3R - 071

2013 AGWMR

03 / 21 / 2014

Terry S. Lauck Program Manager

ConocoPhillips Company Risk Management & Remediation 1380G Plaza Office Building 315 Johnstone Avenue Bartlesville, OK 74004 Phone: 918.661.0935

E-mail: Terry.S.Lauck@cop.com

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

March 21, 2014

Re: NMOCD Case No. 3RP-071, 2013 Annual Remediation and Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed is the 2013 Annual Groundwater Monitoring Report for the Johnston Federal No. 4 Metering Station site. This report, prepared by Conestoga-Rovers & Associates (CRA), contains the results of the mobile dual phase extraction event and annual groundwater monitoring conducted during August and September 2013, respectively.

Please let me know if you have any questions.

\$incerely,

Terry S. Lauck

Enc

www.CRAworld.com

2013 Annual Remediation and Groundwater Monitoring Report

ConocoPhillips Johnston Federal No. 4 Metering Station San Juan County, New Mexico API# 30-045-10130 NMOCD # 3RP-71

Prepared for: ConocoPhillips Risk Management and Remediation

Conestoga-Rovers & Associates

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110

Table of Contents

	Page
Section 1.0	Introduction1
	1.1 Background
Section 2.0	Mobile Dual Phase Extraction2
Section 3.0	Groundwater Sampling Methodology and Analytical Results23.1Groundwater Sampling Methodology23.2Groundwater Analytical Results3
Section 4.0	Conclusions and Recommendations4
	List of Figures (Following Text)
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Geological Cross Section
Figure 4	September 2013 Groundwater Potentiometric Surface Map
Figure 5	September 2013 Benzene Concentration Map
	List of Tables (Following Text)
Table 1	Site History Map
Table 2	Monitor Well Specifications and Groundwater Elevations
Table 3	Groundwater Laboratory Analytical Results Summary
	List of Appendices
Appendix A	August 2013 Mobile Dual Phase Extraction Report
Appendix B	September 2013 Annual Groundwater Sampling Field Forms
Appendix C	September 2013 Annual Groundwater Laboratory Analytical Report

Section 1.0 Introduction

This report presents the results of a mobile dual phase extraction (MDPE) event and annual groundwater monitoring conducted by Conestoga-Rovers & Associates (CRA) on August 24th, 25th, and 27th and September 17, 2013, respectively, at the ConocoPhillips Company (ConocoPhillips) Johnston Federal No. 4 Metering Station (Site) located on Bureau of Land Management (BLM) land, approximately 13 miles east-northeast of Aztec, San Juan County, New Mexico in Unit Letter M, Section 27, Township 31N, Range 9W (**Figure 1**). A Site detail map is included as **Figure 2**. The Johnston Federal No. 4 wellhead, API # 30-045-10130, is located approximately one-half mile to the southwest of the metering station.

1.1 Background

Burlington Resources (Burlington) conducted initial site assessments of two production pits in August 1998. Soil from the separator pit was collected and analyzed for total petroleum hydrocarbons (TPH). The concentration of TPH in separator pit (Production Pit #1, Figure 2) soil was found to be below New Mexico Oil Conservation Division (NMOCD) recommended action levels for this constituent, and the pit was subsequently granted closure by NMOCD. Soil from the tank drain pit (Production Pit #2, Figure 2) was collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and TPH. Concentrations of these constituents were found to be above NMOCD recommended action levels. Following laboratory results, approximately 3,055 cubic yards of hydrocarbon-impacted soil was excavated in December 1998. Once complete, the excavation was backfilled with clean fill material, and the NMOCD granted pit closure.

A groundwater monitor well, MW-1, was installed at the Site to a depth of 50 feet below ground surface (bgs) in May of 1999. Burlington sampled Monitor Well MW-1 on a quarterly basis until the acquisition of Burlington by ConocoPhillips in March of 2006. Tetra Tech, Inc. (Tetra Tech) began sampling MW-1 in November 2007. In August 2008, three additional groundwater monitor wells were installed under the supervision of Tetra Tech by WDC Exploration and Drilling of Peralta, NM. With information obtained during monitor well installation in 2008, a generalized geologic cross section was completed for the Site and is presented as Figure 3. The existing Burlington/ConocoPhillips monitor well network at the Site includes MW-1, MW-2, MW-3, and MW-4. El Paso Natural Gas (El Paso) owns three additional Site monitor wells. The monitoring schedule of the El Paso-owned monitor wells is not known. Monitor Wells MW-1, MW-2, MW-3, and MW-4 were incorporated into an annual sampling schedule beginning on October 24, 2008.

On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to CRA of Albuquerque, NM.

A historical timeline for the Site is presented in Table 1

Section 2.0 Mobile Dual Phase Extraction

In addition to annual groundwater sampling during September 2013, CRA provided oversight for an MDPE event conducted on August 23rd, 24th, and 27th 2013 by AcuVac of Houston, TX. MDPE is a process combining soil vapor extraction (SVE) with groundwater depression to maximize mass removal of liquid and vapor phase hydrocarbons. A submersible pump is used to simultaneously remove dissolved-phase contaminated groundwater, induce a hydraulic gradient toward the extraction well, and to create the groundwater depression, exposing the capillary fringe or smear zone to SVE. Recovered liquids were discharged to the on-site evaporation tank. Recovered vapors were used as fuel and burned in the MDPE internal combustion engine (ICE). Power generated by the ICE is used to create the induced vacuum for SVE.

During the three days of MDPE, approximately 94 gallons of hydrocarbons (liquid and vapor) were extracted from Monitor Well MW-1. Data from the September 2013 groundwater monitoring event indicate that, while the MDPE event was very effective in removing a significant mass of hydrocarbons, elevated concentrations remain in the groundwater in the vicinity of MW-1 (see Section 3.2). The complete report for MDPE activities performed at the Site was provided by AcuVac and is included as **Appendix A.**

Section 3.0 Groundwater Sampling Methodology and Analytical Results

3.1 Groundwater Sampling Methodology

Groundwater Elevation Measurements

On September 17, 2013, groundwater elevation measurements were obtained for Monitor Wells MW-1, MW-2, MW-3, and MW-4 using an oil/water interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater potentiometric surface map is presented as **Figure 4**. Based on September 2013 monitoring event data, groundwater flow remains to the east-southeast and is consistent with recent and historical records at this Site. There was no measurable thickness of product present in the Site monitor wells during the 2013 annual groundwater sampling event; however, a slight but continuous hydrocarbon sheen was observed in the purge water generated from Monitor Well MW-1.

Groundwater sampling

Groundwater samples were collected from Monitor Wells MW-1, MW-2, MW-3, and MW-4. Approximately three well volumes were purged from each monitor well with a dedicated polyethylene 1.5-inch disposable bailer. Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Pace Analytical Services, Inc. of Lenexa, Kansas. The samples were analyzed for the presence of BTEX in accordance with Environmental Protection Agency (EPA) Method 8260, naphthalene by EPA Method 8270, sulfate by EPA Method 300.0, and for dissolved manganese and iron by EPA Method 6010. Groundwater sampling field forms are included as **Appendix B**. The associated laboratory analytical report is included as **Appendix C**.

3.2 Groundwater Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitor wells are discussed below. Results are summarized in **Table 3**.

Benzene

 The NMWQCC standard for benzene is 0.010 milligrams per liter (mg/L). The groundwater sample collected from MW-1 in September 2013 contained benzene at a concentration of 4.69 mg/L.

Toluene

 The NMWQCC standard for toluene is 0.75 mg/L. The groundwater sample collected from MW-1 contained toluene at a concentration of 7.55 mg/L.

Ethylbenzene

• The NMWQCC standard for ethylbenzene is 0.75 mg/L. The groundwater sample collected from MW-1 contained a concentration of ethylbenzene of 1.17 mg/L.

Total Xylenes

 The NMWQCC standard for total xylenes is 0.620 mg/L. The groundwater sample collected from MW-1 contained xylenes at a concentration of 11.0 mg/L.

Naphthalenes

 The NMWQCC standard for naphthalenes is 0.03 mg/L. The groundwater sample collected from MW-1 contained naphthalenes at a concentration of 0.0365 mg/L.

Sulfate

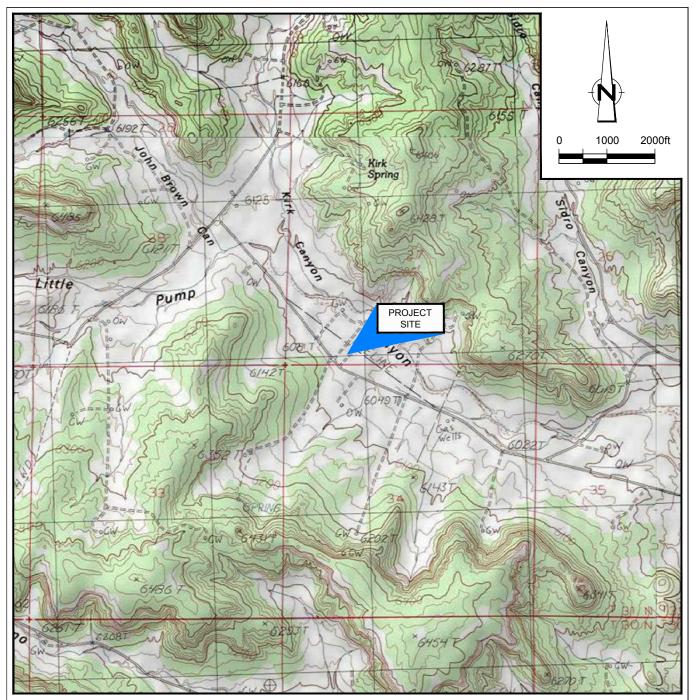
 The NMWQCC standard for sulfate is 600 mg/L. Groundwater collected from Monitor Wells MW-2, MW-3, and MW-4 was found to exceed the standard for sulfate during September 2013. Sulfate concentrations were 1,230 mg/L, 808 mg/L, and 925 mg/L, respectively.

• Dissolved Manganese

The NMWQCC standard for dissolved manganese is 0.2 mg/L. Groundwater collected from Monitor Wells MW-1, MW-3, and MW-4 was found to exceed the standard for dissolved manganese during September 2013. Dissolved manganese concentrations were 0.89 mg/L, 0.67 mg/L, and 1.6 mg/L, respectively.

Section 4.0 Conclusions and Recommendations

Approximately 94 gallons of hydrocarbons were successfully removed from the subsurface at Monitor Well MW-1 during the August 2013 MDPE event. The concentration of benzene in groundwater of Monitor Well MW-4, downgradient from MW-1, has also been significantly reduced to below the NMWQCC standard. This serves as further evidence of the beneficial plume-shrinking effect of the induced gradient toward the extraction well as a result of the MDPE event.


CRA recommends conducting additional MDPE events at the Site to attempt to remove additional hydrocarbons from the subsurface. AcuVac, subsequent to their final September 2013 MDPE event report (Appendix A), further evaluated Site data and recommended a modification to MDPE event methodology. Enhanced Vacuum Recovery, in combination with the MDPE, is recommended to maximize overall mass removal of hydrocarbons and, more specifically, to more efficiently volatilize and remove the dissolved-phase BTEX constituents in the groundwater of MW-1.

Monitor Well MW-1 continues to exceed NMWQCC standards for BTEX constituents. Concentrations of sulfate and dissolved manganese also continue to be detected above NMWQCC groundwater quality standards in Site monitor wells. CRA recommends continued annual sampling of Site monitor wells until all monitored groundwater quality parameters approach NMWQCC standards. CRA will begin a quarterly sampling schedule once all parameters are near or below NMWQCC standards or background levels.

The next groundwater monitoring event at the Johnston Federal No. 4 Metering Station is scheduled to take place during September of 2014 and will include analyses for BTEX, naphthalene, dissolved manganese, dissolved iron, and sulfate.

SOURCE: USGS 7.5 MINUTE QUAD "TURLEY, NEW MEXICO"

LAT/LONG: 36.8626° NORTH, 107.7723° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO WEST

Figure 1

SITE LOCATION MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

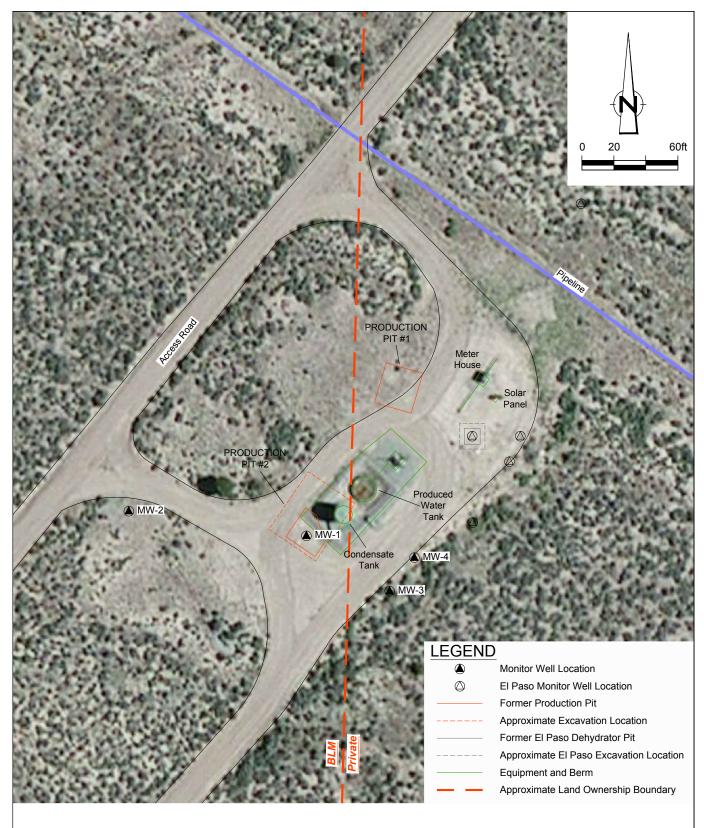
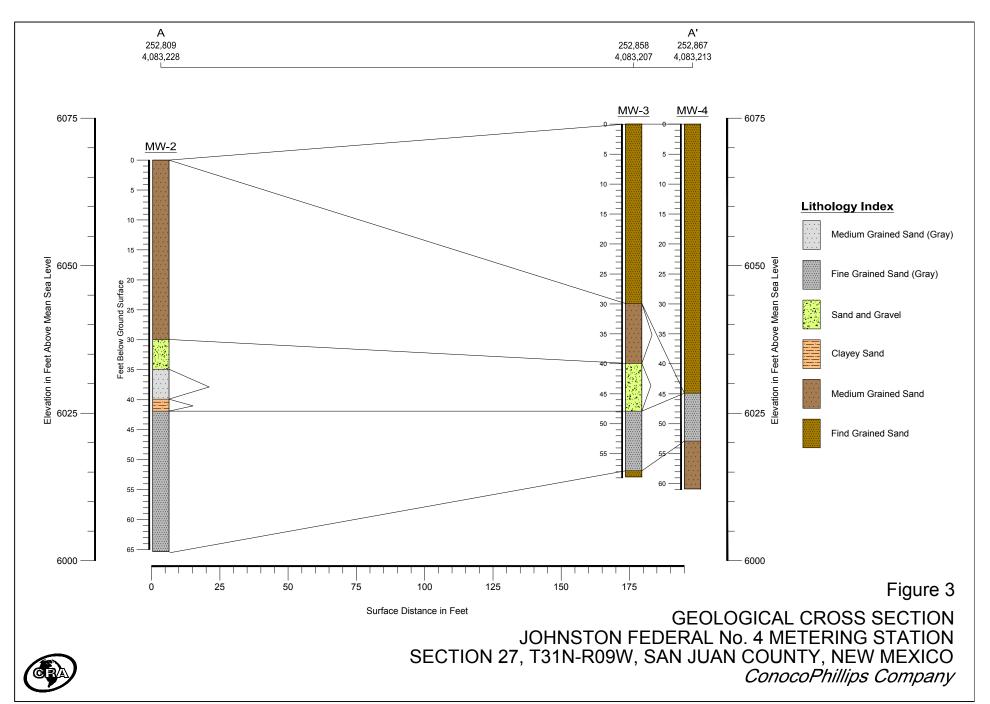



Figure 2

SITE PLAN JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

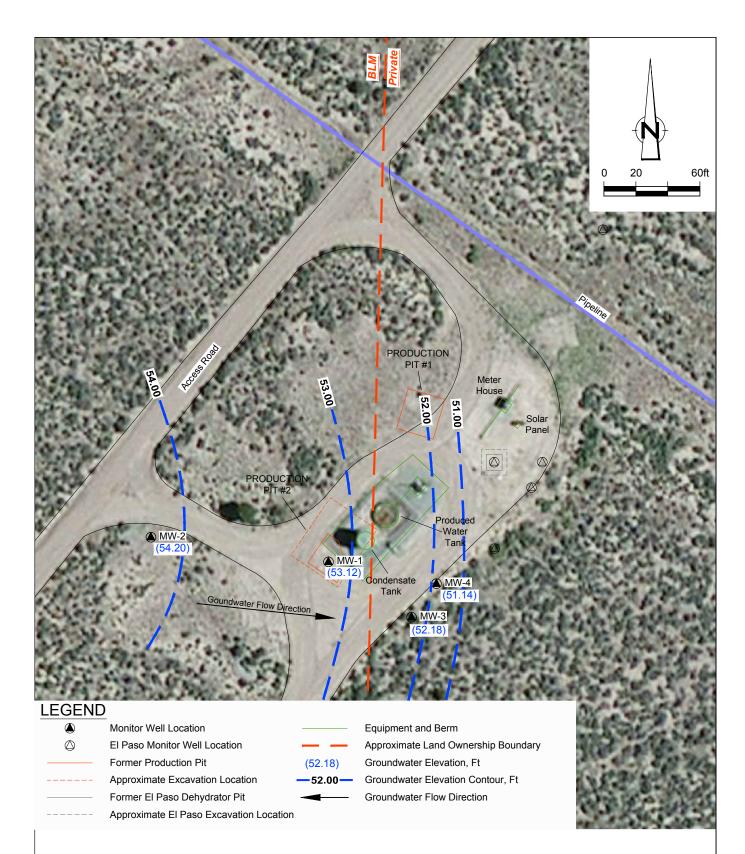


Figure 4

SEPTEMBER 2013 GROUNDWATER POTENTIOMETRIC SURFACE MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

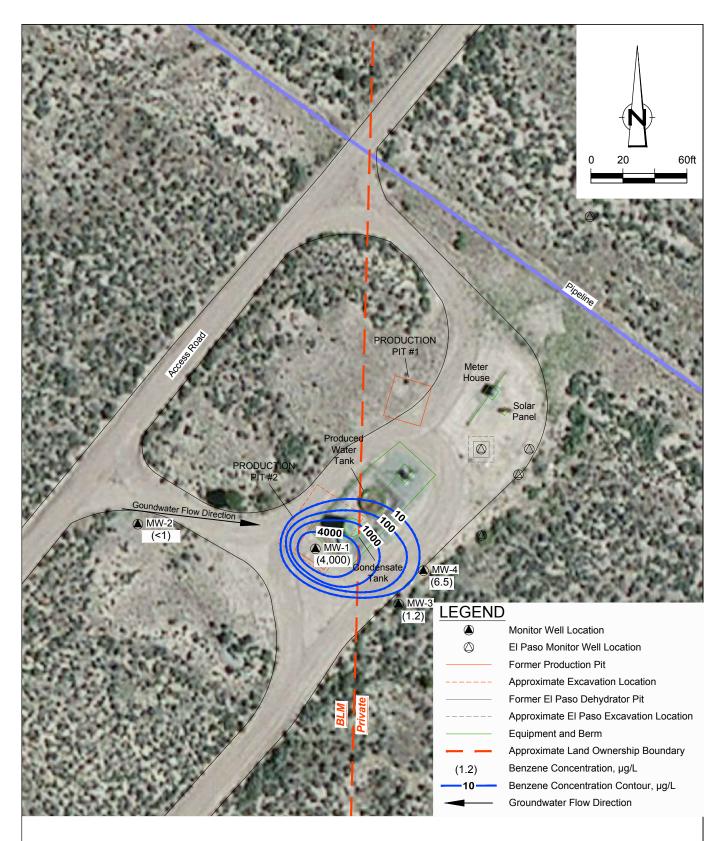


Figure 5

SEPTEMBER 2013 BENZENE CONCENTRATION MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

TABLE 1

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 METERING STATION SAN JUAN COUNTY, NM

Date/Time Period	Event/Action	Description/Comments
August 1952	Well Spudded	Well was spudded by Anderson-Prichard Oil Corporation on August 21, 1952.
April 1961	Transfer of Well Ownership	Ownership of the well transferred from Anderson-Prichard Oil Corporation to Union Texas Natural Gas Corporation on April 26, 1961.
September 1971	Transfer of Well Ownership	Meridian Oil Inc., a wholly-owned subsidiary of Burlington Resources, took over operation of well from Union Texas Petroleum Corporation on September 17, 1991.
August 1994	Initial Site Assesment	El Paso Energy conducted a site assessment of a former unlined pit near the metering station.
September 1994	Pit Excavation	El Paso Energy excavated ~60 cubic yards of soil from their former unlined pit.
August 1995	Monitor Well Installation	El Paso contracted Philip Environmental Services Corporation to install a monitor well in the vicinity of their former pit on August 9, 1995.
December 1995	Monitor Well Installation	El Paso contracted Philip Environmental Services Corporation to install two downgradient monitor wells between December 12 and 15, 1995.
August 1997	Product Removal	El Paso Energy commenced product removal from their MW-1 on August 26, 1997.
September 1997	Piezometer Installation	El Paso contracted Philip Environmental Services Corp. to install 3 temporary piezometers on September 15, 1997.
July 1998	NMOCD Communication With Site Operators	New Mexico Oil Conservation Division (NMOCD) issued a response letter to El Paso Field Services (EPFS) on July 8, 1998, indicating that they would be sending letters to the operators of the sites (including Burlington Resources) and that EPFS should work cooperatively with the operators on investigation and remediation activities.
July 1998	NMOCD Requests Groundwater Investigation by Burlington Resources	NMOCD issued a letter to Burlington Resources on July 9, 1998, referencing work done at the Site by EPFS and requiring Burlington Resources (BR) to immediately implement their previously approved pit closure plan. The letter also required BR to submit a comprehensive groundwater investigation and remediation plan for all pit closure Sites in the San Juan Basin that encounter groundwater.
August 1998	Burlington Resources Granted Closure of Pit #1	Burlington Resources sampled Pit #1 on August 10, 1998 and laboratory analytical results indicated closure was warranted.
August 1998	Initial Site Assessment	Initial site assessment conducted on the site separator pit. Soil from this area was collected and analyzed for total petroleum hydrocarbons (TPH) and was found to contain TPH below NMOCD recommended action levels. The pit was subsequently granted closed status by NMOCD.
August 1998	Initial Site Assessment	Initial site assessment conducted on the tank drain pit. Soil from this area was collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and for TPH. Concentrations of these constituents were found to be above NMOCD recommended action levels.
December 1998	Pit Excavation	Burlington Resources excavated \sim 3,055 cubic yards of hydrocarbon-impacted soil from Pit #2 (58 ft x 45 ft x 30 ft deep), starting on December 17, 1998. The excavation extended to \sim 30 feet below ground surface (practical extent). The bottom of the excavation was sampled on December 28, 1998.
May 1999	Monitor Well Installation	Monitor Well MW-1 installed to a depth of 50 feet below ground surface (bgs); the screened interval was placed from 35 to 50 feet bgs, and was installed in the center of pit #2. Burlington Resources began monitoring MW-1 on a quarterly basis.
June 1999	Confirmation of Groundwater Impacts	Laboratory analysis of groundwater from MW-1 shows levels of benzene, toluene, and total xylenes in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Burlington Resources notified NMOCD via E-mail on June 1, 1999.
July 2001	NMOCD Communication With Site Operators	NMOCD response letter sent to EPFS on July 18, 2001 again urges EPFS to work cooperatively with the operators to investigate and remediate contaminated groundwater.

TABLE 1

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 METERING STATION SAN JUAN COUNTY, NM

Date/Time Period	Event/Action	Description/Comments
April 2003	NMOCD Requests Monitor Well Installation	NMOCD response letter to EPFS sent on April 3, 2003, requires EPFS to install additional monitor wells to determine the real extent of groundwater impacts.
March 2006	Acquisition of Burlington Resources by ConocoPhilips Company	ConocoPhillips Company acquired Burlington Resources on March 31, 2006.
November 2007 and January 2008	3rd and 4th Quarter 2007 Groundwater Monitoring	Johnston Federal No. 4 Monitoring Station groundwater sampled during November 2007 and January 2008 by Tetra Tech.
March 2008	Reporting	2007 Annual Groundwater Monitoring Report submitted to NMOCD.
March 2008	Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX.
April 2008	NMOCD Requests Further Investigation	NMOCD indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
April 2008	1st Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX in MW-1 on April 30, 2008. Note: Prior to this date the location of MW-1 was not clear and the incorrect well was sampled. This was the first quarter that ConocoPhillips MW-1 was sampled. BTEX constituents were found to be above NMWQCC standards in MW-1.
July 2008	2nd Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX in MW-1.
August 2008	Groundwater Monitor Well Installation	Monitor Wells MW-2, MW-3, and MW-4 installed under the supervision of Tetra Tech by WDC Exploration and Wells of Peralta, NM.
October 2008	3rd Quarter 2008 groundwater Monitoring	Tetra Tech conducts quarterly monitoring at the Site for MW-1 through MW-4. MW-2, MW-3 and MW-4 groundwater samples are analyzed for baseline parameters including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics as requested by the NMOCD. In addition, an expanded list (beyond BTEX analysis) of VOCs were included for MW-1.
January 2009	4th Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly monitoring at the Site for MW-1 through MW-4. The groundwater sample obtained for MW-1 is analyzed for baseline parameters including major ions, total metals, SVOCs, VOCs, diesel range organics, and gasoline range organics. As of January 2009, baseline parameters have been collected for all 4 groundwater monitor wells at the Site.
September 25, 2009	2009 Annual Groundwater Monitoring	Tetra Tech conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Fe and Mn and sulfate.
September 22, 2010	2010 Annual Groundwater Monitoring	Tetra Tech conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn and sulfate.
June 15, 2011	Transfer of Site Consulting Responsibilities	Site consulting responsibilities tranferred from Tetra Tech, Inc. to Conestoga-Rovers & Associates, Inc. (CRA) of Albuquerque, NM.
September 28, 2011	2011 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
September 26, 2012	2012 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
August 23, 2013 - August 27, 2013	Dual-Phase Extraction	AcuVac, under CRA oversight, performs three days of dual-phase extraction on MW-1.
September 17, 2013	2013 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.

TABLE 2 Page 1 of 2

MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 SAN JUAN COUNTY, NM

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
	Ì			5/25/1999	NM	NM
				9/1/1999	47.02	52.98
				12/1/1999	46.96	53.04
				1/18/2000	44.05	55.95
				5/17/2000	46.90	53.10
				9/8/2000	46.91	53.09
				12/20/2000	46.88	53.12
				3/27/2001	NM	NM
				6/27/2001	47.05	52.95
				9/17/2001	46.93	53.07
				12/19/2001	46.97	53.03
				3/25/2002	46.99	53.01
				6/25/2002	47.01	52.99
				9/24/2002	46.98	53.02
				12/30/2002	47.40	52.60
				3/27/2003	NM	NM
				6/27/2003	NM	NM
				10/10/2003	NM	NM
				12/10/2003	NM	NM
				3/16/2004	47.28	52.72
				6/22/2004	47.06	52.94
MW-1	51.79	35 - 50	100	9/30/2004	47.24	52.76
				12/13/2004	47.14	52.86
				3/23/2005	46.91	53.09
				6/22/2005	46.93	53.07
				10/28/2005	46.87	53.13
				12/14/2005	46.72	53.28
				3/20/2006	46.75	53.25
				6/21/2006	46.84	53.16
				10/20/2006	46.89	53.11
				12/13/2006	46.92	53.08
				11/9/2007	NM	NM
				1/15/2008	NM	NM
			[L	4/30/2008	46.45	53.55
			[L	7/23/2008	46.63	53.37
				10/24/2008	46.60	53.40
			[L	1/29/2009	46.57	53.43
			[L	4/23/2009	46.40	53.60
			[L	9/25/2009	46.52	53.48
				9/22/2010	46.60	53.40
				9/28/2011	46.65	53.35
				9/26/2012	46.80	53.20
				9/17/2013	46.88	53.12

TABLE 2 Page 2 of 2

MONITOR WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 SAN JUAN COUNTY, NM

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				10/24/2008	42.85	54.86
				1/29/2009	42.83	54.88
				4/23/2009	42.75	54.96
MW-2	65.5	41.5 - 61.5	97.71	9/25/2009	42.82	54.89
IVI V V - Z	65.5	41.5 - 61.5	97.71	9/22/2010	43.01	54.70
				9/28/2011	43.14	54.57
				9/26/2012	43.33	54.38
			•	9/17/2013	43.51	54.20
			94.65	10/24/2008	43.91	50.74
		35 - 55		1/29/2009	41.97	52.68
	59			4/23/2009	41.87	52.78
MW-3				9/25/2009	42.04	52.61
IVIVV-3				9/22/2010	42.17	52.48
				9/28/2011	42.22	52.43
				9/26/2012	42.36	52.29
				9/17/2013	42.47	52.18
				10/24/2008	43.11	51.68
				1/29/2009	43.11	51.68
				4/23/2009	43.06	51.73
MW-4	61	37 - 57	04.70	9/25/2009	43.20	51.59
IVI VV -4	61	37 - 37	94.79	9/22/2010	43.39	51.40
				9/28/2011	43.45	51.34
				9/26/2012	43.57	51.22
				9/17/2013	43.65	51.14

Notes:

ft = Feet

TOC = Top of casing

bgs = below ground surface

 * Elevation relative to the TOC of MW-1, set at arbitrary 100 feet.

NM = Not measured

TABLE 3 Page 1 of 1

GROUNDWATER LABORATORY ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 SAN JUAN COUNTY, NM

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Napthalene (mg/L)	Sulfate (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)
	MW-1	5/25/1999	(orig)	8.7	2.9	2.8	2.9				
	MW-1	12/1/1999	(orig)	4.7	1.3	0.9	10				
	MW-1	1/18/2000	(orig)	3.6	0.82	0.84	7.5				
	MW-1	5/17/2000	(orig)	6.9	1.1	1.5	17				
Ī	MW-1	9/8/2000	(orig)	4.6	0.62	0.93	10				
	MW-1	12/20/2000	(orig)	< 0.0002	0.0005	0.034	0.061				
	MW-1	3/27/2001	(orig)	5.43	0.641	0.991	9.83				
	MW-1	6/27/2001	(orig)	5.87	0.9	0.99	10.4				
	MW-1	9/17/2001	(orig)	5.91	0.75	0.98	10.7				
	MW-1	12/19/2001	(orig)	7.2	0.65	1.02	11.3				
	MW-1	3/25/2002	(orig)	5.52	0.83	1.19	10.5				
	MW-1	6/26/2002	(orig)	0.516	0.0662	0.0787	0.863				
	MW-1	9/24/2002	(orig)	5.31	8	0.88	13.96				
_	MW-1	12/30/2002	(orig)	7.66	10.2	0.76	14.14				
-	MW-1	6/22/2004	(orig)	6.16	8.1	0.47	15.84				
MW-1	MW-1	3/20/2006	(orig)	3.17	3.74	1.06	30.13				
	MW-1	6/21/2006	(orig)	4.9	3.28	0.448	2.39				
	MW-1	12/13/2006	(orig)	5.3	7.2	0.87	15.45				
	MW-1	3/27/2007	(orig)	6.87	5.72	0.21	12.16				
-	MW-1	6/25/2007	(orig)	5.68	1.83	0.4	9.48				
-	MW-1	4/30/2008	(orig)	6.3	1.8	0.28 J	8.6				
	MW-1	7/23/2008	(orig)	7.1	2.2	0.45	10.6	-			
-	MW-1	10/24/2008	(orig)	6	2.1	0.4	9	0.044			
-	MW-1	1/29/2009	(orig)	6.7	2.2	0.4	14.5	0.041	315		
-	MW-1	9/25/2009	(0)	3.9	1.5	0.68	9.8	0.04	429	< 0.02	1.11
-	MW-1	9/22/2010	(orig)	3.5	0.98	0.63	7.5	0.049	190	₹ 0.02	0.752
-	GW-074925-092811-CM-004	9/28/2010	(orig)			0.667	<u> </u>		202	< 0.05	
-		<u> </u>	(orig)	3.36 3.43	1.05 1.12	0.779	6.81 8.29	0.037			0.774
-	GW-074925-092811-CM-005	9/28/2011	(Duplicate)			0.779	<u> </u>	0.0398		< 0.05	
	GW-074925-092612-CM-MW-1	9/26/2012	(orig)	3.07	0.599		5.16		113		0.67
-	GW-074925-091713-CM-MW-1	9/17/2013	(orig)	4.69	7.55	1.17	11.0	0.0365	371	< 0.05	0.89
	GW-074925-091713-CM-DUP	9/17/2013	(Duplicate)	4.70	7.21	1.04	9.97				-
_	MW-2	10/24/2008	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	974		
	MW-2	1/29/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005				0.04
3 5747 6	MW-2	9/25/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	1260	< 0.02	0.04
MW-2	MW-2	9/22/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	1350		0.0074
_	GW-074925-092811-CM-002	9/28/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0001	1290	2.49	0.0956
	GW-074925-092612-CM-MW-2	9/26/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0005	1210	< 0.05	< 0.005
	GW-074925-091713-CM-MW-2	9/17/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0005	1230	< 0.05	< 0.005
<u> </u>	MW-3	10/24/2008	(orig)	0.02	< 0.0005	< 0.0005	0.024	< 0.005	714		
<u> </u>	MW-3	1/29/2009	(orig)	0.012	< 0.0005	< 0.0005	0.005				
	MW-3	9/25/2009	(orig)	0.0021	< 0.001	< 0.001	< 0.002	< 0.001	1070	< 0.02	1.24
MW-3	MW-3	9/22/2010	(orig)	0.0042	< 0.001	< 0.001	< 0.001	< 0.001	1060		1.11
<u> </u>	GW-074925-092811-CM-003	9/28/2011	(orig)	0.0038	< 0.001	< 0.001	< 0.003	< 0.0001	809	1.58	0.704
<u> </u>	GW-074925-092612-CM-MW-3	9/26/2012	(orig)	0.0016	< 0.001	< 0.001	< 0.003	< 0.0005	892	0.063	0.67
	GW-074925-091713-CM-MW-3	9/17/2013	(orig)	0.0012	< 0.001	< 0.001	< 0.003	< 0.0005	808	0.80	0.67
Ţ	MW-4	10/24/2008	(orig)	0.024	< 0.0005	0.006	0.01	< 0.005	678		
	MW-4	1/29/2009	(orig)	0.11	0.006	0.009	0.147	< 0.005			
Ī	MW-4	9/25/2009	(orig)	0.0088	< 0.001	0.0057	0.002	< 0.001	968	0.508	1.24
M1M7 4	MW-4	9/22/2010	(orig)	0.019	0.005	0.0069	0.0057	< 0.001	1040		1.27
MW-4	GW-074925-092811-CM-001	9/28/2011	(orig)	0.0256	0.0078	0.0017	0.0106	< 0.0001	960	0.532	1.82
Ī	GW-074925-092612-CM-MW-4	9/26/2012	(orig)	0.0124	0.0023	< 0.001	< 0.003	< 0.0005	949	0.57	1.5
F	GW-074925-092612-CM-DUP	9/26/2012	(Duplicate)	0.0130	0.0022	< 0.001	0.0031				
-	GW-074925-091713-CM-MW-4	9/17/2013	(orig)	0.0065	< 0.001	< 0.001	< 0.003	< 0.0005	925	0.51	1.6
		-,,	(~6)		0.001	2.001		2.0000			

NMWQCC = New Mexico Water Quality Control Commission mg/L = milligrams per liter (parts per million)
<0.7 = Below laboratory detection limit of 0.7 mg/L

J = Estimated value between MDL and PQL **Bold** = concentrations that exceed the NMWQCC groundwater quality standard

Appendix A

August 2013 Mobile Dual Phase Extraction Report

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

August 30, 2013

Mr. Jeff Walker Project Manager Conestoga-Rovers & Associates 6121 Indian School Road NE Albuquerque, NM 67110

Dear Jeff:

Re: MDP Events, Johnston Federal No. 4, Aztec, NM

Enclosed is a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Events #1, 2 and 3, at the above location on August 23, 24 and 27, 2013. Table #1 is the Well Data Information on well MW-1. PSH is referred to LNAPL in this report. GW samples are taken frequently in a 2,000 ml beaker, to determine the average LNAPL percentage and volume.

Summary of MDP Event #1 - Well MW-1

- The total Event time was 8.0 hours. There is no comparative data. The Event was conducted on August 23, 2013.
- The total liquid volume recovered was 191 gals, with an estimated volume of 1.0 gal of LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 29.95 gals, for a total liquid and vapor LNAPL recovery of 30.95 gals. This equates to an average of 3.87 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 61,801 ppmv, $CO_2 = 7.59\%$, CO = 2.17%, $O_2 = 4.7\%$ and $H_2S = 19.53 \text{ ppm}$.
- The Average Induced Vacuum was 71.0"H₂O with a maximum vacuum of 75"H₂O and the average EW well vapor flow was 31.14 scfm.
- The GW pump was set at 50.5 ft BTOC. The average GW pump rate was 0.39 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.50 ft below static level.
- A LNAPL thickness of 0.02 ft was recorded prior to the start of Event #1 and no LNAPL was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #1 Well MW-1 was 30.95 gals.

Additional Information:

- An estimated volume of 1.0 gal of liquid LNAPL was recovered during the 8.0 hour Event.
- The recovered groundwater was dark with biomass at the start of the Event and then cleared after approximately 1.0 hr.
- The high HC (TPH) levels indicate contaminant in the LNAPL range.
- The HC (TPH) levels remained mostly steady throughout the Event.
- The low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface did not occur.
- The H₂S levels varied from a high of 24.0 ppm to a low of 13.0 ppm.

Summary of MDP Event #2: Well MW-1

- The total Event time was 8.0 hours. The Event was conducted on August 24, 2013. The data is compared to Event #1 conducted on August 23, 2013 which had a total Event time of 8.0 hours.
- The total liquid volume recovered was 108 gals, of which 1.5 gals were LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 30.10 gals, for a total liquid and vapor LNAPL recovery of 31.60 gals. This equates to an average of 3.95 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: $HC = 58,276 \text{ ppmv}, CO_2 = 7.95\%, CO = 1.88\%, O_2 = 5.0\% \text{ and } H_2S = 13.71 \text{ ppm}.$
- Compared with MDP Event #1 data, the TPH levels decreased 3,524 ppmv, CO₂ increased 0.40%, CO decreased 0.29%, O₂ increased 0.3% and H₂S decreased 5.82 ppm.
- The Average Induced Vacuum was 70"H₂O with a maximum vacuum of 70"H₂O and the average EW well vapor flow was 33.20 scfm.
- Compared with Event #1 data, the Average Induced Vacuum decreased 1.0"H₂O, and the average well vapor flow increased 2.06 scfm.
- The GW pump was set at 50.5 ft BTOC. The average GW pump rate was 0.22 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.5 ft below static level.
- A LNAPL thickness of 0.03 ft was recorded prior to the start of Event #2 and no LNAPL was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #2 Well MW-1 was 31.60 gals.

Additional Information:

- An estimated volume of 1.5 gals of liquid LNAPL were recovered during the 8.0 hour Event.
- The high HC (TPH) levels indicate contaminant in the LNAPL range.
- The HC (TPH) levels remained mostly steady throughout the Event.
- The low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface did not occur.

• Well MW-3 (57.0 ft) and Well MW-4 (61.1 ft from Well MW-1) were sealed with plugs designed to accept magnehelic gauges or digital manometers. The wells were then monitored on a periodic basis to determine the influence of the induced vacuum that was applied to Well MW-1. Wells MW-3 and MW-4 were slightly influenced by the induced vacuum, but not to the extent to be considered in the radius of influence.

Summary of MDP Event #3: Well MW-1

- The total Event time was 8.0 hours. The Event was conducted on August 27, 2013. The data is compared to Event #2 conducted on August 24, 2013 which had a total Event time of 8.0 hours.
- The total liquid volume recovered was 106 gals, of which an estimated 2.0 gals were LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 29.01 gals, for a total liquid and vapor LNAPL recovery of 31.01 gals. This equates to an average of 3.88 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: $HC = 56,152 \text{ ppmv}, CO_2 = 7.34\%, CO = 1.62\%, O_2 = 4.5\% \text{ and } H_2S = 0 \text{ ppm}.$
- Compared with MDP Event #2 data, the TPH levels decreased 2,110 ppmv, CO₂ decreased 0.58%, CO decreased 0.23%, O₂ decreased 0.5% and H₂S decreased 13.59 ppm.
- The Average Induced Vacuum was 70"H₂O with a maximum vacuum of 70"H₂O and the average EW well vapor flow was 33.20 scfm.
- Compared with Event #2 data, the Average Induced Vacuum and the average well vapor flow remained steady.
- The GW pump was set at 50.5 ft BTOC. The average GW pump rate was 0.22 gpm.
- The average GW depression, based on the positioning of the GW pump, was 5.5 ft below static level.
- No LNAPL was recorded prior to the start of Event #3 and a LNAPL thickness of 0.01 ft was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #3 (Well MW-1) was 31.01 gals.

Additional Information:

- An occasional slug of LNAPL was recovered with the ground water. Total LNAPL recovered during the 8.0 hour Event is estimated to be 2.0 gals.
- The high HC (TPH) levels indicate contaminant in the LNAPL range.
- The HC (TPH) levels remained mostly steady throughout the Event.
- The low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface did not occur.

Other Information - Events #1, 2 & 3

The total LNAPL removed, including liquid and vapor, during the 24.0 hr Events #1, 2 & 3 (Well MW-1) was 93.56 gals. This equates to 3.90 gals/hr.

General Overview

The vadose zone and the exposed saturated zone is highly contaminated with LNAPL. This conclusion is based on the high TPH levels and the fact that the influent LNAPL vapors provided 100% of the Internal Combustions Engine's fuel, i.e., no propane was required. There may be some liquid LNAPL pooled in an area outside of the Induced Hydraulic Gradient (IHG) Radius of Influence (ROI). The IHG occurs when the LNAPL/GW depression in the extraction well is maintained during the Event period. The IHG at this site is estimated to have an ROI of 25 to 30 ft. The estimated total liquid LNAPL recovery of 5.0 gals during the three Event periods was based on the sheen of LNAPL observed in the collection tank and observed slugs of LNAPL passing through the clear sight tube of the liquid volume discharge line.

Schedule A illustrates the changes in the TPH levels during each of the three Events. During Event #1, the TPH levels increased during the first hour as the Induced Well Vacuum drew the LNAPL vapors into the well bore, and were then on an overall decreasing trend for the remainder of the Event. The TPH levels at the end of Event #1 were at approximately the same level as the start. There was a recovery time of approximately 14 hours between the end of Event #1 and the start of Event #2. At the start of Event #2, the TPH levels were approximately 1,460 ppmv lower than the end of Event #1. For Events #2 and #3, the TPH levels were on a mostly decreasing trend during each Event. The TPH in the formation rebounded slightly as the beginning levels for Event #3 were slightly higher (400 ppmv), than at the end of Event #2.

The average TPH levels for Events #1, 2 & 3 were, 61,801, 58,263 and 56,152, respectively.

The ending TPH levels for Events #1, 2 & 3 were, 60,420, 57,220 and 54,180, respectively.

Given the decrease in the average TPH levels measured in ppmv from Event #1 to the subsequent Events, as well as the ending TPH level for each Event, this site would benefit from a program of regular MDP Events to fully remediate the site.

The HORIBA Analytical instrument is calibrated with Hexane and CO₂. In all subsequent Events, the test data will be compared to the previous Event to evaluate the progress for this remediation project.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

Additional information included with Report

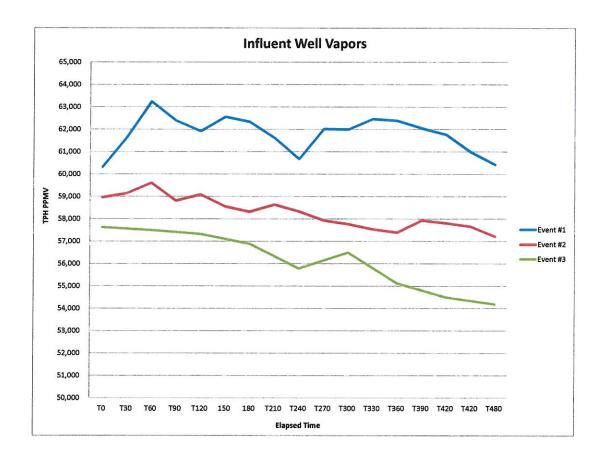
- Schedule A- Summary of the Influent Well Vapors
- Recorded Data
- Photographs of the MDP System and well MW-1.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely,

James E. Sadler, VP

Engineering/Environmental


130037.REP

Well and Recovery Data Information

Table #1

Event		1	2	3
WELL NO.		MW-1	MW-1	MW-1
Total Event Hours		8.0	8.0	8.0
TD	ft	52.30	52.30	52.30
Well Screen	ft	15' to 45'	15' to 45'	15' to 45'
Well Size	in	2.0	2.0	2.0
DTGW - Static - Start Event	ft	46.85	47.18	46.89
DTLNAPL - Static - Start Event	ft	46.83	47.15	-
LNAPL	ft	0.02	0.03	-
DTGW - End Event	ft	47.68	47.38	47.38
DTLNAPL - End Event	ft	-	-	47.37
LNAPL	ft	-	-	.01
Average Extraction Well Vacuum	"H₂O	71.0	70.0	70.0
Average Extraction Well Vapor Flow	scfm	31.14	33.20	33.20
Average GW/LNAPL Pump Rate	gpm	0.39	0.22	0.22
Total Liquid Volume Recovered	gals	191	108	106
Average TPH	ppmv	61,801	58,263	56,152
Average CO ₂	%	7.59	7.92	7.34
Average CO	%	2.17	1.85	1.62
Average O ₂	%	4.7	5.0	4.5
Average H ₂ S	ppm	19.53	13.59	-
Total Liquid LNAPL Recovered	gals	1.0	1.5	2.0
Total Liquid LNAPL Recovered	%	0.52	1.39	1.89
Total Vapor and Liquid LNAPL Recovered	gals	30.95	31.60	31.01
Total LNAPL Recovered	lbs	216.6	221.2	217.1
Total Volume of Well Vapors	cu. ft	14,947	15,936	15,936

SCHEDULE A SUMMARY of MDP TESTS #1, #2 and #3

Location: Johnston Federal #4, San Juan County, NM Project Managers: Sadler/Fauche										
	Date:	8-23-13		_	-	, ,	-			
	Parameters	Time	Time	Time	Time	Time	Time			
	WELL# MW- (0900 Hr Meter 6538.0	0430 Hr Meter 6538.5	(006 Hr Meter 6539.0	(030 Hr Meter 6539,5	1100 Hr Meter 6540,0	1130 Hr Meter 65405			
	R.P.M.	2300	2200	2200	2200	2300	7300			
VER	Oil Pressure psi	50	50	50	50	50	\$0			
BLO	Water Temp °F	140	160	160	160	160	160			
ENGINE/BLOWER	Volts	13	13	13	13	13	13			
ENG	Intake Vacuum "Hg	17	11	17	17	17	16			
	Gas Flow Fuel/Propane cfh	to	10	5	5	5	Q			
	GW Pump ON/OFF	OFF ON	ON	000	00	06	ON			
≝	Extraction Well Flow scfm	22.95	22,45	24.53	23.72	29.28	30.86			
M/A	Extraction Well Vacuum "H ₂ O	70	70	70	70	70	70			
NCUL UME	Pump Rate gals/min	0/0.5	0.5	0.5	0.5	0,5	0.5			
SE/V/	Total Volume gals		7,5	22.5	38	53	68			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	64	64	64	64	64	64			
	Air Temperature °F	726	74.4	77.9	79.9	81.1	83.5			
\ \{\bar{\}}	Barometric Pressure "Hg	30.18	30.18	30.18	30.(8	30.17	30.16			
	Absolute Pressure "Hg	24.U	24.11	24.11	24.11	24.10	24,10			
Ę	HC ppmv	60,300	61,630	63,230	62,380	61,910	62,550			
VAPOR /INFLUENT	CO ₂ %	7,44	7,58	6.34	6.48	7.70	7,37			
INF.	CO %	2111	2.11	224	2,22	216	2,24			
APOR	O ₂ %	5,2	5,1	3,6	5,2	4.7	5,0			
Λ'	H ₂ S ppm	13	18	15	20	22	23			
	0830 Arrived e loc	atin - 1,2	hadrive - Pa	ositioned A	euvor Sys	tem weer i	العوال			
	nw-1-Tailgak so	MW-1-Tailgate Safety - Mobilized Dud Phose equipmet - Set &W/LNARC								
S.	pump intere 30.5 ft BTOC - TD = 5230ft - START BUENT - SUE only									
NOTES	to vaporize LNAP	Lon GW	Joans - 5 TH	MI EW VE	covery - N	o Lware iv	liquid			
_	Initial Ew indu									
	NOTE CW dark			constant						
	LNAPL % Vol Gals	-	_	_	-	1000	-			
MANIFOLD	Depth of GW Depression ft	-5.5	-5.5	-5,5	- 5,5	-5.5	- 5.3			
MAN	Extraction Well DTLNAPL ft	46.83								
-	Extraction Well DTGW ft	46.85								

PAGE# \lambda

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: Johnston Federal #4, San Juan County, NM Project Managers: Sadler/Fau							
	Date:	8-23-13	-	-	_	-	-
	Parameters	Time	Time	Time	Time ('330	Time	Time
	WELL# MW-	Hr Meter	Hr Meter 6541.5	Hr Meter	Hr Meter	Hr Meter 6543.0	Hr Meter
	R.P.M.	2300	2300	2300	3300	2300	2300
VER	Oil Pressure psi	50	50	50	30	50	50
ENGINE/BLOWER	Water Temp °F	lloo	(60	160	160	160	160
INE/	Volts	13	(3	13	13	13	13
ENG	Intake Vacuum "Hg	is	. 15	15	15	15	15
	Gas Flow Fuel/Propane cfh	0	0	0	0	O	0
	GW Pump ON/OFF	00	01	060	02	00	02
≃	Extraction Well Flow scfm	31,65	36.65	31.65	3(65	31.65	31.65
M/AJ	Extraction Well Vacuum "H ₂ O	20	20	70	70	20	70
COU	Pump Rate gals/min	0.5	0.5	6.5	0.4	0.4	0.4
E/V	Total Volume gals	63	98	113	125	137	149
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	64	64	64	65	65	65
MOS	Air Temperature °F	846	85.8	87.9	90.1	91,2	92.3
AT	Barometric Pressure "Hg	30.14	30.11	30.09	30.08	30.08	30.07
	Absolute Pressure "Hg	24,09	24.07	24.05	24.04	24.04	24.03
F	HC ppmv	62,320	61,610	60,670	62,010	61,990	62,450
VAPOR /INFLUENT	CO ₂ %	8:02	7.96	7.92	7.84	1,12	7,58
INFI	CO %	2,30	2.26	2.14	2,16	2.08	1.96
POR	O ₂ %	3.9	4.1	4.4	4.5	4,5	4.6
VA	H ₂ S ppm	24	24	23	21	18	15
	Ew induced voce	im steed	le 0 70'	the war	e 31.65 s	chy - Giv P	R20,5gm
	NOTE UWF now			in the second se			
70	1430 uns - In						s selu
NOTES	swile 0.4			_			
Ž	,	1.					
			3. 994		•		
		- M A. J L L L L L L L.	, , , , , , , , , , , , , , , , , , ,				
	LNAPL % Vol Gals		-	_		_	
MANIFOLD	Depth of GW Depression ft	-S.5	-5.5	-5,5	-5.5	-5.5	-5.5
MAN	Extraction Well DTLNAPL ft		N. Links and				
	Extraction Well DTGW ft						
() Indicates				-			

$\overline{}$	OPERATING DATA -	EVENT# 1	P	AGE# 3	MOBILE DUAL PHASE SYSTEM			
Location	on: Johnston Federal #4	San Juan Co	unty, NM		Project	Managers: Sa	adler/Faucher	
	Date:	8-23-13	~	~	5	~		
	Parameters	Time 1500	Time (530	Time 1600	Time 1630	Time	Time	
	WELL# MW-	Hr Meter 65442	Hr Meter 6544.5	Hr Meter 6545 D	Hr Meter 6545.5	Hr Meter 65460	Hr Meter	
	R.P.M.	2400	2400	2400	2400	2400		
WER	Oil Pressure psi	30	50	30	50	50		
ENGINE/BLOWER	Water Temp °F	170	170	(10	(70	170		
INE	Volts	13	13	13	13	(3		
ENC	Intake Vacuum "Hg	ia	12	12	12	12		
	Gas Flow Fuel/Propane cfh	0	0	0	0	0		
	GW Pump ON/OFF	00	00	00	٥٥	000		
≝	Extraction Well Flow scfm	3669	36.65	36.65	36.65	36.65		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	75	75	75	75	75		
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	0.4	03	03	02.	02		
VOI.	Total Volume gals	161	170	119	185	iai.	000	
PHE	Influent Vapor Temp. °F	¢5	65	65	65	65		
MOS	Air Temperature °F	927	934	42,9	93.7	લા.હ		
AT A	Barometric Pressure "Hg	30.05	30.09	30,03	30,02	30.01		
	Absolute Pressure "Hg	24.01	24.00	24.00	23,99	23.98		
Ę	HC ppmv	62,370	62,040	61,750	60,980	60,400		
OR /INFLUENT	CO ₂ %	7,42	7,97	7,52	7,62	7,78		
/INF	CO %	220	2,26	2118	2.16	209		
POR	O ₂ %	an6	4.7	4.8	47	417		
VAP	H ₂ S ppm	24	20	18	18	16.		
	Ew induced veces	un 2 75	a thro, UWF	7 36.655	ch - 601	12 = 0.4.		
	NOTE GORRE			ad 1760s				
×	HOTE Influent					ing treat		
NOTES	A4 75" 450, va				1		reale	
	Ciffwoximately					7.55	V	
					a % of d		al liquid	
	gals-Sit take							
	LNAPL % Vol Gals	4-		SEE	NOTE	ABOUT		
ОГО	Depth of GW Depression ft	-5.5	-5.5	-5,5	-5.5	-5.5	-	
MANIFOLD	Extraction Well DTLNAPL ft	///		/		Tipacia		
-	Extraction Well DTGW ft					47.68		

Location	Location: Johnston Federal #4, San Juan County, NM Project Managers: Sadler/Fauc									
	Date:	8-24-13	_	_	_	_	-			
	Parameters	Time 0730	Time 0800	Time 0830	Time	Time 0930	Time			
	WELL# MW- (Hr Meter 6546.0	Hr Meter 6346.5	Hr Meter 6541.0	Hr Meter 65 41.5	Hr Meter 6548.0	Hr Meter 65485			
	R.P.M.	2100	3700	2700	2700	2300	2300			
WER	Oil Pressure psi	50	30	So	50	50	50			
ENGINE/BLOWER	Water Temp °F	140	160	160	160	160	160			
INE/	Volts	(3	13	13	13	13	13			
ENG	Intake Vacuum "Hg	13	15	-15	13	13	13			
	Gas Flow Fuel/Propane cfh	20	10	O	O	0	0			
	GW Pump ON/OFF	OFF	اله ن	ON	ON	00	200			
₌	Extraction Well Flow scfm	22.95	25.72	24.27	31,43	34.61	34.61			
[M/A]	Extraction Well Vacuum "H ₂ O	70	70	20	10	70	76			
COL	Pump Rate gals/min	OFF	0.3	0.3	0.3	0.3	0,2			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	j	9	18	27	36	42			
PHE	Influent Vapor Temp. °F	61	61	62	62	62	62			
MOS	Air Temperature °F	69.6	70.3	767	126	72.8	71.4			
AT	Barometric Pressure "Hg	30.19	30,20	30.20	30.20	30.21	30.21			
	Absolute Pressure "Hg	24.13	24-13	34.13	24.13	24.14	24.14			
T	HC ppmv	58,060	59,140	59,610	58,810	54,040	58,550			
VAPOR /INFLUENT	CO ₂ %	7,46	7.91	7.86	7.42	7,46	7.88			
/INF	CO %	488	2.00	204	1,90	1.86	1.81			
POR	O ₂ %	5.0	49	47	4.5	4.4	4,5			
A'	H ₂ S ppm	16	14	15	is	13	(3			
	0715 - Arrived e l	ozniwe	- SARATY N	EETWE"	Mobilized	SUE for	acide			
	121	Start : Cauged well - 0730 HAC- START EVENT H2 - SVE ONLY (NO EW pemping)								
70	to remove tree phase Lovall 0800 Has Granz GW RECOVERY Initial									
NOTES	Ew induced vacuum set @ 70"Hro, UWF@ 22.95 sch - GWIN2 0:39pm									
Z	HOLE TWOMENSIN									
	NOTE - WEDTHER		*	OUGREAS						
,	WELLS MW-35,4	. O	-110/210	1 1		-113/-13	-613/713			
	LNAPL % Vol Gals			•	~	_	-			
MANIFOLD	Depth of GW Depression ft	· PlA	-5.5	-5,5	-5.5	-5.5	-5,5			
MAN	Extraction Well DTLNAPL ft	41.15								
	Extraction Well DTGW ft	47.18								
() Indicates		×		7	Market Commence of the Commenc					

Locatio	Location: Johnston Federal #4, San Juan County, NM Project Managers: Sadler/Fauche								
Zotati	Date:	8-24-13		-	_	-	-		
	Parameters	Time 1030	Time	Time (130	Time 1700	Time (230	Time 1300		
	WELL# MW-	Hr Meter 6549.0	Hr Meter 6344.5	Hr Meter	Hr Meter 6550.5	Hr Meter 6551,0	Hr Meter 655(5		
	R.P.M.	2300	2300	2300	2300	2300	2300		
/ER	Oil Pressure psi	30	30	30	So	50	50		
ENGINE/BLOWER	Water Temp °F	160	160	160	160	160	160		
INE/I	Volts	13	13	13	13	13	13		
ENG	Intake Vacuum "Hg	13	13	13	13	13	13		
	Gas Flow Fuel/Propane cfh	0	6	0	0	0	0		
	GW Pump ON/OFF	on	oa	000	02	000	00		
	Extraction Well Flow scfm	34.61	3461	34.61	34.61	34.61	34.61		
M/AI	Extraction Well Vacuum "H ₂ O	70	70	70	70	70	70		
COU	Pump Rate gals/min	017	Och	0,2	6,2	6,0	0,3		
EVA	Total Volume gals	48	54	60	66	72	78		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	62	62	62	62	62	62		
MOSF	Air Temperature °F	722	73.0	80.7	8:3.1	85.3	87.1		
AT	Barometric Pressure "Hg	30,21	30.22	30.21	30,20	30,19	30,17		
	Absolute Pressure "Hg	24.14	74.15	74.14	24.13	24.13	24.11		
	HC ppmv				81,930	57,710	57,540		
VAPOR /INFLUENT	CO ₂ %	58,320 292	58,640 2.40	58,330 7.46	8.02	8,10	8.06		
INFL	CO %	1.92	1,44	1,90	6.02 h88	1.86	1,76		
OR/	O ₂ %	416	4.6	4.8	5.3	5,2	5.3		
VAP	H ₂ S ppm	14	13	14	is	14	14		
						A CHARLEST THE CONTRACTOR OF T			
	Ew induced views	em 5 4cody	1 10 A	10,000==	1 A	-GWPR.	organin		
	NOTE - 7961 levels in influct vopus mostly steady NOTE = Dater well MW-3 en vicuum inéresse								
NOTES	P81/2 - 0010 W	a mu.	5 En vice	servi mere	916		1000		
NO									
	WELL MW 3 & 4 -	12/-111			.17	_	1-166.14		
	LNAPL % Vol		-vil /-10	,	17 108	NOTE 100	, , , ,		
۵	Gals		`	-		_	~		
MANIFOLD	Depth of GW Depression ft	-515	-515	-3.5	-3.5	45.5	-5.5		
MAN	Extraction Well DTLNAPL ft								
	Extraction Well DTGW ft								

OPERATING DATA - EVENT # 🙏

PAGE# 3

ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio	on: Johnston Federal #4,	San Juan Co	unty, NM		Projec	t Managers: Sa	adler/Faucher		
	Date:	8-14-13	****	-	_	-			
	Parameters	Time (336	Time 1400	Time 1430	Time (300	Time 1530	Time		
	WELL# MW-(Hr Meter	Hr Meter 6552、3	Hr Meter 6 5 5 3.0	Hr Meter	Hr Meter 6554.0	Hr Meter		
	R.P.M.	2330	2300	2300	2300	2300			
ENGINE/BLOWER	Oil Pressure psi	50	50	36	50	56			
вго	Water Temp °F	160	160	160	160	160			
INE/	Volts	13.	17	13	13	B			
ENG	Intake Vacuum "Hg	13	U3	13	13	13			
	Gas Flow Fuel/Propane cfh	0	O	6	0	0			
	GW Pump ON/OFF	00	ON	00	020	000			
R	Extraction Well Flow scfm	35,65	35,65	35,65	35.65	35.65			
JM/A	Extraction Well Vacuum "H ₂ O	70	70	76	70	70			
VCUI UME	Pump Rate gals/min	0.2	0.2	Oil	00	0.2			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	84	90	96	102	108			
PUMP	Influent Vapor Temp. °F	62	62	62	62	62			
МО	Air Temperature °F	88.7	84.3	89.7	90.4	91.8			
LA	Barometric Pressure "Hg	30.17	30.16	3016	30.14	30,13			
	Absolute Pressure "Hg	24.11	24.10	2410	24.08	24,07			
Ę	HC ppmv	57,390	51,430	57,816	37,660	57,220			
VAPOR /INFLUENT	CO ₂ %	8,02	802	7,98	7.92	7,88	3031 N 3.13-11		
/INF	CO %	1,68	L88	1.89	487	1,78			
POR	O ₂ %	5.2	5.3	3.4	56	5,7			
À	H ₂ S ppm	13	ıs	12	<i>f</i> 1	12	10 - 20 - 99		
	EW vacuum &	EW vacuum steady @ 20" Hro, VWF increased to 35,65 schm							
	EWPR = 0.20 - NOTE Instead upper TOH ppms mostly steady - PR steady								
S	1500 - EVENC # 2 Completed								
NOTES	1615 - Secured all wells - depented site								
~	Nois Observing the slight amount of LOAP flowing through the								
	clear sight tube the estimated liquid volume of LAAR is I squis Also, sheen in tou								
	WALLS MW-3 Eq		13/10	_	-	-			
	LNAPL % Vol Gals	-	2	SEE	NOTE	ABOU 5			
MANIFOLD	Depth of GW Depression ft	-5,5	-5.5	-5.5	-5.5	-5.5			
MANI	Extraction Well DTLNAPL ft					No			
	Extraction Well DTGW ft		ō			47.38			

OPERATING DATA - EVENT # 3

PAGE# (

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: Johnston Federal #4, San Juan County, NM Project Managers: Sadler/Faucher									
	Date:	8-27-13	-	_	-	~	-		
	Parameters	Time 0130	Time 0800	Time 0830	Time 0900	Time 0930	Time LCCC		
	WELL# MW-	Hr Meter	Hr Meter	Hr Meter 6563.0	Hr Meter	Hr Meter 6569.5	Hr Meter		
ENGINE/BLOWER	R.P.M.	3300	2300	2300	2-300	7360	2300		
	Oil Pressure psi	50	50	50	50	So	50		
	Water Temp °F	130	150	160	160	(68	160		
	Volts	13	13	13	13	13	13		
ENG	Intake Vacuum "Hg	13	13	13	13	13	13		
	Gas Flow Fuel/Propane cfh	٥	0	0	0	O	Ö		
	GW Pump ON/OFF	00	000	00	OL	0 N	مسا		
æ	Extraction Well Flow scfm	37,58	37.58	37,5%	37.58	37.58	37,58		
M/A]	Extraction Well Vacuum "H2O	20	70	70	70	70	70		
COU	Pump Rate gals/min	0,3	0.3	0.3	0.3	0.3	0.2		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals		9	18	7-7	36	42		
PHER UMP/	Influent Vapor Temp. °F	60	, 60	60	60	60	60		
MOSI	Air Temperature °F	58.9	590	64.4	685	728	755		
ΑΤ	Barometric Pressure "Hg	30.24	30.24	30.14	30-24		30,23		
	Absolute Pressure "Hg	24.16	24.16	24.66	24.16	24.16	24.15		
	HC , ppmv	57,620	-	52,490		57,320	-		
VAPOR /INFLUENT	CO ₂ %	7.6	~	7.12	-	7,80			
INFL	CO %	1.62	^	1.70	*	1.84	_		
OR/	O ₂ %	4.1	•	4.4	_	4.0	-		
VAF	H ₂ S ppm	0	_	0		0			
	Arrived e site e 0710 uns - Tailgate Salety - Mobilized Menter Seystem								
	Gauged well - No Link - Converted and checked all hoses. Ok Scholy checked								
7000	0730 HRS- START FEVENT #3 - Initial BU induced vaccion = 70 "Hro,								
NOTES	UW F= 32.58 schu- GW PR = 013 gpm								
ž	The state of the s								
			388.0						
)TD	LNAPL % Vol	_	_		<u> </u>	_			
	Gals Depth of GW Depression ft	-5,3	- 5,5	- 5.5	~5.5	- 5,5	-5.5		
MANIFOLD	Extraction Well DTLNAPL ft	-	71.5	V-7					
Σ	Extraction Well DTGW ft	46.89							

OPERATING DATA - EVENT # 3

PAGE# 🚣

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: Johnston Federal #4, San Juan County, NM Project Managers: Sadler/Faucher									
	Date:	8-27-13	_	-	~		_		
	Parameters	Time	Time	Time	Time	Time	Time 1300		
	WELL# MW- L	Hr Meter 6565.5	Hr Meter 6 566.0	Hr Meter 6566.5	Hr Meter 6 5 6 7 . C	Hr Meter 6567,5	Hr Meter 6 5 6 % 0		
VER	R.P.M.	2300	2300	2300	7300	2300	7300		
	Oil Pressure psi	50	50	50	50	50	50		
BLO	Water Temp °F	160	(60	(60	160	160	160		
ENGINE/BLOWER	Volts	13	13	13	13	13	13		
ENG	Intake Vacuum "Hg	13	13	13	13	13	13		
	Gas Flow Fuel/Propane cfh	0	0	0	0	0	0		
	GW Pump ON/OFF	ON	00	00	04	04	000		
_ ≅	Extraction Well Flow scfm	37.58	38.51	38.57	38.51	38.51	38.57		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	70	76	70	70	70	70		
COU	Pump Rate gals/min	012	0.2	0.2	0.7	0.1	0.7		
E/VA	Total Volume gals	48	54	60	66	72	76		
PHEF UMP,	Influent Vapor Temp. °F	60	60	60	60	60	60		
MOS	Air Temperature °F	79.1	80.2	836	84.8	86.0	26.9		
AT	Barometric Pressure "Hg	30.23	30.73	30.22	30,20	30.19	30.18		
	Absolute Pressure "Hg	2945	24.15	24.14	24.13	24112	24.11		
Т	HC ppmv	X,880	-	55,780	-	56,440	_		
VAPOR /INFLUENT	CO ₂ %	7.36		7.12	~	7.>4	_		
INFI	CO %	1.64	-	1.54	_	1.55	_		
POR	O ₂ %	4.3	•	4.5	-	4.4	_		
VA	H ₂ S ppm	0	_	0	-	0	-		
	For induced vocacu and UNIT steady at 70" Hro, 37.58 schm								
	GOUR : Organ								
S	1100 HRS - NOTE! UNF inexessed to 38.57 setus - Vacuum @ 70" HAD								
NOTES			2.00		18-72 - No.				
z		***							
		2/0_3/2							
	LNAPL % Vol Gals	-	-	-	,	-	-		
MANIFOLD	Depth of GW Depression ft	-5.5	-5.5	-3.5	-3:3	-5.5	-5.5		
MAN	Extraction Well DTLNAPL ft						÷		
	Extraction Well DTGW ft								

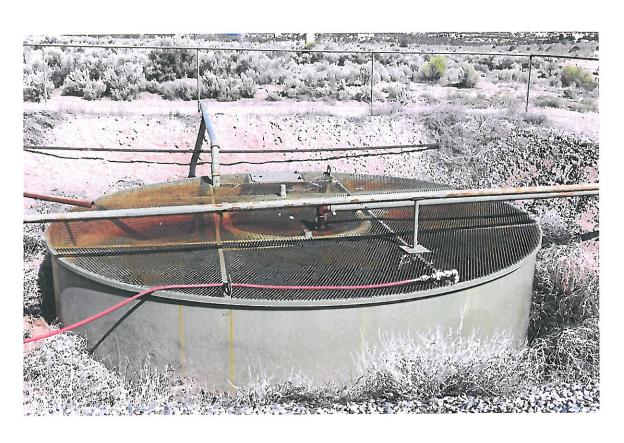
AVR	
\bigcirc	OPERATING DATA - EVENT

Location: Johnston Federal #4, San Juan County, NM Project Managers: Sadler/Faucher									
	Date:	8-27-13	٠ ســـ		_	_			
	Parameters	Time	Time 1400	Time (430	Time (500	Time (\$30	Time		
	WELL# MW- L	Hr Meter 6568.5	Hr Meter 6569.0	Hr Meter 6569,5	Hr Meter 6560.0	Hr Meter 6 5 60 . 5	Hr Meter		
ENGINE/BLOWER	R.P.M.	2300	2300	2300	2300	2300			
	Oil Pressure psi	50	50	50	30	50			
	Water Temp °F	160	160	160	160	160			
	Volts	13	13	U3	13	13			
	Intake Vacuum "Hg	12	12	12	12	12			
	Gas Flow Fuel/Propane cfh	0	0	0	٥	0			
	GW Pump ON/OFF	00	00	00	οw	oa			
×	Extraction Well Flow scfm	38.57	38.51	38.57	38.57	38.57			
M/AI	Extraction Well Vacuum "H ₂ O	70	76	70	70	70	LeC .		
CUU	Pump Rate gals/min	0.2	0.2	002	0.2	0.2			
E/VA VOL	Total Volume gals	82	88	94	100	106			
PHER UMP,	Influent Vapor Temp. °F	60	60	60	60	60			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Air Temperature °F	881	91.2	40.3	918	43.0			
AT	Barometric Pressure "Hg	30.17	30.16	30.15	30.14	30.13			
	Absolute Pressure "Hg	24.00	24,16	2409	14.08	24.07			
E	HC ppmv	53,(20	1	54,490		54,180			
VAPOR /INFLUENT	CO ₂ %	6.86	5	7.16	- "	7,20			
INF	CO %	t.45	L	1,58	4	462			
POR	O ₂ %	46	۷	5,2	_	5.3			
V _A	H ₂ S ppm	0	v	0	_	0			
	Ew induced vocum and UWF steady @ 70" Uno, 38.57 solon								
	GUPP = O. 29 por MOTE An occasional stug (approximately 31								
S	of LNAPL will float through with GW - Total LNAR for								
NOTES	the 8 how Event is estimated at 20 gallons. Sight table show on								
Z	1530 HAS - EVENT # 3 Completed collection tembr								
	1615 Uns - Secured all wells - Deported site								
		36.00	Sarvay.			1 No. 1			
	LNAPL % Vol Gals	SAE-	Note -	ABOUT -	^	_			
MANIFOLD	Depth of GW Depression ft	-5,5	- 5,5	-5.5	-5.5	-5.5			
	Extraction Well DTLNAPL ft					47.37			
	Extraction Well DTGW ft					47,38			
75 7 10	s Well Pressure					2011 · 1 200	stForms/1210017B		

() Indicates Well Pressure

7FORMS/TestForms/1210017B

JOHNSTON FEDERAL NO. 4 SITE AZTEC, NM



JOHNSTON FEDERAL NO. 4 SITE AZTEC, NM

JOHNSTON FEDERAL NO. 4 SITE AZTEC, NM

Appendix B

September 2013 Annual Groundwater Sampling Field Forms

	IMPLE CAMPING THE DIMEODY APPLOY TO DA	
SITE/PROJECT NAME SAMPLE II		
91713 PURGE DATE (MIM DD YY)	WELL PURGING INFORMATION 9/17/3 1720 0.77 2.55 SAMPLE DATE SAMPLE TIME WATER VOL IN CASING (GALLONS) (GALLONS) ACTUAL VOL PURGED (GALLONS)	
PURGING EQUIPMENTDED	PURGING AND SAMPLING EQUIPMENT SAMPLING EQUIPMENTDEDICATED Y N (CIRCLE ONE)	
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X= B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA9 PURGING DEVICE OTHER (SPECIFY) X=	
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON D - PVC B - STAINLESS STEEL E - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY) C - POLYPROPYLENE X - OTHER SAMPLING DEVICE OTHER (SPECIFY) X= PURGING MATERIAL OTHER (SPECIFY) X=	
PURGE TUBING SAMPLING TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION X= B - TYCON E - POLYETHYLENE TEFLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY) C - ROPE F - SILICONE X - OTHER X= SAMPLING TUBING OTHER (SPECIFY)	
FILTERING DEVICES 0.45 DEPTH TO WATER	A - IN-LINE DISPOSABLE O B - PRESSURE FIELD MEASUREMENTS (feet) WELL ELEVATION (feet)	
WELL DEPTHEMPERATURE	PH TDS SC DO ORP VOLUME	
15.43 ₆	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25
	(g/L) (g/L) (mg/L) (mg/L) (my/L) (gal) (gal) (gal) (gdl) (gdl) (gdl) (gdl) (gdl) (gdl)	
SAMPLE APPEARANCE: VEATHER CONDITIONS:	FIELD COMMENTS	Anueris
SPECIFIC COMMENTS:	ve @ 1730	
I CERTIFY THAT SAMPLING PRODATE	OCEDURES WEITIN ACCORDANCE WITH APPLICABLE CRAPROTOCOLS WRINT 1000 M.S. D. D. A. J. D. W. SIGNATURE	

SITE/PROJECT NAME SAMPLE II		
PURCE DATE (MM DD YY)	SAMPLEDATE SAMPLETIME WATER VOL. IN CASE (MM DD YY) (GALLONS)	
PURGING EQUIPMENTDEI	PURGING AND SAMPLING EQUIPMENT SAMPLING PURGING AND SAMPLING EQUIPMENT	ING EQUIPMENTDEDICATED Y
	(CIRCLE ONE)	(CIRCLE ONE)
PURGING DEVICE '	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER B - PERISTALTIC PUMP B - PURGE PUMP H - WATERRA®	X= PURGING DEVICE OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER	X==
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON D - PVC B - STAINLESS SIEEL E - POLYETHYLENE C - POLYPROPYLENE X - OTHER	SAMPLING DEVICE OTHER (SPECIFY) X= PURGING MATERIAL OTHER (SPECIFY) X=
PURGE TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION TEFLON/POLYPROPYLENE B - TYGON E - POLYETHYLENE	SAMPLING MATERIAL OTHER (SPECIFY) X= PURGE TUBING OTHER (SPECIFY)
SAMPLING TUBING	C - ROPE F - SILICONE X - OTHER	X=
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B - PRESSURE 0,45 metals	SAMPHING TUBING OTHER (SPECIFY)
DEPTH TO WATE.	FIELD MEASUREMENTS WELL BLEVATION WELL BLEVATION	(feet)
WELL DEPTH		(feet)
TEMPERATURE 111 (°C)	730 (std) 1515 (g/L) 2331 (uS/cm) 6,13 (mg/	ORP VOLUME 15 65 1 (mv) 125 (gal)
14,07 co	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{1.56.3}{56.7}$ (mV) $\frac{1.73}{1.75}$ (gal) $\frac{1.56.7}{1.56}$ (mV) $\frac{1.25}{1.56}$ (gal)
(°C)	(std) (g/L) (u5/cm) (mg/	L) (mV) [gal)
(°C)	(std) (g/L) (µS/cm) (mg/	L) (mV) (gal)
SAMPLE APPEARANCE: WEATHER CONDITIONS: SPECIFIC COMMENTS:	TEMPERATURE FIELD COMMENTS COLOR LIGHT Brown PRECIPITATE FIELD COMMENTS WINDYY/N PRECIPITATE FIELD COMMENTS OF THE PRECIPITATE FIELD COMMENTS FIELD COMMENTS OF THE PRECIPITATE FIELD COMMENTS OF THE PRECIPITATE FIELD COMMENTS FIELD	SHEEN Y/N 100 100 Y/N (IFY TYPE) 100 100 Y/N (IFY TYPE)
	A	
I CERTIFY THAT SAM LING PRODUCE TO THE TOTAL SAM LING PRODUCE TO T	OCEDURES WEIGHN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS JERNYT MS-TVL WITH APPLICABLE CRA PROTOCOLS	atico

SITE/PROJECT NAME SAMPLE IL		4915 NW 3
9/17/13 PURGE DATE (MIN DD YY)	WELL PURGING INFORMATION 1705 SAMPLE DATE (MIN DD YY) WELL PURGING INFORMATION 1705 WATER VOL. IN CASING (GALLONS)	7, 2, 5 ACTUAL VOL. PURGED (GALLONS)
PURGING EQUIPMENTDED	PURGING AND SAMPLING EQUIPMENT ICATELY N (CIRCLE ONE)	EQUIPMENTDEDICATEI Y N (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRAD	PURGING DEVICE OTHER (SPECIFY)
SAMPLING DEVICE	C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X=	SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL	B - STAINLESS STEEL F - POLYETHYLENE	PURGING MATERIAL OTHER (SPECIFY)
SAMPLING MATERIAL	C-POLYPROPYLENE X-OTHER X=	SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING	A-TEFLON D-POLYPROPYLENE G-COMBINATION X= TEFLON/POLYPROPYLENE	
SAMPLING TUBING	C-ROPE F-SILICONE X-OTHER	
FILTERING DEVICES 0,45	A-IN-LINE DISPOSABLE B- PRESSURE 0,45 Micrantar	retals only
DEPTH TO WATER	FIELD MEASUREMENTS WELL ELEVATION WELL ELEVATION	(feet)
WELL DEPTH TEMPERATURE	ph TDS SC DO	ORP VOLUME
	7.06 (std) 1.264 (g/L) 1944 (uS/cm) 281 (mg/L)	
	6.82 (std) 1.249 (g/L) 1922 (µS/cm) 1.86 (mg/L)	154./ (mV) C. 75 (gal)
[5,44] _{(co.1}	680 (std) [1263 (g/L) [1943 (uS/cm) [170 (mg/L)	649 (mv) 7,25 (gal)
(°C)	(std) (g/L) (μS/cm) (mg/L)	(mV) (gal)
(°C)	(std) (g/L) $(\mu S/cm)$ (mg/L)	(mV) (gal)
AMPLE APPEARANCE VEATHER CONDITIONS: PECIFIC COMMENTS:	FIELD COMMENTS CLOVDY ODOR: PLO COLOR CRAY SHEEN TEMPERATURE 80; WINDYY/N PRECIPITATION	<u> </u>
I CERTIFY THAT SAMPUNG PROC	EEDURES WERE INACCORDANCE WITH APPLICABLE FRA PROTOCOLS PRINT MEN NO WITH APPLICABLE FRA PROTOCOLS	the state of the s

SITE/PROJECT NAM SAMPLE I		
9/17/13 PURG DATE (MM DD YY)	WELL PURGING INFORMATION 1635 SAMPLE DATE (MM DD YY) WELL PURGING INFORMATION 2,6 WATER VOL. IN CASING (GALLONS) ACTUAL VOL. PURGED (GALLONS)	
PURGING EQUIPMENTDE	PURGING AND SAMPLING EQUIPMENT DICATED (CIRCLE ONE) PURGING AND SAMPLING EQUIPMENTDEDICATED (CIRCLE ONE)	
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X= B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER SAMPLING DEVICE OTHER (SPECIFY)	
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON D - PVC X= B- STAINLESS STEEL E - FOLYETHYLENE PURGING MATERIAL OTHER (SPECIFY) C - FOLYPROPYLENE X - OTHER X= SAMPLING MATERIAL OTHER (SPECIFY)	
PURGE TUBING SAMPLING TUBING	A-TEFLON D-POLYPROPYLENE G-COMBINATION X= B-TYGON E-POLYETHYLENE PURGE TUBING OTHER (SPECIFY) C-ROPE F-SILICONE X-OTHER X=	
FILTERING DEVICES 0.45	A-IN-LINE DISPOSABLE B-PRESSURE OF HELD MEASUREMENTS SAMPLING TUBING OTHER (SPECIFY) MOTALS OF	ly
DEPTH TO WATE WELL DEPT TEMPERATURE (C, 07 (°C) (5, 62 (°C) (°C) (°C) (°C) AMPLE APPEARANCE: VEATHER CONDITIONS: PECIFIC COMMENTS:	R 43.65 (feet) WELL ELEVATION (feet)	I) I) I)
I CERTIFY THAT SAMPLING PRODUCE	CEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS FRINT MC-1/0 1 GRAPH CRA PROTOCOLS	

Ч

Appendix C

September 2013 Annual Groundwater Laboratory Analytical Report

October 07, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 20, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 lowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097

Lenexa, KS 66219 (913)599-5665

SAMPLE SUMMARY

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60153641001	GW-074925-091713-CM-MW-1	Water	09/17/13 17:20	09/20/13 08:30
60153641002	GW-074925-091713-CM-MW-2	Water	09/17/13 16:50	09/20/13 08:30
60153641003	GW-074925-091713-CM-MW-3	Water	09/17/13 17:05	09/20/13 08:30
60153641004	GW-074925-091713-CM-MW-4	Water	09/17/13 16:35	09/20/13 08:30
60153641005	GW-074925-091713-CM-DUP	Water	09/17/13 17:30	09/20/13 08:30
60153641006	TB-074925-091813-CM-001	Water	09/18/13 08:30	09/20/13 08:30

SAMPLE ANALYTE COUNT

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60153641001		EPA 6010	NDJ	2
		EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
		EPA 300.0	OL	1
60153641002	GW-074925-091713-CM-MW-2	EPA 6010	NDJ	2
		EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
		EPA 300.0	OL	1
60153641003	GW-074925-091713-CM-MW-3	EPA 6010	NDJ	2
		EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
		EPA 300.0	OL	1
60153641004	GW-074925-091713-CM-MW-4	EPA 6010	NDJ	2
		EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
		EPA 300.0	OL	1
60153641005	GW-074925-091713-CM-DUP	EPA 5030B/8260	PRG	8
60153641006	TB-074925-091813-CM-001	EPA 5030B/8260	PRG	8

PROJECT NARRATIVE

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Method: EPA 6010

Description: 6010 MET ICP, Dissolved

Client: COP Conestoga-Rovers & Associates, Inc. NM

Date: October 07, 2013

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Method: EPA 8270C by SIM

Description: 8270 MSSV PAH by SIM

Client: COP Conestoga-Rovers & Associates, Inc. NM

Date: October 07, 2013

General Information:

4 samples were analyzed for EPA 8270C by SIM. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSSV/12908

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

PROJECT NARRATIVE

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Method: EPA 5030B/8260 Description: 8260 MSV

Client: COP Conestoga-Rovers & Associates, Inc. NM

Date: October 07, 2013

General Information:

6 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/56540

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

QC Batch: MSV/56552

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

PROJECT NARRATIVE

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days

Client: COP Conestoga-Rovers & Associates, Inc. NM

Date: October 07, 2013

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Date: 10/07/2013 10:16 AM

Sample: GW-074925-091713-CM-Lab ID: 60153641001 Collected: 09/17/13 17:20 Received: 09/20/13 08:30 Matrix: Water MW-1 Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Preparation Method: EPA 3010 Iron, Dissolved ND mg/L 0.050 0.012 09/26/13 10:25 09/27/13 10:21 7439-89-6 Manganese, Dissolved 0.89 mg/L 0.0050 0.00049 1 09/26/13 10:25 09/27/13 10:21 7439-96-5 8270 MSSV PAH by SIM Analytical Method: EPA 8270C by SIM Preparation Method: EPA 3510C Naphthalene 36.5 ug/L 2.5 0.16 5 09/24/13 00:00 10/03/13 11:53 91-20-3 Surrogates 2-Fluorobiphenyl (S) 61 % 36-120 09/24/13 00:00 10/02/13 21:57 321-60-8 1 Terphenyl-d14 (S) 73 % 29-134 1 09/24/13 00:00 10/02/13 21:57 1718-51-0 8260 MSV Analytical Method: EPA 5030B/8260 4690 ug/L 50.0 3.0 50 09/25/13 18:58 71-43-2 Benzene Ethylbenzene 1170 ug/L 50.0 9.0 50 09/25/13 18:58 100-41-4 Toluene 7550 ug/L 50.0 8.5 50 09/25/13 18:58 108-88-3 Xylene (Total) 11000 ug/L 150 21.0 50 09/25/13 18:58 1330-20-7 Surrogates 4-Bromofluorobenzene (S) 103 % 80-120 50 09/25/13 18:58 460-00-4 1,2-Dichloroethane-d4 (S) 105 % 80-120 50 09/25/13 18:58 17060-07-0 Toluene-d8 (S) 95 % 80-120 50 09/25/13 18:58 2037-26-5 0.10 50 Preservation pH 1.0 0.10 09/25/13 18:58 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Sulfate 371 mg/L 20.0 3.2 20 10/04/13 19:17 14808-79-8

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Date: 10/07/2013 10:16 AM

Sample: GW-074925-091713-CM- MW-2	Lab ID: 60153	641002 Collecte	ed: 09/17/1	3 16:50	Received: 09/	20/13 08:30 M	atrix: Water	
		Report						
Parameters	Results Uni	s Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Method	d: EPA 6010 Prepa	aration Meth	od: EPA	A 3010			
Iron, Dissolved	ND mg/L	0.050	0.012	1	09/26/13 10:25	09/27/13 10:34	7439-89-6	
Manganese, Dissolved	ND mg/L	0.0050	0.00049	1	09/26/13 10:25	09/27/13 10:34	7439-96-5	
8270 MSSV PAH by SIM	Analytical Method	d: EPA 8270C by S	IM Prepara	ation Me	thod: EPA 3510C			
Naphthalene Surrogates	ND ug/L	0.50	0.031	1	09/24/13 00:00	10/02/13 22:15	91-20-3	
2-Fluorobiphenyl (S)	68 %	36-120		1	09/24/13 00:00	10/02/13 22:15	321-60-8	
Terphenyl-d14 (S)	102 %	29-134		1	09/24/13 00:00	10/02/13 22:15	1718-51-0	
8260 MSV	Analytical Method	d: EPA 5030B/8260)					
Benzene	ND ug/L	1.0	0.060	1		09/25/13 19:12	71-43-2	
Ethylbenzene	ND ug/L	1.0	0.18	1		09/25/13 19:12	100-41-4	
Toluene	ND ug/L	1.0	0.17	1		09/25/13 19:12	108-88-3	
Xylene (Total)	ND ug/L	3.0	0.42	1		09/25/13 19:12	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	100 %	80-120		1		09/25/13 19:12		
1,2-Dichloroethane-d4 (S)	108 %	80-120		1		09/25/13 19:12		
Toluene-d8 (S)	95 %	80-120		1		09/25/13 19:12	2037-26-5	
Preservation pH	1.0	0.10	0.10	1		09/25/13 19:12		
300.0 IC Anions 28 Days	Analytical Method	d: EPA 300.0						
Sulfate	1230 mg/L	100	16.0	100		10/04/13 19:32	14808-79-8	

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Sulfate

Date: 10/07/2013 10:16 AM

Sample: GW-074925-091713-CM-Lab ID: 60153641003 Collected: 09/17/13 17:05 Received: 09/20/13 08:30 Matrix: Water MW-3 Report **Parameters** Results Units Limit MDL DF Prepared Analyzed CAS No. Qual 6010 MET ICP, Dissolved Analytical Method: EPA 6010 Preparation Method: EPA 3010 Iron, Dissolved 0.80 mg/L 0.050 0.012 09/26/13 10:25 09/27/13 10:37 7439-89-6 Manganese, Dissolved 0.67 mg/L 0.0050 0.00049 1 09/26/13 10:25 09/27/13 10:37 7439-96-5 8270 MSSV PAH by SIM Analytical Method: EPA 8270C by SIM Preparation Method: EPA 3510C Naphthalene ND ug/L 0.50 0.031 09/24/13 00:00 10/02/13 22:34 91-20-3 Surrogates 2-Fluorobiphenyl (S) 65 % 36-120 09/24/13 00:00 10/02/13 22:34 321-60-8 1 Terphenyl-d14 (S) 85 % 29-134 09/24/13 00:00 10/02/13 22:34 1718-51-0 8260 MSV Analytical Method: EPA 5030B/8260 1.2 ug/L 0.060 09/25/13 19:26 71-43-2 Benzene 1.0 1 Ethylbenzene ND ug/L 0.18 09/25/13 19:26 100-41-4 1.0 1 Toluene ND ug/L 1.0 0.17 1 09/25/13 19:26 108-88-3 Xylene (Total) ND ug/L 3.0 0.42 1 09/25/13 19:26 1330-20-7 Surrogates 4-Bromofluorobenzene (S) 103 % 80-120 09/25/13 19:26 460-00-4 1,2-Dichloroethane-d4 (S) 105 % 80-120 1 09/25/13 19:26 17060-07-0 Toluene-d8 (S) 93 % 80-120 1 09/25/13 19:26 2037-26-5 0.10 Preservation pH 1.0 0.10 1 09/25/13 19:26 300.0 IC Anions 28 Days Analytical Method: EPA 300.0

50.0

8.0

50

10/04/13 19:46 14808-79-8

808 mg/L

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Date: 10/07/2013 10:16 AM

Sample: GW-074925-091713-CM- MW-4	Lab ID:	60153641004	Collecte	d: 09/17/1	3 16:35	Received: 09/	20/13 08:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytica	l Method: EPA	6010 Prepa	ration Meth	od: EPA	A 3010			
Iron, Dissolved	0.51 r	mg/L	0.050	0.012	1	09/26/13 10:25	09/27/13 10:40	7439-89-6	
Manganese, Dissolved	1.6 r	mg/L	0.0050	0.00049	1	09/26/13 10:25	09/27/13 10:40	7439-96-5	
8270 MSSV PAH by SIM	Analytica	Method: EPA	8270C by S	IM Prepara	tion Me	thod: EPA 3510C			
Naphthalene Surrogates	ND t	ıg/L	0.50	0.031	1	09/24/13 00:00	10/02/13 22:53	91-20-3	
2-Fluorobiphenyl (S)	65 9	%	36-120		1	09/24/13 00:00	10/02/13 22:53	321-60-8	
Terphenyl-d14 (S)	96 9	%	29-134		1	09/24/13 00:00	10/02/13 22:53	1718-51-0	
8260 MSV	Analytica	l Method: EPA	5030B/8260)					
Benzene	6.5 (ıg/L	1.0	0.060	1		09/25/13 19:39	71-43-2	
Ethylbenzene	ND t	ıg/L	1.0	0.18	1		09/25/13 19:39	100-41-4	
Toluene	ND t	ıg/L	1.0	0.17	1		09/25/13 19:39	108-88-3	
Xylene (Total)	ND t	ıg/L	3.0	0.42	1		09/25/13 19:39	1330-20-7	
Surrogates									
4-Bromofluorobenzene (S)	98 9		80-120		1		09/25/13 19:39	460-00-4	
1,2-Dichloroethane-d4 (S)	108 9	%	80-120		1		09/25/13 19:39	17060-07-0	
Toluene-d8 (S)	93 9	%	80-120		1		09/25/13 19:39	2037-26-5	
Preservation pH	1.0		0.10	0.10	1		09/25/13 19:39		
300.0 IC Anions 28 Days	Analytica	l Method: EPA	300.0						
Sulfate	925 r	mg/L	100	16.0	100		10/04/13 20:01	14808-79-8	

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Sample: GW-074925-091713-CM-Lab ID: 60153641005 Collected: 09/17/13 17:30 Received: 09/20/13 08:30 Matrix: Water

Date: 10/07/2013 10:16 AM

DUP									
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EP	A 5030B/8260						
Benzene	4700 U	ıg/L	50.0	3.0	50		09/25/13 19:53	71-43-2	
Ethylbenzene	1040 U	ıg/L	50.0	9.0	50		09/25/13 19:53	100-41-4	
Toluene	7210 U	ıg/L	50.0	8.5	50		09/25/13 19:53	108-88-3	
Xylene (Total)	9970 U	ıg/L	150	21.0	50		09/25/13 19:53	1330-20-7	
Surrogates									
4-Bromofluorobenzene (S)	102 %	6	80-120		50		09/25/13 19:53	460-00-4	
1,2-Dichloroethane-d4 (S)	109 %	6	80-120		50		09/25/13 19:53	17060-07-0	
Toluene-d8 (S)	93 %	6	80-120		50		09/25/13 19:53	2037-26-5	
Preservation pH	1.0		0.10	0.10	50		09/25/13 19:53		

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Date: 10/07/2013 10:16 AM

Sample: TB-074925-091813-CM-	001 Lab ID:	60153641006	Collected	d: 09/18/13	08:30	Received: 09	9/20/13 08:30 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytica	l Method: EPA 5	030B/8260						
Benzene	ND t	ug/L	1.0	0.060	1		09/25/13 23:20	71-43-2	
Ethylbenzene	ND t	ug/L	1.0	0.18	1		09/25/13 23:20	100-41-4	
Toluene	ND t	ug/L	1.0	0.17	1		09/25/13 23:20	108-88-3	
Xylene (Total)	ND t	ug/L	3.0	0.42	1		09/25/13 23:20	1330-20-7	
Surrogates									
4-Bromofluorobenzene (S)	97 9	%	80-120		1		09/25/13 23:20	460-00-4	
1,2-Dichloroethane-d4 (S)	101 9	%	80-120		1		09/25/13 23:20	17060-07-0	
Toluene-d8 (S)	101 9	%	80-120		1		09/25/13 23:20	2037-26-5	
Preservation pH	1.0		0.10	0.10	1		09/25/13 23:20		

Lenexa, KS 66219 (913)599-5665

QUALITY CONTROL DATA

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Date: 10/07/2013 10:16 AM

QC Batch: MPRP/24442 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Associated Lab Samples: 60153641001, 60153641002, 60153641003, 60153641004

METHOD BLANK: 1260460 Matrix: Water

Associated Lab Samples: 60153641001, 60153641002, 60153641003, 60153641004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

 Iron, Dissolved
 mg/L
 ND
 0.050
 09/27/13 10:15

 Manganese, Dissolved
 mg/L
 ND
 0.0050
 09/27/13 10:15

LABORATORY CONTROL SAMPLE: 1260461

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Iron, Dissolved mg/L 10 10.1 101 80-120 Manganese, Dissolved mg/L 1.0 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1260462 1260463

MSD MS 60153641001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Iron, Dissolved mg/L ND 10 10 10 9.9 100 99 75-125 0 20 Manganese, Dissolved mg/L 0.89 1 1 1.8 1.8 94 95 75-125 20

QUALITY CONTROL DATA

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

QC Batch: MSV/56540 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60153641001, 60153641002, 60153641003, 60153641004, 60153641005

METHOD BLANK: 1259864 Matrix: Water

Associated Lab Samples: 60153641001, 60153641002, 60153641003, 60153641004, 60153641005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND ND	1.0	09/25/13 16:55	
Ethylbenzene	ug/L	ND	1.0	09/25/13 16:55	
Toluene	ug/L	ND	1.0	09/25/13 16:55	
Xylene (Total)	ug/L	ND	3.0	09/25/13 16:55	
1,2-Dichloroethane-d4 (S)	%	107	80-120	09/25/13 16:55	
4-Bromofluorobenzene (S)	%	99	80-120	09/25/13 16:55	
Toluene-d8 (S)	%	97	80-120	09/25/13 16:55	

LABORATORY CONTROL SAMPLE: 1259865

Date: 10/07/2013 10:16 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L		21.9	109	73-122	
Ethylbenzene	ug/L	20	21.1	105	76-123	
Toluene	ug/L	20	20.1	100	76-122	
Xylene (Total)	ug/L	60	62.0	103	76-122	
1,2-Dichloroethane-d4 (S)	%			107	80-120	
4-Bromofluorobenzene (S)	%			102	80-120	
Toluene-d8 (S)	%			95	80-120	

QUALITY CONTROL DATA

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

QC Batch: MSV/56552 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60153641006

METHOD BLANK: 1260052 Matrix: Water

1260053

%

%

Associated Lab Samples: 60153641006

LABORATORY CONTROL SAMPLE:

4-Bromofluorobenzene (S)

Date: 10/07/2013 10:16 AM

Toluene-d8 (S)

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND ND	1.0	09/25/13 22:39	
Ethylbenzene	ug/L	ND	1.0	09/25/13 22:39	
Toluene	ug/L	ND	1.0	09/25/13 22:39	
Xylene (Total)	ug/L	ND	3.0	09/25/13 22:39	
1,2-Dichloroethane-d4 (S)	%	100	80-120	09/25/13 22:39	
4-Bromofluorobenzene (S)	%	100	80-120	09/25/13 22:39	
Toluene-d8 (S)	%	98	80-120	09/25/13 22:39	

LCS LCS Spike % Rec Limits Parameter Units Conc. Result % Rec Qualifiers Benzene 21.3 106 73-122 ug/L 20 Ethylbenzene 20 21.0 105 ug/L 76-123 Toluene 20 76-122 ug/L 19.7 98 Xylene (Total) ug/L 60.6 101 76-122 60 1,2-Dichloroethane-d4 (S) % 104 80-120

99

96

80-120

80-120

Lenexa, KS 66219 (913)599-5665

QUALITY CONTROL DATA

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Date: 10/07/2013 10:16 AM

QC Batch: OEXT/40632 Analysis Method: EPA 8270C by SIM

QC Batch Method: EPA 3510C Analysis Description: 8270 Water PAH by SIM MSSV

Associated Lab Samples: 60153641001, 60153641002, 60153641003, 60153641004

METHOD BLANK: 1258787 Matrix: Water

Associated Lab Samples: 60153641001, 60153641002, 60153641003, 60153641004

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Naphthalene ug/L ND 0.50 09/30/13 19:37 2-Fluorobiphenyl (S) % 44 36-120 09/30/13 19:37 Terphenyl-d14 (S) % 58 09/30/13 19:37 29-134

LABORATORY CONTROL SAMPLE: 1258788

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/L	10	5.0	50	44-120	
2-Fluorobiphenyl (S)	%			46	36-120	
Terphenyl-d14 (S)	%			57	29-134	

Lenexa, KS 66219 (913)599-5665

QUALITY CONTROL DATA

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

QC Batch: WETA/26476 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60153641001, 60153641002, 60153641003, 60153641004

METHOD BLANK: 1265087 Matrix: Water

Associated Lab Samples: 60153641001, 60153641002, 60153641003, 60153641004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 1.0 10/04/13 17:37

LABORATORY CONTROL SAMPLE: 1265088

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 4.8 97 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1265089 1265090

MS MSD 60153603001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 80-120 Sulfate mg/L 1760 1000 1000 2620 2650 86 15 89

MATRIX SPIKE SAMPLE: 1265091

Date: 10/07/2013 10:16 AM

MS 60153603002 Spike MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers Sulfate 1110 2000 80-120 mg/L 1000 89

QUALIFIERS

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: OEXT/40632

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/56540

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/56552

Date: 10/07/2013 10:16 AM

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60153641

Date: 10/07/2013 10:16 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60153641001	GW-074925-091713-CM-MW-1	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153641002	GW-074925-091713-CM-MW-2	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153641003	GW-074925-091713-CM-MW-3	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153641004	GW-074925-091713-CM-MW-4	EPA 3010	MPRP/24442	EPA 6010	ICP/19045
60153641001	GW-074925-091713-CM-MW-1	EPA 3510C	OEXT/40632	EPA 8270C by SIM	MSSV/12908
60153641002	GW-074925-091713-CM-MW-2	EPA 3510C	OEXT/40632	EPA 8270C by SIM	MSSV/12908
60153641003	GW-074925-091713-CM-MW-3	EPA 3510C	OEXT/40632	EPA 8270C by SIM	MSSV/12908
60153641004	GW-074925-091713-CM-MW-4	EPA 3510C	OEXT/40632	EPA 8270C by SIM	MSSV/12908
60153641001	GW-074925-091713-CM-MW-1	EPA 5030B/8260	MSV/56540		
60153641002	GW-074925-091713-CM-MW-2	EPA 5030B/8260	MSV/56540		
60153641003	GW-074925-091713-CM-MW-3	EPA 5030B/8260	MSV/56540		
60153641004	GW-074925-091713-CM-MW-4	EPA 5030B/8260	MSV/56540		
60153641005	GW-074925-091713-CM-DUP	EPA 5030B/8260	MSV/56540		
60153641006	TB-074925-091813-CM-001	EPA 5030B/8260	MSV/56552		
60153641001	GW-074925-091713-CM-MW-1	EPA 300.0	WETA/26476		
60153641002	GW-074925-091713-CM-MW-2	EPA 300.0	WETA/26476		
60153641003	GW-074925-091713-CM-MW-3	EPA 300.0	WETA/26476		
60153641004	GW-074925-091713-CM-MW-4	EPA 300.0	WETA/26476		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60153641

Client Name: COP CEA NM					Optional
Courier: Fed Ex 2 UPS USPS Client (Commercial [] Pace	e 🗆 Other 🗆		Proj Due Date:
Tracking #: 8023 6677 9454 Pa	ace Shipping I	_abel Us	ed? Yes ₩	No □	Proj Name:
Custody Seal on Cooler/Box Present: Yes 🗷 No 🗆	Seals into	act: Yes	s 🗗 No □	2	
Packing Material: Bubble Wrap ☑ Bubble Bag	s□	Foam 🗆	None □	Other	
Thermometer Used: T-112 / T-194 Typ	e of Ice: 🐠			mples received	on ice, cooling process has begun.
Cooler Temperature: 4-9		(circle o	one)	Date and in	itials of person examining
Temperature should be above freezing to 6°C				contents.	1180
Chain of Custody present:	Yes No				2
Chain of Custody filled out:	Yes No	□N/A 2			
Chain of Custody relinquished:	Yes □No	□N/A 3			
Sampler name & signature on COC:	Yes □No	□N/A 4			
Samples arrived within holding time:	ZYes □No	□N/A 5	n.		
Short Hold Time analyses (<72hr):	□Yes No	□N/A 6			
Rush Turn Around Time requested:	□Yes 🗷No	□N/A 7			
Sufficient volume:	y Yes □No	□N/A 8			
Correct containers used:	Z Yes □No	□ n /A			
Pace containers used:	Yes □No	□N/A g),		
Containers intact:	∰Yes □No	□N/A 1	0.		
Unpreserved 5035A soils frozen w/in 48hrs?	□Yes □No	ØN/A 1	1.		
Filtered volume received for dissolved tests?	□Yes □No	⊠N/A 1	2.		
Sample labels match COC:	Yes □No	□N/A			
Includes date/time/ID/analyses Matrix: المادة	ater	1	3.		
All containers needing preservation have been checked	¥Yes □No	□N/A			
All containers needing preservation are found to be in compliance with EPA recommendation.	Z Yes □No	□N/A	14.		
Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water), Phenolics	₩Yes □No	100	nitial when completed		Lot # of added preservative
Trip Blank present:	Yes □No			,	
Pace Trip Blank lot # (if purchased):o61213.7		1	15.		
Headspace in VOA vials (>6mm):	□Yes ₹No	□N/A			
		4	16.		
Project sampled in USDA Regulated Area:	□Yes □No	DN/A	LZ List State		
Client Notification/ Resolution: Copy CO	C to Client?	YIN	Field Da	ta Required?	Y / N
Person Contacted: Dai	te/Time:				p Log: Record start and finish times
Comments/ Resolution:					n unpacking cooler, if >20 min, eck sample temps
				Star	t: Start:
MA			and	End	
Project Manager Review:		D	ate	7 Tem	np. 1150 Temp:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Required Ciletti IIIIOIIIIation.	топпацоп:	required riolest illigination.							1			
Company: C	COP CRA NM	Report To: Christine Mathews		`	Attention: C	COP epayables						
Address: 61	6121 Indian School Rd NE, Ste 200	Copy To: Jeff Walker, Angela Bown	Bown		Cómpany Name:		¥	REGULATORY AGENCY	Y AGENCY			
Ā	Albequerque, NM 87110				Address:			L NPDES	X GROUNE	GROUND WATER	DRINKING WATER	3 WATER
Email To: Cr	cmathews@craworld.com	Purchase Order No.:		L. IC	Pace Quote Reference:			_ TSU □	F RCRA	4	- OTHER	
Phone: (505)8	(505)884-0672 Fax: (505)884-4932	Project Name: Johnston Federal No. 4	al No. 4			Alice Flanagan		Site Location	MINA			
Requested Due Date/TAT:	Jate/TAT:	Project Number: 74925	П		42	5514, 20		STATE:				
							10	Requested Analysis Filtered (Y/N)	(N/A) pa			
Section	Section D Valid Matrix Codes Required Cient Information MATRIX COI	H (file)	COLLECTED		Pr	Preservatives	ţn/Ÿ					
			TE COMPOSUTE ENUFORME		SA		əu				6015364	4
Sam	Sample IDs MUST BE UNIQUE TISSUE	SAMPLE TYPE (G	TEC.	E TA 9MBT BJ9MA8	# OF CONTAINE Unpreserved H ₂ SO ₄	Methanol Na ₂ S ₂ O ₃ HCI HCI	### Teivipals Teix Teix Teix Teix Teix Teix Teix Teix			Residual Chlori	Pace Project No./ Lab I.D.	10./ Lab I.D.
7	MUST PHITE I'M MILL		0	10	X	×	X		100	30001	W 2/ACAW	2/424W) ((82W) ((58W))
	2 2	1-2 M	ghia	05%	1×1	**	XXXX		200	{		
1	1 - W/- 21113 - 7011CA.	6	900	702	X	*	XXX		6003			-
	36	アルードな	9/7/18	135	N N	8	XXXX		400		->	
1	(-111/-5/17/2) - 2/24/0	という。	GIHIB	1730	2	X	×		200	Zoens)		
2	074925-091813-CM-C	5	d/MB/	830	w	×	X		200	~		
r & o							Smol -					
11			4				H-use i					2 2
12	ADDITIONAL COMMENTS	RELINQUISHED BY LAFFLIATION	FP. LATION	PATE	TIME	ACCEPTE	ACCEPTED BY / AFFILIATION	DATE	TIME	Ŝ	SAMPLE CONDITIONS	CIONS
	Mayor Hold	CEURINI FEUR	\$	9/18/13	03,00	S. S.	" Have	द्यक्रिकी	820	4,9 Y	7	> 1
	Z						*				k	,
Paç			SAMPLER NAME AND	ID SIGNATURE	. JQ	7 PA	11			uo p	Sealec	Intact ()
ge 23 o			PRINT Name	PRINT NAME OF SAMPLER	STATE OF THE PARTY	# 25 P	DATE Signed	8/10/13	00	Temp in Temp i	Custody S	səldms2 N/Y)
of 2		J		1	1	200	- Common	1				