1R - 277

2013 AGWMR

02 / 26 / 2014

USPS DELIVERY CONFIRMATION # 9405 5118 9956 0008 0113 50

February 26, 2014

Mr. Glenn Von Gonten New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division – Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

SUBJECT: 2013 ANNUAL GROUNDWATER MONITORING REPORT

FORMER UNOCAL SOUTH VACUUM UNIT

NMOCD CASE No. 1R-277

SECTION 36, TOWNSHIP 18 SOUTH, RANGE 35 EAST

LEA COUNTY, NEW MEXICO

Dear Mr. Von Gonten:

Enclosed is the 2013 Annual Groundwater Monitoring Report for the Former Unocal South Vacuum Unit site located in Lea County, New Mexico (hard copy and compact disk). Chevron Environmental Management Company has been managing the groundwater monitoring activities for the site since their acquisition of Unocal Corporation in 2005.

Please contact me at 432-638-8740, Mr. John MacLeod (Chevron EMC) at 925-842 2477, or Dana Koschel (Arcadis) at 714-508-2664 if you have any questions or comments.

Sincerely,

Gilbert J. Van Deventer, REM, PG Trident Environmental – Odessa, TX

Attachments

xc: John MacLeod, Chevron EMC (San Ramon CA)
Dana Koschel, Arcadis U.S., Inc. (Irvine CA)

Geoffrey Leking, NMOCD District 1 (Hobbs NM)

2013 ANNUAL GROUNDWATER MONITORING REPORT FORMER UNOCAL SOUTH VACUUM UNIT NMOCD CASE NO. 1R-277 SECTION 36, TOWNSHIP 18 SOUTH, RANGE 35 EAST LEA COUNTY, NEW MEXICO

FEBRUARY 25, 2014

Prepared For:

Chevron Environmental Management Company 6101 Bollinger Canyon Rd.

San Ramon, CA 94583

Prepared By:

P. O. Box 12177 Odessa, Texas 79768

2013 Annual Groundwater Monitoring Report Former Unocal South Vacuum Unit NMOCD Case NO. 1R-277 Section 36, Township 18 South, Range 35 East Lea County, New Mexico

Prepared for:

Chevron Environmental Management Company

6101 Bollinger Canyon Road San Ramon, CA 94583

Prepared by:

Trident Environmental
P. O. Box 12177
Odessa, Texas 79768
(432) 638-8740
FAX (413) 403-9968

SUBMITTED BY:	
	DATE:
Gilbert J. Van Deventer, PG, REM	-

Project Manager

TABLE OF CONTENTS

1.0 Exec	eutive Summary	1
2.0 Grou	andwater Sampling Procedures	3
3.0 Grou	andwater Elevations, Hydraulic Gradient and Flow Direction	3
4.0 Grou	andwater Quality Conditions	8
5.0 Fate	and Transport Modeling Results	12
6.0 Conc	clusions	13
7.0 Reco	ommendations	14
	TABLES	
Table 1	Summary of Groundwater Elevations and Chloride and TDS Concentrations	5
	FIGURES	
Figure 1	Groundwater Elevation Map	4
Figure 2	Groundwater Elevation Versus Time Graph	7
Figure 3	Chloride Isopleth Map (2013)	9
Figure 4	TDS Isopleth Map (2013)	10
Figure 5	Chloride Concentrations Versus Time (MW-1 through MW-6)	11
Figure 6	TDS Concentrations Versus Time (MW-1 through MW-6)	11
	APPENDICES	
Appendix A	Laboratory Analytical Reports and Chain-of-Custody Documentation	
Appendix B	Monitoring Well Sampling Data Forms	
Appendix C	Chloride and TDS Plume Simulations	
Appendix D	Description of Fate and Transport Modeling	

1.0 Executive Summary

Trident Environmental (Trident) was retained by ARCADIS, on behalf of Chevron Environmental Management Company (Chevron EMC), to perform the 2013 annual groundwater sampling and monitoring at the Former Unocal South Vacuum Unit (site), which is located at Township 18 South, Range 35 East, Section 36 in Lea County, New Mexico. Chevron EMC is managing Unocal's environmental liability at the site. This report documents the 2013 annual sampling event performed by Trident at the site on October 25, 2013. This report contains the historical groundwater elevation and analytical data from monitoring wells MW-1 through MW-6. The sampling event was conducted in accordance with the November 2, 2000 Groundwater Remediation Plan submitted by Unocal and the requirements specified in the New Mexico Oil and Conservation Division (OCD) letter dated February 8, 2001.

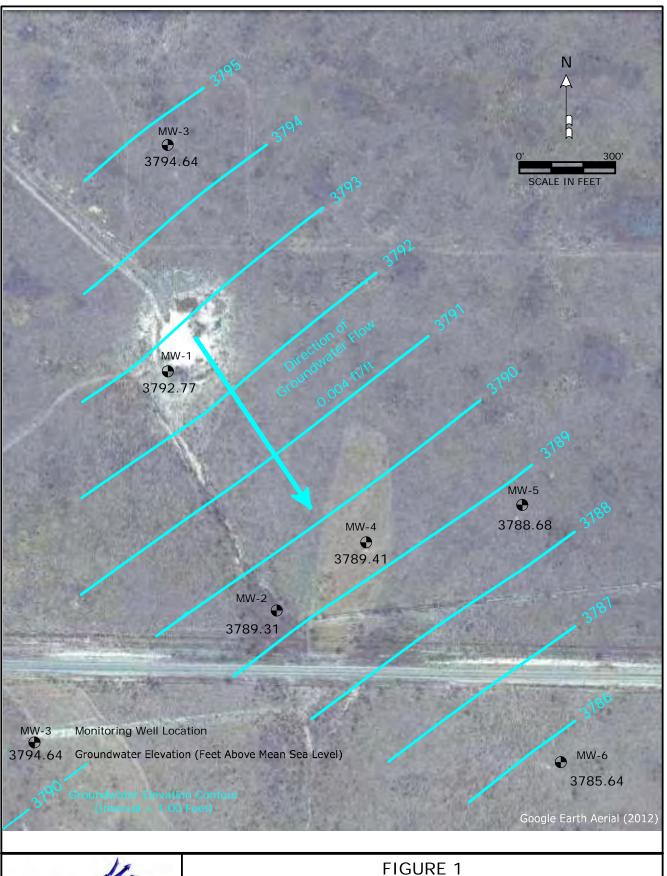
Based on the sampling and monitoring data to date, the following conclusions relevant to groundwater conditions at the Former Unocal South Vacuum Unit are evident:

- Chloride and total dissolved solids (TDS) concentrations in MW-1, near the source area, have generally decreased since 1996 with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have decreased significantly in the closest downgradient well (MW-4) since 1999 when the well was installed, and have remained relatively stable since 2007. Fluctuating chloride and TDS concentrations in MW-4 over the past few years and next few years are expected as the center of the mass of the plume migrates past MW-4 during this time. Chloride and TDS concentrations in well MW-3 have shown slight but steadily increasing trends since 2000 indicating a possible offsite, upgradient contributing source of these constituents. Chloride and TDS concentrations in the remaining wells (MW-2, MW-5, and MW-6) have remained relatively consistent with previous levels. As with MW-4, fluctuating chloride and TDS concentrations in MW-2 are expected due to its close cross-gradient proximity to the center of the mass of the plume as it migrates downgradient in a southeasterly direction.
- The fate and transport modeling results continue to support the conclusion that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which is a livestock (windmill) well located over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area.

- According to conservative model simulations, the chloride plume will travel a maximum of 3,200 feet southeast of the source in approximately 145 years before concentrations return to levels below the New Mexico Water Quality Control Commission (WQCC) standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,200 feet in approximately 80 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.
- Based on the modeling results and predicted natural attenuation processes (advection and
 dispersion), there will be no adverse impact to human health and the environment. The
 modeling also indicates that the livestock well will not exceed WQCC standards for
 chlorides or TDS due to the plume originating and traveling southeast, versus south, from
 the former saltwater disposal pit.
- Groundwater elevations have steadily decreased at a rate of approximately 0.3 feet per year
 since the initial sampling event of monitoring well MW-1 in January 1995; with the
 exception of the 2005 sampling event due to higher than normal rainfall during 2004 and
 2005. The decreasing groundwater elevation trend has resumed since 2005.

Effective remedial actions were performed to the source area by Unocal, which include plugging of the SWD well in 1971 and encapsulating the former saltwater disposal pit with solidification material in 1995, thus preventing any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions:

- Continue the annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2014 annual groundwater monitoring report to OCD by April 1, 2015, to document natural attenuation conditions.



2.0 Groundwater Sampling Procedures

On October 25, 2013, each of the six monitoring wells, MW-1 through MW-6, was gauged for depth to groundwater using a Solinst Model 101 electronic water indicator immediately prior to purging operations. A total of 42 gallons of groundwater was purged from the site monitoring wells (5 to 10 gallons per well) using a 3-stage submersible pump which was decontaminated using an Alconox solution and a distilled water rinse between sampling points. Groundwater parameters (pH, temperature, and conductivity) were measured using a Hanna Model 98130 multimeter until a minimum of three wells volumes was purged from each well or when parameters stabilized. Water samples for each monitoring well were transferred into 1,000 milliliter (ml) plastic containers for laboratory analysis of chloride using EPA Method SM-4500-Cl-C and TDS using EPA Method SM-2541. For each set of samples, chain of custody forms documenting sample identification numbers, collection times, and delivery times to the laboratory were completed. All water samples were placed in an ice-filled cooler immediately after collection and transported to Eurofins Lancaster Laboratories (Lancaster, PA) for analysis.

3.0 Groundwater Elevations, Hydraulic Gradient and Flow Direction

Depth to groundwater ranged from approximately 49 feet (ft) at MW-2 to 69 ft at MW-6 below ground surface. Groundwater elevations are summarized in Table 1 and a groundwater gradient map depicting the direction of groundwater flow is illustrated in Figure 1. A historical groundwater elevation graph is shown in Figure 2. The groundwater gradient direction is to the southeast with a hydraulic gradient of approximately 0.004 ft/ft. According to published reports (*Ground-Water Conditions in Northern Lea County, New Mexico*, Ash, 1963 and *Geology and Ground-Water Conditions in Southern Lea County, New Mexico*, Nicholson and Clebsch, 1961) the groundwater encountered at the site is that of the Tertiary-aged Ogallala Formation. The Ogallala Formation unconformably overlies the impermeable red-beds of the Triassic Chinle Formation at an elevation of approximately 3,700 ft above mean sea level (AMSL). Based on the current groundwater elevations measured on site and published data referenced, the saturated thickness of the Ogallala Formation at the site ranges from approximately 86 to 95 feet.

Figure 1 Former Unocal South Vacuum Unit Groundwater Gradient Map October 25, 2013

Table 1
Summary of Groundwater Sampling Results

				Depth to	Top of Casing	Groundwater
_	Sampling	Chloride	TDS	Groundwater	Elevation	Elevation
Well	Date	(mg/L)	(mg/L)	(feet BTOC)	(feet AMSL)	(feet AMSL)
	01/27/1995	1174	2250	59.57	3858.37	3798.80
	05/18/1995	983	2251	61.30	3858.37	3797.07
Monitoring Well MW-1 MW-2	08/28/1996	1420	2730	61.57	3858.37	3796.80
	08/13/1997	1400	2800	61.75	3858.37	3796.62
	09/30/1999	1094	2318	62.51	3858.37	3795.86
	06/14/2000	927	2040	62.85	3858.37	3795.52
	06/18/2001	813	1790	63.07	3858.37	3795.30
	07/11/2002	784	1680	63.28	3858.37	3795.09
	07/02/2003	715	2090	63.66	3858.37	3794.71
MW-1	08/12/2004	628	2050	63.83	3858.37	3794.54
1,1,1,1	08/10/2005	774	1830	62.62	3858.37	3795.75
	07/31/2006	860	2010	62.90	3858.37	3795.47
	07/27/2007	732	1790	63.43	3858.37	3794.94
	08/26/2008	895	1960	63.95	3858.37	3794.42
	07/15/2009	852	2300	64.25	3858.37	3794.42
	07/13/2009	934	2590 2590	64.51	3858.37	3794.12
	07/14/2011	934 824	2370	64.74	3858.37	3793.63
	08/02/2012	824 854	2370 2740	65.15	3858.37	3793.03 3793.22
	10/25/2013			65.60		
		761	1700 922		3858.37	3792.77
	09/30/1999	298	922 852	49.51 49.81	3841.64	3792.13
	06/14/2000	317			3841.64	3791.83
	06/18/2001	288	878	50.06	3841.64	3791.58
	07/11/2002	284	808	50.29	3841.64	3791.35
	07/02/2003	268	859	50.63	3841.64	3791.01
	08/12/2004	451 255	931	50.81	3841.64	3790.83
MW	08/10/2005	355	844	49.58	3841.64	3792.06
MW-2	07/31/2006	401	922	49.83	3841.64	3791.81
	07/27/2007	430	984	50.33	3841.64	3791.31
	08/26/2008	354	980	50.80	3841.64	3790.84
	07/15/2009	482	1060	51.04	3841.64	3790.60
	07/13/2010	494	1070	51.37	3841.64	3790.27
	07/14/2011	486	974	51.53	3841.64	3790.11
	08/02/2012	531	1110	51.89	3841.64	3789.75
	10/25/2013	483	1070	52.33	3841.64	3789.31
	09/30/1999	73.6	427	66.74	3864.73	3797.99
	06/14/2000	75.5	433	67.01	3864.73	3797.72
	06/18/2001	86.4	495	67.29	3864.73	3797.44
	07/11/2002	103	509	67.59	3864.73	3797.14
	07/02/2003	98.3	588	67.94	3864.73	3796.79
	08/12/2004	111	605	68.07	3864.73	3796.66
_	08/10/2005	122	533	66.81	3864.73	3797.92
MW-3	07/31/2006	141	619	67.21	3864.73	3797.52
	07/27/2007	164	705	67.79	3864.73	3796.94
	08/26/2008	185	592	68.30	3864.73	3796.43
	07/15/2009	199	766	68.50	3864.73	3796.23
	07/13/2010	207	859	68.52	3864.73	3796.21
	07/14/2011	205	816	69.19	3864.73	3795.54
	08/02/2012	232	1010	69.60	3864.73	3795.13
	10/25/2013	273	678	70.09	3864.73	3794.64

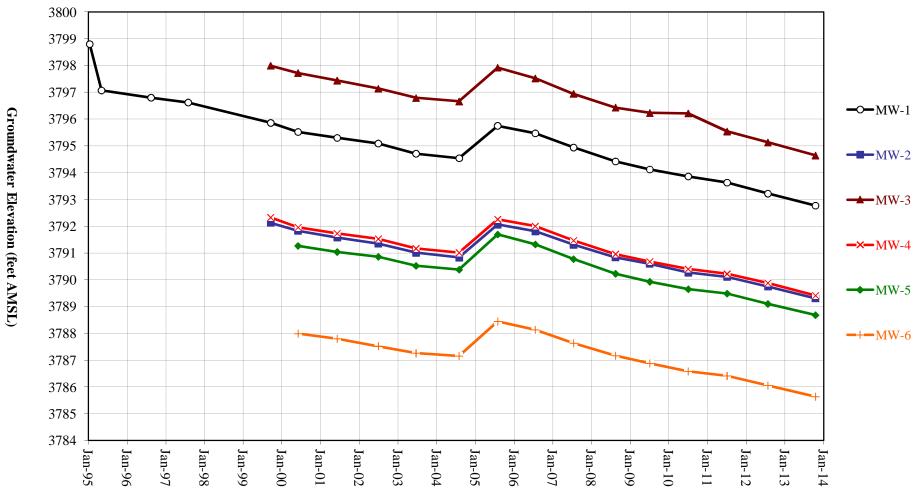
Table 1
Summary of Groundwater Sampling Results

Manifesta	C 1'			Depth to	Top of Casing	Groundwater
_	Sampling	Chloride	TDS	Groundwater	Elevation	Elevation
wen	Date	(mg/L)	(mg/L)	(feet BTOC)	(feet AMSL)	(feet AMSL)
	09/30/1999	1576	2981	60.18	3852.51	3792.33
Monitoring Well MW-4 MW-5 MW-6	06/14/2000	1500	2910	60.55	3852.51	3791.96
	06/18/2001	1530	3180	60.78	3852.51	3791.73
	07/11/2002	1290	2660	60.98	3852.51	3791.53
	07/02/2003	1250	2610	61.34	3852.51	3791.17
	08/12/2004	1130	2480	61.50	3852.51	3791.01
	08/10/2005	1050	2230	60.25	3852.51	3792.26
MW-4	07/31/2006	926	2030	60.51	3852.51	3792.00
	07/27/2007	758	1940	61.04	3852.51	3791.47
	08/26/2008	720	1790	61.55	3852.51	3790.96
	07/15/2009	632	1780	61.83	3852.51	3790.68
	07/13/2010	687	1750	62.11	3852.51	3790.40
	07/14/2011	707	1600	62.29	3852.51	3790.22
	08/02/2012	804	1760	62.63	3852.51	3789.88
	10/25/2013	894	1890	63.10	3852.51	3789.41
	06/14/2000	13.7	274	68.57	3859.84	3791.27
	06/18/2001	13.6	322	68.80	3859.84	3791.04
MW-5	07/11/2002	15.5	308	68.98	3859.84	3790.86
	07/02/2003	12.5	359	69.32	3859.84	3790.52
	08/12/2004	15.3	375	69.46	3859.84	3790.38
	08/10/2005	14.9	309	68.15	3859.84	3791.69
	07/31/2006	13.3	290	68.52	3859.84	3791.32
	07/27/2007	14.9	296	69.07	3859.84	3790.77
	08/26/2008	13.6	296	69.61	3859.84	3790.23
	07/15/2009	13.4	291	69.91	3859.84	3789.93
MW-5	07/13/2010	12.6	291	70.19	3859.84	3789.65
	07/14/2011	13.8	265	70.35	3859.84	3789.49
	08/02/2012	13.8	290	70.74	3859.84	3789.10
	10/25/2013	15.3	268	71.16	3859.84	3788.68
	06/14/2000	48.0	382	70.79	3858.78	3787.99
	06/18/2001	50.8	431	70.98	3858.78	3787.80
	07/11/2002	50.0	422	71.26	3858.78	3787.52
	07/02/2003	46.5	471	71.52	3858.78	3787.26
	08/12/2004	55.1	410	71.62	3858.78	3787.16
	08/10/2005	55.0	391	70.33	3858.78	3788.45
MW-6	07/31/2006	52.4	412	70.64	3858.78	3788.14
	07/27/2007	75.3	516	71.15	3858.78	3787.63
	08/26/2008	88.5	548	71.61	3858.78	3787.17
	07/15/2009	81.4	532	71.90	3858.78	3786.88
	07/13/2010	84.1	545 521	72.20	3858.78	3786.58
MW-5	07/14/2011	89.2	531	72.37	3858.78	3786.41
	08/02/2012	93.8	550 510	72.72	3858.78	3786.06
WOCC	10/25/2013	116	510	73.14	3858.78	3785.64
w QCC :	Standards	250	1000			

Total Dissolved Soilds (TDS) and chloride concentrations listed in milligrams per liter (mg/L)

Analyses performed by Trace Analysis Inc. (1995-1998), SPL, Inc. (1999-2005), and Lancaster Laboratories (2006-2011).

Values in boldface type indicate concentrations exceed New Mexico Water Quality Commission (WQCC) standards.


AMSL - Above Mean Sea Level; BTOC - Below Top of Casing

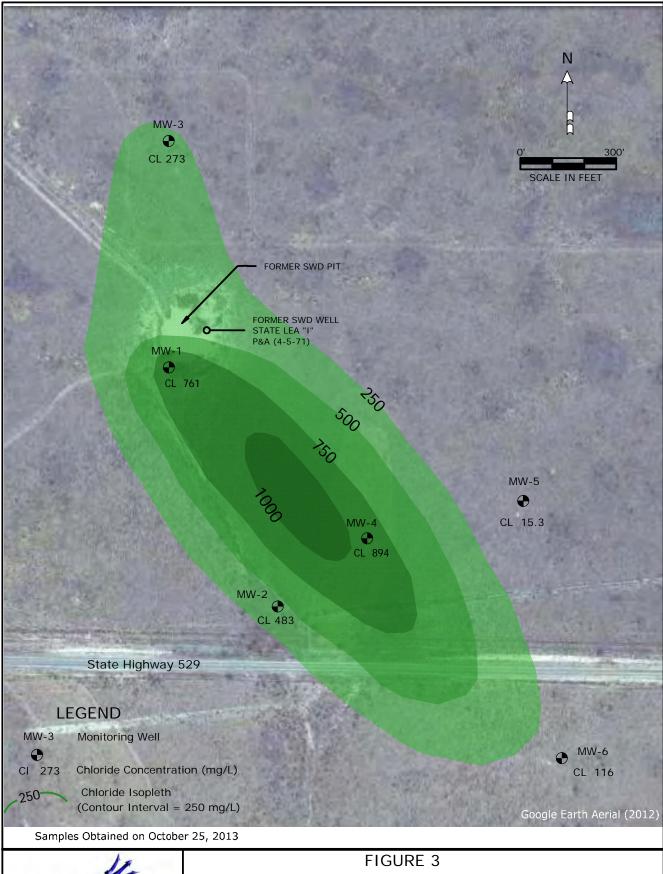
Groundwater flow direction is to the southeast with a gradient of approx. 0.004 ft/ft.

Elevations and state plane coordinates surveyed by Basin Surveys, Hobbs, NM.

Figure 2 Historical Groundwater Elevations

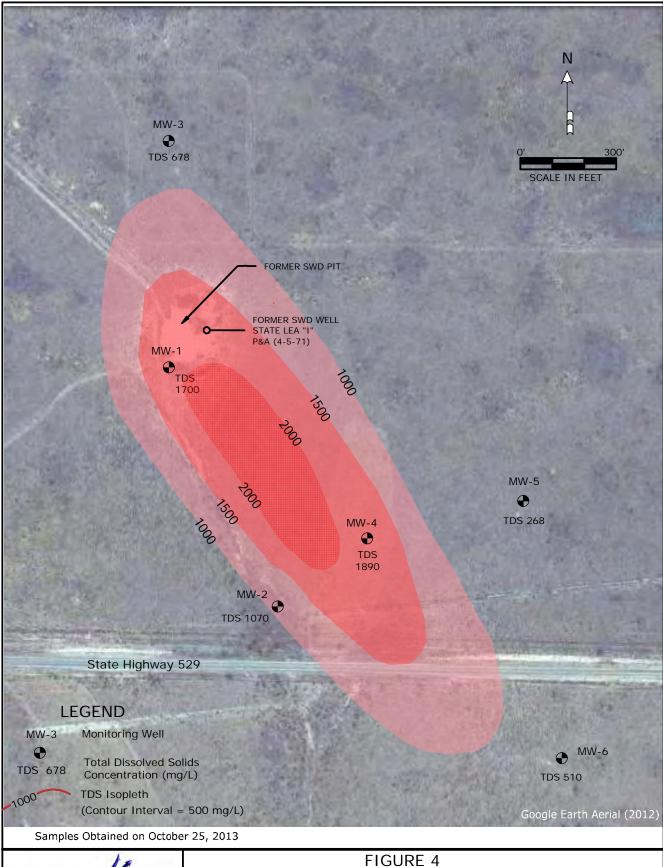
Page 7 of 14

4.0 Groundwater Quality Conditions

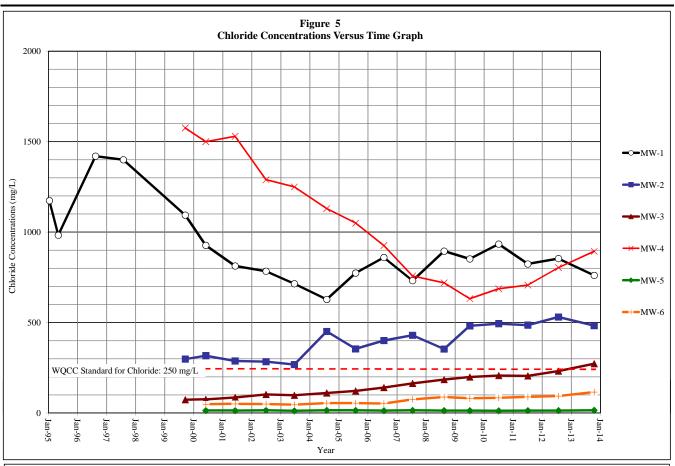

Groundwater sample analytical results are presented in Table 1 with the WQCC standards shown for comparison. Those constituents that recorded concentrations above the WQCC standards are highlighted in boldface type. The WQCC standard of 250 mg/L for chloride was exceeded in wells MW-1 (761 mg/L), MW-2 (483 mg/L), MW-3 (273 mg/L), and MW-4 (894 mg/L). The WQCC standard of 1,000 mg/L for TDS was exceeded in wells MW-1 (1,700 mg/L), MW-2 (1,070 mg/L), and MW-4 (1,890 mg/L). The groundwater samples obtained from downgradient wells MW-5 and MW-6 had chloride and TDS concentrations below WQCC standards.

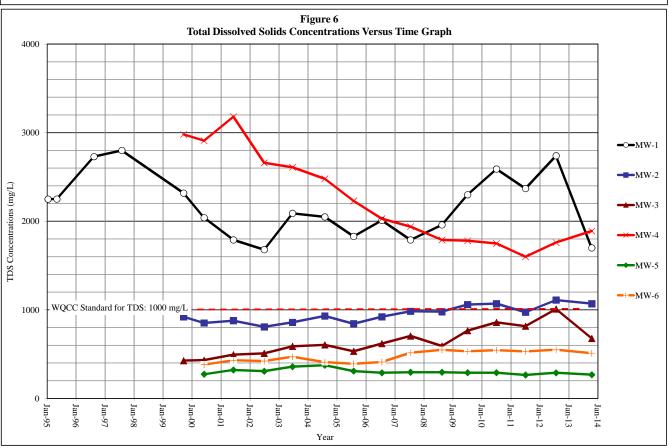
The most recent chloride and TDS concentrations and estimated isopleths are depicted in Figures 3 and 4, respectively. Graphs depicting historical chloride and TDS concentrations in monitoring wells MW-1 through MW-6 are shown in Figures 5 and 6.

Chloride and TDS concentrations in MW-1, near the source area, have generally decreased since 1996 with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have generally decreased in the closest downgradient well (MW-4) since 1999 when the well was installed. Fluctuating chloride and TDS concentrations in MW-4 over the past few years and next few years are expected as the center of the mass of the plume migrates past MW-4 during this time. As with MW-4, minimal fluctuations of chloride and TDS concentrations in MW-2 are expected due to its close cross-gradient proximity to the center of the mass of the plume as it migrates downgradient in a southeasterly direction.


Monitoring well MW-3 has exhibited slight but steady increases in chloride and TDS concentrations since 2000, which suggests a possible offsite source of chlorides and TDS located upgradient (northwest) from the site. Chloride and TDS levels in MW-5 and MW-6 have remained relatively consistent with previous years.

The above described trends indicate that encapsulating the former saltwater disposal pit with solidification material in 1995, has significantly reduced the threat of any continued release from the source.


Former Unocal South Vacuum Unit Chloride Isopleth Map Current Conditions (2013)



Former Unocal South Vacuum Unit TDS Isopleth Map Current Conditions (2013)

5.0 Fate and Transport Modeling Results

Fate and transport modeling was performed by Trident to simulate the movement of the chloride and TDS groundwater plume over time. Simulations were conducted using the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. A more detailed discussion of the flow and transport parameters used, assumptions, model calibrations, and simulation results are described in Appendix D.

Figures displaying modeled simulations of the chloride and TDS plumes over various time increments are included in Appendix C. Advective flow moves the center of plume mass downgradient as depicted in the simulations. The simulations also demonstrate how hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume.

Continued attenuation by dilution and dispersion of the plume, after the maximum chloride and TDS concentrations decrease to levels below WQCC standards, are shown in the final simulation for each constituent of concern (year 2157 for chloride and year 2093 for TDS, respectively). The center of the chloride plume is approximately 3,200 ft away from the pit and well source in the year 2157. The center of the TDS plume is approximately 2,200 ft away from the pit and well source in the year 2093.

The portions of the chloride and TDS plumes that are above WQCC standards do not reach any of the identified potential receptors at any time during their attenuation, the closest of which is a livestock (windmill) well (NM File No. L05339) located over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area. The results of the updated fate and transport model are consistent with those determined in previous annual reports.

6.0 Conclusions

Conclusions relevant to groundwater conditions and the remediation performance at the Former Unocal South Vacuum Unit are presented below.

- Chloride and TDS concentrations in MW-1, near the source area, have generally decreased since 1996 with the exception of some fluctuations since the 2004 sampling event. Similarly, chloride and TDS levels have decreased significantly in the closest downgradient well (MW-4) since 1999 when the well was installed, and have remained relatively stable since 2007. Fluctuating chloride and TDS concentrations in MW-4 over the past few years and next few years are expected as the center of the mass of the plume migrates past MW-4 during this time. Chloride and TDS concentrations in well MW-3 have shown slight but steadily increasing trends since 2000 indicating a possible offsite, upgradient contributing source of these constituents. Chloride and TDS concentrations in the remaining wells (MW-2, MW-5, and MW-6) have remained relatively consistent with previous levels. As with MW-4, fluctuating chloride and TDS concentrations in MW-2 are expected due to its close cross-gradient proximity to the center of the mass of the plume as it migrates downgradient in a southeasterly direction. The fate and transport modeling results continue to demonstrate that the chloride and TDS plume is not likely to impact existing sources of water supply, the closest of which is a livestock (windmill) well located over one-half mile south of the source. Operation of the windmill well has been discontinued due to declining water levels in the area and the shallow depth of the well.
- According to conservative model simulations, the chloride plume will travel a maximum of 3,200 ft southeast of the source in approximately 145 years before concentrations return to levels below the WQCC standard of 250 mg/L. The same analysis indicates that the TDS plume will travel only 2,200 ft in approximately 80 years before concentrations return to levels below the WQCC standard of 1,000 mg/L.
- Based on the modeling results and predicted natural attenuation processes (dispersion and dilution), there will be no adverse impact to human health and the environment. The modeling also indicates the livestock well will not exceed WQCC standards for chlorides or TDS due to the plume originating and traveling southeast, versus south, from the former saltwater disposal pit.
- Groundwater elevations had steadily decreased at a rate of approximately 0.3 feet per year since the initial sampling event of monitoring well MW-1 in January 1995; however during 2005 the groundwater table increased to an elevation similar to the 1999 level. The recent rise may be attributed to higher than normal rainfall during 2004 and 2005. The decreasing groundwater elevation trend has resumed since 2005.

7.0 Recommendations

Effective remedial actions were performed to the source area by Unocal, which include plugging of the SWD well in 1971 and encapsulating the former saltwater disposal pit with solidification material in 1995, thus preventing any continued release from the source. Based on the identified potential receptor and fate and transport modeling results, the chloride/TDS plume at the site presents low risk to human health and the environment; therefore Trident recommends the following actions:

- Continue the natural attenuation annual monitoring program with groundwater sampling and analysis of chloride and TDS concentrations for each of the six monitoring wells.
- Update flow and transport model to confirm the plume is naturally attenuating as described.
- Submit the 2014 Annual Groundwater Monitoring Report to OCD by April 1, 2015, to document natural attenuation conditions.

APPENDIX A

Laboratory Analytical Reports

And

Chain-of-Custody Documentation

2425 New Holland Pike, Lancaster, PA 17601 + 717-656-2300 + Fax: 717-656-2681 + www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by: Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Chevron Environmental Mgmt Co 6101 Bollinger Canyon Road San Ramon CA 94583

November 05, 2013

Project: Former Unocal South Vacuum Unit, Lea County, NM

Submittal Date: 10/29/2013 Group Number: 1429770 PO Number: 0015120310 Release Number: MACLEOD State of Sample Origin: NM

Client Sample Description	<u>Lancaster Labs (LL) #</u>
MW-1 Grab Groundwater	7255379
MW-2 Grab Groundwater	7255380
MW-3 Grab Groundwater	7255381
MW-4 Grab Groundwater	7255382
MW-5 Grab Groundwater	7255383
MW-6 Grab Groundwater	7255384

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

ELECTRONIC COPY TO	ARCADIS	Attn: Mark M. Miller
ELECTRONIC	ARCADIS	Attn: Allen Just
COPY TO ELECTRONIC	Trident Environmental	Attn: Gilbert Van Deventer
COPY TO ELECTRONIC	ARCADIS	Attn: Dana Koschel
COPY TO ELECTRONIC	ARCADIS	Attn: Sarah Huff
COPY TO	ARCADIS	11011
ELECTRONIC COPY TO	ARCADIS	Attn: Robin Simon

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Respectfully Submitted,

Katherine A. Klinefelter Principal Specialist

Katherine a. Klinefelter

(717) 556-7256

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-1 Grab Groundwater

Former Unocal South Vacuum Unit

Lea County, NM

LL Sample # WW 7255379

LL Group # 1429770 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 10/25/2013 17:00 by GV Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 10/29/2013 10:15 Reported: 11/05/2013 15:12

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C	hemistry SM 2540	C-1997	mg/l	mg/l	mg/l	
00212	Total Dissolved Solids	n.a.	1,700	77.6	240	1
	SM 4500	-Cl C-1997	mg/l	mg/l	mg/l	
01124	Chloride (titrimetric)	16887-00-6	761	20.0	100	50

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
00212	Total Dissolved Solids	SM 2540 C-1997	1	13304021202B	10/31/2013	12:14	Susan E Hibner	1
01124	Chloride (titrimetric)	SM 4500-Cl C-1997	1	13308112401A	11/04/2013	12:50	Susan A Engle	50

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-2 Grab Groundwater

Former Unocal South Vacuum Unit

Lea County, NM

LL Sample # WW 7255380

LL Group # 1429770 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 10/25/2013 13:00 by GV Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 10/29/2013 10:15 Reported: 11/05/2013 15:12

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C	hemistry SM 254	0 C-1997	mg/l	mg/l	mg/l	
00212	Total Dissolved Solids	n.a.	1,070	77.6	240	1
	SM 450	0-Cl C-1997	mg/l	mg/l	mg/l	
01124	Chloride (titrimetric)	16887-00-6	483	20.0	100	50

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
00212	Total Dissolved Solids	SM 2540 C-1997	1	13304021202B	10/31/2013 12:	14 Susan E Hibner	1
01124	Chloride (titrimetric)	SM 4500-Cl C-1997	1	13308112401A	11/04/2013 12:	50 Susan A Engle	50

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-3 Grab Groundwater

Former Unocal South Vacuum Unit

Lea County, NM

LL Sample # WW 7255381

LL Group # 1429770 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 10/25/2013 14:00 by GV Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 10/29/2013 10:15 Reported: 11/05/2013 15:12

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C	hemistry SM 254	0 C-1997	mg/l	mg/l	mg/l	
00212	Total Dissolved Solids	n.a.	678	38.8	120	1
	SM 450	0-Cl C-1997	mg/l	mg/l	mg/l	
01124	Chloride (titrimetric)	16887-00-6	273	8.0	40.0	20

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
00212	Total Dissolved Solids	SM 2540 C-1997	1	13304021202B	10/31/2013 12	14 Susan E Hibner	1
01124	Chloride (titrimetric)	SM 4500-Cl C-1997	1	13308112401A	11/04/2013 12	50 Susan A Engle	20

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-4 Grab Groundwater

Former Unocal South Vacuum Unit

Lea County, NM

LL Sample # WW 7255382

LL Group # 1429770 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 10/25/2013 16:00 by GV Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 10/29/2013 10:15 Reported: 11/05/2013 15:12

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C	hemistry SM 25	340 C-1997	mg/l	mg/l	mg/l	
00212	Total Dissolved Solids	n.a.	1,890	77.6	240	1
	SM 45	500-Cl C-1997	mg/l	mg/l	mg/l	
01124	Chloride (titrimetric)	16887-00-6	894	20.0	100	50

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
00212	Total Dissolved Solids	SM 2540 C-1997	1	13304021202B	10/31/2013 12:	14 Susan E Hibner	1
01124	Chloride (titrimetric)	SM 4500-Cl C-1997	1	13308112401A	11/04/2013 12:	50 Susan A Engle	50

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-5 Grab Groundwater

Former Unocal South Vacuum Unit

Lea County, NM

LL Sample # WW 7255383

LL Group # 1429770 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 10/25/2013 15:00 by GV Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 10/29/2013 10:15 Reported: 11/05/2013 15:12

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C	hemistry SM 2540	C-1997	mg/l	mg/l	mg/l	
00212	Total Dissolved Solids	n.a.	268	9.7	30.0	1
	SM 4500	-Cl C-1997	mg/l	mg/l	mg/l	
01124	Chloride (titrimetric)	16887-00-6	15.3	0.40	2.0	1

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method Trial# Batch# Analysis		Analysis	Analyst	Dilution	
No.					Date and Time		Factor
00212	Total Dissolved Solids	SM 2540 C-1997	1	13304021202B	10/31/2013 12:14	Susan E Hibner	1
01124	Chloride (titrimetric)	SM 4500-Cl C-1997	1	13308112401A	11/04/2013 12:50	Susan A Engle	1

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: MW-6 Grab Groundwater

Former Unocal South Vacuum Unit

Lea County, NM

LL Sample # WW 7255384

LL Group # 1429770 Account # 11969

Project Name: Former Unocal South Vacuum Unit, Lea County, NM

Collected: 10/25/2013 12:00 by GV Chevron Environmental Mgmt Co

6101 Bollinger Canyon Road

San Ramon CA 94583

Submitted: 10/29/2013 10:15 Reported: 11/05/2013 15:12

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Wet C	hemistry SM 2540	C-1997	mg/l	mg/l	mg/l	
00212	Total Dissolved Solids	n.a.	510	19.4	60.0	1
	SM 4500	-Cl C-1997	mg/l	mg/l	mg/l	
01124	Chloride (titrimetric)	16887-00-6	116	4.0	20.0	10

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT	Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
No.					Date and Time		Factor
00212	Total Dissolved Solids	SM 2540 C-1997	1	13304021202B	10/31/2013 12:	14 Susan E Hibner	1
01124	Chloride (titrimetric)	SM 4500-Cl C-1997	1	13308112401A	11/04/2013 12:	50 Susan A Engle	10

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Page 1 of 1

Quality Control Summary

Client Name: Chevron Environmental Mgmt Co Group Number: 1429770

Reported: 11/05/13 at 03:12 PM

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Laboratory Compliance Quality Control

Analysis Name	Blank <u>Result</u>	Blank MDL**	Blank <u>LOO</u>	Report <u>Units</u>	LCS <u>%REC</u>	LCSD %REC	LCS/LCSD <u>Limits</u>	RPD	RPD Max
Batch number: 13304021202B Total Dissolved Solids	Sample num	ber(s): 72 9.7		5384 mg/l	110	102	80-120	7	9
Batch number: 13308112401A Chloride (titrimetric)	Sample num	ber(s): 72	255379-725	5384	100	99	95-103	0	20

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS <u>%REC</u>	MSD <u>%REC</u>	MS/MSD <u>Limits</u>	RPD	RPD <u>MAX</u>	BKG <u>Conc</u>	DUP <u>Conc</u>	DUP <u>RPD</u>	Dup RPD <u>Max</u>
Batch number: 13304021202B Total Dissolved Solids	Sample 98	number(s) 110	: 7255379 51-144				BKG: 7255379 1,550	9*	5
Batch number: 13308112401A Chloride (titrimetric)	Sample 72*	number(s) 98	: 7255379 85-110		34 UNSP	K: P256505 437	BKG: P256505	1 (1)	5

^{*-} Outside of specification

^{**-}This limit was used in the evaluation of the final result for the blank

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Environmental Analysis Request/Chain of Custody

-09			~	
	eı.	irn	TI	nc
	~	,,,		113

Lancaster Laboratories Acct. # 11969

For Eurofins Lancaster Laboratories use only
Group # 142 977 Osample # 72 55 37 9 - 8 4
Instructions on reverse side correspond with circled numbers.

COC # 333934

1) Client Informatio	n				4	M	atrix		T	(5)			Analys	is Re	ques	ted			For Lab l	Jse Only	
Client:	Preservation Codes						FSC:		- <u></u>												
Chevron Environmental Mant. Co.		1969		′]	<u> </u> \\		11	. [I	I				SCR#:	749	<i>Ŧ</i> T
Client Information Client: Chevron Environmental Mgnt. Co. Project Name/#: Former Unocal S. Vacuum Unit Project Manager: John Mac Leed (Chevron) Dann Koschel (Arcadis) Sampler:	PWSID#: P.O.#: Quote#:				Sediment	Ground			Containers		(titringthic)								Pres H=HCI N=HNO S=H ₂ S	O ₃ B =N SO ₄ O =C	Codes hiosulfate laOH Other
Gil Van Deventer (Trident Em.)	<u> </u>		~	/			ES.		Inta			1							(b) 1	liai no	
Name of state where samples were collected: New Mexico			[3]	<u>#</u>		Potable	NPDES		of Co		ovide	1									
Sample Identification		ected	Grab	Composite	Soil]	Water	Other:			Ch/o										
	Date	Time		<u> ŭ</u> /	ŭ		<u> </u>	Įō,	<u>ات</u>	1	┷ '	<u> </u>	\sqcup						<u> </u>		
Mu-)	10-25-13		 	⊥ _'			′			14	<u> </u>	'	\coprod								
MW-2	10-25-13	 	14	 '		\perp		<u> </u>		1/	<u> '</u>	'	\Box								
Mw-3	10-25-13		14	⊥_ ′		\perp	′	<u> </u>	1	<u>/</u>	<u>/</u>	<u> </u>									
MW-4	10-25-13		L					'		1	//										
MW-5	10.25-13		1	\bigsqcup'				'		1	/					$T_{\underline{}}$					
MW-6	10-25-13	1200	14	\square	\vdash	\bot		<u> </u>	_	1	V'	<u> </u>									
	—		+		\vdash	+			 	+	+-	 '	++	+	_	+-	+	\vdash			
						二				上											
7) Turnaround Time (TAT) Requested (ple	ease circle)		Reling	quished t	d by	Щ.		'بـــا	<u> </u>	<u></u>	Dațe	<u> </u>	Time ,	Re	ceived by	<u> </u>	\Box_{β}			Inate .	Time (a)
	Rush	i	6	DE	24	1		2			Ф <i>Р</i> А	1/12	1/20	(1h)	B	DI/	<i>\(\)</i>	X	_	10/1/12	5:00g
(Rush TAT is subject to Lancaster Laboratories approval an	nd surcharge.)	,	Relingu	gustened t	by /	1	1		_		Date /	28/.1	Time 1600	Re	ceived by	•				Date 10/18	Time
Date results are needed:		_	Relinq	quished t	i by						Date	<u> (</u>	Time	Re	ceived by					Date	/600 Time
E-mail address: gile trident-environme		ំពង	Paling	quished t							Date	!	Time							<u> </u>	
B) Data Package Options (circle if required)	N'AI I C.	<u> </u>	Nomry c	Jisnica .	by						Date	,	1 ime	Le	ceived by	y		•		Date	Time
	(Raw Data (Only)	Relinqu	quished t	by		/				Date		Time	Re	ceived by	y ///	VI	1		Date	Time
Typo (Validation 12.)	\u00e4	Jing, ,	—			<u> </u>	2D Day		10	1/	<u></u>			1		<u>///</u>	W/	(· · · · ·		1015
Type III (Reduced non-CLP) TX TRRP	-13	I				s, form		·							-	effed b	-		cial Carri		-
Type IV (CLP SOW) MA MCP	CTR	КСР			-		ic QC (N QC sample	•				•	(No lume.)						receipt _	اره	_°C

eurofins	Lancaster
	Lancaster

Environmental Sample Administration Crp # 14 29770
Receipt Documental Laboratories

Chilled

Not Chilled

Client/Project:	Chevion	Shipping Container	Sealed: (YES) NO
Date of Receipt:	10/29/13	Custody Seal Prese	ent*: YES NO
Time of Receipt:	1015		t unless otherwise noted in the
Source Code:	Co.	——— Package:	Chilled Not Chille

Package:

Temperature of Shipping Containers Wet Ice (WI) or Dry Ice (DI) or Loose (L) Ice Cooler Thermometer Temperature Temp Bottle (TB) or Present? Bagged Ice (B) Comments Surface Temp (ST) # ID (°C) Ice Packs (IP) ог NA Y/N β 1)T131 1.0 TB W y 2 3 4 5 6

Number of Trip Blanks received <u>NOT</u> listed on chain of custody:	ø
Paperwork Discrepancy/Unpacking Problems:	
11 01	
Unpacker Signature/Emp#: 50	Date/Time: \(\langle \langle 29 \rangle 3 \) //25

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

RL	Reporting Limit	BMQL	Below Minimum Quantitation Level
N.D.	none detected	MPN	Most Probable Number
TNTC	Too Numerous To Count	CP Units	cobalt-chloroplatinate units
IU	International Units	NTU	nephelometric turbidity units
umhos/cm	micromhos/cm	ng	nanogram(s)
С	degrees Celsius	F	degrees Fahrenheit
meq	milliequivalents	lb.	pound(s)
g	gram(s)	kg	kilogram(s)
μg	microgram(s)	mg	milligram(s)
mL	milliliter(s)	L	liter(s)
m3	cubic meter(s)	μL	microliter(s)
		pg/L	picogram/liter

- < less than The number following the sign is the <u>limit of quantitation</u>, the smallest amount of analyte which can be reliably determined using this specific test.
- > greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight basisResults printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Data Qualifiers:

C - result confirmed by reanalysis.

J - estimated value – The result is ≥ the Method Detection Limit (MDL) and < the Limit of Quantitation (LOQ).

U.S. EPA CLP Data Qualifiers:

	Organic Qualifiers		Inorganic Qualifiers
Α	TIC is a possible aldol-condensation product	В	Value is <crdl, but="" th="" ≥idl<=""></crdl,>
В	Analyte was also detected in the blank	Ε	Estimated due to interference
С	Pesticide result confirmed by GC/MS	M	Duplicate injection precision not met
D	Compound quantitated on a diluted sample	N	Spike sample not within control limits
E	Concentration exceeds the calibration range of	S	Method of standard additions (MSA) used
	the instrument		for calculation
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
Р	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995
X,Y,Z	Defined in case narrative		

Analytical test results meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

APPENDIX B

Monitoring Well Sampling Data Form

WELL SAMPLING DATA FORM

CLIENT: Chevron Environmental Management Corp. SITE NAME: Former Unocal South Vacuum Unit (1R-277) SITE LOCATION: T18S - R35E - Sec 35, Lea County, NM SAMPLER: Gil Van Deventer							- - -				TRIDENT			
	SPOSAL ME	SA	URGING M MPLING ME DF PURGE ¹	ETHOD:		Hand Ba Disposal On-site [ole Baile	_		Proaction Discha	•		r 3-Stage Other:	e Pump
	Date	Time	Monitoring Well No.	Depth to Water (ft btoc)	Total Depth (ft)	Water Column Height (ft)	Well Factor 2"=.16 4"=.65	Calc. Well Vol. (gal)	Volume Purged (gal)	No. of Well Volumes Purged	Temp.	Cond. mS/cm	рН	PHYSICAL APPEARANCE AND REMARKS
	10/25/2013	17:00	MW-1	65.60	70.00	4.40	0.16	0.7	5	7.1	67.1	2.71	7.35	Cloudy but clearing moderately quickly
	10/25/2013	13:00	MW-2	52.33	71.00	18.67	0.16	3.0	10	3.3	66.9	1.75	8.26	Clear
	10/25/2013	14:00	MW-3	70.09	77.00	6.91	0.16	1.1	5	4.5	67.0	1.13	7.71	Silty but cleared quickly

1.3

1.3

0.6

9

8

5

7.1

6.4

7.7

0.16

0.16

0.16

10/25/2013 16:00

10/25/2013 12:00

15:00

10/25/2013

63.10

71.16

73.14

MW-4

MW-5

MW-6

71.00

79.00

77.20

7.90

7.84

4.06

COMMENTS:	Equipment decontamination consists of gloves, Alconox, and Distilled Water Rinse.	
Hanna Model 981	130 instrument used to obtain pH, conductivity, and temperature measurements.	
Shipped samples	via FedEx to Lancaster Laboratories for chloride and TDS analysis.	

67.2

65.8

64.5

3.28

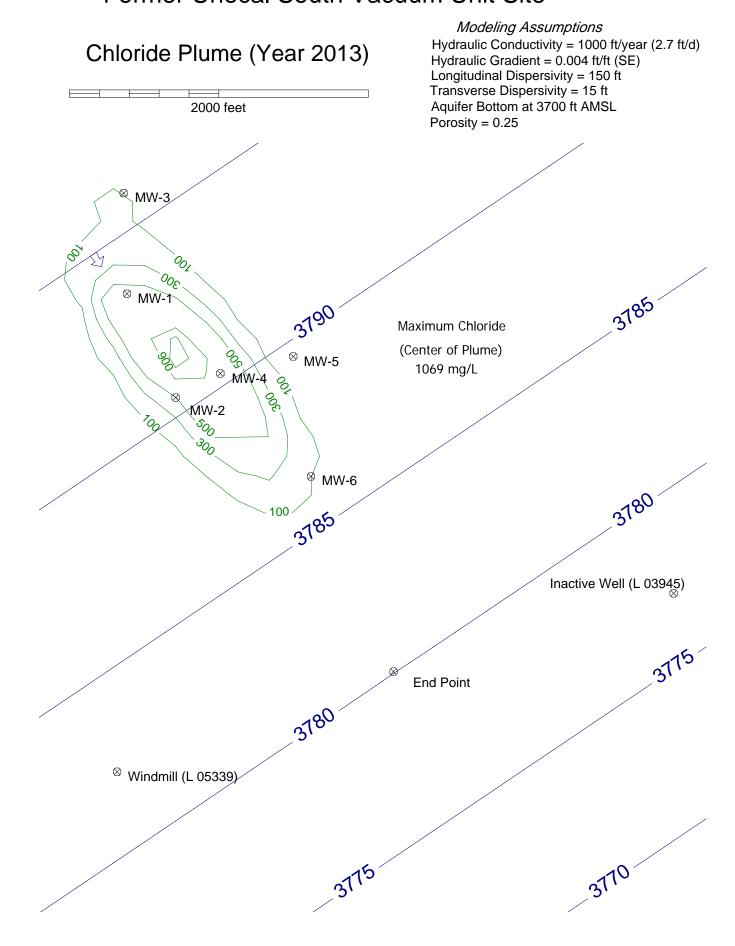
0.42

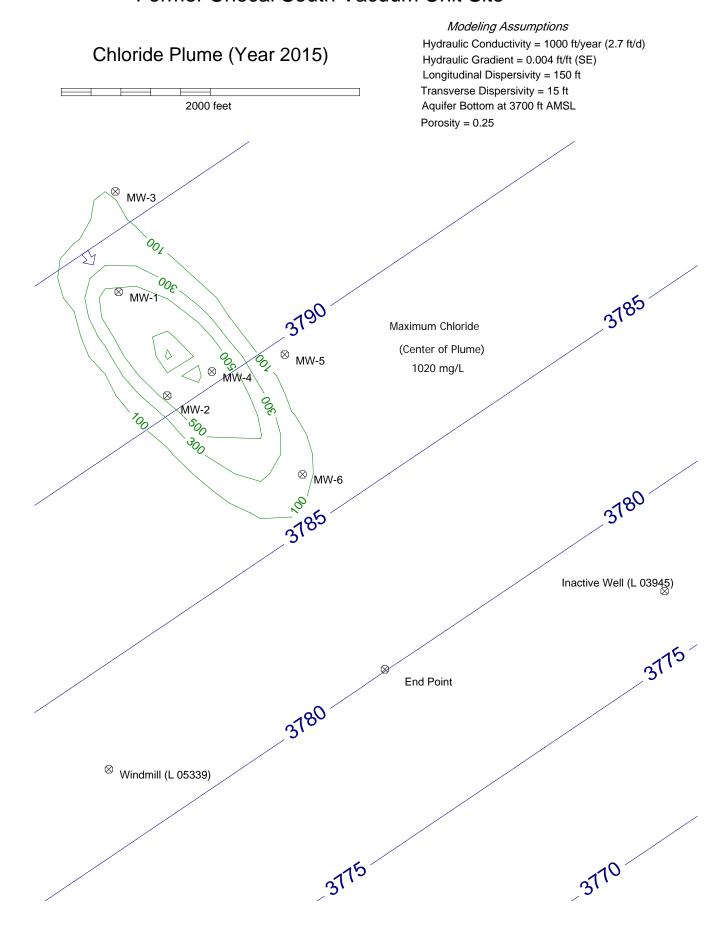
0.80

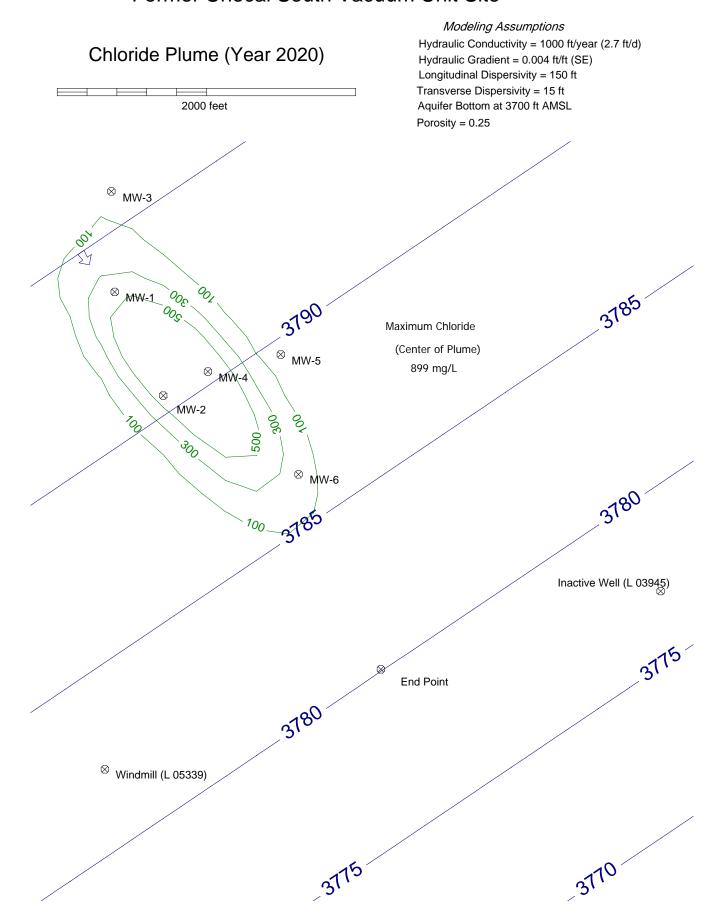
7.85

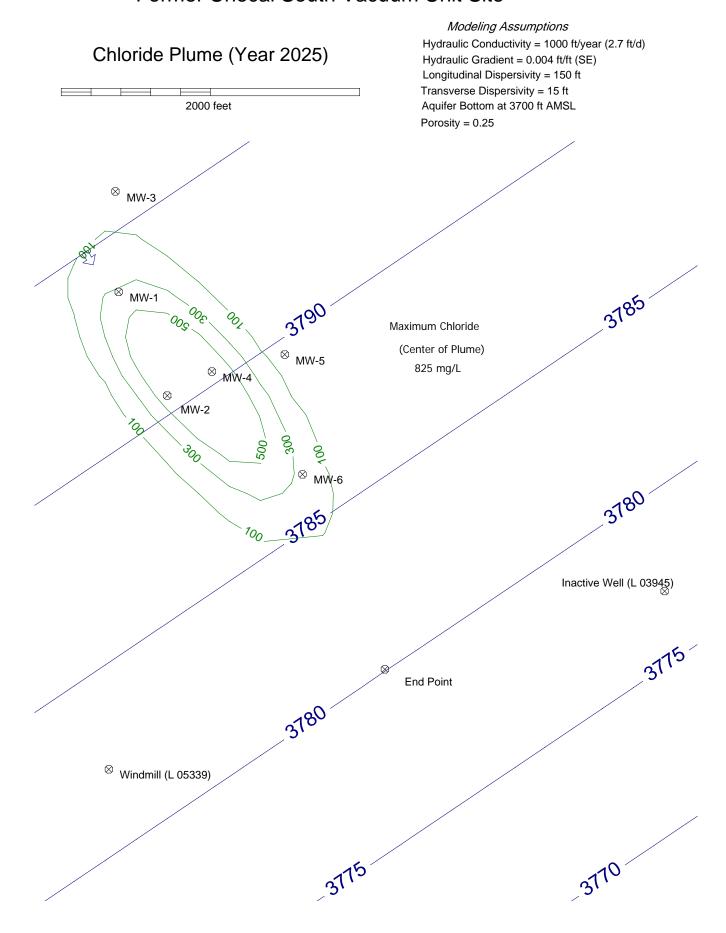
7.02

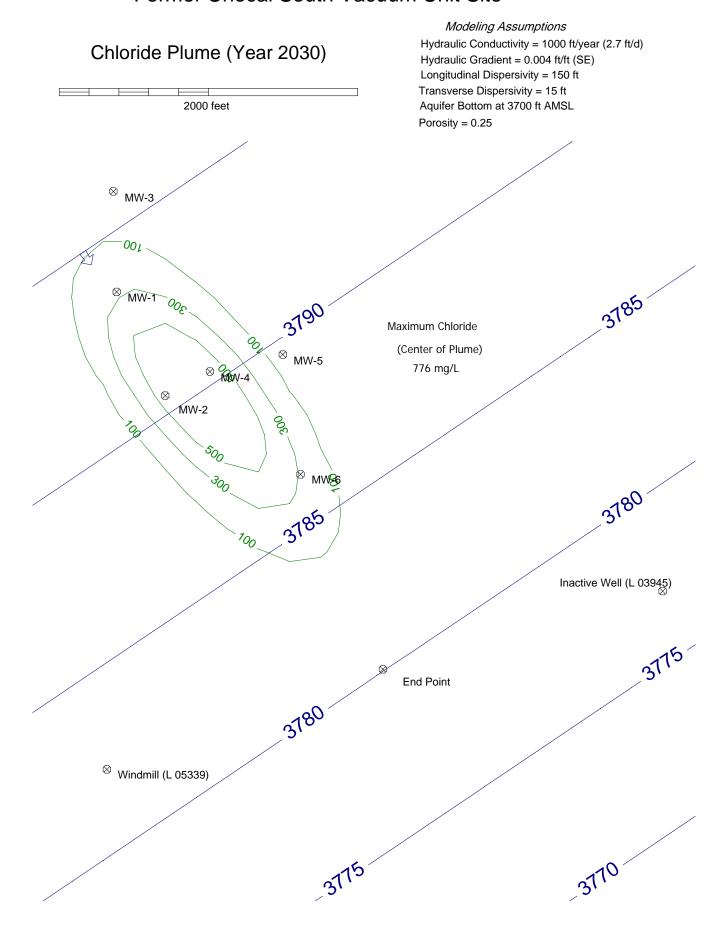
Clear

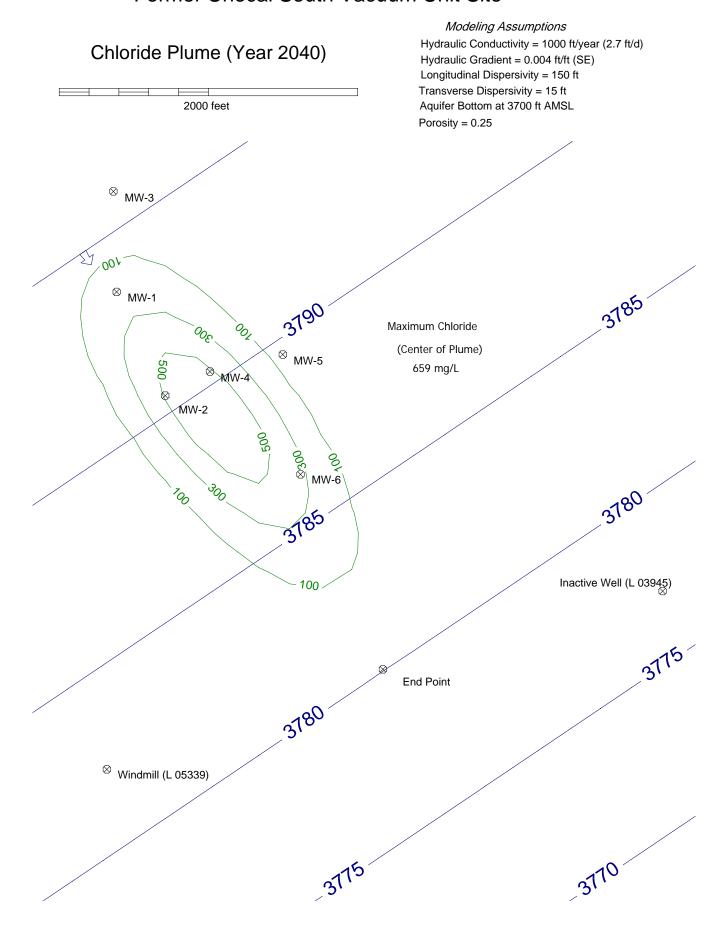

Cloudy but cleared quickly

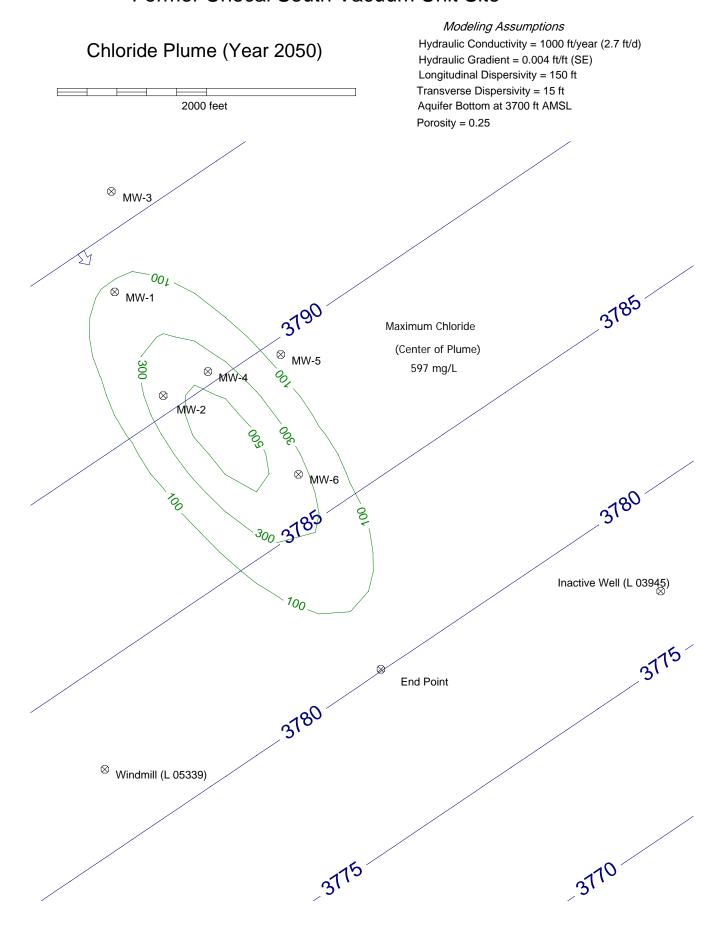

Reddish-brown silty; clearing

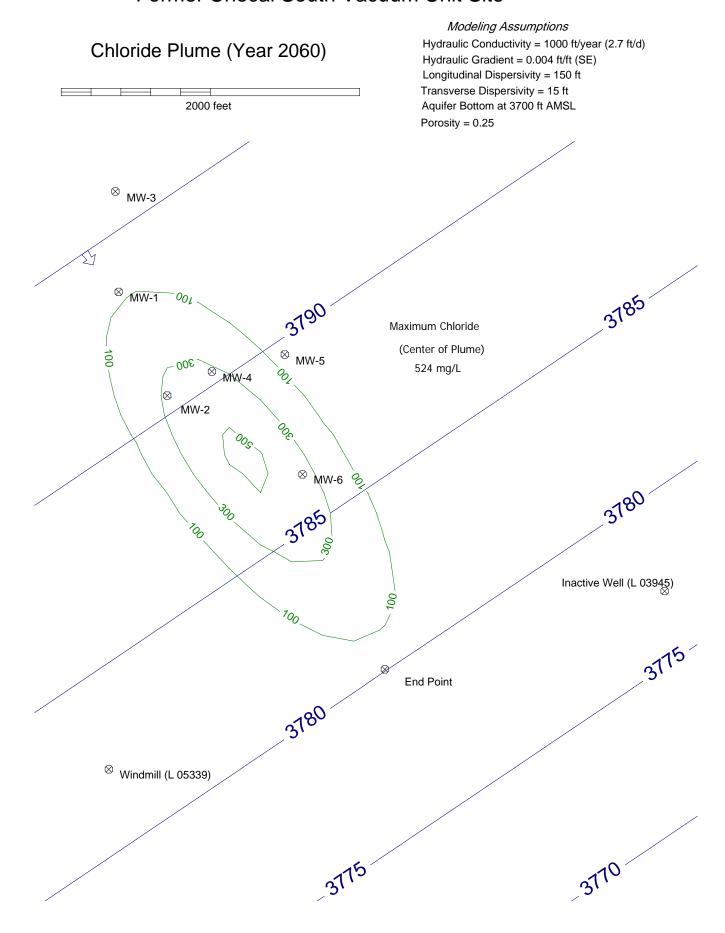

APPENDIX C

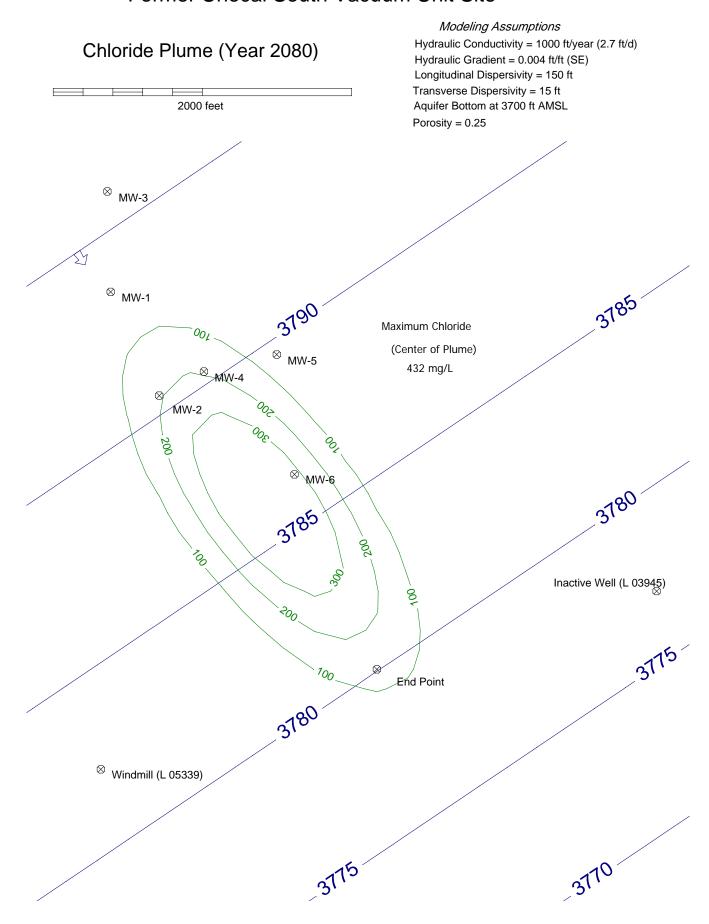

Chloride and TDS Plume Simulations

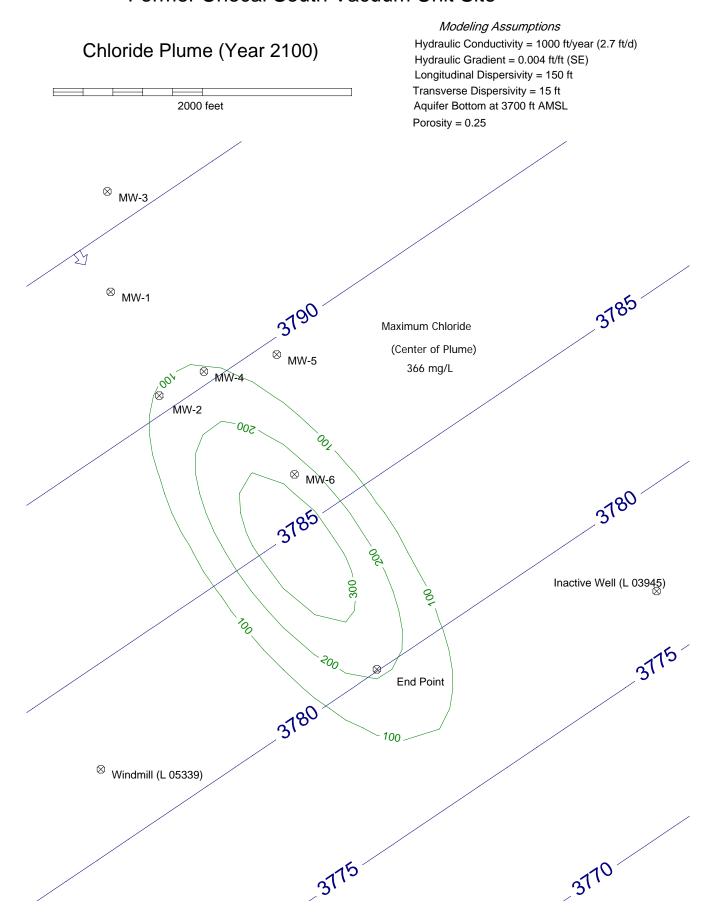

WinTran Fate & Transport Modeling Results Former Unocal South Vacuum Unit Site

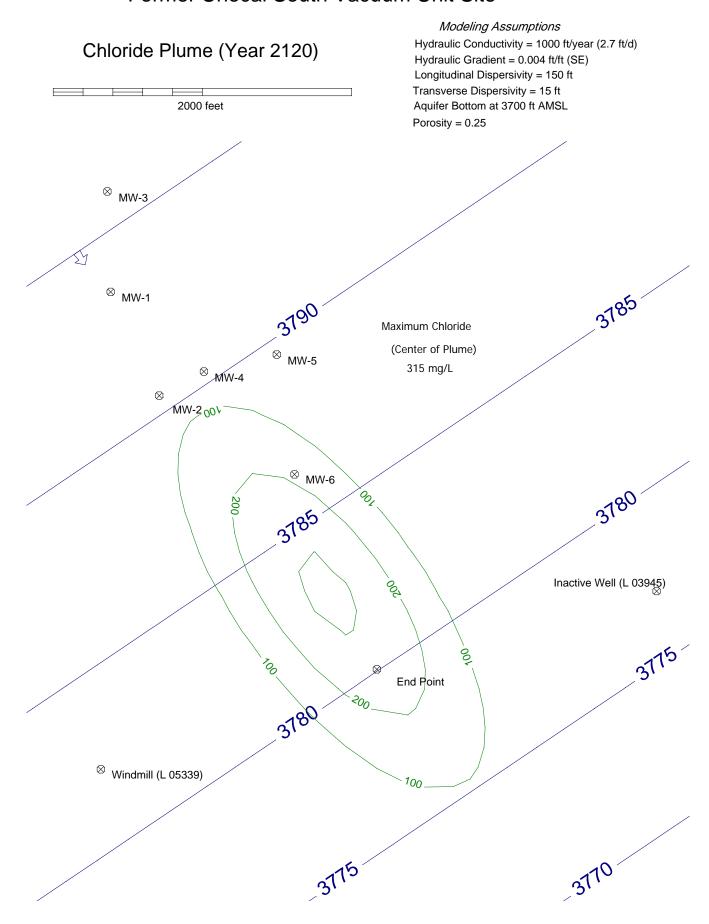


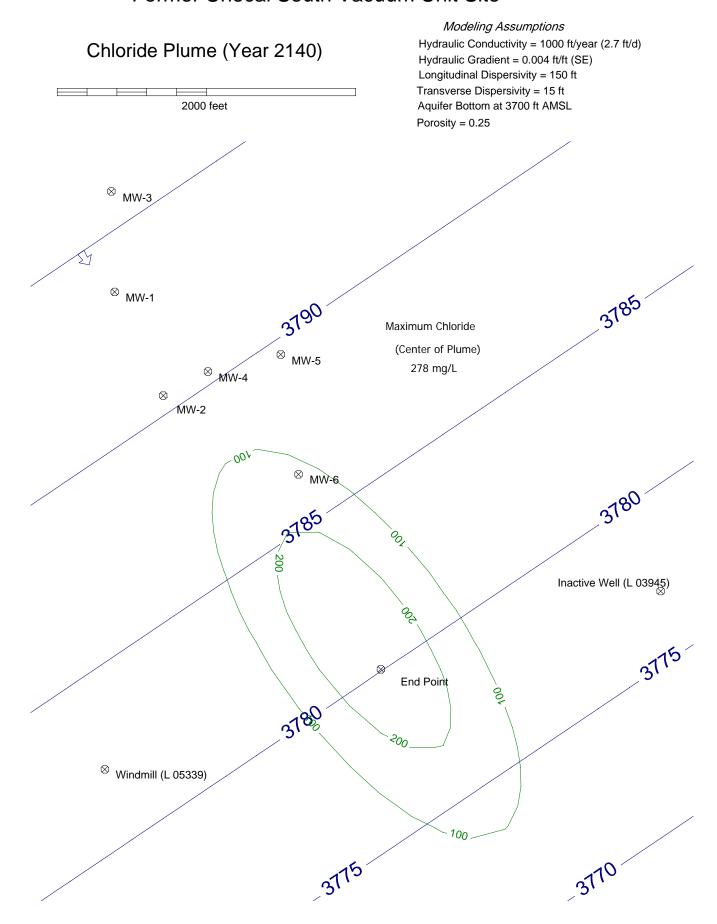


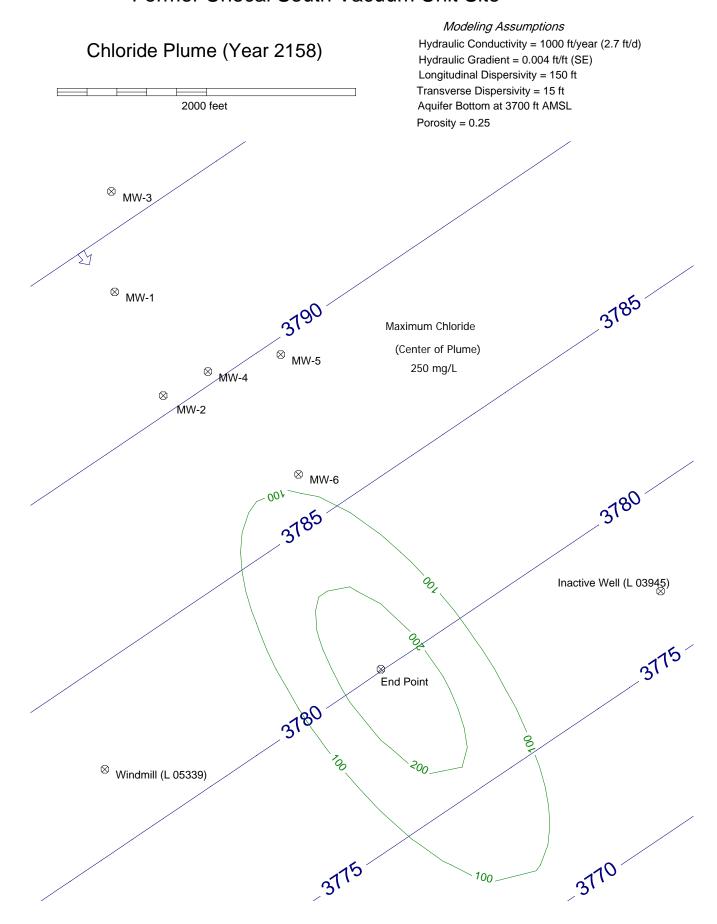


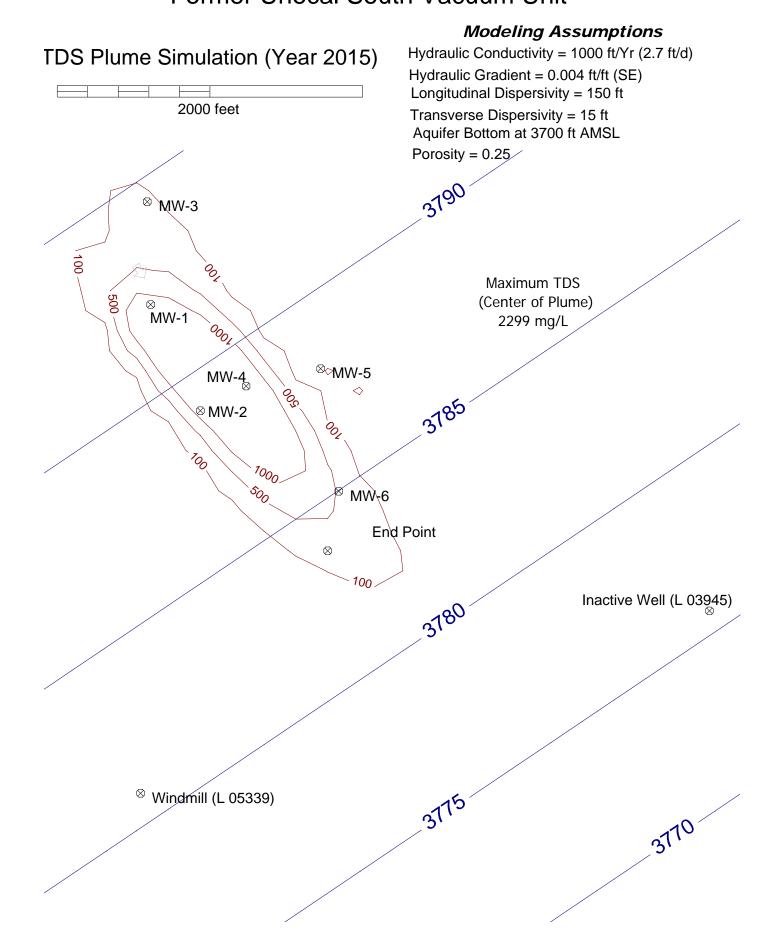


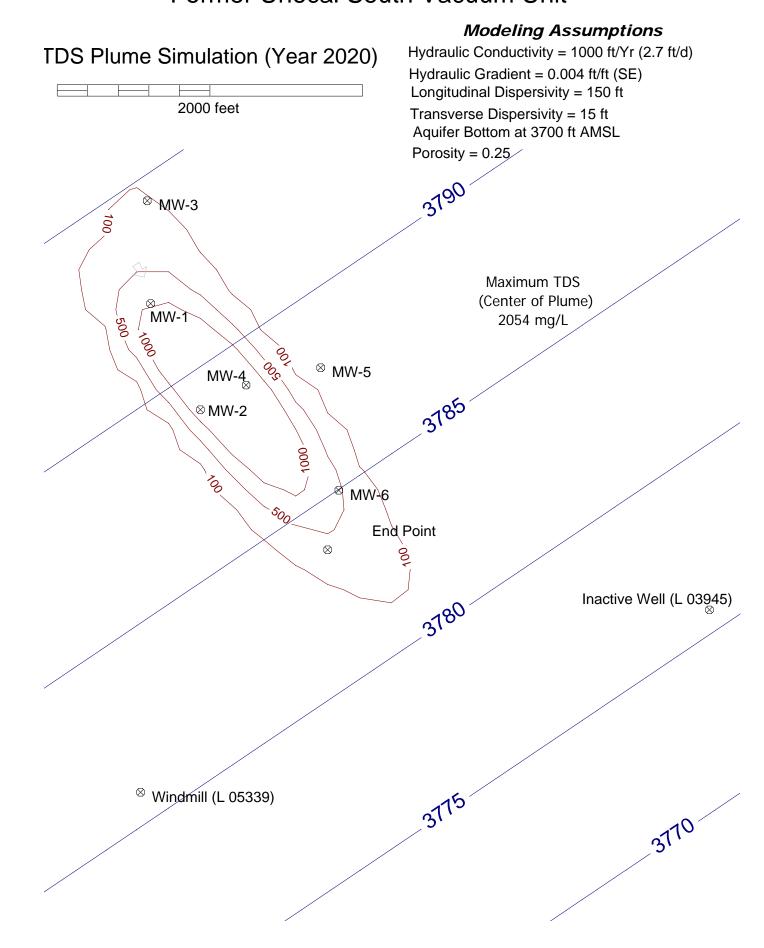


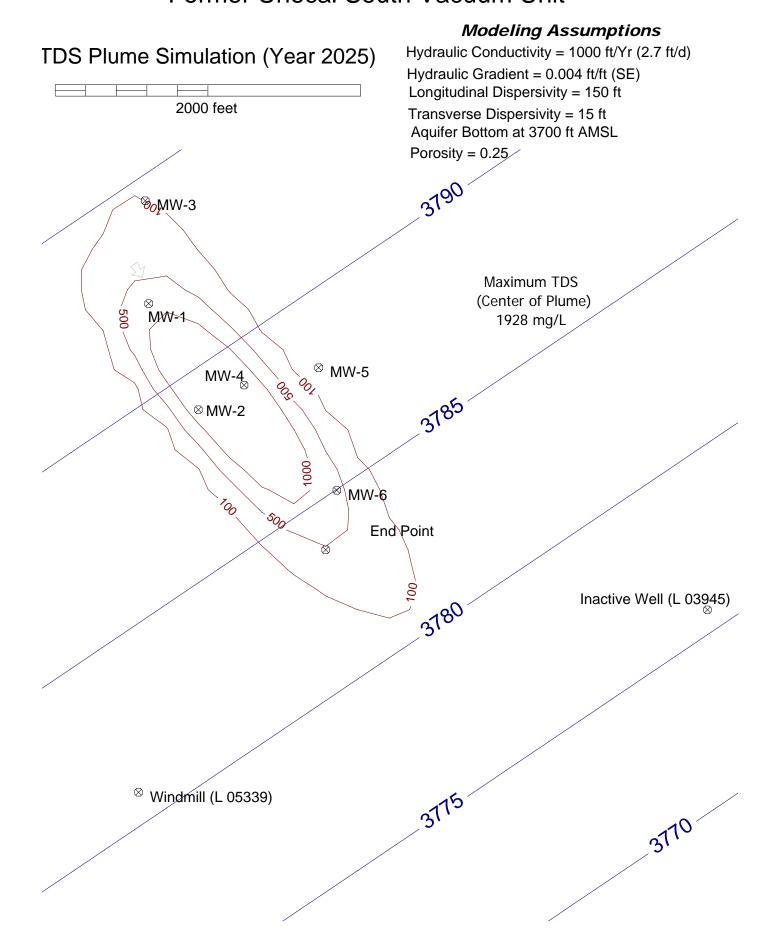


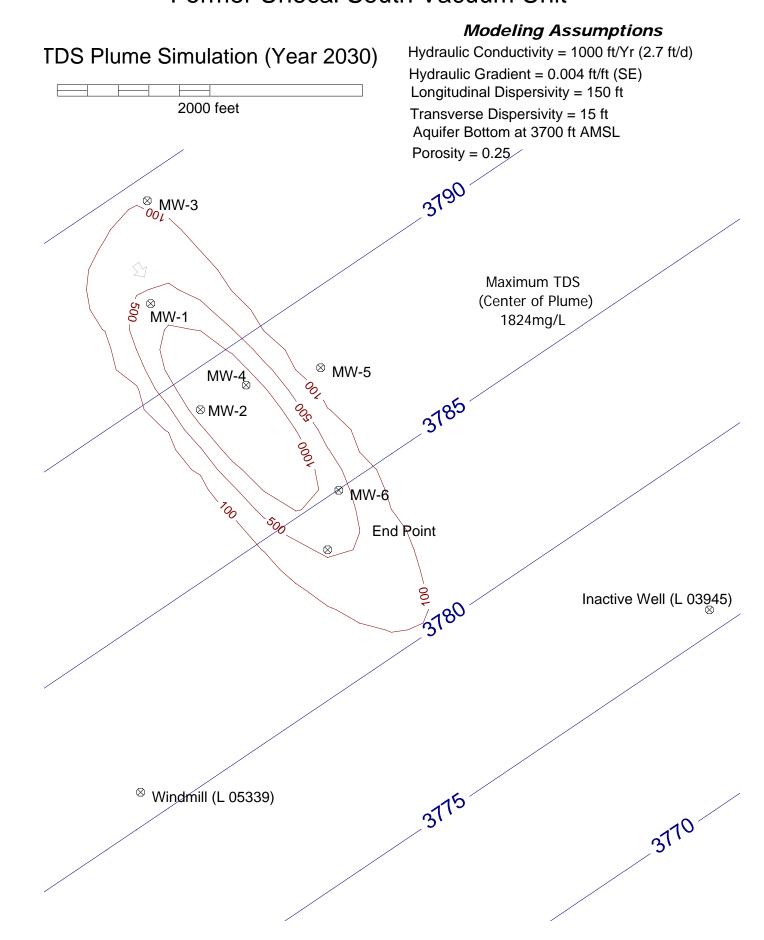


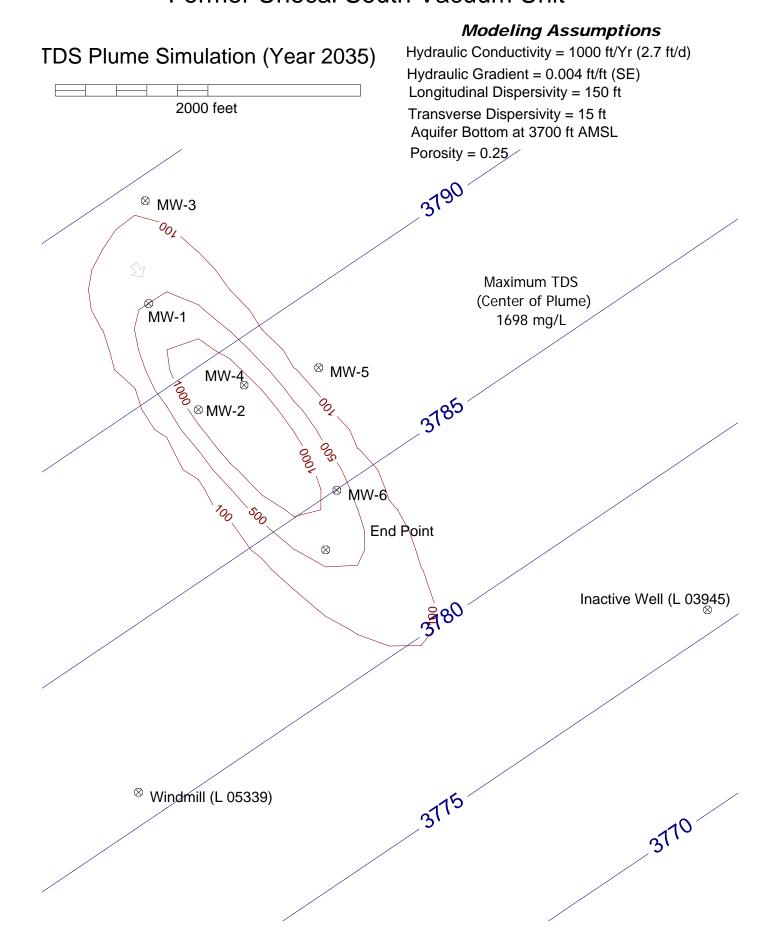


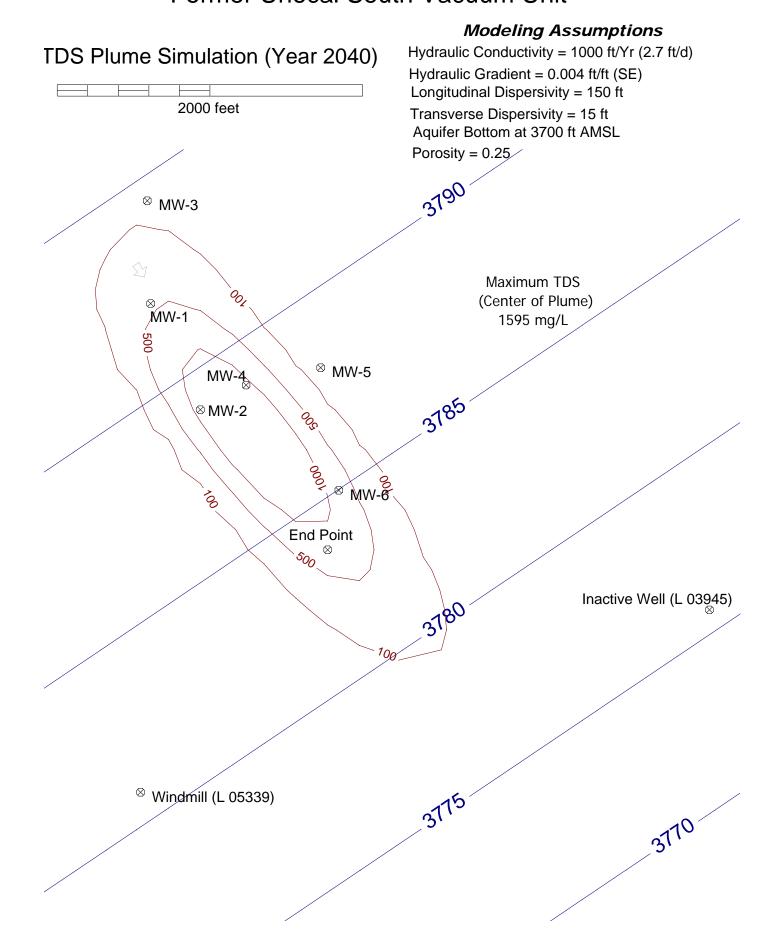


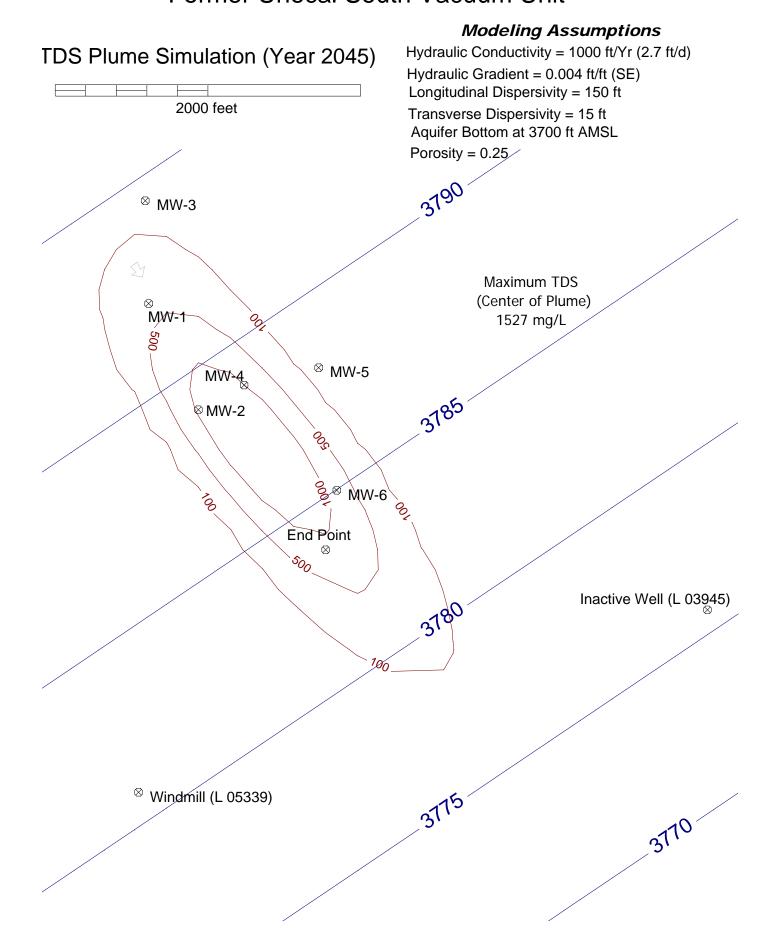


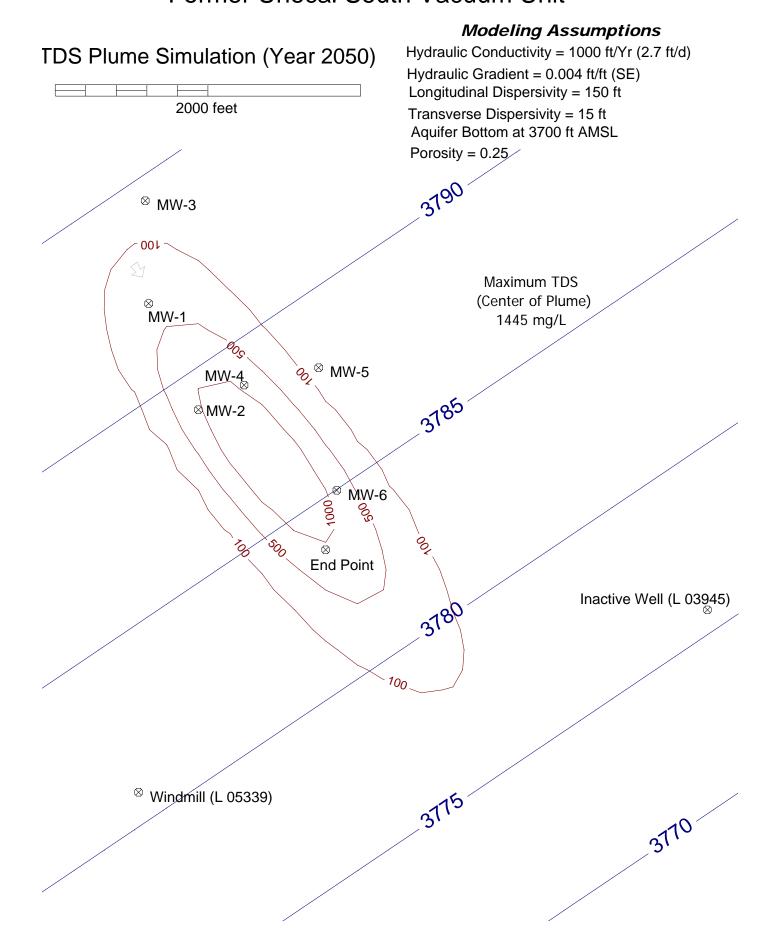


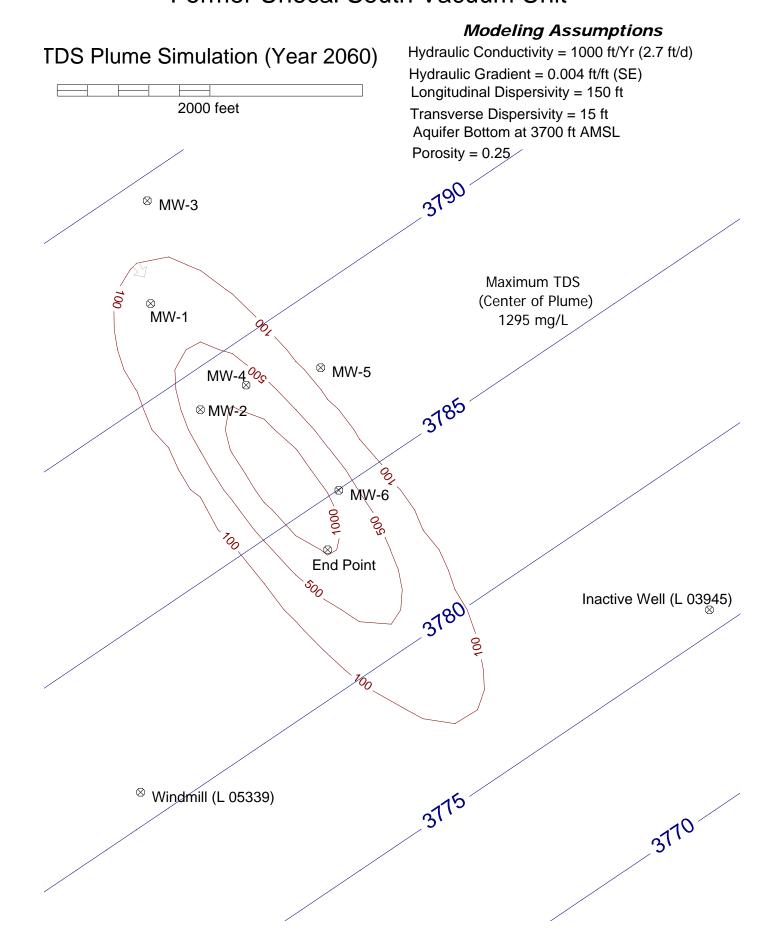


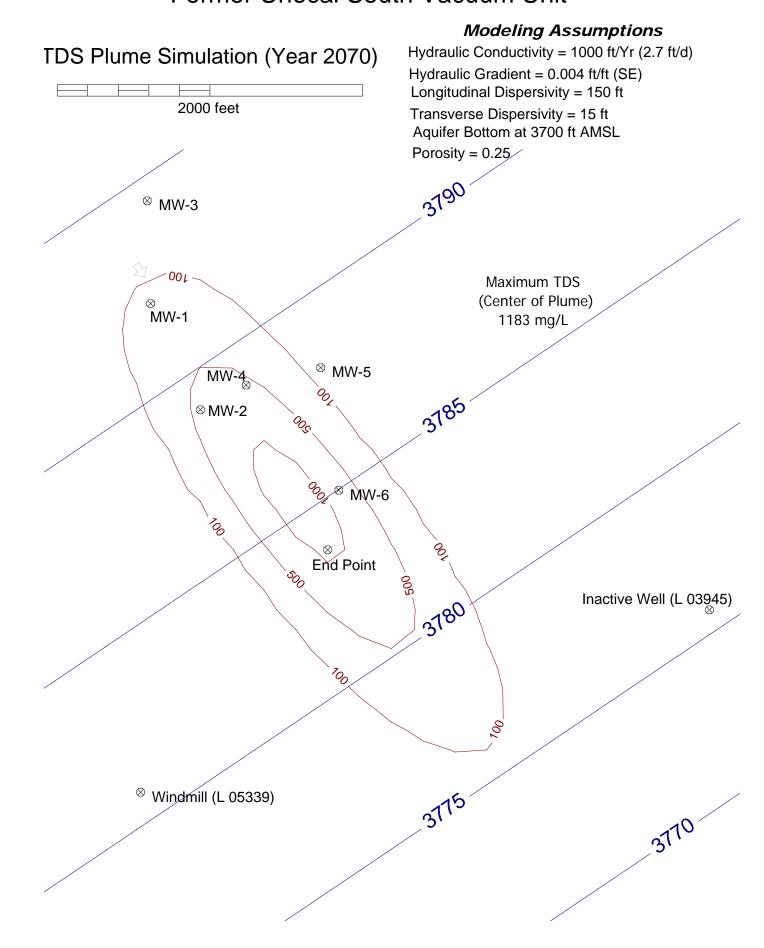

Modeling Assumptions Hydraulic Conductivity = 1000 ft/Yr (2.7 ft/d) TDS Plume Simulation (Year 2013) Hydraulic Gradient = 0.004 ft/ft (SE) Longitudinal Dispersivity = 150 ft 2000 feet Transverse Dispersivity = 15 ft Aquifer Bottom at 3700 ft AMSL Porosity = 0.25 3190 MW-3 Maximum TDS (Center of Plume) MW-1 2395 mg/L ⊗ MW-5 MW-4_⊠ ⊗ MW-2 MW-6 End Point 100.[⊗] 3180 Inactive Well (L 03945) Windmill (L 05339)

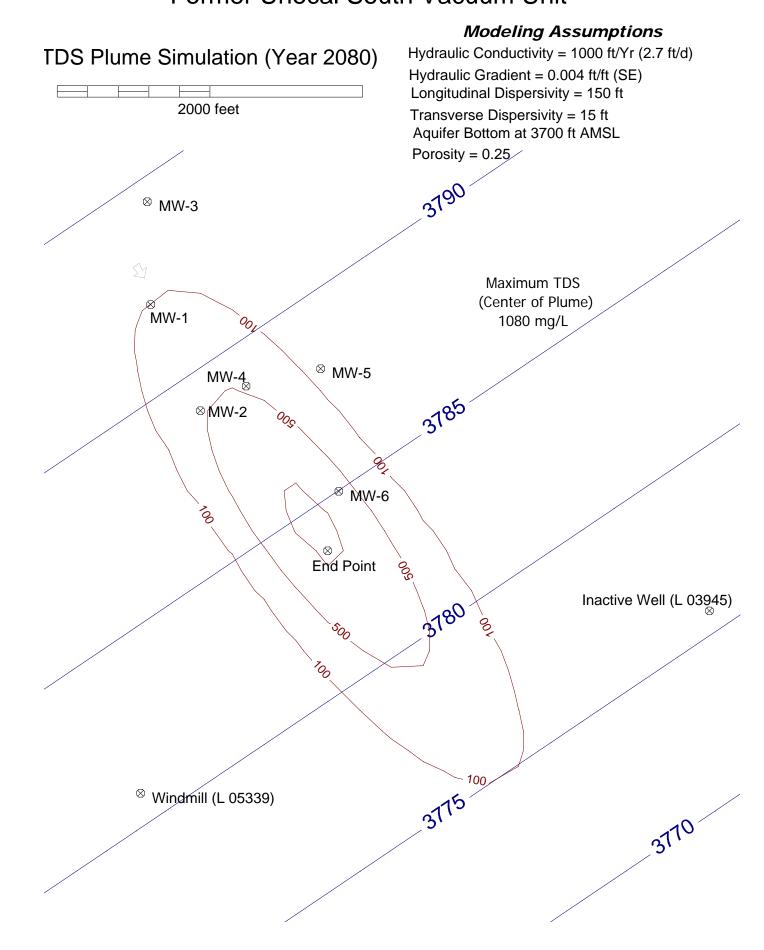


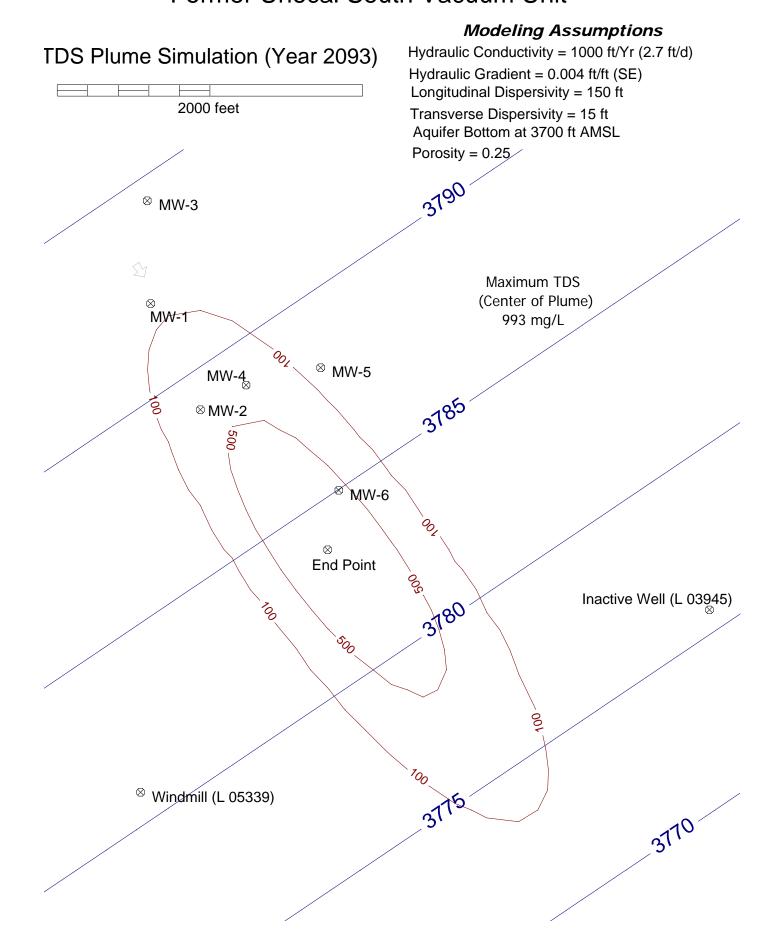












APPENDIX D

Description of Fate and Transport Modeling

And

Input/Output Data

Description of Fate and Transport Modeling

Conceptual Model

Produced water containing high concentrations of chloride, and resultant high levels of total dissolved solids (TDS), was reportedly discharged into a surface pit for a period of about 10 years. A dry hole (State Lea "I" No. 1), adjacent to the former pit, was approved for injection of produced water in 1962, however it was not used for that purpose since it was determined to be impractical; therefore it was later plugged in 1971. A chloride and TDS plume in groundwater continued to migrate southeastwards for the next approximately 29 years after the source input was stopped by encapsulation of the pit in 2000, producing the configuration and constituent concentration distribution observed currently. Extrapolating from current conditions for decades into the future, taking account of both advective flow and attenuation by hydrodynamic dispersion, enables prediction of the probable distance that the residual plume will travel as well as the gradually declining concentrations in the plume.

Basic Site Data

Information about site conditions was obtained from data in a TRW Inc. "Report of Additional Groundwater Investigation, Former Unocal South Vacuum Unit, Lea County, New Mexico" (July 18, 2000). This included lithologic records from well installations, water level data, and water quality analytical results.

Simulation Model

Simulations were conducted with the two-dimensional groundwater flow and contaminant transport model WinTran, version 1.03 (1995) designed and distributed by Environmental Simulations, Inc. (ESI) of Herndon, Virginia. WinTran is built around a steady-state analytical element flow model, linked to a finite element contaminant transport model. The Windows interface allows for rapid data input, processing, parameter manipulation and optimization, and output in multiple formats. The fundamental mathematics of the model solutions, model verification (benchmarked against MODFLOW), and use of WinTran is documented in the "Guide to Using WinTran" published by ESI.

Base Map

A simplified site base map was created using the New Mexico State Plane Coordinates for each monitoring well which were determined by a registered surveyor after installation.

Flow Parameters

Input requirements for the steady-state groundwater flow simulation include: hydraulic gradient and direction of flow, hydraulic conductivity, aquifer top and bottom elevations, and reference head. The values used were based on the following sources:

• Hydraulic gradient – measured gradient of 0.004 feet/foot from based on all site measurements reported by Trident.

- Direction of flow measured direction of approximately 40° east of due south from 1961until 2009, and 34° east of due south from 2010 to 2013 based on site measurements reported by Trident.
- Hydraulic conductivity no site measurements were available; therefore, a literature value based on the saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. Fetter (1988, Table 4.5, p. 80) cites an average range of 10⁻⁵ to 10⁻³ cm/sec for hydraulic conductivity of silty sands and fine sands. A conservative upper limit was selected, and converted from S.I. unit to 1000 ft/yr, or approximately 2.7 ft/day.
- Aquifer top and bottom elevations bottom elevation of Ogallala Formation at 3700 feet according to Nicholson & Clebsch (Groundwater Report 6, 1961). The top elevation for an unconfined aquifer must be greater than the reference head so an elevation of 4,000 feet was assumed.
- Reference head measured unconfined head of 3,793 feet adjacent to the former pit and upgradient well MW-1 from October 25, 2013 measurements reported by Trident.

Transport Parameters

Input requirements for the contaminant transport numerical simulation include: longitudinal and transverse dispersivity, porosity, diffusion coefficient, contaminant half-life, and retardation coefficient. The values used were based on the following sources:

- Longitudinal and transverse dispersivity no site measurements were available; therefore, a literature value based on the plume length was selected. Fetter (1993, Section 2.11, pp. 71-77) notes the apparent scale-dependency of longitudinal dispersivity, which typically may be about 0.1 times the flow length. For the current site scale and plume length of approximately 1,500 feet, a value of 150 feet was selected for longitudinal dispersivity. Based on professional judgment, hydrologists commonly assume the longitudinal dispersivity is about one-tenth the length of the plume and 5 to 10 times higher than transverse dispersivity; therefore, a value of 30 feet (i.e., one-fifth of the longitudinal value) was selected for transverse dispersivity.
- Porosity no site measurements were available; therefore a literature value based on saturated zone lithology was selected. Typical lithology is described as silty sand and very fine sand. A range of 0.25 to 0.50 is typically given for unconsolidated "sand" (e.g., Freeze & Cherry, 1979, Table 2.4, p. 37); however, the Ogallala Formation is predominantly very fine grained, compacted and partly cemented, and may also fit within the range of 0.05 to 0.30 for sandstone. Fetter (1988, Table 4.3 and Figure 4.10, pp. 74-75) cites an average value of 0.20 for the specific yield of very fine sands. Specific retention of silty fine sand is approximately 0.05, for a total porosity of 0.25, which is the value selected for the transport modeling. WinTran uses the porosity term to estimate groundwater velocity, and actually requires an effective porosity value. Fetter (1988, Section 4.4, pp. 84-85) notes that pores of most sediments down to clay size are interconnected and that the effective porosity is virtually equal to the total porosity.
- Diffusion coefficient this parameter is normally only relevant for very slow fluid movement, and is commonly assumed to be zero for advective-dominated transport, as in the present case.

- Contaminant half-life this parameter accounts for chemical decay (e.g., radioisotopes, biological transformation of organic molecules); however, the species of interest in the present case are inorganic ions and are not expected to decay to any appreciable extent. A conservative value of 1000 years was used, which produces a negligible decay coefficient of less than 0.001 yr⁻¹.
- Retardation coefficient this parameter accounts for sorption processes that slow the movement of contaminants relative to the groundwater velocity. Inorganic ions such as chloride are commonly taken as conservative tracers in groundwater and are not considered to be retarded; therefore, a value of 1.0 was selected for the retardation coefficient.

Flow Model Calibration

The vicinity of the site where water level measurements were recorded in October 25, 2013 is simulated closely by the flow model. It is known that groundwater levels in the Ogallala Formation are decreasing slowly (approximately 0.3 ft/yr), but this effect cannot be reproduced in the steady-state flow model. Water levels were probably somewhat higher than the present day during the period of brine disposal and initial transport. Even if the declining trend continues into the future, it does not affect the transport model solution for long extrapolation times, since sufficient saturated thickness remains (i.e., above the assumed aquifer base elevation of 3,700 feet) for a valid flow and transport solution.

The average groundwater velocity may be estimated using the Darcy expression: v = (k.i)/n where k is the hydraulic conductivity (1,000 ft/yr), i is the hydraulic gradient (0.004 ft/foot), and n is the effective porosity (0.25). The resultant average velocity is 16 ft/yr.

Transport Model Calibration

The objective of the transport modeling was to first obtain a plume configuration with concentration values that closely match current observed values. This was done by simulating an initial contaminant release to groundwater for a period of 11 years (c. 1960 to 1971) with a constant source concentration located at the pit and injection well, then simulating a 28-year transport period (c. 1971 to 1999) with no further contaminant input but restarting the model from the end of Year 11 by retaining the mass of contaminant from the initial plume. An iterative approach was needed to optimize the initial source concentration so that the plume at Year 39 resembled the actual plume conditions in 1999. An initial value of 14,000 mg/L for chloride and 30,000 mg/L for TDS were found to produce the best match. The initial chloride value was also chosen because it is typical of chloride concentrations within the producing formation (Devonian) in the South Vacuum Oil Field according to chemists at Martin Water Laboratories (verbal communication, 12-05-01). Actual disposal concentrations during the 1960s are unknown, and may have been higher than these values, but it is presumed that some attenuation and dilution may have occurred in the vadose zone, which is currently 48 to 68 feet thick. WinTran cannot account for the much more complex vadose zone transport algorithms, so the source input was treated as an injection well with instantaneous transfer of contaminant mass to groundwater.

After calibrating the model such that it corresponded to actual 1999 conditions, the model was again run for 14 years (1999 to 2013) at one-year increments while matching the known concentrations at each monitoring well.

Simulation of Fate and Transport

Estimation of chloride and TDS fate and transport was achieved by restarting the transport model in 2013. Figures displaying modeled simulations of the chloride and TDS plumes over various time increments are included in Appendix C. Advective flow moves the center of plume mass downgradient as depicted in the simulations. The simulations also demonstrate how hydrodynamic dispersion serves to broaden the dimensions of the plume while reducing the concentrations in the middle of the plume.

Running the model for 145 years in the future (Year 2158) produces a chloride plume center concentration of 250 mg/L (WQCC standard). The center of the chloride plume is approximately 3,200 ft away from the former pit and well source at that time.

Running the model for 80 years in the future (Year 2093) produces a TDS plume center concentration of 1,000 mg/L (WQCC standard). The center of the TDS plume is approximately 2,200 ft away from the pit and well source at that time.

These results support the conclusion that the chloride and TDS plume is not likely to impact any existing sources of water supply, the closest of which is a windmill (NM File No. L05339) located over one-half mile south of the source. The windmill has been dismantled and is no longer in operation due to declining water levels in the area.

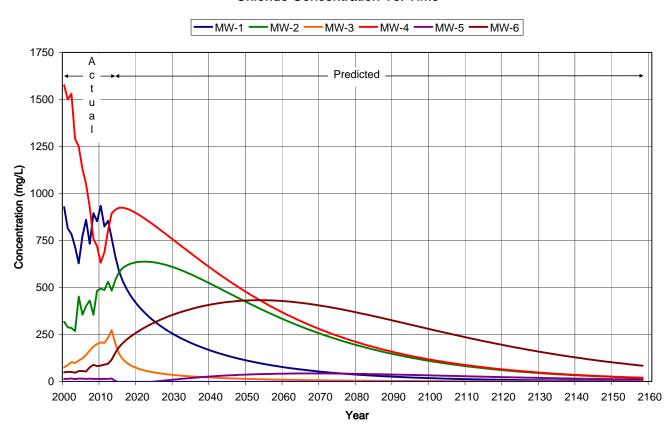
The trend of decreasing concentration is not linear (exponential e^{-kt} function). Interestingly, the center of the plume moves at a greater rate (22 feet/year) over successive time intervals than would be assumed from the groundwater velocity alone (16 feet/year), due to the added effect of dispersion.

WinTran

Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by James O. Rumbaugh, III Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.



Chloride Fate & Transport Simulation run by: Gilbert Van Deventer (Trident Environmental)

Date: 02/05/2014

Input File: 2013 CL.WTR

Chloride Concentration Vs. Time

Model Entities

Number of Wells = 8

MW #1

Center of Well -- x: 716.000000 y: 5281.000000

Radius = 1.000000

Pumping Rate = 0.000000

Concentration of Injected Water = 761.000000

Head at Well Radius = 3793.608913

MW #2

Center of Well -- x: 1041.670000 y: 4585.770000

Radius = 1.000000

Pumping Rate = 0.000000

Concentration of Injected Water = 483.000000

Head at Well Radius = 3790.477021

MW #3

Center of Well -- x: 694.000000 y: 5954.000000

Radius = 1.000000

Pumping Rate = 0.000000

Concentration of Injected Water = 273.000000

Head at Well Radius = 3795.896141

MW #4

Center of Well -- x: 1341.000000 y: 4747.000000

Radius = 1.000000

Pumping Rate = 0.000000

Concentration of Injected Water = 894.000000

Head at Well Radius = 3790.335273

MW #5

Center of Well -- x: 1829.000000 y: 4861.000000

Radius = 1.000000

Pumping Rate = 0.000000

Concentration of Injected Water = 15.300000

Head at Well Radius = 3789.581711

MW #6

Center of Well -- x: 1948.000000 y: 4058.000000

Radius = 1.000000

Pumping Rate = 0.000000

Concentration of Injected Water = 116.000000

Head at Well Radius = 3786.418876

Windmill (L 05339)

Center of Well -- x: 650.000000 y: 2081.000000

Radius = 1.000000

Pumping Rate = 10.000000

Concentration of Injected Water = 0.000000

Head at Well Radius = 3782.306071

Windmill (L 03945)

Center of Well -- x: 4375.000000 y: 3275.550000

Radius = 1.000000

Pumping Rate = 0.000000

Concentration of Injected Water = 0.000000

Head at Well Radius = 3777.096595

Reference Head = 3795.000000

Defined at -- x: 490.030000 y: 5545.270000

Aquifer Properties

.... Steady-State Flow Model

Permeability.....= 1000.000000 [L/T]

Porosity..... = 0.250000

Elevation of Aguifer Top....= 4000.000000

Elevation of Aquifer Bottom.= 3700.000000

Uniform Regional Gradient...= 0.004000

Angle of Uniform Gradient...= 304.000000

Recharge..... = 0.000000

.... Transient Transport Model

Longitudinal Dispersivity...= 150.000000 [L]

Transverse Dispersivity.....= 30.000000 [L]

Diffusion Coefficient.....= 0.000000 [L2/T]

Contaminant half-life..... = 1000.000000 [T]

Retardation Coefficient....= 1.000000

Upstream Weighting in X.....= 0.000000

Upstream Weighting in Y..... = 0.000000

.... Time Stepping Information

Number of time steps.....= 145

Starting time value..... = 2013.000000

Initial time step size.....= 1.000000

Time step multiplier..... = 1.000000

Maximum time step size.....= 1.000000

Time stepping scheme......= Central Differencing

.... Simulation Summary

Starting time..... = 2013.000000

Ending time..... = 2158.000000

Number of time steps.....= 145

(NOTE: following mass balance errors expressed as percent)

Transport Mass Balance Error= 0.054193

Peclet Criterion..... = 1.388889

Courant Number..... = 0.045954

Flow Model Type..... Analytic Element

.... Head Contour Matrix

Number of nodes in the X-direction = 49

Number of nodes in the Y-direction = 49

Minimum X Coordinate = 0.000000

Minimum Y Coordinate = 0.000000

Maximum X Coordinate = 10000.000000

Maximum Y Coordinate = 6289.062500

Minimum Head = 3738.597428

Maximum Head = 3798.498580

								Windmill	Inactive Well	End
	Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
	2000	927	317	75.5	1576	13.7	48.0	0	0	0
	2001	813	288	86.4	1500	13.6	50.8	0	0	0
	2002	784	284	103	1530	15.5	50.0	0	0	0
	2003	715	268	98.3	1290	12.5	46.5	0	0	0
	2004	628	451	111	1250	15.3	55.1	0	0	0
ata	2005	774	355	122	1130	14.9	55	0	0	0
Actual Data	2006	860	401	141	1050	13.3	52.4	0	0	0
tua	2007	732	430	164	926	14.9	75.3	0	0	0
Ac	2008	895	354	185	758	13.6	88.5	0	0	0
	2009	852	482	199	720	13.4	81.4	0	0	0
	2010	934	494	207	632	12.6	84.1	0	0	0
	2011	824	486	205	687	13.8	89.2	0	0	0
	2012	854	531	232	804	13.8	93.8	0	0	0
	2013	761	483	273	894	15.3	116.0	0	0	0
	2014	664	540	201	913	2	153	0	0	0
	2015	586	582	147	924	-7	183	0	0	0
	2016	534	603	119	924	-10	204	0	0	0
	2017	494	616	100	920	-11	221	0	0	0
	2018	461	625	87	912	-11	236	0	0	0
	2019	433	631	77	902	-11	250	0	0	0
	2020	408	635	70	891	-9	263	0	0	0
	2021	386	637	63	879	-8	275	0	0	0
	2022	365	637	58	866	-6	287	0	0	0
	2023	347	637	54	853	-4	297	0	0	0
Ø	2024	330	635	50	839	-2	307	0	0	1
Predicted Data	2025	314	632	46	825	0	317	0	0	1
l b	2026	300	628	43	810	2	325	0	0	1
<u>i</u>	2027	286	624	41	795	4	334	0	0	1
l e	2028	273	619	38	780	6	342	0	0	1
<u> </u>	2029	261	613	36	765	8	349	0	0	2
Model	2030	250	606	34	750 735	10	357	0	0	2
Σ	2031	239	599	32	735	12	363	0	0	3
	2032	229	591	31	720	13	370	0	0	3
	2033	219	583	29	705	15	376	0	0	4
	2034	210	575 566	28	690	17	381	0	0	4
	2035	202	566 557	26 25	676	19	387	0	0	5
	2036	193	557 540	25 24	661	20	392	0	0	6
	2037	186	548	24	646	22	396 401	0	0	6
	2038	178 171	538	23	632	23	401 405	0	0	7
	2039	171	529	22	617	25	405	0	0	8
	2040	164	519	21	603	26	409	0	0	9
	2041	158	509	20	589	28	412	0	0	11
	2042	152	499	19	575	29	415	0	0	12

								Windmill	Inactive Well	End
	Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
	2043	146	489	18	562	30	418	0	0	13
	2044	140	479	17	548	31	421	0	0	15
	2045	135	469	17	535	32	423	0	0	17
	2046	129	459	16	522	33	425	0	0	18
	2047	124	449	15	509	34	427	0	0	20
	2048	120	440	15	497	35	429	0	0	22
	2049	115	430	14	484	36	430	0	0	24
	2050	111	420	13	472	37	431	0	0	26
	2051	106	410	13	460	37	431	0	0	29
	2052	102	401	12	449	38	432	0	0	31
	2053	99	392	12	437	38	432	0	0	34
	2054	95	382	11	426	39	432	0	0	36
	2055	91	373	11	415	40	432	0	0	39
	2056	88	364	10	404	40	431	0	0	42
	2057	85	355	10	394	40	430	0	0	45
	2058	81	346	10	383	41	430	0	0	48
	2059	78	338	9	373	41	428	0	0	51
_ ر	2060	75	329	9	363	41	427	0	0	55
atí	2061	73	321	9	354	42	425	0	0	58
Model Predicted Data	2062	70	313	8	344	42	424	0	0	61
cte	2063	67	305	8	335	42	422	0	0	65
edi	2064	65	297	8	326	42	419	0	0	69
7	2065	63	289	7	317	42	417	0	0	72
gel	2066	60	282	7	309	42	415	0	0	76
l §	2067	58	275	7	300	42	412	0	0	80
	2068	56	267	6	292	42	409	0	0	84
	2069	54	260	6	284	42	406	0	0	88
	2070	52	253	6	276	42	403	0	0	92
	2071	50	247	6	269	42	400	0	0	96
	2072	48	240	6	261	42	397	0	0	101
	2073	46	234	5	254	42	393	0	0	105
	2074	45	227	5	247	42	390	0	0	109
	2075	43	221	5	240	42	386	0	0	113
	2076	42	215	5	233	41	382	0	0	118
	2077	40	209	5	227	41	379	0	0	122
	2078	39	203	4	221	41	375	0	0	126
	2079	37	198	4	214	41	371	0	0	131
	2080	36	192	4	208	40	367	0	0	135
	2081	35	187	4	202	40	362	0	0	140
	2082	33	182	4	197	40	358	0	0	144
	2083	32	177	4	191	39	354	0	0	148
	2084	31	172	3	186	39	350	0	0	153
	2085	30	167	3	180	39	345	0	0	157

								Windmill	Inactive Well	End
	Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
	2086	29	162	3	175	38	341	0	0	161
	2087	28	158	3	170	38	336	0	0	166
	2088	27	153	3	165	37	332	0	0	170
	2089	26	149	3	161	37	327	0	0	174
	2090	25	145	3	156	37	323	0	0	178
	2091	24	141	3	151	36	318	0	0	182
	2092	23	137	3	147	36	314	0	0	186
	2093	22	133	2	143	35	309	0	0	190
	2094	22	129	2	139	35	305	0	0	194
	2095	21	125	2	135	34	300	0	0	198
	2096	20	122	2	131	34	296	0	0	202
	2097	19	118	2	127	33	291	0	0	206
	2098	19	115	2	123	33	286	0	0	209
	2099	18	111	2	120	32	282	0	0	213
	2100	17	108	2	116	32	277	0	0	216
	2101	17	105	2	113	32	273	0	0	220
	2102	16	102	2	109	31	268	0	0	223
_	2103	16	99	2	106	31	264	0	0	226
Model Predicted Data	2104	15	96	2	103	30	259	0	0	230
 	2105	14	93	2	100	30	255	0	0	233
cte	2106	14	91	2	97	29	251	0	0	236
edi	2107	13	88	1	94	29	246	0	0	238
<u> </u>	2108	13	85	1	91	28	242	0	0	241
gel	2109	13	83	1	89	28	238	0	0	244
l §	2110	12	80	1	86	27	233	0	0	246
	2111	12	78	1	84	27	229	0	0	249
	2112	11	76	1	81	26	225	0	0	251
	2113	11	74	1	79	26	221	0	0	253
	2114	10	71	1	76	25	217	0	0	255
	2115	10	69	1	74	25	213	0	0	257
	2116	10	67	1	72	24	209	0	0	259
	2117	9	65	1	70	24	205	0	0	261
	2118	9	63	1	68	24	201	0	0	263
	2119	9	61	1	66	23	197	0	0	264
	2120	8	60	1	64	23	193	0	0	266
	2121	8	58	1	62	22	189	0	0	267
	2122	8	56	1	60	22	185	0	0	268
	2123	8	54	1	58	21	182	0	0	269
	2124	7	53	1	56	21	178	0	0	270
	2125	7	51	1	55	21	174	0	0	271
	2126	7	50	1	53	20	171	0	0	272
	2127	7	48	1	51	20	167	0	0	273
	2128	6	47	1	50	19	164	0	0	273

								Windmill	Inactive Well	End
	Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
	2129	6	45	1	48	19	161	0	0	274
	2130	6	44	1	47	19	157	0	0	274
	2131	6	43	1	45	18	154	0	0	275
	2132	6	41	1	44	18	151	0	0	275
	2133	5	40	1	43	17	148	0	0	275
	2134	5	39	1	41	17	144	0	0	275
	2135	5	38	1	40	17	141	0	0	275
	2136	5	37	1	39	16	138	0	0	275
	2137	5	36	0	38	16	135	0	0	274
	2138	4	34	0	37	16	132	0	0	274
	2139	4	33	0	36	15	129	0	0	273
ta	2140	4	32	0	34	15	127	0	0	273
Da	2141	4	31	0	33	15	124	0	0	272
Model Predicted Data	2142	4	30	0	32	14	121	0	0	271
등	2143	4	30	0	31	14	118	0	0	271
l e	2144	4	29	0	30	14	116	0	0	270
el F	2145	3	28	0	30	13	113	0	0	269
Pol	2146	3	27	0	29	13	111	0	0	268
≥	2147	3	26	0	28	13	108	0	0	267
	2148	3	25	0	27	12	106	0	0	265
	2149	3	25	0	26	12	103	0	0	264
	2150	3	24	0	25	12	101	0	0	263
	2151	3	23	0	25	12	99	0	0	261
	2152	3	22	0	24	11	96	0	0	260
	2153	3	22	0	23	11	94	0	0	258
	2154	3	21	0	22	11	92	0	0	257
	2155	2	20	0	22	11	90	0	0	255
	2156	2	20	0	21	10	88	0	0	254
	2157	2	19	0	20	10	86	0	0	252
	2158	2	19	0	20	10	84	0	0	250

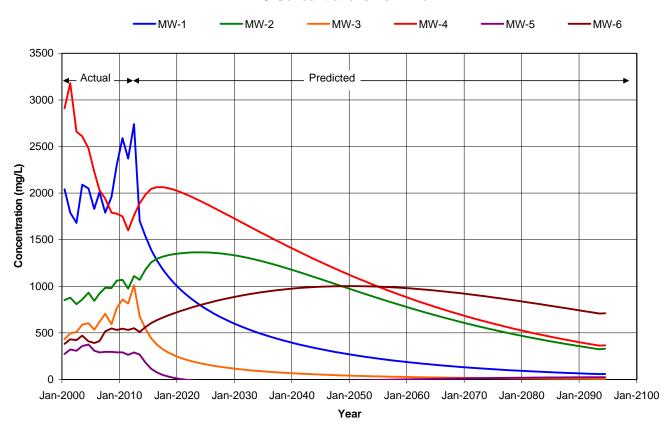
WinTran Analytical Model of 2D Ground-Water Flow and Finite-Element Contaminant Transport Model

Developed by

James O. Rumbaugh, III

Douglas B. Rumbaugh

(c) 1995 Environmental Simulations, Inc.



TDS Fate & Transport Simulation run by: Gilbert Van Deventer (Trident Environmental)

Date: 02/04/2014

Input File: TDS 2013.WTR

TDS Concentrations Vs. Time

Model Entities	Aquifer Properties
Number of Wells = 8	Steady-State Flow Model
	Permeability= 1000.000000 [L/T]
Well #1	Porosity= 0.250000
Center of Well x: 716.000000 y: 5281.000000	Elevation of Aquifer Top= 4000.000000
Radius = 1.000000	Elevation of Aquifer Bottom.= 3700.000000
Pumping Rate = 0.000000	Uniform Regional Gradient= 0.004000
Concentration of Injected Water = 2370.000000	Angle of Uniform Gradient= 304.000000
Head at Well Radius = 3793.961643	Recharge= 0.000000
Well #2	
Center of Well x: 1041.670000 y: 4585.770000	Transient Transport Model
Radius = 1.000000	Longitudinal Dispersivity= 150.000000 [L]
Pumping Rate = 0.000000	Transverse Dispersivity= 15.000000 [L]
Concentration of Injected Water = 974.000000	Diffusion Coefficient= 0.000000 [L2/T]
Head at Well Radius = 3790.911689	Contaminant half-life = 1000.000000 [T]
Well #3	Retardation Coefficient= 1.000000
Center of Well x: 694.000000 y: 5954.000000	Upstream Weighting in X= 0.000000
Radius = 1.000000	Upstream Weighting in Y= 0.000000
Pumping Rate = 0.000000	
Concentration of Injected Water = 816.000000	Time Stepping Information
Head at Well Radius = 3796.079940	Number of time steps= 820
Well #4	Starting time value = 2012.000000
Center of Well x: 1341.000000 y: 4747.000000	Initial time step size= 0.100000
Radius = 1.000000	Time step multiplier = 1.000000
Pumping Rate = 0.000000	Maximum time step size= 0.100000
Concentration of Injected Water = 1600.000000	Time stepping scheme= Central Differencing
Head at Well Radius = 3790.623255	
Well #5	Simulation Summary
Center of Well x: 1829.000000 y: 4861.000000	Starting time= 2012.000000
Radius = 1.000000	Ending time= 2094.000000
Pumping Rate = 0.000000	Number of time steps= 820
Concentration of Injected Water = 265.000000	
Head at Well Radius = 3789.669101	(NOTE: following mass balance errors expressed as percent)
Well #6	Transport Mass Balance Error= 1.744046
Center of Well x: 1948.000000 y: 4058.000000	Peclet Criterion= 1.388889
Radius = 1.000000	Courant Number= 0.004718
Pumping Rate = 0.000000	Flow Model Type= Analytic Element
Concentration of Injected Water = 531.000000	
Head at Well Radius = 3786.688589	Head Contour Matrix
Well #7	Number of nodes in the X-direction = 49
Center of Well x: 650.000000 y: 2081.000000	Number of nodes in the Y-direction = 49
Radius = 1.000000	
Pumping Rate = 10.000000	Minimum X Coordinate = 0.000000
Concentration of Injected Water = 400.000000	Minimum Y Coordinate = 0.000000
Head at Well Radius = 3783.653976	
Well #8	Maximum X Coordinate = 10000.000000
Center of Well x: 4375.000000 y: 3275.550000	Maximum Y Coordinate = 6289.062500
Radius = 1.000000	
Pumping Rate = 0.000000	Minimum Head = 3738.597428
Concentration of Injected Water = 0.000000	Maximum Head = 3798.498580
Head at Well Radius = 3776.640336	
Reference Head = 3795.000000	

Defined at -- x: 619.470000 y: 5537.180000

Direct TDS Concentration (mg/L) Output from WinTran Simulation

									Inactive Well	End
	Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	(L 05339)	(L 03945)	Point
	2000	2040	852	433	2910	274	382	0	0	0
	2001	1790	878	495	3180	322	431	0	0	0
	2002	1680	808	509	2660	308	422	0	0	0
	2003	2090	859	588	2610	359	471	0	0	0
	2004	2050	931	605	2480	375	410	0	0	0
ata	2005	1830	844	533	2230	309	391	0	0	0
	2006	2010	922	619	2030	290	412	0	0	0
Actual Data	2007	1790	984	705	1940	296	516	0	0	20
Ă	2008	1960	980	592	1790	296	548	0	0	40
	2009	2300	1060	766	1780	291	532	0	0	40
	2010	2590	1070	859	1750	291	545	0	0	60
	2011	2370	974	816	1600	265	531	0	0	80
	2012	2740	1110	1010	1760	290	550	0	0	109
	2013	1700	1070	678	1890	268	510	0	0	183
	2014	1537	1179	546	1983	181	562	0	0	220
	2015	1392	1258	441	2045	114	606	0	0	241
	2016	1278	1296	374	2064	75	637	0	0	262
	2017	1183	1318	326	2063	49	664	0	0	283
	2018	1103	1334	289	2053	31	688	0	0	304
	2019	1033	1345	259	2035	17	711	0	0	326
	2020 2021	971 915	1353 1359	235 214	2013 1988	6 -3	732 752	0 0	0 0	348 371
	2021	865	1363	197	1961	-3 -9	732 772	0	0	394
	2023	820	1364	182	1932	-14	790	0	0	418
	2024	778	1364	168	1902	-18	807	0	0	442
	2025	740	1362	156	1871	-22	823	0	0	465
	2026	705	1358	146	1839	-24	839	0	0	489
ta	2027	672	1353	136	1807	-26	853	0	0	513
Da	2028	641	1346	128	1775	-27	867	0	0	536
el Predicted Data	2029	613	1337	120	1742	-28	880	0	0	560
딇	2030	586	1327	113	1710	-29	892	0	0	583
re	2031 2032	561 537	1315 1302	106 100	1677 1645	-29 -29	904 915	0 0	0 0	605 628
e e	2032	514	1288	95	1612	-29 -29	925	0	0	650
Mode	2034	493	1273	90	1580	-28	934	0	0	671
≥	2035	473	1257	85	1548	-28	943	0	0	692
	2036	454	1240	80	1516	-27	951	0	0	713
	2037	436	1223	76	1485	-26	959	0	0	733
	2038	419	1205	72	1454	-25	966	0	0	753
	2039	403	1186	69	1423	-24	972	0	0	772
	2040	387	1167	65	1392	-23	977	0	0	791
	2041	372	1147	62	1362	-22	982	0	0	809
	2042 2043	358 344	1127 1107	59 56	1332 1303	-21 20	987 991	0	0	827 844
	2043 2044	344 332	1107	56 54	1303 1274	-20 -19	991 994	0 0	0 0	844 861
	2044	319	1067	54 51	12/4	-19 -17	994	0	0	877
	2046	307	1046	49	1217	-16	999	0	Ö	892
	2047	296	1025	47	1190	-15	1000	0	0	907
	2048	285	1004	44	1162	-13	1001	0	0	922

Direct TDS Concentration (mg/L) Output from WinTran Simulation

	Year	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	Windmill (L 05339)	Inactive Well (L 03945)	End Point
-	2049	275	984	42	1136	-12	1002	0	(L 03943) 0	936
	2050	265	963	41	1109	-12	1002	0	0	949
	2050	255	943	39	1083	-11 -10	1002	0	0	961
	2052	246	923	3 <i>3</i>	1053	-8	1002	0	0	973
	2053	237	902	35	1033	-7	999	0	Ö	985
	2054	228	882	34	1008	-6	997	0	0	996
	2055	220	863	32	984	-4	995	0	0	1006
	2056	212	843	31	961	-3	992	0	0	1016
	2057	205	824	30	938	-2	989	0	0	1025
	2058	198	805	28	915	-1	986	0	0	1033
	2059	191	786	27	892	1	982	0	0	1041
	2060	184	768	26	871	2	977	0	0	1048
	2061	177	750	25	849	3	973	0	0	1055
	2062	171	732	24	828	4	968	0	0	1061
	2063	165	714	23	808	5	962	0	0	1066
	2064	159	697	22	787	6	957	0	0	1071
	2065	154	680	21	768	7	951	0	0	1075
	2066	149	663	20	748	8	944	0	0	1079
	2067	143	647	19	729	9	938	0	0	1082
ata	2068	138	631	19	711	10	931	0	0	1084
	2069	134	615	18	693	11	924	0	0	1086
tec	2070	129	600	17	675	12	917	0	0	1087
l ig	2071	125	584	17	658	13	909	0	0	1088
Pre	2072	120	570	16	641	14	901	0	0	1089
<u>•</u>	2073	116	555	15	624	15	893	0	0	1088
Model Predicted Data	2074	112	541	15	608	15	885	0	0	1088
2	2075	108	527	14	592	16	877	0	0	1086
	2076	105	513	14	577	17	868	0	0	1085
	2077	101	500	13	561	17	860	0	0	1082
	2078	97	487	13	547	18	851	0	0	1080
	2079	94	474	12	532	19	842	0	0	1076
	2080 2081	91	462 450	12 11	518 504	19 20	833 824	0 0	0	1073
	2081	88 85	430 438	11	491	20	824 814	0	0	1069 1064
	2082	82	436 426	10	491 478	21	805	0	0 0	1064
	2084	79 76	415	10	465	21	796	0	0	1054
	2085	76	404	10	453 440	22	786	0	0	1049
	2086	74 71	393	9	440	22	776 767	0	0	1043
	2087 2088	71 69	383	9	428 417	22 23	767 757	0	0	1037 1030
	2088	69 67	372 362	8 8	417 406	23 23	757 747	0	0	1030
	2089	67 64	352 353	8 8	406 395	23 23	747 737	0 0	0 0	1023
	2090	64 62	353 343	8	395 384	23 23	737 727	0	0	1016
	2091	62 60	343 334	7	3 84 373	23 24	727 718	0	0	1009
	2092	58	334 325	7	363	24 24	708	0	0	993
	2093	59	330	7	367	24	710	0	0	999