H2S - 063

H2S Contingency Plan

2016

Chavez, Carl J, EMNRD

From: Chavez, Carl J, EMNRD

Sent: Friday, February 24, 2017 7:27 AM

To: 'jwg@geolex.com'

Cc: 'Alberto A. Gutierrez'; Jared Smith {Geolex}; Griswold, Jim, EMNRD; Brown, Maxey G, EMNRD

Subject: RE: DCP Midstream, LP (H2S-063) "Zia Gas Plant H2S Contingency Plan-Revised" (July 2016) Sec. 19

T19S R32E Lea County, New Mexico

Julie, et al.:

Thank you for the update.

Mr. Carl J. Chavez, CHMM (#13099) New Mexico Oil Conservation Division Energy Minerals and Natural Resources Department 1220 South St Francis Drive Santa Fe, New Mexico 87505 Ph. (505) 476-3490

E-mail: CarlJ.Chavez@state.nm.us

"Why not prevent pollution, minimize waste to reduce operating costs, reuse or recycle, and move forward with the rest of the Nation?" (To see how, go to: http://www.emnrd.state.nm.us/OCD and see "Publications")

From: Julie W. Gutierrez [mailto:jwg@geolex.com] **Sent:** Thursday, February 23, 2017 10:07 PM

To: Chavez, Carl J, EMNRD < Carl J. Chavez@state.nm.us>

Cc: 'Alberto A. Gutierrez' <aag@geolex.com>; Jared Smith {Geolex} <jsmith@geolex.com>

Subject: DCP Midstream, LP (H2S-063) "Zia Gas Plant H2S Contingency Plan-Revised" (July 2016) Sec. 19 T19S R32E Lea

County, New Mexico

Hi Carl,

I am writing to update you concerning the status of the new AGI well (Zia AGI D #2) at the DCP Zia Gas Plant. The approved H2S was prepared in anticipation of the installation of a second AGI well at the plant. That second AGI well has been drilled, completed, and was brought into service as of February 2, 2017. The well is functioning as anticipated with no problems.

The final surface location of the well is: Section 19 T19S-R32E, 1,893' FSL and 950' FWL. The approved H2S Plan identified the proposed surface location of the

well as: Section 19 T19S-R32E, 1900' FSL, and 950' FWL (within 17' of the projected

location).

The well was drilled to a TD of 14,750', and acid gas is being injected into the Siluro-Devonian formation, as the approved H2S plan anticipated.

All other parameters of both wells remain the same as described in the Revised H2S plan approved on July 22, 2016, including injection volume, H2S concentration and, thus, ROE calculations.

Please let me know if you have any questions.

Julie

Julie W. Gutiérrez Geolex, Incorporated® 500 Marquette Avenue, NW Suite 1350 Albuquerque, NM 87102 505-842-8000 505-842-7380 Fax 505-235-7158 (Cell)

PRIVILEGED & CONFIDENTIAL

This message and attachment(s) contain confidential information belonging to the sender which is intended for the sole use of the individual(s) or entity named above. If you receive this message in error, you are hereby notified that any disclosure, copying, distribution, resending, forwarding or taking of any action in reliance on the contents of this email and/or any attachment(s) is strictly prohibited. If you have received this message in error, please notify the sender via return email and permanently delete this message and any attachment(s) from any computer(s).

No virus found in this message. Checked by AVG - www.avg.com

Version: 2016.0.7998 / Virus Database: 4756/14006 - Release Date: 02/23/17

No virus found in this message. Checked by AVG - www.avg.com

Version: 2016.0.7998 / Virus Database: 4756/14011 - Release Date: 02/24/17

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez

Governor

Vacant Cabinet Secretary

Tony Delfin Deputy Cabinet Secretary David R. Catanach, Division Director Oil Conservation Division

JULY 22, 2016

Julie W. Gutiérrez Geolex, Inc® 500 Marquette Avenue, NW Suite 1350 Albuquerque, NM 87102

Re: DCP Midstream, L.P. (H2S-063): "Zia II Gas Plant H2S Contingency Plan- Revised" (July

2016) Sec. 19

T19S R32E Lea County, New Mexico

Dear Mrs. Gutiérrez,

The Oil Conservation Division (OCD) is in receipt of DCP Midstream Services, L.P.'s "Zia Gas Plant and Acid Gas Injection (AGI) Facility H2S Contingency Plan" (plan) dated July 2016.

OCD has completed its review of the plan and finds that it appears to meet the intent of the OCD Hydrogen Sulfide Gas Regulations (19.15.11 NMAC). Therefore, OCD hereby accepts the plan for record.

Please be advised that OCD approval of this plan does not relieve DCP Midstream, L.P. of responsibility should its operations fail to adequately detect, investigate, and/or undertake corrective actions to prevent or stop a hydrogen sulfide release(s) that may pose a threat to groundwater, surface water, human health, public safety or the environment. In addition, OCD approval does not relieve DCP Midstream, L.P. of responsibility for compliance with any other federal, state, or local laws and/or regulations.

If you have any questions, please contact Carl Chavez of my staff at (505) 476-3490, the mail at the address below, or email at <u>CarlJ.Chavez@state.nm.us</u>. Thank you.

Sincerely,

Jim Griswold

Environmental Bureau Chief

JG/cjc

cc: OCD Hobbs District Office

Chavez, Carl J, EMNRD

From: Julie W. Gutierrez <jwg@geolex.com>

Sent: Friday, July 15, 2016 4:40 PM **To:** Chavez, Carl J, EMNRD

Subject: Revision of Zia II Gas Plant H2S Contingency Plan

Attachments: Zia II Gas Plant H2S CP Revisions.pdf; Zia H2S Contingency Plan Revised July 2016.pdf;

OCD Approval Letter Zia II Gas Plant 6-26-2015 (2).pdf

Dear Carl,

Per our telephone conversation, I am submitting a revision of the H2S Contingency Plan for the Zia II Gas Plant which was approved by OCD on June 26, 2015. The reason for the revision is that the depth of the injection zone and the specifications for AGI #2 have changed. Nothing else relative to the H2S Contingency Plan has changed—surface location of wells and processing facilities, volume of gas processed, concentration of H2S, ROE, etc.—remain the same. I am attaching several files:

1) A PDF that shows only the revisions to the plan. The revisions to the text have been done in red-line format so that you can readily identify any changes. The changed pages are as follows:

Cover Page: Date changed and revision noted

Page iii: Table of Contents (Figure 5b has been added)

Page 13: Red-line revisions to the text are shown to reflect the redesign of AGI #2. These are the only revisions to the text of the plan.

Figure 5a: This is an updated figure and replaces what was Figure 5 in the old plan—it shows the design schematic of AGI #1

Figure 5b: This is a new figure that shows the revised design schematic of AGI #2 Figure 6: This is a revised figure to show AGI #1 and the revised AGI#2 together

- 2) A PDF of the entire revised plan with all changes above incorporated.
- 3) A copy of the OCD approval of the initial plan for this facility, dated June 25, 2015.

A C-108 has been submitted relative to the changes in the design of AGI #2, and a hearing is scheduled for August 25th. Hopefully, theses revisions to the H2S Plan can be approved prior to that hearing.

As always, let me know if you have questions.

Best regards,

Julie

Julie W. Gutiérrez **Geolex, Inc**[®] 500 Marquette Avenue, NW Suite 1350 Albuquerque, NM 87102 505-842-8000 Ext. 101 505-842-7380 Fax

PRIVILEGED & CONFIDENTIAL

This message and attachment(s) contain confidential information belonging to the sender which is intended for the sole use of the individual(s) or entity named above. If you receive this message in error, you are hereby notified that any disclosure, copying, distribution, resending, forwarding or taking of any action in reliance on the contents of this email and/or any attachment(s) is strictly prohibited. If you have received this message in error, please notify the sender via return email and permanently delete this message and any attachment(s) from any computer(s).

H₂S Contingency Plan

Zia II Gas Plant

DCP Midstream, LP

REVISED

July 2016

TABLE OF CONTENTS

I.	INTRODUCTION [NMAC 19.15.11 ET. SEQ.][API RP-55 7.1 RP-49, RP-68]	1
II.	SCOPE [API RP-55 7.2]	1
III.	PLAN AVAILABILITY [API RP-55 7.3]	2
IV.	EMERGENCY PROCEDURES [NMAC 19.15.11.9.B(2)(A)] [API RP-55 7.4 A]	
[29	CFR 1910.1200]	2
	DEGRONGING THE AND DIVING OF BEDGONNEY DIVING AN EMEDGENCY	2
	RESPONSIBILITIES AND DUTIES OF PERSONNEL DURING AN EMERGENCY	
	MMEDIATE ACTION PLANFELEPHONE NUMBERS, COMMUNICATION METHODS AND MEDIA SITE	
	LOCATION OF NEARBY RESIDENCES, ROADS AND MEDICAL FACILITIES	
	EVACUATION ROUTES, EMERGENCY ASSEMBLY AREAS AND ROAD BLOCK	4
	LOCATIONS	5
	MONITORING EQUIPMENT, ALARM SYSTEMS, SAFETY EQUIPMENT AND SUPPLIES	
	ALARMS, VISIBLE BEACONS AND WIND INDICATORS	
	SIGNS AND MARKERS [NMSA 19.15.11.10]	
	EMERGENCY EQUIPMENT	
(GAS DETECTION EQUIPMENT	7
	RESPIRATORS	
	PROCESS PURGE SYSTEM	
	FIRE FIGHTING EQUIPMENT	
v.	CHARACTERISTICS OF HYDROGEN SULFIDE (H ₂ S), SULFUR DIOXIDE (SO ₂)	
	RBON DIOXIDE (CO ₂) [NMAC 19.15.11.9.B(2)(B)] [API RP-55 7.4 B.]	9
011		
ŀ	HYDROGEN SULFIDE (H ₂ S)	9
	SULFUR DIOXIDE (SO ₂)	
	CARBON DIOXIDE (CO ₂)	
VI.	RADII OF EXPOSURE [NMAC 19.15.11.7. K]	12
	. FACILITY DESCRIPTION, MAPS AND DRAWINGS [NMAC 19.15.11.9.B (2)(C)]	
[AF	PI RP-55 7.4 C.]	13
т	DESCRIPTION OF DUANT OPENATIONS AND ZIA #1 AND #2 ACLIVELLS	12
	DESCRIPTION OF PLANT OPERATIONS AND ZIA #1 AND #2 AGI WELLS	
N	MAPS AND FIGURES	14
VII	I. TRAINING AND DRILLS [NMAC 19.15.11.9.B(2)(D)] [API RP-55 7.4 D.]	14
	FRAINING OF ESSENTIAL PERSONNEL	
	ON-SITE OR CLASSROOM EMERGENCY RESPONSE DRILLS	
N	NOTIFICATION AND TRAINING OF PRODUCERS LOCATED WITHIN THE ROE	15

		UBLIC OFFICIALS AND EMERGENCY RESPONSE AGENCIES	
j	RAINING AND	ATTENDANCE DOCUMENTATION [NMAC 19.15.11.9 G]	10
IX.	COORDINAT	ION WITH STATE EMERGENCY PLANS [NMAC 19.15.11.9.B(2)(E)]16
N	NOTIFICATIONS	AND REPORTS	16
X.	PLAN ACTIVA	ATION [NMAC 19.15.11.9.C] [API RP-55 7.4 D]	17
A	ACTIVATION LE	VELS	17
F	EVENTS THAT C	OULD LEAD TO A RELEASE OF H ₂ S	17
XI.	SUBMISSION	OF H ₂ S CONTINGENCY PLANS [NMAC 19.15.11.9.D]	18
S	SUBMISSION		18
F	RETENTION		18
		HE PLAN	
A	ANNUAL INVEN	TORY OF CONTINGENCY PLANS	18
		<u>FIGURES</u>	
	Figure 1b: Figure 2: Figure 2b: Figure 2c: Figure 2d: Figure 2d: Figure 2e: Figure 3: Figure 4:	Location of Zia II Plant Surface and Bottom-Hole Locations of Zia AGI #1 and #2 Plot Plan Showing Plant Schematic Safety Equipment: H ₂ S Monitors, Gas Detectors, Fire Detectors Safety Equipment: ESD System Locations, ESD RIO Panel Locations Plant Emergency Siren Location Safety Equipment: Wind Sock Location Plan Safety Equipment: Emergency Breathing Equipment Safety Equipment: Fire Extinguisher Location Plan Emergency Exit Plan Isolation Valve Location Plan 500 and 100 PPM H ₂ S ROE Map, Roadblock and Emergency Assembl Locations Well Design Schematic – Zia AGI #1 Well Design Schematic – Zia AGI #2 AGI Well Facility Schematic DCP Command Structure Photograph of an H ₂ S Warning Sign	
		<u>APPENDICES</u>	
		Appendix A – Immediate Action Plans	
		Appendix B – Response Flow Diagrams	
		Appendix C – Telephone Numbers/Emergency Call List Appendix D – Radius of Exposure (ROE) Calculations	
		Appendix B – Radius of Exposure (ROE) Calculations Appendix E – Distribution List	
		rr	

Appendix F – Chronologic Record of Events Log Appendix G – NMOCD C-141 Form

Location of Plant

ZIA II GAS PLANT

DCP Midstream, LP (DCP) has constructed a new gas processing plant in southeastern New Mexico. In addition to processing gas, DCP will also operate two acid gas injection (AGI) and CO₂ sequestration wells at the gas plant which is located in Section 19, Township 19S, Range 32E in Lea County, New Mexico, approximately 35 miles west of Hobbs (Figure 1). The Plant and AGI wells are located on land leased from the Federal Bureau of Land Management (BLM) by DCP.

Physical/Mailing Address:

89 Lusk Road Lovington, NM 88260

Driving Directions from Hobbs, New Mexico to the Plant:

Take Highway 62-180 west out of Hobbs, New Mexico for approximately 34 miles to State Road 243 – turn right (north) onto Road 243. Continue on State Road 243 approximately 4.5 miles to CR 126a – Maljamar Road. Turn right (north) onto CR 126a and proceed 5.5 miles to CR 126/248 – Lusk Road; turn left onto 126/248. Continue on 126/248 approximately 1 mile to the first Lease Road on the left (south). Turn left and continue south on the Lease Road for approximately ½ mile. Plant site will be on the left (east) side of the road.

Coordinates for Plant:

Latitude: 32.643 Longitude: -103.809

ACID GAS INJECTION WELLS

The Zia II AGI Wells (Zia AGI Wells #1 and #2) are located on the northwest corner of the Plant (see Figure 1b)

Surface Locations are:

AGI #1: 2100' FSL, 950' FWL Section 19, T19S, R32 E

Latitude: 32.64459881, Longitude: -103.8111449 (API # 30-025-42208)

AGI #2:_1900' FSL, 950' FWL, Section 19, T19S, R32E

Latitude 32.64403555, Longitude: -103.8111449 (API # 30-025-42207)

GLOSSARY OF ACRONYMS UTILIZED IN THE PLAN

ACGIH	American Conference of Governmental Industrial Hygienists				
AGI Acid Gas Injection					
ANSI	American National Standards Institute				
API	American Petroleum Institute				
CO ₂	Carbon Dioxide				
DCS	Distributed Control System				
DOT	Department of Transportation				
ERO	Emergency Response Officer				
ESD	Emergency Shut-Down				
H_2S	Hydrogen Sulfide				
IC	Incident Commander				
ICS	Incident Command System				
ICC	Incident Command Center				
IDLH	Immediately Dangerous to Life or Health				
LEL	Lower Explosive Limit				
LEPC	Local Emergency Planning Committee				
MSDS	Materials Safety Data Sheets				
NACE	National Association of Corrosive Engineers				
NCP	National Contingency Plan				
NIIMS	National Interagency Incident Management System				
NIOSH	National Institute for Occupational Safety and Health				
NGL	Natural Gas Liquid				
NMAC	New Mexico Administrative Code				
NMED	New Mexico Environment Department				
NMOCC	New Mexico Oil Conservation Commission				
OCD	Oil Conservation Division				
OSHA	Occupational Safety and Health Administration				
PLC	Programmable Logic Controller				
PPE	Personal Protective Equipment				
PPM	Parts Per Million				
ROE	Radius of Exposure				
SCBA	Self-Contained Breathing Apparatus				
SERC	State Emergency Response Commission				
SO ₂	Sulfur Dioxide				
STEL	Short Term Exposure Limit				
TLV	Threshold Limit Value				
TWA	Time Weighted Average				

I. INTRODUCTION [NMAC 19.15.11 et. seq.][API RP-55 7.1 RP-49, RP-68]

DCP Midstream has just constructed the new Zia II Plant in order to process natural gas that will be coming into the plant from various gathering systems in the area. The Zia II Gas Plant (hereinafter the "Plant") is a natural gas processing plant which processes field gas containing hydrogen sulfide (H₂S) and handles and/or generates sulfur dioxide (SO₂). The Zia II Plant has two associated Acid Gas Injection wells (Zia II AGI #1 and Zia II AGI #2) which will be utilizing for disposal of H₂S. Thus, this Hydrogen Sulfide Contingency Plan (the "H₂S Plan" or "the Plan") is being submitted to document procedures that are to be followed in the event of an H₂S release that occurs at any location on the Plant or at the AGI Processing area where AGI #1 or #2 are located.

This plan complies with New Mexico Oil Conservation Division (OCD) Rule 11(§ 19.15.11 et. seq. NMAC). The plan and operation of the DCP Zia Plant conform to standards set forth in API RP-55 "Recommended Practice for Oil and Gas Producing and Gas Processing Plant Operations Involving Hydrogen Sulfide" as well as API RP 49 "Recommended Practice for Drilling and Well Servicing Operations Involving Hydrogen Sulfide" and API RP 68 "Oil and Gas Well Servicing and Workover Operations involving Hydrogen Sulfide", and applicable NACE standards for sour gas service and current best management practices. The Plant does not have any storage tanks in which H₂S or other gas or gas products are stored, and thus, API regulations and OCD regulations (specifically 19.15.11.12.E NMAC) relative to those types of storage are not applicable for this plant. Drilling and completion of the Zia II Plant AGI Wells was done in compliance with NMAC 19.15.11.11. The terms used in this Plan are used as defined in Title 19 Chapter 15 Part 11 of the New Mexico Administrative code (19.15.11.7-Definitions) unless otherwise defined herein. Safety precautions in the event of a release could include placement of road blocks, evacuation along designated routes or instructions to shelter-in-place. When the term "shelter-in-place" is used in this Plan, it means that individuals should go inside homes, businesses, etc., turn off heating and air conditioning systems, close windows and doors and put towels or tape around doors and/or windows that are not sealed and wait for further instruction.

II. SCOPE [API RP-55 7.2]

This Plan is specific to the Zia II Gas Processing Plant and AGI Wells. It contains procedures to provide an organized response to an unplanned release of H₂S from the Plant or the AGI Wells contained within the Plant and documents procedures that would be followed to alert and protect any members of the public, residents in surrounding areas and/or contractors working on or around the plant in the event of an unplanned release. This H₂S Contingency Plan has been prepared to minimize the hazard resulting from an H₂S release. It will be used to inform company personnel, local emergency responders and the public of actions to be taken before, during and after an H₂S release. All operations shall be performed with safety as the primary goal. The primary concern of the Zia II Gas Plant, during an H₂S release, is to protect company employees, contractors and the public; the secondary concern is to minimize the damage and other adverse effects of the emergency. In the event of a release, any part of the Plant operation that might compromise the safety of individuals will cease until the operation can be re-evaluated and the proper engineering controls to assure safety can be implemented. No individual should place the protection of the Plant property above his or her own personal safety.

It must be kept in mind that in a serious situation involving an H₂S release, not only Zia II personnel are involved, but local Fire Departments, Law Enforcement, BLM, County and even State of New Mexico agencies may be interested parties. Cooperation will expedite all decisions. In any emergency situation

involving a H₂S release, delegation of duties will be made to appropriate employees and groups. These duties will be reviewed on an annual basis to ensure complete understanding and facilitate a well-coordinated response by all involved personnel to the emergency situation.

III. PLAN AVAILABILITY [API RP-55 7.3]

The H₂S Plan shall be available to all personnel responsible for implementation, regardless of their normal location assignment. A copy of the Plan will be maintained at the Zia II Plant Control Room, in the Plant Supervisor's office at the plant, in the Asset Manager's office at the Hobbs office, and at the Permian Region Safety Manager's office in Midland, Texas. See Appendix E for the H₂S Plan Distribution List, which lists all the additional entities that will be provided a copy of the H₂S Plan.

IV. EMERGENCY PROCEDURES [NMAC 19.15.11.9.B(2)(a)] [API RP-55 7.4 a] [29 CFR 1910.1200]

RESPONSIBILITIES AND DUTIES OF PERSONNEL DURING AN EMERGENCY

It is the responsibility of all personnel on-site to follow the safety and emergency procedures outlined in this H_2S Contingency Plan as well as the following documents:

- DCP Midstream Safe Work Practices
- DCP Midstream Zia II Plant Emergency Response Plan, Groundwater Discharge Plan, and Oil Spill Contingency Plan; and
- DCP Midstream Environmental Policies and Programs.

The Plant uses the Incident Command System (ICS) for emergency response (see Figure 7 for a diagram of the DCP command structure). The ICS structure used is based on the National Interagency Incident Management System (NIIMS), and is consistent with the National Contingency Plan (NCP). All Plant employees shall be prepared to respond to an H₂S emergency at the Plant and the AGI Wells. In the event of an accidental release that results in the activation of the H₂S Plan all personnel will have been evacuated out of the affected area, and the Plant Supervisor, or designee, will be the on-scene Incident Commander (IC in this Plan). The IC will contact and coordinate with DCP Midstream's management.

The Plant Supervisor or his designee shall determine:

- 1) Plant Shutdowns
- 2) Isolation of pipeline segments
- 3) Repairs, tests or restarts as required

If an emergency occurs, the Plant Supervisor, or designee, shall be notified first, and that individual shall notify the Southeast New Mexico Asset Director who will notify the Regional Operations Vice President; the Regional Operations Vice President shall contact the Permian Business Unit President to activate the DCP Midstream Crisis Management Plan. If any person in this chain of command is unavailable, the DCP Midstream employee shall elevate the communication to the next level. The intention of this process is to allow the IC to make one phone call and then be able to focus on the incident response.

Site Security [NMAC 19.15.11.12.B]

In order to have an accurate listing of all personnel on-site in the event of an emergency, a daily sign-in log sheet shall be utilized. The sign-in log sheet shall include at a minimum the person's name, the company name, the time of arrival, and the time of departure. All personnel are required to sign in at the Plant Office/Control Room. The Incident Commander shall be responsible for assuring that all personnel sign-in upon arrival and sign-out upon departure from the job site. The Incident Commander may, at his discretion, assign the responsibilities for the daily sign-in log sheet to the individual designated as the Record Keeper or another designee. At the discretion of the Incident Commander, a security coordinator and/or a security team may be established, and the access to the job site restricted. In compliance with 19.15.11.12.B NMAC the Plant and AGI Wells are contained within a secure fenced area with locking gates.

Discovery and Internal Reporting

All personnel, including contractors who perform operations, maintenance and/or repair work in sour gas areas within the Plant wear personal H₂S monitoring devices to assist them in detecting the presence of unsafe levels of H₂S. When any person, while performing such work, discovers a leak or emission release they are to attempt to resolve the issue as long as H₂S levels remain below 10 ppm. The personal monitoring devices they wear will give off an audible alarm at 10 ppm. If the response action needed to resolve the issue is more than simply closing a valve or stopping a small leak, the personnel who have discovered the leak shall notify the Plant Supervisor or his designee, initiate and maintain a Chronologic Record of Events Log (See Appendix F) which records the time, date and summary of events, and convey, at a minimum, the following information:

- Name, telephone number, and location of person reporting the situation
- Type and severity of the emergency
- Location of the emergency and the distance to surrounding equipment and/or structures
- The cause of the spill or leak, name and quantity of material released, and extent of the affected area including the degree of environmental hazard
- Description of injuries and report of damage to property and structures

If any person detects H_2S levels of 10 ppm or greater, either as a result of an alarm from their personal monitoring device or one of the plant fixed monitors, they will immediately report this to the Control Room Operator who will contact the Plant Supervisor for assistance, and the responding Operator will put on the 30-minute Self Contained Breathing Apparatus (SCBA). All non-essential persons shall be notified of the release and evacuated from the area. The responding Operator, wearing the SCBA, will first help any persons requiring assistance during the evacuation, then attempt to resolve the issue. The Control Room Operator is responsible for notifying the Plant Supervisor or his designee so that the H_2S Contingency Plan can be activated, if necessary.

Once the Plant Supervisor/IC is contacted, he or his designee is to contact the appropriate DCP management and Plant emergency response personnel and notify them of the existing situation. Local emergency response providers will also be contacted as deemed necessary by the IC. If necessary, the Control Room Operator will then conduct the notifications of federal and state regulatory agencies including the BLM Field Office in Carlsbad, the NMOCD District Office and emergency response agencies listed in Appendix C. DCP operations personnel are to advise any contractor and all others onsite or attempting to enter the Plant that the H₂S Plan has been activated.

IMMEDIATE ACTION PLAN

Immediate Action Plans outlining procedures and decision processes to be used in the event of an H_2S release are contained in Appendix A. These procedures and decision processes have been designed to ensure a coordinated, efficient and immediate action plan for alerting and protecting operating personnel and the public as well as to prevent or minimize environmental hazards and damage to property. Emergency response actions may be taken for a variety of situations that may occur. The Plan is activated in progressive levels (Levels 1, 2 and 3), based on the concentration and duration of the H_2S release. Response Flow Diagrams illustrating these Immediate Action Plans are contained in Appendix B.

Zia II Plant Operators are authorized to elevate the level of response based on observed conditions if they feel a lower level response may not be effective in protecting personnel, the public, or the environment. Additional or long-term response actions will be determined on a case-by-case basis, if needed, once the Incident Command Center (ICC) and System (ICS) are established following the immediate response.

TELEPHONE NUMBERS, COMMUNICATION METHODS AND MEDIA SITE

Telephone Numbers and Communication Methods

In the event of activation of the Plan, emergency responders, public agencies, local government, BLM and other appropriate public authorities must be contacted. Telephone contact information for those entities in included in Appendix C.

Media Site

If a Level 2 Response occurs, the Media Site will be located adjacent to Emergency Assembly Area 2 (see Figure 4). If a Level 3 Response occurs, the Media Site will be located adjacent to Emergency Assembly Area 3 (see Figure 4). The IC will designate a Media Site adjacent to the Emergency Assembly Area. The IC will also designate an individual to assume the duties of Media Liaison Officer. Under no circumstances will media personnel be allowed inside the warm or hot zone (road blocked area). Media personnel will only be allowed inside the road blocked area once the area has been monitored and restored to a cold zone (less than 10 ppm H₂S) and the IC has approved their entry. Media personnel shall not be allowed to enter DCP Midstream property without the approval of the DCP Midstream Asset Manager or his designee, and shall be escorted by DCP Midstream personnel at all times.

LOCATION OF NEARBY RESIDENCES, ROADS AND MEDICAL FACILITIES

Public awareness and communication is a primary function of this Plan. DCP has compiled a list of various public, private, federal, state, and local contacts that are to be notified at various phases during the activation of the Plan. The Level 1, 2 and 3 Immediate Action Plans and the Response Flow diagrams contained in Appendices A and B indicate when certain entities are to be contacted in event of activation of this Plan. There are no businesses, residences, medical facilities or other public places located within the 500 or 100 ppm ROE of the Plant; only producers are located within the ROE. Appendix C contains a listing of all producers with wells within the 500 ppm and 100 ppm ROE who will be contacted in the event of activation of the H₂S Plan. DCP will inform all state and local response organizations if the H₂S Plan is activated; contact information for them is also contained in Appendix C. All entities contacted will be advised of the following:

- The nature and extent of the release/emergency at the Plant and recommendations for protective actions, such as evacuation or shelter-in-place.
- Any other event-specific information that is necessary to protect the public.

• Updated status of the release and continued safety measures to be taken, including but not limited to when to evacuate and/or when it is safe to return to the area.

Public Roads

There are three public roads located within the 500 ppm ROE: Lusk Plant Road (CR 248), Dry Lake Road (CR 126) and Maljamar Road (CR 126a). All three of these roads also have sections within the 100 ppm ROE. There are emergency trailers, equipped with flashing lights, windsocks, and roadblock signs for use in alerting the public of hazardous conditions on any of these three roads. In the event of activation of this Plan, Zia personnel will be dispatched to establish roadblocks on these roads to prevent entrance into the 500 and/or 100 ppm ROE, depending on the response level and as designated by the IC (see Figure 4). Roadblocks will be established at the designated locations regardless of wind direction in anticipation that variations in wind conditions can occur. Signs warning of the potential presence of H₂S have been installed where the 500 and 100 ppm ROEs of the Plant intersect the above referenced public roads. (See Figure 4 for the location of these signs, and see Figure 8 for a photograph of one of these signs).

Businesses or Other Public Areas

The Plant and AGI wells are located on land leased from the Federal Bureau of Land Management (BLM) by DCP, however, there are no businesses or other public areas within the 500 ppm or 100 ppm ROE. The DCP Lusk Booster Station (just north of the Zia II Plant) is located within the 500 ppm ROE but was closed and abandoned when the new Zia II Plant was brought on-line. The original Zia Plant is also located inside the 500 ppm ROE, but it has been closed and abandoned for a number of years.

In addition to notifying operators (listed in Appendix C) DCP personnel, as designated by the IC, will make a visual inspection of the ROE area to insure that no individuals are seen inside the ROE. If any are observed, they will be advised to evacuate immediately to the designated Emergency Evacuation Area described above (see Figure 4).

Medical Facilities

There are no medical facilities located within the ROE.

EVACUATION ROUTES, EMERGENCY ASSEMBLY AREAS AND ROAD BLOCK LOCATIONS

Evacuation Routes and Emergency Assembly Areas

Figure 1b shows the Plant plot plan and schematic of the Plant and location of the AGI Wells, and Figure 2e shows internal plant evacuation routes. Figure 4 shows the locations of Emergency Assembly Areas and recommended evacuation routes. Evacuation for all visitors and all personnel that are not operators begins at the 10 ppm H₂S intermittent alarm and flashing yellow beacons. The responding Plant operator(s) are to put on the 30-minute SCBA and first determine if any personnel are in distress and assist any distressed personnel to evacuate to Emergency Assembly Area 1. Emergency services (911) will be contacted if there are injuries or as otherwise deemed necessary. Responding operators, wearing the SCBAs, will then investigate the cause of the release. At the sound of the alarm and flashing yellow beacons, all other personnel in the Plant are to stop work, check the prevailing wind direction (using visible windsocks) and immediately proceed along designated evacuation routes and/or upwind to the predesignated Emergency Assembly Areas shown in Figure 4. Prevailing winds for the area are from the southwest. Personnel should evacuate along the designated route unless that route is downwind of the release (based on the wind directions observed at the windsocks); in that event all evacuees should

proceed along a route that is perpendicular to the release and then upwind to the designated Emergency Assembly Area.

Roll call shall be conducted at the Emergency Assembly Area to ensure all personnel (including contractors and visitors) are accounted for and have evacuated safely. The Zia II Plant is a Process Safety Management (PSM) facility and requires all personnel to check-in and sign-in at the Plant Office or Plant Control Room before entering the Plant. The sign-in sheet will be used at the Emergency Assembly Areas to make a full accounting of all personnel and visitors.

At each Emergency Assembly Area, the ambient air quality will be monitored for H₂S concentration to ensure the area remains at less than 10 ppm. If the H₂S concentration rises to 10 ppm or greater, the assembly area will be relocated as detailed in the immediate action plan section of this document (see Appendix A).

Road Block Locations

Pre-planned road block locations (which would be utilized in the event of a Level 2 or Level 3 response) are shown on the ROE Map (Figure 4). Each location will have portable road barriers and flashing lights and warning signs. The IC will designate representatives to staff each of the roadblocks. If deemed necessary by the IC, the State or Local Police will be asked to assist with maintaining the roadblocks.

MONITORING EQUIPMENT, ALARM SYSTEMS, SAFETY EQUIPMENT AND SUPPLIES

Emergency Shutdown Systems [NMAC 19.15.11.12.D(1)]

DCP Midstream has installed an emergency shutdown (ESD) system at the Zia II Plant and AGI Wells. The ESD system is a fail-safe hardwired system that provides logic solving via a Foxboro Ticonex Safety System. Twenty ESD manual pull stations are placed throughout the Plant. Operators in consultation with the IC will determine if an H₂S release situation warrants ESD of the plant. When activated the ESD System is designed to perform the following actions through the use of a hardwired interface:

- Close all hydrocarbon inlet and outlet valves to and from the Plant and AGI Wells.
- Initiate a distinct alarm and/or light which is separate from the general plant alarm.
- Shut off fuel at all individual fuel users.
- Isolate NGL storage tanks and NGL product pumps.
- Shut down all electric motors (with exceptions such as lube oil pumps, flare blowers, instrument air compressors, etc.).
- Shut down rotating equipment (engine-driven equipment, expander/compressors, pumps, etc.)
- Isolate fuel to engine-driven equipment.

The locations of the ESD buttons and Isolation Valves are shown in Figures 2a and 3. The ESD systems are designed to prevent a Level 3 response. Block valves on incoming lines can be closed where they enter the Plant perimeter (see Figure 3). Additional isolating block valves outside the Plant perimeter on the incoming lines can be closed to prevent further gas flow into the Plant. The block valves furthest upstream can isolate the entire system from the field gathering lines coming into the Plant. At the discretion of the IC, operations personnel may be designated to close valves at field locations on inlet gas pipelines to insure that incoming gas is shut off.

AGI compressors will be shut-down if two or more of the H₂S sensors located in the fenced AGI Well area go into high alarm (90 ppm). When AGI compressors are shut-down isolation valves upstream and downstream of the units will close as well as those located on the wellhead.

The Plant ESD can be activated at any time by the Zia II Plant Operators and is to be activated if efforts to control the release have failed or if a catastrophic release has occurred.

ALARMS, VISIBLE BEACONS AND WIND INDICATORS

Colored beacons, horns, and wind direction indicators and ESD stations are situated in various locations throughout the Plant and are shown on Figures 2, 2a and 2b and 3. The audible signal for an emergency response is an intermittent alarm that sounds at 10 ppm H₂S. Flashing yellow beacons are also activated at 10 ppm H₂S. The alarm will become continuous when the concentration of the H₂S release is 90 ppm or higher, and evacuation of the Plant will be initiated. As per 19.15.11.12.C, wind direction indicators which are visible night and day are installed throughout the Plant as shown in Figure 2b. At least one wind direction indicator can be seen from any location within the Plant as well as from any point on the perimeter of the Plant.

SIGNS AND MARKERS [NMSA 19.15.11.10]

The Plant and AGI Wells (which are contained totally within the Plant boundaries) have readily readable warning, caution and notice signs which conform to the current ANSI standard Z535.1-2002 (Safety Color Code). These signs contain language warnings about the presence of H₂S/Poisonous Gas and high pressure gas; they are posted at the Plant entrance and around the perimeter of the Plant and where isolation/block valves are located (see Figure 3). The signs are of sufficient size to be readable at a distance of 50 feet and contain the words "Caution Poison Gas". Emergency response phone numbers are also posted at the entrance to the Plant, and there are signs at the Plant entrance requiring that all visitors sign-in at the Plant office. DCP does not have the authority to require individual operators who send gas to the Plant for processing to conform to OCD and/or Department of Transportation (DOT) regulations relative to placement of warning signs at individual wells or on gathering lines. It is the responsibility of these individual operators to conform to appropriate regulations and to certify compliance with those regulations to those regulating agencies, as required. Signs warning of the potential presence of H₂S have been installed where the 500 and 100 ppm ROEs of the Plant intersects the above referenced public roads. (See Figure 4 for the location of these signs, and see Figure 8 for a photograph of one of these signs).

EMERGENCY EQUIPMENT

Emergency Trailers

Emergency trailers, equipped with flashing lights and windsocks will be utilized at public road locations to establish roadblocks (as shown in Figure 4) to alert the public in the event of hazardous conditions.

First Aid Equipment

The first aid stations are located at the all Emergency Assembly Area (see Figure 4) and at other strategic locations throughout the plant.

GAS DETECTION EQUIPMENT

Fixed Monitors

DCP Midstream has installed 65 ambient hydrogen sulfide detectors strategically throughout the Plant to detect possible leaks. Upon detection of hydrogen sulfide at 10 ppm at any detector, visible beacons are activated and an alarm is sounded. Upon detection of hydrogen sulfide at 90 ppm at any detector, an evacuation alarm is sounded throughout the Plant at which time all personnel will proceed immediately to a designated evacuation area. The Plant utilizes fixed-point monitors to detect the presence of H_2S in ambient air. The sensors are connected to the Control Room alarm panel's Programmable Logic

Controllers (PLCs), and then to the Zia II Distributed Control System (DCS). The monitors are equipped with a yellow flashing beacon. The yellow flashing beacon is activated at 10 ppm. The plant and AGI Well horns are activated with an intermittent alarm at 10 ppm and a continuous alarm at 90 ppm.

The Plant operators are able to monitor the ppm level of H₂S of all the Plant and AGI Well sensors on the DCS located in the control room. The AGI system monitors can also be viewed on the PLC displays located at the Plant. These sensors are all shown on the plot plans (see Figure 2). All sensors must be acknowledged and will not clear themselves. This requires immediate action for any occurrence or malfunction. All H₂S sensors are calibrated quarterly.

Personal and Handheld H₂S Monitors

All personnel working at the Zia II Plant wear personal H₂S monitors. The personal monitors are set to alarm and vibrate at 10 ppm. Handheld gas detection monitors are available at strategic locations around the Plant so that plant personnel can check specific areas and equipment prior to initiating maintenance or work on the process or equipment. The handheld gas detectors have sensors for oxygen, LEL (explosive hydrocarbon atmospheres), H₂S and carbon dioxide (CO₂).

RESPIRATORS

There are 30 minute SCBA respirators and cascade hose reel systems strategically located throughout the Plant. The cascade hose reel systems have 2-4 compressed air cylinders hooked up in series to provide a sustained supply of breathing air for extended work time in a hazardous atmosphere. Each cylinder will supply a person 6-8 hours of breathing air at normal workloads or 3 hours at medium/heavy workloads. Several hose reels and masks may be attached to a cascade system. The system is equipped with a low pressure alarm to allow workers to safely exit the hazardous area with plenty of reserve air capacity. The respirator containers and equipment locations are shown in Figure 2c. All Plant personnel are trained and fit tested annually to use the SCBA respirators.

PROCESS PURGE SYSTEM

All vessels, pumps, compression equipment, and piping in the acid gas injection process are designed and equipped to allow purging with pipeline quality gas to remove the acid gas prior to conducting maintenance or inspection work. The purge gas stream with residual acid gas is routed safely into the acid gas flares located at the plant. Operating procedures include this purging of all equipment to avoid acid gas exposure to personnel and to prevent acid gas from escaping to the environment.

FIRE FIGHTING EQUIPMENT

Plant personnel are trained only for incipient stage fire-fighting. The fire extinguishers located in the Plant process areas, compressor buildings, process buildings, and company vehicles are typically a 30# dry chemical fire extinguisher. The Zia II Plant is also equipped with portable fire extinguishers that may be used in an emergency, and air packs which can be utilized for escape or rescue located throughout the plant in key locations.

V. CHARACTERISTICS OF HYDROGEN SULFIDE (H₂S), SULFUR DIOXIDE (SO₂) CARBON DIOXIDE (CO₂) [NMAC 19.15.11.9.B(2)(b)] [API RP-55 7.4 b.]

HYDROGEN SULFIDE (H₂S)

The current inlet gas streams into the Plant contain approximately 1.0 ppm (or 0.9992 mole percent) of H₂S based on data generated from the sampling of the combined inlet gas stream. The current inlet to the AGI pipeline, and injection well contains 14.2853 mole percent H₂S. H₂S is a colorless, toxic and flammable gas, and has the odor of rotten eggs. It is heavier than air and presents a significant health hazard by paralyzing the respiratory system resulting in serious injury or death.

Hydrogen Sulfide Properties and Characteristics				
CAS No.			7783-06-4	
Molecular Formula			H ₂ S	
Molecular Weight			34.082 g/mol	
Ceiling Concentration			20 ppm (OSHA)	
Ceiling Peak Concentration			50 ppm (OSHA)	
Threshold Limit Value (TLV)			15 ppm (ACGIH)	
Time Weighted Average (TWA)			10 ppm (NIOSH)	
Short Term Exposure Level (ST)			15 ppm (ACGIH)	
Immediately Dangerous to Life of		DLH)	100 ppm	
Specific Gravity Relative to Air	(Air=1.0)		1.189	
Boiling Point			-76.5F	
Freezing Point			-121.8F	
Vapor Pressure			396 psia	
Auto-ignition Temperature			518F	
Lower Flammability Limit			4.3%	
Upper Flammability Limit			46.0%	
Stability			Stable	
pH in water			3	
Corrosivity			Reacts with metals, plastics, tissues and nerves	
		l Effec	ts of Hydrogen Sulfide	
Concentratio			Physical Effects	
Ppm	%			
1	0.00010		an be smelled (rotten egg odor)	
			ovious & unpleasant odor; Permissible exposure level; safe for	
	0.00		nour exposure	
20	0.0020	Acc	ceptable ceiling concentration	
15	.005	Shor	ort Term Exposure Limit (STEL); Safe for 15 minutes of	
		expo	posure without respirator	
			oss of sense of smell in 15 minutes	
100 0.0100 Imm		Imm	nmediately dangerous to life and health (IDLH) loss of sense	
			Smell in 3-15 minutes; stinging in eyes & throat; Altered	
			thing	
200	0.0200		s smell rapidly; stinging in eyes & throat	
			ziness; Unconscious after short exposure; Need artificial	
			iration	
700	0.0700	Unconscious quickly; death will result if not rescued promptly		
1000 0.1000 Insta			ant unconsciousness; followed by death within minutes	

SULFUR DIOXIDE (SO₂)

 SO_2 is produced as a by-product of H_2S combustion. The waste gas stream consisting of H_2S and CO_2 is routed to the plant acid gas flare during abnormal conditions when the acid gas injection equipment is out of service. Waste gas is routed to the acid gas flare at the AGI Well sites during maintenance operations when equipment needs to be blown down. It is colorless, transparent, and is non-flammable, with a pungent odor associated with burning sulfur. SO_2 is heavier than air, but can be picked up by a breeze and carried downwind at elevated temperatures. It can be extremely irritating to the eyes and mucous membranes of the upper respiratory tract.

Sulfur Dioxide Properties & Characteristics					
CAS No.		7446-09-5			
Molecular Formula		SO_2			
Molecular Weight		64.07 g/mol			
Permissible Exposure Limit (PEL)		5 ppm(OSHA)			
Time Weighted Average (TWA)		2 ppm(ACGIH)			
Short Term Exposure Level (STEL)		5 ppm(ACGIH)			
Immediately Dangerous to Life and	Health (IDLH)	100 ppm			
Specific Gravity Relative to Air (Air	= 1.0)	2.26			
Boiling Point		14°F			
Freezing Point		-103.9°F			
Vapor Pressure		49.1 psia			
Auto-ignition Temperature		N/A			
Lower Flammability Limit		N/A			
Upper Flammability Limit		N/A			
Stability		Stable			
Corrosivity		Could form an acid rain in aqueous solutions			
P	Physical Effects of	f Sulfur Dioxide			
Concentration		Effect			
1 ppm	Pungent odor, m	nay cause respiratory changes			
2 ppm	Permissible exp	osure limit; Safe for an 8 hour exposure			
		ormally a person can detect SO ₂ in this range			
5 ppm Short Term Exp		osure Limit (STEL); Safe for 15 minutes of			
exposure					
12 ppm	Throat irritation	, coughing, chest constriction, eyes tear and burn			
100 ppm	Immediately Da	ngerous To Life & Health (IDLH)			
150 ppm	So irritating that it can only be endured for a few minutes				
500 ppm	Causes a sense of	of suffocation, even with first breath			
1,000 ppm	Death may resul	It unless rescued promptly.			

CARBON DIOXIDE (CO₂)

The projected inlet gas streams to the Plant contain approximately 6% CO₂. The inlet to the AG pipeline and injection well is projected to contain approximately 85.7 mole percent of CO₂. CO₂ is a colorless, odorless and non-flammable. It is heavier than air.

Carbon Dioxide Properties & Characteristics				
CAS No.		124-38-9		
Molecular Formula		CO_2		
Molecular Weight		44.010 g/mol		
Time Weighted Average (TWA)		5,000 ppm		
Short Term Exposure Level (ST	EL)	30,000 ppm		
Immediately Dangerous to Life	and Health (IDLH)	40,000 ppm		
Specific Gravity Relative to Air	(Air = 1.0)	1.5197		
Boiling Point		-109.12°F		
Freezing Point		-69.81°F		
Vapor Pressure		830 psia		
Auto-ignition Temperature		N/A		
Lower Flammability Limit		N/A		
Upper Flammability Limit		N/A		
Stability		Stable		
pH in Saturated Solution		3.7		
Corrosivity		Dry gas is relatively inert & not corrosive; can be corrosive to mild steels in aqueous solutions		
	Physical Effects of Car	rbon Dioxide		
Concentration		Effect		
1.0 %	Breathing rate increases sli	ghtly		
2.0 %	Breathing rate increases to	te increases to 50% above normal level. Prolonged exposure can		
	cause headache, tiredness	· · · · · · · · · · · · · · · · · · ·		
3.0 % Breathing rate incr		ases to twice normal rate and becomes labored. Weak		
	narcotic effect. Impaired hearing, headache, increased blood pressure and			
	pulse rate			
4 – 5 %		roximately four times normal rate, symptoms of		
	intoxication become evident, and slight choking may be felt			
5 – 10 %	-	oticeable. Very labored breathing, headache,		
	_	visual impairment, and ringing in the ears. Judgment may be impaired,		
	followed within minutes by loss of consciousness			
10 – 100 % Unconsciousness occurs more rapidly above 10% level. Prolonged expos				
	to high concentrations may	veventually result in death from asphyxiation		

VI. RADII OF EXPOSURE [NMAC 19.15.11.7. K]

WORST CASE SCENARIOS: See Appendix D for actual ROE calculations. The basis for worst case scenario calculations is as follows:

- The worst case ROE for this Plan has been calculated utilizing the maximum inlet and TAG flow rates (24-hour rate) contained in the permit issued by OCD for this Plant which is 200 MMCFD. The ROE calculation in this Plan utilizes that inlet flow rate and an H₂S concentration for inlet gas of .9992 mole percent. Based on this inlet flow analysis, the calculated TAG flow rate from the amine unit to the AGI well is 13.9892 MMCFD with an H₂S concentration of 14.2853 mole percent. Although the H₂S concentration is lower in the inlet gas than in the TAG stream, the flow rate is much higher for the inlet gas than for the TAG stream. The calculated ROE's for the inlet gas and TAG streams are identical as shown in the calculations in Appendix D.
- The worst case scenario ROE assumes an uncontrolled instantaneous release of a 24-hour volume of gas at the Plant. Because the Plant is a throughput process plant, it is impossible that the entire 24 hour-throughput volume of the Plant could be released instantaneously as is assumed in the worst case scenario calculations of the ROE. Further, the Plant's ESD systems would be activated in the event of a catastrophic emergency and would prevent the flow of gas into the Plant and would isolate the AGI compressors and equipment and route the acid gas safely to the Plant acid gas flare. To comply with NMAC 19.15.11, the worst case scenario calculations (assuming an instantaneous release of the 24-hour processing and/or TAG volume) are utilized here (see Appendix C for actual calculations).

The formulas for calculating the radius of exposure (ROE) are as follows:

100 ppm ROE Calculation (as per 19 NMAC 15.11.7.K.1):

X=[(1.589)(hydrogen sulfide concentration)(Q)](0.6258)

500 ppm ROE Calculation (as per 19 NMAC 15.11.7.K.2):

X=[(0.4546)(hydrogen sulfide concentration)(Q)](0.6258)

Where:

X = radius of exposure in feet

"hydrogen sulfide concentration" = the decimal equivalent of the mole or volume fraction of hydrogen sulfide in the gaseous mixture

Q = Escape rate expressed in cubic feet per day (corrected for standard conditions of 14.73 psi absolute and 60 degrees Fahrenheit)

ROE FOR ZIA II PLANT WORST CASE SCENARIO

500-ppm ROE 5,354 feet (1.01 miles) 100-ppm ROE 11,717 feet (2.22 miles)

The ROE for the Plant and AGI Wells are shown on Figure 4. This ROE pattern is designed to include the 100 ppm and 500 ppm radii for a potential worst case failure at any point in the system.

VII. FACILITY DESCRIPTION, MAPS AND DRAWINGS [NMAC 19.15.11.9.B (2)(c)] [API RP-55 7.4 c.]

DESCRIPTION OF PLANT OPERATIONS AND ZIA #1 AND #2 AGI WELLS

The Plant and AGI Wells are in operation and are manned 24-hours-a-day, 7-days-a week. The Plant operations include gas compression, treating and processing. The Plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the Plant, the produced natural gas is compressed, dehydrated to remove the water content and processed to remove and recover natural liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by DOT, NACE other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective right-of-ways.

Because the natural gas that is gathered and processed at the Plant contains H₂S ("sour gas"), it must be treated or processed to remove these and other impurities. The CO₂ and H₂S stream that is removed from the natural gas in the amine treating process is compressed to approximately 1,500 – 2,644 psi. This is accomplished using electric driven, reciprocating compressors. Water vapor contained in the gas stream is removed during compression and cooling and is disposed of through a wastewater disposal system. The compressed acid gas is transported via an overhead stainless stainless-steel, corrosion-resistant, NACE-compliant pipe, approximately 1,050 feet in length, from the compressor to the AGI Wells. AGI #1 injects into the lower Cherry Canyon (5,470 to 5,670 feet) and upper Brushy Canyon (5,670 to 6,070 feet) Formations. AGI #2 will inject into the Siluro-Devonian between 13,700 and 14,650 feet. The pipe between the compressors and the AGI Wells is contained totally within the boundaries of the Plant and does not cross any public roads. H₂S sensors are located at critical junctions along the pipe which is run on an overhead pipe rack. The pressure in the pipe is monitored continuously so that the acid gas injection process could be stopped should there be any unusual variations in pressure.

The AGI Wells are integral components of the Zia Gas Plant design. Both of the wells are constructed using the materials shown in Figures 5a and 5b. The overall schematic of the AGI wells is shown in Figure 6. The intermediate casing of each well extends to 4,600 feet to assure the protection of the Capitan Aquifer and the Upper Delaware Group. Each string of the telescoping casing is cemented to the surface and includes the "downhole" subsurface safety valves (SSVs) which are located approximately 250 feet below the surface on the production tubing to assure that fluid cannot flow back out of the well in the event of a failure of the injection equipment. In addition, the annular space between the production tubing and the well bore are filled with diesel fuel (an inert fluid) as a further safety measure which is consistent with injection well designs that have been approved by NMOCD for acid gas injection.

Per National Association of Corrosion Engineers (NACE) specifications, downhole components including the SSV and packer are constructed of Inconel 925. Corrosion Resistant Alloy (CRA) joints are constructed of a similar nickel alloy manufactured by Sumitomo. The gates, bonnets and valve stems within the Christmas tree are nickel coated as well. The rest of the Christmas tree is made of standard carbon steel components and outfitted with annular pressure gauges that remotely reports operating pressure conditions in real time to a gas control center. Pursuant to NMAC 19.15.11.12.D(2), in the case of abnormal pressures or any other situation requiring immediate action, the acid gas injection process can be stopped at the compressor, and the wellhead can be shut in using a hydraulically operated wing valve on the Christmas tree. The Plant operator or IC may also shut the SSV. In addition, the well has profile nipples which provide the ability to insert a blanking plug into the base of the well below the packer which would allow for the safe reentry of the well. These safety devices provide for downhole

accessibility and reentry under pressure for permanent well control. The SSV provides a redundant safety feature to shut in the wells in case the wing valves do not close properly (see Figures 5 and 6).

MAPS AND FIGURES

Figures 1 and 1a show the location of the Zia II Plant as well as AGI #1 and #2. Figure 1b shows the plot plan of the Plant. Figure 2, 2a, 2b, 2c and 2d show the locations of safety equipment at the plant. Figure 4 shows the 100 and 500 ppm ROE, escape routes, roadblock locations and emergency assembly areas. The design schematic of the AGI Wells is shown in Figures 5, and the schematic of the AGI Wells' tie-in to the Zia Plant is shown in Figure 6.

VIII. TRAINING AND DRILLS [NMAC 19.15.11.9.B(2)(d)] [API RP-55 7.4 d.]

DCP will conduct annual training for its own personnel as well as for the public and emergency responders, as detailed below. Training will include:

- Characteristics of H₂S and safety precautions
- An overview of the Zia II Plant and AGI operations
- A review of their roles in responding to activation of the Zia II H₂S Contingency Plan
- Location of the Radii of Exposure and how to protect the public within the Radii of Exposure
- Potential roadblock locations, potential evacuation routes, and how they can assist in implementing the Plan.

TRAINING OF ESSENTIAL PERSONNEL

Annual training for DCP personnel shall include plant operators, mechanics, instrument and electrical technicians, and maintenance support personnel. Plant Operators will be responsible for initiating and implementing the Plan. In addition, all Plant personnel will receive:

- Annual training on the H₂S Contingency Plan. This training will include a review of all aspects of the Plan and will include, at a minimum, one table top drill involving activation of the H₂S Contingency Plan.
- Plant Orientation Training All Plant personnel, visitors, and contractors must attend a Plant
 overview orientation prior to obtaining permission to enter the Plant. A refresher course on this
 training is required annually for all persons. Included as part of this orientation is how to respond and
 evacuate safely in the event of a H₂S alarm or release. This training also complies with the
 requirements of the DCP and Zia II Plant's Process Safety Management Program and Procedures
 Manuals.
- All Plant personnel are also trained annually on the Zia II Emergency Response Plan.
- H₂S and SO₂ Training All Plant personnel receive annual refresher training on H₂S and SO₂, which is conducted by DCP personnel. If an individual is unable to attend, they may be required to attend a third party training session. All contract employees are required to have had H₂S training and to provide the Plant a copy of their certification card prior to obtaining permission to enter the Plant.
- Respirators All Plant personnel are trained annually on the proper use of respirators. In addition to the annual training, all Plant personnel are fit tested annually on the respirators. All Plant personnel must have medical clearance for respirator use.
- Hazard Communication All Plant personnel are trained annually on Hazard Communication. The annual training includes, at a minimum, the use of material safety data sheets (MSDS) for those materials that are present at the Plant.

Personal Protective Equipment (PPE) - All Plant personnel are trained annually on the DCP requirements for PPE. The training includes, at a minimum, a review of all the types and levels of personal protective equipment and how to select the correct equipment for the job.

ON-SITE OR CLASSROOM EMERGENCY RESPONSE DRILLS

- The Plant will conduct, at least, a tabletop drill annually. Multiple drills during the year may be scheduled at the discretion of the Plant Supervisor.
- The annual drill will execute this Plan and include, at a minimum, the Public Officials and Local Emergency Response Agencies listed below.
- Annual training a will also include making contact with the entities including any that are identified as being within the 500 ppm and 100 ppm ROE (see Appendix C) to make sure contact information for them in Appendix C is current. Appendix C will be verified and updated annually by DCP to be sure any changes of occupancy, ownership or new commercial and/or residential buildings are reflected, and all owners/occupants receive training on protective measures.
- The drills will also include briefing of public officials on issues such as evacuation or shelter-in-place plans.

NOTIFICATION AND TRAINING OF PRODUCERS LOCATED WITHIN THE ROE

DCP Midstream will provide annual training to the producers listed in Appendix C that includes:

- An overview of the Zia II Plant and AGI operations
- Design and operating safety features on the Zia II Plant
- A review of the H₂S alarms and significance
- Notification procedures
- Roadblock locations
- Potential evacuation routes
- Procedures for sheltering in place
- Radii of exposure

TRAINING OF PUBLIC OFFICIALS AND EMERGENCY RESPONSE AGENCIES

All of the Emergency Response Agencies listed in Appendix C will have copies of the H₂S Contingency Plan, and DCP Midstream will provide annual training to the following Emergency Response Agencies:

- NM State Police-Hobbs and Carlsbad Offices
- Eddy County 911 Emergency Response
- Eddy County Emergency Planning Committee
- Hobbs, Artesia and Carlsbad Police Department
- Lea County Sherriff's Department
- Hobbs, Artesia and Carlsbad Fire Department
- New Mexico Oil Conservation Division-Hobbs District Office
- Bureau of Land Management (BLM) Carlsbad Field Office

Training will include:

- An overview of the Zia II Plant and AGI operations
- Design and operating safety features on the Zia II Plant
- A review of the H₂S alarms and significance
- Notification procedures
- Roadblock locations
- Potential evacuation routes
- Procedures for sheltering in place
- Radii of exposure

DCP Midstream will also conduct, at a minimum, one annual tabletop drill involving the Emergency Response Organizations listed above on the activation of the Zia II Plant H₂S Contingency Plan.

TRAINING AND ATTENDANCE DOCUMENTATION [NMAC 19.15.11.9 G]

Per NMAC 19.15.11.9.G drill training will be documented, and those records will be maintained at the Plant and will be available to an OCD representative upon request. The documentation shall include at a minimum the following:

- Description or scope of the drill, including date and time
- Attendees and Participants in the drill
- Summary of activities and responses
- Post-drill debriefing and reviews

IX. COORDINATION WITH STATE EMERGENCY PLANS [NMAC 19.15.11.9.B(2)(e)]

NOTIFICATIONS AND REPORTS

The Plant has various notification and reporting obligations. Some are related to its state air quality permit that is overseen by NMED as well as state and federal spill reporting obligations. In addition to the regulatory obligations noted above, Plant personnel also have internal and external notification and reporting obligations associated with the activation of this Plan. Reporting obligations are as follows:

New Mexico Oil Conservation Division (OCD) [NMAC 19.15.11.16]

As soon as possible, but no later than four hours after plan activation, (recognizing that a prompt response should supersede notification), OCD will be notified by the IC or the IC's designee via email or fax to the District II Office of the activation of the H₂S Contingency Plan. In the event of a power failure, a phone call will be made within four hours. A full report of the incident to the OCD, utilizing Form C-141 shall be made no later than 15 days following the release (see Appendix G).

New Mexico State Police/ New Mexico Hazardous Materials Emergency Response Plan

The New Mexico State Police are responsible for overall scene management and coordination of all resources. A designated Emergency Response Officer (ERO) will establish the National Interagency Incident Management System (NIIMS) Incident Command System (ICS) as the Incident Commander (IC) and be responsible for management of all response resources on scene. Off-scene coordination of

response resources will be handled through designated Headquarters Emergency Response Officers. Law enforcement-related activities will be coordinated by State Police.

Bureau of Land Management (BLM)

The BLM will also be contacted (see Appendix C for phone number) in the event of activation of the plan since the Plant is located on land leased from BLM by DCP Midstream.

X. PLAN ACTIVATION [NMAC 19.15.11.9.C] [API RP-55 7.4 d]

The plan will be activated as described in the Immediate Action Plans and Response Flow Diagrams in Appendix A. At a minimum, Per NMAC 19.15.11.8.C, the Plan also shall be activated at Level 3 (see Appendices A and B for detail) whenever a release may create an H₂S concentration of more than 100 ppm in a public area, 500 ppm at a public road or 100 ppm 3,000 feet from the site of release.

ACTIVATION LEVELS

The Plan has three activation levels that are described in detail in the Immediate Action Plan Section of this Plan (see Appendix A) and in outline form in the Response Flow Diagrams (see Appendix B).

- **Level 1** Intermittent alarm sounded and flashing yellow beacons activated for H₂S greater than 10 ppm at personal or fixed monitor. (See Appendices A, Level 1, and B Level 1 for detail.)
- Level 2 Continuous alarm sounded and flashing yellow beacons activated for H₂S greater than 90 ppm; when corrective actions at Level 1 have been unsuccessful or when Operators activate ESD. Notification of operators, businesses, public, BLM and state agencies is initiated. (See Appendices A, Level 2 and B, Level 2 for detail.)
- **Level 3** Catastrophic release; fire; explosion; a continuous release of maximum volume for 24 hours; or Rule 11 mandatory activation for 100 ppm in any defined public area; 500 ppm at any public road; or 100 ppm at a distance greater than 3000 feet from the site or the release. Notification of operators, businesses, public, and state agencies is initiated. (See Appendices A, Level 3 and B, Level 3 for detail.)

As soon as the Plan has been activated based on the criteria above, the Plant Supervisor, or his designee will be notified.

EVENTS THAT COULD LEAD TO A RELEASE OF H₂S

- Inlet and plant piping failure
- Amine still failure (This would be a leak in the amine process equipment, or amine still utilized to separate methane from H₂S and CO₂.)

17

- Flange/gasket leaks on inlet and plant piping
- Flange/gasket leak on the acid gas compressors
- Flange/gasket or valve packing leak at the AGI Well or associated piping
- Valve packing failure
- Seal failure on acid gas compressors
- Failure of flare to ignite during Plant emergency blow down
- Damage to AGI Wellhead

XI. SUBMISSION OF H₂S CONTINGENCY PLANS [NMAC 19.15.11.9.D]

SUBMISSION

DCP Midstream, LP submitted this H₂S Contingency Plan to the OCD for review and approval in June 2015.

RETENTION

DCP Midstream shall maintain a copy of the contingency plan at the Zia II Gas Plant, at DCP Headquarters in Hobbs, NM and at DCP Headquarters office in Denver, CO. The plan as approved by the OCD will be readily accessible for review by the OCD at the facility upon request.

REVISIONS TO THE PLAN

The H_2S Plan will be reviewed annually and revised at that time as necessary to address changes to the Plant facilities, operations, or training requirements, contact information and the public areas including roads, businesses, or residents potentially affected by the operations of the Plant and AGI Wells, specifically those areas within the radii-of-exposure.

ANNUAL INVENTORY OF CONTINGENCY PLANS

DCP Midstream, LP will file an annual inventory of wells, facilities and operations for which H_2S Contingency Plans are on file with the OCD with the appropriate Local Emergency Planning Committee (LEPC) and the State Emergency Response Commission as per NMAC 19.15.11.9H. The inventory shall include the name, address, telephone number, and point of contact for all operations for which H_2S Contingency Plans are on file with the OCD.

FIGURES

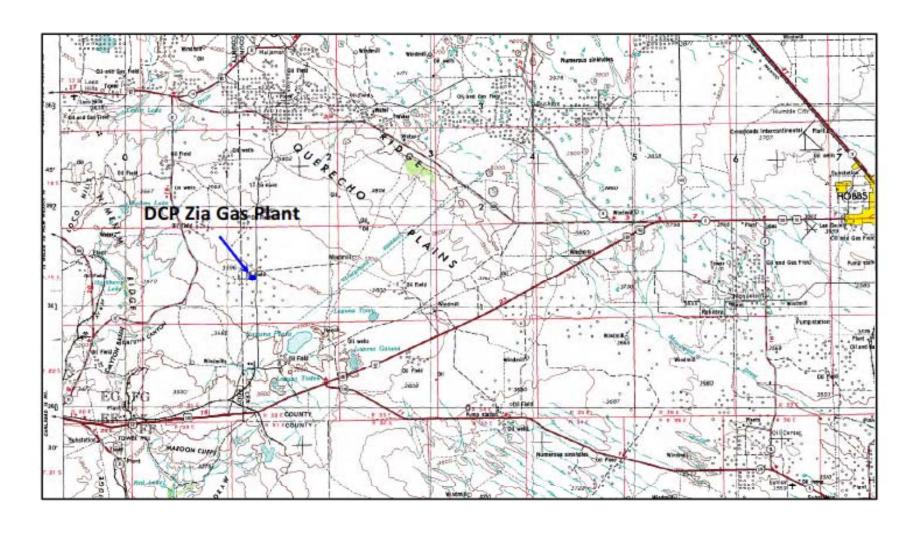


Figure 1: Location of the DCP Zia Gas Plant and AGI Wells (USGS 1:250,000)

Figure 1a: Surface and Bottom Hole Locations of Zia AGI #1 and AGI #2

Figure 1b: Plot Plan Showing Plant Schematics

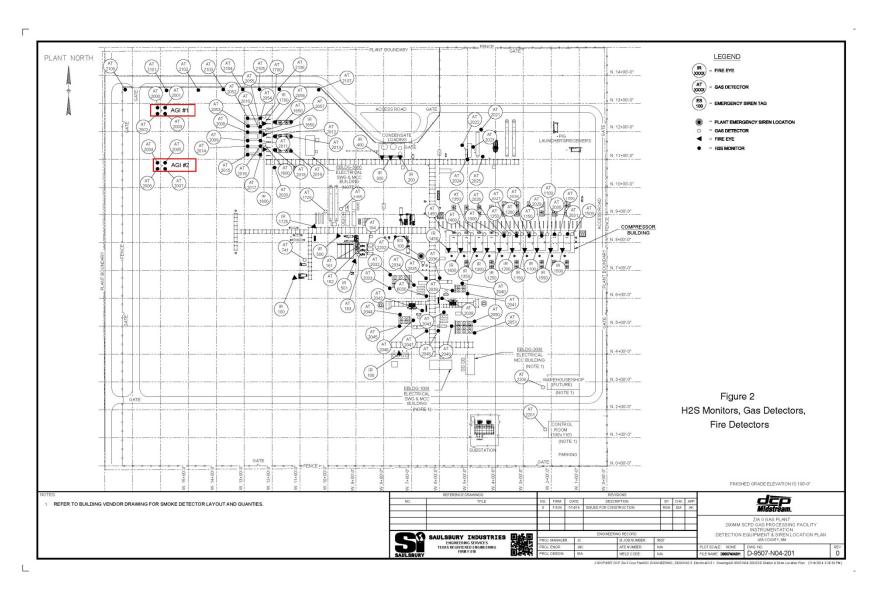


Figure 2: H2S Monitors, Gas Detectors and Fire Detectors

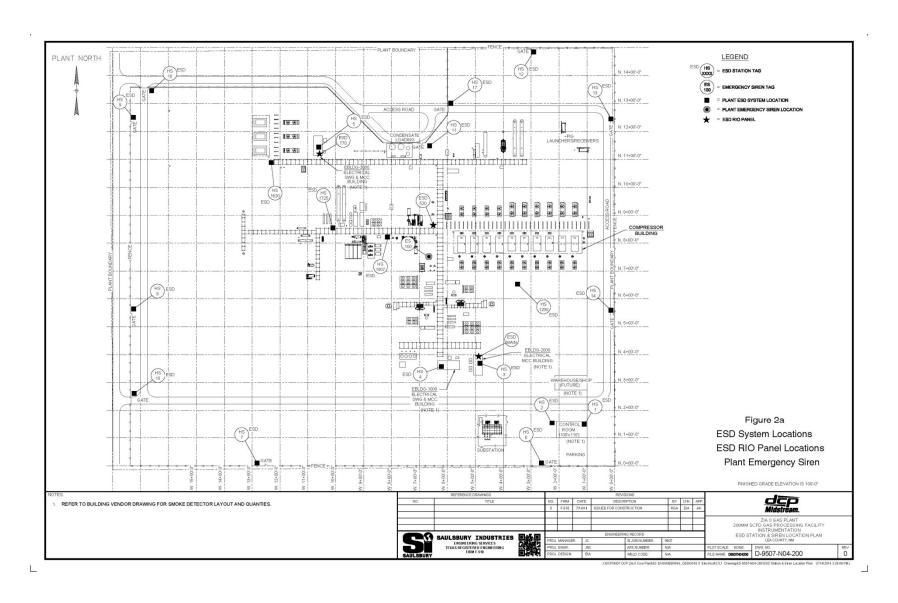


Figure 2a: ESD System Locations, ESD RIO Panel Locations and Plant Emergency Siren

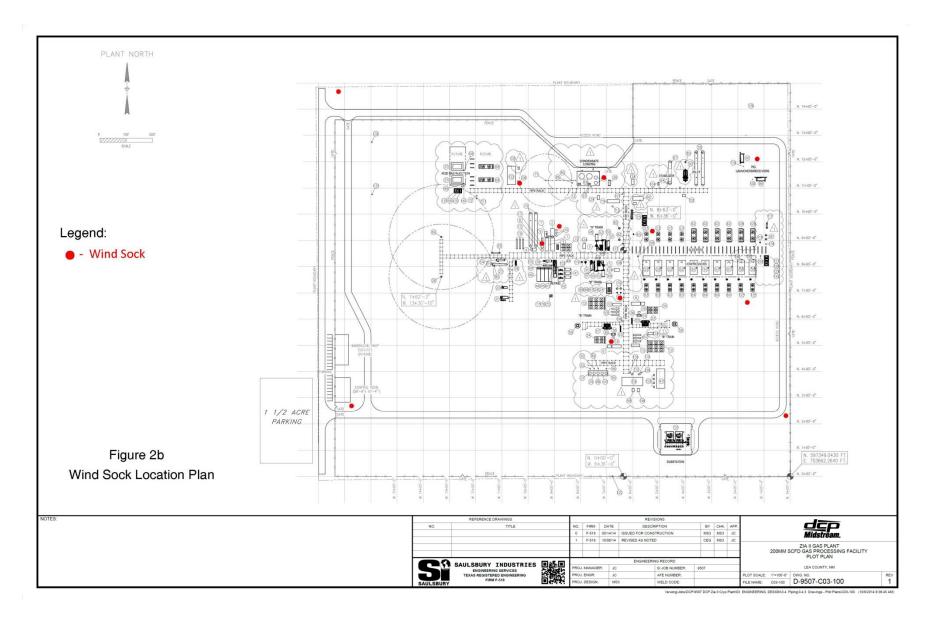


Figure 2b: Wind Sock Location Plan

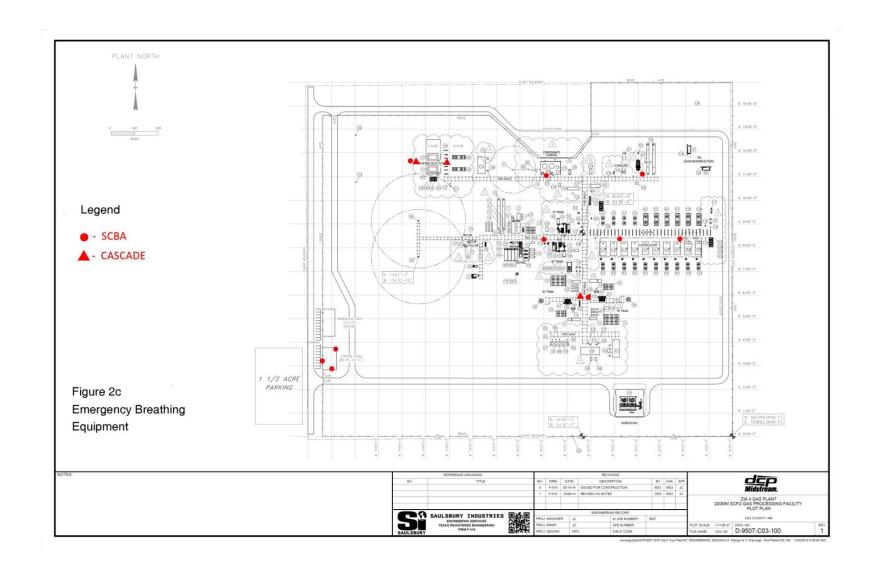


Figure 2c: Emergency Breathing Equipment

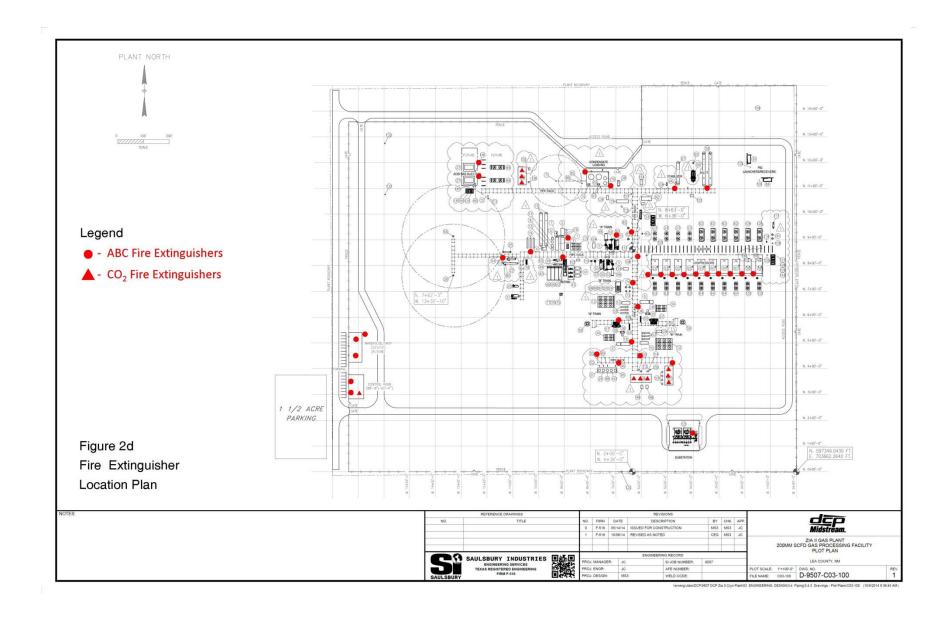


Figure 2d: Fire Extinguisher Location Plan



Figure 2e: Exit Gates and Escape Routes

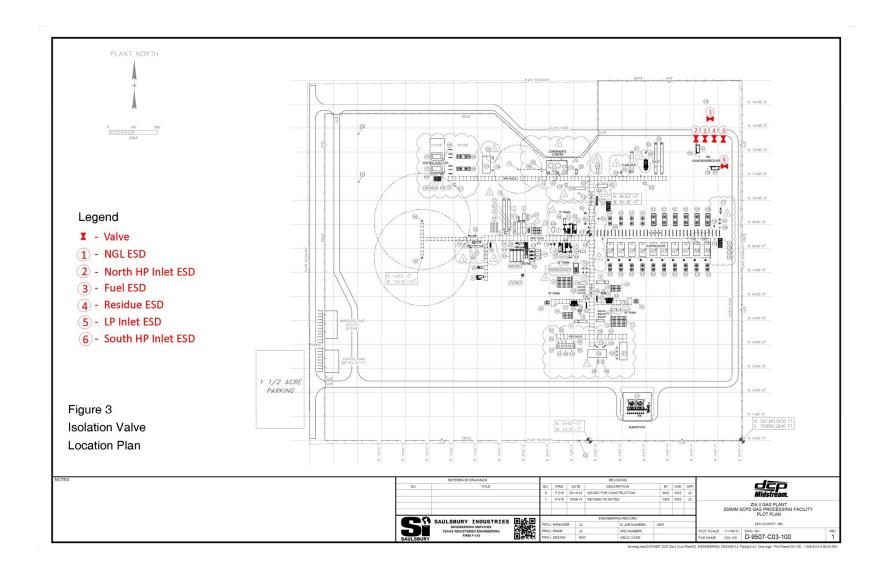


Figure 3: Isolation Valve Location Plan

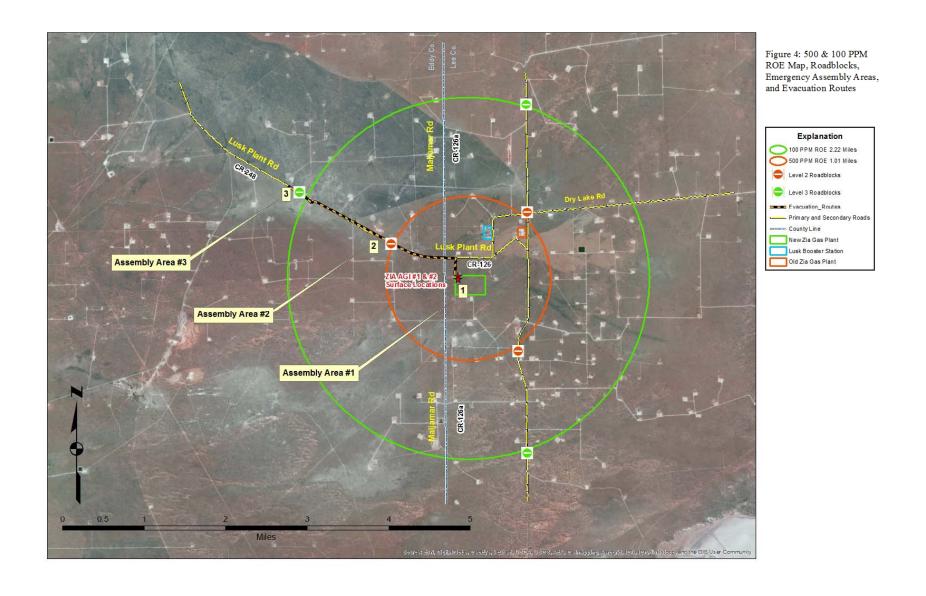


Figure 4: 500 and 100 ppm ROE Map, Roadblocks, Emergency Assembly Areas and Evacuation Routes

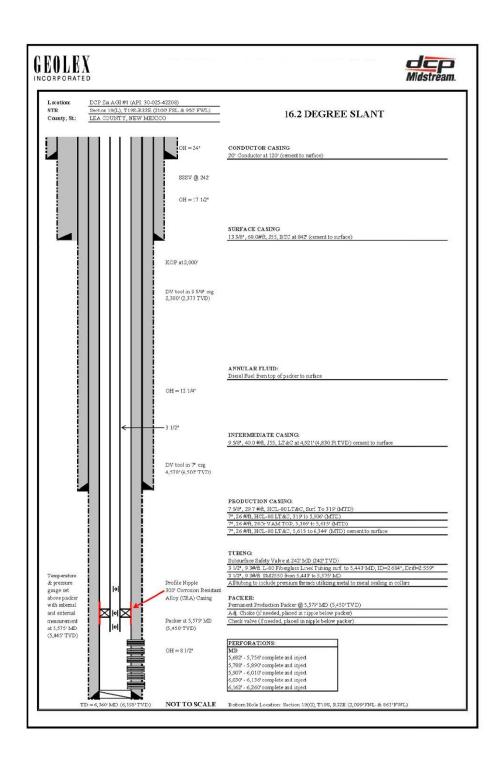


Figure 5a: Well Design Schematic – Zia AGI #1

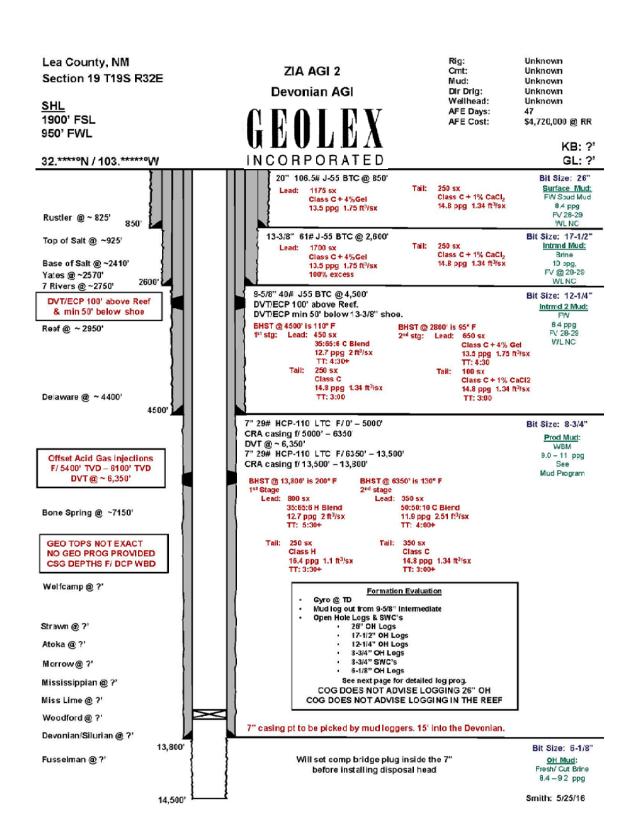


Figure 5b: Well Design Schematic - ZIA AGI #2

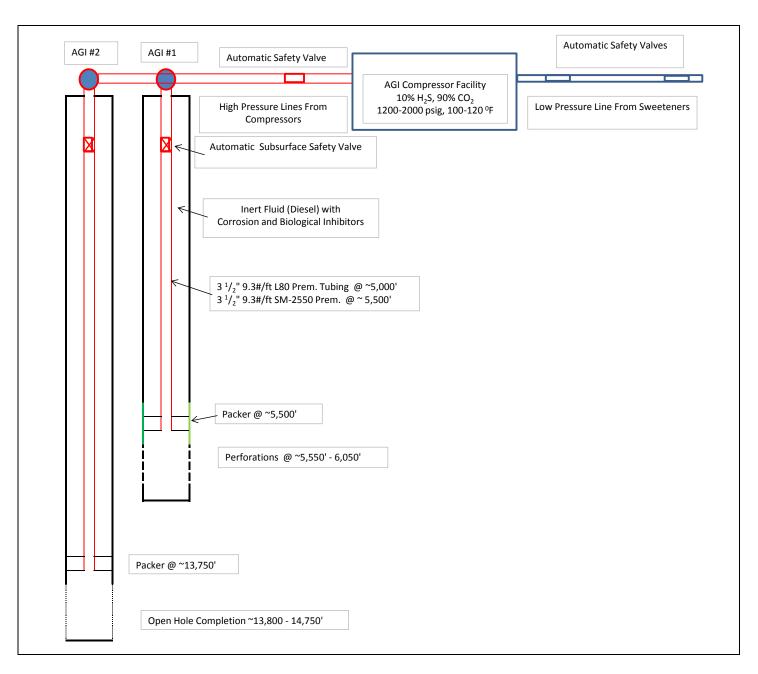


Figure 6: AGI Well Facility Schematic

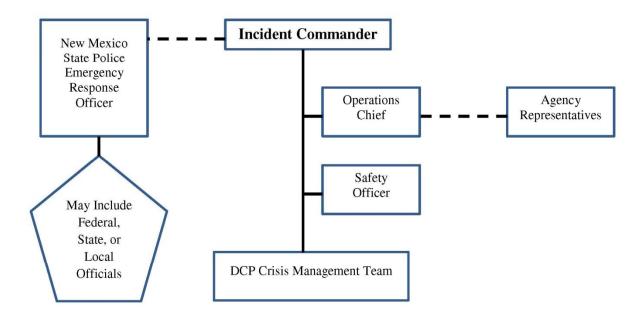


Figure 7: Incident Command System Structure

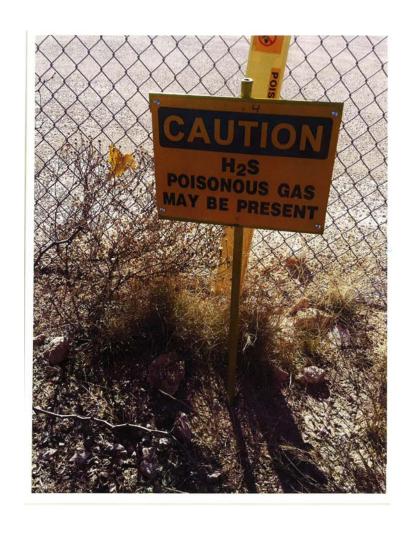


Figure 8: Photograph of H2S Warning Sign

APPENDICES

APPENDIX A

IMMEDIATE ACTION PLANS

LEVEL 1 ACTIVATION

Activating Conditions:

• H₂S of 10 ppm or greater detected at any fixed monitor.

Alarms and Automated Activations:

- Flashing yellow lights or beacons and an intermittent horn are activated if any fixed monitor senses H₂S at 10 ppm or greater. The horn and flashing yellow lights are redundant systems which function independently of one another so that should one system fail, the other would remain active. These systems incorporate backup battery capabilities as recommended in API RP 55 which insure their operation in the event of a power failure.
- A computer in the Control Room and in the office of the Plant Supervisor establishes the location of the monitor(s) at the Plant or Wellsite that has activated the alarm and flashing yellow beacons.
- All employees also wear personal monitors that sound an audible alarm at 10 ppm H₂S or greater.

Actions:

- 1. At the initial sound of an audible alarm or the sight of a flashing yellow beacon, responding Operator(s) in the vicinity of the alarm will put on 30 minute Self-Contained Breathing Apparatus (SCBA) and help any person in distress evacuate to Emergency Assembly Area 1.
- 2. All other personnel in the Plant complex shall immediately proceed to Emergency Assembly Area 1 (see Figures 2c and 4).
- 3. Control Room Operator and Plant Supervisor will be notified of the release. Plant Supervisor or designee will assume the role of IC. Control Room Operator will remain in the control room, identify the location(s) of the alarms and monitor H₂S concentrations throughout the Plant.
- 4. If a perimeter monitor (see Figure 2) detects 10 ppm H₂S or greater, all entities and individuals located within the 500 ppm ROE (see Figure 4) will be notified by the IC or designee that a release is occurring and to stand by for further instructions. Entities will be advised to alert their employees and any third parties working for them, or imminently scheduled to work in the area, of the release and to leave the area and not return until further notice. (Phone numbers are listed in Appendix C).
- 5. If deemed necessary, Plant personnel as designated by the IC will contact local emergency response service providers (phone numbers provided in Appendix C).
- 6. All personnel will be accounted for at Emergency Assembly Area 1 using the Plant sign in sheet and air quality will be monitored for H₂S concentrations. If H₂S concentrations reach 10 ppm or greater at Emergency Assembly Area 1, all personnel will be evacuated to Emergency Assembly Area 2 using the designated routes (see Figures 2C and 4).
- 7. If the concentration of H₂S in the control room reaches 10 ppm, the Control Room Operator will also put on a 30 minute SCBA.
- 8. Responding Operator(s) wearing SCBAs will assess the location of the alarm and attempt to make an initial determination of its cause and rule out potential false alarms based on sensor malfunction or other conditions. If the cause of the release is a minor problem such as a packing or seal leak, the Operator(s) will attempt to take the necessary steps to correct the situation and eliminate the source of the release.
- 9. IC will designate secondary re-entry teams in 30-minute SCBA's to re-enter and resolve the situation. Reentry will occur in 15-minute increments at the direction of the IC until the problem is resolved or the Emergency Shutdown (ESD) is activated.
- 10. If corrective actions are successful, and the release is resolved and monitored H₂S levels in the Plant return to less than 10 ppm, the IC or designee will signal all clear, and personnel will be allowed to sign in and reenter the Plant to resume work.
- 11. If the release is not resolved and H₂S levels continue to rise IC will initiate a Level 2 Response and/or instruct Operators to initiate Plant ESD.
- 12. The IC will initiate and maintain a Chronologic Record of Events Log (see Appendix F).
- 13. The Plant Supervisor or designee will contact the Oil Conservation Division (OCD) district office within 4 hours of a release that activates the plan at Level 1. **Per 19.15.11.16 NMAC**, **notification of Contingency Plan implementation will be submitted to the OCD via form C-141 within 15 days of release.**

LEVEL 2 ACTIVATION

Activating Conditions:

- Corrective actions at Level 1 are unsuccessful;
- 90 ppm of H₂S or greater is detected at any fixed monitor.
- Operators activate ESD.

Alarm and Automated Activations:

• Continuous horn and flashing yellow lights will be activated. The horn and flashing lights are redundant systems which function independently of one another so that should one system fail, the other would remain active. These systems incorporate backup battery capabilities as recommended in API RP 55 which insure their operation in the event of a power failure.

Actions:

- 1. The responding Operator(s), will put on SCBAs and help any persons in distress to evacuate to Emergency Assembly Area 2 (see Figure 4).
- 2. The Plant Supervisor and the Control Room Operator will be notified. The Plant Supervisor, or designee, will assume the role of IC. The Control Room Operator will put on SCBA, remain in the control room and monitor H_2S concentrations throughout the Plant.
- 3. All personnel will be evacuated to Emergency Assembly Area 2 via designated routes (see Figure 4).
- 4. At Emergency Assembly Area 2, all personnel will be accounted for using the Plant sign-in list, and air quality will continue to be monitored for H₂S at Emergency Assembly Area 2.
- 5. If two or more monitors within the AGI fenced area or around the AGI compressor (see Figure 2) detect 90 ppm H₂S or greater, AGI compression will be shut down.
- 6. Plant ESD can be activated at any time by the Zia II Plant Operators as they and the IC determine that conditions are appropriate for such action.
- 7. Incident Command Center (ICC) will be established at Emergency Assembly Area 2.
- 8. A media staging area adjacent to Emergency Assembly Area 2 will be established and all media will be directed to it.
- 9. IC will designate personnel with H₂S monitors and emergency trailers to move to the designated Level 2 (500 ppm ROE) roadblock areas shown on ROE map. Lusk Plant Road (CR-248), Dry Lake Road (CR 126) and Maljamar Road (CR 126a) will be blocked to prevent entry into the 500 ppm ROE (see Figure 4). Air quality will be monitored at each road block.
- 10. Emergency Responders, local law enforcement BLM and state agencies, including the OCD District Office (phone numbers provided in Appendix C) will be notified of the release and the status of containment by the IC or designee.
- 11. Designated personnel will notify all entities, individuals and producers within the 500 and 100 ppm ROE (phone numbers provided in Appendix C) of the nature of the release and the status of containment. All will be instructed to evacuate, or shelter in place, depending on the nature of the release and the prevailing wind conditions. They will be instructed to immediately alert all company personnel, third party contractors and/or service companies working in the area and those imminently scheduled to work in the area of the Plant evacuation status and advise them to leave and not reenter the Plant vicinity until further notice. All will be advised of the roadblocks on Lusk Plant Road (CR-248), Dry Lake Road (CR 126) and Maljamar Road (CR 126a).
- 12. Re-entry will occur in full SCBA and at 15-minute increments at the direction of the IC until IC determines problem has been resolved.
- 13. If release is resolved and monitored levels of H₂S in the Plant are less than 10 ppm, IC or designee may authorize personnel to return to the Plant.
- 14. All entities and individuals previously notified will be informed that the release has been resolved and advised of the current monitored H₂S levels. Roadblocks will be recalled, and traffic will be restored.
- 15. If monitored H₂S levels at Emergency Assembly Area 2 or Level 2 roadblocks exceed 10 ppm, all personnel will evacuate to General Emergency Assembly Area 3 via designated route, ICC and media staging area will also be moved to Assembly Area 3.
- 16. If the release is not resolved or H₂S levels continue to increase, IC will initiate a Level 3 Response.
- 17. The IC will initiate and maintain a Chronologic Record of Events log. (Appendix F)
- 18. The Plant Supervisor or designee will contact the Oil Conservation Division (OCD) district office within 4 hours of a release that activates the plan at Level 1. **Per 19.15.11.16 NMAC**, **notification of Contingency Plan implementation will be submitted to the OCD via form C-141 within 15 days of release.**

LEVEL 3 ACTIVATION

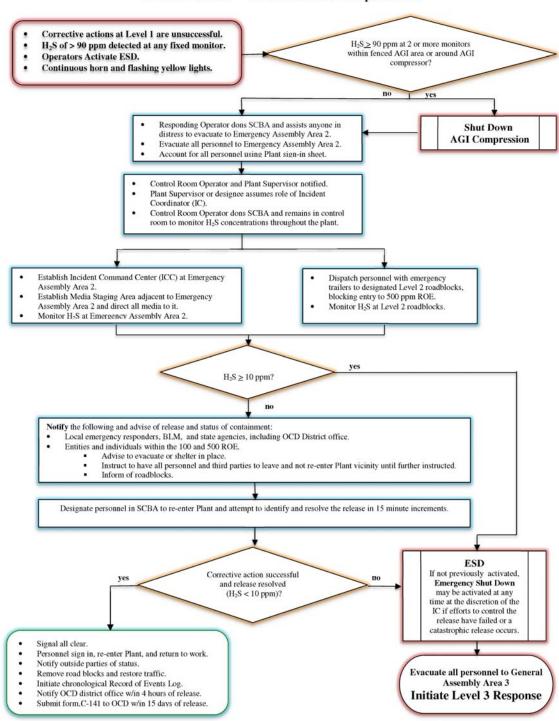
Activating Conditions:

- Corrective actions at Level 2 are unsuccessful;
- H₂S concentrations reach 10 ppm or greater at Emergency Assembly Area 2;
- H₂S concentrations reach 10 ppm or greater at Level 2 roadblocks;
- A catastrophic release, fire or explosion has occurred;
- A continuous release of maximum volume for 24 hours occurs;
- As per NMAC 19.15.11 there is indication of 100 ppm H₂S in any defined public area, 500 ppm at any public road, or 100ppm at a distance greater than 3,000 feet from the site of the release.

Actions:

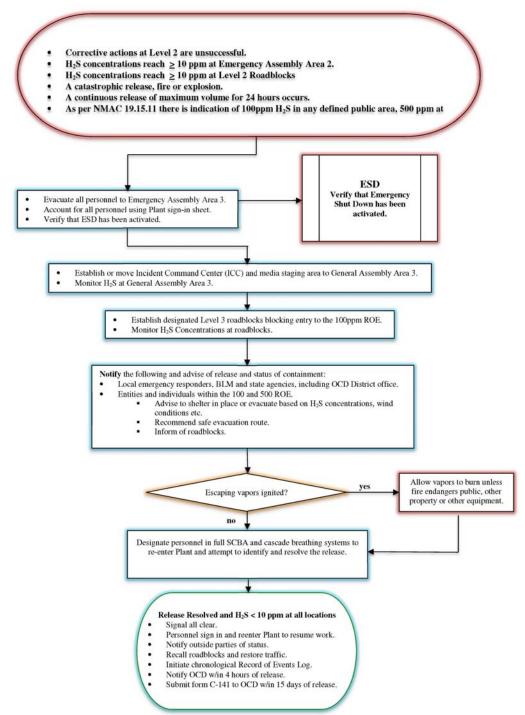
- 1. All personnel should be evacuated to and accounted for at Emergency Assembly Area 3 using the Plant sign in sheet, and air quality will be monitored for H₂S concentrations (see Figure 4).
- 2. IC shall have activated or will immediately activate Plant ESD.
- 3. The ICC and media staging area shall be established and/or moved to Emergency Assembly Area 3.
- 4. Dispatch personnel with emergency trailers to move or establish designated Level 3 roadblocks at Lusk Plant Road (CR-248), Dry Lake Road (CR 126) and Maljamar Road (CR 126a) to prevent entry into the 100 ppm ROE (see Figure 4). Monitor H₂S concentrations at the roadblocks.
- 5. Local emergency responders, BLM, and state agencies, including the OCD District Office, will be notified of the release and status of containment (phone numbers provided in Appendix C).
- 6. All individuals and entities within the 100 ppm ROE will already have been notified to evacuate or shelter in place. IC will review the status of evacuation, and make the final decision whether individuals within the 100 ppm ROE should evacuate or shelter in place based on, but not limited to H₂S concentration, wind conditions and whether a safe evacuation can be implemented. If individuals within the 100 ppm ROE are instructed to evacuate, IC will recommend an evacuation route. All entities will be instructed to immediately alert all company personnel, third party contractors and/or service companies working in the area and those imminently scheduled to work in the area of the Plant evacuation status and advise them to leave and not enter, or re-enter the Plant vicinity until further notice. All will be advised of the roadblocks on Lusk Plant Road (CR-248), Dry Lake Road (CR 126) and Maljamar Road (CR 126a).
- 7. If escaping vapors have been ignited, the vapors should be allowed to continue to burn unless the fire endangers personnel, the public, other property, or other equipment.
- 8. Re-entry will occur in full SCBA and cascade breathing air systems at the direction of the IC until IC determines problem has been resolved.
- 9. Once release is resolved and monitored levels of H₂S in the Plant are less than 10 ppm, IC or designee may authorize personnel to sign in and return to the Plant.
- 10. All entities and individuals previously notified will be informed that the release has been resolved and advised of the current monitored H₂S levels at the Plant. Roadblocks will be recalled and traffic will be restored.
- 11. The IC will initiate and maintain a Chronologic Record of Events log. (Appendix F)
- 12. The Plant Supervisor or designee will contact the Oil Conservation Division (OCD) district office within 4 hours of a release that activates the plan at Level 1. **Per 19.15.11.16 NMAC, notification of Contingency Plan implementation will be submitted to the OCD via form C-141 within 15 days of release.**

APPENDIX B


RESPONSE FLOW DIAGRAMS

ZIA II Gas Plant-Level 1 Activation Response Flow H_2S of ≥ 10 ppm detected at any fixed monitor Flashing yellow lights and intermittent horn Responding Operator dons SCBA and assists anyone in distress to evacuate to Emergency Assembly Area 1. Evacuate all personnel to Emergency Assembly Area 1. Account for all personnel using Plant sign-in sheet. Control Room Operator and Plant Supervisor notified. Plant Supervisor or designee assumes role of Incident Coordinator (IC) IC or designee notifies emergency responders if deemed necessary. Control Room Operator stays in control room, verifies the location of the alarm/release, and monitors H2S concentrations and communicates with responding Operator(s). Is ≥ 10 ppm alarming monitor a perimeter monitor? Notify all entities and individuals within 500 ppm ROE of release and advise to stand by for further instructions. Notify local emergency responders if deemed necessary by IC Monitor air quality for H2S concentrations at Emergency Assembly Area 1. no H₂S concentration ≥ 10 ppm? Control Room Operator dons SCBA and continues to monitor H-S Concentrations from the Responding Operator in SCBA attempts to determine the control room. All personnel evacuate to source of the release and take corrective action. Emergency Assembly Area 2. Use plant sign in sheet to account for all personnel. Corrective action successful **ESD** and release resolved? (H₂S < 10 ppm) Activate Emergency Shut Down. Signal all clear. Initiate Personnel sign in and reenter Plant to resume work. Notify outside parties of status and recall roadblocks. Level 2 Initiate chronological Record of Events Log. Response Notify OCD district office w/in 4 hours of release.

P:\14-007\Reports\H2S Contingency Plan\Appendices\Appendix B Response Flow Diagrams\ZIA FlOWCHART- LEVEL 1 RESPONSE.docx


Submit form C-141 to OCD w/in 15 days of release.

ZIA II Gas Plant —Level 2 Activation Response Flow

P:\14-007\Reports\H2S Contingency Plan\Appendices\Appendix B Response Flow Diagrams\ZIA FlOWCHART- LEVEL 2 RESPONSE.docx

ZIA II Gas Plant-Level 3 Activation Response Flow

P:\14-007\Reports\H2S Contingency Plan\Appendices\Appendix B Response Flow Diagrams\ZIA FIOWCHART-LEVEL 3 RESPONSE.docx

APPENDIX C TELEPHONE NUMBERS EMERGENCY CALL LIST

BUSINESSES AND PUBLIC RECEPTORS WITHIN THE ROE There are none

PRODUCERS WITH WELLS WITHIN THE ROE

PRODUCER	Office Phone	
500 ppm ROE		
Chisos, Ltd.	670 Dona Ana Rd SW Deming, NM 88030	575-546-8802
COG Operating LLC	600 W. Illinois Ave One Concho Center Midland, TX 79701	575-748 6940
Devon Energy	333 W Sheridan Ave Oklahoma City, OK 73102	405- 235-3611
Oxy USA, Inc.	1017 W Stanolind Rd Hobbs, NM 88240	575-397-8237
Shackelford Oil Co	203 W Wall St #200 Midland, TX 79701	432-682-9784
Tandem Energy Corp	200 N Loraine, Suite 500 Midland, TX 77210	432-686-7136
Tom R. Cone	1304 W Broadway Pl Hobbs, NM 88240	575-396-3681
100 ppm ROE		
Apache Corp.	303 Veterans Airpark Ln Suite 3000 Midland, TX 79705	432-838-1062
BOPCO, LP	3104 E Greene St Carlsbad, NM 88220	575-887-7329
Cimarex Energy Company of Colorado	600 N. Marienfeld Street, Suite 600 Midland, TX 79701	432-571-7800
Endurance Resources, LLC	11382 Lovington Hwy Artesia, NM 88210	575-308-0722
Lynx Petroleum Consultants, Inc.	3325 N Enterprise Dr Hobbs, NM 88240	575-392-6950
Ray Westall Operating, Inc.	PO Box 1 Loco Hills, NM 88255	575-677-2376
Yates Petroleum Corporation	105 South 4th Street Artesia, NM 88210	575-748-1471

DCP COMPANY INTERNAL NOTIFICATIONS

NAME	TITIE	OFFICE	CELL
Todd Allison	Zia II Plant Supervisor		361-318-3275
Charlie Joslin	Hobbs Plant Supervisor		575-802-5101
Russ Ortega	SENM Asset Director	575-597-5598	575-390-7160
Lionel Torrez	SENM Asset Safety Coordinator	575-677-5227	575-618-9475
Jackie Strickland	GM Operations Permian Region	432-620-4066	979-732-7893
Bryan Frederick	President G&P Business Unit	713-735-3667	713-503-3130
	Safety Manager Permian Region	432-620-4009	
	DCP Gas Control, Houston, TX	800-435-1679	N/A
Brad Griffith	PSM Coordinator	575-677-5223	575-499-6873

EMERGENCY RESPONDERS

AGENCY	PHONE
Emergency Dispatch	911
Hobbs Fire Department	575-397-9308
Hobbs Police Department	575-397-9265
Hobbs Ambulance Service	575-397-9308
New Mexico State Police (Hobbs)	575-392-5580
Lea County Sheriff's Office	575-396-3611
Hobbs-Lea Regional Medical Center	575-492-5000
Lubbock University Medical Center (UMC)	806-345-9911
(Level 1 Trauma Center)	
New Mexico Poison Control (Albuquerque)	800-222-1222
HELICOPTER SERVICES	
AeroCare (Lubbock)	800-823-1991
Air Med (El Paso)	800-527-2767

COUNTY AND LOCAL LAW ENFORCEMENT AND PUBLIC AGENCIES

AGENCY	PHONE NUMBER
Oil Conservation Division	
Santa Fe Office	505-476-3440
District 1 Office, Lea County (Hobbs)	575-370-3186
Local Emergency Planning Committee (LEPC)	
Lea County	575-396-8607
New Mexico State Police (Hobbs)	575-392-5580

Lea County Sheriff's Office	575-396-3611
National Response Center (NRC)	800-424-8802
New Mexico Department of Homeland Security & Emergency Management (NMDHSEM)	505-476-9600
New Mexico Emergency Response Commission in NMDHSEM	505-476-9640
New Mexico Department of Public Safety	505-827-9282
Bureau of Land Management (Carlsbad Office)	575-234-5972

APPENDIX D

RADIUS OF EXPOSURE (ROE) CALCULATIONS

DCP							
MIDSTREAM ZIA	II PLANT IN	LET Stream	ROE CALCULA	TIONS PUR	SUANT TO	RULE 11	
f data is provided	in mole% use	e calculator	below for gett	ng ppm			
nter Mole % in cell C5	Mo	ole %	ppm				
Convert mole% to ppm		0.9992	9992				
				-			
f data is provided				r getting p	pm		
nter Mole Fraction in cel	200021	ole Fraction	ppm				
Convert mole fraction to p	pm		. 0	Į.			
Use ppm derived fi	rom either of	Fahove calc	ulations to inn	ıt data held	w		
Input Data Here		Concentration		9992			1
input Duta Here	20000	Hour Throughpu		200			
	-	inear imeagnpe		200			
The radius of expos	ure is calcula	ited using th	ne following ea	uations:			
100 ppm ROE calcu							
	oppm = [(1.589						
500 ppm ROE calcu							
and the second of the second s			(Q)]^(0.6258)				
7500	ppm [(0.151	0/(CO11CH25/((4)] (0.0250)				
Where:							
X = radius of expos	ure (ft)						
Conc _{H2S} = the decin		t of the mol	le or volume fra	ction of H ₂ S	S in the gas		
Q = daily plant thro				-			
	-						
Plant parameters							
Q =	200 M	MSCFD =	200000000	SCFD			
Conc _{H2S} =	9992 pp	om =	0.9992	Mole %=	0.009992	Mole Frac	tion
ROE calculation:							
X _{100ppm} = [(1.	[(1.589)*(0.009992)*(200000000)]^(0.6258)						
X _{100ppm} =	11717 ft	=	2.22	miles			
es a constitutiva de la constitu							
	[(0.4546)*(0.009992)*(200000000)]^(0.6258)						
$X_{500ppm} = [(0.$	4546)*(0.009	9992)*(2000	000000)]^(0.62	58)			

DCP						
MIDSTREAM ZIA II PLAI	NT TAG Strea	m ROE CALC	ULATIONS PUR	SUANT TO	RULE 11	
f data is provided in mole	e% use calculat	or below for g	etting ppm			
Enter Mole % in cell C5	Mole %	ppm	0.50			
Convert mole% to ppm	14.28	353 142	853			
f data is provided in mole	e fraction use c	alculator belo	w for getting p	pm		
Enter Mole Fraction in cell C10	Mole Fraction	_		No. 10		
Convert mole fraction to ppm			О			
						
Use ppm derived from eit Input Data Here			142853	w		
input Data Here	H ₂ S Concentra	ughput (MMCFD)	13.9892			
	24 Hour Inrol	ugnput (WIWICPD)	13.3032			
The radius of exposure is o	calculated using	the following	equations			
100 ppm ROE calculation	[[하기 시간] [[하기 [[하기 [] [[하기 [] [
	(1.589)(Conc _{H25}					
500 ppm ROE calculation						
X _{500ppm} = [(0.4546)(Conc _H	₂₅ /(Q)]^(0.625	0)			
Where:						
X = radius of exposure (ft)						
Conc _{H2S} = the decimal equ		nole or volume	e fraction of H.S	S in the gas		
Q = daily plant throughput				o iii die gas		
- and branc an oabuba						
Plant parameters		112				
Q = 13.9	892 MMSCFD	= 13989	200 SCFD			
Conc _{H2S} = 142	<mark>853</mark> ppm =	14.2	853 Mole %=	0.142853	Mole Fracti	ion
ROE calculation:						
200рр	0.142853)*(139		1.5			
X _{100ppm} = 11	.717 ft =	2	2.22 miles			
$X_{500ppm} = [(0.4546)^*]$	(0.142853)*(13	2989200)14(0	:2E0\			
'Suuppm [(G), G)	(0.142033) (13	3303200)] (0.0	0200)			

Simulation Report

Project: DCP Zia - Summer Recovery - 1% H2S - 6% CO2 Normalized Gas Analyses-Rev-4.pmx

Licensed to DCP Midstream, LP and Affiliates

Client Name: DCP Midstream Location: New Mexico Job: 9420 DCP Zia II

ProMax Filename: C:\Ziall\04-Process Models\DCP Zia - Summer Recovery - 1% H2S - 6% CO2 Normalized Gas Analyses-Rev-4.pmx ProMax Version: 3.2.12198.0 Simulation Initiated: 2/14/2014 11:50:48 AM

Bryan Research & Engineering, Inc.

Chemical Engineering Consultants P.O. Box 4747 Bryan, Texas 77805 Office (979) 776-5220 FAX: (979) 776-4818 mailto sales/fittre.com

Report Navigator can be activated via the ProMax Navigator Toolbar.

An asterisk (*), throughout the report, denotes a user specified value.

A question mark (?) after a value, throughout the report, denotes an extrapolated or approximate value.

Component	Mol %
Hydrogen Sulfide	0.9992
Nitrogen	2.2311
Methane	68.3532
Carbon Dioxide	5.9954
Ethane	12.6577
Propane	6.1254
i-Butane	0.6925
n-Butane	1.6637
i-Pentane	0.3755
n-Pentane	0.3703
Neohexane	0.0035
Cyclopentane	0.0357
2-Methylpentane	0.0707
3-Methylpentane	0.0405
Hexane	0.0776
Methylcyclopentane	0.0493
Benzene	0.0458
Cyclohexane	0.0463
2-Methylhexane	0.0094
3-Methylhexane	0.0128
Cyclopentane, 1,1-Dimethyl-	0.0203
Heptane	0.0144
Methylcyclohexane	0.0248
Cyclopentane, 1,1,2-Trimethyl-	0.0012
Toluene	0.0169
2-Methylheptane	0.0062
3-Methylheptane	0.0012
Cyclohexane, 1,1-Dimethyl-	0.0036
Octane	0.0023
Ethylbenzene	0.0013
p-Xylene	0.0016
o-Xylene	0.0003
Cyclooctane	0.0021
Octane, 3-Methyl-	0.0030
Nonane	0.0004
Decane	0.0004
Undecane	0.0004
Dodecane	0.0003
Water	0.0003
DGA	0.0000
MDEA	0.0000
Piperazine	0.0000
TEG	0.0000
Total	100
Total Flow	200 MMSCFD
TOTAL TOW	230 WINIOOF D

DCP ZIA GAS PLANT CONVERSION OF INLET GAS TO TREATED AID GAS

Inlet Gas	Inlet Gas	TAG % (calculated)
H2S	0.9992	14.2853
C02	5.9954	85.7147
Various	93.0054	
Total	100.0000	100.0000
Flow Rate	200	13.9892

APPENDIX E H₂S PLAN DISTRIBUTION LIST

New Mexico Oil Conservation Division, Santa Fe Office

New Mexico Department of Public Safety (State Office)

Lea County LEPC/Emergency Manager*

Zia II Plant Supervisor's Office

Zia II Plant Control Room

DCP SENM Asset Manager's Office

DCP Permian Region Safety Manager's Office, Midland, TX

Zia II Plant Emergency Trailers

New Mexico State Police, Hobbs Office

State of New Mexico Emergency Response Commission (SERC)

Bureau of Land Management (BLM) Carlsbad Field Office

*Note: Lea County LEPC Emergency Manager will make and send copies of this plan to appropriate entities within his jurisdiction, including the Hobbs Fire Department.

APPENDIX F

CHRONOLOGIC RECORD OF EVENTS LOG

CHRONOLOGIC RECORD OF EVENTS LOG

Incident Name	2. Opera	ational Period (Dat	e/Time)		5 (A OTI) (IT) (I OO
			т		UNI	F/ACTIVITY LOG ICS 214
2. In dividual Name	From:	4 ICC Continu	To:		t/l costion	
3. Individual Name		4. ICS Section		5. Assignmen	it/Location	
6. Activity Log		<u>I</u>		F	Page	of
TIME			M	AJOR EVENT	S	
7. Prepared by:					Date/Time	
UNIT/ACTIVITY LOG						ICS 214
	1				1	

APPENDIX G

NEW MEXICO OIL CONSERVATION DIVISION FORM C-141

District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

servation Division
uth St. Francis Dr.

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

			Rele	ease Notific	ation	and Co	rrective A	ction			
						OPERA'	FOR		☐ Initia	al Report	Final Report
Name of Co	mpany					Contact					
Address	221					Telephone 1					
Facility Nar	ne]	Facility Typ	e				
Surface Ow	ner			Mineral C	wner				API No	*	
				LOCA	TION	OF REI	LEASE				
Unit Letter	Section	Township	Range	Feet from the	North/				/est Line	County	
			La	titude		Longitud	le		(20)		
			0.0000		HRE	OF REL					
Type of Relea	ase			na.	UKE	Volume of		- 1	Volume F	Recovered	
Source of Rel		ood e					lour of Occurrence	ce	Date and	Hour of Discove	ry
Was Immedia	nte Notice (AND	Yes [No Not Re	equired	If YES, To	Whom?				
By Whom?						Date and H	Iour				
Was a Watero	course Read			1		If YES, Vo	lume Impacting	the Wate	rcourse.		
			Yes [] No							
If a Watercou	irse was Im	pacted, Descr	ibe Fully.	*							
Describe Cau	se of Probl	em and Reme	dial Actio	n Taken.*							
Describe Are	a Affected	and Cleanup 1	Action Tal	ken.*							
regulations al public health should their cor the environ	l operators or the envi operations h ument. In a	are required to ronment. The nave failed to	o report an acceptana adequately OCD accep	e is true and comp nd/or file certain r ce of a C-141 report investigate and r otance of a C-141	elease no ort by the emediate	otifications as NMOCD m contaminati	nd perform correct arked as "Final R on that pose a thr	ctive acti eport" d eat to gr	ons for rele oes not reli ound water	eases which may eve the operator , surface water,	endanger of liability human health
							OIL CON	SERV	ATION	DIVISION	
Signature:											
Printed Name	9:				1	Approved by Environmental Specialist:					
Title:					1	Approval Da	te;	I	Expiration	Date:	
E-mail Addre	ess:					Conditions of	Approval:			Attached	
Date:			Phone							100000000000000000000000000000000000000	

^{*} Attach Additional Sheets If Necessary

H₂S Contingency Plan

Zia II Gas Plant

DCP Midstream, LP REVISED

July 2016 June 2015

IX. COORDINAT	ION WITH STATE EMERGENCY PLANS [NMAC 19.15.11.9.B(2)(E)]16
NOTIFICATIONS	AND REPORTS16
X. PLAN ACTIVA	ATION [NMAC 19.15.11.9.C] [API RP-55 7.4 D]17
	CVELS
XI. SUBMISSION	OF H ₂ S CONTINGENCY PLANS [NMAC 19.15.11.9.D]18
RETENTION REVISIONS TO T	18 18 THE PLAN
	FIGURES
Figure 1a: Figure 1b: Figure 2: Figure 2a: Figure 2b: Figure 2c: Figure 2d: Figure 3: Figure 4: Figure 5a:	Location of Zia II Plant Surface and Bottom-Hole Locations of Zia AGI #1 and #2 Plot Plan Showing Plant Schematic Safety Equipment: H ₂ S Monitors, Gas Detectors, Fire Detectors Safety Equipment: ESD System Locations, ESD RIO Panel Locations Plant Emergency Siren Location Safety Equipment: Wind Sock Location Plan Safety Equipment: Emergency Breathing Equipment Safety Equipment: Fire Extinguisher Location Plan Emergency Exit Plan Isolation Valve Location Plan 500 and 100 PPM H ₂ S ROE Map, Roadblock and Emergency Assembly Locations Well Design Schematic – Zia AGI #1 and #2 Well Design Schematic — Zia AGI #2 AGI Well Facility Schematic DCP Command Structure Photograph of an H ₂ S Warning Sign

APPENDICES

Appendix A – Immediate Action Plans
Appendix B – Response Flow Diagrams
Appendix C – Telephone Numbers/Emergency Call List
Appendix D – Radius of Exposure (ROE) Calculations
Appendix E – Distribution List
Appendix F – Chronologic Record of Events Log
Appendix G – NMOCD C-141 Form

VII. FACILITY DESCRIPTION, MAPS AND DRAWINGS [NMAC 19.15.11.9.B (2)(c)] [API RP-55 7.4 c.]

DESCRIPTION OF PLANT OPERATIONS AND ZIA #1 AND #2 AGI WELLS

The Plant and AGI Wells are in operation and are manned 24-hours-a-day, 7-days-a week. The Plant operations include gas compression, treating and processing. The Plant gathers and processes produced natural gas from Lea and Eddy Counties in New Mexico. Once gathered at the Plant, the produced natural gas is compressed, dehydrated to remove the water content and processed to remove and recover natural liquids. The processed natural gas and recovered natural gas liquids are then sold and shipped to various customers. The inlet gathering lines and pipelines that bring gas into the plant are regulated by DOT, NACE other applicable standards which require that they be constructed and marked with appropriate warning signs along their respective right-of-ways.

Because the natural gas that is gathered and processed at the Plant contains H₂S ("sour gas"), it must be treated or processed to remove these and other impurities. The CO₂ and H₂S stream that is removed from the natural gas in the amine treating process is compressed to approximately 1,500 – 2,644 psi. This is accomplished using electric driven, reciprocating compressors. Water vapor contained in the gas stream is removed during compression and cooling and is disposed of through a wastewater disposal system. The compressed acid gas is transported via an overhead stainless stainless-steel, corrosion-resistant, NACE-compliant pipe, approximately 1,050 feet in length, from the compressor to the AGI Wells, where AGI #1 it is injectsed into the lower Cherry Canyon (5,470 to 5,670 feet) and upper Brushy Canyon (5,670 to 6,070 feet) Formations. AGI #2 will inject into the Siluro-Devonian between 13,700 and 14,650 feet. The pipe between the compressors and the AGI Wells is contained totally within the boundaries of the Plant and does not cross any public roads. H₂S sensors are located at critical junctions along the pipe which is run on an overhead pipe rack. The pressure in the pipe is monitored continuously so that the acid gas injection process could be stopped should there be any unusual variations in pressure.

The two AGI wells are identical in drilling, easing and completion and differ only in their surface locations, direction and bottom hole locations. The AGI Wells are integral components of the Zia Gas Plant design. Both of the wells are constructed using the same materials as shown in Figures 5a and 5b. The overall schematic of the AGI wells is shown in Figure 6. The intermediate casing of each well extends to 4,600 feet to assure the protection of the Capitan Aquifer and the Upper Delaware Group. Each string of the telescoping casing is cemented to the surface and includes the "downhole" subsurface safety valves (SSVs) which are located approximately 250 feet below the surface on the production tubing to assure that fluid cannot flow back out of the well in the event of a failure of the injection equipment. In addition, the annular space between the projection tubing and the well bore are filled with diesel fuel (an inert fluid) as a further safety measure which is consistent with injection well designs that have been approved by NMOCD for acid gas injection.

Per National Association of Corrosion Engineers (NACE) specifications, downhole components including the SSV and packer are constructed of Inconel 925. Corrosion Resistant Alloy (CRA) joints are constructed of a similar nickel alloy manufactured by Sumitomo. The gates, bonnets and valve stems within the Christmas tree are nickel coated as well. The rest of the Christmas tree is made of standard carbon steel components and outfitted with annular pressure gauges that remotely reports operating pressure conditions in real time to a gas control center. Pursuant to NMAC 19.15.11.12.D(2), in the case of abnormal pressures or any other situation requiring immediate action, the acid gas injection process can be stopped at the compressor, and the wellhead can be shut in using a hydraulically operated wing valve on the Christmas tree. The Plant operator or IC may also shut the SSV. In addition, the well has profile nipples which provide the ability to insert a blanking plug into the base of the well below the packer

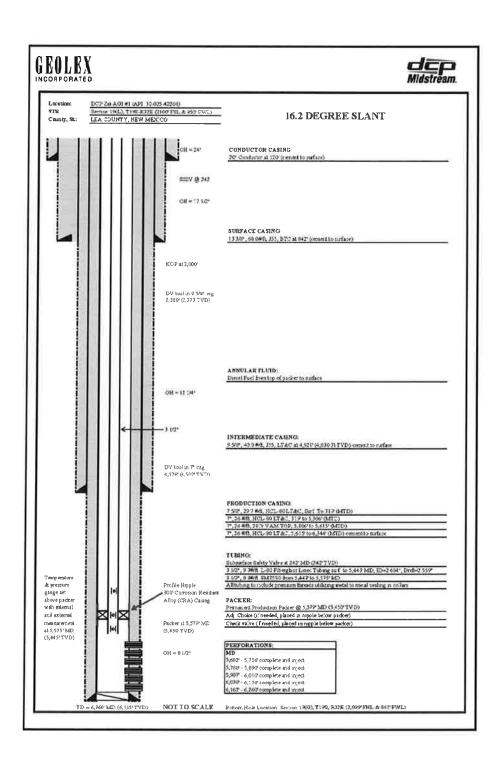


Figure 5a: Well Design Schematic – Zia AGI #1

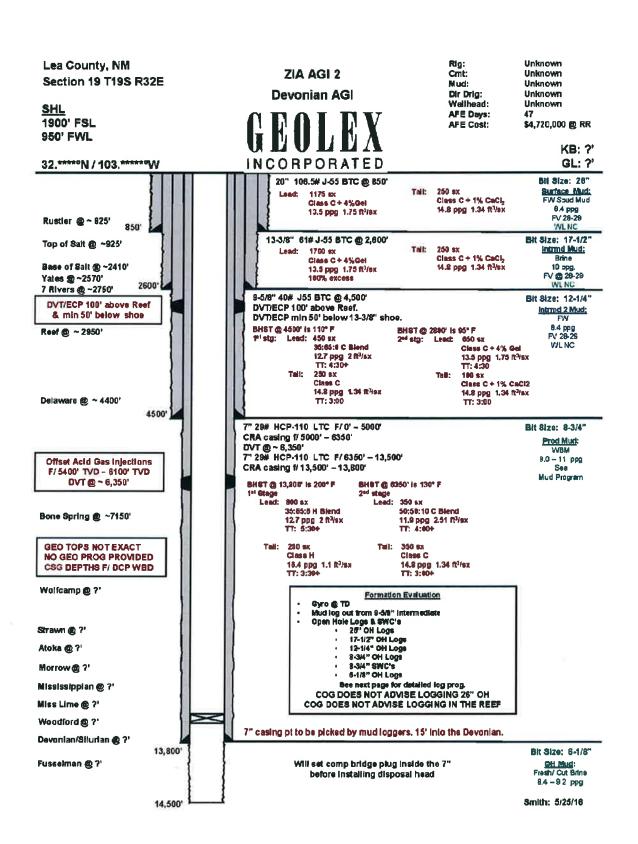


Figure 5b: Well Design Schematic - ZIA AGI #2

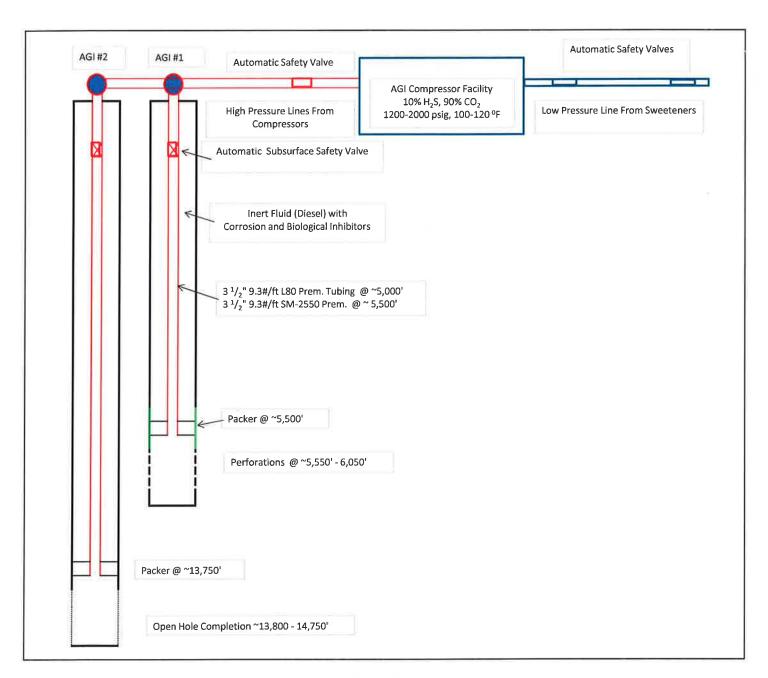


Figure 6: AGI Well Facility Schematic