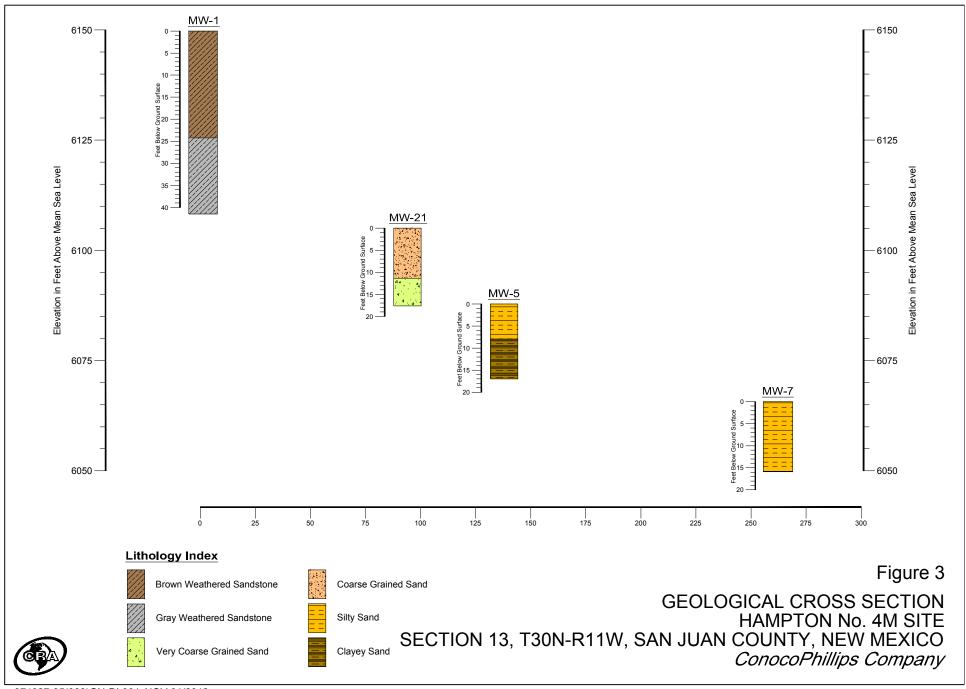
LAT/LONG: 36.8089° NORTH, 107.9463° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO WEST

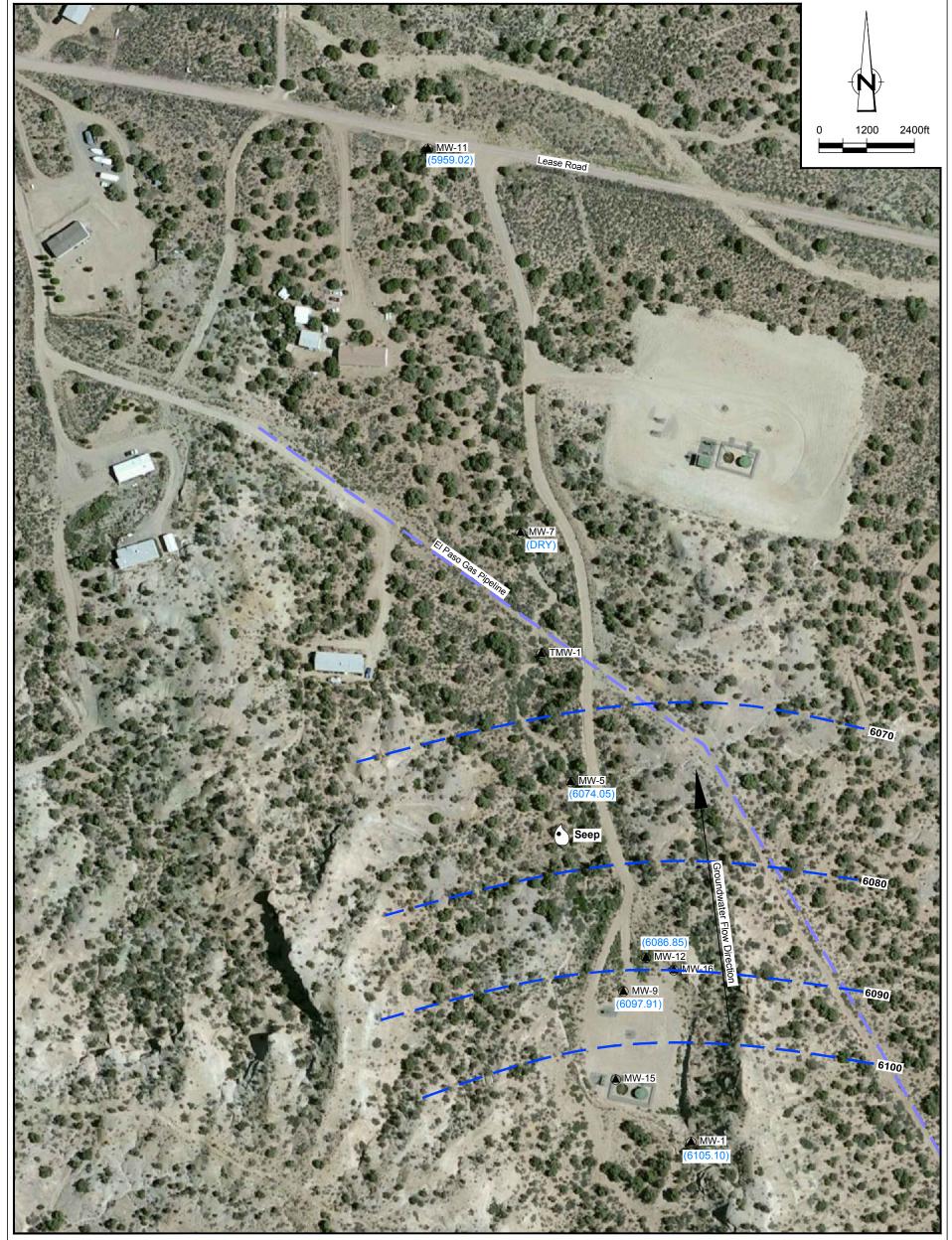
LEGEND

Monitor Well Location
Seep

El Paso Gas Pipeline

Figure 2


SITE MAP


HAMPTON No. 4M SITE

SECTION 13, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO

ConocoPhillips Company

LAT/LONG: 36.8089° NORTH, 107.9463° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO WEST

Figure 4

LEGEND (6105.10) -6100-Groundwater Elevation Contour, Ft

Monitor Well Location Seep

El Paso Gas Pipeline Groundwater Elevation, Ft

Groundwater Flow Direction

SEPTEMBER 2013 GROUNDWATER POTENTIOMETRIC SURFACE MAP HAMPTON No. 4M SITE SECTION 13, T30N-R11W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

Tables

TABLE 1Page 1 of 3

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY HAMPTON No. 4M SAN JUAN COUNTY, NM

Date	Event/Action	Description/Comments
11/22/1983	Well Spudded	Hampton No. 4M spudded by Southland Royalty Company (Southland Royalty).
3/1/1990	Operator Change	Southland Royalty entered into an agreement with Gas Company of New Mexico (predecessor to Public Service Company of New Mexico PNM) to sell production from the Hampton No. 4M well. PNM installed and operated dehydration equipment in the northernmost portion of the site as part of the contract.
6/30/1995	Transfer of Dehydration Equipment Ownership	Williams Field Services purchased the dehydration equipment from PNM.
1/2/1996	Transfer of Well Ownership	Burlington Resources completed the acquisition of Southland Royalty Company.
4/23/1996	Site Assessment	PNM discovered potential hydrocarbon contamination beneath PNM's dehydrator discharge pit during a site assessment. PNM subsequently began pit closure work.
12/16/1996	Site Assessment	PNM discovered hydrocarbon-impacted groundwater while drilling to determine the vertical extent of hydrocarbon contamination beneath a former unlined, earthen dehydrator discharge pit located on the north end of the Hampton No. 4M well pad. Total BTEX in groundwater was 20,620 parts per billion (ug/L) and benzene was 3,840 ug/L.
1/13/1997	NMOCD Notified of Contamination	PNM notified NMOCD in writing of the discovery of groundwater contamination at the site.
1/28/1997	LNAPL Discovered	PNM gauged Monitor Well MW-2 and discovered approximately 4 feet of LNAPL.
1/31/1997	Monitor Well Installation	PNM installed two monitor wells upgradient from PNM's former pit. Impacted groundwater was discovered in the well adjacent to Burlington's equipment.
1/31/1997	Monitor Well Installation	PNM installed MW-3 and MW-4.
4/14/1997	Seep Discovered	During a site visit, Burlington discovered a surface seep north of the well pad with LNAPL discharging to a small drainage area. Burlington notified NMOCD and PNM on the same day.
4/16/1997		Burlington hosted an on-site meeting with PNM and NMOCD to discuss the seep. NMOCD asked for immediate action to contain the seep. The group agreed to install a collection trench.
4/17/1997	Collection Trench Constructed	Burlington constructed a collection trench between the seep and the wellhead. A sandstone shelf was encountered 6 to 8 feet bgs. Black to grey saturated soil was found above the sandstone. Hydrocarbon vapors were monitored during construction of the trench with a photoionization detector (PID). PID readings were between 1,000 - 2,000 ppm.
4/30/1997	Site Assessment	Burlington attempted to excavate the area of the former tank discharge pit. Sandstone was encountered at one foot below the bottom of the pit. The excavator could not penetrate the sandstone. There was no indication of hydrocarbon contamination in this area. Burlington subsequently excavated 9 to 10 test holes in the vicinity of the well pad. No hydrocarbon impacts were found in any of the test holes.
6/05/1997 through 6/6/1997	Monitor Well Installation	Burlington advanced 7 boreholes around the well pad. Each of the 7 boreholes was subsequently completed as a temporary monitor well.
8/1/1997	NMOCD Letter Issued	NMOCD issued a letter to PNM and Burlington. PNM was directed to assess contamination downgradient of its pit and Burlington was directed to submit an assessment plan for the portion of the site upgradient of the PNM disposal pit.

TABLE 1 Page 2 of 3

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY HAMPTON No. 4M SAN JUAN COUNTY, NM

Date	Event/Action	Description/Comments
November 1997	Recovery Well System Installation	PNM installed an LNAPL recovery well system adjacent to PNM's former pit in November 1997 (exact dates unknown).
December 1997 - 2000	Pit Excavations	Hydrocarbon impacted soil was excavated from December 1997 to 2000 at various locations to the depth of groundwater. Potassium permanganate was applied to the excavations.
January 1998	LNAPL Recovery Initiated	PNM initiated LNAPL recovery (exact date unknown).
2/23/1998	Letter From Downgradient Land Owner	Mr. J. Burton Everett, the owner of property downgradient of the Site, wrote a letter to the NMOCD, expressing concern over the migration of hydrocarbons onto his property.
3/13/1998	NMOCD Letter Issued	NMOCD sent a letter to PNM directing the removal, within 30 days, of the remaining source areas of LNAPL in the vicinity and immediately downgradient of PNM's former pit.
April/May 1998	Monitor Well Installation	LNAPL was discovered upgradient from the dehydration pit and Burlington installed two additional monitor wells.
10/28/1998	Burlington Responds to NMOCD Letter	Burlington responded to NMOCD's letter of September 1, 1998. The letter stated that if PNM did not begin remediation of PNM's former pit by October 30, 1998, Burlington would begin remediating the entire site, starting at PNM's former pit and working south to Burlington's former pit.
November 1998	LNAPL Recovery Efforts Terminated	PNM's LNAPL recovery efforts were terminated (exact date unknown) as a result of Burlington's removal of PNM's system during excavation activities.
4/14/1999	Seep Sampled	NMOCD sampled a groundwater seep to the northwest of the well pad. The analytical results revealed benzene in excess of NMWQCC groundwater quality standards.
	Order No. R-	NMOCD issued Order No. R-11134-A to Burlington and PNM. The Order: 1) denied the application by PNM for rescinding the prior directive, 2) declared Burlington the responsible party for any contamination south and upgradient to the PNM disposal pit, 3) declared PNM the responsible party for any soil contamination remaining below its former pit, 4) directed PNM and Burlington to share responsibility of remediation for any groundwater
3/24/2000	11134-A Issued to Burlington and PNM	or soil contamination, other than soil contamination below the former PNM pit, remaining north and downgradient of the property for which Burlington is responsible, 5) directed PNM and Burlington to submit remediation plans to NMOCD, 6) directed both PNM and Burlington to begin remedial activities within 10 days of NMOCD approval of the plans,
		7) directed PNM to have oversight and reporting responsibilities for GW remediation in the area north and downgradient of the property for which Burlington is responsible, and
		8) retained jurisdiction for NMOCD for any further orders as may be necessary.
Second Quarter 2000	Pit Excavation	Burlington excavated approximately 120 cubic yards of hydrocarbon-impacted soil to groundwater depth in the vicinity of MW-13 and MW-14 in mid-2000 (exact dates unknown). Both wells were destroyed in the process. A shale confining layer was discovered at the bottom of the excavation. The excavated soil was landfarmed on a nearby wellpad lease.

TABLE 1 Page 3 of 3

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY HAMPTON No. 4M SAN JUAN COUNTY, NM

Date	Event/Action	Description/Comments
Third Quarter 2001	Excavation Backfilled	Burlington backfilled the mid-2000 excavation area with clean fill.
3/31/2006	Operator Change	ConocoPhillips Company completed the acquisition of Burlington Resources.
11/8/2007	Groundwater Monitoring	Tetra Tech conducted quarterly groundwater monitoring activities.
1/17/2008	Groundwater Monitoring	Tetra Tech conducted quarterly groundwater monitoring activities.
3/19/2008	Groundwater Monitoring	Tetra Tech conducted quarterly groundwater monitoring activities.
7/22/2008	Groundwater Monitoring	Tetra Tech conducted quarterly groundwater monitoring activities.
10/23/2008	Groundwater Monitoring	Tetra Tech conducted quarterly groundwater monitoring activities.
1/29/2009	Groundwater Monitoring	Tetra Tech conducted quarterly groundwater monitoring activities.
9/24/2009	Groundwater Monitoring	Tetra Tech completed annual groundwater monitoring activities.
9/28/2010	Groundwater Monitoring	Tetra Tech completed annual groundwater monitoring activities. LNAPL was encountered in MW-16. Tetra Tech purged LNAPL from the well and placed two absorbent socks in MW-16.
12/15/2010	Assessment of MW-16	Tetra Tech returned to the Site to check the status of the absorbent socks in MW-16. The socks were saturated. Tetra Tech purged approximately 3.5 gallons of LNAPL and water from the well and placed three additional absorbent socks in MW-16.
6/15/2011	Transfer of Site Consulting Responsibilities	Site consulting responsibilities were transferred from Tetra Tech to Conestoga-Rovers & Associates (CRA), Inc. of Albuquerque, NM.
10/4/2011 and 10/11/2011	Groundwater Monitoring	CRA completed annual groundwater monitoring activities. Oil absorbent socks in MW-16 were found saturated and were replaced on 10/4/11. The new socks were found to be saturated on 10/11/11, and were not replaced due to the rapidity of saturation. One gallon of LNAPL was recovered during the sampling event.
4/25/2012	Assessment of MW-16	CRA recovered approximately one half gallon of product from MW-16 and placed three oil absorbent socks in the well.
6/6/2012	Assessment of MW-16	CRA recovered approximately one quarter gallon of product from MW-16 and replaced oil absorbent socks.
9/25/2012 and 9/26/2012	Groundwater Monitoring	CRA completed annual groundwater monitoring activities. One half gallon of LNAPL was recovered from MW-16 during the sampling event and the oil absorbent socks were replaced.
8/26/2013	Mobile Dual Phase Extraction Event	Mobile dual phase extraction (MDPE) was attempted using Monitor Wells MW-16 and MW-12. Only a minimal amount of LNAPL was recovered; 0.92 gallons from MW-16 and only 0.07 gallons from MW-12. Vapor recovery rates indicated very little LNAPL present in soil surrounding MW-12 and MW-16.
9/18/2013	Groundwater Monitoring	CRA completed annual groundwater monitoring activities. One half gallon of LNAPL was recovered from MW-16 during the sampling event and the oil absorbent socks were replaced.

TABLE 2Page 1 of 3

MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY HAMPTON No. 4M SAN JUAN COUNTY

M 1 TAT - 11	TOC Elevation	C1. D	Depth to Water	GW Elevation
Monitor Well	(ft AMSL)	Sample Date	(ft)	(ft AMSL)
		11/8/2007	42.81	6106.61
		1/17/2008	42.96	6106.46
		3/19/2008	42.93	6106.49
		7/22/2008	42.74	6106.68
		10/23/2008	32.80	6116.62
MW-1	6149.42	1/21/2009	42.90	6106.52
		9/24/2009	43.09	6106.33
		9/28/2010	43.19	6106.23
		10/11/2011	43.55	6105.87
		9/25/2012	43.88	6105.54
		9/18/2013	44.32	6105.10
		11/8/2007	16.52	6074.31
		1/17/2008	15.65	6075.18
		3/19/2008	13.64	6077.19
		7/22/2008	15.72	6075.11
		10/23/2008	16.53	6074.3
MW-5	6090.83	1/21/2009	16.04	6074.79
		9/24/2009	16.89	6073.94
	-	9/28/2010	16.55	6074.28
		10/11/2011	17.39	6073.44
		9/25/2012	17.46	6073.37
		9/18/2013	16.78	6074.05
		11/8/2007	20.22	6046.69
		1/17/2008	20.50	6046.41
		3/19/2008	20.02	6046.89
		7/22/2008	19.29	6047.62
		10/23/2008	19.95	6046.96
MW-7	6066.91	1/21/2009	20.44	6046.47
	<u> </u>	9/24/2009	20.55	6046.36
	<u> </u>	9/28/2010	21.24	6045.67
	<u> </u>	10/11/2011	DRY	
	<u> </u>	9/25/2012	DRY	
		9/18/2013	DRY	
		11/8/2007	22.91	6099.61
		1/17/2008	22.76	6099.76
		3/19/2008	22.38	6100.14
		7/22/2008	23.10	6099.42
		10/23/2008	23.02	6099.5
MW-9	6122.52	1/21/2009	22.85	6099.67
		9/24/2009	23.64	6098.88
		9/28/2010	23.70	6098.82
		10/11/2011	24.03	6098.49
		9/25/2012	24.61	6097.91
		9/18/2013	24.61	6097.91

TABLE 2 Page 2 of 3

MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY HAMPTON No. 4M SAN JUAN COUNTY

Monitor Well	TOC Elevation (ft AMSL)	Sample Date	Depth to Water (ft)	GW Elevation (ft AMSL)
		11/8/2007	56.00	5959.75
		1/17/2008	55.86	5959.89
		3/19/2008	55.88	5959.87
		7/22/2008	55.71	5960.04
		10/23/2008	55.91	5959.84
MW-11	6015.75	1/21/2009	55.75	5960
		9/24/2009	56.02	5959.73
		9/28/2010	56.06	5959.69
		10/11/2011	56.21	5959.54
		9/25/2012	56.41	5959.34
		9/18/2013	56.73	5959.02
	1	11/8/2007	20.46	6088.56
		1/17/2008	20.24	6088.78
		3/19/2008	19.85	6089.17
		7/22/2008	20.54	6088.48
		10/23/2008	20.61	6088.41
MW-12	6109.02	1/21/2009	20.37	6088.65
		9/24/2009	21.23	6087.79
		9/28/2010	21.27	6087.75
		10/11/2011	21.58	6087.44
		9/25/2012	22.14	6086.88
		9/18/2013	22.17	6086.85
		11/8/2007	18.03	NA
		1/17/2008	18.20	NA
		3/19/2008	17.60	NA
		7/22/2008	17.79	NA
	N. a.	10/23/2008	18.01	NA
MW-15	No survey -	1/21/2009	18.20	NA
	DTW only	9/24/2009	18.33	NA
	Ι Γ	9/28/2010	18.25	NA
		10/11/2011	18.65	NA
		9/25/2012	18.97	NA
		9/18/2013	19.23	NA
		11/8/2007	25.03	NA
	Ι Γ	1/17/2008	24.88	NA
		3/19/2008	24.37	NA
	Γ	7/22/2008	25.00	NA
	No survey -	10/23/2008	25.57	NA
MW-16	Theoretical	1/21/2009	24.97	NA
	DTW only	9/24/2009	25.75	NA
	Γ	9/28/2010	25.41	NA
		10/11/2011	28.26	NA
		9/25/2012	26.74	NA
		9/18/2013	28.15	NA

TABLE 2 Page 3 of 3

MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY HAMPTON No. 4M SAN JUAN COUNTY

Monitor Well	TOC Elevation (ft AMSL)	Sample Date	Depth to Water (ft)	GW Elevation (ft AMSL)
		11/8/2007	19.06	NA
		1/17/2008	19.37	NA
		3/19/2008	18.55	NA
	No survey - DTW only	7/22/2008	18.10	NA
		10/23/2008	19.19	NA
TMW-1		1/21/2009	19.25	NA
		9/24/2009	19.61	NA
		9/28/2010	19.11	NA
		10/11/2011	19.39	NA
		9/25/2012	DRY	NA
		9/18/2013	DRY	NA

Notes:

ft = feet

AMSL = Above mean sea level

DTW = Depth to water

NA = Not available

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)
	MW-1	10/30/1997	(orig)	0.0024	0.0023	< 0.0002	0.0011
	MW-1	1/12/1998	(orig)	0.0043	0.0033	0.0002	0.001
	MW-1	4/14/1998	(orig)	0.001	0.0013	< 0.0005	< 0.0005
	MW-1	7/1/1998	(orig)	0.0013	0.001	< 0.0005	0.0037
	MW-1	10/5/1998	(orig)	< 0.001	< 0.001	< 0.001	< 0.003
	MW-1	1/27/1999	(orig)	0.0008	0.0009	< 0.0005	< 0.0015
	MW-1	7/12/1999	(orig)	0.0011	0.0005	< 0.0005	< 0.0005
	MW-1	9/24/2003	(orig)	0.0009 J	0.001	<	0.0004 J
	MW-1	12/15/2003	(orig)	0.0011	0.0009 J	<	<
	MW-1	3/15/2004	(orig)	<	<	<	<
	MW-1	6/21/2004	(orig)	<	<	<	<
	MW-1	9/29/2004	(orig)	<	<	<	<
	MW-1	12/31/2004	(orig)	<	0.0009 J	<	0.0033 J
	MW-1	3/22/2005	(orig)	<	0.0003 J	<	<
	MW-1	10/24/2005	(orig)	<	<	<	<
	MW-1	12/12/2005	(orig)	<	0.0007 J	<	0.0006 J
MW-1	MW-1	3/20/2006	(orig)	0.0011	0.0009 J	<	0.0006 J
	MW-1	6/21/2006	(orig)	0.0003 J	0.0014	0.0004 J	0.0018 J
	MW-1	10/18/2006	(orig)	<	0.0002	0.0002	0.0013
	MW-1	12/12/2006	(orig)	<	0.0002	0.0002	0.0014
	MW-1	3/26/2007	(orig)	< 0.0003	0.0003 J	0.0002 J	0.0004 J
	MW-1	6/26/2007	(orig)	< 0.0003	< 0.0002	< 0.0002	< 0.0006
	MW-1	11/8/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008
	MW-1	1/15/2008	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008
	MW-1	3/19/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-1	7/22/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-1	10/23/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-1	1/21/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-1	9/24/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001
	MW-1	9/28/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001
	GW-074927-100411-CM-002	10/4/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003
	GW-074927-092612-CM-MW-1	9/26/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003
	GW-074927-091813-CM-MW-1	9/18/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total (mg/L)
	MW-5	10/29/1997	(orig)	5.934	10.024	0.709	8.188
	MW-5	1/12/1998	(orig)	7.521	11.213	0.779	8.436
	MW-5	4/14/1998	(orig)	7	11	0.72	7.8
	MW-5	7/1/1998	(orig)	6.5	10	0.78	7.5
	MW-5	10/5/1998	(orig)	6.8	8.4	0.74	6.9
	MW-5	11/9/1998	(orig)	6.2	8.2	0.67	6.5
	MW-5	1/27/1999	(orig)	6.4	8.9	0.66	6.7
	MW-5	5/5/1999	(orig)	6.8	9.8	0.9	7.8
	MW-5	5/26/1999	(orig)	6.6	10	0.65	8.1
	MW-5	7/12/1999	(orig)	6.3	10	0.75	8.8
	MW-5	8/17/1999	(orig)	5.4	9.8	0.67	7.5
	MW-5	8/17/1999	(Duplicate)	5.9	8.9	0.5	6.2
	MW-5	10/21/1999	(orig)	5.2	9.6	0.65	6.9
	MW-5	1/27/2000	(orig)	4.7	10	0.68	7.4
	MW-5	6/13/2000	(orig)	8.4	19	1.7	22
	MW-5	3/29/2001	(orig)	3.89	9.6	0.64	7.73
	MW-5	6/26/2001	(orig)	3.8	11	0.7	9
	MW-5	9/18/2001	(orig)	4.1	11	0.76	10
	MW-5	12/18/2001	(orig)	3.2	9.7	0.6	7.8
	MW-5	3/22/2002	(orig)	3.5	10	0.83	8.5
	MW-5	6/28/2002	(orig)	3.7	12	0.76	10
	MW-5	9/23/2002	(orig)	3	9.8	0.64	8.3
	MW-5	12/31/2002	(orig)	2.9	8.9	0.58	7.3
	MW-5	3/27/2003	(orig)	1.22	4.87	0.487	6.01
	MW-5	6/27/2003	(orig)	2.04	8.55	0.64	8.05
	MW-5	9/24/2003	(orig)	2.11	9.09	0.7	9.2
MW-5	MW-5	12/15/2003	(orig)	2.15	9.24	0.72	8.81
	MW-5	6/21/2004	(orig)	1.61	8.74	0.64	8.22
	MW-5	9/29/2004	(orig)	1.71	7.25	0.67	8.09
	MW-5	12/31/2004	(orig)	1.82	9.15	0.73	9.03
	MW-5	3/15/2005	(orig)	1.37	8.1	0.66	8.71
	MW-5	3/22/2005	(orig)	0.42	1.42	0.11	1.16
	MW-5	10/24/2005	(orig)	1.07	6.66	0.61	7.62
	MW-5	12/12/2005	(orig)	0.9	5.93	0.52	6.28
	MW-5	3/20/2006	(orig)	0.82	6.27	0.51	6.04
	MW-5	6/21/2006	(orig)	0.93	6.11	0.58	6.69
	MW-5	10/18/2006	(orig)	0.69	5.14	0.5	5.87
	MW-5	12/18/2006		0.64	5.09	0.5	5.61
	MW-5	3/26/2007	(orig)	0.66	6.47	0.53	5.45
	MW-5	6/26/2007	(orig)	0.74	8.07	0.64	7.32
	MW-5	11/8/2007	(orig)	0.41	4.8	0.39	5
	MW-5	1/17/2008	(orig)	0.44	6.4	0.51	6.1
	MW-5	3/19/2008	(orig)	0.37	2.9	0.24	2.57
	MW-5	7/22/2008	(orig)	0.34	6.1	0.55	6.4
	MW-5	10/23/2008	(orig)	0.27	6.2	0.44	6.3
	MW-5	1/21/2009	(orig)	0.25	3.8	0.51	5.2
}	MW-5	9/24/2009	(orig)	0.19	4.3	0.47	5.1
	MW-5	9/28/2010	(orig)	0.13	2.4	0.6	5.2
	GW-074927-100411-CM-006	10/12/2011	(orig)	0.0652	1.22	0.443	3.21
	GW-074927-100411-CM-007	10/12/2011	. 0.	0.0032	1.22	0.443	3.46
	GW-074927-092612-CM-MW-5	9/26/2012	`		0.626	0.488	
	GW-074927-092612-CM-MW-5 GW-074927-091813-CM-MW-5	9/26/2012	(orig)	0.0898	0.020	0.551	3.59

TABLE 3

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)
	MW-7	1/12/1998	(orig)	0.78	0.246	0.258	3.942
	MW-7	4/14/1998	(orig)	0.82	0.34	0.19	2.45
	MW-7	7/1/1998	(orig)	0.95	0.44	0.2	3.02
	MW-7	10/5/1998	(orig)	1.6	0.93	0.18	1.53
	MW-7	11/9/1998	(orig)	1.8	1	0.16	1.24
	MW-7	1/27/1999	(orig)	2.1	1	0.16	1.05
	MW-7	5/5/1999	(orig)	0.21	0.0029	0.03	0.147
	MW-7	5/26/1999	(orig)	0.19	0.0074	0.032	0.15
	MW-7	7/12/1999	(orig)	0.13	0.0072	0.022	0.1013
	MW-7	10/21/1999	(orig)	0.26	0.011	0.015	0.089
	MW-7	1/27/2000	(orig)	0.67	0.58	0.054	0.68
	MW-7	6/17/2000	(orig)	0.42	1.1	0.075	1.4
	MW-7	3/29/2001	(orig)	0.83	0.15	0.32	1.79
	MW-7	6/26/2001	(orig)	0.54	0.33	0.25	1.41
	MW-7	9/18/2001	(orig)	0.87	0.56	0.32	2.02
	MW-7	12/18/2001	(orig)	0.4	0.03	0.16	0.885
	MW-7	3/22/2002	(orig)	0.18	<	0.078	0.26
	MW-7	6/28/2002	(orig)	0.089	0.001	0.041	0.079
	MW-7	9/23/2002	(orig)	0.08	0.003	0.031	0.01889
	MW-7	12/31/2002	(orig)	0.16	0.0022	0.074	0.0315
	MW-7	3/27/2003	(orig)	0.195	0.0004	0.0442	0.109
	MW-7	6/27/2003	(orig)	0.3	0.0014 J	0.117	0.4616
	MW-7	9/24/2003	(orig)	0.09	0.012	0.002	0.694
MW-7	MW-7	3/15/2004	(orig)	0.056	0.001 J	0.006	0.003
	MW-7	6/21/2004	(orig)	0.18	<	0.055	0.058 J
	MW-7	9/29/2004	(orig)	0.163	0.0009 J	0.0545	0.0698
	MW-7	12/15/2004	(orig)	0.15	0.004 J	0.115	0.549
	MW-7	12/31/2004	(orig)	0.094	0.003 J	0.01	0.024 J
	MW-7	3/22/2005	(orig)	0.0208	<	0.0024	0.0048
	MW-7	10/24/2005	(orig)	0.0652	0.0007 J	0.002	0.0027 J
	MW-7	12/12/2005	(orig)	0.0662	0.001 J	0.0087	0.0085 J
	MW-7	3/20/2006	(orig)	0.072	<	0.0126	0.0169
	MW-7	6/21/2006	(orig)	0.0899	0.0106	0.0048	0.0145
	MW-7	10/18/2006	(orig)	0.0319	0.0004 J	0.0018	0.0041
	MW-7	12/12/2006	(orig)	0.0294	0.0015	0.0031	0.0057
	MW-7	3/26/2007	(orig)	0.0115	0.001	0.0006 J	0.0008 J
	MW-7	6/26/2007	(orig)	0.056	0.0004 J	0.0177	0.0013
	MW-7	11/8/2007	(orig)	0.044	< 0.0007	0.002	< 0.0008
	MW-7	1/17/2008	(orig)	0.017	< 0.0007	0.003	< 0.0008
	MW-7	3/19/2008	(orig)	0.005	< 0.005	< 0.005	< 0.005
	MW-7	7/22/2008	(orig)	0.032	< 0.005	0.012	0.007
	MW-7	10/23/2008	(orig)	0.017	< 0.005	< 0.005	< 0.005
	MW-7	1/21/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-7	9/24/2009	(orig)	0.0037	< 0.001	< 0.001	< 0.001
<u></u>	MW-7	9/28/2010	(orig)	0.0013	< 0.001	0.0023	< 0.001
<u> </u>	MW-7	10/11/2011			No sample colle		
<u> </u>	MW-7	9/26/2012			No sample colle		
	MW-7	9/18/2013			No sample colle	cted; well dry.	

			Sample	Benzene	Toluene	Ethylbenzene	Xylenes (total)
Well ID	Sample ID	Date	Type	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	MW-9	7/1/1998	(orig)	0.012	< 0.001	< 0.001	< 0.003
	MW-9	10/5/1998	(orig)	0.0008	< 0.0005	< 0.0005	0.0022
	MW-9	11/9/1998	(orig)	0.073	< 0.0005	0.0022	0.0016
	MW-9	1/27/1999	(orig)	0.12	< 0.0005	0.0025	0.0018
	MW-9	5/5/1999	(orig)	0.12	< 0.0005	0.0016	0.0008
	MW-9	5/26/1999	(orig)	0.14	< 0.0005	0.0015	< 0.0005
	MW-9	5/26/1999	(Duplicate)	0.29	< 0.0005	0.0006	< 0.0015
	MW-9	7/12/1999	(orig)	0.32	< 0.0005	0.0006	< 0.0015
	MW-9	8/17/1999	(orig)	0.13	<	<	<
	MW-9	10/21/1999	(orig)	< 0.0005	0.0019	< 0.0005	0.0025
	MW-9	1/27/2000	(orig)	< 0.0003	< 0.0012	< 0.0003	< 0.0023
	MW-9	6/13/2000	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001
	MW-9	3/29/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001
	MW-9	6/26/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001
	MW-9	9/18/2001	(orig)	<	<	<	<
	MW-9	12/18/2001	(orig)	<	<	<	<
	MW-9	3/22/2002	(orig)	<	<	<	<
	MW-9	6/28/2002	(orig)	<	<	<	<
	MW-9	9/23/2002	(orig)	0.0004 J	<	<	<
	MW-9	3/27/2003	(orig)	<	<	<	<
	MW-9	6/27/2003	(orig)	0.0005 J	<	<	<
MW-9	MW-9	9/24/2003	(orig)	<	<	<	<
14144-2	MW-9	12/15/2003	(orig)	<	<	<	<
	MW-9	3/15/2004	(orig)	<	<	<	<
	MW-9	6/21/2004	(orig)	<	0.0004 J	<	0.0007 J
	MW-9	9/29/2004	(orig)	<	<	<	<
	MW-9	3/22/2005	(orig)	<	<	<	<
	MW-9	6/23/2005	(orig)	<	0.0003 J	<	<
	MW-9	3/20/2006	(orig)	< <	< <	<	<
	MW-9 MW-9	6/21/2006	(orig)	<	<	<	0.0003 I
	MW-9	10/18/2006 12/12/2006	(orig) (orig)	0.0003 J	0.0007 J	0.0003 I	0.0003 J 0.0012 J
	MW-9	3/26/2007	(orig)	< 0.0003	< 0.0002	< 0.0003	< 0.0006
	MW-9	6/26/2007	(orig)	< 0.0003	< 0.0002	< 0.0002	< 0.0006
	MW-9	11/8/2007	(orig)	< 0.0005	< 0.0002	< 0.0002	< 0.0008
	MW-9	1/17/2008	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008
	MW-9	3/19/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-9	7/22/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-9	10/23/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-9	1/21/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-9	9/24/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001
	MW-9	9/28/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001
	GW-074927-100411-CM-004	10/4/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003
	GW-074927-092612-CM-MW-9	9/26/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003
	GW-074927-091813-CM-MW-9	9/18/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)
	MW-11	1/27/1999	(orig)	< 0.0005	0.0025	0.0007	0.0131
	MW-11	5/5/1999	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0015
	MW-11	5/26/1999	(orig)	0.0008	0.0017	< 0.0005	0.0011
	MW-11	10/21/1999	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0015
	MW-11	1/27/2000	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005
	MW-11	6/13/2000	(orig)	< 0.0005	< 0.0005	< 0.0005	0.0009
	MW-11	3/29/2001	(orig)	< 0.0002	< 0.0002	< 0.0002	< 0.0002
	MW-11	6/26/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001
	MW-11	9/18/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001
	MW-11	12/18/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001
	MW-11	12/19/2001	(orig)	<	<	<	<
	MW-11	12/20/2001	(orig)	<	<	<	<
	MW-11	12/21/2001	(orig)	<	<	<	<
	MW-11	12/22/2001	(orig)	<	<	<	<
	MW-11	5/24/2003	(orig)	<	<	<	<
	MW-11	6/27/2003	(orig)	0.0004 J	0.0003 I	<	0.0004 J
	MW-11	9/24/2003	(orig)	<	<	<	<
	MW-11	12/15/2003	(orig)	0.0005 J	<	<	<
	MW-11	3/15/2004	(orig)	<	<	<	<
	MW-11	6/21/2004	(orig)	<	<	<	0.0005 I
	MW-11	9/29/2004	(orig)	<	<	<	<
MW-11	MW-11	12/31/2004	(orig)	<	<	<	<
	MW-11	3/22/2005	(orig)	<	<	<	<
	MW-11	10/24/2005	(orig)	<	<	<	<
	MW-11	12/12/2005	(orig)	<	0.0003 J	<	<
	MW-11	3/20/2006	(orig)	<	<	<	<
	MW-11	6/21/2006	(orig)	<	0.0003 I	<	0.0008 J
	MW-11	10/18/2006	(orig)	<	0.0003 J	0.0004 J	0.0012 J
	MW-11	12/12/2006	(orig)	<	<	<	0.0003 I
	MW-11	3/26/2007	(orig)	< 0.0003	< 0.0002	< 0.0002	< 0.0006
	MW-11	6/26/2007	(orig)	< 0.0003	< 0.0002	< 0.0002	< 0.0006
	MW-11	11/8/2007	(orig)	< 0.0005	< 0.0007	< 0.0002	< 0.0008
	MW-11	1/17/2008	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008
	MW-11	3/19/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-11	7/22/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-11	10/23/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-11	1/21/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-11	9/24/2009	(orig)	< 0.003	< 0.003	< 0.003	< 0.003
	MW-11	9/24/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001
	GW-074927-100411-CM-005	10/11/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001
	GW-074927-100411-CM-003	9/26/2012	. 0/	< 0.001	< 0.001	< 0.001	< 0.003
	GW-074927-092612-CM-MW-11	9/26/2012	(orig) (orig)	< 0.001	< 0.001	< 0.001	< 0.003

TABLE 3

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)
	MW-12	5/5/1999	(orig)	0.79	0.84	0.26	2.88
	MW-12	5/5/1999	(Duplicate)	1.2	13	5.1	68
	MW-12	5/26/1999	(orig)	1.9	0.82	0.2	1.72
	MW-12	5/26/1999	(Duplicate)	1.8	0.64	0.16	1.6
	MW-12	7/12/1999	(orig)	4.5	0.76	0.4	3.1
	MW-12	7/12/1999	(Duplicate)	4.6	0.73	0.39	3.08
	MW-12	8/17/1999	(orig)	4.8	5	0.32	3.39
	MW-12	8/17/1999	(Duplicate)	5.9	6.1	0.39	4.1
	MW-12	10/21/1999	(orig)	5.6	0.65	0.54	2.89
	MW-12	1/27/2000	(orig)	4.1	0.55	0.43	2.379
	MW-12	6/13/2000	(orig)	5	1.3	0.49	2.7
	MW-12	3/29/2001	(orig)	5.17	1.79	0.366	2.62
	MW-12	6/26/2001	(orig)	4.8	1.9	0.39	2.56
	MW-12	9/18/2001	(orig)	5.1	2.4	0.43	2.82
	MW-12	12/18/2001	(orig)	4	1.5	0.32	1.88
	MW-12	3/22/2002	(orig)	3.3	0.93	0.29	1.27
	MW-12	6/28/2002	(orig)	4.2	1.8	0.41	1.94
	MW-12	9/23/2002	(orig)	3.8	1.5	0.31	1.51
	MW-12	12/31/2002	(orig)	3.6	0.84	0.28	1.01
	MW-12	5/24/2003	(orig)	3.99	2.23	0.299	1.47
	MW-12	6/27/2003	(orig)	5.29	2.75	0.36	1.6
	MW-12	9/24/2003	(orig)	4.6	1.69	0.29	1.15
	MW-12	12/15/2003	(orig)	4.2	1.36	0.24	1.15
	MW-12	3/15/2004	(orig)	2.09	1.12	0.3	1.25
MW-12	MW-12	6/21/2004	(orig)	3.87	1.82	0.28	1.5
	MW-12	6/29/2004	(orig)	5.14	2.22	0.24	1.28
	MW-12	12/31/2004	(orig)	4.16	1.22	0.25	1.15
	MW-12	3/22/2005	(orig)	2.38	1.1	0.13	0.71
	MW-12	10/24/2005	(orig)	1.35	0.15	0.08	0.33
	MW-12	12/16/2005	(orig)	2.38	0.422	0.111	0.341
	MW-12	3/20/2006	(orig)	2.1	0.21	0.071	0.225
	MW-12	6/21/2006	(orig)	2.27	0.385	0.085	0.355
	MW-12	10/18/2006	(orig)	1.74	0.477	0.112	0.399
	MW-12	12/12/2006	(orig)	2.4	1.11	0.142	0.668
	MW-12	3/26/2007	(orig)	4.13	1.68	0.34	1.18
	MW-12	6/26/2007	(orig)	1.52	0.432	0.118	0.34
	MW-12	11/8/2007	(orig)	0.78	0.31	0.043	0.17
	MW-12	1/17/2008	(orig)	2	1.4	0.18	0.79
	MW-12	3/19/2008	(orig)	1.6	0.56	0.16	0.53
	MW-12	7/22/2008	(orig)	0.73	0.022	0.014	0.021
	MW-12	10/23/2008	(orig)	0.5	0.03	0.022	0.04
	MW-12	1/21/2009	(orig)	1.1	0.43	0.11	0.41
	MW-12	9/24/2009	(orig)	0.61	0.0083	0.01	0.0195
	MW-12	9/28/2010	(orig)	0.55	< 0.001	0.015	0.016
	GW-074927-100411-CM-003	10/4/2011	(orig)	0.494	< 0.01	0.0235	< 0.03
	GW-074927-100411-CM-003	9/26/2012	(orig)	0.617	<0.001	0.0255	0.0207
	GW-074927-092012-CM-MW-12	9/18/2013	(orig)	0.202	<0.001	<0.005	<0.015
	GW-074927-091813-CM-DUP	9/18/2013	(Duplicate)	0.202	<0.005	<0.005	<0.015

			Sample	Benzene	Toluene	Ethylbenzene	Xylenes (total)
Well ID	Sample ID	Date	Туре	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	MW-15	10/21/1999	(orig)	< 0.0005	0.0012	< 0.0005	0.0015
	MW-15	1/27/2000	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005
	MW-15	6/13/2000	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005
	MW-15	3/29/2001	(orig)	< 0.0002	< 0.0002	< 0.0002	< 0.0002
	MW-15	6/26/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005
	MW-15	9/18/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005
	MW-15	12/18/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005
	MW-15	3/22/2002	(orig)	<	<	<	<
	MW-15	6/28/2002	(orig)	<	<	<	<
	MW-15	9/23/2002	(orig)	<	<	<	<
	MW-15	12/31/2002	(orig)	<	<	<	<
	MW-15	3/27/2003	(orig)	<	0.0003 J	<	0.0009 J
	MW-15	6/27/2003	(orig)	0.0004 J	<	<	<
	MW-15	9/24/2003	(orig)	<	<	<	<
	MW-15	3/15/2004	(orig)	<	0.0003 J	<	<
	MW-15	6/21/2004	(orig)	<	<	<	<
	MW-15	9/29/2004	(orig)	<	<	<	<
	MW-15	12/15/2004	(orig)	0.0007 J	<	<	<
	MW-15	12/31/2004	(orig)	<	0.0009 J	0.0003 J	0.0014 J
MW-15	MW-15	3/22/2005	(orig)	<	<	<	<
	MW-15	10/24/2005	(orig)	<	<	<	<
	MW-15	12/12/2005	(orig)	<	0.0003 J	<	0.0004 J
	MW-15	3/20/2006	(orig)	<	<	<	<
	MW-15	6/21/2006	(orig)	0.0007 J	<	0.0003 J	<
	MW-15	10/18/2006	(orig)	<	0.0003 J	<	0.0002 J
	MW-15	12/12/2006	(orig)	<	<	<	<
	MW-15	3/26/2007	(orig)	< 0.0003	< 0.0002	< 0.0002	< 0.0006
	MW-15	6/26/2007	(orig)	< 0.0003	0.0005 J	< 0.0002	< 0.0006
	MW-15	11/8/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008
	MW-15	1/17/2008	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008
	MW-15	3/19/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-15	7/22/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-15	10/23/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-15	1/21/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005
	MW-15	9/24/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001
	MW-15	9/28/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001
	GW-074927-100411-CM-001	10/4/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003
	GW-074927-092612-CM-MW-15	9/26/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003
	GW-074927-091813-CM-MW-15	9/18/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total (mg/L)
	MW-16	10/21/1999	(orig)	0.22	0.3	0.0054	0.142
	MW-16	10/21/1999	(Duplicate)	0.214	0.268	0.004	0.151
	MW-16	1/27/2000	(orig)	1.6	0.17	0.056	0.225
	MW-16	6/13/2000	(orig)	8.7	0.43	0.68	2.2
	MW-16	6/26/2001	(orig)	9.3	1.1	0.81	3.41
	MW-16	9/18/2001	(orig)	11	6.4	0.59	6.4
	MW-16	12/18/2001	(orig)	9.9	6.9	0.57	7.4
	MW-16	6/28/2002	(orig)	11	7	0.77	5.7
	MW-16	9/23/2002	(orig)	8.9	9.9	0.61	8.5
	MW-16	12/31/2002	(orig)	8.8	7.9	0.77	7.4
	MW-16	3/22/2003	(orig)	10	6.6	1.1	7.4
	MW-16	3/27/2003	(orig)	10.4	11.2	0.84	8.67
	MW-16	9/24/2003	(orig)	10.3	15.4	0.87	10.59
	MW-16	3/15/2004	(orig)	9.2	16	1.31	12
	MW-16	6/21/2004	(orig)	8.04	18.1	2.45	18.58
	MW-16	9/29/2004	(orig)	8.33	14	0.76	8.23
	MW-16	12/15/2004	(orig)	9.64	12.6	0.72	1.55
	MW-16	12/31/2004	(orig)	8.34	17.1	1.55	18.83
	MW-16	3/28/2005	(orig)	4.14	5.81	0.76	10.48
MW-16	MW-16	10/24/2005	(orig)	6.28	9.8	0.67	6.91
	MW-16	12/12/2005	(orig)	6.94	11.5	0.75	8.06
	MW-16	3/20/2006	(orig)	6.82	11.5	0.83	8.55
	MW-16	6/21/2006	(orig)	6.64	11.2	0.69	7.57
	MW-16	10/18/2006	(orig)	5.7	10.2	0.62	6.52
	MW-16	12/12/2006	(orig)	4.6	10	0.55	6.83
	MW-16	3/26/2007	(orig)	2.97	2.82	0.26	5.22
	MW-16	6/26/2007	(orig)	5.23	9.11	0.77	7.76
	MW-16	11/8/2007	(orig)	5.5	12	0.57	6.2
	MW-16	1/17/2008	(orig)	4.6	9.1	0.55	5.6
	MW-16	3/19/2008	(orig)	5.5	9.6	0.51	6.9
	MW-16	7/22/2008	(orig)	3.6	6.1	0.43	4.5
	MW-16	10/23/2008	(orig)	4.7	9.1	0.48	6.6
	MW-16	1/21/2009	(orig)	4.2	7.5	0.48 J	6.9
	MW-16	9/24/2009	(orig)	3.2	4.6	0.34	3.5
	MW-16	9/29/2010	(orig)	3	4.6	3.4	23.6
	MW-16	12/15/2010	(orig)	5.2	13	1.1	14.5
	MW-16	10/11/2011	(=-16/		_	to presence of LNA	
	MW-16	9/26/2012				to presence of LNA	
	MW-16	9/18/2013				to presence of LNA	

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)		
	Seep	7/1/1998	(orig)	0.0016	0.0007	0.0006	0.00036		
	Seep	4/14/1999	(orig)	0.04	0.0022	0.0021	0.019		
	Seep	10/21/1999	(orig)	0.065	0.23	0.011	0.434		
	Seep	3/29/2001	(orig)	0.0116	< 0.0002	0.0007 J	0.0254		
	Seep	6/26/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001		
	Seep	9/18/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001		
	Seep	12/18/2001	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.001		
	Seep	3/22/2002	(orig)	0.0059	<	0.0008	0.0034		
	Seep	6/28/2002	(orig)	<	<	<	<		
	Seep	9/23/2002	(orig)	<	<	<	<		
	Seep	12/31/2002	(orig)	0.0007	<	<	<		
	Seep	3/27/2003	(orig)	0.0063	0.0002 J	0.0018	0.0101		
	Seep	9/24/2003	(orig)	<	0.0003 J	<	<		
	Seep	12/15/2003	(orig)	0.0004 J	0.0003 J	<	<		
	Seep	3/15/2004	(orig)	<	<	<	<		
	Seep	6/21/2004	(orig)	<	<	<	<		
	Seep	9/29/2004	(orig)	<	<	<	<		
Seep	Seep	12/31/2004	(orig)	<	0.0002 J	<	0.0004 J		
over .	Seep	3/28/2005	(orig)	<	<	<	<		
	Seep	10/24/2005	(orig)	<	J	<	<		
	Seep	12/12/2005	(orig)	<	0.0005 J	0.0003 J	0.0009 J		
	Seep	3/20/2006	(orig)	<	<	<	<		
	Seep	6/21/2006	(orig)	0.004	0.0129	0.0008 J	0.015		
	Seep	10/18/2006	(orig)	<	0.0005 J	0.0003 J	0.0014 J		
	Seep	12/12/2006	(orig)	<	<	<	<		
	Seep	3/26/2007	(orig)	< 0.0003	0.0003 J	< 0.0002	< 0.0006		
	Seep	6/26/2007	(orig)	< 0.0003	< 0.0002	< 0.0002	< 0.0006		
	Seep	11/8/2007	(orig)	< 0.0005	< 0.0007	< 0.0008	< 0.0008		
	Seep	3/19/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005		
	Seep	10/23/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005		
	Seep	1/21/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005		
	Seep	9/24/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		
	Seep	9/28/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		
	Seep	10/11/2011	No sample collected; seep dry.						
	Seep	9/26/2012			No sample colle	cted; seep dry.			
	Seep	9/18/2013			No sample colle	cted; seep dry.			

GROUNDWATER LABORATORY ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY HAMPTON No. 4M SAN JUAN COUNTY

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	
	TMW-1	1/27/2000	(orig)	0.93	1.4	0.35	6.7	
	TMW-1	6/13/2000	(orig)	2.4	3.4	0.55	9.1	
	TMW-1	6/26/2001	(orig)	1.1	3.5	0.33	5.5	
	TMW-1	5/23/2003	(orig)	0.83	0.123	0.107	1.0047	
	TMW-1	6/27/2003	(orig)	0.474	0.0366	0.0596	0.4907	
	TMW-1	9/24/2003	(orig)	0.292	0.139	0.017	0.221	
	TMW-1	12/15/2003	(orig)	0.0559	0.0013	0.0039	0.0425	
	TMW-1	6/21/2004	(orig)	0.0406	<	0.0141	0.0147	
	TMW-1	9/29/2004	(orig)	0.41	0.0087	0.0596	0.4585	
	TMW-1	12/31/2004	(orig)	0.003 J	0.005 J	0.001 J	0.011 J	
	TMW-1	3/22/2005	(orig)	0.0678	0.0133	0.0081	0.1017	
	TMW-1	10/24/2005	(orig)	0.483	0.705	0.045	0.328	
TMW-1	TMW-1	12/12/2005	(orig)	0.122	0.317	0.019	0.16	
1111111	TMW-1	3/20/2006	(orig)	0.071	0.082	0.016	0.151	
	TMW-1	6/21/2006	(orig)	0.159	0.0657	0.0569	0.36	
	TMW-1	10/18/2006	(orig)	0.0064	0.0016	0.0021	0.0138	
	TMW-1	6/26/2007	(orig)	0.269	0.0026	0.0049	0.0157	
	TMW-1	11/8/2007	(orig)	0.3	0.012	0.006	0.038	
	TMW-1	1/17/2008	(orig)	0.0008	< 0.0007	< 0.0008	0.001	
	TMW-1	3/19/2008	(orig)	< 0.005	< 0.005	< 0.005	< 0.005	
	TMW-1	7/22/2008	(orig)	0.13	0.029	0.011	0.022	
	TMW-1	1/21/2009	(orig)	0.013	< 0.005	< 0.005	< 0.005	
	TMW-1	9/28/2010	(orig)	0.013	< 0.001	< 0.001	0.0032	
	TMW-1	10/11/2011	No sample collected; insufficient water present in well.					
	TMW-1	9/26/2012			No sample colle	, ,	<u> </u>	
	TMW-1	9/18/2013]	No sample colle	cted; well dry.		
NM	WQCC Groundwater Qua	lity Standards		0.01	0.75	0.75	0.62	

Notes:

J = Analyte concetration detected at a value between MDL and PQL

MDL = Method Detection Limit

PQL = Practical Quantitation Limit

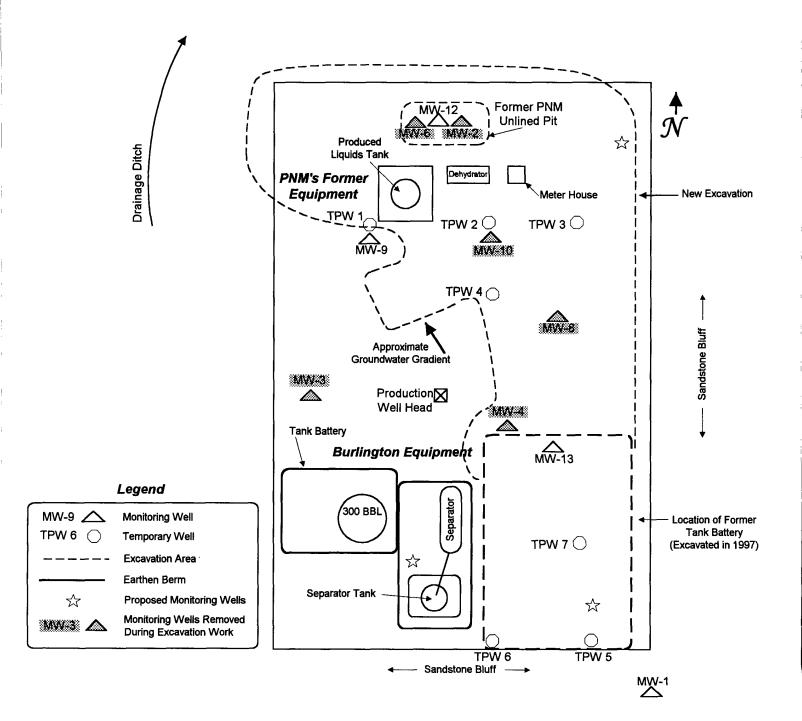
NS = Not Sampled

NMWQCC = New Mexico Water Quality Control Commission

mg/L = milligrams per liter (parts per million)

< 0.001 = Below Laboratory Detection Limit of 0.001 mg/L

< = Below Laboratory Detection Limit


BOLD = Concentrations that exceed the NMWQCC groundwater quality standard

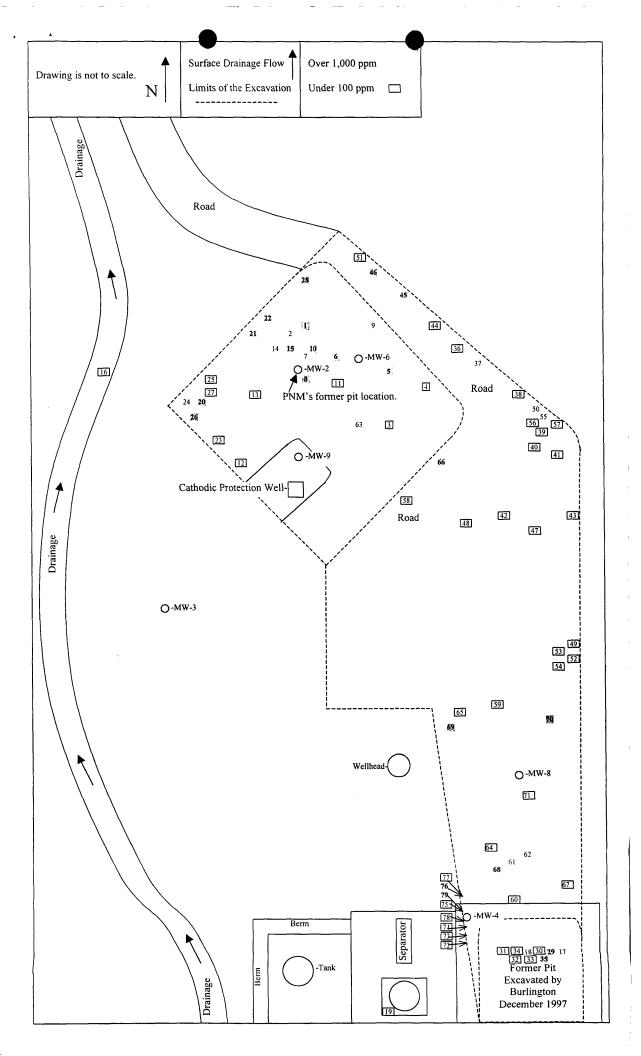

Appendix A

Diagram of Former Excavation Area

Hampton #4M Site Diagram

Appendix B

August 2013 Acuvac Mobile Dual Phase Extraction Report

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

August 30, 2013

Mr. Jeff Walker Project Manager Conestoga-Rovers & Associates 6121 Indian School Road NE Albuquerque, NM 67110

Dear Jeff:

Re: MDP Events, Hampton No.4M, Aztec, NM

Enclosed is a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Events #1A and 1B, at the above location on August 26, 2013. Table #1 is the Well Data Information on wells MW-16 and MW-12. PSH is referred to as LNAPL in this report. GW samples are taken frequently in a 2,000 ml beaker, to determine the average LNAPL percentage and volume.

Summary of MDP Event #1A - Well MW-16

- The total Event time was 3.5 hours. There is no comparative data. The Event was conducted on August 26, 2013.
- The total liquid volume recovered was 4.2 gals, none of which were LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 0.24 gals, for a total liquid and vapor LNAPL recovery of 0.92 gals. This equates to an average of 0.26 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: $HC = 1{,}191 \text{ ppmv}, CO_2 = 3.53\%, CO = 0\%, O_2 = 17.7\% \text{ and } H_2S = 2.25 \text{ ppm}.$
- The Average Induced Vacuum was 115.0"H₂O with a maximum vacuum of 140"H₂O and the average EW well vapor flow was 29.94 scfm.
- The GW pump was set at 29.5 ft BTOC. The average GW pump rate was 0.02 gpm.
- The average GW depression, based on the positioning of the GW pump, was 3.0 ft below static level.
- A LNAPL thickness of 0.36 ft was recorded prior to the start of Event #1A and no LNAPL was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 3.5 hour Event #1A Well MW-16 was 0.92 gals.

Additional Information:

- A minimal LNAPL volume of 0.68 gals was recovered during the Event period.
- The recovered groundwater was dark with biomass at the start of the Event and remained on an increasing trend throughout the Event.
- The low HC (TPH) levels indicate little LNAPL in the soil surrounding the well.
- The high O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface most likely occurred.

Summary of MDP Event #1B: Well MW-12

- The total Event time was 4.0 hours. The Event was conducted on August 26, 2013. There is no comparative data.
- The total liquid volume recovered was 500 gals, of which none were LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 0.07 gals, for a total liquid and vapor LNAPL recovery of 0.07 gals. This equates to an average of 0.02 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 177 ppmv, $CO_2 = 2.93\%$, CO = 0%, $O_2 = 18.0\%$ and $H_2S = 0 \text{ ppm}$.
- The Average Induced Vacuum was 44"H₂O with a maximum vacuum of 50"H₂O and the average EW well vapor flow was 50.16 scfm.
- The GW pump was set at 28.9 ft BTOC. The average GW pump rate was 1.89 gpm.
- The average GW depression, based on the positioning of the GW pump, was 6.5 ft below static level.
- No LNAPL was recorded prior to the start of Event #1B and no LNAPL was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 4.0 hour Event #1B Well MW-12 was 0.07 gals.

Additional Information:

- No LNAPL was recovered from the dual phase operation.
- The extremely low HC (TPH) levels indicate very little LNAPL in the area surrounding the well.
- The HC (TPH) levels in the influent vapors varied from a low of 54 ppmv to a high of 242 ppmv. This is considered in the exceptionally low range.
- The high O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface most likely occurred.

Other Information - Events #1A & 1B

The total LNAPL removed, including liquid and vapor, during the 7.5 hr Events (wells MW-16 and MW-12) was 0.99 gals. This equates to 0.13 gals/hr.

The HORIBA Analytical instrument is calibrated with Hexane and CO₂. In all subsequent Events, the test data will be compared to the previous Event to evaluate the progress for this remediation project.

The formula used to calculate the emission rate is:

 $ER = HC \text{ (ppmv) } x \text{ MW (Hexane) } x \text{ Flow Rate (scfm) } x \text{ 1.58E}^{-7} \text{ (min)(lb mole)} = \text{lbs/hr}$ $(hr)(ppmv)(ft^3)$

Additional information included with Report

- Recorded Data
- Photographs of the MDP System and wells MW-16 and MW-12.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely,

James E. Sadler, VP

Engineering/Environmental

130038.REP

Well and Recovery Data Information

Table #1

Event		1A	1B
WELL NO.		MW-16	MW-12
Total Event Hours		3.5	4.0
TD	ft	30.0	30.0
Well Screen	ft	Unknown	Unknown
Well Size	in	2.0	2.0
DTGW - Static - Start Event	ft	26.95	22.35
DTLNAPL - Static - Start Event	ft	26.59	-
LNAPL	ft	0.36	-
DTGW - End Event	ft	27.71	22.67
DTLNAPL - End Event	ft	-	-
LNAPL	ft	-	-
Average Extraction Well Vacuum	"H₂O	115.0	44.0
Average Extraction Well Vapor Flow	scfm	29.94	50.16
Average GWL/NAPL Pump Rate	gpm	0.02	1.89
Total Liquid Volume Recovered	gals	4	500
Average TPH	ppmv	1,191	177
Average CO ₂	%	3.53	2.93
Average CO	%	•	-
Average O ₂	%	17.7	18.0
Average H ₂ S	ppm	2.25	-
Total Liquid LNAPL Recovered	gals	-	-
Total Liquid LNAPL Recovered	%	-	-
Total Vapor and Liquid LNAPL Recovered	gals	0.92	0.07
Total LNAPL Recovered	lbs	6.4	0.5
Total Volume of Well Vapors	cu. ft	6,287	12,038

OPERATING DATA - EVENT # | 12

PAGE#

ACUVAC MOBILE DUAL PHASE SYSTEM

Parameters	Locatio	on: Hampton No. #4M, S			AGE# (Managers: Sa	dler/Faucher
WELL# MW- 16		Date:	8-26-13	~		_	_	-
WELL# MW- 16		Parameters				Time	Time	Time 1145
RPM		WELL# MW- 66	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter
Gas Flow Fuel/Propage City 150		R.P.M.	2000	2000	2000	7000	>000	T
Gas Flow Fuel/Propage City 150	VER	Oil Pressure psi	50	50	50	50	50	ŝe
Gas Flow Fuel/Propage City 150	BLO	Water Temp °F	140	160	160	160	(66	160
Gas Flow Fuel/Propage City 150	INE/	Volts	13	17	03	13	13	13
SWP Nump ONOFF OFF OP CO OP ON ON	ENG	Intake Vacuum "Hg	14	14	14	14	14	12
Extraction Well Flow sefm 16.87 26.87 26.87 26.87 35.06 Extraction Well Vacuum "Ho too too too too too 140 Pump Rate gals/min 0PK 0.09 0.04 0.04 0.03 0.01 Total Volume gals L.D. 2.4 3.3 3.6 Influent Vapor Temp. "F 60 60 60 60 60 60 60 Air Temperature "F 6.78 71.6 71.3 74.9 81.3 82.5 Barometric Pressure "Hg 30.27 30.27 30.27 30.27 30.26 30.26 Absolut Pressure "Hg 30.27 30.27 30.27 30.27 30.26 30.26 Absolut Pressure "Hg 30.27 30.27 30.27 30.27 30.26 30.26 CO, % 4.64 4.52 4.48 3.80 3.18 30.2 CO, % 4.64 4.52 4.48 3.80 3.18 30.2 CO, % 4.64 16.5 16.2 17.2 194 18.7 HsS ppm 3 3 2 3 3 2 Arrived & tile 0.745 three Distriction to condition will miss "Ko - Sarkery Tailquite Meching - 0400 Mobilized 50.5 6 W recovery sycheme - Exercise Too Schools to 1.00 10 10 10 10 10 10 10 10 10 10 10 10 1		Gas Flow Fuel/Propane cfh	150	150	150	150	150	150
Extraction Well Vacuum "Ho too too too too too too 140 Pump Rate gals/min OPH 0.09 0.04 0.04 0.03 0.01 Total Volume gals LiA 3.4 3.3 3.6 Influent Vapor Temp. "F 60 60 60 60 60 60 60 60 60 60 60 60 60		GW Pump ON/OFF	OF-	Oh	cu	00	04	OW
Barometric Pressure	×	Extraction Well Flow scfm	16.87	26.87	2687	26.87	2687	35.06
Barometric Pressure	M/AI	Extraction Well Vacuum "H ₂ O			Lee	100	100	
Barometric Pressure	COU	Pump Rate gals/min	OFF	0.00	0.04	0:04	0,03	0.01
Barometric Pressure	VOL.	Total Volume gals	_		L2	2.4	3.3	
Barometric Pressure	PHEF UMP,	Influent Vapor Temp. °F	60	60				
Barometric Pressure	MOSI	Air Temperature °F		24.6	77.3	Selection of the select	81.3	
Absolute Pressure 40 "Hg 24.18 24.18 24.18 30.18 24.17 24.17 HC ppmv (,830 1,710 1,640 1,078 436 896 CO: % 4.64 4.52 4.48 3.80 3,18 3.02 CO: % 0.0 0 0 0 0 0 O: % 16.4 16.5 16.2 17.2 194 18.7 His ppm 3 3 2 3 3 2 Arrived @ side @ 0745 km - Difficulty beading well well -Ko - SAKERY Tailquite Meeting - 0400 Mobilized 150.5 & 600 recovery excluse - Googed. well - 70 2 30 - 5100 (0415) EUSOV 161 - 506 only for 0.5 hours to reduce LUADL thickness - Triabil Elimited vaccome too the UNIF = 26.37 solar - 66/1000 PR 20.000 pm - descessed to 0.03 qm - NOTE 100 WARR biovers , in creasing to 15 - 10 -60, CWPR descessing 0.04 - 0.03 - 0.01 qpm NOTE : High 0 - 90 - 50E short circuiting most likely 115145 Toccasses Ew -140 LNAPL % Vol Gals 10 1.12 15 1.18: 20 1.18 60 1.18 Depth of GW Depression ft 310 - 320 - 320 - 3.0	AT	Barometric Pressure "Hg						
HC ppmv (1,830 1,710 1,640 1,078 4,36 896 CO, % 4.64 4.52 4.48 3.80 3,18 3.02 CO % O O O O O O O O, % 16.4 16.5 16.2 17.2 184 18,7 Hs ppm 3 3 2 3 3 2 Arrived @ sike @ 0745 km - Difficulty locating well web -K - SAFEEY Tailquite Meeting - 0400 Mebilized 5015 & 6W recovery sycleme - Gouged. will - 70 2 30 - START (0915) EUSWI the - SUE and for 0.5 hours to reduce LUMPL thickness - Tribbil EWindread vacuum 2 100 Hrd UWF = 26.87 selan - Gulyam PR 2 0.04 gm - deexes of to 0.03 gm - Wate 102 WAR biorress, increasing to 15 - 20 -60, CWPR deexes in 0.04 - 0.03 - 0.01 gpm NOTE: High On 90 - SUE short circuiting most literary [IIS Ms] Tacassis Ew 149 LNAPL % Vol Gals 10 17 15 185 20 18 60 18 Extraction Well DTLNAPL ft 26.59		Absolute Pressure "Hg		25			VVV - VVLIDAS	
CO; % 4.64 4.52 4.48 3.80 3.18 3.02 CO % O O O O O O O O O: % 16.4 16.5 16.2 17.2 184 18.7 His ppm 3 3 2 3 3 2 Arrived & sike & 0.745 km - Difficulty locating well mee - Ko - SAFFEY Tailgute Meeting - 0.400 Mobilized 15U.E. & EW recovery sycleme - Googed. Well - 70 230 - START (0.415) EUSAV 161 - SUE only Cor 0.5 hours to reduce LUMPL thickness - Trickel EWindread vaccom 2 100 Hrd UWF = 26.87 sclar - Gwjvam PR 2 0.049 mr - decessed to 0.03 mr - Nott 10% LUMPL bickness, increasing to 15 - 20 -60, CWPR decessing 0.04 - 0.03 - 0.019 mm NOTE: High Or 90 - SUE short circuiting worst likely 115 ms Tocators Ew 149 LNAPL % Vol Gals 10/12 15/18. 20/18 60/18 Depth of GW Depression ft310 -310 -320 -320 -320 -33.0	ь						Ì	
Arrived @ site @ 0745 Hrs - Difficulty locating well mee - 16 - SATERY Tailgate Meeting - 0400 Mobilized 1545 & GW recovery sychems - Gouged. Well - 70 × 30 - START (0415) EUSWI Ht SUE only for 0.5 hours to reduce LUMPL thickness - Initial EWindwest vacuum 2 100 Hrd UWF = 26.87 selan - Gw/var PR 2 0.04 gmm - decressed to 0.03 gmm - Worth 10% LUAR biorress, increasing to 15 - 20 - 60 CWPR decressing 0.04 - 0.03 - 0.01 gpm NOTE: High On % - SUE short circuitive, wost litzely 115445 Treasure EW: 140 Call Maple % Vol Gals 10 (12 15 (118): 20 (118 60 / 118) Depth of GW Depression ft 310 - 320 - 320 - 320 - 320 Extraction Well DTLNAPL ft 26.59	UEN	CO ₂ %	· ·					
Arrived @ site @ 0745 Hrs - Difficulty locating well mee - 16 - SATERY Tailgate Meeting - 0400 Mobilized 1545 & GW recovery sychems - Gouged. Well - 70 × 30 - START (0415) EUSWI HI - SUE only for 05 hours to reduce LUMPL thickness - Initial EWindwest vacuum 2 100 Hrd UWF = 36.87 selan - Gw/vam PR 2 0.04gmm - deceased to 0.03gmm - NOTE 1026 WARL biorress, increasing to 15 - 20 - 60 CWPR decreasing 0.04 - 0.03 - 0.01gpm NOTE: High 0 x % - SUE short circuiting wost litzely 115445 Trecovery 140 LNAPL % Vol Gals 10 (12 15 (118) 20 (118 60 / 118) Depth of GW Depression ft 310 - 320 - 320 - 320 - 320 Extraction Well DTLNAPL ft 26.59	INFL	CO %						
Arrived @ site @ 0745 Hrs - Difficulty locating well web-16- SAFERY Tailgate Meeting - 0400 Mobilized 1545 & GW recovery sycless - Goseph. Well - 70 × 30 - 51ART (0415) EUSWI HL - SUE only for 0.5 hours to reduce LUMPL thickness - Initial EWindward vaccime 2 100 Hrd UWF = 36.87 sclar - Gw/van PR = 0.04gmm - decressed to 0.03gmm - NOTE 10% WARL biorress, increasing to 15 - 20 - 60 CWPR decressing 0.04 - 0.03 - 0.01gpm NOTE: High 02 % - SUE short circuitive, wost litzely 115445 Trecoverted -140 LNAPL % Vol Gals 10 (.12 15 (.18): 20 (.18 60 (.18) Depth of GW Depression ft 310 - 320 - 320 - 3.0 Extraction Well DTLNAPL ft 26.59	POR	O ₂ %	06:4		16.2	17.2		18,7
Antived @ File @ 0745 Hrs - Difficulty locating well mes - Ko - SAFERY Tailgate Meeting - 0900 Mobilized 15U. & 6W recovery sychems - Googed. well - 70 = 30 - START (0915) EUSWI HE I - SUE only for 0.5 hours to value LUMPL thickness - Initial EWindread vaccomes 100 Hrd UWF = 26.87 salar - Gw/vam PR = 0.04gmr - decressed to 0.03gmr - Wott 10% WARL biorress, increasing to 15 - 10 - 60, CWPR decreasing 0.04 - 0.03 - 0.01gmm Note: High Or 90 - SUE short circuiting worst library 115 Hrs Tracesase Ew: 140 LNAPL % Vol Gals - 10/12 15/115: 20/18 60/18 Depth of GW Depression ft310 -310 -310 -310 -310 Extraction Well DTLNAPL ft 26.59	(A)	H ₂ S ppm	3	3	2		3	
Tailquite Meeting - 0400 Mobilized 154. & EW recovery sychems - Gouged. Well - 70 = 30 - START (0415) EUTON the - SUE only for 0.5 hours to reduce LUMPL thickness - Initial EWindread vacuum 2 100 Hrd UWF = 26.87 solar - Gw/vam PR 2 0.04 gmm - decressed to 0.03 gmm - Worth 10% LUAPA biorress, increasing to 15 - to -60 CWPR decressing 0.04 - 0.03 - 0.01 gmm NOTE: High Or 90 - SUE short circuiting worst likely 115 LMS Tacasaus EW - 140 gals LNAPL % Vol Gals 10/12 15/18: 20/18 60/18 Depth of GW Depression ft310 -320 -320 -3.0 Extraction Well DTLNAPL ft 16.59	***************************************	Arrived @ sile @	0745 Km	- Orthical	u beading	well men	-16- SAF	
Well - 70 = 30 - SIANT (0915) EUSWI HE I - SUE ONLY CON O.5 hours							2,300	
To reduce LUMPL thickeness - Initial Ewindreal vacuum 2 100 Hrd UWF = 26.87 salar - Gw/vam PR 2 0.04 gmm - decressal to 0.03 gmm - Watt 10% WARL biomess, increasing to 15 - 20 -60, CWPR decressing 0.04 - 0.03 - 0.01 gmm NOTE: High On 90 - SUE short circuitive word librally 115 115 Increase Ew 140 LNAPL % Vol Gals - 10/12 15/115: 20/18 60/18 Depth of GW Depression ft3.0 -3.0 -3.0 Extraction Well DTLNAPL ft 16.59							V	
10 12 15 18 18 18 18 18 18 18	OTES	to reduce LUM	PC thick	eness - In	diel Elvin	duent voice	un 2 100"H	re vwf
Dott High Or % - SUE short circuiting word literary IS 18 Therease Ew 140	Z				The state of the s			
Note: High On % - SUE short circuiting wost likely				V.				
LNAPL % Vol								
		LNAPL % Vol			. /	1		1
	FOLD	Depth of GW Depression ft	_	-310	-30	-30	-30	-3.0
Extraction Well DTGW ft 24.95	MANI	Extraction Well DTLNAPL ft	26.59					
		Extraction Well DTGW ft	24.95					

ACUVAC OPERATING DATA - EVENT # PAGE # 2 MOBILE DUAL PHASE SYSTEM

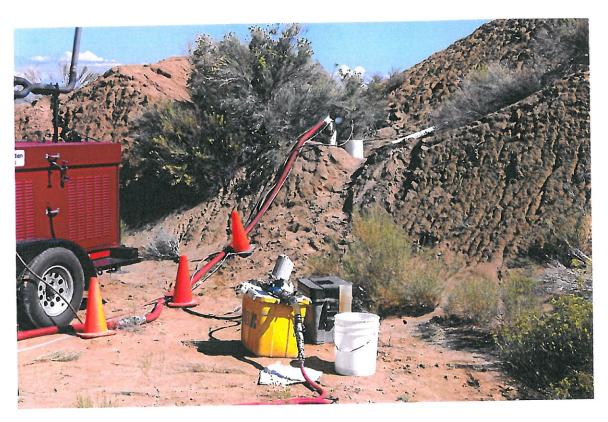
· ·	OPERATING DATA - EVENT # PAGE # L MOBILE DUAL PHASE SYSTEM								
Location	ocation: Hampton No. #4M, San Juan County, NM Project Managers: Sadler/Fau					adler/Faucher			
	Date:	8-76-13	Time	Time	Time	Time	Time		
	rarameters	Time 1215	Time 12-45	Time	Time	Time	Time		
	WELL# MW- 16	Hr Meter 65580	Hr Meter 6558.5	Hr Meter	Hr Meter	Hr Meter	Hr Meter		
ENGINE/BLOWER	R.P.M.	2000	2000						
	Oil Pressure psi	50	80						
BLO	Water Temp °F	160	160						
SINE	Volts	03	V3						
ENC	Intake Vacuum "Hg	12	13						
	Gas Flow Fuel/Propane cfh	680	150						
	GW Pump ON/OFF	OU ^J	oN						
ĸ	Extraction Well Flow scfm	35.06	35,06						
M/A	Extraction Well Vacuum "H ₂ O	190	146						
ACUL UME	Pump Rate gals/min	0.01	0.01						
SE/V/	Total Volume gals	3.9	4.2						
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	Gt	61						
MOS	Air Temperature °F	83.1	83.9						
AT	Barometric Pressure "Hg	30,25	30,23						
	Absolute Pressure "Hg	2416	2415						
TN	HC ppmv	738	648						
VAPOR /INFLUENT	CO ₂ %	2,56	2.04	0 4					
/INF	CO %	0	0						
\POR	O ₂ %	18.9	1922						
^	H ₂ S ppm	-1	ř						
	FW indexed vecesion				Scalifology (1986 - 1) Sersocking Sc	scan Pf=	ologen		
ro.	1	1245 HRG - Discontinued Event to 1A due to low TPH MM							
NOTES	and GW/LNAM recovery - moved to MW-12								
Ž	1								
							**		
			1,52		3, 1				
6	LNAPL % Vol Gals	10/003	0						
FOLI	Depth of GW Depression ft	-3.0	-3.0						
MANIFOLD	Extraction Well DTLNAPL ft	=	No						
- constitution of the cons	Extraction Well DTGW ft		21.71						
						1	1		

OPERATING DATA - EVENT # 18

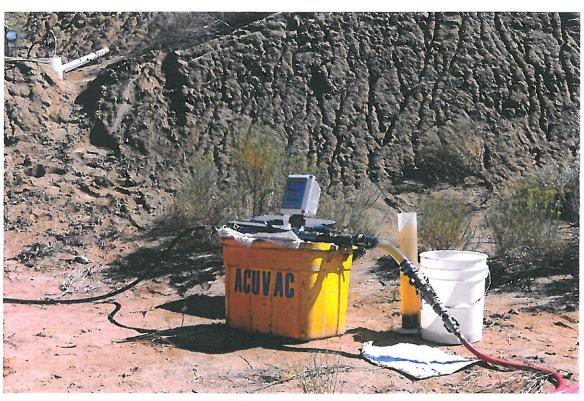
PAGE # (

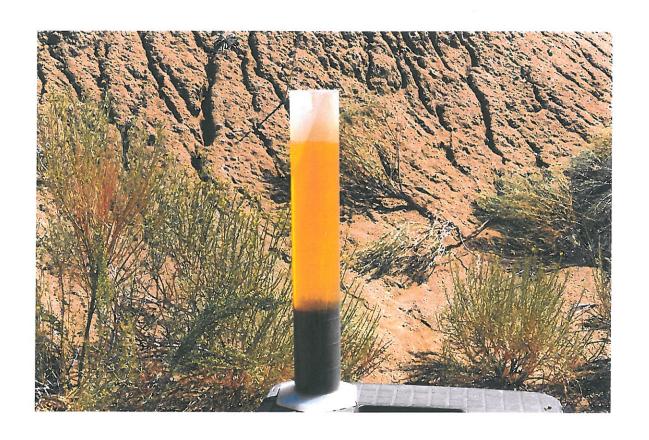
ACUVAC MOBILE DUAL PHASE SYSTEM

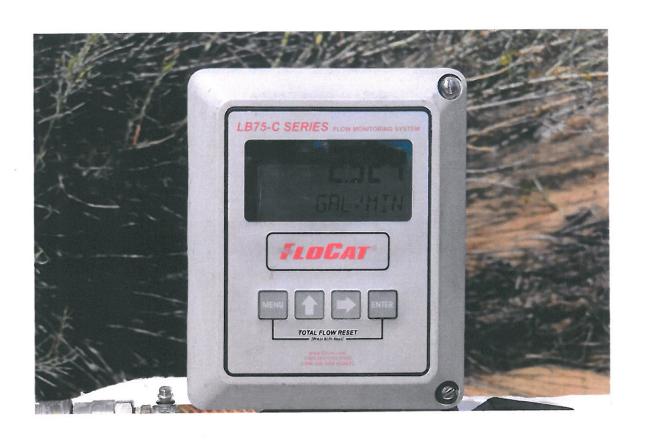
Location: Hampton No. #4M, San Juan County, NM Project Managers: Sadler/Fauche						Managers: Sa	
	Date: 8-36-13					-	
	Parameters	Time 1315	Time 1345	Time 1415	Time 1445	Time USUS	Time 1545
	WELL# MW- 12	Hr Meter 6 55% 5	Hr Meter 6 5 5 9 20	Hr Meter	Hr Meter 65600	Hr Meter G S 60 c 5	Hr Meter 65610
	R.P.M.	2000	2000	1000	2000	2000	2200
ENGINE/BLOWER	Oil Pressure psi	50	50	SO	50	50	50
	Water Temp °F	160	160	(60	160	160	160
INE/	Volts	03	13	13	13	13	13
ENG	Intake Vacuum "Hg	14	14	14	14	14	512
	Gas Flow Fuel/Propane cfh	150	iso	150	150	130	621
	GW Pump ON/OFF	du	9N	on	eU	011	010
_ ≃	Extraction Well Flow scfm	4203	47.03	47.03	41.03	47.03	54.06
M/AI	Extraction Well Vacuum "H ₂ O	40	40	40	40	90.	50
COU	Pump Rate gals/min	ORK	2.5	2.5	215	2.5	2.5
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	42.	-	.75	150	225	300
PHE	Influent Vapor Temp. °F	60	60	60	60	60	60
MOS	Air Temperature °F	84.1	85.3	85.7	86.6	87.7	883
LV	Barometric Pressure "Hg	3024	30.22	30120	30.19	30.18	30,17
	Absolute Pressure "Hg	24.16	2414	24.13	; 24.12	24.11	24.10
LZ	HC ppmv	54	114	154	178	206	184
LUE	CO ₂ %	3-42	3,30	3.10	2.92	280	2.92
INF	CO %	0	0	0	Q	0	0
VAPOR /INFLUENT	O ₂ %	186	17.8	179	17.9	18,0	18.2
, A	H ₂ S ppm	Ò	0	0	0	0	0
	1230Uns - mobili	ized SUFZ	LOW Rueove	my System	wear we	ell meers	~ O\$
	the extraction a					40° Kr0	,
S	VWF = 47.03 8	chui El	WPR = 20	5 gpm = N	· lique's	ENAPE of	oseived
NOTES	NOIE Extreme	ly low	TMH kevel	ls - 1505 B	the Twen	EASED EU	U indexed
	Vaccium = 80° Hro		The state of the s				
	INOTE ! System voc	um e V	15 "Hro; voc	um e wil	1 50° 4rd -	· Reason - W	ted to
	connect System &	o well w	ith Lor v	course hose	instead of d	o " due to	distance
	LNAPL % Vol Gals	-	=	· ·	. ~	-	f
MANIFOLD	Depth of GW Depression ft	-6.5	~C.S	-6.5	-6.5	-6.5	-6.5
MANI	Extraction Well DTLNAPL ft	40					
	Extraction Well DTGW ft	22.35					



OPERATING DATA - EVENT # \B PAGE # >


ACUVAC MOBILE DUAL PHASE SYSTEM


Locatio	on: Hampton No. #4M, S	an Juan Cour	ity, NM			et Managers: S	
	Date: &-76-13						
	Parameters	Time	Time	Time 1713	Time	Time	Time
	well# MW-	Hr Meter 6561.5	Hr Meter 6562.0	Hr Meter 6 56 2.5	Hr Meter	Hr Meter	Hr Meter
	R.P.M.	2200	7700	2300			
ENGINE/BLOWER	Oil Pressure psi	50	50	56			
	Water Temp °F	160	160	160			
INE	Volts	13	13	13			
ENG	Intake Vacuum "Hg	12	13	12			
	Gas Flow Fuel/Propane cfh	160	160	160			
	GW Pump ON/OFF	00	00	6P			
æ	Extraction Well Flow scfm	54.06	54.06	54.06			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	50	So	50			
CUU	Pump Rate gals/min	2.2	2.2	2,2			
E/VA VOL)	Total Volume gals	366	432	500			
HER	Influent Vapor Temp. °F	61	61	61			
MOSI	Air Temperature °F	89.5	90.7	91.4			
AT	Barometric Pressure "Hg	30.15	30.14	30.13			
	Absolute Pressure "Hg	24.08	2407	24.06			
	HC ppmv	224	242	236			
VAPOR /INFLUENT	CO ₂ %	3-15	2,60	2.52			
INFL	CO %	Ò	0	0			
OR/	O ₂ %	18.1	1.81	18.2			
VAF	H ₂ S ppm	0	6	ō			
	FW induced vocas						
	a sight decreasing				r, - NOTE	GOIDE ON	
NOTES	1715 Uns - EUB					-	
ž	Secured all wis				hrs	0.00	
					1 10/000	The St.	2.500 ti
	LNAPL % Vol Gals		~	-			
MANIFOLD	Depth of GW Depression ft	76.3	- 6°5	~ 6.5			
MAN	Extraction Well DTLNAPL ft			No			
	Extraction Well DTGW ft			23.67			



Appendix C

September 2013 Annual Groundwater Sampling Field Forms

SITF/PROJECT NAME:	WELL SAMPLING FIELD INFORMATION FORM HAMPTON YM JOB# 074927 EW-074927-091813-EM-MW-1 WELL# MW-1
SAMPLE ID:	6W-074927-091813-EM-MW-1 WELL# MW-1
9/18/13	9/18/13 WELL PURGING INFORMATION 0.51 1.75
PURGE DATE (MM DD YY)	SAMPLE DATE SAMPLE TIME WATER VOL IN CASING ACTUAL VOL PURGED (MM DD YY) (24 HOUR) (GALLONS) (GALLONS)
PURGING EQUIPMENTDEDICATE	PURGING AND SAMPLING EQUIPMENT SAMPLING EQUIPMENTDEDICATE ONE) (CIRCLE ONE)
PURGING DEVICE 6	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X= B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X= SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL	A - TEFLON D - PVC X= B - STAINLESS STEEL E - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY)
SAMPLING MATERIAL	C - POLYPROPYLENE X - OTHER X= SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION X = TEFLON/POLYPROPYLENE B - TYGON E - POLYETHYLENE PURGE TUBING OTHER (SPECIFY)
SAMPLING TUBING	C - ROPE F - SILICONE X - OTHER X = SAMPLING TUBING OTHER (SPECIFY)
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B - PRESSURE
DEPTH TO WATER	FIELD MEASUREMENTS (feet) WELL ELEVATION (feet)
WELL DEPTH TEMPERATURE	pH TDS SC DO ORP VOLUME
13,48 0	3.71 (std) 2.049 (g/L) 3162 (uS/cm) 6151 (mg/L) 304.9 (mV) 0.75 (gal)
13.23 13	$\frac{3.75}{4.9}$ (std) $\frac{2.664}{2.073}$ (g/L) $\frac{3.75}{3.90}$ (u.5/cm) $\frac{5.12}{4.95}$ (mg/L) $\frac{29.0}{26.24}$ $\frac{1.75}{1.75}$
	(gal) (gal) (gal) (gal) (gal)
(°C)	
(°C)	(std) (g/L) (μS/cm) (mg/L) (mV) (gal)
SAMPLE APPEARANCE: WEATHER CONDITIONS: TEME SPECIFIC COMMENTS:	FIELD COMMENTS COLOR: LTD DOWN SHEENY/N NO FRECIPITATION Y/N (IFY TYPE) NO PRECIPITATION Y/N (IFY TYPE) NO
4	
Chlindin	PRINT MS MCCONDANCE WITH APPLICABLE CRA PROTOCOLS PRINT MS MC SIGNATURE

SITE/PROJECT NAME: SAMPLE ID:	HAMPTON	45	INFORMATION JOB# MW-5 WELL#	FORM 07492	7
9/18/13	9/18/13	WELL PURGING IN	NEORMATION O 4	52	125 1.2
PURGE DATE (MM DD YY)	SAMPLE DATE (MM DD YY)	SAMPLE TIME (24 HOUR) PURGING AND SAMP	(1	VOL. IN CASING GALLONS)	ACTUAL VOL. PURGED (GALLONS)
URGING EQUIPMENTDEDICATED	a /			SAMPLING EQUIPMEN	TDEDICATEL N (CIRCLE ONE)
URGING DEVICE	I		Aller 'Aterra©	X=	
AMPLING DEVICE	ı	IPPER BOTTLE X - OT		X=	DEVICE OTHER (SPECIFY)
URGING MATERIAL	A - TEFLON D - P			Χ=	
AMPLING MATERIAL E	1	DLYETHYLENE THER	,	Χ==	IATERIAL OTHER (SPECIFY)
URGE TUBING	A - TEFLON D - P	DLYPROPYLENE G - CC	OMBINATION	SAMPLING I	MATERIAL OTHER (SPECIFY)
AMPLING TUBING		DLYETHYLENE X - OI	FLON/POLYPROPYLENE HER	PURGE TUBI	ING OTHER (SPECIFY)
LTERING DEVICES 0.45	A - IN-LINE DISPOSABLE	B - PRESSURE		SAMPLING	FUBING OTHER (SPECIFY)
DEPTH TO WATER	16.78	FIELD MEASUI	REMENTS WELL ELEVATION		(feet)
WELL DEPTH	20,02	(feet)	GROUNDWATER ELEVATION		(feet)
TEMPERATURE 5,0	α / γ	6 _(g/L) 411	DO (µS/cm) [2,99	ORP -/38.4	VOLUME (mv) (gal)
(°C)	(std)	(g/L)	(µS/cm)	(mg/L)	(mV) [gal]
(°C)	(std)	(g/L)	(µS/cm)	(mg/L)	(mV) (gal)
(°C)	(std)	(g/L)	(μS/cm)	(mg/ <u>L)</u>	(mV) (gal)
(°C)	(std)	(g/L)	(μS/cm)	(mg/L)	(mV) (gal)
MPLE APPEARANCE TATHER CONDITIONS: TEMPERATION ECIFIC COMMENTS:	MACT	FIELD COMA	ENTS DISCLORE Black NO	SHEEN Y/N W	ery slight spott
Barlect	dry @	~1.0	gallar		
I CERTIFY THAT SAMPLING PROCEDURES W	ERIN ACCORDANCE WITH APPLICA	BLE CRA PROTOCOLS	Ruad	Melle	<u> </u>

SITE/PROJECT NAME:	WELL SAMPLIN HAMP TON	IG FIELD INFORM UM		74927
SAMPLE ID:	GW-074927-0918	713-cm-MW-9	JOB# 07 WELL# Mh	V-9
9/18/13	9/18/13 W	ELL PURGING INFORMATION	1.23	[3.75]
PURGE DATE (MM DD YY)	SAMPLE DATE (MM DD YY)	SAMPLE TIME (24 HOUR)	WATER VOL IN CASING (GALLONS)	ACTUAL VOL. PURGED (GALLONS)
PURGING EQUIPMENTDEDICATED	/ ² \	ING AND SAMPLING EQUIPME		QUIPMENTDEDICATEO Y) N (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIF B - PERISTALTIC PUMP E - PURGE P		X= <u>-</u>	PURGING DEVICE OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP F - DIPPER E	SOTTLE X-OTHER	X=_	
PURGING MATERIAL E	A - TEFLON D - PVC - B - STAINLESS STEEL E - POLYETH - C - POLYPROPYLENE X - OTHER	HYLENE	X=_ X=_	SAMPLING DEVICE OTHER (SPECIFY) PURGING MATERIAL OTHER (SPECIFY) SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING	A - TEFLON D - POLYPRO B - TYGON E - POLYETH	TEFLON/POLYPROPY	LENE	PURGE TUBING OTHER (SPECIFY)
SAMPLING TUBING	C - ROPE F - SILICONE	Y OTHER	X=_	
ILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B	- PRESSURE	•	SAMPLING TUBING OTHER (SPECIFY)
DEPTH TO WATER	34.61 (feet) 32,27 (feet)	FIELD MEASUREMENTS WELL EI GROUNDWATER E	LEVATION	(feet)
1497 (°) E 14.82 (°) 5, 14.73 (°) 5.	58 (std) 2,537 (sc g/L) 3903 (µ5/cm) g/L) 3908 (µ5/cm)	$ \begin{array}{c c} 279_{(mg/L)} \\ 279_{(mg/L)} \end{array} $	0879 VOLUME 241 (mv) 2,75(gal) 05,0 (mv) 3,75(gal) 91,4 (mv) 3,75(gal)
(°C)	(std) (g	(µS/cm)	(mg/L)	(mV) [gal)
(°C)	(std) (g	g/L) (μS/cm)	(mg/L)	(mV) (gal)
AMPLE APPEARANCE: EATHER CONDITIONS: TEMPER PECIFIC COMMENTS:	DOUCH ODOR: 1101 ATURE 800 W	FIELD COMMENTS COLOR: TINDY Y/N TINDY Y/N	PRECIPITATION	10.5
I CERTIFY THAT SAMPLING PROCEDURE	WEBE IN ACCORDANCE WITH APPLICABLE CE	RA PROTOCOLS	X W IMA	16.00

 \subset

7

	_		LD INFORMATI		×4027	
SITE/PROJECT NAME: SAMPLE ID:	Gwr0749	TON YN 17-091813-	cm-inwal w	JOB#	»4927 W-11	_ _
PURGE DATE (MM DD YY)	SAMPLE DATE (MIN DD YY)	WELL PURGE 34 SAMPLE (24 HO		WATER VOL. IN CASING (GALLONS)	5.75 ACTUAL VOL. PURGED (GALLONS)	
PURGING EQUIPMENTDEDICA	ATED (Y) N (CIRCLE ONE)	PURGING AND S.	AMPLING EQUIPMENT	SAMPLING	GEQUIPMENTDEDICATED (CIRCLE ONE	
PURGING DEVICE	6 A - SUBMERSIBLE PUMP B - PERISTALTIC PUMP C - BLADDER PUMP	D - GAS LIFT PUMP E - PURGE PUMP F - DIPPER BOTTLE	G-BAILER H-WATERRAÐ X-OTHER		PURGING DEVICE OTHER (SPECIFY)	_
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON B - STAINLESS STFEL C - POLYPROPYLENE	D-PVC E-POLYETHYLENE X-OTHER			SAMPLING DEVICE OTHER (SPECIFY) PURGING MATERIAL OTHER (SPECIFY)	_
PURGE TUBING GAMIPLING TUBING	A - TEFLON B - TYGON C - ROPE	E-POLYETHYLENE	G - COMBINATION TEFLON/POLYPROPYLENE X - OTHER	. X•	SAMPLING MATERIAL OTHER (SPECIFY) PURGE TURING OTHER (SPECIFY)	-
FILTERING DEVICES 0.45	MA A - IN-LINE DISPOSABL	E B-PRESSURE			SAMPLING TUBING OTHER (SPECIFY)	
DEPTH TO WATER WELL DEPTH	56,73	FIELD ME	ASUREMENTS WELL ELEVATR GROUNDWATER ELEVATI		(feet)	
TEMPERATURE 1399 (°C) [1399 (°C) [1990 (°C)	(cstd) (std) (std)	$\frac{\frac{1}{2}}{\frac{1}{2}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}{\frac{1}{2}}\frac{\frac{1}{2}}{\frac{1}{2}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}{\frac{1}{2}}\frac{\frac{1}{2}}{\frac{1}{2}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}{\frac{1}{2}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}{\frac{1}{2}}\frac{\frac{1}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}\frac{\frac{1}{2}}$	5C 972 (u.5/cm) 2 972 (u.5/cm) 2	DO (mg/L) (mg/L) (mg/L)	ORP VOLUME 5.3 (mV) 47.5 67.8 (mV) 5.7 71.8 (mV) 5.7	(gal)
(°C)	(sid)	(g/L)	(µS/cm)	(mg/L)	(mV) (mV)	(gal) (gal)
U	htty daudyr Iperature Bole	FIELD C	OMMENTS COLOR ON	A FIGHT	VCUM NONCE	2
PECIFIC COMMENTS:	HZO, OVE	zinge IV	r color	Par		- - -
I CERTIFY THAT SAMPLING PROCES	DURPS WEEK IN ACCORDANCE WITH A	10 41 6	TURE		Stoll .	-

SITE/PROJECT NAME: SAMPLE ID:	WELL SAMPLING FIELD INFORMATION FORM HAMPTON FM 10B# C 6w-021927-091813-CM-19w-12 WELL# 1	1 274927 1w-12
9/18/13	4/18/13 WELL PURGING INFORMATION 1,32	4.00
PURGE DATE (MM DD YY)	SAMPLE DATE SAMPLE TIME WATER VOL. IN CAS (MM DD YY) (24 HOUR) (GALLONS)	ON ACTUAL VOL. PURGED (GALLONS).
. PURGING EQUIPMENTDEDICATED	PURGING AND SAMPLING EQUIPMENT SAMPL (CIRCLE ONE)	ING EQUIPMENTDEDICATED N (CIRCLE ONE)
PURGING DEVICE 6	A - SUBMERSIBLE PUMP	X=PURGING DEVICE OTHER (SPECIFY)
SAMPLING DEVICE	A-TEFLON D-PVC	SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL SAMPLING MATERIAL	B - STAINLESS STEEL E - POLYETHYLENE C - POLYPROPYLENE X - OTHER	Y= PURGING MATERIAL OTHER (SPECIFY) X=
PURGE TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION TEFLON/POLYPROPYLENE B - TYGON E - POLYETHYLENE X - OTHER	SAMPLING MATERIAL OTHER (SPECIFY) X= PURGE TUBING OTHER (SPECIFY)
FILTERING DEVICES 0.45	C-ROPE F-SILICONE X-OTHER A-IN-LINE DISPOSABLE B-PRESSURE	SAMPLING TUBING OTHER (SPECIFY)
DEPTH TO WATER WELL DEPTH TEMPERATURE 14,70 (°C) (°C) 14,58 (°C) (°C) (°C) AMPLE APPEARANCE: VEATHER CONDITIONS: TEMPERATURE PECIFIC COMMENTS:	Con Contraction	
1 CERTIFY THAT SAMPLING PROCEDURES	WERE IN ACCORDANCE WITH APPLICABLECRA PROTOCOLS	ACV (10)

SITE/PROJECT NAME: SAMPLE ID:	WELL SAMPLING FIELD INFORMATION FORM HAMPTON 4M JOB# 074927 6w-074927-091813-cm-Mw-15 WELL# MW-15
PURGE DATE (MM DD YY)	WELL PURGING INFORMATION 9/18/13 SAMPLE DATE (MM DD YY) WATER VOL. IN CASING (GALLONS) ACTUAL VOL. PURGED (GALLONS)
PURGING EQUIPMENTDEDICAT	PURGING AND SAMPLING EQUIPMENT ED (V) N SAMPLING EQUIPMENTDEDICATET (V) N (CIRCLE ONE) (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X= B - PERISTALTIC PUMP B - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON D - PVC X= B - STAINLESS STEEL E - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY) C - POLYPROPYLENE X - OTHER X= SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING SAMPLING TUBING	A-TEFLON D-POLYPROPYLENE G-COMBINATION X= TEPLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY) C-ROPE F-SILICONE X-OTHER X= SAMPLING TUBING OTHER (SPECIFY)
15.70 co [3	FIELD MEASUREMENTS 17, 23
SAMPLE APPEARANCE WEATHER CONDITIONS: TEMI SPECIFIC COMMENTS:	FIELD COMMENTS LIGHT COLOR: PROVINCE COLOR: PROVINCE SHEEN Y/N PRECIPITATION Y/N (IF Y TYPE) RESERVEDE IN ACCORDANCE WITH APPLICABLE CRAPROTOCOLS

Appendix D

September 2013 Annual Groundwater Laboratory Analytical Report

(913)599-5665

October 03, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 20, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 lowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097

SAMPLE SUMMARY

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60153661001	GW-074927-091813-CM-MW-1	Water	09/18/13 12:15	09/20/13 08:30
60153661002	GW-074927-091813-CM-MW-15	Water	09/18/13 12:30	09/20/13 08:30
60153661003	GW-074927-091813-CM-MW-9	Water	09/18/13 12:40	09/20/13 08:30
60153661004	GW-074927-091813-CM-MW-12	Water	09/18/13 13:00	09/20/13 08:30
60153661005	GW-074927-091813-CM-MW-11	Water	09/18/13 13:40	09/20/13 08:30
60153661006	GW-074927-091813-CM-MW-5	Water	09/18/13 14:05	09/20/13 08:30
60153661007	GW-074927-091813-CM-DUP	Water	09/18/13 13:05	09/20/13 08:30
60153661008	TB-074927-091813-CM-001	Water	09/18/13 16:45	09/20/13 08:30

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60153661001	GW-074927-091813-CM-MW-1	EPA 5030B/8260	PRG	8
60153661002	GW-074927-091813-CM-MW-15	EPA 5030B/8260	PRG	8
60153661003	GW-074927-091813-CM-MW-9	EPA 5030B/8260	PRG	8
60153661004	GW-074927-091813-CM-MW-12	EPA 5030B/8260	PRG	8
60153661005	GW-074927-091813-CM-MW-11	EPA 5030B/8260	PRG	8
60153661006	GW-074927-091813-CM-MW-5	EPA 5030B/8260	PRG	8
60153661007	GW-074927-091813-CM-DUP	EPA 5030B/8260	PRG	8
60153661008	TB-074927-091813-CM-001	EPA 5030B/8260	PRG	8

(913)599-5665

PROJECT NARRATIVE

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Method: EPA 5030B/8260 Description: 8260 MSV

Client: COP Conestoga-Rovers & Associates, Inc. NM

Date: October 03, 2013

General Information:

8 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/56552

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

QC Batch: MSV/56580

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

09/26/13 01:52 460-00-4

09/26/13 01:52 17060-07-0

09/26/13 01:52 2037-26-5

09/26/13 01:52

ANALYTICAL RESULTS

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

4-Bromofluorobenzene (S)

1,2-Dichloroethane-d4 (S)

Date: 10/03/2013 09:23 AM

Toluene-d8 (S)

Preservation pH

Sample: GW-074927-091813-CM-Lab ID: 60153661001 Collected: 09/18/13 12:15 Received: 09/20/13 08:30 Matrix: Water MW-1 Report Limit MDL DF **Parameters** Results Units Prepared Analyzed CAS No. Qual 8260 MSV Analytical Method: EPA 5030B/8260 ND ug/L 0.060 09/26/13 01:52 71-43-2 Benzene 1.0 Ethylbenzene ND ug/L 1.0 0.18 1 09/26/13 01:52 100-41-4 Toluene ND ug/L 1.0 0.17 1 09/26/13 01:52 108-88-3 Xylene (Total) ND ug/L 0.42 09/26/13 01:52 1330-20-7 3.0 1 Surrogates

1

1

0.10

80-120

80-120

80-120

0.10

103 %

103 %

106 %

1.0

REPORT OF LABORATORY ANALYSIS

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Date: 10/03/2013 09:23 AM

Sample: GW-074927-091813-CM- Lab ID: 60153661002 Collected: 09/18/13 12:30 Received: 09/20/13 08:30 Matrix: Water MW-15

Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
Analytical	Method: EPA	A 5030B/8260						
ND u	ıg/L	1.0	0.060	1		09/26/13 02:06	71-43-2	
ND u	ıg/L	1.0	0.18	1		09/26/13 02:06	100-41-4	
ND u	ıg/L	1.0	0.17	1		09/26/13 02:06	108-88-3	
ND u	ıg/L	3.0	0.42	1		09/26/13 02:06	1330-20-7	
99 %	6	80-120		1		09/26/13 02:06	460-00-4	
103 %	6	80-120		1		09/26/13 02:06	17060-07-0	
104 %	6	80-120		1		09/26/13 02:06	2037-26-5	
1.0		0.10	0.10	1		09/26/13 02:06		
	Analytical ND u ND u ND u 99 % 103 %	Analytical Method: EPA ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L 99 % 103 % 104 %	Results Units Limit Analytical Method: EPA 5030B/8260 ND ug/L 1.0 ND ug/L 1.0 1.0 ND ug/L 1.0 1.0 ND ug/L 3.0 3.0 99 % 80-120 80-120 103 % 80-120 80-120 104 % 80-120 80-120	Results Units Limit MDL Analytical Method: EPA 5030B/8260 ND ug/L 1.0 0.060 ND ug/L 1.0 0.18 ND ug/L 1.0 0.17 ND ug/L 3.0 0.42 99 % 80-120 103 % 80-120 104 % 80-120	Results Units Limit MDL DF Analytical Method: EPA 5030B/8260 ND ug/L 1.0 0.060 1 ND ug/L 1.0 0.18 1 ND ug/L 1.0 0.17 1 ND ug/L 3.0 0.42 1 99 % 80-120 1 103 % 80-120 1 104 % 80-120 1	Results Units Limit MDL DF Prepared Analytical Method: EPA 5030B/8260 ND ug/L 1.0 0.060 1 ND ug/L 1.0 0.18 1 ND ug/L 1.0 0.17 1 ND ug/L 3.0 0.42 1 99 % 80-120 1 103 % 80-120 1 104 % 80-120 1	Results Units Limit MDL DF Prepared Analyzed Analytical Method: EPA 5030B/8260 ND ug/L 1.0 0.060 1 09/26/13 02:06 ND ug/L 1.0 0.18 1 09/26/13 02:06 ND ug/L 1.0 0.17 1 09/26/13 02:06 ND ug/L 3.0 0.42 1 09/26/13 02:06 99 % 80-120 1 09/26/13 02:06 103 % 80-120 1 09/26/13 02:06 104 % 80-120 1 09/26/13 02:06	Results Units Limit MDL DF Prepared Analyzed CAS No. Analytical Method: EPA 5030B/8260 ND ug/L 1.0 0.060 1 09/26/13 02:06 71-43-2 ND ug/L 1.0 0.18 1 09/26/13 02:06 100-41-4 ND ug/L 1.0 0.17 1 09/26/13 02:06 108-88-3 ND ug/L 3.0 0.42 1 09/26/13 02:06 1330-20-7 99 % 80-120 1 09/26/13 02:06 460-00-4 103 % 80-120 1 09/26/13 02:06 17060-07-0 104 % 80-120 1 09/26/13 02:06 2037-26-5

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Sample: GW-074927-091813-CM-MW-9 Lab ID: 60153661003 Collected: 09/18/13 12:40 Received: 09/20/13 08:30 Matrix: Water

Date: 10/03/2013 09:23 AM

MVV-9									
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP	A 5030B/8260						
Benzene	ND u	ıg/L	1.0	0.060	1		09/26/13 02:20	71-43-2	
Ethylbenzene	ND u	ıg/L	1.0	0.18	1		09/26/13 02:20	100-41-4	
Toluene	ND u	ıg/L	1.0	0.17	1		09/26/13 02:20	108-88-3	
Xylene (Total)	ND u	ıg/L	3.0	0.42	1		09/26/13 02:20	1330-20-7	
Surrogates									
4-Bromofluorobenzene (S)	99 %	%	80-120		1		09/26/13 02:20	460-00-4	
1,2-Dichloroethane-d4 (S)	104 %	%	80-120		1		09/26/13 02:20	17060-07-0	
Toluene-d8 (S)	103 %	%	80-120		1		09/26/13 02:20	2037-26-5	
Preservation pH	1.0		0.10	0.10	1		09/26/13 02:20		

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Date: 10/03/2013 09:23 AM

Sample: GW-074927-091813-CM- Lab ID: 60153661004 Collected: 09/18/13 13:00 Received: 09/20/13 08:30 Matrix: Water Report

14144-17									
			Report						
Parameters	Results -	Units	Limit	MDL .	DF_	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP	A 5030B/8260						
Benzene	202 (ıg/L	5.0	0.30	5		09/26/13 15:42	71-43-2	
Ethylbenzene	ND u	ıg/L	5.0	0.90	5		09/26/13 15:42	100-41-4	
Toluene	ND u	ıg/L	5.0	0.85	5		09/26/13 15:42	108-88-3	
Xylene (Total)	ND u	ıg/L	15.0	2.1	5		09/26/13 15:42	1330-20-7	
Surrogates									
4-Bromofluorobenzene (S)	102 %	%	80-120		5		09/26/13 15:42	460-00-4	
1,2-Dichloroethane-d4 (S)	99 9	%	80-120		5		09/26/13 15:42	17060-07-0	
Toluene-d8 (S)	99 9	%	80-120		5		09/26/13 15:42	2037-26-5	
Preservation pH	1.0		0.10	0.10	5		09/26/13 15:42		

Project: 074927 Hampton No. 4M

1.0

Pace Project No.: 60153661

Preservation pH

Date: 10/03/2013 09:23 AM

Sample: GW-074927-091813-CM-Lab ID: 60153661005 Collected: 09/18/13 13:40 Received: 09/20/13 08:30 Matrix: Water MW-11 Report Limit MDL DF **Parameters** Results Units Prepared Analyzed CAS No. Qual 8260 MSV Analytical Method: EPA 5030B/8260 ND ug/L 0.060 09/26/13 02:47 71-43-2 Benzene 1.0 Ethylbenzene ND ug/L 1.0 0.18 1 09/26/13 02:47 100-41-4 Toluene ND ug/L 1.0 0.17 1 09/26/13 02:47 108-88-3 Xylene (Total) ND ug/L 0.42 09/26/13 02:47 1330-20-7 3.0 1 Surrogates 4-Bromofluorobenzene (S) 102 % 80-120 09/26/13 02:47 460-00-4 1,2-Dichloroethane-d4 (S) 101 % 80-120 1 09/26/13 02:47 17060-07-0 Toluene-d8 (S) 105 % 80-120 09/26/13 02:47 2037-26-5

0.10

0.10

1

09/26/13 02:47

09/26/13 03:01 17060-07-0

09/26/13 03:01 2037-26-5

09/26/13 03:01

ANALYTICAL RESULTS

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

1,2-Dichloroethane-d4 (S)

Date: 10/03/2013 09:23 AM

Toluene-d8 (S)

Preservation pH

Sample: GW-074927-091813-CM-Lab ID: 60153661006 Collected: 09/18/13 14:05 Received: 09/20/13 08:30 Matrix: Water MW-5 Report Limit MDL DF **Parameters** Results Units Prepared Analyzed CAS No. Qual 8260 MSV Analytical Method: EPA 5030B/8260 35.9 ug/L 20.0 20 09/26/13 03:01 71-43-2 Benzene 1.2 Ethylbenzene 227 ug/L 20.0 3.6 20 09/26/13 03:01 100-41-4 Toluene 154 ug/L 20.0 3.4 20 09/26/13 03:01 108-88-3 Xylene (Total) 1320 ug/L 60.0 8.4 20 09/26/13 03:01 1330-20-7 Surrogates 4-Bromofluorobenzene (S) 101 % 80-120 20 09/26/13 03:01 460-00-4

20

20

20

0.10

80-120

80-120

0.10

105 %

104 %

1.0

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Sample: GW-074927-091813-CM-Lab ID: 60153661007 Collected: 09/18/13 13:05 Received: 09/20/13 08:30 Matrix: Water

Date: 10/03/2013 09:23 AM

DUP									
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP	A 5030B/8260						
Benzene	210 u	ıg/L	5.0	0.30	5		09/26/13 15:56	71-43-2	
Ethylbenzene	ND u	ıg/L	5.0	0.90	5		09/26/13 15:56	100-41-4	
Toluene	ND u	ıg/L	5.0	0.85	5		09/26/13 15:56	108-88-3	
Xylene (Total) Surrogates	ND u	ıg/L	15.0	2.1	5		09/26/13 15:56	1330-20-7	
4-Bromofluorobenzene (S)	103 %	6	80-120		5		09/26/13 15:56	460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	%	80-120		5		09/26/13 15:56	17060-07-0	
Toluene-d8 (S)	100 %	%	80-120		5		09/26/13 15:56	2037-26-5	
Preservation pH	1.0		0.10	0.10	5		09/26/13 15:56		

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Date: 10/03/2013 09:23 AM

Sample: TB-074927-091813-CM	-001 Lab ID:	60153661008	Collecte	d: 09/18/13	16:45	Received: 09	9/20/13 08:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	l Method: EPA 5	030B/8260						
Benzene	ND t	ug/L	1.0	0.060	1		09/25/13 23:34	71-43-2	
Ethylbenzene	ND t	ug/L	1.0	0.18	1		09/25/13 23:34	100-41-4	
Toluene	ND t	ug/L	1.0	0.17	1		09/25/13 23:34	108-88-3	
Xylene (Total)	ND t	ug/L	3.0	0.42	1		09/25/13 23:34	1330-20-7	
Surrogates									
4-Bromofluorobenzene (S)	98 9	%	80-120		1		09/25/13 23:34	460-00-4	
1,2-Dichloroethane-d4 (S)	106 9	%	80-120		1		09/25/13 23:34	17060-07-0	
Toluene-d8 (S)	101 9	%	80-120		1		09/25/13 23:34	2037-26-5	
Preservation pH	1.0		0.10	0.10	1		09/25/13 23:34		

QUALITY CONTROL DATA

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Date: 10/03/2013 09:23 AM

QC Batch: MSV/56552 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge Associated Lab Samples: 60153661001, 60153661002, 60153661003, 60153661005, 60153661006, 60153661008

METHOD BLANK: 1260052 Matrix: Water

Associated Lab Samples: 60153661001, 60153661002, 60153661003, 60153661005, 60153661006, 60153661008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/25/13 22:39	
Ethylbenzene	ug/L	ND	1.0	09/25/13 22:39	
Toluene	ug/L	ND	1.0	09/25/13 22:39	
Xylene (Total)	ug/L	ND	3.0	09/25/13 22:39	
1,2-Dichloroethane-d4 (S)	%	100	80-120	09/25/13 22:39	
4-Bromofluorobenzene (S)	%	100	80-120	09/25/13 22:39	
Toluene-d8 (S)	%	98	80-120	09/25/13 22:39	

LABORATORY CONTROL SAMPLE: 1260053 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Benzene 21.3 ug/L 20 106 73-122 Ethylbenzene 20 105 ug/L 21.0 76-123 Toluene ug/L 20 19.7 98 76-122 Xylene (Total) ug/L 76-122 60 60.6 101 1,2-Dichloroethane-d4 (S) % 104 80-120 4-Bromofluorobenzene (S) % 99 80-120 Toluene-d8 (S) % 96 80-120

REPORT OF LABORATORY ANALYSIS

Lenexa, KS 66219 (913)599-5665

QUALITY CONTROL DATA

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Date: 10/03/2013 09:23 AM

QC Batch: MSV/56580 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60153661004, 60153661007

METHOD BLANK: 1260568 Matrix: Water

Associated Lab Samples: 60153661004, 60153661007

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/26/13 12:02	
Ethylbenzene	ug/L	ND	1.0	09/26/13 12:02	
Toluene	ug/L	ND	1.0	09/26/13 12:02	
Xylene (Total)	ug/L	ND	3.0	09/26/13 12:02	
1,2-Dichloroethane-d4 (S)	%	87	80-120	09/26/13 12:02	
4-Bromofluorobenzene (S)	%	102	80-120	09/26/13 12:02	
Toluene-d8 (S)	%	98	80-120	09/26/13 12:02	

LABORATORY CONTROL SAMPLE: 1260569 LCS LCS Spike % Rec Limits Parameter Units Conc. Result % Rec Qualifiers Benzene 20.1 101 73-122 ug/L 20 Ethylbenzene 20 20.3 102 ug/L 76-123 Toluene 20 ug/L 20.0 100 76-122 Xylene (Total) ug/L 59.1 76-122 60 99 1,2-Dichloroethane-d4 (S) % 84 80-120 4-Bromofluorobenzene (S) % 101 80-120 Toluene-d8 (S) % 97 80-120

(913)599-5665

QUALIFIERS

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: MSV/56552

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/56580

Date: 10/03/2013 09:23 AM

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074927 Hampton No. 4M

Pace Project No.: 60153661

Date: 10/03/2013 09:23 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60153661001	GW-074927-091813-CM-MW-1	EPA 5030B/8260	MSV/56552	_	
60153661002	GW-074927-091813-CM-MW-15	EPA 5030B/8260	MSV/56552		
60153661003	GW-074927-091813-CM-MW-9	EPA 5030B/8260	MSV/56552		
60153661004	GW-074927-091813-CM-MW-12	EPA 5030B/8260	MSV/56580		
60153661005	GW-074927-091813-CM-MW-11	EPA 5030B/8260	MSV/56552		
60153661006	GW-074927-091813-CM-MW-5	EPA 5030B/8260	MSV/56552		
60153661007	GW-074927-091813-CM-DUP	EPA 5030B/8260	MSV/56580		
60153661008	TB-074927-091813-CM-001	EPA 5030B/8260	MSV/56552		

Sample Condition Upon Receipt ESI Tech Spec Client

Client Name: COP CEA NIM	Optional
Courier: Fed Ex Ø UPS □ USPS □ Client □ Commercial □ Pace I	☐ Other ☐ Proj Due Date:
Tracking #: 603 6827 9432 Pace Shipping Label Used	? Yes ⊠ No □ Proj Name:
Custody Seal on Cooler/Box Present: Yes ☑ No □ Seals intact: Yes	♂ No □
Packing Material: Bubble Wrap ♥ Bubble Bags ☐ Foam ☐	None ☐ Other ☐
	None Samples received on ice, cooling process has begun.
Cooler Temperature: 3.1 (circle one	Date and initials of person examining contents:
Temperature should be above freezing to 6°C	1075
Chain of Custody present: SOYes No N/A 1	
Chain of Custody filled out:	
Chain of Custody relinquished:	
Sampler name & signature on COC: Yes No NA 4.	
Samples arrived within holding time:	
Short Hold Time analyses (<72hr): □Yes №No □N/A 6.	
Rush Turn Around Time requested:	
Sufficient volume: No N/A 8.	
Correct containers used:	
Pace containers used:	
Containers intact:	
Unpreserved 5035A soils frozen w/in 48hrs? □Yes □No ☑N/A 11	
Filtered volume received for dissolved tests?	*
Sample labels match COC: ✓ Yes □ No □ N/A	
Includes date/time/ID/analyses Matrix: Mater 13	
All containers needing preservation have been checked. Yes No N/A	
All containers needing preservation are found to be in compliance with EPA recommendation.	
The state of the s	tial when Lot # of added preservative
Trip Blank present: ☐ Yes ☐ No ☐ N/A	
Pace Trip Blank lot # (if purchased): 06°513·3 /	14
Headspace in VOA vials (>6mm); □Yes ⋈ □N/A	
16	j.
Project sampled in USDA Regulated Area:	List State:
Client Notification/ Resolution: Copy COC to Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/Time:	Temp Log: Record start and finish times
Comments/ Resolution:	when unpacking cooler, if >20 min, recheck sample temps.
	Start: 1,25 Start:
	End: (03º End:
Project Manager Review: Da	ite 9 70 75 Temp: Temp:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Project Information:	Section C Invoice Information:	Page: of
Company: COP CRA NM	Report To: Christine Mathews	Attention: COP epayables	
Address: 6121 Indian School Rd NE, Ste 200	6121 Indian School Rd NE, Ste 200 Copy To: Jeff Walker, Angela Bown	Company Name:	REGULATORY AGENCY
Albequerque, NM 87110		Address:	☐ NPDES
Email To: cmathews@craworld.com	Purchase Order No :	Pace Quote Reference:	r UST rcra r OTHER
Phone: (505)884-0672 Fax: (505)884-4932	Project Name: Hampton No. 4M	Pace Project Alice Flanagan Manager.	Site Location NIM
Requested Due Date/TAT:	Project Number: 74927	Pace Profile #: 5514, 14	STATE:
		Reguleste	Requested Analysis Filtered (VIN)

CONTRIBUTE TABLE TABLE TABLE TO THE TABLE TO		Section D Valid Matrix Codes Required Client Information MATRIX CODE	-	Ö	COLLECTED	Ω			Presi	Preservatives	Se	↑ N/A			,3					
SAMPLER NAME AND SIGNATURE OF SAMPLE		DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL		COMPOSITE	0.00	OMPOSITE :ND/GRAB		S				b quinty					(N/Y) ə	3	55100	-
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ILEM #	WIPE AIR OTHER TISSUE					D TA 9M3T 3J9MA8	Unpreserved	^E ONH	HOaN	Methanol	e9T eieγlsnA↓	8260 BTEX				Residual Chlorin	Pace	Project Ne	o./ Lab I.D.
SUL-0714977-071813-071813-071-071813-071-071813-071-071813	-	11-074917- NaIGI	-	H	1	2		17		×			2					3000	Pri	100
AU OTHER COMMENTS ADDITIONAL	2	11-074927- PG 1813-CM- MW	1			12		100	K .	×	ш		<i>y</i>							200
CTU		111-174977- Raia12 /m - mw			0/2	13 24	0	Le		×			X							83
ADDITIONAL COMMENTS ADDITIONA	4	574927 PAIRIS (m)				_		n		~		N	X							400
ADDITIONAL COMMENTS ADDITIONA		101407-1-691812-1-1-1-1	1.		9	12 134	0	K	,	×			5/						#1	200
ADDITIONAL COMMENTS ADDITIONA		11-674977- Maiara-Con-			417	113 140)c	e		_			×							900
ADDITIONAL COMMENTS ADDITIONA		W-674927-091813-0m			_		_	ec	-	V			X					>		400
ADDITIONAL COMMENTS AMPLER NAME AND SIGNATURE ADDITIONAL COMMENTS		01.074971-RG	2			1											1			
ADDITIONAL COMMENTS ADDITIONAL COMMENTS ADDITIONAL COMMENTS AND LET TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLERY SIGNATURE of SAMPLERY SIGNATURE of SAMPLERY SAMPLERY SIGNATURE of SAMPLERY SIG		-074927-091813-CM-C	J.V.		9116	3		a		X		- 4	×					306	(Fr.	308
ADDITIONAL COMMENTS RELINQUISHED BY I AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLE TIME SAMPLE CONDITIONS SAMPLE CONDITI					-								5							
ADDITIONAL COMMENTS RELINQUISHED BY I AFFILLATION ADDITIONAL COMMENTS RELINQUISHED BY I AFFILLATION DATE TIME ACCEPTED BY I AFFILLATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE DATE TIME SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE TO MANTE SIGNATURE DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE OF SAMPLER TO MANTE SIGNATURE DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE OF SAMPLER TO MANTE SIGNATURE OF SAMPLER SAMPLER NAME SIGNATURE OF SAMPLER TO MANTE SIGNATURE OF SAMPLER SAMPLER NAME SIGNATURE OF SAMPLER TO MANTE SIGNATURE OF SAMPLER SAMPLER NAME SIGNATURE OF SAMPLER SAMPLER NAME SIGNATURE OF SAMPLER TO MANTE SIGNATURE OF SAMPLER SAMPLER NAME SIGNATURE OF SAMPLER SAMPLER NAME SIGNATURE OF SAMPLER TO MANTE SIGNATURE OF SAMPLER SAMPLER NAME SIGNATURE OF SAMPLER NAME SIGNATURE	-								+											
SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER SAMPLER INTERIOR SAM	N	STISTINGS INNOTINGE	Silicania	No dan	NO PAL	1	-	TIME		- 1	Tabout	NA U	AEEII IATION	1	ATE	HWE.	1	SAMP	FCONDITIO	SNS
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER Temp in °C Cooler (Y/N) Signature of Samples intact			TO THE SAME	MORON	1006	-	3	M			The same	1	19	18	51/0	83		7	7	>
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER. Temp in °C Custody Sealed Custody Sealed Cooler (Cooler Samples Intact						-	9	<u> </u>	- 1	-				12						
SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: PRINT Name of SAMPLER: Custody Sealed Cooler (Y/V) Temp In Course of SAMPLER Temp In Course of SAMPLER Signature of SAMPLER Samples Initial Samples I								1	14		-			5						
PRINT Name of SAMPLERY SIGNATURE of SAMPLERY NAMITHENDAY SAMPLERY SAMPLE	Pa			SAN	MPLER NA	ME AND SIG	NATURE	-	1	-	E (3					٥.		Paled VV)	loetr
	ige 19 d				PRINT	Name of SA	MPLER:		Z.	15 ×	0=	30	DATE Signed	1 [0/12		ni qmeT		S yboteu(Y) TelooO	il ealqmeS (N/Y)