SEMI-ANNUAL GROUNDWATER MONITORING REPORT (November and December 2014)

Chamberlain Flow Line Leak and Historical Contamination #1RP-1-10-2391

LAI Project No. 12-0126-01

January 28, 2015

Prepared for: Legacy Reserves, L.P. 30 West Wall Street, Suite 1400 Midland, Texas 79701

Prepared by: Larson & Associates, Inc. 507 North Marienfeld Street, Suite 205 Midland, Texas 79701 Kimberly Huckaba

Staff Geologist

Mark J. Larson, PG

Certified Professional Geologist No. 10490

President/Geologist

Table of Contents

1.0	EXECUTIVE SUMMARY	1
2.0	INTRODUCTION	2
2.1	Background	2
2.2	Setting	3
3.0	GROUNDWATER SAMPLES AND LABORATORY ANALYSIS	3
3.1	Organic Analysis	4
3.2	Inorganic Analysis	4
4.0	CONCLUSIONS	4
5.0	RECOMMENDATIONS	4

List of Tables

Table 1	Monitor Well Completion and Completion Summary
Table 2	Groundwater Organic Analytical Data Summary
Table 3	Groundwater Inorganic Analytical Data Summary

List of Figures

Figure 1 Topographic Map
Figure 2 Aerial Photograph

Figure 3 Site Map

List of Appendices

Appendix A Laboratory Analytical Reports and Chain of Custody Documentation

Semi-Annual Groundwater Monitoring Report (November and December 2014) Legacy Reserves, L.P., Chamberlain Flow Line and Historic Contamination 1RP-10-1-2391 January 28, 2015

1.0 EXECUTIVE SUMMARY

This report has been prepared on behalf of Legacy Reserves, L.P. (Legacy) for submittal to the New Mexico Oil Conservation Division (OCD) to present the laboratory analysis of 2014 semi-annual (November and December June) groundwater sample analysis from a monitoring well (MW-1) near the Chamberlain Tank Battery (Site). The Site is located in Unit C (NE 1/4, NW 1/4), Section 14, Township 15 South, Range 37 East, in Lea County, New Mexico. The geodetic position is north 33° 01′ 16.7″ and west 103° 10′ 13.6.″ The surface owner is Angell Ranch Co., LLC.

The following activities occurred during 2014:

- November 17, 2014 Third Quarter Gauging and Groundwater Sampling Event
- December 11, 2014 Fourth Quarter Gauging and Groundwater Sampling Event

The following observations are documented in this report:

- BTEX were below the analytical reporting limit (RL) and New Mexico Water Quality Control Commission (WQCC) human health standards during the November and December 2014 sampling events;
- Nitrate, chloride, sulfate and TDS were below WQCC human health and domestic water quality standards during the November and December 2014 sampling events.

Legacy will continue groundwater monitoring on a quarterly (4 times per year) schedule. Legacy will notify the OCD at least 48 hours prior to the annual monitoring events, and as soon as possible upon any significant change in analyte concentrations.

Semi-Annual Groundwater Monitoring Report (November and December 2014) Legacy Reserves, L.P., Chamberlain Flow Line and Historic Contamination January 28, 2015 1RP-10-1-2391

2.0 INTRODUCTION

Legacy Reserves, L.P. (Legacy) submits this report to the New Mexico Oil Conservation Division (OCD) to present the laboratory results of quarterly (4 times per year) groundwater monitoring for a monitoring well (MW-1) located near the Chamberlain Tank Battery (Site), Lea County, New Mexico. This report is for groundwater monitoring performed during November and December 2014. The Site is located in Unit C (NE 1/4, NW 1/4), Section 14, Township 15 South, and Range 37 East, about 20 miles northeast of Lovington, New Mexico. The surface is owned by Angell Ranch Co., LLC. The geodetic position is north 33° 01′ 16.7" and west 103° 10′ 13.6". Figure 1 presents a location and topographic map. Figure 2 presents an aerial photograph. Figure 3 presents a Site drawing.

2.1 Background

In 2009, while remediating a non-reportable spill from a flow line south of the Site, a Legacy contractor encountered contamination from a historic release. The contractor excavated about 200 cubic yards of soil from the non-reportable spill to a depth of approximately 5 feet below ground surface (bgs).

In May 2010 Legacy retained Basin Environmental Consulting, LLC (Basin), located in Lovington, New Mexico, to investigate the historic contamination. Among other things Basin collected soil samples from five (5) exploratory trenches (main, east, west, north and south) and six (6) borings (SB-1 through SB-6). The trenches were excavated with a track hoe between approximately 3.5 (north) and 18 (main, west, south and east) feet bgs. On January 7, 2010, Legacy submitted the initial C-141 to the OCD District 1 office located in Hobbs, New Mexico. The OCD assigned remediation project number 1RP-2391 to the historic release.

Between April 2012 and September 2013, Larson & Associates, Inc (LAI) supervised excavation of additional soil, collected soil samples from 9 borings (BH-1 through BH-9) and installed 1 monitoring well (MW-1) about 100 feet southeast (down gradient) of the Site. Groundwater was encountered at approximately 65 feet bgs. Laboratory results from the initial groundwater sample collected on June 11, 2013 reported chloride and total dissolved solids (TDS) at 263 milligrams per liter (mg/L) and 1,180 mg/L, respectively. The OCD requested groundwater monitoring fro 8 quarters (2 years) commencing in December 2013.

LAI supervised closure of the excavation during September 2013 including installing a 20 mil polyethylene (geomembrane) liner in the bottom of the excavation, approximately 38,000 square feet, and filling with approximately 10,308 cubic yards of clean soil. The surface will be seeded when adequate moisture is available, as determined by the landowner. A final report was submitted to the OCD on March 3, 2014 ("Excavation Closure Report, Chamberlain Flow Line and Historic Contamination, 1RP-10-1-2391") that included laboratory results of groundwater samples collected from the monitoring well on June 11, 2013 and December 26, 2013. The excavation closure and laboratory results of groundwater samples was documented in a report titled, "Excavation Closure Report, Chamberlain Flow Line and Historic Contamination, #1RP1-10-2391, March 3, 2014".

Semi-Annual Groundwater Monitoring Report (November and December 2014) Legacy Reserves, L.P., Chamberlain Flow Line and Historic Contamination January 28, 2015 1RP-10-1-2391

2.2 Setting

The surface elevation is approximately 3,791 feet above mean sea level (MSL) and slopes gently to the southeast. The soil is designated as "Kimbrough gravelly loam, 0 to 3 percent slopes (Kg)" which occurs on upland areas known locally as "scabland." The soil has a surface layer approximately 6 inches thick of dark grayish brown gravelly loam which is underlain by indurated caliche. The unit is comprised of approximately 85% Kimbrough soil with the remainder being Lea, Sharvana, Stegall and Slaughter soils.

The soil is too shallow for cropland therefore its main use is range and wildlife habitat. A well used for livestock watering is located about 1,600 feet southeast of the Site.

The Site is underlain by a thin layer of silty clay (loam) which is underlain by a resilient layer of caliche or caprock. The caliche is a hard, erosion resistant, pedogenic calcrete that between approximately 25 and 30 feet thick. The caliche grades into the Pliocene to Miocene-age Ogallala formation which is comprised of fluvial sand, silt, clay and localized gravel, with indistinct to massive crossbeds. The Ogallala sand is generally fine- to medium-grained quartz. The Ogallala formation is underlain by shale of the Triassic-age Chile formation of the Dockum Group.

Groundwater occurs in the Ogallala formation at about 63 feet bgs. The Triassic-age Chinle formation is the lower confining unit for the Ogallala formation and occurs at a depth of approximately 120 feet bgs according to records from the New Mexico Office of the State Engineer (OSE). The regional groundwater flow direction is to the southeast.

3.0 GROUNDWATER SAMPLES AND LABORATORY ANALYSIS

On November 17, 2014 and December 11, 2014, groundwater samples were collected from monitoring well MW-1 during the third (3rd) and fourth (4th) quarterly monitoring events. On November 17, 2014, groundwater was gauged in well MW-1 at 65.98 feet below top of casing (TOC) or about 63.20 feet bgs. Groundwater was not gauged in well MW-1, on December 11, 2014. Groundwater samples were collected after removing approximately three (3) well volumes of groundwater or purging dry with dedicated disposable polyethylene bailers or pumping with an electric submersible pump and dedicated disposable tubing. The samples were carefully transferred to laboratory containers that were labeled, sealed with custody labels, packed in an ice filled chest and delivered under chain of custody control to DHL Analytical, Inc. (DHL), a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory, located in Round Rock, Texas. All metals samples were filtered by the laboratory to exclude particles larger than 0.45µ and acidified with nitric acid within 24-hours of collection. DHL analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX) by EPA Sw-846 Method 8021B, filtered metals (calcium, magnesium, potassium, sodium) by methods SW-6020, anions, alkalinity, and total dissolved solids (TDS) by methods E-300, M2320B and M2540, respectively. Purge water was contained in a portable tank and discharged to the Facility's process water system for disposal in a permitted Class II injection well. Table 1 presents monitoring well completion and gauging summary. Table 2 presents the laboratory organic analytical data summary. Table 3 presents the laboratory inorganic analytical data summary. Appendix A presents the laboratory reports.

Semi-Annual Groundwater Monitoring Report (November and December 2014) Legacy Reserves, L.P., Chamberlain Flow Line and Historic Contamination January 28, 2015 1RP-10-1-2391

3.1 Organic Analysis

All BTEX values were below the analytical method reporting limits (RL) and New Mexico Water Quality Control Commission (WQCC) human health standards during the third and fourth 2014 quarterly monitoring events. Case narrative was indicated at slightly below control limits for benzene and toluene in the matrix spike duplicate recovery. Also three compounds had RPD slightly above control limits for the matrix spike and matrix spike duplicate. All samples in the case narrative were flagged accordingly in the QC summary report. No further corrective actions were taken by DHL.

3.2 Inorganic Analysis

Chloride decreased from 263 mg/L, on June 11, 2013 to 130 mg/L (November 17, 2014) and 132 mg/L (December 11, 2014). The TDS concentration decreased from 1,180 mg/L, on June 11, 2013 to 762 mg/L (November 17, 2014) and 809 mg/L (December 11, 2014). The chloride and TDS concentrations are below the WQCC domestic water quality standards of 250 mg/L (chloride) and 1,000 mg/L (TDS). Nitrate and sulfate were below the WQCC human health and domestic water quality standards of 10 mg/L and 600 mg/L, respectively. The remaining inorganic constituents were within the range expected for the groundwater.

Case narrative was indicated for three analytes for the matrix spike and matrix spike duplicate was above the method control limits. These were flagged in the QC summary report however, the LCS was within control limits for these analytes and no further corrective actions were taken. Also the metal analysis on sample LCVL was slightly above control limits for sodium. Associated CCV sample was within control limits. All samples in the case narrative were flagged accordingly in the QC summary report. No further corrective actions were taken by DHL.

No data quality exceptions were noted in the DHL case narratives for chloride, sulfate, TDS, and nitrate.

4.0 CONCLUSIONS

The following observations are documented in this report:

- BTEX was not reported above the RL or WQCC human health standards during the November and December 2014 sampling events;
- Chloride, nitrate, sulfate and TDS were below the WQCC human health (nitrate) and domestic water quality (chloride, sulfate and TDS) water quality standards during the November and December 2014 sampling events.

5.0 RECOMMENDATIONS

Legacy will continue groundwater monitoring on a quarterly (4 times per year) schedule. During each event groundwater samples will be collected as stated earlier and analyzed for BTEX, anions (sodium, magnesium, calcium), anions (sulfate, chloride, alkalinity), nitrate and TDS. The groundwater sample results will be submitted to the OCD in semi-annual (twice yearly) reports. Notice will be provided to the OCD in Hobbs and Santa Fe, New Mexico, at least 48 hours prior to each event.

TABLES

Table 1 Monitoring Well Drilling and Completion Summary Legacy Reserves, L.P., Chamberlin Site , 1RP-2391 Lea County, New Mexico

Well	Information									Groundwater I	Data
,	Well ID	Date Drilled	Drilled Depth	Well Depth (feet	Well Diameter	Surface	Screen Interval	Casing Stickup	TOC Elevation	Date Gauged	Depth to Water
,	veli ib	Date Drilled	(feet bgs)	TOC)	(inches)	Elevation	(feet bgs)	(feet)	TOC Elevation	Date Gaagea	(TOC)
	MW-1	6/10/2013	75.42	78.40	2		54.77 - 74.72	2.78		06/10/2013	65.82
										06/11/2013	65.85
										12/26/2013	
										03/11/2014	66.34
										11/17/2014	65.98
										12/11/2014	

Notes: Monitoring well drilled using air rotary rig by Scarborough Drilling, Inc., Lamesa, Texas and constructed with 2-inch threaded schedule 40 PVC casing and screen All values are in feet, unless otherwise noted.

bgs - below ground surface

TOC - top of casing

--: No data available

Table 2
Groundwater Organic Analytical Data Summary
Legacy Reserves, L.P., Chamberlin Site, 1RP-2391
Lea County, New Mexico

Sample ID	Date	Benzene	Toluene	Ethylbenzene	Xylene
WQCC Limit:		0.01	0.75	0.75	0.62
MW-1	11/17/2014	<0.002	<0.006	<0.006	<0.009
	12/11/2014	<0.002	<0.006	<0.006	<0.009
Trip Blank	11/17/2014	<0.002	<0.006	<0.006	<0.009

Notes: Analysis performed by DHL Analytical, Round Rock, Texas, by EPA SW-846 Method 8021B.

All values except pH reported in milligrams per Liter (mg/L) equivelent to parts per million (ppm).

Table 3
Groundwater Inorganic Analytical Data Summary
Legacy Reserves, L.P., Chamberlin Site, 1RP-2391
Lea County, New Mexico

Sample ID	Date	Alkalinity	Chloride	Nitrate - N	TDS	Sulfate	Calcium	Magnesium	Potassium	Sodium
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
WQCC Limit	:		250	10	1,000	600				
MW-1	6/11/2013	272	263.0	8.53	1180.0	206.0	94.0	230.0	7.2	51.0
	11/17/2014	339	130	1.80	762	84.4	167	12.1	2.76	224
	12/11/2014	443	132	1.82	809	87.0	47.2	10.4	<15.00	206

Notes: Analysis performed by DHL Analytical, Round Rock, Texas, by EPA methods

All values except pH reported in milligrams per Liter (mg/L) equivelent to parts per million (ppm).

<: Denotes concentration less than method reporting limit (RL)

FIGURES

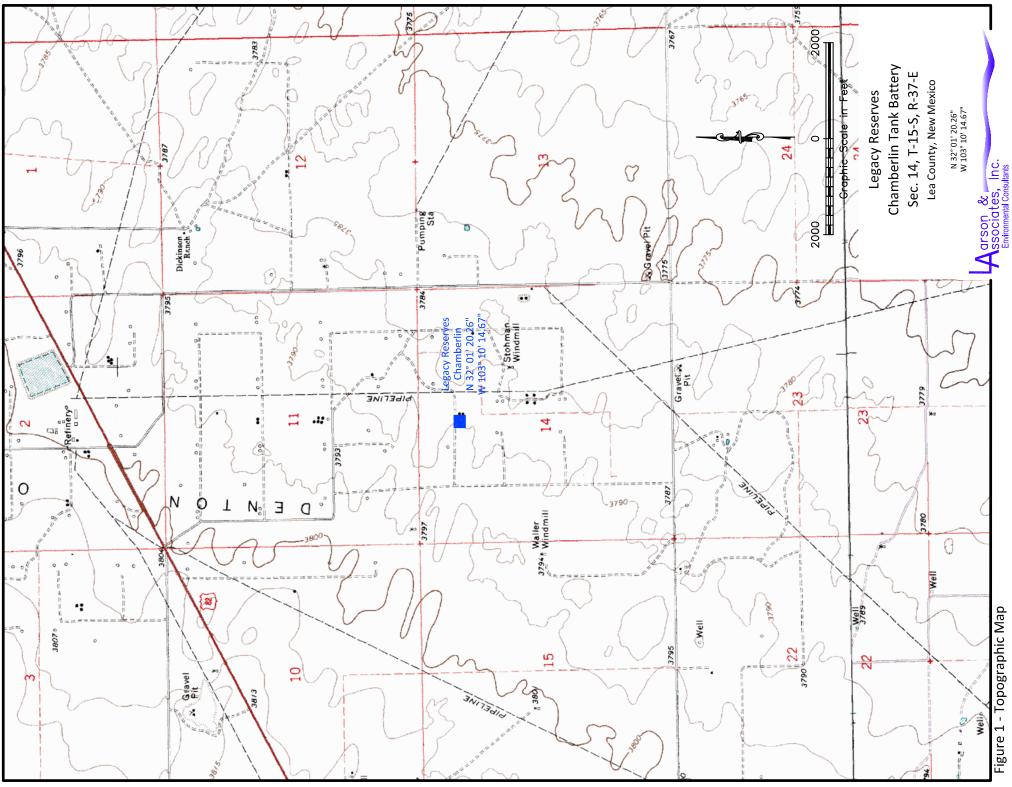


Figure 1 - Topographic Map

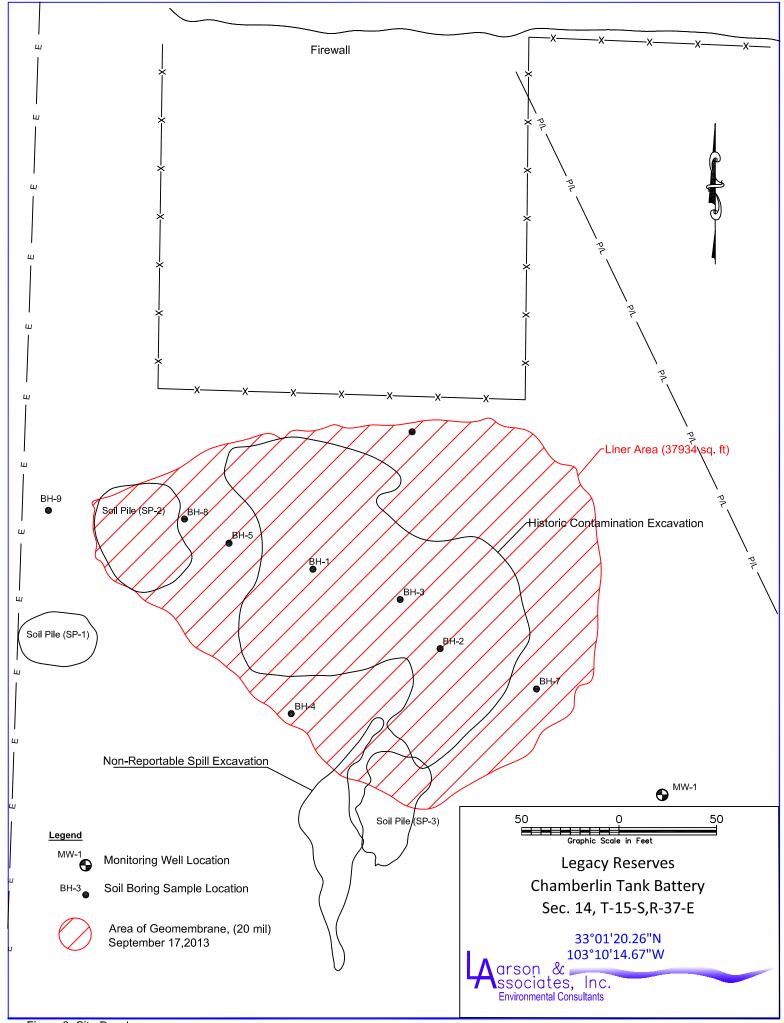


Figure 3- Site Drawing

APPENDIX A

LABORATORY ANALYTICAL REPORTS AND CHAIN OF CUSTODY DOCUMENTATION

November 25, 2014

Coty Woolf Larson & Associates

507 N. Marienfeld #200 Midland, TX 79701

TEL: (432) 687-0901

FAX (432) 687-0456 Order No.: 1411131

RE: Legacy Chamberlain

Dear Coty Woolf:

DHL Analytical, Inc. received 2 sample(s) on 11/18/2014 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-14-13

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1411131	6
WorkOrderSampleSummary 1411131	7
PrepDatesReport 1411131	8
AnalyticalDatesReport 1411131	9
Analytical Report 1411131	10
AnalyticalQCSummaryReport 1411131	12

CHAIN-OF-CUSTODY

Agrson & SSOCial Environments	es, Incal Consulta	C.			507 N N	\idla:	arienf nd, T -687	<i>(</i> 79	701	200	D P L	PATE: PO #: PROJE	ECT I	/// LOCA CT #	//7/ ATIO	//4 N OF /2	, R N/ -0	AME /2.(LA	В W	/OF	RK (ORD &C5				E III ber	/0 31 //,	F <u>/</u>	
TRRP report? Yes No TIME ZONE: Time zone/State:	S=SOIL W=WATE A=AIR		INT LUDGE DTHER		tainers	PRI	ESER		a		19	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\															FIE	*/ 04/		
Field Sample I.D.	Lab#	Date	Time	Matrix	# of Containers	HCI	HNO ₃	2021 1021 1021 1021 1021 1021 1021 102	UNPRE	DIA.																	FIE	LD NC	TES	
W5-1	10	11/17/14	2:360	4	3	X		X	-	\times				ļ., ļ.,	\perp				\perp				<u> </u>	Į,		ļ				
11		te	n'	<u>l</u> i	2	Ĭ.		X	7							-			_ >			_ >	\downarrow	Σ		<u> </u>				
11		11	1				λ					<u> </u>			_				_		_		_	ļ	\mathcal{X}					
Tr. P Bloude	02	11/17/14	236 ph	L	2	$ \lambda $			ļ.,	X						<u> </u>			4		_		\perp		1					
, , , , ,																				\perp			\perp			<u> </u>				
																							\perp							
								1	_																					
								1	١.																					
							-	+	\dagger															1		 				
	1				 			+	+		_	+			+					Ť		+	+	-						
						+		+				++	+	 	+			\dashv	\dashv	+	+	\dagger	+	+	1					\neg
	 							+	+	\vdash		++	+	-	+		-	\dashv	\dashv	-	+	+	+	+	+					
	 							+		\vdash				++	+	-	-	+		+	+		+		-					
TOTAL							-	***					-		_	-		_	+	+	+	+	+		 			·		\dashv
TOTAL	Ciamatum-V		, DATE/TI		PECE			Sign	1				\vdash			1						l				<u>.</u>				
RELINQUISHED BY:	Signature)	- 16	1/2//4	600/	RECE	.ively	74			///	v 25	,0		RN AF RMAL		D TIN	/E			ATO				_				- ~		
RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY: (Signature) 11/13/14 830) 	ابد		1 D	RMALI AY 🚨 AY 📮	ŧ₩		ļ	CU	sto	DY S	SEAL	.s -	Q B		ŒΝ	☐ IN	TACT	1 NC		ED				
RELINQUISHED BY:((Signature)		DATE/TI	ME	RECE	IVED	BY! (Signa	ature))				HER 🗔	í				CAR	RIER	BIL	L# .		L_{C}	m.	<u>5ta</u>	r			_
													†				_			D DE										

3

FLSO

WWW.LSO.COM Questions? Call 800-800-8984

Airbill No. 48947406

48947406

Print Name (Person)	Phone (Important)	2. From	arme (Person)	Phone (Important) 432-687-119111
1.103 Tlarker	348800	Company Name	1-1-68/f-	
Company Name			CIATES	ا
Street Address (No P.O. Box or P.O. Box Zip Code®	Reliveries)	Street Address	************************************	
1777 42	V 2 1 7 77	507 N. MARIEN	FELD ST.	· 7
Suite / Floor		Suite / Floor ∯200		
		******************************	State	7in
City State	X Hololot	City MIDLAND		TX 79701
3. Service: Visit www.lso.com for a enjoy added features by	vailability of services to your destination and creating your shipping label online.		50	FOR DRIVER USE ONLY
LSO Priority Overnight* By 10:30 a.m. to most cities	LSO Ground	Your Company's Billing Reference		Driver Number 1/1/16/2
·	☐ ISO Saturday*	Ship Date: (mm/dd/yy)	1 27 1 1	Check here if LSO Supplies are used with LSO Ground Service.
LSO Early Overnight* By 8:30 a.m. select cities	Other	Ship Date: (Iminodayy)	(C) (C)	Pick-up Location 1001 0
LSO Economy Next Day* By 3 p.m. to most cities	*Check commitment times and availability at www.lso.com	5. Payment:		Date:
☐ LSO 2nd Day*	Assumed LSO Priority Overnight service unless otherwise noted.			Time: \8.3\8
Deliver Without Delivery Signature (See Lin	mits of Liability below)			City Code:
Release Sign	nature **			
Lx Wx H				of feet 2) and document your actual loss in a time

LIMIT OF LIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) declare a greater value (not to exceed \$25,000); 2) pay an additional fee; 3) and document your actual loss in a timely manner. We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential damages. Additional limitations of liability are contained in our current Service Guide. If you ask us to deliver a manner. We will not pay any claim in excess of the actual loss. We are not liable for any special or consequential damages. Additional limitations of liability are contained in our current Service Guide. If you ask us to deliver a great liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBTAINED FOR LSD EARLY OVERNIGHT SERVICE. PACKAGING PROVIDED BY LSO IS NOT INTENDED FOR USE ON LSD GROUND SERVICE. OVERSIZE RATES MAY APPLY. DELIVERY COMMITMENTS MAY VARY. ADDITIONAL FEES MAY APPLY.

Sample Receipt Checklist

Client Name Larson & Associates			Date Recei	vea: 11/18	/2014
Work Order Number 1411131			Received by	y MB	
Checklist completed by: Signature	11/18/20 Date	014	Reviewed b	y	11/18/2014 Date
	Carrier name	<u>LoneStar</u>			
Shipping container/cooler in good condition?	·	Yes 🗹	No 🗌	Not Present .	
Custody seals intact on shippping container/cool	er?	Yes 🗌	No 🗌	Not Present 🗹	
Custody seals intact on sample bottles?	+	Yes 🗌	No 🗌	. Not Present 🗹	
Chain of custody present?		Yes 🗹	No 🗌		
Chain of custody signed when relinquished and r	eceived?	Yes 🗹	No 🗀		
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌		
Samples in proper container/bottle?		Yes 🗹	No 🗌		
Sample containers intact?		Yes 🗹	No 🗌	·	
Sufficient sample volume for indicated test?		Yes 🔽	No 🗌		
All samples received within holding time?		Yes 🗹	No 🗌		
Container/Temp Blank temperature in complianc	e?	Yes 🗹	No 🗌	1.2 °C	
Water - VOA vials have zero headspace?		Yes 🗹	No 🗆	No VOA vials submi	tted
Water - pH<2 acceptable upon receipt?		Yes 🔽	No 🔲	NA ☐ LOT#	8086
		Adjusted?	7U7	Checked by	3
Water - ph>9 (S) or ph>12 (CN) acceptable upon	receipt?	Yes 🗌	No 🗌	NA ✓ LOT#	
·		Adjusted?		Checked by	·
Any No response must be detailed in the comme	nts section below.				
Client contacted	Date contacted:		Per	son contacted	
Contacted by:	Regarding				
Comments:					
				··	
Corrective Action					

Page 1 of 1

CLIENT: Larson & Associates

Project: Legacy Chamberlain

Lab Order: 1411131

CASE NARRATIVE

Date: 25-Nov-14

Sample was analyzed using the methods outlined in the following references:

Method E300 - Anions Analysis Method SW6020A - Metals Analysis Method SW8021B - Volatile Organics by GC Analysis Method M2540C - Total Dissolved Solids Analysis Method M2320 B - Alkalinity Analysis

LOG IN

The samples were received and log-in performed on 10/18/2014. A total of 2 samples were received and analyzed. The samples arrived in good condition and were properly packaged. The samples were collected in Mountain Standard Time.

METALS ANALYSIS

For Metals Analysis, the recovery of Sodium for the Low Level Calibration Verification (LCVL2,3,4-141124) was above the method control limits. These are flagged accordingly in the QC Summary Report. This analyte was within method control limits in the associated bracketing QC. No further corrective action was taken.

For Metals Analysis, the recoveries of two analytes for the Matrix Spike and Matrix Spike Duplicate (1411134-08 MS/MSD) were outside of the method control limits. These are flagged accordingly in the QC Summary Report. These analytes were within method control limits in the associated LCS. No further corrective action was taken

CLIENT: Larson & Associates

Project: Legacy Chamberlain

Project: Legacy Chamberlain
Lab Order: 1411131
Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
1411131-01	WS-1		11/17/14 02:30 PM	11/18/2014
1411131-02	Trip Blank		11/17/14 02:30 PM	11/18/2014

Date: 25-Nov-14

Lab Order: 1411131

Client: Larson & Associates **Project:**

Legacy Chamberlain

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1411131-01A	WS-1	11/17/14 02:30 PM	Aqueous	SW5030C	Purge and Trap Water GC	11/24/14 08:25 AM	66691
1411131-01B	WS-1	11/17/14 02:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/19/14 08:30 AM	66598
	WS-1	11/17/14 02:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	11/19/14 08:30 AM	66598
1411131-01C	WS-1	11/17/14 02:30 PM	Aqueous	M2320 B	Alkalinity Preparation	11/20/14 11:38 AM	66612
	WS-1	11/17/14 02:30 PM	Aqueous	E300	Anion Preparation	11/18/14 09:41 AM	66588
	WS-1	11/17/14 02:30 PM	Aqueous	E300	Anion Preparation	11/18/14 09:41 AM	66588
	WS-1	11/17/14 02:30 PM	Aqueous	M2540C	TDS Preparation	11/19/14 01:37 PM	66618
1411131-02A	Trip Blank	11/17/14 02:30 PM	Trip Blank	SW5030C	Purge and Trap Water GC	11/24/14 08:25 AM	66691

Lab Order: 1411131

Client: Larson & Associates

Project: Legacy Chamberlain

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1411131-01A	WS-1	Aqueous	SW8021B	Volatile Organics by GC	66691	1	11/24/14 12:28 PM	GC8_141124B
1411131-01B	WS-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	66598	1	11/24/14 12:50 PM	ICP-MS4_141124C
	WS-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	66598	50	11/24/14 11:50 AM	ICP-MS4_141124C
1411131-01C	WS-1	Aqueous	M2320 B	Alkalinity	66612	1	11/20/14 01:52 PM	TITRATOR_141120A
	WS-1	Aqueous	E300	Anions by IC method - Water	66588	10	11/18/14 11:26 AM	IC_141118A
	WS-1	Aqueous	E300	Anions by IC method - Water	66588	1	11/18/14 11:09 AM	IC_141118A
	WS-1	Aqueous	M2540C	Total Dissolved Solids	66618	1	11/20/14 09:00 AM	WC_141119B
1411131-02A	Trip Blank	Trip Blank	SW8021B	Volatile Organics by GC	66691	1	11/24/14 12:07 PM	GC8_141124B

CLIENT: Larson & Associates Client Sample ID: WS-1

Project: Legacy Chamberlain Lab ID: 1411131-01

Project No: 12-0126-01 **Collection Date:** 11/17/14 02:30 PM

Lab Order: 1411131 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual Unit	s DF	Date Analyzed
VOLATILE ORGANICS BY GC		SW80)21B			Analyst: LM
Benzene	ND	0.000800	0.00200	mg/L	1	11/24/14 12:28 PM
Ethylbenzene	ND	0.00200	0.00600	mg/L	1	11/24/14 12:28 PM
Toluene	ND	0.00200	0.00600	mg/L	1	11/24/14 12:28 PM
Xylenes, Total	ND	0.00300	0.00900	mg/L	1	11/24/14 12:28 PM
Surr: a,a,a-Trifluorotoluene	93.4	0	87-113	%REC	1	11/24/14 12:28 PM
TRACE METALS: ICP-MS - WATER		SW60	20A			Analyst: RO
Calcium	167	5.00	15.0	mg/L	50	11/24/14 11:50 AM
Magnesium	12.1	0.100	0.300	mg/L	1	11/24/14 12:50 PM
Potassium	2.76	0.100	0.300	mg/L	1	11/24/14 12:50 PM
Sodium	224	5.00	15.0	mg/L	50	11/24/14 11:50 AM
ANIONS BY IC METHOD - WATER		E30	00			Analyst: AV
Chloride	130	3.00	10.0	mg/L	10	11/18/14 11:26 AM
Nitrate-N	1.80	0.100	0.500	mg/L	1	11/18/14 11:09 AM
Sulfate	84.4	1.00	3.00	mg/L	1	11/18/14 11:09 AM
ALKALINITY		M232	20 B			Analyst: LM
Alkalinity, Bicarbonate (As CaCO3)	339	10.0	20.0	mg/L	@ pH 4.54 1	11/20/14 01:52 PM
Alkalinity, Carbonate (As CaCO3)	ND	10.0	20.0	mg/L (@ pH 4.54 1	11/20/14 01:52 PM
Alkalinity, Hydroxide (As CaCO3)	ND	10.0	20.0	mg/L	@ pH 4.54 1	11/20/14 01:52 PM
Alkalinity, Total (As CaCO3)	339	20.0	20.0	mg/L	@ pH 4.54 1	11/20/14 01:52 PM
TOTAL DISSOLVED SOLIDS		M254	40C			Analyst: PT
Total Dissolved Solids (Residue, Filterable)	762	10.0	10.0	mg/L	1	11/20/14 09:00 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 25-Nov-14

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Project:

CLIENT: Larson & Associates Client Sample ID: Trip Blank

Legacy Chamberlain Lab ID: 1411131-02

Project No: 12-0126-01 **Collection Date:** 11/17/14 02:30 PM

Lab Order: 1411131 Matrix: TRIP BLANK

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC		SW80)21B				Analyst: LM
Benzene	ND	0.000800	0.00200		mg/L	1	11/24/14 12:07 PM
Ethylbenzene	ND	0.00200	0.00600		mg/L	1	11/24/14 12:07 PM
Toluene	ND	0.00200	0.00600		mg/L	1	11/24/14 12:07 PM
Xylenes, Total	ND	0.00300	0.00900		mg/L	1	11/24/14 12:07 PM
Surr: a,a,a-Trifluorotoluene	94.6	0	87-113		%REC	1	11/24/14 12:07 PM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 25-Nov-14

- DF Dilution Factor
 - J Analyte detected between MDL and RL
 - ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

Date: 25-Nov-14

CLIENT: Larson & Associates

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: GC8_141124B

namocriam	•								
olies to the fo	ollowing sa	amples: 1411	131-01A, 1411	131-02A					
Batch ID:	66691		TestNo	: SW	8021B		Units:	mg/L	
Run ID:	GC8_14	11124B	Analysi	s Date: 11/2	24/2014 11:2	25:06 A	Prep Date:	11/24/	2014
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
	0.0481	0.00200	0.0464	0	104	81	125		
i	0.0483	0.00600	0.0464	0	104	84	123		
1	0.0485	0.00600	0.0464	0	105	83	119		
	0.146	0.00900	0.139	0	105	81	117		
	189		200.0		94.7	87	113		
Batch ID:	66691		TestNo	: SW	8021B		Units:	mg/L	
Run ID:	GC8_14	11124B	Analysi	s Date: 11/2	24/2014 11:4	16:13 A	Prep Date:	11/24/	2014
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
	ND	0.00200							
	ND	0.00600							
	ND	0.00600							
	ND	0.00900							
	189		200.0		94.5	87	113		
Batch ID:	66691		TestNo	: SW	8021B		Units:	mg/L	
Run ID:	GC8_14	11124B	Analysi	s Date: 11/2	24/2014 1:11	1:41 PM	Prep Date:	11/24/	2014
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qua
	0.0478	0.00200	0.0464	0	103	81	125		
i	0.0480	0.00600	0.0464	0	103	84	123		
1	0.0479	0.00600	0.0464	0	103	83	119		
	0.144	0.00900	0.139	0	103	81	117		
	190		200.0		94.9	87	113		
Batch ID:	66691		TestNo	: SW	8021B		Units:	mg/L	
Run ID:	GC8_14	11124B	Analysi	s Date: 11/2	24/2014 1:32	2:13 PM	Prep Date:	11/24/	2014
	GC8_14	RL	Analysi SPK value	s Date: 11/2 Ref Val	%REC		Prep Date:		
							·		
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit Qu
	Result 0.0472	RL 0.00200	SPK value 0.0464	Ref Val	%REC 102	LowLim	it HighLimit %	6RPD R	PDLimit Qu
	Result 0.0472 0.0476	RL 0.00200 0.00600	SPK value 0.0464 0.0464	Ref Val 0 0	%REC 102 103	LowLim 81 84	it HighLimit % 125 123	6RPD R 1.08 0.739	PDLimit Qua 20 20
	Batch ID: Run ID: Batch ID: Run ID:	Batch ID: 66691 Run ID: GC8_14 Result 0.0481 0.0483 0.0485 0.146 189 Batch ID: 66691 Run ID: GC8_14 Result ND ND ND ND ND ND 189 Batch ID: 66691 Run ID: GC8_14 Result 0.0478 0.0478 0.0479 0.144 190	Batch ID: GC8_141124B	Batch ID: GC8_141124B	Batch ID: 66691 TestNo: SW	Batch ID: 66691 TestNo: SW8021B Run ID: GC8_141124B Analysis Date: 11/24/2014 11:24 Result RL SPK value Ref Val Value Ref Value	Batch ID: 66691 TestNo: SW8021B	Batch ID: 66691 TestNo: SW8021B Units:	Batch ID: 66691 TestNo: SW8021B Units: mg/L Run ID: GC8_141124B Analysis Date: 11/24/2014 11:25:06 A Prep Date: 11/24/2014 Result RL SPK value Ref Val %REC LowLimit HighLimit: %RPD R 0.0481 0.00200 0.0464 0 104 81 125 0.0483 0.00600 0.0464 0 105 83 119 0.0485 0.00900 0.139 0 105 81 117 189 200.0 94.7 87 113 mg/L Run ID: GC8_141124B Analysis Date: 11/24/2014 11:46:13 A Prep Date: 11/24/2014 ND 0.00200 ND 0.00600 ND 0.00600 ND 0.00600 ND 0.00600 ND 0.00600 ND 0.00600 ND 0.00600 ND 11/24/2014 1:11:41 PM Prep Date: 11/24/2014 Result RL SPK value Ref Val %REC LowLimit High

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \quad Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 1 of 11

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: GC8_141124B

Batch ID:	R76528		TestNo:	SW	8021B		Units:	mg/L
Run ID:	GC8_141	124B	Analysis	Date: 11/2	24/2014 9:16	:36 AM	Prep Date:	
	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
(0.0926	0.00200	0.0928	0	99.8	80	120	
(0.0940	0.00600	0.0928	0	101	80	120	
(0.0941	0.00600	0.0928	0	101	80	120	
	0.280	0.00900	0.278	0	101	80	120	
	191		200.0		95.7	87	113	
Batch ID:	R76528		TestNo:	SW	8021B		Units:	mg/L
Run ID:	GC8_141	124B	Analysis	Date: 11/2	24/2014 11:0	3:33 A	Prep Date:	
	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
(0.0474	0.00200	0.0464	0	102	80	120	
(0.0478	0.00600	0.0464	0	103	80	120	
(0.0478	0.00600	0.0464	0	103	80	120	
	0.144	0.00900	0.139	0	103	80	120	
	190		200.0		95.1	87	113	
Batch ID:	R76528		TestNo:	sw	8021B		Units:	mg/L
Run ID:	GC8_141	124B	Analysis	Date: 11/2	24/2014 2:14	:32 PM	Prep Date:	
	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
(0.0481	0.00200	0.0464	0	104	80	120	
(0.0483	0.00600	0.0464	0	104	80	120	
(0.0481	0.00600	0.0464	0	104	80	120	
	0.144	0.00900	0.139	0	104	80	120	
	191		200.0		95.4	87	113	
	Batch ID: Batch ID: Run ID:	Run ID: GC8_141 Result 0.0926 0.0940 0.0941 0.280 191 Batch ID: R76528 Run ID: GC8_141 Result 0.0474 0.0478 0.0478 0.0478 0.144 190 Batch ID: R76528 Run ID: GC8_141 Result 0.0481 0.0481 0.0481 0.144	Run ID: GC8_141124B Result RL 0.0926 0.00200 0.0940 0.00600 0.280 0.00900 191 Batch ID: R76528 Run ID: GC8_141124B Result RL 0.0474 0.00200 0.0478 0.00600 0.0478 0.00600 0.144 0.00900 190 Batch ID: R76528 Run ID: GC8_141124B Batch ID: R00600 0.0481 0.00600 0.0481 0.00600 0.0481 0.00600 0.0481 0.00600 0.144 0.00900	Run ID: GC8_141124B Analysis Result RL SPK value 0.0926 0.00200 0.0928 0.0940 0.00600 0.0928 0.280 0.00900 0.278 191 200.0 Batch ID: R76528 TestNo: Run ID: GC8_141124B Analysis Result RL SPK value 0.0474 0.00200 0.0464 0.0478 0.00600 0.0464 0.0478 0.00600 0.0464 0.0478 0.00600 0.0464 0.144 0.00900 0.139 190 200.0 Eatch ID: R76528 TestNo: Run ID: GC8_141124B Analysis Run ID: Result RL SPK value 0.0481 0.00200 0.0464 0.0481 0.00600 0.0464 0.0481 0.00600 0.0464 0.0481 0.00600 0.0464 0.0481 <t< td=""><td>Run ID: GC8_141124B Analysis Date: 11/2 Result RL SPK value Ref Val 0.0926 0.00200 0.0928 0 0.0940 0.00600 0.0928 0 0.280 0.00900 0.278 0 191 200.0 Destroin SW Run ID: GC8_141124B Analysis Date: 11/2 Result RL SPK value Ref Val 0.0474 0.00200 0.0464 0 0.0478 0.00600 0.0464 0 0.0478 0.00600 0.0464 0 0.144 0.00900 0.139 0 Batch ID: R76528 TestNo: SW Run ID: GC8_141124B Analysis Date: 11/2 Result RL SPK value Ref Val 0.0481 0.00200 0.0464 0 0.0483 0.00600 0.0464 0 0.0481 0.00600 0.0464 0 0.0481 0.00600</td></t<> <td>Run ID: GC8_141124B Analysis Date: 11/24/2014 9:16 Result RL SPK value Ref Val %REC 0.0926 0.00200 0.0928 0 99.8 0.0940 0.00600 0.0928 0 101 0.0941 0.00600 0.0928 0 101 0.280 0.00900 0.278 0 101 191 200.0 95.7 Batch ID: R76528 TestNo: SW8021B Run ID: GC8_141124B Analysis Date: 11/24/2014 11:0 Result RL SPK value Ref Val %REC 0.0474 0.00200 0.0464 0 103 0.0478 0.00600 0.0464 0 103 0.144 0.00900 0.139 0 103 190 200.0 95.1 Batch ID: R76528 TestNo: SW8021B Run ID: GC8_141124B Analysis Date: 11/24/2014 2:14 Result R</td> <td>Run ID: GC8_141124B Analysis Date: 11/24/2014 9:16:36 AM Result RL SPK value Ref Val %REC LowLimi 0.0926 0.00200 0.0928 0 99.8 80 0.0940 0.00600 0.0928 0 101 80 0.280 0.00900 0.278 0 101 80 0.280 0.00900 0.278 0 101 80 191 200.0 95.7 87 Batch ID: R76528 TestNo: SW8021B Run ID: GC8_141124B Analysis Date: 11/24/2014 11:03:33 A Result RL SPK value Ref Val %REC LowLimi 0.0474 0.00200 0.0464 0 102 80 0.0478 0.00600 0.0464 0 103 80 0.144 0.00900 0.139 0 103 80 190 200.0 95.1 87 Batch ID: R76528</td> <td>Run ID: GC8_141124B Analysis Date: 11/24/2014 9:16:36 AM Prep Date: 11/24/2014 1:16:36 AM Prep Date: 11/24/2014 2:16:36 AM Prep Date: 11/</td>	Run ID: GC8_141124B Analysis Date: 11/2 Result RL SPK value Ref Val 0.0926 0.00200 0.0928 0 0.0940 0.00600 0.0928 0 0.280 0.00900 0.278 0 191 200.0 Destroin SW Run ID: GC8_141124B Analysis Date: 11/2 Result RL SPK value Ref Val 0.0474 0.00200 0.0464 0 0.0478 0.00600 0.0464 0 0.0478 0.00600 0.0464 0 0.144 0.00900 0.139 0 Batch ID: R76528 TestNo: SW Run ID: GC8_141124B Analysis Date: 11/2 Result RL SPK value Ref Val 0.0481 0.00200 0.0464 0 0.0483 0.00600 0.0464 0 0.0481 0.00600 0.0464 0 0.0481 0.00600	Run ID: GC8_141124B Analysis Date: 11/24/2014 9:16 Result RL SPK value Ref Val %REC 0.0926 0.00200 0.0928 0 99.8 0.0940 0.00600 0.0928 0 101 0.0941 0.00600 0.0928 0 101 0.280 0.00900 0.278 0 101 191 200.0 95.7 Batch ID: R76528 TestNo: SW8021B Run ID: GC8_141124B Analysis Date: 11/24/2014 11:0 Result RL SPK value Ref Val %REC 0.0474 0.00200 0.0464 0 103 0.0478 0.00600 0.0464 0 103 0.144 0.00900 0.139 0 103 190 200.0 95.1 Batch ID: R76528 TestNo: SW8021B Run ID: GC8_141124B Analysis Date: 11/24/2014 2:14 Result R	Run ID: GC8_141124B Analysis Date: 11/24/2014 9:16:36 AM Result RL SPK value Ref Val %REC LowLimi 0.0926 0.00200 0.0928 0 99.8 80 0.0940 0.00600 0.0928 0 101 80 0.280 0.00900 0.278 0 101 80 0.280 0.00900 0.278 0 101 80 191 200.0 95.7 87 Batch ID: R76528 TestNo: SW8021B Run ID: GC8_141124B Analysis Date: 11/24/2014 11:03:33 A Result RL SPK value Ref Val %REC LowLimi 0.0474 0.00200 0.0464 0 102 80 0.0478 0.00600 0.0464 0 103 80 0.144 0.00900 0.139 0 103 80 190 200.0 95.1 87 Batch ID: R76528	Run ID: GC8_141124B Analysis Date: 11/24/2014 9:16:36 AM Prep Date: 11/24/2014 1:16:36 AM Prep Date: 11/24/2014 2:16:36 AM Prep Date: 11/

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 2 of 11

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain

RunID: ICP-MS4 141124C

Project:	Legacy Ch	namberlair	l				RunII): I	CP-MS4_	141124	C
The QC data	a in batch 66598 app	lies to the f	ollowing sar	mples: 1411	131-01B						
Sample ID	MB-66598	Batch ID:	66598		TestN	o: SW 6	6020A		Units:	mg/L	
SampType:	MBLK	Run ID:	ICP-MS4	_141124C	Analys	sis Date: 11/2	4/2014 11:3	32:00 A	Prep Date:	11/19/	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Calcium			ND	0.300							
Magnesium			ND	0.300							
Potassium			ND	0.300							
Sodium			ND	0.300							
Sample ID	LCS-66598	Batch ID:	66598		TestN	o: SW 6	6020A		Units:	mg/L	
SampType:	LCS	Run ID:	ICP-MS4	_141124C	Analys	sis Date: 11/2	4/2014 11:3	34:00 A	Prep Date:	11/19/	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Calcium			4.78	0.300	5.00	0	95.7	80	120		
Magnesium			5.17	0.300	5.00	0	103	80	120		
Potassium			5.02	0.300	5.00	0	100	80	120		
Sodium			5.27	0.300	5.00	0	105	80	120		
Sample ID	LCSD-66598	Batch ID:	66598		TestN	o: SW 6	6020A		Units:	mg/L	
SampType:	LCSD	Run ID:	ICP-MS4	_141124C	Analys	sis Date: 11/2	4/2014 11:3	36:00 A	Prep Date:	11/19/	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Calcium			4.70	0.300	5.00	0	93.9	80	120	1.85	15
Magnesium			5.14	0.300	5.00	0	103	80	120	0.520	15
Potassium			4.95	0.300	5.00	0	99.1	80	120	1.27	15
Sodium			5.24	0.300	5.00	0	105	80	120	0.588	15
Sample ID	1411134-08A SD	Batch ID:	66598		TestN	o: SW 6	6020A		Units:	mg/L	
SampType:	SD	Run ID:	ICP-MS4	_141124C	Analys	sis Date: 11/2	4/2014 11:4	18:00 A	Prep Date:	11/19/	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Potassium			7.77	1.50	0	7.74				0.363	10
Sample ID	1411134-08A PDS	Batch ID:	66598		TestN	o: SW 6	6020A		Units:	mg/L	
SampType:	PDS	Run ID:	ICP-MS4	_141124C	Analys	sis Date: 11/2	4/2014 12:0	08:00 P	Prep Date:	11/19/	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Potassium			12.6	0.300	5.00	7.74	98.0	80	120		
Sample ID	1411134-08A MS	Batch ID:	66598		TestN	o: SW 6	6020A		Units:	mg/L	
SampType:	MS	Run ID:	ICP-MS4	_141124C	Analys	sis Date: 11/2	4/2014 12:1	10:00 P	Prep Date:	11/19/	2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit Qual
Calcium			220	0.300	5.00	219	28.7	80	120		S
Qualifiers:	J Analyte dete	ected between d at the Metl	associated Months and I and I detection	RL	DF MDL R S	Dilution Factor Method Detect RPD outside a Spike Recover	tion Limit			Pa	age 3 of 11

Parameter not NELAC certified

Analyte detected between SDL and RL

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: ICP-MS4_141124C

Camarla ID	4.44.4.2.4.00.A.M.C.	Datak ID.	00500		TaatNla	CM	/C000 A		I leite.			
	1411134-08A MS	Batch ID:	66598		TestNo:	_	V6020A		Units:	mg/L		
SampType:	MS	Run ID:	ICP-MS4	_141124C	Analysis	s Date: 11/	/24/2014 12:1	0:00 P	Prep Date:	11/19/	2014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	Qual
Magnesium			77.8	0.300	5.00	72.0	116	80	120			
Potassium			12.4	0.300	5.00	7.74	93.8	80	120			
Sodium			358	0.300	5.00	351	146	80	120			S
Sample ID	1411134-08A MSD	Batch ID:	66598		TestNo:	SW	V6020A		Units:	mg/L		
SampType:	MSD	Run ID:	ICP-MS4	_141124C	Analysis	s Date: 11/	/24/2014 12:1	2:00 P	Prep Date:	11/19/	2014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	Qual
Calcium			223	0.300	5.00	219	85.2	80	120	1.27	15	
Magnesium			78.2	0.300	5.00	72.0	125	80	120	0.554	15	S
Potassium			12.6	0.300	5.00	7.74	96.2	80	120	0.946	15	
Sodium			361	0.300	5.00	351	213	80	120	0.930	15	S
Sample ID	1411134-08A SD	Batch ID:	66598		TestNo:	SW	V6020A		Units:	mg/L		
SampType:	SD	Run ID:	ICP-MS4	_141124C	Analysis	s Date: 11/	/24/2014 12:4	6:00 P	Prep Date:	11/19/	2014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	Qual
Calcium			219	150	0	221				0.958	10	
Magnesium			79.6	150	0	78.6				1.36	10	
Sodium			419	150	0	389				7.44	10	
Sample ID	1411134-08A PDS	Batch ID:	66598		TestNo:	SW	V6020A		Units:	mg/L		
SampType:	PDS	Run ID:	ICP-MS4	_141124C	Analysis	s Date: 11/	/24/2014 12:4	8:00 P	Prep Date:	11/19/	2014	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD R	PDLimit	Qual
Calcium			758	30.0	500	221	108	80	120			
Magnesium			651	30.0	500	78.6	114	80	120			
Sodium			968	30.0	500	389	116	80	120			

Qualifiers: B	Analyte detected in the ass	sociated Method Blan
---------------	-----------------------------	----------------------

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

 $\begin{array}{ll} S & \text{Spike Recovery outside control limits} \\ N & \text{Parameter not NELAC certified} \end{array}$

Page 4 of 11

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: ICP-MS4_141124C

Sample ID	ICV-141124	Batch ID:	R76511		TestNo	: SW	6020A		Units:	mg/L	
SampType:	ICV	Run ID:	ICP-MS	4_141124C	Analysi	s Date: 11/2	24/2014 10:0	02:00 A	Prep Date	: :	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	nit Qua
Calcium			2.38	0.300	2.50	0	95.2	90	110		
Magnesium			2.55	0.300	2.50	0	102	90	110		
Potassium			2.44	0.300	2.50	0	97.8	90	110		
Sodium			2.54	0.300	2.50	0	102	90	110		
Sample ID	LCVL-141124	Batch ID:	R76511		TestNo	: SW	6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS	4_141124C	Analysi	s Date: 11/2	24/2014 10:0	07:00 A	Prep Date):	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	nit Qua
Calcium			0.0943	0.300	0.100	0	94.3	70	130		
Magnesium			0.102	0.300	0.100	0	102	70	130		
Potassium		(0.0945	0.300	0.100	0	94.5	70	130		
Sodium			0.110	0.300	0.100	0	110	70	130		
Sample ID	CCV2-141124	Batch ID:	R76511		TestNo	: sw	6020A		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS	4_141124C	Analysi	s Date: 11/2	24/2014 11:	18:00 A	Prep Date	: :	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	nit Qua
Calcium			4.70	0.300	5.00	0	94.0	90	110		
Magnesium			5.02	0.300	5.00	0	100	90	110		
Potassium			4.91	0.300	5.00	0	98.3	90	110		
Sodium			5.17	0.300	5.00	0	103	90	110		
Sample ID	LCVL2-141124	Batch ID:	R76511		TestNo	: SW	6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS	4_141124C	Analysi	s Date: 11/2	24/2014 11:2	23:00 A	Prep Date	: :	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	nit Qua
Calcium			0.0923	0.300	0.100	0	92.3	70	130		
Magnesium			0.102	0.300	0.100	0	102	70	130		
Potassium			0.0995	0.300	0.100	0	99.5	70	130		
Sodium			0.206	0.300	0.100	0	206	70	130		S
Sample ID	CCV3-141124	Batch ID:	R76511		TestNo	: sw	6020A		Units:	mg/L	
SampType:	CCV	Run ID:	ICP-MS	4_141124C	Analysi	s Date: 11/2	24/2014 12:	14:00 P	Prep Date	: :	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLim	nit Qua
Calcium			4.77	0.300	5.00	0	95.5	90	110		
Magnesium			5.05	0.300	5.00	0	101	90	110		
Potassium			4.96	0.300	5.00	0	99.2	90	110		
Sodium			5.24	0.300	5.00	0	105	90	110		
Qualifiers:	B Analyte d	etected in the a				Dilution Facto					

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 5 of 11

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: ICP-MS4_141124C

										-	
Sample ID	LCVL3-141124	Batch ID:	R76511		TestNo:	SW	V6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS	4_141124C	Analysis	s Date: 11/	/24/2014 12:3	2:00 P	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLi	mit Qual
Calcium			0.0950	0.300	0.100	0	95.0	70	130		
Magnesium			0.103	0.300	0.100	0	103	70	130		
Potassium			0.104	0.300	0.100	0	104	70	130		
Sodium			0.203	0.300	0.100	0	203	70	130		S
Sample ID	CCV4-141124	Batch ID:	R76511		TestNo:	SW	V6020A		Units:	mg/L	
SampType:	ccv	Run ID:	ICP-MS	4_141124C	Analysis	s Date: 11/	/24/2014 1:10	:00 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLi	mit Qual
Magnesium			5.05	0.300	5.00	0	101	90	110		
Potassium			4.95	0.300	5.00	0	98.9	90	110		
Sodium			5.10	0.300	5.00	0	102	90	110		
Sample ID	LCVL4-141124	Batch ID:	R76511		TestNo:	SW	V6020A		Units:	mg/L	
SampType:	LCVL	Run ID:	ICP-MS	4_141124C	Analysis	s Date: 11/	/24/2014 1:28	3:00 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLi	mit Qual
Magnesium			0.101	0.300	0.100	0	101	70	130		
Potassium			0.0969	0.300	0.100	0	96.9	70	130		
Sodium			0.154	0.300	0.100	0	154	70	130		S

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 6 of 11

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain

RunID: IC_141118A

Troject. Legacy Ci	namocnam	-				Kulli	, 1	C_141110		
The QC data in batch 66588 app	olies to the fo	ollowing s	amples: 1411	131-01C						
Sample ID MB-66588	Batch ID:	66588		TestNo	E30	0		Units:	mg/L	
SampType: MBLK	Run ID:	IC_141	118A	Analysi	s Date: 11/1	8/2014 10:0	7:02 A	Prep Date:	11/18/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride		ND	1.00							
Nitrate-N		ND	0.500							
Sulfate		ND	3.00							
Sample ID LCS-66588	Batch ID:	66588		TestNo	: E30	0		Units:	mg/L	
SampType: LCS	Run ID:	IC_141	118A	Analysi	s Date: 11/1	8/2014 10:2	1:39 A	Prep Date:	11/18/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride		10.1	1.00	10.00	0	101	90	110		
Nitrate-N		5.01	0.500	5.000	0	100	90	110		
Sulfate		30.3	3.00	30.00	0	101	90	110		
Sample ID LCSD-66588	Batch ID:	66588		TestNo	E30	0		Units:	mg/L	
SampType: LCSD	Run ID:	IC_141	118A	Analysi	s Date: 11/1	8/2014 10:3	6:15 A	Prep Date:	11/18/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride		10.0	1.00	10.00	0	100	90	110	0.602	20
Nitrate-N		4.99	0.500	5.000	0	99.8	90	110	0.382	20
Sulfate		30.2	3.00	30.00	0	101	90	110	0.343	20
Sample ID 1411133-02AMS	Batch ID:	66588		TestNo	E30	0		Units:	mg/L	
SampType: MS	Run ID:	IC_141	118A	Analysi	s Date: 11/1	8/2014 12:0	6:54 P	Prep Date:	11/18/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride		2260	100	2000	228.1	102	90	110		
Nitrate-N		443	50.0	451.6	0	98.2	90	110		
Sulfate		4210	300	2000	2108	105	90	110		
Sample ID 1411133-02AMSD	Batch ID:	66588		TestNo	: E30	0		Units:	mg/L	
SampType: MSD	Run ID:	IC_141	118A	Analysi	s Date: 11/1	8/2014 12:2	1:30 P	Prep Date:	11/18/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qual
Chloride		2260	100	2000	228.1	102	90	110	0.002	20
Nitrate-N		445	50.0	451.6	0	98.5	90	110	0.355	20
Sulfate		4220	300	2000	2108	105	90	110	0.210	20

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \quad Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 7 of 11

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: IC_141118A

Sample ID ICV-141118	Batch ID:	R76411		TestNo	: E30	0		Units:	mg/L
SampType: ICV	Run ID:	IC_14111	18A	A Analysis Date: 11/18/2014 9:48:20 AM Prep Date:					
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qu
Chloride		25.6	1.00	25.00	0	102	90	110	
Nitrate-N		12.8	0.500	12.50	0	103	90	110	
Sulfate		76.5	3.00	75.00	0	102	90	110	

Sample ID CCV1-141118	Batch ID:	R76411		TestNo	: E30	0		Units:	mg/L	
SampType: CCV	Run ID:	IC_1411	18A	Analys	is Date: 11/1	8/2014 1:42	2:56 PM	Prep Date:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimi	t Qual
Chloride		9.96	1.00	10.00	0	99.6	90	110		
Nitrate-N		4.96	0.500	5.000	0	99.3	90	110		
Sulfate		29.9	3.00	30.00	0	99.6	90	110		

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limitsS Spike Recovery outside control limits

N Parameter not NELAC certified

Page 8 of 11

CLIENT: Larson & Associates ANAL VICAL OC SUMMADY DEDODI

ANALYTICAL QC SUMMARY REPORT

Work Order: 1411131

Project: Legacy Chamberlain RunID: TITRATOR_141120A

i roject.	Legacy Cii	amberiam	L				KulliD.	1	IIKAIO	W_141	1201
The QC data	a in batch 66612 appl	ies to the f	ollowing samp	les: 14111	31-01C						
Sample ID	MB-66612	Batch ID:	66612		TestNo:		M2320 B		Units:	mg/L	@ pH 4.5
SampType:	MBLK	Run ID:	TITRATOR	_141120A	Analysis	Date:	11/20/2014 12:28:	00 P	Prep Date:	11/20	/2014
Analyte			Result	RL	SPK value	Ref Va	al %REC L	.owLimi	t HighLimit %	6RPD F	RPDLimit Qua
Alkalinity, Bi	carbonate (As CaCO	3)	ND	20.0							
Alkalinity, Carbonate (As CaCO3)			ND	20.0							
Alkalinity, Hy	ydroxide (As CaCO3)		ND	20.0							
Alkalinity, To	otal (As CaCO3)		ND	20.0							
Sample ID	LCS-66612	Batch ID:	66612		TestNo:	ı	M2320 B		Units:	mg/L	@ pH 4.52
SampType:	LCS	Run ID:	TITRATOR	_141120A	Analysis	Date:	11/20/2014 12:33:	00 P	Prep Date:	11/20	/2014
Analyte			Result	RL	SPK value	Ref Va	al %REC L	.owLimi	t HighLimit %	6RPD F	RPDLimit Qua
Alkalinity, To	otal (As CaCO3)		53.0	20.0	50.00	0	106	74	129		
Sample ID	Sample ID 1411117-01D DUP Batch ID:		66612		TestNo:		M2320 B		Units:	mg/L	@ pH 4.52
SampType:	DUP	Run ID:	TITRATOR	_141120A	Analysis	Date:	11/20/2014 1:05:0	0 PM	Prep Date:	11/20	/2014
Analyte			Result	RL	SPK value	Ref Va	al %REC L	.owLimi	t HighLimit %	6RPD F	RPDLimit Qua
Alkalinity, Bi	carbonate (As CaCO	3)	289	20.0	0	283.9)			1.92	20
Alkalinity, Ca	arbonate (As CaCO3)		0	20.0	0	0				0	20
Alkalinity, H	ydroxide (As CaCO3)		0	20.0	0	0				0	20

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \quad Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Page 9 of 11

S Spike Recovery outside control limits

N Parameter not NELAC certified

Work Order: 1411131

Project: Legacy Chamberlain RunID: TITRATOR_141120A

ANALYTICAL QC SUMMARY REPORT

Sample ID ICV-141120 SampType: ICV	Batch ID: Run ID:		R_141120A	TestNo Analys	-	//2320 B 1/20/2014 12:2	3:00 P	Units: Prep Date:	mg/L @ pH 4.52 11/20/2014
Analyte		Result	RL	SPK value	Ref Va	l %REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO3	3)	4.48	20.0	0					
Alkalinity, Carbonate (As CaCO3)		96.3	20.0	0					
Alkalinity, Hydroxide (As CaCO3)		0	20.0	0					
Alkalinity, Total (As CaCO3)		101	20.0	100.0	0	101	98	102	

Sample ID CCV1-141120 B	atch ID:	R76450		TestNo:	ı	M2320 B	Units:	mg/L @ pH 4.5
SampType: CCV R	un ID:	TITRATOR	_141120A	Analysis	s Date: 1	11/20/2014 2:12:00 PM	Prep Date	11/20/2014
Analyte		Result	RL	SPK value	Ref Va	al %REC LowLin	mit HighLimit	%RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO3)		5.28	20.0	0				
Alkalinity, Carbonate (As CaCO3)		96.5	20.0	0				
Alkalinity, Hydroxide (As CaCO3)		0	20.0	0				
Alkalinity, Total (As CaCO3)		102	20.0	100.0	0	102 90	110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 10 of 11

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Work Order: 1411131

ANALYTICAL QC SUMMARY REPORT WC_141119B **RunID: Project:** Legacy Chamberlain

The QC dat	a in batch 66618 app	lies to the fo	ollowing samp	les: 141	1131-01C						
Sample ID	MB-66618	Batch ID:	66618		TestNo:	М	2540C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_14111	9B	Analysis	Date: 11	//20/2014 9:00:	00 AM	Prep Date:	11/19/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	ND	10.0							
Sample ID	LCS-66618	Batch ID:	66618		TestNo:	М	2540C		Units:	mg/L	
SampType:	LCS	Run ID:	WC_14111	9B	Analysis	Date: 11	//20/2014 9:00:	00 AM	Prep Date:	11/19/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	742	10.0	745.6	0	99.5	90	113		
Sample ID	1411117-01D-DUP	Batch ID:	66618		TestNo:	М	2540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_14111	9B	Analysis	Date: 11	//20/2014 9:00:	00 AM	Prep Date:	11/19/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qua
Total Dissol	ved Solids (Residue,	Filtera	3090	50.0	0	3120				1.13	5
Sample ID	1411138-01D-DUP	Batch ID:	66618		TestNo:	М	2540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_14111	9B	Analysis	Date: 11	//20/2014 9:00:	00 AM	Prep Date:	11/19/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RP	DLimit Qua
Total Dissol	ved Solids (Residue,	Filtera	4500	50.0	0	4625				2.74	5

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits Page 11 of 11

Spike Recovery outside control limits

Parameter not NELAC certified

December 29, 2014

Coty Woolf Larson & Associates

507 N. Marienfeld #200

Midland, TX 79701

TEL: (432) 687-0901

FAX (432) 687-0456 Order No.: 1412164

RE: Legacy Chamberlain

Dear Coty Woolf:

DHL Analytical, Inc. received 1 sample(s) on 12/12/2014 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont

General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-14-13

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1412164	6
WorkOrderSampleSummary 1412164	7
PrepDatesReport 1412164	8
AnalyticalDatesReport 1412164	9
Analytical Report 1412164	10
AnalyticalQCSummaryReport 1412164	11

CHAIN-OF-CUSTODY ∕oF PAGE_ DATE: 507 N. Marienfeld, Ste. 200 LAB WORK ORDER #:_ PO#: Midland, TX 79701 PROJECT LOCATION OR NAME: 432-687-0901 LAI PROJECT #:

TRRP report?	S=SOIL W=WATEI	P=PAI R SL=SI	NT .UDGE			PRE	SER	VATI	ОИ							//	/3						/\^ }}							
Yes No	A≓AlR	OT=O						ļ						<i>\$</i> //	//															
TIME ZONE: Time zone/State:					ners		NaOH		UNPRESERVED		69/c		(8) (5)	\\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				[8] { E] {		3/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					40/	Y/			
XM					# of Containers			ı	RESE	187						Š/\ \ \$2/.									() ()	New				
Field Sample I.D.	Lab#	Date	Time	Matrix	# of C	모	SON H	빌	SND	purit of					\$\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\) } 							/ 8 8 / _			LOX,	FIELD	NOTE	s 	
MW-1	01	12/11/4	100 fr	. W	T			X										_	_{\}	4	-	 X	17						_	-
		12/14/4	lerfa	w			<u>k</u>	-	_		-	_		-	+		-		-	-	+	+-	-							-
<i>l'</i>		14/1/14	lugger	W	15	X	+	 -	!	\mathcal{H}	-					-				+		+	+	-		_				1
					<u> </u>		+	+	-				+						1	\top		-	\dagger							
								+-		╁╌╂╌		-	-																	_
					<u> </u>			+														_	_		_					4
																_			\downarrow	_	_	\perp	-		_					\dashv
								_		<u> </u>	-	_	_	\vdash	_ -	-	╁—			\dashv	- -	+	+	 	\vdash	<u> </u>				\dashv
			-		<u> </u>	-		+	-	-	-	-	-	-	+	-	<u> </u>		+	-		+	- -	-				_		\dashv
<u></u>	<u> </u>					-	_ -		-	 			+-		_	-			+		+		+		_	 				┨
			<u>. </u>			+		+		+	1-1		-	-			 		\uparrow	_	-									
	<u> </u>		<u> </u>		 			+	 -	1	i																			_
	<u> </u>																		_	_			-	<u> </u>	<u> </u>					4
TOTAL								\perp		<u> </u>			\perp	i						\perp				<u> </u>	<u>l</u> ,					\dashv
RELINQUISHED BY	(Signature)		DATE/TI	ME 14/6 Y	RECE RECE	IVED "VA	ву: (91gn (107	ature	9) 8)-c-		, · · <u> </u>		I RN A RMAL		ND T	IME				RY U				TH	ERM:	#: <u>5</u>	2		
RELINQUISHED BY:	(Signature)	-/	DATÉ/IÍ	كأركاد	RECE J (A)	ívéd 30	ВΫ:-	Sign	ature	:) 5012!	·-		1 D	AY 🗀	t			1									ACT		USED	
RELINQUISHED BY:	(Signature)	Dru	DATE/TI		RECE	IVED	BY:	Sign	ature	;)			1	AY 🛄 HER 🤅												<u>~</u>				ļ
																		1			ELIV							_	<u></u>	
							_			·	3																			

arson & ssociates, Inc. Environmental Consultants

Data Reported to:

TLSO

大学の関

WWW.LSO.COM Questions? Call 800-800-8984

Airbill No. 48947429

	Print Name (Person)	Phone (Important)	process of the process of			4094	/429
LACO	J. Barr	10- 512 388X	2. From:	Print Name (Person)	F 4:	Phone (Importar 32 – 687 – 09	
Company Name	DHI		Company Name	ASSOCIATES			**********
Street Address (i	No P.O. Box or P.O. Box Zip Code De			MASOCIATES			•
Suite / Floor	300 Days	, ,	1	RIENTELD ST.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
12 Lone	a sarah	~ · · · · · · · · · · · · · · · · · · ·	Suite / Floor #ŽÜÜ		*****************	***************************************	······································
in City	MON Rock	TV 20 > 8/6/11/1	City MIDLAND	State	F771 F	Zip Nomes	
3. Servi	Visit www.lso.com for availe enjoy added features by crea	bility of services to your destination and sting your shipping label online.	4. Package	Welght:	TM TAGA	79701 FOR DRIV	ER.
⅓ 150 Priority o By 10:30 g.m., to	Overnight*	ISO Ground	Your Company's Billing i			USE ONL	Y
1 _ ,] LSO Saturday*	100	1126-01		1.10	XF/.
U 150 Early 0 By 8:30 a.m. š	Overnight* Eglect cities	Other	Ship Date: (mm/dd/yy)	12/11/	14 [Triver Number Check here if LSO Sup are used with LSO Gro	plies Und Service.
LSO Econom By 3 p.m. to	y Next Day* * *** most-cities ***	hark commitment times and availability t www.lso.com ₹	5. Payment		P	lck-up Location	111
☐ LSO 2nd Da	y* As	ssumed LSO Priority Overnight rvice unless otherwise noted.			D	ale: 1/2 1	(1/-1)
☐ Deliver Witho	out Delivery Signature (See Limits o	of Liability below)				me: ity/Code!	
	. Release Signature	3				出し) * }
x `W	/x H		$A \cup A P = A \cup A \cup A$	经加加利益制			ı

LIMIT OF LIABILITY: We are not responsible for claims in excess of \$100 for any reason unless you: 1) declare a greater while (not to exceed \$25,000); 2) pay an additional fee; 3) and document your actual loss in a timely package without obtaining a delivery signature, you release us of all liability for claims resulting from such service. NO DELIVERY SIGNATURE WILL BE OBSTAINED FOR LISE GRANLY OVERNIGHT SERVICE, PACKAGING PROVIDED BY LSD IS NOT INTENDED FOR USE ON LSO GROUND SERVICE, OVERSIZE RATES MAY APPLY, DELIVERY COMMITMENTS MAY VARY, ADDITIONAL FEES MAY APPLY.

Sample Receipt Checklist

Client Name Larson & Associates			Date Recei	ived: 12/12/2014
Work Order Number 1412164			Received by	/ JB
Checklist completed by Signature	12/12/20 Date Carrier name	14 <u>LoneStar</u>	Reviewed by	y 12/12/2014 Initials Date
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present
Custody seals intact on shippping container/co	oler?	Yes 🗌	No \square	Not Present ✓
Custody seals intact on sample bottles?	oler:	Yes 🗆	No 🗆	Not Present ✓
Chain of custody present?		Yes 🗹	No \square	1101111000m E
Chain of custody signed when relinquished and	d received?	Yes 🗹	No 🗔	
Chain of custody agrees with sample labels?		Yes 🗹	No 🗆	
Samples in proper container/bottle?		Yes 🗹	No 🗌	
Sample containers intact?		Yes 🗸	No 🗌	
Sufficient sample volume for indicated test?		Yes 🔽	No 🗀	
All samples received within holding time?		Yes 🗹	No 🗌	
Container/Temp Blank temperature in complian	nce?	Yes 🔽	No 🗌	2.7 °C
Water - VOA vials have zero headspace?		Yes	No 🗌	No VOA vials submitted
Water - pH<2 acceptable upon receipt?		Yes 🗌	No 🗹	NA LOT# 8086
		Adjusted?	yes	Checked by O
Water - ph>9 (S) or ph>12 (CN) acceptable up	on receipt?	Yes \square	No 🗆	NA ✓ LOT#
		Adjusted?		Checked by
Any No response must be detailed in the comm	nents section below.	- 		
Client contacted	Date contacted:	· · ·	Per	son contacted
Contacted by:	Regarding			
Comments: Acidhie (Lot 8739)	d Jan	iple i	i l	igis with KNO3
-,	• • •			
Corrective Action				

Page 1 of 1

CLIENT: Larson & Associates
Project: Legacy Chamberlain

Lab Order: 1412164

CASE NARRATIVE

Date: 29-Dec-14

Sample was analyzed using the methods outlined in the following references:

Method SW8021B - Volatile Organics by GC Analysis Method SW6020A - Metals Analysis Method E300 - Anions Analysis Method M2320 B - Alkalinity Analysis Method M2540C - TDS Analysis

LOG IN

The sample was received and log-in performed on 12/12/14. A total of 1 sample was received. Nitric acid was added to the Metals fraction upon arrival at DHL Analytical. The Time of Collection was Mountain Standard Time. The sample arrived in good condition and was properly packaged.

METALS ANALYSIS

For Metals analysis the sample was diluted prior to analysis due to the nature of the sample (concentration of target compounds).

For Metals analysis performed on 12/19/14 the matrix spike and matrix spike duplicate recoveries were above control limits for three analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 12/19/14 LCVL-141219 was slightly above control limits for Sodium. This is flagged accordingly. The associated CCV-141219 was within control limits for this analyte. No further corrective actions were taken.

VOLATILE ORGANICS BY GC ANALYSIS

For Volatile Organics by GC analysis performed on 12/16/14 the matrix spike duplicate recovery was slightly below control limits for Benzene and Toluene. In addition, the matrix spike and matrix spike duplicate had the RPD slightly above control limits for three compounds. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these compounds. No further corrective actions were taken.

CLIENT: Larson & Associates

Project: Legacy Chamberlain

Lab Order: 1412164

Work Order Sample Summary

Date: 29-Dec-14

Lab Smp ID Client Sample ID Tag Number Date Collected Date Recved

1412164-01 MW-1 12/11/14 01:00 PM 12/12/2014

Lab Order: 1412164

Client: Larson & Associates
Project: Legacy Chamberlain

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1412164-01A	MW-1	12/11/14 01:00 PM	Aqueous	SW5030C	Purge and Trap Water GC	12/16/14 11:16 AM	67183
1412164-01B	MW-1	12/11/14 01:00 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	12/16/14 05:23 PM	67199
1412164-01C	MW-1	12/11/14 01:00 PM	Aqueous	M2320 B	Alkalinity Preparation	12/16/14 08:02 AM	67149
	MW-1	12/11/14 01:00 PM	Aqueous	E300	Anion Preparation	12/12/14 09:25 AM	67097
	MW-1	12/11/14 01:00 PM	Aqueous	E300	Anion Preparation	12/12/14 09:25 AM	67097
	MW-1	12/11/14 01:00 PM	Aqueous	M2540C	TDS Preparation	12/16/14 01:30 PM	67191

Lab Order: 1412164

Client: Larson & Associates

Project: Legacy Chamberlain

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1412164-01A	MW-1	Aqueous	SW8021B	Volatile Organics by GC	67183	1	12/16/14 11:59 AM	GC8_141216A
1412164-01B	MW-1	Aqueous	SW6020A	Trace Metals: ICP-MS - Water	67199	50	12/19/14 12:08 PM	ICP-MS4_141219A
1412164-01C	MW-1	Aqueous	M2320 B	Alkalinity	67149	1	12/16/14 10:27 AM	TITRATOR_141216A
	MW-1	Aqueous	E300	Anions by IC method - Water	67097	10	12/12/14 02:51 PM	IC_141212A
	MW-1	Aqueous	E300	Anions by IC method - Water	67097	1	12/12/14 01:07 PM	IC_141212A
	MW-1	Aqueous	M2540C	Total Dissolved Solids	67191	1	12/17/14 08:45 AM	WC 141216B

CLIENT: Larson & Associates Client Sample ID: MW-1

Project: Legacy Chamberlain Lab ID: 1412164-01

Project No: 12-0126-01 **Collection Date:** 12/11/14 01:00 PM

Lab Order: 1412164 Matrix: AQUEOUS

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
VOLATILE ORGANICS BY GC		SW80	21B				Analyst: LM
Benzene	ND	0.000800	0.00200		mg/L	1	12/16/14 11:59 AM
Ethylbenzene	ND	0.00200	0.00600		mg/L	1	12/16/14 11:59 AM
Toluene	ND	0.00200	0.00600		mg/L	1	12/16/14 11:59 AM
Xylenes, Total	ND	0.00300	0.00900		mg/L	1	12/16/14 11:59 AM
Surr: a,a,a-Trifluorotoluene	92.9	0	87-113		%REC	1	12/16/14 11:59 AM
TRACE METALS: ICP-MS - WATER		SW60	20A				Analyst: RO
Calcium	47.2	5.00	15.0		mg/L	50	12/19/14 12:08 PM
Magnesium	10.4	5.00	15.0	J	mg/L	50	12/19/14 12:08 PM
Potassium	ND	5.00	15.0		mg/L	50	12/19/14 12:08 PM
Sodium	206	5.00	15.0		mg/L	50	12/19/14 12:08 PM
ANIONS BY IC METHOD - WATER		E30	00				Analyst: AV
Chloride	132	3.00	10.0		mg/L	10	12/12/14 02:51 PM
Nitrate-N	1.82	0.100	0.500		mg/L	1	12/12/14 01:07 PM
Sulfate	87.0	1.00	3.00		mg/L	1	12/12/14 01:07 PM
ALKALINITY		M232	20 B				Analyst: LM
Alkalinity, Bicarbonate (As CaCO3)	443	13.3	26.7		mg/L @ pH 4.53	1	12/16/14 10:27 AM
Alkalinity, Carbonate (As CaCO3)	ND	13.3	26.7		mg/L @ pH 4.53	1	12/16/14 10:27 AM
Alkalinity, Hydroxide (As CaCO3)	ND	13.3	26.7		mg/L @ pH 4.53	1	12/16/14 10:27 AM
Alkalinity, Total (As CaCO3)	443	26.7	26.7		mg/L @ pH 4.53	1	12/16/14 10:27 AM
TOTAL DISSOLVED SOLIDS		M254	40C				Analyst: PT
Total Dissolved Solids (Residue, Filterable)	809	10.0	10.0		mg/L	1	12/17/14 08:45 AM

Qualifiers:

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern

MDL Method Detection Limit

- RL Reporting Limit
- N Parameter not NELAC certified

B Analyte detected in the associated Method Blank

Date: 29-Dec-14

- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
 - S Spike Recovery outside control limits

Date: 29-Dec-14

CLIENT: Larson & Associates

Work Order: 1412164

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: GC8_141216A

rroject: Legacy Ci	namberian	ı				Kullii	υ. '	GC0_1412	IUA		
The QC data in batch 67183 app	olies to the f	ollowing sa	mples: 1412	164-01A							
Sample ID LCS-67183	Batch ID:	67183		TestNo	SW	8021B		Units:	mg/L		
SampType: LCS	Run ID:	GC8_14	1216A	Analysi	is Date: 12/1	16/2014 11: ⁻	16:20 A	Prep Date:	12/16	/2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit 9	6RPD F	RPDLimi	t Qua
Benzene		0.0460	0.00200	0.0464	0	99.2	81	125			
Toluene		0.0468	0.00600	0.0464	0	101	84	123			
Ethylbenzene		0.0472	0.00600	0.0464	0	102	83	119			
Xylenes, Total		0.141	0.00900	0.139	0	101	81	117			
Surr: a,a,a-Trifluorotoluene		187		200.0		93.6	87	113			
Sample ID MB-67183	Batch ID:	67183		TestNo	: SW	8021B		Units:	mg/L		
SampType: MBLK	Run ID:	GC8_14	1216A	Analysi	is Date: 12/1	16/2014 11:	37:47 A	Prep Date:	12/16	/2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit 9	6RPD F	RPDLimi	t Qua
Benzene		ND	0.00200								
Toluene		ND	0.00600								
Ethylbenzene		ND	0.00600								
Xylenes, Total		ND	0.00900								
Surr: a,a,a-Trifluorotoluene		188		200.0		94.0	87	113			
Sample ID 1412165-12AMS	Batch ID:	67183		TestNo	: SW	8021B		Units:	mg/L		
SampType: MS	Run ID:	GC8_14	1216A	Analysi	is Date: 12/1	16/2014 7:28	8:30 PM	Prep Date:	12/16	/2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit 9	%RPD F	RPDLimi	t Qua
Benzene		0.0470	0.00200	0.0464	0	101	81	125			
Toluene		0.0470	0.00600	0.0464	0	101	84	123			
Ethylbenzene		0.0472	0.00600	0.0464	0	102	83	119			
Xylenes, Total		0.142	0.00900	0.139	0	102	81	117			
Surr: a,a,a-Trifluorotoluene		187		200.0		93.7	87	113			
Sample ID 1412165-12AMSD	Batch ID:	67183		TestNo	: SW	8021B		Units:	mg/L		
SampType: MSD	Run ID:	GC8_14	1216A	Analysi	s Date: 12/1	17/2014 8:44	4:09 AM	Prep Date:	12/16	/2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit 9	6RPD F	RPDLimi	t Qua
Benzene		0.0371	0.00200	0.0464	0	80.0	81	125	23.6	20	SR
		0.0381	0.00600	0.0464	0	82.2	84	123	20.9	20	SF
Toluene		0.0001									
		0.0401	0.00600	0.0464	0	86.4	83	119	16.2	20	
Toluene Ethylbenzene Xylenes, Total				0.0464 0.139	0 0	86.4 81.0	83 81	119 117	16.2 22.9	20 20	R

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

11

Page 1 of 10

Work Order: 1412164

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: GC8_141216A

Sample ID ICV-141216	Batch ID:	R77006		TestNo:	sw	8021B		Units:	mg/L
SampType: ICV	Run ID:	GC8_14	1216A	Analysis	s Date: 12/	16/2014 10:	54:46 A	Prep Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Benzene		0.0884	0.00200	0.0928	0	95.2	80	120	
Toluene		0.0896	0.00600	0.0928	0	96.6	80	120	
Ethylbenzene		0.0900	0.00600	0.0928	0	97.0	80	120	
Xylenes, Total		0.268	0.00900	0.278	0	96.5	80	120	
Surr: a,a,a-Trifluorotoluene		188		200.0		94.1	87	113	
Sample ID CCV1-141216	Batch ID:	R77006		TestNo:	sw	8021B		Units:	mg/L
SampType: CCV	Run ID:	GC8_14	1216A	Analysis	s Date: 12/ ′	16/2014 6:03	3:09 PM	Prep Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Benzene		0.0455	0.00200	0.0464	0	98.0	80	120	
Toluene		0.0453	0.00600	0.0464	0	97.7	80	120	
Ethylbenzene		0.0456	0.00600	0.0464	0	98.3	80	120	
Xylenes, Total		0.136	0.00900	0.139	0	98.0	80	120	
Surr: a,a,a-Trifluorotoluene		186		200.0		92.8	87	113	
Sample ID CCV2-141216	Batch ID:	R77006		TestNo:	sw	8021B		Units:	mg/L
SampType: CCV	Run ID:	GC8_14	1216A	Analysis	s Date: 12/	17/2014 9:26	6:16 AM	Prep Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Benzene		0.0454	0.00200	0.0464	0	97.9	80	120	
Toluene		0.0457	0.00600	0.0464	0	98.4	80	120	
Ethylbenzene		0.0461	0.00600	0.0464	0	99.3	80	120	
Xylenes, Total		0.137	0.00900	0.139	0	98.5	80	120	
Surr: a,a,a-Trifluorotoluene		184		200.0		92.2	87	113	

Qualifiers: B Analyte detected in the associated Method Blank

 $J \quad \ \ Analyte \ detected \ between \ MDL \ and \ RL$

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 2 of 10

RL Reporting Limit

Analyte detected between SDL and RL

Work Order: 1412164

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: ICP-MS4_141219A

Project:	Legacy Cl	namberlain					RunII	v: I	CP-MS4_	141219	УA
The QC data	in batch 67199 app	lies to the fo	ollowing sar	mples: 1412	164-01B						
Sample ID I	MB-67199	Batch ID:	67199		TestN	o: SW60	20A		Units:	mg/L	
SampType: I	MBLK	Run ID:	ICP-MS4	_141219A	Analys	sis Date: 12/19/	/2014 12:0	00:00 P	Prep Date:	12/16	/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qu
Calcium			ND	0.300							
Magnesium			ND	0.300							
Potassium			ND	0.300							
Sodium			ND	0.300							
Sample ID I	LCS-67199	Batch ID:	67199		TestN	o: SW60	20A		Units:	mg/L	
SampType: I	LCS	Run ID:	ICP-MS4	_141219A	Analys	sis Date: 12/19/	2014 12:0	02:00 P	Prep Date:	12/16	/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qu
Calcium			4.93	0.300	5.00	0	98.6	80	120		
Magnesium			5.09	0.300	5.00	0	102	80	120		
Potassium			5.00	0.300	5.00	0	99.9	80	120		
Sodium			5.11	0.300	5.00	0	102	80	120		
Sample ID I	LCSD-67199	Batch ID:	67199		TestN	o: SW60	20A		Units:	mg/L	
SampType: I	LCSD	Run ID:	ICP-MS4	_141219A	Analys	sis Date: 12/19/	2014 12:0	04:00 P	Prep Date:	12/16	/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qu
Calcium			4.92	0.300	5.00	0	98.3	80	120	0.282	15
Magnesium			5.07	0.300	5.00	0	101	80	120	0.328	15
Potassium			5.02	0.300	5.00	0	100	80	120	0.548	15
Sodium			5.07	0.300	5.00	0	101	80	120	0.768	15
Sample ID '	1412164-01B SD	Batch ID:	67199		TestN	o: SW60	20A		Units:	mg/L	
SampType: \$	SD	Run ID:	ICP-MS4	_141219A	Analys	sis Date: 12/19/	2014 12 :	10:00 P	Prep Date:	12/16	/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qu
Calcium			49.0	75.0	0	47.2				3.56	10
Magnesium			0	75.0	0	10.4				0	10
Potassium			0	75.0	0	0				0	10
Sodium			215	75.0	0	206				4.30	10
Sample ID	1412164-01B PDS	Batch ID:	67199		TestN	o: SW60	20A		Units:	mg/L	
SampType: I	PDS	Run ID:	ICP-MS4	_141219A	Analys	sis Date: 12/19/	2014 12:	30:00 P	Prep Date:	12/16	/2014
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD F	RPDLimit Qua
Calcium			323	15.0	250	47.2	110	80	120		
Magnesium			301	15.0	250	10.4	116	80	120		
Potassium			282	15.0	250	0	113	80	120		
Sodium			503	15.0	250	206	119	80	120		
Qualifiers:	B Analyte dete	ected in the a	ssociated Mo	ethod Blank	DF	Dilution Factor					
	•	ected between			MDL	Method Detection	on Limit			P	age 3 of 10
	ND Not Detecte	d at the Meth	od Detection	n Limit	R	RPD outside acc	cepted con	trol limits		_	5
	DI Damand' I	114			C	C-:1 D	4-: 3-				

13

S

Spike Recovery outside control limits

Parameter not NELAC certified

Work Order: 1412164

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: ICP-MS4_141219A

Sample ID 1412164-01B MS	Batch ID:	67199		TestNo	: SW	6020A		Units:	mg/L	
SampType: MS	Run ID:	ICP-MS4	_141219A	Analysi	is Date: 12/ *	19/2014 12:3	39:00 P	Prep Date:	12/16/2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit ⁴	%RPD RPDLimi	t Qual
Calcium		53.7	15.0	5.00	47.2	130	80	120		S
Magnesium		16.4	15.0	5.00	10.4	120	80	120		
Potassium		7.47	15.0	5.00	0	149	80	120		S
Sodium		224	15.0	5.00	206	360	80	120		S
Sample ID 1412164-01B MSD	Batch ID:	67199		TestNo	: SW	6020A		Units:	mg/L	
SampType: MCD	Pup ID:	ICD MC4	1412104	Analya	ic Data: 12/	10/2014 12.	44.00 B	Prop Data:	12/16/2014	

SampType: MSD	Run ID:	ICP-MS	4_141219A	Analys	is Date: 12/1	9/2014 12:4	1:00 P	Prep Date	: 12/1	6/2014	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD	RPDLimi	t Qual
Calcium		54.3	15.0	5.00	47.2	141	80	120	1.05	15	S
Magnesium		16.3	15.0	5.00	10.4	119	80	120	0.367	15	
Potassium		7.62	15.0	5.00	0	152	80	120	2.03	15	S
Sodium		223	15.0	5.00	206	337	80	120	0.511	15	S

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 4 of 10

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Work Order:

ANALYTICAL QC SUMMARY REPORT 1412164

Batch ID:	R77080		TestNo:	SW	6020A		Units:	mg/L
Run ID:	ICP-MS4	_141219A	Analysis	s Date: 12/1	19/2014 11:	50:00 A	Prep Date	:
-	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
	2.47	0.300	2.50	0	98.9	90	110	
	2.49	0.300	2.50	0	99.6	90	110	
	2.43	0.300	2.50	0	97.1	90	110	
	2.48	0.300	2.50	0	99.2	90	110	
Batch ID:	R77080		TestNo:	sw	6020A		Units:	mg/L
Run ID:	ICP-MS4	_141219A	Analysis	s Date: 12/1	19/2014 11:	54:00 A	Prep Date	:
-	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
(0.0951	0.300	0.100	0	95.1	70	130	
	0.102	0.300	0.100	0	102	70	130	
	0.113	0.300	0.100	0	113	70	130	
	0.132	0.300	0.100	0	132	70	130	S
Batch ID:	R77080		TestNo:	sw	6020A		Units:	mg/L
Run ID:	ICP-MS4	_141219A	Analysis	s Date: 12/1	9/2014 12:4	43:00 P	Prep Date	:
-	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
	4.80	0.300	5.00	0	96.0	90	110	
	5.13	0.300	5.00	0	103	90	110	
	4.95	0.300	5.00	0	99.0	90	110	
	5.09	0.300	5.00	0	102	90	110	
Batch ID:	R77080		TestNo:	sw	6020A		Units:	mg/L
Run ID:	ICP-MS4	_141219A	Analysis	s Date: 12/1	19/2014 12:4	47:00 P	Prep Date	:
[Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
(0.0998	0.300	0.100	0	99.8	70	130	
	0.103	0.300	0.100	0	103	70	130	
	0.100	0.300	0.100	0	100	70	130	
	0.0984	0.300	0.100	0	98.4	70	130	
	Batch ID: Run ID: Batch ID: Run ID: Run ID:	Result 2.47 2.49 2.43 2.48 Batch ID: R77080 Run ID: ICP-MS4 Result 0.0951 0.102 0.113 0.132 Batch ID: R77080 Run ID: ICP-MS4 Result 4.80 5.13 4.95 5.09 Batch ID: R77080	Result RL 2.47 0.300 2.49 0.300 2.43 0.300 2.48 0.300 Batch ID: R77080 Run ID: ICP-MS4_141219A Result RL 0.0951 0.300 0.102 0.300 0.102 0.300 0.113 0.300 0.132 0.300 Run ID: ICP-MS4_141219A Result RL 4.80 0.300 5.13 0.300 4.95 0.300 5.13 0.300 4.95 0.300 5.09 0.300 Batch ID: R77080 Run ID: ICP-MS4_141219A Result RL 4.80 0.300 5.13 0.300 4.95 0.300 5.09 0.300 Batch ID: R77080 Run ID: ICP-MS4_141219A Result RL 0.0998 0.300 0.103 0.300	Result RL SPK value 2.47 0.300 2.50 2.49 0.300 2.50 2.43 0.300 2.50 2.48 0.300 2.50 2.48 0.300 2.50 2.48 0.300 2.50 2.48 0.300 2.50 2.48 0.300 2.50	Result RL SPK value Ref Val	Result RL SPK value Ref Val %REC	Result RL SPK value Ref Val %REC LowLim	Result RL SPK value Ref Val %REC LowLimit HighLimit

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAC certified

Page 5 of 10

Work Order: 1412164

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: IC_141212A

Project: Legacy Cl	hamberlaın					KunII): I	C_141212	A	
The QC data in batch 67097 app	olies to the fo	ollowing sa	mples: 1412	2164-01C						
Sample ID MB-67097	Batch ID:	67097		TestNo	: E30 0	0		Units:	mg/L	
SampType: MBLK	Run ID:	IC_1412	12A	Analys	is Date: 12/1	2/2014 9:52	2:15 AM	Prep Date:	12/12/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		ND	1.00							
Nitrate-N		ND	0.500							
Sulfate		ND	3.00							
Sample ID LCS-67097	Batch ID:	67097		TestNo	: E300	0		Units:	mg/L	
SampType: LCS	Run ID:	IC_1412	12A	Analys	is Date: 12/1	2/2014 10:2	20:36 A	Prep Date:	12/12/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		10.4	1.00	10.00	0	104	90	110		
Nitrate-N		5.08	0.500	5.000	0	102	90	110		
Sulfate		30.8	3.00	30.00	0	103	90	110		
Sample ID LCSD-67097	Batch ID:	67097		TestNo	: E300	0		Units:	mg/L	
SampType: LCSD	Run ID:	IC_1412	12A	Analys	is Date: 12/1	2/2014 10:3	35:12 A	Prep Date:	12/12/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		10.5	1.00	10.00	0	105	90	110	0.144	20
Nitrate-N		5.08	0.500	5.000	0	102	90	110	0.065	20
Sulfate		30.7	3.00	30.00	0	102	90	110	0.392	20
Sample ID 1412147-03BMS	Batch ID:	67097		TestNo	: E300	0		Units:	mg/L	
SampType: MS	Run ID:	IC_1412	12A	Analys	is Date: 12/1	2/2014 3:11	1:25 PM	Prep Date:	12/12/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		228	10.0	200.0	13.77	107	90	110		
Nitrate-N		45.0	5.00	45.16	0	99.7	90	110		
Sulfate		266	30.0	200.0	55.12	105	90	110		
Sample ID 1412147-03BMSD	Batch ID:	67097		TestNo	: E30 0	0		Units:	mg/L	
SampType: MSD	Run ID:	IC_1412	12A	Analys	is Date: 12/1	2/2014 3:29	9:47 PM	Prep Date:	12/12/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Chloride		228	10.0	200.0	13.77	107	90	110	0.353	20
Nitrate-N		45.5	5.00	45.16	0	101	90	110	1.08	20
										20

Qualifiers: B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 6 of 10

Work Order: 1412164 ANALYTICAL QC SUMMARY REPORT

Project:	Legacy	y Chamberlain					RunII): I	C_14121	2A	
Sample ID	ICV-141212	Batch ID:	R7693	5	TestNo:	E300			Units:	mg/L	
SampType:	ICV	Run ID:	IC_141	212A	Analysis	Date: 12/12/	2014 9:25	5:29 AM	Prep Date	e:	
Analyte		ı	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qu	ual
Chloride			26.6	1.00	25.00	0	106	90	110		
Nitrate-N			13.5	0.500	12.50	0	108	90	110		
Sulfate			78.3	3.00	75.00	0	104	90	110		
Sample ID	CCV1-141212	Batch ID:	R7693	5	TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC_141	212A	Analysis	Date: 12/12/	2014 1:48	3:12 PM	Prep Date	e:	
Analyte		ſ	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qu	ual
Chloride			10.5	1.00	10.00	0	105	90	110		
Nitrate-N			5.03	0.500	5.000	0	101	90	110		
Sulfate			30.8	3.00	30.00	0	103	90	110		
Sample ID	CCV2-141212	Batch ID:	R7693	5	TestNo:	E300			Units:	mg/L	
SampType:	CCV	Run ID:	IC_141	212A	Analysis	Date: 12/12/	2014 4:37	7:19 PM	Prep Date	e:	
Analyte		ı	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qu	ual
Chloride			10.3	1.00	10.00	0	103	90	110		
Nitrate-N			5.06	0.500	5.000	0	101	90	110		
Sulfate			30.7	3.00	30.00	0	102	90	110		

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

Dilution Factor

MDL Method Detection Limit

Page 7 of 10

R RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAC certified

CLIENT: Larson & Associates ANALYTICAL QC SUMMARY REPORT

Work Order: 1412164

RunID: TITRATOR_141216A **Project:** Legacy Chamberlain

1 Toject. Legacy Ci	iaiiiberiaiii					Kullii	<i>,</i> .	IIIMAIO	W_141	210A
The QC data in batch 67149 app	lies to the fo	ollowing sam	ples: 14121	64-01C					-	
Sample ID MB-67149	Batch ID:	67149		TestNo:	M23	320 B		Units:	mg/L	@ pH 4.5
SampType: MBLK	Run ID:	TITRATO	R_141216A	Analysis	Date: 12/ 1	16/2014 8:50	0:00 AM	Prep Date:	12/16/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	⊸RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCC	93)	ND	20.0							
Alkalinity, Carbonate (As CaCO3)	ND	20.0							
Alkalinity, Hydroxide (As CaCO3))	ND	20.0							
Alkalinity, Total (As CaCO3)		ND	20.0							
Sample ID LCS-67149	Batch ID:	67149		TestNo:	M23	320 B		Units:	mg/L	@ pH 4.51
SampType: LCS	Run ID:	TITRATO	R_141216A	Analysis	Date: 12/ 1	16/2014 8:56	6:00 AM	Prep Date:	12/16/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qua
Alkalinity, Total (As CaCO3)		52.9	20.0	50.00	0	106	74	129		
Sample ID 1412165-23D DUP	Batch ID:	67149		TestNo:	M23	320 B		Units:	mg/L	@ pH 4.51
SampType: DUP	Run ID:	TITRATO	R_141216A	Analysis	S Date: 12/ 1	16/2014 10:5	52:00 A	Prep Date:	12/16/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCC	93)	0	20.0	0	0				0	20
Alkalinity, Carbonate (As CaCO3)	0	20.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3))	0	20.0	0	0				0	20
Alkalinity, Total (As CaCO3)		0	20.0	0	0				0	20
Sample ID 1412181-01B DUP	Batch ID:	67149		TestNo:	M23	320 B		Units:	mg/L	@ pH 4.53
SampType: DUP	Run ID:	TITRATO	R_141216A	Analysis	Date: 12/ 1	16/2014 11:2	20:00 A	Prep Date:	12/16/	2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	⊸RPD R	PDLimit Qua
Alkalinity, Bicarbonate (As CaCC	93)	321	20.0	0	325.7				1.55	20
Alkalinity, Carbonate (As CaCO3)	0	20.0	0	0				0	20
Alkalinity, Hydroxide (As CaCO3))	0	20.0	0	0				0	20
Alkalinity, Total (As CaCO3)		321	20.0	0	325.7				1.55	20

Qualifiers: Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

Spike Recovery outside control limits Parameter not NELAC certified

Page 8 of 10

Work Order: 1412164

ANALYTICAL QC SUMMARY REPORT

Project: Legacy Chamberlain RunID: TITRATOR_141216A

Sample ID ICV-141216	Batch ID:	R76979		TestNo	: M23	20 B		Units:	mg/L @ pH 4.51
SampType: ICV	Run ID:	TITRATO	DR_141216A	Analysi	s Date: 12/1	6/2014 8:4	8:00 AM	Prep Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qua
Alkalinity, Bicarbonate (As CaC	O3)	4.32	20.0	0					
Alkalinity, Carbonate (As CaCO	3)	96.0	20.0	0					
Alkalinity, Hydroxide (As CaCO	3)	0	20.0	0					
Alkalinity, Total (As CaCO3)		100	20.0	100.0	0	100	98	102	
Sample ID CCV1-141216	Batch ID:	R76979		TestNo	: M23	20 B		Units:	mg/L @ pH 4.53
SampType: CCV	Run ID:	TITRATO	DR_141216A	Analysi	s Date: 12/1	6/2014 10:	50:00 A	Prep Date:	12/16/2014
A 1.		D 1/	51	001/	5 ()/ 1	0/ DE0			0/DDD DDD1: :: 0

									g. = O pcc
SampType: CCV	Run ID:	TITRAT	OR_141216A	Analys	is Date: 12/1	6/2014 10:5	0:00 A	Prep Date	12/16/2014
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	21.5	20.0	0					
Alkalinity, Carbonate (As CaCO3)	79.4	20.0	0					
Alkalinity, Hydroxide (As CaCO3)		0	20.0	0					
Alkalinity, Total (As CaCO3)		101	20.0	100.0	0	101	90	110	

Sample ID CCV2-141216	Batch ID:	R76979		TestNo:		M2320 B		Units:	mg/L @ pH 4.51
SampType: CCV	Run ID:	TITRATOR	_141216A	Analysis	Date:	12/16/2014 11:3	7:00 A	Prep Date:	12/16/2014
Analyte		Result	RL	SPK value	Ref \	/al %REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Alkalinity, Bicarbonate (As CaCO	3)	5.20	20.0	0					
Alkalinity, Carbonate (As CaCO3)		95.2	20.0	0					
Alkalinity, Hydroxide (As CaCO3)		0	20.0	0					
Alkalinity, Total (As CaCO3)		100	20.0	100.0	0	100	90	110	

Qualifiers: B Analyte

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

on Limit Page 9 of 10 cepted control limits

CLIENT: Larson & Associates ANALYTICAL QC SUMMARY REPORT

Work Order: 1412164

WC_141216B **RunID: Project:** Legacy Chamberlain

The QC dat	a in batch 67191 app	lies to the fo	ollowing sam	ples: 1412	2164-01C						
Sample ID	MB-67191	Batch ID:	67191		TestNo:	М	2540C		Units:	mg/L	
SampType:	MBLK	Run ID:	WC_1412	16B	Analysis	Date: 12	2/17/2014 8:45:0	00 AM	Prep Date:	12/16/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC I	_owLimit	t HighLimit %	RPD RP	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	ND	10.0							
Sample ID	LCS-67191	Batch ID:	67191		TestNo:	М	2540C		Units:	mg/L	
SampType:	LCS	Run ID:	WC_1412	16B	Analysis	Date: 12	2/17/2014 8:45:0	00 AM	Prep Date:	12/16/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC I	_owLimit	t HighLimit %	RPD RP	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	743	10.0	745.6	0	99.7	90	113		
Sample ID	1412176-01C-DUP	Batch ID:	67191		TestNo:	М	2540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_1412	16B	Analysis	Date: 12	2/17/2014 8:45:0	MA 00	Prep Date:	12/16/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC I	_owLimit	t HighLimit %	RPD RP	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	1850	50.0	0	1855				0	5
Sample ID	1412176-02C-DUP	Batch ID:	67191		TestNo:	М	2540C		Units:	mg/L	
SampType:	DUP	Run ID:	WC_1412	16B	Analysis	Date: 12	2/17/2014 8:45:0	MA 00	Prep Date:	12/16/2	014
Analyte			Result	RL	SPK value	Ref Val	%REC I	_owLimit	t HighLimit %	RPD RP	DLimit Qual
Total Dissol	ved Solids (Residue,	Filtera	1010	50.0	0	1015				0.494	5

Qualifiers: В Analyte detected in the associated Method Blank

> J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

Reporting Limit

Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

Page 10 of 10

R RPD outside accepted control limits S Spike Recovery outside control limits

Parameter not NELAC certified

20