

November 12, 2014

Jim Griswold New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

Re: Site Assessment Report May and June 2014 Benson-Montin-Greer Highway 537 Truck Receiving Station Rio Arriba County, New Mexico

Dear Mr. Griswold:

On behalf of Benson-Montin-Greer Drilling Corporation (BMG), Animas Environmental Services, LLC (AES) has prepared this report for the May 2014 excavation assessment and June 2014 Geoprobe assessment at the BMG Highway 537 Truck Receiving Station. The assessment was requested by BMG as part of a contract condition in terminating the property lease.

1.0 Site Information

The BMG Highway 537 Truck Receiving Station consisted of eight 500 barrel (bbl) oil storage tanks, one 600 bbl oil storage tank, one 80 bbl open top waste tank, and various pumps and meters associated with crude oil transport truck loading, unloading, and pipeline transport. Surface ownership consists of private land owned by the Schmitz Ranch.

1.1 Site Location

The Hwy 537 Truck Receiving Station is located along the south side of NM State Highway 537 and is adjacent to the wash in Los Ojitos Canyon, which eventually drains to Largo Canyon. The facility is described legally as being located at SW¼ NW¼ Section 18, T25N, R3W, in Rio Arriba County, New Mexico. Latitude and longitude were recorded as N36.39866 and W107.19328, respectively. A Topographic Site Location Map, based on an excerpt from the United States Geological Survey (USGS) 7.5minute Schmitz Ranch, Rio Arriba County, New Mexico topographic quadrangle (USGS 1963), is presented as Figure 1. An Aerial Site Map with a site plan, including existing monitor wells, is included as Figure 2.

1.2 Past Release History

On January 29, 2009, a Western Refining truck driver discovered crude condensate within the bermed area around the storage tanks, on the south side of Tank #1. On January 30, 2009, TNT used a trackhoe to excavate an area (10 feet by 20 feet by 15 feet in depth) around the buried 6-inch line. The release was the found to be the result of a corrosion hole along the bottom of the pipe near the truck loading pumps. Because it was determined that the leak had impacted soils to at least 15 feet below ground surface (bgs), and due to the presence of tanks, buried pipe, buried conduit, and fixed pumps and meters within the release area, BMG and AES, in consultation with NMOCD, concluded that an assessment of the release area by installing soil borings and monitor wells would be the most appropriate assessment method.

On February 2, 2009, the 6-inch line was repaired, and the excavation was backfilled with clean fill material. Approximately 100 cubic yards of contaminated soil were transported to the TNT Landfarm for disposal. From February 16 through 20, 2009, site investigation activities were conducted by AES in order to delineate the full extent of petroleum hydrocarbon impact on surface and subsurface soils and groundwater resulting from the release. The investigation procedures included the installation of 11 monitor wells (MW-1 through MW-11) and collection of soil and groundwater samples. Work was completed in accordance with the *Sampling and Analysis Plan* prepared by AES and dated February 3, 2009, and also in accordance with U.S. Environmental Protection Agency (USEPA) Environmental Response Team's Standard Operating Procedures (SOPs), and applicable American Society of Testing and Materials (ASTM) standards. Details of the site investigation are included in the AES *Site Investigation Report* submitted to NMOCD in April 2009 and in subsequent monitoring reports submitted to NMOCD.

2.0 Site Assessment for Lease Termination – May and June 2014

On May 12 and June 4, 2014, AES conducted a site assessment on behalf of BMG as part of termination of the site lease. The work included soil sampling during the excavation of hydrocarbon contaminated soils that were discovered when the storage tanks and truck loading station were removed from the site, and a subsequent assessment of subsurface soils, utilizing a Geoprobe. Approximately 600 cubic yards of petroleum impacted soil were removed from the excavated areas and transported to the BMG Landfarm by TPC, LLC.

2.1 NMOCD Ranking

In accordance with New Mexico Oil Conservation Division (NMOCD) release protocols, action levels were established per NMOCD *Guidelines for Remediation of Leaks, Spills, and Releases* (August 1993) prior to site work. The release was given a ranking score of 40 based on the following factors:

- Depth to Groundwater: The average depth to groundwater in the 11 monitoring wells on site is 28.37 feet. (20 points)
- Wellhead Protection Area: The release location is not within a wellhead protection area. (0 points)
- Distance to Surface Water Body: The wash in Los Ojitos Canyon is located approximately 135 feet south of the location. (20 points)

2.2 Soil Sampling – Field Sampling and Laboratory Analyses

On May 12, 2014, a total of 11 composite (SC-1 through SC-11) soil samples were collected from the two discrete areas of excavation. Samples were collected from each wall (i.e. north, south, east, and west) and base of both excavations and from the center trench. All soil samples were field-screened for volatile organic carbons (VOCs) and total petroleum hydrocarbons (TPH). Excavation area extents and the sample locations from May 2014 are shown on Figure 3.

On June 4, 2014, a total of 59 discrete soil samples from 20 Geoprobe borings (SB-1 through SB-20) were collected as part of further investigating petroleum contaminated soils at the site. Soil borings were advanced to between 8 and 20 feet bgs to avoid intersecting the water table. Soil samples were field-screened for VOCs, and selected samples were also field-analyzed for TPH. One composite sample from the storage tank area collected during the June assessment was submitted for confirmation laboratory analysis. The soil boring locations are shown in Figure 4.

2.2.1 Volatile Organic Compounds

Field screening for VOC vapors was conducted with a photo-ionization detector (PID) organic vapor meter (OVM). Before beginning field screening, the PID-OVM was first calibrated with 100 parts per million (ppm) isobutylene gas.

2.2.2 Total Petroleum Hydrocarbons

Field TPH samples were analyzed per U.S. Environmental Protection Agency (USEPA) Method 418.1 using a Buck Scientific Model HC-404 Total Hydrocarbon Analyzer Infrared Spectrometer (Buck). A 3-point calibration was completed prior to conducting soil analyses. Field analytical protocol followed AES's *Standard Operating Procedure: Field Analysis Total Petroleum Hydrocarbons per EPA Method 418.1*.

2.2.3 Laboratory Analyses

The soil samples collected for laboratory analysis were placed in new, clean, laboratorysupplied containers, which were then labeled, placed on ice, and logged onto a sample chain of custody record. Samples were maintained on ice until delivery to the analytical laboratory, Hall Environmental Analysis Laboratory (Hall) in Albuquerque, New Mexico. All soil samples were laboratory analyzed for:

- Benzene, toluene, ethylbenzene, and xylene (BTEX) per USEPA Method 8021B; and
- TPH for gasoline range organics (GRO) and diesel range organics (DRO) per USEPA Method 8015D.

2.3 Field and Laboratory Analytical Results

2.3.1 Field Results

On May 12, 2014, excavation assessment field screening results for VOCs via OVM showed concentrations ranging from 2.9 ppm in SC-9 up to 368 ppm in SC-11. Field TPH concentrations ranged from 28.6 mg/kg in SC-6 up to 2,350 mg/kg in SC-7. Field sampling results are presented in Table 1 and on Figure 3.

On June 4, 2014, assessment results for VOCs via OVM ranged from 0.0 ppm in SB-1, SB-2, SB-4, and SB-6 up to greater than 5,000 ppm in SB-11 through SB-14, SB-18, and SB-19. Field TPH concentrations ranged from 28.1 mg/kg in SB-1 up to greater than 2,500 mg/kg in SB-12 and SB-19. Results are included in Table 1 and on Figure 4. The AES Field Sampling Reports are included in the appendix.

2.3.2 Laboratory Analytical Results

For confirmation purposes, a composite sample was collected from the tank area excavation for laboratory analyses to confirm the field screening results obtained on June 4, 2014. The composite sample consisted of samples collected from SB-1 through SB-8 from the interval 4 to 8 feet. Laboratory analytical results reported that benzene concentrations were below laboratory detection limits, and total BTEX concentrations were less than 0.14 mg/kg. TPH concentrations were reported as less than 2.8 mg/kg (GRO) and 26 mg/kg (DRO). Results are presented in Table 2 and on Figure 4. The laboratory analytical report is included in the appendix.

2.4 Conclusions, Mitigation Efforts and Scheduled Site Activities

2.4.1 Conclusions

On May 12 and June 4, 2014, AES conducted a contaminated soils site assessment on behalf of BMG as part of termination of the property lease. The work included excavation clearance and soil boring assessment of two discrete areas, along with associated field sampling and laboratory analyses.

Former Tank Area

Under the former tank area, the field screening results for VOCs via OVM ranged from 0.0 ppm in SB-1, SB-2, SB-4, and SB-6 up to 1,048 ppm in SB-5 (8 to 12 ft). With the exception of SB-5, VOC concentrations in the tank area borings were below the NMOCD action level of 100 ppm VOCs. Field TPH concentrations were also below the NMOCD action level of 100 mg/kg in all borings, with the exception of SB-5, in which the highest TPH concentration was noted at 225 mg/kg (12 to 16 ft bgs). The remaining intervals in SB-5 had TPH concentrations of 61.5 mg/kg (4 to 8 ft and 8 to 12 ft bgs) and 69.2 mg/kg (16 to 20 ft bgs). With the exception of SB-5, residual contaminant concentrations below the former tank area are below applicable NMOCD action levels for VOCs and TPH.

Former Truck Loading Station

Under the former loading area, the field screening results for VOCs via OVM ranged from 0.3 in SB-15, SB-16, SB-17 and SB-20 up to greater than 5,000 ppm in SB-11 through SB-14, SB-18, and SB-19. Field TPH concentrations were also reported above the NMOCD action level of 100 mg/kg. Based on VOC and TPH concentrations, residual contaminants in subsurface soils are still present at the former truck loading station area and former pump area.

2.4.2 Mitigation Efforts

In an effort to expedite remediation of residual vapors, soil concentrations and free product at the site, AES installed a Remediation Service International (RSI) mobile extraction and treatment system on August 4, 2014. The RSI unit is currently extracting from existing MW-1, which is located in the area between the former pumps and loading station.

2.4.3 Scheduled Site Activities

AES recommends running the RSI unit on a bi-weekly basis until December 2014 and then taking the unit off-line during the winter months. Results of the MPE system operations will be summarized in the Periodic Progress Report 4th Quarter 2014. Additionally, AES is currently reviewing options to continue remediation during winter months.

Additional site characterization of the lateral and vertical extent of impacted soils in the former truck loading station area (beyond the site characterization work completed in 2009) is also recommended.

If you have any questions regarding this report or site conditions, please do not hesitate to contact Brent Everett or Ross Kennemer at (505) 564-2281.

Brent werett

Brent Everett, M.S. Sr. Hydrogeologist/Project Manager

M.Kennener

Ross Kennemer Principal

Attachments

Tables Table 1. Field Sampling Report Table 2. Laboratory Analytical Results

Figures

- Figure 1. Topographic Location Map
- Figure 2. Aerial Site Map
- Figure 3. Release Assessment Sample Locations and Results, May 2014
- Figure 4. Release Assessment Sample Locations and Results, June 2014

Appendix

AES Field Sampling Reports (May 12, 2014 and June 4, 2014) Laboratory Analytical Reports (Hall Nos. 1406812)

cc: Mike Dimond Zach Stradling Benson-Montin-Greer Drilling Corp. 4900 College Blvd Farmington, NM 87402

Craig Schmitz, Private Land Owner #70 County Road 405 Lindrith, NM 87029

Brandon Powell New Mexico Oil Conservation Division 1000 Rio Brazos Road Aztec, NM 87410

C:\Users\beverett\Dropbox (Animas Environmental)\0000 Animas Server Dropbox EM (1)\2014 Projects\BMG\Hwy 537 2014 Rel and Excavation\Reports and Workplans\BMG Excavation Assessment 2014 111214.docx Tables

TABLE 1 FIELD SAMPLING VOC AND TPH RESULTS

BMG HWY 537 2009 RELEASE ASSESSMENT

MAY AND JUNE 2014

Sample ID	Date Sampled	Sample Depth (ft bgs)	VOCs (ppm)	Field TPH (mg/kg)
A	nalytical Met	thod	PID-OVM	418.1
NIM	IOCD Action	Level*	100	100
SC-1	5/12/2014	1-3	9.8	746
SC-2	5/12/2014	1-3	9.2	734
SC-3	5/12/2014	1-3	99.6	323
SC-4	5/12/2014	1-3	64.1	374
SC-5	5/12/2014	2-3	211	1,030
SC-6	5/12/2014	4	2.4	28.6
SC-7	5/12/2014	1-3	189	2,346
SC-8	5/12/2014	1-3	21.1	1,528
SC-9	5/12/2014	1-3	2.9	1,770
SC-10	5/12/2014	1-3	257	971
SC-11	5/12/2014	2-3	368	821
		4-8	0.7	35.8
SB-1	6/4/2014	8-12	0.0	35.8
		12-16	0.1	28.1
SB-2	6/4/2014	4-8	0.0	35.4
JD-2	0/4/2014	8-12	0.0	NA
SB-3	6/4/2014	4-8	0.1	41.0
50 5	0/4/2014	8-12	0.3	NA
SB-4	6/4/2014	4-8	0.1	76.9
50-4	0/4/2014	8-12	0.0	NA
		4-8	102	61.5
SB-5	6/4/2014	8-12	1,048	61.5
50 5	0/4/2014	12-16	NA	225
		16-20	1,040	69.2
		4-8	0.9	43.5
SB-6	6/4/2014	8-12	0.2	NA
		12-16	0.0	44.8
SB-7	6/4/2014	4-8	20.6	55.1
557	0/7/2014	8-12	10.9	35.8
SB-8	6/4/2014	4-8	33.4	89.8
550	0, 1, 2014	8-12	10.4	34.6
		4-8	0.3	NA
SB-9	6/4/2014	8-12	0.3	NA
		12-16	1.9	44.8

TABLE 1 FIELD SAMPLING VOC AND TPH RESULTS BMG HWY 537 2009 RELEASE ASSESSMENT MAY AND JUNE 2014

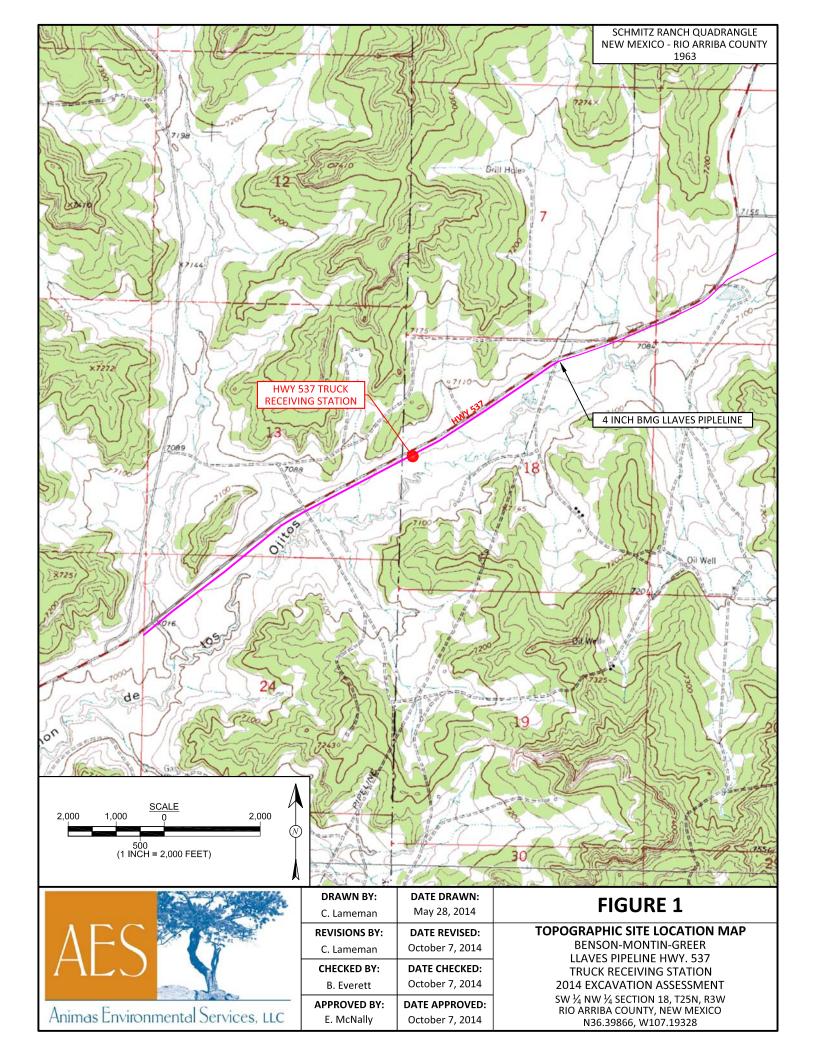
Sample ID	Date Sampled	Sample Depth (ft bgs)	VOCs (ppm)	Field TPH (mg/kg)
A	nalytical Met	thod	PID-OVM	418.1
NM	OCD Action I	Level*	100	100
		4-8	1.4	NA
SB-10	6/4/2014	8-12	2.3	NA
		12-16	2.2	41.0
		4-8	>5,000	NA
SB-11	6/4/2014	8-12	>5,000	NA
20-11	0, 4, 2014	12-16	>5,000	NA
		16-20	>5,000	692
		4-8	>5,000	NA
SB-12	6/4/2014	8-12	>5,000	NA
	0/4/2014	12-16	>5,000	NA
		16-20	>5,000	>2,500
		4-8	>5,000	NA
SB-13	6/4/2014	8-12	>5,000	NA
2B-12	0/4/2014	12-16	>5,000	NA
		16-20	>5,000	NA
		4-8	>5,000	NA
SB-14	6/4/2014	8-12	2,800	NA
3D-14		12-16	23.6	41.0
		16-20	22.4	NA
		0-4	4.1	NA
SB-15	6/4/2014	4-8	4.1	NA
		8-12	1.5	35.8
		0-4	0.3	NA
SB-16	6/4/2014	4-8	1.2	NA
		8-12	3.2	NA
		0-4	55.9	NA
SB-17	6/4/2014	4-8	3.5	NA
		8-12	4.5	NA
CD 10	6/1/2011	0-4	13.2	NA
SB-18	6/4/2014	4-8	>5000	NA
		0-4	1.3	NA
SB-19	6/4/2014	4-8	96.1	NA
		8-12	>5,000	>2,500
		0-4	1.2	NA
SB-20	6/4/2014	4-8	1.1	NA
		8-12	0.8	NA

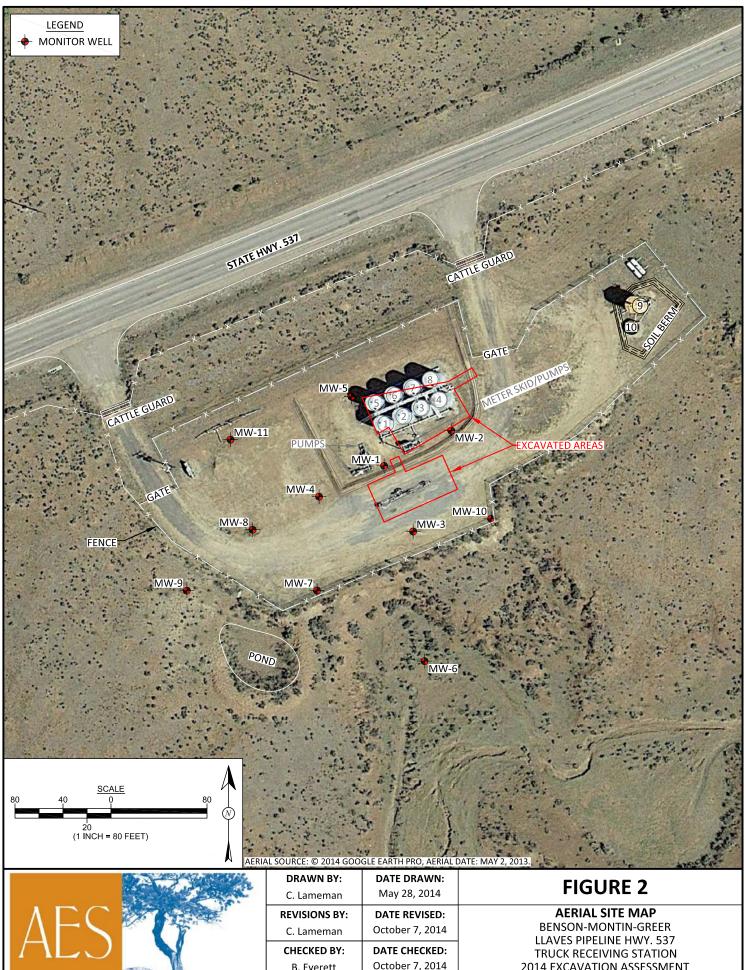
TABLE 1 FIELD SAMPLING VOC AND TPH RESULTS BMG HWY 537 2009 RELEASE ASSESSMENT MAY AND JUNE 2014

Sample ID	Date Sampled	Sample Depth (ft bgs)	VOCs (ppm)	Field TPH (mg/kg)
A	nalytical Me	PID-OVM	418.1	
NM	IOCD Action	100	100	

NOTE: NA = Not Analyzed

*Action level determined by the NMOCD ranking score per NMOCD Guidelines for Remediation of Leaks, Spills, and Releases (August 1993)

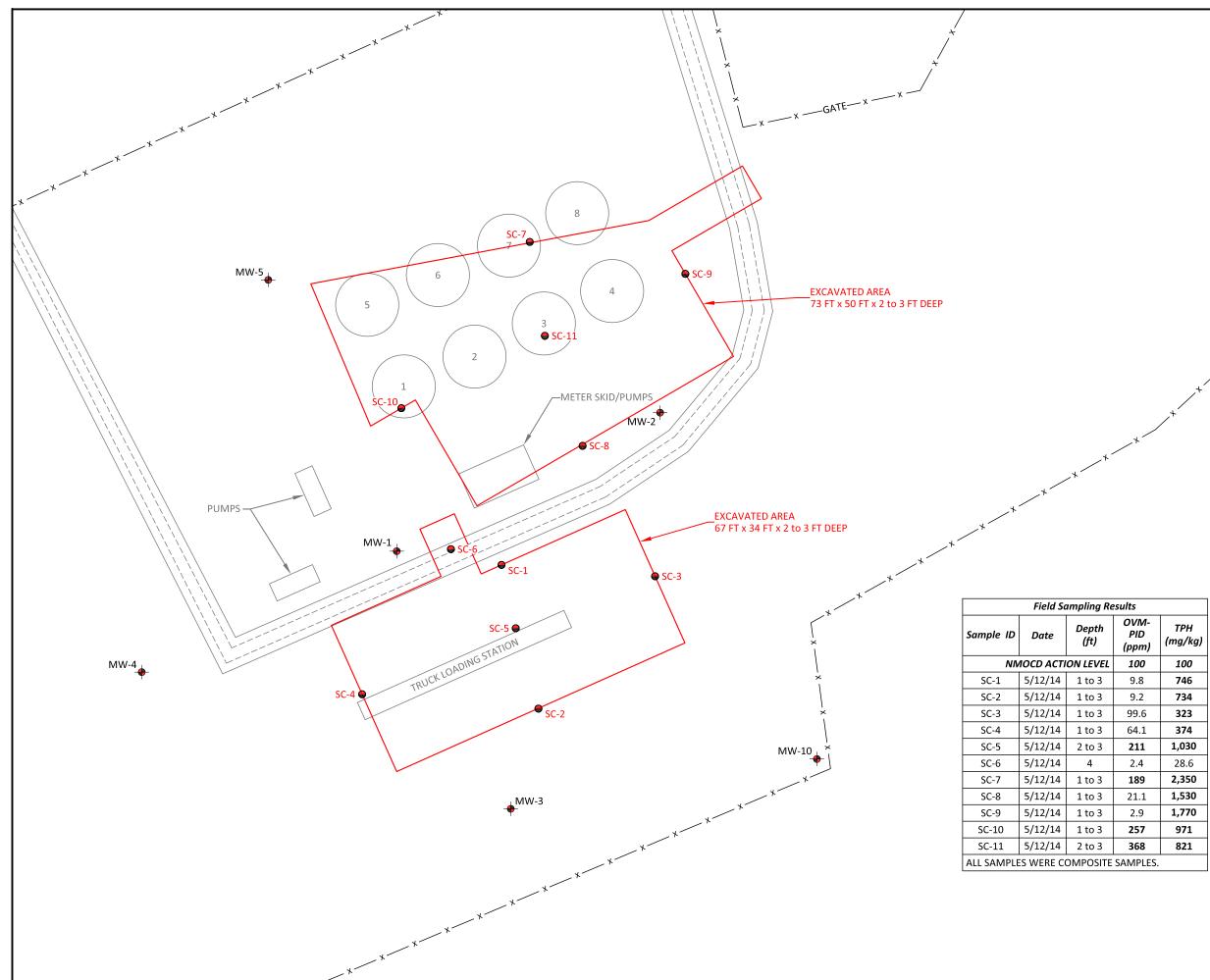

TABLE 2. SUMMARY OF GROUNDWATER LABORATORY ANALYTICALS RESULTS

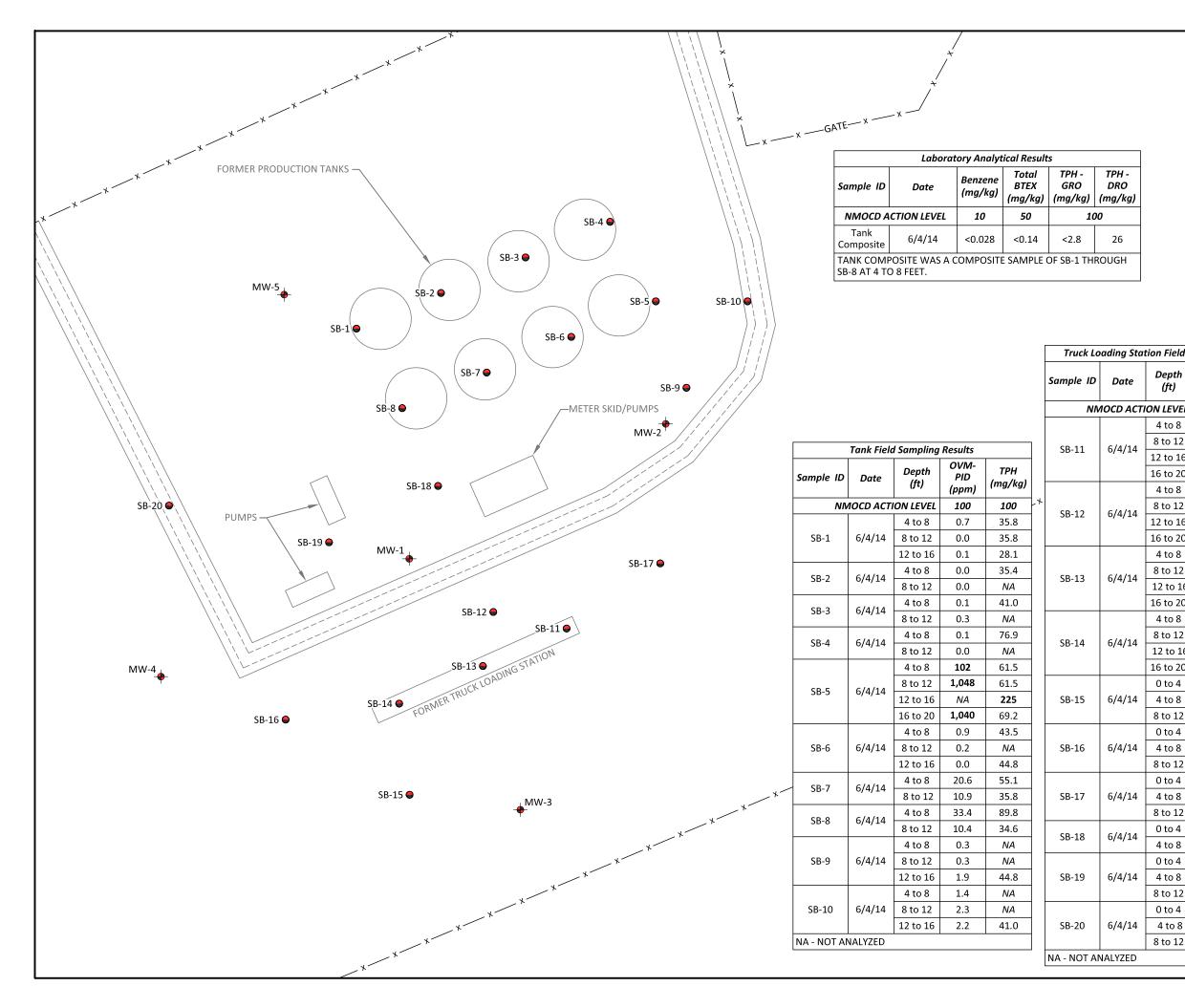

Bendon-Montin-Greer 2009 Truck Receiver Station Excavation Clearance, Rio Arriba County, New Mexico

Sample ID	Sample Depth (ft bgs)	Date Sampled	Benzene (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)
NM	OCD Action Le	vel*	10	50	100	100
Tank Composite	4 to 8	6/4/14	<0.028	<0.14	<2.8	26

Notes: *Action level determined by the NMOCD ranking score per

NMOCD Guidelines for Remediation of Leaks, Spills, and Releases (August 1993) Tank Composite was a composite sample of SB-1 through SB-8 at 4 to 8 feet bgs Figures




Animas Environmental Services, LLC

C. Lameman	Way 20, 2014
REVISIONS BY:	DATE REVISED:
C. Lameman	October 7, 2014
CHECKED BY:	DATE CHECKED:
B. Everett	October 7, 2014
APPROVED BY:	DATE APPROVED:
E. McNally	October 7, 2014

2014 EXCAVATION ASSESSMENT SW ¼ NW ¼ SECTION 18, T25N, R3W RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328

FIGURE 3 EXCAVATION AREA SAMPLE LOCATIONS AND RESULTS, MAY 2014 BENSON-MONTIN-GREER LLAVES PIPELINE HWY. 537 TRUCK RECEIVING STATION 2014 EXCAVATION ASSESSMENT SW ½ NW ¼ SECTION 18, T25N, R3W RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328 Animas Environmental Services, DRAWN BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE APPROV E. McNally October 7, 20 DATE APPROVE B. Everett October 7, 20 CHECKED BY: DATE APPROV C. Contarinment BERM - x - FENCE	LLC N: 4 D: 114
LOCATIONS AND RESULTS, MAY 2014 BENSON-MONTIN-GREER LLAVES PIPELINE HWY. 537 TRUCK RECEIVING STATION 2014 EXCAVATION ASSESSMENT SW ½ NW ½ SECTION 18, T25N, R3W RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328 Animas Environmental Services, DRAWN BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION SMONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	LLC N: 4 D: 114
MAY 2014 BENSON-MONTIN-GREER LLAVES PIPELINE HWY. 537 TRUCK RECEIVING STATION 2014 EXCAVATION ASSESSMENT SW ¼ NW ¼ SECTION 18, T2SN, R3W RIO ARIBA COUNTY, NEW MEXICO N36.39866, W107.19328 ARIBA COUNTY, NEW MEXICO N36.39866, W107.19328 Animas Environmental Services, DRAWN BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE APPROV C. Lameman October 7, 20 CHECKED BY: DATE APPROV C. MONITOR WELL LOCATION SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	LLC N: 4 D: 114
BENSON-MONTIN-GREER LLAVES PIPELINE HWY. 537 TRUCK RECEIVING STATION 2014 EXCAVATION ASSESSMENT SW ¼ NW ¼ SECTION 18, T2SN, R3W RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328 Animas Environmental Services, DRAWN BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	LLC N: 4 D: 114
TRUCK RECEIVING STATION 2014 EXCAVATION ASSESSMENT SW ¹ / ₄ NW ¹ / ₄ SECTION 18, T25N, R3W RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328 Animas Environmental Services, DRAWN BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE CHECKE C. Lameman October 7, 20 CHECKED BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE APPROV C. Lameman October 7, 20 CHECKED BY: DATE APPROV E. MCNally October 7, 20 E. MCNally October 7, 20 CHECKED BY: DATE APPROV CONTAINMENT BERM	LLC N: 4 D: 114
2014 EXCAVATION ASSESSMENT SW ¼ NW ¼ SECTION 18, T25N, R3W RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328 Animas Environmental Services, DRAWN BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE DRAW C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	LLC N: 4 D: 114
SW ¼ NW ¼ SECTION 18, T25N, R3W RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328 ARES Environmental Services, DRAWN BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE CHECKE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	LLC N: 4 D: 114
RIO ARRIBA COUNTY, NEW MEXICO N36.39866, W107.19328	LLC N: 4 D: 114
AEST Animas Environmental Services, DRAWN BY: DATE DRAW C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 APPROVED BY: DATE APPROV C. MCNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	N: 4 D: 014
DRAWN BY: DATE DRAWN C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 APPROVED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	N: 4 D: 014
DRAWN BY: DATE DRAWN C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 APPROVED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	N: 4 D: 014
DRAWN BY: DATE DRAWN C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 APPROVED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	N: 4 D: 014
C. Lameman May 29, 201 REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 APPROVED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS SAMPLE LOCATIONS FORMER SECONDARY CONTAINMENT BERM	4 D: 014
* REVISIONS BY: DATE REVISE C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 APPROVED BY: DATE APPROV E. McNally October 7, 20 LEGEND • SAMPLE LOCATIONS • MONITOR WELL LOCATION • FORMER SECONDARY CONTAINMENT BERM	D: 014
C. Lameman October 7, 20 CHECKED BY: DATE CHECKE B. Everett October 7, 20 APPROVED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	14
CHECKED BY: DATE CHECKE B. Everett October 7, 20 APPROVED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	
B. Everett October 7, 20 APPROVED BY: DATE APPROV E. McNally October 7, 20 E. McNally October 7, 20 EEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	-1.1*
APPROVED BY: DATE APPROV E. McNally October 7, 20 LEGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	
E. McNally October 7, 20 EGEND SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	
SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	
SAMPLE LOCATIONS MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	
MONITOR WELL LOCATION FORMER SECONDARY CONTAINMENT BERM	
FORMER SECONDARY CONTAINMENT BERM	
CONTAINMENT BERM	
1	
(g)	
0	
0	
0	
0	
20 10 0	20
	20

			T	FIGU	RE 4					
				RELEASE ASSES LOCATIONS A JUNE BENSON-MC LLAVES PIPEL TRUCK RECEIN 2014 EXCAVATIO SW ¼ NW ¼ SECTI RIO ARRIBA COUN N36.39866, ¹	ND RESULTS, 2014 INTIN-GREER INE HWY. 537 /ING STATION DN ASSESSMENT ON 18, T25N, R3W ITY, NEW MEXICO					
				AES Animas Environme	ental Services U.C.					
		/	∕1							
		+		DRAWN BY:	DATE DRAWN:					
ld S	ampling R	esults	╞	C. Lameman	June 9, 2014					
h	OVM- PID (ppm)	TPH (mg/kg)		REVISIONS BY: C. Lameman CHECKED BY:	DATE REVISED: June 9, 2014 DATE CHECKED:					
EL	100	100		B. Everett	October 6, 2014					
3	>5,000	NA	ł	APPROVED BY:	DATE APPROVED:					
2	>5,000	NA		E. McNally	October 6, 2014					
16	>5,000	NA	ł	LEG						
20	>5,000	692								
3	>5,000	NA		SOIL BORING LOCATIONS						
2	>5,000	NA		I	ONITOR WELL LOCATION					
16	>5,000	NA		FORMER SE						
20	>5,000	>2,500		— × — FENCE						
3	>5,000	NA								
2	>5,000	NA								
16	>5,000	NA								
20	>5,000	NA								
3 2	>5,000	NA								
2 16	2,800 23.6	NA 41.0								
16 20	23.6	41.0 NA								
1	4.1	NA								
+ 3	4.1	NA								
2	1.5	35.8								
1	0.3	NA								
3	1.2	NA								
2	3.2	NA								
1	55.9	NA								
3	3.5	NA								
2	4.5	NA		,						
1	13.2	NA		l						
3	>5,000	NA		·						
1	1.3	NA			Ŷ					
3	96.1	NA			·					
2	>5,000	>2,500			l					
1	1.2	NA		•	N ALE					
8	1.1	NA		20 10 (<u>20</u>					
2	0.8	NA								
				5 (1 INCH =	20 FEET)					

Appendix

AES Field Sampling Report

Animas Environmental Services, LLC

www.animasenvironmental.com

624 E. Comanche Farmington, NM 87401 505-564-2281

> Durango, Colorado 970-403-3084

Client: Benson-Montin-Greer

Project Location: Hwy 537 2009 Release (North Excavation)

Date: 5/12/2014

Matrix: Soil

Sample ID	Collection Date	Time of Sample Collection	Sample Location	OVM (ppm)	Field TPH* (mg/kg)	Field TPH Analysis Time	TPH PQL (mg/kg)	DF	TPH Analysts Initials
SC-7	5/12/2014	10:10	North Wall	189	2,346	11:33	20.0	1	SL
SC-8	5/12/2014	10:15	South Wall	21.1	1,528	11:37	20.0	1	SL
SC-9	5/12/2014	10:20	East Wall	2.9	1,770	11:42	20.0	1	SL
SC-10	5/12/2014	10:25	West Wall	257	971	11:46	20.0	1	SL
SC-11	5/12/2014	10:30	Base	368	821	11:51	20.0	1	SL

DF Dilution Factor

NA Not Analyzed

ND Not Detected at the Reporting Limit

PQL Practical Quantitation Limit

*Field TPH concentrations recorded may be below PQL.

Total Petroleum Hydrocarbons - USEPA 418.1

Analyst: Stephanie Algon

AES Field Sampling Report

Animas Environmental Services, LLC

www.animasenvironmental.com

624 E. Comanche Farmington, NM 87401 505-564-2281

> Durango, Colorado 970-403-3084

Client: Benson-Montin-Greer

Project Location: Hwy 537 2009 Release (South Excavation)

Date: 5/12/2014

Matrix: Soil

Sample ID	Collection Date	Time of Sample Collection	Sample Location	OVM (ppm)	Field TPH* (mg/kg)	Field TPH Analysis Time	TPH PQL (mg/kg)	DF	TPH Analysts Initials
SC-1	5/12/2014	9:40	North Wall	9.8	746	11:07	20.0	1	SL
SC-2	5/12/2014	9:45	South Wall	9.2	734	11:10	20.0	1	SL
SC-3	5/12/2014	9:50	East Wall	99.6	323	11:12	20.0	1	SL
SC-4	5/12/2014	9:55	West Wall	64.1	374	11:15	20.0	1	SL
SC-5	5/12/2014	10:00	Base	211	1,033	11:17	20.0	1	SL
SC-6	5/12/2014	10:05	Center Trench	2.4	28.6	11:20	20.0	1	SL

DF Dilution Factor

NA Not Analyzed

ND Not Detected at the Reporting Limit

PQL Practical Quantitation Limit

*Field TPH concentrations recorded may be below PQL.

Total Petroleum Hydrocarbons - USEPA 418.1

Analyst: Stephanie Algon

AES Field Sampling Report

Animas Environmental Services, LLC

www.animasenvironmental.com

624 E. Comanche Farmington, NM 87401 505-564-2281

> Durango, Colorado 970-403-3084

Client: Benson-Montin-Greer

Project Location: Llaves Pipeline Hwy 537 2009 Release

Date: 6/4/2014

Matrix: Soil

Sample ID	Collection Date	Time of Sample Collection	Sample Location	OVM (ppm)	Field TPH Analysis Time	Field TPH* (mg/kg)	TPH PQL (mg/kg)	DF	TPH Analysts Initials
SB-1 @ 4'-8'	6/4/2014	11:30	Tank 5	0.7	12:02	35.8	20.0	1	EMS
SB-1 @ 8'-12'	6/4/2014	11:35	Tank 5	0.0	12:05	35.8	20.0	1	EMS
SB-1 @ 12'-16'	6/4/2014	11:40	Tank 5	0.1	12:08	28.1	20.0	1	EMS
SB-2 @ 4'-8'	6/4/2014	11:45	Tank 6	0.0	12:36	35.4	20.0	1	EMS
SB-2 @ 8'-12'	6/4/2014	11:50	Tank 6	0.0	Not Analyzed for TPH				
SB-3 @ 4'-8'	6/4/2014	11:55	Tank 7	0.1	12:38	41.0	20.0	1	EMS
SB-3 @ 8'-12'	6/4/2014	12:00	Tank 7	0.3		Not	Analyzed for T	PH	
SB-4 @ 4'-8'	6/4/2014	12:04	Tank 8	0.1	12:43	76.9	20.0	1	EMS
SB-4 @ 8'-12'	6/4/2014	12:08	Tank 8	0.0		Not	Analyzed for T	PH	
SB-5 @ 4'-8'	6/4/2014	12:10	Tank 4	102	12:47	61.5	20.0	1	EMS
SB-5 @ 8'-12'	6/4/2014	12:15	Tank 4	1,048	12:50	61.5	20.0	1	EMS
SB-5 @ 12'-16'	6/4/2014	12:20	Tank 4	NA	12:53	225	20.0	1	EMS
SB-5 @ 16'-20'	6/4/2014	12:25	Tank 4	1,040	12:56	69.2	20.0	1	EMS
SB-6 @ 4'-8'	6/4/2014	12:30	Tank 3	0.9	13:21	43.5	20.0	1	EMS

SB-6 @ 8'-12'	6/4/2014	12:35	Tank 3	0.2		Not	Analyzed for T	PH		
SB-6 @ 12'-16'	6/4/2014	12:40	Tank 3	0.0	13:25	44.8	20.0	1	EMS	
SB-7 @ 4'-8'	6/4/2014	12:45	Tank 2	20.6	13:27	55.1	20.0	1	EMS	
SB-7 @ 8'-12'	6/4/2014	12:50	Tank 2	10.9	13:30	35.8	20.0	1	EMS	
SB-8 @ 4'-8'	6/4/2014	12:55	Tank 1	33.4	13:38	89.8	20.0	1	EMS	
SB-8 @ 8'-12'	6/4/2014	13:00	Tank 1	10.4	13:41	34.6	20.0	1	EMS	
SB-9 @ 4'-8'	6/4/2014	13:15	See Figure	0.3		Not	Analyzed for T	PH	-	
SB-9 @ 8'-12'	6/4/2014	13:20	See Figure	0.3		Not	Analyzed for T	PH		
SB-9 @ 12'-16'	6/4/2014	13:50	See Figure	1.9	14:03	44.8	20.0	1	EMS	
SB-10 @ 4'-8'	6/4/2014	13:35	See Figure	1.4		Not	Analyzed for T	PH		
SB-10 @ 8'-12'	6/4/2014	13:40	See Figure	2.3	Not Analyzed for TPH					
SB-10 @ 12'-16'	6/4/2014	13:45	See Figure	2.2	14:00	41.0	20.0	1	EMS	
SB-11 @ 4'-8'	6/4/2014	14:05	See Figure	>5,000	Not Analyzed for TPH					
SB-11 @ 8'-12'	6/4/2014	14:08	See Figure	>5,000		Not	Analyzed for T	PH		
SB-11 @ 12'-16'	6/4/2014	14:12	See Figure	>5,000		Not	Analyzed for T	PH		
SB-11 @ 16'-20'	6/4/2014	14:15	See Figure	>5,000	14:58	692	20.0	1	EMS	
SB-12 @ 4'-8'	6/4/2014	14:20	See Figure	>5,000		Not	Analyzed for T	PH		
SB-12 @ 8'-12'	6/4/2014	14:25	See Figure	>5,000		Not	Analyzed for T	PH		
SB-12 @ 12'-16'	6/4/2014	14:30	See Figure	>5,000		Not	Analyzed for T	PH		
SB-12 @ 16'-20'	6/4/2014	14:33	See Figure	>5,000	14:52	>2,500	20.0	1	EMS	
SB-13 @ 4'-8'	6/4/2014	14:35	See Figure	>5,000		Not	Analyzed for T	PH		
SB-13 @ 8'-12'	6/4/2014	14:38	See Figure	>5,000		Not	Analyzed for T	PH		
SB-13 @ 12'-16'	6/4/2014	14:42	See Figure	>5,000		Not	Analyzed for T	PH		
SB-13 @ 16'-20'	6/4/2014	14:45	See Figure	>5,000		Not	Analyzed for T	PH		
SB-14 @ 4'-8'	6/4/2014	14:50	See Figure	>5,000		Not	Analyzed for T	PH		
SB-14 @ 8'-12'	6/4/2014	14:52	See Figure	2,800		Not	Analyzed for T	PH		
SB-14 @ 12'-16'	6/4/2014	14:57	See Figure	23.6	16:00	41.0	20.0	1	EMS	
SB-14 @ 16'-20'	6/4/2014	15:03	See Figure	22.4		Not	Analyzed for T	PH		

SB-15 @ 0'-4'	6/4/2014	15:20	See Figure	4.1	Not Analyzed for TPH				
SB-15 @ 4'-8'	6/4/2014	15:25	See Figure	4.1	Not Analyzed for TPH				
SB-15 @ 8'-12'	6/4/2014	15:30	See Figure	1.5	16:04 35.8 20.0 1				
SB-16 @ 0'-4'	6/4/2014	15:35	See Figure	0.3	Not Analyzed for TPH				
SB-16 @ 4'-8'	6/4/2014	15:40	See Figure	1.2		Not	Analyzed for Tl	PH	
SB-16 @ 8'-12'	6/4/2014	15:45	See Figure	3.2		Not	Analyzed for Tl	PH	
SB-17 @ 0'-4'	6/4/2014	15:47	See Figure	55.9		Not	Analyzed for Tl	PH	
SB-17 @ 4'-8'	6/4/2014	15:50	See Figure	3.5	Not Analyzed for TPH				
SB-17 @ 8'-12'	6/4/2014	15:52	See Figure	4.5		Not	Analyzed for Ti	PH	
SB-18 @ 0'-4'	6/4/2014	15:57	See Figure	13.2		Not	Analyzed for Ti	PH	
SB-18 @ 4'-8'	6/4/2014	16:00	See Figure	>5,000		Not	Analyzed for Ti	PH	
SB-19 @ 0'-4'	6/4/2014	16:02	See Figure	1.3		Not	Analyzed for Tl	PH	
SB-19 @ 4'-8'	6/4/2014	16:05	See Figure	96.1		Not	Analyzed for Tl	PH	
SB-19 @ 8'-12'	6/4/2014	16:08	See Figure	>5,000	16:32	>2,500	20.0	1	EMS
SB-20 @ 0'-4'	6/4/2014	16:14	See Figure	1.2		Not	Analyzed for Ti	PH	
SB-20 @ 4'-8'	6/4/2014	16:16	See Figure	1.1	Not Analyzed for TPH				
SB-20 @ 8'-12'	6/4/2014	16:20	See Figure	0.8		Not	Analyzed for Ti	PH	

DF Dilution Factor

NA Not Analyzed

ND Not Detected at the Reporting Limit

PQL Practical Quantitation Limit

*Field TPH concentrations recorded may be below PQL.

Total Petroleum Hydrocarbons - USEPA 418.1

Sih Sh L Analyst:

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

June 20, 2014

Debbie Watson Animas Environmental Services 624 East Comanche Farmington, NM 87401 TEL: (505) 486-4071 FAX

RE: BMG Hwy 537 Truck Receiving Station

OrderNo.: 1406812

Dear Debbie Watson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 6/18/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1406812 Date Reported: 6/20/2014

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: Tank Composite Collection Date: 6/4/2014 7:00:00 PM

Project:BMG Hwy 537 Truck Receiving StationLab ID:1406812-001Matri

CLIENT: Animas Environmental Services

Matrix: MEOH (SOIL) Received Date: 6/18/2014 7:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: DIESEL RANGE	ORGANICS				Analys	t: BCN
Diesel Range Organics (DRO)	26	9.9	mg/Kg	1	6/18/2014 10:36:06 AM	A 13755
Surr: DNOP	86.8	57.9-140	%REC	1	6/18/2014 10:36:06 AM	M 13755
EPA METHOD 8015D: GASOLINE RAM	NGE				Analys	t: NSB
Gasoline Range Organics (GRO)	ND	2.8	mg/Kg	1	6/18/2014 10:44:05 AM	A R19352
Surr: BFB	90.0	80-120	%REC	1	6/18/2014 10:44:05 AM	A R19352
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	0.028	mg/Kg	1	6/18/2014 10:44:05 AM	A R19352
Toluene	ND	0.028	mg/Kg	1	6/18/2014 10:44:05 AM	A R19352
Ethylbenzene	ND	0.028	mg/Kg	1	6/18/2014 10:44:05 AM	A R19352
Xylenes, Total	ND	0.056	mg/Kg	1	6/18/2014 10:44:05 AM	A R19352
Surr: 4-Bromofluorobenzene	99.7	80-120	%REC	1	6/18/2014 10:44:05 AM	A R19352

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	
	Е	Value above quantitation range	
	J	Analyte detected below quantitation limits	Ν
	0	RSD is greater than RSDlimit	
	-		-

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 1 of 4

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1406812
	20-Jun-14

Client: Project:		Environmen vy 537 Truc		vices eiving Stati	on						
Sample ID	MB-13755	SampTy	pe: MB	BLK	Tes	tCode: El	PA Method	8015D: Dies	el Range C	Organics	
Client ID:	PBS	Batch	ID: 13	755	F	RunNo: 1	9341				
Prep Date:	6/18/2014	Analysis Da	ate: 6/	18/2014	5	SeqNo: 5	59117	Units: mg/k	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Surr: DNOP	Drganics (DRO)	ND 8.4	10	10.00		84.0	57.9	140			
Sample ID	LCS-13755	SampTy	/pe: LC	s	Tes	tCode: El	PA Method	8015D: Dies	el Range C	Organics	
Client ID:	LCSS	Batch	ID: 13	755	F	RunNo: 1	9341				
Prep Date:	6/18/2014	Analysis Da	ate: 6/	18/2014	S	SeqNo: 5	59118	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	Organics (DRO)	49	10	50.00	0	98.5	60.8	145			
Surr: DNOP		4.3		5.000		85.2	57.9	140			
Sample ID	1406812-001AMS	SampTy	/pe: M \$	3	Tes	tCode: El	PA Method	8015D: Dies	el Range C	Organics	
Client ID:	Tank Composite	Batch	ID: 13	755	F	RunNo: 1	9341				
Prep Date:	6/18/2014	Analysis Da	ate: 6/	18/2014	S	SeqNo: 5	59593	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	81	10	49.80	25.98	111	40.1	152			
Surr: DNOP		4.4		4.980		88.7	57.9	140			
Sample ID	1406812-001AMSI	D SampTy	/pe: M\$	SD	Tes	tCode: El	PA Method	8015D: Dies	el Range C	Organics	
Client ID:	Tank Composite	Batch	ID: 13	755	F	RunNo: 1	9341				
Prep Date:	6/18/2014	Analysis Da	ate: 6/	18/2014	S	SeqNo: 5	59595	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	78	10	50.45	25.98	102	40.1	152	4.48	32.1	
Surr: DNOP		4.8		5.045		94.6	57.9	140	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1406812
	20-Jun-14

Client: Project:		Environme wy 537 Tru		vices eiving Stati	on						
Sample ID	MB-13743 MK	SampT	ype: M	BLK	Tes	tCode: E	PA Method	8015D: Gaso	oline Rang	e	
Client ID: F	PBS	Batch	ID: R1	9352	F	unNo: 1	9352				
Prep Date:		Analysis D	ate: 6/	18/2014	S	eqNo: 5	59936	Units: mg/k	٨g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range	Organics (GRO)	ND	5.0	(000				100			
Surr: BFB		890		1000		89.0	80	120			
Sample ID	LCS-13743 MK	SampT	ype: LC	s	Tes	tCode: E	PA Method	8015D: Gaso	oline Rang	e	
Client ID: L	LCSS	Batch	ID: R1	9352	F	unNo: 1	9352				
Prep Date:		Analysis D	ate: 6/	18/2014	S	eqNo: 5	59937	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	Organics (GRO)	25	5.0	25.00	0	98.6	71.7	134			
Surr: BFB		1100		1000		106	80	120			
Sample ID	MB-13743	SampT	ype: MI	3LK	Tes	tCode: E	PA Method	8015D: Gaso	oline Rang	e	
Client ID: F	PBS	Batch	ID: 13	743	F	unNo: 1	9352				
Prep Date:	6/17/2014	Analysis D	ate: 6/	18/2014	S	eqNo: 5	59944	Units: %RE	С		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		890		1000		89.0	80	120			
Sample ID L	LCS-13743	SampT	ype: LC	s	Tes	tCode: E	PA Method	8015D: Gaso	line Rang	e	
Client ID: L	LCSS	Batch	ID: 13	743	F	unNo: 1	9352				
Prep Date:	6/17/2014	Analysis D	ate: 6/	18/2014	S	eqNo: 5	59946	Units: %RE	С		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		1100		1000		106	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

.

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1406812
	20 7 14

	as Environmental S Hwy 537 Truck R		on						
Sample ID MB-13743 MK	SampType:	MBLK	Tes	tCode: EP	A Method	8021B: Volat	iles		
Client ID: PBS	Batch ID:	R19352	F	RunNo: 19	352				
Prep Date:	Analysis Date:	6/18/2014	S	SeqNo: 55	9977	Units: mg/K	g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND 0.0	50				-			
Toluene	ND 0.0	50							
Ethylbenzene	ND 0.0	50							
Xylenes, Total	-	10							
Surr: 4-Bromofluorobenzene	1.0	1.000		102	80	120			
Sample ID LCS-13743 MP	SampType:	LCS	Tes	tCode: EP	A Method	8021B: Volat	iles		
Client ID: LCSS	Batch ID:	R19352	F	RunNo: 19	352				
Prep Date:	Analysis Date:	6/18/2014	S	SeqNo: 55	9979	Units: mg/K	g		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.96 0.0	50 1.000	0	96.1	80	120			
Toluene	0.94 0.0		0	93.5	80	120			
Ethylbenzene	0.94 0.0		0	94.4	80	120			
Xylenes, Total		10 3.000	0	98.7	80	120			
Surr: 4-Bromofluorobenzene	1.2	1.000		115	80	120			
Sample ID MB-13743	SampType:	MBLK	Tes	tCode: EP	A Method	8021B: Volat	iles		
Client ID: PBS	Batch ID:	13743	F	RunNo: 19	352				
Prep Date: 6/17/2014	Analysis Date:	6/18/2014	S	SeqNo: 55	9985	Units: %RE	C		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	1.0	1.000		102	80	120			
Sample ID LCS-13743	SampType:	LCS	Tes	tCode: EP	A Method	8021B: Volat	iles		
Client ID: LCSS	Batch ID:	13743	F	RunNo: 19	352				
Prep Date: 6/17/2014	Analysis Date:	6/18/2014	S	SeqNo: 55	9986	Units: %RE	C		
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	1.2	1.000		115	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

20-Jun-14

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Animas Environmental	Work Order Number: 1406812		RcptNo: 1
Received by/date:	oclistry		
Logged By: Lindsay Mangin	6/18/2014 7:45:00 AM	Jinsky Hopo	
Completed By: Lindsay Mangin	6/18/2014 7:57:54 AM	Jimaku Hlango	
Reviewed By:	01018114		
Chain of Custody			· · ·
1 Custody seals intact on sample bottles?	Yes	No	Not Present 🖌
2. Is Chain of Custody complete?	Yes 🗸	No	Not Present
3. How was the sample delivered?	Courier		
Log In			
4. Was an attempt made to cool the samples?	Yes 🗸	No	NA
5. Were all samples received at a temperature	of >0° C to 6.0°C Yes ✔	No	NA
6. Sample(s) in proper container(s)?	Yes 🔽	No and	
7. Sufficient sample volume for indicated test(s)? Yes 🗸	No	
8. Are samples (except VOA and ONG) properl	ly preserved? Yes 🔽	No	
9. Was preservative added to bottles?	Yes	No 🗸	NA
10.VOA vials have zero headspace?	Yes	No	No VOA Vials 🗸
11. Were any sample containers received broke	n? Yes	No 🗸	# of preserved
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗴	No	bottles checked for pH: (<2 or >12 unless noted)
13. Are matrices correctly identified on Chain of	Custody? Yes 🖌	No	Adjusted?
14. Is it clear what analyses were requested?	Yes 🖌	No	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🖍	No	Checked by:

Special Handling (if applicable)

.Was client no	tified of all dis	screpancies v	vith this order?		Yes	No	NA 🗸
Person	Notified:			Date:	[
By Who	om:			Via:	eMail	Phone Fax	In Person
Regard	ing:						
Client I	nstructions:						
7. Additional re 3. <u>Cooler Info</u> r							
_	mation	Condition	Seal Intact	Seal No.	Seal Date	Signed By	

Project Name: The Month of Manager: Project Name: Project Manager: Project Manager: Project Manager: Proje	Chain-of-Custody Record	Turn-Around Time:	
Light E. L. L. Bill H: E. Conservetue Paylet H: With So Thrue Blaurue Shine Bill H: E. Conservetue Paylet H: With So Thrue Blaurue Shine Bill H: E. Conservetue Paylet H: With So Thrue Blaurue Shine Bill H: E. Conservetue Paylet H: With So Thrue Blaurue Shine Bill H: E. Conservetue Paylet H: With So Thrue Blaurue Shine Bill H: E. Conservetue Paylet H: Marenager. Bill H: Paylet Blaurue Paylet Blaurue Shine Bill H: Paylet Blaurue Paylet Blaurue Bill H: Martin Dolles Bill H: Martin Paylet Blaurue Bill H: Milling H: Mi			
121, E. Cancacula Public Huvi S5 That a Balance 4301 Hawkins KF Abuquerue. Markin about U. A. R14D 1 Poject Manager: about U. A. R14D 1 Polect Manager: about U. A. R14D 1 Polect Manager: about U. R	ues UC		www.hallenvironmental.com
Multiple Multiple Multiple Multiple Multiple	sss:b24 E Comanche	BMG-HWY 53 TTULK RECEVEN SAMM	
Sert 2.8.4 3.8.4 <	201 N N 87401	Project #:	Fax
Project Manager. Project Mana	of set 2281		Analysis Request
Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure Image: Second Structure <td< td=""><td>#:</td><td>Project Manager:</td><td>0⁴) В 0)</td></td<>	#:	Project Manager:	0 ⁴) В 0)
Matrix Sample: Duble: Duble: Duble: Duble: Container Container Container Sample: Container Sample: Container Container Container Container Sample: Container Container Container Container Container Container Sample: Container Container Container Container Container Sample: Container Container Container Container Container Container Container Container Container Contai		Divatoria	0 SKD (SMI
Matrix Sample Request ID Containe. Z.1 Matrix Sample Request ID Containe. Z.1 Matrix Sample Request ID Container Treeorative The Method 57 Performance Recent Records and the Tripe Records and th	□ Other	2) НРН (8.1) 9, ИО ₂ , 1, 8082 1, 8082 1, 8082 1, 8082 1, 1, 1)
Matrix Sample Request ID Container Preservative Type and # Type Type BTEX + Mi Type Type and # Type BTEX + Mi Type BTEX + Mi The Concernative Reservative Reservative Type BTEX + Mi The Concernative Reservative		Sample Temperature: Z.	
Brill Tauk Composets huster hout - 001 X X - 0	Matrix	ative PH	ITM + XJT8 B3F08 H9T odf9M) H9T Df9M (Metho S0F S0F S0F S0F S0F S0F S0F S0F S0F S0F
Relinquished by: Reprind by: Received by:	BUL	celd.	
Date $label{eq:Date} \begin{bmatrix} label{eq:Date} \\ label{eq:Date} \\ label{eq:Date} \end{bmatrix}$)	
$ \begin{array}{c} Date \\ Date \\ Date \\ Date \end{array} $			
$ \begin{array}{c} Date \\ \underline{b} \\ $			
$\frac{ u }{ z }$			
$\frac{u}{ \mathcal{A} }$			
$\frac{ u }{ z u }$			
$\frac{ u }{ z u }$			
Date Under Date Date (5)			
Date U			
Late Date Date	-		
(17/14) (15/14)	Le la	Date	Remarks:
15/14	Removished by:	Matty Cabeler "17/14"	
	5/ Matur Waller	15/21	
		•	