3R - 428 2013 AGWMR 03 / 21 / 2014

Terry S. Lauck Program Manager

ConocoPhillips Company Risk Management & Remediation 1380G Plaza Office Building 315 Johnstone Avenue Bartlesville, OK 74004 Phone: 918.661.0935 E-mail: Terry.S.Lauck@cop.com

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

March 21, 2014

Re: NMOCD Case No. 3RP-428, 2013 Annual Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed is the 2013 Annual Groundwater Monitoring Report for the Sategna No. 2E site. This report, prepared by Conestoga-Rovers & Associates (CRA), contains the results of groundwater monitoring conducted during September 2013.

Please let me know if you have any questions.

Sincerely,

Terry S. Lauck

Enc

www.CRAworld.com

2013 Annual Groundwater Monitoring Report

ConocoPhillips Sategna No. 2E San Juan County, New Mexico API# 30-045-24060 NMOCD# 3R-428

Prepared for: ConocoPhillips Company

Conestoga-Rovers & Associates

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110

January 2014 • 074932 • Report No. 5

Table of Contents

Page

Section 1.0	Intro 1.1	duction Background	
Section 2.0	Grou	ndwater Monitoring Methodology and Analytical Results	2
	2.1	Groundwater Monitoring Summary	2
	2.2	Groundwater Sampling Methodology	3
	2.3	Groundwater Monitoring Analytical Results	3
Section 3.0	Conc	lusions and Recommendations	4

List of Figures (Following Text)

- Figure 1 Site Vicinity Map
- Figure 2 Site Plan
- Figure 3 September 2013 Groundwater Potentiometric Surface Map
- Figure 4 Geological Cross Section

List of Tables (Following Text)

- Table 1Site History Timeline
- Table 2
 Monitor Well Specifications and Groundwater Elevations
- Table 3
 Groundwater Laboratory Analytical Results Summary

List of Appendices

- Appendix A September 2013 Annual Groundwater Sampling Field Forms
- Appendix B September 2013 Annual Groundwater Laboratory Analytical Report

Section 1.0 Introduction

This report presents the results of the September 16, 2013 annual groundwater monitoring event conducted by Conestoga-Rovers & Associates (CRA) at the ConocoPhillips Company (ConocoPhillips) Sategna No. 2E gas well site (Site) located on private land within Unit Letter J, Section 21, Township 29N, Range 11W of Bloomfield, San Juan County, New Mexico (**Figure 1**). A Site detail map is included as **Figure 2**.

1.1 Background

A historical timeline for Site is presented in Table 1, and is discussed below.

On November 24, 2008, approximately 8 barrels of condensate were released from the on-Site, aboveground storage tank (AST). Notification of the release was given to the New Mexico Oil Conservation Division (NMOCD) by ConocoPhillips personnel using NMOCD Form C-141. On November 25, 2008, Envirotech Inc. of Farmington, New Mexico (Envirotech) obtained grab soil samples from just outside the affected area for analysis of organic vapors. Results of this analysis were below NMOCD recommended action levels. Envirotech also used a hand auger to complete 2 soil borings to approximately 8 feet below ground surface (bgs), where groundwater was encountered. Two groundwater samples were submitted by Envirotech to an analytical laboratory for analysis of benzene, toluene, ethylbenzene and xylenes (BTEX). Analytical results revealed BTEX in concentrations below NMOCD action levels.

On December 4, 2008, Envirotech returned to the Site and obtained grab and composite soil samples from an excavation measuring approximately 30 feet by 18 feet by 5 feet deep (Figure 2). Soil samples were collected from the excavation and analyzed for BTEX, total petroleum hydrocarbons (TPH), and chloride. Analytical results were below NMOCD action levels for BTEX. Two grab soil samples collected from below the above-grade and below-grade tanks exceeded the NMOCD action level for total TPH.

Groundwater seepage into the excavation was discovered on December 4, 2008. Subsequently, groundwater samples were collected from the excavation on December 5, 2008. The groundwater sample exceeded the New Mexico Water Quality Control Commission (NMWQCC) for benzene, toluene, and xylenes. Groundwater was recovered from the bottom of the excavated area using a vacuum truck during the week of December 8, 2008. Once removed, further excavation took place and groundwater slowly seeped into the excavation; this process was repeated a total of 4 times. The first time water was recovered from the surface of the excavation, a hydrocarbon odor and free-phase, light non-aqueous phase liquid (LNAPL) were present. By the fourth and last event, neither the hydrocarbon odor nor free-phase LNAPL were present in the groundwater seepage. Each pumping event recovered approximately 30-60 barrels of liquid from the Site.

In January 2009, Tetra Tech, Inc. (Tetra Tech) conducted a Site visit to determine proposed groundwater monitor well locations. Groundwater monitor wells were installed at the Site on March 4, 2009 and March 5, 2009. Tetra Tech initiated quarterly groundwater monitoring events with a baseline in April 2009.

Additional hydrocarbon soil impacts were discovered during relocation and reinstallation of well equipment in April 2009. Envirotech uncovered an abandoned sewer line in the same location as hydrocarbon impacted soils while digging an exploratory trench between the wellhead and the proposed separator tank location (Figure 2). Trench work was halted and the excavated soils were stockpiled on site. Tetra Tech returned to the site on April 23 and 24, 2009 to oversee excavation of the hydrocarbon impacted soils from the vicinity of the trench (Figure 2). Photoionization detector readings in the field indicated levels below the NMOCD action level; however, lab results were above the NMOCD action level for TPH in samples collected from all four walls of the excavation. The bottom sample results were below NMOCD action levels. The excavation was backfilled and equipment was reinstalled before analytical results were available. A report detailing this activity, titled Soil Excavation and Sampling Report, was submitted to the NMOCD in July 2009.

Tetra Tech continued quarterly groundwater monitoring from April 2, 2009 to March 2011. The March 2011 Tetra Tech quarterly groundwater monitoring report recommended the discontinuation of sampling and analysis of BTEX for all Site monitor wells. On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to CRA of Albuquerque, NM. Quarterly groundwater monitoring was continued by CRA on June 24, 2011. Following the October 2011 sampling event, quarterly sampling was discontinued and annual sampling for dissolved manganese, sulfate, and total dissolved solids (TDS) was initiated.

Section 2.0 Groundwater Monitoring Methodology and Analytical Results

2.1 Groundwater Monitoring Summary

Prior to collection of groundwater samples from Monitor Wells MW-1, MW-2 and MW-3, depth to groundwater was measured in each well using an oil/water interface probe. Results are displayed in **Table 2**.

The casings for Monitor Wells MW-1, MW-2, and MW-3 were surveyed in March 2009 using an arbitrary reference-elevation of 100 feet. Groundwater elevation data were obtained during the September 16, 2013 sampling event, but were determined to be anomalous. These data were used to create a groundwater potentiometric surface map for the Site (**Figure 3**). The groundwater flow direction at the Site continues to be to the southwest. A generalized geologic cross section for the Site is presented as **Figure 4**.

2.2 Groundwater Sampling Methodology

During the groundwater monitoring event Site monitor wells were purged of at least 3 casing volumes of groundwater using a 1.5-inch diameter, polyethylene disposable bailer. While bailing each well, groundwater parameters were collected using a YSI 556 multi-parameter sonde and results were recorded on a Well Sampling Field Information Form (**Appendix A**). Collected groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain-of-custody documentation to Pace Analytical Services of Lenexa, Kansas.

Groundwater samples were analyzed for dissolved manganese by Environmental Protection Agency (EPA) Method 6010, sulfate by EPA method 300, and TDS by Standard Method (SM) 2540C. Analytical results are displayed in **Table 3**.

2.3 Groundwater Monitoring Analytical Results

The NMWQCC mandates that groundwater quality in New Mexico be protected and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedences of NMWQCC groundwater quality standards in Site monitor wells are discussed below.

• Total Dissolved Solids

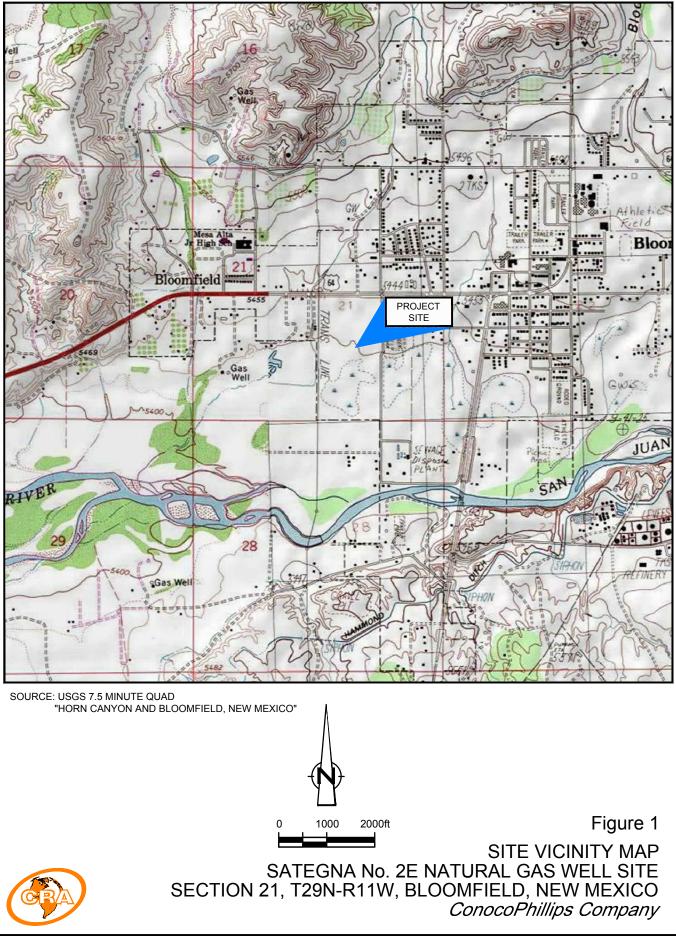
 The NMWQCC domestic water supply groundwater quality standard for TDS is 1,000 mg/L; groundwater samples collected from Monitor Wells MW-1, MW-2 and MW-3 were found to contain TDS concentrations of 2,560 mg/L, 2,570 mg/L, and 2,600 mg/L, respectively.

Dissolved Manganese

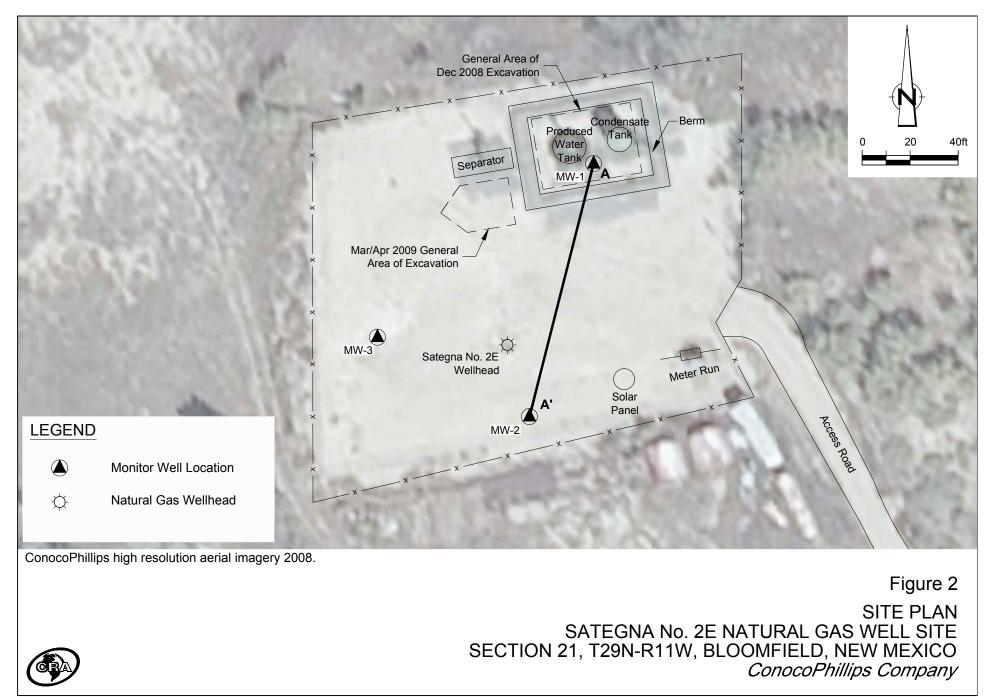
- The NMWQCC domestic water supply groundwater quality standard for dissolved manganese is 0.2 mg/L; groundwater samples collected from Monitor Wells MW-1, MW-2, and MW-3 were found to contain dissolved manganese concentrations of 0.36 mg/L, 0.21 mg/L, and 0.83 mg/L, respectively.
- Sulfate
 - The NMWQCC domestic water supply groundwater quality standard for sulfate is 600 mg/L; groundwater samples collected from Monitor Wells MW-1, MW-2, and MW-3 were found to contain sulfate in concentrations of 1,580 mg/L, 1,690 mg/L, and 1,750 mg/L, respectively.

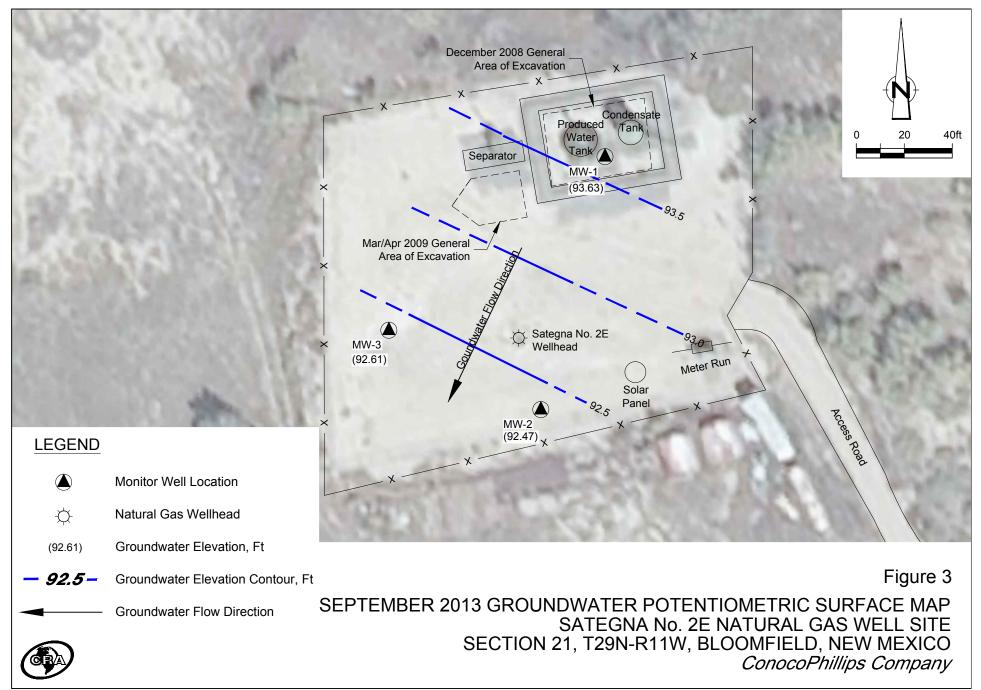
The corresponding laboratory analytical report for the September 16, 2013 groundwater sampling event is included in **Appendix B**.

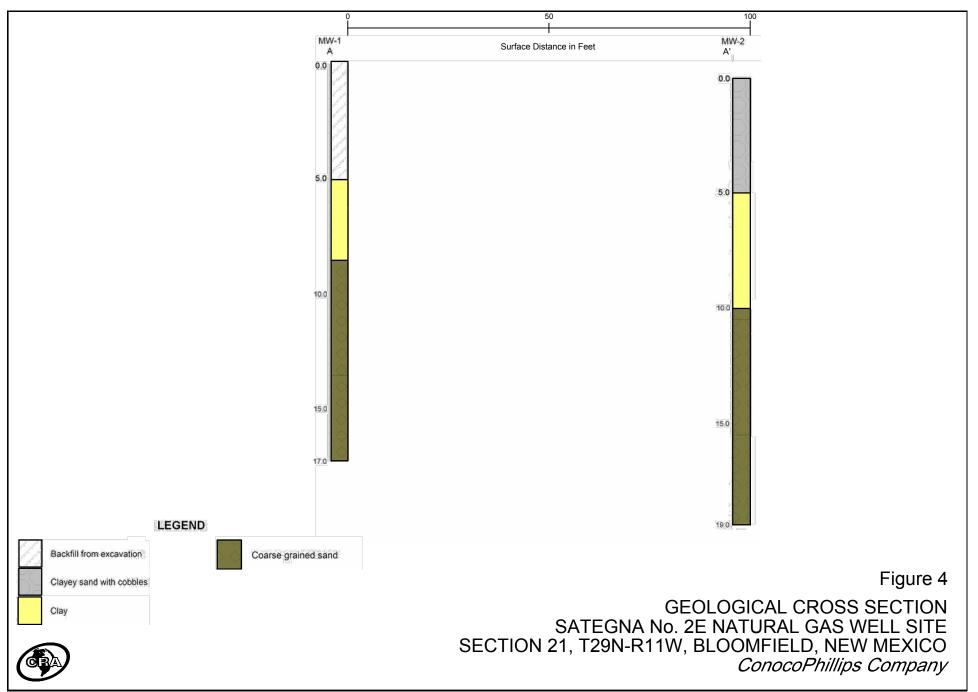
Section 3.0 Conclusions and Recommendations


Monitor Wells MW-1, MW-2, and MW-3 were found to have concentrations of dissolved manganese, sulfate, and TDS exceeding the NMWQCC standards. TDS and sulfate concentrations appear to be stable with 11 and 12 sampling events of data, respectively.

CRA recommends that an upgradient monitor well be installed to provide background water quality data for comparison to water quality data obtained from Site monitor wells.


Annual monitoring will continue for dissolved manganese, sulfates and TDS. Remediation Site closure will be requested when groundwater quality results indicate that all monitored groundwater quality parameters are consistently below NMWQCC groundwater quality standards, are stable, or are representative of background conditions at the Site. The next sampling event is scheduled for September 2014.


FIGURES


074932-95(005)GN-DL005 DEC 17/2013

074932-95(005)GN-DL001 DEC 17/2013

074932-95(005)GN-DL002 DEC 17/2013

074932-95(005)GN-DL003 DEC 17/2013

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY SATEGNA No. 2E SAN JUAN COUNTY, NM

Date/Time Period	Event/Action	Description/Comments
November 24, 2008	Release Discovered	Approximately eight barrels of condensate were found to have spilled from an on-Site, aboveground storage tank (AST); corrosion was thought to be the cause of the release. A C-141 form was filled out by ConocoPhillips staff and notice was given to Brandon Powell of the New Mexico Oil Conservation Division (NMOCD) via electronic mail. The C-141 form stated that the well was shut down and the production tank was emptied.
November 25, 2008	Initial Site Assessment	Envirotech Inc. of Farmington, NM (Envirotech) collected soil samples and analyzed them using the heated headspace soil method; results were 0.2 and 1.1 parts per million (ppm) from outside the excavated area. Depth of soil samples was not noted. Envirotech hand augered two soil borings to groundwater at a depth of approximately 8 feet below ground surface (bgs) and submitted groundwater samples for analysis. Results were below OCD action levels for benzene, toluene, ethylbenzene, and total xylenes (BTEX) in groundwater. Envirotech noted that groundwater levels in the soil borings increased to approximately 5 feet bgs, and groundwater beneath the Site was thought to be under confined aguifer conditions.
December 4, 2008	Site Assessment	Envirotech returned to the Site and obtained grab and composite soil samples from an excavation measuring approximately 30 feet by 18 feet by 5 feet deep (Figure 2). Heated headspace results show values ranging from 6.5 ppm in a grab soil sample obtained from the bottom of the excavation to 1,400 ppm from a composite soil sample taken from the former location of the AST. Total petroleum hydrocarbons (TPH), BTEX, and chloride samples were obtained for soils analysis. Results were below OCD action levels for BTEX. One soil sample obtained for chlorides showed results of 370 milligrams per kilogram (mg/kg). Results for TPH analysis obtained through Environmental Protection Agency (EPA) method 8015B for the composite soil sample taken at the site of the AST revealed results of 205 mg/kg; the OCD action level is 100 mg/kg. Results for TPH analysis obtained through EPA method 418.1 for the composite soil sample obtained at the location of the below ground tank revealed results of 521 mg/kg. The below ground tank was located within the berm and adjacent to the AST (Figure 2).
December 5, 2008	Site Assessment	Results of all other soil analyses at all other sampling locations were below OCD action levels. Envirotech noted seepage of groundwater into the excavation on December 4, 2008, and returned to the Site on December 5, 2008 to collect groundwater samples from the excavation for BTEX analysis. The OCD groundwater action levels for benzene, toluene, and total xylenes are 10 ug/l, 750 ug/l, and 620 ug/l, respectively. Benzene was found at a concentration of 327 ug/l, toluene was detected at 4,300 ug/l, and total xylenes were found at a concentration of 4,480 ug/l.
Week of December 8, 2008	Removal of Groundwater Seepage	A vacuum truck was utilized to pump groundwater seepage from the surface of the excavated area. Once removed, further excavation took place and groundwater slowly seeped into the excavation; this process was repeated a total of four (4) times. The first time water was pumped from the surface of the excavation, a hydrocarbon odor and free- phase, light non-aqueous phase liquid (LNAPL) were present. By the fourth and last event, neither the hydrocarbon odor nor free-phase LNAPL were present in the groundwater seepage. Each pumping event removed approximately 30-60 barrels of liquid from the Site.
January 20, 2009 & January 30, 2009	Site Assessment	Tetra Tech conducted a Site visit to determine proposed groundwater monitoring well locations.
March 4-5, 2009	Monitor Well Installation	Tetra Tech installed three groundwater monitor wells at the Site: MW-1, MW-2, and MW-3.
March 2009	Additional Contamination Discovered	Construction and trenching for relocation of well operational equipment and tanks uncovered additional hydrocarbon impacted soils between the well head and separator tank. Work was stopped.
April 2, 2009	Quarterly Groundwater Monitoring Initiated	Tetra Tech conducted the first quarterly groundwater monitoring event at the Site.
April 2, 2009	Site Assessment	Envirotech created an exploratory trench between the proposed location of the separator tank and the well head and found an abandoned sewer line associated with hydrocarbon-impacted soils. The trenching was stopped and the excavated soils were stockpiled on site.
April 23 - 24, 2009	Removal of Contaminated Soil	Tetra Tech provided oversight for removal of approximately 96 cubic yards of hydrocarbon-impacted soils located west of the tank berm and in the vicinity of the abandoned sewer line. Excavation was backfilled.
June 17, 2009	Quarterly Groundwater Monitoring	Tetra Tech conducted the second quarterly groundwater monitoring event at the Site.
September 28, 2009	Quarterly Groundwater Monitoring	Tetra Tech conducted the third quarterly groundwater monitoring event at the Site.
December 14, 2009	Quarterly Groundwater Monitoring	Tetra Tech conducted the fourth quarterly groundwater monitoring event at the Site.
March 31, 2010	Quarterly Groundwater Monitoring	Tetra Tech conducted the fifth quarterly groundwater monitoring event at the Site.
June 7, 2010	Quarterly Groundwater Monitoring	Tetra Tech conducted the sixth quarterly groundwater monitoring event at the Site.
September 23, 2010	Quarterly Groundwater Monitoring	Tetra Tech conducted the seventh quarterly groundwater monitoring event at the Site.

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY SATEGNA No. 2E SAN JUAN COUNTY, NM

Date/Time Period	Event/Action	Description/Comments
December 14, 2010	Quarterly Groundwater Monitoring	Tetra Tech conducted the eighth quarterly groundwater monitoring event at the Site.
March 14, 2011	Quarterly Groundwater Monitoring	Tetra Tech conducted the ninth quarterly groundwater monitoring event at the Site.
June 15, 2011	Consulting	On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech of Albuquerque, NM to Conestoga- Rovers & Associates (CRA) of Albuquerque, NM.
June 24, 2011	Quarterly Groundwater Monitoring	CRA conducted the tenth quarterly groundwater monitoring event at the Site.
October 3, 2011	Quarterly Groundwater Monitoring	CRA conducted the 11th quarterly groundwater monitoring event at the Site.
September 17, 2012	C-roundwater Monitoring	CRA conducted an annual groundwater monitoring event at the Site. Samples analyzed for dissolved Mn, Sulfate, and total dissolved solids.
September 16, 2013	Groundwater Monitoring	CRA conducted an annual groundwater monitoring event at the Site. Samples analyzed for dissolved Mn, Sulfate, and total dissolved solids.

MONITORING WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY SATEGNA No. 2E SAN JUAN COUNTY, NM

Well ID	Total Depth (ft below TOC)	Elevation*	Screen Interval (bgs)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Level
				4/2/2009	5.15	94.21
				6/17/2009	5.43	93.93
				9/28/2009	5.45	93.91
				12/14/2009	5.06	94.30
				3/31/2010	5.03	94.33
				6/7/2010	5.41	93.95
MW-1	20.3	99.36	2.2 - 17.2	9/23/2010	5.25	94.11
10100-1	20.5	99.30	2.2 - 17.2	12/14/2010	5.07	94.29
				3/14/2011	5.09	94.27
				6/24/2011	5.56	93.80
				10/3/2011	5.90	93.46
				9/17/2012	6.83**	92.53**
				11/26/2012	5.51	93.85
				9/16/2013	5.73	93.63
				4/2/2009	5.96	92.82
				6/17/2009	6.21	92.57
				9/28/2009	6.23	92.55
				12/14/2009	5.92	92.86
				3/31/2010	5.90	92.88
				6/7/2010	6.21	92.57
MW-2	20.9	98.78	3.33 - 18.33	9/23/2010	6.06	92.72
10100-2	20.9	90.70	5.55 - 18.55	12/14/2010	5.91	92.87
				3/14/2011	5.94	92.84
				6/24/2011	6.32	92.46
				10/3/2011	6.60	92.18
				9/17/2012	7.42**	91.36**
				11/26/2012	6.14	92.64
				9/16/2013	6.31	92.47
				4/2/2009	5.70	92.96
				6/17/2009	5.97	92.69
				9/28/2009	5.96	92.70
				12/14/2009	5.63	93.03
				3/31/2010	5.61	93.05
				6/7/2010	5.95	92.71
MW-3	20.28	98.66	3 - 18	9/23/2010	5.77	92.89
	20.20	50.00	0 10	12/14/2010	5.61	93.05
				3/14/2011	5.63	93.03
				6/24/2011	6.06	92.60
				10/3/2011	6.27	92.39
				9/17/2012	6.11**	92.55**
				11/26/2012	6.00	92.66
				9/16/2013	6.05	92.61

Notes:

1. ft = feet

2. TOC = top of casing

3. bgs = below ground surface

4. * Elevation relative to wellhead, set at 100 feet.

5. ** Anomalous data

GROUNDWATER ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY SATEGNA No. 2E SAN JUAN COUNTY, NM

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	Sulfate (mg/L)	Total dissolved solids (TDS) (mg/L)
	MW-1	4/2/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005			1790	
	MW-1	6/17/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005			1420	
	MW-1	9/28/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.02	0.243	1770	2590
	MW-1	12/14/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.152		2470
	MW-1	3/31/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.176	1320	2470
	MW-1	6/7/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.206	1330	2580
	MW-1	9/23/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.238	1560	3210
MW-1	MW-1	12/14/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.232	1600	2520
	MW-1	3/14/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.323	1820	2770
	GW-74932-062411-CB-02	6/24/2011	(orig)						0.574	1790	2450
	GW-074932-100311-CM-005	10/3/2011	(orig)						0.335	2030	2560
	GW-074932-091712-CM-MW-1	9/17/2012	(orig)						0.32	1790	2660
	GW-074932-091712-CM-DUP	9/17/2012	(duplicate)								2620
	GW-074932-091613-CM-MW-1	9/16/2013	(orig)						0.36	1580	2560
	GW-074932-091613-CM-DUP	9/16/2013	(duplicate)		1				0.33		
	MW-2	4/2/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005			1850	
	MW-2	6/17/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005			1610	
	MW-2	9/28/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	0.0217	0.168	1840	2260
	MW-2	12/14/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.158		2470
	MW-2	3/31/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.136	1530	2620
	MW-2	6/7/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.157	1290	2590
MW-2	MW-2	9/23/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.0981	1510	2800
	MW-2	12/14/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.128	1610	3000
	MW-2	3/14/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.158	1850	2680
	GW-74932-062411-1B-01	6/24/2011	(orig)						0.174	1860	2550
	GW-074932-100311-CM-006	10/3/2011	(orig)						0.187	1830	2590
	GW-074932-091712-CM-MW-2	9/17/2012	(orig)						0.22	1830	2710
	GW-074932-091613-CM-MW-2	9/16/2013	(orig)						0.21	1690	2570

GROUNDWATER ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY SATEGNA No. 2E SAN JUAN COUNTY, NM

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	Sulfate (mg/L)	Total dissolved solids (TDS) (mg/L)
	MW-3	4/2/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005			2110	
	MW-3	6/17/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005			1650	
	MW-3	9/28/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.02	2.68	2230	3340
	MW-3	12/14/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		2.4		3060
	MW-3	3/31/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		1.71	1660	3090
	MW-3	6/7/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		0.968	1760	2650
MW-3	MW-3	9/23/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		1.68	1910	3570
	MW-3	12/14/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		1.13	1900	3000
	MW-3	3/14/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001		2.08	2090	3200
	GW-74932-062411-CB-03	6/24/2011	(orig)						1.7	2080	2860
	GW-074932-100311-CM-007	10/3/2011	(orig)						1.45	1770	2810
	GW-074932-091712-CM-MW-3	9/17/2012	(orig)						1.1	1910	2830
	GW-074932-091613-CM-MW-3	9/16/2013	(orig)						0.83	1750	2600
	NMWQCC Groundwater Qua	lity Standards		0.01	0.75	0.75	0.62	1.0	0.2	600	1000

Notes:

1. MW = monitoring well

2. NMWQCC = New Mexico Water Quality Control Commission

3. Constituents in **BOLD** are in excess of NMWQCC groundwater quality standards

4. mg/L = milligrams per liter (parts per million)

5. -- = not analyzed

6. < 1.0 = Below laboratory detection limit of 1.0 mg/L

Appendix A

September 2013 Annual Groundwater Sampling Field Forms

	WELL SAMPLING FIELD INFORMATION FORM
SITF/PROJECT NAME SAMPLE II	Sategna 2E JOB# 074932
PURGE DATE (MINDD YY)	Mell purging information 2.30 7.0 SAMPLE DATE (MEN DD YY) SAMPLE TIME (24 HOUR) Water vol in casing (Gallons) ACTUAL VOL PURGED (Gallons)
PURGING EQUIPMENTDEI	PURGING AND SAMPLING EQUIPMENT DICATED V N SAMPLING EQUIPMENTDEDICATED V N (CIRCLE ONE) (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X=
SAMPLING DEVICE	B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X =
PURGING MATERIAL	A - TEFLON D - PVC X=
SAMPLING MATERIAL	B-STAINLESS STEEL E-POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY) C-POLYPROPYLENE X-OTHER X-OTHER X-OTHER SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION B - TYCON E - POLYEIHYLENE G - COMBINATION TEFLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY)
SAMPLING TUBING	C - ROPE F - SILICONE X - OTHER X=
FILTERING DEVICES 0.45	H A-IN-LINE DISPOSABLE B- PRESSURE 0,45 for Metals only
DEPTH TO WATE	R FIELD MEASUREMENTS (feet) WELL ELEVATION (feet)
WELL DEPT	H (feet) GROUNDWATER ELEVATION (feet)
TEMPERATURE	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
[13.d] (ro)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(°C)	(std) (g/L) (µ5/cm) (mg/L) (mV) (gal)
SAMPLE APPEARANCE: WEATHER CONDITIONS:	FIELD COMMENTS CA GIFT CLOUDY ODOR: NONE COLOR: NONE COLOR: BROWN SHEEN Y/N V TEMPERATURE SOUS WINDY Y/N
PUP COL	-ected @ 1345
	OCEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS
DATE 9-15-13	PRINT CACE DAMACH SIGNATURE CAPITAL

SITE/PROJECT NAME SAMPLE II	$\left(\frac{1}{1} \right) \left(\frac{1}{1} \right) $
PURGE DATE (MIM DD YY)	WELL PURGING INFORMATION 9/16/13 AMPLE DATE (MMDD YY) WELL PURGING INFORMATION 1320 VATER VOL IN CASING (24 HOUR) WATER VOL IN CASING (CALLONS) (CALLONS) (CALLONS)
PURGING EQUIPMENTDEL	PURGING AND SAMPLING EQUIPMENT SAMPLING EQUIPMENTDEDICATER (CIRCLE ONE) (CIRCLE ONE)
PURGING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X= B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PUBCING DEVICE OTHER /SPECIEV)
SAMPLING DEVICE	B - PERISTALIC PUMP E - PURCE PUMP H - WATERKAGO PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X=
PURGING MATERIAL SAMPLING MATERIAL	A - TEFLON D - PVC X= B - STAINLESS STEEL E - POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY) C - POLYPROPYLENE X - OTHER X= SAMIPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION X= B - TYGON E - POLYETHYLENE PURGE TUBING OTHER (SPECIFY)
SAMPLING TUBING	C - ROPE F - SILICONE X - OTHER X=
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B - PRESSURE O, 45 Par metals any
DEPTH TO WATER WELL DEPTH TEMPERATURE 17, 26 (°C) 16, 68 (°C) 16, 9 ((°C) 16, 9 ((°C) (°C) (°C) (°C) SAMPLE APPEARANCE WEATHER CONDITIONS: SPECIFIC COMMENTS:	20.62
I CERTIFY THAT SAMPLING PR	PRINT CALE VAPACIA SIGNATURE

SITE/PROJECT NAME: SAMPLE ID	
PURGE DATE (MINID YY)	WELL PURGING INFORMATION 9/16/13 SAMPLE DATE (MM DD YY) WATER VOL IN CASING (24 HOUR) WATER VOL IN CASING (34 HOUR) WATER VOL IN CASING
PURGING EQUIPMENTDED	PURGING AND SAMPLING EQUIPMENT ICATED N SAMPLING EQUIPMENTDEDICATED Y N (CIRCLE ONE) (CIRCLE ONE)
PURGING DEVICE SAMPLING DEVICE	A - SUBMERSIBLE PUMP D - GAS LIFT PUMP G - BAILER X= B - PERISTALTIC PUMP E - PURGE PUMP H - WATERRA® PURGING DEVICE OTHER (SPECIFY) C - BLADDER PUMP F - DIPPER BOTTLE X - OTHER X= SAMPLING DEVICE OTHER (SPECIFY)
PURGING MATERIAL SAMPLING MATERIAL	Image: C-POLYPROPYLENE D-PVC X= Image: C-POLYPROPYLENE E-POLYETHYLENE PURGING MATERIAL OTHER (SPECIFY) X= SAMPLING MATERIAL OTHER (SPECIFY)
PURGE TUBING SAMPLING TUBING	A - TEFLON D - POLYPROPYLENE G - COMBINATION X= B - TYGON E - POLYETHYLENE TEFLON/POLYPROPYLENE PURGE TUBING OTHER (SPECIFY) C - ROPE F - SILICONE X - OTHER X=
FILTERING DEVICES 0.45	A - IN-LINE DISPOSABLE B- PRESSURE 0,45 For metals any USING OTHER (SPECIFY)
14.59 (°C) 14.55 (°C) 14.55 (°C) 100 (°C)	1997
I CERTIFY THAT SAMPLING PRODUCT $DATE 9 - 16 - 13$	CEDURES WERE IN ACCORDANCE WITH APPLICABLE CRA PROTOCOLS

Appendix B

September 2013 Annual Groundwater Laboratory Analytical Report

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

September 30, 2013

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074932 SATENGA NO 2 E Pace Project No.: 60153253

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 17, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanazan

Alice Flanagan

alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Kelly Blanchard, COP Conestoga-Rovers & Associa Angela Bown, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa

CERTIFICATIONS

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-13-4 Utah Certification #: KS000212013-3 Illinois Certification #: 003097

SAMPLE SUMMARY

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153

).:	60153253	

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60153253001	GW-074932-091613-CM-MW-1	Water	09/16/13 13:40	09/17/13 08:15
60153253002	GW-074932-091613-CM-MW-2	Water	09/16/13 13:20	09/17/13 08:15
60153253003	GW-074932-091613-CM-MW-3	Water	09/16/13 13:00	09/17/13 08:15
60153253004	GW-074932-091613-CM-DUP	Water	09/16/13 13:45	09/17/13 08:15

SAMPLE ANALYTE COUNT

 Project:
 074932 SATENGA NO 2 E

 Pace Project No.:
 60153253

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60153253001		EPA 6010	JGP	1
		SM 2540C	RAH	1
		EPA 300.0	JML	1
60153253002	GW-074932-091613-CM-MW-2	EPA 6010	JGP	1
		SM 2540C	RAH	1
		EPA 300.0	JML	1
60153253003	GW-074932-091613-CM-MW-3	EPA 6010	JGP	1
		SM 2540C	RAH	1
		EPA 300.0	JML	1
60153253004	GW-074932-091613-CM-DUP	EPA 6010	JGP	1

PROJECT NARRATIVE

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

Method: EPA 6010

Description:6010 MET ICP, DissolvedClient:COP Conestoga-Rovers & Associates, Inc. NMDate:September 30, 2013

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:COP Conestoga-Rovers & Associates, Inc. NMDate:September 30, 2013

General Information:

3 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

Method: EPA 300.0

Description:300.0 IC Anions 28 DaysClient:COP Conestoga-Rovers & Associates, Inc. NMDate:September 30, 2013

General Information:

3 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

Sample: GW-074932-091613-CM- MW-1	Lab ID:	60153253001	Collecte	d: 09/16/13	3 13:40	Received: 09/	(17/13 08:15 Ma	atrix: Water	
_			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytica	I Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Manganese, Dissolved	0.36	mg/L	0.0050	0.00049	1	09/21/13 10:05	09/24/13 11:12	7439-96-5	
2540C Total Dissolved Solids	Analytica	I Method: SM 25	540C						
Total Dissolved Solids	2560 r	mg/L	5.0	5.0	1		09/19/13 13:58		
300.0 IC Anions 28 Days	Analytica	I Method: EPA 3	00.0						
Sulfate	1580 r	mg/L	200	32.0	200		09/30/13 01:38	14808-79-8	

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

Sample: GW-074932-091613-CM- MW-2	Lab ID:	60153253002	Collecte	d: 09/16/13	3 13:20	Received: 09/	(17/13 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytica	I Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Manganese, Dissolved	0.21	mg/L	0.0050	0.00049	1	09/21/13 10:05	09/24/13 11:15	7439-96-5	
2540C Total Dissolved Solids	Analytica	I Method: SM 25	40C						
Total Dissolved Solids	2570	mg/L	5.0	5.0	1		09/19/13 13:58		
300.0 IC Anions 28 Days	Analytica	I Method: EPA 3	00.0						
Sulfate	1690	mg/L	200	32.0	200		09/30/13 01:53	14808-79-8	

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

Sample: GW-074932-091613-CM- MW-3	Lab ID:	60153253003	Collecte	d: 09/16/13	3 13:00	Received: 09/	(17/13 08:15 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytica	I Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Manganese, Dissolved	0.83 ו	mg/L	0.0050	0.00049	1	09/21/13 10:05	09/24/13 11:18	7439-96-5	
2540C Total Dissolved Solids	Analytica	I Method: SM 25	40C						
Total Dissolved Solids	2600 i	mg/L	5.0	5.0	1		09/19/13 13:59		
300.0 IC Anions 28 Days	Analytica	I Method: EPA 3	00.0						
Sulfate	1750 r	mg/L	200	32.0	200		09/30/13 02:08	14808-79-8	

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

Sample: GW-074932-091613-CM- DUP	Lab ID:	60153253004	Collecte	d: 09/16/13	3 13:45	Received: 09/	17/13 08:15 M	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical	Method: EPA 6	010 Prepa	ration Meth	od: EPA	3010			
Manganese, Dissolved	0.33 mg/L		0.0050 0.00049 1		09/21/13 10:05 09/24/13 11		7439-96-5		

QUALITY CONTROL DATA

Project:	074932 SAT 60153253	ENGA NO 2	E										
Pace Project No.:		200		A	- Mathaal		DA 0040						
	MPRP/243	369			sis Method:		PA 6010						
QC Batch Method:	EPA 3010			Analys	sis Descript	tion: 6	010 MET Di	ssolved					
Associated Lab Sam	ples: 601	53253001, 60	0153253002	, 60153253	3003, 60153	3253004							
METHOD BLANK:	1257907			1	Matrix: Wa	ter							
Associated Lab Sam	ples: 601	53253001, 60)153253002	, 60153253	3003, 6015	3253004							
				Blanl	k R	eporting							
Param	neter		Units	Resu	lt	Limit	Analyz	zed	Qualifiers				
Manganese, Dissolv	ed	mg/L			ND	0.0050	09/24/13	10:50					
LABORATORY CON	ITROL SAME	PLE: 12579	008										
				Spike	LCS	5	LCS	% Red	;				
Param	neter		Units	Conc.	Resu	ılt	% Rec	Limits	Q	ualifiers			
Manganese, Dissolv	ed	mg/L		1		1.1	107	80	-120		-		
MATRIX SPIKE & M	ATRIX SPIKI	E DUPLICATI	E: 12579	09		1257910							
				MS	MSD								
		601	53253003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Мах	
Paramet	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
						1.9	1.8	106	93	75-125	7		

QUALITY CONTROL DATA

Project: 07	4932 SATENG	A NO 2 E						
Pace Project No.: 60)153253							
QC Batch:	WET/43500		Analysis N	lethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis D	escription:	2540C Total Dis	ssolved Solids		
Associated Lab Sample	es: 6015325	3001, 601532530	02, 60153253003					
METHOD BLANK: 12	256433		Matr	ix: Water				
Associated Lab Sample	es: 6015325	3001, 601532530	02, 60153253003					
			Blank	Reporting				
Paramete	er	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Solids		mg/L	N	D 5	5.0 09/19/13 13	3:56		_
LABORATORY CONT	ROL SAMPLE:	1256434						
			Spike	LCS	LCS	% Rec		
Paramete	er	Units	Conc.	Result	% Rec	Limits	Qu	alifiers
Total Dissolved Solids		mg/L	1000	943	94	80-120		
SAMPLE DUPLICATE:	1256435							
			60153136008	3 Dup		Max		
Paramete	er	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids		mg/L	32	0 32	27	2	17	
SAMPLE DUPLICATE:	1256436							
			60153253003	B Dup		Max		
Paramete	er	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids		mg/L	260	0 280	00	7	17	

QUALITY CONTROL DATA

Project: 074	1932 SATENGA I	NO 2 E										
Pace Project No.: 607	153253											
QC Batch: W	/ETA/26382		Analys	sis Method	: E	PA 300.0						
QC Batch Method: E	PA 300.0		Analys	sis Descrip	tion: 3	00.0 IC Anio	ons					
Associated Lab Sample	s: 601532530	01, 60153253002	2, 60153253	3003								
METHOD BLANK: 120	62906			Matrix: Wa	ter							
Associated Lab Sample	s: 601532530	01, 60153253002	2, 60153253	3003								
			Blan	k F	eporting							
Paramete	r	Units	Resu	lt	Limit	Analyz	zed	Qualifiers				
Sulfate	r	ng/L		ND	1.0	09/29/13	18:57					
LABORATORY CONTR		1262907 Units	Spike Conc.	LCS		LCS % Rec	% Rec		ualifiers			
Sulfate	·	ng/L			5.1	102)-110	anners			
MATRIX SPIKE & MATR	RIX SPIKE DUPL	ICATE: 12621	38 MS	MSD	1262139							
Parameter	Un	5086932001 hits Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Sulfate	mg/L	48.0	25	25	73.6	73.3	102	101	80-120	0	15	
MATRIX SPIKE SAMPL	E:	1262140										
Density	_	l la ita	50869		Spike	MS		1S	% Rec		0	:
Paramete		Units	Res		Conc.	Result		Rec	Limits		Qualif	iers
Sulfate	r	ng/L		38.2	25	63	3.9	103	80-7	120		

QUALIFIERS

Project: 074932 SATENGA NO 2 E

Pace Project No.: 60153253

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 074932 SATENGA NO 2 E

 Pace Project No.:
 60153253

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60153253001	GW-074932-091613-CM-MW-1	EPA 3010	MPRP/24369	EPA 6010	ICP/19003
60153253002	GW-074932-091613-CM-MW-2	EPA 3010	MPRP/24369	EPA 6010	ICP/19003
60153253003	GW-074932-091613-CM-MW-3	EPA 3010	MPRP/24369	EPA 6010	ICP/19003
60153253004	GW-074932-091613-CM-DUP	EPA 3010	MPRP/24369	EPA 6010	ICP/19003
60153253001	GW-074932-091613-CM-MW-1	SM 2540C	WET/43500		
60153253002	GW-074932-091613-CM-MW-2	SM 2540C	WET/43500		
60153253003	GW-074932-091613-CM-MW-3	SM 2540C	WET/43500		
60153253001	GW-074932-091613-CM-MW-1	EPA 300.0	WETA/26382		
60153253002	GW-074932-091613-CM-MW-2	EPA 300.0	WETA/26382		
60153253003	GW-074932-091613-CM-MW-3	EPA 300.0	WETA/26382		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60153253

Client Name: Lof CRA NM	Optional
Courier: Fed Ex 🖄 UPS 🗆 USPS 🗆 Client 🗆 Commercial 🗆 Pace 🗆 Other 🗆	Proj Due Date:
Tracking #: 802368279498 _ Pace Shipping Label Used? Yes ⁄ N	o 🗆 🛛 Proj Name:
Custody Seal on Cooler/Box Present: Yes 🐼 No 🗆 Seals intact: Yes 🕸 No 🗆	
Packing Material: Bubble Wrap 🛛 Bubble Bags 🗆 Foam 🗆 None 🗆	Other 🗆
Thermometer Used: 7-194 Type of Ice: The Blue None Samp	les received on ice, cooling process has begun.
Cooler Temperature: 3.1 (circle one)	Date and initials of person examining
Temperature should be above freezing to 6°C	contents: <u>WA 9/17/13</u> 1015
Chain of Custody present:	
Chain of Custody filled out: ØYes No N/A 2.	
Chain of Custody relinquished; Ølyes 💷 No 💷 N/A 3.	
Sampler name & signature on COC; 🛛 🖓 Yes 🗆 No 🗆 N/A 👍	
Samples arrived within holding time:	
Short Hold Time analyses (<72hr):	
Rush Turn Around Time requested:	
Correct containers used:	
Pace containers used: ØYes DNo DN/A 9.	
Containers intact: Pryes DNo DN/A 10	
Unpreserved 5035A soils frozen w/in 48hrs? Ves No No NA 11	
Filtered volume received for dissolved tests?	
Sample labels match COC:	
Includes date/time/ID/analyses Matrix: 13.	
All containers needing preservation have been checked.	
All containers needing preservation are found to be in compliance with EPA recommendation.	
Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water), Pres INo Initial when completed	Lot # of added
Trip Blank present:	
Pace Trip Blank lot # (if purchased):	
Headspace in VOA vials (>6mm): □Yes □No ⊉N/A 16,	
Project sampled in USDA Regulated Area:	÷.
Client Notification/ Resolution: Copy COC to Client? Y / N Field Data	Required? Y / N
Person Contacted: Date/Time:	Temp Log: Record start and finish times
Comments/ Resolution	when unpacking cooler, if >20 min, recheck sample temps
	Start: 10/0 Start:
- Alaba	End: 1015 End:
Project Manager Review: Date Date	Temp: Temp:

Pace Analytical 0

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

			TER						ç		(a)	3	63	Cont	~							Ĩ			Samptes Intact (N\Y)
-			DRINKING WATER	1						225	I(BR3M)										1	ITIONS	2		
o		•	DRINKI	OTHER						Dace Project No./LabID.	3) 106	L	_	(2523)		1						SAMPLE CONDITIONS		ſ	Custody Sealed (V/Y)
-		n ⁵	Ľ	L						Pace C.	(25,08)1	ł		1691								SAMP	\rightarrow		Received on Ice (Y/V)
Page:			GROUND WATER		222				(N/Y) e	Residual Chlorin	F	F			-		-	_					1-2		⊃° ni qm∋T
		AGENCY	N	RCRA		MZ	(N/N)		1200													TIME	815		
×.		REGULATORY AGENCY	NPDES	UST	Site Location	STATE:	Requested Analysis Filtered (Y/N)														_	DATE	5/12/16		16/13
		REG	L	L	Site	(794) 	ed Analy								-	-				_			3		6
							Requeste		uM	5640C TDS	メ	XX	XX	X							-	ILIATION	(fe		DATE Signed (MM/DD/YY):
							13	↑ N /A	<u>t</u> a	Analysis Tes	_	×	X		1					321		BY / AFF	Jan		-HO
	ables				agan	-	1	1 m 1 m		Na ₂ S ₂ O ₃ Methanol		Е. Л.:										ACCEPTED BY / AFFILIATION	Anna -		The second
	COP epayables				Alice Flanagan	5514, 17		Preservatives		N ^g OH HCI				_											all all
Section C Invoice Information:		Name:		ω				Pre		HNO ³ H ⁵ 2O ⁴		1	1	1		-							6		SUN S
Section C Invoice Info	Attention:	Company Name:	Address:	Pace Quote Reference:	Pace Project Manager	Pace Profile #:			S	# оғ соитаімея	1	3	3	-					-		-	TIME	144		
									оггестіои	TA 9M9LE TEMP AT C	-	0	6	6	_			_				TE	[]		APLER:
									DSITE SRAB		12	-	1300	1345		1						DATE	91/10		AND SIGNATURE ne of SAMPLER: RE of SAMPLER
								COLLECTED	COMPOSITE END/GRAB	DATE	8-16-13	9-16-13	81-91-3	9-16-13				0		1	•	Inc	LIRIT		SAMPLER NAME AND SIGNATUR PRINT Name of SAMPLER: SIGNATURE of SAMPLER
		a Bown			ш			COLLE	H H H	H W H	1							p'n T				RELINQUISHED BY / AFFILIATION	ann		SAMPLE
ion:	athews	Jeff Walker, Angela Bown			Sategna No. 2	÷		1	COMPOSITE START	DATE			1.4									ED BY / A	MIN		
Section B Required Project Information:	Report To: Christine Mathews	f Walker		No :	Sategr	74932		(amc))=) 8A99=		-	0	9	0						r:		HSINDNE	TUTT		
on B red Projec	To: Chi		-	Purchase Order No.:	Project Name:	Project Number:			see valid codes	MATRIX CODE	1 M	13	The second	1- A	-	-		-			-	REL	MAY		
Section B Required P	Report	Copy To:		Purche	Project	Project		Codes	R V V V V V V V V V V V V V V V V V V V	AR 01 S	1-10	G-MW	Sint							1	G	N	\mathbf{P}		
		te 200			4932			Valid Matrix Codes MATRIX COL	DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOL!D OIL	E E E E E E E E E E E E E E E E E E E	MW-LA		N-W	an- DUP								12	ever		
		d NE, S	110	com	Fax: (505)884-4932			Val	DRIN VVA PRO OIL	WIPE AIR 0THER TISSUE	S-CM	513-6	613-0	13-0		ł						NPS	FH H		
		ichool R	NM 87	raworld.	Fax (5	standard		5		BE UNIQL	-09168	160-	- 0911	9150 -				Ľ				COMME	Ø		
ation:	COP CRA NM	6121 Indian School Rd NE, Ste 200	Albequerque, NM 87110	cmathews@craworld.com	672	FAT:		t Informatio		SAMPLE ID (A-Z, 0-9 /) ble IDS MUST BE UN	-074932-		4932	4932.								ADDITIONAL COMMENZE	a H		
ant Informs	COP (61211	Albequ	cmath	(505)884-0672	ue Date/		Section D Required Client Information		SAMPLE ID (A-Z, 0-9 /) Sample IDS MUST BE UNIQUE	20-N	1-02	6W-074932-091613-CM-MW-	61-074932-09163-								AD	Sul .		
Section A Required Client Information:	Company:	Address:		Email To:	Phone: (50	Requested Due Date/TAT:		Sec		# Wati	- GW				5	9	~ 0	5 07	10	7	12	1	leto		Page 18 of
Ser	Cor	Add		Ë	Pho	Rec	J			# 1111												1			