AP-56

Chevron AGWMR

2013

Kegan W. Boyer, P.G. Project Manager Upstream Business Unit Environmental Management Company 1400 Smith Street Room 07076 Houston, Texas 77002 Tel 713-372-7705 kegan.boyer@chevron.com

February 17, 2015

Mr. Jim Griswold Environmental Bureau New Mexico Oil Conservation Division 1220 South Saint Francis Drive Santa Fe, New Mexico 87505

Re: Mark Owen #9 Reserve Pit (AP #57) AP-56 TJO 2013 Annual Groundwater Monitoring and Site Assessment Report

Dear Mr. Griswold,

On behalf of Chevron Environmental Management Company (CEMC), Conestoga-Rovers & Associates (CRA) has prepared the enclosed report 2013 Annual Groundwater Monitoring and Site Assessment Report for the Mark Owen #9 Reserve Pit (AP #57) project. The enclosed document provides information regarding the results of assessment and monitoring activities completed at the site during calender year 2013. A comprehensive report detailing the results of groundwater monitoring and assessment activities completed in calendar year 2014 will be forthcoming soon.

CEMC appreciates your continued support of our efforts at the Mark Owen #9 site. Should you have any questions, please do not hesitate to contact me by phone at 713-372-7705 or via e-mail at kegan.boyer@chevron.com.

Sincerely,

hege- Hoge

Kegan W. Boyer, P.G. Environmental Project Manager

cc: Bernie Bockish, CRA

www.CRAworld.com

2013 Annual Groundwater Monitoring and Site Assessment Report

Mark Owen No. 9 NMOCD AP No. 57

Prepared for: Chevron Environmental Management Company

Conestoga-Rovers & Associates

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110

January 2015 • 046121 • Report No. 10

Table of Contents

Section 1.0	Project Information and Release Background1 Regulatory Framework1		
Section 2.0			
Section 3.0	Soil Boring and Monitor Well Plugging and Abandonment Activities2		
	3.1	Soil Analytical Results	3
Section 4.0	Geophysical Surveys of Subsurface Soil		3
	4.1	Geophysical Survey Coverage	4
	4.2	Geophysical Survey Methods	4
	4.3	EM31 Conductivity Results	5
	4.4	Electrical Resistivity Survey Results	6
	4.5	Geophysical Survey Conclusions	7
Section 5.0	Groundwater Monitoring Activities8		8
	5.1	Potentiometric Surface and Gradient	9
	5.2	Analytical Results	9
Section 6.0	Summary of Findings10		
Section 7.0	Recommendations10		

List of Figures (Following Text)

- Figure 1 Site Location Map
- Figure 2 Site Details Map
- Figure 3 Geophysical Survey Coverage
- Figure 4 EM31 Conductivity Survey Results
- Figure 5 Electrical Resistivity Results Line 1
- Figure 6 Electrical Resistivity Results Line 2

- Figure 7 Electrical Resistivity Results Line 3
- Figure 8 March 2013 Groundwater Gradient Map
- Figure 9 June 2013 Groundwater Gradient Map
- Figure 10 September 2013 Groundwater Gradient Map
- Figure 11 November 2013 Groundwater Gradient Map
- Figure 12 March 2013 Chloride Concentration Map
- Figure 13 June 2013 Chloride Concentration Map
- Figure 14 September 2013 Chloride Concentration Map
- Figure 15 November 2013 Chloride Concentration Map
- Figure 16 March 2013 TDS Concentration Map
- Figure 17 June 2013 TDS Concentration Map
- Figure 18 September 2013 TDS Concentration Map
- Figure 19 November 2013 TDS Concentration Map

List of Tables

- Table 1
 Summary of Soil Analytical Data BTEX, TPH, & Chloride
- Table 2Groundwater Gauging Summary
- Table 3 Groundwater Analytical Summary BTEX & TPH
- Table 4Summary of Groundwater Analytical Data RCRA Metals and Groundwater
Quality Parameters

List of Appendices

- Appendix A Soil Boring Logs
- Appendix B NMOCD Approved Plugging Plan of Operations
- Appendix C Soil Laboratory Analytical Reports
- Appendix D Groundwater Laboratory Analytical Reports

Section 1.0 Project Information and Release Background

This Annual Groundwater Monitoring Report presents groundwater data collected during the 2013 reporting period at Mark Owen #9 Reserve Pit (Site). On March 19, June 6, September 12, and November 19, 2013, Conestoga-Rovers & Associates (CRA) conducted the quarterly groundwater monitoring events on behalf of Chevron Environmental Management Company (CEMC).

The legal description of the Site is the NW/4 of the SE/4 of Section 34, Township 21 South, Range 37 East, Lea County, New Mexico (**Figure 1**). The Site is situated immediately southeast of the town of Eunice, New Mexico and is associated with a release of fluids from the reserve pit used for the drilling of the Mark Owen #9 oil well by Chevron in 2006. Global Positioning System (GPS) coordinates for the site are latitude 32° 25' 56.49" north and longitude 103° 08' 46.27" west. The O-GRID number assigned to the Site is reported as #4323. The Mark Owen #9 well site is currently operated by Chevron USA. A Site details map is provided as **Figure 2**.

A Revised Stage 1 Abatement Plan (AP) for the Mark Owen #9 Reserve Pit was submitted on behalf of CEMC by CRA to the New Mexico Oil Conservation Division (NMOCD) in a correspondence dated March 13, 2007. The NMOCD assigned AP #57 to this Abatement Plan, however, the agency did not approve the March 2007 submittal. Consequently, CEMC performed additional investigation work in October 2007 in order to collect additional soil and groundwater data. An Interim Investigation Report was submitted to the agency in March 2008 summarizing the results of the October 2007 investigation. Reports for 2008, 2009, and 2010 were submitted by CRA to CEMC who in turn submitted the reports to the NMOCD in Santa Fe, New Mexico. Currently the Site is monitored quarterly. A revised AP has been submitted to the NMOCD. The scope of this AP has been verbally agreed to by the NMOCD and CEMC. Currently, public notifications have been completed and CEMC is waiting on final approval of the AP by the NMOCD.

Section 2.0 Regulatory Framework

The NMOCD guidelines require groundwater to be analyzed for constituents of concern (COC) as defined by the New Mexico Water Quality Control Commission (NMWQCC) regulations. The NMWQCC regulations provide Human Health Standards for Groundwater. The COC in affected groundwater at the Site is chloride. In this report, groundwater analytical results for chloride, TDS, BTEX, sulfates and total alkalinity are compared to the NMWQCC standards shown in the following table:

Analyte	NMWQCC Standard for Groundwater (mg/L)
Chloride ²	250
Fluoride ¹	1.6
Nitrate (NO ₃ as N) ¹	10
Sulfate $(SO_4)^2$	600
Total Dissolved Solids (TDS) ²	1,000
Benzene ¹	0.01
Toluene ¹	0.75
Ethylbenzene ¹	0.75
Total Xylenes ¹	0.62

Notes:

- 1) ¹NMWQCC Human Health Standards per NMAC 20.6.2.310B
- 2) ²NMWQCC Other Standards for Domestic Water Supply per NMAC20.6.2.3103B

Section 3.0 Soil Boring and Monitor Well Plugging and Abandonment Activities

Prior to the initiation of soil boring or well plugging and abandonment activities on Site, work was performed to allow safe access to the former reserve pit. On October 23, 2013, RWI, under the supervision of CRA and Chevron, leveled the pit bottom and smoothed and sloped the pit side walls to a 1:1 slope. The work was completed under a Chevron approved Dig Plan and Excavation Permit.

Additional subsurface investigation work was performed at the Site during 2013. White Drilling of Clyde, Texas advanced three soil borings at the Site. Borings B-1, B-2, and B-3 were advanced at the site between November 19 and 20, 2013. Prior to mobilizing drilling equipment to the Site, the boring locations were marked and a New Mexico One Call utility locate ticket was completed at least 48-hours prior to mobilization. A Chevron Dig Plan and Excavation Permit were completed and approved by the Chevron, Eunice Field Management Team following the utility locate. Each boring location was pre-cleared by air knife prior to drilling. Borings were located within the Site's former reserve pit. The bottom of the former reserve pit is estimated at a depth of approximately 8 feet below ground surface (bgs). Soil boring B-1 was located in the northeast corner of the reserve pit, B-2 was located in the center of the reserve pit, and B-3 was located in the northwest corner of the reserve pit (**Figure 2**).

Borings were drilled using an air rotary drill rig. Sampling was performed using a 24-inch long, 2 inch diameter split spoon. Soil samples were collected in five foot intervals beginning at a depth of five feet below the pit bottom. Soil samples were collected for laboratory analysis.

Soil samples and drill cuttings were used for logging the soil type. Soil borings B-1, B-2, and B-3 were each advanced to a total depth of 21.5 feet below the pit floor. Groundwater was not encountered in any of the three borings and all borings were plugged using hydrated bentonite chips. Boring logs for B-1, B-2 and B-3 are included in **Appendix A**.

Also located within the former reserve pit at the Site was Temporary Monitor Well, TMW-3 (**Figure 2**). The temporary well was properly plugged and abandoned on November 19th, 2013 in accordance with the New Mexico Office of the State Engineer approved Plugging Plan of Action (**Appendix B**). The PVC well casing was cut off below grade and approximately six gallons of 95% Type I/II Portland cement and 5% bentonite was pumped from the bottom of well casing to ground surface.

3.1 Soil Analytical Results

Four soil samples were collected from each of the three soil borings (total of 12 samples) for laboratory analysis. Soil samples were collected in laboratory prepared containers, packed on ice, and sent under chain of custody documentation to Xenco Laboratories of Odessa, Texas. Soil samples were analyzed for chloride by Environmental Protection Agency (EPA) Method 300.0. A summary of soil analytical data has been included as **Table 1**.

Soil samples collected from B-1 indicated concentrations of chloride above the site specific NMOCD Recommended Remediation Action Level (RRAL) of 250mg/kg. Soil samples collected from soil borings B-2 and B-3 indicated chloride concentrations in soil below the 250 mg/kg RRAL. The corresponding laboratory analytical report has been included in **Appendix C**.

Section 4.0 Geophysical Surveys of Subsurface Soil

CRA completed a geophysical investigation at the Site located in Lea County, New Mexico, for CEMC between December 16 and 20, 2013. The purpose of the investigation was to assess the extent of suspected chloride-impacted areas in the subsurface. The geophysical investigation consisted of an electromagnetic (EM) survey and an electrical resistivity (ER) survey. An EM31 terrain conductivity meter (EM31) was used for the collection of conductivity measurements within the shallow subsurface, to an approximate depth of 17 feet below ground surface (bgs). Apparent resistivity measurements were collected along three ER survey lines to an approximate depth of 50 feet bgs, and these data were utilized to produce a 2-dimensional image of resistivity response in the subsurface beneath the Site.

4.1 Geophysical Survey Coverage

The geophysical survey coverage for both surveys is presented on **Figure 3**. The EM31 conductivity survey was completed over areas surrounding the former pit (where accessible), on survey lines spaced approximately 30 feet apart. The EM31 survey lines were oriented slightly east of a south to north trend. Topographic features such as access roads, perimeter and floor of the former reserve pit, pump jack compound and well pad were also surveyed for position control. The ER survey lines were completed to the west, east, and north of the former pit at line orientations as indicated on **Figure 3**.

4.2 Geophysical Survey Methods

The geophysical methods used for the investigation can be briefly described as follows. The EM31 consists of transmitter and receiver coils located at opposite ends of a 14-foot long boom. In vertical dipole mode (with the instrument held at hip level), this coil configuration yields an approximate depth of investigation of 17 feet bgs. The survey was conducted in metal detection mode, by logging the quadrature (Q) component of the induced secondary field. The secondary field Q component measures the conductivity of the shallow subsurface, and yields results in milliSiemens per meter (mS/m). The EM31 was used to determine the horizontal or lateral extent of suspected shallow chloride impacts, by delineating areas of elevated conductivity response. During the course of the survey, data were automatically stored in a Juniper Pro4000 data logger connected to a Leica GS-20 differential global positioning system (DGPS) receiver for position control. Both the EM31 survey data and DGPS points were collected at 1 second intervals. The DGPS locations are reported as New Mexico State Plane coordinates, North American Datum of 1983 (NAD83) Geodetic System.

The ER survey was completed using a Syscal R1 Plus receiver manufactured by Iris instruments, and a 72-electrode spread. The Syscal R1 Plus is a multi-electrode resistivity imaging system, with an internal switching board and a 200 Watt power source. The output current is automatically adjusted to optimize the input voltage values and ensure the best measurement quality. This system is designed to automatically survey pre-defined sets of resistivity measurements with roll-along capability.

Electrical resistivity profiles were completed along three sides of the former pit. Each survey setup utilized a 72-electrode spread configuration with 5-foot electrode spacings. A Wenner array was employed, whereby the two voltage electrodes were at the center of the profile and bound by the two current electrodes for each measurement. This array yielded a depth of investigation of approximately 50 feet bgs, along survey lines approximately 360 feet long.

Upon return from the Site, the ER survey and EM31 data were downloaded to a computer and compiled for data processing and plotting. The apparent resistivity data were imported into an inversion software program (RES2DINV), and processed to yield a modeled profile section of resistivity.

4.3 EM31 Conductivity Results

The EM31 data were processed as a colored contour plot, and superimposed over an aerial photograph outlining the surveyed area as presented on **Figure 4**. The highest intensity conductivity responses are colored red to purple, while areas of low response are colored blue. All remaining intermediate responses correspond to the color scale presented on the figure.

Review of the EM31 results reveals that the conductivity generally ranged from 5 to 50 mS/m, with the exception of the following. Several negative responses (contoured dark blue) were also observed, typically along linear trends in the southwest corner and along the northern boundary of the survey grid. These responses corresponded to locations where the EM31 survey crossed over metal pipes found on the ground surface. In locations where the survey was completed along the axis of a metal pipe the EM31 response was elevated, with peak values of approximately 70 mS/m. This result was observed in the northeast quadrant of the survey coverage, and is attributed to the pipe acting as an infinitely long conductor when the EM31 meter was oriented parallel to it.

Results from non-impacted areas including the survey coverage west of the former reserve pit indicate that the background conductivity responses typically ranged from 5 to 10 mS/m. Slightly anomalous responses were observed around the perimeter and within the floor of the former reserve pit. Peak responses up to 50 mS/m were observed at the top of slope in the north east corner of the former reserve pit. However, the elongated shape of this response suggests that this result is likely due to the presence of a buried metal object, such as a piece of metal pipe.

The slightly anomalous responses emanating from the former reserve pit appear to extend to the south and south east, beneath the pump jack compound and crushed aggregate pad to areas beyond the survey coverage. The direction of suspected chloride plume migration in the shallow subsurface is consistent with the flow of shallow groundwater beneath the Site. It must be noted that no anomalous responses in the shallow subsurface were observed immediately west and north of the reserve pit and that to the east, only slightly anomalous responses were observed.

Thus, the responses of suspected chloride-impacted areas associated with the former pit were only slightly anomalous and generally measured 3 to 5 times higher than background values. This is in comparison to CRA's experience with other former reserve pit investigations, where anomalous responses ten to twenty times higher than background are commonly measured.

4.4 Electrical Resistivity Survey Results

The locations of the electrical resistivity survey lines can be found on **Figure 3**. The modeled resistivity results are presented on **Figures 5** to **7**. As previously mentioned, these profiles were generated by processing the measured apparent resistivity data with the inversion program RES2DINV, to yield a modeled resistivity section for each line of the survey. The modeled sections represent the resistance of soils in the shallow subsurface, and thus provide an interpretation of the overburden sequences and areas of suspected chloride impacts along the lines of survey. Stratigraphic logs of nearby monitor wells have also been provided on the sections, to allow comparison between resistivity response and the various soil types encountered in the shallow subsurface.

The highest resistivity values on the modeled sections are colored dark blue, while areas of low resistivity (or conversely, high conductivity) are colored red to purple. All remaining intermediate responses correspond to the color scale presented at the bottom of the sections. Review of the colored plots reveals that contour intervals ranging from 17.5 to 1500 Ohm-m were applied. The plots also indicate that suspected chloride-impacted soils can be characterized by a measured resistivity response of approximately 17.5 to 40 Ohm-m.

The modeled resistivity sections indicate that the vertical distribution of suspected chloride impacts is variable for the three lines of survey. The results for each of the ER survey lines can be further described as follows.

Line 1 was located along the western boundary of the reserve pit and crushed aggregate service pad. This area is upgradient of the direction of shallow groundwater flow, and thus was expected to characterize background conditions and corresponding resistivity responses. Review of the modeled resistivity results presented on **Figure 5** indicates that the response from ground surface to approximately 15 feet bgs was dominated by elevated resistivity values in excess of 750 Ohm.m. This response was attributed to silty sands and caliche observed in the field, and confirmed by the stratigraphic log for well MW-3. Between 15 and 35 feet bgs, the resistivity response generally ranged from 250 to 750 Ohm.m, and reflected the presence of interbedded sand and sandstone. Beneath this depth interval, low resistivities of 40 to 150 Ohm.m indicated the presence of a clay sequence.

However, lower resistivity values of 17.5 to 40 Ohm.m were measured at depth at the north end of the survey line, adjacent to the former pit. These results suggest that chloride has likely impacted the sand layer overlying a clay sequence in this area.

Line 2 transected the crushed aggregate pad and continued along the eastern boundary of the former reserve pit. The modeled resistivity results for Line 2 presented on **Figure 6** indicate that suspected chloride impacts appear to extend from the shallow subsurface south of the pit to the deeper subsurface adjacent to the pit. Low resistivity values ranging from 17.5 to 40 Ohm.m were observed on surface east of the oil wellhead, and also across the deeper saturated zone at depths of 40 to 50 feet bgs. Based on the stratigraphic log for well MW-1, the chloride has impacted a sand sequence overlying a clay confining layer. Resistivity responses of 55 to 175 Ohm.m indicate that the upper saturated zone (20 to 40 feet bgs) has also been impacted by chloride. At the north end of the survey coverage, resistivity responses of 750 to 2000 Ohm.m reveal that no chloride impacts have occurred in the shallow subsurface.

The modeled resistivity results for Line 3 presented on **Figure 7** reveal that the shallow overburden between 15 to 20 feet bgs yielded resistivity values ranging from 750 to 3000 Ohm.m. These results indicate that the interbedded sand and caliche at these depths have not been impacted by chloride. However, the underlying saturated zone was characterized by responses of 17.5 to 100 Ohm.m, with the more conductive responses located at the base of the section where clay was encountered. The resistivity response between 20 to 50 feet bgs indicates that soils at this depth have been impacted by chloride which emanated from the former pit. Similar to the results observed for the other survey lines, the chloride impacts appear to occur in sandy sequences located above a clay confining layer.

4.5 Geophysical Survey Conclusions

Based on the results of the geophysical investigation presented herein, the following conclusions are presented:

- The EM31 conductivity results indicated areas of background response and the approximate limits of suspected chloride impacts, to a depth of approximately 17 feet bgs.
- The EM31 survey indicated that the conductivity responses beneath the former pit and downgradient area to the southeast was only slightly elevated, and generally measured 3 to 5 times higher than background values.
- With the exception of low resistivity values suggesting chloride impacts at depth adjacent to the former pit, the ER survey characterized background responses along Line 1 located to the west of the pit.

- The ER survey delineated the vertical extent of the suspected chloride impacts along Line 2 located adjacent to the oil wellhead and at depth along the eastern boundary of the former pit, where low resistivity responses indicative of chloride impacts were observed above a confining clay layer.
- To the north of the pit on survey Line 3, the ER survey confirmed the presence of un-impacted sand and caliche in the shallow subsurface and above the water table, and delineated chloride impacts in the saturated zone overlying the clay confining layer.

Section 5.0 Groundwater Monitoring Activities

The Site is monitored quarterly with a network of four monitor wells (MW-1, MW-2, MW-3, and MW-4) installed in October 2007, three wells (MW-5, MW-6, and MW-7) installed in September 2010 and three wells (MW-8, MW-9 and RW-1) installed in September 2011. Two monitor wells (MW-10 and MW-11) were installed in December 2012 and subsequently added to the quarterly schedule. Each well has an above-ground surface completion.

Monitor wells were sampled using disposable Hydrasleveeves[™], a no purge, passive sampling method accepted by the EPA. Prior to sampling the monitor wells, a measurement of the static water level and a vertical conductivity profile were completed for each well using a Solinst[®] Temperature, Water Level, and Conductivity (TLC) meter. The static water level of each well was measured to the nearest hundredth of a foot. Conductivity profiles were completed by taking readings at approximately one foot intervals within the water column present in each well. Once water level and conductivity profile information was recorded, a Hydrasleeve[™] was placed in the well and left undisturbed over night to allow the well to equilibrate prior to sampling. Within the 24 hours following placement of the Hydrasleeves[™], samples were collected by removing the self-filling samplers from each well. Laboratory-supplied sample containers were filled directly from the Hydrasleeves[™] and water quality parameters, including pH, temperature and conductivity, were recorded.

The groundwater samples were placed on ice in insulated coolers and chilled to a temperature of approximately 4 $^{\circ}$ C (40 $^{\circ}$ F). Samples were delivered to Xenco Laboratories of Odessa, Texas using EPA-approved chain-of-custody procedures. Water samples were analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) by EPA Method 8260B, total alkalinity (as CaCO₃) by SM2320B, chloride and sulfate by EPA Method 300/300.1, and total dissolved solids (TDS) by SM2540C.

Groundwater sampling activities did not generate purge water and disposal was not required.

5.1 Potentiometric Surface and Gradient

Groundwater elevation data are presented in **Table 2** and are consistent with elevations from the 2013 data. Groundwater gradient maps for March, June, September and November 2013 are presented as **Figures 8**, **9**, **10** and **11**, respectively. Groundwater elevations ranged from 3367.95 feet above mean sea level (amsl) to 3371.93 feet amsl on March 18, 2013, from 3367.73 feet to 3371.77 feet amsl on June 6, 2013, from 3367.50 feet to 3371.87 feet amsl on September 11, 2013, and from 3367.86 feet to 3371.87 feet amsl on November 19, 2013. Groundwater flow at the Site is to the southeast at a gradient of 0.0056-foot/foot. Potentiometric surface maps for each quarter of groundwater sampling in 2013 are included as **Figure 8** through **Figure 11**.

5.2 Analytical Results

The 2013 analytical results are summarized in **Table 3** and **Table 4**. Eleven monitor wells and one recovery well (MW-1 thru MW-11 and RW-1) were sampled during each quarterly event. Site monitor wells exceeded chloride and TDS NMWQCC standards during the quarterly monitoring events except for MW-2 in March and September 2013, and MW-3 and MW-4 during the four 2013 quarterly events. Monitor Well MW-8 was the only well to exceed the sulfate NMWQCC standard. Although concentrations of sulfate in samples collected from MW-8 exceed the NMWQCC standard, it is unlikely that this is a result of the reserve pit release since monitor wells upgradient of MW-8 with higher concentrations of chlorides and TDS have lower concentrations of sulfate. The elevated level of sulfate in MW-8 might reflect naturally occurring conditions or could have the potential to be associated with off-Site operations. Constituents of BTEX were below NMWQCC standards in all groundwater samples collected in 2013. Isopleth maps approximating chloride and TDS concentration contours for the March, June, September and November 2013 events are shown on **Figures 12** through **19**.

Groundwater COCs detected above the NMWQCC "Other Standards for Domestic Water Supply" are shaded in **Table 4**.

A duplicate sample was collected from MW-9 during the March 2013 monitoring event, from RW-1 in June 2013, from MW-7 in September 2013, and from MW-5 in November 2013. Duplicate constituents were detected without any significant deviations during the March, June, and September monitoring events. Constituents detected in the duplicate collected from MW-5 during the November 2013 event deviated significantly for sulfate, chloride and TDS. Copies of the certified analytical reports and chain-of-custody documentation are attached in **Appendix D**.

Section 6.0 Summary of Findings

Based on groundwater assessment activities performed by CRA at the Site in March, June, September and November, 2013, the summaries of findings include the following:

- Groundwater elevations ranged from 3367.95-feet to 3371.93-feet on March 18, 2013, from 3367.73-feet to 3371.77-feet on June 6, 2013, from 3367.50-feet to 3371.87-feet on September 11, 2013, and from 3367.86-feet to 3371.87-feet above mean sea level on November 19, 2013. Groundwater flow at the Site is to the southeast at a gradient of 0.0056-ft/ft.
- Site monitor wells exceeded chloride and TDS NMWQCC standards during the quarterly monitoring events except for MW-2 in March and September 2013, and MW-3 and MW-4 during all four 2013 quarterly events.
- Sulfate was detected at concentrations above the NMWQCC standard in MW-8 during all four quarterly monitoring events in 2013;
- The chloride plume is not delineated to the south or east of current site monitor wells.

Section 7.0 Recommendations

Based upon the summary of findings presented in this report, the following is recommended:

- Delineate groundwater impacts to the east and south of the reserve pit;
- Subsequent to the delineation of the plume, CRA will evaluate remedial alternatives to address the chloride impacted groundwater.
- Continue quarterly groundwater monitoring in 2014 to monitor the chloride, TDS, and sulfate levels in site monitor wells.

Respectfully Submitted,

CONESTOGA ROVERS & ASSOCIATES

ugoo Mataion

Christine Mathews Project Scientist

Bernard Bockisch, PMP Sr. Project Manager

Figures

046121-10(010)GN-DL006 FEB 27/2014

LEGEND

NOTES:

- MONITOR WELL LOCATION
- SOIL BORING LOCATION
- PROPOSED MONITOR WELL
- PROPOSED SOIL BORING
- 1. SOIL BORING, FENCE AND MONITOR WELL LOCATIONS SURVEYED BY WEST AND COMPANY DECEMBER 3, 2007 AND OCTOBER 8, 2010
- 2. MW-5, MW-6, AND MW-7 WERE INSTALLED IN SEPTEMBER 2010
- 3. MW-8, MW-9, AND RW-1 WERE INSTALLED IN SEPTEMBER 2011
- 4. MW-10 AND MW-11 WERE INSTALLED IN DECEMBER 2012

Figure 2

SITE DETAILS MAP MARK OWEN #9 RESERVE PIT NW/4 OF SE/4 SECTION 34; T-21-S, R-37-E LEA CO., NM Chevron Environmental Management Company

EM31 SURVEY LINE LOCATION ELECTRICAL RESISTIVITY SURVEY LINE LOCATION MONITORING WELL LOCATION MW-3

46121-00(010)GN-WA001 FEB 28/2014

MARK OWEN #9 RESERVE PIT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY Lea County, New Mexico

46121-00(010)GN-WA002 FEB 28/2014

46121-00(010)GN-WA003 FEB 28/2014

46121-00(010)GN-WA003 FEB 28/2014

Figure 6

Lea County, New Mexico

46121-00(010)GN-WA003 FEB 28/2014

CR

ELECTRICAL RESISTIVITY RESULTS - LINE 3 MARK OWEN #9 RESERVE PIT CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY Lea County, New Mexico

Figure 7

NW/4 OF SE/4 SECTION 34; T-21-S, R-37-E LEA CO., NM

Chevron Environmental Management Company

- MW-10 AND MW-11 WERE INSTALLED IN DECEMBER 2012
- WELLS WERE SAMPLED ON MARCH 19, 2013

NOTES:

- SOIL BORING, FENCE AND MONITOR WELL LOCATIONS SURVEYED BY WEST AND COMPANY DECEMBER 3, 2007 AND OCTOBER 8, 2010 1.
- 2. MW-5, MW-6, AND MW-7 WERE INSTALLED IN SEPTEMBER 2010

- MW-10 AND MW-11 WERE INSTALLED IN DECEMBER 2012
- WELLS WERE SAMPLED ON JUNE 14, 2013

046121-10(010)GN-DL003 OCT 21/2014

Figure 13

JUNE 2013 CHLORIDE CONCENTRATION MAP MARK OWEN #9 RESERVE PIT 3. MW-8, MW-9, AND RW-1 WERE INSTALLED IN SEPTEMBER 2011 NW/4 OF SE/4 SECTION 34; T-21-S, R-37-E LEA CO., NM Chevron Environmental Management Company

NOTES:

- 1. SOIL BORING, FENCE AND MONITOR WELL LOCATIONS SURVEYED BY WEST AND COMPANY DECEMBER 3, 2007 AND OCTOBER 8, 2010
- 2. MW-5, MW-6, AND MW-7 WERE INSTALLED IN SEPTEMBER 2010

MW-8, MW-9, AND RW-1 WERE INSTALLED IN SEPTEMBER 2011

- MW-10 AND MW-11 WERE INSTALLED IN DECEMBER 2012
- WELLS WERE SAMPLED ON SEPTEMBER 12, 2013

046121-10(010)GN-DL003 OCT 21/2014

SEPTEMBER 2013 CHLORIDE CONCENTRATION MAP MARK OWEN #9 RESERVE PIT NW/4 OF SE/4 SECTION 34; T-21-S, R-37-E LEA CO., NM *Chevron Environmental Management Company*

Figure 14

NOTES:

- SOIL BORING, FENCE AND MONITOR WELL LOCATIONS SURVEYED BY WEST AND COMPANY DECEMBER 3, 2007 AND OCTOBER 8, 2010 1.
- 2. MW-5, MW-6, AND MW-7 WERE INSTALLED IN SEPTEMBER 2010

- MW-10 AND MW-11 WERE INSTALLED IN DECEMBER 2012
- WELLS WERE SAMPLED ON NOVEMBER 19, 2013

046121-10(010)GN-DL003 OCT 21/2014

Figure 15 NOVEMBER 2013 CHLORIDE CONCENTRATION MAP MARK OWEN #9 RESERVE PIT NW/4 OF SE/4 SECTION 34; T-21-S, R-37-E LEA CO., NM

Chevron Environmental Management Company

Tables

SOIL ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY MARK OWEN #9 RESERVE PIT RELEASE NW/4, SE/4, SECTION 34, TOWNSHIP 21 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

					FTINI		TOTAL		Т	TPH (8015 Mod	ified)
SAMPLE ID	DATE	DEPTH (feet)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	BTEX (mg/kg)	CHLORIDE (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH (GRO/DRO) (mg/kg)
					1 1 20 11 -0		T (1 D 1 I				
	Ne	w Mexico O	il Conservation I	Division Recomme	ended Remediati	on Action Levels (Total Rankir	ng Score 30)			100
			mg/Kg				mg/Kg				mg/Kg
	•		1	Soil I	Boring Samples				•		
SB-1/MW-1 9-10'	10/22/2007	9-10	<0.00248	<0.00683	< 0.00592	<0.001819	BDL	74.4	0.324J	220	220
SB-1/MW-1 19-20'	10/22/2007	19-20	<0.00254	<0.00699	<0.00607	<0.001869	BDL	302	0.392J	<1.25	<1.25
SB-1/MW-1 29-30'	10/22/2007	29-30	<0.00229	<0.0063	< 0.00547	<0.0168	BDL	168	0.317J	<1.13	<1.13
SB-2 9-10'	10/23/2007	9-10	< 0.00241	<0.00663	<0.00575	<0.01766	BDL	20.1	0.399J	<1.19	<1.19
SB-2 19-20'	10/23/2007	19-20	<0.00238	<0.00656	<0.00569	<0.01747	BDL	22.7	0.423J	<1.18	<1.18
SB-2 29-30'	10/23/2007	29-30	<0.00247	<0.00681	<0.00591	<0.01815	BDL	46.4	0.361J	<1.22	<1.22
SB-3 9-10'	10/23/2007	9-10	<0.00216	<0.00594	<0.00515	<0.01582	BDL	21.3	0.397J	78	78
SB-3 19-20'	10/23/2007	19-20	<0.00215	< 0.00592	0.01010J	0.0201J	BDL	17.1	0.306J	<1.06	<1.06
SB-3 29-30'	10/23/2007	29-30	< 0.00258	0.00717J	<0.00616	<0.0189	BDL	30.3	0.314J	16	16
SB-4 9-10'	10/23/2007	9-10	<0.00223	<0.00613	<0.00532	<0.01634	BDL	26.7	0.372J	13	13
SB-4 19-20'	10/23/2007	19-20	<0.00255	< 0.00704	<0.0061	<0.01874	BDL	25.2	0.334J	<1.26	<1.26
SB-4 30-31'	10/23/2007	30-31	< 0.00239	<0.00659	0.00828J	<0.01755	BDL	29.8	0.354J	<1.18	<1.18
SB-5/MW-2 9-10'	10/23/2007	9-10	< 0.00229	<0.00631	<0.00547	<0.01680	BDL	12	0.368J	<1.13	<1.13
SB-5/MW-2 19-20'	10/23/2007	19-20	< 0.0025	<0.00689	<0.00598	<0.01836	BDL	20.9	0.331J	<1.24	<1.24
SB-5/MW-2 33-34'	10/23/2007	33-34	< 0.00216	<0.00596	<0.00517	<0.01589	BDL	35	0.330J	320	320
SB-6/MW-3 9-10'	10/24/2007	9-10	< 0.00222	< 0.00612	<0.00531	<0.01631	BDL	20.5	0.241J	<1.1	<1.1
SB-6/MW-3 19-20'	10/24/2007	19-20	<0.00209	< 0.00574	<0.00498	<0.01531	BDL	14.1	0.315J	<1.03	<1.03
SB-6/MW-3 31-32'	10/24/2007	31-32	<0.00253	<0.00697	< 0.00604	<0.01856	BDL	43.1	0.330J	250	250
SB-7/MW-4 9-10'	10/24/2007	9-10	<0.00258	<0.00711	<0.00617	<0.01895	BDL	24.2	0.352J	26	26
SB-7/MW-4 19-20'	10/24/2007	19-20	< 0.00206	<0.00569	<0.00493	<0.01516	BDL	1080	0.358J	15	15
SB-7/MW-4 29-30'	10/24/2007	29-30	< 0.00263	<0.00726	<0.00629	<0.01933	BDL	217	0.389J	410	410

1 of 3

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY MARK OWEN #9 RESERVE PIT RELEASE NW/4, SE/4, SECTION 34, TOWNSHIP 21 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

									Т	PH (8015 Mod	ified)
SAMPLE ID	DATE	DEPTH (feet)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	TOTAL BTEX (mg/kg)	CHLORIDE (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH (GRO/DRO) (mg/kg)
	Ne	w Mexico Oi	il Conservation E	Division Recomme	ended Remediati	on Action Levels (Fotal Rankir	ig Score 30)			
			10				50.0				100
			mg/Kg	C-111	Denta - Comulas		mg/Kg				mg/Kg
MMA/-5 20'	9/22/2010	20	<0.0021	<0.0021	<0.0021	<0.0054	RDI	98.1	<0.200	11	11
MW-5 25'	9/22/2010	20	<0.0021	<0.0021	<0.0021	< 0.0054	BDL	132	<0.200	8.2	8.2
MW-5 35'	9/22/2010	35	<0.0022	<0.0022	<0.0022	<0.0056	BDL	172	<0.200	<4.6	BDL
MW-6 20'	9/22/2010	20'	<0.0021	<0.0021	<0.0021	<0.0052	BDI	71.6	< 0.200	<4.2	BDI
MW-6 30'	9/22/2010	30	<0.0021	<0.0021	<0.0021	<0.0052	BDL	108	< 0.200	11	11
MW-6 35'	9/22/2010	35	<0.0020	<0.0020	<0.0020	< 0.0051	BDL	57.5	<0.200	7.8	7.8
MW-7 5'	9/22/2010	5	< 0.0021	< 0.0021	< 0.0021	< 0.0053	BDL	11.5	< 0.200	<4.2	BDL
MW-7 10'	9/22/2010	10	<0.0020	<0.0020	<0.0020	< 0.0051	BDL	30.9	< 0.200	<4.2	BDL
MW-7 35'	9/22/2010	35	<0.0022	< 0.0022	<0.0022	< 0.0055	BDL	14.1	<0.200	<4.4	BDL
MW-8 30'-35'	9/12/2011	30-35	< 0.00109	< 0.00219	< 0.00109	< 0.00328	BDL	309	<16.4	31	60
MW-8 40'-45'	9/12/2011	40-45	< 0.00117	< 0.00233	< 0.00117	< 0.00333	BDL	275	<17.6	<17.6	BDL
MW-8 45-50	9/12/2011	45-50	< 0.00111	< 0.00222	< 0.00111	<0.00333	BDL	105	<16.6	<16.6	BDL
MW-9 30-35	9/12/2011	30-35	< 0.00107	< 0.00215	< 0.00107	< 0.00322	BDL	20.5	<16.1	<16.1	BDL
MW-9 35-40	9/12/2011	35-40	< 0.00109	< 0.00218	< 0.00109	<0.00327	BDL	33.7	<16.4	<16.4	BDL
MW-9 45-50	9/12/2011	45-50	< 0.00124	< 0.00249	< 0.00124	<0.00373	BDL	522	<18.7	<18.7	BDL
RW-1 10-15	9/13/2011	10-15	< 0.00104	< 0.00208	< 0.00104	< 0.00312	BDL	10.4	<15.6	<15.6	BDL
RW-1 30-35	9/13/2011	30-35	< 0.00106	< 0.00212	< 0.00106	<0.00318	BDL	93.5	<15.9	<15.9	BDL
RW-1 40-45	9/13/2011	40-45	< 0.00134	< 0.00268	< 0.00134	< 0.00402	BDL	3770	<20.3	<20.3	BDL
MW-10 20-25	12/3/2012	20-25	< 0.00105	< 0.00211	< 0.00105	< 0.00105	< 0.00105	27.3	<15.9	<15.9	BDL
MW-10 30-35	12/3/2012	30-35	< 0.00116	< 0.00233	< 0.00116	<0.00116	< 0.00116	52.9	<17.5	<17.5	BDL
MW-11 35-40	12/3/2012	35-40	< 0.00101	< 0.00203	< 0.00101	< 0.00101	< 0.00101	4.8	<15.3	<15.3	BDL
MW-11 50-55	12/3/2012	50-55	<0.00111	<0.00223	<0.00111	<0.00111	< 0.00111	98.8	<16.8	<16.8	BDL
S-046121-111813-CM-B-1 (5-6.5)	11/18/13	5-6.5	NA	NA	NA	NA	NA	570	NA	NA	NA
S-046121-111813-CM-B-1 (10-11.5)	11/18/13	10-11.5	NA	NA	NA	NA	NA	904	NA	NA	NA
S-046121-111813-CM-B-1 (15-16.5)	11/18/13	15-16.5	NA	NA	NA	NA	NA	3,300	NA	NA	NA
S-046121-111813-CM-B-1 (20.21.5)	11/18/13	20-21.5	NA	NA	NA	NA	NA	968	NA	NA	NA

CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY MARK OWEN #9 RESERVE PIT RELEASE NW/4, SE/4, SECTION 34, TOWNSHIP 21 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

SAMPLE ID									1	TPH (8015 Mod	lified)
	DATE	DEPTH (feet)	BENZENE (mg/kg)	TOLUENE (mg/kg)	ETHYL- BENZENE (mg/kg)	XYLENES (mg/kg)	TOTAL BTEX (mg/kg)	CHLORIDE (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH (GRO/DRO) (mg/kg)
	Ne	w Mexico O	il Conservation D	Division Recomme	ended Remediati	on Action Levels (Total Rankiı	ng Score 30)			
			10				50.0				100
			mg/Kg				mg/Kg				mg/Kg
				Soil	Boring Samples						
S-074636-112013-CM-B-2(5-6.5)	11/18/13	5-6.5	NA	NA	NA	NA	NA	26.9	NA	NA	NA
S-074636-112013-CM-B-2(10-11.5)	11/18/13	10-11.5	NA	NA	NA	NA	NA	16.9	NA	NA	NA
S-074636-112013-CM-B-2(15-16.5)	11/18/13	15-16.5	NA	NA	NA	NA	NA	105	NA	NA	NA
S-074636-112013-CM-B-2(20-21.5)	11/18/13	20-21.5	NA	NA	NA	NA	NA	167	NA	NA	NA
S-046121-111813-CM-B-3 (5-6.5)	11/18/13	5-6.5	NA	NA	NA	NA	NA	15.9	NA	NA	NA
S-046121-111813-CM-B-3 (10-11.5)	11/18/13	10-11.5	NA	NA	NA	NA	NA	16.0	NA	NA	NA
S-046121-111813-CM-B-3 (16-17.5)	11/18/13	15-16.5	NA	NA	NA	NA	NA	64.6	NA	NA	NA
S-046121-111813-CM-B-3 (20-21.5)	11/18/13	20-21.5	NA	NA	NA	NA	NA	109	NA	NA	NA

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs ³)
MW-01	11/1/2007	4	54.00	32.55			3371.13	
3,403.68	4/25/2008		54.03	32.60			3371.08	
	9/16/2008			32.81			3370.87	
	4/20/2009		55.00	32.72			3370.96	
	10/26/2009		54.10	32.75			3370.93	
	2/25/2010		53.90	32.68			3371.00	
	6/3/2010		54.02	32.80			3370.88	
	8/31/2010		53.85	32.51			3371.17	
	11/22/2010		53.90	32.40			3371.28	
	3/10/2011		53.86	32.44			3371.24	
	6/3/2011		53.88	32.80			3370.88	16'-51'
	8/23/2011		53.88	32.78			3370.90	
	12/16/2011			32.69			3370.99	
	3/22/2012		54.17	32.66			3371.02	
	6/11/2012			32.79			3370.89	
	9/25/2012		53.87	32.90			3370.78	
	12/13/2012		54.10	32.71			3370.97	
	3/18/2013		53.89	32.70			3370.98	
	6/6/2013		54.08	32.84			3370.84	
	9/11/2013		53.90	32.87			3370.81	
	11/19/2013		53.94	32.61			3371.07	
MW-02	11/1/2007	4	60.00	36.24			3371.99	
3,408.23	4/25/2008		60.29	36.40			3371.83	
	9/16/2008			36.48			3371.75	
	4/20/2009		60.22	36.45			3371.78	
	10/26/2009		60.30	36.46			3371.77	
	2/25/2010		61.25	36.42			3371.81	
	6/3/2010		60.26	36.41			3371.82	
	8/31/2010		60.28	36.05			3372.18	
	11/22/2010		60.19	35.93			3372.30	
	3/10/2011		60.19	36.18			3372.05	
	6/3/2011		60.18	36.36			3371.87	22'-57'
	8/23/2011		60.18	36.31			3371.92	
	12/16/2011		60.18	36.34			3371.89	
	3/22/2012		60.33	36.35			3371.88	
	6/11/2012			36.49			3371.74	
	9/25/2012		60.18	36.51			3371.72	
	12/13/2012		60.18	36.33			3371.90	
	3/18/2013		60.18	36.45			3371.78	
	6/6/2013		60.29	36.59			3371.64	
	9/11/2013		60.14	36.45			3371.78	
	11/19/2013		60.68	36.11			3372.12	

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs ³)
MW-03	11/1/2007	4	56.50	34.69			3372.35	
3,407.04	4/25/2008		57.55	34.89			3372.15	
	9/16/2008			35.00			3372.04	
	4/20/2009		57.51	35.02			3372.02	
	10/26/2009		57.44	35.05			3371.99	
	2/25/2010		58.60	34.88			3372.16	
	6/3/2010		57.52	35.03			3372.01	
	8/31/2010		57.55	34.62			3372.42	
	11/22/2010		57.55	34.53			3372.51	
	3/10/2011		57.43	34.81			3372.23	
	6/3/2011		57.47	34.91			3372.13	19'-54'
	8/23/2011		57.45	34.96			3372.08	
	12/16/2011			35.02			3372.02	
	3/22/2012		57.58	35.02			3372.02	
	6/11/2012			35.15			3371.89	
	9/25/2012		57.46	35.15			3371.89	
	12/13/2012		57.58	35.03			3372.01	
	3/18/2013		57.58	35.11			3371.93	
	6/6/2013		57.53	35.27			3371.77	
	9/11/2013		57.49	35.17			3371.87	
	11/19/2013		58.02	34.85			3372.19	
MW-04	11/1/2007	4	54.00	32.69			3372.05	
3,404.74	4/25/2008		54.22	32.83			3371.91	
	9/16/2008			33.02			3371.72	16'-51'
	4/20/2009		54.23	33.02			3371.72	10-51
	10/26/2009		54.25	33.05			3371.69	
	2/25/2010		54.92	33.00			3371.74	
	6/3/2010		54.07	33.05			3371.69	
	8/31/2010		54.15	32.85			3371.89	
	11/22/2010		54.15	32.55			3372.19	
	3/10/2011		54.14	32.79			3371.95	
	6/3/2011		54.15	33.04			3371.70	
	8/23/2011		54.15	33.00			3371.74	
	12/16/2011			33.02			3371.72	
	3/22/2012		54.25	33.04			3371.70	16'-51'
	6/11/2012			33.15			3371.59	
	9/25/2012		54.15	33.28			3371.46	
	12/13/2012		54.14	33.08			3371.66	
	3/18/2013		54.23	33.09			3371.65	
	6/6/2013		54.25	33.28			3371.46	
	9/11/2013		54.02	33.44			3371.30	
	11/19/2013		54.19	32.92			3371.82	

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs ³)
MW-05	11/22/2010	4	52.74	31.62			3370.48	
3402.1	3/10/2011		52.64	31.59			3370.51	
	6/3/2011		52.65	31.88			3370.22	
	8/23/2011		52.63	31.82			3370.28	
	12/15/2011			31.80			3370.30	
	3/20/2012		52.63	31.73			3370.37	
	6/11/2012			31.87			3370.23	15'-50'
	9/25/2012		52.63	32.05			3370.05	
	12/13/2012		52.63	31.89			3370.21	
	3/18/2013		52.62	31.76			3370.34	
	6/6/2013		52.76	31.94			3370.16	
	9/11/2013		52.84	32.07			3370.03	
	11/19/2013		52.52	31.79			3370.31	
MW-06	11/22/2010	4	48.68	29.26			3370.98	
3400.24	3/10/2011		48.37	29.37			3370.87	
	6/3/2011		48.36	29.69			3370.55	
	8/23/2011		48.36	29.65			3370.59	
	12/15/2011			29.71			3370.53	
	3/20/2013		48.45	29.65			3370.59	
	6/11/2012			29.78			3370.46	10'-45'
	9/25/2012		48.68	30.16			3370.08	
	12/13/2012		48.69	29.83			3370.41	
	3/18/2013		48.68	29.75			3370.49	
	6/6/2013		48.68	29.91			3370.33	
	9/11/2013		48.41	30.18			3370.06	
	11/19/2013		48.50	29.74			3370.50	
MW-07	11/22/2010	4	51.01	30.07			3372.06	
3402.13	3/10/2011		51.00	30.24			3371.89	
	6/3/2011		51.15	30.52			3371.61	
	8/23/2011		51.10	30.50			3371.63	
	12/15/2011			30.55			3371.58	
	3/20/2012		51.00	30.52			3371.61	
	6/11/2012			30.65			3371.48	13'48'
	9/25/2012		51.04	30.87			3371.26	
	12/13/2012		51.20	30.66			3371.47	
	3/18/2013		51.20	30.60			3371.53	
	6/6/2013		51.21	30.80			3371.33	
	9/11/2013		51.10	30.92			3371.21	
	11/19/2013		51.00	30.50			3371.63	

GROUNDWATER GAUGING SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY MARK OWEN #9 RESERVE PIT RELEASE NW/4, SE/4, SECTION 34, TOWNSHIP 21 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

WELL TOC elev ¹	DATE	Well Diameter (inches)	Total Depth (ft below TOC)	Depth to Water (ft below TOC)	Depth to LNAPL (ft below TOC)	LNAPL Thickness (ft)	Corrected Groundwater Elevation (ft above MSL ²)	Screen interval (bgs ³)
MW-08	12/16/2011	4		27.88			3369.36	20'-50'
3397.24	3/20/2012		53.41	27.79			3369.45	
	6/11/2012			28.00			3369.24	
	9/25/2012		53.40	28.17			3369.07	
	12/13/2012		53.42	27.98			3369.26	
	3/18/2013		53.41	27.87			3369.37	
	6/6/2013		53.44	28.10			3369.14	
	9/11/2013		53.31	28.25			3368.99	
	11/19/2013		53.44	28.03			3369.21	
MW-09	12/16/2011	4		34.72			3370.04	20'-50'
3404.76	3/20/2012		53.40	34.64			3370.12	
	6/11/2012			34.76			3370.00	
	9/25/2012		53.45	34.90			3369.86	
	12/13/2012		53.45	34.78			3369.98	
	3/18/2013		53.45	34.68			3370.08	
	6/6/2013		53.47	34.81			3369.95	
	9/11/2013		53.35	34.89			3369.87	
	11/19/2013		53.41	34.69			3370.07	
MW-10	12/13/2012	4	61.80	31.19			3367.85	30'-60'
3399.04	3/18/2013		61.76	31.09			3367.95	
	6/6/2013		61.75	31.31			3367.73	
	9/11/2013		61.72	31.54			3367.50	
	11/19/2013		62.51	31.18			3367.86	
MW-11	12/13/2012	4	81.40	42.64			3369.10	40'-80'
3411.74	3/18/2013		80.82	42.71			3369.03	
	6/6/2013		80.83	42.82			3368.92	
	9/11/2013		80.50	42.83			3368.91	
	11/19/2013		82.09	42.61			3369.13	
RW-1	12/16/2011	6		32.04			3370.99	20'-50'
3403.03	3/20/2012		53.16	32.00			3371.03	
	6/11/2012			32.11			3370.92	
	9/25/2012		53.30	32.40			3370.63	
	12/13/2012		53.17	32.08			3370.95	
	3/18/2013		53.16	32.03			3371.00	
	6/6/2013		53.34	32.20			3370.83	
	9/11/2013		53.20	32.27			3370.76	
	11/19/2013		53.26	32.00			3371.03	

Notes:

¹TOC - Top of Casing

²MSL - Mean Sea Level

³BGS - Below ground surface

Professional Survey conducted by West Company of Midland, Inc. on December 10, 2007.

Well	Commite Data	Democratic	Taluana	Ethyl-	Tatal Valence	TPH		
ID	Sample Date	benzene	Toluene	Benzene	Total Aylenes	GRO	DRO	Total
		New Mexico	Water Quali	ity Control C	ommission St	andard		
		0.01	0.75	0.75	0.62			
MW-1	11/1/07	<0.00006	< 0.0001	< 0.00012	< 0.00021	< 0.02014	< 0.36	< 0.38014
	4/25/08	<0.00037	<0.00039	< 0.00042	0.00035	< 0.050	< 0.000024	< 0.050024
	9/16/08	< 0.001	< 0.001	< 0.001	<0.003	< 0.100	0.25	0.25
	4/21/09	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
DUP	4/21/09	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	10/27/09	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	2/25/10	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
DUP	2/25/10	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	8/31/10	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	11/22/10	< 0.0002	<.0002	<.0002	<0.0006	NA	NA	NA
	3/10/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	6/3/11	< 0.0010	< 0.0020	< 0.0020	<0.0010	NA	NA	NA
	8/24/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	12/26/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	3/22/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/11/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	9/26/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	12/14/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	9/12/13	<0.0010	< 0.0010	<0.0010	<0.0010	NA	NA	NA
	11/20/13	<0.0010	< 0.0020	<0.0010	<0.0010	NA	NA	NA
MW-2	11/1/07	<0.00006	0.00035J	< 0.00012	< 0.00021	< 0.02014	1.8	1.82014
	4/25/08	<0.00037	<0.00039	< 0.00042	0.00035	< 0.050	< 0.000024	< 0.050024
	9/16/08	< 0.001	< 0.001	< 0.001	< 0.003	< 0.100	0.07	0.070
	4/21/09	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	10/27/09	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	2/25/09	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	8/31/10	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	11/22/10	< 0.0002	< 0.0002	< 0.0002	<0.0006	NA	NA	NA
	3/10/11	< 0.0010	< 0.0020	< 0.0020	<0.0010	NA	NA	NA
	6/3/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	8/24/11	< 0.0010	< 0.0020	< 0.0020	<0.0010	NA	NA	NA
DUP	8/24/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	12/16/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	3/22/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/11/12	<0.0010	< 0.0010	<0.0010	<0.0010	NA	NA	NA
	9/26/12	< 0.0010	<0.0020	<0.0010	<0.0010	NA	NA	NA
	12/14/12	< 0.0010	<0.0020	<0.0010	<0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	6/6/13	<0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	9/12/13	<0.0010	< 0.0010	<0.0010	< 0.0010	NA	NA	NA
	11/20/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA

Well	1 Sample Date	Benzene Toluene	Taluana	Ethyl-	Total Valence	TPH		
ID	Sample Date	Benzene	Toluene	Benzene	I otal Xylenes	GRO	DRO	Total
		New Mexico	o Water Quali	ity Control Co	ommission St	andard		
		0.01	0.75	0.75	0.62			
MW-3	11/1/07	<0.00006	0.0005J	< 0.00012	< 0.00021	< 0.02014	<0.36	< 0.38014
	4/25/08	<0.00037	< 0.00039	< 0.00042	0.00035	< 0.050	< 0.000024	< 0.050024
	9/16/08	< 0.001	< 0.001	< 0.001	< 0.003	< 0.100	0.073	0.073
	4/21/09	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	10/27/09	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	2/25/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	8/31/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	11/22/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	3/10/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	6/3/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	8/24/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	12/16/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	3/22/12	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	6/11/12	< 0.0010	< 0.0010	<0.0010	< 0.0010	NA	NA	NA
	9/26/12	<0.0010	<0.0020	<0.0010	< 0.0010	NA	NA	NA
	12/14/12	<0.0010	<0.0020	<0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	< 0.0010	0.00146	NA	NA	NA
	9/12/13	<0.0010	<0.0010	<0.0010	<0.0010	NA	NA	NA
	11/20/13	<0.0010	<0.0020	<0.0010	< 0.0010	NA	NA	NA
MW-4	11/1/07	< 0.00006	0.00052J	< 0.00012	< 0.00021	< 0.02014	<0.36	< 0.38014
DUP	11/1/07	< 0.00006	0.00054J	< 0.00012	< 0.00021	< 0.02014	<0.36	< 0.38014
	4/25/08	< 0.00037	< 0.00039	< 0.00042	0.00035	< 0.050	< 0.000024	< 0.050024
DUP	4/25/08	< 0.00037	< 0.00039	< 0.00042	0.00035	< 0.050	<0.000024	< 0.050024
	9/16/08	< 0.001	< 0.001	< 0.001	< 0.003	< 0.100	0.052	0.052
DUP	9/16/08	< 0.001	< 0.001	< 0.001	< 0.003	< 0.100	0.052	0.052
	4/21/09	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	10/27/09	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	2/25/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	8/31/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	11/22/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	3/10/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	6/3/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	8/24/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	12/16/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	3/22/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/11/12	< 0.0010	<0.0010	< 0.0010	< 0.0010	NA	NA	NA
	9/26/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	12/14/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	9/12/13	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	11/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA

Well Sample Date	Benzene Toluene	Toluono	Ethyl-	Total Vylanas		TPH		
ID	Sample Date	Delizene	Toruene	Benzene	Total Aylelles	GRO	DRO	Total
		New Mexico	o Water Quali	ity Control Co	ommission St	andard		
		0.01	0.75	0.75	0.62			
MW-5	9/23/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	< 0.0020	0.002	0.002
	11/22/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	3/10/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	6/3/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	8/24/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	12/16/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	3/22/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/11/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	9/26/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	12/14/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	9/12/13	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	11/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
DUP	11/19/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
MW-6	9/23/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	< 0.0020	0.280	0.280
	11/22/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
DUP	11/22/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	3/10/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	6/3/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
DUP	6/3/11	< 0.0010	< 0.0020	<0.0020	< 0.0010	NA	NA	NA
	8/24/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	12/16/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	3/22/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/11/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	9/26/12	< 0.0010	< 0.0010	<0.0010	< 0.0010	NA	NA	NA
	12/14/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	9/12/13	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	11/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
MW-7	9/23/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	< 0.0020	0.340	0.340
	11/22/10	< 0.0002	< 0.0002	< 0.0002	< 0.0006	NA	NA	NA
	3/10/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	6/3/11	< 0.0010	< 0.0020	<0.0020	< 0.0010	NA	NA	NA
	8/24/11	<0.0010	< 0.0020	<0.0020	<0.0010	NA	NA	NA
	12/16/11	<0.0010	< 0.0020	<0.0020	<0.0010	NA	NA	NA
	3/22/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/11/12	< 0.0010	< 0.0010	<0.0010	< 0.0010	NA	NA	NA
	9/26/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
DUP-1	9/26/12	< 0.0010	< 0.0010	< 0.0010	<0.0010	NA	NA	NA
	12/13/12	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	3/19/13	<0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA

Well	Well Sample Date	Benzene Toluene	Ethyl-	Total Valance		TPH		
ID	Sample Date	benzene	Toruene	Benzene	Total Aylenes	GRO	DRO	Total
		New Mexic	o Water Quali	ity Control C	ommission St	andard		
		0.01	0.75	0.75	0.62			
MW-7	6/6/13	<0.0010	<0.0020	<0.0010	<0.0010	NA	NA	NA
	9/12/13	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
DUP	9/12/13	<0.0010	< 0.0010	<0.0010	<0.0010	NA	NA	NA
	11/19/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
MW-8	12/16/11	<0.0010	< 0.0020	<0.0020	<0.0010	NA	NA	NA
	6/11/12	<0.0010	< 0.0010	<0.0010	<0.0010	NA	NA	NA
	3/22/12	<0.0010	< 0.0020	<0.0010	<0.0010	NA	NA	NA
	6/11/12	<0.0010	< 0.0010	<0.0010	< 0.0010	NA	NA	NA
	9/26/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	12/13/12	<0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	9/12/13	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	11/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
MW-9	12/16/11	0.0241	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	3/22/12	0.00108	<0.0020	<0.0010	< 0.0010	NA	NA	NA
	6/11/12	0.0301	<0.0010	<0.0010	< 0.0010	NA	NA	NA
	9/26/12	0.0854	<0.0020	<0.0010	0.00104	NA	NA	NA
	12/13/12	0.143	<0.0020	< 0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	<0.0020	< 0.0010	< 0.0010	NA	NA	NA
DUP	3/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	9/12/13	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	11/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
MW-10	12/14/12	< 0.0010	< 0.0020	< 0.0010	<0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	9/12/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	11/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
MW-11	12/14/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	9/12/13	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	11/19/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
RW-1	12/16/11	< 0.0010	< 0.0020	< 0.0020	< 0.0010	NA	NA	NA
	3/22/12	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA
	6/11/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
DUP-1	6/11/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	9/26/12	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA
	12/14/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	3/19/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
	6/6/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA
DUP-1	6/6/13	< 0.0010	< 0.0020	< 0.0010	< 0.0010	NA	NA	NA

GROUNDWATER ANALYTICAL SUMMARY - BTEX AND TPH CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY **OWEN #9 RESERVE PIT RELEASE** NW/4, SE/4, SECTION 34, TOWNSHIP 21 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

Well	Well Sample Date	Bonzono	Toluono	Ethyl-	Total Xylenes	ТРН			
ID	Sample Date	Benzene I oluene		Benzene		GRO	DRO	Total	
		New Mexico	Water Quali	ity Control Co	ommission St	andard			
		0.01	0.75	0.75	0.62				
RW-1	9/12/13	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	NA	NA	
	11/19/13	< 0.0010	< 0.0020	<0.0010	< 0.0010	NA	NA	NA	

Notes:

1) Highlighted concentrations above lab reporting limits.

2) BTEX analysis by EPA Method 8021B

3) TPH (GRO/DRO) analysis by EPA Method 8015 Modified.

4) Results shown in mg/L.
5) J = estimated value between RL & MDL

6) DUP = Duplicate sample

	RCRA Metals									Groundwater Quality			
Sample I. D.		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Alkalinity (CaCO ₃)	Chloride	Sulfate	Total Dissolved Solids
No.	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			NMWOCC H	luman Healtl	n Standards fo	or Groundwa	ter ¹			NMWQCC Oth	er Standards	for Domestic	Water Supply ²
-		0.1	1.0	0.01	0.05	0.05	0.002	0.05	0.05	-	250	600	1000
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L
MW-1	11/01/07	0.0144 B	0.0839	< 0.00073	< 0.00155	< 0.0021	< 0.000053	0.00752 B	< 0.00125	201	321	84.4	1,010
	04/25/08	0.0118 B	0.127	< 0.00073	0.0036 B	< 0.0021	< 0.000066	0.00536 B	< 0.00125	167	623	124	NA
	09/16/08	0.014	0.40	< 0.002	0.0024 B	< 0.003	< 0.0002	0.0072	< 0.005	146	1,590	154	3,620
	04/21/09	NA	NA	NA	NA	NA	NA	NA	NA	212	1,320	207	2,860
DUP	04/21/09	NA	NA	NA	NA	NA	NA	NA	NA	200	1,740	181	3,720
	10/27/09	NA	NA	NA	NA	NA	NA	NA	NA	126	9,770	297	19,000
	02/25/10	NA	NA	NA	NA	NA	NA	NA	NA	163	5,210	207	11,900
DUP	02/25/10	NA	NA	NA	NA	NA	NA	NA	NA	163	5,320	204	11,300
	06/03/10	NA	NA	NA	NA	NA	NA	NA	NA	140	7,390	243	15,200
	08/31/10	NA	NA	NA	NA	NA	NA	NA	NA	166	8,220	196	12,300
	11/22/10	NA	NA	NA	NA	NA	NA	NA	NA	158	8,070	264	17,600
	03/10/11	NA	NA	NA	NA	NA	NA	NA	NA	160	15,500	1350	26,000
	06/03/11	NA	NA	NA	NA	NA	NA	NA	NA	172	14,000	258	26,800
	08/23/11	NA	NA	NA	NA	NA	NA	NA	NA	140	14,200	886	28,500
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	148	15,800	665	31,000
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	17,700	488	30,900
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	224	5,290	247	11,000
DUP-1	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	166	4,630	293	10,400
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	154	17,600	619	34,100
	12/14/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	13,800	484	29,600
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	286	2,820	177	4,530
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	168	14,900	414	28,000
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	315	4,600	187	1,600
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	236	7,240	361	12,000
MW-2	11/01/07	0.0123 B	0.0979	< 0.00073	< 0.00155	< 0.0021	< 0.000053	0.00403 B	< 0.00125	187	200	72.4	698
	04/25/08	0.0133 B	0.0992	< 0.00073	0.00186 B	< 0.0021	< 0.000066	0.00315 B	< 0.00125	174	190	72.9	NA
	09/16/08	0.012	0.12 B	< 0.002	0.0056	< 0.003	< 0.0002	0.006	< 0.005	181	182	91.9	729
	04/21/09	NA	NA	NA	NA	NA	NA	NA	NA	203	167	172	744
	10/27/09	NA	NA	NA	NA	NA	NA	NA	NA	205	175	163	830
	02/25/10	NA	NA	NA	NA	NA	NA	NA	NA	224	167	193	832
	06/03/10	NA	NA	NA	NA	NA	NA	NA	NA	221	181	141	818
	08/31/10	NA	NA	NA	NA	NA	NA	NA	NA	226	208	138	814
	11/22/10	NA	NA	NA	NA	NA	NA	NA	NA	233	162	125	823

	RCRA Metals										Groundwa	ter Quality	
Sample I. D.		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Alkalinity (CaCO ₃)	Chloride	Sulfate	Total Dissolved Solids
No.	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			NIMMOCCI	Increase II colti	h Etam dan da fr	ur Cronen deuro	haw ¹			NMMOCC Of	or Standardo	for Domostic	Water Supply ²
		0.1	10			0.05	0.002	0.05	0.05	NinvQccou	250	600	1000
		mg/L	mg/L	mg/L	0.03 mg/L	0.05 mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L
MM-2	03/10/11	NA	NA	NA	NA	NA	NA	NA	NA	240	194	120	2 290
19177-2	06/03/11	NA	NA	NA	NA	NA	NA	NA	NA	260	229	144	1150
	$\frac{08}{23}$	NA	NA	NA	NA	NA	NA	NA	NA	200	242	197	837
DUP	08/23/11	NA	NA	NA	NA	NA	NA	NA	NA	180	249	201	1,160
	$\frac{12}{16}$	NA	NA	NA	NA	NA	NA	NA	NA	297	223	167	828
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	256	189	1,140
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	275	257	204	1050
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	286	256	204	1,130
	12/14/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	283	203	1030
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	334	257	116	928
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	306	138	84.8	972
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	311	270	156	1,160
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	344	239	108	942
MW-3	11/01/07	0.0185 B	0.102	< 0.00073	< 0.00155	< 0.0021	< 0.000053	0.00282 B	< 0.00125	212	77	40.6	476
	04/25/08	0.0218	0.0882	< 0.00073	0.00178 B	< 0.0021	<0.000066	< 0.00203	< 0.00125	206	99.3	49.9	NA
	09/16/08	0.026	0.096 B	< 0.002	< 0.005	< 0.003	< 0.0002	< 0.005	< 0.005	222	63.7	31.8	457
	04/21/09	NA	NA	NA	NA	NA	NA	NA	NA	229	53.6	32.2	447
	10/27/09	NA	NA	NA	NA	NA	NA	NA	NA	223	65.5	35.5	488
	02/25/10	NA	NA	NA	NA	NA	NA	NA	NA	231	62.7	34.8	467
	06/03/10	NA	NA	NA	NA	NA	NA	NA	NA	230	87.1	42.2	530
	08/31/10	NA	NA	NA	NA	NA	NA	NA	NA	226	82.4	46.8	495
	11/22/10	NA	NA	NA	NA	NA	NA	NA	NA	225	64	52.6	490
	03/10/11	NA	NA	NA	NA	NA	NA	NA	NA	220	292	98.2	1,560
	06/03/11	NA	NA	NA	NA	NA	NA	NA	NA	224	307	102	948
	08/23/11	NA	NA	NA	NA	NA	NA	NA	NA	160	101	53.7	290
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	209	335	137	834
DUP	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	208	309	126	1,030
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	168	83.3	956
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	212	307	141	1,180
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	222	290	137	1,080
	12/14/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	282	121	853
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	240	88.6	58	523
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	224	139	86	560
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	242	128	86.3	677
MW-3	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	259	130	80.2	608

		RCRA Metals								Groundwater Quality			
Sample I. D.		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Alkalinity (CaCO ₃)	Chloride	Sulfate	Total Dissolved Solids
No.	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			NMWOCC H	luman Healtl	h Standards fo	or Groundwa	ter ¹			NMWQCC Oth	er Standards	for Domestic	Water Supply ²
-		0.1	1.0	0.01	0.05	0.05	0.002	0.05	0.05	-	250	600	1000
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L
MW-4	11/01/07	0.0203	0.117	< 0.00073	< 0.00205	< 0.0021	< 0.000053	0.00425 B	< 0.00125	193	6,360	180	12,100
DUP	11/01/07	0.0176 B	0.116	< 0.00073	< 0.00155	< 0.0021	< 0.000053	0.00246B	< 0.00125	193	6,170	189	12,800
	04/25/08	0.0206	0.0856	< 0.00073	< 0.00155	< 0.0021	< 0.000066	0.00316 B	< 0.00125	195	5,680	163	NA
DUP	04/25/08	0.0203	0.0858	< 0.00073	< 0.00158	< 0.0021	< 0.000066	< 0.00203	< 0.00125	191	5,540	163	NA
	09/16/08	0.018	0.092 B	< 0.002	< 0.005	< 0.003	< 0.0002	< 0.005	< 0.005	196	4,420	136	8,140
DUP	09/16/08	0.019	0.088 B	< 0.002	< 0.005	< 0.003	< 0.0002	< 0.005	< 0.005	202	4,210	135	7,940
	04/21/09	NA	NA	NA	NA	NA	NA	NA	NA	208	128	33.2	551
	10/27/09	NA	NA	NA	NA	NA	NA	NA	NA	196	5,070	173	10,800
DUP	10/27/09	NA	NA	NA	NA	NA	NA	NA	NA	209	1,520	73.4	2,810
	02/25/10	NA	NA	NA	NA	NA	NA	NA	NA	189	10,600	339	21,800
	06/30/10	NA	NA	NA	NA	NA	NA	NA	NA	204	3,640	124	6,530
DUP	06/30/10	NA	NA	NA	NA	NA	NA	NA	NA	202	3,310	124	6,480
	08/31/10	NA	NA	NA	NA	NA	NA	NA	NA	205	3,520	121	6,480
DUP	08/31/10	NA	NA	NA	NA	NA	NA	NA	NA	207	3,520	125	6,480
	11/22/10	NA	NA	NA	NA	NA	NA	NA	NA	202	3,160	122	11,500
	03/10/11	NA	NA	NA	NA	NA	NA	NA	NA	280	36,900	5,970	63,200
	06/03/11	NA	NA	NA	NA	NA	NA	NA	NA	228	35,600	575	51,300
	08/23/11	NA	NA	NA	NA	NA	NA	NA	NA	170	39,500	3,690	90,800
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	172	33,700	<2500	68,500
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	15,600	472	28,300
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	16,500	492	27,600
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	283	7,870	284	14,600
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	173	38,200	1,320	66,900
	12/14/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	14,400	567	28,800
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	235	129	48.1	572
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	239	131	45.4	525
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	239	127	50.2	605
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	245	115	52.1	549
MW-5	09/23/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	571	102	NA
	11/22/10	NA	NA	NA	NA	NA	NA	NA	NA	285	1,030	120	2,500
	03/10/11	NA	NA	NA	NA	NA	NA	NA	NA	310	7,530	582	12,700
	06/03/11	NA	NA	NA	NA	NA	NA	NA	NA	288	6,480	376	13,400

		RCRA Metals								Groundwater Quality			
Sample I. D.		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Alkalinity (CaCO ₃)	Chloride	Sulfate	Total Dissolved Solids
No.	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			NMWOCC F	luman Healtl	h Standards fo	or Groundwa	ter ¹			NMWOCC Oth	er Standards	for Domestic	Water Supply ²
		0.1	1.0	0.01	0.05	0.05	0.002	0.05	0.05	~	250	600	1000
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L
MW-5	08/23/11	NA	NA	NA	NA	NA	NA	NA	NA	242	7,380	545	15,900
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	286	5,200	279	10,500
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	679	89.6	1,690
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	242	7,700	410	16,200
	09/25/12	NA	NA	NA	NA	NA	NA	NA	NA	240	7,570	485	15,700
	12/14/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	3,890	337	8,570
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	329	319	62.1	1,010
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	286	581	72.5	4,550
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	246	6,090	319	6,110
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	236	4,240	294	7,250
DUP-1	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	238	2,030	171	4,110
MW-6	09/23/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	554	349	NA
	11/22/10	NA	NA	NA	NA	NA	NA	NA	NA	198	589	310	1,710
DUP	11/22/10	NA	NA	NA	NA	NA	NA	NA	NA	193	551	302	1,720
	03/10/11	NA	NA	NA	NA	NA	NA	NA	NA	212	745	284	1,840
DUP	03/10/11	NA	NA	NA	NA	NA	NA	NA	NA	236	664	262	1,940
	06/03/11	NA	NA	NA	NA	NA	NA	NA	NA	232	796	296	2,270
DUP	06/03/11	NA	NA	NA	NA	NA	NA	NA	NA	220	797	299	3,290
	08/23/11	NA	NA	NA	NA	NA	NA	NA	NA	160	891	372	2,530
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	215	715	334	1,920
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	394	328	1,710
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	208	838	379	2,510
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	207	825	367	2,580
	12/14/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	888	384	2,000
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	249	307	256	1,220
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	249	304	252	1,080
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	250	264	226	1,130
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	255	254	228	1,010
MW-7	09/23/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	120	70.5	NA
	11/22/10	NA	NA	NA	NA	NA	NA	NA	NA	204	372	178	1,260
	03/10/11	NA	NA	NA	NA	NA	NA	NA	NA	20	798	252	1,880
	06/03/11	NA	NA	NA	NA	NA	NA	NA	NA	220	353	116	1,040

		RCRA Metals								Groundwater Quality			
Sample I. D.		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Alkalinity (CaCO ₃)	Chloride	Sulfate	Total Dissolved Solids
No.	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
			NMWOCC H	luman Healtl	h Standards fo	r Groundwa	ter ¹			NMWQCC Oth	er Standards	for Domestic	Water Supply ²
		0.1	1.0	0.01	0.05	0.05	0.002	0.05	0.05	-	250	600	1000
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L
MW-7	08/23/11	NA	NA	NA	NA	NA	NA	NA	NA	190	872	324	2,730
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	214	618	237	1,620
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	80	70.4	712
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	201	875	335	2,650
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	199	863	313	2,600
DUP-1	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	196	882	318	2,460
	12/13/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	195	86.4	779
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	218	420	166	1,220
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	215	556	214	1,180
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	222	457	181	1,480
DUP	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	219	473	187	1,680
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	250	538	207	1,210
MW-8	09/12/11	NA	NA	NA	NA	NA	NA	NA	NA	194	3,180	765	7,680
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	196	3,440	706	8,010
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	2,960	753	7,840
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	199	3,310	732	8,450
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	200	3,130	732	7,940
	12/13/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	4,360	725	6,660
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	219	2,590	755	5,860
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	224	2,280	712	4,810
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	227	2,040	674	5,600
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	235	2,110	731	4,620
MW-9	09/12/11	NA	NA	NA	NA	NA	NA	NA	NA	261	913	104	2,580
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	291	6,660	362	14,700
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	403	74.4	1,150
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	292	8,380	524	16,700
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	283	9,920	585	20,500
	12/13/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	10,000	595	17,500
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	308	385	81.3	1,170
DUP	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	306	400	88.3	1,200
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	326	393	79.6	1,040
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	329	359	64.5	1,260
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	330	2,000	153	3,720

GROUNDWATER ANALYTICAL SUMMARY - RCRA METALS AND GROUNDWATER QUALITY PARAMETERS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY MARK OWEN #9 RESERVE PIT RELEASE NW/4, SE/4, SECTION 34, TOWNSHIP 21 SOUTH, RANGE 37 EAST LEA COUNTY, NEW MEXICO

					RCRA N	Aetals				Groundwater Quality			
Sample I. D.		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Total Alkalinity (CaCO ₃)	Chloride	Sulfate	Total Dissolved Solids
No.	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	NMWOCC Human Health Standards for Groundwater ¹									NMWOCC Off	er Standards	for Domestic	Water Supply ²
		0.1	10	0.01	0.05	0.05	0.002	0.05	0.05		250	600	1000
		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L
MW-10	12/14/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,500	149	3,810
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	319	2,580	211	5,010
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	326	2,330	177	8,760
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	329	2,550	206	5,420
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	336	2,610	244	5,020
MW-11	12/14/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,030	224	2,000
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	255	3,480	127	6,940
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	238	3,760	113	4,430
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	241	4,290	106	5,320
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	242	4,630	166	10,600
RW-1	09/13/11	NA	NA	NA	NA	NA	NA	NA	NA	156	9,820D	306	18,600
	12/16/11	NA	NA	NA	NA	NA	NA	NA	NA	177	18,000	661	32,200
	03/22/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	17,800	944	34,200
	06/11/12	NA	NA	NA	NA	NA	NA	NA	NA	245	1,430	520	3,720
	09/26/12	NA	NA	NA	NA	NA	NA	NA	NA	183	19,100	665	35,500
	12/13/12	NA	NA	NA	NA	NA	NA	NA	NA	NA	17,300	633	29,600
	03/19/13	NA	NA	NA	NA	NA	NA	NA	NA	214	10,600	573	15,200
	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	203	17,000	457	27,200
DUP-1	06/06/13	NA	NA	NA	NA	NA	NA	NA	NA	201	16,100	451	32,000
	09/12/13	NA	NA	NA	NA	NA	NA	NA	NA	207	13,400	391	20,200
	11/19/13	NA	NA	NA	NA	NA	NA	NA	NA	202	11,500	558	21,500

Notes:

1) RCRA Metals Analysis by EPA Methods 6010B and 7470A.

2) Groundwater Quality by EPA Methods 160.1, 300.0, and 310.1.

3) Higlighted values indicate concentrations above NMWQCC Other Standards for Domestic Water Supply.

4)¹ NMWQCC Human Health Standards Per NMAC 20.6.2.3103A

5) ² NMWQCC Other Standards for Domestic Water Supply Per NMAC 20.6.2.3103B

6) NA= Not analyzed

7) DUP = Duplicate sample

6 of 6

Appendix A

Soil Boring Logs

Appendix B

NMOCD Approved Plugging Plan of Operations

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER ROSWELL

Scott Verhines, P.E. State Engineer DISTRICT II 1900 West Second St. Roswell, New Mexico 88201 Phone: (575) 622-6521 Fax: (575) 623-8559

November 15, 2013

Chevron c/o Bernard Bockisch Conestoga-Rover and Associates 6121 Indian School Road NE Suite 200 Albuquerque, NM 87110

RE: Well Plugging Plan of Operations for unidentified monitoring well Chevron Mark Owen Site, Eunice, New Mexico

Greetings:

Enclosed is your copy of the Well Plugging Plan of Operations for the above referenced project. The proposed method of operation is found to be acceptable and in accordance with the Rules and Regulations Governing Well Driller Licensing; Construction, Repair and Plugging of Wells 19.27.4 NMAC adopted August 31, 2005 by the State Engineer.

Sincerely,

Catherine (Cath) Goetz Water Resource Specialist District II Office of the State Engineer

Enclosure

WELL PLUGGING PLAN OF OPERATIONS

NOTE: A Well Plugging Plan of Operations shall be filed with and accepted by the Office of the State Engineer prior to plugging.

I. FILING FEE: There is no filing fee for this form.

II. GENERAL / WELL OWNERSHIP:

Existing Office of the State Engineer POD Number (Well Number) for well to be plugged: <u>Not permitted. Mark Owen site</u> well TMW-3

Name of well ow	ner: <u>Chevron</u>				
Mailing address:	P.O. Box 1949				
City:	Eunice	State:	NM	_ Zip code:8	3231
Phone number:	713-372-7705		E-mail:	kegan.boyer@chevr	on.com

III. WELL DRILLER INFORMATION:

Well Driller contracted to provide plugging services:	White Drilling C	ompany, Inc.	
New Mexico Well Driller License No.:	WD-1456	_ Expiration Date:	9/30/2014

IV. WELL INFORMATION:

Note: A	copy of the existing Well	Record for the w	vell to be	plugged	should be	attached	to this pla	an.	SUU SUU	CTAT
1)	GPS Well Location:	Latitude:	<u>32</u> 103	deg,	25	min, min	59 N 49 W	_sec_NAT	83	
2)	Rescon(e) for plugging w	ell: Well it	nitially in		n temno		itoring ma	_ 000, 14 <u></u> U		E Dt and in
2)	no longer needed		initiany in	stance a:						

- 3) Was well used for any type of monitoring program? <u>Yes</u> If yes, please use section VII of this form to detail what hydrogeologic parameters were monitored. If the well was used to monitor contaminated or poor quality water, authorization from the New Mexico Environment Department may be required prior to plugging.
- 4) Does the well tap brackish, saline, or otherwise poor quality water? <u>Yes</u> If yes, provide additional detail, including analytical results and/or laboratory report(s): <u>Groundwater from this well initially indicated a chloride concentration of 9,697 mg/L in 2006</u>
- 5) Static water level: <u>Approximately 30</u> (feet below land surface) feet above land surface (circle one)

5

6)	Depth of the well: Approximately 30 below bottom surface of reserve pit which is approximately 8 feet bgs
7)	Inside diameter of innermost casing:2 inches.
8)	Casing material:PVC
9)	The well was constructed with:
	an open-hole production interval, state the open interval:
	X a well screen or perforated pipe, state the screened interval(s): <u>18 to 30 feet bgs</u>
10)	What annular interval surrounding the artesian casing of this well is cement-grouted?N/A
11)	Was the well built with surface casing? If yes, is the annulus surrounding the surface casing grouted

12) Has all pumping equipment and associated piping been removed from the well? <u>N/A</u> If not, describe remaining equipment and intentions to remove prior to plugging in Section VII of this form.

or otherwise sealed? _____ If yes, please describe: _____

V. DESCRIPTION OF PLANNED WELL PLUGGING:

÷.

Note: If this plan proposes to plug an artesian well in a way other than with cement grout, placed bottom to top with a tremie pipe, a detailed diagram of the well showing proposed final plugged configuration shall be attached, as well as any additional technical information, such as geophysical logs, that are necessary to adequately describe the proposal.

- Describe the method by which cement grout shall be placed in the well, or describe requested plugging methodology proposed for the well: ______ Well will be grouted from total depth of well to land surface by means of a tremie pipe.
 Grout will be neat cement consisting of Portland Type I/II and 3 to 5% bentonite. Bentonite will be pre hydrated prior to adding Portland. Well casing will be cut off a minimum of six inches below grade and land surfaced restored to its current elevation.
- 2) Will well head be cut-off below land surface after plugging? _____ Yes

VI. PLUGGING AND SEALING MATERIALS:

Note:	The plugging of a well that taps poor quality water may require the use of a specialty cement or speci	ialty s	ealan	
1)	For plugging intervals that employ cement grout, complete and attach Table A.	NON	ER	
2)	For plugging intervals that will employ approved non-cement based sealant(s), complete and attack	n Tabl	e B.	
3)	Theoretical volume of grout required to plug the well to land surface: 4.8 gallons	\triangleright		
4)	Type of Cement proposed: Portland Type I/II with 3 to 5% bentonite	<u>.</u> 2		

- 5) Proposed cement grout mix: <u>6.0</u> gallons of water per 94 pound sack of Portland cement.
- 6) Will the grout be: _____ batch-mixed and delivered to the site

X mixed on site

10

7) Grout additives requested, and percent by dry weight relative to cement: Bentonite at 3-5%

Additional notes and calculations: 8)

. . .

VII. ADDITIONAL INFORMATION: List additional information below, or on separate sheet(s):

VIII. SIGNATURE:

I, <u>John W, White</u>, say that I have carefully read the foregoing Well Plugging Plan of Operations and any attachments, which are a part hereof; that I am familiar with the rules and regulations of the State Engineer pertaining to the plugging of wells and will comply with them, and that each and all of the statements in the Well Plugging Plan of Operations and attachments are true to the best of my knowledge and belief.

CK-	11/14/13
Signature of Applicant	Date

IX. ACTION OF THE STATE ENGINEER:

This Well Plugging Plan of Operations is:

 \underline{X} Approved subject to the attached conditions. Not approved for the reasons provided on the attached letter.

NOV 15 A E ENGINEER OFFICE Witness my hand and official seal this _____ day of _____ day of _____ 201 Ļ, Scott A. Verhines, State Engineer N By: ____ C. GOETZ For ANDY MORLEY

DISTRICT I SUPERNICON

Well Plugging Plan Version: December, 2011 Page 3 of 5

•

Conditions of Approval for Chevron Mark Owen Site Well Plugging Plan for TMW-3:

1) Per our email correspondence on 11/08/13, the Well Record indicates a bentonite and cement annular seal surrounding the subject well. Therefore, plugging the well in place will be acceptable for OSE regulations. The Well Record has been attached to the Plugging Plan for reference.

2) Plugging operations will be conducted in accordance with NMED, NMOCD, or other State or Federal agency having oversight for the above described project.

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow	
			Note: if the well is . non-artesian and breaches only one aquifer, . use only this column.	
Top of proposed interval of grout placement (ft bgl)			0 feet bgl	
Bottom of proposed interval of grout placement (ft bgl)			30 feet bgl	
Theoretical volume of grout required per interval (gallons)			4.8 gallons	
Proposed cement grout mix gallons of water per 94-lb. sack of Portland cement			6.0 gallons	
Mixed on-site or batch- mixed and delivered?			On-site	
Grout additive 1 requested			bentonite	
Additive 1 percent by dry weight relative to cement			3 to 5 %	
Grout additive 2 requested				
Additive 2 percent by dry weight relative to cement	1	an a	STATE ENGINE ROSE ENGINE	

TABLE A - For plugging intervals that employ cement grout. Start with deepest interval.

. . . .

 A
 B

 P:
 Fi

 P:
 Fi

 C:
 Fi

 Vell Plugging Plan

 Version: December, 2011

Page 4 of 5

TABLE B - For plugging intervals that will employ approved non-cement based sealant(s). Start with deepest interval.

. . .

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of sealant placement (ft bgl)			
Bottom of proposed sealant of grout placement (ft bgl)			
Theoretical volume of sealant required per interval (gallons)	•		
Proposed abandonment sealant (manufacturer and trade name)		-	

Well Plugging Plan Version: December, 2011 Page 5 of 5

Mark Owen #9 SB-4 - MW-1

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

1. OWNER OF WELL

Name: <u>Chevron</u>	W	ork Phone:		
Contact:			Home Phor	ne:
Address; P.O. Box 1	949			····
City: <u>Eunice</u>	State: <u>NM</u>	, <u>88231</u>		
2. LOCATION OF	WELL (A, B, C,	or D required, E	or F if known)	
A1/41/4	1/4 Section:	Township:	Range:]	N.M.P.M.
B. X =	feet, Y =	fè	ot. N.M. Coordi	nate System
Zone in the				Grant.
U.S.G.S. Quad Map				
C. Latitude: 32 d.2	5 m 59 N s Lon	gitude: 103 d 08	m 49 w	
D. East	(m), North	(m), UTM	Zone 13, NAD	(27 or 83
	· · · ·			
B. Traot No, M	lap No. of	the	Hydrogram	hic Survey
F. Lot No, Blo	ock No. of I	Jnit/Tract	yy	of the
	Subdivision re	corded in	· · · ·	County.
G. Other:		· · · ·	· · · · ·	
H. Give State Enginee	r File Number if e	xisting well:		
I. On land owned by (required):	· · · · · · · · · · · · · · · · · · ·		

3. DRILLING CONTRACTOR

License Number: WD1478	
Name: Straub Corporation	Work Phone: 432-756-3489 *
Agent: Edward Bryan	Home Phone:
Mailing Address: PO Box 192	and a second
City: Stanton , State: TX	Zip : <u>79782</u>

4. DRILLING RECORD

Drilling began: 5-3-06 ; Con	npleted: <u>5-3-06</u>	; Type tools: Air Rotary Drilling Rig
Size of hole: 5 in.; Total dept	h of well: 30	ft:
Completed well is:	(shallow, artes	sian);
Depth to water upon completion of	of well:	ft.
File Number:	Tm Number:	

form:wr-20

COLUMN STREET

page 1 of 4

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

5. PRINCIPAL WATER-BEARING STRATA

Depth in Feet Thickness Description of Estimated Yield From To in feet water-bearing formation (GPM)

6. RECORD OF CASING **Diameter** Pounds Threads in Feet Length Depth Type of Shoe Perforations (Inches) per ft, per in. Top Bottom (feet) From To soh 40 pvc 2 fi 30 18 .010 screen 2 sch 40 pvc fi 18 +3sch 40 riser 7. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks of Cubic Feet Method of Placement From Diameter To mud & Cement 1 bag of comont topload 30 3 bags of 3/8 holeplug 5 topload 8. PLUGGING RECORD Plugging Contractor: _ Address: Plugging Method:_ Date Well Plugged: Plugging approved by: _ State Engineer Representative No. Depth in Feet **Cubic Feet of Cement** Top Bottom

File Number: _____ Trn Number: ____

Form: wr-20

page 2 of 4

٦.,

Mark Owen #9 SB-4 - MW-1

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

9. LOG OF HOLE Depth in Feet Thickness From To in feet

•----•

Color and Type of Material Bncountered

0 5 5	tan fine sand - sandstone - callche	
<u>5 13 8</u>	red tan fine sand - sandstone	
<u>13 18 5</u>	tan fine sand – sandstone	
<u>18 30 12</u>	(hard) cal, sandstone - tan fine sand	
TD 30		
· · · · · · · · · · · ·		
	W-1	
· · · · · · · · · · · · · · · · · · ·		
······································		
	······································	
••••••••••••••••••••••••••••••••••••••		
	nan an	
and the second		
M		
Second and a second		
•		

Mark Owen #9 SB-4 - MW-1

NEW MEXICO OFFICE OF THE STATE ENGINEER WELL RECORD

10. ADDITIONAL STATEMENTS OR EXPLANATIONS:

monitor well conversion SB-4 to MW-1

	and the second secon
Program al	
	and the second secon
#	
Management of the second se	

A A Charles and a standard and a standard and a standard and a standard s	
The undersigned hereby certifies that to the best of his boowladge and	
helief the foregoing is a true and correct record of the shound described	
tonor, no roregoing is a true and correct record or me above described	
Duward Bryan <u>5-3-06</u>	
Driller (mm/dd/year)	
FOR STATE HNGINEER USE ONLY	
Quad; FWL; FSL; Use; Location No	
File Number: Tm Number:	

Form: wr-20

page 4 of 4

• ~

Appendix C

Soil Laboratory Analytical Reports

Analytical Report 474457

for

Conestoga-Rovers & Associates-Albuquerque, NM

Project Manager: Bernie Bockisch

Mark Owen #9

046121

27-NOV-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

27-NOV-13

Project Manager: **Bernie Bockisch Conestoga-Rovers & Associates-Albuquerque, NM** 6121 Indian School Rd. NE Suite 200

Albuquerque, NM 87110

Reference: XENCO Report No(s): **474457 Mark Owen #9** Project Address: Buckeye, NM

Bernie Bockisch:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 474457. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 474457 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

spectfully, Hoah

 Kelsey Brooks

 Project Manager

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 474457

Conestoga-Rovers & Associates-Albuquerque, NM, Albuqu

Mark Owen #9

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
S-046121-111813-CM-B-1 (5-6.5)	S	11-18-13 14:25		474457-001
S-046121-111813-CM-B-1 (10-11.5)	S	11-18-13 14:30		474457-002
S-046121-111813-CM-B-1 (15-16.5)	S	11-18-13 14:35		474457-003
S-046121-111813-CM-B-1 (20-21.5)	S	11-18-13 14:40		474457-004
S-046121-111813-CM-DUP	S	11-18-13 14:45		474457-005
S-046121-111813-CM-B-2 (5-6.5)	S	11-18-13 15:20		474457-006
S-046121-111813-CM-B-2 (10-11.5)	S	11-18-13 15:25		474457-007
S-046121-111813-CM-B-2 (15-16.5)	S	11-18-13 15:30		474457-008
S-046121-111813-CM-B-2 (20-21.5)	S	11-18-13 15:35		474457-009
S-046121-111813-CM-B-3 (5-6.5)	S	11-18-13 16:00		474457-010
S-046121-111813-CM-B-3 (10-11.5)	S	11-18-13 16:05		474457-011
S-046121-111813-CM-B-3 (16-17.5)	S	11-18-13 16:10		474457-012
S-046121-111813-CM-B-3 (20-21.5)	S	11-18-13 16:15		474457-013

Client Name: Conestoga-Rovers & Associates-Albuquerque, NM Project Name: Mark Owen #9

 Project ID:
 046121

 Work Order Number(s):
 474457

 Report Date:
 27-NOV-13

 Date Received:
 11/19/2013

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-928559 Inorganic Anions by EPA 300/300.1 E300

Batch 928559, Chloride recovered above QC limits in the Matrix Spike. Samples affected are: 474457-002, -007, -011, -013, -008, -009, -004, -005, -006, -001, -003, -010, -012. The Laboratory Control Sample for Chloride is within laboratory Control Limits

Certificate of Analysis Summary 474457

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerque, NM Project Name: Mark Owen #9

Project Id: 046121 Contact: Bernie Bockisch Project Location: Buckeye, NM

Date Received in Lab: Tue Nov-19-13 03:15 pm

Report Date: 27-NOV-13

Project Manager: Kelsey Brooks

	Lab Id:	474457-0	001	474457-0	002	474457-0	003	474457-0	04	474457-0	05	474457-0	006
Analysis Paguastad	Field Id:	8-046121-111813	-CM-B-1 (8-046121-111813-	-CM-B-1 (5-046121-111813-	-CM-B-1 (8-046121-111813-	СМ-В-1 (S-046121-111813	-CM-DUP	8-046121-111813	8-CM-B-2 (
Analysis Kequesiea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-18-13	14:25	Nov-18-13	14:30	Nov-18-13	14:35	Nov-18-13	14:40	Nov-18-13	14:45	Nov-18-13	15:20
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-25-13	19:30	Nov-25-13	19:30	Nov-25-13	19:30	Nov-25-13	19:30	Nov-25-13	19:30	Nov-25-13	19:30
	Analyzed:	Nov-26-13	01:48	Nov-26-13	02:11	Nov-26-13 (02:34	Nov-26-13	02:56	Nov-26-13 (03:19	Nov-26-13	04:04
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		570	20.4	904	20.5	3300	103	968	21.9	1030	21.7	26.9	10.2
Percent Moisture	Extracted:												
Analyzed: N		Nov-22-13	14:50	Nov-22-13 14:50		Nov-22-13 14:50		Nov-22-13 14:50		Nov-22-13	14:50	Nov-22-13 14:50	
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		1.97	1.00	2.48	1.00	2.83	1.00	8.71	1.00	7.79	1.00	1.77	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Roah

Kelsey Brooks Project Manager

Page 5 of 13

Project Location: Buckeye, NM

Contact: Bernie Bockisch

Certificate of Analysis Summary 474457

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerque, NM

Project Name: Mark Owen #9

Date Received in Lab: Tue Nov-19-13 03:15 pm

Report Date: 27-NOV-13

Project Manager: Kelsey Brooks

								-	_	-			
	Lab Id:	474457-0	007	474457-0	008	474457-0	09	474457-0	010	474457-0	11	474457-(012
Amaluaia Dogwootod	Field Id:	8-046121-111813	-СМ-В-2 (8-046121-111813-	-CM-B-2 (8-046121-111813	-CM-B-2 (8-046121-111813	-CM-B-3 (8-046121-111813-	СМ-В-3 (8-046121-111813	-CM-B-3 (
Analysis Kequesiea	Depth:												
	Matrix:	SOIL		SOIL		SOIL		SOIL		SOIL		SOIL	
	Sampled:	Nov-18-13	15:25	Nov-18-13	15:30	Nov-18-13	15:35	Nov-18-13	16:00	Nov-18-13	16:05	Nov-18-13	16:10
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-25-13	19:30	Nov-25-13	19:30	Nov-25-13	19:30	Nov-25-13	19:30	Nov-25-13	19:30	Nov-25-13	19:30
	Analyzed:	Nov-26-13	04:27	Nov-26-13	04:49	Nov-26-13	05:12	Nov-26-13	06:20	Nov-26-13	06:43	Nov-26-13	07:05
	Units/RL:	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL	mg/kg	RL
Chloride		16.9	2.06	105	2.12	167	11.1	15.9	2.12	16.0	2.07	64.6	2.06
Percent Moisture	Extracted:												
	Analyzed:	Nov-22-13 14:50		Nov-22-13 14:50		Nov-22-13 15:12		Nov-22-13 15:12		Nov-22-13 15:12		Nov-22-13	15:12
	Units/RL:	%	RL	%	RL	%	RL	%	RL	%	RL	%	RL
Percent Moisture		2.93	1.00	5.75	1.00	10.2	1.00	5.86	1.00	3.44	1.00	2.86	1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 6 of 13

Certificate of Analysis Summary 474457

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerque, NM

Project Name: Mark Owen #9

Project Id: 046121 Contact: Bernie Bockisch Project Location: Buckeye, NM

Date Received in Lab: Tue Nov-19-13 03:15 pm Report Date: 27-NOV-13

Project Manager: Kelsey Brooks

	Lab Id:	474457-013			
Analysis Paguested	Field Id:	5-046121-111813-СМ-В-3	C		
Analysis Kequestea	Depth:				
	Matrix:	SOIL			
	Sampled:	Nov-18-13 16:15			
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-25-13 19:30			
	Analyzed:	Nov-26-13 07:28			
	Units/RL:	mg/kg RL			
Chloride		109 11.3			
Percent Moisture	Extracted:				
	Analyzed:	Nov-22-13 15:12			
	Units/RL:	% RL			
Percent Moisture		11.6 1.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 7 of 13

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Phone

(281) 240-4200

(214) 902 0300

(210) 509-3334

(813) 620-2000

(432) 563-1800

(770) 449-8800

(602) 437-0330

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Fax

(281) 240-4280

(214) 351-9139

(210) 509-3335

(813) 620-2033

(432) 563-1713

(770) 449-5477

BS / BSD Recoveries

Project Name: Mark Owen #9

Work Order	#: 474457								Proj	ject ID:()46121		
Analyst:	AMB		Date Prepared: 11/25/2013					Date Analyzed: 11/25/2013					
Lab Batch ID:	928559 Sai	mple: 647543-1-B	KS	Batc	h #: 1					Matrix: S	Solid		
Units:	mg/kg			BLAN	K /BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUD	νY	
Inorga	unic Anions by EPA 3	300/300.1	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride			<2.00	50.0	50.1	100	50.0	49.5	99	1	80-120	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

XENCO	Form 3 - MS Recoveries									
Caboratories Projec	t Name: Mark Ow	en #9			SORA					
Work Order #: 474457										
Lab Batch #: 928559			Proj	ect ID: ⁰	46121					
Date Analyzed: 11/26/2013	Date Prepared: 11/25/2013 Analyst: AMB									
QC- Sample ID: 474457-005 S	Batch #: 1 Matrix: Soil									
Reporting Units: mg/kg	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY				
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag				
Analytes	[A]	[B]								
Chloride	1030	542	1700	124	80-120	X				
Lab Batch #: 928559	<u>.</u>		· · ·							
Date Analyzed: 11/25/2013	Date Prepared: 11/2	te Prepared: 11/25/2013 Analyst: AMB								
QC- Sample ID: 474507-001 S	Batch #: 1		I	Matrix: S	oil					
Reporting Units: mg/kg	MATI	MATRIX / MATRIX SPIKE RECOVERY STUDY								
Inorganic Anions by EPA 300	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag				
Chloride	11.1	59.2	65.5	92	80-120					

Sample Duplicate Recovery

Project Name: Mark Owen #9

Work Order #: 474457

Lab Batch #: 928341 Date Analyzed: 11/22/2013 14:50 QC- Sample ID: 474358-001 D	Date Prepar Batcl	red: 11/22/2013 h #: 1	3 Ana Mat	Project I l yst: WRU rix: Soil	D: ⁰⁴⁶¹²¹	
Reporting Units: %		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Percent Moisture Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Percent Moisture		6.28	6.23	1	20	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Summer: Contract: Contract: <thcontract:< th=""> <thcontract:< th=""></thcontract:<></thcontract:<>	(See Reverse Side for Instructions)	LSHITL TI aimoss	Cooler No:	Carrier:	Airbill No: Date Shipped: 73	COMMENTS/ SPECIAL INSTRUCTIONS:	EMAIL RESULTS	6	BBOCKISCH @ CNA	Werld. Cold	CMATHEWS @ CRA	Warld. Com	We Surface 1	Werk Sump W M				and the second s			DATE TIME	11-14-15 1425	SIST 8/10/111
Total Second State Second State Contract: Contract: <thcontract:< th=""> Contract: <</thcontract:<>	interesting the second of the second s	Lab Logation: TAUSSA, TX	Lab Quote No:	ANALYSIS REQUESTED (See Back of COC for Definitions)	Эрш	7 1 47		×				X	~				X		Notes/ Special Requirements:	8.0	SY COMPANY	CKA	0 INC
ES лишем: иниски: иниски иниски: иниски иниски </td <td>1-0672 Fax:</td> <td></td> <td>sen Brooks</td> <td>CONTAINER QUANTITY & PRESERVATION</td> <td>id (HUO₃) Acid (H₂SO₄) Hydroxide IWater (Soil 3x5-g, 1x25-g P-35-g, 1x25-g</td> <td>Nitric Ac Sulfuric J. Sodium I (NaOH) Methanol VOC) VOC) EnCores EnCores Other:</td> <td>STRUCT CALEBRICK</td> <td></td> <td>otal Number of Containers:</td> <td>ples in Cooler must be on COC</td> <td>BEREIVED B</td> <td>D 1. Grander</td> <td>2 / LUNDAUR</td>	1-0672 Fax:		sen Brooks	CONTAINER QUANTITY & PRESERVATION	id (HUO ₃) Acid (H ₂ SO ₄) Hydroxide IWater (Soil 3x5-g, 1x25-g P-35-g, 1x25-g	Nitric Ac Sulfuric J. Sodium I (NaOH) Methanol VOC) VOC) EnCores EnCores Other:	STRUCT CALEBRICK												otal Number of Containers:	ples in Cooler must be on COC	BEREIVED B	D 1. Grander	2 / LUNDAUR
ES (UVK) $($	Phone: 25-881	Laboratory Name:	Lab Contact:	SAMPLE C TYPE	loric Aeld (HCl) sk of COC) :ode :ode	Big Matrix C (See bac Grab (G) Unpresent Hydrochi	25 X X	30 XX	XX	XX V	XX Ch	25 XX	30 XX	35 XX		XX 01	S XX	0	1	TUNDOVCA AII Sam	TIME TIME	142	11/19/13 15/13
	ES Ad	NUT NO CALIFIC YOU	lark Owen #9	alori an to manual Brock mcOrre (O) di	lews	DATE TI DATE (tranvdd/yw) (hhr.	-6,5 11/18/13 124	10-115/11/18/13 14	15-16.5) 11/18/13 14.	00-21:5/11/18/03/4	(5-65) n/18/13/15	10-11.5/11/18/13 15:	15-16.5) 11/18/13 15	(20-215) ul 18/13 15.	(5-65) 11 1813 161	11-175 11/18/03 16	20-215 11/18/B 161		rate COCs for different TAT	ik 🗆 2 Week 🕅 Other: S	COMPANY	UKI	CLA

Page 12 of 13

Final 1.000

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Comments

Client: Conestoga-Rovers & Associates-Albuqu Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 11/19/2013 03:15:00 PM **Temperature Measuring device used :** Work Order #: 474457 Sample Receipt Checklist 8 #1 *Temperature of cooler(s)? #2 *Shipping container in good condition? Vac

#2 "Snipping container in good condition?	res	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	N/A	
#5 Custody Seals intact on sample bottles?	N/A	
#6 *Custody Seals Signed and dated?	N/A	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	No	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	N/A	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	N/A	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Candau James Candace James

Date: 11/20/2013

Checklist reviewed by: Mmg Mogah Kelsey Brooks

Date: 11/20/2013

Appendix D

Title Groundwater Laboratory Analytical Reports

Analytical Report 459560

for

Conestoga Rovers & Associates

Project Manager: Brittany Ford

Mark Owen #9

046121

26-MAR-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

26-MAR-13

SURP ACCREONED

Project Manager: **Brittany Ford Conestoga Rovers & Associates** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): **459560** Mark Owen #9 Project Address:

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 459560. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 459560 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Nicholas Straccione Project Manager

> Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 459560

Conestoga Rovers & Associates, Midland, TX

Mark Owen #9

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-9	W	03-19-13 10:50		459560-001
MW-8	W	03-19-13 11:15		459560-002
MW-7	W	03-19-13 11:30		459560-003
MW-6	W	03-19-13 11:45		459560-004
MW-5	W	03-19-13 12:00		459560-005
MW-4	W	03-19-13 12:15		459560-006
MW-3	W	03-19-13 12:35		459560-007
MW-2	W	03-19-13 12:45		459560-008
MW-1	W	03-19-13 12:55		459560-009
RW-1	W	03-19-13 13:05		459560-010
MW-10	W	03-19-13 13:15		459560-011
MW-11	W	03-19-13 13:25		459560-012
DUP-1	W	03-19-13 00:00		459560-013
Trip Blank	W	03-19-13 00:00		Not Analyzed

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: Mark Owen #9

Project ID:046121Work Order Number(s):459560

Report Date: 26-MAR-13 Date Received: 03/19/2013

Sample receipt non conformances and comments: None

Sample receipt non conformances and comments per sample:

None

Contact: Brittany Ford

Project Location:

Certificate of Analysis Summary 459560

Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab: Tue Mar-19-13 03:35 pm

Report Date: 26-MAR-13

								Project Ma	nager:	Nicholas Stra	ccione		
	Lab Id:	459560-	001	459560-0	002	459560-	003	459560-	004	459560-0	005	459560-6	006
An alusia De au este l	Field Id:	MW-9	9	MW-8	3	MW-	7	MW-6		MW-5		MW-4	4
Analysis Kequesiea	Depth:												
	Matrix:	WATE	ER	WATE	WATER		R	WATE	R	WATER		WATE	ER
	Sampled:	Mar-19-13	10:50	Mar-19-13	Mar-19-13 11:15		Mar-19-13 11:30		11:45	Mar-19-13	12:00	Mar-19-13	12:15
Alkalinity by SM2320B	Extracted:												
SUB: E871002	Analyzed:	Mar-21-13	12:42	Mar-21-13	12:48	Mar-21-13	12:54	Mar-21-13	13:00	Mar-21-13	13:07	Mar-21-13	13:26
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		308	4.00	219	4.00	218	4.00	249	4.00	329	4.00	235	4.00
BTEX by EPA 8021B	Extracted:	racted: Mar-22-13 13:00		Mar-22-13	13:00	Mar-22-13	13:00	Mar-22-13	13:00	Mar-22-13	13:00	Mar-22-13	13:00
	Analyzed:	Mar-22-13	Mar-22-13 16:17		16:33	Mar-22-13 16:49		Mar-22-13 17:06		Mar-22-13 17:38		Mar-22-13 17:5	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-20-13	10:00	Mar-20-13	10:00	Mar-20-13	10:00	Mar-20-13	10:00	Mar-20-13	10:00	Mar-20-13	10:00
	Analyzed:	Mar-20-13	15:27	Mar-20-13	16:32	Mar-20-13	17:15	Mar-20-13	17:37	Mar-20-13	19:47	Mar-20-13	20:30
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		385	10.0	2590	50.0	420	10.0	307	10.0	319	10.0	129	5.00
Sulfate		81.3	10.0	755	50.0	166	10.0	256	10.0	62.1	10.0	48.1	5.00
TDS by SM2540C	Extracted:										ľ		
	Analyzed:	Mar-25-13	10:00	Mar-25-13	10:00	Mar-25-13	10:00	Mar-25-13	10:00	Mar-25-13	10:00	Mar-25-13	10:00
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		1170	5.00	5860	5.00	1220	5.00	1220	5.00	1010	5.00	572	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

the Nul

Nicholas Straccione Project Manager

Contact: Brittany Ford

Project Location:

Certificate of Analysis Summary 459560

Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab: Tue Mar-19-13 03:35 pm

Report Date: 26-MAR-13

								Project Ma	nager:	Nicholas Stra	ccione		
	Lab Id:	459560-	007	459560-0	008	459560-	009	459560-	010	459560-0	011	459560-6	012
An alusia De au este l	Field Id:	MW-	3	MW-2	2	MW-	1	RW-1		MW-10		MW-1	1
Analysis Kequesiea	Depth:												
	Matrix:	WATE	ER	WATE	R	WATE	R	WATE	R	WATE	.R	WATE	ER
	Sampled:	Mar-19-13	12:35	Mar-19-13	12:45	Mar-19-13	Mar-19-13 12:55		13:05	Mar-19-13	13:15	Mar-19-13	13:25
Alkalinity by SM2320B	Extracted:												
SUB: E871002	Analyzed:	Mar-21-13	13:32	Mar-21-13	13:39	Mar-21-13	13:45	Mar-21-13	13:51	Mar-21-13	14:04	Mar-21-13	14:11
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		240	4.00	334	4.00	286	4.00	214	4.00	319	4.00	255	4.00
BTEX by EPA 8021B	<i>Extracted:</i> Mar-25-13 08:10		08:10	Mar-25-13	08:10	Mar-25-13	08:10	Mar-25-13	08:10	Mar-25-13	08:10	Mar-25-13	08:10
	Analyzed:	Mar-25-13	Mar-25-13 08:55		11:58	Mar-25-13	09:27	Mar-25-13	10:03	Mar-25-13	10:20	Mar-25-13	11:09
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-20-13	10:00	Mar-20-13	10:00	Mar-20-13	10:00	Mar-20-13	10:00	Mar-20-13	10:00	Mar-20-13	10:00
	Analyzed:	Mar-20-13	20:52	Mar-20-13	21:14	Mar-20-13	21:36	Mar-20-13	21:57	Mar-20-13	23:50	Mar-21-13	00:12
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		88.6	5.00	257	10.0	2820	50.0	10600	200	2580	50.0	3480	50.0
Sulfate		58.0	5.00	116	10.0	177	50.0	573	200	211	50.0	127	50.0
TDS by SM2540C	Extracted:												
	Analyzed:	Mar-25-13	10:00	Mar-25-13	10:00	Mar-25-13	10:00	Mar-25-13	10:00	Mar-25-13	10:00	Mar-25-13	10:00
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		523	5.00	928	5.00	4530	5.00	15200	5.00	5010	5.00	6940	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

the Nul

Nicholas Straccione Project Manager

Page 6 of 22

Contact: Brittany Ford

Project Location:

Certificate of Analysis Summary 459560

Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab:Tue Mar-19-13 03:35 pmReport Date:26-MAR-13

Project Manager: Nicholas Straccione

	Lab Id:	459560-013	3			
Analysis Paguastad	Field Id:	DUP-1				
Analysis Kequesieu	Depth:					
	Matrix:	WATER				
	Sampled:	Mar-19-13 00:	:00			
Alkalinity by SM2320B	Extracted:					
SUB: E871002	Analyzed:	Mar-21-13 14	:17			
	Units/RL:	mg/L	RL			
Alkalinity, Total (as CaCO3)		306	4.00			
BTEX by EPA 8021B	Extracted:	Mar-25-13 08	3:10			
	Analyzed:	Mar-25-13 10):36			
	Units/RL:	mg/L	RL			
Benzene		ND 0.	0.00100			
Toluene		ND 0.	0.00200			
Ethylbenzene		ND 0.	0.00100			
m,p-Xylenes		ND 0.	0.00200			
o-Xylene		ND 0.	0.00100			
Total Xylenes		ND 0.	0.00100			
Total BTEX		ND 0.	0.00100			
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-20-13 10	0:00			
	Analyzed:	Mar-21-13 00):55			
	Units/RL:	mg/L	RL			
Chloride		400	10.0			
Sulfate		88.3	10.0			
TDS by SM2540C	Extracted:					
	Analyzed:	Mar-25-13 10	0:00			
	Units/RL:	mg/L	RL			
Total dissolved solids		1200	5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

the,

Nicholas Straccione Project Manager

Page 7 of 22

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- * Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit
- MDL Method Detection Limit **SDL** Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit
- **DL** Method Detection Limit
- NC Non-Calculable
- NELAC certification not offered for this compound.
- (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

LOQ Limit of Quantitation

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr. Stafford, TX 77477 9701 Harry Hines Blvd , Dallas, TX 75220 5332 Blackberry Drive, San Antonio TX 78238 2505 North Falkenburg Rd, Tampa, FL 33619 12600 West I-20 East, Odessa, TX 79765 6017 Financial Drive, Norcross, GA 30071 3725 E. Atlanta Ave, Phoenix, AZ 85040

Phone	Fax
(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Final 1.000

Project Name: Mark Owen #9

Work Orders : 459560	١,	Project ID: 046121								
Lab Batch #: 909649	Sample: 459560-001 / SMP	Batch	h: 1 Matrix:	Water						
Units: mg/L	Date Analyzed: 03/22/13 16:17	SU	RROGATE RE	COVERY S	STUDY					
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1 4-Difluorobenzene	1 mary cos	0.0326	0.0300	109	80-120					
4-Bromofluorobenzene		0.0250	0.0300	83	80-120					
Lah Ratch #: 909649		Batcl	h· 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 03/22/13 16:33	SU	RROGATE RE	ECOVERY S	STUDY					
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1 4-Difluorobenzene	Analytes	0.0275	0.0300	92	80-120					
4-Bromofluorobenzene		0.0317	0.0300	106	80-120					
Lah Ratch #: 909649	Sample: 459560-003 / SMP	Batcl	h· 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 03/22/13 16:49	SU	RROGATE RE	ECOVERY S	STUDY					
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0325	0.0300	108	80-120					
4-Bromofluorobenzene		0.0273	0.0300	91	80-120					
Lab Batch #: 909649	Sample: 459560-004 / SMP	Batcl	h: 1 Matrix:	Water	·					
Units: mg/L	Date Analyzed: 03/22/13 17:06	SU	RROGATE RF	COVERY S	STUDY					
ВТЕХ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1 4-Difluorobenzene	Anaryus	0.0297	0.0300	99	80-120					
4-Bromofluorobenzene		0.0283	0.0300	94	80-120					
Lab Batch #: 909649	Sample: 459560-005 / SMP	Batcl	h: 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 03/22/13 17:38	SU!	RROGATE RF	COVERY S	STUDY					
ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0288	0.0300	96	80-120					
4-Bromofluorobenzene		0.0295	0.0300	98	80-120					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9

Nork Orders: 459560	١,	Project ID: 046121								
Lab Batch #: 909649	Sample: 459560-006 / SMP	Batch	h: ¹ Matrix:	Water						
Units: mg/L	Date Analyzed: 03/22/13 17:55	SU	RROGATE RE	COVERY S	STUDY					
BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1 4-Difluorobenzene		0.0289	0.0300	96	80-120					
4-Bromofluorobenzene		0.0205	0.0300	102	80-120					
Lab Batch #: 909774	Sample: 459560-007 / SMP	Batcl	h· 1 Matrix:	•Water	<u> </u>					
Units: mg/L	Date Analyzed: 03/25/13 08:55	SU:	RROGATE RE	ECOVERY S	STUDY					
ВТЕУ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.4-Difluorobenzene		0.0277	0.0300	92	80-120					
4-Bromofluorobenzene		0.0247	0.0300	82	80-120					
Lab Batch #: 909774	Sample: 459560-009 / SMP	Batcl	h: 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 03/25/13 09:27	SU!	RROGATE RF	ECOVERY	STUDY					
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0266	0.0300	89	80-120					
4-Bromofluorobenzene		0.0241	0.0300	80	80-120					
Lab Batch #: 909774	Sample: 459560-010 / SMP	Batcl	h: 1 Matrix:	Water	·					
Units: mg/L	Date Analyzed: 03/25/13 10:03	SU	RROGATE RE	COVERY S	STUDY					
ВТЕХ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.4-Difluorobenzene		0.0326	0.0300	109	80-120					
4-Bromofluorobenzene		0.0290	0.0300	97	80-120					
Lab Batch #: 909774	Sample: 459560-011 / SMP	Batcl	h: 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 03/25/13 10:20	SU!	RROGATE RE	COVERY S	STUDY					
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0315	0.0300	105	80-120					
4-Bromofluorobenzene		0.0328	0.0300	109	80-120					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9

Work Orders : 459560	',	Project ID: 046121								
Lab Batch #: 909774	Sample: 459560-013 / SMP	Batch	n: 1 Matrix:	Water	~~~~					
Units: mg/L	Date Analyzed: 03/25/13 10:36	SU	RROGATE RE	COVERY S	STUDY					
BTEX	۲ by EPA 8021B Analvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0273	0.0300	91	80-120	, I				
4-Bromofluorobenzene		0.0314	0.0300	105	80-120	 				
Lab Batch #: 909774	Sample: 459560-012 / SMP	Batcl	n: 1 Matrix:	Water	· <u>·</u>					
Units: mg/L	Date Analyzed: 03/25/13 11:09	SU	RROGATE RF	COVERY ?	STUDY					
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0291	0.0300	97	80-120					
4-Bromofluorobenzene		0.0260	0.0300	87	80-120					
Lab Batch #: 909774	Sample: 459560-008 / SMP	Batcl	n: 1 Matrix:	Water	<u>.</u>					
Units: mg/L	Date Analyzed: 03/25/13 11:58	SURROGATE RECOVERY STUDY								
ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0312	0.0300	104	80-120					
4-Bromofluorobenzene		0.0274	0.0300	91	80-120	 I				
Lab Batch #: 909649	Sample: 635521-1-BLK / BI	_K Batcl	h: 1 Matrix:	Water		·				
Units: mg/L	Date Analyzed: 03/22/13 13:49	SURROGATE RECOVERY STUDY								
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.4-Difluorobenzene		0.0259	0.0300	86	80-120					
4-Bromofluorobenzene		0.0250	0.0300	83	80-120					
Lab Batch #: 909774	Sample: 635616-1-BLK / BI	LK Batcl	n: 1 Matrix:	Water	<u>.</u>					
Units: mg/L	Date Analyzed: 03/25/13 08:38	SU	RROGATE RF	COVERY S	STUDY					
ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0278	0.0300	93	80-120					
4-Bromofluorobenzene		0.0247	0.0300	82	80-120					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9

Work Orders : 459560),	Project ID: 046121							
Lab Batch #: 909649	Sample: 635521-1-BKS / B	KS Batch	: 1 Matrix:	Water					
Units: mg/L	Date Analyzed: 03/22/13 13:16	SUR	ROGATE RF	ECOVERY S	STUDY				
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene		0.0325	0.0300	108	80-120				
4-Bromofluorobenzene		0.0295	0.0300	98	80-120				
Lab Batch #: 909774	Sample: 635616-1-BKS / B	KS Batch	: 1 Matrix:	Water					
Units: mg/L	Date Analyzed: 03/25/13 08:06	SUR	ROGATE RF	COVERY	STUDY				
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene		0.0300	0.0300	100	80-120				
4-Bromofluorobenzene		0.0292	0.0300	97	80-120				
Lab Batch #: 909649	Sample: 635521-1-BSD / B	SD Batch	: 1 Matrix:	Water	<u>.</u>				
Units: mg/L	Date Analyzed: 03/22/13 13:33	SUR	ROGATE RF	ECOVERY ?	STUDY				
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene		0.0315	0.0300	105	80-120				
4-Bromofluorobenzene		0.0288	0.0300	96	80-120				
Lab Batch #: 909774	Sample: 635616-1-BSD / B	SD Batch	: 1 Matrix:	:Water					
Units: mg/L	Date Analyzed: 03/25/13 08:22	SUR	ROGATE RF	COVERY	STUDY				
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1.4-Difluorobenzene	/ Mary Co	0.0294	0.0300	98	80-120				
4-Bromofluorobenzene		0.0284	0.0300	95	80-120				
Lab Batch #: 909649	Sample: 459386-002 S / MS	S Batch	: 1 Matrix:	:Water	<u> </u>				
Units: mg/L	Date Analyzed: 03/22/13 14:55	SUR	ROGATE RF	ECOVERY ?	STUDY				
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluorobenzene		0.0318	0.0300	106	80-120	I			
4-Bromofluorobenzene		0.0349	0.0300	116	80-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9

Work Orders : 459560	,	Project ID: 046121								
Lab Batch #: 909774	Sample: 459560-007 S / M	S Bate	h: ¹ Matrix:	Water						
Units: mg/L	Date Analyzed: 03/25/13 13:21	SU	RROGATE RI	ECOVERY	STUDY					
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene	Anarytes	0.0296	0.0300	99	80-120					
4-Bromofluorobenzene		0.0356	0.0300	119	80-120					
Lab Batch #: 909649	Sample: 459386-002 SD / 1	MSD Batch: ¹ Matrix: Water								
Units: mg/L	Date Analyzed: 03/22/13 16:00	SURROGATE RECOVERY STUDY								
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene	•	0.0326	0.0300	109	80-120					
4-Bromofluorobenzene		0.0296	0.0300	99	80-120					
Lab Batch #: 909774	Sample: 459560-007 SD / 1	MSD Batc	h: 1 Matrix	Water						
Units: mg/L	Date Analyzed: 03/25/13 13:37	SU	RROGATE RI	ECOVERY	STUDY					
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0312	0.0300	104	80-120					
4-Bromofluorobenzene		0.0295	0.0300	98	80-120					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Work Order #: 459560	Project ID:					046121
Lab Batch #: 909879	Sample: 909879-	1-BKS	Matrix:	Water		
Date Analyzed: 03/25/2013 D	Date Prepared: 03/25/2013 Analyst: AMB					
Reporting Units: mg/L	Batch #: 1 BLANK /BLANK SPIKE RECO					STUDY
TDS by SM2540C	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes		[B]	Result [C]	%R [D]	% R	
Total dissolved solids	<5.00	1000	867	87	80-120	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Work Order #: 459560							Pro	ject ID: ()46121		
Analyst: ALA	Da	ate Prepar	ed: 03/21/201	13		Date Analyzed: 03/21/2013					
Lab Batch ID: 909575 Sample: 909575-1-I	3KS	Batcl	h#: 1					Matrix: V	Water		
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVI	ERY STUD	PΥ	
Alkalinity by SM2320B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)	<4.00	250	250	100	250	252	101	1	80-120	20	
Analyst: KEBLab Batch ID: 909649Sample: 635521-1-1	Da BKS	ate Prepar Batcl	red: 03/22/201 h #: 1	13			Date A	nalyzed: (Matrix: \)3/22/2013 Water		
Units: mg/L		BLAN	K/BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVI	ERY STUD	θY	
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.0895	90	0.100	0.0864	86	4	70-125	25	
Toluene	<0.00200	0.100	0.0875	88	0.100	0.0858	86	2	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0969	97	0.100	0.0913	91	6	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.183	92	0.200	0.177	89	3	70-131	25	
o-Xylene	<0.00100	0.100	0.0878	88	0.100	0.0831	83	6	71-133	25	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Work Order #: 459560	Project ID: 046121										
Analyst: KEB	Da	ate Prepar	ed: 03/25/201	3			Date A	nalyzed: ()	3/25/2013		
Lab Batch ID: 909774 Sample: 635616-1-I	3KS	Batc	h #: 1					Matrix: V	Vater		
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVE	ERY STUD	Y	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[D]		[10]		Kesuit [r]	[G]				
Benzene	< 0.00100	0.100	0.0957	96	0.100	0.0880	88	8	70-125	25	
Toluene	< 0.00200	0.100	0.0990	99	0.100	0.0937	94	6	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0822	82	0.100	0.0874	87	6	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.183	92	0.200	0.167	84	9	70-131	25	
o-Xylene	< 0.00100	0.100	0.0971	97	0.100	0.0808	81	18	71-133	25	
Analyst: AMB	Da	ate Prepar	red: 03/20/201	3			Date A	nalyzed: 0	3/20/2013		
Lab Batch ID: 909501 Sample: 635439-1-I	BKS	Bate	h #: 1		Matrix: Water						
Units: mg/L		BLAN	K/BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVE	ERY STUD	Y	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	25.5	102	25.0	25.7	103	1	80-120	20	
Sulfate	<1.00	25.0	23.7	95	25.0	23.6	94	0	80-120	20	

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Mark Owen #9

Work Order #: 459560												
Lab Batch #: 909501				Pro	oject ID:	046121						
Date Analyzed: 03/20/2013	Date Prep	te Prepared: 03/20/2013 Analyst: AMB										
QC- Sample ID: 459441-001 S	Bat	tch #: 1		Ν	Matrix: W	ater						
Reporting Units: mg/L		MATR	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY					
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag					
Chloride		36.3	125	177	113	80-120						
Sulfate		66.7	125	208	113	80-120						
Lab Batch #: 909501												
Date Analyzed: 03/20/2013	Date Prep	ared: 03/20	0/2013	Analyst: AMB								
QC- Sample ID: 459560-002 S	Batch #: 1 Matrix: Water											
Reporting Units: mg/L		MATR	RIX / MA	ATRIX SPIKE RECOVERY STUDY								
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag					
Chloride		2590	1250	3830	99	80-120						
Sulfate		755	1250	2110	108	80-120						
Lab Batch #: 909501	I			<u>ı </u>								
Date Analyzed: 03/20/2013	Date Prepared: 03/20/2013 Analyst: AMB											
QC- Sample ID: 459560-005 S	Bat	tch #: 1		Matrix: Water								
Reporting Units: mg/L		MATRIX / MATRIX SPIKE RECOVERY ST										
Inorganic Anions by EPA 300 Analytes		Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag					
Chloride		319	250	583	106	80-120						
Sulfate		62.1	250	323	104	80-120						

Matrix Spike Percent Recovery $[D] = 100^{*}(C-A)/B$ Relative Percent Difference $[E] = 200^{*}(C-A)/(C+B)$ All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Mark Owen #9

Work Order # : 459560						Project II	D: 046121	l				
Lab Batch ID: 909649 (Date Analyzed: 03/22/2013	C- Sample ID: Date Prepared:	459386 03/22/2	-002 S 013	Ba Ana	tch #: alyst:	1 Matri KEB	x: Water					
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY			
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Analytes	[A]	[B]	[0]	[D]	[E]	itesuit [1]	[G]					
Benzene	<0.00100	0.100	0.0903	90	0.100	0.0820	82	10	70-125	25		
Toluene	< 0.00200	0.100	0.0918	92	0.100	0.0879	88	4	70-125	25		
Ethylbenzene	< 0.00100	0.100	0.0943	94	0.100	0.0858	86	9	71-129	25		
m,p-Xylenes	<0.00200	0.200	0.174	87	0.200	0.161	81	8	70-131	25		
o-Xylene	<0.00100	0.100	0.0886	89	0.100	0.0841	84	5	71-133	25		
Lab Batch ID: 909774 (C- Sample ID:	459560	-007 S	Ba	tch #:	1 Matrix	x: Water					
Date Analyzed: 03/25/2013	Date Prepared:	03/25/2	013	An	alyst:	KEB						
Reporting Units: mg/L		Μ	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY									
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Analytes	[A]	[B]		[D]	[E]		[G]					
Benzene	<0.00100	0.100	0.0957	96	0.100	0.0850	85	12	70-125	25		
Toluene	< 0.00200	0.100	0.0924	92	0.100	0.0787	79	16	70-125	25		
Ethylbenzene	< 0.00100	0.100	0.0902	90	0.100	0.0815	82	10	71-129	25		
m,p-Xylenes	< 0.00200	0.200	0.172	86	0.200	0.154	77	11	70-131	25		
o-Xylene	<0.00100	0.100	0.0869	87	0.100	0.0778	78	11	71-133	25		

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not ApplicableN = See Narrative, EQL = Estimated Quantitation Limit

Work Order #: 459560						
Lab Batch #: 909575				Project I	D: 046121	
Date Analyzed: 03/21/2013 12:35	Date Prepar	ed: 03/21/2013	3 Ana	lyst:ALA		
QC- Sample ID: 459555-001 D	Batch	1	Ma	t rix: Water		
Reporting Units: mg/L		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)		194	195	1	20	
Lab Batch #: 909575					1	·,
Date Analyzed: 03/21/2013 13:57	Date Prepar	ed: 03/21/2013	3 Ana	lyst:ALA		
QC- Sample ID: 459560-010 D	Batch	#: 1	Ma	trix: Water		
Reporting Units: mg/L		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Analyte			[0]			
Alkalinity, Total (as CaCO3)		214	213	0	20	
Lab Batch #: ⁹⁰⁹⁸⁷⁹						
Date Analyzed: 03/25/2013 10:00	Date Prepar	ed: 03/25/2013	3 Ana	lyst: AMB		
QC- Sample ID: 459560-001 D	Batch	1 #: 1	Ma	trix: Water		
Reporting Units: mg/L		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		1170	1140	3	30	
Lab Batch #: 909879						
Date Analyzed: 03/25/2013 10:00	Date Prepar	ed: 03/25/2013	3 Ana	lyst:AMB		
QC- Sample ID: 459560-011 D	Batch	#: 1	Ma	trix: Water		
Reporting Units: mg/L		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		5010	4510	11	30	

Spike Relative Difference RPD 200 * $|\,(B\text{-}A)/(B\text{+}A)\,|$ All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

reservatives: Various (V ont. Size: 4oz (4), 8oz (3) What Muy	Relinquished by (Initia					TRUP RLANIC	DWP-1	MW -11	MW-10	Sample ID	Sampler Name	Special DLs (GW DW Q	DAPP Per-Contract CLI	Reg Program: UST DR	Quote/Pricing:	nvoice to □ Accounting 3ill to:	E-mail Results to	vJ, PA, SC, TN, UT Other	Project Name-Location	CA - MUCAV
), <u>HCI pH<2</u> (H), H2 8), 32oz (32), 400	A	als and Sign)						319/13	3/19/13	3/19/13	Sampling Date	may 6. Plus	APP MDLs RLs	AGCEE NAVY	Y-CLEAN Land-F		□Inc. Invoice wit]PM and	Z 3	U # 9 U # 9	SO
SO4 FFZ (S)	3-19-13 15	Date & Time							1395	315	Depth ft' ln" m	Signature	See Lab PM Ir	DOE DOD (II Waste-Disp	.O. No:	Final Report [BRATT	one at XENCO	61,
HNO3 pH<2 (N), 500ml (5), Te	15 2 V	Relinquis					E Q	हे ()	<u>5</u> /	EA A	Matrix Composite Grab # Containers		cluded Call F	JSACE OTHER	NPDES DW		Invoice must t	Fax	WWY FOR	PM	Phone
, Asbc Acid&NaC edlar Bag (B), V	und	shed to (Initials a					-10 C AC	40,1 6,4 140	Hori Cil Hoo	40.1 GP HO	Container Size Container Type	aler	M)		TRRP	Call for P.O.	nave a P.O.	No:	0		1800
DH (A), ZnAc&N arious (V), Othe	DW1th	ang Sign)									VOA: Full-List VOA: PP TCL PAHs SIM	BTEX DW 3310	MTB App 827	E Ei dx-1 0	ОН Арр	Oxyg dx-2	CALL	s VO Othe	As r:	IAI: ASAP	Lab Only:
laOH (Z), (Cool er	al silat	Date & Tin			· · ·	-	-	-			TX-1005 DRO SVOCs: Full-Lis OC Pesticides Metals: RCRA-8	GRC t DW PCBs RCR) MA BN Her A-4	EPH &AE bicide Pb 13	TCL S C PP 2	A VF _P P DP P 23TAL	PH P App Pesticide Appdx	dx-2 s	CAL pdx2	5-7 Working D	46
, <4C) (C), Non Cont	Otherwise until paid hereby re	1e Total Cor						٩			SPLP-TCLP (EDB/DBCP	Metals	VO	Cs S	svoo	Cs P	est. He	erb. F	PCBs	48h 30 30 ays for level II	7956
e (NA),See Lat . Type: Glass	e agreed on writ Samples will bu quested. Rush C	tainers per CO					· .	22	2 2 2	7	TOTAL 1 TDS CHICKEND	25	AL 40 2	S		H F	ATEP	30	20	and 10+ Worki	
oel (L), Other (Amb (A), Glas	ing. Reports are e held 30 days a harges and Colli	9 Q		2									- - - -			· .	··· ·· ···			ng days for levi	
(0) ss Clear (C), F	the Intellectual the final report ection Fees are	Cooler Temp						STD	570	S	TATASAP 5h Addn: PAH abo	12b /e	s75 mg/) 48 L W,	h 30 mg	d (50 g/Kg	3)7d S High	10d nest H	21d it	el III and IV da	
۶ Plastic (P), Vari	Property of XEI is e-mailed unle pre-approved if r	10°0°							-		Hold Samples (Sample Clean-u	Surcha ps are	rges v pre-a	vill ap pprov	oply a ved a	and ar	re pre-ar eded	prove	(be	ta. Rema	

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & AssociatesAcceptable Temperature Range: 0 - 6 degCDate/ Time Received: 03/19/2013 03:35:00 PMAir and Metal samples Acceptable Range: AmbientWork Order #: 459560Temperature Measuring device used :

S	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		18	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping contain	ner/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?		Yes	
#6 *Custody Seals Signed and dated?		Yes	
#7 *Chain of Custody present?		Yes	
#8 Sample instructions complete on Chain o	f Custody?	Yes	
#9 Any missing/extra samples?		No	
#10 Chain of Custody signed when relinquis	hed/ received?	Yes	
#11 Chain of Custody agrees with sample la	bel(s)?	Yes	
#12 Container label(s) legible and intact?		Yes	
#13 Sample matrix/ properties agree with Ch	ain of Custody?	Yes	
#14 Samples in proper container/ bottle?		Yes	
#15 Samples properly preserved?		Yes	
#16 Sample container(s) intact?		Yes	
#17 Sufficient sample amount for indicated to	est(s)?	Yes	
#18 All samples received within hold time?		Yes	
#19 Subcontract of sample(s)?		Yes	
#20 VOC samples have zero headspace (les	ss than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HNO3	,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved with NaAs	SO2+NaOH, ZnAc+NaOH?	Yes	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Date: _____

Checklist reviewed by:

Date: _____
Analytical Report 464702

for

Conestoga Rovers & Associates

Project Manager: Bernie Bockisch

Mark Owen #9

046121

14-JUN-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

14-JUN-13

Project Manager: **Bernie Bockisch Conestoga Rovers & Associates** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 464702 Mark Owen #9 Project Address: Eunice NM

Bernie Bockisch:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 464702. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 464702 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully.

Kelsey Brooks Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 464702

Conestoga Rovers & Associates, Midland, TX

Mark Owen #9

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-9-06062013	W	06-06-13 12:45		464702-001
MW-8-06062013	W	06-06-13 13:00		464702-002
MW-7-06062013	W	06-06-13 13:15		464702-003
MW-6-06062013	W	06-06-13 13:30		464702-004
MW-5-06062013	W	06-06-13 13:45		464702-005
MW-4-06062013	W	06-06-13 14:00		464702-006
MW-3-06062013	W	06-06-13 14:15		464702-007
MW-2-06062013	W	06-06-13 14:30		464702-008
MW-1-06062013	W	06-06-13 14:45		464702-009
RW-1-06062013	W	06-06-13 15:00		464702-010
MW-10-06062013	W	06-06-13 15:30		464702-011
MW-11-06062013	W	06-06-13 15:45		464702-012
DUP-1	W	06-06-13 00:00		464702-013

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: Mark Owen #9

Project ID:046121Work Order Number(s):464702

Report Date: 14-JUN-13 Date Received: 06/07/2013

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-915843 Inorganic Anions by EPA 300/300.1 E300

Batch 915843, Sulfate recovered below QC limits in the Matrix Spike. Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 464702-002, -001. The Laboratory Control Sample for Chloride , Sulfate is within laboratory Control Limits

Batch: LBA-915845 Inorganic Anions by EPA 300/300.1 E300

Batch 915845, Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Sulfate recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 464702-010, -007, -006, -008, -009, -005, -011, -012, -004, -013, -003. The Laboratory Control Sample for Chloride , Sulfate is within laboratory Control Limits

Batch: LBA-915939 Inorganic Anions by EPA 300/300.1 E300

Batch 915939, Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 464702-010, -009, -013. The Laboratory Control Sample for Chloride is within laboratory Control Limits

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: Mark Owen #9

 Project ID:
 046121

 Work Order Number(s):
 464702

Report Date: 14-JUN-13 Date Received: 06/07/2013

Batch: LBA-916172 BTEX by EPA 8021B SW8021BM

Batch 916172, Toluene recovered below QC limits in the Matrix Spike. Samples affected are: 464702-013. The Laboratory Control Sample for Toluene is within laboratory Control Limits

Project Id: 046121 Contact: Bernie Bockisch Project Location: Eunice NM

Certificate of Analysis Summary 464702

Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab: Fri Jun-07-13 04:05 pm

Report Date: 14-JUN-13

								Project Ma	nager:	Kelsey Brook	ls .		
	Lab Id:	464702-	001	464702-0)02	464702-	003	464702-	004	464702-0	005	464702-6	006
Anghaig Deguested	Field Id:	MW-9-060	62013	MW-8-06062013		MW-7-06062013		MW-6-060	62013	MW-5-06062013		MW-4-060	162013
Anaiysis Kequesiea	Depth:	1	ļ										
	Matrix:	WATE	R	WATE	R	WATE	R	WATER		WATER		WATE	R
	Sampled:	Jun-06-13	12:45	Jun-06-13	3 13:00 Jun-06-13 13:15		13:15	Jun-06-13	13:30	Jun-06-13	13:45	Jun-06-13	14:00
Alkalinity by SM2320B	Extracted:												
SUB: TX104704215	Analyzed:	Jun-12-13	11:13	Jun-12-13	11:20	Jun-12-13	11:27	Jun-12-13	11:34	Jun-12-13	11:41	Jun-12-13	11:48
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		326	4.00	224	4.00	215	4.00	249	4.00	286	4.00	239	4.00
BTEX by EPA 8021B	Extracted:	Jun-12-13	un-12-13 17:00 Ju		17:00	Jun-12-13	17:00	Jun-12-13	17:00	Jun-12-13	17:00	Jun-12-13	17:00
	Analyzed:	Jun-13-13	Jun-13-13 13:45 Ju		14:44	Jun-12-13	22:53	Jun-12-13	23:10	Jun-12-13	23:26	Jun-12-13 23:42	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-10-13	09:00	Jun-10-13 (09:00	Jun-10-13	15:21	Jun-10-13	15:21	Jun-10-13	15:21	Jun-10-13	15:21
SUB: TX104704215	Analyzed:	Jun-10-13	20:20	Jun-10-13 2	20:38	Jun-10-13	22:10	Jun-10-13	23:06	Jun-10-13	23:24	Jun-10-13	23:42
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		393	2.00	2280	10.0	556 X	2.00	304	2.00	581	2.00	131	2.00
Sulfate		79.6	2.00	712	10.0	214 X	2.00	252	2.00	72.5	2.00	45.4	2.00
TDS by SM2540C	Extracted:	ł	ļ			I							
SUB: TX104704215	Analyzed:	Jun-12-13	08:42	Jun-12-13 (08:42	Jun-12-13	08:42	Jun-12-13	08:42	Jun-12-13	08:42	Jun-12-13	08:42
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		1040	5.00	4810	5.00	1180	5.00	1080	5.00	4550	5.00	525	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 6 of 24

Project Id: 046121 Contact: Bernie Bockisch Project Location: Eunice NM

Certificate of Analysis Summary 464702

Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab: Fri Jun-07-13 04:05 pm

Report Date: 14-JUN-13

								Project Ma	nager:	Kelsey Brook	.S		
	Lab Id:	464702-0	007	464702-0)08	464702-0	009	464702-0	010	464702-0)11	464702-0	012
Analysis Doguested	Field Id:	MW-3-060	62013	MW-2-06062013		MW-1-06062013		RW-1-06062013		MW-10-06062013		MW-11-060)62013
Anaiysis Kequesiea	Depth:			I								1	
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R
	Sampled:	Jun-06-13	14:15	Jun-06-13	14:30	Jun-06-13 14:45		Jun-06-13	15:00	Jun-06-13	15:30	Jun-06-13	15:45
Alkalinity by SM2320B	Extracted:												
SUB: TX104704215	Analyzed:	Jun-12-13	11:55	Jun-12-13	12:02	Jun-12-13	12:09	Jun-12-13	12:16	Jun-12-13	12:23	Jun-12-13	12:30
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		224	4.00	306	4.00	168	4.00	203	4.00	326	4.00	238	4.00
BTEX by EPA 8021B	Extracted:	Jun-12-13	17:00	Jun-12-13	17:00	Jun-12-13	17:00	Jun-12-13	17:00	Jun-12-13	17:00	Jun-12-13	17:00
	Analyzed:	Jun-13-13	Jun-13-13 00:46 Ju		01:02	Jun-13-13	01:19	Jun-13-13	01:35	Jun-13-13 (01:51	Jun-13-13 02:07	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		0.00146 J	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		0.00146	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		0.00146	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-10-13	15:21	Jun-10-13	15:21	Jun-10-13	15:21	Jun-10-13	15:21	Jun-10-13	15:21	Jun-10-13	15:21
SUB: TX104704215	Analyzed:	Jun-11-13	00:01	Jun-11-13 (00:19	Jun-11-13	01:14	Jun-11-13	01:33	Jun-11-13 (01:51	Jun-11-13	02:10
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		139	2.00	138	1.00	14900 D	100	17000 D	100	2330	10.0	3760	25.0
Sulfate		86.0	2.00	84.8	1.00	414	25.0	457	25.0	177	10.0	113	25.0
TDS by SM2540C	Extracted:			1								I	
SUB: TX104704215	Analyzed:	Jun-12-13	08:42	Jun-12-13 (08:42	Jun-12-13	08:42	Jun-12-13	08:42	Jun-12-13 (08:42	Jun-12-13	08:42
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		560	5.00	972	5.00	28000	5.00	27200	5.00	8760	5.00	4430	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 7 of 24

Project Id: 046121 Contact: Bernie Bockisch Project Location: Eunice NM

Certificate of Analysis Summary 464702

Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab: Fri Jun-07-13 04:05 pm Report Date: 14-JUN-13

Project Manager: Kelsey Brooks

	Lab Id:	464702-013			
Analysis Paguastad	Field Id:	DUP-1			
Analysis Kequestea	Depth:				
	Matrix:	WATER			
	Sampled:	Jun-06-13 00:00			
Alkalinity by SM2320B	Extracted:				
SUB: TX104704215	Analyzed:	Jun-12-13 12:37			
	Units/RL:	mg/L RL			
Alkalinity, Total (as CaCO3)		201 4.00			
BTEX by EPA 8021B	Extracted:	Jun-13-13 14:00			
	Analyzed:	Jun-13-13 18:56			
	Units/RL:	mg/L RL			
Benzene		ND 0.00100			
Toluene		ND 0.00200			
Ethylbenzene		ND 0.00100			
m,p-Xylenes		ND 0.00200			
o-Xylene		ND 0.00100			
Total Xylenes		ND 0.00100			
Total BTEX		ND 0.00100			
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-10-13 15:21			
SUB: TX104704215	Analyzed:	Jun-11-13 02:28			
	Units/RL:	mg/L RL			
Chloride		16100 D 100			
Sulfate		451 25.0			
TDS by SM2540C	Extracted:				
SUB: TX104704215	Analyzed:	Jun-12-13 08:42			
	Units/RL:	mg/L RL			
Total dissolved solids		32000 5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

LOD Limit of Detection

Phone

(281) 240-4200

(214) 902 0300

(210) 509-3334

(813) 620-2000

(432) 563-1800

(770) 449-8800

(602) 437-0330

* Surrogate recovered outside laboratory control limit.

- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit
 SDL Sample Detection Limit
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

Fax

(281) 240-4280

(214) 351-9139

(210) 509-3335

(813) 620-2033

(432) 563-1713

(770) 449-5477

Project Name: Mark Owen #9

Vork Orders: 464702	-,	Project ID: 046121								
Lab Batch #: 916137	Sample: 464702-003 / SMP	P Batch: 1 Matrix: Water								
Units: mg/L	Date Analyzed: 06/12/13 22:53	SU	RROGATE RF	ECOVERY S	OVERY STUDY					
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0304	0.0300	101	80-120					
4-Bromofluorobenzene		0.0251	0.0300	84	80-120					
Lab Batch #: 916137	Sample: 464702-004 / SMP	Batcl	h: 1 Matrix:	Water	·					
Units: mg/L	Date Analyzed: 06/12/13 23:10	SU	RROGATE RF	COVERY S	STUDY					
ВТЕХ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0304	0.0300	101	80-120					
4-Bromofluorobenzene		0.0250	0.0300	83	80-120					
Lab Batch #: 916137	Sample: 464702-005 / SMP	Batcl	h: ¹ Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 06/12/13 23:26	SU	RROGATE RF	COVERY	STUDY					
BTEX	X by EPA 8021B Analvtes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0307	0.0300	102	80-120					
4-Bromofluorobenzene		0.0251	0.0300	84	80-120					
Lab Batch #: 916137	Sample: 464702-006 / SMP	Batcl	h: 1 Matrix:	Water	<u>.</u>					
Units: mg/L	Date Analyzed: 06/12/13 23:42	SU	RROGATE RF	ECOVERY S	STUDY					
ВТЕУ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.4-Difluorobenzene	Anarytes	0.0306	0.0300	102	80-120					
4-Bromofluorobenzene		0.0251	0.0300	84	80-120					
Lab Batch #: 916137	Sample: 464702-007 / SMP	Batcl	h: 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 06/13/13 00:46	SU	RROGATE RF	COVERY	STUDY					
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0296	0.0300	99	80-120					
4-Bromofluorobenzene		0.0240	0.0300	80	80-120					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9

Work Orders: 464702	<u>'</u> ,		Project II): 046121						
Lab Batch #: 916137	Sample: 464702-008 / SMP	Batch: 1 Matrix: Water								
Units: mg/L	Date Analyzed: 06/13/13 01:02	SUI	RROGATE RF	COVERY S	STUDY					
ВТЕХ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0305	0.0300	102	80-120					
4-Bromofluorobenzene		0.0244	0.0300	81	80-120					
Lab Batch #: 916137	Sample: 464702-009 / SMP	Batch	a: 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 06/13/13 01:19	SUI	RROGATE RF	COVERY S	STUDY					
ВТЕХ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.4-Difluorobenzene		0.0306	0.0300	102	80-120					
4-Bromofluorobenzene		0.0246	0.0300	82	80-120					
Lab Batch #: 916137	Sample: 464702-010 / SMP	Batcł	n: 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 06/13/13 01:35	SUI	RROGATE RF	COVERY S	STUDY					
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0303	0.0300	101	80-120					
4-Bromofluorobenzene		0.0253	0.0300	84	80-120					
Lab Batch #: 916137	Sample: 464702-011 / SMP	Batch	a: 1 Matrix:	Water						
Units: mg/L	Date Analyzed: 06/13/13 01:51	SUI	RROGATE RF	COVERY S	STUDY					
BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1.4-Difluorobenzene		0.0301	0.0300	100	80-120					
4-Bromofluorobenzene		0.0245	0.0300	82	80-120					
Lab Batch #: 916137	Sample: 464702-012 / SMP	Batcł	n: 1 Matrix:	Water	<u> </u>					
Units: mg/L	Date Analyzed: 06/13/13 02:07	SUJ	RROGATE RF	COVERY S	STUDY					
ВТЕХ	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluorobenzene		0.0317	0.0300	106	80-120					
4-Bromofluorobenzene		0.0269	0.0300	90	80-120					

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9

Vork Orders : 464702	",		Project II): 046121		
Lab Batch #: 916137	Sample: 4647/02-001 / SMP	Batch	n: 1 Matrix:	Water		
Units: mg/L	Date Analyzed: 06/13/13 13:45	SU	RROGATE KE	COVERY S	STUDY	
ВТЕХ	(by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4-Difluorobenzene		0.0283	0.0300	94	80-120	
4-Bromofluorobenzene		0.0242	0.0300	81	80-120	
Lah Batch #: 916137	Sample: 464702-002 / SMP	Batcl	h: 1 Matrix:	Water	<u> </u>	
Units: mg/L	Date Analyzed: 06/13/13 14:44	SU	RROGATE RF	COVERY	STUDY	
BTEX	۲ by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0292	0.0300	97	80-120	
4-Bromofluorobenzene	<u>_</u>	0.0253	0.0300	84	80-120	
Lab Batch #: 916172	Sample: 464702-013 / SMP	Batcl	h: 1 Matrix:	Water	<u>. </u>	
Units: mg/L	Date Analyzed: 06/13/13 18:56	SU!	RROGATE RF	COVERY S	STUDY	
ВТЕХ	C by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0294	0.0300	98	80-120	
4-Bromofluorobenzene		0.0261	0.0300	87	80-120	
Lab Batch #: 916137	Sample: 639606-1-BLK / BI	_K Batcl	h: 1 Matrix:	Water		
Units: mg/L	Date Analyzed: 06/12/13 21:00	SU	RROGATE RF	COVERY	STUDY	
BTEX	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0305	0.0300	102	80-120	
4-Bromofluorobenzene		0.0241	0.0300	80	80-120	
Lab Batch #: 916172	Sample: 639656-1-BLK / BI	_K Batcl	h: 1 Matrix:	Water	·	
Units: mg/L	Date Analyzed: 06/13/13 18:40	SU!	RROGATE RF	COVERY S	STUDY	
ВТЕХ	C by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0296	0.0300	99	80-120	 I
4-Bromofluorobenzene		0.0249	0.0300	83	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9

Work Orders : 464702	", Sample: 639606-1-BKS / B	KS Botch	Project II): 046121 •Water		
Lab Dattin #. 910137	Date Analyzed: 06/12/13 20:12	SUR	ROGATE RI	ECOVERY (STUDY	
BTEX	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0304	0.0300	101	80-120	 I
4-Bromofluorobenzene		0.0282	0.0300	94	80-120	
Lab Batch #: 916172	Sample: 639656-1-BKS / B	KS Batch:	1 Matrix:	Water		
Units: mg/L	Date Analyzed: 06/13/13 17:51	SUR	ROGATE RF	COVERY	STUDY	
ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0316	0.0300	105	80-120	
4-Bromofluorobenzene		0.0303	0.0300	101	80-120	
Lab Batch #: 916137	Sample: 639606-1-BSD / B	SD Batch:	1 Matrix:	Water	·	
Units: mg/L	Date Analyzed: 06/12/13 20:28	SUR	ROGATE RF	COVERY	STUDY	
ВТЕХ	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene		0.0317	0.0300	106	80-120	 I
4-Bromofluorobenzene		0.0297	0.0300	99	80-120	
Lab Batch #: 916172	Sample: 639656-1-BSD / B	SD Batch:	1 Matrix:	Water		
Units: mg/L	Date Analyzed: 06/13/13 18:07	SUR	ROGATE RF	COVERY	STUDY	
ВТЕХ	K by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1.4-Difluorobenzene		0.0313	0.0300	104	80-120	
4-Bromofluorobenzene		0.0318	0.0300	106	80-120	
Lab Batch #: 916137	Sample: 464702-003 S / M.	S Batch:	1 Matrix:	:Water	<u> </u>	
Units: mg/L	Date Analyzed: 06/12/13 23:58	SUR	ROGATE RF	COVERY	STUDY	
BTEX	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0290	0.0300	97	80-120	
4-Bromofluorobenzene		0.0281	0.0300	94	80-120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9

Vork Orders: 464702	'9		Project II	D: 046121				
Lab Batch #: 916172	Sample: 464886-001 S / MS	S Batc	h: ¹ Matrix:	Water				
Units: mg/L	Date Analyzed: 06/13/13 21:37	SU	RROGATE RI	ECOVERY	STUDY			
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1 4 Difluorobenzene	Analytes	0.0278	0.0300	02	80.120			
4-Bromofluorobenzene		0.0278	0.0300	89	80-120			
Lab Batch #: 916137	Sample: 464702-003 SD / N	MSD Bata	h. 1 Matrix	•Water	00 120			
	Sample: +0+702-005 5D7 F	SURROGATE RECOVERY STUDY						
Units: mg/L	Date Analyzed: 06/13/13 00:14	SURROGATE RECOVERTISTODI						
BTEX	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
	Analytes			נען				
1,4-Difluorobenzene		0.0301	0.0300	100	80-120			
4-Bromofluorobenzene		0.0281	0.0300	94	80-120			
Lab Batch #: 916172	Sample: 464886-001 SD / N	MSD Batc	h: 1 Matrix:	Water				
Units: mg/L	Date Analyzed: 06/13/13 21:53	SU	RROGATE RI	ECOVERY	STUDY			
BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorobenzene		0.0295	0.0300	98	80-120			
4-Bromofluorobenzene		0.0271	0.0300	90	80-120			

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Work Order #: 464702		Pr	oject ID:			046121
Lab Batch #: 915843	Sample: 639419-			Water		
Date Analyzed: 06/10/2013 Date Pr	epared: 06/10/20	013				
Reporting Units: mg/L F	Batch #: 1	BLANK /	COVERY S	STUDY		
Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Chloride	<0.0280	250	254	102	80-120	
Sulfate	< 0.0460	250	255	102	80-120	
Lab Batch #: 915845	Sample: 639420-	1-BKS	Matrix:	Water		
Date Analyzed: 06/10/2013 Date Pr	epared: 06/10/20	013	Analyst:	MAB		
Reporting Units: mg/L	Batch #: 1 BLANK /BLANK SPIKE RECOVERY					STUDY
Inorganic Anions by EPA 300/300.1	Blank Result [A]	Spike Added [B]	Blank Spike Result	Blank Spike %R	Control Limits %R	Flags
Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Inorganic Anions by EPA 300/300.1 Analytes Chloride	Blank Result [A]	Spike Added [B] 250	Blank Spike Result [C] 260	Blank Spike %R [D] 104	Control Limits %R 80-120	Flags
Inorganic Anions by EPA 300/300.1 Analytes Chloride Sulfate	Blank Result [A] <0.0280 <0.0460	Spike Added [B] 250 250	Blank Spike Result [C] 260 259	Blank Spike %R [D] 104 104	Control Limits %R 80-120 80-120	Flags
Inorganic Anions by EPA 300/300.1 Analytes Chloride Sulfate Lab Batch #: 915939	Blank Result Image: Marcolar state [A] <0.0280 <0.0460 Sample: 639471-	Spike Added [B] 250 250 -1-BKS	Blank Spike Result [C] 260 259 Matrix:	Blank Spike %R [D] 104 104 Water	Control Limits %R 80-120 80-120	Flags
Inorganic Anions by EPA 300/300.1 Analytes Chloride Sulfate Lab Batch #: 915939 Date Analyzed: 06/11/2013 Date Pr	Blank Result [A] <0.0280 <0.0460 Sample: 639471- epared: 06/11/20	Spike Added [B] 250 250 -1-BKS 013	Blank Spike Result [C] 260 259 Matrix: Analyst:	Blank Spike %R [D] 104 104 Water RKO	Control Limits %R 80-120 80-120	Flags
Inorganic Anions by EPA 300/300.1 Analytes Chloride Sulfate Lab Batch #: 915939 Date Analyzed: 06/11/2013 Date Print Reporting Units: mg/L	Blank Result [A] <0.0280 <0.0460 Sample: 639471- epared: 06/11/20 Satch #: 1	Spike Added [B] 250 250 -1-BKS 013 BLANK /F	Blank Spike Result [C] 260 259 Matrix: Analyst: BLANK SPI	Blank Spike %R [D] 104 104 Water RKO KE REC	Control Limits %R 80-120 80-120	Flags
Inorganic Anions by EPA 300/300.1 Analytes Chloride Sulfate 2 Lab Batch #: 915939 S Date Analyzed: 06/11/2013 Date Pr Reporting Units: mg/L E Inorganic Anions by EPA 300/300.1 Amalutar	Blank Result [A] <0.0280 <0.0460 Sample: 639471- epared: 06/11/20 Batch #: 1 Blank Result [A]	Spike Added [B] 250 250 -1-BKS 013 BLANK /F Spike Added [B]	Blank Spike Result [C] 260 259 Matrix: Analyst: BLANK SPI Blank Spike Result	Blank Spike %R [D] 104 104 Water RKO KE REC Blank Spike %R	Control Limits %R 80-120 80-120 COVERY S Control Limits %R	Flags STUDY Flags
Inorganic Anions by EPA 300/300.1 Analytes Chloride Sulfate Lab Batch #: 915939 Date Analyzed: 06/11/2013 Date Pr Reporting Units: mg/L Inorganic Anions by EPA 300/300.1 Analytes	Blank Result Blank [A] <0.0280 <0.0460 Sample: 639471- epared: 06/11/20 Blank Result [A] Blank	Spike Added [B] 250 250 -1-BKS 013 BLANK /F Spike Added [B]	Blank Spike Result [C] 260 259 Matrix: Analyst: BLANK SPI Blank Spike Result [C]	Blank Spike %R [D] 104 104 Water RKO KE REC Blank Spike %R [D]	Control Limits %R 80-120 80-120 COVERY S Covery S Control Limits %R	Flags STUDY Flags

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Work Order #: 464702							Pro	ject ID: ()46121			
Analyst: MAB	Da	Date Prepared: 06/12/2013					Date Analyzed: 06/12/2013					
Lab Batch ID: 915998 Sample: 915998-1-E	3KS	Batch #: 1					Matrix: Water					
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVI	ERY STUD	Y		
Alkalinity by SM2320B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Alkalinity, Total (as CaCO3)	<0.954	250	259	104	250	261	104	1	80-120	20		
Analyst: DYV Date Prepared: 06/12/2013 Date Analyzed: 06/12/2013												
Lab Batch ID: 916137 Sample: 639606-1-H	39606-1-BKS Batch #: 1 Matrix: Water											
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPI	LICATE	RECOVI	ERY STUD	Y		
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Besult [F]	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Analytes		[0]				Kesunt [F]	[0]					
Benzene	<0.000500	0.100	0.0880	88	0.100	0.0919	92	4	70-125	25		
Toluene	< 0.00100	0.100	0.0832	83	0.100	0.0857	86	3	70-125	25		
Ethylbenzene	<0.000700	0.100	0.0877	88	0.100	0.0890	89	1	71-129	25		
m,p-Xylenes	<0.00140	0.200	0.177	89	0.200	0.178	89	1	70-131	25		
o-Xylene	<0.000700	0.100	0.0917	92	0.100	0.0929	93	1	71-133	25		

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

Work Order #: 464702	Project ID: 046121													
Analyst: DYV	D	ate Prepar	red: 06/13/201	13			Date A	nalyzed: (6/13/2013					
Lab Batch ID: 916172 Sample: 639656-1-	BKS	Batc	h #: 1					Matrix: \	Water					
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPLICATE RECOVERY STUDY								
BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag			
Benzene	<0.000500	0.100	0.0815	82	0.100	0.0801	80	2	70-125	25				
Toluene	< 0.00100	0.100	0.0812	81	0.100	0.0804	80	1	70-125	25				
Ethylbenzene	<0.000700	0.100	0.0893	89	0.100	0.0884	88	1	71-129	25				
m,p-Xylenes	< 0.00140	0.200	0.179	90	0.200	0.178	89	1	70-131	25				
o-Xylene	<0.000700	0.100	0.0930	93	0.100	0.0926	93	0	71-133	25				
Analyst: ANS	D	ate Prepar	red: 06/12/201	13		Date Analyzed: 06/12/2013								
Lab Batch ID: 915937 Sample: 915937-1-	BKS	Batc	h #: 1					Matrix: \	Water					
Units: mg/L		BLAN	K /BLANK S	SPIKE / E	BLANK S	SPIKE DUPI	LICATE	RECOVE	ERY STUD	Y				
TDS by SM2540C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag			
Total dissolved solids	<5.00	1000	969	97	1000	1010	101	4	80-120	30				

Relative Percent Difference RPD = $200^{*}|(C-F)/(C+F)|$ Blank Spike Recovery [D] = $100^{*}(C)/[B]$ Blank Spike Duplicate Recovery [G] = $100^{*}(F)/[E]$ All results are based on MDL and Validated for QC Purposes

XENCO Laboratories

Form 3 - MS / MSD Recoveries

Project Name: Mark Owen #9

Work Order # : 464702						Project II	D: 046121						
Lab Batch ID: 916137 Q	C- Sample ID:	464702	-003 S	Ba	tch #:	1 Matrix	k: Water						
Date Analyzed: 06/12/2013	Date Prepared:	06/12/2	013	An	alyst: I	DYV							
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE RECO	OVERYS	STUDY				
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag		
Analytes	[A]	[B]	[-]	[D]	[E]	[-]	[G]		,	/			
Benzene	<0.000500	0.100	0.0856	86	0.100	0.0880	88	3	70-125	25			
Toluene	< 0.00100	0.100	0.0819	82	0.100	0.0838	84	2	70-125	25			
Ethylbenzene	<0.000700	0.100	0.0868	87	0.100	0.0883	88	2	71-129	25			
m,p-Xylenes	<0.00140	0.200	0.174	87	0.200	0.177	89	2	70-131	25			
o-Xylene	<0.000700	0.100	0.0901	90	0.100	0.0914	91	1	71-133	25			
Lab Batch ID: 916172 Q	C- Sample ID:	464886	-001 S	Ba	tch #:	1 Matrix	K: Water						
Date Analyzed: 06/13/2013	Date Prepared:	06/13/2	013	An	alyst: I	DYV							
Reporting Units: mg/L		MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY											
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Benzene	0.113	0.100	0.202	89	0.100	0.203	90	0	70-125	25			
Toluene	0.0621	0.100	0.128	66	0.100	0.140	78	9	70-125	25	X		
Ethylbenzene	0.00774	0.100	0.0860	78	0.100	0.0927	85	7	71-129	25			
m,p-Xylenes	0.0190	0.200	0.174	78	0.200	0.189	85	8	70-131	25			
o_Xvlene					-								

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Mark Owen #9

Work Order # :	464702						Project II	D: 046121							
Lab Batch ID:	915843	QC- Sample ID:	464423	-012 S	Ba	tch #:	1 Matri	x: Water							
Date Analyzed:	06/10/2013	Date Prepared:	06/10/2	013	An	alyst: N	MAB								
Reporting Units:	mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE RECO	OVERY	STUDY					
Inorgan	ic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag			
	Analytes	[A]	[B]	[-]	[D]	[E]	[-]	[G]	, -	,					
Chloride		272	200	368	48	200	372	50	1	80-120	20	X			
Sulfate		126	200	283	79	200	285	80	1	80-120	20	X			
Lab Batch ID:	915843	QC- Sample ID:	464423	-018 S	Ba	tch #:	1 Matri	x: Water							
Date Analyzed:	06/10/2013	Date Prepared:	06/10/2	013	An	alyst: N	MAB								
Reporting Units:	mg/L	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY													
Inorgan	ic Anions by EPA 300/300.1	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag			
	Analytes	[A]	Added [B]		%K [D]	E]	Kesut [F]	%R [G]	70	%0K	%KPD				
Chloride		1870	1000	2840	97	1000	2850	98	0	80-120	20				
Sulfate		225	1000	1250	103	1000	1270	105	2	80-120	20				
Lab Batch ID:	915845	C- Sample ID:	464702	-003 S	Ba	tch #:	1 Matri	x: Water							
Date Analyzed:	06/10/2013	Date Prepared:	06/10/2	013	An	alyst: N	MAB								
Reporting Units:	mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE RECO	OVERY	STUDY					
Inorgan	ic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag			
1															
Chloride		556	200	530	0	200	531	0	0	80-120	20	X			

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Mark Owen #9

Work Order # : 464702						Project II): 046121				
Lab Batch ID: 915845	QC- Sample ID:	464702	-013 S	Ba	tch #:	1 Matrix	K: Water				
Date Analyzed: 06/11/2013	Date Prepared:	06/10/2	013	Ar	alyst: 1	MAB					
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorganic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride	14400	2500	16500	84	2500	16500	84	0	80-120	20	
Sulfate	451	2500	3010	102	2500	3020	103	0	80-120	20	
Lab Batch ID: 915939	QC- Sample ID:	464726	-001 S	Ba	tch #:	1 Matrix	k: Water				
Date Analyzed: 06/11/2013	Date Prepared:	06/11/2	013	Ar	alyst: I	RKO					
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorganic Anions by EPA 300/300.1	Parent Sample Bosult	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]		%R [D]	E]	Kesuit [F]	%R [G]	%	% K	%KPD	
Chloride	246	50.0	247	2	50.0	249	6	1	80-120	20	Х
Lab Batch ID: 915939	QC- Sample ID:	464756	-002 S	Ba	tch #:	1 Matrix	k: Water				
Date Analyzed: 06/11/2013		06/11/2	013	٨٣	alvet. I	2KO					
	Date Prepared:	00/11/2	013	A1	aryst. 1						
Reporting Units: mg/L	Date Prepared:	00/11/2 M	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Reporting Units: mg/L Inorganic Anions by EPA 300/300.1	Date Prepared: Parent Sample Result	Spike	IATRIX SPIK	AI E / MAT Spiked Sample	Spike	KE DUPLICA Duplicate Spiked Sample	TE REC Spiked Dup.	OVERY RPD	STUDY Control Limits	Control Limits	Flag
Reporting Units: mg/L Inorganic Anions by EPA 300/300.1 Analytes	Date Prepared: Parent Sample Result [A]	Spike Added [B]	IATRIX SPIK Spiked Sample Result [C]	E / MAT Spiked Sample %R [D]	RIX SPI Spike Added [E]	KE DUPLICA Duplicate Spiked Sample Result [F]	TE REC Spiked Dup. %R [G]	OVERY RPD %	STUDY Control Limits %R	Control Limits %RPD	Flag

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Work Order #: 464702						
Lab Batch #: 915998				Project I	D: 046121	
Date Analyzed: 06/12/2013 11:06	Date Prepar	ed: 06/12/2013	3 Ana	lyst:MAB		
QC- Sample ID: 464632-001 D	Batch	1 #: 1	Mat	t rix: Water		
Reporting Units: mg/L		SAMPLE	/ SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)		323	323	0	20	
Lab Batch #: 915998						
Date Analyzed: 06/12/2013 12:16	Date Prepar	ed: 06/12/2013	3 Ana	lyst:MAB		
QC- Sample ID: 464702-010 D	Batch	1 # : 1	Mat	t rix: Water		
Reporting Units: mg/L		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)		203	203	0	20	
L ab Batch #• 915937						I
Date Analyzed: 06/12/2013 08:42	Date Prepar	ed: 06/12/2013	3 Ana	lyst: ANS		
QC- Sample ID: 464647-001 D	Batch	1#: 1	Mat	t rix: Waste	Water	
Reporting Units: mg/L		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		911	987	8	30	
Lab Batch #: 915937						
Date Analyzed: 06/12/2013 08:42	Date Prepar	ed: 06/12/2013	3 Ana	lyst: ANS		
QC- Sample ID: 464702-010 D	Batch	n#: 1	Mat	t rix: Water		
Reporting Units: mg/L		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		27200	34900	25	30	

Spike Relative Difference RPD 200 * $|\,(B\text{-}A)/(B\text{+}A)\,|$ All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

ANALYSIS REQUEST & CHAIN OF CUSIOUT RECORD

	Preservatives Cont. Size: 40	5)	3) 100 10	1 FUL	Relinquish							Dup 1	MW-11-06	MW-10-	Samp	Sampler Nam	Special ULS	QAPP Per-C	Reg Program	Quote/Pricing	Bill to:	Bbock	NJ, PA, SC, T	Proj. State: T	Project Name	Company-Cit
	s: Various (V), H bz (4), 8oz (8),		1000	1 1/1/1-	ed by (Initials						-		062013 0	06062013	di el	10 Warney	(GVV DVV WAR	ontract CLP	: UST DRY-	ġ	Accounting	isch O	N, UT Other	X, AL, FL, GA,	Location	Widle
	4Cl pH<2 (H), H2 32oz (32), 40m				and Sign)								61612013	6/6/2013	Sampling Date	Mauren	OF MIDLS RLS	AGCEE NAVY	CLEAN Land-F		Inc. Invoice wit	CRA world	M and	LA, MS, NC,	EUN ICE	nd TX
	2SO4 pH<2 (I VOA (40),		01110	61718	Date & T								1245	1530	Time	Signature	See Lap Fi		ill Waste-E	P.O. No:	л гіпаі кер	.COM	Bern	Proj. Mana	done at XE	
	1L (1		16.1	11.1	ime							-			Depth ft' in" m		1110		Disp				C	ger (F	NCO	
	INO3), 50(ი	4	200	0	-	-	-	-	H	_	F	F	1-	Matrix	P	Anne	SACI	NPD	· · ·			60	Ň	4	Phon
	Dml (Ž	Relir					*				×	Grab	8			ES I				5	-	0	le
), Te			9	Iquist					5	-			F	# Containers		-				Institution		Fax		Pro)	
	Asbc dlar B			8	ned to										Container Size	A	141)		TRRP	Call	ave		No	-	IL I	1949
	Acid8 ag (B			() (Init										Container Type]\				for P.					0	
	NaO			P	ials a			•							Preservatives					.º						
	H (A)			9	nd S					•		-	E	×	VOA: Full-List	BTEX	МТ	BE E	tOH	Oxy	y vo	Hs V	'OAs		It is	لع ا
	(V), Zn∕		T I	27	ign)										VOA: PP TCL	. DW	Ap	pdx-1	App	odx-2	CAL	_ Oth	ner:		typic	bOn
	Othe	Ц	- 2					-	-	-		-		-	PAHs SIM	8310	82	70						_	SAP	ly:
	aOH			1-0	Ď		-	+	+	-		+-	\vdash	+	SVOCe: Full-Li	GRC			H M			ndy-2		11	5h . 5-7 V	
	(Z), (7	ate &	\vdash	+	+	+-	\vdash		+	+	+	OC Pesticides	PCBs	He	rbicic	les (OP F	Pestici	des	. 0/		I2h : Vorkii	
2	Cool,		ł	-	Tim	\vdash	+	+		1		\top	\vdash	+	Metals: RCRA-8	RCR	A-4	Pb 1	3PP	23TAL	. App	dx 1 /	Appd>	2	24h ng Da	T
	<4C			0.00	Ø										SPLP - TCLP	(Metals	s V	DCs	svo	Cs P	est. I	lerb.	PCE	s)	48h ays fc	-
)	(<u>c</u>)	here	until	Othe	Tota										EDB / DBCP				,	A		1			3d pr lev	4
5	None Cont.	by rec	paid.	invise	I Con							4	\vdash	\geq	Chlorio	les	30	00						_	5d	P *
	Typ	lueste	Sam	agre	tainer		+	-	_	-		<	\vdash	\geq	Sulfates	451	3(00					-	_	7d Ind 1	25
),See e: G	d. Ru	oles v	ed on	s per	\vdash	+	+	+	-	-	4	E	K	TUS	254	0	<u>C</u>	~	0	02	R		-	10d 0+ W	1.2
	Lab	Ish C	vill be	writi	COC	\vdash	+	+	+	+	-	\rightarrow	-	1	TOTAL	AIK	al	111	1	0	14	p		-	21d orkin	
	el (L Amb	harge	held	ng. R			+	+	+			+	\vdash	┢			-	-				-		-	Star g da	
	(A), ot	s and	30 da	eports	(\vdash		+	+			+	\vdash												ndard ys foi	÷ 11
	her (I Glas	Colle	ays at	s are				+				-	t												r leve	1
	S Cle	ction	ter fir	the In	Coc																				I III a	
	ar (C	Fees	nal re	tellec	oler T										TATASAP 5h	12h	24	h 48	3h 3	d f	7d	10d	21	d	nd IV	
	;), P	are p	port is	tual I	emp:							-			Addn: PAH abo	ve	mg	g/L W	m	g/Kg	S Hi	ghest	Hit		/ data	i di
VALAD	lastic	pre-ap	s e-m	rope	1		-	-							Hold Samples (Surcha	arges	will a	pply	and a	re pre-	appro	ved)	_	cific. a.	
	(P), Various	proved if nee	ailed unless	ity of XENC	0°C										Sample Clean-	ips are	e pre	-appro	oved a	as nee	bebe		-	Remark		
5	10	dec		0			-	+-	+		-	+	+	-	1.00				_				-	6	5.	

ANALYSIS REQUEST & CHAIN OF CUSTOUT RECORD

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 06/07/2013 04:05:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 464702	Temperature Measuring device used :

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

 Checklist completed by:
 Mmg Moah Kelsey Brooks
 Date: 06/07/2013

 Checklist reviewed by:
 Mmg Moah Kelsey Brooks
 Date: 06/07/2013

Analytical Report 470218

for

Conestoga-Rovers & Associates-Albuquerque, NM

Project Manager: Bernie Bockisch

Mark Owen #9 Reserve Pit

046121-2013-01

26-SEP-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

26-SEP-13

Project Manager: Bernie Bockisch Conestoga-Rovers & Associates-Albuquerque, NM 6121 Indian School Rd. NE Suite 200

Albuquerque, NM 87110

Reference: XENCO Report No(s): 470218 Mark Owen #9 Reserve Pit Project Address: Eunice, New Mexico

Bernie Bockisch:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 470218. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 470218 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

spectfully, Mrs. Hoah

 Kelsey Brooks

 Project Manager

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 470218

Conestoga-Rovers & Associates-Albuquerque, NM, Albuque

Mark Owen #9 Reserve Pit

Matrix	Date Collected	Sample Depth	Lab Sample Id
W	09-12-13 11:40		470218-001
W	09-12-13 11:55		470218-002
W	09-12-13 12:10		470218-003
W	09-12-13 12:20		470218-004
W	09-12-13 12:30		470218-005
W	09-12-13 12:40		470218-006
W	09-12-13 12:55		470218-007
W	09-12-13 13:10		470218-008
W	09-12-13 13:30		470218-009
W	09-12-13 13:40		470218-010
W	09-12-13 13:50		470218-011
W	09-12-13 14:00		470218-012
W	09-12-13 00:00		470218-013
	Matrix W W W W W W W W W W W	MatrixDate CollectedW09-12-13 11:40W09-12-13 11:55W09-12-13 12:10W09-12-13 12:20W09-12-13 12:20W09-12-13 12:30W09-12-13 12:55W09-12-13 12:55W09-12-13 13:10W09-12-13 13:30W09-12-13 13:50W09-12-13 14:00W09-12-13 14:00W09-12-13 00:00	MatrixDate CollectedSample DepthW09-12-13 11:40W09-12-13 11:55W09-12-13 12:10W09-12-13 12:20W09-12-13 12:30W09-12-13 12:40W09-12-13 12:55W09-12-13 13:10W09-12-13 13:30W09-12-13 13:30W09-12-13 13:40W09-12-13 13:50W09-12-13 13:00W09-12-13 13:00

CASE NARRATIVE

Client Name: Conestoga-Rovers & Associates-Albuquerque, NM Project Name: Mark Owen #9 Reserve Pit

 Project ID:
 046121-2013-01

 Work Order Number(s):
 470218

Report Date:26-SEP-13Date Received:09/12/2013

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-922959 BTEX by SW 8260B SW8260BTX

Batch 922959, Benzene recovered above QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 470218-011, -001, -003, -005, -008, -007, -013, -004, -006, -009, -010, -002. The Laboratory Control Sample for Benzene is within laboratory Control Limits

Certificate of Analysis Summary 470218

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerque, NM

Project Name: Mark Owen #9 Reserve Pit

Project Id: 046121-2013-01 Contact: Bernie Bockisch Project Location: Eunice, New Mexico

Date Received in Lab: Thu Sep-12-13 04:45 pm

Report Date: 26-SEP-13 Project Manager: Kelsey Brooks

								1 TOJECI MIA	mager.	Reisey Diook	<u></u>		
	Lab Id:	470218-0	001	470218-0	002	470218-0	003	470218-	004	470218-0	005	470218-0	006
An aluais De au este l	Field Id:	MW-9-09	1213	MW-8-09	1213	MW-7-09	1213	MW-6-09	1213	MW-5-09	1213	MW-4-09	1213
Analysis Kequesiea	Depth:												
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R
	Sampled:	Sep-12-13	11:40	Sep-12-13	11:55	Sep-12-13	12:10	Sep-12-13	12:20	Sep-12-13	12:30	Sep-12-13	12:40
Alkalinity by SM2320B	Extracted:												
SUB: TX104704215	Analyzed:	Sep-23-13	15:48	Sep-23-13	15:48	Sep-23-13	15:48	Sep-23-13	15:48	Sep-23-13	15:48	Sep-23-13	15:48
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		329	4.00	227	4.00	222	4.00	250	4.00	246	4.00	239	4.00
BTEX by SW 8260B	Extracted:	Sep-18-13	13:00	Sep-18-13	13:02	Sep-18-13	13:04	Sep-18-13	13:06	Sep-18-13	13:08	Sep-18-13	13:10
SUB: TX104704215	Analyzed:	Sep-18-13	13:57	Sep-18-13 14:23		Sep-18-13 14:49		Sep-18-13	15:14	Sep-18-13	15:39	Sep-18-13	16:05
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-13	16:19	Sep-21-13	16:19	Sep-21-13	16:19	Sep-21-13	16:19	Sep-21-13	16:19	Sep-21-13	16:19
SUB: TX104704215	Analyzed:	Sep-22-13	01:32	Sep-22-13	02:28	Sep-22-13	02:47	Sep-22-13	03:05	Sep-22-13	03:24	Sep-22-13	03:43
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		359	10.0	2040	10.0	457	10.0	264	1.00	6090	100	127	1.00
Sulfate		64.5	10.0	674	10.0	181	10.0	226	1.00	319	100	50.2	1.00
TDS by SM2540C	Extracted:											I	
SUB: TX104704215	Analyzed:	Sep-18-13	10:00	Sep-18-13	10:00	Sep-18-13	10:00	Sep-18-13	10:00	Sep-18-13	10:00	Sep-18-13	10:00
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		1260	5.00	5600	5.00	1480	5.00	1130	5.00	6110	5.00	605	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Certificate of Analysis Summary 470218

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerque, NM

Project Name: Mark Owen #9 Reserve Pit

Project Id: 046121-2013-01 Contact: Bernie Bockisch Project Location: Eunice, New Mexico

Date Received in Lab: Thu Sep-12-13 04:45 pm

Report Date: 26-SEP-13

								Project Ma	nager:	Kelsey Brook	<u>śs</u>		
	Lab Id:	470218-	007	470218-0	008	470218-	.009	470218-0	010	470218-0	011	470218-0	012
Amahaia Dagwastad	Field Id:	MW-3-09	1213	MW-2-09	1213	MW-1-09	1213	RW-1-091	1213	MW-10-09	91213	MW-11-09	91213
Anaiysis kequesiea	Depth:	l	ļ	1		l							
	Matrix:	WATE	3R	WATE	R	WATF	ER	WATE	R	WATE	R	WATE	ER
	Sampled:	Sep-12-13	12:55	Sep-12-13	13:10	Sep-12-13	13:30	Sep-12-13	13:40	Sep-12-13	13:50	Sep-12-13	14:00
Alkalinity by SM2320B	Extracted:												. <u> </u>
SUB: TX104704215	Analyzed:	Sep-23-13	15:48	Sep-23-13	15:48	Sep-23-13	15:48	Sep-23-13	15:48	Sep-23-13	15:48	Sep-23-13	15:48
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		242	4.00	311	4.00	315	4.00	207	4.00	329	4.00	241	4.00
BTEX by SW 8260B	Extracted:	Sep-18-13	16:16	Sep-18-13	16:18	Sep-18-13	16:20	Sep-18-13	16:22	Sep-18-13	16:24	Sep-19-13	12:30
SUB: TX104704215	Analyzed:	Sep-18-13	16:32	Sep-18-13	16:57	Sep-18-13 17:22		Sep-18-13	17:48	Sep-18-13 18:13		Sep-19-13	13:10
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX	<u> </u>	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-13	16:19	Sep-21-13	16:19	Sep-21-13	16:19	Sep-21-13	16:19	Sep-21-13	16:19	Sep-21-13	16:19
SUB: TX104704215	Analyzed:	Sep-22-13	04:38	Sep-22-13 (04:57	Sep-22-13	05:16	Sep-22-13	05:34	Sep-22-13	05:53	Sep-22-13	06:49
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		128	1.00	270	1.00	4600	100	13400	100	2550	10.0	4290	100
Sulfate		86.3	1.00	156	1.00	187	100	391	100	206	10.0	106	100
TDS by SM2540C	Extracted:			1		 I							
SUB: TX104704215	Analyzed:	Sep-18-13	10:00	Sep-18-13	10:00	Sep-18-13	10:00	Sep-18-13	10:00	Sep-18-13	10:00	Sep-18-13 10:00	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		677	5.00	1160	5.00	1600	5.00	20200	5.00	5420	5.00	5320	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 6 of 22

Certificate of Analysis Summary 470218

Conestoga-Rovers & Associates-Albuquerque, NM, Albuquerque, NM

Project Name: Mark Owen #9 Reserve Pit

Project Id: 046121-2013-01 Contact: Bernie Bockisch Project Location: Eunice, New Mexico

Date Received in Lab: Thu Sep-12-13 04:45 pm

Report Date: 26-SEP-13 Project Manager: Kelsey Brooks

	Lab Id:	470218-0)13			
Analysis Paguastad	Field Id:	DUP-091	213			
Analysis Kequeslea	Depth:					
	Matrix:	WATE	R			
	Sampled:	Sep-12-13	00:00			
Alkalinity by SM2320B	Extracted:					
SUB: TX104704215	Analyzed:	Sep-23-13	15:48			
	Units/RL:	mg/L	RL			
Alkalinity, Total (as CaCO3)		219	4.00			
BTEX by SW 8260B	Extracted:	Sep-18-13	16:28			
SUB: TX104704215	Analyzed:	Sep-18-13	19:03			
	Units/RL:	mg/L	RL			
Benzene		ND	0.00100			
Toluene		ND	0.00100			
Ethylbenzene		ND	0.00100			
m,p-Xylenes		ND	0.00200			
o-Xylene		ND	0.00100			
Total Xylenes		ND	0.00100			
Total BTEX		ND	0.00100			
Inorganic Anions by EPA 300/300.1	Extracted:	Sep-21-13	16:19			
SUB: 1X104704215	Analyzed:	Sep-22-13	07:07			
	Units/RL:	mg/L	RL			
Chloride		473	10.0			
Sulfate		187	10.0			
TDS by SM2540C	Extracted:					
SUB: TX104704215	Analyzed:	Sep-18-13	10:00			
	Units/RL:	mg/L	RL			
Total dissolved solids		1680	5.00			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- B A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- RPD exceeded lab control limits. F
- The target analyte was positively identified below the quantiation limit and above the detection limit. J
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

LOD Limit of Detection

- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit
- LOQ Limit of Quantitation **POL** Practical Quantitation Limit MQL Method Quantitation Limit
- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Phone

(281) 240-4200

Final 1.000

Fax

(281) 240-4280

Project Name: Mark Owen #9 Reserve Pit

Vork Orders : 470218	, a 170010.001/GMD	Project ID: 046121-2013-01							
Lab Batch #: 922959	Batch: 1 Matrix: Water SURROGATE RECOVERV STUDV								
Units: mg/L	Date Analyzed: 09/18/13 13:57	SC			51001				
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Dibromofluoromethane		0.0501	0.0500	100	75-131				
1,2-Dichloroethane-D4		0.0510	0.0500	102	63-144				
Toluene-D8		0.0531	0.0500	106	80-117				
4-Bromofluorobenzene		0.0537	0.0500	107	74-124				
Lab Batch #: 922959	Sample: 470218-002 / SMP	Bate	h: 1 Matrix	:Water	·				
Units: mg/L	Date Analyzed: 09/18/13 14:23	SU	RROGATE R	ECOVERY	STUDY				
BTE	X by SW 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Dibromofluoromethane	11111 y to 5	0.0548	0.0500	110	75-131				
1,2-Dichloroethane-D4		0.0545	0.0500	109	63-144				
Toluene-D8		0.0512	0.0500	102	80-117				
4-Bromofluorobenzene		0.0537	0.0500	107	74-124				
Lab Batch #• 922959	Sample: 470218-003 / SMP	Bate	h· 1 Matrix	·Water					
Units: mg/L	Date Analyzed: 09/18/13 14:49	SU	RROGATE R	ECOVERY	STUDY				
BTE	X by SW 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Dibromofluoromethane	Analytes	0.0502	0.0500	101	75 121				
1.2-Dichloroethane-D4		0.0503	0.0500	101	62 144				
Toluene-D8		0.0527	0.0500	100	80-117				
4-Bromofluorobenzene		0.0514	0.0500	103	74-124				
L ah Batch #• 922959	Sample: 470218-004 / SMP	Bate	⊢ 1 Matrix	•Water					
Units: mg/L	Date Analyzed: 09/18/13 15:14	SURROGATE RECOVERY STUDY							
BTEX by SW 8260B		Amount	True		Control	Flags			
BTE	X by SW 8260B Analytes	Found [A]	Amount [B]	Recovery %R [D]	%R				
BTE.	X by SW 8260B Analytes	Found [A]	Amount [B]	Recovery %R [D] 105	% R				
BTE Dibromofluoromethane 1,2-Dichloroethane-D4	X by SW 8260B Analytes	Found [A] 0.0523 0.0548	Amount [B] 0.0500 0.0500	Recovery % R [D] 105 110 110	75-131 63-144				
BTE Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8	X by SW 8260B Analytes	Found [A] 0.0523 0.0548 0.0526 0.0526	Amount [B] 0.0500 0.0500 0.0500	Recovery %R [D] 105 110 105	75-131 63-144 80-117				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9 Reserve Pit

Vork Orders : 470218	, 	Project ID: 046121-2013-01							
Lab Batch #: 922959	Batch: 1 Matrix: Water SUBROCATE RECOVERV STUDV								
Units: mg/L	Date Analyzed: 09/18/13 15:39	50							
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Dibromofluoromethane		0.0550	0.0500	110	75-131				
1,2-Dichloroethane-D4		0.0588	0.0500	118	63-144				
Toluene-D8		0.0488	0.0500	98	80-117				
4-Bromofluorobenzene		0.0511	0.0500	102	74-124				
Lab Batch #: 922959	Sample: 470218-006 / SMP	Batc	h: 1 Matrix	:Water	·				
Units: mg/L	Date Analyzed: 09/18/13 16:05	SU	RROGATE R	ECOVERY	STUDY				
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Dibromofluoromethane		0.0500	0.0500	100	75-131				
1,2-Dichloroethane-D4		0.0534	0.0500	107	63-144				
Toluene-D8		0.0508	0.0500	102	80-117				
4-Bromofluorobenzene		0.0572	0.0500	114	74-124				
Lab Batch #: 922959	Sample: 470218-007 / SMP	Batc	h: 1 Matrix	:Water	1	I			
Units: mg/L	Date Analyzed: 09/18/13 16:32	SU	RROGATE R	ECOVERY	STUDY				
BTE	X by SW 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Dibromofluoromathana	Analytes	0.0520	0.0500	100	75 121				
1.2-Dichloroethane-D4		0.0529	0.0500	100	62 144				
Toluene-D8		0.0572	0.0500	117	80-117				
4-Bromofluorobenzene		0.0523	0.0500	105	74-124				
Lab Batch #: 922959		Bate	h: 1 Matrix	:Water					
Units: mg/L	Date Analyzed: 09/18/13 16:57	SURROGATE RECOVERY STUDY							
BTEX by SW 8260B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
Dibromofluoromethane	-	0.0504	0.0500	101	75-131				
1,2-Dichloroethane-D4		0.0530	0.0500	106	63-144				
			1	1 100					
Toluene-D8		0.0498	0.0500	100	80-117				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9 Reserve Pit

Vork Orders : 470218	, g 1 470218 000 / SMD	Project ID: 046121-2013-01 Batch: 1 Matrix: Water SURROGATE RECOVERY STUDY					
Lab Batch #: 922939	Sample: 470218-0097 SMF						
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Dibromofluoromethane		0.0558	0.0500	112	75-131		
1,2-Dichloroethane-D4		0.0537	0.0500	107	63-144		
Toluene-D8		0.0471	0.0500	94	80-117		
4-Bromofluorobenzene		0.0530	0.0500	106	74-124		
Lab Batch #: 922959	Sample: 470218-010 / SMP	Batc	h: ¹ Matrix	:Water			
Units: mg/L	Date Analyzed: 09/18/13 17:48	SU	RROGATE RI	ECOVERY	STUDY		
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Dibromofluoromethane		0.0535	0.0500	107	75-131		
1,2-Dichloroethane-D4		0.0528	0.0500	106	63-144		
Toluene-D8		0.0515	0.0500	103	80-117		
4-Bromofluorobenzene		0.0528	0.0500	106	74-124		
Lab Batch #: 922959	Sample: 470218-011 / SMP	Batc	h: 1 Matrix	:Water			
Units: mg/L	Date Analyzed: 09/18/13 18:13	SURROGATE RECOVERY STUDY					
BTE	X by SW 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Dibromofluoromethane		0.0520	0.0500	104	75-131		
1,2-Dichloroethane-D4		0.0578	0.0500	116	63-144		
Toluene-D8		0.0553	0.0500	111	80-117		
4-Bromofluorobenzene		0.0554	0.0500	111	74-124		
Lab Batch #: 922959	Sample: 470218-013 / SMP	Batc	h: 1 Matrix	:Water		1	
Units: mg/L	Date Analyzed: 09/18/13 19:03	SU	RROGATE RI	ECOVERY	STUDY		
BTEX by SW 8260B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Dibromofluoromethane		0.0519	0.0500	104	75-131		
1,2-Dichloroethane-D4		0.0557	0.0500	111	63-144		
Toluene-D8		0.0507	0.0500	101	80-117		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9 Reserve Pit

Work Orders : 470218	3, Samelar 470218 012 / SME	Project ID: 046121-2013-01 Batch: 1 Matrix: Water					
Lab Daten #: 923141	Date Analyzed: 09/19/13 13:10	Batch: Matrix: Water SURROGATE RECOVERY STUDY					
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Dibromofluoromethane		0.0506	0.0500	101	75-131		
1,2-Dichloroethane-D4		0.0525	0.0500	105	63-144		
Toluene-D8		0.0493	0.0500	99	80-117		
4-Bromofluorobenzene		0.0514	0.0500	103	74-124		
Lab Batch #: 922959	Sample: 643996-1-BLK / B	LK Bate	h: 1 Matrix	Water			
Units: mg/L	Date Analyzed: 09/18/13 11:23	SU	RROGATE RI	ECOVERY	STUDY		
ВТЕ	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Dibromofluoromethane		0.0533	0.0500	107	75-131		
1,2-Dichloroethane-D4		0.0563	0.0500	113	63-144		
Toluene-D8		0.0520	0.0500	104	80-117		
4-Bromofluorobenzene		0.0549	0.0500	110	74-124		
Lab Batch #: 923141	Sample: 644094-1-BLK / B	LK Batc	h: 1 Matrix	:Water			
Units: mg/L	Date Analyzed: 09/19/13 11:54	SU	RROGATE RI	ECOVERY	STUDY		
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Dibromofluoromethane		0.0511	0.0500	102	75-131		
1,2-Dichloroethane-D4		0.0518	0.0500	104	63-144		
Toluene-D8		0.0507	0.0500	101	80-117		
4-Bromofluorobenzene		0.0523	0.0500	105	74-124		
Lab Batch #: 922959	Sample: 643996-1-BKS / B	KS Bate	h: 1 Matrix	:Water			
Units: mg/L	Date Analyzed: 09/18/13 10:28	SU	RROGATE RI	ECOVERY	STUDY		
BTEX by SW 8260B Analytes		Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Dibromofluoromethane		0.0508	0.0500	102	75-131		
			1				
1,2-Dichloroethane-D4		0.0494	0.0500	99	63-144		
1,2-Dichloroethane-D4 Toluene-D8		0.0494 0.0518	0.0500	104	63-144 80-117		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Project Name: Mark Owen #9 Reserve Pit

Work Orders : 470218	3,		Project II	D: 046121-20	013-01	
Lab Batch #: 923141	Sample: 644094-1-BKS / B	KS Bate	h: ¹ Matrix	Water		
Units: mg/L	Date Analyzed: 09/19/13 11:03	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane		0.0493	0.0500	99	75-131	
1,2-Dichloroethane-D4		0.0490	0.0500	98	63-144	
Toluene-D8		0.0495	0.0500	99	80-117	
4-Bromofluorobenzene		0.0504	0.0500	101	74-124	
Lah Batch #• 922959	Sample: 470222-020 S / M	S Bate	h· 1 Matrix	Water		
Units: mg/L	Date Analyzed: 09/18/13 12:15	SU	RROGATE RI	ECOVERY	STUDY	
ВТЕ	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane		0.0513	0.0500	103	75-131	
1,2-Dichloroethane-D4		0.0539	0.0500	108	63-144	
Toluene-D8		0.0512	0.0500	102	80-117	
4-Bromofluorobenzene		0.0540	0.0500	108	74-124	
Lab Batch #: 923141	Sample: 470218-012 S / MS	S Batc	h: 1 Matrix	Water	·	
Units: mg/L	Date Analyzed: 09/19/13 15:26	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane	v	0.0528	0.0500	106	75-131	
1,2-Dichloroethane-D4		0.0532	0.0500	106	63-144	
Toluene-D8		0.0489	0.0500	98	80-117	
4-Bromofluorobenzene		0.0523	0.0500	105	74-124	
Lab Batch #: 922959	Sample: 470222-020 SD / M	ASD Batc	h: 1 Matrix	Water		
Units: mg/L	Date Analyzed: 09/18/13 12:40	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane		0.0513	0.0500	103	75-131	
1,2-Dichloroethane-D4		0.0537	0.0500	107	63-144	
Toluene-D8		0.0540	0.0500	108	80-117	
4-Bromofluorobenzene		0.0527	0.0500	105	74-124	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Project Name: Mark Owen #9 Reserve Pit

Work Orders: 470218	,		Project II	D: 046121-20	013-01	
Lab Batch #: 923141	Sample: 470218-012 SD / N	MSD Bate	h: ¹ Matrix:	Water		
Units: mg/L	Date Analyzed: 09/19/13 15:52	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by SW 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane		0.0522	0.0500	104	75-131	
1,2-Dichloroethane-D4		0.0528	0.0500	106	63-144	
Toluene-D8		0.0521	0.0500	104	80-117	
4-Bromofluorobenzene		0.0512	0.0500	102	74-124	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / BAll results are based on MDL and validated for QC purposes.

Work Order #: 470218		Pr	oject ID:		046121-	2013-01	
Lab Batch #: 922959	Sample: 643996	-1-BKS	Matrix	Water			
Date Analyzed: 09/18/2013	ate Prepared: 09/18/2	013	Analyst	: SAD			
Reporting Units: mg/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	COVERY S	STUDY	
BTEX by SW 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags	
Benzene	<0.00100	0.100	0.0914	91	66-142		
Toluene	< 0.00100	0.100	0.0983	98	59-139		
Ethylbenzene	< 0.00100	0.100	0.101	101	75-125		
m,p-Xylenes	< 0.00200	0.200	0.186	93	75-125		
o-Xylene	< 0.00100	0.100	0.0902	90	75-125		
Lab Batch #: 923141 Date Analyzed: 09/19/2013 D	Sample: 644094	-1-BKS 013	Matrix: Analyst:	Water SAD			
Reporting Units: mg/L	Batch #: 1	BLANK /	BLANK SPI	KE REC	COVERYS	STUDY	
BTEX by SW 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags	
Benzene	< 0.00100	0.100	0.101	101	66-142		
Toluene	< 0.00100	0.100	0.0997	100	59-139		
Ethylbenzene	< 0.00100	0.100	0.109	109	75-125		
m,p-Xylenes	<0.00200	0.200	0.220	110	75-125		
o-Xylene	< 0.00100	0.100	0.105	105	75-125		
Lab Batch #: 923365 Date Analyzed: 09/22/2013 D	Sample: 644166 Date Prepared: 09/21/20	-1-BKS 013	Matrix: Analyst:	Water RKO			
Reporting Units: mg/L	Batch #: 1	Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY					
Inorganic Anions by EPA 300/300.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags	
Chloride	<1.00	100	97.3	97	90-110		
Sulfate	<1.00	100	97.5	98	90-110		

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Work Order #: 470218			Pro	ject ID:		046121-	2013-01
Lab Batch #: 923705	Sample: 92	23705-	1-BKS	Matrix:	Water		
Date Analyzed: 09/18/2013	Date Prepared: 09	0/18/20	013	Analyst:	AMB		
Reporting Units: mg/L	Batch #:	1	BLANK /B	LANK SPI	KE REC	OVERY S	STUDY
TDS by SM2540C	Blan Resu	k lt	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]		[B]	Result [C]	%R [D]	%R	
Total dissolved solids	<5.00	0	1000	992	99	80-120	

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Work Order #: 470218 Analyst: DHE	a	Da	ate Prepar	ed: 09/23/201	3			Pro Date A	ject ID: 0 nalyzed: 0	46121-201 9/23/2013	3-01	
Lab Batch ID: 923311	Sample: 923311-1-B	KS	Batcl	h #:]						valer		
Units: mg/L			BLAN	K /BLANK S	SPIKE / E	BLANK S	PIKE DUPL	ICATE	RECOVE	CRY STUD	Y	
Alkalinity by SN	A2320B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes			[B]	[C]	[D]	[E]	Result [F]	[G]				
Alkalinity, Total (as CaCO3)		<4.00	250	250	100	250	249	100	0	80-120	20	

Form 3 - MS / MSD Recoveries

Project Name: Mark Owen #9 Reserve Pit

Work Order # : 470218						Project II): 046121	-2013-01			
Lab Batch ID: 922959 (C- Sample ID:	470222	-020 S	Ba	tch #:	1 Matrix	k: Water				
Date Analyzed: 09/18/2013	Date Prepared:	09/18/2	013	An	alyst: S	SAD					
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERYS	STUDY		
BTEX by SW 8260B	Parent Sample Result	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample Posult [F]	Spiked Dup. %P	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	Kesutt [F]	[G]	70	/01		
Benzene	2.22	1.00	4.03	181	1.00	4.03	181	0	66-142	20	X
Toluene	0.221	1.00	1.41	119	1.00	1.39	117	1	59-139	20	
Ethylbenzene	0.0116	1.00	1.04	103	1.00	1.10	109	6	75-125	20	
m,p-Xylenes	0.368	2.00	2.69	116	2.00	2.65	114	1	75-125	20	
o-Xylene	0.295	1.00	1.49	120	1.00	1.38	109	8	75-125	20	
Lab Batch ID: 923141 (C- Sample ID:	470218	-012 S	Ba	tch #:	1 Matrix	k: Water				
Date Analyzed: 09/19/2013	Date Prepared:	09/19/2	013	An	alyst: S	SAD					
Reporting Units: mg/L		Μ	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERYS	STUDY		
BTEX by SW 8260B Analytes	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	[]	[0]		[0]	[12]		[0]				
Benzene	<0.00100	0.100	0.101	101	0.100	0.106	106	5	66-142	20	
Toluene	<0.00100	0.100	0.101	101	0.100	0.108	108	7	59-139	20	
Ethylbenzene	<0.00100	0.100	0.111	111	0.100	0.116	116	4	75-125	20	
m,p-Xylenes	<0.00200	0.200	0.220	110	0.200	0.226	113	3	75-125	20	
o-Xylene	< 0.00100	0.100	0.107	107	0.100	0.111	111	4	75-125	20	

Matrix Spike Percent Recovery $[D] = 100^{\circ}(C-A)/B$ Relative Percent Difference RPD = $200^{\circ}|(C-F)/(C+F)|$ Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Form 3 - MS / MSD Recoveries

Project Name: Mark Owen #9 Reserve Pit

Work Order # :	470218						Project II	D: 046121	1-2013-01			
Lab Batch ID:	923365	QC- Sample ID:	470218	-001 S	Ba	tch #:	1 Matri	x: Water				
Date Analyzed:	09/22/2013	Date Prepared:	09/21/2	013	An	alyst: I	RKO					
Reporting Units:	mg/L		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	ic Anions by EPA 300/300.1	Parent Sample	Spike	Spiked Sample Result	Spiked Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
	Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%0	%K	%RPD	
Chloride		359	1000	1350	99	1000	1370	101	1	80-120	20	
Sulfate		64.5	1000	1060	100	1000	1070	101	1	80-120	20	
Lab Batch ID:	923365	QC- Sample ID:	470218	-011 S	Ba	tch #:	1 Matri	x: Water				
Date Analyzed:	09/22/2013	Date Prepared:	09/21/2	013	An	alyst: I	RKO					
Reporting Units:	mg/L		N	IATRIX SPIK	E / MAT	RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
Inorgan	ic Anions by EPA 300/300.1	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
	Analytes	[A]	[B]		[D]	[E]		[G]				
Chloride		2550	1000	3520	97	1000	3500	95	1	80-120	20	
Sulfate		206	1000	1210	100	1000	1200	99	1	80-120	20	

Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Work Order #: 470218						
Lab Batch #: 923311				Project I	D: 046121-2	2013-01
Date Analyzed: 09/23/2013 15:48	Date Prepar	ed: 09/23/2013	Ana	lyst:DHE		
QC- Sample ID: 470218-001 D	Batch	#: 1	Mat	t rix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)		329	329	0	20	
Lab Batch #: 923311						
Date Analyzed: 09/23/2013 15:48	Date Prepar	ed: 09/23/2013	Ana	lyst:DHE		
QC- Sample ID: 470218-011 D	Batch	#: 1	Mat	t rix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)		329	329	0	20	
L ab Batch #• 923705				1		
Date Analyzed: 09/18/2013 10:00	Date Prepar	ed: 09/18/2013	Ana	lyst: AMB		
OC- Sample ID: 470218-001 D	Batch	# : 1	Mat	trix: Water		
Reporting Units: mg/L		SAMPLE	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		1260	1320	5	30	
Lab Batch #: 923705		· · · ·				
Date Analyzed: 09/18/2013 10:00	Date Prepare	ed: 09/18/2013	Ana	lyst: AMB		
QC- Sample ID: 470218-010 D	Batch	#: 1	Mat	t rix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		20200	25200	22	30	

Spike Relative Difference RPD 200 * $|\,(B\text{-}A)/(B\text{+}A)\,|$ All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

PARTY NR MED	aponiq	int be assigned separat	e sample IDs.				ω	MPA	100	1	ndiVI.	ste plu	structure					3
Circle of the WG (or)	Atomote	alst (CO)			1	111	2	ixiH	01 (()	(d) (d)	Hexa	analen	Chrom	rani		•	V	Ņ
2491 51-1	4-12	Venco ora	KLIGO, ODG BYRN 11	pro	E.	hul	2.	45	16	5	9-12-	Taxleton	A	0	Recovery 4	Muls	1	7
IIME	2 04	COMPANY	Y	CEIVEDE	RE	2		TIME	CALL.	TE	DA	TON THE	COMPANY	- Same	3Y THOULS	ELINQUISHED E	T	1
-	-		TEL PLU	COC	t be on	oler mus	in Co	Samples	Alls		0	her: S+	ek 🙀 Ot	(□ 2 We	ays 🔲 1 Week	Days 3 D	1 Day 2	
		equirements:	Notes/ Special R	T. Lines	ntainer	er of Co	Numb	Total			Tot	ent TATs	for differe	ate COCs	lays (use separa	in business d	T Required	A
A WAAR	Insidim	TiA	ald	ap T to	911			0	2	8	Sido	Diminica	1 Oxye	usmsQ n	nd an Carbon	accous BOI		σ →
81	ell Cas	and the second second second		THE T	941			1912	1 1 2 2 V	1.4	1. 013	T D' T	RIGUALI	uica'\ noi	AURCIGEL VEO	DIBLIC LIVER	ocst pours	4-4
CELLE	9850113	THI 164FVVIII TO SEE	XXXX	A.		1000		×		1 3	1 3603	2 10	9/12/12	Equivipen	Isene, Xylene	91213	DUP-0	ω -1
0 0	li		XXXX	W	d			×	1. 1.	5	OW	13 140	12/100			512120	MW-11-	N
EIS E	tee Plyan	biop I a	XXXX	S	-		1	×	A LO	5	204	3 13	89/12/1	ubioxrise	dovlo9\etim	-0912 13	MW-10	
M WWW	AL SIZE AA	1161	XXXX	S	>			X		56	40 64	13 13	10/00		v	0912 1	pw-1-	0-
THAT TWEN IT.	T Poleat	191 and 191	XXXX	G	X		1	X		5	304	13 13	09/121	puentia	52	0 9 12 1-	Mu-1-	9
N.S. Street	V soeluu	C TOIS	XX XX	6	×	1.47		×	6	6	10 20	3 13	1/2/10	Count	porruge 5	-09/2/3	mw-2	8
d division of the second	anishin	N. N. N. Marker W.	XXXXX	w	~			×		9 1	N 53	3 12	glal	pubound	S	1 -2169-	mu-3-	7
C UNIV	COLDUMS	6L : :	XXXX	5	~		1	×		56	YO W	2 12	9/12/1	The second second	3	09121	Mu-4-	6
L MC	orenote	Wald at	XXXX	S C	1			×		5 5	20 44	13 123	9/12/	tail	W	09121	murs-	U
A STORES	N. Tre		XXXX	h	2			x	300	3 6	20 W	3 12:	12/100	0	13	-0912	MW-6.	4
			XXXX		~	-		×	-	r	10 4	3 12	1/2/160		N	-89121	MW-7	ω
C. C. C. C. C. C. D.	Cot	TRUDICY LIBERT TAT	YXXX	ŝ	X	R.		×		6	54	3 115	121120		13	1-0912	MW-S	N
and the second se		allowed . I com	XXXX	W	X	TIN THE	COL	Eren A	ST EN	80	10 W	2 11 4	177/00	THE OWNER	13 mars	9-0912	mw-	-
COMMENTS/ AL INSTRUCTIONS	SPECI		BTE / Tote/ TOS Chia	Total	EnCor	Sodiu (NaOH Metha VOC)	Sulfur	Hydro Nitric	Unpre	(see b Grab	m) Matrix	x) (hh:n	DATE (mm/dd//y	e)	ON e combined on one lir	DENTIFICATIO	SAMPLE I	Item
ipped: 1000	Date Sh	SD Request	(802/B 414a linity510 2540 L ;dag 5-1 tota	тсе Containers/Samp	es 3x5-g, 1x25-g	n Hydroxide) nol/Water (Soil	c Acid (H₂SO₄)	chloric Acid (HCI Acid (HNO ₃)	served	ack of COC) G) or Comp (C)	Code	e the	shace b	a une	Airen M	stational relession	mpler(s):	< Sa Sa
(see.pelo;0	Airbill N	htt x dødest lid	-1 Occ Dave	le	In id to	CH ST	NEO)	10.10	IYPE	and the	Intest a	struit.	and provide	mexico	ntact:	emistry Col	30
o: combined) 1	Carrier:	S REQUESTED	ANALYSI	Man Al	TITY &	QUAN	TAINE	CON	10.1	AMPLE	S	Dida		land o	CLARKER C	on:	oject Locati	P
Vo vi politicita	Cooler I	PHOTIC DS BUGG L	Lab Quote No:	19100	zirbk	3. 1995	oust	1668	tact:	nb Con	La La	t achs	P.t	botte	#o Rec		oject Name:	Pro
Densidination	SSOWI	ROLV DEBUG COC	Lab Location:	0,000	QAD	66-DAD.	190 1	me:	bry Nai	aborate	T-LOX	016E IV	00000	1161.20	le: 0/ 100	ase/Task Cod	DUC Ph	Pro
e Side for Instruction	ee Reverse	Sich 19-19-19-19-19-19-19-19-19-19-19-19-19-1	4932 CNAW	CKIS	880	Fax:	12	1- 06	- 99/	202	Phone:	Au	msM 5	e Poct	SSOCIATE	& A		-
PAGE OF	NO:	COC	UKD	KEC	X			TT C			CH/		VERS	A-RO	NESTOG.	co		
DVCCC		8120	177747				5	ckis	2	ernie	5					/	1	

Page 21 of 22

Final 1.000

XENCO Laboratories

Comments

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga-Rovers & Associates-Albuqu	Acceptable Temperature Range: 0 - 6 degC
Date/ Time Received: 09/12/2013 04:45:00 PM	Air and Metal samples Acceptable Range: Ambient
Work Order #: 470218	Temperature Measuring device used :

Sa	ample Receipt Checklist	
#1 *Temperature of cooler(s)?		4
#2 *Shipping container in good condition?		Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping contained	er/ cooler?	N/A
#5 Custody Seals intact on sample bottles?		N/A
#6 *Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Chain of	Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when relinquish	ed/ received?	Yes
#11 Chain of Custody agrees with sample lab	el(s)?	Yes
#12 Container label(s) legible and intact?		Yes
#13 Sample matrix/ properties agree with Cha	in of Custody?	Yes
#14 Samples in proper container/ bottle?		Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indicated te	st(s)?	Yes
#18 All samples received within hold time?		Yes
#19 Subcontract of sample(s)?		Yes
#20 VOC samples have zero headspace (less	than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HNO3,I	HCL, H2SO4?	Yes
#22 >10 for all samples preserved with NaAs(D2+NaOH, ZnAc+NaOH?	N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

 Checklist completed by:
 Candau fames
 Date: 09/12/2013

 Candace James
 Date: 09/12/2013

 Checklist reviewed by:
 Mass Moath
 Date: 09/12/2013

 Kelsey Brooks
 Date: 09/12/2013

Analytical Report 474413

for

Conestoga Rovers & Associates

Project Manager: Bernie Bockisch

Mark Owen #9

046121

03-DEC-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098) Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

03-DEC-13

Project Manager: **Bernie Bockisch Conestoga Rovers & Associates** 2135 S Loop 250 W Midland, TX 79703

Reference: XENCO Report No(s): 474413 Mark Owen #9 Project Address: Eunice, NM

Bernie Bockisch:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 474413. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 474413 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Ams Boah

 Kelsey Brooks

 Project Manager

 Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies.

 A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 474413

Conestoga Rovers & Associates, Midland, TX

Mark Owen #9

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-9-111913	W	11-19-13 15:30		474413-001
MW-8-111913	W	11-19-13 15:40		474413-002
MW-7-111913	W	11-19-13 15:50		474413-003
MW-6-111913	W	11-19-13 16:00		474413-004
MW-5-111913	W	11-19-13 16:10		474413-005
MW-4-111913	W	11-19-13 16:20		474413-006
MW-3-111913	W	11-19-13 16:30		474413-007
MW-2-111913	W	11-19-13 16:40		474413-008
MW-1-111913	W	11-19-13 16:50		474413-009
RW-1-111913	W	11-19-13 17:00		474413-010
MW-10-111913	W	11-19-13 17:10		474413-011
MW-11-111913	W	11-19-13 17:20		474413-012
DUP-1-111913	W	11-19-13 00:00		474413-013
Trip Blank	W	11-18-13 11:00		474413-014

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates Project Name: Mark Owen #9

 Project ID:
 046121

 Work Order Number(s):
 474413

 Report Date:
 03-DEC-13

 Date Received:
 11/20/2013

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-928282 Inorganic Anions by EPA 300/300.1 E300

Batch 928282, Chloride recovered above QC limits Samples affected are: 474413-004, -011, -003, -005, -012, -006, -007, -008, -009, -001, -010, -002, -013. The Laboratory Control Sample for Chloride is within laboratory Control Limits

Batch: LBA-928602 BTEX by EPA 8021B SW8021BM

Batch 928602, m,p-Xylenes RPD was outside laboratory control limits. Samples affected are: 474413-009, -010

SW8021BM

Batch 928602, Ethylbenzene recovered below QC limits in the laboratory control sample. Samples affected are: 474413-009, -010.

Project Id: 046121 Contact: Bernie Bockisch Project Location: Eunice, NM

Certificate of Analysis Summary 474413

Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab: Wed Nov-20-13 10:07 am

Report Date: 03-DEC-13

								Project Ma	nager:	Kelsey Brook	S		
	Lab Id:	474413-	001	474413-0	002	474413-	003	474413-0	004	474413-0	005	474413-0	006
Anglusis Deguested	Field Id:	MW-9-11	1913	MW-8-11	1913	MW-7-11	1913	MW-6-11	1913	MW-5-11	1913	MW-4-11	1913
Analysis Kequestea	Depth:												
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R
	Sampled:	Nov-19-13	15:30	Nov-19-13	15:40	Nov-19-13	15:50	Nov-19-13	16:00	Nov-19-13	16:10	Nov-19-13	16:20
Alkalinity by SM2320B	Extracted:												
SUB: E871002	Analyzed:	Nov-25-13	10:46	Nov-25-13	10:46	Nov-25-13	10:46	Nov-25-13	10:46	Nov-25-13	10:46	Nov-25-13	10:46
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		330	4.00	235	4.00	250	4.00	255	4.00	236	4.00	245	4.00
BTEX by EPA 8021B	Extracted:	Nov-22-13	12:00	Nov-22-13	12:00	Nov-22-13	12:00	Nov-22-13	12:00	Nov-22-13	12:00	Nov-22-13	12:00
	Analyzed:	Nov-22-13	17:41	Nov-22-13	17:58	Nov-22-13	18:14	Nov-22-13	18:31	Nov-22-13	18:47	Nov-22-13	19:03
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		0.0241	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		0.0241	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-21-13	16:16	Nov-21-13	16:39	Nov-21-13	17:01	Nov-21-13	17:24	Nov-21-13	18:32	Nov-21-13	18:54
	Analyzed:	Nov-21-13	16:16	Nov-21-13	16:39	Nov-21-13	17:01	Nov-21-13	17:24	Nov-21-13	18:32	Nov-21-13	18:54
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		2000	20.0	2110	50.0	538	10.0	254	10.0	4240	50.0	115	5.00
Sulfate		153	40.0	731	100	207	20.0	228	20.0	294	100	52.1	10.0
TDS by SM2540C	Extracted:												
SUB: E871002	Analyzed:	Nov-23-13	14:27	Nov-25-13	11:00	Nov-25-13	11:00	Nov-25-13	11:00	Nov-25-13	11:00	Nov-25-13	11:00
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		3720	5.00	4620	5.00	1210	5.00	1010	5.00	7250	5.00	549	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 5 of 23

Project Id: 046121 Contact: Bernie Bockisch Project Location: Eunice, NM

Certificate of Analysis Summary 474413

Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab: Wed Nov-20-13 10:07 am

Report Date: 03-DEC-13

								Project Ma	nager:	Kelsey Brook	S		
	Lab Id:	474413-	007	474413-0	008	474413-	009	474413-0	010	474413-0	011	474413-0	012
Anglusis Deguested	Field Id:	MW-3-11	1913	MW-2-11	1913	MW-1-11	1913	RW-1-11	1913	MW-10-11	1913	MW-11-11	1913
Analysis Kequesiea	Depth:												
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R
	Sampled:	Nov-19-13	16:30	Nov-19-13	16:40	Nov-19-13	16:50	Nov-19-13	17:00	Nov-19-13	17:10	Nov-19-13	17:20
Alkalinity by SM2320B	Extracted:												
SUB: E871002	Analyzed:	Nov-25-13	10:46	Nov-25-13	10:46	Nov-25-13	10:46	Nov-25-13	10:46	Nov-25-13	10:46	Nov-25-13	10:46
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Alkalinity, Total (as CaCO3)		259	4.00	344	4.00	236	4.00	202	4.00	336	4.00	242	4.00
BTEX by EPA 8021B	Extracted:	Nov-22-13	12:00	Nov-22-13	12:00	Nov-22-13	16:00	Nov-22-13	16:00	Nov-22-13	12:00	Nov-22-13	12:00
	Analyzed:	Nov-22-13	19:20	Nov-22-13	19:36	Nov-23-13	01:01	Nov-23-13	01:17	Nov-22-13	20:25	Nov-22-13	20:41
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-21-13	19:17	Nov-21-13	19:40	Nov-21-13	20:02	Nov-21-13	20:48	Nov-21-13	21:10	Nov-21-13	21:33
	Analyzed:	Nov-21-13	19:17	Nov-21-13	19:40	Nov-21-13	20:02	Nov-21-13	20:48	Nov-21-13	21:10	Nov-21-13	21:33
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		130	5.00	239	10.0	7240	100	11500	200	2610	50.0	4630	50.0
Sulfate		80.2	10.0	108	20.0	361	200	558	400	244	100	166	100
TDS by SM2540C	Extracted:												
SUB: E871002	Analyzed:	Nov-25-13	11:00	Nov-25-13	11:00	Nov-25-13	11:00	Nov-25-13	11:00	Nov-25-13	11:00	Nov-25-13	11:00
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Total dissolved solids		608	5.00	942	5.00	12200	5.00	21500	5.00	5020	5.00	10600	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Page 6 of 23

Project Id: 046121 Contact: Bernie Bockisch Project Location: Eunice, NM Conestoga Rovers & Associates, Midland, TX

Project Name: Mark Owen #9

Date Received in Lab: Wed Nov-20-13 10:07 am Report Date: 03-DEC-13

Project Manager: Kelsey Brooks

	Lab Id:	474413-0	013	474413-014			
Analysis Paguastad	Field Id:	DUP-1-11	1913	Trip Blank			
Analysis Kequestea	Depth:						
	Matrix:	WATE	R	WATER			
	Sampled:	Nov-19-13	00:00	Nov-18-13 11:0	00		
Alkalinity by SM2320B	Extracted:						
SUB: E871002	Analyzed:	Nov-25-13	10:46				
	Units/RL:	mg/L	RL				
Alkalinity, Total (as CaCO3)		238	4.00				
BTEX by EPA 8021B	Extracted:	Nov-22-13	12:00	Nov-22-13 12:0	00		
	Analyzed:	Nov-22-13	20:58	Nov-22-13 21:1	4		
	Units/RL:	mg/L	RL	mg/L	RL		
Benzene		ND	0.00100	ND 0.0	0100		
Toluene		ND	0.00200	ND 0.0	0200		
Ethylbenzene		ND	0.00100	ND 0.0	0100		
m,p-Xylenes		ND	0.00200	ND 0.0	0200		
o-Xylene		ND	0.00100	ND 0.0	0100		
Total Xylenes		ND	0.00100	ND 0.0	0100		
Total BTEX		ND	0.00100	ND 0.0	0100		
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-21-13	21:56				
	Analyzed:	Nov-21-13	21:56				
	Units/RL:	mg/L	RL				
Chloride		2030	20.0				
Sulfate		171	40.0				
TDS by SM2540C	Extracted:						
SUB: E871002	Analyzed:	Nov-25-13	11:00				
	Units/RL:	mg/L	RL				
Total dissolved solids		4110	5.00				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Huns Boah

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- JN A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit

MDL Method Detection Limit	SDL Sample Detection Limit	LOD Limit of Detection
PQL Practical Quantitation Limit	MQL Method Quantitation Limit	LOQ Limit of Quantitation

- **DL** Method Detection Limit
- NC Non-Calculable
- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

4143 Greenbriar Dr, Stafford, TX 77477
9701 Harry Hines Blvd , Dallas, TX 75220
5332 Blackberry Drive, San Antonio TX 78238
2505 North Falkenburg Rd, Tampa, FL 33619
12600 West I-20 East, Odessa, TX 79765
6017 Financial Drive, Norcross, GA 30071
3725 E. Atlanta Ave, Phoenix, AZ 85040

(281) 240-4200	(281) 240-4280
(214) 902 0300	(214) 351-9139
(210) 509-3334	(210) 509-3335
(813) 620-2000	(813) 620-2033
(432) 563-1800	(432) 563-1713
(770) 449-8800	(770) 449-5477
(602) 437-0330	

Phone

Final 1.000

Project Name: Mark Owen #9

Work Oi Lab Batch	rders : 47441 #: 928368	3, Sample: 474413-001 / SMP	Bate	Project ID: h: 1 Matrix	046121 Water						
Units:	mg/L	Date Analyzed: 11/22/13 17:41	SURROGATE RECOVERY STUDY								
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			[D]						
1,4-Difluor	obenzene		0.0301	0.0300	100	80-120					
4-Bromoflu	orobenzene		0.0328	0.0300	109	80-120					
Lab Batch	#: 928368	Sample: 474413-002 / SMP	Batc	h: 1 Matrix	: Water						
Units:	mg/L	Date Analyzed: 11/22/13 17:58	SU	RROGATE R	ECOVERY	STUDY					
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluor	obenzene		0.0279	0.0300	93	80-120					
4-Bromoflu	iorobenzene		0.0313	0.0300	104	80-120					
Lab Batch	#: 928368	Sample: 474413-003 / SMP	Batc	h: 1 Matrix	: Water						
Units:	mg/L	Date Analyzed: 11/22/13 18:14	SU	RROGATE R	ECOVERY	STUDY					
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
		Analytes			נשן						
1,4-Difluor	obenzene		0.0304	0.0300	101	80-120					
4-Bromoflu	iorobenzene		0.0322	0.0300	107	80-120					
Lab Batch	#: 928368	Sample: 474413-004 / SMP	Bate	h: 1 Matrix	: Water						
Units:	mg/L	Date Analyzed: 11/22/13 18:31	SU	RROGATE R	ECOVERY	STUDY					
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluor	obenzene		0.0301	0.0300	100	80-120					
4-Bromoflu	iorobenzene		0.0329	0.0300	110	80-120					
Lab Batch	#: 928368	Sample: 474413-005 / SMP	Batc	h: 1 Matrix	: Water						
Units:	mg/L	Date Analyzed: 11/22/13 18:47	SU	RROGATE R	ECOVERYS	STUDY					
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
1,4-Difluor	obenzene		0.0285	0.0300	95	80-120					
-				0.0200							

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mark Owen #9

Work Or Lab Batch	r ders : 47441 #: 928368	l3, Sample: 474413-006 / SMP	Batc	Project ID: h: 1 Matrix	046121 Water					
Units:	mg/L	L Date Analyzed: 11/22/13 19:03 SURROGATE RECOVERY STUDY								
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluoro	obenzene		0.0289	0.0300	96	80-120				
4-Bromoflu	orobenzene		0.0320	0.0300	107	80-120				
Lab Batch	#: 928368	Sample: 474413-007 / SMP	Batc	h: 1 Matrix	: Water					
Units:	mg/L	Date Analyzed: 11/22/13 19:20	SU	JRROGATE R	ECOVERY	STUDY				
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluoro	obenzene		0.0294	0.0300	98	80-120				
4-Bromoflu	orobenzene		0.0325	0.0300	108	80-120				
Lab Batch	#: 928368	Sample: 474413-008 / SMP	Batc	h: 1 Matrix	: Water					
Units:	mg/L	Date Analyzed: 11/22/13 19:36	su	JRROGATE R	ECOVERY	STUDY				
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
		Analytes			[D]					
1,4-Difluoro	obenzene		0.0291	0.0300	97	80-120				
4-Bromoflu	orobenzene		0.0313	0.0300	104	80-120				
Lab Batch	#: 928368	Sample: 474413-011 / SMP	Batc	h: 1 Matrix	: Water					
Units:	mg/L	Date Analyzed: 11/22/13 20:25	SU	JRROGATE R	ECOVERY	STUDY				
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluoro	obenzene		0.0283	0.0300	94	80-120				
4-Bromoflu	orobenzene		0.0324	0.0300	108	80-120				
Lab Batch	#: 928368	Sample: 474413-012 / SMP	Batc	h: 1 Matrix	Water					
Units:	mg/L	Date Analyzed: 11/22/13 20:41	SU	JRROGATE R	ECOVERY	STUDY				
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags			
1,4-Difluoro	obenzene		0.0287	0.0300	96	80-120				
4-Bromoflu	orobenzene		0.0323	0.0300	108	80-120				

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mark Owen #9

Work Oi Lab Batch	r ders : 4744 #: 928368	13, Sample: 474413-013 / SMP	Batc	Project ID: h: 1 Matrix	: 046121 : Water		
Units:	mg/L	Date Analyzed: 11/22/13 20:58	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0283	0.0300	94	80-120	
4-Bromoflu	orobenzene		0.0318	0.0300	106	80-120	
Lab Batch	#: 928368	Sample: 474413-014 / SMP	Batc	h: 1 Matrix	: Water		
Units:	mg/L	Date Analyzed: 11/22/13 21:14	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0287	0.0300	96	80-120	
4-Bromoflu	orobenzene		0.0330	0.0300	110	80-120	
Lab Batch	#: 928602	Sample: 474413-009 / SMP	Batc	h: 1 Matrix	: Water		
Units:	mg/L	Date Analyzed: 11/23/13 01:01	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4 Difluor	abanzana	Anarytes	0.0295	0.0200	05	80.120	
1,4-Dilluon	orebanzana		0.0285	0.0300	95	80-120	
4-Diomonu	#. 028602	Sample: 474412.010 / SMD	0.0323	0.0300	108	80-120	
	#: 928002	Sample: 4/4415-010/ SMP	Date				
Units:	IIIg/L	Date Analyzed: 11/25/15 01:17	SU	RROGATE R	ECOVERYS	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0286	0.0300	95	80-120	
4-Bromoflu	orobenzene		0.0319	0.0300	106	80-120	
Lab Batch	#: 928368	Sample: 647436-1-BLK / Bl	LK Bate	h: 1 Matrix	: Water		
Units:	mg/L	Date Analyzed: 11/22/13 16:52	SU	RROGATE R	ECOVERY S	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0296	0.0300	99	80-120	
1 1			0.0270	0.0300	,,,,	00120	

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mark Owen #9

Work Or Lab Batch	r ders : 4744 #: 928602	13, Sample: 647570-1-BLK / E	BLK Batch	Project ID: 1 Matrix	046121 Water		
Units:	mg/L	Date Analyzed: 11/23/13 00:45	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluor	obenzene		0.0273	0.0300	91	80-120	
4-Bromoflu	orobenzene		0.0322	0.0300	107	80-120	
Lab Batch	#: 928368	Sample: 647436-1-BKS / B	KS Batch	a: 1 Matrix	: Water		
Units:	mg/L	Date Analyzed: 11/22/13 15:30	SU	RROGATE R	ECOVERYS	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene	- Interfects	0.0285	0.0300	95	80-120	
4-Bromoflu	orobenzene		0.0325	0.0300	108	80-120	
Lab Batch	#: 928602	Sample: 647570-1-BKS / B	KS Batch	a: 1 Matrix	: Water		
Units:	mg/L	Date Analyzed: 11/22/13 23:24	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1 4 Difference	-1	Analytes	0.0212	0.0200	104	00.100	
1,4-Diffuoro	obenzene		0.0312	0.0300	104	80-120	
I ob Potob	#• 028268	Sample: 647426 1 DSD / D	0.0329	0.0300	· Water	80-120	
LaD Daten	#: 920300	Sample: $047430-1-53D7 =$	SD Batch				
Units:	IIIg/L	Date Analyzed: 11/22/15 15:46	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0270	0.0300	90	80-120	
4-Bromoflu	orobenzene		0.0321	0.0300	107	80-120	
Lab Batch	#: 928602	Sample: 647570-1-BSD / B	SD Batch	a: 1 Matrix	: Water		
Units:	mg/L	Date Analyzed: 11/22/13 23:40	SU	RROGATE R	ECOVERY	STUDY	
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0277	0.0300	92	80-120	
4 D					1		

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

Project Name: Mark Owen #9

Work Or	ders: 47441	3,		Project ID:	046121							
Lab Batch	#: 928368	Sample: 474413-001 S / MS	Batcl	h: 1 Matrix:	Water							
Units:	mg/L	Date Analyzed: 11/22/13 16:03	SU	RROGATE R	ROGATE RECOVERY STUDY							
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1.4-Difluor	obenzene		0.0309	0.0300	103	80-120						
4-Bromoflu	orobenzene		0.0326	0.0300	109	80-120						
Lab Batch	#: 928602	Sample: 474569-001 S / MS	Batel	h: 1 Matrix:	Water	00 120						
Units:	mg/L	Date Analyzed: 11/22/13 23:56	SU	RROGATE R	ECOVERY S	STUDY						
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1,4-Difluoro	obenzene	•	0.0303	0.0300	101	80-120						
4-Bromoflu	orobenzene		0.0329	0.0300	110	80-120						
Lab Batch	#: 928368	Sample: 474413-001 SD / M	ISD Batcl	h: 1 Matrix:	Water	1 1						
Units:	mg/L	Date Analyzed: 11/22/13 16:19	SU	RROGATE R	ECOVERY S	STUDY						
	BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1.4-Difluor	obenzene	1111119105	0.0289	0.0300	96	80-120						
4-Bromoflu	orobenzene		0.0322	0.0300	107	80-120						
Lab Batch	#: 928602	Sample: 474569-001 SD / N	ISD Batcl	h: 1 Matrix:	Water							
Units:	mg/L	Date Analyzed: 11/23/13 00:12	SU	RROGATE R	ECOVERYS	STUDY						
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1,4-Difluoro	obenzene	•	0.0268	0.0300	89	80-120						
4-Bromoflu	orobenzene		0.0312	0.0300	104	80-120						

* Surrogate outside of Laboratory QC limits

** Surrogates outside limits; data and surrogates confirmed by reanalysis

*** Poor recoveries due to dilution

Surrogate Recovery [D] = 100 * A / B

BS / BSD Recoveries

Project Name: Mark Owen #9

Work Orde	er #: 474413							Pro	ject ID:	046121			
Analyst:	ALA	D	ate Prepai	red: 11/25/20	13	Date Analyzed: 11/25/2013							
Lab Batch I	D: 928464 Sample: 92846	4-1-BKS	Batc	h #: 1		Matrix: Water							
Units:	mg/L		BLAN	K/BLANK	SPIKE /]	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY		
	Alkalinity by SM2320B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Ana	lytes		[B]	[C]	[D]	[E]	Result [F]	[G]					
Alkalini	ty, Total (as CaCO3)	<4.00	250	261	104	250	263	105	1	80-120	20		
Analyst:	ARM	D	ate Prepai	red: 11/22/20	13			Date A	nalyzed:	11/22/2013			
Lab Batch I	D: 928368 Sample: 64743	6-1-BKS	Batc	h #: 1					Matrix:	Water			
Units:	mg/L		BLAN	K /BLANK	SPIKE / 1	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY		
	BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate Borrit (E)	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag	
Ana	lytes		[D]		נען	[E]	Kesut [F]	[6]				ļ	
Benzene		< 0.00100	0.100	0.0906	91	0.100	0.0931	93	3	70-125	25		
Toluene		< 0.00200	0.100	0.0944	94	0.100	0.0951	95	1	70-125	25		
Ethylber	Ethylbenzene		0.100	0.0910	91	0.100	0.0902	90	1	71-129	25		
-													
m,p-Xyl	enes	<0.00200	0.200	0.205	103	0.200	0.205	103	0	70-131	25		

BS / BSD Recoveries

Project Name: Mark Owen #9

Work Order #: 474413							Pro	ject ID:(046121		
Analyst: ARM	D	ate Prepai	red: 11/22/201	13			Date A	nalyzed:	1/22/2013		
Lab Batch ID: 928602 Sample: 647570-1-	BKS	Bate	h #: 1					Matrix: V	Water		
Units: mg/L		BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.0904	90	0.100	0.0884	88	2	70-125	25	
Toluene	<0.00200	0.100	0.0816	82	0.100	0.0884	88	8	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0701	70	0.100	0.0850	85	19	71-129	25	L
m,p-Xylenes	<0.00200	0.200	0.148	74	0.200	0.193	97	26	70-131	25	F
o-Xylene	< 0.00100	0.100	0.0759	76	0.100	0.0943	94	22	71-133	25	
Analyst: AMB	Date Prepared: 11/21/2013 Date Analyzed: 11/21/2013										
Lab Batch ID: 928282 Sample: 647359-1-	BKS	Batc	h #: 1					Matrix: V	Water		
Units: mg/L		BLAN	K /BLANK	SPIKE / I	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STUI	DY	
Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	24.0	96	25.0	24.1	96	0	80-120	20	
Sulfate	<2.00	25.0	24.9	100	25.0	25.5	102	2	80-120	20	

BS / BSD Recoveries

Project Name: Mark Owen #9

Work Order #: 474413							Proj	ject ID:	046121		
Analyst: ANS	D	ate Prepar	red: 11/23/20	13			Date A	nalyzed:	11/23/2013		
Lab Batch ID: 928327 Sample: 928327-1-E	BKS	Batcl	h #: 1					Matrix:	Water		
Units: mg/L		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
TDS by SM2540C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Total dissolved solids	<5.00	1000	908	91	1000	904	90	0	80-120	10	
Analyst: ANS	D	ate Prepar	red: 11/25/20	13			Date A	nalyzed:	11/25/2013		
Lab Batch ID: 928453 Sample: 928453-1-H	BKS	Batcl	h #: 1					Matrix:	Water		
Units: mg/L		BLAN	K /BLANK	SPIKE /	BLANK	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
TDS by SM2540C Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Total dissolved solids	<5.00	1000	1000	100	1000	932	93	7	80-120	10	
Analyst: ANS	D	ate Prepar	ed: 11/27/20	13	-		Date A	nalyzed:	11/27/2013	•	
Lab Batch ID: 928640 Sample: 928640-1-H	BKS	Batc	h #: 1					Matrix:	Water		
Units: mg/L		BLAN	K/BLANK	SPIKE /	BLANK S	SPIKE DUP	LICATE	RECOV	ERY STU	DY	
		Cuilto	Blank	Blank	Spike	Blank	Blk. Spk		Control	Control	
TDS by SM2540C Analytes	Blank Sample Result [A]	Added [B]	Spike Result [C]	Spike %R [D]	Added [E]	Spike Duplicate Result [F]	Dup. %R [G]	RPD %	Limits %R	Limits %RPD	Flag

Mark Owo	en #9	Duci		1ABORAT	ONY
repared: 11/2		Duci			
repared: 11/2		Duct			
repared: 11/2		Proj	ect ID: ⁰⁴	46121	
Batch #: 1 Matrix: Water					
Batch #: 1		I	Matrix: W	/ater	
MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
[A]	[B]				
25100	12500	43300	146	80-120	X
1020	12500	15300	114	80-120	
repared: 11/2	1/2013	Α	analyst: A	MB	
Batch #: 1		I	Matrix: W	/ater	
MATRIX / MATRIX SPIKE RECOVERY STUDY					
Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
7240	2500	10500	130	80-120	X
361	2500	3240	115	80-120	
	repared: 11/2 Batch #: 1 MATE Parent Sample Result [A] 25100 1020 repared: 11/2 Batch #: 1 MATE Parent Sample Result [A] 7240 361	repared: 11/21/2013 Batch #: 1 MATRIX / MA Parent Spike Result Added [A] [B] 25100 12500 1020 12500 1020 12500 repared: 11/21/2013 Batch #: 1 MATRIX / MA Parent Spike Result Spike Added [B] 7240 2500 361 2500	repared: 11/21/2013 A Batch #: 1 1 MATRIX / MATRIX SPIKE Parent Sample [A] Spike Added [B] Spike Result [C] 25100 12500 43300 1020 12500 15300 repared: 11/21/2013 A Batch #: 1 1 MATRIX / MATRIX SPIKE Spike Result [A] Spike Result [A] Parent Sample Result [A] Spike Added [B] Spike Sample Result [C] 7240 2500 10500 361 2500 3240	repared: $11/21/2013$ Analyst: ABatch #:1Matrix: WMATRIX / MATRIX SPIKE RECOVParent Sample Result [A]Spike Added [B]Spiked Sample Result [C]%R (D]25100125004330014610201250015300114repared: $11/21/2013$ Analyst: ABatch #:1Matrix: WMATRIX / MATRIX SPIKERECOVParent Sample Result [A]Spike Added [B]Spiked Sample Result [C]%R (D]724025001050013036125003240115	repared: 11/21/2013Analyst: AMBBatch #:1Matrix: WaterMATRIX / MATRIX SPIKERECOVERY STUParent Sample Result [A]Spike Added [B]Spike Result [C]Control Limits %R25100125004330014680-1201020125001530011480-120repared: 11/21/2013 Batch #:Analyst: AMB Matrix: WaterMATRIX / MATRIX SPIKE Result [A]Control Limits %RParent Sample Result [A]Spike Added [B]Spike Spike Spike Spike Spike Spike Spike Result [C]Control Limits %RParent Sample Result [A]Spike Added [B]Spike

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Mark Owen #9

Work Order # : 474413						Project II	D: 046121	l			
Lab Batch ID: 928368	QC- Sample ID:	474413	-001 S	Ba	tch #:	1 Matrix	x: Water				
Date Analyzed: 11/22/2013	Date Prepared:	11/22/2	013	Ar	nalyst: A	ARM					
Reporting Units: mg/L		N	IATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %B	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	Kesun [1]	[G]	/0			
Benzene	0.0241	0.100	0.116	92	0.100	0.112	88	4	70-125	25	
Toluene	< 0.00200	0.100	0.0978	98	0.100	0.0925	93	6	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0933	93	0.100	0.0901	90	3	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.213	107	0.200	0.204	102	4	70-131	25	
o-Xylene	< 0.00100	0.100	0.101	101	0.100	0.0980	98	3	71-133	25	
Lab Batch ID: 928602	QC- Sample ID:	474569	-001 S	Ba	tch #:	1 Matrix	x: Water				
Date Analyzed: 11/22/2013	Date Prepared:	11/22/2	013	Ar	nalyst: A	ARM					
Reporting Units: mg/L		N	IATRIX SPIK	E / MAT	'RIX SPI	KE DUPLICA	TE REC	OVERY	STUDY		
BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.00100	0.100	0.0957	96	0.100	0.0913	91	5	70-125	25	
Toluene	<0.00200	0.100	0.0956	96	0.100	0.0915	92	4	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0922	92	0.100	0.0853	85	8	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.211	106	0.200	0.192	96	9	70-131	25	
o-Xylene	<0.00100	0.100	0.100	100	0.100	0.0938	94	6	71-133	25	
					1	1		1	1	1	1

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ND = Not Detected, J = Present Below Reporting Limit, B = Present in Blank, NR = Not Requested, I = Interference, NA = Not Applicable N = See Narrative, EQL = Estimated Quantitation Limit, NC = Non Calculable - Sample amount is > 4 times the amount spiked.

Work Order #: 474413

Project Name: Mark Owen #9

Lab Batch #: 928464 Date Analyzed: 11/25/2013 10:46 QC- Sample ID: 474413-001 D	Date Prepar Batch	ed: 11/25/2013	6 Ana Ma	Project I lyst: ALA trix: Water	D: 046121	
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Alkalinity, Total (as CaCO3)		330	330	0	20	
Lab Batch #: 928464 Date Analyzed: 11/25/2013 10:46 OC- Sample ID: 474413-011 D	Date Prepar Batch	ed: 11/25/2013	S Ana Ma	lyst: ALA trix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
Alkalinity by SM2320B		Parent Sample Result [A]	Sample Duplicate Result	RPD	Control Limits %RPD	Flag
Analyte			լոյ	ļ		
Alkalinity, Total (as CaCO3)		336	337	0	20	
Lab Batch #: 928327 Date Analyzed: 11/23/2013 14:27	Date Prepar	ed: 11/23/2013	Ana	lyst: ANS		
QC- Sample ID: 474610-001 D	Batch	1#: 1	Ma	trix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		2310	2420	5	10	
Lab Batch #: 928327		ı			I	
Date Analyzed: 11/23/2013 14:27	Date Prepar	ed: 11/23/2013	Ana	lyst: ANS		
QC- Sample ID: 474610-011 D	Batch	n#: 1	Ma	trix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		527	524	1	10	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

Work Order #: 474413

Project Name: Mark Owen #9

Lab Batch #: 928453 Date Analyzed: 11/25/2013 11:00 QC- Sample ID: 474413-002 D	Date Prepar Batch	ed: 11/25/2013	S Ana Mat	Project I lyst: ANS rix: Water	D: 046121	
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		4640	<5.00	NC	10	U
Lab Batch #: 928453 Date Analyzed: 11/25/2013 11:00 QC- Sample ID: 474413-012 D	Date Prepar Batch	ed: 11/25/2013	5 Ana Mat	lyst: ANS rix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		8700	<5.00	NC	10	U
Lab Batch #: 928640 Date Analyzed: 11/27/2013 12:19 QC- Sample ID: 474413-001 D	Date Prepar Batch	ed: 11/27/2013	Ana Mat	lyst: ANS rix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		3720	3840	3	10	
Lab Batch #: 928640 Date Analyzed: 11/27/2013 12:19 OC- Sample ID: 474413-011 D	Date Prepar Batch	ed: 11/27/2013	Ana Mat	lyst: ANS rix: Water		
Reporting Units: mg/L		SAMPLE /	SAMPLE	DUPLIC	ATE REC	OVERY
TDS by SM2540C Analyte		Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag
Total dissolved solids		5020	5170	3	10	

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes.

BRL - Below Reporting Limit

XENCO 1413 Gre Laboratorics 5332, Bla	senbriar Drive, Stafford, TX 774 ackberry Drive, San Antonio, T>	.77 281-240-4200 778238 210-509-3334	9701 Harry Hines	: Blvd., Dallas, T) East, Odessa, T)	<pre>< 75220 214-902-0300</pre> (79765 432-563-1800	Serial #:		Pade Of	6
Company-City - Midla	nd TX	432- 686-0086	Lab Only: U	CIHHL		0))))	2
Mark Owen # 9	Freviously done at XENCO	0 Project ID	TAT: ASAP 5h It is typically 5-7 \	12h 24h 48 Norking Days	th 3d 5d 7d 10d 3 for level II and 10+ Wo	21d Standard TAT	F is project spe	cific. a.	
Proj. State: TX, AL, FL, GA, LA, M; NJ, PA, SC, TN, UT Other	S, NC, Proj. Manager	(PMBOCK isch	S	(s8;			ΡL	Remark	s
E-mail Results to RAM and	iond. com	Fax No:	AOV Ther:	or 2 C	((0q 2.	oroved)	
Invoice to Accounting Inc. Ir Bill to:	nvoice with Final Report	□ Invoice must have a P.O.	SHOV	Appd Appdx Apddx	209	201	PL PL	q Dug-spb	:mon ⁼
Quote/Pricing:	P.O. No:	Call for P.O.	лын лын х-5 (99 ° TAL		8	S by pg	t are t neede	[
Reg Program: UST DRY-CLEAN	I Land-Fill Waste-Disp	NPDES DW TRRP	D HC	NOC ² bb 53. ² Ob	1.0	¥¢	mg/K 3d	ly anc	· þλ:
QAPP Per-Contract CLP AGCE	E NAVY DOE DOD	USACE OTHER:	EfC	s S/ 13P cides	TIND D	E	'Л 48 1 /	sove	.voЯ
Special DLs (GW DW QAPP MD	Ls RLs See Lab PM II	ncluded Call PM)	18E ppdx 3 AM E AM	VOCs Herbid	01]	л 7/б , Ч‡	lliw s qqs-4	
Sampler Name V / A A & A	A Mr. Signature	M + 11 1 1	M-X3 A Wo 8 0 I OA	H 28: CRA-4 16: 16: 16: 16: 16: 16: 16: 16: 16: 16:	4		ш 77 47	ıre pre harge	Ð
Wayren V	AUVER DISHALLIC	m m	115 131 D	Net BC	8 1	57	9 71	s s	ote(
Sample ID Samp Da	oling Time Depth tt	Matrix Composite Grab # Containers Container Size Container Type	VOA: Full-List E VOA: PP TCL PAHs SIM 8 TX-1005 DRO TX-1005 DRO	SPLP - TCLP (N Metals: RCRA-8 Metals: RCRA-8	EDB/DBCP	2 vitert	HƏ QASA TAT Əvodr HAQ :nbbA	rel Samples bioH gu-nsəlƏ əlqmsS	∃ :upp⊁
1 MW-9-111913 11/19	12013 1530	XX			XXXX	X			<u>`</u>
2 MW-8-111913	OhSI					-			· ~
3 MW-7-111913	1550								е С
4 MW-6-111913	1600								4
5 MW-5-111913	1610								20
6 MW-4-111913	1620								9
7 MW-3 -111913	1630								7
8 MMW-2-111913	1640								
9 MW-1-1-111913	1650								6
10 KW-1-111913	V 1700	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			シャマシ	N		(> m	10
Keingquished by (Initials and Sigi	n) Date & Time	Relinquished to (Initials ap	d Sign) Da	ite & Time	Total Containers per C	oc:	Cooler Temp:	0.54/45.0	
2 3) Jaw W V	1001	2) Clin Alen Jon	11-2-11	0-13	Otherwise agreed on w until paid Samples will	riting. Reports are the held 30 days aft	he Intellectual F	roperty of XENCC	0
3 5)	-	(9)	16%	1	hereby requested. Rush	Charges and Collec	ction Fees are p	e-approved if neer	ded.
Preservatives: Various (V), HCl pH<ź Cont. Size: 4oz (4), 8oz (8), 32oz (3;	2 (H), H2SO4 pH<2 (S), H 2), 40ml VOA (40), 1L (1	INO3 pH<2 (N), Asbc Acid&NaOH), 500ml (5), Tedlar Bag (B), Varid	(A), ZnAc&NaOH (ous (V), Other	Z), (Cool, <4C) (C), None (NA),See L Cont. Type: Gla	abel (L), Other (O ss Amb (A), Glass) Clear (C). Pl	astic (P). Various] s
Matrix: Air (A), Product (P), Solid (S),	, Water (W), Liquid (L)	Committe	ed to Excellenc	e in Service	e and Quality			www.xenco.c	mo
Notice: subcont	Signature of this document an ractors and assigns under Xei	d relinquishment of these samples cons nco's standard terms and conditions of	stitutes a valid purchas service unless previou	e order from clie sly negotiated u	ant company to Xenco Labo nder a fully executed client	oratories and its affilia contract.	ites,		

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD

N 11 - 5 2 - 1

Page 21 of 23

Final 1.000

XENCO 143 Greenbriar L Laboratories 5332, Blackberry L	Drive, Stafford, TX 77477 281-240-4200 Drive, San Antonio, TX 78238 210-509-3334	 9701 Harry Hines Blvd., Dallas, T 12600 West I-20 East, Odessa, TX 	X 75220 214-902-0300 X 79765 432-563-1800 Serial #: 316681 Page 2 of 2
Company-City Michland TX	H32-686-0086	Lab Only: 474L	11-2
Mark OWEN #9 Previou	unice NM 046121	TAT: ASAP 5h 12h 24h 48 It is typically 5-7 Working Days	Bh 3d 5d 7d 10d 21d Standard TAT is project specific. for level II and 10+ Working days for level III and IV data.
Proj. State: TX, AL, FL, GA, LA, MS, NC, NJ, PA, SC, TN, UT Other NM	Proj. Manager (PM) Bernie Bockisch	bCB2) bdx2 CFLL JP2	d) Remarks
KLawbert & CRAW	Dyld COM	Hs VO Athe Art Ap Art Ap Art Ap Art Ap Art Ap	1 0d 1 0d 1 0d 1 0d
Bill to:	with Final Keport 📙 Invoice must have a P.O.	VOP Seticid Pppd Pppd Seticid	Connection of the section of the sec
Quote/Pricing:	P.O. No: Call for P.O.	2xyg 1x-2 7 PF 7 PE 7 PE	a sue 29 29 20 20 20
Reg Program: UST DRY-CLEAN Land	4-Fill Waste-Disp NPDES DW TRRP	Apped Apped APPed APP 23 APP 23 SYOC3	x, by: ved as poly an by 3d by 3d b
Special DLs (GW DW QAPP MDLs RL	-s See Lab PM Included Call PM)	BE E pdx-1 1A EP 1A EP 1A AE 370 13 1A EP 13 14 14 14 14 14 14 14 14 14 14 14 14 14	2018 10 10 10 10 10 10 10 10 10 10 10 10 10
Sampler Name i / 2 As. 144	Simulation 11 4 1 1 11	TM-X= 74 W 828 0 74 M 98 W 94 28 94 28 94 28 74 28	ie bie- iu iu iu iu iu iu iu iu iu iu iu iu iu
Campion Many Wayne	r signature the work	Met 9310 9310 8210 8210 8210	21 12 12 12 12 12 12 12 12 12 12 12 12 1
Sample ID Date	ظ E Depth Matrix Composite Grab # Container Size Container Size Container Size	VOA: Full-List 1 VOA: Pull-List 1 PAHs SIM 8 SVOCs: Full-Lis OC Pesticides Metals: RCRA-8 Metals: RCRA-8	EDB / DBCP <i>B T EX</i> <i>B L L L L L L L L L L</i>
1 WW-10-11913 11/19/2013	X M QILIS		
2 MW-11-111913	1726		
3 Dup-1-111913 V	»		
4 Toip Blank 11-18-13	Z 0a:11		X ++++++
2			
1 0			
6			
10	>		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Kelinguished by (Initials and Sign)	Date & Time Relinquished to (Initials a	pd Sign) Date & Time	Total Containers per COC: Cooler Temp: - 0.54 "C
2 3) M/V VV	11.120113 2) Cheralin - 12	10:01	Otherwise agreed on writing. Reports are the Intellectual Property of XENCO until paid. Samples will be held 30 days after final report is e-mailed unless
3 5)	6)		hereby requested. Rush Charges and Collection Fees are pre-approved if needed.
Preservatives: Various (V), HCl pH<2 (H), H Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40n	12SO4 pH<2 (S), HNO3 pH<2 (N), Asbc Acid&NaOF ml VOA (40), 1L (1), 500ml (5), Tedlar Bag (B), Var	H (A), ZnAc&NaOH (Z), (Cool, <4C rious (V), Other	C) (C), None (NA), See Label (L), Other (O) Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V)
Matrix: Air (A), Product (P), Solid (S), Water	r (W), Liquid (L) Commit	ted to Excellence in Service	e and Quality www.xenco.com
Notice: Signatur subcontractors a	 of this document and relinquishment of these samples cor and assigns under Xenco's standard terms and conditions of 	nstitutes a valid purchase order from clik f service unless previously negotiated u	ient company to Xenco Laboratories and its affiliates, under a fully executed client contract.

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD

Page 22 of 23

Final 1.000

Work Order #: 474413

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates Date/ Time Received: 11/20/2013 10:07:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		.5	
#2 *Shipping container in good condition	1?	Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping co	ntainer/ cooler?	N/A	
#5 Custody Seals intact on sample bottle	es?	N/A	
#6 *Custody Seals Signed and dated?		N/A	
#7 *Chain of Custody present?		Yes	
#8 Sample instructions complete on Cha	ain of Custody?	Yes	
#9 Any missing/extra samples?		No	
#10 Chain of Custody signed when reline	quished/ received?	Yes	
#11 Chain of Custody agrees with samp	le label(s)?	Yes	
#12 Container label(s) legible and intact	?	Yes	
#13 Sample matrix/ properties agree wit	h Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	?	Yes	
#15 Samples properly preserved?		Yes	
#16 Sample container(s) intact?		Yes	
#17 Sufficient sample amount for indicat	ted test(s)?	Yes	
#18 All samples received within hold tim	e?	Yes	
#19 Subcontract of sample(s)?		Yes	
#20 VOC samples have zero headspace	e (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HI	NO3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved with N	NaAsO2+NaOH, ZnAc+NaOH?	N/A	

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Candau James Candace James

Date: 11/20/2013

Checklist reviewed by: Mmg Moah Kelsey Brooks

Date: 11/20/2013