GW - 001

2015 AGWMR

PART 1 OF 5

April 2016

Bloomfield Terminals 2015 Groundwater Remediation and Mo Annual Report

January -

2015 Groundwater Remediation and Monitoring Annual Report

January – December 2015

Bloomfield Terminal
Western Refining Southwest, Inc.
#50 Rd 4990
Bloomfield, New Mexico 87413

Submitted: April 2016

Prepared for
New Mexico Oil Conservation Division and
New Mexico Environment Department – Hazardous Waste Bureau

Table of Contents

List of A	Acronyms	V
EXECUT	TIVE SUMMARY	vii
SECTIO	N 1.0	1
INTROD	DUCTION	
1.1		
1.2		
	1.2.1 Previous Owner's Activities	
	1.2.2 Bloomfield Refining Activities	2
SECTIO	ON 2.0	8
	OF ACTIVITIES	
2.1		
	2.1.1 Fluid Measurements	
	2.1.2 Groundwater Field Parameters	
	2.1.3 Refinery Complex Sampling	
	2.1.4 North Boundary Barrier Sampling	
	2.1.5 San Juan River Bluff Sampling	
	2.1.6 San Juan River Terrace Sampling	12
	2.1.7 Outfall and Seep Inspections	13
2.2	Total Fluids Recovery Systems	14
	2.2.1 Groundwater Recovery System	14
	2.2.2 North Boundary Barrier Wall Collection System	
	2.2.3 Hammond Ditch Recovery System	
	2.2.4 River Terrace Remediation System	
	2.2.5 East Outfall Recovery System	
2.3	3 1	
2.4		
	N 3.0	
RESULT	TS SUMMARY	16
3.1		
	3.1.1 Groundwater Measurements	
	3.1.2 Groundwater Field Measurements	
	3.1.3 Refinery Complex Sampling	
	3.1.4 North Boundary Barrier Sampling	
	3.1.5 San Juan River Bluff Sampling	
	3.1.6 San Juan River Sampling	
	3.1.7 Outfall and Seep Inspections	
3.2		
3.3	, ,	
	3.3.1 Groundwater Recovery System	
	3.3.2 North Boundary Barrier Wall Collection System	25
	3.3.3 Hammond Ditch Recovery System	
2.4	3.3.4 East Outfall Recovery System	
3.4 3.5		
U)	** 4010 DIODUGUI	

SECTION	N 4.0	27
CONCLU	JSIONS	27
4.1	Groundwater Monitoring	27
4.2	Outfall and Seep Inspections	28
4.3	Total Fluids Recovery Systems	28
4.4	Below-Grade Testing and Tank Inspections	28
SECTION	N 5.0	29
REFERE	NCES	29

List of Tables

Table 1	Fluid Level Measurements Summary
Table 2	Groundwater Field Parameter Summary
Table 3	Refinery Wells Analytical Summary
Table 4	Cross-Gradient Wells Analytical Summary
Table 5	Downgradient Wells Analytical Summary
Table 6	RCRA Wells Analytical Summary
Table 7	Collection and Observation Wells Analytical Summary
Table 8	Outfalls Analytical Summary
Table 9	Seeps Analytical Summary
Table 10	San Juan River Analytical Summary

List of Figures

Figure 1	Site Location Map
Figure 2	Well Location Map
Figure 3	San Juan River Area Location Map
Figure 4	Groundwater Elevation and Flow Direction - April 2014
Figure 5	Groundwater Elevation and Flow Direction - August 2014
Figure 6	Product Thickness Map – April 2014
Figure 7	Product Thickness Map – August 2014
Figure 8	BTEX and MTBE Concentration Map – April 2014
Figure 9	BTEX and MTBE Concentration Map – August 2014
Figure 10	Wells Sampled April 2014
Figure 11	Wells Sampled August 2014
•	

List of Appendices

Appendix A	Field Sampling and Calibration Procedures
Appendix B	Analytical Reports
Appendix C	Laboratory Quality Assurance Plan
Appendix D	Below-Grade Testing and Tank Inspections
Appendix E	Waste Disposal Summary
Appendix F	Data Validation Report

List of Acronyms

top of casing (TOC)

```
benzene, toluene, ethylbenzene, and xylene (BTEX)
below grade level (bgl)
diesel range organics (DRO)
dissolved oxygen (D.O.)
Environmental Protection Agency (EPA)
feet (ft)
gallons per minute (gpm)
gasoline range organics (GRO)
New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB)
New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division
(EMNRD-OCD)
investigation derived waste (IDW)
liters (L)
maximum contaminant level (MCL)
methyl tert-butyl ether (MTBE)
micrograms per liter (ug/L)
micro Siemens per centimeter (uS/cm)
milligrams per liter (mg/L)
millivolts (mV)
monitoring well (MW)
New Mexico Administrative Code (NMAC)
Oxidation reduction potential (ORP)
parts per million (ppm)
photoionization detector (PID)
polyvinyl chloride (PVC)
pounds per square inch (psi)
Resource Conservation and Recovery Act (RCRA)
Semi-volatile organic compounds (SVOCs)
separate phase hydrocarbon (SPH)
Standard cubic feet per minute (scfm)
Temporary piezometer (TP)
```

total petroleum hydrocarbon (TPH)
toxicity characteristic leaching procedure (TCLP)
volatile organic compounds (VOC)
Wastewater Treatment System (WWTS)
Water Quality Control Commission (WQCC)

EXECUTIVE SUMMARY

This Annual Report includes a summary of activities conducted at the Bloomfield Terminal in 2015 pursuant to the reporting requirements outlined in Section IV.A.2. of the July 2007 Consent Order (NMED, 2007) issued by the New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB), and Section 22 of Discharge Permit GW-001 (NMOCD, 2010) issued by the New Mexico Energy, Mineral, and Natural Resources Department Oil Conservation Division (EMNRD-OCD). This report includes a summary of sampling activities, total fluids recovery, below-grade testing, and remediation monitoring activities conducted in 2015.

Groundwater Measurements

Depth-to-groundwater and depth-to-product measurements were collected from the facility monitoring wells, recovery wells, observation wells, and collection wells prior to the collection of groundwater samples during the Semi-Annual and Annual Sampling Events conducted in April 2015 and August 2015, respectively. The field measurements were collected a minimum of 48 hours after the recovery well pumps were turned off to allow the groundwater elevation to stabilize. Groundwater elevation contours show that groundwater generally flows in the northwest direction, with groundwater under the former process areas flowing towards the north boundary barrier wall and Hammond Ditch collection system.

Groundwater Monitoring

Groundwater monitoring activities conducted in 2015 included the collection of groundwater samples and field data from the following four areas of facility.

- Refinery Complex includes Refinery, Cross-Gradient, Downgradient, and RCRA Wells
- North Boundary Barrier includes observation and collection wells
- San Juan River Bluff includes Outfall and Seep locations
- San Juan River Terrace includes San Juan River samples

Sampling associated with the Bioventing System located at the River Terrace is summarized in the *River Terrace Voluntary Corrective Measures Bioventing System Annual Report*, which is submitted in March of each year. Groundwater monitoring activities conducted in April 2015 follow the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2013. Monitoring activities conducted in August 2015 follow the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2014.

Groundwater concentrations above respective screening levels are primarily localized near the refinery process units. The north boundary barrier wall and active groundwater recovery systems within the facility provide hydraulic capture of the impacted groundwater, and thus eliminate the concern of impacts to the San Juan River.

Outfall and Seep Inspections

In August 2014, Western notified NMED-HWB of a significant rain event that resulting in severe flash flooding in the Bloomfield, New Mexico area. The storm caused the Hammond Ditch to reverse flow directly, resulting in the entire roadway along the north boundary barrier to fill with water. The significant run-off along the river bluff resulting in Seep 4, Seep 6, Seep 7, Seep 8, and Seep 9 to permanently erode away. Prior to the flooding event, these locations were no longer actively collecting seep water due to the existence of the north boundary barrier. In addition, the seep areas had previously been investigated as part of the 2007 Consent Order. Therefore as of August 2014, the only existing catchment locations are Seep 1, Seep 2, Seep 3 and Seep 5. Bi-monthly visual inspections of Seep 1 through Seep 3 and Seep 5 were conducted in 2015. Visual inspection results and samples collected along the San Juan River as part of the groundwater monitoring program for the former Bloomfield Refinery (i.e. known currently as the Bloomfield Terminal) indicate that there has been no impact to the San Juan River.

Total Fluids Recovery Systems

The Bloomfield Terminal operates and monitors several fluid recovery systems within the facility, which include:

- Groundwater Recovery System using recovery wells within the Refinery Complex;
- North Boundary Barrier Collection System;
- Hammond Ditch Recovery System;
- River Terrace Remediation system; and
- East Outfall Recovery System.

All fluids recovered from these systems are pumped to the on-site Waste Water Treatment Plant for treatment prior to disposal through a Class 1 non-hazardous injection well. In October 2015, Western plugged and abandoned the on-site Class 1 injection well pursuant to NMOCD's approval. From October 2015 to present, excess treated waste water is disposed of off-site at a Class 1 non-hazardous injection well. In 2015, Western began the permitting process to install a new injection well.

Below-Grade Testing and Tank Inspections

In compliance with the Facility's Discharge Permit dated July 2010, sumps were inspected to determine their integrity for service. Sumps within the facility were cleaned out with a vacuum truck, visually inspected, and hydrostatically tested, for a minimum of 60 minutes if required to insure integrity. All sumps tested in 2015 passed and were returned to normal service with the exception of one concrete sump located on the west side of Tank 28. The sump was found to be damaged near the top where a steam line had eroded the concrete; however, the impacted area was above the operational level of the sump and there was no threat of a release. The sump was removed from service. In addition, petroleum storage tanks continue to be inspected at a frequency that is in compliance with API 650 and 653 guidelines.

SECTION 1.0 INTRODUCTION

1.1 Site Location and Description

Owner: San Juan Refining Company, a New Mexico Corporation

1250 Washington Street Tempe, Arizona 85281

Operator: Western Refining Southwest, Inc.

(Formerly Giant Industries Arizona, Inc.), an Arizona Corporation

1250 Washington Street Tempe, Arizona 85281

Facility: Bloomfield Terminal (physical address)

50 Road 4990

Bloomfield, New Mexico 87413

Western Refining Southwest, Inc. (postal address)

P.O. Box 159

Bloomfield, New Mexico 87413

US EPA ID: NMD089416416

SIC Code: 5171

The former Bloomfield Refinery facility (currently referred to as the Bloomfield Terminal) is currently owned by San Juan Refining Company, a New Mexico corporation, and operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc., an Arizona corporation. The facility had an approximate refining capacity of 18,000 barrels per day. Various process units operated at the facility, which included crude distillation, reforming, fluidized catalytic cracking, sulfur recovery, merox treater, catalytic polymerization, and diesel hydrotreating. Products produced at the refinery included gasoline, diesel fuels, jet fuels, kerosene, propane, butane, naphtha, residual fuel, fuel oils, and LPG.

The Bloomfield Facility is located on approximately 263 acres south of Bloomfield, New Mexico in San Juan County (Figure 1). The Bloomfield complex is bisected by County Road 4990 (Sullivan Road), which runs east-west. The terminal offices, former process units, tank farm, wastewater treatment system (WWTS), raw water ponds, and fire training area are located north of the county road. On November 23, 2009, Western Refining indefinitely suspended refining operations at the Bloomfield Facility. The crude oil unloading areas, product loading racks, former LPG storage tanks, maintenance buildings/90-day storage area, pipeline offices, transportation truck shop, and Class I injection well (recently plugged and abandoned) are located south of the country road (Figure 2).

The Bloomfield facility is located on a bluff 120 feet above the south side of the San Juan River. The top of the bluff is relatively flat and is at an elevation of 5,540 feet above sea level. Based on the available site-specific and regional subsurface information, the site is underlain by the Quaternary Jackson Lake terrace deposits, which unconformably overlie the tertiary Nacimiento Formation. The Jackson Lake deposits consist of fine grained sand, silt, and clay that grades to course sand, gravel and cobble size material closer to the contact with the Nacimiento Formation. The Jackson Lake Formation is over 40 feet thick near the southeast portion of the site and generally thins to the northwest toward the San Juan River. The Nacimiento Formation is primarily composed of fine grained materials (e.g., carbonaceous mudstone/claystone with interbedded sandstones) with a reported local thickness of approximately 570 feet (Groundwater Technology, 1994).

1.2 History of Facility Modifications and Improvements

1.2.1 Previous Owner's Activities

Local entrepreneur, Kimball Campbell, constructed the crude topping unit that eventually became the Bloomfield Refinery facility in the late 1950s. O.L. Garretson bought the facility in the early 1960s, renamed it Plateau, Inc. and sold it in 1964 to Suburban Propane of New Jersey.

Operationally, the facility had steadily evolved through a series of improvements, modifications and expansions. Suburban upgraded the facility in 1966, increasing the Crude Unit throughput to 4,100 barrels per calendar day (bpcd) and adding 1,850 bpcd Reformer and Naphtha Hydrotreater. In 1975, the Crude Unit was expanded to 8,400 bpcd.

In 1979, the Crude Unit was expanded again to 16,800 bpcd (later demonstrated to have a hydraulic capacity in excess of 18,000 bpcd). A Fluidized Catalytic Cracker (FCC) with a nominal capacity of 6,000 bpcd, an Unsaturated Gas Plant and a Treater Unit were also added at that time. The capacity of the Reformer / Hydrotreater was increased to 2,250 bpcd. The FCC was upgraded in 1982 to conform to State and Federal air quality standards.

1.2.2 Bloomfield Refining Activities

Bloomfield Refining Company (BRC) acquired the facility from Suburban Propane (Plateau) on October 31, 1984. The current owner of the facility is San Juan Refining Company. Western Refining Southwest, Inc. is the facility operator.

Over the years, there have been many improvements made to facility operations and equipment. These improvements are summarized below.

1986

Relocated the spent caustic tank onto a concrete pad with retaining walls.

1987

- Upgraded the Reformer and increased its capacity to 3,600 barrels per day (bpd).
 Modified the Laboratory and Treater Unit and increased tank storage capacity.
- Cleaned up the North and South bone yards.
- Decommissioned and dismantled old Tanks 6 and 7.
- Relocated the API recovered oil Tank 8 and Tank 9 to concrete pads with concrete retaining walls.
- Established a systematic inspection, maintenance, and repair program for tanks.

<u>1988</u>

- Added a 2,000 bpd Catalytic Polymerization Unit. Removed the facility's two underground storage tanks and replaced them with aboveground storage tanks.
- Completed installation of a Cathodic Protection System for the Tank Farm and underground piping.
- Rebuilt the process area sewer system and added curbed, concrete paving to the unpaved process areas.

1989

- Increased Reformer throughput to 4,000 bpd.
- Activated the groundwater hydrocarbon recovery system.
- Constructed the first double-lined Evaporation Pond as part of Refinery's Discharge Plan improvements.

1990

- Constructed the second double-lined Evaporation Pond as part of the Refinery's Discharge Plan improvements.
- Constructed a drum storage shed and converted to bulk chemical usage, where possible, in order to minimize the use of drummed chemicals.

1991

- Revamped the burner fuel sales rack with concrete paving and curbing.
- Submitted the permit application for a Class 1 Disposal Well.
- Upgraded the groundwater hydrocarbon recovery system.

<u>1992</u>

• Submitted an air quality permit application. The application included a proposal to install a Diesel Hydrodesulphurization (HDS) Unit and a Sulfur Recovery Unit (SRU) in order to comply with new EPA low-sulfur diesel regulations and decrease air emissions.

1993

 Began a program under a Consent Agreement with the United Stated Environment Protection Agency (USEPA) to conduct Interim Measures (IM), a RCRA Facility Investigation (RFI) and a Corrective Measures Study (CMS) addressing groundwater contamination.

- Replaced portions of the underground cooling water piping.
- Added concrete paving around the API Separator.
- Installed the HDS Unit and SRU.

<u> 1994</u>

- Completed installation of the Class 1 Injection Well.
- Retrofitted the Aeration Lagoons with two additional liners.
- Installed a floating cover for the API Separator.
- Closed the clay-lined evaporation ponds and spray evaporation area.

1995

- Improved the diking south of the Refinery to further reduce storm water runoff.
- Began implementation of additional corrective measures for groundwater cleanup as determined from the CMS.

1998

 Converted the former evaporation ponds on the east side of the Refinery to raw water storage ponds.

1999

Installed sheet pilings and a bentonite slurry wall adjacent to the San Juan River, North
of the process units, in order to intercept a small hydrocarbon seep that had been
detected in the area.

2001

 Initiated a program to inoculate the Aeration Lagoons with sludge-consuming microorganisms.

2002

 A concrete liner was installed on the Hammond Ditch. At that time, Giant constructed the Hammond Ditch French Drain Recovery System to address contamination under the ditch.

2003

Several monitoring wells were converted into recovery wells to further enhance the
continuing ground water remediation efforts. MW-45, MW-46 & MW-47 were installed to
facilitate sample collection. East Outfall #1 Recovery System was set up to return
impacted water back to the refinery.

2004

 Monitoring well MW-48, MW-49 and eight temporary piezometers were installed as part of Voluntary River Terrace Investigation activities.

- Several temporary piezometers were drilled on the north side of Hammond Ditch to chart
 the surface elevation of the Nacimiento Formation. Design of a slurry wall to be
 constructed on the north side of Hammond Ditch was completed.
- Lined containments were constructed in the draws north of Hammond Ditch in order to collect potentially contaminated groundwater which discharged to the land surface.
- Sewer lines were replaced in the Treater and FCC.

2005

- The North Boundary Barrier Wall installation was completed March 2005. Fourteen observation wells were installed on the north side of the slurry wall and fifteen collection wells were installed on the south side of the slurry wall in April 2005.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.
- In April, five more temporary piezometers were installed at the River Terrace. In August, Dewatering Wells (DW-1 and DW-2) and thirteen bioventing wells were drilled and construction of the River Terrace Bioventing Project was initiated.

2006

- The River Terrace Bioventing System was put on-line in January 2006. Monitoring data from that project is submitted in a separate report to the regulatory agencies.
- During the week of February 13, 2006 seven sump wells were installed along the bluff north of the barrier wall. These wells were drilled in accordance with the North Barrier Wall Work Plan which was submitted to OCD February 7, 2006.
- Fluids extraction from the observation and collection wells, the north draws, and the sump wells continued throughout 2006.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.

2007

- On May 31, 2007, Giant Industries, Inc. became a wholly-owned subsidiary of Western Refining, Inc. of El Paso, Texas.
- Construction of the Ammonia Refrigeration Unit (ARU) was completed and the system put on line by March 2007. This unit is used to recover propane from hydrogen streams.
- Construction of the Benzene Stripper was completed and the system put in service by October 2007. This unit is used to strip benzene from process waste water.
- Discharge piping was installed at RW #1 to increase the recovery capacity of the well.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall (Seeps 1-9) were upgraded periodically.

2008

• The Facility-Wide Groundwater Monitoring Plan (Revised May 2008) was approved and implemented in the latter half of 2008.

- In September, Group No. 2 RCRA Site Investigation activities commenced. Areas included in Group No. 2 are SWMU 2, SWMU 8, SWMU 9, SWMU 11, and SWMU 18.
- As part of the Closure Plan North and South Aeration Lagoons the ponds were drained, cleaned out, inspected, repaired, and put back in service. This process started in October 2008 and was completed in February 2009.

2009

- In March, monitoring wells were installed around the Aeration Lagoons to satisfy Group No. 1 RCRA site investigation requirements. Group No. 3 Site Investigation activities began in April. This group includes SWMU 4, SWMU 5, AOC 22, AOC 23, AOC 24, AOC 25. and AOC 26.
- On November 23, 2009, Western Refining indefinitely suspended refining operations at the Bloomfield Refinery. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Guidelines from the Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008) will continue to be followed.

2010

- In January 2010, due to analytical results indicating high benzene levels, piping was installed to permanently route discharge water from Tank 33 to the API Separator.
- Guidelines from the Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008) were followed through the first six months of 2010.
- In August, Group No. 4 and Group No. 5 investigation field activities were conducted which included the installation of three monitoring wells.
- After receipt of the New Mexico Environmental Department (NMED) letter Approval with Direction Facility-Wide Groundwater Monitoring dated July 26, 2010, Western personnel followed guidelines from the Facility-Wide Groundwater Monitoring Plan (FWGMP) dated June 2010.

2011

• In August 2012, Group No. 6 RCRA Investigation activities were conducted, which involved soil sampling within each of the Seep Areas located along the northwest portion of the facility.

<u>2012</u>

- In January 2012 the group 8 RCRA Investigation activities commenced, which involved soil sampling within SMWU No. 3 – Underground Piping Currently in Use, and SWMU No. 6 – Abandoned Underground Piping.
- On October 12, 2012, NMED Hazardous Waste Bureau approved a Work Plan submitted by Western dated October 9, 2012 authorizing Western to optimize the remediation efforts at the River Terrace area. Optimization activities conducted in 2012 included the removal of approximately 250 cubic yards of impacted clay-type soil from the river terrace area, and conversion of a portion of the biovent system to an air sparging system in efforts to target the most impacted groundwater area located within the southwest corner of the River Terrace Area.

In the third quarter 2012, Western commenced work that involves enhancement of the total fluids recovery system. This work involves transitioning five monitoring wells (MW-20, MW-55, MW-56, MW-57, and MW-58) and one recovery well (RW-3) to operational total fluids recovery wells. RW-3 was returned to operation by the fourth quarter 2012. Operation of the monitoring wells located near the aeration lagoons is expected to begin in April 2013.

2013

- In the first quarter 2013, Western completed work that involves enhancement of the total fluids recovery system. This work involved transitioning five monitoring wells to active total fluids recovery wells (MW-20, MW-55, MW-56, MW-57, and MW-58). Operation of the monitoring wells located near the aeration lagoons has commenced.
- In June 2013, Western removed two former diesel dispenser pumps, storage tank, associated piping, former fueling pad and approximately 500 cubic yards of soil. Soil samples confirmed all the impacted soil was removed from the immediate vicinity of the former diesel fueling pumps.
- In 2013 Western replaced Tank 37, Tank 38 and Tank 34 with new equivalent tanks.
 Tank 37 and Tank 34 containments were also lined.
- Well MW-70 was developed on May 22, 2013 and baseline samples were collected on June 13, 2013.

2014

In 2014 Western Refining preformed an environmental site investigation for the SWMUs designated as Group 9 and SWMU No. 27 Wastewater Collection System. Group 9 includes SWMU No. 12 (API Separator), SWMU No. 13 (Process Area) and SWMU No. 14 (Tanks 3, 4, and 5).

2015

 In October 2015, Western plugged and abandoned the on-site Class 1 non-hazardous injection well. Western has since submitted an application for permission to drill a new replacement well on-site. The permit process is through NMOCD.

SECTION 2.0 SCOPE OF ACTIVITIES

This Annual Report includes a summary of activities conducted at the Bloomfield facility in 2015 pursuant to the reporting requirements outlined in Section IV.A.2. of the July 2007 Consent Order issued by the NMED-HWB, and Section 22 of Discharge Permit GW-001 issued to the Bloomfield Refinery by the EMNDR-OCD. This report includes a summary of sampling activities, total fluids recovery, below-grade testing, and remediation monitoring activities conducted in 2015.

2.1 Groundwater Monitoring Activities

Groundwater monitoring activities conducted in 2015 include the collection of groundwater samples and field data from the following four areas of the facility:

- Refinery Complex
- North Boundary Barrier
- San Juan River Bluff
- San Juan River Terrace

Groundwater monitoring activities conducted in April 2015 follow the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2013. Monitoring activities conducted in August 2015 follow the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2014. Any activities conducted contrary to the approved Monitoring Plans are noted in this report.

General groundwater sampling procedures followed during each sampling event are included in Appendix A. Detailed information regarding groundwater monitoring activities conducted in 2015 is included in Section 3.1.

2.1.1 Fluid Measurements

Depth-to-groundwater and depth-to-product measurements were collected from the facility monitoring wells, recovery wells, observation wells, and collection wells prior to the collection of groundwater samples during the Semi-Annual and Annual Sampling Events conducted in April 2015 and August 2015, respectively. All fluid level measurements were collected using a Geotech Interface Probe that measures to an accuracy of 0.01 feet. The field measurements were collected a minimum of 48 hours after the recovery well pumps were turned off to allow the groundwater elevation to stabilize. A summary of the fluid measurements collected is provided in Section 3.1.1.

2.1.2 Groundwater Field Parameters

Prior to collecting groundwater samples, each well was purged a minimum of three well volumes. Groundwater field parameters (temperature, pH, and conductivity) were collected every two gallons or after purging one well volume, whichever was less. The total volume purged at each well was determined once the pH, temperature, and conductivity field parameters stabilized to within 10 percent for three measurements. A summary of the field measurements collected and procedures followed is provided in Section 3.1.2 and Appendix A, respectively.

In addition, field parameters were collected at the outfalls and seeps when sufficient water was present.

2.1.3 Refinery Complex Sampling

Groundwater samples were collected from specified wells located within the Refinery Complex during the Semi-Annual Sampling Event and Annual Sampling Event conducted in April 2015 and August 2015, respectively, with the exception of wells that contained SPH, wells that were dry, or wells that did not contains enough water to collect a sample. Figure 10 and Figure 11 show the location of the wells sampled during each sampling event. A summary of the analytical results is provided in Section 3.1.3.

Semi-Annual Sampling Event

Groundwater samples were collected from the following wells during the Semi-Annual Sampling Event conducted in April 2015:

- RCRA Investigation Wells: MW-52;
- Cross-Gradient Wells: MW-1, MW-13, MW-33; and
- Downgradient Wells: MW-12, MW-35, MW-37, MW-38.

Groundwater samples collected during the Semi-Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- Volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tert-butyl ether (MTBE) by EPA Method 8260B; and
- Total petroleum hydrocarbons (TPH) Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and Motor Oil Range Organics (MRO) by EPA Modified Method 8015B (MW-1, MW-12, MW-33, MW-37, and MW-38 only)

Groundwater samples were not collected from MW-20 and MW-30 due to the presence of SPH during purging. In addition, groundwater samples were not collected from MW-6 due to insufficient groundwater for sample collection.

Annual Sampling Event

Groundwater samples were collected from the following wells during the Annual Sampling Event conducted in August 2015:

- Refinery Wells: MW-4, RW-15, MW-29, MW-30, MW-31, and MW-44;
- Cross-Gradient Wells: MW-1, MW-13, MW-27, and MW-32;
- Downgradient Wells: MW-11, MW-12, MW-34, MW-35, MW-37, and MW-38; and
- RCRA Investigation Wells: MW-51, MW-52, MW-53, MW-59, MW-62, MW-63, MW-64, MW-65, MW-67, MW-68, and MW-70.

Groundwater samples were not collected from RW-1, RW-9, RW-18, MW-20, MW-21, RW-23, MW-26, RW-28, MW-40, RW-42, RW-43, MW-54, MW-55, MW-56, MW-57, MW-58, MW-61, and MW-66 due to the presence of SPH. SPH appeared at RW-18 during the bailing process and was not apparent prior to sampling. In addition, groundwater samples were not collected from MW-60 and MW-69 due to insufficient groundwater for sample collection. A groundwater sample was not collected at MW-33 during the Annual Sampling event but a sample was collected during the Semi-Annual Sampling Event.

Groundwater samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Total Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

2.1.4 North Boundary Barrier Sampling

Groundwater samples were collected from observation wells and specified collection wells in April 2015 and August 2015, with the exception of wells that contained SPH, wells that were dry, or wells that did not contain enough water to collect a sample. Figure 10 and Figure 11 shows the location of the North Boundary Barrier wells that were sampled in April 2015 and August 2015, respectively. A summary of the groundwater results is provided in Section 3.1.4.

Semi-Annual Sampling Event

Groundwater samples were collected from the following wells during the Semi-Annual Sampling Event conducted in April 2015:

- Collection Wells: CW 0+60, and CW 25+95
- Observation Wells: OW 6+60, OW 11+15, OW 16+60, OW 22+00, OW 23+10, OW 23+90, and OW 25+70

SPH appeared at OW 3+85 during the bailing process and therefore a sample was not collected. In addition, groundwater samples were not collected from OW 1+50, OW 5+50, OW 6+70, OW 8+10, OW 14+10, and OW 19+50 due to insufficient groundwater for sample collection.

Groundwater samples collected in April 2015 were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs-BTEX and MTBE only by EPA Method 8260B;
- TPH-GRO by EPA Modified Method 8015B;
- TPH-DRO by EPA Modified Method 8015B; and
- TPH-MRO by EPA Method 8015B.

Annual Sampling Event

Groundwater samples were collected from the following wells during the Annual Sampling Event conducted in August 2015:

- Collection Wells: CW 0+60, and CW 25+95
- Observation Wells: OW 0+60, OW 3+85, OW 11+15, OW 16+60, OW 22+00, OW 23+10, OW 23+90, and OW 25+70

Groundwater samples were not collected from OW 1+50 due to the presence of SPH during bailing. In addition, groundwater samples were not collected from OW 5+50, OW 6+70, OW 8+10, OW 14+10, and OW 19+50 due to insufficient groundwater for sample collection.

Groundwater samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-GRO by EPA Modified Method 8015B;
- TPH-DRO by EPA Modified Method 8015B; and
- TPH-MRO by EPA Method 8015B.

2.1.5 San Juan River Bluff Sampling

San Juan River Bluff sampling includes the collection of surface water samples at the outfall locations along the eastern portion of the facility, and at the seeps located along the western portion of the facility. Figure 3 shows the outfall and seep locations. A summary of the surface water analytical results is provided in Section 3.1.5.

Semi-Annual Sampling Event

Surface water samples were collected from the following locations during the Semi-Annual Sampling Event conducted in April 2015:

- Outfalls: East Outfall #2 and East Outfall #3; and
- Seeps: Seep 1.

Surface water samples were not collected from Seep 2, Seep 3, and Seep 5 due to the absence of an active discharge at each location.

Surface water samples collected in April 2015 were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- Total RCRA 8 Metals by EPA Method 6010B/7470 (Outfall locations only);
- Dissolved Metals by EPA Method 6010B/7470 (Outfall locations only);
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

Carbon dioxide was inadvertently not analyzed for samples collected at East Outfall #2 and East Outfall #3 during the semi-annual sampling event.

Annual Sampling Event

Surface water samples were collected from the following locations during the Annual Sampling Event conducted in August 2015:

• Outfalls: East Outfall 2, and East Outfall 3.

Surface water samples were not collected from any of the seeps due to due to the absence of an active discharge at each location.

Surface water samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- Total RCRA 8 Metals by EPA Method 6010B/7470 (Outfall locations only);
- Dissolved Metals by EPA Method 6010B/7470 (Outfall locations only);
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

2.1.6 San Juan River Terrace Sampling

San Juan River Terrace sampling includes the collection of surface water samples at four locations along the San Juan River and the collection of groundwater samples at the San Juan River Terrace. A summary of activities conducted and groundwater samples collected that are associated with the bioventing system located at the San Juan River Terrace are included in the previously submitted *River Terrace Voluntary Corrective Measures Bioventing System Report* dated March 2015. Therefore sampling activities associated with the Bioventing System are not included in this report.

Figure 3 shows the approximate surface water sample locations along the San Juan River. A summary of the surface water analytical results is provided in Section 3.1.6.

Semi-Annual Sampling Event

Surface water samples were collected from the following locations during the Semi-Annual Sampling Event conducted in April 2015:

San Juan River: Upstream, North of MW-46, North of MW-45, and Downstream.

Surface water samples collected during the Semi-Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1; and
- Anions by EPA Method 300.0.

Annual Sampling Event

Surface water samples were collected from the following locations during the Annual Sampling Event conducted in August 2015:

• San Juan River: Upstream, North of MW-46, North of MW-45, and Downstream.

Surface water samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1; and
- Anions by EPA Method 300.0.

2.1.7 Outfall and Seep Inspections

Bi-monthly visual inspections of Seeps 1 through Seep 3 and Seep 5 along the San Juan River Bluff were conducted in 2015. Figure 3 shows the location of the outfalls and seeps. A summary of the inspections performed is provided in Section 3.1.7.

2.2 Total Fluids Recovery Systems

2.2.1 Groundwater Recovery System

The Bloomfield Facility operates a total fluids pumping system used to bring SPH and hydrocarbon impacted groundwater to the surface for treatment and disposal. This is accomplished by actively pumping wells within the groundwater impacted area. Recovered fluids are pumped to the on-site API separator for product recovery. The remaining recovered fluid is pumped through the WWTS prior to disposal. The groundwater recovery system was operational throughout 2015. The wells that operated as active recovery wells in 2015 are RW-1, RW-2, RW-3, RW-9, RW-14, RW-15, RW-16, RW-17, RW-19, MW-20, RW-22, RW-23, RW-28, RW-42, MW-55, MW-56, MW-57 and MW-58. Figure 2 shows the location of the recovery wells within the Bloomfield Facility. An operational summary of the groundwater recovery system is included in Section 3.3.1.

2.2.2 North Boundary Barrier Wall Collection System

The North Boundary Barrier Wall, which was installed by April 2005, consists of a 2,700 foot long bentonite slurry wall that extends two to five feet into the Nacimiento Formation. The primary purpose of the wall is to prevent the migration of hydrocarbon-impacted groundwater towards the San Juan River. The collection system consists of 15 collection wells positioned along the facility-side of the barrier wall. For every collection well there was installed an observation well along the river-side of the barrier wall. Bloomfield Terminal personnel continued to monitor fluid levels on both sides of the barrier wall in 2015 by collecting depth-towater and depth-to-product measurements. Figure 2 shows the location of the collection wells and observation wells along the North Boundary Barrier Wall. A summary of the data collected along the North Boundary Barrier Wall is provided in Section 3.3.2.

2.2.3 Hammond Ditch Recovery System

The Hammond Ditch Recovery System consists of recovery Tank 37, located along the western portion of the facility, and a French Drain system that was constructed below the concrete-lined Hammond ditch. Tank 37 collects groundwater from two 8-inch influent lines connected to the perforated sub-drain (the French Drain) beneath the Hammond Irrigation Canal. Tank 37 is equipped with a liquid level float control system and dedicated flow meter. Recovered water from Tank 37 is automatically pumped through a flow meter to the API Separator. The location of Tank 37 is shown on Figure 3.

The Hammond Ditch Recovery System serves as a hydraulic relief mechanism for groundwater that mounds along the Facility-side of the north barrier wall. Figure 3 shows the location of Tank 37. A summary of operational data for the Hammond Ditch Recovery System is included in Section 3.3.3.

2.2.4 River Terrace Remediation System

The River Terrace Bioventing System commenced operation in January 2006. A summary of activities associated with the River Terrace Bioventing System are submitted separately to the agency in March of each year.

2.2.5 East Outfall Recovery System

Outfall 1 is equipped with a holding tank and automatic pumping system. Water from Outfall 1 discharges into Tank 38 directly and then is pumped to the on-site WWTS prior to disposal. Figure 3 shows the location of Tank 38.

The flow rate of recovered water entering Tank 38 is dependent upon the operation the Hammond Ditch, which is located just south of Tank 38. A summary of the operational data of the East Outfall Recovery System for 2015 is included in Section 3.3.4.

2.3 Below-Grade Testing and Tank Inspections

Pursuant to conditions of approval stated in Discharge Permit GW-001 (regulated by the EMNRD-OCD), below-grade sumps and sewer boxes were tested in 2015. No underground lines were tested in 2015.

2.4 Waste Disposal

Western Refining indefinitely suspended refining operations at the facility on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Recovered water from on-site remediation activities and facility operations is treated through the on-site WWTS. Treated water is then disposed of through the on-site Class I non-hazardous injection well or sent off-site to a Class 1 non-hazardous injection well for disposal.

All operational waste generated is properly characterized and disposed of off-site. Additional information regarding waste disposal activities is provided in Section 3.5.

SECTION 3.0 RESULTS SUMMARY

The following is a summary of the data collected, visual inspections conducted, and analytical results received during monitoring and testing performed in 2015. Figure 8 and Figure 9 provide a summary of the BTEX concentrations detected during the April 2015 and August 2015 sampling events, respectively.

3.1 Groundwater Monitoring

A summary of the groundwater analytical results for samples collected over the past few years are included in Table 3 through Table 10. Screening levels used to evaluate the groundwater condition at the Bloomfield Facility are reflective of the same conservative screening levels currently used for evaluation of on-going RCRA Investigation activities. Sample results included in the analytical summary tables that exceed the respective regulatory screening levels are highlighted in yellow, while all detected results are bolded. A copy of the respective analytical reports and Laboratory Quality Assurance Plan is included in Appendix B and Appendix C, respectively.

3.1.1 Groundwater Measurements

Depth-to-groundwater and depth-to-product measurements were collected at all refinery monitoring wells, recovery wells, observation wells, and collection wells in April and August 2015, with the exception of CW 25+95 the reason being it continually pumps to protect the groundwater from moving around the end of the slurry wall. Additional fluid measurements were collected at the sump wells periodically throughout the year to monitor fluid levels along the north side of the facility. The fluid pumping wells were turned off and the groundwater was allowed to stabilize for a minimum of 48-hours prior to the collection of fluid levels within the Refinery Complex during both the April and August sampling events. Figure 2 shows the location of the wells within the facility.

Using the fluid level measurements collected in April and August 2015, groundwater potentiometric surface elevations were calculated. The groundwater elevation data was used to developed groundwater potentiometric surface maps which show the general direction of groundwater flow within the Refinery Complex area. Table 1 provides a summary of the fluid level measurements collected in 2015. Figure 4 and Figure 5 represent the groundwater contours developed from data collected in April 2015 and August 2015, respectively. The groundwater contours show that groundwater generally flows in a northwest direction. A discussion of the SPH data collected is provided in Section 3.2 of this Report.

3.1.2 Groundwater Field Measurements

Prior to collecting groundwater samples, each well was purged of a minimum of three well volumes using a disposable bailer. Groundwater field parameters (temperature, pH, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and total dissolved

solids (TDS)) were collected every two gallons or after purging one well volume, whichever was less. The total volume purged at each well was determined once the pH, temperature, and conductivity field parameters stabilized to within 10 percent for three measurements. The field parameters were collected using a YSI Professional Plus instrument. Field equipment calibration procedures performed prior to each sampling event are summarized in Appendix A. Table 2 provides a summary of the groundwater field parameters collected during the April 2015 and August 2015 sampling events. Field parameters were also collected from water samples collected at the East Outfalls, Seeps, and the San Juan River locations.

3.1.3 Refinery Complex Sampling

Refinery Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 15 ug/l at RW-15, MW-30, and MW-31. The detected concentrations above the screening level ranged from 650 to 3,000 ug/l. The highest concentration was detected at MW-30 in August 2015.
- 1,3,5-Trimethylbenzene was detected above the respective screening level of 12 ug/l at RW-15, MW-30, and MW-31. The detected concentrations ranged between 82 ug/l and 740 ug/L with highest concentration detected at MW-30 in August 2015.
- 1-Methylnaphthalene was detected above the respective screening level of 2.3 ug/l at MW-4 with a concentration of 21 ug/l.
- Benzene was detected above the respective screening level of 5 ug/l at MW-4, RW-15, MW-30, and MW31. The detected concentrations ranged between 210 ug/l and 4,200 ug/l, with the highest concentration detected at MW-30 in August 2015.
- Ethylbenzene was detected above the respective screening level of 700 ug/l at MW-30 and MW-31. The detected concentrations were 4,000 ug/l and 1,600 ug/l in August 2015, respectively.
- Naphthalene was detected above the respective screening level of 1.65 ug/l at MW-4, RW-15, MW-30, and MW-31. The detected concentrations ranged between 78 ug/l and 600 ug/l, with the highest concentration detected at MW-30 in August 2015.
- Toluene was detected above the respective screening level of 750 ug/l at MW-30 and MW-31. The detected concentrations were 13,000 and 3,500 ug/l, respectively.
- Xylenes were detected above the respective screening level of 620 ug/l at RW-15, MW-30, and MW-31. The detected concentrations ranged between 1,000 ug/l and 16,000 ug/l, with the highest concentration detected at MW-30 in August 2015.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2014, with the following exceptions:

 Chloride was detected above the respective screening level of 250 mg/l at RW-15 at a concentration of 480 mg/l in August 2015. • Sulfate was detected above the respective screening level of 600 mg/l at MW-44 with the detected concentration of 3,000 mg/l in August 2015.

Total metals constituents detected above the laboratory detection limit were at or below their respective screening levels in all samples collected in 2015. Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions

- Barium was detected above the respective screening level of 1.0 mg/l at MW-4, RW-15, and MW-31. The detected concentrations ranged from 1.4 to 2.3 mg/l with the highest concentration detected at MW-4 in August 2015 5.
- Iron was detected above the respective screening level of 1.0 mg/l at MW-4, RW-15, and MW-30. The detected concentrations ranged from 1.5 to 48 mg/l with the highest concentration detected at RW-15 in August 2015.
- Manganese was detected above the respective screening level of 0.2 mg/l at MW-4, RW-15, MW-29, MW-30, MW-31 and MW-44. The detected concentrations ranged between 0.99 mg/l and 3.5 mg/l, with the highest concentration detected at MW-4 in August 2015.

Total petroleum hydrocarbons were detected above the laboratory detection limits in all three fractions (GRO, DRO, and MRO). The detected GRO concentrations ranged from 14 to 120 mg/l. The detected concentrations of DRO ranged from 2.1 to 20 mg/l. The MRO fraction was detected in a single sample at RW-15 at a concentration of 12 mg/l.

A summary of the analytical results for samples collected at the Refinery Complex Wells is provided in Table 3.

Cross-Gradient Wells

Volatile organic compounds were not detected above the laboratory detection limit in samples collected in 2015.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- Chloride was detected above the respective screening level of 250 mg/l at MW-27 and MW-32 in August 2015. The detected concentrations were 450 mg/l and 530 mg/l, respectively.
- Nitrate was detected above the respective screening level of 10 mg/l at MW-32 at a concentration of 55 mg/l.
- Sulfate was detected above the respective screening level of 600 mg/l at MW-13, MW-27, and MW-32. The detected concentrations ranged between 1,100 mg/l and 2,200 mg/l, with the highest concentration detected at MW-27 in August 2015.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015. Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

 Manganese was detected above the respective screening level of 0.2 mg/l at MW-13 and MW-27. The detected concentrations were 0.6 mg/l and 6.0 mg/l, respectively. Total petroleum hydrocarbons were detected in analyses for the GRO and DRO fractions. The GRO concentrations ranged from 0.19 to 0.25 mg/l and DRO concentrations ranged from 0.28 to 3.9 mg/l.

A summary of the analytical results for samples collected at the Cross-Gradient Wells is provided in Table 4.

Downgradient Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 15 ug/l at MW-11 and MW-35. The detected concentration was 390 ug/l and 19 ug/l, respectively.
- 1-Methylnaphthalene was detected above the respective screening level of 2.3 mg/l at MW-11 with a concentration of 16 mg/l in August 2015.
- Benzene was detected in samples collected at MW-11 at 14 ug/l, only slightly above the screening level of 5 ug/l.
- Naphthalene was detected above the respective screening level of 1.43 ug/l at MW-11. The detected concentration was 71 ug/l.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2014.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- Arsenic was detected above the screening level of 0.015 mg/l at MW-11 and MW-35 at concentrations of 0.035 and 0.11 mg/l, respectively, in August 2015; and
- Chromium was detected above the respective screening level of 0.05 mg/l at MW-12 at a concentration of 0.34 mg/l in August 2015.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2014, with the following exceptions:

- Barium was detected above the screening level of 1.0 mg/l at MW-35 at a concentration of 1.6 mg/l in August 2015;
- Iron was detected above the respective screening level of 1.0 mg/l at MW-11 and MW-34. The detected concentrations were 9.6 mg/l and 2.8 mg/l, respectively; and
- Manganese was detected above the respective screening level of 0.2 mg/l at MW-11, MW-34, MW-35, and MW-37. The detected concentrations ranged between 1.0 mg/l and 3.2 mg/l, with the highest concentration detected at MW-34 in August 2015.

Total petroleum hydrocarbons were detected in the GRO and DRO fractions. GRO ranged from 0.54 mg/l to 2.4 mg/l with the highest concentration at MW-11. The DRO fraction was detected at concentrations ranging from 0.38 mg/l to 1.5 mg/l with the highest concentration detected at MW-11 in the sample collected in August 2015.

A summary of the analytical results for samples collected at the Downgradient Wells is provided in Table 5.

RCRA Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 15 ug/l at MW-65, with a concentration of 860 ug/l detected in August 2015;
- 1,2-Dichloroethane was detected above the respective screening level of 5 ug/l at MW-59 and MW-65. The detection concentrations were 18 ug/l and 200 ug/l, respectively;
- 1-Methylnaphthalene was detected above the respective screening level of 2.3 ug/l at MW-65, with a detected concentration of 120 ug/l;
- Benzene was detected above the respective screening level of 5 ug/l at MW-59 and MW-65. The detected concentrations were 7.3 ug/l and 7,800 ug/l, respectively. The highest detected concentrations at MW-65 in August 2015;
- Ethylbenzene was detected above the respective screening level of 700 ug/l at MW-65, with a concentration detected of 1,900 ug/l in August 2015;
- MTBE was detected above the respective screening level of 143 ug/l at MW-59, and MW-65. The detected concentration was 1,400 ug/l and 1,400 ug/l respectively; and
- Naphthalene was detected above the respective screening level of 1.65 ug/l at MW-65. The detected concentration was 210 ug/l.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- Chloride was detected above the respective screening level of 250 mg/l at MW-52, MW-53, MW-63, MW-64 and MW-70. The detected concentrations ranged between 270 mg/l and 940 mg/l. The highest concentration was detected at MW-64.
- Nitrate was detected above the respective screening level of 10 mg/l at MW-52, MW-53, MW-63, MW-64, and MW-67. The detected concentrations ranged between 12 mg/l and 78 mg/l. The highest concentration was detected at MW-63.
- Sulfate was detected above the respective screening level of 600 mg/l at MW-52, MW-53, MW-59, MW-62, MW-63, MW-64, MW-65, and MW-70. The detected concentrations ranged between 780 mg/l and 4,000 mg/l, with the highest concentration detected at MW-62.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- Arsenic was detected above the screening level of 0.015 mg/l at MW-59 with a concentration of 0.022 mg/l; and
- Selenium was detected above the screening level of 0.05 mg/l at MW-52 with a concentration of 0.069 mg/l.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- Iron was detected above the respective screening level of 1.0 mg/l at MW-52, MW-59, MW-65, and MW-70. The detected concentrations ranged between 2.2 mg/l and 8.5 mg/l with the highest concentration at MW-70.
- Manganese was detected above the respective screening level of 0.2 mg/l at MW-51, MW-52, MW-53, MW-59, MW-62, MW-63, MW-65, MW-67, and MW-70. The detected concentrations ranged between 0.38 mg/l and 4.3 mg/l, with the highest concentration detected at MW-70: and
- Selenium was detected at MW-52 with a concentration of 0.09 mg/l, which exceeds the screening level of 0.05 mg/l.

Total petroleum hydrocarbons were detected above the laboratory detection limit in the GRO and DRO fractions. The GRO concentrations ranged between 1.1 mg/l and 19 mg/l. The DRO concentrations ranged between 0.21 mg/l and 7.7 mg/l.

A summary of the analytical results for samples collected at the RCRA Wells is provided in Table 6.

3.1.4 North Boundary Barrier Sampling

Collection Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

Benzene was detected above the screening level of 0.005 mg/l at CW 25+95. The
detected concentrations ranged between 0.11 mg/l and 0.21 mg/l, with the highest
concentration detected in April 2015.

Total petroleum hydrocarbons detected above the laboratory detection limit in all three fractions (i.e., GRO, DRO and MRO). The GRO concentrations ranged from 0.51 mg/l to 2.7 mg/l, while DRO concentrations ranged from 1.3 mg/l to 1.7 mg/l. MRO was detected in a single sample at a concentration of 3.1 mg/l.

A summary of the analytical results for samples collected at the collection Wells in 2015 is provided in Table 7.

Observation Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exceptions:

- Benzene was detected above the screening level of 0.005 mg/l at OW 11+15. The
 detected concentrations in April 2015 and August 2015 were 1.7 mg/l and 2.5 mg/l,
 respectively; and
- MTBE was detected above the respective screening level of 0.143 mg/l at OW 11+15 and OW 16+60. The detected concentrations ranged from 0.41 mg/l to 0.64 mg/l.

Total petroleum hydrocarbons detected above the laboratory detection limit in the GRO and in DRO fractions. The GRO concentrations ranged from 0.12 mg/l to 4.7 mg/l, while DRO concentrations ranged from 0.24 mg/l.

A summary of the analytical results for samples collected at the observation wells in 2015 is provided in Table 7.

3.1.5 San Juan River Bluff Sampling

Outfalls

Samples were collected from East Outfall #2 and East Outfall #3 in April and August 2015. A summary of the analytical results for samples collected at East Outfall #2 and East Outfall #3 in 2015 is provided in Table 8.

Volatile organic compounds were not detected in samples collected in 2015. General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015. Total and dissolved metals constituents detected above the laboratory detection limit were all below their respective screening levels in samples collected in April and August 2015.

Seeps

Samples were only collected from Seep 1 in April 2015, as the seep location was dry in August 2015. The remaining seeps were not sampled due to lack of water for sample collection.

Volatile organic compounds detected above laboratory detection limit were below their respective screening levels in samples collected for 2015.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2015, with the following exception:

• Sulfate was detected above the respective screening level of 600 mg/l at Seep 1 in April 2015. The reported concentration was 1,200 mg/l.

A summary of the analytical results for samples collected at the Seeps in 2015 is provided in Table 9.

3.1.6 San Juan River Terrace Sampling

Sample locations related to the bioventing system are discussed in a separate report, and therefore are not included in this submittal. However, surface water samples were collected at four locations along the San Juan River in 2015. Samples were collected in April 2015 and August 2015 upstream of the refinery, north of MW-46, north of MW-45, and downstream of the refinery.

A summary of the analytical results for samples collected at North of MW-46, North of MW-45, Upstream, and downstream in 2015 is provided in Table 10.

Volatile organic compounds were not detected above laboratory detection limits in any of the samples for 2015. Similarly, Total Petroleum Hydrocarbons (TPHs) were not detected above laboratory detection limits in surface water samples collected for 2015. General chemistry parameters detected above the laboratory detection limits were below their respective screening levels in samples collected in 2015.

Total and dissolved metal constituents detected above the laboratory detection limits were below their respective screening levels in samples collected in 2015. Figure 3 shows the location of the San Juan River samples in relation to the Bloomfield Refinery.

3.1.7 Outfall and Seep Inspections

Bi-monthly visual inspections of Seeps 1 through Seep 3 and Seep 5 were conducted in 2015. Inspections of the draws north of the barrier wall and analysis of samples of water collected in the seeps indicate that the barrier wall is preventing migration of contaminated groundwater toward the San Juan River.

Visual inspection of the East Fork area indicates that the flow rate at this seep location has remained constant at approximately 1 gallon/minute. The flow rate at this location does not appear to be impacted by the operation of the Hammond Ditch. Figure 3 shows the location of the outfalls and seeps in relation to the Bloomfield Refinery.

3.2 Separate-Phase Hydrocarbons

Field measurements collected in April and August 2015 were also used to determine product thickness in areas where SPH was detected. In April 2015, SPH was identified in 16 wells. The product thickness detected ranged between 0.01 feet and 1.08 feet, with the most product detected at recovery well CW 11+15. In August 2015, SPH was identified in 22 wells. The product thickness ranged between 0.01 feet and 2.20 feet, with the most product detected at recovery well RW-16. Figure 6 and Figure 7 show a summary of the product thickness detected in April 2015 and August 2015, respectively.

Product had been detected in the groundwater prior to suspension of refining operations in November 2009. Review of the past eight years of data collected shows SPH to be present in four general areas of the facility; the Terminals Area, the Tank Farm Area, the former Refinery Process Area, and the North Boundary Barrier Area. The following is a brief summary of the SPH trends observed as reported each year. A review of the historic SPH measurements collected are included in the Facility-Wide Groundwater Monitoring Plan dated December 2007 and in subsequent Annual Groundwater Remediation & Monitoring Reports submitted in April of each year.

Terminals Area

The Terminals area is located south of County Road 4990. Primary operations in this area include product loading and unloading, crude unloading, and product storage. At the Terminal Area, SPH has been localized to two wells (MW-61 and MW-66). These wells were installed in 2009 as part of the on-going RCRA investigation activities. Over the past three years, SPH has been detected at MW-61, which is located just east of the Terminal office building. The SPH thickness at MW-61 has fluctuated between 0.32 feet and 0.98 feet. At MW-66, located west of Tank 45, the amount of detectable SPH has fluctuated between 0.01 feet and 0.32 feet. In 2015, the SPH measurements in April 2015 and August 2015 were non-detect and 0.01ft, respectively.

Tank Farm Area

The Tank Farm Area is located in the eastern portion of the facility, north of County Road 4990. This area is equipped with four total fluids recovery wells located along the center dike area (RW-14, RW-15, RW-16, and RW-17). Each well is equipped with a dedicated pneumatic pump that operates on a timer. All fluids pumped from these wells are routed to the on-site WWTP for product recovery and treatment.

Former Refinery Process Area

In 2005, a 2,700-foot long bentonite slurry wall was installed along the western and northern boundary of the former process area. This north boundary barrier provides hydraulic control for product and groundwater that exists at the Bloomfield facility. Several monitoring wells located within the vicinity of the former refinery process area have shown detectable amounts of SPH prior to the suspension of refinery operations in November 2009. Total fluids recovery wells, as well as the French drain fluids collection system located below the Hammond Ditch in this area, provide hydraulic relieve and enhance product recovery efforts.

Two wells within the warehouse area have shown detectable SPH. Monitoring well MW-54, which was installed in 2008, has shown decreasing levels of SPH since 2010. In August 2015, MW-54 contained approximately 0.05 feet of SPH. Recovery well RW-1 is an active total fluids recovery well. This well operates at a constant flowrate of approximately 2 gpm. The amount of SPH at RW-1 has fluctuated since 2008.

Two active recovery wells (RW-2 and RW-3) are located along the southern property boundary and are equipped with dedicated pneumatic total fluids pumps. In August 2015, RW-2 did not contain any measurable SPH. RW-3 has shown traces of SPH prior to returning to operation in 2012, with SPH detected at 0.05 feet or less. No measureable SPH was detected in RW-3 in 2015.

Monitoring well MW-41, located adjacent to the former crude process unit, has shown fluctuating levels of SPH over the years. The range of SPH detected has been between 0.01 feet and 1.18 feet since 2007. As of August 2015, MW-41 contained 0.24 feet of SPH.

The SPH level at RW-42, an active recovery well located upstream of MW-41, has also fluctuated over time. The amount of SPH has ranged between 0.00 feet and 0.90 feet since 2007. In August 2015, the amount of SPH detected was 0.01 feet.

In the area near the WWTP and north of the former process units there are several wells in which SPH has been detected over the years. It is expected to see SPH levels fluctuate in this area due the numerous active fluids pumping wells, as well as, the existence of the north boundary barrier providing hydraulic control for all groundwater beneath the former process areas. To further enhance the product recovery efforts in this area, work has been done to equip five existing monitoring wells with dedicated pneumatic pumps for total fluids recovery. Monitoring wells MW-55, MW-56, MW-57, MW-58, and MW-20 have been converted to recovery wells. These wells are located in the area where SPH is currently most prevalent. The wells have been operational as of 2013 and continued to operate well through 2015.

North Boundary Barrier Area

In 2005, a 2,700-foot long bentonite slurry wall was installed along the western and northern boundary of the former process area. This north boundary barrier provides hydraulic control for product and groundwater within the Bloomfield facility. Monitoring wells and observation wells located along the river-side of the slurry wall have shown intermittent detections of SPH. The amount of groundwater detected in these wells is significantly less than the wells located on the refinery-side of the wall, giving proof that the hydraulic barrier is effective. The intermittent detections of SPH are believed to be the residual effect of SPH in the area that existed prior to installation of the slurry wall.

3.3 Total Fluids Recovery Systems

3.3.1 Groundwater Recovery System

In 2015, 18 wells operated as total fluids recovery wells. The wells used for total fluids recovery were RW-1, RW-2, RW-3, RW-9, RW-14, RW-15, RW-16, RW-17, RW-19, MW-20, RW-22, RW-23, RW-28, RW-42, MW-55, MW-56, MW-57 and MW-58. The recovery wells are not equipped with individual flow meters. Most wells are equipped with pneumatic pumps that run on a timer system. Based on the timer setting and field verified flow rates, the total gallons pumped per well over time are calculated.

RW-18 did not pump during 2015. The well was removed from service during the demolition of the refinery process units in 2014. It resides in the middle of the former Distillate Hydrotreater Unit and the air supply was removed to the pump. RW-18 has also been in need of major rework and there is not access to bring in a drill rig to do so. A monitoring well has recently been installed in close proximity to RW-18 during the Group 9 RCRA Investigation of the former refinery process units and may serve as a viable replacement recovery well for well for RW-18.

3.3.2 North Boundary Barrier Wall Collection System

Depth-to-groundwater measurements collected in April 2015 and August 2015 indicate that the barrier wall continues to provide a hydraulic barrier for groundwater below the facility. Based on the data collected in 2015, six of the fourteen observation wells contain little to no fluid (i.e. measuring less than 0.5 ft of fluid in the well at any one time).

Table 1 provides a summary of the fluids level measurements collected from the wells along the north boundary barrier wall.

3.3.3 Hammond Ditch Recovery System

The Hammond Ditch Recovery System serves as a hydraulic relief system for groundwater accumulating within the western portion of the Refinery. All water recovered through the Hammond Ditch French drain west of the pipeline easement discharges to Tank 37, which is then transferred to the API separator for product recovery. The location of Tank 37 is shown on Figure 3. Refinery Operators inspect the operation of recovery system and Tank 37 daily and record the amount of water recovered in the tank using a flow meter located on the discharge

end of the Tank 37 transfer pump. In 2015, the total volume of fluids recovered at Tank 37 was approximately 812,154 gallons.

3.3.4 East Outfall Recovery System

Total fluids from Outfall 1 is recovered via Tank 38 and transferred to the WWTS for treatment prior to disposal through the on-site injection well. Figure 3 shows the location of Tank 38.

Tank 38 piping is equipped with a flow meter to measure the total gallons transferred to the WWTP. In 2015, the total fluid volume recovered at Tank 38 was approximately 6,795,978 gallons.

3.4 Below-Grade Testing and Inspections

Pursuant to conditions of approval stated in Discharge Permit GW-001 (regulated by the Oil Conservation Division), Bloomfield Terminal personnel conducted annual below-grade sump testing. In 2015 all sumps within the facility were cleaned out with a vacuum truck, visually inspected, and hydrostatically tested, for a minimum of 60 minutes if required to insure integrity. All sumps tested in 2015 passed and were returned to normal service with the exception of one concrete sump located on the west side of Tank 28. The sump was found to be damaged near the top where a steam line had eroded the concrete; however, the impacted area was above the operational level of the sump and there was no threat of a release. The sump was removed from service. Double-walled steel (DW Steel) sumps were also inspected through the leak detection port. No evidence of moisture was observed.

Testing of underground process piping scheduled for 2015 is being conducted in 2016. Appendix D summarizes the underground piping testing and up-dated tank inspection schedule.

3.5 Waste Disposal

Western Refining indefinitely suspended refining operations at the Bloomfield Facility on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Recovered water from on-site remediation activities and facility operations is treated through the on-site WWTS. Treated water is then disposed of through a Class I non-hazardous injection well. Due to mechanical issues, the on-site Class I injection well was shut down on September 22, 2015 and was plugged and abandoned in October 2015. It is anticipated that a replacement well will be installed. During the interim period, wastewater that has been processed through the WWTS is being transported for off-site disposal at a permitted commercial Class I non-hazardous injection well.

All operational waste generated is properly characterized and disposed of off-site. A summary of such wastes for 2015 is provided in Appendix E.

SECTION 4.0 CONCLUSIONS

The following is a summary of conclusions based on monitoring and inspection data collected in 2015.

4.1 Groundwater Monitoring

Western has in-place a Facility-Wide Groundwater Monitoring Program that is up-dated annually as required under the 2007 Consent Order issued by NMED-HWB. Up-dates to this program include incorporation of additional wells installed as part of on-going completed RCRA Investigation activities. Such up-dates are proposed for agency approval in June of each year. Screening levels used to evaluate the groundwater condition at the Bloomfield Terminal are reflective of the same conservative screening levels currently used for evaluation of on-going RCRA Investigation activities. Tables 3 through 10 include the most conservative screening level for each respective analyte. Sample results included in the analytical summary tables that exceed the respective sample results are highlighted in yellow and all detected results are bolded. Figure 8 and Figure 9 shows a summary of the BTEX and MTBE concentrations detected site-wide during the April 2015 and August 2015 sampling events, respectively.

Depth-to-groundwater and depth-to-product measurements were collected at all refinery monitoring wells, recovery wells, observation wells, collection wells and sump wells in 2015, with the exception of CW 25+95. Groundwater elevation contours show that groundwater flows in the general northwest direction, with the groundwater under the process areas flowing towards the north boundary barrier wall and Hammond Ditch Collection System.

Groundwater Quality

Based on the analytical results for groundwater monitoring collected in 2015, the following constituents were detected at concentrations in groundwater above their respective most conservative screening levels.

Organic Compounds:	General Chemistry:	Dissolved Metals:
1,2,4-Trimethylbenzene	Chloride	Barium
1,2-Dichlorethane	Sulfate	Iron
1,3,5-trimethylbenzene	Nitrate	Manganese
1-Methylnaphthalene		Selenium
Naphthalene	Total Metals:	
Benzene	Arsenic	
Ethylbenzene	Chromium	
MTBE	Selenium	
Toluene		
Xylenes		

Naturally occurring background concentrations in groundwater are currently being evaluated through the Background Investigation activities conducted as part of the July 2007 Consent Order issued by NMED-HWB.

4.2 Outfall and Seep Inspections

Bi-monthly visual inspections of Seeps 1 through 3 and Seep 5 along the San Juan River Bluff were conducted in 2015. No visual sheens or odors were identified during the inspection. Fluid in the Seeps is most often prevalent during the spring, corresponding with the times of higher precipitation. In 2015, only Seep 1 had sufficient discharge for sample collection in April and none of the seeps had sufficient discharge to allow for sample collection in August.

4.3 Total Fluids Recovery Systems

The Bloomfield Refinery operates and monitors several fluid recovery systems within the facility, which include:

- Groundwater Recovery System using recovery wells within the Refinery Complex;
- North Boundary Barrier Collection System;
- Hammond Ditch Recovery System;
- River Terrace Remediation system; and
- East Outfall Recovery System.

All fluids recovered from these systems, with the exception of the effluent from the River Terrace Remediation System, are pumped to the on-site WWTS for treatment prior to disposal through the on-site injection well. Water from the River Terrace is treated separately and is reused as water for facility operations.

4.4 Below-Grade Testing and Tank Inspections

Underground process piping scheduled for inspection in 2015 is being conducted in 2016. Sumps were inspected to determine their integrity for service. All sumps tested in 2015 passed and were returned to normal service with the exception of one concrete sump located on the west side of Tank 28. The sump was found to be damaged near the top where a steam line had eroded the concrete; however, the impacted area was above the operational level of the sump and there was no threat of a release. The sump was removed from service. In addition, petroleum storage tanks continue to be inspected at a frequency that is in compliance with API 650 and 653 guidelines.

SECTION 5.0 REFERENCES

- Groundwater Technology, Inc., 1994, RCRA Facility Investigation/Corrective Measures Study Report Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico.
- NMED, 2007, State of New Mexico Environment Department v. San Juan Refining Company and Giant Industries, Inc.; Order July 27, 2007.
- NMOCD, 2010, New Mexico Oil Conservation Division, Discharge Permit Renewal (GW-001) Bloomfield Refinery, July 7, 2010.

Tables

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring	Total Wall	Donath To	Donth To	Corrected	CDII
Well ID	Date	Point	Total Well Depth	Depth To Product	Depth To Water	Groundwater	SPH Thickness
Well ID	Date	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
		(ft amsl)	(It below 100)	(It below 100)	(11 BOIOW 100)	(ft amsl)	
	08/18/15	5519.21	21.56	NPP	16.95	5502.26	NPP
	04/20/15	5519.21	21.56	NPP	16.95	5502.26	NPP
	08/18/14	5519.21	21.56	NPP	17.14	5502.07	NPP
	04/02/14	5519.21	21.56	NPP	17.60	5501.61	NPP
MW-01	08/05/13	5519.21	21.56	NPP	17.18	5502.03	NPP
	04/08/13	5519.21	21.56	NPP	17.51	5501.70	NPP
	08/06/12	5519.21	21.56	NPP	17.11	5502.10	NPP
	04/02/12	5519.21	21.56	NPP	17.56	5501.65	NPP
	08/16/11	5519.21	21.56	NPP	16.99	5502.22	NPP
	04/11/11	5519.21	21.56	NPP	17.47	5501.74	NPP
	08/18/15	5539.27	36.75	NPP	36.13	5503.14	NPP
	04/27/15	5539.27	36.75	NPP	36.25	5503.02	NPP
	08/18/14	5539.27	36.75	NPP	36.49	5502.78	NPP
	04/02/14	5539.27	36.75	NPP	NWP	NWP	NPP
MW-03	08/05/13	5539.27	36.75	NPP	NWP	NWP	NPP
	04/08/13	5539.27	36.75	NPP	NWP	NWP	NPP
	08/06/12	5539.27	36.75	NPP	36.42	5502.85	NPP
	04/02/12	5539.27	36.75	NPP	NWP	NWP	NPP
	08/16/11	5539.27	36.75	NPP	36.43	5502.84	NPP
	04/11/11	5539.27	36.75	NPP	36.53	5502.74	NPP
	08/25/15	5527.78	30.48	NPP	27.94	5499.84	NPP
	04/27/15	5527.78	30.48	NPP	27.12	5500.66	NPP
	08/18/14	5527.78	30.48	NPP	27.47	5500.31	NPP
	04/02/14	5527.78	30.48	NPP	27.45	5500.33	NPP
MW-04	08/05/13	5527.78	30.48	NPP	27.45	5500.33	NPP
	04/08/13	5527.78	30.48	NPP	27.41	5500.37	NPP
	08/06/12	5527.78	30.48	NPP	27.40	5500.38	NPP
	04/02/12	5527.78	30.48	NPP	27.43	5500.35	NPP
	08/17/11	5527.78	30.48	NPP	27.27	5500.51	NPP
	04/11/11	5527.78	30.48	NPP	27.23	5500.55	NPP
	08/13/15	5548.56	37.20	NPP	NWP	NWP	NPP
	04/27/15	5548.56	37.20	NPP	NWP	NWP	NPP
	08/18/14	5548.56	37.20	NPP	NWP	NWP	NPP
	04/02/14	5548.56	37.20	NPP	NWP	NWP	NPP
MW-05	08/05/13	5548.56	37.20	NPP	NWP	NWP	NPP
	04/08/13	5548.56	37.20	NPP	NWP	NWP	NPP
	08/06/12	5548.56	37.20	NPP	NWP	NWP	NPP
	04/02/12	5548.56	37.20	NPP	NWP	NWP	NPP
	08/17/11	5548.56	37.20	NPP	NWP	NWP	NPP
	04/11/11	5548.56	37.20	NPP	NWP	NWP	NPP
	08/13/15	5554.61	48.00	NPP	NWP	NWP	NPP
	04/27/15	5554.61	48.00	NPP	NWP	NWP	NPP
	08/18/14	5554.61	48.00	NPP	NWP	NWP	NPP
	04/02/14	5554.61	48.00	NPP	NWP	NWP	NPP
MW-06	08/05/13	5554.61	48.00	NPP	NWP	NWP	NPP
10100-00	04/08/13	5554.61	48.00	NPP	NWP	NWP	NPP
	08/06/12	5554.61	49.00	NDD	NIM/D	NIM/D	NDD

NWP

NWP

NPP

08/06/12

5554.61

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring				Corrected	
W 11 15		Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5527.66	62.61	NPP	27.75	5499.91	NPP
	04/27/15	5527.66	62.61	NPP	27.43	5500.23	NPP
	08/18/14	5527.66	62.61	NPP	28.03	5499.63	NPP
	04/02/14	5527.66	62.61	NPP	27.58	5500.08	NPP
MW-07	08/05/13	5527.66	62.61	NPP	27.88	5499.78	NPP
10100 07	04/08/13	5527.66	62.61	NPP	27.45	5500.21	NPP
	08/06/12	5527.66	62.61	NPP	27.87	5499.79	NPP
	04/02/12	5527.66	62.61	NPP	27.40	5500.26	NPP
	08/17/11	5527.66	62.61	NPP	27.65	5500.01	NPP
	04/11/11	5527.66	62.61	NPP	27.25	5500.41	NPP
	08/13/15	5534.58	35.93	NPP	31.42	5503.16	NPP
	04/27/15	5534.58	35.93	NPP	31.54	5503.04	NPP
	08/18/14	5534.58	35.93	NPP	31.73	5502.85	NPP
	04/02/14	5534.58	35.93	NPP	32.11	5502.47	NPP
MW-08	08/05/13	5534.58	35.93	NPP	31.90	5502.68	NPP
"""	04/08/13	5534.58	35.93	NPP	31.82	5502.76	NPP
	08/06/12	5534.58	35.93	NPP	31.70	5502.88	NPP
	04/02/12	5534.58	35.93	NPP	31.94	5502.64	NPP
	08/17/11	5534.58	35.93	NPP	31.72	5502.86	NPP
	04/11/11	5534.58	35.93	NPP	31.94	5502.64	NPP
	08/19/15	5510.31	22.94	NPP	11.25	5499.06	NPP
	04/20/15	5510.31	22.94	NPP	11.30	5499.01	NPP
	08/18/14	5510.31	22.94	NPP	10.95	5499.36	NPP
	04/02/14	5510.31	22.94	NPP	11.85	5498.46	NPP
MW-11	08/05/13	5510.31	22.94	NPP	11.82	5498.49	NPP
	04/08/13	5510.31	22.94	NPP	11.91	5498.40	NPP
	08/06/12	5510.31	22.94	NPP	11.72	5498.59	NPP
	04/02/12	5510.31	22.94	NPP	11.90	5498.41	NPP
	08/16/11	5510.31	22.94	NPP	11.64	5498.67	NPP
	04/11/11	5510.31	22.94	NPP	11.76	5498.55	NPP
	08/19/15	5501.61	14.98	NPP	8.52	5501.79	NPP
	04/20/15	5501.61	14.98	NPP	8.55	5501.76	NPP
	08/18/14	5501.61	14.98	NPP	8.42	5501.89	NPP
	04/02/14	5501.61	14.98	NPP	10.20	5500.11	NPP
MW-12	08/05/13	5501.61	14.98	NPP	10.70	5499.61	NPP
	04/08/13	5501.61	14.98	NPP	10.58	5499.73	NPP
	08/06/12	5501.61	14.98	NPP	10.53	5491.08	NPP
	04/02/12	5501.61	14.98	NPP	10.54	5491.07	NPP
	08/16/11	5501.61	14.98	NPP	10.92	5490.69	NPP
	04/11/11	5501.61	14.98	NPP	10.48	5491.13	NPP
	08/18/15	5542.04	52.89	NPP	40.53	5501.51	NPP
	04/20/15	5542.04	52.89	NPP	40.68	5501.36	NPP
	08/18/14	5542.04	52.89	NPP	40.94	5501.10	NPP
	04/02/14	5542.04	52.89	NPP	40.90	5501.14	NPP
MW-13	08/05/13	5542.04	52.89	NPP	40.85	5501.19	NPP
	04/08/13	5542.04	52.89	NPP	40.80	5501.24	NPP
1	00/00/40	40 04		NIDD	10		NIDD

40 77

NPP

5501 27

08/06/12

5542 04

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/13/15	5519.9	27.13	20.6	20.65	5499.29	0.05
	04/27/15	5519.9	27.13	NPP	20.73	5499.17	NPP
	08/18/14	5519.9	27.13	20.9	21.30	5498.92	0.40
	04/02/14	5519.9	27.13	20.77	21.80	5498.92	1.03
MW-20	08/05/13	5519.9	27.13	20.69	21.41	5499.07	0.72
10100-20	04/08/13	5519.9	27.13	20.81	21.65	5498.92	0.84
	08/06/12	5519.9	27.13	20.66	21.60	5499.05	0.94
	04/02/12	5519.9	27.13	20.72	21.67	5498.99	0.95
	08/18/11	5519.9	27.13	20.73	21.34	5499.05	0.61
	04/11/11	5519.9	27.13	20.71	21.33	5499.07	0.62
	08/13/15	5521.99	30.38	21.32	21.33	5500.67	0.01
	04/27/15	5521.99	30.38	NPP	21.54	5500.45	NPP
	08/18/14	5521.99	30.38	NPP	21.64	5500.35	NPP
	04/02/14	5521.99	30.38	NPP	22.00	5499.99	NPP
MW-21	08/05/13	5521.99	30.38	21.83	21.86	5500.15	0.03
10100 21	04/08/13	5521.99	30.38	21.82	21.87	5500.16	0.05
	08/06/12	5521.99	30.38	21.75	21.80	5500.23	0.05
	04/02/12	5521.99	30.38	21.96	21.98	5500.03	0.02
	08/18/11	5521.99	30.38	21.84	21.87	5500.14	0.03
	04/11/11	5521.99	30.38	21.80	21.86	5500.18	0.06
	08/13/15	5533.99	41.20	NPP	32.82	5501.17	NPP
	04/27/15	5533.99	41.20	NPP	33.95	5500.04	NPP
	08/18/14	5533.99	41.20	NPP	33.25	5500.74	NPP
	04/02/14	5533.99	41.20	NPP	33.24	5500.75	NPP
MW-25	08/05/13	5533.99	41.20	33.18	33.20	5500.81	0.02
	04/08/13	5533.99	41.20	33.14	33.15	5500.85	0.01
	08/06/12	5533.99	41.20	33.12	33.15	5500.86	0.03
	04/02/12	5533.99	41.20	33.11	33.12	5500.88	0.01
	08/17/11	5533.99	41.20	NPP	32.97	5501.02	NPP
	04/11/11	5533.99	41.20	32.85	33.01	5501.11	0.16
	08/13/15	5517.88	25.11	17.31	17.55	5500.52	0.24
	04/20/15	5517.88	25.11	17.48	17.72	5500.35	0.24
	08/18/14	5517.88	25.11	17.7	17.95	5500.13	0.25
	04/02/14	5517.88	25.11	17.78	17.82	5500.09	0.04
MW-26	08/05/13	5517.88	25.11	17.73	18.01	5500.09	0.28
	04/08/13	5517.88	25.11	17.72	17.83	5500.14	0.11
	08/06/12	5517.88	25.11	NPP	17.71	5500.17	NPP
	04/02/12	5517.88	25.11	NPP	17.68	5500.20	NPP
	08/16/11	5517.88	25.11	NPP	17.58	5500.30	NPP
	04/11/11	5517.88	25.11	NPP	17.50	5500.38	NPP
	08/18/15	5518.67	24.42	NPP	18.62	5500.05	NPP
	04/20/15	5518.67	24.42	NPP	18.86	5499.81	NPP
	08/18/14	5518.67	24.42	NPP	22.38	5496.29	NPP
	04/02/14	5518.67	24.42	NPP	21.65	5497.02	NPP
MW-27	08/05/13	5518.67	24.42	NPP	22.43	5496.24	NPP
	04/08/13	5518.67	24.42	NPP	21.56	5497.11	NPP
	00/00/40	FF40.C7	24.42	NDD	20.00	F 407 70	NDD

20.89

NPP

5497 78

08/06/12

5518 67

TABLE 1 Fluid Level Measurements Summary 2015 Groundwater Remediation Monitoring Annual Report

		Measuring		_		Corrected	
14/ !! :=	Det	Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth (ft. h a /a TOO)	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/24/15	5524.97	28.62	NPP	22.70	5502.27	NPP
	04/27/15	5524.97	28.62	NPP	22.83	5502.14	NPP
	08/18/14	5524.97	28.62	NPP	23.00	5501.97	NPP
	04/02/14	5524.97	28.62	NPP	23.42	5501.55	NPP
MW-29	08/05/13	5524.97	28.62	NPP	23.13	5501.84	NPP
11111 20	04/08/13	5524.97	28.62	NPP	23.25	5501.72	NPP
	08/06/12	5524.97	28.62	NPP	23.06	5501.91	NPP
	04/02/12	5524.97	28.62	NPP	23.34	5501.63	NPP
	08/17/11	5524.97	28.62	NPP	23.04	5501.93	NPP
	04/11/11	5524.97	28.62	NPP	23.23	5501.74	NPP
	08/24/15	5536.83	40.13	NPP	33.69	5503.14	NPP
	04/20/15	5536.83	40.13	NPP	33.82	5503.01	NPP
	08/18/14	5536.83	40.13	NPP	34.09	5502.74	NPP
	04/02/14	5536.83	40.13	34.39	34.40	5502.44	0.01
MW-30	08/05/13	5536.83	40.13	NPP	34.21	5502.62	NPP
11111 00	04/08/13	5536.83	40.13	NPP	34.16	5502.67	NPP
	08/06/12	5536.83	40.13	NPP	34.02	5502.81	NPP
	04/02/12	5536.83	40.13	NPP	34.22	5502.61	NPP
	08/17/11	5536.83	40.13	NPP	34.03	5502.80	NPP
	04/11/11	5536.83	40.13	NPP	34.42	5502.41	NPP
	08/24/15	5536.24	39.16	NPP	34.15	5502.09	NPP
	04/27/15	5536.24	39.16	NPP	34.34	5501.90	NPP
	08/18/14	5536.24	39.16	NPP	34.55	5501.69	NPP
	04/02/14	5536.24	39.16	NPP	34.55	5502.28	NPP
MW-31	08/05/13	5536.24	39.16	NPP	34.49	5501.75	NPP
10100-51	04/08/13	5536.24	39.16	NPP	34.37	5501.87	NPP
	08/06/12	5536.24	39.16	NPP	34.40	5501.84	NPP
	04/02/12	5536.24	39.16	NPP	34.35	5501.89	NPP
	08/16/11	5536.24	39.16	NPP	34.30	5501.94	NPP
	04/11/11	5536.24	39.16	NPP	34.24	5502.00	NPP
	08/08/15	5525.64	27.51	NPP	25.18	5500.46	NPP
	04/20/15	5525.64	27.51	NPP	25.30	5500.34	NPP
	08/18/14	5525.64	27.51	NPP	25.52	5500.12	NPP
	04/02/14	5525.64	27.51	NPP	25.55	5500.09	NPP
	08/05/13	5525.64	27.51	NPP	25.47	5500.17	NPP
MW-32	04/08/13	5525.64	27.51	NPP	25.45	5500.19	NPP
	08/06/12	5525.64	27.51	NPP	25.42	5500.22	NPP
	04/02/12	5525.64	27.51	NPP	25.38	5500.26	NPP
	08/16/11	5525.64	27.51	NPP	25.27	5500.37	NPP
	04/11/11	5525.64	27.51	NPP	25.23	5500.41	NPP
	08/18/15	5521.79	25.51	NPP	22.39	5499.40	NPP
	04/20/15	5521.79	25.51	NPP	22.35	5499.44	NPP
	08/18/14	5521.79	25.51	NPP	23.26	5498.53	NPP
	04/02/14	5521.79	25.51	NPP	23.45	5498.34	NPP
	08/05/13	5521.79	25.51	NPP	23.86	5497.93	NPP
MW-33	04/08/13	5521.79	25.51	NPP	23.56	5498.23	NPP
	08/06/12	5521.79	25.51	NPP	23.36	5498.43	NPP

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring				Corrected	
		Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/19/15	5511.63	20.96	NPP	13.90	5497.73	NPP
	04/20/15	5511.63	20.96	NPP	13.83	5497.80	NPP
	08/18/14	5511.63	20.96	NPP	14.01	5497.62	NPP
	04/02/14	5511.63	20.96	NPP	14.77	5496.86	NPP
MW-34	08/05/13	5511.63	20.96	NPP	14.63	5497.00	NPP
"""	04/08/13	5511.63	20.96	NPP	14.70	5496.93	NPP
	08/06/12	5511.63	20.96	NPP	14.33	5497.30	NPP
	04/02/12	5511.63	20.96	NPP	14.37	5497.26	NPP
	08/16/11	5511.63	20.96	NPP	14.43	5497.20	NPP
	04/11/11	5511.63	20.96	NPP	14.47	5497.16	NPP
	08/19/15	5518.95	26.45	NPP	21.83	5497.12	NPP
	04/20/15	5518.95	26.45	NPP	22.85	5496.10	NPP
	08/18/14	5518.95	26.45	NPP	22.34	5496.61	NPP
	04/02/14	5518.95	26.45	NPP	22.69	5496.26	NPP
MW-35	08/05/13	5518.95	26.45	NPP	22.54	5496.41	NPP
10100 55	04/08/13	5518.95	26.45	NPP	22.57	5496.38	NPP
	08/06/12	5518.95	26.45	NPP	22.29	5496.66	NPP
	04/02/12	5518.95	26.45	NPP	22.30	5496.65	NPP
	04/11/11	5518.95	26.45	NPP	22.38	5496.57	NPP
	08/16/34	5518.95	26.45	NPP	22.41	5496.54	NPP
	08/13/15	5516.95	23.26	NPP	20.16	5496.79	NPP
	04/27/15	5516.95	23.26	NPP	19.87	5497.08	NPP
	08/18/14	5516.95	23.26	NPP	19.64	5497.31	NPP
	04/02/14	5516.95	23.26	NPP	21.12	5495.83	NPP
	08/05/13	5516.95	23.26	NPP	20.98	5495.97	NPP
MW-36	04/08/13	5516.95	23.26	NPP	21.10	5495.85	NPP
	08/06/12	5516.95	23.26	NPP	20.82	5496.13	NPP
	04/02/12	5516.95	23.26	NPP	21.02	5495.93	NPP
	08/17/11	5516.95	23.26	NPP	20.98	5495.97	NPP
	04/11/11	5516.95	23.26	NPP	21.02	5495.93	NPP
	08/19/15	5519.62	27.58	NPP	23.06	5496.56	NPP
	04/20/15	5519.62	27.58	NPP	23.13	5496.49	NPP
	08/18/14	5519.62	27.58	NPP	22.98	5496.64	NPP
	04/02/14	5519.62	27.58	NPP	23.72	5495.90	NPP
MW-37	08/05/13	5519.62	27.58	NPP	23.69	5495.93	NPP
	04/08/13	5519.62	27.58	NPP	23.72	5495.90	NPP
	08/06/12	5519.62	27.58	NPP	23.51	5496.11	NPP
	04/02/12	5519.62	27.58	NPP	23.58	5496.04	NPP
	08/16/11	5519.62	27.58	NPP	23.63	5495.99	NPP
	04/11/11	5519.62	27.58	NPP	23.60	5496.02	NPP
	08/19/15	5519.19	26.82	NPP	23.19	5496.00	NPP
	04/20/15	5519.19	26.82	NPP	23.08	5496.11	NPP
	08/18/14	5519.19	26.82	NPP	22.45	5496.74	NPP
	04/02/14	5519.19	26.82	NPP	23.83	5495.36	NPP
MW-38	08/05/13	5519.19	26.82	NPP	23.91	5495.28	NPP
10100-00	04/08/13	5519.19	26.82	NPP	23.87	5495.32	NPP
	09/06/12	5510.10 5510.10	26.02	NDD	22.70	5 105.6 <u>1</u>	NDD

23 78

NPP

5495 41

08/06/12

5519 19

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring			5 4 7	Corrected	0.711
ID		Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth (ft bolow TOC)	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5520.83	38.34	NPP	25.78	5495.05	NPP
	04/27/15	5520.83	38.34	NPP	25.75	5495.08	NPP
	08/18/14	5520.83	38.34	NPP	25.94	5494.89	NPP
	04/02/14	5520.83	38.34	NPP	25.70	5495.13	NPP
MW-39	08/05/13	5520.83	38.34	NPP	25.95	5494.88	NPP
	04/08/13	5520.83	38.34	NPP	25.70	5495.13	NPP
	08/06/12	5520.83	38.34	NPP	26.05	5494.78	NPP
	04/02/12	5520.83	38.34	NPP	25.76	5495.07	NPP
	08/08/11	5520.83	38.34	NPP	25.88	5494.95	NPP
	04/11/11	5520.83	38.34	NPP	25.80	5495.03	NPP
	08/13/15	5527.31	30.07	28.08	28.09	5499.23	0.01
	04/27/15	5527.31	30.07	NPP	28.08	5499.23	NPP
	08/18/14	5527.31	30.07	28.59	28.65	5498.71	0.06
	04/02/14	5527.31	30.07	28.55	29.10	5498.65	0.55
MW-40	08/05/13	5527.31	30.07	28.42	28.81	5498.81	0.39
	04/08/13	5527.31	30.07	28.48	28.77	5498.77	0.29
	08/06/12	5527.31	30.07	28.44	28.72	5498.81	0.28
	04/02/12	5527.31	30.07	NPP	28.57	5498.74	NPP
	08/17/11	5527.31	30.07	NPP	28.37	5498.94	NPP
	04/11/11	5527.31	30.07	NPP	28.38	5498.93	NPP
	08/13/15	5526.41	31.62	26.43	26.67	5499.93	0.24
	04/27/15	5526.41	31.62	26.59	26.80	5499.78	0.21
	08/18/14	5526.41	31.62	26.96	27.70	5499.30	0.74
	04/02/14	5526.41	31.62	26.96	27.99	5499.24	1.03
MW-41	08/05/13	5526.41	31.62	26.83	27.75	5499.40	0.92
	04/08/13	5526.41	31.62	26.85	27.78	5499.37	0.93
	08/06/12	5526.41	31.62	26.86	27.94	5499.33	1.08
	04/02/12	5526.41	31.62	26.89	28.07	5499.28	1.18
	08/08/11	5526.41	31.62	26.95	27.55	5499.34	0.60
	04/11/11	5526.41	31.62	26.71	27.30	5499.58	0.59
	08/24/15	5535.44	50.91	NPP	34.30	5501.14	NPP
	04/27/15	5535.44	50.91	NPP	34.98	5500.46	NPP
	08/18/14	5535.44	50.91	NPP	34.57	5500.87	NPP
	04/02/14	5535.44	50.91	NPP	34.30	5501.14	NPP
MW-44	08/05/13	5535.44	50.91	NPP	34.46	5500.98	NPP
	04/08/13	5535.44	50.91	NPP	34.04	5501.40	NPP
	08/06/12	5535.44	50.91	NPP	34.42	5501.02	NPP
	04/02/12	5535.44	50.91	NPP	33.93	5501.51	NPP
	08/17/11	5535.44	50.91	NPP	34.22	5501.22	NPP
	04/11/11	5535.44	50.91	NPP	34.00	5501.44	NPP
	08/13/15	5506.36	16.92	NPP	11.85	5494.51	NPP
	04/27/15	5506.36	16.92	NPP	11.95	5494.41	NPP
	08/18/14	5506.36	16.92	NPP	11.85	5494.51	NPP
	04/02/14	5506.36	16.92	12.07	12.15	5494.27	0.08
MW-45	08/05/13	5506.36	16.92	11.88	11.89	5494.48	0.01
	04/08/13	5506.36	16.92	11.98	12.05	5494.37	0.07
	00/00/40	FF00 00	40.00	44.07	10.10	F404.00	0.42

08/06/12

5506.36

16 92

11 97

12 10

5494 36

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring				Corrected	
		Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth (f) h a law TOO)	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5504.65	10.39	NPP	9.94	5494.71	NPP
	04/27/15	5504.65	10.39	NPP	9.94	5494.71	NPP
	08/18/14	5504.65	10.39	NPP	NWP	NWP	NPP
	04/02/14	5504.65	10.39	NPP	NWP	NWP	NPP
MW-46	08/05/13	5504.65	10.39	NPP	NWP	NWP	NPP
10100 40	04/08/13	5504.65	10.39	NPP	NWP	NWP	NPP
	08/06/12	5504.65	10.39	NPP	NWP	NWP	NPP
	04/02/12	5504.65	10.39	NPP	NWP	NWP	NPP
	08/08/11	5504.65	10.39	NPP	NWP	NWP	NPP
	04/11/11	5504.65	10.39	NPP	NWP	NWP	NPP
	08/13/15	5506.77	14.28	NPP	11.82	5494.95	NPP
	04/21/15	5506.77	14.28	NPP	12.23	5494.54	NPP
	08/18/14	5506.77	14.28	NPP	13.30	5493.47	NPP
	04/02/14	5506.77	14.28	NPP	13.80	5492.97	NPP
MW-47	08/05/13	5506.77	14.28	NPP	12.97	5493.80	NPP
"""	04/08/13	5506.77	14.28	NPP	12.84	5493.93	NPP
	08/06/12	5506.77	14.28	13.22	13.27	5493.54	0.05
	04/02/12	5506.77	14.28	12.85	13.17	5493.86	0.32
	08/08/11	5506.77	14.28	13.47	13.48	5493.30	0.01
	04/11/11	5506.77	14.28	12.85	13.28	5493.83	0.43
	08/13/15	5518.79	20.00	NPP	16.62	5502.17	NPP
	04/27/15	5518.79	20.00	NPP	16.67	5502.12	NPP
	08/18/14	5518.79	20.00	NPP	16.78	5502.01	NPP
	04/02/14	5518.79	20.00	NPP	17.28	5501.51	NPP
MW-50	08/05/13	5518.79	20.00	NPP	16.76	5502.03	NPP
	04/08/13	5518.79	20.00	NPP	17.21	5501.58	NPP
	08/06/12	5518.79	20.00	NPP	16.88	5501.91	NPP
	04/02/12	5518.79	20.00	NPP	17.22	5501.57	NPP
	08/22/11	5518.79	20.00	NPP	16.69	5502.10	NPP
	04/11/11	5518.79	20.00	NPP	17.10	5501.69	NPP
	08/13/15	5515.58	20.00	NPP	14.37	5501.21	NPP
	04/27/15	5515.58	20.00	NPP	14.52	5501.06	NPP
	08/18/14	5515.58	20.00	NPP	14.48	5501.10	NPP
	04/02/14	5515.58	20.00	NPP	14.98	5500.60	NPP
MW-51	08/05/13	5515.58	20.00	NPP	14.54	5501.04	NPP
	04/08/13	5515.58	20.00	NPP	14.95	5500.63	NPP
	08/06/12	5515.58	20.00	NPP	14.65	5500.93	NPP
	04/02/12	5515.58	20.00	NPP	15.00	5500.58	NPP
	08/22/11	5515.58	20.00	NPP	14.55	5501.03	NPP
	04/11/11	5515.58	20.00	NPP	14.94	5500.64	NPP
	08/13/15	5538.63	41.00	NPP	36.00	5502.63	NPP
	04/20/15	5538.63	41.00	NPP	36.05	5502.58	NPP
	08/18/14	5538.63	41.00	NPP	36.31	5502.32	NPP
	04/02/14	5538.63	41.00	NPP	36.69	5501.94	NPP
MW-52	08/05/13	5538.63	41.00	NPP	36.47	5502.16	NPP
	04/08/13	5538.63	41.00	NPP	36.41	5502.22	NPP
1	00/00/40	FF00.00	44.00	NDD	20.00	FF00 0F	NDD

36 28

NPP

5502 35

08/06/12

5538 63

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring	-	5 4 7	Boot To	Corrected	0.011
Well ID	Data	Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth (ft bolow TOC)	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5541.32	41.50	NPP	38.68	5502.64	NPP
	04/27/15	5541.32	41.50	NPP	38.80	5502.52	NPP
	08/18/14	5541.32	41.50	NPP	39.05	5502.27	NPP
	04/02/14	5541.32	41.50	NPP	39.32	5502.00	NPP
MW-53	08/05/13	5541.32	41.50	NPP	39.16	5502.16	NPP
	04/08/13	5541.32	41.50	NPP	39.04	5502.28	NPP
	08/06/12	5541.32	41.50	NPP	38.93	5502.39	NPP
	04/02/12	5541.32	41.50	NPP	39.10	5502.22	NPP
	08/22/11	5541.32	41.50	NPP	38.97	5502.35	NPP
	04/11/11	5541.32	41.50	NPP	39.05	5502.27	NPP
	08/13/15	5530.08	38.00	32.4	32.45	5497.67	0.05
	04/27/15	5530.08	38.00	32.02	32.05	5498.05	0.03
	08/18/14	5530.08	38.00	32.38	32.52	5497.67	0.14
	04/02/14	5530.08	38.00	32.75	32.95	5497.29	0.20
MW-54	08/05/13	5530.08	38.00	32.45	32.64	5497.59	0.19
	04/08/13	5530.08	38.00	32.71	32.93	5497.33	0.22
	08/06/12	5530.08	38.00	32.40	32.61	5497.64	0.21
	04/02/12	5530.08	38.00	32.75	33.09	5497.26	0.34
	08/22/11	5530.08	38.00	32.84	33.23	5497.16	0.39
	04/11/11	5530.08	38.00	32.90	33.31	5497.10	0.41
	08/13/15	5519.84	27.25	22.08	22.09	5497.76	0.01
	04/27/15	5519.84	27.25	21.85	21.88	5497.98	0.03
	08/18/14	5519.84	27.25	21.84	21.86	5498.00	0.02
	04/02/14	5519.84	27.25	21.95	22.01	5497.88	0.06
MW-55	08/05/13	5519.84	27.25	21.74	22.58	5497.93	0.84
	04/08/13	5519.84	27.25	21.05	21.95	5498.61	0.90
	08/06/12	5519.84	27.25	21.81	22.53	5497.89	0.72
	04/02/12	5519.84	27.25	NPP	22.07	5497.77	NPP
	08/22/11	5519.84	27.25	NPP	21.27	5498.57	NPP
	04/11/11	5519.84	27.25	NPP	22.04	5497.80	NPP
	08/13/15	5519.31	23.75	17.86	17.87	5501.45	0.01
	04/27/15	5519.31	23.75	18.04	18.05	5501.27	0.01
	08/18/14	5519.31	23.75	18.10	18.25	5501.18	0.15
	04/02/14	5519.31	23.75	18.26	19.10	5500.88	0.84
MW-56	08/05/13	5519.31	23.75	18.11	18.87	5501.05	0.76
	04/08/13	5519.31	23.75	18.25	19.33	5500.84	1.08
	08/06/12	5519.31	23.75	19.76	20.69	5499.36	0.93
	04/02/12	5519.31	23.75	19.86	21.00	5499.22	1.14
	08/22/11	5519.31	23.75	19.74	20.83	5499.35	1.09
	04/11/11	5519.31	23.75	19.50	20.45	5499.62	0.95
	08/13/15	5521.17	24.25	19.42	19.43	5501.75	0.01
	04/27/15	5521.17	24.25	19.42	19.43	5501.75	0.01
	08/18/14	5521.17	24.25	19.60	19.75	5501.54	0.15
	04/02/14	5521.17	24.25	19.78	20.36	5501.27	0.58
MW-57	08/05/13	5521.17	24.25	19.60	20.30	5501.43	0.70
	04/08/13	5521.17	24.25	19.66	20.35	5501.37	0.69
	00/00/40	FF04 47	24.25	04.44	22.27	E400 E4	0.00

08/06/12

5521 17

24 25

21 44

22 37

5499 54

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring	Total Wall	Donth To	Donth To	Corrected	епц
Well ID	Date	Point	Total Well Depth	Depth To Product	Depth To Water	Groundwater	SPH Thickness
Well ID	Date	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
		(ft amsl)	, ,	,		(ft amsl)	
	08/13/15	5520.29	27.00	20.8	20.83	5499.48	0.03
	04/27/15	5520.29	27.00	20.97	21.75	5499.16	0.78
	08/18/14	5520.29	27.00	21.08	21.87	5499.05	0.79
	04/02/14	5520.29	27.00	21.25	22.90	5498.71	1.65
MW-58	08/05/13	5520.29	27.00	21.10	22.17	5498.98	1.07
	04/08/13	5520.29	27.00	21.25	22.35	5498.82	1.10
	08/06/12	5520.29	27.00	20.98	22.05	5499.10	1.07
	04/02/12	5520.29	27.00	20.98	22.13	5499.08	1.15
	08/22/11	5520.29	27.00	20.90	21.99	5499.17	1.09
	04/11/11	5520.29	27.00	21.03	21.09	5499.25	0.06
	08/13/15	5545.20	44.25	NPP	43.42	5501.78	NPP
	04/27/15	5545.20	44.25	NPP	43.55	5501.65	NPP
	08/18/14	5545.20	44.25	NPP	43.75	5501.45	NPP
	04/02/14	5545.20	44.25	NPP	43.73	5501.47	NPP
MW-59	08/05/13	5545.20	44.25	NPP	43.67	5501.53	NPP
	04/08/13	5545.20	44.25	NPP	43.56	5501.64	NPP
	08/06/12	5545.20	44.25	NPP	43.57	5501.63	NPP
	04/02/12	5545.20	44.25	NPP	43.54	5501.66	NPP
	08/25/11	5545.20	44.25	NPP	43.49	5501.71	NPP
	04/11/11	5545.20	44.25	NPP	43.43	5501.77	NPP
	08/13/15	5543.71	43.33	NPP	42.62	5501.09	NPP
	04/27/15	5543.71	43.33	NPP	42.76	5500.95	NPP
	08/18/14	5543.71	43.33	NPP	43.15	5500.56	NPP
	04/02/14	5543.71	43.33	NPP	43.20	5500.51	NPP
MW-60	08/05/13	5543.71	43.33	NPP	42.90	5500.81	NPP
	04/08/13	5543.71	43.33	NPP	42.85	5500.86	NPP
	08/06/12	5543.71	43.33	NPP	42.84	5500.87	NPP
	04/02/12	5543.71	43.33	NPP	42.79	5500.92	NPP
	08/25/11	5543.71	45.50	NPP	42.67	5501.04	NPP
	04/11/11	5543.71	45.50	NPP	42.58	5501.13	NPP
	08/13/15	5539.41	10.25	36.38	36.70	5502.97	0.32
	04/27/15	5539.41	10.25	36.60	36.96	5502.74	0.36
	08/18/14	5539.41	10.25	36.80	37.40	5502.49	0.60
	04/02/14	5539.41	10.25	36.88	37.86	5502.33	0.98
MW-61	08/05/13	5539.41	10.25	36.80	37.70	5502.43	0.90
	04/08/13	5539.41	10.25	36.71	37.40	5502.56	0.69
	08/06/12	5539.41	10.25	36.67	37.25	5502.62	0.58
	04/02/12	5539.41	10.25	36.72	37.48	5502.54	0.76
	08/08/11	5539.41	10.25	36.67	37.25	5502.62	0.58
	04/11/11	5539.41	10.25	36.65	37.00	5502.69	0.35
	08/13/15	5561.32	58.25	NPP	56.59	5504.73	NPP
	04/27/15	5561.32	58.25	NPP	56.33	5504.99	NPP
	08/18/14	5561.32	58.25	NPP	56.28	5505.04	NPP
	04/02/14	5561.32	58.25	NPP	56.05	5505.27	NPP
MW-62	08/05/13	5561.32	58.25	NPP	56.36	5504.96	NPP
IVIVV UZ	04/08/13	5561.32	58.25	NPP	55.93	5505.39	NPP
	00/00/40	5504.00	50.05	NDD	50.45	5504.07	NDD

08/06/12

5561 32

58 25

NPP

NPP

5504 87

TABLE 1 Fluid Level Measurements Summary 2015 Groundwater Remediation Monitoring Annual Report

		Measuring				Corrected	
M/ 11 15	Det	Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth (ft holow TOC)	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5547.26	46.00	NPP	44.84	5502.42	NPP
	04/27/15	5547.26	46.00	NPP	45.03	5502.23	NPP
	08/18/14	5547.26	46.00	NPP	45.23	5502.03	NPP
	04/02/14	5547.26	46.00	NPP	45.27	5501.99	NPP
MW-63	08/05/13	5547.26	46.00	NPP	45.20	5502.06	NPP
10100-03	04/08/13	5547.26	46.00	NPP	45.09	5502.17	NPP
	08/06/12	5547.26	46.00	NPP	45.07	5502.19	NPP
	04/02/12	5547.26	46.00	NPP	45.07	5502.19	NPP
	08/24/11	5547.26	46.00	NPP	45.00	5502.26	NPP
	04/11/11	5547.26	46.00	NPP	44.93	5502.33	NPP
	08/13/15	5552.29	52.25	NPP	50.17	5502.12	NPP
	04/27/15	5552.29	52.25	NPP	50.27	5502.02	NPP
	08/18/14	5552.29	52.25	NPP	50.46	5501.83	NPP
	04/02/14	5552.29	52.25	NPP	50.45	5501.84	NPP
MW-64	08/05/13	5552.29	52.25	NPP	50.37	5501.92	NPP
1V.VV O-T	04/08/13	5552.29	52.25	NPP	50.32	5501.97	NPP
	08/06/12	5552.29	52.25	NPP	50.29	5502.00	NPP
	04/02/12	5552.29	52.25	NPP	50.29	5502.00	NPP
	08/24/11	5552.29	52.25	NPP	50.22	5502.07	NPP
	04/11/11	5552.29	52.25	NPP	50.16	5502.13	NPP
	08/13/15	5539.62	44.25	NPP	36.70	5502.92	NPP
	04/27/15	5539.62	44.25	NPP	37.50	5502.12	NPP
	08/18/14	5539.62	44.25	NPP	37.15	5502.47	NPP
	04/02/14	5539.62	44.25	NPP	37.38	5502.24	NPP
MW-65	08/05/13	5539.62	44.25	NPP	37.24	5502.38	NPP
14144 00	04/08/13	5539.62	44.25	NPP	37.13	5502.49	NPP
	08/06/12	5539.62	44.25	NPP	37.04	5502.58	NPP
	04/02/12	5539.62	44.25	NPP	37.19	5502.43	NPP
	08/22/11	5539.62	44.25	NPP	37.06	5502.56	NPP
	04/11/11	5539.62	44.25	NPP	37.05	5502.57	NPP
	08/13/15	5544.62	43.25	41.57	41.58	5503.05	0.01
	04/27/15	5544.62	43.25	NPP	41.81	5502.81	NPP
	08/18/14	5544.62	43.25	42.01	42.13	5502.59	0.12
	04/02/14	5544.62	43.25	42.13	42.45	5502.43	0.32
MW-66	08/05/13	5544.62	43.25	42.01	42.28	5502.56	0.27
14144-00	04/08/13	5544.62	43.25	42.04	42.20	5502.55	0.16
	08/06/12	5544.62	43.25	41.95	42.13	5502.63	0.18
	04/02/12	5544.62	43.25	42.03	42.20	5502.56	0.17
	08/08/11	5544.62	43.25	41.87	41.92	5502.74	0.05
	04/11/11	5544.62	43.25	41.83	41.92	5502.77	0.09
	08/13/15	5523.31	25.14	NPP	21.02	5502.29	NPP
	04/27/15	5523.31	25.14	NPP	21.10	5502.21	NPP
	08/18/14	5523.31	25.14	NPP	21.42	5501.89	NPP
	04/02/14	5523.31	25.14	NPP	21.54	5501.77	NPP
MW-67	08/05/13	5523.31	25.14	NPP	21.24	5502.07	NPP
1V1 V V -0 /	04/08/13	5523.31	25.14	NPP	21.47	5501.84	NPP
	08/06/12	5523.31	25.14	NPP	20.93	5502.38	NPP

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring				Corrected	
		Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth (ft halow TOO)	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5517.37	20.58	NPP	16.23	5501.14	NPP
	04/27/15	5517.37	20.58	NPP	16.40	5500.97	NPP
	08/18/14	5517.37	20.58	NPP	16.50	5500.87	NPP
	04/02/14	5517.37	20.58	NPP	16.94	5500.43	NPP
MW-68	08/05/13	5517.37	20.58	NPP	16.57	5500.80	NPP
	04/08/13	5517.37	20.58	NPP	16.84	5500.53	NPP
	08/06/12	5517.37	20.58	NPP	16.63	5500.74	NPP
	04/02/12	5517.37	20.58	NPP	16.40	5500.97	NPP
	08/22/11	5517.37	20.58	NPP	16.58	5500.79	NPP
	04/11/11	5517.37	20.58	NPP	16.84	5500.53	NPP
	08/13/15	5508.51	12.08	NPP	NWP	NWP	NPP
	04/27/15	5508.51	12.08	NPP	11.81	5496.70	NPP
	08/18/14	5508.51	12.08	NPP	11.96	5496.55	NPP
	04/02/14	5508.51	12.08	NPP	11.96	5496.55	NPP
MW-69	08/05/13	5508.51	12.08	NPP	11.90	5496.61	NPP
	04/08/13	5508.51	12.08	NPP	11.91	5496.60	NPP
	08/06/12	5508.51	12.08	NPP	11.93	5496.58	NPP
	04/02/12	5508.51	12.08	NPP	11.92	5496.59	NPP
	08/22/11	5508.51	12.08	NPP	11.91	5496.60	NPP
	04/11/11	5508.51	12.08	NPP	NWP	NWP	NPP
	08/13/15	5527.96	26.25	NPP	25.29	5502.67	NPP
	04/27/15	5527.96	26.25	NPP	25.46	5502.50	NPP
MW-70	08/18/14	5527.96	26.25	NPP	25.56	5502.40	NPP
	04/02/14	5527.96	26.25	NPP	26.05	5501.91	NPP
	08/05/13	5527.96	26.25	NPP	25.85	5502.11	NPP
MW-71	08/13/15	5529.08	38.95	30.05	30.15	5499.01	0.10
	04/28/15	5529.08	38.95	30.22	30.35	5498.83	0.13
MW-72	08/13/15	5528.54	34.94	NPP	28.66	5499.88	NPP
	04/28/15	5528.54	34.94	NPP	28.66	5499.88	NPP
MW-73	08/13/15	5528.92	36.66	NPP	29.61	5499.31	NPP
	04/28/15	5528.92	36.66	NPP	29.80	5499.12	NPP
MW-74	08/13/15	5528.55	33.91	NPP	28.79	5499.76	NPP
	04/28/15	5528.55	33.91	29.00	29.04	5499.54	0.04
MW-75	08/13/15	5528.76	32.25	28.15	28.16	5500.61	0.01
	04/28/15	5528.76	32.25	28.40	28.41	5500.36	0.01
MW-76	08/13/15	5528.61	34.16	NPP	28.48	5500.13	NPP
10100 70	04/28/15	5528.61	34.16	NPP	28.97	5499.64	NPP
	08/13/15	5527.59	34.30	28.93	29.50	5498.55	0.57
MW-77	04/28/15	5527.59	34.30	28.86	29.44	5498.61	0.58
	08/13/15	5510.77	22.73	NPP	10.71	5500.06	NPP
	04/27/15	5510.77	22.73	NPP	11.09	5499.68	NPP
	08/18/14	5510.77	22.73	NPP	10.27	5500.50	NPP
	04/02/14	5510.77	22.73	NPP	11.27	5499.50	NPP
P-03	08/05/13	5510.77	22.73	NPP	11.04	5499.73	NPP
	04/08/13	5510.77	22.73	NPP	11.62	5499.15	NPP
	04/08/13	5510.//	22.73	NPP	11.62	5499.15	NPP

5499.86

08/06/12

5510.77

22.73

NPP

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring				Corrected	
Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/13/15	5517.8	79.00	NPP	77.43	5440.37	NPP
BCK-1	04/27/15	5517.8	79.00	NPP	77.30	5440.50	NPP
	08/18/14	5517.8	79.00	NPP	77.37	5440.43	NPP
	08/05/13	5517.8	79.00	NPP	77.28	5440.52	NPP
ļ	04/08/13	5517.8	79.00	NPP	77.15	5440.65	NPP
	08/06/12	5517.8	79.00	NPP	77.12	5440.68	NPP
	04/02/12	5517.8	79.00	NPP	77.07	5440.73	NPP
	08/13/15	5620.14	46.97	NPP	26.10	5594.04	NPP
	04/27/15	5620.14	46.97	NPP	25.57	5594.57	NPP
	08/18/14	5620.14	46.97	NPP	28.10	5592.04	NPP
BCK-2	08/05/13	5620.14	46.97	NPP	26.52	5593.62	NPP
	04/08/13	5620.14	46.97	NPP	25.58	5594.56	NPP
	08/06/12	5620.14	46.97	NPP	27.17	5592.97	NPP
	04/02/12	5620.14	46.97	NPP	25.81	5594.33	NPP
	08/13/15	5529.34	40.80	30.77	30.78	5498.57	0.01
	04/27/15	5529.34	40.80	NPP	30.83	5498.51	NPP
	08/18/14	5529.34	40.80	NPP	31.15	5498.19	NPP
	04/02/14	5529.34	40.80	NPP	31.62	5497.72	NPP
RW-01	08/05/13	5529.34	40.80	31.29	31.30	5498.05	0.01
	04/08/13	5529.34	40.80	NPP	31.57	5497.77	NPP
	08/06/12	5529.34	40.80	NPP	31.24	5498.10	NPP
	04/02/12	5529.34	40.80	31.64	31.65	5497.70	0.01
	08/08/11	5529.34	40.80	31.00	31.62	5498.22	0.62
	04/11/11	5529.34	40.80	32.60	32.97	5496.67	0.37
	08/13/15	5526.94	35.86	NPP	26.26	5500.68	NPP
	04/27/15	5526.94	35.86	NPP	26.37	5500.57	NPP
	08/18/14	5526.94	35.86	26.69	26.79	5500.23	0.10
	04/02/14	5526.94	35.86	NPP	26.67	5500.27	NPP
RW-02	08/05/13	5526.94	35.86	NPP	26.70	5500.24	NPP
	04/08/13	5526.94	35.86	NPP	26.65	5500.29	NPP
	08/06/12	5526.94	35.86	NPP	26.65	5500.29	NPP
ı	04/02/12 08/08/11	5526.94 5526.94	35.86 35.86	NPP NPP	26.70 26.59	5500.24 5500.35	NPP NPP
ı	08/08/11	5526.94 5526.94	35.86	NPP	28.10	5498.84	NPP
	08/13/15	5520.35	34.57	NPP	22.02	5498.33	NPP
	04/27/15	5520.35	34.57	NPP	21.59	5498.76	NPP
	08/18/14	5520.35	34.57	NPP	21.53	5498.82	NPP
	04/02/14	5520.35	34.57	NPP	22.42	5497.93	NPP
	08/05/13	5520.35	34.57	NPP	22.42	5497.95	NPP
RW-03	04/08/13	5520.35	34.57	NPP	22.10	5497.78	NPP
	08/06/13	5520.35	34.57	INI	Maintenance Be		TAT I
	04/02/12	5520.35	34.57	22.60	22.65	5497.74	0.05
	08/08/11	5520.35	34.57	22.60	22.65	5497.74	0.05
	04/11/11	5520.35	34.57	NPP	22.43	5497.92	NPP
	1		. .		==::0		

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/13/15	5523.21	34.04	24.64	24.70	5498.56	0.06
	04/27/15	5523.21	34.04	24.77	24.87	5498.42	0.10
	08/18/14	5523.21	34.04	24.75	25.09	5498.39	0.34
	04/02/14	5523.21	34.04	NPP	24.89	5498.32	NPP
RW-09	08/05/13	5523.21	34.04	24.61	24.95	5498.53	0.34
R VV-09	04/08/13	5523.21	34.04	24.78	25.10	5498.37	0.32
	08/06/12	5523.21	34.04	NPP	25.05	5498.16	NPP
	04/02/12	5523.21	34.04	NPP	25.10	5498.11	NPP
	08/08/11	5523.21	34.04	24.00	24.01	5499.21	0.01
	04/11/11	5523.21	34.04	NPP	28.35	5494.86	NPP
	08/13/15	5537.5	41.94	NPP	34.92	5502.58	NPP
	04/27/15	5537.5	41.94	NPP	34.95	5502.55	NPP
	08/18/14	5537.5	41.94	35.94	36.05	5501.54	0.11
	04/02/14	5537.5	41.94	35.49	35.50	5502.01	0.01
RW-14	08/05/13	5537.5	41.94	NPP	35.29	5502.21	NPP
KVV-14	04/08/13	5537.5	41.94	NPP	35.30	5502.20	NPP
	08/06/12	5537.5	41.94	35.13	35.18	5502.36	0.05
	04/02/12	5537.5	41.94	35.28	36.12	5502.05	0.84
	08/08/11	5537.5	41.94	35.02	36.14	5502.26	1.12
	04/11/11	5537.5	41.94	36.77	36.97	5500.69	0.20
	08/13/15	5536.83	43.43	NPP	34.46	5501.71	NPP
	04/27/15	5536.83	43.43	NPP	34.75	5501.86	NPP
	08/18/14	5536.83	43.43	NPP	35.95	5500.22	NPP
	04/02/14	5536.83	43.43	NPP	35.31	5501.52	NPP
RW-15	08/05/13	5536.83	43.43	NPP	35.12	5501.71	NPP
1744-13	04/08/13	5536.83	43.43	NPP	35.11	5501.72	NPP
	08/06/12	5536.83	43.43	NPP	34.98	5501.85	NPP
	04/02/12	5536.83	43.43	NPP	35.17	5501.66	NPP
	08/08/11	5536.83	43.43	NPP	34.95	5501.88	NPP
	04/11/11	5536.83	43.43	NPP	37.23	5499.60	NPP
	08/13/15	5535.45	41.48	33.30	35.50	5501.71	2.20
	04/27/15	5535.45	41.48	33.83	34.15	5501.56	0.32
	08/18/14	5535.45	41.48	34.21	34.49	5501.18	0.28
	04/02/14	5535.45	41.48	34.31	34.89	5501.02	0.58
RW-16	08/05/13	5535.45	41.48	34.30	34.62	5501.09	0.32
1.00.10	04/08/13	5535.45	41.48	34.10	34.20	5501.33	0.10
	08/06/12	5535.45	41.48	34.02	34.18	5501.40	0.16
	04/02/12	5535.45	41.48	NPP	34.18	5501.27	NPP
	08/08/11	5535.45	41.48	34.01	34.32	5501.38	0.31
	04/11/11	5535.45	41.48	NPP	38.59	5496.86	NPP
	08/13/15	5533.84	41.89	32.67	32.68	5501.17	0.01
	04/27/15	5533.84	41.89	33.04	33.08	5500.79	0.04
	08/18/14	5533.84	41.89	NPP	33.27	5500.57	NPP
	04/02/14	5533.84	41.89	NPP	33.39	5500.45	NPP
RW-17	08/05/13	5533.84	41.89	NPP	33.32	5500.52	NPP
1744-11	04/08/13	5533.84	41.89	NPP	33.18	5500.66	NPP
	00/00/10	5500.01	44.00	NDD	22.20	5500.00	NDD

33 20

NPP

5500 64

08/06/12

5533 84

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point	Total Well Depth	Depth To Product	Depth To Water	Corrected Groundwater	SPH Thickness
Well ID	Date	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
		(ft amsl)	, ,	, , , , , , , , , , , , , , , , , , ,	` ′	(ft amsl)	
	08/13/15	5529.38	37.58	NPP	29.88	5499.50	NPP
	04/27/15	5529.38	37.58	NPP	30.02	5499.36	NPP
	08/18/14	5529.38	37.58	30.32	32.02	5498.72	1.70
	04/02/14	5529.38	37.58	NPP	30.47	5498.91	NPP
RW-18	08/05/13	5529.38	37.58	NPP	31.64	5497.74	NPP
	04/08/13	5529.38	37.58	NPP	30.18	5499.20	NPP
	08/06/12	5529.38	37.58	NPP	30.69	5498.69	NPP
	04/02/12	5529.38	37.58	NPP	28.05	5501.33	NPP
	08/08/11	5529.38	37.58	NPP	35.43	5493.95	NPP
	04/11/11	5529.38	37.58	NPP	35.41	5493.97	NPP
	08/13/15	5530.51	36.64	NPP	29.96	5500.55	NPP
	04/27/15	5530.51	36.64	NPP	30.15	5500.36	NPP
	08/18/14	5530.51	36.64	30.3	30.75	5500.12	0.45
	04/02/14	5530.51	36.64	30.5	30.85	5499.94	0.35
RW-19	08/05/13	5530.51	36.64	NPP	30.50	5500.01	NPP
	04/08/13	5530.51	36.64	NPP	30.40	5500.11	NPP
	08/06/12	5530.51	36.64	NPP	30.40	5500.11	NPP
	04/02/12	5530.51	36.64	NPP	30.45	5500.06	NPP
	08/08/11	5530.51	36.64	NPP	30.29	5500.22	NPP
	04/11/11	5530.51	36.64	NPP	30.67	5499.84	NPP
	08/13/15	5524.44	35.60	25.5	25.55	5498.93	0.05
	04/27/15	5524.44	35.60	25.7	25.80	5498.72	0.10
	08/18/14	5524.44	35.60	25.73	26.17	5498.62	0.44
	04/02/14	5524.44	35.60	25.87	26.07	5498.53	0.20
RW-22	08/05/13	5524.44	35.60	NPP	25.62	5498.82	NPP
	04/08/13	5524.44	35.60	NPP	25.80	5498.64	NPP
	08/06/12	5524.44	35.60	NPP	26.03	5498.41	NPP
	04/02/12	5524.44	35.60	NPP	26.03	5498.41	NPP
	08/08/11	5524.44	35.60	NPP	26.01	5498.43	NPP
	04/11/11	5524.44	35.60	27.87	29.44	5496.26	1.57
	08/13/15	5521.38	35.53	23.8	23.82	5497.58	0.02
	04/27/15	5521.38	35.53	NPP	23.70	5497.68	NPP
	08/18/14	5521.38	35.53	23.05	23.08	5498.32	0.03
	04/02/14	5521.38	35.53	NPP	23.26	5498.12	NPP
RW-23	08/05/13	5521.38	35.53	NPP	23.15	5498.23	NPP
	04/08/13	5521.38	35.53	NPP	23.30	5498.08	NPP
	08/06/12	5521.38	35.53	23.17	23.20	5498.20	0.03
	04/02/12	5521.38	35.53	NPP	23.43	5497.95	NPP
	08/08/11	5521.38	35.53	23.34	23.35	5498.04	0.01
	04/11/11	5521.38	35.53	NPP	30.50	5490.88	NPP
	08/13/15	5527.93	36.99	26.92	26.93	5501.01	0.01
	04/27/15	5527.93	36.99	29.18	29.76	5498.63	0.58
	08/18/14	5527.93	36.99	29.56	30.02	5498.28	0.46
	04/02/14	5527.93	36.99	29.55	30.45	5498.20	0.90
RW-28	08/05/13	5527.93	36.99	29.28	30.40	5498.43	1.12
	04/08/13	5527.93	36.99	29.35	30.50	5498.35	1.15
ı	00/06/40	FF07 00	20.00	20.04	20.00	F400.00	0.00

29 64

30.62

5498 09

0.98

36 99

08/06/12 5527 93

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring	Total Well	Denth To	Depth To	Corrected	SPH
Well ID	Date	Point	Depth	Depth To Product	Water	Groundwater	Thickness
Well ID	Date	Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
		(ft amsl)	, ,	, ,	` ′	(ft amsl)	
	08/13/15	5527.48	32.02	26.92	26.93	5500.56	0.01
	04/27/15	5527.48	32.02	27.15	27.18	5500.32	0.03
	08/18/14	5527.48	32.02	27.36	27.70	5500.05	0.34
	04/02/14	5527.48	32.02	27.59	28.00	5499.81	0.41
RW-42	08/05/13	5527.48	32.02	27.40	27.55	5500.05	0.15
	04/08/13	5527.48	32.02	27.37	27.79	5500.03	0.42
	08/06/12	5527.48	32.02	27.77	27.98	5499.67	0.21
	04/02/12	5527.48	32.02	27.35	28.20	5499.96	0.85
	08/08/11	5527.48	32.02	27.15	28.05	5500.15	0.90
	04/11/11	5527.48	32.02	27.05	27.70	5500.30	0.65
	08/13/15	5520.02	24.03	20.3	20.33	5499.71	0.03
	04/27/15	5520.02	24.03	20.53	20.75	5499.45	0.22
	08/18/14	5520.02	24.03	21.8	22.00	5498.18	0.20
	04/02/14	5520.02	24.03	21.76	22.25	5498.16	0.49
RW-43	08/05/13	5520.02	24.03	21.75	21.91	5498.24	0.16
	04/08/13	5520.02	24.03	21.87	22.03	5498.12	0.16
	08/06/12	5520.02	24.03	21.72	22.02	5498.24	0.30
	04/02/12	5520.02	24.03	21.00	21.87	5498.85	0.87
	08/08/11	5520.02	24.03	21.65	21.70	5498.36	0.05
	04/11/11	5520.02	24.03	20.61	20.68	5499.40	0.07
	00/40/45	5500.00	40.00	NDD	40.77	5.405.05	NIDD
	08/13/15	5506.62	12.26	NPP	10.77 11.24	5495.85	NPP
	04/21/15 08/18/14	5506.62 5506.62	12.26 12.26	NPP NPP	11.24	5495.38 5495.61	NPP NPP
	04/02/14	5506.62	12.26	NPP	11.91	5494.71	NPP
	08/05/13	5506.62	12.26	NPP	11.85	5494.77	NPP
OW 0+60	04/08/13	5506.62	12.26	NPP	12.07	5494.55	NPP
	08/06/12	5506.62	12.26	NPP	12.00	5494.62	NPP
	04/02/12	5506.62	12.26	NPP	NWP	NWP	NPP
	08/15/11	5506.62	12.26	NPP	12.03	5494.59	NPP
	04/11/11	5506.62	12.26	NPP	12.25	5494.37	NPP
	08/13/15	5508.03	14.36	NPP	12.62	5495.41	NPP
	04/21/15	5508.03	14.36	NPP	13.24	5494.79	NPP
	08/18/14	5508.03	14.36	NPP	13.17	5494.86	NPP
	04/02/14	5508.03	14.36	NPP	13.98	5494.05	NPP
OW 1+50	08/05/13	5508.03	14.36	14.02	14.03	5494.01	0.01
000 1750	04/08/13	5508.03	14.36	NPP	14.05	5493.98	NPP
	08/06/12	5508.03	14.36	14.16	14.36	5493.83	0.20
	04/02/12	5508.03	14.36	14.14	14.36	5493.85	0.22
	08/15/11	5508.03	14.36	14.28	14.36	5493.73	0.08
	04/11/11	5508.03	14.36	14.10	14.32	5493.89	0.22
	08/13/15	5507.31	15.06	NPP	12.31	5495.00	NPP
	04/21/15	5507.31	15.06	NPP	12.80	5494.51	NPP
	08/18/14	5507.31	15.06	NPP	12.95	5494.36	NPP
	04/02/14	5507.31	15.06	NPP	13.49	5493.82	NPP
OW 3+85	08/05/13	5507.31	15.06	13.56	13.57	5493.75	0.01
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04/08/13	5507.31	15.06	NPP	13.40	5493.91	NPP
<u> </u>	09/06/12	5507.21	15.06	12.04	12.05	5402.47	0.01

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

				1			
		Measuring	Total Well	Depth To	Depth To	Corrected	SPH
Well ID	Date	Point Elevation	Depth	Product	Water	Groundwater Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5507.59	13.67	NPP	13.32	5494.27	NPP
	04/21/15	5507.59	13.67	NPP	13.28	5494.31	NPP
	08/18/14	5507.59	13.67	NPP	13.50	5494.09	NPP
	04/02/14	5507.59	13.67	NPP	13.64	5493.95	NPP
OW 5+50	08/05/13	5507.59	13.67	NPP	13.51	5494.08	NPP
011 0100	04/08/13	5507.59	13.67	NPP	13.67	5493.92	NPP
	08/06/12	5507.59	13.67	NPP	13.64	5493.95	NPP
	04/02/12	5507.59	13.67	NPP	13.66	5493.93	NPP
	08/15/11	5507.59	13.67	NPP	13.63	5493.96	NPP
	04/11/11	5507.59	13.67	NPP	13.66	5493.93	NPP
	08/13/15	5504.78	14.67	NPP	NPP	NPP	NPP
	04/21/15	5504.78	14.67	NPP	NPP	NPP	NPP
	08/18/14	5504.78	14.67	NPP	NPP	NPP	NPP
	04/02/14	5504.78	14.67	NPP	NPP	NPP	NPP
OW 6+70	08/05/13	5504.78	14.67	NPP	NPP	NPP	NPP
	04/08/13	5504.78	14.67	NPP	NWP	NWP	NPP
	08/06/12	5504.78	14.67	NPP	NWP	NWP	NPP
	04/02/12	5504.78	14.67	NPP	NWP	NWP	NPP
	08/15/11	5504.78	14.67	NPP	NWP	NWP	NPP
	04/11/11	5504.78	14.67	NPP	NWP	NWP	NPP
	08/13/15	5506.53	15.99	NPP	NWP	NWP	NPP
	04/21/15	5506.53	15.99	NPP	NWP	NWP	NPP
	08/18/14	5506.53	15.99	NPP	NWP	NWP	NPP
	04/02/14	5506.53	15.99	NPP	NWP	NWP	NPP
OW 8+10	08/05/13	5506.53	15.99	NPP	NWP	NWP	NPP
	04/08/13	5506.53	15.99	NPP	NWP	NWP	NPP
	08/06/12	5506.53	15.99	NPP	NWP	NWP	NPP
	04/02/12	5506.53	15.99	NPP	NWP	NWP	NPP
	04/08/13	5506.53	15.99	NPP	NWP	NWP	NPP
	04/11/11	5506.53	15.99	NPP	NWP	NWP	NPP
	08/13/15	5506.70	16.59	NPP	12.47	5494.23	NPP
	04/21/15	5506.70	16.59	NPP	12.59	5494.11	NPP
	08/18/14	5506.70	16.59	NPP	12.55	5494.15	NPP
	04/02/14	5506.70	16.59	12.74	12.75	5493.96	0.01
OW 11+15	08/05/13	5506.70	16.59	12.56	12.57	5494.14	0.01
	04/08/13	5506.70	16.59	12.71	12.72	5493.99	0.01
	08/06/12	5506.70	16.59	12.66	12.67	5494.04	0.01
	04/02/12	5506.70	16.59	12.70	12.71	5494.00	0.01
	08/15/11	5506.70	16.59	NPP	12.55	5494.15	NPP
	04/11/11	5506.70	16.59	12.67	12.68	5494.03	0.01
	08/13/15	5508.14	12.96	NPP	NWP	NWP	NPP
	04/21/15	5508.14	12.96	NPP	NWP	NWP	NPP
	08/18/14	5508.14	12.96	NPP	NWP	NWP	NPP
	04/02/14	5508.14	12.96	NPP	NWP	NWP	NPP
OW 14+10	08/05/13	5508.14	12.96	NPP	NWP	NWP	NPP
	04/08/13	5508.14	12.96	NPP	NWP	NWP	NPP

NWP

NWP

NPP

08/06/12

5508 14

TABLE 1 Fluid Level Measurements Summary 2015 Groundwater Remediation Monitoring Annual Report

		Measuring				Corrected	
144		Point	Total Well	Depth To	Depth To	Groundwater	SPH
Well ID	Date	Elevation	Depth	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5508.43	15.21	NPP	12.78	5495.65	NPP
	04/21/15	5508.43	15.21	NPP	12.78	5495.65	NPP
	08/18/14	5508.43	15.21	NPP	13.25	5495.18	NPP
	04/02/14	5508.43	15.21	NPP	13.10	5495.33	NPP
OW 16+60	08/05/13	5508.43	15.21	NPP	13.95	5494.48	NPP
	04/08/13	5508.43	15.21	NPP	13.16	5495.27	NPP
	08/06/12	5508.43	15.21	NPP	13.12	5495.31	NPP
	04/02/12	5508.43	15.21	NPP	12.99	5495.44	NPP
	08/15/11	5508.43	15.21	NPP	13.14	5495.29	NPP
	04/11/11	5508.43	15.21	NPP	12.92	5495.51	NPP
	08/13/15	5508.03	13.00	NPP	NWP	NWP	NPP
	04/21/15	5508.03	13.00	NPP	12.92	5495.11	NPP
	08/18/14	5508.03	13.00	NPP	NWP	NWP	NPP
	04/02/14	5508.03	13.00	NPP	NWP	NWP	NPP
OW 19+50	08/05/13	5508.03	13.00	NPP	NWP	NWP	NPP
	04/08/13	5508.03	13.00	NPP	NWP	NWP	NPP
	08/06/12	5508.03	13.00	NPP	NWP	NWP	NPP
	04/02/12	5508.03	13.00	NPP	NWP	NWP	NPP
	08/15/11	5508.03	13.00	NPP	NWP	NWP	NPP
	04/11/11	5508.03	13.00	NPP	12.66	5495.37	NPP
	08/13/15	5506.91	14.16	NPP	10.80	5496.11	NPP
	04/21/15	5506.91	14.16	NPP	11.37	5495.54	NPP
	08/18/14	5506.91	14.16	NPP	12.74	5494.17	NPP
	04/02/14	5506.91	14.16	NPP	11.73	5495.18	NPP
OW 22+00	08/05/13	5506.91	14.16	NPP	13.04	5493.87	NPP
011 22:00	04/08/13	5506.91	14.16	NPP	12.17	5494.74	NPP
	08/06/12	5506.91	14.16	NPP	13.41	5493.50	NPP
	04/02/12	5506.91	14.16	NPP	12.26	5494.65	NPP
	08/15/11	5506.91	14.16	NPP	13.06	5493.85	NPP
	04/11/11	5506.91	14.16	NPP	11.92	5494.99	NPP
	08/13/15	5514.12	18.34	NPP	16.46	5497.66	NPP
	04/21/15	5514.12	18.34	NPP	16.40	5497.72	NPP
	08/18/14	5514.12	18.34	NPP	16.50	5497.62	NPP
	04/02/14	5514.12	18.34	NPP	16.42	5497.70	NPP
OW 23+10	08/05/13	5514.12	18.34	NPP	16.46	5497.66	NPP
500 25710	04/08/13	5514.12	18.34	NPP	16.38	5490.53	NPP
	08/06/12	5514.12	18.34	NPP	16.58	5497.54	NPP
	04/02/12	5514.12	18.34	NPP	16.43	5497.69	NPP
	08/15/11	5514.12	18.34	NPP	16.41	5497.71	NPP
	04/11/11	5514.12	18.34	NPP	16.37	5497.75	NPP
	08/13/15	5515.18	18.01	NPP	17.30	5497.88	NPP
	04/21/15	5515.18	18.01	NPP	17.28	5497.90	NPP
	08/18/14	5515.18	18.01	NPP	17.33	5497.85	NPP
	04/02/14	5515.18	18.01	NPP	17.26	5497.92	NPP
OW 23+90	00/0=/40	5515.18	18.01	NPP	17.29	5497.89	NPP
J V V Z J T 3 U	04/08/13	5515.18	18.01	NPP	17.22	5497.96	NPP
	08/06/12	5515.18	18.01	NPP	17.41	5497.77	NPP

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Magazzina				Corrected	
		Measuring Point	Total Well	Depth To	Depth To	Corrected Groundwater	SPH
Well ID	Date	Elevation	Depth	Product	Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5509.00	13.98	NPP	10.97	5498.03	NPP
	04/21/15	5509.00	13.98	NPP	10.92	5498.08	NPP
	08/18/14	5509.00	13.98	NPP	10.96	5498.04	NPP
	04/02/14	5509.00	13.98	NPP	10.95	5498.05	NPP
OW 25+70	08/05/13	5509.00	13.98	NPP	10.93	5498.07	NPP
	04/08/13	5509.00	13.98	NPP	10.86	5498.14	NPP
	08/06/12	5509.00	13.98	NPP	11.03	5497.97	NPP
	04/02/12	5509.00	13.98	NPP	10.93	5498.07	NPP
	08/15/11	5509.00	13.98	NPP	10.87	5498.13	NPP
	04/11/11	5509.00	13.98	NPP	10.84	5498.16	NPP
	08/13/15	5506.68	14.09	NPP	8.23	5498.45	NPP
	04/21/15	5506.68	14.09	NPP	8.24	5498.44	NPP
	08/18/14	5506.68	14.09	NPP	8.19	5498.49	NPP
	04/02/14	5506.68	14.09	NPP	9.01	5497.67	NPP
CW 0+60	08/05/13	5506.68	14.09	NPP	8.53	5498.15	NPP
	04/08/13	5506.68	14.09	NPP	9.12	5497.56	NPP
	08/22/12	5506.68	14.09	NPP	8.57	5498.11	NPP
	04/02/12	5506.68	14.09	NPP	9.27	5497.41	NPP
	08/15/11	5506.68	14.09	NPP	8.54	5498.14	NPP
	04/11/11	5506.68	14.09	NPP	9.09	5497.59	NPP
	08/13/15	5505.13	13.74	NPP	6.84	5498.29	NPP
	04/21/15	5505.13	13.74	NPP	6.77	5498.36	NPP
	08/18/14	5505.13	13.74	NPP	6.92	5498.21	NPP
	04/02/14	5505.13	13.74	NPP	7.47	5497.66	NPP
CW 1+50	08/05/13	5505.13	13.74	NPP	7.13	5498.00	NPP
	04/08/13	5505.13	13.74	NPP	7.49	5497.64	NPP
	08/22/12	5505.13	13.74	NPP	6.88	5498.25	NPP
	04/02/12	5505.13	13.74	NPP	7.58	5497.55	NPP
	08/15/11	5505.13	13.74	NPP	7.08	5498.05	NPP
	04/11/11	5505.13	13.74	NPP	7.54	5497.59	NPP
	08/13/15	5503.87	13.11	NPP	5.70	5498.17	NPP
	04/21/15	5503.87	13.11	NPP	5.60	5498.27	NPP
	08/18/14	5503.87	13.11	NPP	5.85	5498.02	NPP
	04/02/14	5503.87	13.11	NPP	6.14	5497.73	NPP
CW 3+85	08/05/13	5503.87	13.11	NPP	5.98	5497.89	NPP
	04/08/13	5503.87	13.11	NPP	6.17	5497.70	NPP
	08/22/12	5503.87	13.11	NPP	5.75	5498.12	NPP
	04/02/12	5503.87	13.11	NPP	6.21	5497.66	NPP
	08/15/11	5503.87	13.11	NPP	5.95	5497.92	NPP
	04/11/11	5503.87	13.11	NPP	6.13	5497.74	NPP
	08/13/15	5503.76	12.27	NPP	6.38	5497.38	NPP
	04/21/15	5503.76	12.27	NPP	6.35	5497.41	NPP
	08/18/14	5503.76	12.27	NPP	6.58	5497.18	NPP
	04/02/14	5503.76	12.27	NPP	6.63	5497.13	NPP
CW 5+50	08/05/13	5503.76	12.27	NPP	6.50	5497.26	NPP
	04/08/13	5503.76	12.27	NPP	6.63	5497.13	NPP
1	00/22/42	FF02.70	40.07	NDD	0.47	F 407 00	NDD

6 47

NPP

5497 29

08/22/12

5503.76

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

				1			
		Measuring	Total Well	Depth To	Depth To	Corrected	SPH
Well ID	Date	Point Elevation	Depth	Product	Water	Groundwater Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/13/15	5503.84	11.45	NPP	6.38	5497.46	NPP
	04/21/15	5503.84	11.45	NPP	6.63	5497.21	NPP
	08/18/14	5503.84	11.45	NPP	6.70	5497.14	NPP
	04/02/14	5503.84	11.45	NPP	6.96	5496.88	NPP
CW 6+70	08/05/13	5503.84	11.45	NPP	6.87	5496.97	NPP
	04/08/13	5503.84	11.45	NPP	6.93	5496.83	NPP
	08/22/12	5503.84	11.45	NPP	6.85	5496.99	NPP
	04/02/12	5503.84	11.45	NPP	6.96	5496.88	NPP
	08/15/11	5503.84	11.45	NPP	6.90	5496.94	NPP
	04/11/11	5503.84	11.45	NPP	6.83	5497.01	NPP
	08/13/15	5504.02	11.63	NPP	7.48	5496.54	NPP
	04/21/15	5504.02	11.63	NPP	7.43	5496.59	NPP
	08/18/14	5504.02	11.63	NPP	7.43	5496.59	NPP
	04/02/14	5504.02	11.63	NPP	7.80	5496.22	NPP
CW 8+10	08/05/13	5504.02	11.63	NPP	7.60	5496.42	NPP
	04/08/13	5504.02	11.63	NPP	7.80	5496.22	NPP
	08/22/12	5504.02	11.63	NPP	7.68	5496.34	NPP
	04/02/12	5504.02	11.63	NPP	7.83	5496.19	NPP
	08/15/11	5504.02	11.63	NPP	7.68	5496.34	NPP
	04/11/11	5504.02	11.63	NPP	7.84	5496.18	NPP
	08/13/15	5503.80	12.60	NPP	7.65	5496.15	NPP
	04/21/15	5503.80	12.60	NPP	7.68	5496.12	NPP
	08/18/14	5503.80	12.60	NPP	7.58	5496.22	NPP
	04/02/14	5503.80	12.60	NPP	7.94	5495.86	NPP
CW 8+45	08/05/13	5503.80	12.60	NPP	7.74	5496.06	NPP
	04/08/13	5503.80	12.60	NPP	7.91	5495.89	NPP
	08/22/12	5503.80	12.60	NPP	7.76	5496.04	NPP
	04/02/12	5503.80	12.60	NPP	7.90	5495.90	NPP
	08/15/11	5503.80	12.60	NPP	7.80	5496.00	NPP
	04/11/11	5503.80	12.60	NPP	7.97	5495.83	NPP
	08/13/15	5503.95	12.27	5.87	6.85	5497.88	0.98
	04/21/15	5503.95	12.27	5.97	7.05	5497.76	1.08
	08/18/14	5503.95	12.27	5.99	7.93	5497.57	1.94
	04/02/14	5503.95	12.27	6.00	7.95	5497.56	1.95
CW 11+15	08/05/13	5503.95	12.27	NPP	6.31	5497.64	NPP
	04/08/13	5503.95	12.27	NPP	6.22	5497.73	NPP
	08/22/12	5503.95	12.27	NPP	6.30	5497.65	NPP
	04/02/12	5503.95	12.27	NPP	6.24	5497.71	NPP
	08/15/11	5503.95	12.27	NPP	6.18	5497.77	NPP
	04/11/11	5503.95	12.27	NPP	6.14	5497.81	NPP
	08/13/15	5504.39	13.05	NPP	6.44	5497.95	NPP
	04/21/15	5504.39	13.05	NPP	6.38	5498.01	NPP
	08/18/14	5504.39	13.05	NPP	6.25	5498.14	NPP
	04/02/14	5504.39	13.05	NPP	6.45	5497.94	NPP
CW 14+10	08/05/13	5504.39	13.05	NPP	6.24	5498.15	NPP
	04/08/13	5504.39	13.05	NPP	6.47	5497.92	NPP

6.30

NPP

5498 09

08/22/12

5504 39

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring	Total Well	Depth To	Depth To	Corrected	SPH
Well ID	Date	Point	Depth	Product	Water	Groundwater	Thickness
		Elevation	(ft below TOC)	(ft below TOC)	(ft below TOC)	Elevation	(ft)
	00/40/45	(ft amsl)	10.00	NDD	0.00	(ft amsl)	
	08/13/15	5504.32	12.86	NPP	6.23	5498.09	NPP
	04/21/15	5504.32	12.86	NPP	6.18	5498.14	NPP
	08/18/14	5504.32	12.86	NPP	6.11	5498.21	NPP
	04/02/14	5504.32	12.86	NPP	6.29	5498.03	NPP
CW 16+60	08/05/13	5504.32	12.86	NPP	5.98	5498.34	NPP
	04/08/13	5504.32	12.86	NPP	6.34	5497.98	NPP
	08/22/12	5504.32	12.86	NPP	6.18	5498.14	NPP
	04/02/12	5504.32	12.86	NPP	6.43	5497.89	NPP
	08/15/11	5504.32	12.86	NPP	6.12	5498.20	NPP
	04/11/11	5504.32	12.86	NPP	6.35	5497.97	NPP
	08/13/15	5504.52	9.99	NPP	6.23	5498.29	NPP
	04/21/15	5504.52	9.99	NPP	6.24	5498.28	NPP
	08/18/14	5504.52	9.99	NPP	6.21	5498.31	NPP
	04/02/14	5504.52	9.99	NPP	6.36	5498.16	NPP
CW 19+50	08/05/13	5504.52	9.99	NPP	6.20	5498.32	NPP
	04/08/13	5504.52	9.99	NPP	6.39	5498.13	NPP
	08/22/12	5504.52	9.99	NPP	6.12	5498.40	NPP
	04/02/12	5504.52	9.99	NPP	6.50	5498.02	NPP
	08/15/11	5504.52	9.99	NPP	6.51	5498.01	NPP
	04/11/11	5504.52	9.99	NPP	6.60	5497.92	NPP
	08/13/15	5508.04	12.34	NPP	8.56	5499.48	NPP
	04/21/15	5508.04	12.34	NPP	8.69	5499.35	NPP
	08/18/14	5508.04	12.34	NPP	8.73	5499.31	NPP
	04/02/14	5508.04	12.34	NPP	9.01	5499.03	NPP
CW 22+00	08/05/13	5508.04	12.34	NPP	8.84	5499.20	NPP
	04/08/13	5508.04	12.34	NPP	8.93	5499.11	NPP
	08/22/12	5508.04	12.34	NPP	8.89	5499.15	NPP
	04/02/12	5508.04	12.34	NPP	8.98	5499.06	NPP
	08/15/11	5508.04	12.34	NPP	8.90	5499.14	NPP
	04/11/11	5508.04	12.34	NPP	8.95	5499.09	NPP
	08/13/15	5510.04	14.65	NPP	10.10	5499.94	NPP
	04/21/15	5510.04	14.65	NPP	10.28	5499.76	NPP
	08/18/14	5510.04	14.65	NPP	10.32	5499.72	NPP
	04/02/14	5510.04	14.65	NPP	10.63	5499.41	NPP
CW 23+10	08/05/13	5510.04	14.65	NPP	10.45	5499.59	NPP
	04/08/13	5510.04	14.65	NPP	10.54	5499.50	NPP
	08/22/12	5510.04	14.65	NPP	10.52	5499.52	NPP
	04/02/12	5510.04	14.65	NPP	10.62	5499.42	NPP
	08/15/11	5510.04	14.65	NPP	10.55	5499.49	NPP
	04/11/11	5510.04	14.65	NPP	10.60	5499.44	NPP
	08/13/15	5507.32	11.72	NPP	7.54	5499.78	NPP
	04/21/15	5507.32	11.72	NPP	7.74	5499.58	NPP
	08/18/14	5507.32	11.72	NPP	7.75	5499.57	NPP
	04/02/14	5507.32	11.72	NPP	8.05	5499.27	NPP
CW 23+90	08/05/13	5507.32	11.72	NPP	7.88	5499.44	NPP
	04/08/13	5507.32	11.72	NPP	7.99	5499.33	NPP
	08/22/12	5507 32	11 72	NDD	7.03	5/00/30	NDD

11 72

7 93

NPP

5499 39

08/22/12 5507.32

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

		Measuring				Corrected				
		Point	Total Well	Depth To	Depth To	Groundwater	SPH			
Well ID	Date	Elevation	Depth	Product	Water	Elevation	Thickness			
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)			
	08/13/15	5505.90	12.25		Active Reco	overy Well				
	04/21/15	5505.90	12.25		Active Reco	overy Well				
	08/18/14	5505.90	12.25		Active Reco	·				
	04/02/14	5505.90	12.25		Active Reco	•				
CW 25+95	08/05/13	5505.90	12.25		Active Reco					
	04/08/13	5505.90	12.25		Active Reco					
	08/22/12	5505.90	12.25		Active Recovery Well Active Recovery Well					
	04/02/12	5505.90	12.25							
	08/15/11	5505.90	12.25		Active Reco	· ·				
	04/11/11	5505.90	12.25		Active Reco	overy vveii				
09/12/15										
	08/12/15 05/19/15	5508.27	53.08	NPP	52.62	5455.65	NPP			
	04/27/15	5508.27 5508.27	53.08 53.08	NPP NPP	52.63 52.61	5455.64 5455.66	NPP NPP			
	03/05/15	5508.27	53.08	NPP	52.61	5455.66	NPP			
	12/11/14	5508.27	53.08	NPP	52.65	5455.62	NPP			
	07/29/14	5508.27	53.08	NPP	52.63	5455.64	NPP			
	08/05/13	5508.27	53.08	NPP	52.58	5455.69	NPP			
	04/24/13	5508.27	53.08	NPP	52.58	5455.69	NPP			
*SW1-0206	04/24/13	5508.27	53.08	NPP	52.59	5455.68	NPP			
	06/21/12	5508.27	53.08	NPP	52.59	5455.68	NPP			
	11/16/11	5508.27	53.08	NPP	52.58	5455.69	NPP			
	09/19/11	5508.27	53.08	NPP	52.68	5455.59	NPP			
	08/18/11	5508.27	53.08	NPP	52.61	5455.66	NPP			
	02/17/11	5508.27	53.08	NPP	52.58	5455.69	NPP			
	01/31/11	5508.27	53.08	NPP	52.57	5455.70	NPP			
	01/17/11	5508.27	53.08	NPP	52.56	5455.71	NPP			
	01/04/11	5508.27	53.08	NPP	52.57	5455.70	NPP			
	08/12/15	5507.75	27.69	NPP	25.80	5481.95	NPP			
	05/19/15	5507.75	27.69	NPP	25.74	5482.01	NPP			
	04/27/15	5507.75	27.69	NPP	25.69	5482.06	NPP			
	03/05/15	5507.75	27.69	NPP	25.48	5482.27	NPP			
	12/11/14	5507.75	27.69	NPP	25.41	5482.34	NPP			
	07/29/14	5507.75	27.69	NPP	25.89	5481.86	NPP			
	08/05/13	5507.75	27.69	NPP	25.62	5482.13	NPP			
*0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	04/24/13	5507.75	27.69	NPP	25.27	5482.48	NPP			
*SW2-0206		5507.75	27.69	NPP	25.50	5482.25	NPP			
	06/21/12	5507.75	27.69	NPP	25.56	5482.19	NPP			
	11/16/11	5507.75	27.69	NPP	25.37	5482.38	NPP			
	09/19/11	5507.75	27.69	NPP	25.81	5481.94	NPP			
	08/18/11	5507.75	27.69	NPP	25.76	5481.99	NPP			
	02/17/11	5507.75	27.69	NPP	25.98	5481.77	NPP			
	01/31/11	5507.75	27.69	NPP	25.99	5481.76	NPP			
	01/17/11	5507.75	27.69	NPP	26.02	5481.73	NPP			
	01/04/11	5507.75	27.69	NPP	26.05	5481.70	NPP			

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/12/15	5505.29	52.56	NPP	26.53	5478.76	NPP
	05/19/15	5505.29	52.56	NPP	26.62	5478.67	NPP
	04/27/15	5505.29	52.56	NPP	26.64	5478.65	NPP
	03/05/15	5505.29	52.56	NPP	26.53	5478.76	NPP
	12/11/14	5505.29	52.56	NPP	26.10	5479.19	NPP
	07/29/14	5505.29	52.56	NPP	26.82	5478.47	NPP
	08/05/13	5505.29	52.56	NPP	26.69	5478.60	NPP
	04/24/13	5505.29	52.56	NPP	26.70	5478.59	NPP
*SW3-0206	08/06/12	5505.29	52.56	NPP	26.65	5478.64	NPP
	06/21/12	5505.29	52.56	NPP	26.80	5478.49	NPP
	11/16/11	5505.29	52.56	NPP	25.90	5479.39	NPP
	09/19/11	5505.29	52.56	NPP	26.15	5479.14	NPP
	08/18/11	5505.29	52.56	NPP	26.46	5478.83	NPP
	02/17/11	5505.29	52.56	NPP	26.20	5479.09	NPP
	01/31/11	5505.29	52.56	NPP	26.09	5479.20	NPP
	01/17/11	5505.29	52.56	NPP	26.02	5479.27	NPP
	01/04/11	5505.29	52.56	NPP	25.97	5479.32	NPP
	08/12/15	5504.45	42.34	NPP	33.08	5471.37	NPP
	05/19/15	5504.45	42.34	NPP	32.81	5471.64	NPP
	04/27/15	5504.45	42.34	NPP	32.78	5471.67	NPP
	03/05/15	5504.45	42.34	NPP	32.75	5471.70	NPP
	12/11/14	5504.45	42.34	NPP	32.98	5471.47	NPP
	07/29/14	5504.45	42.34	NPP	33.05	5471.40	NPP
	08/05/13	5504.45	42.34	NPP	33.01	5471.44	NPP
*SW4-0206	04/24/13	5504.45	42.34	NPP	32.60	5471.85	NPP
3004-0200	08/06/12	5504.45	42.34	NPP	33.09	5471.36	NPP
	06/21/12	5504.45	42.34	NPP	32.85	5471.60	NPP
	09/19/11	5504.45	42.34	NPP	33.10	5471.35	NPP
	08/18/11	5504.45	42.34	NPP	33.03	5471.42	NPP
	02/17/11	5504.45	42.34	NPP	32.56	5471.89	NPP
	01/31/11	5504.45	42.34	NPP	32.56	5471.89	NPP
	01/17/11	5504.45	42.34	NPP	32.61	5471.84	NPP
	01/04/11	5504.45	42.34	NPP	32.62	5471.83	NPP
	08/12/15	5514.34	52.24	NPP	34.20	5480.14	NPP
	05/19/15	5514.34	52.24	NPP	33.82	5480.52	NPP
	04/27/15	5514.34	52.24	NPP	33.73	5480.61	NPP
	03/05/15	5514.34	52.24	NPP	33.78	5480.56	NPP
	12/11/14	5514.34	52.24	NPP	33.75	5480.59	NPP
	07/29/14	5514.34	52.24	NPP	33.75	5480.59	NPP
	08/05/13	5514.34	52.24	NPP	34.93	5479.41	NPP
	04/24/13	5514.34	52.24	NPP	34.27	5480.07	NPP
*SW5-0206	08/06/12	5514.34	52.24	NPP	35.08	5479.26	NPP
	06/21/12	5514.34	52.24	NPP	35.01	5479.33	NPP
	11/16/11	5514.34	52.24	NPP	34.56	5479.78	NPP
	09/19/11	5514.34	52.24	NPP	35.05	5479.29	NPP
	08/18/11	5514.34	52.24	NPP	35.07	5479.27	NPP
	02/17/11	5514.34	52.24	NPP	34.37	5479.97	NPP

NPP

5479.99

5479 99

01/31/11

01/17/11

5514.34

5514 34

52.24

52 24

NPP

NPP

34.35

TABLE 1
Fluid Level Measurements Summary
2015 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/12/15	5519.72	47.41	NPP	41.65	5478.07	NPP
	05/19/15	5519.72	47.41	NPP	40.88	5478.84	NPP
	04/27/15	5519.72	47.41	NPP	40.74	5478.98	NPP
	03/05/15	5519.72	47.41	NPP	40.23	5479.49	NPP
	12/11/14	5519.72	47.41	NPP	40.96	5478.76	NPP
	07/29/14	5519.72	47.41	NPP	41.55	5478.17	NPP
	08/05/13	5519.72	47.41	NPP	42.00	5477.72	NPP
	04/24/13	5519.72	47.41	NPP	40.91	5478.81	NPP
*SW6-0206	08/06/12	5519.72	47.41	NPP	42.37	5477.35	NPP
	06/21/12	5519.72	47.41	NPP	41.97	5477.75	NPP
	11/16/11	5519.72	47.41	NPP	42.23	5477.49	NPP
	09/19/11	5519.72	47.41	NPP	42.83	5476.89	NPP
	08/18/11	5519.72	47.41	NPP	42.53	5477.19	NPP
	02/17/11	5519.72	47.41	NPP	41.20	5478.52	NPP
	01/31/11	5519.72	47.41	NPP	41.26	5478.46	NPP
	01/17/11	5519.72	47.41	NPP	41.36	5478.36	NPP
	01/04/11	5519.72	47.41	NPP	42.15	5477.57	NPP
	08/12/15	5517.63	32.95	NPP	20.84	5496.79	NPP
	05/19/15	5517.63	32.95	NPP	20.67	5496.96	NPP
	04/27/15	5517.63	32.95	NPP	20.73	5496.90	NPP
	03/05/15	5517.63	32.95	NPP	20.39	5497.24	NPP
	12/11/14	5517.63	32.95	NPP	20.00	5497.63	NPP
	07/29/14	5517.63	32.95	NPP	20.82	5496.81	NPP
	04/02/14	5517.63	32.95	NPP	20.15	5497.48	NPP
	08/05/13	5517.63	32.95	NPP	20.80	5496.83	NPP
*SW7-0206	04/24/13	5517.63	32.95	NPP	20.67	5496.96	NPP
	08/06/12	5517.63	32.95	NPP	20.40	5497.23	NPP
	06/21/12	5517.63	32.95	NPP	20.32	5497.31	NPP
	11/16/11	5517.63	32.95	NPP	18.73	5498.90	NPP
	09/19/11	5517.63	32.95	NPP	19.20	5498.43	NPP
	08/18/11	5517.63	32.95	NPP	19.48	5498.15	NPP
	02/17/11	5517.63	32.95	NPP	18.33	5499.30	NPP
	01/31/11	5517.63	32.95	NPP	18.09	5499.54	NPP
	01/17/11	5517.63	32.95	NPP	18.03	5499.60	NPP
	01/04/11	5517.63	32.95	NPP	18.05	5499.58	NPP

Notes:

*SW Wells sampled during significant rain events only

NPP = No Product Present

NWP = No Water Present

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

					Oxidation		
Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Reduction Potential (mV)	рН	Temperature (°F)
					(IIIV)		
Cross-Gradient	1						
	08/18/15	852	555	2.10	47.4	7.74	63.74
	04/20/15	992	646	4.80	86.9	7.62	55.40
	08/20/14	800	520	3.35	-2.2	7.11	63.38
	04/12/14	843	546	3.37	95.1	7.02	54.14
	08/13/13	717	466	4.13	61.6	7.42	61.58
MW-1	04/24/13	725	470	3.02	153.4	7.12	53.00
	08/14/12	717	468	2.93	85.8	7.28	63.40
	04/04/12	687	590	2.47	46.1	7.32	54.05
	08/13/11	762	533	10.80	240.0	6.80	68.60
	04/23/11	766	541	4.08	241.0	6.77	52.20
	08/13/10	841	588	1.83	282.0	7.04	63.60
	08/18/15	3986	2591	1.99	28.8	7.28	65.12
	04/20/15	4588	2981	3.17	80.6	7.19	61.70
	08/20/14	4004	2602	3.43	54.6	6.90	64.28
	04/12/14	3932	2557	2.43	103.8	6.91	60.86
	08/13/13	3621	2353	2.52	98.7	7.03	63.08
MW-13	04/24/13	3340	2170	4.27	99.0	7.10	60.00
	08/14/12	4223	2745	2.27	82.7	7.19	65.10
	04/04/12	3491	2769	3.60	165.4	7.01	59.95
	08/13/11	3312	2590	1.87	252.0	6.80	61.90
	04/23/11	3958	3163	3.92	210.0	6.64	59.70
	08/13/10	3816	2977	1.13	255.0	6.97	62.90
	08/18/15	ns	ns	ns	ns	ns	ns
	08/20/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/13/13	ns	ns	ns	ns	ns	ns
MW-26	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	3071	1996	1.42	-81.0	7.00	65.70
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2751	2077	1.55	230.0	6.90	63.30
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2698	2046	1.32	300.0	6.83	64.40
	08/18/15	ns	ns	ns	ns	ns	ns
	08/20/14	6950	4518	3.55	21.8	6.71	61.94
	04/12/14	ns	ns	ns	ns	ns	ns
	08/13/13	ns	ns	ns	ns	ns	ns
MW-27	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	5087	3306	2.79	-23.8	7.27	64.50
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	3741	2908	0.95	289.0	6.90	60.80
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2890	2211	1.42	262.0	6.95	61.70

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/18/15	5171	3363	8.00	41.5	7.71	60.50
	08/20/14	5047	3280	10.08	50.9	7.32	60.20
	04/12/14	ns	ns	ns	ns	ns	ns
	08/13/13	4833	3142	8.73	87.2	7.55	58.88
MW-32	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	5245	3426	7.13	138.2	7.65	63.60
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	4901	3930	5.42	189.0	7.10	59.20
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	51	4148	6.43	274.0	6.99	61.30
	08/18/15	5594	3633	4.84	42.7	7.45	62.96
	04/20/15	6078	3950	7.37	76.4	7.76	60.08
	08/20/14	5097	3313	8.81	48.8	7.38	62.42
	04/12/14	5040	3276	10.24	88.2	7.69	59.36
	08/13/13	5621	3655	5.39	90.1	7.13	60.56
MW-33	04/24/13	4990	3240	34.33	32.6	7.75	58.00
	08/14/12	5609	3647	5.87	152.0	7.73	64.00
	04/04/12	4615	3757	3.57	119.8	7.42	57.99
	08/13/11	4336	3468	0.78	244.0	7.00	60.80
	04/23/11	4017	3202	2.22	212.0	6.90	57.40
	08/13/10	3794	2973	4.37	292.0	7.01	60.90
Downgradient W	/ells						
	08/19/15	2221	1443	2.28	-99.3	7.06	62.84
	00/04/44	0000	4005	0.70	400.7	0.00	00.44
	08/21/14	2098	1365	3.79	-120.7	6.63	66.14
	04/12/14	ns	ns	ns	ns	ns	ns
NAVA 4 4	08/12/13	2558	1664	9.08	-82.4	6.84	64.70
MW-11	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	3135	2039	1.46	-93.2	6.99	66.10
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2645	1986	1.41	209.0	6.90	60.30
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2545	1906	1.98	254.0	7.03	66.40
	08/19/15	763	496	3.25	32.7	7.65	65.72
	04/20/15	691	449	6.54	84.8	7.67	51.74
	08/21/14	572	371	2.73	-30.2	7.15	68.18
	04/12/14	826	540	6.83	44.3	7.76	51.44
N 40 A / 1 G	08/12/13	569	370	4.98	24.7	7.45	63.68
MW-12	04/24/13	1089	710	43.92	172.4	7.47	49.00
	08/14/12	515	344	4.43	86.3	7.49	64.40
	04/04/12	533	488	4.66	24.4	7.65	49.82
	08/13/11	520	356	0.48	209.0	7.00	62.20
	04/23/11	1476	1077	2.58	245.0	6.94	51.10
	08/13/10	563	390	0.63	286.0	7.03	64.30

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	22/12/12				, ,		
	08/19/15	2289	1489	1.54	-110.8	7.26	60.80
	08/21/14	1574	1023	2.40	-97.4	6.95	61.88
	04/12/14	ns	ns	ns	ns	ns	ns
	08/12/13	2270	1476	1.94	-89.3	7.03	62.12
MW-34	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	2574	1672	1.54	-90.2	7.13	66.50
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2073	1517	0.63	176.0	7.00	59.10
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	1772	1286	2.91	233.0	7.12	63.60
	08/19/15	2116	1374	1.30	-103.4	7.28	60.32
	04/20/15	2054	1335	2.41	-70.2	7.37	58.40
	08/21/14	2140	1391	4.82	-106.3	7.05	61.16
	04/12/14	2157	1404	2.33	-73.7	6.97	58.16
	08/12/13	1955	1270	2.82	-92.4	7.03	61.22
MW-35	04/24/13	2193	1430	35.10	-43.0	6.98	57.00
	08/14/12	2491	1591	2.08	-87.0	7.19	63.50
	04/04/12	1722	1427	1.80	-89.4	7.08	56.71
	08/13/11	1921	1396	1.09	154.0	7.10	60.40
	04/23/11	1787	1313	3.10	237.0	6.93	57.10
	08/13/10	1742	1268	1.35	246.0	7.05	62.30
	08/19/15	2417	1571	3.62	-118.1	7.61	60.50
	04/20/15	2730	1772	2.98	22.1	7.58	60.20
	08/21/14	2248	1460	4.60	-105.6	7.43	60.80
	04/12/14	2476	1608	3.83	-61.8	7.30	59.00
	08/12/13	2596	1686	5.09	-116.5	7.50	60.56
MW-37	04/24/13	1628	1060	35.95	-46.7	7.49	57.00
	08/14/12	2703	1760	3.37	-50.2	7.61	63.10
	04/04/12	2043	1677	2.88	-70.5	7.49	57.47
	08/13/11	2405	1785	0.59	209.0	7.10	60.30
	04/23/11	2236	1668	2.37	234.0	7.08	58.30
	08/13/10	2276	1686	0.90	275.0	6.97	63.30
	08/19/15	1171	761	2.01	-124.7	7.55	59.00
	04/20/15	1395	906	3.13	10.1	7.76	59.48
	08/21/14	1237	804	2.97	-112.6	7.47	60.32
	04/12/14	1537	999	3.73	-100.9	7.29	58.58
	08/12/13	1332	865	4.61	-122.2	7.24	61.28
MW-38	04/24/13	1656	1070	34.56	-48.0	7.28	56.00
	08/14/12	1577	1025	2.77	14.3	7.34	63.70
	04/04/12	1332	1097	2.86	-83.8	7.29	57.20
	08/13/11	1335	954	0.56	223.0	7.00	59.90
	04/23/11	1447	1045	1.51	226.0	7.10	58.40
	08/13/10	1317	939	0.60	276.0	6.99	64.70

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
North Boundary	Barrier Wells	3					
	08/25/15	914	592	1.34	-94.9	7.04	68.54
	04/20/15	733	477	2.83	-80.2	7.54	58.58
	08/27/14	750	488	2.41	-121.1	6.70	69.44
	04/12/14	926	0.6023	6.30	-63.1	6.74	53.54
	8/7/2013	823	535	2.12	-73.6	6.88	66.62
0144.0.00	04/24/13	1098	70	60.05	17.8	6.82	50.00
CW 0+60	08/08/12	904	585	2.19	8.9	7.00	69.30
	04/03/12	852	771	1.75	-82.3	7.05	50.45
	08/15/11	1005	708	3.04	155.0	6.60	68.20
	04/13/11	1092	783	4.80	168.0	6.70	52.60
	08/07/10	1067	757	2.58	280.0	6.82	67.20
	04/07/10	1197	842	2.25	289.0	6.97	52.70
	08/26/15	np	np	np	np	np	np
	04/20/15	1547	1008	1.95	-193.1	7.54	59.30
	04/12/14	1920	1.2480	13.42	-70.4	7.46	57.20
	04/24/13	1246	810	42.38	-118.2	7.44	53.00
	08/08/12	1614	1053	0.92	-254.1	7.43	65.50
CW 25+95	04/03/12	1236	1074	1.34	-200.9	7.21	53.38
	08/15/11	1271	902	1.21	138.0	7.00	69.90
	04/13/11	1559	1127	2.58	63.0	7.06	60.00
	08/07/10	1343	960	1.09	141.0	6.96	66.50
	04/07/10	965	675	1.32	255.0	6.95	52.20
	08/25/15	1014	659	1.03	-135.1	6.96	68.78
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	1056	687	2.00	-58.4	6.59	69.14
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
014 0 00	04/24/13	ns	ns	ns	ns	ns	ns
OW 0+60	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	1469	1056	2.06	77.0	6.75	67.20
	04/07/10	1573	1122	ns	ns	6.93	54.90
	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
0.004.50	04/24/13	ns	ns	ns	ns	ns	ns
OW 1+50	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	ns	ns	ns	ns	ns	ns
	04/07/10	2720	2023	ns	ns	6.94	56.20

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/25/15	2522	1638	0.86	-263.9	7.15	67.16
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	3030	1.9673	4.18	-143.6	6.93	54.74
	8/7/2013	ns	ns	ns	ns	ns	ns
OW 3+85		3021	1960	64.23	-112.5	7.15	52.00
01100		ns	ns	ns	ns	ns	ns
		ns	ns	ns	ns	ns	ns
		ns	ns	ns	ns	ns	ns
		ns		ns	ns	ns	ns
				2.17	78.0		66.20
		3137	2371	ns	-143.6 6.93 ns ns -112.5 7.15 ns ns ns ns ns	54.70	
		ns	ns	ns	ns	ns	ns
		ns	ns	ns	ns	ns	ns
		ns	ns	ns	ns	ns	ns
		ns	ns	ns	ns		ns
		ns	ns	ns	ns	ns	ns
OW 5+50		ns	ns	ns	ns	ns	ns
		ns	ns	ns	ns	ns	ns
		ns	ns	ns	ns	ns	ns
		ns	ns	ns	ns	ns	ns
		ns	ns	ns			ns
		3577	2773		114.0	6.76	69.10
		ns	ns				ns
							ns
							ns
							ns
							ns
014.0.70	OW 3+85 OB/25/15 OB/27/14 OB/27/14 OB/27/14 OB/27/14 OB/27/14 OW 3+85 OW 3+85		ns				
OVV 6+70							ns
							ns
							ns
							ns
							ns
							ns
							ns
							ns
							ns
							ns
							ns
OW 8+10							ns
							ns
							ns
							ns
							ns
							ns
	04/07/10	l lis	ns	ris -	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/25/15	2452	1593	0.86	-208.4	6.98	66.38
	04/20/15	2672	1738	1.34	-99.6	7.16	58.52
	08/27/14	2157	1402	1.73	-80.8	6.60	66.08
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
OW 11+15	04/24/13	ns	ns	ns	ns	ns	ns
000 11+13	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	1857	1346	2.32	202.0	6.80	66.70
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	ns	ns	ns	ns	ns	ns
	04/07/10	1932	1394	ns	ns	6.94	55.80
	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
0\\\ 44.40	04/24/13	ns	ns	ns	ns	ns	ns
OW 14+10	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	ns	ns	ns	ns	ns	ns
	04/07/10	ns	ns	ns	ns	ns	ns
	08/25/15	3936	2557	0.77	-219.3	7.16	68.84
	04/20/15	4057	2635	1.65	-211.1	7.24	60.98
	08/27/14	3239	2106	1.55	-172.9	6.83	68.72
	04/12/14	1529	0.9945	4.24	-149.9	6.96	59.42
	8/7/2013	2497	1623	1.07	-74.8	6.91	67.04
OW 16+60	04/24/13	2770	1800	48.22	-13.1	7.01	56.00
OW 16+60	08/08/12	3345	2150	2.29	-146.6	7.18	67.70
	04/03/12	2389	1913	1.12	-65.9	7.03	59.18
	08/15/11	2746	2011	1.41	184.0	6.90	70.10
	04/13/11	2567	1943	5.53	200.0	6.78	58.30
	08/07/10	2631	1982	2.86	199.0	6.79	68.50
	04/07/10	2601	1921	ns	ns	6.90	58.30
	08/25/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
OW 19+50	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	4496	3568	1.73	292.0	6.87	68.90
	04/07/10	4005	3129	ns	ns	6.92	54.70

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	pН	Temperature (° F)
	08/25/15	3048	1983	3.28	18.1	7.41	67.88
	04/20/15	3102	2017	4.57	24.8	7.56	57.62
	08/27/14	3213	2089	3.42	3.0	6.87	67.28
	04/12/14	2444	1.5882	10.62	21.9	7.27	54.32
	08/27/14	3213	2089	3.42	3.0	6.87	67.28
OW 22+00	04/24/13	3056	1990	57.44	115.6	7.19	51.00
OVV 22+00	08/08/12	4262	2769	2.77	-128.6	7.07	66.60
	04/03/12	3193	2770	3.22	74.1	6.97	53.42
	08/15/11	3739	2888	2.51	149.0	7.00	69.40
	04/13/11	3178	2468	2.81	250.0	6.90	54.30
	08/07/10	3804	2953	1.50	286.0	6.85	68.60
	04/07/10	3075	2326	ns	ns	6.84	52.40
	08/25/15	1676	1090	1.57	-83.5	7.36	68.78
	04/20/15	1985	1289	2.22	-102.5	7.50	58.76
	08/27/14	1681	1092	2.20	-125.4	7.05	67.82
	04/12/14	1517	0.9858	8.70	-39.4	7.36	57.92
	8/7/2013	2442	1588	5.11	43.3	7.08	65.42
	04/24/13	1498	1	46.47	83.8	7.11	55.00
OW 23+10	08/08/12	1995	1296	3.52	-3.2	7.04	68.30
	04/03/12	1134	933	1.74	13.9	7.19	57.25
	08/15/11	1503	1072	1.32	128.0	7.00	69.10
	08/13/11	1304	939	1.89	192.0	6.98	57.60
	08/07/10	1379	982	1.06	272.0	6.90	69.50
	04/07/10	1505	1070	ns	ns	6.85	55.70
	08/25/15	1396	908	3.50	-10.3	7.53	67.34
	04/20/15	1263	821	6.56	-10.5	7.74	59.36
	08/27/14	1522	990	2.53	-40.7	7.74	66.38
	04/12/14	1269	0.8255	13.05	22.3	7.58	59.18
	8/7/2013	1036	674	5.11	4.3	7.50	66.20
	04/24/13	1047	1	40.99	147.3	7.39	55.00
OW 23+90	08/08/12	1479	960	4.88	-26.9	7.39	67.50
		882	731				
	04/03/12			3.64	40.3	7.56	56.62
	08/15/11	1228	869 855	1.77	151.0	7.00	69.00 58.40
	08/13/11	1193		2.73	203.0	7.03	-
	08/07/10	1159	822	2.05	238.0	6.97	67.80
	04/07/10	1203	845	ns 1.60	ns 442.4	6.90	56.10
	08/25/15	1600	1040	1.62	-113.4	7.33	69.32
	04/20/15	1529	995	2.08	-110.0	7.32	56.96
	08/27/14	1531	997	2.21	-114.7	7.22	69.08
	04/12/14	1748	1.1375	6.29	-87.5	7.35	55.70
	8/7/2013	1309	852	2.44	-92.1	7.41	68.66
OW 25+70	04/24/13	1335	1	42.40	16.5	7.33	53.00
	08/08/12	1349	875	2.16	-116.2	7.48	69.40
	04/03/12	1254	1086	1.03	-56.2	7.44	53.54
	08/15/11	781	544	1.10	171.0	7.00	69.30
	04/13/11	1160	830	1.54	190.0	7.00	56.05
	08/07/10	1199	850	0.97	273.0	6.94	70.40
	04/07/10	1100	773	ns	ns	6.90	51.80

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (° F)
Refinery Wells							
	08/24/15	2706	1759	2.23	-110.7	7.05	63.56
	08/25/14	3133	2037	2.53	-131.2	7.07	65.06
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	1309	852	2.44	-92.1	7.41	68.66
N 4) A /	04/24/13	ns	ns	ns	ns	ns	ns
MW-4	08/09/12	2615	1701	1.19	-83.6	6.86	68.30
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2297	1712	1.37	226.0	6.90	58.80
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2323	1725	1.49	266.0	6.94	64.70
	08/18/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	2505	1.6272	4.89	205.9	4.73	59.06
	8/8/2013	2067	1346	3.33	94.9	5.91	58.58
MW-8	04/24/13	2292	1	34.64	387.3	3.74	56.00
	08/09/12	3986	2591	2.85	476.8	3.14	60.10
	04/04/12	2782	2219	2.61	424.7	2.97	59.58
	08/13/11	2306	1722	1.37	226.0	6.90	58.80
	04/23/11	2951	2289	5.30	251.0	4.79	55.00
	08/13/10	2258	1712	2.14	276.0	6.60	58.90
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
MW-20	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	ns	ns	ns	ns	ns	ns
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
MW-21	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	ns	ns	ns	ns	ns	ns
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/24/15	961	624	1.81	-16.0	7.49	61.70
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	1162	754	2.44	-48.3	7.10	63.32
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	1396	906	1.74	60.0	7.08	61.52
MW-29	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	1027	665	2.11	173.9	7.07	61.30
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	1116	797	2.35	226.0	7.00	60.10
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	1083	772	2.02	289.0	6.78	60.70
	08/24/15	3009	1957	1.79	-236.3	7.19	62.18
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	3218	2093	3.01	-211.8	6.82	64.46
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	2666	1733	1.54	-93.3	6.96	61.94
MW-30	04/24/13	2178	1	27.80	-34.5	7.00	61.00
	08/09/12	2694	1751	1.92	-41.5	7.08	64.20
	04/04/12	3108	2395	2.06	-211.8	6.95	62.24
	08/13/11	2986	2293	1.08	151.0	6.90	62.20
	04/23/11	3119	2419	3.65	129.0	6.50	59.80
	08/13/10	3014	2309	1.24	206.0	6.82	62.50
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	2996	1948	2.97	-159.1	6.94	63.80
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	1776	1155	4.79	-120.7	7.15	63.92
MW-31	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	3518	2288	2.25	33.5	7.19	66.60
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	3359	2598	1.26	184.0	7.00	62.40
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	3681	2857	0.40	211.0	6.96	63.80
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
MW-40	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2837	2129	1.51	167.0	7.10	66.50
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2790	2106	1.00	281.0	7.00	68.80

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/24/15	5750	3740	1.93	-97.8	7.26	61.28
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	5662	3679	3.09	54.1	6.86	61.16
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	5484	3564	3.60	-4.3	7.07	60.98
MW-44	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	5946	3865	5.19	29.3	7.26	64.20
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	4626	3682	2.15	231.0	7.00	60.50
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	5296	4306	2.57	320.0	6.78	60.60
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
RW-1	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
RW-9	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	3760	2442	0.98	-144.6	7.00	62.80
	04/04/12	ns	ns	ns	ns	ns	ns
	08/18/11	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	2925	2234	1.37	241.0	6.91	62.00
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	3458	2249	3.65	-111.1	6.84	61.94
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	2213	1439	1.33	-115.1	6.94	62.24
RW-15	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	3489	2269	0.86	-146.2	7.06	64.20
	04/04/12	ns	ns	ns	ns	ns	ns
	08/18/11	3130	2410	4.12	243.0	6.80	60.90
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	3295	2540	0.60	278.0	7.05	61.90

TABLE 2 Groundwater Field Parameter Summary 2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
RW-18	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/18/11	5074	4098	3.40	229.0	6.80	63.80
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	5434	4451	2.28	132.0	6.94	65.80
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
RW-23	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/18/11	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	1911	1401	2.20	241.0	7.00	64.20
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
RW-28	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/17/11	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/08/13	ns	ns	ns	ns	ns	ns
RW-42	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/08/11	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/08/13	ns	ns	ns	ns	ns	ns
RW-43	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/08/11	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	2647	1993	130 *	124.0	6.75	70.00
San Juan River I							
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	1064	693	9.80	4.4	7.98	51.80
Outfall No. 2	08/26/14	463	301	6.52	28.1	7.20	61.52
	04/12/14	742	0.4810	7.53	88.6	7.36	48.92
	08/06/13	782	507.0000	6.48	57.1	7.51	63.68
	04/24/13	520	340	31.59	151.4	7.38	49.00
	08/07/12	324	211	4.42	159.9	7.49	69.90
	03/08/12	ns	ns	ns	ns	ns	ns
	08/11/11	299	204	ns	212.0	6.60	62.30
	04/12/11	826	588	ns	218.0	6.69	51.60
	08/13/10	388	271	ns	271.0	6.95	65.80
	08/26/15	307	199	7.84	23.7	7.87	60.02
	04/21/15	422	275	10.48	59.2	7.95	53.66
	08/26/14	307	200 0.6067	10.63 8.49	55.3	7.84	56.72
	04/12/14	933	230.0000		76.9	7.42	52.58
Outfall No. 3	08/06/13 04/24/13	354 622	400	7.55 28.88	87.0	7.53 7.27	60.98 53.00
Outlan No. 3	08/07/12	295	191	6.35	120.5 176.5	7.27	64.20
	03/08/12						
	08/11/11	ns 301	ns 206	ns	ns 238.0	ns 6.60	ns 60.40
	04/12/11	466	325	ns			52.70
	08/13/10	317	219	ns	197.0 274.0	6.66	64.90
				ns		6.94	
	08/26/15 04/21/15	ns 5072	ns 3296	ns 4.99	ns 49.7	ns 6.54	ns 53.60
	08/26/14	3939	2559	5.62	51.4	7.40	61.04
	04/12/14	3507	2279	6.01	49.3	7.40	49.88
Seep 1	08/06/13	2472	1606	132.62	49.5	7.72	67.04
	04/24/13	3982	2590	90.94	228.5	7.72	46.00
	08/07/12	4503	2925	5.62	164.0	8.03	76.90
	03/18/12	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

			r remediation		_	ı	
Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Seep 2	04/12/14	ns	ns	ns	ns	ns	ns
Jeep 2	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Soon 2	04/12/14	ns	ns	ns	ns	ns	ns
Seep 3	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	4506	2930	99.98	217.0	7.76	44.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	3655	3215	7.95	127.0	7.89	52.38
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
Seep 4	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Soon F	04/12/14	ns	ns	ns	ns	ns	ns
Seep 5	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Soon 6	04/12/14	8810	5727	13.46	105.2	7.24	44.84
Seep 6	08/06/13	28663	18631	90.40	153.6	6.68	66.26
	04/24/13	9510	6180	129.16	219.0	7.07	42.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	7291	6851	12.60	121.6	7.61	48.02
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Soon 7	04/12/14	ns	ns	ns	ns	ns	ns
Seep 7	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (° F)
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Seep 8	04/12/14	ns	ns	ns	ns	ns	ns
00000	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Coop 0	04/12/14	5271	3.4255	12.90	43.9	7.73	43.10
Seep 9	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	5644	3670	136.90	214.3	7.35	35.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	3004	2841	7.62	139.4	7.64	47.48
	08/26/15	169	110	9.28	23.6	7.98	57.74
	04/22/15	540	351	13.08	34.2	8.16	58.64
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	357	0.2318	12.74	45.3	8.14	45.38
Upstream	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	370	240	21.89	168.2	8.20	49.00
	08/07/12	311	202	7.73	147.4	8.51	57.90
	03/10/12	236	218	10.50	65.4	8.27	49.28
	08/26/15	315	205	9.81	14.7	8.13	57.20
	04/22/15	536	348	12.39	35.7	8.16	59.72
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	429	0.2791	16.35	82.1	7.67	45.14
Downstream	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	419	270	20.80	193.9	8.20	51.00
	08/07/12	347	226	5.71	157.4	8.47	60.00
	03/11/12	323	273	10.12	61.2		55.40
						8.41	
	08/26/15 04/22/15	ns 498	ns 324	ns 12.93	33.4	ns 8.03	ns 60.08
	08/26/14	ns 411	ns 0.2671	ns 13.48	ns oo o	ns o o s	ns 45.14
North of MW-45	04/12/14				83.8	8.05	
	08/06/13	ns 360	ns 220	ns 20.40	NS 214.2	ns	ns 50.00
	04/24/13	360	230	20.40	214.3	8.39	50.00
	08/07/12	313	203	8.17	154.8	8.42	59.10
	03/11/12	243	220	9.85	75.1	8.42	50.54
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	500	325	13.71	20.3	8.24	60.26
	08/26/14	ns	ns	ns 40.00	ns	ns	ns
North of MW-46	04/12/14	405	0.2633	12.30	90.4	8.12	44.96
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	368	240	20.90	213.5	8.40	51.00
	08/07/12	324	211	8.02	156.5	8.31	60.10
	03/10/12	242	220	10.20	65.2	8.37	50.18

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
Background We							
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
MW-3	04/24/13	ns	ns	ns	ns	ns	ns
	08/04/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	ns	ns	ns	ns	ns	ns
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
MW-5	04/24/13	ns	ns	ns	ns	ns	ns
	08/04/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	ns	ns	ns	ns	ns	ns
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
MW-6	04/24/13	ns	ns	ns	ns	ns	ns
	08/04/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	ns	ns	ns	ns	ns	ns
	04/23/11	ns	ns	ns	ns	ns	ns
RCRA Investigat	08/13/10	ns	ns	ns	ns	ns	ns
NORA Ilivestigat		no	no	no	no	200	200
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns 544	ns 353	ns 1.73	ns 55.0	ns 7.44	ns 60.98
MW-50	08/14/13	558	348	10.37	148.4	7.44	62.20
	08/15/12 08/22/11	650	453	6.12	183.0	6.70	59.50
		612	425	0.66			
	08/13/10 08/17/15	723	425 470	2.55	248.0 70.2	7.12 7.31	61.40 58.76
	08/17/15	779	507	3.06	25.6	7.07	62.18
	08/14/13	441	287	2.17	69.0	7.07	61.34
MW-51	08/15/12	557	362	2.58	116.8	7.57	62.90
		509	351	4.80			
	08/22/11 08/13/10	664	459	0.52	181.0 273.0	6.90 7.12	61.10 63.10
	00/13/10	004	409	0.32	213.0	1.12	03.10

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/17/15	4172	2713	1.92	62.7	7.02	59.24
	08/19/14	4849	3153	3.37	64.2	6.49	60.50
	08/14/13	4471	2908	2.69	5.2	6.78	59.30
MW-52	08/15/12	3518	2286	2.60	4.7	6.61	64.70
	08/22/11	4139	3255	3.12	201.0	6.90	60.70
	08/13/10	3602	2801	0.63	291.0	7.07	62.20
	08/17/15	5470	3556	2.31	96.0	7.14	59.78
	08/19/14	5333	3467	3.23	59.7	6.58	60.50
	08/14/13	4603	2990	3.05	48.3	7.15	59.72
MW-53	08/15/12	5477	3562	3.55	38.0	7.13	61.90
	08/22/11	4574	3658	3.63	215.0	6.90	59.60
	08/13/10	4288	3394	0.59	242.0	7.14	61.60
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
	08/14/13	ns	ns	ns	ns	ns	ns
MW-54	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/17/13	ns	ns	ns	ns	ns	ns
	08/14/13	ns	ns	ns	ns	ns	ns
MW-55	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	3001	2284	1.72	198.0	7.00	60.60
	08/13/10	3160	2440	1.28	277.0	6.85	61.10
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
	08/14/13	ns	ns	ns	ns	ns	ns
MW-56	08/15/12	ns	ns	ns	ns	ns	ns
10100	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
	08/14/13	ns	ns	ns	ns	ns	ns
MW-57	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
	08/14/13	ns	ns	ns	ns	ns	ns
MW-58	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	2562	1928	1.68	279.0	6.95	65.30

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

			- Remediation					
Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)	
	08/17/15	3381	220	1.30	-112.3	7.16	62.48	
	08/19/14	3488	2266	2.75	-121.2	6.90	62.90	
MW-59	08/14/13	2876	1869	1.79	-91.1	7.09	63.95	
10100-33	08/15/12	2867	1863	1.60	-85.9	7.10	63.10	
	08/25/11	2423	1812	2.12	221.0	6.80	62.00	
	08/13/10	2067	1523	0.61	287.0	6.90	62.40	
	08/17/15	ns	ns	ns	ns	ns	ns	
	08/19/14	ns	ns	ns	ns	ns	ns	
MW-60	08/14/13	ns	ns	ns	ns	ns	ns	
10100-00	08/15/12	ns	ns	ns	ns	ns	ns	
	08/25/11	3551	2743	1.78	200.0	7.00	62.60	
	08/13/10	2567	1939	0.68	284.0	6.88	61.50	
	08/17/15	ns	ns	ns	ns	ns	ns	
	08/19/14	ns	ns	ns	ns	ns	ns	
MW-61	08/14/13	ns	ns	ns	ns	ns	ns	
10100-01	08/15/12	ns	ns	ns	ns	ns	ns	
	08/08/11	ns	ns	ns	ns	ns	ns	
	08/13/10	ns	ns	ns	ns	ns	ns	
	08/17/15	7273	473	2.03	48.1	7.05	61.46	
MW-62	08/19/14	7172	4663	6.36	44.5	6.87	63.02	
	08/14/13	7051	4583	4.54	38.3	7.07	61.76	
	08/15/12	7450	4843	4.75	125.4	6.95	61.40	
	08/23/11	6247	5203	50' cord -didn't reach	189.0	7.00	60.50	
	08/13/10	6458	5330	50' cord -didn't reach	297.0	6.93	62.40	
	08/17/15	4931	320	0.80	57.8	6.84	64.64	
	08/19/14	5282	3432	3.24	30.5	6.60	66.92	
MW-63	08/14/13	5899	3835	1.39	62.1	6.83	65.39	
10100-03	08/15/12	5374	3479	1.47	137.6	6.91	65.40	
	08/24/11	3416	2651	1.71	238.0	6.60	63.90	
	08/13/10	4764	3809	0.44	222.0	7.06	68.30	
	08/17/15	6310	410	6.16	68.3	7.04	63.38	
	08/19/14	6249	4060	9.15	67.1	6.94	64.52	
MW-64	08/14/13	6049	3933	6.49	60.9	7.03	64.28	
10100-04	08/15/12	6501	4186	4.90	121.2	7.12	65.40	
	08/24/11	4989	4026	4.22	235.0	6.70	61.50	
	08/13/10	5302	4279	4.59	251.0	7.06	65.50	
	08/17/15	4861	316	1.83	-182.3	7.10	63.38	
	08/19/14	4299	2795	3.57	-114.7	6.89	64.16	
MW-65	08/14/13	4707	3059	1.80	-97.6	7.04	64.10	
10100-03	08/15/12	5341	3458	1.09	-93.5	7.09	63.90	
	08/22/11	2866	2189	0.55	169.0	7.10	63.00	
	08/13/10	2787	2103	0.41	245.0	7.05	65.80	
	08/17/15	ns	ns	ns	ns	ns	ns	
	08/19/14	ns	ns	ns	ns	ns	ns	
M/M/ 66	08/14/13	ns	ns	ns	ns	ns	ns	
MW-66	08/15/12	ns	ns	ns	ns	ns	ns	
	08/08/11	ns	ns	ns	ns	ns	ns	
	08/13/10	ns	ns	ns	ns	ns	ns	

TABLE 2
Groundwater Field Parameter Summary
2015 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (° F)
	08/17/15	1320	860	2.71	73.0	7.24	59.48
	08/19/14	1008	654	3.00	70.4	6.87	60.14
MW-67	08/14/13	876	570	2.39	59.7	7.12	59.60
	08/15/12	1309	849	2.48	221.9	6.96	59.70
	08/22/11	1017	712	1.17	170.0	7.00	58.70
	08/17/15	1257	819	2.36	69.8	7.30	62.42
	08/19/14	1135	737	3.56	52.4	6.97	63.32
MW-68	08/14/13	1053	685	3.31	84.5	7.19	61.04
	08/15/12	1114	724	7.85	197.6	6.82	61.20
	08/22/11	1150	809	0.91	218.0	7.00	60.90
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-69	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
MW-70	08/17/15	6258	407	3.21	-49.5	6.89	60.68
10100-70	08/19/14	6088	3956	6.13	-65.3	6.81	63.44
	08/17/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns
MW BCK1	08/20/14	ns	ns	ns	ns	ns	ns
WWW DON'T	04/12/14	5417	3521	8.73	82.6	7.27	60.56
	08/14/13	ns	ns	ns	ns	ns	ns
	04/24/13	5075	3300	88.56	140	7.28	59.0
	08/17/15	ns	ns	ns	ns	ns	ns
	04/22/15	ns	ns	ns	ns	ns	ns
MW BCK2	08/20/14	ns	ns	ns	ns	ns	ns
WWW DONZ	04/12/14	14137	919	4.83	0.7	7.46	60.80
	08/14/13	ns	ns	ns	ns	ns	ns
	04/24/13	11303	7350	47.79	135.03	7.68	59.0

Notes:

ns = no sample

np = not purged

^{* =} Field result was confirmed with field notes.

			**RW-1		MV	V-4		¹ MW-8
			Aug-15	Aug-15	Aug-14	Aug-13	Aug-12	Apr-15
Volatile Organic Compounds (ug/L)			- ŭ				·
1,1,1,2-Tetrachloroethane	<u> </u>	(4)		< 1.0	< 10	< 1.0	< 10	
1,1,1-Trichloroethane	6.00E+01	(3)		< 1.0	< 10	< 1.0	< 10	
1,1,2,2-Tetrachloroethane	1.00E+01	(3)		< 2.0	< 20	< 2.0	< 20	
1,1,2-Trichloroethane	5.00E+00	(2)		< 1.0	< 10	< 1.0	< 10	
1,1-Dichloroethane	2.50E+01	(3)		< 1.0	< 10	< 1.0	< 10	
1,1-Dichloroethene	5.00E+00	(3)		< 1.0	< 10	< 1.0	< 10	
1,1-Dichloropropene	-	-		< 1.0	< 10	< 1.0	< 10	
1,2,3-Trichlorobenzene	-	-		< 1.0	< 10	< 1.0	< 10	
1,2,3-Trichloropropane	7.47E-03	(4)		< 2.0	< 20	< 2.0	< 20	
1,2,4-Trichlorobenzene	7.00E+01	(2)		< 1.0	< 10	< 1.0	< 10	
1,2,4-Trimethylbenzene	1.50E+01	(1)		4.1	< 10	10	220	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)		< 2.0	< 20	< 2.0	< 20	
1,2-Dibromoethane (EDB)	5.00E-02	(2)		< 1.0	< 10	< 1.0	< 10	
1,2-Dichlorobenzene	6.00E+02	(2)		< 1.0	< 10	< 1.0	< 10	
1,2-Dichloroethane (EDC)	5.00E+00	(2)		< 1.0	< 10	< 1.0	< 10	
1,2-Dichloropropane	5.00E+00	(2)		< 1.0	< 10	< 1.0	< 10	
1,3,5-Trimethylbenzene	1.20E+01	(1)		< 1.0	< 10	2.3	11	
1,3-Dichlorobenzene	-	-		< 1.0	< 10	< 1.0	< 10	
1,3-Dichloropropane	7.30E+02	(1)		< 1.0	< 10	< 1.0	< 10	
1,4-Dichlorobenzene	7.50E+01	(2)		< 1.0	< 10	< 1.0	< 10	
1-Methylnaphthalene	2.30E+00	(1)		21	< 40	17	< 40	
2,2-Dichloropropane	-	-		< 2.0	< 20	< 2.0	< 20	
2-Butanone	5.56E+03	(4)		< 10	< 100	< 10	< 100	
2-Chlorotoluene	7.30E+02	(1)		< 1.0	< 10	< 1.0	< 10	
2-Hexanone	-	-		< 10	< 100	< 10	< 100	
2-Methylnaphthalene	1.50E+02	(1)		37	< 40	29	66	
4-Chlorotoluene	2.60E+03	(1)		< 1.0	< 10	< 1.0	< 10	
4-Isopropyltoluene	-	-		< 1.0	< 10	< 1.0	< 10	
4-Methyl-2-pentanone	-	-		< 10	< 100	< 10	< 100	
Acetone	1.41E+04	(4)		< 10	< 100	< 10	< 100	
Benzene		(2)		210	27	120	190	
Bromobenzene	2.00E+01	(1)		< 1.0	< 10	< 1.0	< 10	
Bromodichloromethane	1.34E+00	(4)		< 1.0	< 10	< 1.0	< 10	
Bromoform	8.50E+00	(1)		< 1.0	< 10	< 1.0	< 10	
Bromomethane		(4)		< 3.0	< 30	< 3.0	< 30	
Carbon disulfide		(4)		< 10	< 100	< 10	< 100	
Carbon Tetrachloride		(2)		< 1.0	< 10	< 1.0	< 10	
Chlorobenzene	1.00E+02	(2)		< 1.0	< 10	< 1.0	< 10	
Chloroethane	-	-		< 2.0	< 20	< 2.0	< 20	
Chloroform	1.00E+02	(3)		< 1.0	< 10	< 1.0	< 10	
Chloromethane		(4)		< 3.0	< 30	< 3.0	< 30	
cis-1,2-DCE	7.00E+01	(2)		< 1.0	< 10	< 1.0	< 10	
cis-1,3-Dichloropropene	-	-		< 1.0	< 10	< 1.0	< 10	
Dibromochloromethane	1.68E+00	(4)		< 1.0	< 10	< 1.0	< 10	
Dibromomethane		(1)		< 1.0	< 10	< 1.0	< 10	
Dichlorodifluoromethane		(4)		< 1.0	< 10	< 1.0	< 10	
Ethylbenzene	7.00E+02	(2)		17	< 10	18	83	

			44500					1 8414/ 0
			**RW-1			V-4	1 4 40	¹ MW-8
	0.00=.01	(4)	Aug-15	Aug-15	Aug-14	Aug-13	Aug-12	Apr-15
Hexachlorobutadiene	8.60E-01	(1)		< 1.0	< 10	< 1.0	< 10	
Isopropylbenzene		(4)		49	25	27	58	
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)		< 1.0	< 10	1.4	< 10	
Methylene Chloride	5.00E+00	(2)		< 3.0	< 30	< 3.0	< 30	
Naphthalene	1.65E+00	(4)		78	55	56	110	
n-Butylbenzene	-	-		< 3.0	< 30	< 3.0	< 10	
n-Propylbenzene	-	-		39	25	22	77	
sec-Butylbenzene	-	-		7.7	< 10	5.2	14	
Styrene	1.00E+02	(2)		< 1.0	< 10	< 1.0	< 10	
tert-Butylbenzene	-	-		1.2	< 10	1.2	< 10	
Tetrachloroethene (PCE)	5.00E+00	(2)		< 1.0	< 10	< 1.0	< 10	
Toluene	7.50E+02	(3)		< 1.0	< 10	< 1.0	< 10	
trans-1,2-DCE	1.00E+02	(2)		< 1.0	< 10	< 1.0	< 10	
trans-1,3-Dichloropropene	4.30E-01	(1)		< 1.0	< 10	< 1.0	< 10	
Trichloroethene (TCE)		(2)		< 1.0	< 10	< 1.0	< 10	
Trichlorofluoromethane	1.14E+03	(4)		< 1.0	< 10	< 1.0	< 10	
Vinyl chloride		(3)		< 1.0	< 10	< 1.0	< 10	
Xylenes, Total		(3)		11	< 15	5.6	34	
Semi Volatile Organic Compou	<u> </u>							
1,2,4-Trichlorobenzene	7.00E+01	(2)						
1,2-Dichlorobenzene	6.00E+02	(2)						
1,3-Dichlorobenzene	-	-						
1,4-Dichlorobenzene	7.50E+01	(2)						
1-Methylnaphthalene	2.30E+00	(1)						
2,4,5-Trichlorophenol	1.17E+03	(4)						
2,4,6-Trichlorophenol	1.19E+01	(4)						
2,4-Dichlorophenol		(4)						
2,4-Dimethylphenol	3.54E+02	(4)						
2,4-Dinitrophenol	3.88E+01	(4)						
2,4-Dinitrotoluene	2.37E+00	(4)						
2,6-Dinitrotoluene	3.70E+01	(1)						
2-Chloronaphthalene	2.90E+03	(1)						
2-Chlorophenol	9.10E+01	(4)						
2-Methylnaphthalene	1.50E+02	(1)						
2-Methylphenol	1.80E+03	(1)						
2-Nitroaniline	1.10E+02	(1)						
2-Nitrophenol	-	-						
3,3´-Dichlorobenzidine	1.50E-01	(1)						
3+4-Methylphenol	1.80E+02	(1)						
3-Nitroaniline	-	-						
4,6-Dinitro-2-methylphenol	-	-						
4-Bromophenyl phenyl ether	-	-						
4-Chloro-3-methylphenol	-	-						
4-Chloroaniline	3.40E-01	(1)						
4-Chlorophenyl phenyl ether	-	-						
4-Nitroaniline	3.40E+00	(1)						
4-Nitrophenol	-	-						
Acenaphthene	5.35E+02	(4)						
Acenaphthylene	-	-						

			**RW-1			V-4		¹ MW-8
			Aug-15	Aug-15	Aug-14	Aug-13	Aug-12	Apr-15
Aniline	1.20E+01	(1)						
Anthracene	1.72E+03	(4)						
Azobenzene	1.20E-01	(1)						
Benzo(a)anthracene	3.43E-01	(4)						
Benzo(a)pyrene	2.00E-01	(2)						
Benzo(b)fluoranthene	3.43E-01	(4)						
Benzo(g,h,i)perylene	-	-						
Benzo(k)fluoranthene	3.43E+00	(4)						
Benzoic acid	1.50E+05	(1)						
Benzyl alcohol	1.80E+04	(1)						
Bis(2-chloroethoxy)methane	1.10E+02	(1)						
Bis(2-chloroethyl)ether	1.36E-01	(4)						
Bis(2-chloroisopropyl)ether	9.76E+00	(4)						
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)						
Butyl benzyl phthalate	3.50E+01	(1)						
Carbazole	-	-						
Chrysene	3.43E+01	(4)						
Dibenz(a,h)anthracene	1.06E-01	(4)						
Dibenzofuran	-	-						
Diethyl phthalate	1.48E+04	(4)						
Dimethyl phthalate	-	-						
Di-n-butyl phthalate	8.85E+02	(4)						
Di-n-octyl phthalate	-	-						
Fluoranthene	8.02E+02	(4)						
Fluorene	2.88E+02	(4)						
Hexachlorobenzene	1.00E+00	(2)						
Hexachlorobutadiene	8.60E-01	(1)						
Hexachlorocyclopentadiene	5.00E+01	(2)						
Hexachloroethane	6.80E+00	(4)						
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)						
Isophorone	7.79E+02	(4)						
Naphthalene	1.65E+00	(4)						
Nitrobenzene	1.40E+00	(4)						
N-Nitrosodimethylamine	4.90E-03	(4)						
N-Nitrosodi-n-propylamine	9.60E-03	(1)						
N-Nitrosodiphenylamine	1.21E+02	(4)						
Pentachlorophenol		(2)						
Phenanthrene	1.70E+02	(4)						
Phenol		(3)						
Pyrene	1.17E+02	(4)						
Pyridine	3.70E+01	(1)						
General Chemistry (mg/l):	4.0	(0)		0.00	. 0. 50	.0.50	.0.50	
Fluoride	1.6	(3)		0.29	< 0.50	< 0.50	< 0.50	
Chloride	250	(3)		250	220	210	220	
Nitrite	1	(2)		< 0.10	< 0.50	< 0.50	< 0.50	
Bromide	-	- (0)		< 0.10	3.4	3.1	3.0	
Nitrate	10	(3)		0.74	< 0.50	< 0.50	< 0.50	
Phosphorus	-	-		< 0.50	< 2.5	< 2.5	< 2.5	
Sulfate	600	(3)		1	6.8	4.0	< 2.5	
Carbon Dioxide (CO ₂₎	-	-		1100	1200	1100	1000	
Alkalinity (CaCO ₃)	-	-		1148	1400	1200	1100	
Ricarbonate (CaCO _a)				11/12	1400	1200	1100	

			**RW-1		MV	V-4		¹ MW-8
			Aug-15	Aug-15	Aug-14	Aug-13	Aug-12	Apr-15
Total Metals (mg/l):								
Arsenic	0.01	(2)		< 0.020	< 0.020	< 0.020	< 0.02	
Barium	2.0	(2)		2	2.6	2.3	2.3	
Cadmium	0.005	(2)		< 0.0020	< 0.0020	< 0.0020	< 0.002	
Chromium	0.05	(3)		< 0.0060	0.024	0.034	0.014	
Lead	0.015	(2)		0.005	0.010	0.012	0.0077	
Selenium	0.05	(2)		< 0.050	< 0.050	< 0.050	< 0.05	
Silver	0.05	(3)		< 0.0050	< 0.0050	< 0.025	<0.005	
Mercury	0.002	(3)		< 0.00020	< 0.00020	< 0.00020	<0.0002	
Dissolved Metals (mg/l):								
Arsenic	0.1	(3)		< 0.020	< 0.010	0.015	0.0095	
Barium	1.0	(3)		2.3	2.1	2.1	2.0	
Cadmium	0.01	(3)		< 0.0020	< 0.0020	< 0.0020	< 0.002	
Calcium	-	-		170	150	150	160	
Chromium	0.05	(3)		< 0.0060	< 0.0060	< 0.0060	<0.006	
Copper	1.0	(3)		< 0.0060	0.023	0.017	<0.006	
Iron	1.0	(3)		6.2	12	12	7.9	
Lead	0.05	(3)		0.0065	0.0011	0.001	0.0014	
Magnesium	-	-		66	62	67	63	
Manganese	0.2	(3)		3.5	2.5	2.8	3.5	
Potassium	-	-		4.3	6.1	6.9	4.2	
Selenium	0.05	(3)		< 0.050	0.012	0.014	0.0079	
Silver	0.05	(3)		< 0.0050	< 0.0050	< 0.0050	<0.005	
Sodium	-	-		360	470	370	330	
Uranium	0.03	(3)		< 0.10	< 0.0010	< 0.0010	< 0.001	
Zinc	10	(3)		0.024	0.011	< 0.010	0.042	
Total Petroleum Hydrocarbons	(mg/l):							
Diesel Range Organics	-	-		2.1	0.84	3.3	0.48	
Gasoline Range Organics	-	-		14	5.4	7.0	9.8	
Motor Oil Range Organics	-	-		< 2.5	< 2.5	< 2.5	< 2.5	

Notes:

**

- (1) EPA Regional Screening Levels (April 2009) EPA Screening Leve
- (2) EPA Regional Screening Levels (April 2009) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 S
- (4) NMED TAP Water Screening Levels NM Risk Assessment Guidance
- = No screening level available

 * = Laboratory analyzed for combined Nitrate (As N) + Nitrite

 --- = Analyte inadvertently not included in sample analysis.

 --- = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.

 = 6/27/13 modification on FWGWM Plan to remove MW-8 are
 - = Columns hidden when there are 4 or more consecutive year

				MW				
			Λυα 4 <i>E</i>			Λι:~ 40	Λυα 4 <i>E</i>	Apr 45
Volatile Organic Compounds (ıa/l \		Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Apr-15
1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
	6.00E+01	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,1,1-Trichloroethane	1.00E+01	` '	< 2.0	< 2.0	< 2.0	< 2.0	< 200	
	5.00E+00	(3)	< 1.0	< 1.0				
1,1,2-Trichloroethane	2.50E+01	(2)			< 1.0	< 1.0	< 100	
1,1-Dichloroethane	5.00E+00	(3)	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 100 < 100	
1,1-Dichloropropene	5.00⊑+00	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,2,3-Trichlorobenzene		_	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0	< 2.0	< 2.0	< 2.0	< 200	
1,2,4-Trichlorobenzene	7.47E-03 7.00E+01	(4)	< 1.0					
	1.50E+01	(2)	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 100	
1,2,4-Trimethylbenzene	2.00E-01	(1)			< 1.0 < 2.0		3000 < 200	
1,2-Dibromo-3-chloropropane		(2)	< 2.0	< 2.0		< 2.0		
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,2-Dichlorobenzene	6.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,2-Dichloropropane	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 1.0	< 1.0	< 1.0	< 1.0	740	
1,3-Dichlorobenzene	-	- (4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,3-Dichloropropane	7.30E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1,4-Dichlorobenzene	7.50E+01	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
1-Methylnaphthalene	2.30E+00	(1)	< 4.0	< 4.0	< 4.0	< 4.0	< 400	
2,2-Dichloropropane	<u> </u>	-	< 2.0	< 2.0	< 2.0	< 2.0	< 200	
2-Butanone	5.56E+03	(4)	< 10	< 10	< 10	< 10	< 1000	
2-Chlorotoluene	7.30E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
2-Hexanone	<u> </u>	-	< 10	< 10	< 10	< 10	< 1000	
2-Methylnaphthalene	1.50E+02	(1)	< 4.0	< 4.0	< 4.0	< 4.0	< 400	
4-Chlorotoluene	2.60E+03	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
4-Isopropyltoluene	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
4-Methyl-2-pentanone	-	-	< 10	< 10	< 10	< 10	< 1000	
Acetone	1.41E+04	(4)	< 10	< 10	< 10	< 10	< 1000	
Benzene	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	4200	
Bromobenzene	2.00E+01	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Bromodichloromethane	1.34E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Bromoform		(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Bromomethane		(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 300	
Carbon disulfide	8.10E+02	(4)	< 10	< 10	< 10	< 10	< 1000	
Carbon Tetrachloride	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Chlorobenzene	1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Chloroethane	-	-	< 2.0	< 2.0	< 2.0	< 2.0	< 200	
Chloroform		(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Chloromethane	2.03E+01	(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 300	
cis-1,2-DCE	7.00E+01	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
cis-1,3-Dichloropropene	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Dibromochloromethane	1.68E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Dibromomethane	3.70E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Dichlorodifluoromethane	1.97E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Ethylbenzene	7.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	4000	

				MW				
		ŀ	Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Apr-15
Hexachlorobutadiene	8.60E-01	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Isopropylbenzene	4.47E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0	110	
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Methylene Chloride		(2)	< 3.0	< 3.0	< 3.0	< 3.0	< 300	
Naphthalene	1.65E+00	(4)	< 2.0	< 2.0	< 2.0	< 1.0	600	
n-Butylbenzene	1.00LT00	-	< 3.0	< 3.0	< 3.0	< 1.0	< 300	
n-Propylbenzene		_	< 1.0	< 1.0	< 1.0	< 2.0	470	
sec-Butylbenzene	_	_	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Styrene	1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
tert-Butylbenzene	1.00L10Z	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Tetrachloroethene (PCE)	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Toluene		(3)	< 1.0	< 1.0	< 1.0	< 1.0	13000	
trans-1,2-DCE	1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
trans-1,3-Dichloropropene	4.30E-01	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Trichloroethene (TCE)		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Trichlorofluoromethane	1.14E+03	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Vinyl chloride		(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 100	
Xylenes, Total		(3)	< 1.5	< 1.5	< 1.5	< 1.5	16000	
Semi Volatile Organic Compou		(0)	V 1.0	V 1.0	V 1.0	V 1.0	10000	
1,2,4-Trichlorobenzene	<u> </u>	(2)						
1,2-Dichlorobenzene		(2)						
1,3-Dichlorobenzene	-	-						
1,4-Dichlorobenzene	7.50E+01	(2)						
1-Methylnaphthalene	2.30E+00	(1)						
2,4,5-Trichlorophenol		(4)						
2,4,6-Trichlorophenol		(4)						
2,4-Dichlorophenol		(4)						
2,4-Dimethylphenol		(4)						
2,4-Dinitrophenol		(4)						
2,4-Dinitrotoluene	2.37E+00	(4)						
2,6-Dinitrotoluene	3.70E+01	(1)						
2-Chloronaphthalene	2.90E+03	(1)						
2-Chlorophenol		(4)						
2-Methylnaphthalene	1.50E+02	(1)						
2-Methylphenol		(1)						
2-Nitroaniline	1.10E+02	(1)						
2-Nitrophenol	-	-						
3,3'-Dichlorobenzidine	1.50E-01	(1)						
3+4-Methylphenol	1.80E+02	(1)						
3-Nitroaniline	-	-						
4,6-Dinitro-2-methylphenol	-	_						
4-Bromophenyl phenyl ether	-	_						
4-Chloro-3-methylphenol	-	_						
4-Chloroaniline	3.40E-01	(1)						
4-Chlorophenyl phenyl ether	J. TUL TUT	(1)						
4-Nitroaniline	3.40E+00	(1)						
4-Nitrophenol	-	-						
Acenaphthene	5.35E+02	(4)						
Acenaphthylene	-	-						
Aceriapininyiene								_

				RA1A	<i>I</i> -29			
			Aug. 45		1	Aug 40	Aug. 45	Anr 4E
A .= 11° · ·	1 205 : 04	(4)	Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Apr-15
Aniline	1.20E+01	(1)						
Anthracene	1.72E+03	(4)						
Azobenzene	1.20E-01	(1)						
Benzo(a)anthracene	3.43E-01	(4)						
Benzo(a)pyrene	2.00E-01	(2)						
Benzo(b)fluoranthene	3.43E-01	(4)						
Benzo(g,h,i)perylene	-	- (4)						
Benzo(k)fluoranthene	3.43E+00	(4)						
Benzoic acid	1.50E+05	(1)						
Benzyl alcohol	1.80E+04	(1)						
Bis(2-chloroethoxy)methane	1.10E+02	(1)						
Bis(2-chloroethyl)ether	1.36E-01	(4)						
Bis(2-chloroisopropyl)ether	9.76E+00	(4)						
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)						
Butyl benzyl phthalate	3.50E+01	(1)						
Carbazole	-	-						
Chrysene	3.43E+01	(4)						
Dibenz(a,h)anthracene	1.06E-01	(4)						
Dibenzofuran	-	-						
Diethyl phthalate	1.48E+04	(4)						
Dimethyl phthalate	-	-						
Di-n-butyl phthalate	8.85E+02	(4)						
Di-n-octyl phthalate	-	-						
Fluoranthene	8.02E+02	(4)						
Fluorene	2.88E+02	(4)						
Hexachlorobenzene	1.00E+00	(2)						
Hexachlorobutadiene	8.60E-01	(1)						
Hexachlorocyclopentadiene	5.00E+01	(2)						
Hexachloroethane	6.80E+00	(4)						
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)						
Isophorone	7.79E+02	(4)						
Naphthalene	1.65E+00	(4)						
Nitrobenzene	1.40E+00	(4)						
N-Nitrosodimethylamine	4.90E-03	(4)						
N-Nitrosodi-n-propylamine	9.60E-03	(1)						
N-Nitrosodiphenylamine	1.21E+02	(4)						
Pentachlorophenol	1.00E+00	(2)						
Phenanthrene	1.70E+02	(4)						
Phenol	5.00E+00	(3)						
Pyrene	1.17E+02	(4)						
Pyridine		(1)						
General Chemistry (mg/l):		(- /						
Fluoride	1.6	(3)	0.26	0.27	0.26	0.32	< 0.10	
Chloride	250	(3)	33	48	110	44	230	
Nitrite	1	(2)	< 0.10	0.34	< 0.10	< 0.10	< 2.0	
Bromide	-	(-)	0.34	< 0.10	0.64	0.28	< 0.10	
Nitrate	10	(3)	0.5	0.48	7.2	0.59	1	
Phosphorus	-	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Sulfate	600	(3)	160	210	290	160	36	
Carbon Dioxide (CO ₂₎	000	(3)						
	-	-	230	260	240	230	1400	
Alkalinity (CaCO ₃)	-	-	250.8	280	260	250	1493	
Bicarbonate (CaCO ₂)			250.8	280	260	250	1/03	1

				MW	1-29			
		ı	Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Apr-15
Total Metals (mg/l):			Ĭ Š		J		Ĭ	
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	
Barium	2.0	(2)	0.041	0.026	0.14	0.070	1.1	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	<0.006	< 0.0060	
Lead	0.015	(2)	< 0.0050	< 0.0050	0.0037	<0.005	< 0.0050	
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	<0.05	< 0.050	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.025	<0.005	< 0.0050	
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	<0.0002	< 0.00020	
Dissolved Metals (mg/l):								
Arsenic	0.1	(3)	< 0.020	0.0013	< 0.0050	0.0013	< 0.020	
Barium	1.0	(3)	< 0.020	0.021	0.037	0.02	1	
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020	
Calcium	-	-	74	83	130	69	160	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060	
Copper	1.0	(3)	< 0.0060	0.0022	< 0.0050	<0.006	< 0.0060	
Iron	1.0	(3)	< 0.020	< 0.020	< 0.020	<0.02	1.5	
Lead	0.05	(3)	< 0.0050	< 0.0010	< 0.0010	< 0.001	0.0074	
Magnesium	-	-	17	19	30	16	52	
Manganese	0.2	(3)	1.3	1.7	2.3	1.2	2.9	
Potassium	-	-	2.2	2.2	3.5	2.8	3.5	
Selenium	0.05	(3)	< 0.050	0.0025	< 0.0050	0.0023	< 0.050	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050	
Sodium	-	-	99	130	130	120	560	
Uranium	0.03	(3)	< 0.10	0.0034	0.004	0.0022	< 0.10	
Zinc	10	(3)	0.022	< 0.010	< 0.010	0.08	0.034	
Total Petroleum Hydrocarbons	(mg/l):							
Diesel Range Organics	-	-	< 0.20	< 0.20	< 0.20	< 0.20	7.7	
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050	< 0.050	120	
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	

Notes:

**

- (1) EPA Regional Screening Levels (April 2009) EPA Screening Levels
- (2) EPA Regional Screening Levels (April 2009) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101
- (4) NMED TAP Water Screening Levels NM Risk Assessment Guidar
- = No screening level available

 * = Laboratory analyzed for combined Nitrate (As N) + Nitrite

 --- = Analyte inadvertently not included in sample analysis.

 --- = Analysis not required and/or well contains separate phas
 - = Analytical result exceeds the respective screening level.= 6/27/13 modification on FWGWM Plan to remove MW-8
 - = Columns hidden when there are 4 or more consecutive y

				MW	<i>I</i> -44			
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Apr-15
Volatile Organic Compounds (ug/L)		7 tag 10	7109 11	7149 10	7.09.12	7.09.10	7,01,10
1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,1,1-Trichloroethane	6.00E+01	(3)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	
1,1,2-Trichloroethane	5.00E+00	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethane	2.50E+01	(3)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,1-Dichloroethene	5.00E+00	(3)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,1-Dichloropropene	-	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2,3-Trichlorobenzene	-	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2,3-Trichloropropane	7.47E-03	(4)	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2,4-Trimethylbenzene	1.50E+01	(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dichlorobenzene	6.00E+02	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2-Dichloropropane	5.00E+00	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,3-Dichlorobenzene	-	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,3-Dichloropropane	7.30E+02	(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,4-Dichlorobenzene	7.50E+01	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
1-Methylnaphthalene	2.30E+00	(1)	< 8.0	< 4.0	< 4.0	< 4.0	< 4.0	
2,2-Dichloropropane	-	-	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	
2-Butanone	5.56E+03	(4)	< 20	< 10	< 10	< 10	< 10	
2-Chlorotoluene	7.30E+02	(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
2-Hexanone	-	-	< 20	< 10	< 10	< 10	< 10	
2-Methylnaphthalene	1.50E+02	(1)	< 8.0	< 4.0	< 4.0	< 4.0	< 4.0	
4-Chlorotoluene	2.60E+03	(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
4-Isopropyltoluene	-	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
4-Methyl-2-pentanone	-	-	< 20	< 10	< 10	< 10	< 10	
Acetone	1.41E+04	(4)	< 20	< 10	< 10	< 10	< 10	
Benzene	5.00E+00	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0
Bromobenzene		(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Bromodichloromethane	1.34E+00	(4)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Bromoform		(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Bromomethane	7.54E+00	(4)	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	
Carbon disulfide	8.10E+02	(4)	< 20	< 10	< 10	< 10	< 10	
Carbon Tetrachloride	5.00E+00	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Chlorobenzene	1.00E+02	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Chloroethane	-	-	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	
Chloroform	1.00E+02	(3)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Chloromethane	2.03E+01	(4)	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	
cis-1,2-DCE	7.00E+01	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
cis-1,3-Dichloropropene	-	-	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Dibromochloromethane	1.68E+00	(4)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Dibromomethane	3.70E+02	(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Dichlorodifluoromethane	1.97E+02	(4)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	7.00E+02	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0

				N/IN	<i>I</i> -44			
			Aug 15			Aug 12	Aug 15	Apr 15
l love chloreby to dien e	0.005.04	(4)	Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Apr-15
Hexachlorobutadiene	8.60E-01	(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Isopropylbenzene	4.47E+02	(4)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	4.0
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	< 2.0	1.0	1.2	2.0	< 1.0	<1.0
Methylene Chloride		(2)	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	
Naphthalene	1.65E+00	(4)	< 4.0	< 2.0	< 2.0	< 1.0	< 2.0	
n-Butylbenzene	-	-	< 6.0	< 3.0	< 3.0	< 1.0	< 3.0	
n-Propylbenzene	-	-	< 2.0	< 1.0	< 1.0	< 2.0	< 1.0	
sec-Butylbenzene	-	- (0)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Styrene	1.00E+02	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
tert-Butylbenzene	-	- (2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Tetrachloroethene (PCE)		(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	7.50E+02	(3)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0
trans-1,2-DCE	1.00E+02	(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
trans-1,3-Dichloropropene	4.30E-01	(1)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Trichloroethene (TCE)		(2)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Trichlorofluoromethane		(4)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Vinyl chloride		(3)	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	
Xylenes, Total		(3)	< 3.0	< 1.5	< 1.5	< 1.5	< 1.5	<1.5
Semi Volatile Organic Compou	<u> </u>							
1,2,4-Trichlorobenzene		(2)						
1,2-Dichlorobenzene	6.00E+02	(2)						
1,3-Dichlorobenzene	-	-						
1,4-Dichlorobenzene	7.50E+01	(2)						
1-Methylnaphthalene	2.30E+00	(1)						
2,4,5-Trichlorophenol	1.17E+03	(4)						
2,4,6-Trichlorophenol	1.19E+01	(4)						
2,4-Dichlorophenol	4.53E+01	(4)						
2,4-Dimethylphenol	3.54E+02	(4)						
2,4-Dinitrophenol	3.88E+01	(4)						
2,4-Dinitrotoluene	2.37E+00	(4)						
2,6-Dinitrotoluene	3.70E+01	(1)						
2-Chloronaphthalene	2.90E+03	(1)						
2-Chlorophenol	9.10E+01	(4)						
2-Methylnaphthalene	1.50E+02	(1)						
2-Methylphenol	1.80E+03	(1)						
2-Nitroaniline	1.10E+02	(1)						
2-Nitrophenol	-	-						
3,3'-Dichlorobenzidine	1.50E-01	(1)						
3+4-Methylphenol	1.80E+02	(1)						
3-Nitroaniline	-	-						
4,6-Dinitro-2-methylphenol	-	-						
4-Bromophenyl phenyl ether	-	-						
4-Chloro-3-methylphenol	-	-						
4-Chloroaniline	3.40E-01	(1)						
4-Chlorophenyl phenyl ether	-	-						
4-Nitroaniline	3.40E+00	(1)						
4-Nitrophenol	-	-						
Acenaphthene	5.35E+02	(4)						
Acenaphthylene	-	-						
, 100/100/101/01/01					1		•	

							2015 Gr	Janawa
				MV				
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Apr-1
Aniline	1.20E+01	(1)						
Anthracene	1.72E+03	(4)						
Azobenzene	1.20E-01	(1)						
Benzo(a)anthracene	3.43E-01	(4)						
Benzo(a)pyrene	2.00E-01	(2)						
Benzo(b)fluoranthene	3.43E-01	(4)						
Benzo(g,h,i)perylene	-	-						
Benzo(k)fluoranthene	3.43E+00	(4)						
Benzoic acid	1.50E+05	(1)						
Benzyl alcohol	1.80E+04	(1)						
Bis(2-chloroethoxy)methane	1.10E+02	(1)						
Bis(2-chloroethyl)ether	1.36E-01	(4)						
Bis(2-chloroisopropyl)ether	9.76E+00	(4)						
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)						
Butyl benzyl phthalate	3.50E+01	(1)						
Carbazole	-	-						
Chrysene	3.43E+01	(4)						
Dibenz(a,h)anthracene	1.06E-01	(4)						
Dibenzofuran	-	-						
Diethyl phthalate	1.48E+04	(4)						
Dimethyl phthalate	-	-						
Di-n-butyl phthalate	8.85E+02	(4)						
Di-n-octyl phthalate	-	-						
Fluoranthene	8.02E+02	(4)						
Fluorene	2.88E+02	(4)						
Hexachlorobenzene	1.00E+00	(2)						
Hexachlorobutadiene	8.60E-01	(1)						
Hexachlorocyclopentadiene	5.00E+01	(2)						
Hexachloroethane	6.80E+00	(4)						
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)						
Isophorone		(4)						
Naphthalene	1.65E+00	(4)						
Nitrobenzene	1.40E+00	(4)						
N-Nitrosodimethylamine	4.90E-03	(4)						
N-Nitrosodi-n-propylamine	9.60E-03	(1)						
N-Nitrosodiphenylamine	1.21E+02	(4)						
Pentachlorophenol	1.00E+00	(2)						
Phenanthrene	1.70E+02	(4)						
Phenol		(3)						
Pyrene		(4)						
Pyridine		(1)						
General Chemistry (mg/l):	J./ ULTUI	(1)						
Fluoride	1.6	(3)	< 0.10	0.26	0.35	0.16	0.44	
Chloride	250	(3)	55	48	59	68	560	
Nitrite	1		< 0.10	< 0.10	< 0.10	<1.0	< 2.0	
Bromide	I	(2)	0.10	0.10	0.10	0.22	2.2	
	10	(3)			0.22		19	
Nitrate	10	(3)	0.13	< 0.10		< 0.1	-	
Phosphorus	-	- (2)	< 10	< 10	< 10	< 10	< 10	
Sulfate	600	(3)	3000	3200	2800	3000	1100	
Carbon Dioxide (CO ₂₎	-	-	340	330	350	360	200	
Alkalinity (CaCO ₃)	-	-	377.6	360	380	380	207.5	
Ricarbonate (CaCO _a)			377.6	360	380	380	207.5	

				MW	<i>I</i> -44		MW-44					
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Apr-15				
Total Metals (mg/l):												
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.02	< 0.020					
Barium	2.0	(2)	0.19	0.012	0.32	0.22	0.099					
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020					
Chromium	0.05	(3)	0.029	< 0.0060	0.046	0.037	< 0.0060					
Lead	0.015	(2)	0.0053	< 0.0050	0.023	0.010	< 0.0050					
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	< 0.05	0.069					
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.025	< 0.005	< 0.0050					
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.0002	< 0.00020					
Dissolved Metals (mg/l):												
Arsenic	0.1	(3)	< 0.020	< 0.0010	< 0.020	< 0.001	< 0.020					
Barium	1.0	(3)	< 0.020	0.0094	0.014	0.015	< 0.020					
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020					
Calcium	-	-	470	460	470	490	320					
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060					
Copper	1.0	(3)	< 0.0060	< 0.020	0.034	< 0.006	< 0.0060					
Iron	1.0	(3)	0.036	< 0.020	0.37	0.35	2.2					
Lead	0.05	(3)	< 0.0050	< 0.0010	< 0.0010	< 0.001	< 0.0050					
Magnesium	-	-	59	65	56	58	77					
Manganese	0.2	(3)	0.99	0.47	0.82	0.91	3.9					
Potassium	-	-	7.9	7.3	8.6	8.8	4.7					
Selenium	0.05	(3)	< 0.050	0.0012	< 0.020	0.0022	0.09					
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050					
Sodium	-	-	960	900	910	950	560					
Uranium	0.03	(3)	< 0.10	0.0013	0.0019	0.0015	< 0.10					
Zinc	10	(3)	< 0.020	< 0.010	< 0.010	0.22	0.066					
Total Petroleum Hydrocarbons	(mg/l):											
Diesel Range Organics	-	-	< 0.20	< 0.20	0.26	0.46	< 0.20					
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050	< 0.05	< 0.050					
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5					

**

- (1) EPA Regional Screening Levels (April 2009) EPA Screening Level
- (2) EPA Regional Screening Levels (April 2009) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101
- (4) NMED TAP Water Screening Levels NM Risk Assessment Guidan
- = No screening level available

 * = Laboratory analyzed for combined Nitrate (As N) + Nitrite
 --- = Analyte inadvertently not included in sample analysis.

 --- = Analysis not required and/or well contains separate phas
 - = Analytical result exceeds the respective screening level.= 6/27/13 modification on FWGWM Plan to remove MW-8
 - = Columns hidden when there are 4 or more consecutive y

			Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compounds (u	<u> </u>					
1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 1.0		< 1.0	
1,1,1-Trichloroethane	6.00E+01	(3)	< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 2.0		< 2.0	
1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0		< 1.0	
1,1-Dichloroethane	2.50E+01	(3)	< 1.0		< 1.0	
1,1-Dichloroethene	5.00E+00	(3)	< 1.0		< 1.0	
1,1-Dichloropropene	-	-	< 1.0		< 1.0	
1,2,3-Trichlorobenzene	-	-	< 1.0		< 1.0	
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0		< 2.0	
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 1.0		< 1.0	
1,2,4-Trimethylbenzene	1.50E+01	(1)	< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 2.0		< 2.0	
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0		< 1.0	
1,2-Dichlorobenzene	6.00E+02	(2)	< 1.0		< 1.0	
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 1.0		< 1.0	
1,2-Dichloropropane	5.00E+00	(2)	< 1.0		< 1.0	
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 1.0		< 1.0	
1,3-Dichlorobenzene	-	-	< 1.0		< 1.0	
1,3-Dichloropropane	7.30E+02	(1)	< 1.0		< 1.0	
1,4-Dichlorobenzene	7.50E+01	(2)	< 1.0		< 1.0	
1-Methylnaphthalene	2.30E+00	(1)	< 4.0		< 4.0	
2,2-Dichloropropane	-	-	< 2.0		< 2.0	
2-Butanone	5.56E+03	(4)	< 10		< 10	
2-Chlorotoluene	7.30E+02	(1)	< 1.0		< 1.0	
2-Hexanone	-	-	< 10		< 10	
2-Methylnaphthalene	1.50E+02	(1)	< 4.0		< 4.0	
4-Chlorotoluene	2.60E+03	(1)	< 1.0		< 1.0	
4-Isopropyltoluene	-	-	< 1.0		< 1.0	
4-Methyl-2-pentanone	-	-	< 10		< 10	
Acetone	1.41E+04	(4)	< 10		< 10	
	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	2.00E+01	(1)	< 1.0		< 1.0	
Bromodichloromethane	1.34E+00	(4)	< 1.0		< 1.0	
Bromoform	8.50E+00	(1)	< 1.0		< 1.0	
Bromomethane	7.54E+00	(4)	< 3.0		< 3.0	
Carbon disulfide	8.10E+02	(4)	< 10		< 10	
Carbon Tetrachloride	5.00E+00	(2)	< 1.0		< 1.0	
Chlorobenzene	1.00E+02	(2)	< 1.0		< 1.0	
Chloroethane	-	-	< 2.0		< 2.0	
Chloroform	1.00E+02	(3)	< 1.0		< 1.0	
Chloromethane	2.03E+01	(4)	< 3.0		< 3.0	
cis-1,2-DCE	7.00E+01	(2)	< 1.0		< 1.0	
cis-1,3-Dichloropropene	-	-	< 1.0		< 1.0	
Dibromochloromethane	1.68E+00	(4)	< 1.0		< 1.0	
Dibromomethane	3.70E+02	(1)	< 1.0		< 1.0	
Dichlorodifluoromethane	1.97E+02	(4)	< 1.0		< 1.0	
Ethylbenzene	7.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	8.60E-01	(1)	< 1.0		< 1.0	
Isopropylbenzene	4.47E+02	(4)	< 1.0		< 1.0	
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0
Methylene Chloride		(2)	< 3.0		< 3.0	
Naphthalene	1.65E+00	(4)	< 2.0		< 2.0	

			Aug-15	Apr-15	Aug-14	Apr-14
Semi Volatile Organic Compoun	nds (ug/l):		J -		<u> </u>	
1,2,4-Trichlorobenzene	7.00E+01	(2)				
1,2-Dichlorobenzene	6.00E+02	(2)				
1,3-Dichlorobenzene	-	-				
1,4-Dichlorobenzene	7.50E+01	(2)				
1-Methylnaphthalene	2.30E+00	(1)				
2,4,5-Trichlorophenol	1.17E+03	(4)				
2,4,6-Trichlorophenol	1.19E+01	(4)				
2,4-Dichlorophenol	4.53E+01	(4)				
2,4-Dimethylphenol	3.54E+02	(4)				
2,4-Dinitrophenol	3.88E+01	(4)				
2,4-Dinitrotoluene	2.37E+00	(4)				
2,6-Dinitrotoluene	3.70E+01	(1)				
2-Chloronaphthalene	2.90E+03	(1)				
2-Chlorophenol	9.10E+01	(4)				
2-Methylnaphthalene	1.50E+02	(1)				
2-Methylphenol	1.80E+03	(1)				
2-Nitroaniline	1.10E+02	(1)				
2-Nitrophenol	-	-				
3,3´-Dichlorobenzidine	1.50E-01	(1)				
3+4-Methylphenol	1.80E+02	(1)				
3-Nitroaniline	-	-				
4,6-Dinitro-2-methylphenol	-	-				
4-Bromophenyl phenyl ether	-					
4-Chloro-3-methylphenol	-	-				
4-Chloroaniline	3.40E-01	(1)				
4-Chlorophenyl phenyl ether	-	-				
4-Nitroaniline	3.40E+00	(1)				
4-Nitrophenol	-	-				
Acenaphthene	5.35E+02	(4)				
Acenaphthylene	-	-				
Aniline	1.20E+01	(1)				
Anthracene	1.72E+03	(4)				
Azobenzene	1.20E-01	(1)				
Benzo(a)anthracene	3.43E-01	(4)				
Benzo(a)pyrene	2.00E-01	(2)				
Benzo(b)fluoranthene	3.43E-01	(4)				
Benzo(g,h,i)perylene		-				
Benzo(k)fluoranthene	3.43E+00	(4)				
Benzoic acid	1.50E+05	(1)				
Benzyl alcohol	1.80E+04	(1)				
Bis(2-chloroethoxy)methane	1.10E+02	(1)				
Bis(2-chloroethyl)ether	1.36E-01	(4)				
Bis(2-chloroisopropyl)ether	9.76E+00	(4)				
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)				——
Butyl benzyl phthalate	3.50E+01	(1)				——
Carbazole		-				T
Chrysene	3.43E+01	(4)				
Dibenz(a,h)anthracene	1.06E-01	(4)				
Dibenz(a,n)animacene	-	- (4)				
Diethyl phthalate	1.48E+04	(4)				
Dimethyl phthalate	+UL+U4	(4)				
Dimetnyl phthalate	- 8.85E+02	(4)				
Di-n-butyi pritnalate	0.00⊏+02	(4)				

						N
			Aug-15	Apr-15	Aug-14	Apr-14
Naphthalene	1.65E+00	(4)				
Nitrobenzene	1.40E+00	(4)				
N-Nitrosodimethylamine	4.90E-03	(4)				
N-Nitrosodi-n-propylamine	9.60E-03	(1)				
N-Nitrosodiphenylamine	1.21E+02	(4)				
Pentachlorophenol	1.00E+00	(2)				
Phenanthrene	1.70E+02	(4)				
Phenol	5.00E+00	(3)				
Pyrene	1.17E+02	(4)				
Pyridine	3.70E+01	(1)				
General Chemistry (mg/l):		. , ,				
Fluoride	1.6	(3)	0.51		0.49	
Chloride	250	(3)	11		14	
Nitrite	1	(2)	< 0.10		< 0.10	
Bromide	-	-	< 0.10		0.12	
Nitrate	10	(3)	0.54		0.43	
Phosphorus	-	-	< 0.50		< 0.50	
Sulfate	600	(3)	110		110	
Carbon Dioxide (CO ₂)	-	-	230		270	
Alkalinity (CaCO ₃)	-	-	246.5		300	
Bicarbonate (CaCO ₃)	-	-	246.5		300	
Total Metals (mg/l):						
Arsenic	0.01	(2)	< 0.020		< 0.020	
Barium	2	(2)	0.031		0.072	
Cadmium	0.005	(2)	< 0.0020		< 0.0020	
Chromium	0.05	(3)	< 0.0060		< 0.0060	
Lead	0.015	(2)	< 0.0050		< 0.0050	
Selenium	0.05	(2)	< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050		< 0.0050	
Mercury	0.002	(3)	< 0.00020		< 0.00020	
Dissolved Metals (mg/l):						
Arsenic	0.1	(3)	< 0.020		0.0011	
Barium	1	(3)	0.031		0.027	
Cadmium	0.01	(3)	< 0.0020		< 0.0020	
Calcium	-	-	77		71	
Chromium	0.05	(3)	< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060		< 0.0060	
Iron	1	(3)	< 0.020		0.053	
Lead	0.05	(3)	< 0.0050		< 0.0010	
Magnesium	-	-	17		16	
Manganese	0.2	(3)	0.037		0.11	
Potassium	-	-	2.2		2.7	
Selenium	0.05	(3)	< 0.050		0.0015	
Silver	0.05	(3)	< 0.0050		< 0.0050	
Sodium	-	-	68		81	
Uranium	0.03	(3)	< 0.10		0.0027	
Zinc	10	(3)	0.027		< 0.010	
Total Petroleum Hydrocarbons ((mg/l):					
Diesel Range Organics	-	-	< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5
			Notes:			_

Notes:

(1) EPA - Regional Screening Levels (April

				MW	I-27	
			Aug-15	Aug-14	Aug-13	Aug-12
Volatile Organic Compounds (up	g/L)					
1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 2.0	< 2.0	< 1.0	< 1.0
1,1,1-Trichloroethane	6.00E+01	(3)	< 2.0	< 2.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 4.0	< 4.0	< 2.0	< 2.0
1,1,2-Trichloroethane	5.00E+00	(2)	< 2.0	< 2.0	< 1.0	< 1.0
1,1-Dichloroethane	2.50E+01	(3)	< 2.0	< 2.0	< 1.0	< 1.0
1,1-Dichloroethene	5.00E+00	(3)	< 2.0	< 2.0	< 1.0	< 1.0
1,1-Dichloropropene	-	-	< 2.0	< 2.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	-	-	< 2.0	< 2.0	< 1.0	< 1.0
1,2,3-Trichloropropane	7.47E-03	(4)	< 4.0	< 4.0	< 2.0	< 2.0
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 2.0	< 2.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	1.50E+01	(1)	< 2.0	< 2.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 4.0	< 4.0	< 2.0	< 2.0
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 2.0	< 2.0	< 1.0	< 1.0
1,2-Dichlorobenzene	6.00E+02	(2)	< 2.0	< 2.0	< 1.0	< 1.0
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 2.0	< 2.0	< 1.0	< 1.0
1,2-Dichloropropane	5.00E+00	(2)	< 2.0	< 2.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 2.0	< 2.0	< 1.0	< 1.0
1,3-Dichlorobenzene	-	-	< 2.0	< 2.0	< 1.0	< 1.0
1,3-Dichloropropane	7.30E+02	(1)	< 2.0	< 2.0	< 1.0	< 1.0
1,4-Dichlorobenzene	7.50E+01	(2)	< 2.0	< 2.0	< 1.0	< 1.0
1-Methylnaphthalene	2.30E+00	(1)	< 8.0	< 8.0	< 4.0	< 4.0
2,2-Dichloropropane	-	-	< 4.0	< 4.0	< 2.0	< 2.0
2-Butanone	5.56E+03	(4)	< 20	< 20	< 10	< 10
2-Chlorotoluene	7.30E+02	(1)	< 2.0	< 2.0	< 1.0	< 1.0
2-Hexanone	-	-	< 20	< 20	< 10	< 10
2-Methylnaphthalene	1.50E+02	(1)	< 8.0	< 8.0	< 4.0	< 4.0
4-Chlorotoluene	2.60E+03	(1)	< 2.0	< 2.0	< 1.0	< 1.0
4-Isopropyltoluene	-	-	< 2.0	< 2.0	< 1.0	< 1.0
4-Methyl-2-pentanone	4 445 . 04	- (4)	< 20	< 20	< 10	< 10
Acetone	1.41E+04	(4)	< 20	< 20	< 10	< 10
	5.00E+00		< 2.0	< 2.0	< 1.0	< 1.0
Bromobenzene Bromodichloromethane	2.00E+01 1.34E+00	(1)	< 2.0	< 2.0	< 1.0 < 1.0	< 1.0
Bromoform	8.50E+00	(4)	< 2.0 < 2.0	< 2.0 < 2.0	< 1.0	< 1.0 < 1.0
Bromomethane	7.54E+00	(1)	< 6.0	< 6.0	< 3.0	< 3.0
Carbon disulfide	8.10E+02	(4)	< 20	< 20	< 10	< 10
Carbon Tetrachloride	5.00E+00	(2)	< 2.0	< 2.0	< 1.0	< 1.0
Chlorobenzene	1.00E+02	(2)	< 2.0	< 2.0	< 1.0	< 1.0
Chloroethane	-	(2)	< 4.0	< 4.0	< 2.0	< 2.0
Chloroform	1.00E+02	(3)	< 2.0	< 2.0	< 1.0	< 1.0
Chloromethane	2.03E+01	(4)	< 6.0	< 6.0	< 3.0	< 3.0
cis-1,2-DCE	7.00E+01	(2)	< 2.0	< 2.0	< 1.0	< 1.0
cis-1,3-Dichloropropene	-	(<i>-</i>)	< 2.0	< 2.0	< 1.0	< 1.0
Dibromochloromethane	1.68E+00	(4)	< 2.0	< 2.0	< 1.0	< 1.0
Dibromomethane	3.70E+02	(1)	< 2.0	< 2.0	< 1.0	< 1.0
Dichlorodifluoromethane	1.97E+02	(4)	< 2.0	< 2.0	< 1.0	< 1.0
Ethylbenzene	7.00E+02	(2)	< 2.0	< 2.0	< 1.0	< 1.0
Hexachlorobutadiene	8.60E-01	(1)	< 2.0	< 2.0	< 1.0	< 1.0
Isopropylbenzene	4.47E+02	(4)	< 2.0	< 2.0	< 1.0	< 1.0
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	< 2.0	< 2.0	< 1.0	< 1.0
Methylene Chloride	5.00E+00	(2)	< 6.0	< 6.0	< 3.0	< 3.0
Naphthalene	1.65E+00	(4)	< 4.0	< 4.0	< 2.0	< 3.0

				MW	I-27	
			Aug-15	Aug-14	Aug-13	Aug-12
Semi Volatile Organic Compour	nds (ug/l):					
1,2,4-Trichlorobenzene	7.00E+01	(2)				
1,2-Dichlorobenzene	6.00E+02	(2)				
1,3-Dichlorobenzene	-	-				
1,4-Dichlorobenzene	7.50E+01	(2)				
1-Methylnaphthalene	2.30E+00	(1)				
2,4,5-Trichlorophenol	1.17E+03	(4)				
2,4,6-Trichlorophenol	1.19E+01	(4)				
2,4-Dichlorophenol	4.53E+01	(4)				
2,4-Dimethylphenol	3.54E+02	(4)				
2,4-Dinitrophenol	3.88E+01	(4)				
2,4-Dinitrotoluene	2.37E+00	(4)				
2,6-Dinitrotoluene	3.70E+01	(1)				
2-Chloronaphthalene	2.90E+03	(1)				
2-Chlorophenol	9.10E+01	(4)				
2-Methylnaphthalene	1.50E+02	(1)				
2-Methylphenol	1.80E+03	(1)				
2-Nitroaniline	1.10E+02	(1)				
2-Nitrophenol	-	-				
3,3´-Dichlorobenzidine	1.50E-01	(1)				
3+4-Methylphenol	1.80E+02	(1)				
3-Nitroaniline	-	-				
4,6-Dinitro-2-methylphenol	-	-				
4-Bromophenyl phenyl ether	-	-				
4-Chloro-3-methylphenol	-	-				
4-Chloroaniline	3.40E-01	(1)				
4-Chlorophenyl phenyl ether	-	-				
4-Nitroaniline	3.40E+00	(1)				
4-Nitrophenol	-	-				
Acenaphthene	5.35E+02	(4)				
Acenaphthylene	-	-				
Aniline	1.20E+01	(1)				
Anthracene	1.72E+03	(4)				
Azobenzene	1.20E-01	(1)				
Benzo(a)anthracene	3.43E-01	(4)				
Benzo(a)pyrene	2.00E-01	(2)				
Benzo(b)fluoranthene	3.43E-01	(4)				
Benzo(g,h,i)perylene	-	-				
Benzo(k)fluoranthene	3.43E+00	(4)				
Benzoic acid	1.50E+05	(1)				
Benzyl alcohol	1.80E+04	(1)				
Bis(2-chloroethoxy)methane	1.10E+02	(1)				
Bis(2-chloroethyl)ether	1.36E-01	(4)				
Bis(2-chloroisopropyl)ether	9.76E+00	(4)				
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)				
Butyl benzyl phthalate	3.50E+01	(1)				
Carbazole	5.50L F01	-				
Chrysene	3.43E+01					
Dibenz(a,h)anthracene	1.06E-01	(4)				
Dibenz(a,n)anthracene Dibenzofuran	1.00⊏-01	(4)				
	1.400.04	(4)				
Diethyl phthalate	1.48E+04	(4)				
Dimethyl phthalate	- 0.055 00	- (4)				
Di-n-butyl phthalate	8.85E+02	(4)				

		!	Aug-15	Aug-14	/-27 Aug-13	Aug-12
Naphthalene	1.65E+00	(4)				
Nitrobenzene		(4)				
N-Nitrosodimethylamine	4.90E-03	(4)				
N-Nitrosodi-n-propylamine	9.60E-03	(1)				
N-Nitrosodiphenylamine	1.21E+02	(4)				
Pentachlorophenol	1.00E+00	(2)				
Phenanthrene	1.70E+02	(4)				
Phenol		(3)				
Pyrene	1.17E+02	(4)				
Pyridine		(1)				
General Chemistry (mg/l):	0.7 5 = 1	(.,				
Fluoride	1.6	(3)	< 0.50	0.19	0.16	0.14
Chloride	250	(3)	450	690	590	480
Nitrite	1	(2)	< 0.50	< 2.0	< 2.0	< 2.0
Bromide	-	(~)	4.4	6.2	5.6	4.3
Nitrate	10	(3)	< 0.50	< 0.10	< 0.10	< 0.10
Phosphorus	-	(3)	< 2.5	< 10	< 10	< 10
Sulfate	600	(3)	< 2.5 2200	3100	3200	1800
Carbon Dioxide (CO ₂)	-	(3)	490	230	190	280
Alkalinity (CaCO ₃)	_	-	527.8	220	200	310
Bicarbonate (CaCO ₃)		-	527.8	220	200	310
, ,,			321.0	220	200	310
Total Metals (mg/l):	0.01	(2)	.0.020	0.020	0.020	-0.02
Arsenic		(2)	< 0.020	< 0.020	< 0.020	<0.02
Barium	2	(2)	0.068	0.058	0.072	0.091
Cadmium	0.005	(2)	< 0.0020	< 0.020	< 0.0020	<0.002
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	<0.006
Lead	0.015	(2)	< 0.0050	<0.0050	< 0.0050	<0.005
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	<0.05
Silver		(3)	< 0.0050	<0.0050	< 0.0050	<0.005
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	<0.0002
Dissolved Metals (mg/l):		(2)				
Arsenic		(3)	< 0.020	0.016	0.0038	0.0030
Barium		(3)	0.054	0.053	0.057	0.045
Cadmium		(3)	< 0.0020	< 0.0020	< 0.0020	<0.0020
Calcium		-	590	700	820	470
Chromium		(3)	< 0.0060	< 0.0060	< 0.0060	<0.006
Copper		(3)	< 0.0060	< 0.0060	< 0.020	<0.006
Iron		(3)	0.13	0.36	0.19	0.35
Lead		(3)	< 0.0050	< 0.010	< 0.0010	<0.0050
Magnesium		-	93	110	110	68
Manganese		(3)	6	0.80	1.3	0.95
Potassium		-	5.8	3.3	0.015	3.4
Selenium	0.05	(3)	< 0.050	0.054	1.2	<0.020
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	<0.005
Sodium		-	730	910	900	630
Uranium	0.03	(3)	< 0.10	<0.010	0.0051	0.0021
Zinc		(3)	< 0.020	< 0.010	0.01	0.11
Total Petroleum Hydrocarbons (
Diesel Range Organics	<u> </u>	-	3.9	0.34	< 0.20	< 0.20
Gasoline Range Organics		-	0.25	< 0.050	< 0.050	0.21
Motor Oil Range Organics		-	< 2.5	< 2.5	< 2.5	< 2.5
mote. Children and Chigan			Notes:	`		

Notes:

(1) EPA - Regional Screening Levels (April 2)

			20.	3 Ground	water ite
				MW	
			Aug-15	Aug-14	Aug-13
Volatile Organic Compounds (ug/L)					
1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 1.0	< 5.0	< 5.0
1,1,1-Trichloroethane	6.00E+01	(3)	< 1.0	< 5.0	< 5.0
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 2.0	< 10	< 10
1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0	< 5.0	< 5.0
1,1-Dichloroethane	2.50E+01	(3)	< 1.0	< 5.0	< 5.0
1,1-Dichloroethene	5.00E+00	(3)	< 1.0	< 5.0	< 5.0
1,1-Dichloropropene	-	-	< 1.0	< 5.0	< 5.0
1,2,3-Trichlorobenzene	-	-	< 1.0	< 5.0	< 5.0
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0	< 10	< 10
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 1.0	< 5.0	< 5.0
1,2,4-Trimethylbenzene	1.50E+01	(1)	390	230	270
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 2.0	< 10	< 10
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0	< 5.0	< 5.0
1,2-Dichlorobenzene	6.00E+02	(2)	< 1.0	< 5.0	< 5.0
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 1.0	< 5.0	< 5.0
1,2-Dichloropropane	5.00E+00	(2)	< 1.0	< 5.0	< 5.0
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 1.0	< 5.0	< 5.0
1,3-Dichlorobenzene	-	-	< 1.0	< 5.0	< 5.0
1,3-Dichloropropane	7.30E+02	(1)	< 1.0	< 5.0	< 5.0
1,4-Dichlorobenzene	7.50E+01	(2)	< 1.0	< 5.0	< 5.0
1-Methylnaphthalene	2.30E+00	(1)	16	< 20	< 20
2,2-Dichloropropane	-	-	< 2.0	< 10	< 10
2-Butanone	5.56E+03	(4)	< 10	< 50	< 50
2-Chlorotoluene	7.30E+02	(1)	< 1.0	< 5.0	< 5.0
2-Hexanone	-	-	< 10	< 50	< 50
2-Methylnaphthalene	1.50E+02	(1)	18	< 20	< 20
4-Chlorotoluene	2.60E+03	(1)	< 1.0	< 5.0	< 5.0
4-Isopropyltoluene	-	-	5	< 5.0	5.1
4-Methyl-2-pentanone	-	-	< 10	< 50	< 50
Acetone	1.41E+04	(4)	< 10	< 50	< 50
Benzene	5.00E+00	(2)	14	< 5.0	< 5.0
Bromobenzene	2.00E+01	(1)	< 1.0	< 5.0	< 5.0
Bromodichloromethane	1.34E+00	(4)	< 1.0	< 5.0	< 5.0
Bromoform	8.50E+00	(1)	< 1.0	< 5.0	< 5.0
Bromomethane	7.54E+00	(4)	< 3.0	< 15	< 15
Carbon disulfide	8.10E+02	(4)	< 10	< 50	< 50
Carbon Tetrachloride	5.00E+00	(2)	< 1.0	< 5.0	< 5.0
Chlorobenzene	1.00E+02	(2)	< 1.0	< 5.0	< 5.0
Chloroethane	-	(2)	< 2.0	< 10	< 10
Chloroform	1.00E+02	(3)	< 1.0	< 5.0	< 5.0
Chloromethane	2.03E+01	(4)	< 3.0	< 15	< 15
cis-1,2-DCE	7.00E+01	(2)	< 1.0	< 5.0	< 5.0
cis-1,3-Dichloropropene	7.00L FUT	(4)	< 1.0	< 5.0	< 5.0
Dibromochloromethane	1.68E+00	(4)	< 1.0	< 5.0	< 5.0
Dibromomethane	3.70E+02	(1)	< 1.0	< 5.0	< 5.0
Dichlorodifluoromethane	1.97E+02	(4)	< 1.0	< 5.0	< 5.0
Ethylbenzene	7.00E+02	(2)	1	< 5.0	< 5.0
Hexachlorobutadiene	8.60E-01	(1)	< 1.0	< 5.0	< 5.0
Isopropylbenzene	4.47E+02		62	48	70
Isopropylberizerie	7.41 ETUZ	(4)	02	40	10

			201	15 Ground	water ite
			MW-11		
			Aug-15	Aug-14	Aug-13
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	2	< 5.0	6.2
Methylene Chloride	5.00E+00	(2)	< 3.0	< 15	< 15
Naphthalene	1.65E+00	(4)	71	59	76
n-Butylbenzene	-	-	< 3.0	< 15	< 15
n-Propylbenzene	-	-	54	62	68
sec-Butylbenzene	-	-	12	12	12
Styrene	1.00E+02	(2)	< 1.0	< 5.0	< 5.0
tert-Butylbenzene	-	-	2.5	< 5.0	< 5.0
Tetrachloroethene (PCE)	5.00E+00	(2)	< 1.0	< 5.0	< 5.0
Toluene	7.50E+02	(3)	< 1.0	< 5.0	< 5.0
trans-1,2-DCE	1.00E+02	(2)	< 1.0	< 5.0	< 5.0
trans-1,3-Dichloropropene	4.30E-01	(1)	< 1.0	< 5.0	< 5.0
Trichloroethene (TCE)	5.00E+00	(2)	< 1.0	< 5.0	< 5.0
Trichlorofluoromethane	1.14E+03	(4)	< 1.0	< 5.0	< 5.0
Vinyl chloride	1.00E+00	(3)	< 1.0	< 5.0	< 5.0
Xylenes, Total	6.20E+02	(3)	< 1.5	< 7.5	< 7.5
Semi Volatile Organic Compounds		,			
1,2,4-Trichlorobenzene	7.00E+01	(2)		< 10	< 10
1,2-Dichlorobenzene	6.00E+02	(2)		< 10	< 10
1,3-Dichlorobenzene	-	-		< 10	< 10
1,4-Dichlorobenzene	7.50E+01	(2)		< 10	< 10
1-Methylnaphthalene	2.30E+00	(1)		16	21
2,4,5-Trichlorophenol	1.17E+03	(4)		< 10	< 10
2,4,6-Trichlorophenol	1.19E+01	(4)		< 10	< 10
2,4-Dichlorophenol	4.53E+01	(4)		< 20	< 20
2,4-Dimethylphenol	3.54E+02	(4)		< 10	< 10
2,4-Dinitrophenol	3.88E+01	(4)		< 20	< 20
2,4-Dinitrotoluene	2.37E+00	(4)		< 10	< 10
2,6-Dinitrotoluene	3.70E+01	(1)		< 10	< 10
2-Chloronaphthalene	2.90E+03	(1)		< 10	< 10
2-Chlorophenol	9.10E+01	(4)		< 10	< 10
2-Methylnaphthalene	1.50E+02	(1)		< 10	14
2-Methylphenol	1.80E+03	(1)		< 20	< 10
2-Nitroaniline	1.10E+02	(1)		< 10	< 10
2-Nitrophenol	-	-		< 10	< 10
3,3´-Dichlorobenzidine	1.50E-01	(1)		< 10	< 10
3+4-Methylphenol	1.80E+02	(1)		< 10	< 10
3-Nitroaniline	1.00L+02	(1)		< 10	< 10
4,6-Dinitro-2-methylphenol	_	-		< 20	< 20
4-Bromophenyl phenyl ether		-		< 10	< 10
4-Chloro-3-methylphenol				< 10	< 10
4-Chloroaniline	3.40E-01			< 10	< 10
4-Chlorophenyl phenyl ether	J.7UL-U1	(1)		< 10	< 10
4-Chlorophenyl phenyl ether 4-Nitroaniline	3.40E+00	(1)		< 10	< 10
4-Nitrophenol	J.40ET00	(1)		< 10	< 10
	5 35E + 02	(1)		< 10	< 10
Acenaphthylana	5.35E+02	(4)			
Acenaphthylene	1 205 : 04			< 10	< 10
Anthropono	1.20E+01	(1)		< 10	< 10
Anthracene	1.72E+03	(4)		< 10	< 10

			201	15 Ground	iwater ite
					V-11
			Aug-15	Aug-14	Aug-13
Azobenzene	1.20E-01	(1)		< 10	< 10
Benzo(a)anthracene	3.43E-01	(4)		< 10	< 10
Benzo(a)pyrene	2.00E-01	(2)		< 10	< 10
Benzo(b)fluoranthene	3.43E-01	(4)		< 10	< 10
Benzo(g,h,i)perylene	-	-		< 10	< 10
Benzo(k)fluoranthene	3.43E+00	(4)		< 10	< 10
Benzoic acid	1.50E+05	(1)		< 20	62
Benzyl alcohol	1.80E+04	(1)		< 10	< 10
Bis(2-chloroethoxy)methane	1.10E+02	(1)		< 10	< 10
Bis(2-chloroethyl)ether	1.36E-01	(4)		< 10	< 10
Bis(2-chloroisopropyl)ether	9.76E+00	(4)		< 10	< 10
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)		< 10	< 10
Butyl benzyl phthalate	3.50E+01	(1)		< 10	< 10
Carbazole	-	-		< 10	< 10
Chrysene	3.43E+01	(4)		< 10	< 10
Dibenz(a,h)anthracene	1.06E-01	(4)		< 10	< 10
Dibenzofuran	-	-		< 10	< 10
Diethyl phthalate	1.48E+04	(4)		< 10	< 10
Dimethyl phthalate	-	-		< 10	< 10
Di-n-butyl phthalate	8.85E+02	(4)		< 10	< 10
Di-n-octyl phthalate	-	-		< 10	< 10
Fluoranthene	8.02E+02	(4)		< 10	< 10
Fluorene	2.88E+02	(4)		< 10	< 10
Hexachlorobenzene	1.00E+00	(2)		< 10	< 10
Hexachlorobutadiene	8.60E-01	(1)		< 10	< 10
Hexachlorocyclopentadiene	5.00E+01	(2)		< 10	< 10
Hexachloroethane	6.80E+00	(4)		< 10	< 10
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)		< 10	< 10
Isophorone	7.79E+02	(4)		< 10	< 10
Naphthalene	1.65E+00	(4)		23	54
Nitrobenzene	1.40E+00	(4)		< 10	< 10
N-Nitrosodimethylamine	4.90E-03	(4)		< 10	< 10
N-Nitrosodi-n-propylamine	9.60E-03	(1)		< 10	< 10
N-Nitrosodiphenylamine	1.21E+02	(4)		< 10	< 10
Pentachlorophenol	1.00E+00	(2)		< 20	< 20
Phenanthrene	1.70E+02	(4)		< 10	< 10
Phenol	5.00E+00	(3)		< 10	< 10
Pyrene	1.17E+02	(5)		< 10	< 10
Pyridine	3.70E+01	(1)		< 10	< 10
General Chemistry (mg/l):					
Fluoride	1.6	(3)	0.35	0.62	0.84
Chloride	250	(3)	78	96	300
Nitrite	1.0	(2)	< 0.10	< 0.50	< 0.50
Bromide	-	-	0.15	1.4	3.9
Nitrate	10	(3)	0.15	< 0.50	< 0.50
Phosphorus	-	-	< 0.50	< 2.5	< 2.5
Sulfate	600	(3)	5.7	6.3	4.6
Carbon Dioxide (CO ₂)	-	-	1000	1100	1100
Alkalinity (CaCO ₃)	-	-	1038	1000	1100
Bicarbonate (CaCO ₃)			1038	1000	1100
Bicarbonate (CaCO ₃)	-	-	1030	1000	1100

			MW-11			
			Aug-15	Aug-14	Aug-13	
Total Metals (mg/l):						
Arsenic	0.01	(2)	0.035	< 0.020	< 0.020	
Barium	2	(2)	0.92	0.74	1.1	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	
Lead	0.015	(2)	0.0075	0.019	< 0.025	
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.025	
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	
Dissolved Metals (mg/l):						
Arsenic	0.1	(3)	< 0.020	< 0.0050	0.02	
Barium	1	(3)	0.85	0.64	1.1	
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	
Calcium	-	-	96	73	130	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	
Copper	1	(3)	< 0.0060	< 0.0060	< 0.020	
Iron	1	(3)	9.6	8	11	
Lead	0.05	(3)	0.006	0.0019	0.0042	
Magnesium	-	-	22	17	28	
Manganese	0.2	(3)	1.5	1.2	2.3	
Potassium	-	-	1.5	2.4	2.4	
Selenium	0.05	(3)	< 0.050	0.0090	< 0.020	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.025	
Sodium	-	-	390	380	440	
Uranium	0.03	(3)	< 0.10	< 0.0010		
Zinc	10	(3)	< 0.020	< 0.010	< 0.010	
Total Petroleum Hydrocarbons (mg/	(I):					
Diesel Range Organics	-	-	1.5	1.6	2.5	
Gasoline Range Organics	-	-	2.4	2.3	2.1	
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	

Notes:

- (1) EPA Regional Screening Level
- (2) EPA Regional Screening Level
- (3) NMED WQCC standards Title 2
 (4) NMED TAP Water Screening Le

(4) NIMED I	AP water Screening Lev
1	= No screening level av
*	= Laboratory analyzed f
	= Analyte inadvertently
	= Analysis not required
	= Analytical result excee

Number N				_		
Volatile Organic Compounds (ug/L)				MW-34		
1,1,1,2-Tetrachloroethane				Aug-15	Aug-14	Aug-13
1,1,1-Trichloroethane	Volatile Organic Compounds (ug/L)					
1,1,2,2-Tetrachloroethane	1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 1.0	< 1.0	< 1.0
1,1,2-Trichloroethane	1,1,1-Trichloroethane	6.00E+01	(3)	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 2.0	< 2.0	< 2.0
1,1-Dichloropropene	1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	1,1-Dichloroethane	2.50E+01	(3)	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	1,1-Dichloroethene	5.00E+00	(3)	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	1,1-Dichloropropene	-	-	< 1.0	< 1.0	< 1.0
1,2,4-Trichlorobenzene	1,2,3-Trichlorobenzene	-	-	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0	< 2.0	< 2.0
1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	7.00E+01	(2)	< 1.0	< 1.0	< 1.0
1,2-Dibromoethane (EDB) 5.00E-02 (2) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	1,2,4-Trimethylbenzene	1.50E+01	(1)	< 1.0	51	< 1.0
1,2-Dichlorobenzene 6.00E+02 (2) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 2.0	< 2.0	< 2.0
1,2-Dichlorobenzene 6.00E+02 (2) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	1,2-Dichlorobenzene	6.00E+02		< 1.0	< 1.0	< 1.0
1,2-Dichloropropane 5.00E+00 (2) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1,2-Dichloroethane (EDC)	5.00E+00		< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	1,2-Dichloropropane	5.00E+00		< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene		1.20E+01		< 1.0	< 1.0	< 1.0
1,3-Dichloropropane		-	-		< 1.0	
1,4-Dichlorobenzene 7.50E+01 (2) < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		7.30E+02	(1)	< 1.0		
1-Methylnaphthalene						
2,2-Dichloropropane - - < 2.0						
2-Butanone 5.56E+03 (4) < 10		-				
2-Chlorotoluene 7.30E+02 (1) < 1.0		5.56E+03	(4)			
2-Hexanone - - < 10						
2-Methylnaphthalene 1.50E+02 (1) < 4.0	2-Hexanone	-	-			
4-Chlorotoluene 2.60E+03 (1) < 1.0	2-Methylnaphthalene	1.50E+02	(1)	< 4.0	< 4.0	
4-Isopropyltoluene - - < 1.0						
4-Methyl-2-pentanone - - < 10	4-Isopropyltoluene	-	-	< 1.0	3.1	< 1.0
Benzene 5.00E+00 (2) < 1.0 < 1.0 < 1.0 Bromobenzene 2.00E+01 (1) < 1.0	4-Methyl-2-pentanone	-	-	< 10	< 10	< 10
Benzene 5.00E+00 (2) < 1.0 < 1.0 < 1.0 Bromobenzene 2.00E+01 (1) < 1.0	Acetone	1.41E+04	(4)	< 10	< 10	< 10
Bromobenzene 2.00E+01 (1) < 1.0 < 1.0 < 1.0 Bromodichloromethane 1.34E+00 (4) < 1.0	Benzene	5.00E+00		< 1.0	< 1.0	< 1.0
Bromoform 8.50E+00 (1) < 1.0 < 1.0 < 1.0 Bromomethane 7.54E+00 (4) < 3.0	Bromobenzene	2.00E+01		< 1.0	< 1.0	< 1.0
Bromoform 8.50E+00 (1) < 1.0 < 1.0 < 1.0 Bromomethane 7.54E+00 (4) < 3.0	Bromodichloromethane	1.34E+00	(4)	< 1.0	< 1.0	< 1.0
Bromomethane 7.54E+00 (4) < 3.0 < 3.0 < 3.0 Carbon disulfide 8.10E+02 (4) < 10	Bromoform	8.50E+00		< 1.0	< 1.0	< 1.0
Carbon disulfide 8.10E+02 (4) < 10 < 10 < 10 Carbon Tetrachloride 5.00E+00 (2) < 1.0	Bromomethane	7.54E+00		< 3.0	< 3.0	< 3.0
Carbon Tetrachloride 5.00E+00 (2) < 1.0 < 1.0 < 1.0 Chlorobenzene 1.00E+02 (2) < 1.0	Carbon disulfide	8.10E+02		< 10	< 10	< 10
Chlorobenzene 1.00E+02 (2) < 1.0 < 1.0 < 1.0 Chloroethane - - < 2.0	Carbon Tetrachloride	5.00E+00	, ,			
Chloroethane - - < 2.0 < 2.0 < 2.0 Chloroform 1.00E+02 (3) < 1.0	Chlorobenzene					
Chloroform 1.00E+02 (3) < 1.0 < 1.0 < 1.0 Chloromethane 2.03E+01 (4) < 3.0	Chloroethane	-	-			
Chloromethane 2.03E+01 (4) < 3.0 < 3.0 < 3.0 cis-1,2-DCE 7.00E+01 (2) < 1.0	Chloroform	1.00E+02	(3)			
cis-1,2-DCE 7.00E+01 (2) < 1.0 < 1.0 < 1.0 cis-1,3-Dichloropropene - - < 1.0						
cis-1,3-Dichloropropene - < 1.0 < 1.0 < 1.0 Dibromochloromethane 1.68E+00 (4) < 1.0	cis-1,2-DCE					
Dibromochloromethane 1.68E+00 (4) < 1.0 < 1.0 < 1.0 Dibromomethane 3.70E+02 (1) < 1.0		-	-			
Dibromomethane 3.70E+02 (1) < 1.0 < 1.0 < 1.0 Dichlorodifluoromethane 1.97E+02 (4) < 1.0		1.68E+00	(4)			
Dichlorodifluoromethane 1.97E+02 (4) < 1.0 < 1.0 < 1.0 Ethylbenzene 7.00E+02 (2) < 1.0						
Ethylbenzene 7.00E+02 (2) < 1.0 < 1.0 < 1.0 Hexachlorobutadiene 8.60E-01 (1) < 1.0			_ ` _			
Hexachlorobutadiene 8.60E-01 (1) < 1.0 < 1.0 < 1.0						
	·					
130 14.47 14.47 14 14 15 15 15 15 15 15 15 15	Isopropylbenzene	4.47E+02	(4)	4.6	13	2.5

			MW-34		
			Aug-15	Aug-14	Aug-13
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	< 1.0	< 1.0	1.3
Methylene Chloride	5.00E+00	(2)	< 3.0	< 3.0	< 3.0
Naphthalene	1.65E+00	(4)	< 2.0	4.2	< 2.0
n-Butylbenzene	-	-	< 3.0	< 3.0	< 3.0
n-Propylbenzene	-	-	2.8	<10	1.4
sec-Butylbenzene	-	-	4.5	6.7	1.6
Styrene	1.00E+02	(2)	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	-	-	1.7	2.5	2.0
Tetrachloroethene (PCE)	5.00E+00	(2)	< 1.0	< 1.0	< 1.0
Toluene	7.50E+02	(3)	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	1.00E+02	(2)	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene	4.30E-01	(1)	< 1.0	< 1.0	< 1.0
Trichloroethene (TCE)	5.00E+00	(2)	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	1.14E+03	(4)	< 1.0	< 1.0	< 1.0
Vinyl chloride	1.00E+00	(3)	< 1.0	< 1.0	< 1.0
Xylenes, Total	6.20E+02	(3)	< 1.5	< 1.5	< 1.5
Semi Volatile Organic Compounds (
1,2,4-Trichlorobenzene	7.00E+01	(2)			
1,2-Dichlorobenzene	6.00E+02	(2)			
1,3-Dichlorobenzene	-	-			
1,4-Dichlorobenzene	7.50E+01	(2)			
1-Methylnaphthalene	2.30E+00	(1)			
2,4,5-Trichlorophenol	1.17E+03	(4)			
2,4,6-Trichlorophenol	1.19E+01	(4)			
2,4-Dichlorophenol	4.53E+01	(4)			
2,4-Dimethylphenol	3.54E+02	(4)			
2,4-Dinitrophenol	3.88E+01	(4)			
2,4-Dinitrotoluene	2.37E+00	(4)			
2,6-Dinitrotoluene	3.70E+01	(1)			
2-Chloronaphthalene	2.90E+03	(1)			
2-Chlorophenol	9.10E+01	(4)			
2-Methylnaphthalene	1.50E+02	(1)			
2-Methylphenol	1.80E+03	(1)			
2-Nitroaniline	1.10E+02	(1)			
2-Nitrophenol	-	-			
3,3´-Dichlorobenzidine	1.50E-01	(1)			
3+4-Methylphenol	1.80E+02	(1)			
3-Nitroaniline	-	-			
4,6-Dinitro-2-methylphenol	-	-			
4-Bromophenyl phenyl ether	-	-			
4-Chloro-3-methylphenol	-	-			
4-Chloroaniline	3.40E-01	(1)			
4-Chlorophenyl phenyl ether	-	-			
4-Nitroaniline	3.40E+00	(1)			
4-Nitrophenol	-	-			
Acenaphthene	5.35E+02	(4)			
Acenaphthylene	-	-			
Aniline	1.20E+01	(1)			
Anthracene	1.72E+03	(4)			

				- Oloulio	
					<i>I</i> -34
			Aug-15	Aug-14	Aug-13
Azobenzene	1.20E-01	(1)			
Benzo(a)anthracene	3.43E-01	(4)			
Benzo(a)pyrene	2.00E-01	(2)			
Benzo(b)fluoranthene	3.43E-01	(4)			
Benzo(g,h,i)perylene	-	-			
Benzo(k)fluoranthene	3.43E+00	(4)			
Benzoic acid	1.50E+05	(1)			
Benzyl alcohol	1.80E+04	(1)			
Bis(2-chloroethoxy)methane	1.10E+02	(1)			
Bis(2-chloroethyl)ether	1.36E-01	(4)			
Bis(2-chloroisopropyl)ether	9.76E+00	(4)			
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)			
Butyl benzyl phthalate	3.50E+01	(1)			
Carbazole	-	-			
Chrysene	3.43E+01	(4)			
Dibenz(a,h)anthracene	1.06E-01	(4)			
Dibenzofuran	-	-			
Diethyl phthalate	1.48E+04	(4)			
Dimethyl phthalate	-	-			
Di-n-butyl phthalate	8.85E+02	(4)			
Di-n-octyl phthalate		-			
Fluoranthene	8.02E+02	(4)			
Fluorene	2.88E+02	(4)			
Hexachlorobenzene	1.00E+00	(2)			
Hexachlorobutadiene	8.60E-01	(1)			
Hexachlorocyclopentadiene	5.00E+01	(2)			
Hexachloroethane	6.80E+00	(4)			
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)			
Isophorone	7.79E+02	(4)			
Naphthalene	1.65E+00	(4)			
Nitrobenzene	1.40E+00	(4)			
N-Nitrosodimethylamine	4.90E-03	(4)			
N-Nitrosodi-n-propylamine	9.60E-03	(1)			
N-Nitrosodiphenylamine	1.21E+02	(4)			
Pentachlorophenol	1.00E+00	(2)			
Phenanthrene	1.70E+02	(4)			
Phenol	5.00E+00	(3)			
Pyrene	1.17E+02	(5)			
Pyridine	3.70E+01	(1)			
General Chemistry (mg/l):	4.0	(0)	0.50	0.70	4.4
Fluoride	1.6	(3)	0.56	0.70	1.1
Chloride	250	(3)	190	180	230
Nitrite	1.0	(2)	< 0.10	< 0.50	< 0.50
Bromide	- 40	- (0)	0.7	2.3	2.9
Nitrate	10	(3)	0.27	< 0.50	< 0.50
Phosphorus	-	- (0)	< 0.50	< 2.5	< 2.5
Sulfate	600	(3)	23	14	9.1
Carbon Dioxide (CO ₂)	-	-	820	870	950
Alkalinity (CaCO ₃)	-	-	876	900	1000
Bicarbonate (CaCO ₃)	-	-	876	900	1000

			MW-34			
			Aug-15	Aug-14	Aug-13	
Total Metals (mg/l):						
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	
Barium	2	(2)	0.78	0.39	0.79	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	
Lead	0.015	(2)	< 0.0050	0.0076	< 0.025	
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.025	
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	
Dissolved Metals (mg/l):						
Arsenic	0.1	(3)	< 0.020	< 0.010	0.0049	
Barium	1	(3)	0.73	0.5	0.81	
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	
Calcium	-	-	93	110	130	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	
Copper	1	(3)	< 0.0060	< 0.0060	< 0.020	
Iron	1	(3)	2.8	1.5	3.2	
Lead	0.05	(3)	0.005	< 0.0010	< 0.0010	
Magnesium	-	-	16	21	23	
Manganese	0.2	(3)	3.2	2.9	4.2	
Potassium	-	-	1.3	2.8	1.8	
Selenium	0.05	(3)	< 0.050	< 0.010	< 0.020	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.025	
Sodium	-	-	380	420	410	
Uranium	0.03	(3)	< 0.10	< 0.0010		
Zinc	10	(3)	< 0.020	< 0.010	< 0.010	
Total Petroleum Hydrocarbons (mg/	(I):					
Diesel Range Organics	-	-	0.56	2.2	1.8	
Gasoline Range Organics	-	-	1.3	2.0	1.1	
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	

Notes:

- (1) EPA Regional Screening Level
- (2) EPA Regional Screening Levels
- (3) NMED WQCC standards Title 2 (4) NMED TAP Water Screening Le

(4) NIVIED I	AP water Screening Le
-	= No screening level a
*	= Laboratory analyzed
	= Analyte inadvertently
	= Analysis not required

= Analytical result exce

			2015 Groundwater Re					
			MW-37					
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	
Volatile Organic Compounds (ug/L)								
1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 1.0		< 1.0		< 1.0	
1,1,1-Trichloroethane	6.00E+01	(3)	< 1.0		< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 2.0		< 2.0		< 2.0	
1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0		< 1.0		< 1.0	
1,1-Dichloroethane	2.50E+01	(3)	< 1.0		< 1.0		< 1.0	
1,1-Dichloroethene	5.00E+00	(3)	< 1.0		< 1.0		< 1.0	
1,1-Dichloropropene	-	-	< 1.0		< 1.0		< 1.0	
1,2,3-Trichlorobenzene	-	-	< 1.0		< 1.0		< 1.0	
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0		< 2.0		< 2.0	
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 1.0		< 1.0		< 1.0	
1,2,4-Trimethylbenzene	1.50E+01	(1)	< 1.0		< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 2.0		< 2.0		< 2.0	
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0		< 1.0		< 1.0	
1,2-Dichlorobenzene	6.00E+02	(2)	< 1.0		< 1.0		< 1.0	
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 1.0		< 1.0		< 1.0	
1,2-Dichloropropane	5.00E+00	(2)	< 1.0		< 1.0		< 1.0	
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 1.0		< 1.0		< 1.0	
1,3-Dichlorobenzene	-	-	< 1.0		< 1.0		< 1.0	
1,3-Dichloropropane	7.30E+02	(1)	< 1.0		< 1.0		< 1.0	
1,4-Dichlorobenzene	7.50E+01	(2)	< 1.0		< 1.0		< 1.0	
1-Methylnaphthalene	2.30E+00	(1)	< 4.0		< 4.0		< 4.0	
2,2-Dichloropropane	-	-	< 2.0		< 2.0		< 2.0	
2-Butanone	5.56E+03	(4)	< 10		< 10		< 10	
2-Chlorotoluene	7.30E+02	(1)	< 1.0		< 1.0		< 1.0	
2-Hexanone	-	-	< 10		< 10		< 10	
2-Methylnaphthalene	1.50E+02	(1)	< 4.0		< 4.0		< 4.0	
4-Chlorotoluene	2.60E+03	(1)	< 1.0		< 1.0		< 1.0	
4-Isopropyltoluene	-	-	< 1.0		< 1.0		< 1.0	
4-Methyl-2-pentanone	-	-	< 10		< 10		< 10	
Acetone	1.41E+04	(4)	< 10		< 10		< 10	
Benzene	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Bromobenzene	2.00E+01	(1)	< 1.0		< 1.0		< 1.0	
Bromodichloromethane	1.34E+00	(4)	< 1.0		< 1.0		< 1.0	
Bromoform	8.50E+00	(1)	< 1.0		< 1.0		< 1.0	
Bromomethane	7.54E+00	(4)	< 3.0		< 3.0		< 3.0	
Carbon disulfide	8.10E+02	(4)	< 10		< 10		< 10	
Carbon Tetrachloride	5.00E+00	(2)	< 1.0		< 1.0		< 1.0	
Chlorobenzene	1.00E+02	(2)	< 1.0		< 1.0		< 1.0	
Chloroethane	-	-	< 2.0		< 2.0		< 2.0	
Chloroform	1.00E+02	(3)	< 1.0		< 1.0		< 1.0	
Chloromethane	2.03E+01	(4)	< 3.0		< 3.0		< 3.0	
cis-1,2-DCE	7.00E+01	(2)	< 1.0		< 1.0		< 1.0	
cis-1,3-Dichloropropene	-	-	< 1.0		< 1.0		< 1.0	
Dibromochloromethane	1.68E+00	(4)	< 1.0		< 1.0		< 1.0	
Dibromomethane	3.70E+02	(1)	< 1.0		< 1.0		< 1.0	
Dichlorodifluoromethane	1.97E+02	(4)	< 1.0		< 1.0		< 1.0	
Ethylbenzene	7.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Hexachlorobutadiene	8.60E-01	(1)	< 1.0		< 1.0		< 1.0	
Isopropylbenzene	4.47E+02	(4)	< 1.0		< 1.0		< 1.0	

Downgradien 2015 Groundwater Re

			MW-37					
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Methylene Chloride	5.00E+00	(2)	< 3.0		< 3.0		< 3.0	
Naphthalene	1.65E+00	(4)	< 2.0		< 2.0		< 2.0	
n-Butylbenzene	-	-	< 3.0		< 1.0		< 3.0	
n-Propylbenzene	-	-	< 1.0		< 1.0		< 1.0	
sec-Butylbenzene	-	-	< 1.0		< 3.0		< 1.0	
Styrene	1.00E+02	(2)	< 1.0		< 1.0		< 1.0	
tert-Butylbenzene	-	-	< 1.0		< 1.0		< 1.0	
Tetrachloroethene (PCE)	5.00E+00	(2)	< 1.0		< 1.0		< 1.0	
Toluene	7.50E+02	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
trans-1,2-DCE	1.00E+02	(2)	< 1.0		< 1.0		< 1.0	
trans-1,3-Dichloropropene	4.30E-01	(1)	< 1.0		< 1.0		< 1.0	
Trichloroethene (TCE)	5.00E+00	(2)	< 1.0		< 1.0		< 1.0	
Trichlorofluoromethane	1.14E+03	(4)	< 1.0		< 1.0		< 1.0	
Vinyl chloride	1.00E+00	(3)	< 1.0		< 1.0		< 1.0	
Xylenes, Total	6.20E+02	(3)	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	
Semi Volatile Organic Compounds ((-)						
1,2,4-Trichlorobenzene	7.00E+01	(2)						
1,2-Dichlorobenzene	6.00E+02	(2)						
1,3-Dichlorobenzene	-	-						
1,4-Dichlorobenzene	7.50E+01	(2)						
1-Methylnaphthalene	2.30E+00	(1)						
2,4,5-Trichlorophenol	1.17E+03	(4)						
2,4,6-Trichlorophenol	1.19E+01	(4)						
2,4-Dichlorophenol	4.53E+01	(4)						
2,4-Dimethylphenol	3.54E+02	(4)						
2,4-Dinitrophenol	3.88E+01	(4)						
2,4-Dinitrotoluene	2.37E+00	(4)						
2,6-Dinitrotoluene	3.70E+01	(1)						
2-Chloronaphthalene	2.90E+03	(1)						
2-Chlorophenol	9.10E+01	(4)						
2-Methylnaphthalene	1.50E+02	(1)						
2-Methylphenol	1.80E+03	(1)						
2-Nitroaniline	1.10E+02	(1)						
2-Nitrophenol	-	-						
3,3´-Dichlorobenzidine	1.50E-01	(1)						
3+4-Methylphenol	1.80E+02	(1)						
3-Nitroaniline	-	-						
4,6-Dinitro-2-methylphenol	-	-						
4-Bromophenyl phenyl ether	-	-						
4-Chloro-3-methylphenol	-	-						
4-Chloroaniline	3.40E-01	(1)						
4-Chlorophenyl phenyl ether	-	-						
4-Nitroaniline	3.40E+00	(1)						
4-Nitrophenol	-	-						
Acenaphthene	5.35E+02	(4)						
Acenaphthylene	-	-						
Aniline	1.20E+01	(1)						
Anthracene	1.72E+03	(4)						
/ titiliaociic	22 7 00	(')					<u> </u>	

Downgradien 2015 Groundwater Re

							iwater ite
							/ -37
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13
Azobenzene	1.20E-01	(1)					
Benzo(a)anthracene	3.43E-01	(4)					
Benzo(a)pyrene	2.00E-01	(2)					
Benzo(b)fluoranthene	3.43E-01	(4)					
Benzo(g,h,i)perylene	-	-					
Benzo(k)fluoranthene	3.43E+00	(4)					
Benzoic acid	1.50E+05	(1)					
Benzyl alcohol	1.80E+04	(1)					
Bis(2-chloroethoxy)methane	1.10E+02	(1)					
Bis(2-chloroethyl)ether	1.36E-01	(4)					
Bis(2-chloroisopropyl)ether	9.76E+00	(4)					
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)					
Butyl benzyl phthalate	3.50E+01	(1)					
Carbazole	-	-					
Chrysene	3.43E+01	(4)					
Dibenz(a,h)anthracene	1.06E-01	(4)					
Dibenzofuran	-	-					
Diethyl phthalate	1.48E+04	(4)					
Dimethyl phthalate	-	-					
Di-n-butyl phthalate	8.85E+02	(4)					
Di-n-octyl phthalate	-	-					
Fluoranthene	8.02E+02	(4)					
Fluorene	2.88E+02	(4)					
Hexachlorobenzene	1.00E+00	(2)					
Hexachlorobutadiene	8.60E-01	(1)					
Hexachlorocyclopentadiene	5.00E+01	(2)					
Hexachloroethane	6.80E+00	(4)					
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)					
Isophorone	7.79E+02	(4)					
Naphthalene	1.65E+00	(4)					
Nitrobenzene	1.40E+00	(4)					
N-Nitrosodimethylamine	4.90E-03	(4)					
N-Nitrosodi-n-propylamine	9.60E-03	(1)					
N-Nitrosodiphenylamine	1.21E+02	(4)					
Pentachlorophenol	1.00E+00	(2)					
Phenanthrene	1.70E+02	(4)					
Phenol	5.00E+00	(3)					
Pyrene	1.17E+02	(5)					
Pyridine	3.70E+01	(1)					
General Chemistry (mg/l):		(0)	6.55				
Fluoride	1.6	(3)	0.59		0.74		0.67
Chloride	250	(3)	220		190		260
Nitrite	1.0	(2)	< 0.10		< 0.10		< 0.10
Bromide	-	-	1.2		2.7		3
Nitrate	10	(3)	< 0.10		< 0.10		0.44
Phosphorus	-	-	< 0.50		< 0.50		< 0.50
Sulfate	600	(3)	110		24		180
Carbon Dioxide (CO ₂)	-	-	770		810		790
Alkalinity (CaCO ₃)	-	-	855.5		890		870
Bicarbonate (CaCO ₃)	-	-	855.5		890		870
2.53.23114.6 (54353)			555.5		000		0.0

Downgradien 2015 Groundwater Re

			MW-37					
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	
Total Metals (mg/l):								
Arsenic	0.01	(2)	< 0.020		< 0.020		< 0.020	
Barium	2	(2)	0.42		0.31		0.71	
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	< 0.0060		< 0.0060		0.026	
Lead	0.015	(2)	< 0.0050		< 0.0050		< 0.025	
Selenium	0.05	(2)	< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.025	
Mercury	0.002	(3)	< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/l):								
Arsenic	0.1	(3)	< 0.020		< 0.010		0.0056	
Barium	1	(3)	0.4		0.20		0.35	
Cadmium	0.01	(3)	< 0.0020		< 0.0020		< 0.0020	
Calcium	-	-	92		44		120	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060		< 0.0060		< 0.020	
Iron	1	(3)	< 0.020		0.38		< 0.0010	
Lead	0.05	(3)	< 0.0050		< 0.0010		3.0	
Magnesium	-	-	21		15		21	
Manganese	0.2	(3)	1		0.99		1.2	
Potassium	-	-	2.8		3.0		3.7	
Selenium	0.05	(3)	< 0.050		0.022		< 0.020	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.025	
Sodium	-	-	420		460		440	
Uranium	0.03	(3)	< 0.10		0.0010			
Zinc	10	(3)	< 0.020		< 0.010		< 0.010	
Total Petroleum Hydrocarbons (mg/	1) :							
Diesel Range Organics	-	-	< 0.20	0.45	0.55	< 0.20	< 0.20	
Gasoline Range Organics	-	-	< 0.050	< 0.050	0.074	< 0.050	< 0.050	
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	

Notes:

- (1) EPA Regional Screening Levels (April 2009
- (2) EPA Regional Screening Levels (April 2009
- (3) NMED WQCC standards Title 20 Chapter 6
- (4) NMED TAP Water Screening Levels NM Ri
- = No screening level available

 * = Laboratory analyzed for combined
 - = Analyte inadvertently not included = Analysis not required and/or well of
 - = Analytical result exceeds the resp

RCR 2015 Groundwate

				MV	/-50			MV	/ -51
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Aug-14	Aug-13
Volatile Organic Compounds	(ug/L)								
1,1,1,2-Tetrachloroethane	5.72E+00	(4)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	6.00E+01	(3)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	1.00E+01	(3)			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,1,2-Trichloroethane	5.00E+00	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	2.50E+01	(3)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	5.00E+00	(3)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	-	-			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	-	-			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	7.47E-03	(4)			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,2,4-Trichlorobenzene	7.00E+01	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	1.50E+01	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	2.00E-01	(2)			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,2-Dibromoethane (EDB)	5.00E-02	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	6.00E+02	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane (EDC)	5.00E+00	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	5.00E+00	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	1.20E+01	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	-	-			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	7.30E+02	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	7.50E+01	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1-Methylnaphthalene	2.30E+00	(1)			< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
2,2-Dichloropropane	-	-			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
2-Butanone	5.56E+03	(4)			< 10	< 10	< 10	< 10	< 10
2-Chlorotoluene	7.30E+02	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Hexanone	-	-			< 10	< 10	< 10	< 10	< 10
2-Methylnaphthalene	1.50E+02	(1)			< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
4-Chlorotoluene	2.60E+03	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	-	-			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
4-Methyl-2-pentanone	-	-			< 10	< 10	< 10	< 10	< 10
Acetone	1.41E+04	(4)			< 10	< 10	< 10	< 10	< 10
Benzene	5.00E+00	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	2.00E+01	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	1.34E+00	(4)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromoform	8.50E+00	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	7.54E+00	(4)			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Carbon disulfide	8.10E+02	(4)			< 10	< 10	< 10	< 10	< 10
Carbon Tetrachloride	5.00E+00	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	1.00E+02	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	-	-			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Chloroform	1.00E+02	(3)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	2.03E+01	(4)			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
cis-1,2-DCE	7.00E+01	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,3-Dichloropropene	-	-			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	1.68E+00	(4)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	3.70E+02	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane	1.97E+02	(4)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	7.00E+02	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	8.60E-01	(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	4.47E+02	(4)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl tert-butyl ether (MTBE)		(4)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

RCR 2015 Groundwate

				MW				MW	
	- aa- a-	(6)	Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Aug-14	Aug-13
Methylene Chloride		(2)			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Naphthalene	1.65E+00	(4)			< 2.0	< 3.0	< 2.0	< 2.0	< 2.0
n-Butylbenzene	-	-			< 3.0	< 1.0	< 3.0	< 3.0	< 3.0
n-Propylbenzene	-	-			< 1.0	< 2.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene	-	-			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Styrene	1.00E+02	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	-	-			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Tetrachloroethene (PCE)		(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene		(3)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	1.00E+02	(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene		(1)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (TCE)		(2)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	1.14E+03	(4)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride		(3)			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, Total		(3)			< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Semi Volatile Organic Compo	<u> </u>								
1,2,4-Trichlorobenzene		(2)			< 10	< 10		< 10	< 10
1,2-Dichlorobenzene	6.00E+02	(2)			< 10	< 10		< 10	< 10
1,3-Dichlorobenzene	-	-			< 10	< 10		< 10	< 10
1,4-Dichlorobenzene		(2)			< 10	< 10		< 10	< 10
1-Methylnaphthalene		(1)			< 10	< 10		< 10	< 10
2,4,5-Trichlorophenol		(4)			< 10	< 10		< 10	< 10
2,4,6-Trichlorophenol		(4)			< 10	< 10		< 10	< 10
2,4-Dichlorophenol		(4)			< 20	< 20		< 21	< 20
2,4-Dimethylphenol		(4)			< 10	< 10		< 10	< 10
2,4-Dinitrophenol		(4)			< 20	< 20		< 21	< 20
2,4-Dinitrotoluene		(4)			< 10	< 10		< 10	< 10
2,6-Dinitrotoluene		(1)			< 10	< 10		< 10	< 10
2-Chloronaphthalene		(1)			< 10	< 10		< 10	< 10
2-Chlorophenol		(4)			< 10	< 10		< 10	< 10
2-Methylnaphthalene		(1)			< 10	< 10		< 10	< 10
2-Methylphenol	1.80E+03	(1)			< 10	< 10		< 21	< 10
2-Nitroaniline	1.10E+02	(1)			< 10	< 10		< 10	< 10
2-Nitrophenol	-	-			< 10	< 10		< 10	< 10
3,3´-Dichlorobenzidine	1.50E-01	(1)			< 10	< 10		< 10	< 10
3+4-Methylphenol	1.80E+02	(1)			< 10	< 10		< 10	< 10
3-Nitroaniline	-	-			< 10	< 10		< 10	< 10
4,6-Dinitro-2-methylphenol	-	-			< 20	< 20		< 21	< 20
4-Bromophenyl phenyl ether	-	-			< 10	< 10		< 10	< 10
4-Chloro-3-methylphenol	-	-			< 10	< 10		< 10	< 10
4-Chloroaniline	3.40E-01	(1)			< 10	< 10		< 10	< 10
4-Chlorophenyl phenyl ether	-	-			< 10	< 10		< 10	< 10
4-Nitroaniline	3.40E+00	(1)			< 10	< 20		< 10	< 10
4-Nitrophenol	-	-			< 10	< 10		< 10	< 10
Acenaphthene	5.35E+02	(4)			< 10	< 10		< 10	< 10
Acenaphthylene	-	-			< 10	< 10		< 10	< 10
Aniline		(1)			< 10	< 10		< 10	< 10
Anthracene	1.72E+03	(4)			< 10	< 10		< 10	< 10

			MW-50 MV						l E4
			Aug 45			Aug 40	Aug 45		/-51
A=ahan=ana	4 005 04	(4)	Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Aug-14	Aug-13
Azobenzene	1.20E-01	(1)			< 10	< 10		< 10	< 10
Benzo(a)anthracene Benzo(a)pyrene	3.43E-01	(4)			< 10 < 10	< 10		< 10	< 10 < 10
(): 5	2.00E-01 3.43E-01	(2)			< 10	< 10 < 10		< 10 < 10	< 10
Benzo(b)fluoranthene Benzo(g,h,i)perylene	3.43⊑-01	(4)			< 10	< 10		< 10	< 10
Benzo(k)fluoranthene	3.43E+00	(4)			< 10	< 10		< 10	< 10
Benzoic acid		(1)			< 40	< 20		< 21	< 40
Benzyl alcohol	1.80E+04	(1)			< 10	< 10		< 10	< 10
Bis(2-chloroethoxy)methane	1.10E+02	(1)			< 10	< 10		< 10	< 10
Bis(2-chloroethyl)ether	1.36E-01	(4)			< 10	< 10		< 10	< 10
Bis(2-chloroisopropyl)ether		(4)			< 10	< 10		< 10	< 10
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)			< 10	< 10		< 10	< 10
Butyl benzyl phthalate	3.50E+01	(1)			< 10	< 10		< 10	< 10
Carbazole	- -	-			< 10	< 10		< 10	< 10
Chrysene	3.43E+01	(4)			< 10	< 10		< 10	< 10
Dibenz(a,h)anthracene	1.06E-01	(4)			< 10	< 10		< 10	< 10
Dibenzofuran	-	-			< 10	< 10		< 10	< 10
Diethyl phthalate	1.48E+04	(4)			< 10	< 10		< 10	< 10
Dimethyl phthalate	-	-			< 10	< 10		< 10	< 10
Di-n-butyl phthalate	8.85E+02	(4)			< 10	< 10		< 10	< 10
Di-n-octyl phthalate	-	-			< 10	< 10		< 10	< 10
Fluoranthene	8.02E+02	(4)			< 10	< 10		< 10	< 10
Fluorene	2.88E+02	(4)			< 10	< 10		< 10	< 10
Hexachlorobenzene	1.00E+00	(2)			< 10	< 10		< 10	< 10
Hexachlorobutadiene	8.60E-01	(1)			< 10	< 10		< 10	< 10
Hexachlorocyclopentadiene	5.00E+01	(2)			< 10	< 10		< 10	< 10
Hexachloroethane	6.80E+00	(4)			< 10	< 10		< 10	< 10
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)			< 10	< 10		< 10	< 10
Isophorone	7.79E+02	(4)			< 10	< 10		< 10	< 10
Naphthalene	1.65E+00	(4)			< 10	< 10		< 10	< 10
Nitrobenzene	1.40E+00	(4)			< 10	< 10		< 10	< 10
N-Nitrosodimethylamine	4.90E-03	(4)			< 10	< 10		< 10	< 10
N-Nitrosodi-n-propylamine	9.60E-03	(1)			< 10	< 10		< 10	< 10
N-Nitrosodiphenylamine	1.21E+02	(4)			< 10	< 10		< 10	< 10
Pentachlorophenol		(2)			< 20	< 20		< 21	< 20
Phenanthrene		(4)			< 10	< 10		< 10	< 10
Phenol		(3)			< 10	< 10		< 10	< 10
Pyrene	1.17E+02	(4)			< 10	< 10		< 10	< 10
Pyridine		(1)			< 10	< 10		< 10	< 10
General Chemistry (mg/l):									
Fluoride	1.6	(3)			0.35	0.37	0.52	0.54	0.55
Chloride	250	(3)			3.7	6.6	8.3	15	9.6
Nitrite	1	(2)			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Bromide	-	-			< 0.10	< 0.10	< 0.10	0.12	< 0.10
Nitrate	10	(3)			0.16	< 0.10	0.34	1.4	0.82
Phosphorus	-	-			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulfate	600	(3)			41	26	43	76	47
Carbon Dioxide (CO ₂₎	-	-			250	220	240	250	220
Alkalinity (CaCO ₃)	_	-			280	240	264.9	270	250
Bicarbonate (CaCO ₃)					280	240	264.9	270	250
	-	-			200	240	204.9	210	250

RCR 2015 Groundwate

				MW	/- 50		MW-51			
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Aug-14	Aug-13	
Total Metals (mg/l):										
Arsenic	0.01	(2)			< 0.020	< 0.02	< 0.020	< 0.020	< 0.020	
Barium	1	(3)			0.088	0.096	0.11	0.095	0.099	
Cadmium	0.005	(2)			< 0.0020	< 0.002	< 0.0020	< 0.0020	< 0.0020	
Chromium	0.05	(3)			< 0.0060	<0.006	< 0.0060	< 0.0060	< 0.0060	
Lead	0.015	(2)			< 0.0050	<0.005	< 0.0050	< 0.0050	< 0.0050	
Selenium	0.05	(2)			< 0.050	< 0.05	< 0.050	< 0.050	< 0.050	
Silver	0.05	(3)			< 0.025	<0.005	< 0.0050	< 0.0050	< 0.0050	
Mercury	0.002	(3)			< 0.00020	<0.0002	< 0.00020	< 0.00020	< 0.00020	
Dissolved Metals (mg/l):								-	-	
Arsenic	0.1	(3)			0.0036	0.004	< 0.020	< 0.020	0.0032	
Barium	1	(3)			0.083	0.071	0.05	0.056	0.058	
Cadmium	0.01	(3)			< 0.0020	< 0.002	< 0.0020	< 0.0020	< 0.0020	
Calcium	-	-			65	54	63	76	65	
Chromium	0.05	(3)			< 0.0060	<0.006	< 0.0060	< 0.0060	< 0.0060	
Copper	1	(3)			0.0013	<0.006	< 0.0060	< 0.0060	0.0015	
Iron	1	(3)			< 0.020	< 0.02	0.041	< 0.020	< 0.020	
Lead	0.05	(3)			< 0.0010	<0.005	< 0.0050	< 0.0050	< 0.0010	
Magnesium	-	-			14	13	13	15	13	
Manganese	0.2	(3)			2.3	2.2	0.77	1.2	1.0	
Potassium	-	-			2.1	1.6	1.7	1.9	2.1	
Selenium	0.05	(3)			< 0.0010	0.001	< 0.050	< 0.050	< 0.0010	
Silver	0.05	(3)			< 0.025	<0.005	< 0.0050	< 0.0050	< 0.025	
Sodium	-	-			37	39	47	55	43	
Uranium	0.03	(3)			< 0.0010	<0.001	< 0.10	< 0.10	0.0015	
Zinc	10	(3)			< 0.010	0.07	< 0.020	< 0.020	0.011	
Total Petroleum Hydrocarbons	s (mg/l):									
Diesel Range Organics	-	-			< 0.20	<0.2	< 0.20	< 0.20	< 0.20	
Gasoline Range Organics	-	-			< 0.050	< 0.05	< 0.050	< 0.050	< 0.050	
Motor Oil Range Organics	-	-			< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	

- (1) EPA Regional Screening Levels (April 2009) EPA Screening Levels.
- (2) EPA Regional Screening Levels (April 2009) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Sta
- (4) NMED TAP Water Screening Levels NM Risk Assessment Guidance f
- = No screening level available

 * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As

 --- = Analyte inadvertently not included in sample analysis.

 --- = Analysis not required and/or well contains separate phase

 = Analytical result exceeds the respective screening level.
 - = Columns hidden when there are 4 or more consecutive years

RCR 2015 Groundwate

				MW	/-59		**MW-60	**N
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Αι
Volatile Organic Compounds	(ug/L)							
1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0		
1,1,1-Trichloroethane	6.00E+01	(3)	< 1.0	< 1.0	< 1.0	< 1.0		
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 2.0	< 2.0	< 2.0	< 2.0		
1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
1,1-Dichloroethane	2.50E+01	(3)	< 1.0	< 1.0	< 1.0	< 1.0		
1,1-Dichloroethene	5.00E+00	(3)	< 1.0	< 1.0	< 1.0	< 1.0		
1,1-Dichloropropene	-	-	< 1.0	< 1.0	< 1.0	< 1.0		
1,2,3-Trichlorobenzene	-	-	< 1.0	< 1.0	< 1.0	< 1.0		
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0	< 2.0	< 2.0	< 2.0		
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
1,2,4-Trimethylbenzene	1.50E+01	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 2.0	< 2.0	< 2.0	< 2.0		
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
1,2-Dichlorobenzene	6.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
1,2-Dichloroethane (EDC)	5.00E+00	(2)	18	10	15	4.2		
1,2-Dichloropropane	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
1,3-Dichlorobenzene	-	-	< 1.0	< 1.0	< 1.0	< 1.0		
1,3-Dichloropropane	7.30E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
1,4-Dichlorobenzene	7.50E+01	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
1-Methylnaphthalene	2.30E+00	(1)	< 4.0	< 4.0	5.7	< 4.0		
2,2-Dichloropropane	-	-	< 2.0	< 2.0	< 2.0	< 2.0		
2-Butanone	5.56E+03	(4)	< 10	< 10	< 10	< 10		
2-Chlorotoluene	7.30E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
2-Hexanone	-	-	< 10	< 10	< 10	< 10		
2-Methylnaphthalene	1.50E+02	(1)	< 4.0	< 4.0	< 4.0	< 4.0		
4-Chlorotoluene	2.60E+03	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
4-Isopropyltoluene	-	-	< 1.0	< 1.0	< 1.0	< 1.0		
4-Methyl-2-pentanone		-	< 10	< 10	< 10	< 10		
Acetone	1.41E+04	(4)	< 10	< 10	< 10	< 10		
Benzene	5.00E+00	(2)	7.3	13	13	4.2		
Bromobenzene	2.00E+01	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
Bromodichloromethane	1.34E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0		
Bromoform	8.50E+00	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
Bromomethane	7.54E+00	(4)	< 3.0	< 3.0	< 3.0	< 3.0		
Carbon disulfide	8.10E+02	(4)	< 10	< 10	< 10	< 10		
Carbon Tetrachloride	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
Chlorobenzene	1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
Chloroethane	-	-	< 2.0	< 2.0	< 2.0	< 2.0		
Chloroform	1.00E+02	(3)	< 1.0	< 1.0	< 1.0	< 1.0		
Chloromethane	2.03E+01	(4)	< 3.0	< 3.0	< 3.0	< 3.0		
cis-1,2-DCE	7.00E+01	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
cis-1,3-Dichloropropene		-	< 1.0	< 1.0	< 1.0	< 1.0		
Dibromochloromethane	1.68E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0		
Dibromomethane	3.70E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
Dichlorodifluoromethane	1.97E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0		
Ethylbenzene	7.00E+02	(2)	29	58	89	29		
Hexachlorobutadiene	8.60E-01	(1)	< 1.0	< 1.0	< 1.0	< 1.0		
Isopropylbenzene		(4)	5	7.8	13	4		\vdash
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	1400	7.0 750	530	140		

				**MW-60	** M			
			Aug-15	Aug-14	/-59 Aug-13	Aug-12	Aug-15	Au
Methylene Chloride	5.00E+00	(2)	< 3.0	< 3.0	< 3.0	< 3.0		, (0
Naphthalene	1.65E+00	(4)	< 2.0	3.6	15	8.8		
n-Butylbenzene	-	-	< 3.0	< 3.0	3.1	< 3.0		
n-Propylbenzene	_	-	4.4	7.3	9.8	3.8		
sec-Butylbenzene	_	-	4.5	3.8	5.2	1.5		
Styrene	1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
tert-Butylbenzene	-	-	< 1.0	< 1.0	< 1.0	< 1.0		
Tetrachloroethene (PCE)	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
Toluene	7.50E+02	(3)	< 1.0	< 1.0	< 1.0	< 1.0		
trans-1,2-DCE	1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0		
trans-1,3-Dichloropropene		(1)	< 1.0	< 1.0	< 1.0	< 1.0		
Trichloroethene (TCE)		(2)	< 1.0	< 1.0	< 1.0	< 1.0		
Trichlorofluoromethane	1.14E+03	(4)	< 1.0	< 1.0	< 1.0	< 1.0		
Vinyl chloride		(3)	< 1.0	< 1.0	< 1.0	< 1.0		
Xylenes, Total		(3)	< 1.5	< 1.5	< 1.5	< 1.5		
Semi Volatile Organic Compo		, ,	1 110	,	,	,		
1,2,4-Trichlorobenzene		(2)		< 10	< 10	< 10		
1,2-Dichlorobenzene	6.00E+02	(2)		< 10	< 10	< 10		
1,3-Dichlorobenzene	-	-		< 10	< 10	< 10		
1,4-Dichlorobenzene	7.50E+01	(2)		< 10	< 10	< 10		
1-Methylnaphthalene	2.30E+00	(1)		< 10	< 10	< 10		
2,4,5-Trichlorophenol		(4)		< 10	< 10	< 10		
2,4,6-Trichlorophenol	1.19E+01	(4)		< 10	< 10	< 10		
2,4-Dichlorophenol	4.53E+01	(4)		< 20	< 20	< 20		
2,4-Dimethylphenol		(4)		< 10	< 10	< 10		
2,4-Dinitrophenol		(4)		< 20	< 20	< 20		
2,4-Dinitrotoluene		(4)		< 10	< 10	< 10		
2,6-Dinitrotoluene	3.70E+01	(1)		< 10	< 10	< 10		
2-Chloronaphthalene	2.90E+03	(1)		< 10	< 10	< 10		
2-Chlorophenol		(4)		< 10	< 10	< 10		
2-Methylnaphthalene	1.50E+02	(1)		< 20	< 10	< 10		
2-Methylphenol	1.80E+03	(1)		< 10	< 10	< 10		
2-Nitroaniline	1.10E+02	(1)		< 10	< 10	< 10		
2-Nitrophenol	-	-		< 10	< 10	< 10		
3,3'-Dichlorobenzidine	1.50E-01	(1)		< 10	< 10	< 10		
3+4-Methylphenol	1.80E+02	(1)		< 10	< 10	< 10		
3-Nitroaniline	-	-		< 10	< 10	< 10		
4,6-Dinitro-2-methylphenol	-	-		< 20	< 20	< 20		
4-Bromophenyl phenyl ether	-	-		< 10	< 10	< 10		
4-Chloro-3-methylphenol	-	-		< 10	< 10	< 10		
4-Chloroaniline	3.40E-01	(1)		< 10	< 10	< 10		
4-Chlorophenyl phenyl ether	-	-		< 10	< 10	< 10		
4-Nitroaniline	3.40E+00	(1)		< 10	< 10	< 20		
4-Nitrophenol	-	-		< 10	< 10	< 10		
Acenaphthene	5.35E+02	(4)		< 10	< 10	< 10		
Acenaphthylene	-	-		< 10	< 10	< 10		
Aniline	1.20E+01	(1)		< 10	< 10	< 10		
Anthracene	1.72E+03	(4)		< 10	< 10	< 10		

				**MW-60	**M			
			Aug-15	MW Aug-14	Aug-13	Aug-12	Aug-15	Au
Azobenzene	1.20E-01	(1)		< 10	< 10	< 10		710
Benzo(a)anthracene	3.43E-01	(4)		< 10	< 10	< 10		
Benzo(a)pyrene	2.00E-01	(2)		< 10	< 10	< 10		
Benzo(b)fluoranthene	3.43E-01	(4)		< 10	< 10	< 10		
Benzo(g,h,i)perylene	-	-		< 10	< 10	< 10		
Benzo(k)fluoranthene	3.43E+00	(4)		< 10	< 10	< 10		
Benzoic acid	1.50E+05	(1)		< 20	< 40	< 20		
Benzyl alcohol	1.80E+04	(1)		< 10	< 10	< 10		
Bis(2-chloroethoxy)methane	1.10E+02	(1)		< 10	< 10	< 10		
Bis(2-chloroethyl)ether	1.36E-01	(4)		< 10	< 10	< 10		
Bis(2-chloroisopropyl)ether	9.76E+00	(4)		< 10	< 10	< 10		
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)		< 10	< 10	< 10		
Butyl benzyl phthalate	3.50E+01	(1)		< 10	< 10	< 10		
Carbazole	-	-		< 10	< 10	< 10		
Chrysene	3.43E+01	(4)		< 10	< 10	< 10		
Dibenz(a,h)anthracene	1.06E-01	(4)		< 10	< 10	< 10		
Dibenzofuran	-	-		< 10	< 10	< 10		
Diethyl phthalate	1.48E+04	(4)		< 10	< 10	< 10		
Dimethyl phthalate	-	-		< 10	< 10	< 10		
Di-n-butyl phthalate	8.85E+02	(4)		< 10	< 10	< 10		
Di-n-octyl phthalate	-	-		< 10	< 10	< 10		
Fluoranthene	8.02E+02	(4)		< 10	< 10	< 10		
Fluorene	2.88E+02	(4)		< 10	< 10	< 10		
Hexachlorobenzene	1.00E+00	(2)		< 10	< 10	< 10		
Hexachlorobutadiene	8.60E-01	(1)		< 10	< 10	< 10		
Hexachlorocyclopentadiene	5.00E+01	(2)		< 10	< 10	< 10		
Hexachloroethane	6.80E+00	(4)		< 10	< 10	< 10		
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)		< 10	< 10	< 10		
Isophorone	7.79E+02	(4)		< 10	< 10	< 10		
Naphthalene	1.65E+00	(4)		< 10	< 10	17		
Nitrobenzene	1.40E+00	(4)		< 10	< 10	< 10		
N-Nitrosodimethylamine	4.90E-03	(4)		< 10	< 10	< 10		
N-Nitrosodi-n-propylamine	9.60E-03	(1)		< 10	< 10	< 10		
N-Nitrosodiphenylamine	1.21E+02	(4)		< 10	< 10	< 10		
Pentachlorophenol	1.00E+00	(2)		< 20	< 20	< 20		
Phenanthrene	1.70E+02	(4)		< 10	< 10	< 10		
Phenol	5.00E+00	(3)		14	< 10	< 10		
Pyrene	1.17E+02	(4)		< 10	< 10	< 10		
Pyridine	3.70E+01	(1)		< 10	< 10	< 10		
General Chemistry (mg/l):		(- /						
Fluoride	1.6	(3)	< 0.10	0.20	< 0.50	< 0.5		
Chloride	250	(3)	240	210	180	150		
Nitrite	1	(2)	< 0.10	< 0.10	< 0.50	< 0.5		
Bromide	-	-	1.2	2.0	2.7	2.5		
Nitrate	10	(3)	0.28	< 2.0	< 0.50	< 0.5		
Phosphorus	-	-	< 0.50	< 0.50	< 2.5	< 2.5		
Sulfate	600	(3)	780	830	510	310		
Carbon Dioxide (CO ₂₎	-	-	940	910	920	960		
Alkalinity (CaCO ₃)								
* 1	-	-	1035	950	970	990		_
Bicarbonate (CaCO ₃)	-	-	1035	950	970	990		

				MW	1-59		**MW-60	** N
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15	Αι
Total Metals (mg/l):								
Arsenic	0.01	(2)	0.022	< 0.020	< 0.020	<0.02		
Barium	1	(3)	0.21	0.26	0.10	0.640		
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	<0.002		
Chromium	0.05	(3)	< 0.0060	0.011	< 0.0060	0.017		
Lead	0.015	(2)	< 0.0050	0.011	0.0052	0.035		
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	<0.05		
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	<0.005		
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	<0.0002		
Dissolved Metals (mg/l):								
Arsenic	0.1	(3)	< 0.020	< 0.020	0.017	0.014		
Barium	1	(3)	0.055	0.059	0.072	0.085		
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	<0.002		
Calcium	-	-	250	260	210	200		
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	<0.006		
Copper	1	(3)	< 0.0060	< 0.0060	< 0.020	<0.006		
Iron	1	(3)	4.3	7.9	7.3	6.1		
Lead	0.05	(3)	< 0.0050	< 0.0050	< 0.0010	< 0.001		
Magnesium	-	-	69	69	56	51		
Manganese	0.2	(3)	1.9	3.0	3.2	3.3		
Potassium	-	-	3.6	3.4	3.0	3.0		
Selenium	0.05	(3)	< 0.050	< 0.050	0.011	0.0061		
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	<0.005		
Sodium	-	-	470	440	380	390		
Uranium	0.03	(3)	< 0.10	< 0.10	0.0036	0.0024		Γ.
Zinc	10	(3)	0.036	< 0.020	0.037	0.10		
Total Petroleum Hydrocarbons	s (mg/l):							
Diesel Range Organics	-	-	0.32	0.62	0.68	0.55		
Gasoline Range Organics	-	-	1.1	0.72	0.96	1.2		
Motor Oil Range Organics	-	-	< 2.5	<2.5	< 2.5	< 2.5		

- (1) EPA Regional Screening Levels (April 2009) EPA Sc
- (2) EPA Regional Screening Levels (April 2009) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, location specific screening levels
- (4) NMED TAP Water Screening Levels NM Risk Assess
 - = No screening level available
 - = Laboratory analyzed for combined Nitrate (As
 - Analyte inadvertently not included in sample aAnalysis not required and/or well contains sep
 - = Analytical result exceeds the respective scree
 - = Columns hidden when there are 4 or more co

				MW	<i>l</i> -65		**MW-66
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15
Volatile Organic Compounds	(ug/L)						
1,1,1,2-Tetrachloroethane	5.72E+00	(4)	< 20	< 10	< 20	< 20	
1,1,1-Trichloroethane	6.00E+01	(3)	< 20	< 10	< 20	< 20	
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 40	< 20	< 40	< 40	
1,1,2-Trichloroethane	5.00E+00	(2)	< 20	< 10	< 20	< 20	
1,1-Dichloroethane	2.50E+01	(3)	< 20	< 10	< 20	< 20	
1,1-Dichloroethene	5.00E+00	(3)	< 20	< 10	< 20	< 20	
1,1-Dichloropropene	-	-	< 20	< 10	< 20	< 20	
1,2,3-Trichlorobenzene	-	-	< 20	< 10	< 20	< 20	
1,2,3-Trichloropropane	7.47E-03	(4)	< 40	< 20	< 40	< 40	
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 20	< 10	< 20	< 20	
1,2,4-Trimethylbenzene	1.50E+01	(1)	860	1400	1800	1500	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 40	< 20	< 40	< 40	
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 20	< 10	< 20	< 20	
1,2-Dichlorobenzene	6.00E+02	(2)	< 20	< 10	< 20	< 20	
1,2-Dichloroethane (EDC)	5.00E+00	(2)	200	140	160	170	
1,2-Dichloropropane	5.00E+00	(2)	< 20	< 10	< 20	< 20	
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 20	17	36	90	
1,3-Dichlorobenzene	-	-	< 20	< 10	< 20	< 20	
1,3-Dichloropropane	7.30E+02	(1)	< 20	< 10	< 20	< 20	
1,4-Dichlorobenzene	7.50E+01	(2)	< 20	< 10	< 20	< 20	
1-Methylnaphthalene	2.30E+00	(1)	120	110	120	130	
2,2-Dichloropropane	-	-	< 40	< 20	< 40	< 40	
2-Butanone	5.56E+03	(4)	< 200	< 100	< 200	< 200	
2-Chlorotoluene	7.30E+02	(1)	< 20	< 10	< 20	< 20	
2-Hexanone	-	-	< 200	< 100	< 200	< 200	
2-Methylnaphthalene	1.50E+02	(1)	< 80	50	190	210	
4-Chlorotoluene	2.60E+03	(1)	< 20	< 10	< 20	< 20	
4-Isopropyltoluene	-	-	< 20	< 10	< 20	< 20	
4-Methyl-2-pentanone	_	-	< 200	< 100	< 200	< 200	
Acetone	1.41E+04	(4)	< 200	< 100	< 200	< 200	
Benzene	5.00E+00	(2)	7800	5100	6800	7200	
Bromobenzene	2.00E+01	(1)	< 20	< 10	< 20	< 20	
Bromodichloromethane	1.34E+00	(4)	< 20	< 10	< 20	< 20	
Bromoform	8.50E+00	(1)	< 20	< 10	< 20	< 20	
Bromomethane	7.54E+00	(4)	< 60	< 30	< 60	< 60	
Carbon disulfide	8.10E+02	(4)	< 200	< 100	< 200	< 200	
Carbon Tetrachloride	5.00E+00	(2)	< 20	< 100	< 20	< 20	
Chlorobenzene	1.00E+02	(2)	< 20	< 10	< 20	< 20	
Chloroethane	-	-	< 40	< 20	< 40	< 40	
Chloroform	1.00E+02	(3)	< 20	< 10	< 20	< 20	
Chloromethane	2.03E+01	(4)	< 60	< 30	< 60	< 60	
cis-1,2-DCE	7.00E+01	(2)	< 20	< 10	< 20	< 20	
cis-1,3-Dichloropropene	7.00LT01	-	< 20	< 10	< 20	< 20	
Dibromochloromethane	1.68E+00	(4)	< 20	< 10	< 20	< 20	
Dibromomethane	3.70E+02	(1)	< 20	< 10	< 20	< 20	
Dichlorodifluoromethane	1.97E+02	- ` '	< 20	< 10	< 20	< 20	
		(4)	1900	1400	1700	< 20 1700	
Ethylbenzene	7.00E+02	(2)					
Hexachlorobutadiene	8.60E-01	(1)	< 20	< 10	< 20	< 20	
Isopropylbenzene	4.47E+02	(4)	88	84	75	79	
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	1400	480	950	790	

RCR 2015 Groundwate

					<i>l</i> -65		**MW-66
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15
Methylene Chloride	5.00E+00	(2)	< 60	< 30	< 60	< 60	
Naphthalene	1.65E+00	(4)	210	240	430	400	
n-Butylbenzene	-	-	< 60	< 30	< 60	< 60	
n-Propylbenzene	-	-	250	190	200	230	
sec-Butylbenzene	-	-	< 20	12	< 20	< 20	
Styrene	1.00E+02	(2)	< 20	< 10	< 20	< 20	
tert-Butylbenzene	-	-	< 20	< 10	< 20	< 20	
Tetrachloroethene (PCE)	5.00E+00	(2)	< 20	< 10	< 20	< 20	
Toluene	7.50E+02	(3)	< 20	< 10	< 20	< 20	
trans-1,2-DCE	1.00E+02	(2)	< 20	< 10	< 20	< 20	
trans-1,3-Dichloropropene	4.30E-01	(1)	< 20	< 10	< 20	< 20	
Trichloroethene (TCE)	5.00E+00	(2)	< 20	< 10	< 20	< 20	
Trichlorofluoromethane	1.14E+03	(4)	< 20	< 10	< 20	< 20	
Vinyl chloride	1.00E+00	(3)	< 20	< 10	< 20	< 20	
Xylenes, Total	6.20E+02	(3)	150	280	330	590	
Semi Volatile Organic Compo	unds (ug/l):	` '					
1,2,4-Trichlorobenzene	7.00E+01	(2)		< 10	< 10	< 10	
1,2-Dichlorobenzene	6.00E+02	(2)		< 10	< 10	< 10	
1,3-Dichlorobenzene	-	-		< 10	< 10	< 10	
1,4-Dichlorobenzene	7.50E+01	(2)		< 10	< 10	< 10	
1-Methylnaphthalene	2.30E+00	(1)		150	80	98	
2,4,5-Trichlorophenol	1.17E+03	(4)		< 10	< 10	< 10	
2,4,6-Trichlorophenol	1.19E+01	(4)		< 10	< 10	< 10	
2,4-Dichlorophenol	4.53E+01	(4)		< 20	< 20	< 20	
2,4-Dimethylphenol	3.54E+02	(4)		210	18	17	
2,4-Dinitrophenol	3.88E+01	(4)		< 20	< 20	< 20	
2,4-Dinitrotoluene	2.37E+00	(4)		< 10	< 10	< 10	
2,6-Dinitrotoluene	3.70E+01	(1)		< 10	< 10	< 10	
2-Chloronaphthalene	2.90E+03	(1)		< 10	< 10	< 10	
2-Chlorophenol	9.10E+01	(4)		< 10	< 10	< 10	
2-Methylnaphthalene	1.50E+02	(1)		150	130	150	
2-Methylphenol	1.80E+03	(1)		< 20	< 10	< 10	
2-Nitroaniline	1.10E+02	(1)		< 10	< 10	< 10	
2-Nitrophenol	-	-		< 10	< 10	< 10	
3,3´-Dichlorobenzidine	1.50E-01	(1)		< 10	< 10	< 10	
3+4-Methylphenol	1.80E+02	(1)		14	< 10	< 10	
3-Nitroaniline	-	-		< 10	< 10	< 10	
4,6-Dinitro-2-methylphenol	-	-		< 20	< 20	< 20	
4-Bromophenyl phenyl ether	-	-		< 10	< 10	< 10	
4-Chloro-3-methylphenol	-	-		< 10	< 10	< 10	
4-Chloroaniline	3.40E-01	(1)		< 10	< 10	< 10	
4-Chlorophenyl phenyl ether	-	-		< 10	< 10	< 10	
4-Nitroaniline	3.40E+00	(1)		< 10	< 10	< 20	
4-Nitrophenol	-	-		< 10	< 10	< 10	
Acenaphthene	5.35E+02	(4)		< 10	< 10	< 10	
Acenaphthylene	-	-		< 10	< 10	< 10	
Aniline	1.20E+01	(1)		< 10	< 10	< 10	
Anthracene	1.72E+03	(4)		< 10	< 10	< 10	

				MW	/-65		**MW-66
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15
Azobenzene	1.20E-01	(1)		< 10	< 10	< 10	
Benzo(a)anthracene	3.43E-01	(4)		< 10	< 10	< 10	
Benzo(a)pyrene	2.00E-01	(2)		< 10	< 10	< 10	
Benzo(b)fluoranthene	3.43E-01	(4)		< 10	< 10	< 10	
Benzo(g,h,i)perylene	-	-		< 10	< 10	< 10	
Benzo(k)fluoranthene	3.43E+00	(4)		< 10	< 10	< 10	
Benzoic acid	1.50E+05	(1)		< 20	110	< 20	
Benzyl alcohol	1.80E+04	(1)		< 10	< 10	< 10	
Bis(2-chloroethoxy)methane	1.10E+02	(1)		< 10	< 10	< 10	
Bis(2-chloroethyl)ether	1.36E-01	(4)		< 10	< 10	< 10	
Bis(2-chloroisopropyl)ether	9.76E+00	(4)		< 10	< 10	< 10	
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)		< 10	< 10	< 10	
Butyl benzyl phthalate	3.50E+01	(1)		< 10	< 10	< 10	
Carbazole	-	-		< 10	< 10	< 10	
Chrysene	3.43E+01	(4)		< 10	< 10	< 10	
Dibenz(a,h)anthracene	1.06E-01	(4)		< 10	< 10	< 10	
Dibenzofuran	-	-		< 10	< 10	< 10	
Diethyl phthalate	1.48E+04	(4)		< 10	< 10	< 10	
Dimethyl phthalate	-	-		< 10	< 10	< 10	
Di-n-butyl phthalate	8.85E+02	(4)		< 10	< 10	< 10	
Di-n-octyl phthalate	-	-		< 10	< 10	< 10	
Fluoranthene	8.02E+02	(4)		< 10	< 10	< 10	
Fluorene	2.88E+02	(4)		< 10	< 10	< 10	
Hexachlorobenzene	1.00E+00	(2)		< 10	< 10	< 10	
Hexachlorobutadiene	8.60E-01	(1)		< 10	< 10	< 10	
Hexachlorocyclopentadiene	5.00E+01	(2)		< 10	< 10	< 10	
Hexachloroethane	6.80E+00	(4)		< 10	< 10	< 10	
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)		< 10	< 10	< 10	
Isophorone	7.79E+02	(4)		< 10	< 10	< 10	
Naphthalene	1.65E+00	(4)		430	310	260	
Nitrobenzene	1.40E+00	(4)		< 10	< 10	< 10	
N-Nitrosodimethylamine	4.90E-03	(4)		< 10	< 10	< 10	
N-Nitrosodi-n-propylamine	9.60E-03	(1)		< 10	< 10	< 10	
N-Nitrosodiphenylamine	1.21E+02	(4)		< 10	< 10	< 20	
Pentachlorophenol	1.00E+00	(2)		< 20	< 20	< 10	
Phenanthrene	1.70E+02	(4)		< 10	< 10	< 10	
Phenol	5.00E+00	(3)		< 10	39	52	
Pyrene	1.17E+02	(4)		< 10	< 10	< 10	
Pyridine	3.70E+01	(1)		< 10	< 10	260	
General Chemistry (mg/l):		, , /					
Fluoride	1.6	(3)	< 0.50	< 0.10	< 0.50	< 0.5	
Chloride	250	(3)	210	290	180	160	
Nitrite	1	(2)	< 0.50	< 0.10	< 0.50	*< 1	
Bromide	-	-	4.5	0.69	3.6	4.3	
Nitrate	10	(3)	< 0.50	1.2	< 0.50	*< 1	
Phosphorus	-	-	< 2.5	< 0.50	< 2.5	< 2.5	
Sulfate	600	(3)	970	530	1500	1600	
Carbon Dioxide (CO ₂₎	-	-	1300	1400	1200	1100	
Alkalinity (CaCO ₃)							
• • • • • • • • • • • • • • • • • • • •	-	-	1335	1500	1300	1200	
Bicarbonate (CaCO ₃)	-	-	1335	1500	1300	1200	

RCR 2015 Groundwate

				MW	V-65		**MW-66
			Aug-15	Aug-14	Aug-13	Aug-12	Aug-15
Total Metals (mg/l):							
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	<0.02	
Barium	1	(3)	0.21	0.17	0.07	0.058	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	<0.002	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	<0.006	
Lead	0.015	(2)	< 0.0050	< 0.0050	0.0064	<0.005	
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	<0.05	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	<0.005	
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	<0.0002	
Dissolved Metals (mg/l):							
Arsenic	0.1	(3)	< 0.020	< 0.020	0.023	0.020	
Barium	1	(3)	0.2	0.17	0.057	0.053	
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	<0.002	
Calcium	-	-	270	250	350	410	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	<0.006	
Copper	1	(3)	< 0.0060	< 0.0060	< 0.020	<0.006	
Iron	1	(3)	7	3.4	8.9	12	
Lead	0.05	(3)	0.0055	< 0.0050	< 0.0010	< 0.001	
Magnesium	-	-	97	73	99	110	
Manganese	0.2	(3)	1.8	2.7	3.7	5.3	
Potassium	-	-	3.6	4.3	3.8	4.3	
Selenium	0.05	(3)	< 0.050	< 0.050	0.021	< 0.01	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	<0.005	
Sodium	-	-	680	650	700	860	
Uranium	0.03	(3)	< 0.10	< 0.10	0.0073	0.010	
Zinc	10	(3)	0.022	< 0.020	< 0.010	0.052	
Total Petroleum Hydrocarbon	s (mg/l):						
Diesel Range Organics	-	-	7.7	7.4	5.2	2.3	
Gasoline Range Organics	-	-	19	21	26	22	
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	<2.5	

- (1) EPA Regional Screening Levels (April 2009) E
- (2) EPA Regional Screening Levels (April 2009) M
- (3) NMED WQCC standards Title 20 Chapter 6, Par use on location specific screening levels
- (4) NMED TAP Water Screening Levels NM Risk As
 - = No screening level available
 - = Laboratory analyzed for combined Nitrat
 - = Analyte inadvertently not included in sar
 - = Analysis not required and/or well contain
 - = Analytical result exceeds the respective

 - = Columns hidden when there are 4 or mo

Tab Collection and Observation 2015 Groundwater Remediation

				CW 0+60							
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13			
Volatile Organic Compou	ınds (m	ıg/l)									
Benzene	0.005	(2)	0.0012	0.0016	0.002	0.0056	0.071	0.014			
Toluene	0.750	(3)	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.010			
Ethylbenzene	0.700	(2)	< 0.001	0.0017	0.0018	<0.001	0.0029	<0.010			
Xylene	0.620	(3)	< 0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.020			
MTBE	0.143	(4)	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.010			
Total Petroleum Hydroca	rbons (mg/l):									
Diesel Range Organics	-	-	1.7	1.4	0.74	1.7	1.3	1.7			
Gasoline Range Organics	-	-	0.51	2.7	2.9						
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5			

						CW 2	5+95	
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compou	ınds (m	g/l)						
Benzene	0.005	(2)	0.110	0.210	0.33	0.280	0.210	0.81
Toluene	0.750	(3)	< 0.005	< 0.050	<0.050	<0.010	<0.010	<0.010
Ethylbenzene	0.700	(2)	< 0.005	< 0.050	<0.050	<0.010	<0.010	0.045
Xylene	0.620	(3)	< 0.0075	< 0.075	<0.075	<0.0015	<0.010	<0.010
MTBE	0.143	(4)	< 0.005	< 0.050	<0.050	<0.010	<0.020	<0.020
Total Petroleum Hydroca	rbons (mg/l):						
Diesel Range Organics	-	-	1.3	<0.20	0.24	<0.20	<0.20	0.23
Gasoline Range Organics	-	-	1.7	0.88	0.80			
Motor Oil Range Organics	-	-	3.1	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

						OW	0+60	
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compou	ınds (m	ig/l)						
Benzene	0.005	(2)	< 0.001	<0.001	<0.001			
Toluene	0.750	(3)	< 0.001	< 0.001	< 0.001			
Ethylbenzene	0.700	(2)	< 0.001	< 0.001	< 0.001			
Xylene	0.620	(3)	< 0.0015	<0.0015	<0.0015			
MTBE	0.143	(4)	< 0.001	< 0.001	< 0.001			
Total Petroleum Hydroca	rbons (mg/l):						
Diesel Range Organics	-	-	1.7	3.2	1.5			
Gasoline Range Organics	-	-	0.38	0.3	0.23			
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5			

Tab Collection and Observation 2015 Groundwater Remediation

				OW 1+50						
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13		
Volatile Organic Compou	ınds (m	ıg/l)								
Benzene	0.005	(2)								
Toluene	0.750	(3)								
Ethylbenzene	0.700	(2)								
Xylene	0.620	(3)								
MTBE	0.143	(4)								
Total Petroleum Hydroca	rbons (mg/l):								
Diesel Range Organics	-	-								
Gasoline Range Organics	-	-								
Motor Oil Range Organics	-	-								

						OW	3+85	
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compou	ınds (m	ıg/l)						
Benzene	0.005	(2)	< 0.001			<0.010		<0.010
Toluene	0.750	(3)	< 0.001			<0.010		<0.010
Ethylbenzene	0.700	(2)	< 0.001			0.025		0.039
Xylene	0.620	(3)	< 0.015			<0.0015		<0.020
MTBE	0.143	(4)	< 0.001			<0.010		<0.010
Total Petroleum Hydroca	rbons (mg/l):						
Diesel Range Organics	-	-	12.0			110		43
Gasoline Range Organics	-	-	4.7			5.0		7.7
Motor Oil Range Organics	1	-	< 2.5			<25		5.1
	_				·	·		·

						OW	5+50	
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compou	unds (m	ng/l)						
Benzene	0.005	(2)						
Toluene	0.750	(3)						
Ethylbenzene	0.700	(2)						
Xylene	0.620	(3)						
MTBE	0.143	(4)						
Total Petroleum Hydroca	rbons	(mg/l):						
Diesel Range Organics	-	-						
Gasoline Range Organics	-	-						
Motor Oil Range Organics	-	-						

OW 6+70

							<u> </u>	
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compou	ınds (m	ıg/l)						
Benzene	0.005	(2)						
Toluene	0.750	(3)						
Ethylbenzene	0.700	(2)						
Xylene	0.620	(3)						
MTBE		(4)						
Total Petroleum Hydroca	rbons (mg/l):						
Diesel Range Organics	-	-						
Gasoline Range Organics	-	-						
Motor Oil Range Organics	-	-						
			OW 8+10					
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compou	ınds (m	g/l)						
Benzene		(2)						
Toluene	0.750	(3)						
Ethylbenzene	0.700	(2)						
Xylene	0.620	(3)						
MTBE	0.143	(4)						
Total Petroleum Hydroca	rbons (mg/l):						
Diesel Range Organics	-	-						
Gasoline Range Organics	-	-						

- (1) EPA Regional Screening Levels (April 2009) EPA Screeni
- (2) EPA Regional Screening Levels (April 2009) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.
- (4) NMED TAP Water Screening Levels NM Risk Assessment
 - = No screening level available
 - = Laboratory analyzed for combined Nitrate (As N) +
 - = Analyte inadvertently not included in sample analys
 - = Analysis not required and/or well contains separate

 - = Analytical result exceeds the respective screening le

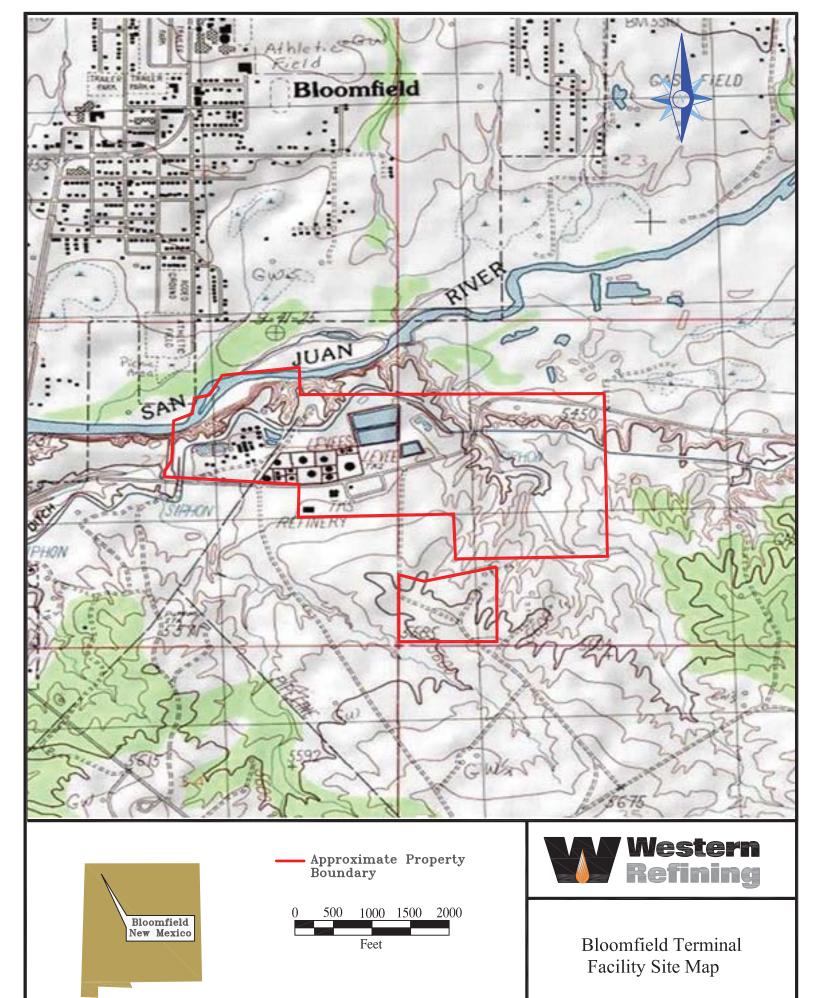
			Aug-15	Apr-15	Aug-14	Α
Volatile Organic Compo	•					
Benzene	0.005	(2)	<0.001	<0.001	<0.001	<(
Toluene	0.75	(3)	<0.001	<0.001	<0.001	<(
Ethylbenzene	0.7	(2)	<0.001	<0.001	<0.001	<(
Xylene	0.62	(3)	<0.0015	<0.0015	<0.002	<0
MTBE	0.125	(5)	<0.001	<0.001	<0.001	<(
General Chemistry (mg		4->				
Fluoride	1.6	(3)	0.17	0.52	0.50	
Chloride	250	(3)	2.7	8.6	9.2	
Nitrite	1	(2)	< 0.10	0.13	< 0.10	<
Bromide	-	-	< 0.10	< 0.10	0.11	
Nitrate	10	(3)	0.54	0.71	0.37	
Phosphorus	-	-	< 0.50	< 0.50	< 0.50	<
Sulfate	600	(3)	42	88	98	
Carbon Dioxide (CO ₂)	-	-	78		320	
Alkalinity (CaCO ₃)	-	-	85.24	344.8	350	
Bicarbonate (CaCO ₃)	-	-	85.24	344.8	350	
Total Metals (mg/l):						
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	<
Barium	1	(3)	0.063	0.087	0.19	0
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< (
Chromium	0.05	(3)	< 0.0060	< 0.0060	0.0072	< (
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< (
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	<
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< (
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0
Dissolved Metals (mg/l)):					
Arsenic	0.1	(3)	0.001	< 0.020	< 0.020	<
Barium	1	(3)	0.06	0.089	0.089	0
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< (
Calcium	-	-	30	100	100	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< (
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	< (
Iron	1	(3)	< 0.020	< 0.020	< 0.020	<
Lead	0.05	(3)	< 0.00050	< 0.0050	< 0.0050	< (
Magnesium	-	-	5.2	21	22	
Manganese	0.2	(3)	0.0021	0.011	< 0.0020	0.
Potassium	-	-	1.7	1.4	1.7	
Selenium	0.05	(3)	< 0.0010	< 0.050	< 0.050	<
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< (
Sodium	-	-	14	57	60	
Uranium	0.03	(3)	< 0.00050	< 0.10	< 0.10	<
Zinc	10	(3)	0.019	< 0.020	< 0.020	<
	Notes:	/				

Seeps Analytical Summary - 20

						Seep	#1		
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Αι
Volatile Organic Compounds (r	ng/l):								
Benzene	0.005	(2)		<0.001	<0.001	<0.001	<0.001	<0.001	<0
Toluene	0.750	(3)		<0.001	<0.001	<0.001	<0.001	<0.001	<0
Ethylbenzene	0.700	(2)		<0.001	<0.001	<0.001	<0.001	<0.001	<0
Xylene	0.620	(3)		<0.0015	<0.002	<0.0015	<0.002	<0.002	<0
MTBE	0.125	(4)		0.013	<0.001	0.066	<0.001	0.047	<0
General Chemistry (mg/l):									
Fluoride	1.6	(3)		<1.0	0.23	0.30	<1.0	< 0.50	0
Chloride	250	(3)		170	230	150	190	220	3
Nitrite	1.0	(2)		<1.0	< 0.10	< 0.10	<1.0	< 0.50	<
Bromide	-	-		3.3	2.7	1.9	2.3	2.1	
Nitrate	10	(3)		<1.0	< 0.10	< 0.1	<1.0	< 0.50	<
Phosphorus	-	-		<5.0	< 10	< 0.50	<5.0	< 2.5	
Sulfate	600	(3)		1200	1600	1200	1200	1700	1
Carbon Dioxide (CO ₂)	-	-		390	350	390	250	430	2
Alkalinity (CaCO ₃)	-	-		433.1	380	430	280	470	2
Bicarbonate (CaCO ₃)	-	-		433.1	380	430	280	470	2

						Seep	#6		
			Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Αι
Volatile Organic Compounds (mg/l):								
Benzene	0.005	(2)				<0.001	<0.001	<0.001	
Toluene	0.750	(3)				<0.001	<0.001	<0.001	
Ethylbenzene	0.700	(2)				<0.001	<0.001	<0.001	
Xylene	0.620	(3)				<0.0015	<0.002	<0.002	
MTBE	0.125	(4)				0.0058	<0.001	0.0019	
General Chemistry (mg/l):									
Fluoride	1.6	(3)				< 0.10	<1.0	< 0.50	
Chloride	250	(3)				1600	8700	2500	
Nitrite	1.0	(2)				< 2.0	<10	< 0.50	
Bromide	-	-				< 2.0	5.6	1.8	
Nitrate	10	(3)				< 0.10	<1.0	< 0.50	
Phosphorus	-	-				< 0.50	<5.0	< 2.5	
Sulfate	600	(3)				1500	2800	1600	
Carbon Dioxide (CO ₂)	-	-				390	150	300	
Alkalinity (CaCO ₃)	-	-				420	160	330	
Bicarbonate (CaCO ₃)	-	-				420	160	330	

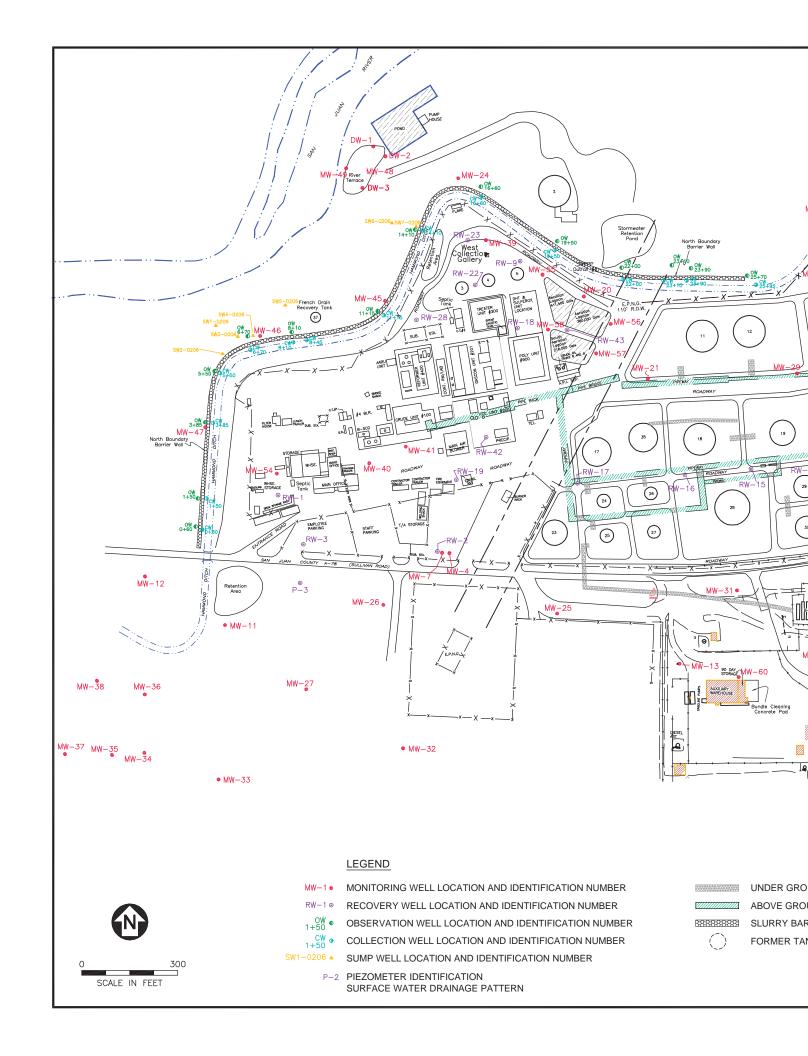
- (1) EPA Regional Screening Levels (April 2009) EPA Screening Levels. Tap Water
- (2) EPA Regional Screening Levels (April 2009) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for
- (4) NMED TAP Water Screening Levels NM Risk Assessment Guidance for Site In
- * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to m
 - = No screening level available
 - = Analysis not required and/or no water present
 - = Analytical result exceeds the respective screening level.

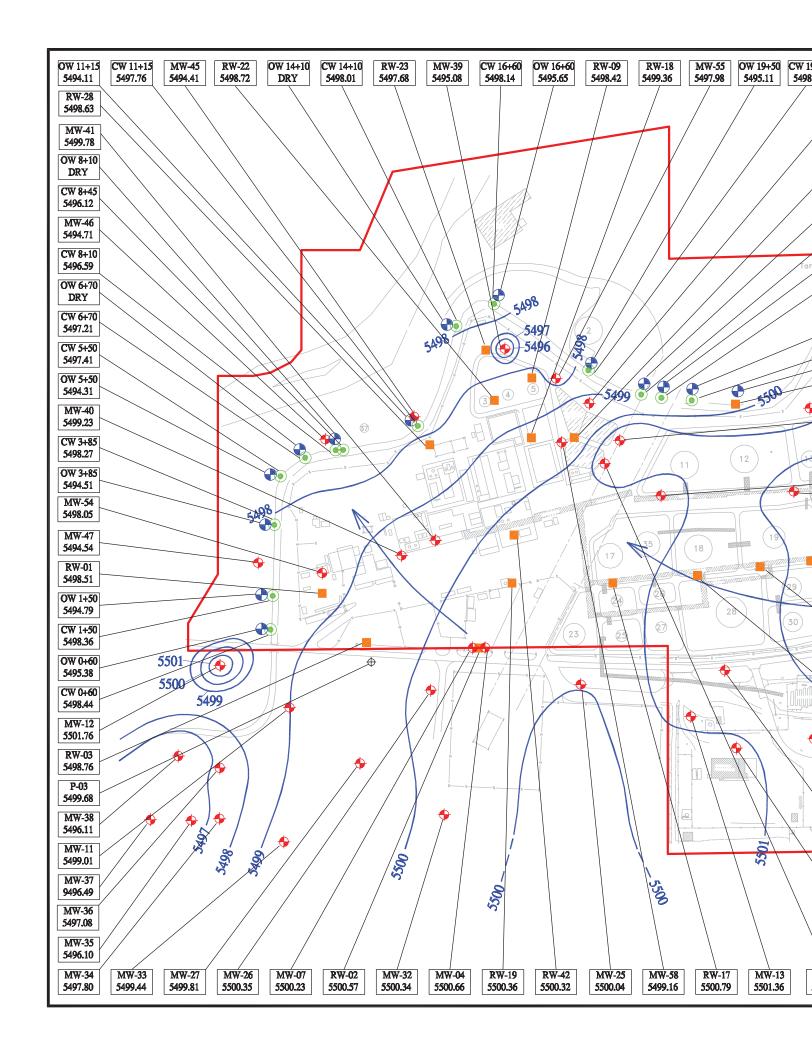

			Aug-15	Apr-15	Aug-14	T
Volatile Organic Compounds	(mg/l)			<u> </u>	<u>, </u>	•
Benzene	0.005	(2)	<0.001	<0.001	<0.001	<0
Toluene	0.750	(3)	<0.001	<0.001	<0.001	<0
Ethylbenzene	0.700	(2)	<0.001	<0.001	<0.001	
Xylene	0.620	(3)	<0.0015	<0.0015	<0.002	<0
MTBE	0.012	(4)	<0.001	<0.001	<0.001	<0
Total Petroleum Hydrocarbon	s (mg/l):	<u> </u>				
Diesel Range Organics	-	-	< 0.20	< 0.20	< 0.20	< (
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050	<
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2
General Chemistry (mg/l):						
Fluoride	1.6	(3)	0.17	0.21	0.18	0.2
Chloride	250	(3)	2.9	3.8	3.2	3.8
Nitrite	1.0	(2)	< 0.10	< 0.10	< 1.0	< (
Bromide	-	-	< 0.10	< 0.10	< 0.10	< (
Nitrate	10	(3)	< 0.10	< 0.10	< 1.0	< (
Phosphorus	-	-	< 0.50	< 0.50	< 0.50	< (
Sulfate	600	(3)	53	93	58	87
Carbon Dioxide (CO ₂)	-	-				89
Alkalinity (CaCO ₃)		-	92	99.6	95	10
Total Dissolved Solids	1000	(3)	202	263	260	26
Electric Conductivity	-	(3)	310	405	330	39
Total Metals (mg/l):			310	403	330	33
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< (
Barium	1.0	(3)	0.17	0.057	0.17	0.0
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< (
Chromium	0.05	(3)	< 0.0060	< 0.0060	0.0060	< (
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< (
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	< (
	Silver 0.05		< 0.0050	< 0.0050	< 0.0050	< (
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< (
Dissolved Metals (mg/l):	0.002	(0)	10.00020		1 0.00020	
Arsenic	0.1	(3)	< 0.0010	< 0.020	0.0011	< (
Barium	1	(3)	0.074	0.062	0.078	0.0
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< (
Calcium	-	-	36	44	37	41
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	<
Copper	1.0	(3)	< 0.0060	< 0.0060	< 0.0060	<
Iron	1.0	(3)	0.085	0.028	0.35	0.0
Lead	0.05	(3)	< 0.00050	< 0.0050	< 0.0010	< (
Magnesium	-	-	5.6	6.7	6.1	6.8
Manganese	0.2	(3)	0.0092	0.011	0.020	0.0
Potassium	-	-	2	2.2	2.0	1.9
Selenium	0.05	(3)	< 0.0010	< 0.050	< 0.0010	<
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	<
Sodium	-	-	18	33	21	31
Uranium	0.03	(3)	0.00067	< 0.10	< 0.0010	< (
Zinc	10.0	(3)	0.028	0.023	< 0.010	< (
		(2)	Notes:	1		

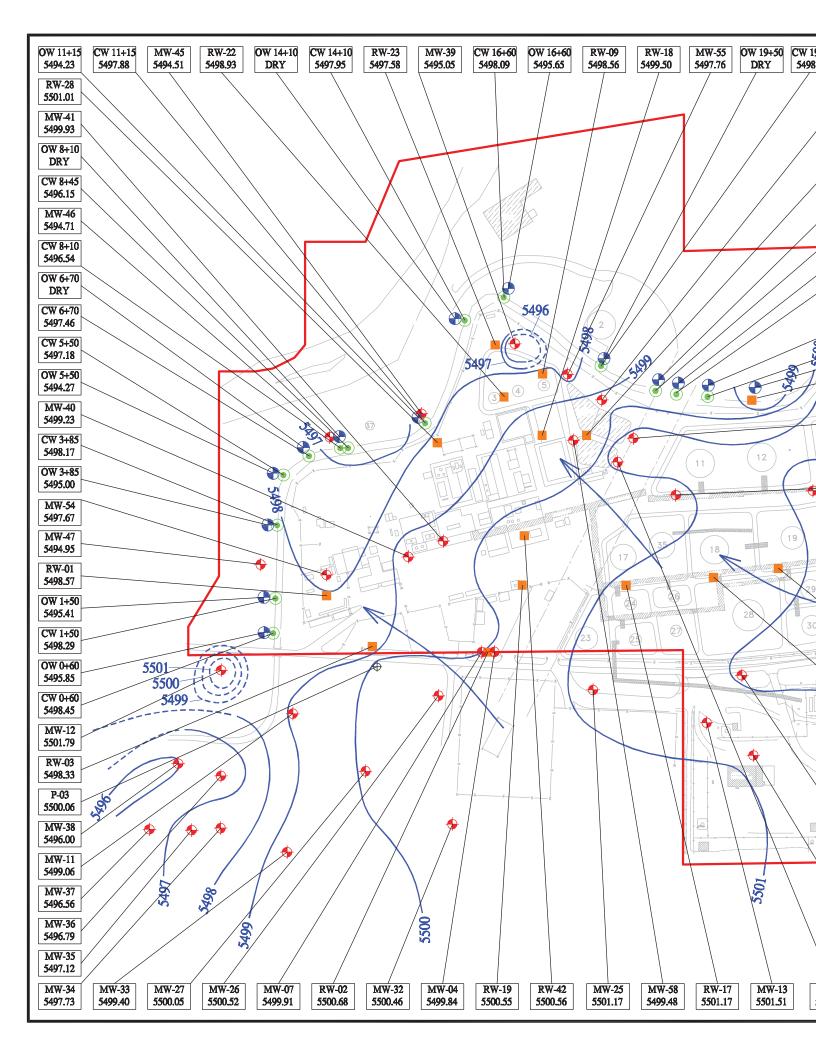
- (1) EPA Regional Screening Levels (A
- (2) EPA Regional Screening Levels (A

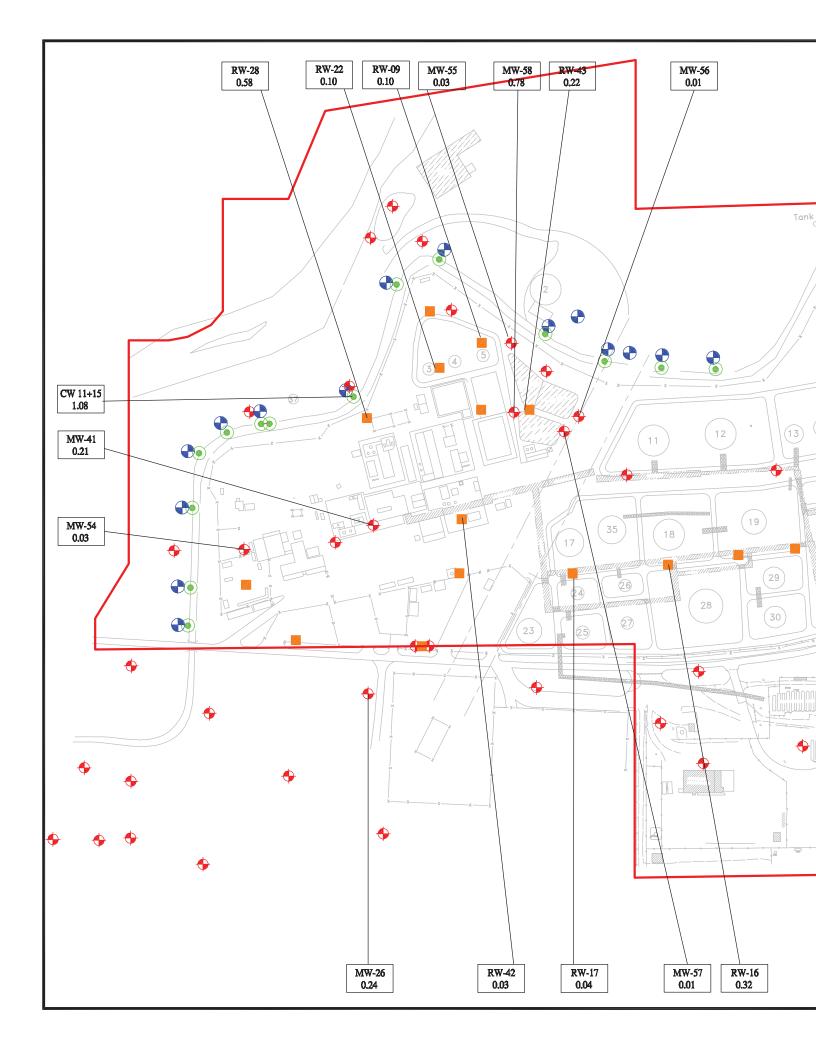
			Aug-15	Apr-15	Aug-14	\top
Volatile Organic Compounds	(ma/l)		Aug-13	Αρι-13	Aug	_
Benzene	0.005	(2)	<0.001	<0.001	<0.001	<
Toluene	0.750	(3)	<0.001	<0.001	<0.001	<
Ethylbenzene	0.700	(2)	<0.001	<0.001	<0.001	<
Xylene	0.620	(3)	<0.001	<0.0015	<0.002	<
MTBE	0.020	(4)	<0.0013	<0.0013	<0.002	<
Total Petroleum Hydrocarbon		1 (1)	40.001	10.001	10.001	
Diesel Range Organics	-	_	< 0.20	< 0.20	< 0.20	<
Gasoline Range Organics		-	< 0.050	< 0.050	< 0.050	<
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	<
General Chemistry (mg/l):			,	1 2 3	1,2.0	
Fluoride	1.6	(3)	0.17	0.21	0.18	0.
Chloride	250	(3)	3	4.3	3.3	3.
Nitrite	1.0	(2)	< 0.10	< 0.10	< 1.0	<
Bromide	-	-	< 0.10	< 0.10	< 0.10	<
Nitrate	10	(3)	< 0.10	< 0.10	< 1.0	0.
Phosphorus	-	-	< 0.50	< 0.50	< 0.50	<
Sulfate	600	(3)	54	110	66	9(
Carbon Dioxide (CO ₂)	-	-				89
Alkalinity (CaCO ₃)		 _	91.56	99.56	96	99
Total Dissolved Solids	1000	(2)	204	232	225	20
Electric Conductivity	1000	(3)	300	357	350	4(
Total Metals (mg/l):			300	337	330	41
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	<
Barium	1.0	(3)	0.16	0.061	0.18	0.
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	<
Chromium	0.05	(3)	< 0.0060	< 0.0060	0.0074	<
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	<
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	<
	Silver 0.05		< 0.0050	< 0.0050	< 0.0050	<
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	<
Dissolved Metals (mg/l):	0.002	(0)	10.00020	1 0.00020	1 0.00020	
Arsenic	0.1	(3)	0.001	< 0.020	0.0011	<
Barium	1	(3)	0.077	0.056	0.079	0.
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	<
Calcium	-	-	33	45	39	4
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	<
Copper	1.0	(3)	< 0.0060	< 0.0060	< 0.0060	<
Iron	1.0	(3)	0.062	< 0.020	0.34	0.
Lead	0.05	(3)	< 0.00050	< 0.0050	< 0.0010	<
Magnesium	-	-	5.4	7.1	6.3	7.
Manganese	0.2	(3)	0.01	0.034	0.028	0
Potassium	-	-	1.9	2.1	2.0	2
Selenium	0.05	(3)	< 0.0010	< 0.050	< 0.0010	<
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	<
Sodium	-	-	19	39	22	3
Uranium	0.03	(3)	0.00062	< 0.10	< 0.0010	<
(II anii ini i		· (U)	0.0000	1 . 0 0		

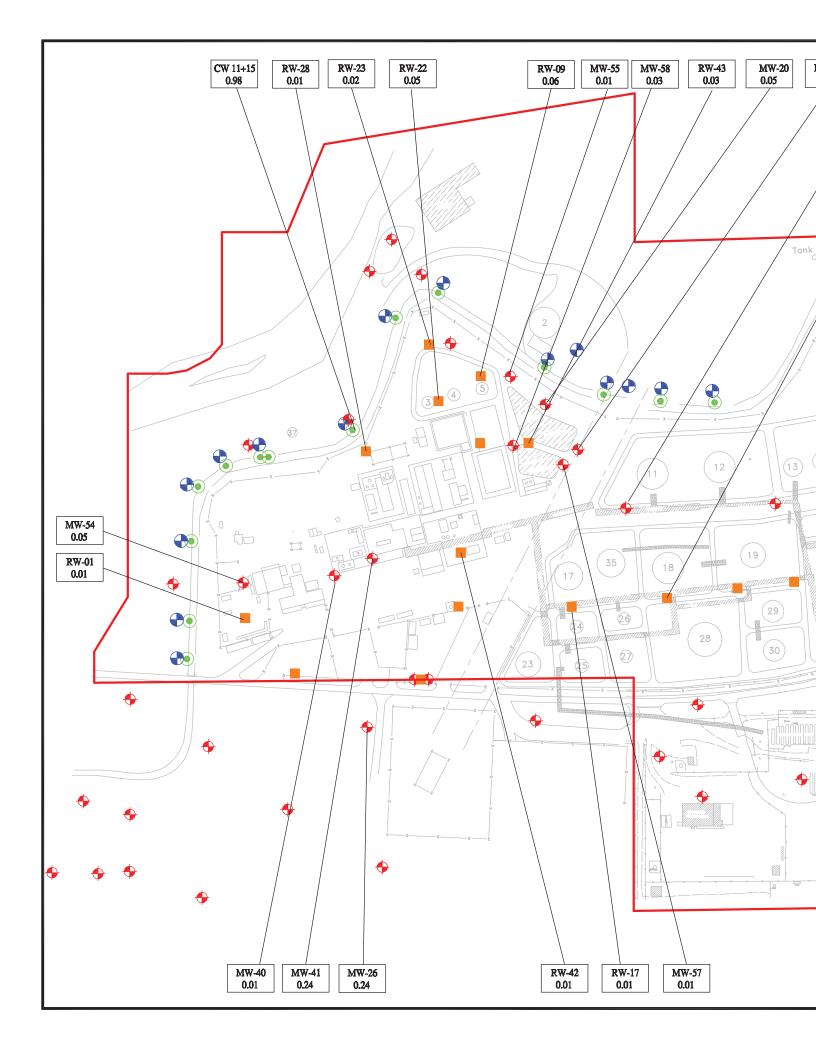
- (1) EPA Regional Screening Levels (April 20
- (2) EPA Regional Screening Levels (April 20

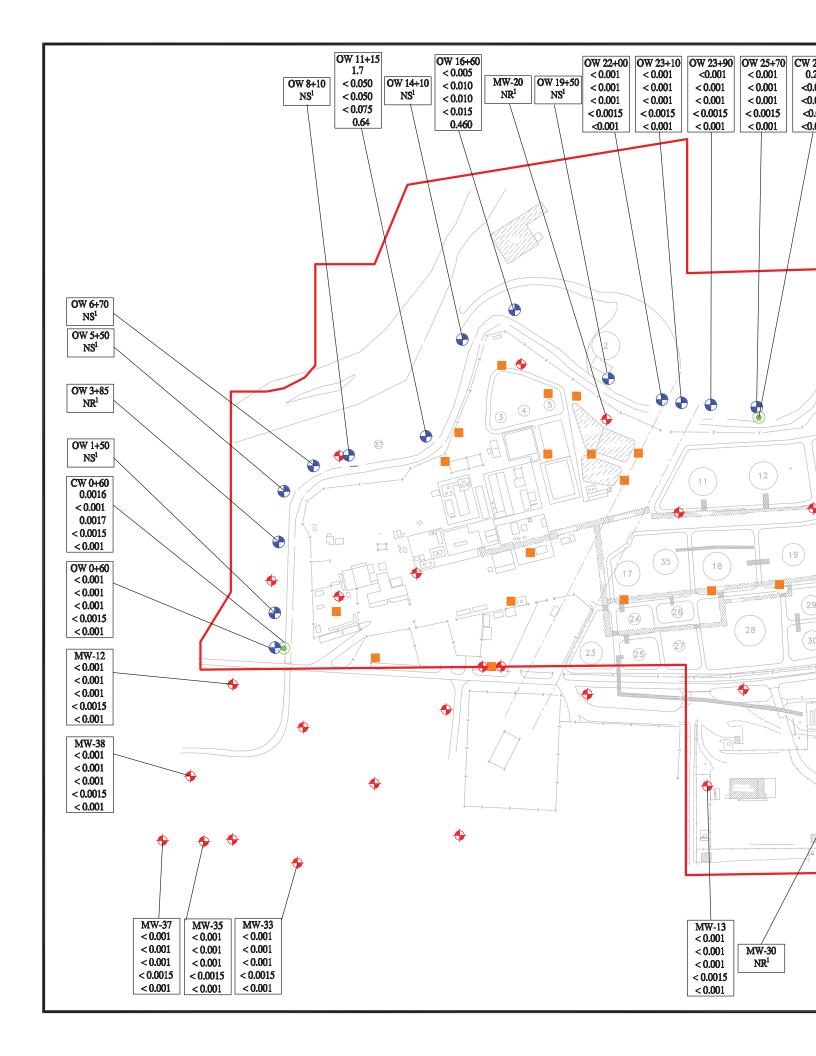

Figures

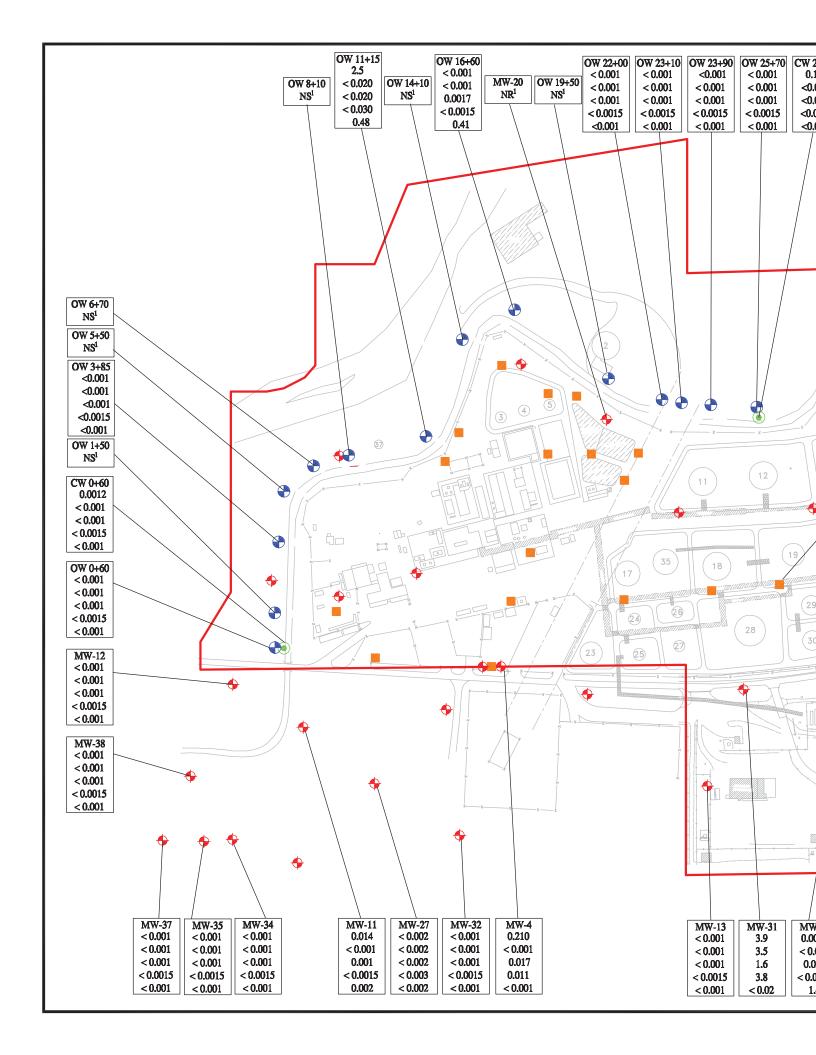

April 2016

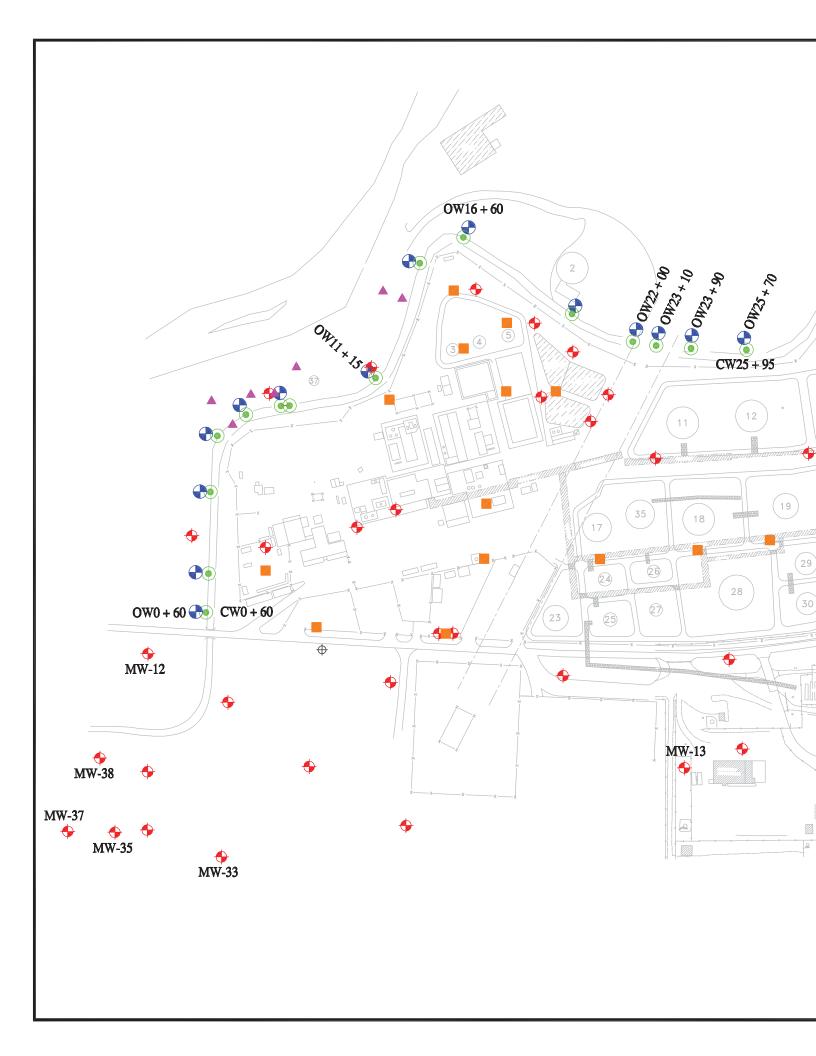

Figure 1

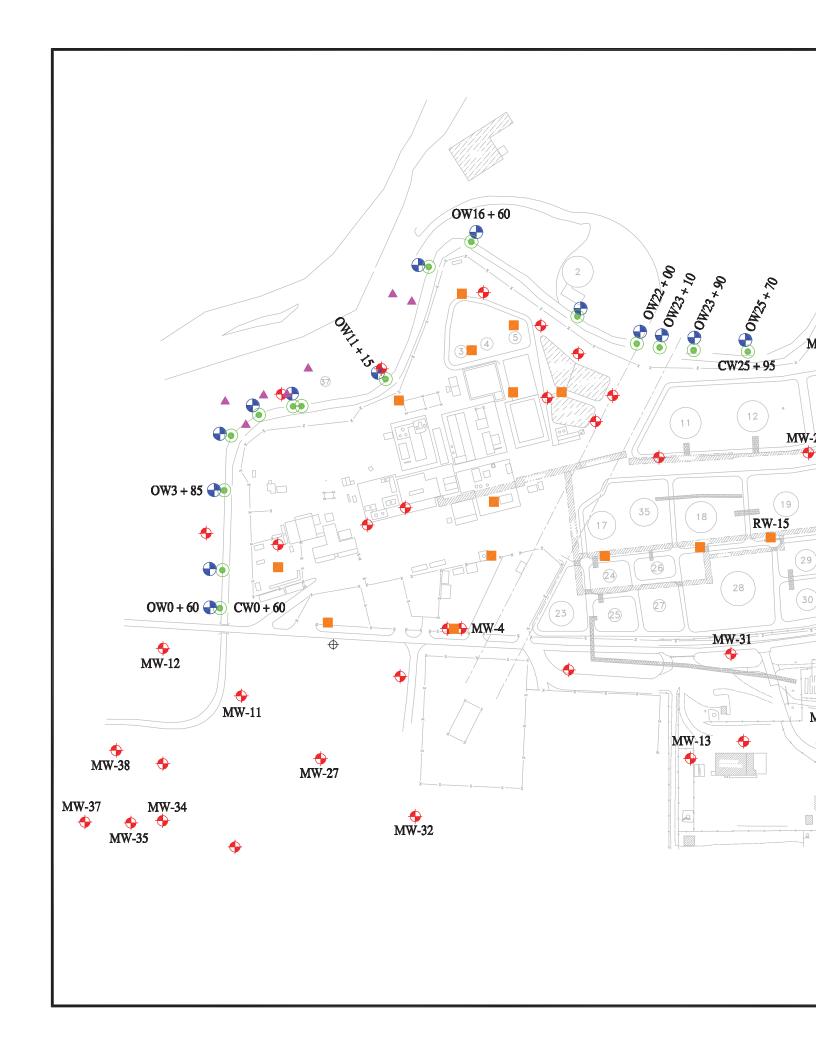

Drawn By: TAG











Appendix A

Field Methods

Appendix A

Groundwater Elevation

All facility monitoring wells, recovery wells, observation and collection wells were measured for groundwater elevation in April, and August. Terminal personnel followed the guidelines of the *Facility-Wide Groundwater Monitoring Plan June 2011* to collect groundwater levels and SPH thickness measurements in April. In August terminal personnel followed the revisions received in June 2012.

All water/product levels are determined to an accuracy of 0.01 foot using a Geotech Interface Meter. The technician records separate phase hydrocarbon, depth to water, and total well depth using this probe.

Water Quality/Groundwater Sampling

An YSI ProComm II is used to determine dissolved Oxygen (DO), electrical conductance, oxidation-reduction potential (ORP), Total Dissolved Solids (TDS), pH, and temperature are monitored during purging.

Well Purging Technique

After determining water levels initial well volumes are calculated. Total purge volume is determined by monitoring electrical conductance, pH, temperature, after every two gallons or each well volume, whichever is less, has been purged from the well. The wells were considered satisfactorily purged when the field parameter values did not vary by more than 10 percent for at least three measurements.

Well volumes are determined using the following equation:

Well Depth – Casing Height – Depth to Liquid X Conversion Factor X Three.

The conversion factor is determined by the diameter of the well casing.

Casing	Conversion Factor
6"	1.50 gal/ft
5"	1.02 gal/ft
4"	0.74 gal/ft
3"	0.367 gal/ft
2"	0.163 gal/ft

Disposable bailers are used for purging and sampling. Each bailer holds one liter of liquid. Three well volumes can be calculated by counting the number of times a well is bailed.

Well Sampling and Sample Handling Procedure

Equipment and supplies needed for collecting representative groundwater samples include:

- Interface Meter
- YSI ProComm II

- Distilled Water
- Disposable Latex Gloves
- Disposable Bailers
- String/Twine
- Cooler with Ice
- Bottle kits with Preservatives (provided by the contract laboratory)
- Disposable 0.45 micron Field Filters and Syringes
- Glass Jar (usually 4 oz.)
- Sharpie Permanent Marker
- Field Paperwork/Logsheet
- Two 5-gallon buckets
- Trash container (plastic garbage bag)
- Ziploc Bags
- Paper towels

After sufficient purging, samples are collected with the bailer and poured into the appropriate sample containers. Two people are usually utilized for sampling. Sampling takes place over a bucket to insure that spills are contained

For dissolved metals, sample water is poured into a jar and then extracted with a syringe. The syringe is then used to push water through a field filter into the proper sample bottle to collect the dissolved metals sample. Volatile organic analysis samples are collected as to allow no head space in the container.

Samples are labeled immediately with location, date, time, analysis, preservative, and sampler. Then they are put in a Ziploc bag and placed in a cooler holding sufficient ice to keep them cool. The field logsheet is reviewed to verify all entries.

Purge and Decontamination Water Disposal

YSI ProComm II and the interface probe are rinsed with distilled water after every well. The rinse procedure takes place over a bucket to insure that spills are contained.

All rinse and purge water is contained and then disposed of through the terminal wastewater system.

Any glassware used is washed with Alconox and water and rinsed with distilled water. Wastewater runs through the terminal wastewater system.

Instrument Calibration

The YSI ProComm II is use to measure Dissolved Oxygen (DO), electrical conductance, oxidation-reduction potential (ORP), Total Dissolved Solids (TDS), pH and is calibrated before each sampling event per the manufacture instruction manual.

Remediation System Measurement

Recovery well flows are measured using a 1000 ml graduated cylinder. The sample port on the discharge line of the pump is opened and effluent flows into the graduated cylinder. During a pump cycle, a measurement is taken over time and then calculated to a gallon per day rate.

Recovery rates at Tk #37 (Hammond Ditch French Drain) and Tk #38 (#1 East Outfall) are determined through flow meters installed in those systems. Refinery personnel record the rates periodically.

Appendix B

Record	Turn-Around	Time:						JAI			NIV/			ni r	ЛE	N7	ΓΑΙ		
ing	Standard	□ Rush		L_													OR		
	Project Name	;	00-15								ironn							## W	
1990	SAN JU	LAN RIV	er 4-22-15	:	490)1 H					uque				109				
37413 35	Project #:				Te	1.50	5-34	15-3 9	975	F	ax 5	505-	345-	4107	7				
DE	10#	12610	956	d.		11 0 0					sis l								
	Project Manag		<u> </u>	5877	<u>(</u>						4)		2	-					
	1 Tojoot Mana	901.		121)	on						S,	S.	d			म्र	8		
Full Validation)				+ TMB's (8021)	BTEX + MTBE + TPH (Gas only)				PAH's (8310 or 8270 SIMS)	7	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BTEX, WIBE		80	DISCOLLED METALS TOTA			
	Sampler: Ba	oh of MATT	-	MB	PH		_	=	20.5	Teth	Q Q	082	×	-	5	F	_	0	3
		X Yes	□ No	+	+	8	18.	04.	82	7	2.5	8/8	1	<u>{</u>	8015B	7	3/0,	3	or
	Sample Temp	perature:	10		BE	9	4 0	2 p) or	tals	ž	ides	A) B	\$	١	2	3	ار,	ح
***************************************				STEX + MTBE	Ψ	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	331	RCRA 8 Metals	F,C	stic	0	emi	DRO EST.	3		ANIOUS 300.	səlc
Request ID	Container	Preservative	HEAL No.	+ ×	+ ×	80	Ē	3) s	8 A 8	ns (P	B (S) (S	Ó	\vec{o}_{ij}	Alk.	3	gng
1	Type and #	Туре	1504A00	3TE	3TE	L L	핕	EDB	AH	3CF	\nio	308,	326(327(出	Dig	K	A	Air E
Tream	5-VOA	Hel	-001		Ш	X				_		-	X	,		p.			
	1-1.500	2													X			\Box	
	1-50001	HNO3								X									
CiL	1-500ml															V			
+ tillera	1-120						_	-		150						\rightarrow	\overline{V}	\dashv	
	1-500ml										77 - 1			-			Δ		
\		H2504		<u> </u>									1.6					X	
15 Feam	5-VOA	HCI	-wa			X							X						
	1-1-200	amber	40000												X				
*	1-500ml	HNO3	80%							X							- 44		
Filtered	1-120m															X			
/	1-500 m																X		
	1-120ml	H2504																X	
1	Received by:	. \	Date Time	Rer	mark	s:	5836										•		
akou	Valuate	back	4/22/15 1428																
-	Received by:		Date Time	45															
Iceles 1	Mehi.	, ynn	alliens 080	Ď										J. J					
rironmental may be sub	contracted to other a	ccredited laboratori	es. This serves as notice of thi	s poss	ibility.	Any s	ub-cor	ntracte	d data	will be	e clear	ly nota	ated or	the a	nalytic	al rep	ort.		
		O	•																

Record	Turn-Around Tim	ne:	3							ER	V	ГР		NI IN	a E	NT	CAI	i	
3129	Standard	□ Rush_				_					IS								
	I				11	100	-				ronm							7.	
4990	SANJUAN T	River	4-22-15 956		490)1 H:	awki	ns N	E -	Albı	uquer	que	, NIV	187	109				
4990 87413 135	Project #:				Te	1. 50	5-34	5-39	75	F	ax 50	05-3	45-4	1107	•		303		
135	10#1	2610	956			200			A	naly	sis R	equ	est					ļ	
	Project Manager	:	7.9	((ylu	7					(P)	s .	<u>-</u>	\		N		1	
(Full Validation)				3's (802	(Gas only)			ı	SIMS)	4	2,PO ₄ ,S	2 PCB	JBE.		B	Met 15	71		300
	Sampler: Bob	& MAIT		Ĭ.	TPH	9	£.	(1, 1)	270	6	8	8	1	<u>,</u>	8015.B	03	_	i	ŝ
			0N □	+ Щ	+	GR(1418	1 50	o 8	als	Š.	des /	(3)	Ø	Ø	2	310	8	ō ≿
e Request ID		eservative Type	and the second	BTEX + MTBE + TMB's (8021)	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310	RCRA 8 Metals (O(A)	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)BIEX MIBE Only	8270 (Semi-	DRO, EXT,	5	景の	ANIBNS 300.1	Air Bubbles
Ç 45	5-VOA 1	HCI	-003			X	200						X						
	1-500ml 0	1													X				
	1-500ml t									X									
filter	 															X			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1-500ml																X		
	1-120ml H	2504	*		-	美						41.87	安					X	
0446		461	-004			X		8					X	,	革				
	1-500ml a														X				
	1-500m	HN03								X									
filter	21-120ml							- 35°40° V								X			
	1-500ml -												$ \bot $				X		
	1-120m /	42504	*															X	
how	Received by:	hber	Date Time 4/22/15 1428	Rer	nark	s:													
relex 1.	Received by:	Valles	Date Time 04/23/15 08/00				1004												
vironmental may be sub	contracted to other accre	dited laboratorie	s. This serves as notice of this	possi	bility.	Any st	ub-con	tracted	d data	will be	clearly	notat	ed on	the a	nalytic	al repo	ort.		

Record	Turn-Around	Time:						_	IAI			uv	TP	201	NA	1F	NT	ΓAL		
INING	Standard	□ Rush			_													OR		
	Project Name	:	4-7	22-15							lenvi									
1990	SAN JUL	ANRIVER	Huff			490)1 H	awki	ins N	IE -	Alb	uque	erque	e, NN	и 87	109				
874/3	Project #:							5-34							4107					
35	PO# 1:	1610950	6								naly	sis l	Req	uest						
	Project Mana	 -				(ك ^{ار}	<u>Q</u>					(7)		14	_					
(Full Validation)					TMB's (8021)	(Gas or	30 / MF			SIMS)	\A	,PO ₄ ,S(Pesticides / 8082 PCB's	TBE CA		McTA/5				
	Sampler:	B + MA	1		MB	퓝		=	=	02	014	Ş	3082	×	.	` <u>`</u> }	-	O.	9	÷
		∀Yes ∵			+	+	윖	8.	504	r 82	₩	<u>_</u>	3/8	淵	<u> </u>		310,	300	2	5
	Sample Temp	perature:	10		MTBE	BE	9	7 po) po	0 0	etal	Z	cide	(A)	<u>ا</u> ٰ۔ِٰ ا	Sec	3	M	>	- の
e Request ID	Container Type and #	Preservative Type	HEAL N 15042	Maria Salah Sa	BTEX + M	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO / DRO / MRO)	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesti	8260B (VC	8270 (Semi-VOA)	Dissolved	Alk	ANIONS	Air Bubbles (V or N)	אומממם ווע
411 2	3-VOA	HCI	-00											X						
	1-500	HN03									X									
	1-120	HNO3														X				
	1-500																X			
	1-120	H2504																X		
All 3	3-VOA	HCI	-00	2										X				·	\perp	_
1	1-500	HNO3	1_								X									_
	1-120	HNO3														X			\perp	_
	1-500											_					X		$-\!$	_
	1-120	H2904							_			_						X	-	_
		<u> </u>		. ···		_		_	ļ							<u> </u>			-	_
								<u> </u>		<u> </u>									\perp	
skow	Received by:	Walt	4/22/15	ime 1428	Rer	nark	s:													
beles	Received by:	M Galle	Daté T 04/6 408 0	ime 13/15 1800																
nvironmental may be sub	contracted to other a	ccredited laboratori	es. This serves as	notice of this	possi	bility.	Any s	ub-cor	ntracte	d data	will be	e clear	ly nota	ated or	n the a	nalytic	al repo	ort.		

Record	Turn-Around	Time:		20			a									45	ALT			
Ailing	Standard	□ Rush									1000			10,000				'AL OR'		
	Project Name SAV JUAN Project #: Po #):	4	1-22-15								ironn								
4990	SAU JUAN	RiverBlu	iff See	PS	į	490	01 H	awki	ns N	E -	Alb	uque	erque	e, NN	M 87	109				
4990 17413 185	Project #:	4 * * *	1	·		Te	l. 50	5-34	5-39						4107	7				
135	107	12610	956					T T		Α	naly	sis	-	3						4
	Project Mana	ger:				+ TPH (Gas only)	TPH 8015B (GRO / DRO / MRO)					Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	3's	8260B (VOA) BTEX, MIBE AND		불	8			
(Full Validation)		420			+ TMB's (8021)	(Gas	30/			PAH's (8310 or 8270 SIMS)		PO	8081 Pesticides / 8082 PCB's	M)				a		İ
	Sampler:	\$ + MAT	t :		TMB	TPH	D/D	3.1	1.1)	270		NO ₂	808	区	`_	310.1	316.1		î	,
	On Ice: Sample Tem	Yes			+ U	+ Ш	GR	141	204	or 8	als.	چ ا	les/	3	δ.	X	M		\ \ \o	
	Sample Tem	Serature. /			MTB	MTB	5B (sthoc	sthoc	3310	Met	F,CI,	sticic	VOA	-imi	Chem.		8	les (
Request ID	Container Type and #	Preservative Type	HEA	L No.	BTEX + MTBE	BTEX + MTBE	1801	TPH (Method 418.1)	EDB (Method 504.1)	4's (8	RCRA 8 Metals) suc	1 Pe	0B (8270 (Semi-VOA)	Sen.	6.04		Air Bubbles (Y or N)	
	Type and n	, , , , ,	1504	LADA	BTE	BTE	直	直		PA	RCI	Ank	808	826	827	લ્ડૅ	2	\perp	Ąi	
#1	3-VOA	HCI		-001		9								X	,				\perp	
\	1-500ml											X				انا	X		\perp	
	1-120ml	H2504		72												区				
#1 Dup	3-10A	. /		002								,		X						
l	1-500m					32						X					X			
	1-120ml	H2504												\times					\perp	2000
#1.00								,			2007							\perp		
										7000								_		_
				22																_
																			\perp	
· · · · · · · · · · · · · · · · · · ·	; ;	gg 20120									120	100						\dashv	\perp	
	•		<u> </u>				L	3											丄	_
kon)	Received by:	+ 1. hat	Date 4/2-1/	Time 14/29	Rer	nark	s:		_	Tri	P '	BI	AK	K	-	D01	3			
	Received by:	- White	Date	ATIME 2/	_															
ikeler,	Johns	magall	USOS	180 180	6					_										
vironmental may be sub-	contracted to other a	ccredited laboratori	es. This serve	s as notice of thi	s possi	bility.	Any si	ub-con	tracte	d data	will be	e clear	ly nota	ted or	the a	nalytic	al repo	rt.		

Record	Turn-Around	Time:					ŀ	IA!		FI	NV	Т.	20	NI	1F	NTA	A I	
NING	★ Standard	□ Rush														TO		
	Project Name	e:									ironr							
4990	Down Go	nlienters	عاله		490	01 H					uque				109			
87413	Project #:			1		l. 50					ax :							
87413	PO#	126/	U5 10956								/sis							
	Project Mana				nly)	â	-				04)		my	/				
(Full Validation)				TMB's (8021)	(Gas o				SIMS)		,PO ₄ ,S	2 PCB's	WT136	`	BONSB			
	Sampler: 738	& mai		TMB	딢		-	<u>-</u>	270		Š,	808	×	`_				î
		XYes		+	+ Ш	GRC	418	504	or 8	SIS	S N N	es /	18	/O	4			γor
le Request ID	Container Type and #	Preservative Type	HEAL NO. 1	BTEX + MTBE	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIEX, MTB E, only	8270 (Semi-VOA)	DRO-EXT			Air Bubbles (Y or N)
-12	5-VOA	HCI	-001			X							X					
/		ander	-01												X			
-35	5-VOA		-002	T		X							X	-				
	1	amber	-007												X			
1-37	5-VOA		-002			X							X					
\		amber	-002												X			
v-38	5-VOA		-1774			X							X					
\		amber	-000												X			
sate			-005										X		-			
				T														
akow	Received by:	nliket	Pate Time 4/20/15 1621	Rer	nark	s:				•				•				
Ut	Received by:	A n	Dave Time 4(2) (50736)															
nvironmental may be subo	contracted to other a	ccredited laboratorie	es. This serves as notice of thi	s possi	bility.	Any sı	ıb-cor	tracte	d data	will be	e clear	ly nota	ited or	the a	nalytica	al report.		

Record	Turn-Around	l ime:						-	IA	1 E	FI	NV	TD	O	NA	4F	NT	ΔI	
NING	Standard	□ Rush_																RY	7
	Project Name							_				ironn							
4990	Cross-Gra	dient we	(15			490	01 H	awki	ins N	IE -	Alb	uque	erque	e, NI	vi 87	109			
87413	Project #:			·		Te	J 50	5-34	15-39	75	F	ax :	505-3	345-	4107	7			
4/35	Cross-Gra Project #: PO#	126/01	956_				71. OC					sis							
	Project Mana				(1)	only)	Î			İ		3O ₄)	့တ	2/1/2		2			
(Full Validation)					+ TMB's (8021)	(Gas only)				SIMS)		,PO4,	2 PCB	18E c		80158			
	Sampler: Bo		- □ No terral d	5 14 K 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TMB	ТРН	0 /	8.1)	4.1)	3270		3,NO	/ 808	X X		92			ŝ
	Sample Temp		23		BE +	.BE +	(GR	od 41	od 50	0 or 8	ətals	ON,I	sides	A)B1	1-00/	Earl			٥ // ٥
Request ID	Container Type and #	Preservative Type	HEAL 15049	<u>∞</u> ₹55	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VO	8270 (Semi-VOA)	DRO-Extent			Air Bubbles (Y or N)
1	5-VOA	HC1	-00	ĺ			X							X					
	1-500ml	amber	-007	1					N. Marin							X			
.13	3-VOA	HCI	-00	<u>Z</u>										X			\dashv	\perp	
- <i>3</i> 3	5-VOA		-00	3			X							X			\dashv		
	1-500.ml	amber	-00	3_						_						X	\dashv	+	-
																	\perp	\dashv	-
																	+		+
							!												 -
																		_	_
						Ļ			<u> </u>										
how	Received by:	yhete	4/20/15	Time 1421	Rer	nark	s:												
ele (Received by:	* NI	7115 /	Time															
vironmental may be sub	contracted to other a	credited laboratorie	es. This serves as	notice of this	possi	bility.	Any s	ub-cor	tracte	đ data	will b	e clear	ly nota	ted or	the a	natytica	al report	i.	

Record	Turn-Around	Time:						4.6		E	NV	/T =	20	N F	иЕ	NT	A I	
JiN9	Standard						_									TO		r
	Project Name							wwv	v.hal	lenv	ironr	nent	al.co	m				
4990 87413 4135	Refiner Project#:	y wells			49	01 H	awk	ins N	1E -	Alb	uque	erque	e, Ni	M 87	109			
8741_3	Project #:				Τe	el. 50	5-34	15-39	975	F	ax :	505-	345-	410	7			
4/35	POH	126101	956						Α	naly	/sis	Req	uest	:				
	Project Mana			1)	nly)	30)					04)		ione	2				
1 (Full Validation)				's (8021)	(Gas o	30 / MI			SIMS)		,PO ₄ ,S	2 PCB's	MIR					
	Sampler: Bo	RY MATT	□ No rive de la	+ TMB	+ TPH	30 / DI	18.1)	04.1)			03,NO2	, / 808	TEX	· (F				or N)
	Sample Temp	perature: Z	3	MTBE	띮	3 (GF	od 4	od 5	0 or	etals),N	sides	A) B	i-VO				٤ (ح
le Request ID	Container Type and #	Preservative Type	HEAL No.	BTEX + M	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO / DRO / MRO)	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BTEK, MTBE	8270 (Semi-VOA)				Air Bubbles (Y or N)
	- 1	1/2										-	×				+	
>-52	3-VOA	HCI	-001										V				+	\Box
v-52 Jup	3-VOA		-007										7			+	+	
Black			-003										X					T
																	1	\vdash
				Щ														
																	\perp	
															\dashv	\perp	-	_
																+	+	\vdash
in Sow	Received by: Received by:	Waste	Date Time 4/20/1/5 / 1/2/ Date Time	Ren	nark	 S:							•		<u> </u>	l		<u> </u>
invironmental may be subc	ontracted to other a	coredited laboratorie	LZUS 0750 es. This serves as notice of this	possil	bility.	Anv si	ıb-con	tracted	d data	will be	clear	v nota	ted on	the a	nalytica	l report		

Record	Turn-Around	Time:					-	IΔ		FI	Vν	TR	O	NN	1E	NT	AL	
NING	Standard	□ Rush				_										TO		
·	Project Name						,	www	/.hal	envi	ironn	nent	al.co	m				
4990	Collection	on wells	4-21-15		490	01 H	awki	ns N	IE -	Alb	uque	erque	e, NN	<i>l</i> l 87	109			
49 <i>90</i> 87413 135	Project #:	_			Te	I. 50	5-34	5-39	975	F	ax 5	505-	345-	4107	7	_		
135	to#1	26/09	356						A	naly	sis	Req						
	Project Mana			1)	(ylu	8					(₂ 0	S	4	ັ	İ			
(Full Validation)				+ TMB's (8021)	TPH (Gas only)	RO/M			SIMS)		2,PO ₄ ,S	2 PCB	ATBE C		8015 B			
	Sampler: ${\cal B}$			TMB	TPH		-	<u> </u>	270		8	808	X		Q			Î
		V	□ No	+		380	418	504	or 8,	<u>s</u>	ဝို	es/	18	Q	0			γ
	Sample Temp	perature:	120	ITB!	ITBI) B	poq	pou	500	Veta	<u>1,</u>	ticid	8	<u>-</u>	女			es (
e Request ID	Container Type and #	Preservative Type	HEAL NO 30 1574929	BTEX + MTBE	BTEX + MTBE +	TPH 8015B (GRO / DRO / MRO)	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (83	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BTEX, MTBE On by	8270 (Se	DRO EXT, 80			Air Bubbles (Y or N)
0+60	5-VOA	HC1	-001										X					
	1-500m	amber	-001												X			
25+95	5-VOA	HC	-002										X				-	_
1	1-500m	amber	-002												X		\bot	↓_
25+95Dw	5-VOA	Hel	-OZ				<u> </u>						X					\perp
25+95Dp	1-500ml	amber	003												X			_
<u>-</u>								<u> </u>				<u> </u>						—
Blank			-002+								L		\nearrow			\perp	_	
											_	<u> </u>		<u> </u>				
					_			<u> </u>		_	<u> </u>							1
						<u> </u>	<u> </u>		ļ								\perp	1_
							<u> </u>											
akow	Received by:	ocele s	Date Time 4/2/15 1357	Rer	mark	s:												
Palle (Received by:		Date Time 04/72/15 08/0															
nvironmental may be subc	contracted to other a	ccredited laboratorie	es. This serves as notice of thi	s poss	ibility.	Any s	ub-cor	ntracte	d data	will b	e clea	rly not	ated or	the a	natytic	al report		

Record	Turn-Arouna	Time:					L	AL		FI	MV	/T =	20	MA	4E	NT	TAL	
NIN9	¥-Standard																OR	
	Project Name							www	v.hal	lenv	ironr	nent	al.co	m				
4990	NORTH B	ourlary	4-21-15 Barrier 0956		49	01 H	awk	ins N	1Ë -	Alb	uque	erque	e, NN	vi 87	109			
1874/3	Project #:				Τe	el. 50)5-34	15-39	975	F	ax :	505-	345-	410	7			
(874/3 (35	107	F/26/6	0956						Α	naly	/sis	Req	uest					
	Project Mana	iger:			(ylu	Â					(†2		anly	-				
(Full Validation)			·	TMB's (8021)	(Gas only)				SIMS)		,PO ₄ ,S(PCB's	TBE O		8015B			
	Sampler: \mathcal{F}	BBY MAT	7-	MB	ТРН	3	7	=	8		5	308	্র		\overline{Q}			9
	On Ice:	X € Yes	□ No	+	+	RO	418.	504	r 82	S	03,1	8 / 8	3	8	B			or N)
	Sample Tem	perature:	1,0	MTBE	18E	3 (G	po 7	po	0	etal	Z S	cide	(A)	<u>:</u>	H			\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
e Request ID	Container Type and #	Preservative Type	HEALING 1504933	BTEX + M	BTEX + MT8E	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIE, MTBE	8270 (Semi-VOA)	DRU-EXT			Air Bubbles (Y
16+60	5-VOA	HC1	-001			X							X			T		
	1-500m	amber	-001												X			
11+15	5-VOA	HCI	- 0 02			X							X					
	1-500ml	amber	-002												X			
-0+60	5-10A	HCI	-003			X							X					
\	1-500ml	amber	-003												X			
	5-101	1/01				X										\dashv	\rightarrow	
	1-500m	comber													¥	3		
	5=1/-1	1/01			-	大		-				~~~	×		- 1			
~	1-5-0	Comber													1		\dashv	
																一	寸	
																		\top
Row	Received by: Mst Received by:	plact of the state	Date Time 4/2//5 /357 Date Time 04/22/708CC	Rer	nark	s:							'				<u> </u>	
vironmental may be subc	ontracted to other a	ccredited laboratorie	es. This serves as notice of this	possi	bility.	Any su	ıb-con	tracted	d data	will be	clearl	y nota	ted on	the a	nalytica	al repo	rt.	

Record	Turn-Around	Time:					H	IAI		FI	NV	TR	0	NN	ЛF	NT	AL	
ining	≸Standard	□ Rush_		 													R	
	Project Name										ironn							
4990	North Ba	indary BAI	1956		490)1 H	awki	ins N	IE -	Alb	uque	erque	e, NN	л 87	109			
187413	Project #:				Te	ı. 50	5-34	15-39	975	F	ax s	505-	345-	4107	7			
1/35	PO#	- 126/c	0956						Α	naly	sis !							
	Project Mana	ger:		1	only)						(₁)	s	On 14	7				
(Full Validation)				TMB's (8021)	(Gas				SIMS)		2,PO ₄ ,S	2 PCB'	WTBE C		BISB			
	Sampler: B	64 MAIL		TME	TPH		<u>~</u>	[-	270	ļ	8	808	"X	`_	$ \mathcal{B} $			$ \widehat{z} $
			□ No	+	+	GR.	418	20	or 8	SIS	ပ္ကို	es/	100	Q V				o
e Request ID	Sample Tem Container Type and #	Preservative Type	HEALINO.	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIEK, MIBE	8270 (Semi-VOA)	D80-Ex			Air Bubbles (Y or N)
2-: 20	5-VOA	401	100101	<u> </u>	<u> </u>		ㅡ	ш	<u> </u>	œ	∢	- 00	∞ ✓	- 8	F-	\dashv	+	
- 25+70		HCI	<u>-(01</u>					-			-		/	•	~	-	+	\dashv
	1-500	amber	-0011	-											X	-+	+	
- 23+90	5-10A	HCI	-002			X							X					
	1-500	amber	-002												X		\perp	\perp
) - 13+10	5-10A	HCI	-003			X							X					
	1-500	amber	-003												X		\perp	
>- 12+00	5-VOA	HCl	-1834			X							X					
\	1-500	amber	-004												X			
Ringate	3-VOA	Hel	-005					<u> </u>		<u> </u>			X	_			\bot	
*																		
										_								
rakon	Received by:	What	Pate Time 2 1357 Date Time	Rei	nark	s:												
Melo	Received by:	acradited laborate	Oci/22/15 800 es. This serves as notice of thi	e poes	ibility	Anyon		ntracto	d data	variil be	a class	dy not	ated or	the a	nalvtic	al reno	<u></u>	
nvironmentai may be subc	contracted to other a	coredited laboratorie	s. This serves as notice of thi	s poss	ionity.	Ally S	up-col	ili attie	น นสเส	AALII DI	s viedi	ıy mote	aceu UI	11169	.naryuC	arrepu	14.	

Record	Turn-Around	Time:					1-	IΔI		F	uν	TR		NN	1E	NT	ΤΑΙ	L	
-iNIN9	Standard	□ Rush					_									T			
	Project Name);					,	www	/.hal	lenvi	ronn	nenta	al.co	m					
990	DownGro	edient wel	(5 8-20-15		490)1 H	awki	ns N	E -	Alb	uque	rque	e, NN	и 87	109				
3741 <u>-3</u> 435	Project #:	-	5		Те	l. 50	5-34	5-39			ax 5				7				_
435	PO#1	26/095.	5							Ť	sis l	Requ	uest						
	Project Mana			(21)	(Gas only)						,SO ₄)	3,s							
(Full Validation)				8) s	(Gas				SIMS	ĭ <u>₹</u>	PO,	2 PCI			8	1	岩	0	
	Sampler: Ba	& Yes		TMB	+ TPH	0 /	8.1)	(1.4	8270	19	NO.	/ 808		₽	80151	MELA	7	[7,	or N
		perature /, 0		BE +		GR (GR	od 41	od 5(0 o	etals	N,N	sides	₹	\ \ \ \ \	7	વ્યુ	lem	W	اچّ
e Request ID	Container Type and #	Preservative Type	HEAL NO.	BTEX + MTBE + TMB's (8021)	BTEX + MTBE	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals TOTA	Anions (F,C	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	DRO-EX	Dissolved	Ged, chem	ANIONS	Air Bubbles
-//	5-V0A	HCL	-001			X							X					\Box	
	1-500ml	amber	`												X				
-	1-500m	HNO3								X									
filter	1-125ml	HNO3														X		\Box	
	1-500ml				!												×		
1	1-125ml	H2504	•														\Box	\underline{X}	
N-12	5-VOA	HCL	-002			X		.!					\times						
1	1-500ml	amber				!	ļ								X				
	1-500ml	HNO3								\times									
	1-125m	HNO3														X			
4	1-500 ml																X		
	1-125 ml	H2504					<u> </u>			<u> </u>								X	
akow	Received by:	t haite	Date Time \$/20/15 / 0:19	Rer	nark	s:													
Wast	Received by:	Ochle	Date Time 08/21/15 0800																
vironmental may be sub	contracted to other a	ccredited laboratoric	es. This serves as notice of thi	possi	bility.	Any sı	ub-con	tracte	d data	will be	clear	ly nota	ited or	the a	nalytic	al repo	ort.		_

Record	Turn-Around Time:	· · · · · · · · · · · · · · · · · · ·				Н	ΙΔΙ	LL	Eľ	VV.	ſR	OI	NP	1E	NT	'Al	_	
NIN9	Standard □ Rush									IS								
	Project Name:		1			,	www	,hall	envi	ronm	enta	al.co	m					
990.	Down Gradient Wells	3 8-20-15		490)1 H	awki	ns N	E -	Albu	uque	rque	, NN	187	109				
990. 874 j 3	Project #: P.O.# 12610955			Те	l. 50	5-34	5-39			ax 5			41 <u>0</u> 7	•				_
35	10 # 12610955		,					Α	naly	sis F	equ	ıest						4
	Project Manager:		£	only)						004	ွှ	1						
(Full Validation)			TMB's (8021)	(Gas			ļ	SIMS)	E.	2,PO ₄ ,	2 PCB's			58	METALS	AK K	9	
· · · · · · · · · · · · · · · · · · ·	Sampler: 736 & Tracy On Ice: X Yes I	No	+	+ TPH	RO/	118.1)	504.1)	r 8270	S	03,NO	808 / si		(A)	8015B	2	₹ ¥	9	Ω δ
	Sample Temperature: 1.0		IBE	TBE	9	od 4	bo	00	etal	2,1	cide	3	₹	ti	Vec	Chem	30	<u>ا ج</u>
e Request ID	Container Type and #	HEAL NO. 1508.A58	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metais CA	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Serr	DRO-5XT 89	Dissolved	GeN. C	ANIONS	Air Bubble
1-34	5-VOA HCL	-003			X							X						
	1-500mlamber													X				
	1-500ml HNO3							-	X							\Box		
\ filter															\times			
	1-500ml															X		
	1-125ml HaSO4																X	
-3 <i>5</i>	5-VOA HCL -	004			X							X					\dashv	_
	1-500m amber	·							ž.					X	_	\dashv		
<u> </u>	1-500ml HNO3		_						\times							\blacksquare	\dashv	
filter	1-125ml HNO3		_		<u> </u>										X	9 6		
	1-500ml		<u> </u>	_	_			ļ								X		
	1-125mm H2504	D. C. Time	_	<u> </u>					<u> </u>				ı				X	
rakow_	Received by: Received by:	Date Time 8 22 15 10 9 Date Time	1 .	nark	s:													
Walls (Sove. acher 08/	21/15 0800		11.112-		.d	4						. 4b	mal: 4! -	al r			
nvironmental may be sub-	contracted to other accredited laboratories. T	his serves as notice of this	s poss	ibility.	Any s	ub-cor	ntracte	o data	Will be	clearl	y nota	ted on	tne a	naiytic	aı repo	πt.		

Record	Turn-Around	Time:					F	IAI		FI	v	TR	20	NR	1E	NT	ΓΑΙ	L	
JING	Standard			Ļ			_										OR		
	Project Name						,	www	/.hal	lenvi	ironn	nent	al.co	m .					
90	DOWNGA	adientu	le/0955		490	01 H	awki	ns N	E -	Alb	uque	erque	e, N⊪	И 87	109				
87413 135	Project #:	> <u>,</u> , ,			Te	el. 50	5-34	15-39			ax 5				7				
135			<u>6/0955</u>				ı				sis	Requ	uest		1				
	Project Mana	ger:		21)	only						SO ₄)	S.S			$^{\prime\prime}$	Ñ			
(Full Validation)		<u>-</u>		% (80)	(Gas only)				SIMS	A 3	2,PO ₄ ,	2 PCE	ļ		8015B	METER	A K	0	
	Sampler: 6	Sb + Trac	C No E S	+ TME	+ TPH	RO /	18.1)	04.1)	8270	10	Oy,EC	s / 808		(A)	- 1	_		4	or N
	Sample Tem	peralure: [, (ANTENNE SECTION OF THE	IBE		3 (G	od 4	od 5	10 or	etals	ž	cide	[₹	-i	夕	1	ž	. 1	ا≾
e Request ID	Container Type and #	Preservative Type	HEAL NO:	BTEX + MTBE + TMB's (8021)	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals ToTA/s	Anions (F,	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	DRO-EXT.	Dissolved	Gen . che	ANIOUS	Air Bubble
-37	5-VOA	Hel	-005			X							X						
	1-500m	amber													X				
	1-500ml	HNO3								X								ightharpoonup	
filter	1-125ml	HNO3			·											\times			
	1-500m																X		
	1-125ml	H2504																X	_
-3 <u>8</u>	5-VOA	Hel	-004_			\times							X		• /	\longrightarrow	$ \rightarrow $	\dashv	
	1-500m	amber													X				
1	1-500ml	HNQ3								X							-	-	
+ilter	1-125m	4403	<u>-</u>	_					· · · · ·							X		\dashv	
$\overline{}$	1-500pm	1/20			-													J	
	1-125m	H2504	Date Time	Rar	l nark	6.		<u></u>										\triangle	<u> </u>
rakon	Received by:	tu Was	12 8/20/15 /019 Date Time	7	nark														
Doelt (1 gri	Ochle	0421/19 0800											÷					
vironmental may be subc	ontracted to other a	ccredited laboratorie	s. This serves as notice of this	possi	bility.	Any sı	ub-con	tracte	d data	will be	clearl	y nota	ited on	the a	nalytic	al repo	ort.		

Record	Turn-Around	HIIIG.					ŀ	ŧΔi	LL	EI	V	TR	10	NF	1E	NT	ΓΑΙ	L	
Ng	Standard	□ Rush														\T(
	Project Name	Ľ.						www	/.hal	lenvi	ronn	nent	al.co	m					
990	Down G	radient	vells 8-20-15		490)1 H	awki	ns N	IE -	Alb	uque	erque	e, NN	vi 87	109				
413	Project #:	· ·			Τe	l. 50	5-34	5-39	975	F	ax {	505-	345-	4107	7				
4/3 35	PO.#	-126/09	uells 8-20-15 955							naly	sis I	Req	uest						
	Project Mana				only)	Â			Ţ,		([†] 0	,,				'n	Λ		
				302	38.0				(S)		S,4	PCB's			80	14		4	
(Full Validation)				3) s	(Gas	7.9			SIMS)		9	2			戸	MEIA		4	-
	Sampler: Ba	b a Trac	4	+ TMB's (8021)	+ TPH	Š	-	Ę.	PAH's (8310 or 8270		Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082			8015	,≥	ş	7	î
				+	+	贸	418	504	8	တ	o o	/ 88		8	l	9	Š		or N
	Sample Tem	perature: /, ()	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	10	RCRA 8 Metals	2,	cide	≨	8270 (Semi-VOA)	DRD-6XT	Dissalved	3	2	Air Bubbles (Y
	Container	Preservative		.M	M	115	leth	/let	83	∑	Ē	esti	8260B (VOA)	Ser	, <u>, , , , , , , , , , , , , , , , , , </u>	2	0	ANID	<u>g</u>
e Request ID	Type and #	Type	HEAL No.	×	×	1 8(=	8	ည်	₹Ì	ons	프	80	0	72	N	Gen.	2	B
	1,500 0	',,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1508A58	BTE	BTE	T	TP		PA	욊	Ani	8	826	827	4	A	Q		Αġ
11 Dup	5-VOA	Hel	-007			X							X						
1	1-500	amber													X				
	1-500ml	HNO3								X									
	1-125ml	HNO3														X			
	1-500ml																X		
	1-125-1	H2504	·															X	
· .	1 100001	112 507				<u> </u>													
		-			 		\vdash												
				<u> </u>		-									\vdash				
			<u> </u>	-															-
		<u> </u>		<u> </u>		_											\vdash		
				<u> </u>			_	<u> </u>										$\vdash\vdash$	
		1				L.													
	Received by:	1 1/ .	Date Time	Rer	mark	s:													
rakow	1 NM	ti Wall	~ 8/20/1× 1019																
11	Received by:		Date Time																
Walte_	Mar. O	Roher	03/21/19 0800																
nvironmental may be subo	contracted to other a	ccredited laboratorie	es. This serves as notice of thi	s poss	ibility.	Any s	ub-cor	tracte	d data	will be	e clear	ly nota	ited or	the a	ınalytic	al repo	ort.		

Record	Turn-Around Time:					ŀ	IA.		FI	uv	TR	20	NN	1F	NT	TAI	L	
Ning	Standard Rush_	· · · · · · · · · · · · · · · · · · ·													\T(
	Project Name:	ı.					www	v.hal	lenvi	ironn	nenta	al.co	m					
990	Refinery wells Project #:	8-25-15		490)1 H	awki	ins N	1E -	Alb	uque	erque	e, NN	л 87	109				
87413 35	Project #:			Te	l. 50	5-34	15-39	975	F	ax 5	505-	345-	4107	7				
35	PO#12610	9 <i>55</i>						Α	naly	sis	Requ	uest						
	Project Manager:		7	(yluc						(₂ 0	ွှတ			_	۱			
(Full Validation)	· ·		+ TMB's (8021)	(Gas only)				SIMS)	14	2,PO ₄ ,S	2 PCB			8015B	Metals	AK	0	
	Sampler: Bob + Trail On Ice: Yes		+ TME	+ TPH	RO/	418.1)	504.1)	r 8270	s loth	03,NO	808 / se		(A)	1	- 1	-	-1	or N)
	Sample Temperature: 2		묘	136	B (G	, pot	рог	10 o	letai	2,5	icide	8	<u>-</u>	区	2	3	M	չ (Հ
Request ID	Container Type and # Type	HEAL NO.	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	DRO-	Dissolved	GENICH	ANIONS	Air Bubble
1-29	5-VOA HC	-001			X							X						
	1-500ml amber	-001												X				
	1-500ml HNO3	-001							X									
file	1-125m HNO3	-001													\times		\perp	
	1-500ml	-001														X	_	
	1-125ml H2504	-mi															<u> </u>	
1-30	5-VOA HCI	-007_			X						ļ	X	·				_	
	1-500ml camber	-02												X				
	1-500ml HNO3	-002	ļ						X								\dashv	
filter	1-125ml HNO3	-00Z	<u> </u>		<u> </u>										X		\dashv	
	1-500m	-002				<u> </u>										Δ		
	1-125m1 H2504	-002		<u> </u>		<u> </u>								<u> </u>			<u>X</u> I	
how	Received by: Mut Waut	Date Time 8/25/15 1219	Rer	nark	S:													
) antri	Received by:	Date Time																
vironmental may be sub-	contracted to other accredited laboratories		s possi	bility.	Any s	ub-cor	ntracte	d data	will be	e cleari	ly nota	ited or	the a	nalytic	al repo	ort.		_
	\sim																	

Record	Turn-Around	Time:					H	ΙΔΙ	LL	E	V	TR	201	NI	1E	TN	'AI		
0,100	Standard Project Name	□ Rush_					A	N	AL	YS	IS	L	AE	80		TC			
	-		8-25-15 955		490)1 Ha		7		lenvi Albı					109				
990 8741 ³ 35	Project #:				Te	l. 50	5-34	5-39	75	F	ax_5	505-	345-	4107	7				
75	PO.#	12610	955		10 2000	100.00			Α	naly	sis l	Req	uest					The same	
	Project Mana	ger:		TMB's (8021)	(Gas only)				(S))4,SO ₄)	CB's				7	4		
-ull Validation)				3,2 (8	Ö			١	SIMS)	A	2,PC	22 P	1		(2)	計	A	ત	
	MENDUDY AIR WINDS AND AND AND AND AND AND AND AND AND AND	y Yes		+	+ TPH	SRO/	418.1)	504.1)	or 8270	Is O	NO3,NO	es / 808	ļ	(OA)	885	0, M	N.	C	Y or N)
<u> </u>	Sample Tem	perature: 2		ITB!	ITB!) B(hod	pou	310	Meta	<u>'</u>	ficid	OA)	글	女	-3	ch.	· so	es (
Request ID	Container Type and #	Preservative Type		BTEX + MTBE	BTEX + MTBE + TPH	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals OA	Anions (F	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Se	DRO-EXT 80	Dissolved Meth	Geni	ANions,	Air Bubbl
-44	5-VOA	HCI	-003			X							X						
•	1-500ml		-003												X				
	1-500 m	1,10	-003							X									
filter	1-125ml		-003										a a			X			
	1-500ml		-003														X		
	1-125ml	H2504	-003															X	
-44 D	5-VOA	Hel	-004			X		25					X	2					
\	1-500ml	amber	-004								13				X				
	1-500ml	HN03	-004							X									
filter	1-125ml	H NO3	-004			10										X			
	1-500ml		-004		_		254								-		X		
	1-125ml	H2504	-00f	<u> </u>	L.	<u> </u>				<u> </u>	<u> </u>							X	
akon)	Received by:	Wast	Plate Time 8/25/15 / 2/5	Rei	mark	s:								*		%			
10 ters	Received by:	081	76 Páte Time 76 15 0780						*	19	8	5)	16		88	67 60	s .		
		dis-d Johovetori	as. This convex as notice of thi	0 0000	ibility	Anve	uh-cor	tracto	d data	will be	e clear	rly not:	ated or	n the s	analytic	cat rend	ort		

Record	Turn-Around	Time:			-		H	1A	LL	Eľ	V	TR	20	Nr	1E	NT	[Al		
INF	Standard				- Marie 1997												OR		
	Project Name							www	/.hal	lenvi	ronn	nenta	al.co	m					
990	Refin	lery We	955		490)1 H	awki	ins N	IE -	Alb	uque	erque	e, NI	vi 87	109				
874/3	Project #:	- A			Te	l. 50	5-34	15-3 9	975	F	ax 8	505-	345-	4107	7				
5	POH	-12610	955						A	naly	sis I	Requ	uest						
990 874/3 5 4/35	Project Mana	ger:			Jy)	Î		, : , :			O ₄)								
*				3021	(Gas only)				(S)	10	Q, 4	PCB's				W	天		
(Full Validation)				8) s	(G _B			.	SIMS)	1	g.				20	13	T	4	
***	Sampler:	30 4 Tro	LCC	TMB's (8021)	+ TPH		-	=	2	TOTAL	Š	808			85108	Nota Tal	1	\mathcal{V}	î
	On Ice:	y Yes ⋅	100000	+	1 +	S	418	504	r 82	້ິດ	ő	/ 86		8	$ \omega $		3	Ч	o'N
	Sample Tem	perature: Z		MTBE	IBE	9)	po o	bo	00	etal	2, I	cide	ゑ	<u> </u>	زيد	3	70	in	<i>≿</i> ,′s
	Container	Preservative		₩	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,CI,NO3,NO2,PO4,SO4)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	DRO-EXT,	Dissolved	Genichan	ANDONS,	ople
e Request ID	Type and #	Type	HEAL No.	BTEX + I	X)8 H	H ()	(E)	L'S	Ϋ́	ions	91 F	30B	0/	Ŕ	[2]	3	1	Bal
			1500052	ВТ	ВТ	TP	TP	ED	PA	牊	Ā	8	82	82	A	9	9	\triangleleft	₹
1-4	5-VOA	HCI	-005			X							X				ightharpoonup	_	
	1-500ml	amber	-005												X			\perp	
\	(-500m)	HNO3	-005							X								\dashv	
filter	1-125m	HN03	-005													X			
	1-500ml	-	-005														X		
	1-125ml	H2504	-005															X	_
-15	5-10A	HCI	-0Xe			X							X						
6/W/13	1-500m	amber	-006										<u></u>		X				_
POX	1-500ml	HNO3	-00c							X	_	Ļ		<u> </u>	<u> </u>				
filter	1-125ml	HNO3	-006									$oxed{oxed}$		igspace	<u> </u>	X			_
	1-50am		-006				_				<u> </u>	<u> </u>	ļ	<u> </u>	1	_	X	£ ,	_
	1-125ml	H2504	-006								Ŀ_							X	
1	Received by:		Date Time	Rer	mark	s:	1	Th	10	E	3/A	19	45	-	− 01) %			
kow	Mustin	Walt	9/25/15 1219	_		•	-	•	٠,١										
1	Received by		Date Time																
All			08/26/15 07	<u> </u>)														_
vironmental may be sub	contracted to other a	credited laboratorie	es. This serves as notice of th	is poss	ibility.	Any s	ub-coi	ntracte	d data	will be	e clear	iy nota	ated o	л the a	analytic	cal rep	ort.		

Record	Turn-Around	Γime:					ŀ	IAI		Fľ	uv	TR	201	NN	1E	NT	ΓΑI	L	
NIN9	Standard	□ Rush_			(Minana)												OR		
	Project Name							www	/.hal	lenvi	ronn	nenta	al.co	m					
990	Refiner	ywells	8-25-15		490)1 H	awki	ns N	IE -	Alb	uque	erque	e, NN	/I 87	109				
8>413	Project #:				Te	I. 50	5-34	5-39	975	F	ax 5	505-	345-	4107	7				
990 8>4 3 35	PO.#	126/09	8-25-15 755						Α	naly	sis	Requ	uest						
	Project Manag			1)	only)			1			0	" ĺ						W	
				802	as o				<u>@</u>		S,4,	B			$ \omega $	黑		4	
(Full Validation)				+ TMB's (8021)	Gas				SIS	A	2,P(22 P			8015B	H	6	الآ	
	Sampler: Ba	sb4 Trac	-4	TME	ם		<u>~</u>	£.1	270	P	일	808	Ì		Ø	(13	ے	or N
•		See State of the common of the	A CONTRACT OF THE PROPERTY OF	+ Ш	Н	88	418	20	or 8	* SE	g g	les/		δ.	4	र्	\mathcal{A}	3	ŏ
	Sample Temp	peratures	The state of the s	/ITB	/TB) <u>B</u> C	poq	thod	370	Meta	<u>o</u>	ticic	8	Ę.	以	쉸	S	الحِدِ ا	es (
Request ID	Container	Preservative	HEAL No.	+	+	801	(Me	Œ	s (8	A 8	JS (F	Pes	S	S)	Ö	2	P	550 We	qqn
Request in	Type and #	Type	15/18/252	BTEX + MTBE	BTEX + MTBE + TPH	TPH 8015B (GRO //	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,NO3,NO2,PO4,SO4)	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	DRO-EXT.	Gen che	ANIOUS	Dissolve	E B
>1	F- 100	HCI	MI	ш	ш.	V		-#-	<u> </u>	٣	4	8	×	ω,		\dashv			$\stackrel{\sim}{\dashv}$
-3	5-VOA	1101	$\frac{-07}{2}$			<u> </u>	-								X	\dashv	\dashv		\dashv
	1-50gm	amber	<u>-07</u>							1		-						\dashv	\dashv
<u> </u>	1-500ml	HNO3	-007							X							_		\dashv
	1-500m	HNO3	-007							_						V		4	\dashv
	1-500m		-007										-			X	•		
\	1-125ml	H2504	-007								<u> </u>						X	\vdash	
Blank cs 08/2			-008								L								
CS 08/2	16/15						_								<u> </u>				
<u>-</u>																		Ш	
							1												
		-	,																
	Received by:	1	Date Time	Rer	nark	s:													
skow	Meste	Naet	8/25/15 1219																I
n	Received by:	V	Date Time		\														ĺ
Jactur	ti Y	A	08/24/15 O	70	<u>0</u>	,													
decompostal may be aub	and the state of	haraditad laboratoris	se This serves as notice of thi	e noce	ihility	Δηνιο	uh-cor	ntranto	d data	cwill be	o clear	dy nots	ated or	the a	nalytic	al ren	ort		

Record	Turn-Around Time:					L	IA.		FI	V	TE	0	NK	4F	MT	ΓAL	
VIN9	Standard □ Rush															OR'	
	•		_				wwv	v.hal	lenv	ironn	nent	al.co	m				
790	SAN ILLAN River Bluff 8-	16-15		490	01 H	awki	ins N	1E -	Alb	uque	erque	e, NN	л 87	109			
7413	Project #:			Τe	el. 50	5-34	15-39	975	_ F	ax s	505-	345-	4107	7			
7413	Project #: PO # 12610955							A	naly	sis I	Req	uest					
	Project Manager:		1)	nly)	Â					040	.	-3	~				
(Full Validation)			+ TMB's (8021)	(Gas only)		ļ		SIMS)	74/	2,PO ₄ ,S	2 PCB's	KTBE B	Ì	et 4/5	<i>y</i>		
	Sampler: 1306 + 1702 Cy On Ice: 2 Yes □ No Sample Temperature: 1002 CF =		E + TME	E + TPH	GRO /	418.1)	504.1)	or 8270	15 TSI	NO3,NO	es / 808	BEX	(OA)	J mel	M	02	Y or N)
e Request ID	Container Type and # Type	i jaritat Ligitati	BTEX + MTBE	BTEX + MTBE	трн 8015В (GRO 🚝	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals TotA	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIEN, NTBE	8270 (Semi-VOA)	Dissolved	DRO-EXT.	AK C	Air Bubbles (Y or N)
all#2	3-VOA HCI -01		ш	В	X	<u> </u>		Ш.		٩	Φ.	X	۵	•			
•	1-500ml amber -001														X		
-	1-5ml HNO3 -001								X		ĺ						
filter														X			
	1-125m H2304 -001		<u> </u>							X							
	1-500ml -001															7	
43	3-10A HC1 -00Z]		X							X					
	1-500ml amber -002	-													X		
-	1-50ml HNO3 -000	7							X			l					
Filter	1-125ml HNO3 -007	 ,									ļ			X			
	1-125ml H2504 -00>	ı	T							X							
	1-500ml -000	_								·						X	
rakon	Received by: Date Ti 8/24/15	me <i>J3</i> 32		nark	s:	-3	u)	P.		Sly	لىر4	K		Q 02/2	乃		
hel	08/27/50	me 810		,							· ·					<u></u>	
vironmental may be subc	contracted to other accredited laboratories. This serves as n	otice of thi	s possi	ibility.	Any s	ub-cor	ıtracte	d data	will be	e clear	ly nota	ited or	the a	nalytic	al repo	ort.	

Record	Turn-Around	Time:			-		ŀ	AΑ	11	FI	uν	TR	20	NI	1E	NT	ΓAL	
iviN9	Standard						_										OR	
	Project Name	e:	-					wwv	v.hal	lenvi	ironn	nenta	al.co	m				
4990	SAN JUA	ARiver	8-26-15		490)1 H	awk	ins N	iΕ -	Alb	uque	erque	e, NI	И 87	109			
87413	Project #:				Te	l. 50	5-34	45-39	975	F	ax 5	505-	345-	4107	7			
35	1.0.#	126109	55						Α	naly	sis I	Requ	uest					
	Project Mana			<u> </u>	only)						SO ₄)	တ	1		ŀ		4	
1 (Full Validation)				3's (8021)	Gas o				SIMS)	¥.	2,PO ₄ ,S	2 PCB	MTR.		2015B	1	TDS 55 A	
	On Ice:	Yes /	13 No	E + TMB'	≣ + TPŀ	SRO /	418.1)	504.1)	or 8270	IIS D	NO3,NO	es / 808	BTEX	(AO)		-3	ons I	(or N)
le Request ID	Container Type and #	Preservative Type	-0.20==]H HEAL NO. 1508/032	BTEX + MTBE	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals 6	Anions (F,CI,NO3,NO2,PO4,SO4)	8081 Pesticides / 8082 PCB's	8260B (VOA) BTEX MIRE	8270 (Semi-VOA)	DRO-EXT.	Dissolved Metals	22 ing Avious	Air Bubbles (Y or N)
Tream	5-VOA	Hei	-601			X							X					
	1-500ml	- 1	-001												X	\Box		
\	1-500m	. 4. 4	-001	-						X								
Filter	1-125ml	14403	-001													X		
	1-500m		-001														X	
`	1-125ml	H2504	-001						!		X			ļ				
N Stream	5-VOA	HCI	-002			丛							X					
-	1-500ml	amber	-002	ļ											X			
	1-500m	HN03	-002							X							$oxed{ightarrow}$	
\ filte	1-125ml	HN03	-002													X		
	1-500m		-002														<u> </u>	
	1-125m	H2904	-002								X	-						\perp
Rew	Received by:	+ Walt	Date Time - 8/24/5 1532		mark	s:												
rete (Received by:	08	Dayle Time															
Environmental may be subo	contracted to other a	redited laboratorie	es. This serves as notice of thi	s possi	ibility.	Any si	ub-cor	ntracte	d data	will be	clear	y nota	ted or	the a	nalytic	al repo	ort.	

Record	Turn-Around	Time:					ь	ŧΔi	LL	EI	V	TR	(O)	NI	1EI	NTA	\L	
Ng	Standard Project Name	□ Rush_					A	N	AL	YS	IS	L	AE	80		TO		
دة وهم والان و] 1												al.co		400			
1790	North Bo	undary Bi	9955										e, NN					
1135	Project #:		40		Te	i. 50	5-34	5-39			_		345-					
1135	P.O. #	126/1	0955						A	naly		Requ	uest	•			,	
(P II) (- II - II - II - II	Project Mana				TPH (Gas only)	/		:	SIMS)		O4,SO4)	PCB's	BEon	j	28			
(Full Validation)	Sampler: B	ob,4 Tra Yes	Cy No 1	+ TMB's (8021)	+ TPH ((RO/	418.1)	504.1)	r 8270 SI	s	IO ₃ ,NO ₂ ,F	ss / 8082	BIEXM	OA)	- 8015B		:,	or N)
e Request ID		Preservative Type	-6200=1,4 HEAL NO. 16081233	BTEX + MTBE	BTEX + MTBE +	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIEX, MIBE	8270 (Semi-VOA)	DRO-54.	;		Air Bubbles (Y or N)
0+60	5-VOR	HC1	-001	Ш		X							Ÿ.					
	1-500ml	amber	-001												X		\perp	
1+15	5-VOR	Hel	-007			X							X			\bot		_
<u> + 15</u>	1-500ml	auber	-002												X			1
3+85	5-U0A	1	-003			X							X					_
	1-500es	1 .	-003			牽						-	100		X			\vdash
										i								
								 	<u> </u>									
																	_	-
nakow	Received by:	Walt	Date Time 8/24/15 153		l mark	s:	<u> </u>		<u> </u>		<u></u>	1	<u> </u>					<u></u>
Valle	Received by:	X OR	Date Time 127/15 () 810							. شو			· · ·					
nvironmental may be sub	contracted to other a	accredited laboratori	es. This serves as notice of th	is poss	ibility.	Any s	ub-coi	ntracte	d data	will b	e clea	rly not	ated or	n the a	analytic	al report.		

Record	Turn-Around Time:] [AL	11	F	NV	/TE	20	NF	ИE	NT/	A I	
S'N9	Standard □ Rush	 												\TO		r
,	Project Name:					wwv	v.hal	llenv	ironr	nent	al.co	om				
1990 87413 35	Collection Wells 8-26-15 Project#: P.O. # 126/0955		49	01 H	lawk	ins N	NE -	Alb	uque	erqu	e, NI	M 87	109			
87413	Project #:		Te	el. 50)5-34	45-39	975	F	ax	505-	345-	410	7			
35	10,#12610955						A	naly	/sis	Req	uest					
·	Project Manager:	=	July)						(70	တ	Jus.)	R			
(Full Validation)		ls (8021)	(Gas			:	SIMS)		,PO ₄ ,S	2 PCB'	MIBE		8015B		:	
	Sampler: Bab 9-Thacy On Ice: Yes No	+ TMB's	+ TPH	30 /	18.1)	04.1)			J ₃ ,NO ₂	, / 808;	尼入	A) /				or N
	Sample Temperature: / Le-0,2cf= 1.4	MTBE	BE	<u>(G</u>	od 4	od 5	0 or	etals	N.	ides	A) 🕅	0/-	女		į	ځ
e Request ID	Container Type and # Preservative Type HEAL No.	BTEX + MT	l +	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)BEN MTBE	8270 (Semi-VOA)	DRO-EX			Air Bubbles (Y or N)
0+60	5-VOA HC1 -001			X							X					
	1-500 m a ber -001				1								X			
25+95	5-VOA HCI -002 1-500ml amber -002 5-VOA HCI -003			X							X					
	1-500ml amber -00Z												X			
25+95D	5-UBA HC1 -003			X							X					
	1-500m amber -003		<u> </u>										X			
		_														
		+	ļ												\perp	_
			-		_					<u> </u>						╀
			_	_			_		ļ						+	├
		+	-						_					+	+	-
(,	Received by: Date Time	Re	<u> </u> mark	s: ¬	[Fi	e s	BIN	الم 4	K	-0	00	4			1	<u></u>
All (Received by Date Time	1														
nvironmental may be subc	contracted to other accredited laboratories. This serves as notice of t		ibility.	Any s	ub-cor	tracte	d data	will be	e clear	ly nota	ited or	n the a	nalytica	al report.		

Record	Turn-Around	Time:						IA I		FI	NV	TE	20	NI N	ЛF	NTA	A I	
) Ng	Standard															TO		
-	Project Name): :						www	v.hai	lenv	ironr	nent	al.cc	m				
	North Box	uldary BA	nrier 8-26-15		490	01 H	awki	ins N	IE -	Alb	uque	erque	e, NN	vi 87	109			
'90 87413 E	Project #:	J	nrier 8-26-15 955		Τe	el. 50	5-34	15-39	975	F	ax :	505-	345-	4107	7			
<u> </u>	P.O.#	12610	955						Α	naly	sis	Req	uest					
	Project Mana				nly)	Â					04)		4/20	,				
(Full Validation)				+ TMB's (8021)	(Gas only)				SIMS)		,PO ₄ ,S	2 PCB's	- 1	3	80158			
	Sampler: B	JYes	c4	MB	+ TPH (_	=	7	02		202	308		.	8			9
******	On Ice:	Z Yes	E No.	+	+	88	418.	504	r 82	S	<u>o</u>	/ 86	200	(A)				ō
	Sample Tem	perature: /১/১	-0.20FE]4	TBE	盟	B (G	, por	рог	9	letal	C,N	icide	3	<u>-</u>	区			λ) s
e Request ID	Container Type and #	Preservative Type	HEAL No.	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BTOK, MTBE	8270 (Semi-VOA)	DRO-6			Air Bubbles (Y or N)
6+60	5-VOA	Hel		<u>m</u>	<u> </u>	X	_		<u>.</u>	œ	∢	8	× X	- ∞			+-	<_
<u>@ 1@U</u>	0 1-500	1101				<u> </u>		i	-				<i>'</i>		Y		+	
7116		amber	<u>-(D)</u>			X							7					
2+00	5-VOA	'	-002_			\triangle		-					X			-		
2) 10		amber	-002												X			
3+10	5-VOA		-00Z			X							X			-	+	
		amber	<u>-00></u>												\times	_	_	
13+90	5-VOA	HCI	-004			X							X					
\	1-500m	amber	-004												X			
25 + 70	5-VOA		-005			\times							X					
<u> </u>	1-500m	amber	-005												X			
						*											\perp	
																	<u>.</u>	
akon	Received by:	1 Lbet	Date Time 8ku/5 1537	Rer	nark	s:												
Joak	Received by:	+ ml	Pate Time 27/15 08/0					-					. •					
vironmental may be subo	contracted to other a	ccredited laboratorie	s. This serves as notice of this	s possi	bility.	Any sı	ıb-con	tracted	d data	will be	clear	ly nota	ted on	the a	nalytica	al report.		

Record	Turn-Around	Time:	· . !] [
WIN9	Standard	l □ Rush	<u> </u>													INT AT			
, , , , , , , , , , , , , , , , , , , ,	Project Name															411	Ur	K II	
499×	ROR	A List	0 10 1-		40	04.1					iron								
M 32413	Project #:	in wen	5 0-18-15	-											'109 _				
4/35	PO #	12610	955		16	31. 50	05-34	45-J			ax sis				7				
	Project Mana	ager:	700		ŝ	â													
4 (Full Validation)				s (8021)	(Gas on				SIMS)	A (PO₄,SO	PCB's			82	5			
	Sampler: 7	Pob +Tro	26 9 a No	+ TMB's (+ TPH	30/	18.1)	04.1)	3270	to	3,NO ₂ ,	/ 8082		8	8015B	M. TA	P		Ŝ
	Sample Tem	perature:		BE	BE	(GF	4 b	d 5	Ö	tals	Ž,	des		9	- 1	0		Ч	ں ح
le Request ID	Container Type and #	Preservative Type	HEAL NO	BTEX + MTBE	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8	RCRA 8 Metals "Tot A	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	DRO-EX	Dissiplied	Gender	ANIONS, CO	Vir Bubbles
1-51	5-VOA	HCI	-001		- 1464	×		ш			1	ω	χ̈́	8	£ #	**	\mathbb{T}	\exists	\dashv
	1-500m			-											X	\dashv	十	7	
	l	HNO3								V						\dashv	\dashv	\dagger	\dashv
filter		HN03														X	\neg		\exists
	[-500m]												$\neg \uparrow$	1	ď		X		\neg
. 1		H2504													\neg	\neg		X	\neg
1-70	5-VOA	HCI	-002			X					$ \top $		X			一	十	寸	
•	1-500ml	amber	i												X		寸	\exists	٦
1 .	1-500 m	HNO3								X		-					\neg	\neg	\neg
\	1-125m	HN03						.								X	\neg		
	1-500 m															,	X	T	
	1-125ml	H2504					П		Ī			\Box				\Box	7	X	\Box
rakow /	Received by:	Uhet	Pate Time 8/18/15 247	Ren	narks	3:	.*							•					
Jacks (Received by: ANN40	ellenos	Date Time 08/19/15 0745																
nvironmental may be subco	ontracted to other a	ccredited laboratorie	s. This serves as notice of this	possib	ility. A	ny su	b-cont	racted	data v	vill be	clearly	notat	ed on	the an	alytica	I report	ί.		

Record	Turn-Around	Time:	1] [_									
-INING	Standard	□ Rush	· ·														ΓΑ! OR		r
	Project Name	e:									ironr								
4990	RCR	Awells	8-18-15		49	01 H					uque				109				
M87413	Project #:			[)5-34				ax :	•							
4990 M 87413 4135	PO# /:	16/095	8-18-15 5						A	naly	/sis	Req	uest	t					
(Full Validation)	, rojost mane			's (8021)	(Gas only)				SIMS)	[A	,PO ₄ ,SO ₄)	2 PCB's			Ø	A (5,			
	On Ice:	Yes	□ No / With the state	E + TMB's	+ TPH	SRO /	418.1)	504.1)	r 8270	10 8	ON'SOI	ss / 808;		(AC	BOIS B	Met	#	2	or N)
le Request ID	Sample Tem Container Type and #	Preservative Type	/·0 HEAL No 1508875	BTEX + MTBE	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO / 4	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	DRO-EXT.	Dissolved metals	Gew. cham.	ANIONS, CO2	Nir Bubbles (Y
)-53	5-V0A	He(-003			X				-			Ž	- W	170	1		\exists	4
	1-500ml	amber													X	\dashv	\neg		
	1-500 m									X				T		\dashv	\dashv	\dashv	
filter								_								X	\neg	\dashv	
\	1-500m																X		
	1-125ml	H25:04															7	X	
1-52	5-VOA	Hel	-004			X							X	,					
<u> </u>	1-500ml	amber				-									X	\neg		\Box	
	1-500ml	HN03								X						-		\Box	
filter	1-125ml	HN03															\leq		
\	1-125m	H2504																X	
	1-500 m	***************************************	: 														X		
rakon ,	Received by:	Male	Date Time 8/8/18/18/19	Rem	narks	3:													
Jacks (Received by: AMG6	Ullges	Date' Time 08/19/15-07	45															
nvironmental may be subco	ontracted to other ac	credited laboratorie:	s. This serves as notice of this	possib	oility. A	\ny su	b-cont	racted	data	will be	clearly	notat	ed on	the an	alytica	l repor	rt.		_

Record	Turn-Around	Time:					I	IAI		FI	uv	TE	20	MA	ЛF	NT	ΓΑΙ		
NING	X Standard				#://:											\T(
	Project Name							www	/.hal	Ienvi	ironn	nent	al.cc	m .					
4998	RCRA	wells	8-18-15		490	01 H					uque				109				
87413	Project#:				Τe	el. 50	5-34	5-39	975	F	ax 5	505-	345-	4107	7				
1135	P.O.#	126109	55						Α	naly	sis I	Req	uest						
	Project Mana	ger:		<u>_</u>	only)					199	040		1	Į					
(Full Validation)				+ TMB's (8021)	(Gas			į	SIMS)	METALT	2,PO ₄ ,S	32 PCB's			53B	METALS	¥	d	
		YYes	E No S		+ TPH	SRO/	418.1)	504.1)	or 8270	S S	NO3,NO	308 / se		OA)	হ	3	4	CO	or N)
	Sample Tem	perature:		ITBE	<u> </u>	9)	por por	pod	190	/leta	5	icid	8]-i	女	3	2	W	\s\ \s\ \s\
e Request ID	Container Type and #	Preservative Type	HEAL NO.	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Ser	DRO-EXT, 80	Dissalve	Sen C	ANIONS	Air Bubble
- le2	5-VOA	HCI	-005			X							X					\Box	
	1-500ml	amber	 ,												X				
\		HNO3								X									
Sitter		HNO3														X			
	1-500 m																X		
	`.	H2504																X	
W-3 63	5-VOA	Hel	-004			X							X						
\	1-50gm	amber													X				<u></u>
		HNOS								X									
filter	1-125m	HN03			<u> </u>											X			
	1-500m						_										X		
	1-125ml	H2504																X	
rakon	Received by:	Whete	Date Time 8/18/15/245	Rer	nark	s:	-												į
hete (Received by:	allenos	Date Time 08/19/15 074	5															
nvironmental may be subo	contracted to other a	ccredited aboratorie	es. This serves as notice of this	s possi	ibility.	Any sı	ub-con	tracte	d data	will be	e clearl	y nota	ted or	the a	nalytic	al repo	ort.		

Record	Turn-Around	Time:								=	NI V			ri R	A E	RIT	ra i		
ving	Standard	□ Rush	*								NV SIS								
-,	Project Name	e :	:								ironn							_	
1990	RCR	A. Wall	s 8-18-15 253		490	01 H					uque				109				
20413	Project #:	u- Well	0 10 12					15-39			ax 5	-							
135	P.O.#	126109	253		10	л. О О		10 00			sis								
	Project Mana		:	_	-(ŚĮL					ļ	(₄)							П	
(Full Validation)				TMB's (8021)	+ TPH (Gas only)		ļ		SIMS)	æ	,PO ₄ ,S(2 PCB's			50 00	\$ \f	景	4	
	Sampler: B	Yes Yes	ENO.	1 + 1	+ TPH	37 02	18.1)	04.1)	8270	1014	3,N0	808/		Ą	$\overline{\otimes}$	Meth	in	00	or N)
	Sample Tem	perature:	l-0	MTBE		(G	2d 4	od 5	o o	etals	χİ	ide	€	2	جہ	200	- 4	, ,	ځ
e Request ID	Container Type and #	Preservative Type	HEAL NO.	BTEX + MT	BTEX + MTBE	TPH 8015B (GRO /)	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	DRO-EXT	Dissolved	Gen, a	ANIONS	Air Bubbles
-64	5-VOA	HCI	-007			X						•	X		-			\exists	
<u>, , , , , , , , , , , , , , , , , , , </u>	1-500 m	anber													X			\exists	\neg
	1-500 m	HNO3								X								\dashv	
filte	1-125m	11103														X		\dashv	
1	1-500 m																X		
	1-125ml	H2504							:									X	
N-64D	5-VOA	HCl	-008			X							X						
1	1-500ml	auber													X				
	1-500ml	HNQ3								X									
1 fitter	1+125ml	HNO3	i													\times			
	1-500ml																X		
V	1-125m1	H2504						,		ļ.								<u> </u>	
show	Rédeived by: Must	u libet	Date Time	Ren	nark	s:							:						
alle	Received by: AWGA	1Ugios	Date' Time 08/19/15 07	4	رب 2								-	,			<u>.</u>		
nvironmental may be subo	contracted to other a	ccredited laboratorie	es. This serves as notice of this	possi	bility.	Any st	ıb-con	tracted	d data	will be	clearly	y nota	ted on	the a	nalytic	al repo	rt.		

Record	Turn-Around	Time:					L	1 A		F	MV	TP	20		ЛE	NT	ΓAI		
N9	Standard	□ Rush			\le simmes		_									AT(
	Project Name): :									ironr								
4990	RCR	Alinhe	8-18-15		49	01 H					uque				109				
N 874/3	Project #:	· veils	8-l8-15 955	1)5-34				ax :	-							
N87413 -4135	PO#	12610	955								sis l								
	Project Mana	ger:		<u> </u>	nly)	Â					(₄)					N			
(Full Validation)				TMB's (8021)	+ TPH (Gas only)				SIMS)	_	,PO ₄ ,S	2 PCB's		:	158	neta	景	4	
-	On Ice:	Yes Tra	CH □(No ::	+		RO/	118.1)	504.1)	r 8270	0 2	O3,NO2	s / 808		(¥)	7. BC	BI	m	C	or N)
	Sample Tem	perature	1.0	TBE	盟	B (G	pot 4	pot	109	etal	2,	icide	<u> </u>	<u>`</u>	EX.	1	13	W	ک s
e Request ID	Container Type and #	Preservative Type	HEAL No. 1508875	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	DRO-EXT.	Disso	Gen.	ANDONS	Air Bubble
<u>é</u> 5	5-VOA	HC1	-009			X							X		\Box				
	1-liter													X					
	1-500ml	1													X	\Box			
·	1-500ml	انما								X								\exists	
f. Hz.	1-125ml														· · · · · · · · · · · · · · · · · · ·	X			
,, <u>, , , , , , , , , , , , , , , , , ,</u>	1-500 m																X	X	
	1-125ml	H2502																	
	,		!																
										į									
nakow	Received by:	5 Walt	Date Time 8/18/15 /245	Ren	nark	s:													
hoto 1	Received by:	<u>Illeos</u>	Date Time 68/19/15 () 7	4	5-							<u></u>							
vironmental may be subc	ontracted to other ad	credited laboratorie	s. This serves as notice of this	possil	bility.	Any su	ıb-con	tracted	data	will be	clearly	y notai	ted on	the ar	nalytica	al repo	ort.		

Record	Turn-Around	Time:	:				L	IA I		FI	uV	TD	20	MA	1F	ПT	ΓΔΙ	ı	
Ng	Standard				135043											T			
- का	Project Name							www	v.hal	lenv	ironn	nent	al.cc	m					
90 87413 35	RCRA Project #: Po#=/:	wells i	8-18-15		490	01 H	awki	ins N	1E -	Alb	uque	erque	e, NI	vi 87	109				
87413	Project #:				Te	l. 50	5-34	15-39	975	F	ax 5	505-	345-	4107	7				
35	P.O#1:	261095	5						Α	naly	sis I	Requ	uest						
· · · · · · · · · · · · · · · · · · ·	Project Mana	ger:		=	only)	Â					Q ₄)	S				V			
(Full Validation)			:	+ TMB's (8021)	(Gas				SIMS)	TX.	2,PO ₄ ,S	2 PCB's			158	Metal	A (K	0 2	
		/ /	Q No	+ TME	+ TPH	RO/	418.1)	504.1)	r 8270	S	ON,EOI	808 / se		OA)	80	0	•	U	or N)
	Sample Temi	perature:	10	18E		9	po	ро	9	etal	<u>2</u>	cide	Æ	<u>-</u>	太	3	7	7	S.
e Request ID	Container Type and #	Preservative Type	— HEAL No. 1508875	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (83	RCRA 8 Metals DIA	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	Dro-Ext	Dissolve	Gen.	ANIO	Air Bubbles (
-59	5-VOA	HCI	-010			X	Ì					\neg	X						
		amber												X					
	1-500 m	ł I													X				
	1-500m									X									
filter	1-125 ml															X			
1	1-500 m											Ì					X		
	1-125ml	H2504	:															X	
· -	1.0000																		
, BLANK	3-VOA	Hel	-011										XI	374	X	Ou	14		
																		, 1	
,,,,,,																			
			i																
sakow	Received by:	L Whet	Date Time \$/18/5 125	Ren	nark:	s: -ui(s	P. 7	ila.	1K	1	? []	- - - - -	ھ>	nlg	7				
raete	Received by:	alles	Date Time 08/19/15 8 0745						lassa,	6 -1	Se Se								
vironmental may be subc	contracted to other ac	ccredited laboratorie	s. This serves as notice of this	possi	bility.	Any sı	ip-con	tracted	d data	will be	clearly	y nota	ted on	the a	nalytic	al repo	ort.		

Record	Turn-Around	Time:					Į.	· {A}		FI	uv	TR	20	MN	1E	NT	ΓΑΙ	L	
VING	Standard															\T(
	Project Name							www	/.hai	lenvi	ironn	nent	al.co	m					
4990	KCRA	Wells	8-18-15 1955		490)1 H					uque				109				
87413	Project #:				Te	ı. 50	5-34	5-39	975	F	ax 5	505-	345-	4107	7				
35	P.O.#	-12610	1955						Α	naly	sis I	Req	uest						
	Project Mana	ger:	:	=	nly)		1	ļ			04	" l							
(Full Validation)			4	s (802	(Gas only)				IMS)	A)	PO ₄ ,S	PCB'		,	BOISE	14/5	V	d	
	Sampler: \mathcal{B}_{a}	sb & Trace		MB	+ TPH		=	=	70.5	10TA	2	3082	Į		$\bar{\mathcal{Q}}$	Meta	#	Q	2
	On Ice:	⊈Yes	A No.	+	+	잂	118.	504.	r 82	S	် ်	/ S		8	3)	8			o N
	Sample Tem	perature:		TBE	盟	9) (9	pol 4	pot	100	letal	S,	Side	Æ	<u>-i</u>	文	3	\$	w'	<u>,</u>
e Request ID	Container Type and #	Preservative Type	HEAL NO	BTEX + MTBE + TMB's (8021)	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Sen	DRO-EXT 8	Dissolved	Gen Ch	ANIONS	Air Bubble
67	5-VOA	HCI	-012			X	Ċ						X		•			\neg	П
		amber													X			\Box	
	1-500ml	HNO3								X									
filler	1-125ml	HNO3														X			
\	1-500ml		*														X		
	1-125ml	H2504																\succeq	<u> </u>
1-68	5-VOA	HCI	-013	L	ļ	X							X					<u> </u>	
	1-500m	amber							_			_			X			Щ	
	1-500ml	HNO3				_		_		\times				_				 	
filter	1-125m	HNO3												<u> </u>		X	5 4		_
	1-500 ml			<u> </u>						<u> </u>	<u> </u>					ļ	X		_
	1-125ml	4504	:			ļ										<u> </u>		X	_
rakon	Received by:	il bete	Date Time / 1245	Rer	nark	S:	TE	?iq) (5	AL	K		-0	[4	ļ			ĺ
holan	Received by:	alless	Date Time 08/19/15 07	15	_				·										
vironmental may be subo	contracted to other a	ccredited laboratorie	es. This serves as notice of thi	s poss	ibility.	Any s	ub-cor	ntracte	d data	will b	e clear	ly note	ated or	the a	nalytic	al rep	ort.		

Record	Turn-Around Time:					H	IAI	LL	Eľ	V	IR	OI	NN	1E	NT	'Al		
iNg	X Standard □ Rush	· <u> </u>												RA				
	Project Name:					,	www	.hal	lenvi	ronn	nenta	al.co	m					
4990	CROSSAMDIENT Wells 8-19-1	15		490)1 H	awki	ns N	E -	Albı	uque	rque	e, NI\	<i>l</i> l 87	109				
4990	Project #: Po. # 12610955	Ĺ		Те	l. 50	5-34	5-39			ax 5				7				
35	PO.# 12610955							Α	naly	sis F	₹eq	uest				Щ	L	
	Project Manager:		Ξ	only)				Ì	ŀ	304)	့		1					ĺ
(Full Validation)			3's (802	(Gas				SIMS)	TOTAL	2,PO ₄ ,S	32 PCB			0158	MeTAIS	AK.	4	
	Sampler: Bob of Tracy On Ice: Yes: INO		E + TME	+ TPH	SRO/	418.1)	504.1)	or 8270	Is TB	NO ₃ ,NO	es / 808	į	OA)	00	l	, W.	Ö	(S)
e Request ID	Container Type and # Preservative Type HEAL No.	19	BTEX + MTBE + TMB's (8021)	BTEX + MTBE +	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	DRO-EXT	Dissolved	Gen Che	ANIOUS	ir Bubbles (
1-1	5-voa Hel -00	7))]_	B	B	X	F	11.1	<u> </u>		∢	8	X	8					
	1-500 m) amber													X			4	\sqcup
	1-500m HNO3						· 		X								_	_
\ file	1-125ml HNO3														X			
	[-500m]															X		
1	1-125ml H2504																X	
J-13	5-VOA HC1 -002		<u> </u>		X	<u> </u>						X						_
	1-500 ml amber					<u> </u>								X		$ \rightarrow $	_	
	1-500m HNQ3								X								\dashv	
filter	1-125ml HNO3						_						_		X			
	1-500m		<u> </u>									<u> </u>				X		
	1-125m H2504		<u> </u>	L_		<u> </u>					<u> </u>		<u> </u>				\times	
Krakow	Received by: Date Time Northead Property Page Time	211	Rei	nark	s:													
to	Jun 108/2015			15 15.				د - د و.				nio di ci	n th a -	nnoh di				
Environmental may be sub	contracted to other accredited laboratories. This serves as not	ice of this	s poss	ibility.	Any s	up-cor	ntracte	u data	a Will D	e cieal	ıy not	ated O	ir uie a	arraryuc	arrepo	Jil.		

Record	Turr-Around Time.				I.	AL		_	MM	TE	20	MI	ИE	NT	ΓΔΙ	1	
NING	Standard Rush		****											\T(
·	Project Name:					wwv	v.hal	llenv	ironr	nent	al.co	om	·				
1990 N 87413 35	CR0556 malient wells 8-19-15 Project #: PO:# 126/0955		49	01 H	awk	ins N	Ι <u>Ε</u> -	Alb	uque	erqu	e, N	M 87	'109				
187413	Project #:	ĺ	Te	el. 50)5-34	15-39	975	F	ax	505-	345-	410	7				
35	Po# 126/0955						Δ	naly	sis	Req	uest						
	Project Manager:	Ē.	nly)	Î					O ₄)	(0				h			
(Full Validation)		+ TMB's (8021)	(Gas only)				SIMS)	[₩]	,PO ₄ ,S	2 PCB's			5B	etter (Alk	9	
•	Sampler: Par Tra Cy On Ice: Pres DN6		+ TPH	RO/	118.1)	504.1)	8270	10	O ₃ ,NO ₂	s / 808;		(AC	805	٤	}	4	or N)
	Sample Temperature: //	H	HH	9) s	pd 4	9	0 0	ətak	Ž	ide	(F)	-\C	犮	9	Chem	n	ح
Request ID	Container Type HEAL No. Type	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals [5]	Anions (F,Cl,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (Semi-VOA)	DRO-EX	Dissolved	Gen. d	ANIONS	Air Bubbles
1-27	5-VOA HCI -003			X			:				X						
	1-50m amber												X				
	1-500m/ HNO3							X									
filter														×			
1	1-500m					•									X		
	1-125m H2504															X	
1-32	5-VOA HC1 -004			X							X						
<u> </u>	1-500m amber												X				
\	1-500ml HNO3							\times									
filter	1-125 ml HNO3													\bowtie			
	1-50 ml														\boxtimes		
: 1	1-125ml H2804		l													<u>X</u>	
how	Received by: Date Time Mist World 8/19/15/12/1	Rer	mark	s:													
lte	Received by: Date Time 181 Zel 5 0715																
																	

ovironmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Record	Turn-Around	Time:					ŀ	IA!	11	FI	uν	TR	:O	NN	1F	NT	ΓAL	_
VIN9	Standard					Ħ.	_										OR	
,	Project Name							www	ı.hal	lenvi	ronn	nent	al.co	m				
1998	SAN Ju	ANRIVER	9-1-15 955		490	01 H	awki	ns N	IE -	Alb	uque	erque	e, NN	A 87	109			
87413 4135	Project #:	_			Te	l. 50	5-34	5-39	975	F	ax 8	505-	345-	4107	7			
4/35	10.#	12610	955	,					A	naly	sis i	Req	uest					
	Project Mana	ger:		£	only)						0√5)	ၟႍ	र्	`		Ì	₹	
4 (Full Validation)				TMB's (8021)	Gas (t and the second			SIMS)	T T	2,PO ₄ ,S	2 PCB	KTBE ,		8	K	IBS 6.	
	On Ice:		ENOT	+	+ TPH	RO/	418.1)	504.1)	r 8270	s 10	ON, _© OI	808 / se	派)(AC	8015B	M. A.	Niong	or N)
	Sample Temi	perature: /		+ MTBE	TBE	B (G	, pot	pou	100	letal	Ü	icide	Ŕ	i-i	反	120	18	\\\ \>
ole Request ID	Container Type and #	Preservative Type	HEAL No.	BTEX + M	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals 1514	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIEK, MTBE	8270 (Semi-VOA)	DRO-KX.	Dissolved Metals	Cations/Anions, Too Ex	Air Bubbles (Y or N)
of 45	5-VOA	Hel	-001			X							X					
	1-500ml	amben	-001												X			
	1-500 ml	ا بودا	-001			**				X			裳			,		
filtere	1-125ml		-001													\times		}
	1-500ml	1	-001			7							基			,	X	
	1-125m	142504	-001								X						,	
of 46	5-10A	HC(-007			X				<u> </u>			\times					
	1-500ml	amber	-002												X		\perp	
	1-500ml	HNOS	-002						_	X	~-						ightharpoonup	
filter	1-125ml	4003	<i>-002</i>													X		
	1-500ml		-007	ļ													X	+
	1-125m	H2504	-02									\times		∞				
rakow	Received by:	Walte	Date Time 9/1/15 1315	Rer	nark	S: +	Tr	ip	` ‡	PA.	NF	<	-(X)			
as ten	Received by:	X	9 02 5 0500									é						
Environmental may be subc	ontracted to other a	corredited laboratoric	es. This serves as notice of this		bility.	Any sı	ıb-con	tracte	d data	will be	clear	ly nota	ited on	the a	nalytic	al repo	ort.	

Record	Turn-Around	Time:					ŀ	IA!	11	FI	uν	TR	:O	NN	1F	NT	ΓAL	_
VIN9	Standard					Ħ.	_										OR	
,	Project Name							www	ı.hal	lenvi	ronn	nent	al.co	m				
1998	SAN Ju	ANRIVER	9-1-15 955		490	01 H	awki	ns N	IE -	Alb	uque	erque	e, NN	A 87	109			
87413 4135	Project #:	_			Te	l. 50	5-34	5-39	975	F	ax 8	505-	345-	4107	7			
4/35	10.#	12610	955	,					A	naly	sis i	Req	uest					
	Project Mana	ger:		£	only)						0√5)	ၟႍ	र्	`		Ì	₹	
4 (Full Validation)				TMB's (8021)	Gas (t and the second			SIMS)	T T	2,PO ₄ ,S	2 PCB	KTBE ,		8	K	IBS E.	
	On Ice:		ENOT	+	+ TPH	RO/	418.1)	504.1)	r 8270	s 10	ON,EO	808 / se	派)(AC	8015B	M. A.	Niong	or N)
	Sample Temi	perature: /		+ MTBE	TBE	B (G	, pot	pou	100	letal	Ü	icide	Ŕ	j-i	反	120	18	\\\ \>
ole Request ID	Container Type and #	Preservative Type	HEAL No.	BTEX + M	BTEX + MTBE + TPH (Gas only)	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method 504.1)	PAH's (8310 or 8270 SIMS)	RCRA 8 Metals 1514	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA) BIEK, MTBE	8270 (Semi-VOA)	DRO-KX.	Dissolved Metals	Cations/Anions, Too Ex	Air Bubbles (Y or N)
of 45	5-VOA	Hel	-001			X							X					
	1-500ml	amben	-001												X			
	1-500 ml	ا بودا	-001			**				X			裳			,		
filtere	1-125ml		-001													\times		}
	1-500ml	1	-001			7							基			,	X	
	1-125m	142504	-001								X						,	
of 46	5-10A	HC(-007			X				<u> </u>			\times					
	1-500ml	amber	-002												X		\perp	
	1-500ml	HNOS	-002						_	X	~-						ightharpoonup	
filter	1-125ml	4003	<i>-002</i>													X		
	1-500ml		-007	ļ													X	+
	1-125m	H2504	-02									\times		∞				
rakow	Received by:	Walte	Date Time 9/1/15 1315	Rer	nark	S: +	Tr	ip	` ‡	PA.	NF	<	-(X)			
as ten	Received by:	X	9 02 5 0500									é						
Environmental may be subc	ontracted to other a	corredited laboratoric	es. This serves as notice of this		bility.	Any sı	ıb-con	tracte	d data	will be	clear	ly nota	ited on	the a	nalytic	al repo	ort.	