3R - 204 2013 AGWMR 04 / 03 / 2014

March 4, 2014

RECEN OCD

Mr. Glenn von Gonten New Mexico Oil Conservation Division (NMOCD) 1220 South St., Francis Drive Santa Fe, NM 87505

RE: 2013 Annual Report Submittals San Juan River Basin Program - Pit Sites

Dear Mr. von Gonten

On behalf of El Paso CGP Company (EPCGPC), MWH is submitting the enclosed 2013 Annual Reports for 18 of its remaining San Juan River Basin pit groundwater remediation sites. The reports present the 2013 sampling data and planned activities for 2014 at these sites.

If you have any questions concerning the enclosed reports, please contact either Joe Wiley (representing EPCGPC) at 713-420-3475 or me at 515-253-0830.

Sincerely,

David C. Wombacher Principal Engineer

/mja:dcw:hls Enclosures

Bill Freeman – NNEPA, Shiprock, NM (Navajo Nation Lands, See Table 1)
Mark Kelly – BLM, Farmington, NM (Federal Lands, See Table 1)
Brandon Powell – NMOCD, Aztec, NM (all 18 reports)
Joe Wiley – EPCGP Company (all 18 reports, electronic)

P:\Word Processing\EL PASO\NEW MEXICO\SAN JUAN RIVER BASIN PROGRAM\PIT SITES\LTR-03-14-2013 ANNUAL REPORT SUBMITTALS\Ltr-03-14-von Gonten-2013 Annual Report Submittals.docx

11153 Aurora Avenue re. 515 253 0830 Des Moines, IA 50322-7904 eAx 515 253 9592 www.mwhglobal.com

TABLE 1

...

REPORT LISTING AND LAND TYPE SAN JUAN RIVER BASIN PROGRAM – PIT SITES

METER or LINE ID	NMOCD CASE NO.	SITE NAME	Land Type
87640	3RP-155-0	Canada Mesa #2	Federal
89961	3RP-170-0	Fields A#7A	Federal
73220	3RP-068-0	Fogelson 4-1 Com. #14	Federal
95608	3RP-407-0	Gallegos Canyon Unit #124E	Navajo
03906	3RP-179-0	GCU Com A #142E	State/Fee
89894	3RP-186-0	Hammond #41A	Federal
94715	3RP-196-0	James F. Bell #1E	Federal
70194	3RP-201-0	Johnston Fed #4	State/Fee
89232	3RP-202-0	Johnston Fed #6A	Federal
LD072	3RP-204-0	K27 LD072	Federal
LD087	3RP-205-0	K-31 Line Drip	State/Fee
72556	3RP-207-0	Knight #1	State/Fee
LD174	3RP-212-0	Lateral L 40	Federal
LD151	3RP-213-0	Lateral 0-21 Line Drip	Federal
94810	3RP-223-0	Miles Fed 1A	Federal
89620	3RP-235-0	Sandoval GC A #1A	Federal
70445	3RP-074-0	Standard Oil Com #1	State/Fee
71669	3RP-239-0	State Gas Com N #1	State/Fee

2013 ANNUAL GROUNDWATER REPORT

K-27 Line Drip Meter Code: LD072 T25N, R6W, Sec4, Unit E

SITE DETAILS

Site Location:Latitude: 36.430553 N, Longitude: -107.480164 WLand Type:FederalOperator:Enterprise

SITE BACKGROUND

•	Site Assessment:	7/94
•	Excavation:	8/94

K-27 Line Drip (Site) is managed pursuant to the procedures set forth in the document entitled, "Remediation Plan for Groundwater Encountered during Pit Closure Activities" (Remediation Plan, El Paso Natural Gas Company / El Paso Field Services Company, 1995). This remediation plan was conditionally approved by the New Mexico Oil Conservation Division (OCD) in correspondence dated November 30, 1995; and the OCD approval conditions were adopted into El Paso CGP Company (EPCGP's) program methods. Currently, the Site is operated by Enterprise and is not active.

The Site is located on Federal land. Various Site investigations have occurred from 1995 through 2006. Monitoring wells were installed in 1995 (MW-1), 2000 (MW-2 through MW-3), and 2006 (MW-4). Free product recovery has been periodically conducted at the Site. Currently, groundwater sampling is conducted on a semi-annual basis. Free product was not observed in 2013.

SUMMARY OF 2013 ACTIVITIES

In July 2013, a site survey was completed to re-develop a base site map and to confirm the accuracy of existing monitoring well elevations and locations.

On June 5, September 10, and December 11, 2013, water levels were gauged at MW-1, MW-3, and MW-4 and groundwater samples were collected from MW-1 and MW-4 using a HydraSleeve[™] (HydraSleeve); a disposable, no-purge passive groundwater sampling device. The HydraSleeve was set during the previous sampling event approximately 0.5 feet above termination depth of the monitoring wells using a suspension tether and weights to collect a sample from the screened interval. Monitoring well MW-2 is damaged and cannot be gauged or sampled and MW-3 had an insufficient amount of water to collect a sample during each 2013 quarterly sampling event. Groundwater samples were placed into laboratory supplied sample containers, packed on ice and shipped under standard chain of custody protocols to Test America Laboratories in Corpus Christi, Texas where they were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). Additional field parameters were collected including dissolved oxygen, temperature, conductivity, pH, and ORP using a YSI multi-parameter instrument. The de minimis water remaining in HydraSleeves was combined in a waste container and transferred to an off-site 55-gallon drum for later disposal by Safety-Kleen.

2013 ANNUAL GROUNDWATER REPORT

K-27 Line Drip Meter Code: LD072 T25N, R6W, Sec4, Unit E

SUMMARY TABLES

Historic analytical and water level data are summarized in Table 1

SITE MAPS

Groundwater analytical maps and groundwater elevation maps from each sampling event are depicted in Figures 1through 6.

ANALYTICAL LAB REPORTS

The groundwater analytical lab reports are included as Appendix A.

RESULTS

- The groundwater flow direction has historically been to the northeast at the Site; however, since only two wells had groundwater measurements, no groundwater contour or flow direction is shown on the Groundwater Elevation figures (see Figures 2, 4, and 6). Water measured in monitoring well MW-3 during the June sampling event appears to be condensation or groundwater accumulated in the sump at the bottom of the monitoring well, and not groundwater representative of the water bearing formation.
- Concentrations of benzene in groundwater collected from MW-1 remained above the New Mexico Water Quality Control Commission (NMWQCC) standard for each of the three 2013 quarterly sampling events. Toluene, ethylbenzene, and total xylenes concentrations were below NMWQCC standards at MW-1 for each sampling events.
- Monitoring well MW-2 is damaged and cannot be sampled or gauged.
- BTEX constituents were not detected in groundwater samples collected from MW-3 during the June sampling event. It appears that water sampled in MW-3 may not have been groundwater flowing in the formation but rather water trapped in the well sump, or condensation. MW-3 was dry during the September and December quarterly sampling events.
- BTEX constituents were not detected in groundwater samples collected from MW-4 during any of the three 2013 sampling events.

PLANNED FUTURE ACTIVITIES

Following the completion of a Site access agreement with the current Site operator, the installation of additional monitoring wells is planned, to further assess the extent of the dissolved phase hydrocarbons and to confirm and/or further define the groundwater gradient at the Site. Monitoring wells will be installed around and downgradient of the known extent of groundwater hydrocarbons in order to better delineate impacts from the

2013 ANNUAL GROUNDWATER REPORT

K-27 Line Drip Meter Code: LD072 T25N, R6W, Sec4, Unit E

former EPC pit. One well will be installed to replace existing and damaged monitoring well MW-2. After construction, the surface and top of casing elevations of the wells will be surveyed by a licensed surveyor using state plane coordinates and the existing site benchmark. Following approval by the New Mexico Environment Department (NMED), the existing monitoring well MW-2 will be plugged and abandoned in accordance with NMED, Ground Water Quality Bureau, Monitoring Well Construction and Abandonment Guidelines, dated March 2011. Additionally, MW-1, MW-3, MW-4, and the newly installed monitoring wells will be sampled semi-annual on а basis.

TABLES

TABLE 1 – GROUNDWATER ANALYTICAL AND WATER LEVEL RESULTS

				K-27 Lir	ne Drip			
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Depth to	Depth to	LNAPL
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Water (ft.)	LNAPL (ft.)	Thickness (ft.)
NMWQC	C Standards:	10	750	750	620	NA	NA	NA
MW-1	11/04/96	996	2170	204	1520	37.44	-	-
MW-1	02/05/97	207	613	168	1010	36.89	-	-
MW-1	05/07/97	41.8	114	97.8	500	36.73	-	-
MW-1	08/08/97	1690	2980	298	1930	37.61	-	-
MW-1	11/07/97	533	1210	267	1720	37.33	37.21	0.12
MW-1	02/26/98					36.89	36.71	0.18
MW-1	02/24/99					36.39	36.27	0.12
MW-1	08/19/99	179	379	79.1	777	36.48	-	-
MW-1	11/10/99	39	95	56	390	36.17	36.10	0.07
MW-1	09/05/00					37.22	-	-
MW-1	10/06/00					37.42	-	-
MW-1	07/03/01					36.64	36.49	0.15
MW-1	09/04/01					37.43	37.39	0.04
MW-1	09/24/01					37.45	37.40	0.05
MVV-1	04/01/02					37.01	-	-
MVV-1	07/15/02					38.02	37.85	0.17
MW-1	10/08/02					38.01	38.00	0.01
MVV-1	01/27/03					37.42	-	-
	04/26/03					37.15	-	-
	07/17/03					38.36	38.18	0.18
	10/13/03					38.29	-	-
	01/19/04					37.69	37.68	0.01
	04/20/04					37.29	-	-
	07/27/04					38.45	38.28	0.17
	01/20/04					30.71	30.00	0.03
	01/25/05					30.10	30.10	0.02
1/1/1	07/10/05					37.04	37.75	0.09
N/N/_1	10/12/05					38.46		
MW-1	10/21/05					38.46	_	
MW-1	01/23/06					37.89	-	-
MW-1	04/28/06					37.57	-	_
MW-1	07/26/06					38.61	-	-
MW-1	11/07/06					36.37	36.31	0.06
MW-1	01/17/07					35.91	-	-
MW-1	04/24/07					35.53	-	-
MW-1	07/31/07					36.57	-	-
MW-1	10/25/07					36.04	-	-
MW-1	01/25/08					<u>35.9</u> 0		
MW-1	04/18/08					35.47	-	-
MW-1	07/23/08					36.43	-	-
MW-1	10/08/08	7.3	3.9	20.2	68.7	36.95	-	-
MW-1	10/13/08					36.93		-
MW-1	01/16/09					36.77	-	-
MW-1	04/06/09					36.30	-	-
MW-1	08/25/09					37.53	-	-
MW-1	11/03/09	355	69.3	45.8	259	37.58	-	-
MW-1	02/16/10					37.32	-	-
MW-1	05/24/10					36.97	-	-
MW-1	09/27/10					37.98	-	-
MW-1	11/08/10	138	29.4	43.9	183	37.70	-	-
MW-1	02/01/11					37.35	-	-
MW-1	05/02/11					37.26	-	-
MW-1	09/23/11					38.45	-	-
MW-1	11/10/11	/1.8	57.5	5	62.2	38.30	-	-
IMW-1	02/22/12					37.82	-	-

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

	K-27 Line Drip									
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Depth to	Depth to	LNAPL		
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Water (ft.)	LNAPL (ft.)	Thickness (ft.)		
NMWQC	C Standards:	10	750	750	620	NA	NA	NA		
MW-1	05/15/12					37.81	-	-		
MW-1	06/05/13	350	61	15	220	38.16	-	-		
MW-1	09/10/13	150	32	7	83	38.85	-	-		
MW-1	12/11/13	150	100	13	120	38.05	-	-		

				K-27 Lir	ne Drip			
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Depth to	Depth to	LNAPL
Location	Date	(µa/L)	(µa/L)	(µq/L)	(µq/L)	Water (ft.)	LNAPL (ft.)	Thickness (ft.)
NMWQC	C Standards:	10	750	750	620	NA	NA	NA
MW-2	08/31/00	5500	14000	670	5800	35.81	-	-
MW-2	09/05/00					37.28	36.11	1.17
MW-2	10/06/00					37.31	36.04	1.27
MW-2	07/03/01					37.37	36.12	1.25
MW-2	09/04/01					36.52	36.25	0.27
MW-2	09/24/01					36.46	36.27	0.19
MW-2	01/02/02					36.97	35.87	1.10
MW-2	04/01/02					36.61	35.67	0.94
MW-2	07/15/02					38.00	-	-
MW-2	10/08/02					37.01	36.94	0.07
MW-2	01/27/03					36.47	36.31	0.16
MW-2	04/26/03					36.88	35.85	1.03
MW-2	07/17/03					38.20	36.75	1.45
MW-2	10/13/03					37.64	37.07	0.57
MW-2	01/19/04					36.72	36.51	0.21
MW-2	04/20/04					36.93	35.91	1.02
MW-2	07/27/04					38.30	36.88	1.42
MW-2	10/20/04					38.23	37.37	0.86
MW-2	01/25/05					42.87	36.77	6.10
MW-2	04/14/05					36.55	36.55	0.00
MW-2	07/19/05					38 16	37.55	0.61
MW-2	10/21/05					38.31	37.06	1 25
MW-2	01/23/06					37.31	36.69	0.62
MW-2	04/28/06					37.01	36.33	0.68
MW-2	07/26/06					38.37	37.42	0.95
MW-2	11/07/06					35.28	35.21	0.07
MW-2	01/17/07					35.35	-	-
MW-2	04/24/07					35.08	-	-
MW-2	07/31/07					36.03	36.01	0.02
MW-2	10/25/07					35.53	-	-
MW-2	01/25/08					35.37	35 34	0.03
MW-2	04/18/08					34.90	-	-
MW-2	07/23/08					35.95	_	-
MW-2	10/13/08					36.39	_	-
MW-2	01/16/09					36.39	36 14	0.25
MW-2	04/06/09					35.98	35.94	0.04
MW-2	08/25/09					37.03	36.97	0.06
MW-2	11/03/09	223	1070	532	2590	37.00	36.96	0.04
MW-2	02/16/10					36.96	-	-
MW-2	05/24/10					36.55	36.48	0.07
MW-2	09/27/10					37.58	37.57	0.01
MW-2	11/08/10	152	547	471	2190	37.72	-	-
MW-2	02/01/11		•			36.92	_	-
MW-2	05/02/11					36.71	-	-
MW-2	09/23/11					38.01	-	-
MW-2	11/10/11	31.9	101	156	446	37,70	37.69	0.01
MW-2	02/22/12					37 54	37.39	0.15
MW-2	05/15/12					37.48	37.37	0.11
MW-2	06/05/13					NA	NA	-
MW-2	09/10/13					NA	NA	-
MW-2	12/11/13					NA	NA	-

	K-27 Line Drip								
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Depth to	Depth to	LNAPL	
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	
NMWQC	C Standards:	10	750	750	620	NA	NA	NA	
MW-3	09/05/00	<0.5	<0.5	<0.5	<0.5	37.40	-	-	
MW-3	07/03/01	<0.5	<0.5	<0.5	<0.5	37.69	-	-	
MW-3	09/04/01					37.50	-	-	
MW-3	09/24/01					37.51	-	-	
MW-3	04/01/02					37.08	-	-	
MW-3	07/15/02					37.13	-	-	
MW-3	10/08/02					38.09	-	-	
MW-3	07/17/03					38.28	-	-	
MW-3	10/13/03					38.34	-	-	
MW-3	01/19/04					37.69	-	-	
MW-3	04/20/04					37.26	-	-	
MW-3	07/27/04					38.36	-	-	
MW-3	10/20/04					38.72	-	-	
MW-3	01/25/05					38.13	-	-	
MW-3	04/14/05					37.74	-	-	
MW-3	07/19/05					38.74	-	-	
MW-3	10/21/05	<1	<1	<1	<2	38.48	-	-	
MW-3	01/23/06					37.89	-	-	
MW-3	04/28/06					37.61	-	-	
MW-3	07/26/06					38.34	-	-	
MW-3	11/07/06	1.1	1.6	0.42 J	2.3	36.50	-	-	
MW-3	01/17/07					35.98	-	-	
MW-3	04/24/07					35.64	-	-	
MW-3	07/31/07					36.59	-	-	
MW-3	10/25/07	<1	<1	<1	<2	36.20	-	-	
MW-3	01/25/08					36.00	-	-	
MW-3	04/18/08					35.56	-	-	
MW-3	07/23/08					36.60	-	-	
MW-3	10/08/08	<2	<2	<2	<6	37.09	-	-	
MW-3	10/13/08					37.09	-	-	
MW-3	01/16/09					36.83	-	-	
MW-3	04/06/09					36.43	-	-	
MW-3	08/25/09					37.62	-	-	
MW-3	11/03/09	<1	<1	<1	<2	37.67	-	-	
MW-3	02/16/10					37.16	-	-	
MW-3	05/24/10					37.02	-	-	
MW-3	09/27/10					38.07	-	-	
MW-3	11/08/10	<2	<2	<2	<6	37.82	-	-	
MW-3	02/01/11					37.39	-	-	
MW-3	05/02/11					37.28	-	-	
MW-3	09/23/11					38.15	-	-	
MW-3	11/10/11	<1	<1	<1	<3	38.13	-	-	
MW-3	02/22/12					37.85	-	-	
MW-3	05/15/12					37.87	-	-	
MW-3	06/05/13	<0.14	<0.30	<0.20	<0.23	38.26	-	-	
MW-3	09/10/13					38.95	-	-	
MW-3	12/11/13					DRY	-	-	

	K-27 Line Drip							
		Benzene	Toluene	Ethylbenzene	Total Xylenes	Depth to	Depth to	LNAPL
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Water (ft.)	LNAPL (ft.)	Thickness (ft.)
NMWQC	C Standards:	10	750	750	620	NA	NA	NA
MW-4	11/08/06	<1	<1	<1	<2	32.95	-	-
MW-4	01/17/07					32.63	-	-
MW-4	04/24/07					32.30	-	-
MW-4	07/31/07					33.33	-	-
MW-4	10/25/07	<1	<1	<1	<2	32.90	-	-
MW-4	01/25/08					32.64	-	-
MW-4	04/18/08					32.20	-	-
MW-4	07/23/08					33.30	-	-
MW-4	10/08/08	<2	<2	<2	<6	33.79	-	-
MW-4	10/13/08					33.80	-	-
MW-4	01/16/09					33.53	-	-
MW-4	04/06/09					33.18	-	-
MW-4	08/25/09					34.35	-	-
MW-4	11/03/09	<1	<1	<1	<2	34.35	-	-
MW-4	02/16/10					34.05	-	-
MW-4	05/24/10					33.65	-	-
MW-4	09/27/10					34.81	-	-
MW-4	11/08/10	<2	<2	<2	<6	34.55	-	-
MW-4	02/01/11					34.12	-	-
MW-4	05/02/11					33.93	-	-
MW-4	09/23/11					35.22	-	-
MW-4	11/10/11	<1	<1	<1	<3	35.02	-	-
MW-4	02/22/12					34.66	-	-
MW-4	05/15/12					34.61	-	-
MW-4	06/05/13	<0.14	<0.30	<0.20	<0.23	34.96	-	-
MW-4	09/10/13	<0.14	<0.30	<0.20	<0.23	35.61	-	-
MW-4	12/11/13	<0.20	<0.38	<0.20	<0.65	34.73	-	-
Notes:								

Results highlighted yellow exceed their respective New Mexico Water Quality Control Commission standards.

"J" = result is qualified as estimated. "<" = analyte was not detected at the indicated reporting limit (some historic data were reported at the detection limit).

FIGURES

- FIGURE 1: JUNE 5, 2013 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 2: JUNE 5, 2013 GROUNDWATER ELEVATION MAP
- FIGURE 3: SEPTEMBER 10, 2013 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 4: SEPTEMBER 10, 2013 GROUNDWATER ELEVATION MAP
- FIGURE 5: DECEMBER 11, 2013 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 6: DECEMBER 11, 2013 GROUNDWATER ELEVATION MAP

LEGEND:

<u>—6503</u>	APPRO2 CONTO	XIMATE UR AND	GROI ELEV	JND SU ⁄ATION,	RFACE FEET	
	ACCESS	S ROAD				
- G A S —	NATURA	AL GAS	LINE			
+	MONITO	DRING V	VELL			
•	DAMAG	ED MOI	NITOR	ING WE	LL	
۵	SMA BE	NCHMA	RK			
EXPLANATION RESULTS IN E EXCESS OF T NS = NOT SAI µg/L = MICRO <0.30 = BELO	N OF ANA BOLDFACI THE STANI MPLED GRAMS PI W METHO	LYTES A E TYPE I DARD FO ER LITER D DETEG	ND AP NDICAT OR THA R CTION I	P LICABL FE CONC T ANALY ⁻ LIMIT	<u>e stani</u> Entrat IE.	DARDS: ION IN
ANALYTE B = Benzene		<u>NMWQ</u> 10 μg/	CC STA	NDARDS	<u> </u>	
T = Toluene E = Ethylbenz X = Total Xyle	ene	750 μg/ 750 μg/ 620 μg/	/L /L /I			
	100	020 µg/	-			
nu .		S	CALE	IN FEET	-	
	0 0	DEVICION	3		DD AMAL DV	60
	-	A	DATE 10/16/2013	CCZ	CCZ	DAW
GROU	NDWAT	K27 L ER AN	DO72 4LYT	, ICAL R.	ESULT	5
	SAMP	LED JO	UNE S	5, 2013	,	
PROJECT:	5AN NI TAR	IUAN R ING AN	RIVER	P BASIN	TION	
RIO	ARRIBA	4 COUI	VTY, 1	VEW M	EXICO	7
	MV	VH	F	igure No.:	1	

LEGEND:

<u>—6503</u>	APPRO CONTO	XIMATE OUR AND	GRO DELE	UND SUI VATION,	RFACE FEET	
	ACCES	S ROAD)			
-6 A S —	NATUR	AL GAS	LINE			
+	MONIT	ORING	WELL			
•	DAMAC	GED MO	NITOF	RING WE	LL	
Δ	SMA BE	ENCHM	ARK			
EXPLANATION RESULTS IN E EXCESS OF T NS = NOT SAI ug/L = MICRO	N OF ANA BOLDFAC THE STAN MPLED GRAMS F	ALYTES A E TYPE I IDARD FO PER LITE	INDICA OR THA	Y PLICABL TE CONC AT ANALY1	<u>E STANI</u> ENTRAT ſE.	<u>Dards:</u> Ion in
<0.30 = BELO	W METHO					
B = Benzene T = Toluene		10 μg 750 μg	/L /L		<u> </u>	
E = Ethylbenz X = Total Xyle	ene nes	750 μg 620 μg	/L /L			
		c				
Ň						
	0			1		
	0	REVISION	DATE	30 DESIGN BY	DRAWN BY	60 REVIEWED BY
TITLE:	0	REVISION A	DATE 10/16/2013	DESIGN BY 7 CCZ	DRAWN BY CC2	60 REVIEWED BY DAW
TITLE: GROUN	NDWA7	REVISION A K27L TER AM	DATE 10/16/2013	DESIGN BY CCZ CCAL R2	DRAWN BY CC2 ESUL 7	60 REVIEWED BY DAW
ITTLE: GROUI SA	NDWAT MPLEL	REVISION A K27 L TER AN D SEPT	DATE 10762013 LDO72 LALY7 EMBE	1 30 DESIGN BY CZZ 2 7 1 CAL RZ 5 R 10, 2	DRAWN BY CC2 DESULT POT3	60 REVIEWED BY DAW
TITLE: GROU, SA PROJECT: MC	NDWAT MPLEL SAN	REVISION A K27 L TER AN D SEPT JUAN I PING AI	DATE TOTALOTZ ALYT EMBL RIVEH	DESIGN BY DESIGN BY CZZ CZZ CZZ CZZ CZZ CZZ CZZ CZ	DRAWN BY 222 ESUL T 2013 TION	60 REVIEWED BY <i>DAW</i>
TITLE: GROU, SA PROJECT: M(C RIO	NDWAT MPLEL SAN SAN SANTOR SARRIB	REWSION A K27L TERAN D SEPT JUAN FUNG AI PA COU	DATE TOTAL2013 ALYT EMBL RIVER VD RL WD RL WTY, J	DESIGN BY TCAL RA FR 10, 2 R BASIN FMEDIA NEW MA Efigure No.	DRAWN BY CC2 ESUL 7 PO13 I TION EXICO	60 REVIEWED BY ZAW
TITLE: GROUI, SA PROJECT: MIC RIO	NDWAT MPLEL SAN SAN DNITOR DARRIE	REVISION A K27 L TER AND D SEPTI JUAN I PING AI PA COUD	DATE TOTIGEOUS COOTZ CALYT EMBL RIVER VD RL WTY,	DESIGN BY DESIGN BY CAL RI CAL RI	DRAWN BY 222 ESUL 7 2013 I TION EXICO 3	60 REVIEWED BY <i>DMV</i>

LEGEND:

RIO	ARRIBA	1 COU	WTY,	<i>NEW M</i> Figure No.:	EXICO	,
MC	ONI TORI.	NG AI	VD RI	EMEDIA	TION	
GROU SA PROJECT:	NDWATE AMPLED SAN J	ER AN	ALYT SMBE RIVET	R 11, 20 R 11, 20 R BASIN	ESULT 013 1	5
TITLE:		K27 L		2		
Į	F	REVISION	DATE 1/17/2014	DESIGN BY	DRAWN BY	REVIEWED BY
14				30		60
		s	CALE	IN FEET		
E = Ethylbenz X = Total Xyle	ene nes	750 μg 620 μg	/L /L			
ANALYTE B = Benzene T = Toluene		<u>NMWQ</u> 10 μg	<u>CC ST.</u> /L /L	ANDARDS	<u>i</u>	
µg/L = MICRO <0.30 = BELO	GRAMS PE W METHOI	ER LITE D DETE	R CTION	LIMIT		
RESULTS IN E EXCESS OF T NS = NOT SAM	BOLDFACE HE STAND MPLED	TYPE	INDICA OR TH/	ATE CONC	ENTRAT FE.	ION IN
	N OF ANAL	YTES A		PLICABL	E STANI	DARDS:
Δ	SMA BEI		ARK			
•	DAMAGI	ED MO	NITO	RING WE	LL	
€A5 —	MONITO	RING				
	ACCESS					
	CONTOL		DELE	VATION,	FEET	

APPENDICES

APPENDIX A - JUNE 5, 2013 GROUNDWATER SAMPLING ANALYTICAL REPORT SEPTEMBER 10, 2013 GROUNDWATER SAMPLING ANALYTICAL REPORT DECEMBER 11, 2013 GROUNDWATER SAMPLING ANALYTICAL REPORT

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Corpus Christi 1733 N. Padre Island Drive Corpus Christi, TX 78408 Tel: (361)289-2673

TestAmerica Job ID: 560-40553-1

TestAmerica Sample Delivery Group: June 2013 Client Project/Site: K-27

For:

MWH Americas Inc 1801 California Street Suite 2900 Denver, Colorado 80202

Attn: Mr. Daniel Wade

Cinisthy C. Kelling

Authorized for release by: 6/19/2013 9:26:20 AM

Timothy Kellogg, Lab Director tim.kellogg@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	Ð
DER	Duplicate error ratio (normalized absolute difference)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	8
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	9
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 560-40553-1

Laboratory: TestAmerica Corpus Christi

Narrative

Receipt

The samples were received on 6/12/2013 10:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.5° C. No analytical or quality issues were noted.

D: MW-1						Lal	Lab Sample ID: 560-40553-1		
	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	Δ
	0.35		0.0030	0.00042	mg/L	3	8260B	Total/NA	

Client Sample ID: MW-3				Lab	Sample	ID: 560-40553-2
Xylenes, Total	0.22	0.0090	0.00068 mg/L	3	8260B	Total/NA
Toluene	0.061	0.0030	0.00090 mg/L	3	8260B	Total/NA
Ethylbenzene	0.015	0.0030	0.00060 mg/L	3	8260B	Total/NA

No Detections.

Analyte Benzene

Client Sample ID: MW-4

No Detections.

TestAmerica Job ID: 560-40553-1 SDG: June 2013

Lab Sample ID: 560-40553-3

This Detection Summary does not include radiochemical test results.

RL

0.0030

0.0030

0.0030

0.0090

Limits

70 - 130

70 - 130

70 - 130

70 - 130

MDL Unit

0.00042 mg/L

0.00060 mg/L

0.00090 mg/L

0.00068 mg/L

D

Prepared

Prepared

Analyte

Benzene

Toluene

Surrogate

Ethylbenzene

Xylenes, Total

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Client Sample ID: MW-1

Date Collected: 06/08/13 14:00 Date Received: 06/12/13 10:00

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

0.35

0.015

0.061

0.22

%Recovery Qualifier

111

98

97

103

Lab Sample ID: 560-40553-1

Analyzed

06/17/13 13:22

06/17/13 13:22

06/17/13 13:22

06/17/13 13:22

Analyzed

06/17/13 13:22

06/17/13 13:22

06/17/13 13:22

06/17/13 13:22

Matrix: Water

Dil Fac

3

3

3

3

3

3

3

3

Dil Fac

Lab Sample ID: 560-40553-2

Lab Sample ID: 560-40553-3

Matrix: Water

Matrix: Water

Date	Collected:	06/08/13	14:20
Date	Received:	06/12/13	10:00

Client Sample ID: MW-3

Method: 8260B - Volatile Organ	nic Compounds ((GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00014		0.0010	0.00014	mg/L			06/17/13 13:48	1
Ethylbenzene	<0.00020		0.0010	0.00020	mg/L			06/17/13 13:48	1
Toluene	<0.00030		0.0010	0.00030	mg/L			06/17/13 13:48	1
Xylenes, Total	<0.00023		0.0030	0.00023	mg/L			06/17/13 13:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	103		70 - 130			-		06/17/13 13:48	1
4-Bromofluorobenzene (Surr)	93		70 - 130					06/17/13 13:48	1
Dibromofluoromethane (Surr)	109		70 - 130					06/17/13 13:48	1
1,2-Dichloroethane-d4 (Surr)	105		70 - 130					06/17/13 13:48	1

Client Sample ID: MW-4

Date Collected: 06/08/13 14:05 Date Received: 06/12/13 10:00

Method: 8260B - Volatile Orga	anic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00014		0.0010	0.00014	mg/L			06/16/13 16:07	1
Ethylbenzene	<0.00020		0.0010	0.00020	mg/L			06/16/13 16:07	1
Toluene	<0.00030		0.0010	0.00030	mg/L			06/16/13 16:07	1
Xylenes, Total	<0.00023		0.0030	0.00023	mg/L			06/16/13 16:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		70 - 130			-		06/16/13 16:07	1
4-Bromofluorobenzene (Surr)	91		70 - 130					06/16/13 16:07	1
Dibromofluoromethane (Surr)	106		70 - 130					06/16/13 16:07	1
1,2-Dichloroethane-d4 (Surr)	102		70 _ 130					06/16/13 16:07	1

1,2-Dichloroethane-d4 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

 Lab Sample ID: MB 560-89164/8										с	lient S	Sample ID: Metho	d Blank
Matrix: Water												Prep Type: T	otal/NA
Analysis Batch: 89164													
		МΒ	MB										
Analyte	R	esult	Qualifier	RL	I	MDL	Unit		D	Pre	pared	Analyzed	Dil Fac
Benzene	<0.0	0014		0.0010	0.00	014	mg/L					06/16/13 09:48	1
Ethylbenzene	<0.0	0020		0.0010	0.00	020	mg/L					06/16/13 09:48	1
Toluene	<0.0	0030		0.0010	0.00	030	mg/L					06/16/13 09:48	1
Xylenes, Total	<0.0	0023		0.0030	0.00	023	mg/L					06/16/13 09:48	1
		MR	MR										
Surrogate	%Reco	very	Qualifier	Limits						Pre	pared	Analyzed	Dil Fac
Toluene-d8 (Surr)		103		70 - 130								06/16/13 09:48	1
4-Bromofluorobenzene (Surr)		95		70 - 130								06/16/13 09:48	1
Dibromofluoromethane (Surr)		103		70 - 130								06/16/13 09:48	1
1,2-Dichloroethane-d4 (Surr)		101		70 - 130								06/16/13 09:48	1
_ Lab Sample ID: LCS 560-89164/3	3								С	lient S	ample	ID: Lab Control	Sample
Matrix: Water												Pren Type: 1	otal/NA
Analysis Batch: 89164													o tai i ti t
				Spike	LCS	LCS						%Rec.	
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Benzene				0.0250	0.0281			mg/L			112	70 - 130	
Ethylbenzene				0.0250	0.0246			mg/L			98	70 - 130	
Toluene				0.0250	0.0277			mg/L			111	70 - 130	
Xylenes, Total				0.0750	0.0741			mg/L			99	70 - 130	
	LCS	LCS	;										
Surrogate	%Recoverv	Qua	lifier	Limits									
Toluene-d8 (Surr)	104			70 - 130									
4-Bromofluorobenzene (Surr)	107			70_130									
Dibromofluoromethane (Surr)	105			70 - 130									
1,2-Dichloroethane-d4 (Surr)	97			70 - 130									
										~	lient C	Comple ID: Mothe	d Blank
Lab Sample ID. WB 560-69169/6										U	ment a		
Matrix: Water												Prep Type: 1	otal/NA
Analysis Batch. 09109		мв	MB										
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	Pre	pared	Analyzed	Dil Fac
Benzene	<0.0	0014		0.0010	0.00	014	mg/L					06/17/13 12:32	1
Ethylbenzene	<0.0	0020		0.0010	0.00	020	mg/L					06/17/13 12:32	1
Toluene	<0.0	0030		0.0010	0.00	030	mg/L					06/17/13 12:32	1
Xylenes, Total	<0.0	0023		0.0030	0.00	023	mg/L					06/17/13 12:32	1
		ΜВ	МВ										
Surrogate	%Reco	very	Qualifier	Limits						Pre	pared	Analyzed	Dil Fac
Toluene-d8 (Surr)		103		70 - 130								06/17/13 12:32	1
4-Bromofluorobenzene (Surr)		91		70 - 130								06/17/13 12:32	1
Dibromofluoromethane (Surr)		110		70 - 130								06/17/13 12:32	1

06/17/13 12:32

70 - 130

105

1

6

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 560-89169/3 **Client Sample ID: Lab Control Sample** Matrix: Water Prep Type: Total/NA Analysis Batch: 89169 Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec 0.0250 Benzene 0.0276 mg/L 110 70 - 130 Ethylbenzene 0.0250 0.0245 70 - 130 mg/L 98 Toluene 0.0250 0.0278 70 - 130 mg/L 111 Xylenes, Total 0.0750 0.0736 mg/L 98 70 - 130 LCS LCS Surrogate Limits %Recovery Qualifier Toluene-d8 (Surr) 70 - 130 103 4-Bromofluorobenzene (Surr) 108 70 - 130 Dibromofluoromethane (Surr) 103 70 - 130 1,2-Dichloroethane-d4 (Surr) 96 70 - 130

Client Samp	le ID: MW-1							Lab Sample	D: 560-40553-1	
Date Collected	l: 06/08/13 14:0	00							Matrix: Water	
Date Received	: 06/12/13 10:0	00								
	Batch	Batch		Dilution	Batch	Prepared				5
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	8260B		3	89169	06/17/13 13:22	RT	TAL CC		
Client Samp	ole ID: MW-3							Lab Sample	D: 560-40553-2	7
Date Collected	l: 06/08/13 14:2	20							Matrix: Water	
Date Received	: 06/12/13 10:0	0								8
	Batch	Batch		Dilution	Batch	Prepared				0
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		3
Total/NA	Analysis	8260B		1	89169	06/17/13 13:48	RT	TAL CC		
Client Samp	ole ID: MW-4							Lab Sample	D: 560-40553-3	
Date Collected	l: 06/08/13 14:0	05							Matrix: Water	
Date Received	: 06/12/13 10:0)0								
	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	8260B		1	89164	06/16/13 16:07	RT	TAL CC		

Laboratory References:

TAL CC = TestAmerica Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673

Laboratory: TestAmerica Corpus Christi

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Kansas	NELAP	7	E-10362	10-31-13
Oklahoma	State Program	6	9968	08-31-13
Texas	NELAP	6	T104704210-12-8	03-31-14
USDA	Federal		P330-11-00060	02-03-14

Project/Site:	K-27	restAmeric	SDG: June 2013	
8260B	Volatile Organic Compounds (GC/MS)	- Protocol SW846	TAL CC	
Protocol Re	oferences:			5
SW846	= "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Up	odates.		
Laboratory	References:			
TAL CC	= TestAmerica Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673			
				8
				9
				10

Protocol References:

Laboratory References:

TestAmerica Job ID: 560-40553-1 SDG: June 2013

Project/Site: K-27 SDG: June 2					
Lah Sample ID	Client Sample ID	Matrix	Collected	Received	
560-40553-1	MW-1	Water	06/08/13 14:00	06/12/13 10:00	
560-40553-2	MW-3	Water	06/08/13 14:20	06/12/13 10:00	
560-40553-3	MW-4	Water	06/08/13 14:05	06/12/13 10:00	5
					8
					9
					10

estAmerica			No.	
IE LEADER IN ENVIRONMENTAL TESTING		CHAIN	OF CUSTODY RECC	
CUSTOMER INFORMATION	PROJECT INFORMATION	ANA	LYSIS/METHOD REQUEST	40553
OMPANY: MIUH	PROJECT NAME/NUMBER. K-27			
END REPORT TO: DAM OL UDA	BILLING INFORMATION			
DDRESS: 1901 California St.	BILL TO: Kinder Misrach			21 minut
Suite 2900	ADDRESS: Houston, TX	560-40553	Chain of Custody	TEMP C 3 3 C
Domier (1) 80202		10 X		CORR TEMP COLS C
HONE 2/2-79/-2250	PHONE:	5) 18E1		
AX:	FAX: PO NO:	>>> NUN		NITIALIDATE <u>V PUV</u> V
AMPLE NO. SAMPLE DESCRIPTION	SAMPLE SAMPLE SAMPLE CONTAINER PRES	SERV.		REMARKS/PRECAUTIONS.
1MW-1	6/B/13 1400 GW VOA H	lci 3 X		
11110-3	6/6/13 1420 CAW VOP H	W 3X		
17.0100	1019/13 1405 GAU VOA HU	U. 3X		
			000	illi lunt
AMPLER: Damiel U)ade	SHIPMENT METHOD FEDER		AIRBILL NO.: O V C	144 JULS V
EQUIRED TURNAROUND BYROUTINE TAT (10 BU	JSINESS DAYS) 🗆 RUSH TAT (MAY REQUIRE SURCHAR	(GE)		
RELINQUISHED BY: DAMIEL WORLE DA	ATE 2. RELINQUISHED BY:	DATE	3. RELINQUISHED BY:	DATE
IGNATURE (1) I I I CILLE	HOLT SIGNATURE:		SIGNATURE.	
RINTED NAME/COMPANY: NILL 100 -	ME PRINTED NAME/COMPANY.	TIME	PRINTED NAME/COMPANY:	TIME
RECEIVED BY:	ATE 2. RECEIVED BY:	DATE	3. RECEIVED BY:	DATE
IGMATURE UN	1.3.7.3 SIGNATURE:		SIGNATURE:	
RINTED NAME/COMPANY.	NE DO PRINTED NAME/COMPANY:	TIME	PRINTED NAME/COMPANY	TIME
	TestAmerica 1733 N. Padre Island Driv Corpus Christi, TX 78408 Phone: 361.289.2673/Fax: 361.2	e 3 289.2471		TAL-8222-560 (0412)

م مرد محمد No.

Page 12 of 13

Courses

Login Sample Receipt Checklist

Client: MWH Americas Inc

Login Number: 40553 List Number: 1 Creater: McDormett, Vivia

Creator:	McDermott,	Vivian
----------	------------	--------

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 560-40553-1 SDG Number: June 2013

List Source: TestAmerica Corpus Christi

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Corpus Christi 1733 N. Padre Island Drive Corpus Christi, TX 78408 Tel: (361)289-2673

TestAmerica Job ID: 560-42546-1

TestAmerica Sample Delivery Group: September 2013 Client Project/Site: K-27 Groundwater Analysis

For:

MWH Americas Inc 1801 California Street Suite 2900 Denver, Colorado 80202

Attn: Mr. Daniel Wade

Lights

Authorized for release by: 10/3/2013 11:33:47 AM Lindy Maingot, Project Manager I lindy.maingot@testamericainc.com

Designee for

Timothy Kellogg, Lab Director tim.kellogg@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Definitions/Glossary

Client: MWH Americas Inc Project/Site: K-27 Groundwater Analysis

2

Glossary

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	J
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	8
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	9
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 560-42546-1

Laboratory: TestAmerica Corpus Christi

Narrative

Job Narrative 560-42546-1

Comments

No additional comments.

Receipt

The samples were received on 9/14/2013 10:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.4° C.

GC/MS VOA

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

Client Sample ID: MW-1

TestAmerica Job ID: 560-42546-1	
SDG: September 2013	

Lab Sample ID: 560-42546-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	0.15		0.0010	0.00014	mg/L	1	_	8260B	Total/NA
Ethylbenzene	0.0070		0.0010	0.00020	mg/L	1		8260B	Total/NA
Toluene	0.032		0.0010	0.00030	mg/L	1		8260B	Total/NA
Xylenes, Total	0.083		0.0030	0.00023	mg/L	1		8260B	Total/NA

Client Sample ID: MW-4

No Detections.

Lab Sample ID: 560-42546-2

This Detection Summary does not include radiochemical test results.

Client Sample ID: MW-1

Date Collected: 09/10/13 12:50 Date Received: 09/14/13 10:05

Method: 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier MDL Unit Dil Fac Analyte RL D Prepared Analyzed 0.0010 0.00014 mg/L 09/20/13 15:43 Benzene 0.15 1 0.00020 mg/L 09/20/13 15:43 Ethylbenzene 0.0070 0.0010 1 Toluene 0.032 0.0010 0.00030 mg/L 09/20/13 15:43 1 0.083 0.0030 0.00023 mg/L 09/20/13 15:43 **Xylenes**, Total 1 %Recovery Surrogate Qualifier Limits Prepared Dil Fac Analyzed Toluene-d8 (Surr) 104 70 - 130 09/20/13 15:43 1 4-Bromofluorobenzene (Surr) 97 70 - 130 09/20/13 15:43 1 93 Dibromofluoromethane (Surr) 70 - 130 09/20/13 15:43 1 1,2-Dichloroethane-d4 (Surr) 91 70 - 140 09/20/13 15:43 1

Client Sample ID: MW-4

Date Collected: 09/10/13 12:40

Date Received:	09/14/13	10:0
----------------	----------	------

Method: 8260B - Volatile Organ	ic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00014		0.0010	0.00014	mg/L			09/20/13 16:08	1
Ethylbenzene	<0.00020		0.0010	0.00020	mg/L			09/20/13 16:08	1
Toluene	<0.00030		0.0010	0.00030	mg/L			09/20/13 16:08	1
Xylenes, Total	<0.00023		0.0030	0.00023	mg/L			09/20/13 16:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	99		70 - 130			-		09/20/13 16:08	1
4-Bromofluorobenzene (Surr)	96		70 _ 130					09/20/13 16:08	1
Dibromofluoromethane (Surr)	98		70 - 130					09/20/13 16:08	1
1,2-Dichloroethane-d4 (Surr)	94		70 _ 140					09/20/13 16:08	1

Lab Sample ID: 560-42546-1

Lab Sample ID: 560-42546-2

Matrix: Water

Matrix: Water

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

98

93

Lab Sample ID: MB 560-92958/8 Matrix: Water Analysis Batch: 92958											Client S	ample ID: M Prep Ty	letho vpe: T	d Blank otal/NA
Analysis Batch. 52500	N	ИВ М	МВ											
Analyte	Res	ult C	Qualifier	RL		MDL	Unit		D	Р	repared	Analyze	d	Dil Fac
Benzene	<0.000	14		0.0010	0.0	0014	mg/L					09/20/13 0	9:51	1
Ethylbenzene	<0.000	20		0.0010	0.0	0020	mg/L					09/20/13 0	9:51	1
Toluene	<0.000	30		0.0010	0.0	0030	mg/L					09/20/13 0	9:51	1
Xylenes, Total	<0.000	23		0.0030	0.0	0023	mg/L					09/20/13 0	9:51	1
	Л	иви	МВ											
Surrogate	%Recove	ery (Qualifier	Limits						Р	repared	Analyze	ed	Dil Fac
Toluene-d8 (Surr)		98		70 - 130					_			09/20/13 0	9:51	1
4-Bromofluorobenzene (Surr)		94		70 - 130								09/20/13 0	9:51	1
Dibromofluoromethane (Surr)	1	03		70 - 130								09/20/13 0	9:51	1
1,2-Dichloroethane-d4 (Surr)		96		70 - 140								09/20/13 0	9:51	1
_ Lab Sample ID: LCS 560-92958/3	3								Cli	ent	Sample	ID: Lab Co	ntrol	Sample
Matrix: Water												Prep Ty	pe: T	otal/NA
Analysis Batch: 92958													÷	
				Spike	LCS	LCS						%Rec.		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Benzene				0.0250	0.0249			mg/L		_	99	70 - 130		
Ethylbenzene				0.0250	0.0248			mg/L			99	70 ₋ 130		
Toluene				0.0250	0.0245			mg/L			98	70 - 130		
Xylenes, Total				0.0750	0.0734			mg/L			98	70 - 130		
	LCS L	cs												
Surrogate	%Recovery G	Qualif	fier	Limits										
Toluene-d8 (Surr)	100			70 - 130										
4-Bromofluorobenzene (Surr)	104			70 - 130										

70 - 130

70 - 140

Certification Summary

Client: MWH Americas Inc Project/Site: K-27 Groundwater Analysis

Laboratory: TestAmerica Corpus Christi

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Kansas	NELAP	7	E-10362	10-31-13
Oklahoma	State Program	6	9968	08-31-14
Texas	NELAP	6	T104704210-12-8	03-31-14
USDA	Federal		P330-11-00060	02-03-14

Client: MWH Americas Inc Project/Site: K-27 Groundwater Analysis

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CC

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CC = TestAmerica Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673

Client: MWH Americas Inc Project/Site: K-27 Groundwater Analysis TestAmerica Job ID: 560-42546-1 SDG: September 2013

Client: WWH Americ	Client Sample ID Matrix MW-1 MW-4 Water		restAmerica Job ID: 560-42546-1					
Project/Site: K-27 G	roundwater Analysis		SDG: Se	eptember 2013				
Lab Sample ID	Client Sample ID	Matrix	Collected	Received				
560-42546-1	MVV-1	Water	09/10/13 12:50	09/14/13 10:05				
560-42546-2	MW-4	Water	09/10/13 12:40	09/14/13 10:05				
					5			
					8			
					9			

TestAmerica Corpus Christi										Toota) ((((
1733 N. Padre Island Drive Commus Christi TX 78408		Chain of	Custc							KRU	
Culpus Culture, 1x 79400 Phone (361) 289-2673 Fax (361) 289-2471										111 1. F. & N. & C. F. 4.	Loc: 560
Client Information	Sampler. DAW	Lab PM: Kellogg	Timothy L	560	42546 0	Chain o	f Custo	dy	_	COC No: 560-10718-1157	47240
Client Contact Mr. Daniel Wade	Phone: 303-912-2624	D E-Mail: tim.kelic	gg@testam	ericainc.coi	c					Page: of _	
Company: MWH Americas Inc				A	alysis R	equest	ed			Job #:	
Address: 1801 California Street Suite 2900	Due Date Requested:									Preservation Codes:	
City: Denver	TAT Requested (days):		d. Arts							B - NaOH B - NaOH C - Zn Acetate	- nexane - None - AsNaO2
State, Zip: CO, 80202	Strendard		-				,			D - Nitric Acid P E - NaHSO4 Q E MaOU	- Na204S - Na2S03 No2S2S03
Phone: 713-420-3414(Tel)	Po #: Purchase Order not required	<u> </u>								G - Amchior S H - Ascorbic Acid T	- H2SO4 - H2SO4 - TSP Dodecahydrate
Email: Daniel A. Wade@us. mwhglobal. com	WO # TWO # C-STLI-	s of N	(on						SJ:	I - Ice U J - DI Water V	- Acetone - MCAA
Project Name: San Juan River Basin Pit Sites	Project #. 56000058	ə人) ə	10 sə						ənlistn		- pil 4-5 - other (specify)
ster. K-27	SSOW#	gme2	V) asi						01 001	Other:	
	Sample Type Sample (C=comp	Matrix (w=water, ==solid, 0=wasteloli, d	X3T8 - 80a						nədmun leti		
Sample Identification	Sample Date Time G=grab	/ation Code: X	× 82			arta da	andre gester		91 X	Special Instr	uctions/Note:
1 - (110 W	9/12/12/1260 G	Water	X								
WIT - 2 - DW		Water	•						1.1		
mu - H	9/10/13 1240 (a	Water	×								
		Water									
		Water									
		Water									
		Water									
		Water									
		Water									
		Water									
		Water									
Possible Hazard Identification Non-Hazard Elammable Skin Intiant Poison	n B Hanown Radiological		Sample Di Retu	sposal (A I n To Client	ee may b	Dispose	ed if sai I By Lab	nples ar	e retaine	ed longer than 1 mor ve For &	onths
Deliverable Requested: I, II, III, IV, Other (specify)			Special Ins	ructions/QC	Requiren	ients:			-	T U I	
Empty Kit Refinduished by:	bate:	Tir	Ъе; Г				viethod of :	Shipment	ella	UX Dat	
Palinguarded by	Date/Time: 9/13/13 1200	Company	Received				6	Date/Phile	413	1105 0	angang K.a.
Relinquished by:	Date/Time: # 🖁	Company	Béceiveo) .řq				Date/fime	£	0	ompany
Relinquished by:	Date/Time:	Company	Received	by: /	4	1		Date/Time		, J _ [ompany
Culstody Seals Intact: Custody Seal No.: ▲ Yes △ No				mpérature(s)	c and plue	Remark:	W	-	fc.	IRY	
		·				10	9	8	7		2 3

Page 10 of 11

0/3/20

1. 0

Login Sample Receipt Checklist

Client: MWH Americas Inc

Login Number: 42546 List Number: 1

Creator: Wing, Randi

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 560-42546-1 SDG Number: September 2013 List Source: TestAmerica Corpus Christi 6 7 8 9 10

11

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Corpus Christi 1733 N. Padre Island Drive Corpus Christi, TX 78408 Tel: (361)289-2673

TestAmerica Job ID: 560-44348-1

TestAmerica Sample Delivery Group: December 2013 Client Project/Site: K-27 Groundwater Analysis

For:

MWH Americas Inc 2890 East Cottonwood Pkwy Suite 300 Salt Lake City, Utah 84121

Attn: Mr. Cary Ruble

Timothy L. Kelling

Authorized for release by: 12/30/2013 6:54:11 PM

Timothy Kellogg, Lab Director (361)289-2673 tim.kellogg@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.testamericainc.com

Definitions/Glossary

Client: MWH Americas Inc Project/Site: K-27 Groundwater Analysis

2

Glossary

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CNF	Contains no Free Liquid	J
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	8
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	9
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

3

Job ID: 560-44348-1

Laboratory: TestAmerica Corpus Christi

Narrative

Receipt

The samples were received on 12/17/2013 10:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.1° C. No analytical or quality issues were noted.

Client Sample ID: MW-1

TestAmerica Job ID: 560-44348-1
SDG: December 2013

Lab Sample ID: 560-44348-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type	Λ
Benzene	0.15		0.0020	0.00020	mg/L	1	8021B	Total/NA	- - -
Toluene	0.10		0.0020	0.00038	mg/L	1	8021B	Total/NA	E
Ethylbenzene	0.013		0.0020	0.00020	mg/L	1	8021B	Total/NA	Ð
Xylenes, Total	0.12		0.0020	0.00065	mg/L	1	8021B	Total/NA	

Client Sample ID: MW-4

No Detections.

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 560-44348-1

Client Sample ID: MW-1

Date Collected: 12/11/13 12:40 Date Re

ate Collected: 12/11/13 12:40 Matrix: Water Date Received: 12/17/13 10:40									
Method: 8021B - Volatile Organ	iic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.15		0.0020	0.00020	mg/L			12/19/13 10:49	1
Toluene	0.10		0.0020	0.00038	mg/L			12/19/13 10:49	1
Ethylbenzene	0.013		0.0020	0.00020	mg/L			12/19/13 10:49	1
Xylenes, Total	0.12		0.0020	0.00065	mg/L			12/19/13 10:49	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		58 - 129		12/19/13 10:49	1
Trifluorotoluene (Surr)	100		54 - 130		12/19/13 10:49	1

Client Sample ID: MW-4

Date Collected: 12/11/13 12:55 Date Received: 12/17/13 10:40

Lab Sample ID: 560-44348-2 Matrix: Water

5

Method: 8021B - Volatile Organi	ic Compounds ((GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00020		0.0020	0.00020	mg/L			12/19/13 11:17	1
Toluene	<0.00038		0.0020	0.00038	mg/L			12/19/13 11:17	1
Ethylbenzene	<0.00020		0.0020	0.00020	mg/L			12/19/13 11:17	1
Xylenes, Total	<0.00065		0.0020	0.00065	mg/L			12/19/13 11:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	80		58 - 129			-		12/19/13 11:17	1
Trifluorotoluene (Surr)	86		54 - 130					12/19/13 11:17	1

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 560-96379/5 Matrix: Water											Client S	ample ID: Metho Prep Type: 1	d Blank otal/NA
Analysis Batch: 96379													
		MB	MB										
Analyte	Re	sult	Qualifier	R	L	MDL	Unit		D	P	repared	Analyzed	Dil Fac
Benzene	<0.00	020		0.002	0.0	0020	mg/L					12/19/13 09:53	1
Toluene	<0.00	038		0.002	0.0	0038	mg/L					12/19/13 09:53	1
Ethylbenzene	<0.00	020		0.002	0.0	0020	mg/L					12/19/13 09:53	1
Xylenes, Total	<0.00	065		0.002	0 0.0	0065	mg/L					12/19/13 09:53	1
		ΜВ	МВ										
Surrogate	%Recov	very	Qualifier	Limits						P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		84		58 - 129	_				-			12/19/13 09:53	1
Trifluorotoluene (Surr)		86		54 - 130								12/19/13 09:53	1
Lab Sample ID: LCS 560-96379/ Matrix: Water Analysis Batch: 96379	4								CI	ient	Sample	ID: Lab Control Prep Type: T	Sample otal/NA
				Spike	LCS	LCS						%Rec.	
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Benzene				0.0400	0.0364			mg/L			91	70 - 130	
Toluene				0.0400	0.0361			mg/L			90	70 - 130	
Ethylbenzene				0.0400	0.0367			mg/L			92	70 - 130	
Xylenes, Total				0.120	0.108			mg/L			90	70 ₋ 130	
	LCS	LCS											
Surrogate	%Recovery	Qual	ifier	Limits									
4-Bromofluorobenzene (Surr)	93			58 - 129									
Trifluorotoluene (Surr)	89			54 - 130									

Client Samp	le ID: MW-1							Lab Sample	ID: 560-44348-1
Date Collected	: 12/11/13 12:4	10							Matrix: Water
Date Received	: 12/17/13 10:4	10							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8021B		1	96379	12/19/13 10:49	RQH	TAL CC	
Client Samp	le ID: MW-4							Lab Sample	ID: 560-44348-2
Date Collected	: 12/11/13 12:	55						-	Matrix: Water
Date Received	: 12/17/13 10:4	0							
Γ	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8021B		1	96379	12/19/13 11:17	RQH	TAL CC	

Laboratory References:

TAL CC = TestAmerica Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673

Certification Summary

Client: MWH Americas Inc Project/Site: K-27 Groundwater Analysis

Laboratory: TestAmerica Corpus Christi

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Kansas	NELAP	7	E-10362	10-31-14
Oklahoma	State Program	6	9968	08-31-14
Texas	NELAP	6	T104704210-12-8	03-31-14
USDA	Federal		P330-11-00060	02-03-14

Client: MWH Americas Inc Project/Site: K-27 Groundwater Analysis

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	TAL CC

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CC = TestAmerica Corpus Christi, 1733 N. Padre Island Drive, Corpus Christi, TX 78408, TEL (361)289-2673

Client: MWH Americas Inc Project/Site: K-27 Groundwater Analysis TestAmerica Job ID: 560-44348-1 SDG: December 2013

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
560-44348-1	MW-1	Water	12/11/13 12:40	12/17/13 10:40
560-44348-2	MW-4	Water	12/11/13 12:55	12/17/13 10:40

Christi	
Corpus	nd Drive
America	<pre>4 Padre Islai</pre>
Test	1733 N

٢ C с Ч С

Corpus Christi, TX 78408 2hone (361) 289-2673 Fax (361) 289-2471	2		usiouy Record	-	nit i fanta mi faqaqadamfata. Trsiring
Client Information	Sampler. CCI	Lab PM: Kellogg, Ti	mothy L.	Carrier Tracking No(s):	COC No: 560-11604-1157.1
lien Contact Mr-Berliel Wede Christicshier Lee	Phone: 303 291 224	E-Mail: 2. tim.kellogg	@testamericainc.com		Page: Loc: 560
Sompany MVVH Americas Inc			Analysis Rec	quested	Job #. 44348
kidress: 1801 California Street Suite 2900	Due Date Requested:	7. S. J.			Presei
Xiy: Denver Istela Zin	TAT Requested (days):				A - NO B - Na C - Zn - Nitric Acid P - Na204S
20, 80202 20, 80202 Phone:	PO #: Durchton Order net rocuitou				E - NaHSO4 Q - Na2SO3 F - MeOH R - Na2S2SO3 G - Amchlor S - H2SO4
10-12/2011/10/10/2020/00/10/2020/00/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020/2020	VTWO # C-STL-				H - Ascorpic Acid I - 15P Dodecahydrate - Ice U - Acetone J - Di Water V - MCAA
tolect Name: San Juan River Basin Pit Sites	Project #: 56000058	6 (Xez			K - EDTA W - ph 4-5 L - EDA Z - other (specify)
ille: <-27	SSOW#:	N OSI			Others
	Sample Type Sample (C=com	Matrix (w-water, S ^{n=solid} , Id Filltered	X3T8 - 80	iedmuń la	
sample identification	Sample Date Time G=grab	ation Code; XX	×		Special Instructions/Note:
MLX-1	12/11/13 1240 Ca	Water			
	12/11/13 1255 61	Water			
		Water			
		Water			
		Water			
irip Blank		Water			
				560-44348 Chain of Cu	stody
Cossible Hazard Identification	DB Turknown Fadiolocical	Sa	mple Disposal (A fee may be a Return To Client	ssessed if samples are retained isposal Bv Lab	l longer than 1 month) For Months
Jelive able Requested: I, II, IV, Other (specify)		Sp	ecial Instructions/QC Requiremer	ıts:	
Empty Kit Relinquished by:	Date:	Time:	n de fan de f	Method of Shipment:	
Lattraupped by	Date/Time: 12/16/13 0900	Company	Received	Date/Time:	5 10: 400 TACC
elinquished by:	Date/Tifme.	Company	Received by:	Date/Time:	Company
telinquished by:	Date/Time:	Company	Received by:	Date/Time:	Company
Clestody Seals Intact: Custody Seal No.: A Yes A No			Cooler Temperature(%) °C articlother &e	Z-I ILLIS	
de an an an an an an an an ann an ann an a		- Andrews		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Charles and a second and

Page 11 of 12

12/30/2013

Login Sample Receipt Checklist

Client: MWH Americas Inc

Login Number: 44348 List Number: 1

Creator: Rood, Vivian R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

12

Job Number: 560-44348-1

SDG Number: December 2013

List Source: TestAmerica Corpus Christi