UIC - I - ____11___ EPA FALL-OFF TEST PLAN

DATE:

2019

RUSSELL K. HALL & ASSOCIATES, INC.

Oil and Gas Consultants

201 East Polk Street Richardson, Texas 75081 (972) 922-8111 E-Mail: brent@Russellkhall.com

June 28, 2019

Mr. Bruce Davis Western Refining Southwest, Inc. Bloomfield Terminal P.O. Box 159 Bloomfield, New Mexico 87413

Re: April 2019 Waste Disposal Well #2 Falloff Test Analysis Report - OGRID No. 267595

Dear Mr. Davis:

Western Refining Southwest, Inc (Western) retained Russell K. Hall & Associates, Inc. to perform the annual bottomhole pressure survey and pressure falloff test analysis on Waste Disposal Well #2 (WDW #2). A pressure falloff test and bottomhole pressure survey were conducted on the well at the Western Refining Bloomfield Terminal facility near Bloomfield, New Mexico. The well tests were conducted in accordance with United States Environmental Protection Agency (USEPA) 40 CFR 146.13 and the State of New Mexico Falloff Test Guidelines, dated December 3, 2007. The 2019 pressure falloff test procedure was conducted in accordance with the USEPA's Region 6 "Pressure Falloff Testing Guidelines, Third Revision", dated August 8, 2002, and required by the State of New Mexico as of December 3, 2007. The pressure falloff test and bottomhole pressure survey performed on WDW #2 also meet the New Mexico Oil Conservation Division (NMOCD) requirements for such testing. Note: There are references made in this report to the permit document on file with the OCD for Western Refining in Bloomfield, New Mexico.

The April 2019 WDW #2 Falloff Test Analysis Report is included below.

In evaluating available information concerning this appraisal, we have excluded from our consideration all matters as to which legal or accounting interpretation, rather than engineering, may be controlling. As in all aspects of oil and gas evaluation, there are uncertainties inherent in the interpretation of engineering data and conclusions necessarily represent only informed professional judgments.

Russell K. Hall & Associates, Inc. is an independent consulting firm. Our compensation is not contingent on the results obtained or reported. This report was prepared by an engineer with more than 30 years of experience in the estimation, assessment, and evaluation of oil and gas production rates and related reservoir properties.

We appreciate the opportunity to be of service to you. If you have questions regarding this report, please contact us.

Mr. Bruce Davis June 13, 2019 Page 2

Sincerely,

Russell K. Hall & Associates, Inc.

+ 2. Hale rent

Brent W. Hale Petroleum Engineer

BWH: Attachments

APRIL 2019 WDW #2 FALLOFF TEST ANALYSIS REPORT

FACILITY INFORMATION

Name:	Western Refining Southwest, Inc.
Location:	50 County Road 4990 (PO Box 159)
	Bloomfield, New Mexico 87413

WELL INFORMATION

Well Name & No.	OCD UIC or Discharge Plan Permit Number	Well Classification	API Number	Legal Location
WDW #2	UICI-011	Class I Non-hazardous	30-045-35747	2028 FNL, 111 FEL, H Sec 27 T29S R11E

All depths in this report are referenced to ground level (GL) from the drilling rig rotary kelly bushing (RKB), unless the depth is specified as RKB or GL within this document. Appendix A contains the well schematic for Western's WDW #2 and a section of the log covering the perforated interval. Appendix B is a summary of the injection intervals for the well.

The fluid used for the injection test is the terminal treated wastewater (effluent). A current effluent analysis collected on March 29, 2019 is included in Appendix C. A summary of the formation water is also in Appendix C. The formation water analyses taken on January 25, 2017 is included.

Appendix D contains three well logs for WDW #2 ran by Schlumberger on September 5, 2016. They are: 1) Array Induction log, 2) Neutron Litho density log, and 3) Triple Combo log.

REPORT OF EVENTS

- April 15, 2019 9:30 AM The pre-test injection flow test begins.
- April 17, 2019 6:00 AM Tefteller, Inc. runs tandem bottomhole pressure gauges in the well to monitor the falloff portion of the test.
- April 17, 2019 12:00 PM pre-flow period begins.
- April 20, 2019 12:00 PM well is flowing at 12.67 GPM with an injection pressure of 1,222 PSI and with an average rate of 13.0 GPM for the 72-hour period. Well is shut-in for falloff test.
- April 30, 2019 12:00 PM falloff test ends after 240.0 hours. A pressure gradient survey is conducted as pressure gauges are retrieved from well.

GENERAL TEST OPERATIONAL CONSIDERATIONS

The falloff testing for WDW #2 was conducted with tandem bottomhole pressure memory gauges with a pre-flow period beginning at 12:00 PM on April 17, 2019 and ending at 12:00 PM on April 20, 2019. The average flow rate for the 72-hour period prior to the beginning of the falloff test was 13.0 GPM with a final flowing rate of 12.67 GPM. On the morning of April 17, 2019, tandem bottom hole pressure memory gauges were lowered into the well and

allowed to stabilize. Lowering the gauges in the well had no impact on rates and a minimal impact on surface injection pressures. The well was shut-in for 240 hours ending at 12:00 PM on April 30, 2019. Field data are included in Appendix E.

At the end of the falloff test, the bottomhole pressure gauges were pulled from the well making gradient stops every 1,000 feet. Key test data are summarized as follows:

Event	Flow Rate GPM	Surface psig	Bottomhole psig	Date/Time
Start of flow	0.0	774.0	N.A.	4/17/2019 12:00 PM
Final flow rate	12.67	1,222.0	4403.05	4/20/2019 12:00 PM
Final falloff pressure	0.0	693.83	3850.24	4/30/2019 12:00 PM
Final surface pressure	0.0	693.83	N.A.	

The memory gauges used are SP-2000 hybrid-quartz gauges provided by Tefteller, Inc. that have a resolution of 0.01 psi and an accuracy of ± 0.05 percent of full scale. The pressure range of the gauges were from 0 - 5,000 psi minimum. The gauges were lowered to the top of the injection interval at 7,312 feet. The recording period was set to record pressures at a minimum of every five minutes and more frequently during the early part of the falloff test period. Calibration certificates are included in Appendix F.

GEOLOGY

The injection zone is the Entrada sandstone formation. The formations occur in WDW #2 at the depths shown in the table below. The injection zone is shown in WDW #2 logs in Appendix D.

Injection Zone Formation	Waste Disposa (KB elev = 5	
	MD below KB (ft)	SS Depth (ft)
Bluff Sandstone	Not completed	7,031
Entrada Sandstone	7,312 to 7,470	7,308

The Jurassic aged Entrada Sandstone is thought to be one of the best water disposal rock units in the San Juan Basin. The Entrada is the basal formation of the San Rafael Group which also includes the Todilto and Wanakah Formations. The Entrada Sandstone is present throughout the basin's subsurface and crops out along its margin as step cliffs. The Entrada unconformably overlies the Chinle Formation. The Todilto Formation made up of limestone and anhydrite in dense and thought to an impermeable barrier or seal and likely seal for the injection zone.

The Entrada Sandstone consists of mottled reddish-brown very fine to medium grained wellsorted, silica cemented quartz sandstone interbedded with thinner reddish-brown siltstones. The sandstone units are assembled in high-angle, large-scale crossbeds indicating eolian environment deposition and with the siltstones representing interdue and sabkha deposition. The crossstratified sandstone is competent, laterally persistent and with homogenous reservoir properties. Entrada Sandstone gross thickness ranges from 60 feet to 330 feet across the basin.

At the WDW #2 location the Entrada is 158 feet thick. Based upon the nearby XTO Energy Ashcroft SWD #1 water disposal well density porosities are up to 18 percent with the most porous interval found in the upper 90 feet of the formation where many of the density porosities

are greater than 10 percent. WDW #2 has a density porosity of 12.1 percent. The two intervals with the highest porosity are 20 feet from 7,333 feet to 7,353 feet with 14.1 percent porosity and 26 feet from 7,442 feet to 7,468 feet with 14.3 percent porosity.

Permeability for the well as measured by this falloff test is 1.73 md or less.

PREVIOUS FALLOFF TESTS

This is the second test for this disposal well. The first test report was submitted on December 12, 2017, with a revised final report that was submitted on March 21, 2918 follow receipt of comments from NMOCD. That test included a flow period of 75 hours with a final flow rate of 13.84 GPM and with a final flowing pressure of 4,396.7 psig bottomhole and 1,226.8 psig at the surface. The well was shut-in for 189.5 hours with a final falloff pressure of 4,012.6 psig bottomhole and 861 psig at the surface. The calculated permeability was 4.24 md or less with a radius to the edge of injected fluid of 77 feet.

ANNULUS PRESSURE TESTING

On June 8, 2017, an Annulus Pressure Test (APT) was conducted. The annulus was pressured up to 510 psig and held for 15 minutes. The test was witnessed by the NMOCD and by the operator. The test report and chart recording of the pressure in included in Appendix G and has been reported to the NMOCD using form C-103.

EVALUATION OF THE TEST RESULTS

The raw test data from the test are included in Appendix E with an injection history in Appendix I. This includes details of the build-up portion of the April 2019 test. These falloff data are presented in Figure 1 showing pressure and temperature during the falloff test. The falloff data show no unexpected pressure changes. The pressure drops quickly during the first few minutes and then continues to decline as the pressure in the reservoir adjusts to the no-flow period.

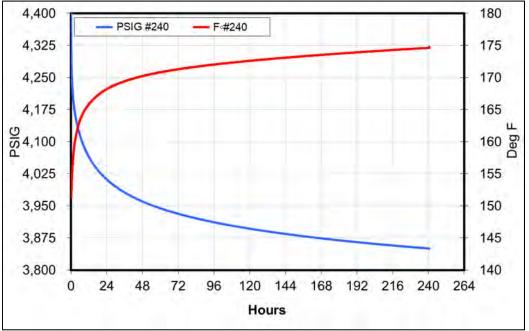


Figure 1 – Falloff Test Pressure and Temperature.

RUSSELL K. HALL & ASSOCIATES, INC.

Oil and Gas Consultants

A log-log plot, Figure 2, with a derivative diagnostic plot is used to identify flow regimes as described by Dr. John Lee in chapter 6 of "Estimating Ultimate Recovery of Developed Wells in Low-Permeability Reservoirs" or Monograph 4 published by the Society of Petroleum Evaluation Engineers (SPEE) in 2016. Figure 6.5 of that chapter notes that a slope of ½ is characteristic of transient linear flow. This plot shows a slope over 1.0 for the first 0.15 hours after which the slope of near to 0.25 through 10 hours and then drops to a slope of 0.10 at the end of the test. The early time data exhibits limited storage effects after which bi-linear flow is dominant for about ten hours. The later time data is more reasonably represented with a radial flow model. Figure 6.6 of the SPEE monograph describes a bilinear flow regime which has a slope of ¼ of 0.25. The bilinear flow regime is (page 122) "caused by both linear flow in a fracture (with significant pressure drop from fracture tip to wellbore) and by linear flow in the reservoir toward the fracture". The bilinear flow pattern is very near to the flow pattern observed with the drawdown data for WDW #2 for about ten hours after which radial flow patterns dominate the falloff data.

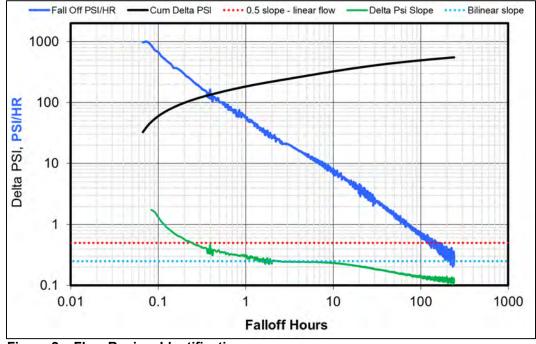


Figure 2 – Flow Regime Identification

The early portion of the test is shown in detail in Figure 3 with pressures from 0 to 36 hours which range from 4,370.45 psig to 3,981.72 psig. The pressure decline is a smooth decline and is flattening over time as expected.

Figure 4 shows the linear characteristics of the falloff test in some detail. It is a plot of falloff pressure versus $\sqrt{t + \Delta t} - \sqrt{\Delta t}$ where *t* is flow time in hours and Δt is falloff time in hours. Flow time is derived from the total fluid injected and the final flow rate as follows:

•	Cumulative injection:	56,196 gallons
•	Final flowing rate:	12.67 GPM
•	Equivalent flowing time (hours):	Gallons/(GPM X 60) = 56,196/(12.67*60)
•	Equivalent flowing time (hours):	73.92 hours

The pressure data, Figure 4, are linear beginning at 0.6 on the x axis. Projection of the data to estimated reservoir pressure is shown in Figure 5. This trend extrapolates to 3,700 psig which is the apparent reservoir pressure. The data shows no indication of ending of a linear flow straight line or of reservoir boundaries when the falloff test ends after 240 hours.

Figure 3 – Pressure vs Time for the Early Part of the Falloff Test.

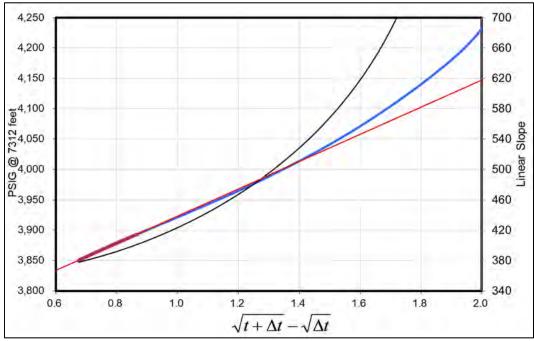
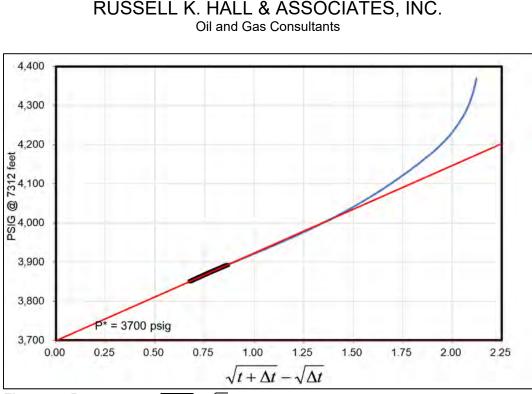



Figure 4 – Pressure vs. $\sqrt{t + \Delta t} - \sqrt{\Delta t}$

Figure 5 – Pressure vs. $\sqrt{t + \Delta t} - \sqrt{\Delta t}$

A traditional Horner plot, Figure 6, shows an increasing slope throughout the falloff test. When a straight line is obtained on a Horner plot, the slope of the line can be used to determine the permeability as described in "Pressure Buildup and Flow Test in Wells" published by the Society of Petroleum Engineers (SPE) in 1967. Chapter 3 (pages 18 to 34) describes the process. Because of the increasing slope at the end of the test, permeability cannot be directly measured from the test data with standard radial flow techniques. As the slope increases, calculated permeability decreases. The final trend extrapolated to 3,795 psig is the apparent maximum reservoir pressure because of the increasing slope at the end of the test. The slope measured at the end of the falloff on Figure 6 is a minimum slope possible straight-line segment. Because the slope is increasing at the end of the falloff test, it is expected to increase to higher levels had the falloff test been continued for a longer period. At the end of the test, the measured slope becomes the minimum possible Horner slope. This minimum slope yields a maximum permeability with the actual permeability not directly measurable from this test. Figure 7 shows increased detail of the Horner plot data at the end of the falloff test.

To better understand flow regimes and permeability a type curve analysis was prepared using the SPE Monograph 5 "Advances In Well Test Analysis" type curves Figures C.18 and C.19 prepared by Gringarten, Ramey and Raghavan. These type curves provide dimensionless pressure for vertically fractured wells in the center of a closed square with no well bore storage. Figure C.18 addresses infinite-conductivity fractures and Figure C.19 addresses uniform flux fractures. Both address boundary dominated flow with xe/xf ratios from 1 to 10 and the uniform flux solution shows boundary ratios to 20. For convenience, the figures are included in this report as Figures 8 and 9. Figure 10 is a composite of the trendlines on from Figures 8 and 9 showing how the uniform flux fracture and the infinite conductivity fracture compare.

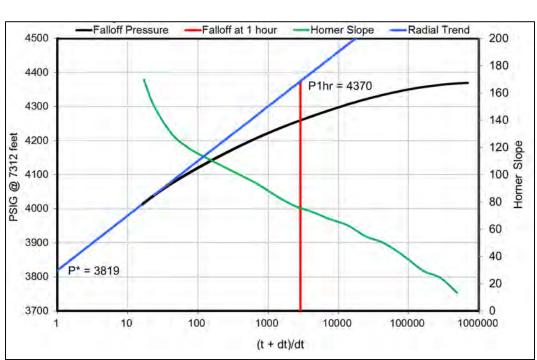


Figure 6 – Traditional Horner Plot

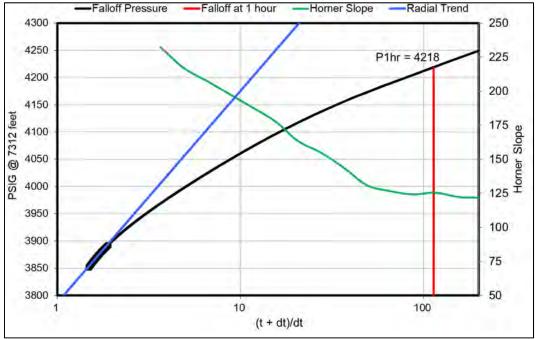
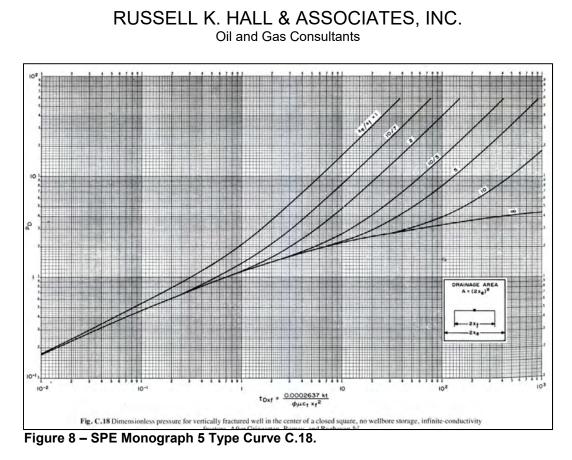



Figure 7 – Detail of Horner Plot at the End of the Falloff Test.

Figures 8 and 9 are both used to better understand the flow regime. During the early segment of the falloff test the data indicated fracture flow with a uniform flux fracture or a fracture with pressure drops in the fracture. During the late portion of the test, the flow is best matched with the infinite conductivity fracture. No signs of reservoir boundaries are seen in drawdown data. The drawdown data show that the fracture has damage near the wellbore and has little or no damage away from the wellbore as is shown in Figure 10.

In Figure 10, the delta PSI curve from Figure 2 is imposed on the type curves 8 and 9 which provides a positive match of the data. The falloff test data match the type curve when the horizontal $t_{dxf} = 1.00$ and t = 0.533 hours and when the vertical $P_d = 1.0$ and Delta P = 133.

This match shows that the falloff test is in transient linear flow for about 30 minutes after which the flow regime begins a transition to a transient radial flow regime. At the end of the drawdown's 240 hours, the flow regime is a transient radial flow regime and no reservoir boundaries have been encountered. The absence of observed boundary effects shows that the X_e/X_f ratio for the flow system is 20 or greater. The type curve analysis with the fit noted gives a calculated permeability of 1.76 md and a fracture half-length of 28 feet. The distance to the boundary is known to be more than a factor of 20 times the half-length or more than 563 feet.

Absent the presence of reservoir boundaries, the Horner analysis for radial flow does not provide a reliable reservoir permeability and this was supplemented with linear flow analysis and type curve analysis. The linear flow analysis likewise provides only indications of reservoir properties. For this reason, the type curve permeability of 1.76 md is considered a more reliable measurement than the 1.73 md determined with radial and linear flow analysis. Both are similar in the 2019 test giving some confidence that a reasonable permeability has been calculated.

 $= \int_{1}^{1} \int$

Figure 9 – SPE Monograph 5 Type Curve C.19.

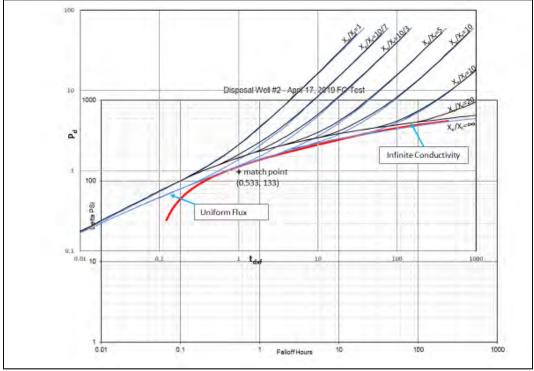


Figure 10 – Type Curve Match.

It is our opinion that during the falloff test, the data transitioned from transient linear flow to transient radial flow and no boundary effects were observed during the 240-hour pressure falloff test.

LONG-TERM PERFORMANCE

Figure 11 is a history of pressures and injection rates. Wellhead injection pressures have been at 1,419 psig or less and are typically less than 1,300 psig. The maximum injection rate is 41.84 GPM with rates in normally from 15 GPM to 35 GPM.

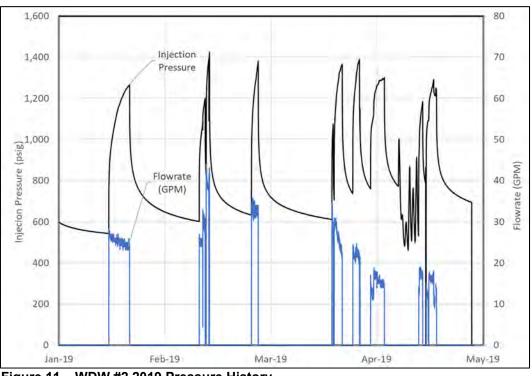


Figure 11 – WDW #2 2019 Pressure History.

Figure 12 shows the stabilized flow period of 72 hours prior to beginning the falloff test. The final flowing rate is 12.67 GPM with a final flowing wellhead pressure of 1,222.0 psig. The injection rates for the pre falloff flow test range from a maximum rate of 19 GPM to a final rate of 12.67 GPM with an average rate of 13.0 GPM.

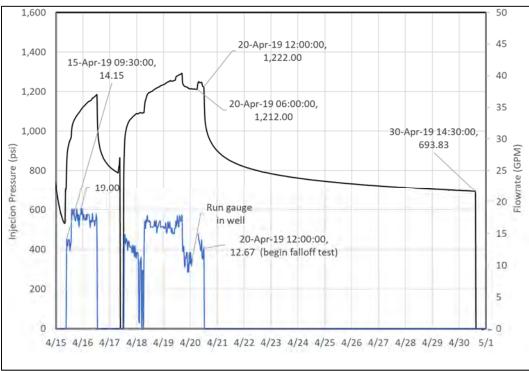


Figure 12 – WDW #2 2019 Pressure History for Stabilized Period Prior to Falloff Test.

CALCULATIONS

Calculations for permeability with an assumed Horner plot straight line, for time for a pressure transient to reach the edge of the injected water, traditional skin factor and for fracture half length are included.

1. <u>Permeability:</u>

$$\frac{kh}{\mu} = \frac{162.6qB}{m}$$

Where:

q = final flowing rate-BOPDB = formation volume factor m = slope from Horner plot of pressure vs log((t+dt)/dt) k = permeability - mdh = net pay - feet perforated $\mu = \text{viscosity} - \text{cp}$ q = 12.67 GPMq = 434 BWPDB = 1.0m = 156.46 or more (stabilized slope not observed on test) $\frac{kh}{m} = \frac{162.6qB}{m} = \frac{(162.6)(12.67)(24)\binom{60}{42}(1.0)}{156.46} = 451 \text{ md-ft/cp or less}$ μ 156 т kh = (451*0.47) = 212 md-ft or lessk = 212/123 = 1.73 md or less

RUSSELL K. HALL & ASSOCIATES, INC.

Oil and Gas Consultants

2. Radius to edge of injected fluid:

$$r_{waste} = \sqrt{\frac{0.13368V}{\pi\phi h}}$$

Where:

V = total volume injected, gallons ϕ = porosity of injection zone - ratio h = net pay of injection zone in feet μ = viscosity in cp V = 56,196 gallons ϕ = 0.149 (average of perforated interval) h = 123 feet (perforated interval) μ = 0.47 cp ct = swcws + cf = (0.149)(0.0000230)+0.00000410) = 0.00000444 rwaste = ((0.13368)(56,196)/(π (0.149)(123))^(0.5) = 11 feet

3. Time to reach edge of injected fluid:

$$t_{waste} = \frac{948 c_t \mu r_{waste}^2}{k}$$

Where:

 $t_{waste} = (948) (0.00000444) (0.47) (11^2)/1.73 = 0.1$ hours or more

4. Skin factor (with radial flow):

$$S = 1.151 \left[\frac{p_{wf} - p_{1hr}}{m} - \log \left(\frac{k}{\phi \mu c_t r_w^2} \right) + 3.23 \right]$$

Where:

 $p_{wf} = \text{final flowing pressure, psi}$ $p_{1hr} = \text{projected pressure at 1 hour using radial flow straight line, psi}$ $r_w = \text{wellbore radius - feet}$ $p_{wf} = 4403.05 \text{ psig}$ $p_{1hr} = 4217.82 \text{ psig}$ $r_w = 0.3281 \text{feet}$ $S = 1.151[(4403.05-4217.82)/156.46 - \log(1.73/((0.149)(0.47)(0.00000444)(0.3281)^2)+3.23]$ S = -3.80

5. Fracture half length:

$$X_f \sqrt{k} = \frac{4.064qB}{m_L h} \sqrt{\left(\frac{\mu}{\phi c_f}\right)}$$

Where:

$$m_{L} = \text{slope from linear flow chart of pressure vs } \sqrt{t + \Delta t} - \sqrt{\Delta t}$$

$$m_{L} = 223.85$$

$$X_{f}k^{0.5} = (4.064)(434)(1.0)/((223.85)(123)(0.47/((0.149)(0.00000444))))^{0.5} =$$

$$= 54 \text{ ft } \sqrt{md}$$

$$X_{f} = 54/1.73^{0.5} = 41 \text{ cumulative feet or more}$$

6. <u>Type Curve Analysis:</u>

Where:

 $\begin{array}{l} t_{dxf} = 0.0002637 kt/(\phi \ \mu c_t X_f^2) \\ \Delta P = 141.2 QB \mu P_d/(KH) \\ kh = 141.2 QB \mu P_d/(\Delta P) \\ X_f^2 = 0.0002637 kt/(\ t_{dxf} \ \phi \ \mu c_t) \\ Type \ Curve \ Match \ Point \ ON \ Figure \ 7C: \\ \Delta P = 133.3 \ psi \ at \ P_d = 1.0 \\ T = 0.533 \ hours \ at \ t_{dxf} = 1.0 \\ Match \ points \ show: \\ 1) \ early \ time \ transient \ linear \ flow, \\ 2) \ late \ time \ transient \ linear \ flow, \\ 3) \ no \ reservoir \ or \ drainage \ boundary, \\ kh = 141.2(434)(1.0)(0.47)*(133.33)/(100) = 216.21 \ md-ft \\ k = 1.76 \ md \\ X_f^2 = 0.0002637(1.76)(0.533)/(\ (1.0)(0.149)(0.47)(0.00000444) = 793.7 \ ft^2 \\ X_f = 28 \ feet \end{array}$

AREA OF REVIEW (AOR) UPDATE

The area of review is shown on Figure 13 with the data attached as Appendix H which shows all wells known to have been drilled within a one-mile radius of WDW #2. There are 57 wells in the one-mile radius of investigation. One of these fifty-seven wells, Ashcroft SWD #1, penetrates the Entrada injection zone. This well is 0.64 miles from the disposal well and is an active water disposal well. No wells are currently producing form the Entrada injection zone within the AOR.

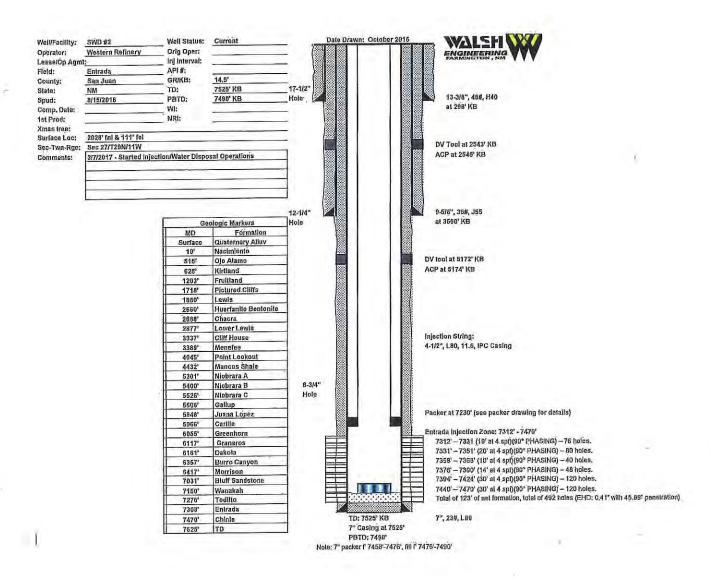
Figure 13 – Area of Review.

RUSSELL K. HALL & ASSOCIATES, INC.

Oil and Gas Consultants

CONCLUSIONS

All testing was successful and meets both the OCD and EPA requirements. Western Refining fulfills all analysis and reporting requirement of the USEPA's "Pressure Falloff Testing Guideline, Third Revision", issued by Region 6, and dated August 8, 2002, with the submittal of this report. Pressure falloff and bottomhole pressure testing were conducted according to these guidelines.


LIST OF APPENDICES

- Appendix A: Well bore schematic for Disposal Well #1
- Appendix B: Summary of injection intervals
- Appendix C: Injection and formation fluid analysis
- Appendix D: Well Logs
- Appendix E: April 17, 2019 Falloff test data
- Appendix F: Test gauge calibration certificates
- Appendix G: Mechanical Integrity Test Report (MIT)
- Appendix H: Table of wells in a one-mile radius
- Appendix I: Injection History

APPENDIX A

Well Bore Schematic for Disposal Well #2

Table 2: A wellbore diagram showing the current configuration of the wellbore.

.

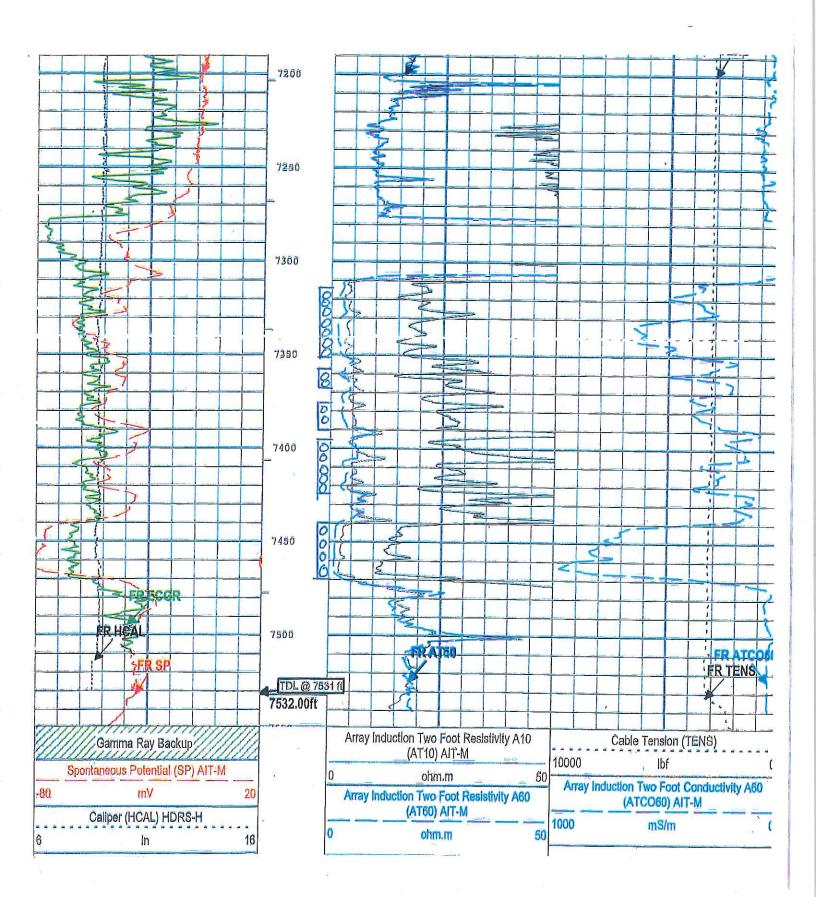


Table 1: A copy of the well log showing the Entrada interval to be tested.

APPENDIX B

Summary of Injection Intervals

Appendix B

١

ł

Western Refining Southwest, Inc.

·

Waste Disposal Well #2

Injection Intervals

Base	7470′
Top	7312'
Formation	Entrada

APPENDIX C

Injection and Formation Fluid Analysis

1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2017

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: DWD #2

OrderNo.: 1701A75

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1701A75 Date Reported: 2/1/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Project: DWD #2

Lab ID: 1701A75-001

Client Sample ID: DWD 2 Formation Water Collection Date: 1/25/2017 11:00:00 AM Received Date: 1/26/2017 7:05:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: MRA
Fluoride	ND	2.0		mg/L	20	1/26/2017 6:37:17 PM	R40335
Chioride	23000	2500	*	mg/L	5E	1/27/2017 7:20:01 PM	R40361
Bromide	ND	2.0		mg/L	20	1/26/2017 6:37:17 PM	R40335
Phosphorus, Orthophosphate (As P)	ND	10		mg/L	20	1/26/2017 6:37:17 PM	R40335
Sulfate	910	25	*	mg/L	50	1/27/2017 7:07:36 PM	R40361
Nitrate+Nitrite as N	ND	20		mg/L	100) 1/27/2017 7:32:26 PM	R40361
SM2510B: SPECIFIC CONDUCTANCI	E					Analyst	: JRR
Conductivity	94000	50		µmhos/cm	50	1/30/2017 1:40:54 PM	R40366
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	255.3	20.00		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
Carbonate (As CaCO3)	ND	2.000		mg/L CaCO3	1	1/30/2017 11:39:53 AM	R40366
Total Alkalinity (as CaCO3)	255.3	20.00		mg/L CaCO3	1	1/30/2017 11:39:53 AN	R40366
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	t: KS
Total Dissolved Solids	48900	2000	*D	mg/L	1	2/1/2017 3:56:00 PM	29970
EPA 6010B: TOTAL RECOVERABLE	METALS					Analys	t: pmf
Calcium	1700	20		mg/L	20	1/30/2017 10:59:56 AÑ	29930
Magnesium	200	20		mg/L	20	1/30/2017 10:59:56 AM	1 29930
Potassium	450	20		mg/L	20	1/30/2017 10:59:56 AM	29930
Sodium	16000	500		mg/L	500) 1/30/2017 11:06:12 AM	29930

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
-	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 5
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:	Hall Environmental Report Da	e: 01/27/17
Project:	Not Indicated Collection Da	e: 01/25/17 11:00
Lab ID:	B17011690-001 DateReceive	d: 01/27/17
Client Sample ID:	1701A75-001C DWD 2 Formation Water Matr	x: Aqueous

Analyses	Result Units	Qualifiers	RL	MCIJ QCL	Method	Analysis Date / By
CORROSIVITY pH	6.46 s.u.		0.10		SW9040C	01/27/17 10:54 / jmg

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

\$

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental

Report Date: 01/27/17

Work Order: B17011690

Project: Not Indicated

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDI_imit	Quel
Melhod:	8W9040C						Analytical Rur	1: ORION	1720A HZW_	_170127A
Lab ID: pH	ICV	Initial Calibrati 8.11	on Verification s.u.	Standard 0.10	101	98	102		01/27	//17 10:54
Method:	SW9040C								Batch	R273874
Lab ID: pH	B17011690-001ADUP	Sample Duplie 6.49	s.u.	0.10		Run: ORIC)n 720a hzw_	170127A 0.5	01/27 3	7/17 10:54

ND - Not detected at the reporting limit.

Client: Western Refining Southwest, Inc.

Project: DWD #2

-										
Sample ID MB	SampT	ype: mb	lk	Test	Code: EF	PA Method	300.0: Anions	i		
Client ID: PBW	Batch	ID: R4	0335	R	unNo: 40	0335				
Prep Date:	Analysis D	ate: 1/2	26/2017	S	eqNo: 12	264291	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.10								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sample ID LCSb	SampT	ype: Ics	;	Tes	tCode: El	PA Method	300.0: Anions	;		
Client ID: LCSW	Batch	n ID: R4	0335	F	tunNo: 4	0335				
Prep Date:	Analysis D	ate: 1/	26/2017	5	SeqNo: 1	264293	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.52	0.10	0.5000	0	104	90	110			
		0.10	2,500	0	96.4	90	110			
Bromide	2.4	0.10								
Bromide Phosphorus, Orthophosphate (As P	2.4 4.8	0.50	5.000	0	96.7	90	110			-
	4.8		5.000				110 300.0: Anions			-
Phosphorus, Orthophosphate (As P	4.8 SampT	0.50	5.000 bik	Tes		PA Method				-
Phosphorus, Orthophosphate (As P Sample ID MB	4.8 SampT	0.50 ype: mt	5.000 bik 0361	Tes F	tCode; El	PA Method 0361		.		
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW	4.8 SampT Batch	0.50 ype: mt	5.000 bik 0361 27/2017	Tes F	tCode: El RunNo: 4 SeqNo: 1	PA Method 0361	300.0: Anions	%RPD	RPDLimit	Qual
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date:	4.8 SampT Batch Analysis D	0.50 ype: mt DD: R4 pate: 1/ PQL 0.50	5.000 bik 0361 27/2017	Tes F S	tCode: El RunNo: 4 SeqNo: 1	PA Method 0361 265117	300.0: Anions Units: mg/L		RPDLimit	Qual
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date: Analyte	4.8 SampT Batch Analysis D Result	0.50 ype: mt n ID: R4 pate: 1/ PQL	5.000 bik 0361 27/2017	Tes F S	tCode: El RunNo: 4 SeqNo: 1	PA Method 0361 265117	300.0: Anions Units: mg/L		RPDLimit	Qual
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date: Analyte Chloride	4.8 SampT Batch Analysis D Result ND	0.50 ype: mt DD: R4 pate: 1/ PQL 0.50	5.000 bik 0361 27/2017	Tes F S	tCode: El RunNo: 4 SeqNo: 1	PA Method 0361 265117	300.0: Anions Units: mg/L		RPDLimit	Qual
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date: Analyte Chloride Sulfate	4.8 SampT Batch Analysis D Result ND ND ND	0.50 ype: mt DD: R4 Date: 1/ PQL 0.50 0.50	5.000 bik 0361 27/2017 SPK value	Tes F SPK Ref Val	tCode; El RunNo: 4 SeqNo: 1 %REC	PA Method 0361 265117 LowLimit	300.0: Anions Units: mg/L	%RPD	RPDLimit	Qual
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date: Analyte Chloride Sulfate Nitrate+Nitrite as N	4.8 SampT Batch Analysis D Result ND ND ND SampT	0.50 Type: mt DD: R4 Date: 1/ PQL 0.50 0.50 0.20	5.000 bik 0361 27/2017 SPK value	Tes F SPK Ref Val Tes	tCode; El RunNo: 4 SeqNo: 1 %REC	PA Method 0361 265117 LowLimit PA Method	300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date: Analyte Chloride Sulfate Nitrate+Nitrite as N Sample ID LCS	4.8 SampT Batch Analysis D Result ND ND ND SampT	0.50 ype: mt DD: R4 pate: 1/ PQL 0.50 0.50 0.20 ype: Ics n ID: R4	5.000 bik 0361 27/2017 SPK value	Tes F SPK Ref Val Tes F	tCode: El RunNo: 4 SeqNo: 1 %REC tCode: El	PA Method 0361 265117 LowLimit PA Method 0361	300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date: Analyte Chloride Sulfate Nitrate+Nitrite as N Sample ID LCS Client ID: LCSW	4.8 SampT Batch Analysis D Result ND ND ND SampT Batch	0.50 ype: mt DD: R4 pate: 1/ PQL 0.50 0.50 0.20 ype: Ics n ID: R4	5.000 5/k 0361 27/2017 SPK value 5 0361 27/2017 SPK value	Tes F SPK Ref Val Tes SPK Ref Val	tCode: El RunNo: 4 SeqNo: 1 %REC tCode: El RunNo: 4 SeqNo: 1 %REC	PA Method 0361 265117 LowLimit PA Method 0361 265118 LowLimit	300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date: Analyte Chloride Sulfate Nitrate+Nitrite as N Sample ID LCS Client ID: LCSW Prep Date:	4.8 SampT Batch Analysis D Result ND ND ND SampT Batch Analysis D	0.50 ype: mt Di D: R4 pate: 1/ PQL 0.50 0.50 0.20 ype: Ics n ID: R4 pate: 1/ PQL 0.50	5.000 bik 0361 27/2017 SPK value 5 0361 27/2017 SPK value 5.000	Tes F SPK Ref Val Tes F SPK Ref Val 0	tCode: El RunNo: 4 SeqNo: 1 %REC tCode: El RunNo: 4 SeqNo: 1 %REC 95.5	PA Method 0361 265117 LowLimit PA Method 0361 265118 LowLimit 90	300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L HighLimit 110	%RPD		
Phosphorus, Orthophosphate (As P Sample ID MB Client ID: PBW Prep Date: Analyte Chloride Sulfate Nitrate+Nitrite as N Sample ID LCS Client ID: LCSW Prep Date: Analyte	4.8 SampT Batch Analysis D Result ND ND ND SampT Batch Analysis D Result	0.50 ype: mt Di D: R4 pate: 1/ PQL 0.50 0.50 0.20 ype: Ics Di D: R4 pate: 1/ PQL	5.000 5/k 0361 27/2017 SPK value 5 0361 27/2017 SPK value	Tes F SPK Ref Val Tes SPK Ref Val	tCode: El RunNo: 4 SeqNo: 1 %REC tCode: El RunNo: 4 SeqNo: 1 %REC	PA Method 0361 265117 LowLimit PA Method 0361 265118 LowLimit	300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L HighLimit	%RPD		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 2 of 5

WO#: 1701A75 01-Feb-17

Client: Western Refining Southwest, Inc.

Project: DWD #2

Sample ID MB-29930	SampT	ype: ME	BLK	TestCode: EPA 6010B: Total Recoverable Metals							
Client ID: PBW	Batch	1 iD: 29	930	R	RunNo: 4	0375					
Prep Date: 1/27/2017	Analysis Date: 1/30/2017			S	SeqNo: 12	265583	Units: mg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Calcium	ND	1.0									
Magnesium	ND	1.0									
Potassium	ND	1.0									
otacolaliti											
Sodium	ND	1.0									
	ND			Tes	tCode: El	PA 6010B: ⁻	Fotal Recove	rable Meta	als		
Sodium	ND SampT	1.0			tCode: El RunNo: 4		Fotal Recove	rable Meta	als		
Sodium Sample ID LCS-29930	ND SampT	1.0 Type: LC n ID: 29	930	F		0375	Fotal Recove		ais		
Sodium Sample ID LCS-29930 Client ID: LCSW	ND SampT Batch	1.0 Type: LC n ID: 29	930 30/2017	F	RunNo: 4	0375			als RPDLimit	Qual	
Sample ID LCS-29930 Client ID: LCSW Prep Date: 1/27/2017	ND SampT Batch Analysis D	1.0 Type: LC n ID: 29 Date: 1/	930 30/2017 SPK value	F	RunNo: 4 SeqNo: 1	0375 265584	Units: mg/ L			Qual	
Sodium Sample ID LCS-29930 Client ID: LCSW Prep Date: 1/27/2017 Analyte Calcium	ND SampT Batch Analysis D Result	1.0 Type: L C In ID: 29 Date: 1 / PQL	930 30/2017 SPK value	F S SPK Ref Val	RunNo: 4 SeqNo: 1 %REC	0375 265584 LowLimit	Units: mg/L HighLimit			Qual	
Sodium Sample ID LCS-29930 Client ID: LCSW Prep Date: 1/27/2017 Analyte	ND SampT Batch Analysis D Result 49	1.0 Type: LC n ID: 29 Date: 1/ PQL 1.0	930 30/2017 SPK value 50.00 50.00	F S SPK Ref Val 0	RunNo: 4 SeqNo: 1 %REC 98.3	0375 265584 LowLimit 80	Units: mg/ L HighLimit 120			Qual	

Qualifiers:

- Value exceeds Maximum Contaminant Level. \$
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- Ρ Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Page 3 of 5

01-Feb-17

WO#: 1701A75

Client:Western Refining Southwest, Inc.Project:DWD #2

Sample ID mb-1	SampType: mblk	TestCode: SM2320B: Alkalinity								
Client ID: PBW	Batch ID: R40366	RunNo: 40366								
Prep Date:	Analysis Date: 1/30/2017	SeqNo: 1266120	Units: mg/L CaCO3							
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual						
Total Alkalinity (as CaCO3)	ND 20.00									
Sample ID Ics-1	SampType: Ics	TestCode: SM2320B: Alkalinity								
Client ID: LCSW	Batch ID: R40366	RunNo: 40366								
Cheffer Ecore										
	Analysis Date: 1/30/2017	SeqNo: 1266121	Units: mg/L CaCO3							
Prep Date: Analyte	,	SeqNo: 1266121 SPK Ref Val %REC LowLimit	Units: mg/L CaCO3 HighLimit %RPD	RPDLimit Qual						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 5

WO#: 1701A75 01-Feb-17

WO#: 1701A75

01-Feb-17

Client: Project:	Western R DWD #2	lefining Sc	outhwe	st, Inc.								
Sample ID	MB-29970	SampTy	/pe: MI	BLK	Tes	tCode: S	SM2540C MC	DD: Total Diss	olved So	lids		
Client ID:	PBW	Batch	ID: 29	970	F	tunNo: 1	40436					
Prep Date:	1/31/2017	Analysis Da	ate: 2/	/1/2017	S	GegNo:	1267368	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Total Dissolved	Solids	ND	20.0									
Sample ID	LCS-29970	SampT	/pe: LC	S	TestCode: SM2540C MOD: Total Dissolved Solids							
Client ID:	LCSW	Batch	ID: 29	970	RunNo: 40436							
Prep Date:	1/31/2017	Analysis Da	ate: 2 ,	/1/2017	5	SeqNo:	1267369	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Total Dissolved	Solids	1010	20.0	1000	0	101	80	120				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded H
- Not Detected at the Reporting Limit ND
- RPD outside accepted recovery limits R
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified ₩
- Page 5 of 5

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Aibu TEL: 505-345-3975 Website: www.hal	4901 querqui FAX; 50	Hawkins I e, NM 871)5-345-41	^{NE} 09 Sam 07	ole Log-In C	heck List
Client Name: Western Refining Southw	Work Order Number:	1701/	75		RcptNo:	1
Received by/date: AT 611 210/17						
Logged By: Anne Thorne	1/26/2017 7:05:00 AM			an Im	-	
Completed By: Anne_Thorne	1/26/2017 9:13:16 AM			an In	_	
Reviewed By: 1	26/17					
Chain of Custody						
1, Custody seals intact on sample bottles?		Yes		No 🗆	Not Present 🗹	
2. Is Chain of Custody complete?		Yes		No 🗔	Not Present 🗌	
3. How was the sample delivered?		<u>Cour</u>	ier			
Log In						
4. Was an attempt made to cool the samples?		Yes		No 🗌	NA 🗌	
5. Were all samples received at a temperature	of >0° C to 6.0°C	Yes		No 🗌	NA 🗆	
 Sample(s) in proper container(s)? 	·	Yes	✓	No 🗌		
7. Sufficient sample volume for indicated test(s)?	Yes		No 🗌		
8. Are samples (except VOA and ONG) proper	y preserved?	Yes		No		
9. Was preservative added to bottles?		Yes		No 🗹	NA 🗌	
10.VOA vials have zero headspace?		Yes		No 🗖	No VOA Viais 🗹	
11. Were any sample containers received broke	n?	Yes		No 🔽	# of preserved bottles checked	0
12. Does paperwork match bottle labels?		Yes	\checkmark	No 🗌	for pH:	or >12 unless note
(Note discrepancies on chain of custody)	Custodu	Vaa		No 🗆	Adjusted?	M
13. Are matrices correctly identified on Chain of 14. Is it clear what analyses were requested?	Vusionali	Yes Yes	V			φ_{α}
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes		No 🗌	Checked by:	0-9
<u>Special Handling (if applicable)</u>			_	_		
18. Was client notified of all discrepancies with t	his order?	Yes		No 🗌	NA 🗹	7
Person Notified:	Date				-	
By Whom:	Via:	eM	ail 🗌 P	hone 🗌 Fax	In Person	
Regarding:						
Client Instructions:) 17. Additional remarks:				-wa.==		
18. <u>Cooler Information</u> Cooler No Temp °C Condition Se	eal Intact Seal No	Seal D		Signed By		

•

Page	1	of 1	

2 . Cy-															T	 			<u></u>				
	IV.	i ya						от И)	ο V)	еөіддиЯ тіА													÷
	UALL ENVIDONMENTAL	ANALYSIS LABORATORY		7109	7		-Y~~) vi	See at	X	X	X										analytical repo
	Ż		Ę	IM 87	-410			(\		imə2) 0728											-	;	on the :
		2₹	ntal.c	Ue, N	-345					OV) 80928								_					ofizited (
	5		www.hallenvironmental.com	- Albuquerque, NM 87109) Fax 505-345-4107 Apalysis Request	12				olitee9 1808							-		-	_			early n
	Z	ដ្ ស្រ	nviro	bnqN	Fay	(*(os oa			Anions (F,C									_				ll be ci
	; _	5	halle		5 An		(SWI			168) 2'HA9							+			+			data w
			- M	IS NE	5-397					EDB (Wetho									_		-		acted
			>	4901 Hawkins NE	Tel. 505-345-3975			(1.8)	14 P	опјеМ) НЧТ								-		_		.	
				1 Hg	I. 50	(0)	AM \ O		49)	88108 H9T									-		3.0		Any su
				49(Te	(໓ແ	no seð)	Hq⊤⊣	- 38	TM + Xəta					-					_	Remarks:	-	ibility.
						(r208) a	HTMB'	- 38	TM + XJT8						 			_		E E E		ssod si
		J-day			19031-2		Robinson	Cra Ko W		HEAL NG	192	102	102								Date Time	A alterin	ries. This serves as notice of the
	ime:	X Rush_		で#0)- 136 19 c3	ler:	·	1a H - 1	elatification	Preservative Type	સ્તાપ	H√rð₃	Ha Soy	_							Walt	R.	credited laborator
	Turn-Around Time:	Standard	Project Name:	DWI	Project #:	Project Manager:	Kelly	Sampler: <i>W</i> On the Sampler		Container		-	1-12241								Received by:		ontracted to other ac
	cord	Client: Westery Refuire			7413	. 97	Level 4 (Full Validation)			Sample Request ID	DWD3 Formeten weby -500 m										ad by for for	Mustur Wille	If necessary, safiplies submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
	-of-Cu	<u>لا)</u> در کا		م م		i		□ Other		Matrix	H2 C											NUMLA	samples sub
	hain-	West		Mailing Address:	Blennth	Frione #: いいい	QA/QC Package: K Standard	litation AP		Time	0 CH 00:11 LI-SC-										Time:	1me: (\$ĉ Ċ	lf necessary
	J	Client:		Mailing	12	email c	QA/QC Packs	Accreditation		Date	L1-5C-										Date: 25/17	L S I S I S	а *** ,

All Anions	EPA Method 300.0	1-500ml unpreserved plastic 1-125 ml H2SO4 plastic
Alkalinity	SM2320 B	Volume will come from the 500ml unpreserved plastic
eC	SM 2510B	Volume will come from the 500ml unpreserved plastic
TDS	SM 2540 C	Volume will come from the 500ml unpreserved plastic
Cations	EPA Method 200.7	1-500ml HNO3 Plastic
рН	EPA Method 9040	Volume will come from the 500ml unpreserved plastic

SM = Standard Methods

EPA Methods 310.1, 150.1, 160.1, 320.1 and 120.1 have been withdrawn by EPA. Most labs have are accredited for all of the tests listed above and we perform these methods regularly for f

We will ship out one bottle set today as listed below. Fill all bottles to the neck and keep the sa We can rush this work on a 1-2 business day TAT.

.

1-500ml unpreserved plastic

1-125ml H2SO4 Plastic

1-500ml HNO3 plastic

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

April 18, 2019

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX

RE: Injection Well 2 - 1Q2019

OrderNo.: 1904002

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 3/30/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis	Laboratory,	1IIC.				Date Reported: 4/18/201	9
CLIENT: Western Refining Southwest, In Project: Injection Well 2 - 1Q2019	0.	(Collect	ion Date:	3/29	ection Well WD#2 9/2019 12:00:00 PM	
Lab ID: 1904002-001	Matrix: AQUE	OUS	Recei	ved Date:	3/30	0/2019 9:20:00 AM	
Analyses	Resnlt	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8081: PESTICIDES TCLP						Analyst:	JME
Chlordane	ND	0.030		mg/L	1	4/16/2019 12:47:01 PM	43999
Surr: Decachlorobiphenyl	76.8	29.4-99.8		%Rec	1	4/16/2019 12:47:01 PM	43999
Surr: Tetrachloro-m-xylene	66.0	20,7~100		%Rec	1	4/16/2019 12:47:01 PM	43999
EPA METHOD 8270C TCLP						Analyst:	JDC
2-Methylphenol	ND	200		mg/L	1	4/15/2019 5:31:16 PM	44141
3+4-Methylphenol	ND	200		mg/L	1	4/15/2019 5:31:16 PM	44141
2,4-Dinitrotoluene	ND	0.13		mg/L	1	4/15/2019 5:31:16 PM	44141
Hexachlorobenzene	ND	0.13		mg/L	1	4/15/2019 5:31:16 PM	44141
Hexachlorobutadiene	ND	0.50		mg/L	1	4/15/2019 5:31:16 PM	44141
Hexachloroethane	ND	3.0		mg/L	1	4/15/2019 5:31:16 PM	44141
Nitrobenzene	ND	2.0		mg/L	1	4/15/2019 5:31:16 PM	44141
Pentachlorophenol	ND	100		mg/L	1	4/15/2019 5:31:16 PM	44141
Pyridine	ND	5.0		mg/L	1	4/15/2019 5:31:16 PM	44141
2,4,5-Trichlorophenol	ND	400		mg/L	1	4/15/2019 5:31:16 PM	44141
2,4,6-Trichlorophenol	ND	2.0		mg/Ł	1	4/15/2019 5:31:16 PM	44141
Cresols, Total	ND	200		mg/L	1	4/15/2019 5:31:16 PM	44141
Surr: 2-Fluorophenol	47.5	15-82.5		%Rec	1	4/15/2019 5:31:16 PM	44141
Surr: Phenol-d5	41.8	15-74.2		%Rec	1	4/15/2019 5:31:16 PM	44141
Surr: 2,4,6-Tribromophenol	68.5	18.6-118		%Rec	1	4/15/2019 5:31:16 PM	44141
Surr: Nitrobenzene-d5	66.2	30.4-106		%Rec	1	4/15/2019 5:31:16 PM	44141
Surr: 2-Fluorobiphenyl	54.6	15-104		%Rec	1	4/15/2019 5:31:16 PM	44141
Surr: 4-Terphenyl-d14	50.5	15-133		%Rec	1	4/15/2019 5:31:16 PM	44141
SPECIFIC GRAVITY						Analyst	
Specific Gravity	1.001	0			1	4/3/2019 10:28:00 AM	R5884
EPA METHOD 300.0: ANIONS						Analyst	MRA
Fluoride	ND	10		mg/L	100	4/2/2019 2:05:50 PM	R5884
Chloride	1300	50	*	mg/L	100	4/2/2019 2:05:50 PM	R5884
Bromide	4.2	1.0		mg/L	10	4/2/2019 1:53:26 PM	R5884
Phosphorus, Orthophosphate (As P)	ND	5.0	Н	mg/L	10	4/2/2019 1:53:26 PM	R5884
Sulfate	80	5.0		mg/L	10	4/2/2019 1:53:26 PM	R5884
Nitrate+Nitrite as N	ND	1.0		mg/L	5	4/2/2019 6:38:49 PM	R5884
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR
Conductivity	4500	5.0		µmhos/c	1	4/3/2019 8:29:31 PM	R5886
SM2320B: ALKALINITY						Analyst	: JRR
Bicarbonate (As CaCO3)	430.6	20.00		mg/L Ca	1	4/4/2019 2:17:08 PM	R5895
Carbonate (As CaCO3)	ND	2.000		mg/L Ca		4/4/2019 2:17:08 PM	R5895
Total Alkalinity (as CaCO3)	430.6	20.00		mg/L Ca		4/4/2019 2:17:08 PM	R5895
· · · · · · · · · · · · · · · · · · ·				-			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: ŧ

Value exceeds Maximum Contaminant Level, н Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit S % Recovery outside of range due to dilution or matrix E Value above quantitation range ND Not Detected at the Reporting Limit RL Reporting Detection Limit

W

Reporting Detection Limit Sample container temperature is out of limit as specified at testcode 1 of 14

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1904002 Date Reported: 4/18/2019

Analytical Report

CLIENT:Western Refining Southwest, Inc.Project:Injection Well 2 - 1Q2019Lab ID:1904002-001	Matrix: AQUEOU		Collect	ion Date	; 3/2	ection Well WD#2 19/2019 12:00:00 PM 10/2019 9:20:00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
SM2540C MOD: TOTAL DISSOLVED SOLI	DS					Analyst:	KS
Total Dissolved Solids	3350	200	*D	mg/L	1	4/5/2019 12:59:00 PM	44069
SM4500-H+B / 9040C: PH						Analyst:	JRR
pH	6.72		н	pH units	1	4/3/2019 8:29:31 PM	R5886
•				•		Analyst:	nmf
EPA METHOD 7470: MERCURY	ND	0.020		mall	1	4/5/2019 12:11:57 PM	44137
Mercury	ND	0.020		mg/L	1		
EPA METHOD 6010B: DISSOLVED METAL	S					Analyst:	ELS
Calcium	110	20		mg/L	20	4/5/2019 10:53:07 AM	A5892
Magnesium	42	20		mg/L	20	4/5/2019 10:53:07 AM	A5892
Potassium	ND	20		mg/L	20	4/5/2019 10:53:07 AM	A5892
Sodium	790	20		mg/L	20	4/5/2019 10:53:07 AM	A5892
EPA 6010B: TOTAL RECOVERABLE META	LS					Analyst:	ELS
Arsenic	ND	5.0		mg/L	1	4/5/2019 10:56:59 AM	44090
Barium	ND	100		mg/L	1	4/5/2019 10:56:59 AM	44090
Cadmium	ND	1.0		mg/L	1	4/5/2019 10:56:59 AM	44090
Calcium	110	5.0		mg/L	5	4/5/2019 10:27:18 AM	44090
Chromium	ND	5.0		mg/L	1	4/5/2019 10:56:59 AM	44090
Lead	ND	5.0		mg/L	1	4/5/2019 10:56:59 AM	44090
Magnesium	44	1.0		mg/L	1	4/5/2019 10:56:59 AM	44090
Potassium	14	1.0		mg/L	1	4/5/2019 10:56:59 AM	44090
Selenium	ND	1.0		mg/L	1	4/5/2019 10:56:59 AM 4/5/2019 10:56:59 AM	44090 44090
Silver	ND	5,0		mg/L	1 10	4/5/2019 10:56:59 AM	44090
Sodium	830	10		mg/L	10		
TCLP VOLATILES BY 8260B						Analyst	DJF
Benzene	ND	0.50		mg/L	1	4/6/2019 9:17:27 AM	D5895
1,2-Dichioroethane (EDC)	ND	0.50		mg/L	1	4/6/2019 9:17:27 AM	D5895
2-Butanone	ND	200		mg/L	1	4/6/2019 9:17:27 AM	D5895
Carbon Tetrachloride	ND	0.50		mg/L	1	4/6/2019 9:17:27 AM	D5895
Chloroform	ND	6.0		mg/L	1	4/6/2019 9:17:27 AM	D5895
1,4-Dichlorobenzene	ND	7.5		mg/L	1	4/6/2019 9:17:27 AM	D5895
1,1-Dichloroethene	ND	0.70		mg/⊑	1	4/6/2019 9:17:27 AM	D5895
Tetrachloroethene (PCE)	ND	0.70		mg/L mg/l	1 1	4/6/2019 9:17:27 AM 4/6/2019 9:17:27 AM	D5895 D5895
Trichloroethene (TCE)	ND ND	0.50 0.20		mg/L mg/L	1	4/6/2019 9:17:27 AM	D5895
Vinyl chloride	ND ND	100		mg/L	1	4/6/2019 9:17:27 AM	D5895
Chiorobenzene Surr: 1,2-Dichloroethane-d4	99.1	70-130		///g/∟ %Rec	1	4/6/2019 9:17:27 AM	D5895
Surr: 4-Bromofluorobenzene	99.1 92.8	70-130		%Rec	1	4/6/2019 9:17:27 AM	D5895
Surr: Dibromofluoromethane	115	70-130		%Rec	1	4/6/2019 9:17:27 AM	D5895

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

Value exceeds Maximum Contaminant Level. H Holding times for preparation or analysis exceeded PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

Е Value above quantitation range Not Detected at the Reporting Limit ND

RI. W Reporting Detection Limit

Reporting Detection Limit Sample container temperature is out of limit as specified at testcode Page 2 of 14

Lab Order 1904002 Date Reported: 4/18/2019

Analytical Report

Hall Environmental Analysis	Laboratory, Inc	•				Lab Order 1904002 Date Reported: 4/18/20	19
CLIENT: Western Refining Southwest, Inc Project: Injection Well 2 - 1Q2019		C	Collect	ion Dat	e: 3/2	ection Well WD#2 9/2019 12:00:00 PM	
Lab ID: 1904002-001	Matrix: AQUEOUS		Recei	ved Dat	.e: 3/3	0/2019 9:20:00 AM	
Апаlyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
TCLP VOLATILES BY 8260B						Analys	t: DJF
Surr: Toluene-d8	96.8 7	0-130		%Rec	1	4/6/2019 9:17:27 AM	D58957

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- Value exceeds Maximum Contaminant Level. н Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit

1

- % Recovery outside of range due to dilution or matrix S
- Е Value above quantitation range ND RL W

- Value above quantitation range Not Detected at the Reporting Limit Reporting Detection Limit Sample container temperature is out of limit as specified at restcode Page 3 of 14

Analytical Report Lab Order 1904002

1904002 001F INJECTION WELL WD#2 Collected date/time: 03/29/19 12:00

SAMPLE RESULTS - 01

OMETAR NATIONMOF 🛛 💐

Wet Chemistry by Method 2580

	Result	Qualifier	Cilution	Analysis	Batch		
Analyte	Virr			date / time			
ORP	-46.0	TE	1	04/06/2019 11:2	5 <u>WG1261694</u>		
Wet Chemistry by M	lethod 4500	CN E 2011					
	Result	Qualifier	ROL	Dilution	Analysis	Batch	
Analyte	mgʻl		mg/I		date / time		
Reactive Cyanide	ND		0.00500	1	04/10/2019 10:21	WG1262611	
Wet Chemistry by M	lethor 4500	-+ 8-2011					
	Result	Qualifier	Diution	Analysis	Batch		
Analyte	SL			date / time			
Corrosivity by pH	6.70	<u>78</u>	1	04/02/2019 17:4	5 <u>WS1259612</u>		
Sample Narrative: 11084750-01 WG1259617: 6.7	at 15.90						
Wet Chemistry by A	lethod 9034-	9030B					
	Result	Qualifier	RDL	Dilution	Analysis	Balch	
Analyte	mgil		mg'l		date / 6me		
Reactive Sulfide	ND		0.0500	1	24/02/2019 19:37	WG1255638	
Wat Chemistry by N	lethod D93/I	010 A					
	Result	Qualifier	Dilution	Analysis	Batch		

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	deg F			dete / time	
Flashpoint	DNF a: 170		1	04/05/2019 22:16	W0126*9*0

SDG L1084750 DATE/TIME: 04/10/19 13:28

WG1261694 Wet Chemistry by Method 2580	ad 2590		σ	QUALITY CONTROL SUMMARY	COL SUMMARY		ONE LAR NATIONIN DE
LI084665-01 Original Sample (OSI - Duplicate (DUP)	al Sample (OS) - Di	etcoldu					
IOSI LI084568-01 04/06/13 TI25 - (DUP) #3399056-2 54/06/19 T:25	3 mi25 - (DUP) R3399056-	2 C4/DEMS	0 1:25				
	Criginal Result DUP Result		Dilution DUP 27D	DUP Gualifier DUP RPD Linuls			1. L.
a	No. No.		35	± [©]			
c20	161 261	-	C.572	26			2 CS
Leboratory Control Sample (LCS)	Sample (LCS)						<u>_</u> _
ALCSI R3399096-1 04/06/19 11/25	B 11:25						
	Solke Amount LCS Result	LCS Rec.	E. Rec. Limits	LCS Qualifier			
Analyto	IT'V III'	Ч.					<u>In</u>
							JO J
ACK	ACCOUNT		đ	PROJECT:	SDG	DATE/TME	
Hall Environment	Hall Environmental Analysis Laboratory				L1084750	04/10/19 13:28	

WG1262613 Wri Chemistry by Method 4550 CN 5-2011	ethod 4500 C/	¢ 6-2011		õ	JALIT	QUALITY CONTROL ITERATION	SOL SI	SUMMARY	ž			দেশের কেন্দ্র কেন্দ্র	¥
Method Blank (MB)	ñ												
IMB R3400146-1 04/10/19 09/49 MB Ri	19 09:49 MB Result	M8 Ousilifier	ZIB NID	MB RDL									
Алафте			ngi	ngi n									ананталостор Ş, " ş
રેગ્યા પ્રા પિશ્વાલય	_ .		0.00180	0.00500.0									
1064689-01 Cuginal Sample (CS) + Duplicate (D. P)	alomeč jang	10 • Koga	Lee Contra	ر ،									0 0
(OS) L1024586-31 0410/19 10 03 + (DUP) R3400146-3 04/10/19 10/04	10 01 51/0	9 R3400146-3	04/10/19 10:04							Contract All Monthly and an and an	******		ີ ວົ
	tureal Result	Caiginal Result - DUP Result	Dihtan DuP 220		DUP Cudifier	DUP MU Limits							
Analyte	faç.i	tigen	9 ⁵) }							Ā
Велеская Сулине	EN	U CAPA	9 -	0.908		24)							
	(!	i										3
LUGG/JL-UJ UNGREI BERGIR (UG1 - UNTRERRE) (JL- Det topero of a tante one , with points for any other	HIGI DEMORT	19] + ICU); • Pasarase e	THE REF R.M.	 					energy in the second				<u>(</u> 5
	אחרו - פויחי ביא	大学なりませる	04/01/21/21/2017										
	Original Resul	Original Result DUP Result	Džulium DI	DUP RPD-	DUP Qualifier	0Ц22 НАС. Склавь							
立ちょうした	េចព្	,, 1 00	٤Ŕ			2.8							
Reactive Cyanith	QN	0000	1	0.000		20							- U 17
ا abreatone " Source " Sources a الت ا	e Seres Sere	i L											
	in a secondaria a s				- Anno								
ilos) R3400x16-2, 04/10/19 09/50 2016 6	1/19 C9,5D Solie Ammer - L'IS Earres	1.75 Easter		Nor Limite		le l							
Analyte	ljon		25	جن ج									
Fredry Cyanize	9,100	6310	109	ទី1ក្នុងន									
LI084650-02 O iginal Sample [DS] • Marux "pites (MS]	ginal Sanpl	4 50 4			n Server Server	, the arms signed should be described as							
COS) L2084600-02 04/0/19 10:05 • [NS) R3400/HE-1 04/10/19 10 06 • [NSD] R3400/46-5 04/10/19 10:07	C/19 10:05 - [MS	R3400ME-I	04/02/18 10 06	- IV50', R340	146-5 04/	70-01 <u>9</u> 1/¢							
	Spake Amount 			MSC) Result	M5 6 8 C	MSD Rec.	Ottizion	Kec Lenits	MS Qualifier	MSD Qualifier		RPD Emits F	
Reactive Constant	0.100	AD N	aran ya	1850-0	a 10	116	-	» 75.3-125			920 9	20 20	
LlO84710-01 Original Sample 705(- Naus: Spike (MS) -	ind Samole	n Solution	ux Spike (in the second se	Mar e Spre-Coulour, MSD:	ä						
(25) LIDE4710-01 04/10/9 (010 + MS; R340046-5 04/10/19 + (NSD) 22400146-7 04/10/19 10/14	7.9 1010 • INS' F	3400146-5 0	4/10/10/10/1/	N5D(7340014	5-7 04/10/1			1			1		1
	jpike Amount '''''''		Zirginal Result - M5 Husult 	MSU HEALIN	MS Ket.	MED RCC.	N DECO					ארע נוחונא	
Aralyce 5	1,0m		aica a sec	9 <u>6</u> 1	- 	: بت 1	E	50 - 10 1-1-1 1-1-1				ja ki	
HOMEN'S AND YOU	00128		5600Y	80129 Y	n M M	×. Si		17-17 B			<u>i</u>	2	
	ACCOUNTS			ű.	PROJECT			spe		DAT	D.A.T.EVTIME:		
rosei mu	Hail อ้างกับการกาม Anabas Laboatory	10-11ory					F.	LIC24750		0170	\$410v9 13:38		

one lais, hattorimide 🛛 🦉		<u>ੂਟ ਨੂੰ ਨੂੰ ਨੂੰ ਨੂੰ ਕ</u> ੁੱ	
ELC.			
CONTROL SUMMARY			
QUALITY C		LCS Quelifier	
лo		Recumiss 99,040	
		1 LGS Rep. 99.7	
++ 8-2011	(102)	17.45. Spike Amount LCS Result 10.0 997	
7 Vethod 4500-	trol bample	02/19 17 45 Spike Amot 10.0	
WG1259617 Wet Chemistry by Velhed 450044 8-2011	Laboratory Control Sample (LLS)	ILCSI R335774-1 C4/02/19 17 45. Sellet Analyte Corosinity cy pH 10,0 Sample Natrative: LCS: 9 a 7 at 17 60.	

W GTとちちちる Wat Cremistry by Method 3034-90308	thod 9034-90	308		ð		GUALITY CONTROL SUMMARY	UPIE LER. NATIONWIDE	COMMIDE
Method Slank (MB)								
	MB Result	MB Qualifier	MB MDL	ME RDL				
Reactive Sulfide	, n		0,00050	0.0200				
Laboratory Control Sample (LCS)	I Sample (L	CSI						
1LCS R3397727-2 04/02/19 18/19	VIG 1819 Setter Amontal III Amontal	IT'S Basela	100	and the				
	ing/i	Wgm	1967 19	Kec. Lumus	Las Uuntie			
Relative Sulfice	0.500	6476	2 56	35.0-115				
						1		
	,							
ৰ	ACCOUNT:			DRG	PROJECT:	SDG	DATE/TIME:	
Hall Environmen	Hall Environmentel Analysis Laboratory	orato"y					DAAD/19 13:28	

WG1261310 wet Chom.stry 37 Methed D53/1010A	A01311630 bahia	QUALITY CONTROL SUMMARY	. SUMMARY	Ove Live. Alathorian De	Ŕ
U024208-02 ON	Live≄e08-02 Original Sample (OSt+ Cuclicate (DUP)				
105/11084805-02 04/0	1051 LID84805-02 04/05/19 22/06 - [0UP] REBRICE 3 04/05/19 22/16	and a second	The second se		
	Original Result DUP Result Daution DUP RPD	DUP Outlifier DUP RPD			1
Analyte	մայի ուցի հ	şŦ			'
² lushpairs	CNE-4170 DNE-31770 1 0.000	Ŷ			אי רע ני
1:085800-0 0 M	±1085800+01 Original Sample (CSi + Duplicare (DU ⁻)] Įõ
(OS) LI085800-01 04/0	(OS) LI085800-01 04/05/19 22:16 - (DUP) R3399058-3 01/05/19 22:15		re un no reconstruction de la construcción de la construcción de la construcción de la construcción de la const		
	Criginal Result ESP 39504, Diluton DUP 200	<u>DUP Guarties</u> DUP RPD Linits			2
ਮੈਪ ਕ ਮ੍ਰਿਟਿ	deg E test	(چر			
Havigoad	DMF at 770 CNF at \$70 1 C.400	Ŷ			ë
Lizbototov Control Samela 3 (13)	e Martina di Citi				57
	under an der der Seinen der Seine Seine Seine Seine Sein				
31277 ALGOLAD LHACKARAN (ST) &					1
tinakten	NOURS GETOURLE LES RESULT LES REE. REE.				
10100 Parts - 20100 Parts - 20					5
Cashipulli	1] 0	J			
			×		
			X,		
			N,		
					ī
	ACCOUNT:	PROJECT		ME: 	
Hall Environ	4.nlt ដែលលោកពេល អំណាysis ១៨៥ហនុលោ		L12194750 D4407913.23	87°2	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

MDL	Method Delection Limit
ND	
RDL	Not detected at the Reporting Limit (or MDL where applicable)
	Reported Detection Limit.
Rec	Recovery.
RPD	Roblivo Porcent Difference.
SDG	Sample Delivery Group
	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilulion	If the sample matrix contains an interforing material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different then T is used in this field, the result reported has alreedy been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Onginal Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RFD) from a quality control sample. The Original Sample may not be included within the reported SDG
Qualifier	This column provides a letter and/or number designation that, corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Rosult	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Belaw Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lawest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Nartative (Cn)	A prief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Nairative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all behaviors (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the enalysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

PROJECT:

DATE/TIME C4/IC/19 13:28

10

3.5

0.50

0.20

10.00

3.500

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 - 1Q2019

Sample ID: MB	SampT	ype: mb	olk	Tes	tCode: El	PA Method	300.0: Anions	1		
Client ID: PBW	Batcl	n ID: R5	8843	F	RunNo: 5	8843				
Prep Date:	Analysis D	Date: 4/	2/2019	S	SeqNo: 1	977716	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Quai
Fluoride	ND	0.10								
Chloride	ND	0.50								
Bromide	ND	0.10								
Phosphorus, Orthophosphate (As P	ND	0.50								
Sulfate	ND	0.50								
Nitrate+Nitrite as N	ND	0,20								
Sample ID: LCS	Samp	Type: Ics	;	Tes	tCode: El	PA Method	300.0: Anions	;		
Client ID: LCSW	Batc	h ID: R5	8843	F	RunNo: 5	8843				
Prep Date:	Analysis [Date: 4/	2/2019	Ę	SeqNo: 1	977717	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	0.50	0.10	0.5000	0	99.9	90	110			
Chloride	4.8	0.50	5.000	0	96.8	90	110			
Bromide	2.4	0.10	2.500	0	96.7	90	110			
				•		~~	440			
Phosphorus, Orthophosphate (As P	4.8	0.50	5.000	0	96.5	90	110			

0

0

100

100

110

110

90

90

Qualifiers:

Sulfate

Nitrate+Nitrite as N

- Value exceeds Maximum Contaminant Level.
- H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix
- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

Page 4 of 14

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 - 1Q2019

Sample ID: rb2	SampT	Туре: МЕ	BLK	Test	Code: TC	LP Volatil	es by 8260B			
Client ID: PBW	Batcl	h ID: D5	8957	R	tunNo: 58	8957				
Prep Date:	Anaiysis E	Date: 4/	5/2019	S	eqNo: 19	983169	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.50								
1,2-Dichloroethane (EDC)	ND	0.50								
2-Butanone	ND	200								
Carbon Tetrachloride	ND	0.50								
Chloroform	ND	6.0								
1,4-Dichlorobenzene	ND	7.5								
1,1-Dichloroethene	ND	0.70								
Tetrachloroethene (PCE)	ND	0.70								
Trichloroethene (TCE)	ND	0.50								
Vinyl chloride	ND	0.20								
Chlorobenzene	ND	100								
Surr: 1,2-Dichloroethane-d4	0.011		0.01000		106	70	130			
Surr: 4-Bromofluorobenzene	0.0095		0.01000		95.5	70	130			
Surr: Dibromofluoromethane	0.012		0.01000		116	70	130			
Surr: Toluene-d8	0.0099		0.01000		99.5	70	130			
Sample ID: 100ng lcs2	Samp	Туре: LC	S	Tes	tCode: TO	CLP Volatil	es by 8260B			
Client ID: LCSW	Batc	h ID: D5	8957	·	RunNo: 5	8957				
Prep Date:	Analysis [Date: 4 /	5/2019	8	SeqNo: 1	983170	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.020	0.010	0.02000	0	99.4	70	130			
1,1-Dichloroethene	0.020	0.010	0.02000	0	98.5	70	130			
Trichloroethene (TCE)	0.019	0.010	0.02000	0	92.9	70	130			
Chlorobenzene	0.019	0.010	0.02000	0	97.1	70	130			
Surr: 1,2-Dichloroethane-d4	0.0095		0.01000		95.0	70	130			
Sur: 4-Bromofluorobenzene	0.0087		0.01000		87.5	70	130			
							100			
Surr: Dibromofluoromethane	0.011		0.01000		111	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

Page 5 of 14

1904002 18-Apr-19

WO#:

Client: Western Refining Southwest, Inc.

Injection Well 2 - 1Q2019 **Project:**

Sample ID: 1904002-001Bn	ns SampT	fype: MS	i	Tes	tCode: EF	PA Method	8270C TCLP			
Client ID: Injection Well V	ND#2 Batc	h ID: 44′	141	F	RunNo: 5	9159				
Prep Date: 4/5/2019	Analysis E	Date: 4/	15/2019	S	SeqNo: 1	991569	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylphenol	0.063	0.010	0.1000	0	62.7	23.9	129			
3+4-Methylphenol	0.12	0.010	0.2000	0	58.0	15	167			
2,4-Dinitrotoluene	0.060	0.010	0,1000	0	59.5	15	147			
lexachlorobenzene	0.059	0.010	0.1000	0	59.1	41.4	136			
lexachlorobutadiene	0.035	0.010	0.1000	0	35.0	16.2	134			
lexachloroethane	0.031	0.010	0.1000	0	31.4	20.6	124			
Vitrobenzene	0.064	0.010	0.1000	0	63.9	39.5	134			
Pentachlorophenol	0.056	0.010	0.1000	0	55.7	15	137			
Pyridine	ND	0.010	0.1000	0	0	15	129			S
,4,5-Trichlorophenol	0.066	0.010	0.1000	0	66.3	15	158			
2,4,6-Trichlorophenol	0.067	0.010	0,1000	0	66.9	15	153			
Cresols, Total	0.18	0.010	0,3000	0.01346	55.1	10.6	179			
Surr: 2-Fluorophenol	0.093		0.2000		46.5	15	82.5			
Surr: Phenol-d5	0.078		0.2000		39,1	15	74.2			
Surr: 2,4,6-Tribromophenol	0.13		0.2000		67,3	18.6	118			
Surr: Nitrobenzene-d5	0.070		0.1000		69.6	30.4	106			
Surr: 2-Fluorobiphenyl	0.058		0.1000		58.4	15	104			
Surr: 4-Terphenyl-d14	0.052		0.1000		51.8	15	133			
Sample ID: 1904002-001Br	nsd Samp	Туре: МS	3D	Tes	tCode: E	PA Method	8270C TCLP			
Client ID: Injection Well	WD#2 Batc	h ID: 44	141	F	RunNo: 5	9159				
Prep Date: 4/5/2019	Analysis I	Date: 4/	15/2019	ŝ	SeqNo: 1	991570	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-Methylphenol	0.064	0.010	0.1000	0	63.8	23.9	129	1.74	20	
3+4-Methylphenol	0.11	0.010	0.2000	0	57.4	15	167	1.07	20	
2,4-Dinitrotoluene	0.054	0.010	0.1000	0	53.9	15	147	9.95	23.2	
Hexachlorobenzene	0.056	0.010	0.1000	0	55.5	41.4	136	6.25	20	
Hexachlorobutadiene	0.038	0.010	0.1000	0	37.9	16.2	134	7.90	20	
Hexachloroethane	0.035	0.010	0.1000	0	34.5	20.6	124	9.40	31.3	
Nitrobenzene	0.064	0.010	0.1000	0	63.7	39.5	134	0.282	26.6	
Pentachlorophenol	0.051	0.010	0.1000	0	51.4	15	137	8,11	27.9	
Pyridine	ND	0.010	0.1000	0	0	15	129	0	47.4	S
2,4,5-Trichlorophenol	0.060	0.010	0.1000	0	60.3	15	158	9,54	36.9	
2,4,6-Trichlorophenol	0.062	0.010	0.1000	0	62.2	15	153	7,25	37.2	
						40.0	470	0.0702	17.4	

Qualifiers:

Cresols, Total

Surr: 2-Fluorophenol

Surr: 2,4,6-Tribromophenol

Surr: Phenol-d5

Value exceeds Maximum Contaminant Level. *

н Holding times for preparation or analysis exceeded

PQL Practicel Quanitative Limit

S % Recovery outside of range due to dilution or matrix

0.18

0.094

0.078

0.13

0.010

Е Value above quantitation range

55.1

46.9

39.2

64.3

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

0.01346

0.3000 0.2000

0.2000

0.2000

Sample container temperature is out of limit as specified at testcode W

10.6

15

15

18.6

179

82.5

74.2

118

0.0783

0

0

0

Page 6 of 14

27.4

0

0

0

1904002

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 - 1Q2019

Sample ID: 1904002-001Bm	sd SampT	ype: MS	SD	Tes	tCode: El	PA Method	8270C TCLP			
Client ID: Injection Well W	D#2 Batcl	n ID: 44	141	F	unNo: 5	9159				
Prep Date: 4/5/2019	Analysis D	ate: 4	15/2019	S	eqNo: 1	991570	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Nitrobenzene-d5	0.069		0.1000		68.6	30.4	106	0	0	
Surr: 2-Fluorobiphenyl	0.053		0.1000		52.6	15	104	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- E Value above quantitation range
- ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

Page 7 of 14

Client: Western Refining Southwest, Inc.

j

Project: Injection Well 2 - 1Q2019

-

Sample ID: ics-1 99.0uS eC	SampType: LCS			Tes	TestCode: SM2510B: Specific Conductance						
Client ID: LCSW	Batch ID: R58867			F	lunNo: 5	8867					
Prep Date:	Analysis D	ate: 4/	3/2019	S	SeqNo: 1	978677	Units: µmho	os/cm			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Conductivity	99	5.0	99.00	0	100	85	115				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- E Value above quantitation range
- ND Not Detected at the Reporting Linsit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode

Page 8 of 14

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 - 1Q2019

Sample ID: MB-44137	SampType: MBLK	TestCode: EPA Method	7470: Mercury	
Client ID: PBW	Batch ID: 44137	RunNo: 58933		
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1981797	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	ND 0.00020			
Sample ID: LCS-44137	SampType: LCS	TestCode: EPA Method	7470: Mercury	
Client ID: LCSW	Batch ID: 44137	RunNo: 58933		
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1981798	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	0.0043 0.00020 0.005000	0 85.5 80	120	
Sample ID: LCSD-44137	SampType: LCSD	TestCode: EPA Method	7470: Mercury	
Client ID: LCSS02	Batch ID: 44137	RunNo: 58933		
Prep Date: 4/4/2019	Analysis Date: 4/5/2019	SeqNo: 1981844	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	0.0050 0.00020 0.005000	0 99.7 80	120 15.3	20

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- H Holding times for preparation or analysis exceeded
- PQL
 Practical Quanitative Limit

 S
 % Recovery outside of range due to dilution or matrix
- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode

Page 9 of 14

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 - 1Q2019

Sample ID: MB-A	SampT	ype: ME	3LK	Test	tCode: EF	PA Method	6010B: Disso	lved Meta	uls	
Client ID: PBW	Batch	n ID: A5	8923	F	lunNo: 5	3923				
Prep Date:	Analysis D	ate: 4/	5/2019	S	SeqNo: 1	981510	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND	1.0								
Magnesium	ND	1.0								
Potassium	ND	1.0								
1 Gadolalli										
Sodium	ND	1.0								
	ND	1.0 ype: LC	:S	Tes	tCode; El	PA Method	6010B: Disso	lved Meta	als	
Sodium	ND SampT				tCode: El		6010B: Disso	lved Meta	lls	
Sodium Sample ID: LCS-A	ND SampT	ype: LC	8923	F		3923	6010B: Disso Units: mg/L		als	
Sodium Sample ID: LCS-A Client ID: LCSW	ND SampT Batc!	ype: LC	8923 5/2019	F	RunNo; 5	3923			als RPDLimit	Qual
Sodium Sample ID: LCS-A Client ID: LCSW Prep Date:	ND SampT Batcl Analysis E	ype: LC n ID: A5 pate: 4/	8923 5/2019	F S SPK Ref Val	RunNo: 5 SeqNo: 1	3923 981511	Units: mg/L			Qual
Sodium Sample ID: LCS-A Client ID: LCSW Prep Date: Analyte Calcium	ND SampT Batcl Analysis D Result	Type: LC n ID: A5 pate: 4/ PQL	8923 5/2019 SPK value	F S SPK Ref Val 0	RunNo: 5 SeqNo: 19 %REC	3923 981511 LowLimit	Units: mg/L HighLimit			Qual
Sodium Sample ID: LCS-A Client ID: LCSW Prep Date: Analyte	ND SampT Batcl Analysis D Result 51	ype: LC 1D: A5 Date: 4/ PQL 1.0	8923 5/2019 SPK value 50.00	F S SPK Ref Val 0 0	RunNo: 5 8 SeqNo: 19 <u>%REC</u> 101	3923 981511 LowLimit 80	Units: mg/L HighLimit 120			Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

Page 10 of 14

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 - 1Q2019

-

Sample ID:	1904002-001EMS	Samp	Type: MS	;	TestCode: EPA 6010B: Total Recoverable Metals								
Client ID:	Injection Well WD	#2 Batc	ch ID: 440	090	R	unNo: 58	3923						
Prep Date:	4/3/2019	Analysis I	Date: 4/	5/2019	S	eqNo: 19	81485	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
vrsenic		0.47	0.020	0,5000	0	94.3	75	125					
Barium		0.89	0.020	0.5000	0.4350	90.9	75	125					
Cadmium		0.52	0.0020	0.5000	0	103	75	125					
Chromium		0.50	0.0060	0.5000	0.002560	98.8	75	125					
ead		0.51	0.0050	0.5000	0	101	75	125					
Magnesium		90	1.0	50.00	43.62	93.6	75	125					
Potassium		61	1.0	50.00	13.69	94.8	75	125					
Selenium		0.48 0.050 0.5000				96.1	75	125					
Silver		0.10 0.0050 0.1000				101	75	125					
Sample ID:	1904002-001EMS) Samp	SD	TestCode: EPA 6010B: Total Recoverable Metals									
Client ID:	nt ID: Injection Well WD#2 Batch ID: 44090				F	RunNo: 5 8	3923						
Prep Date:	4/3/2019	Analysis	Date: 4/	5/2019	5	SeqNo: 19	981486	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Arsenic		0.49	0.020	0.5000	0	98.1	75	125	3.99	20			
Barium		0.90	0.020	0.5000	0.4350	92.2	75	125	0.732	20			
Cadmium		0.53	0.0020	0.5000	0	105	75	125	1,90	20			
Chromium		0.50	0.0060	0.5000	0.002560	100	75	125	1.45	20			
Lead		0.51	0.0050	0.5000	0	102	75	125	0.955	20			
Magnesium		92	1.0	50.00	43.62	96.7	75	125	1.72	20			
Potassium		62	1.0	50.00	13.69	96.8	75	125	1.68	20			
Selenium	·	0.49	0.050	0.5000	0	98.5	75	125	2.46	20			
Silvar		0.10	0.0050	0.1000	0.001008	101	75	125	0.323	20			
Sample ID:	MB-44090	Samp	Туре: МІ	зLK	TestCode: EPA 6010B: Total Recoverable Metals								
Client ID:	PBW	Bate	ch ID: 44	090	F	RunNo: 5	B923						
Prep Date:	4/3/2019	Analysis	Date: 4/	5/2019	ę	SeqNo: 1	981507	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Arsenic		ND	0.020										
Barium		ND	0.020										
Cadmium		ND	0.0020										
Calcium		ND	1.0										
Chromium		ND	0.0060										
Lead		ND	0.0050										
Magnesium		ND	1.0										
		ND	1.0										
Potassium													
Potassium Selenium		ND	0.050										

Qualifiers:

Value exceeds Maximum Contaminant Level.

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit S % Recovery outside of rang

% Recovery outside of range due to dilution or matrix

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

Page 11 of 14

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 - 1Q2019

-

Sample ID: MB-44090	Samp	Туре: МЕ	3LK	Test	tCode: EF	PA 6010B: 1	Fotal Recover	able Meta	ls	
Client ID: PBW	Bate	ch ID: 44	090	R	anNo: 51	8923				
Prep Date: 4/3/2019	Analysis	Date: 4/	5/2019	S	eqNo: 1	981507	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sodium	ND	1.0								
Sample ID: LCS-44090	Samo	Type: LC	S	Tes	tCode: El	PA 6010B: "	Total Recover	able Meta	ils	
Client ID: LCSW	•	ch ID: 44		R	RunNo: 5	8923				
Prep Date: 4/3/2019		Date: 4/			SeqNo: 1		Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	0.50	0.020	0.5000	0	100	80	120			
Barium	0.48	0.020	0.5000	0	97.0	80	120			
Cadmium	0.50	0.0020	0.5000	0	101	80	120			
Calcium	50	1.0	50.00	0	101	80	120			
Chromium	0.50	0.0060	0.5000	0	99.8	80	120			
Lead	0.50	0.0050	0.5000	0	101	80	120			
Magnesium	49	1.0	50.00	0	99.0	80	120			
Potassium	48	1.0	50.00	0	96.7	80	120			
Selentum	0.51	0.050	0.5000	0	102	80	120			
Silver	0.10	0.0050	0.1000	0	99.6	80	120			
Sodium	48	1.0	50,00	0	96.9	80	120			
Sample ID: 1904002-001E	MS Samp	Type: MS	5	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID: Injection Wel	WD#2 Bat	ch ID: 44	090	F	RunNo: 5	8923				
Prep Date: 4/3/2019	Analysis	Date: 4/	/5/2019	5	SeqNo: 1	981524	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	160	5.0	50.00	110.2	90.9	75	125			
Sample ID: 1904002-001E	MSD Samp	Type: M	SD	Tes	tCode: E	PA 6010B:	Total Recover	able Meta	als	
Client ID: Injection Wei	WD#2 Bat	ch ID: 44	090	F	RunNo: 5	8923				
			10040	c	SeqNo: 1	981525	Units: mg/L			
Prep Date: 4/3/2019	Analysis	Date: 4/	5/2019		504.10. 1	001020				
Prep Date: 4/3/2019 Analyte	Analysis Result	Date: 4, PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD 2.02	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

H Holding times for preparation or analysis exceeded

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

E Value above quantitation range

ND Not Detected at the Reporting Limit

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified at testcode

Page 12 of 14

1904002

WO#:

WO#: 1904002

18-Apr-19

Client: Western Refining Southwest, Inc.

Project: Injection Well 2 - 1Q2019

Sample ID: mb-1 alk	SampT	ype: ME	BLK	Test	Code: SI	12320B: Al	kalinity			
Client ID: PBW	Batch	n ID: R5	8958	Я	unNo: 5	8958				
Prep Date:	Analysis D	ate: 4/	4/2019	S	ieqNo: 1	983064	Units: mg/L	CaCO3		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO3)	ND	20.00							·	
Sample ID: Ics-1 alk	SampT	ype: LC	S	Tes	Code: SI	12320B: Al	kalinity			
Client ID: LCSW	Batch	n ID: R5	8958	F	tunNo: 5	8958				
Prep Date:	Analysis D	ate: 4/	4/2019	5	eqNo: 1	983065	Units: mg/L	. CaCO3		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	70.00	~~ ~~		~	95.4	90	110			
Total Alkalinity (as CaCO3)	76.28	20.00	80.00	0	90.4	90	110			
Total Alkalinity (as CaCO3) Sample ID: mb-2 alk		20.00 ype: ME		_		90 W2320B: Al				
	SampT		BLK	Tes		W2320B: AI				
Sample ID: mb-2 alk	SampT	ype: ME n ID: R5	3LK 8958	Tes	tCode: SI	M2320B: AI 8958		. CaCO3		
Sample ID: mb-2 alk Client ID: PBW	SampT Batch	ype: ME n ID: R5	3LK 8958 4/2019	Tes	tCode: SI RunNo: 5 SeqNo: 1	M2320B: AI 8958	kalinity	. CaCO3 %RPD	RPDLimit	Qual
Sample ID: mb-2 alk Client ID: PBW Prep Date:	SampT Batch Analysis D	ype: ME n ID: R5 pate: 4/	3LK 8958 4/2019	Tes F	tCode: SI RunNo: 5 SeqNo: 1	W2320B: Al 8958 983094	kalinity Units: mg/L		RPDLimit	Qual
Sample ID: mb-2 alk Client ID: PBW Prep Date: Analyte	SampT Batch Analysis D Result ND	ype: ME n ID: R5 pate: 4/ PQL	3LK 18958 14/2019 SPK value	Tes F SPK Ref Val	tCode: SI RunNo: 5 SeqNo: 1 %REC	W2320B: Al 8958 983094	kalinit y Units: mg/L HighLimit		RPDLimit	Qual
Sample ID: mb-2 alk Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3)	SampT Batch Analysis D Result ND SampT	ype: ME DD: R5 Date: 4/ PQL 20.00	BLK 18958 4/2019 SPK value	Tes F SPK Ref Val Tes	tCode: SI RunNo: 5 SeqNo: 1 %REC	W2320B: AI 8958 983094 LowLimit W2320B: AI	kalinit y Units: mg/L HighLimit		RPDLimit	Qual
Sample ID: mb-2 alk Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3) Sample ID: Ics-2 alk	SampT Batch Analysis D Result ND SampT	ype: ME n ID: R5 pate: 4/ PQL 20.00 ype: LC n ID: R5	3LK i8958 i4/2019 SPK value :S i8958	Tes F SPK Ref Val Tes F	tCode: SI RunNo: 5 SeqNo: 1 %REC tCode: SI	M2320B: AI 8958 983094 LowLimit M2320B: AI 8958	kalinit y Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID: mb-2 alk Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3) Sample ID: Ics-2 alk Client ID: LCSW	SampT Batch Analysis D Result ND SampT Batch	ype: ME n ID: R5 pate: 4/ PQL 20.00 ype: LC n ID: R5	3LK (8958 (4/2019 SPK value (5) (8958 (4/2019	Tes F SPK Ref Val Tes F	Code: SI RunNo: 5 BeqNo: 1 %REC tCode: SI RunNo: 5 BeqNo: 1	M2320B: AI 8958 983094 LowLimit M2320B: AI 8958	kalinity Units: mg/L HighLimit kalinity	%RPD	RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- H Holding times for preparation or analysis exceeded
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified at testcode

Page 13 of 14

WO#: 1904002

18-Apr-19

Client:	Western Refining Southwest, Inc.
---------	----------------------------------

Injection Well 2 - 1Q2019 **Project:**

Sample ID: MB-44069	SampT	ype: MBL	LΚ	Tes	tCode: SI	12540C MC	D: Total Diss	olved So	lids	
Client ID: PBW	Batch	ID: 4406	69	F	RunNo: 58	3928				
Prep Date: 4/3/2019	Analysis D	ate: 4/5/	/2019	5	SeqNo: 19	981702	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved Solids	ND	00.0								
I Otal Dissolved Solids	ND	20.0								
		ype: LCS	}	Tes	tCode: SI	M2540C MC	D: Total Diss	oived So	lids	
Sample ID: LCS-44069 Client ID: LCSW	SampT				tCode: SI RunNo: 5)D: Total Diss	olved So	lids	
Sample ID: LCS-44069 Client ID: LCSW	SampT	ype: LCS	69	F		8928	DD; Total Diss Units: mg/L	olved So	lids	
Sample ID: LCS-44069 Client ID: LCSW	SampT Batch	ype: LCS ID: 4400 ate: 4/5	69 /2019	F	RunNo: 5	8928		olved So %RPD	lids RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Holding times for preparation or analysis exceeded н
- PQL Practical Quanitative Limit S % Recovery outside of range due to dilution or matrix
- Е Value above quantitation range
- ND Not Detected at the Reporting Limit
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified at testcode W

Page 14 of 14

	RONMENTAL .YSIS Ratory	stibe TEL: 505-345-3975 Website: www.ha	EAX .		107	ple Log-In Check List
Client Name:	Western Refining Southw	Wark Order Number.	1904	002		RcpiNo ⁻ 1
Received By:	Anne Thorns	3/30/2019 9:20:00 AM			am In	~
Completed By:	Victoria Zellar	4/1/2019 8:16:36 AM			Victoria Gell	an i i i i
Reviewed By:	ENM	4/1/19			-	and man
		• • • • • -				DAN ILL.
Chain of Cu	stody					DAD 4/1/19
	Custody complete?		Yes	Z	No 🛄	Not Present
2. How was the	sample delivered?		<u>Cour</u>			
<u>Log in</u>						
3. Was an atte	mpt made to cool the sample:	17	Yes	\mathbf{N}	No 🗔	NA 🗔
4. Were all sam	ples received at a temperatur	re of >0* C to 6.6*C	Yes	¥	No 🗌	NA
5. Sample(s) m	proper container(s)?		Yes	Z	No 🗔	
6, Sufficient sa	nple volume for indicated test	(6)?	Yes	Z	No 🛄	
7, Are samples	(except VOA and ONG) prope	erty preserved?	Yes	Z	No 🗌	
8. Was preserv	ative added to bottles?		Yes		No 🗹	NA
9, VOA vials ha	ve zero beadspace?		Yes	2	No 🗍	No VOA Vials
10. Were any sa	mple containers received bro	ken?	Yes		No 🗹 🗌	# of preserved
	ark match bottle∹abels? ancies on chain of custody)		Yes	×	No 🗔	for pH: <u>(<2</u>) (2)unloss noted)
-	corractly dentified on Chain d	of Custody?	Yes	$\mathbf{\Sigma}$	No 🗔	Acjusted? NO
	at analyses were requested?	-	Yes	\mathbf{Z}	No 🛄	4/1/14
	ing times able to be met? customer for authorization.)		Yes	M	No	Checked by DAD 3/7-DF
Special Hand	<u>ling (if applicable)</u>					
15. Was client n	otified of all discrepancies wit	h Ihis order?	Yes	<u> </u>	No 🗌	NA Z
Persor	Nolified:	Date:		<i></i>	an a tanan tana tang katan tanan mang katik	· ·
By Wh		Via:] eMa	aî? []Ph	cne 🦳 Fax	in Porson
Regari Client	ding:					
16. Acditional re	м 			-		
17. <u>Cooler Info</u>	rmation					
Cooler N		Seal Intact Seal No S	eai Da	te S	Signed By	
1		'es				
2 3		'es				

Client:	Westerr	Western Refining	Western Refining					HALL ENVIRONMENTAL
				A standard Project Name:	C Rush			ANALYSIS LABORATORY
Mailing Address:	583.	50 CR 4990	066	Injec	Injection Well #2 - 102019	- 102019	4901	4901 Hawkins NE - Albuquerque, NM 87109
		Bloomfiel	Bloomfield, NM 87413	Project #;			Tel. 5	Tel. 505-345-3975 Fax 505-345-4107
Phone #		(505) 632-4163	2-4163		PO 4500052484	484		ysis Red
email or Fax#:	j.	kelly,robi	kelly.robinson@andeavor.com	Project Manager				
QA/OC Package: X Standard	ii B		Level 4 (Full Validation)		Kelly Robinson	Ц	teiJ le	
Accreditation:		2000		Sampler:	obins(u	ny tice	
X NELAP		D Other		On lœ:		ON D	eu\	
A EDD (Typ		Excel		Sample Temperature: 3200	ature: 3cool e	esc Cilo ca	/ pa	
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	See Attache	29lddu8 1iA
3/29/2019	12:00	12:00 Water	Injection Well WD #2	4-500mL Amber None	None	100-	×	
		Water		2-500mL Poly	None		×	
		Water		3-VOAs	HCI		×	
		Water		1-500mL Poly	NaOH		×	
		Water		1-500mL Poly	Zn Acetate / NaoH		×	
_		Water		1-250mL Poly	HNO3		×	
		Water		1-125mL Poly	HNO3		×	
-	-	Water	*	1-125mL Poly	H2SO4		×	
Date: 3/19/19 Date: /	Time: Time:	Relinquished by Relinquished by	Illectorer	Received by	1 alert	Dete Tim∉ 3/24/15_14/47 Dete _Time_	Remarks. Analytical Li	Remarks. Analytical List Attached to COC
3/24/19	1840	Chin	Mar Walle	L Cch	her In	03/3017		

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-

HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 – 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- pH (Method 9040);
- Eh;
- Specific conductance;
- Specific gravity;
- Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- EPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

EPA HW No.	Contaminant	SW-846 Methods	Regulatory Level (mg/L)
D004	Arsenic	1311	5.0
D005	Barium	1311	100.0
D018	Benzene	8021B	0.5
D006	Cadmium	1311	1.0
D019	Carbon tetrachloride	8021B	0.5
D019	Carbon tetracinoride	8260B	0.5
D020	Chlordane	8081A	0.03
D020	Chlorobenzene	8021B	100.0
10021	Chiorobenzene	8260B	100.0
D022	Chloroform	8021B	6.0
10022	Canolotoni	8260B	0.0
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025	p-Cresol	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B	7.5
Dout	1,4 Dieliorobeliaelle	8121	
		8260B	
		8270D	
D028	1,2-Dichloroethane	8021B	0.5
	A Jac De Levin de La de	8260B	
D029	1,1-Dichloroethylene	8021B	0.7
		8260B	
D030	2,4-Dinitrotoluene	8091	0.13
		8270D	
D032	Hexachlorobenzene	8121	0.13
D033	Hexachlorobutadiene	8021B	0.5
		8121	
		8260B	-
D034	Hexachloroethane	8121	3.0
D008	Lead	1311	5.0
D009	Mercury	7470A	0.2
		7471B	
D035	Methyl ethyl ketone	8015B	200.0
W.F		8260B	
D036	Nitrobenzene	8091	2.0
the second se		8270D	
D037	Pentrachlorophenol	8041	100.0
D038	Pyridine	8260B	5.0
		8270D	1.

8081

WESTERN REFINING SOUTHWEST, INC. WASTE DISPOSAL WELL NO. 2

UICI-011 (WDW-2) July 20, 2016

D010	Selenium	1311	1.0
D011	Silver	1311	5,0
D039	Tetrachloroethylene	8260B	0.7
D040	Trichloroethylene	8021B 8260B	0.5
D041	2,4,5-Trichlorophenol	8270D	400.0
D042	2,4,6-Trichlorophenol	8041A 8270D	2.0
D043	Vinyl chloride	8021B 8260B	0.2

If o_{-}, m_{-} and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level. If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 - 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost waterbearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2.

2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.

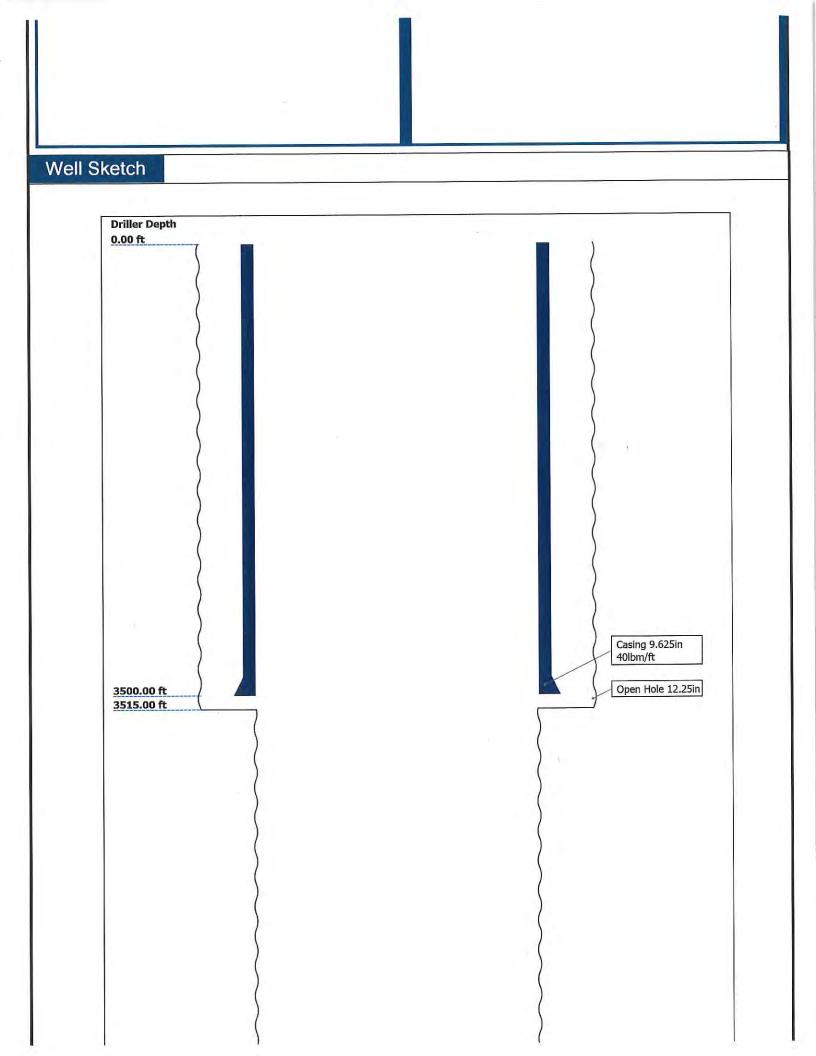
2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.

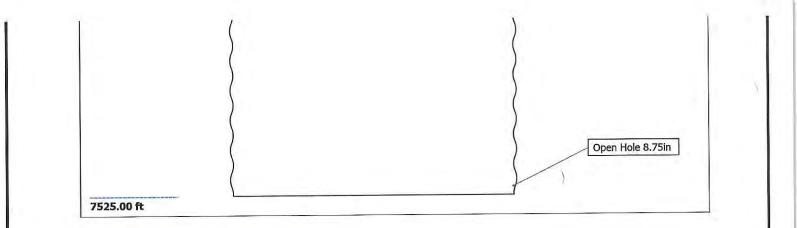
- Pre-Closure Notification: Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
- 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - Name of Permittee (and owner or operator, if appropriate);

APPENDIX D

Well Log

7

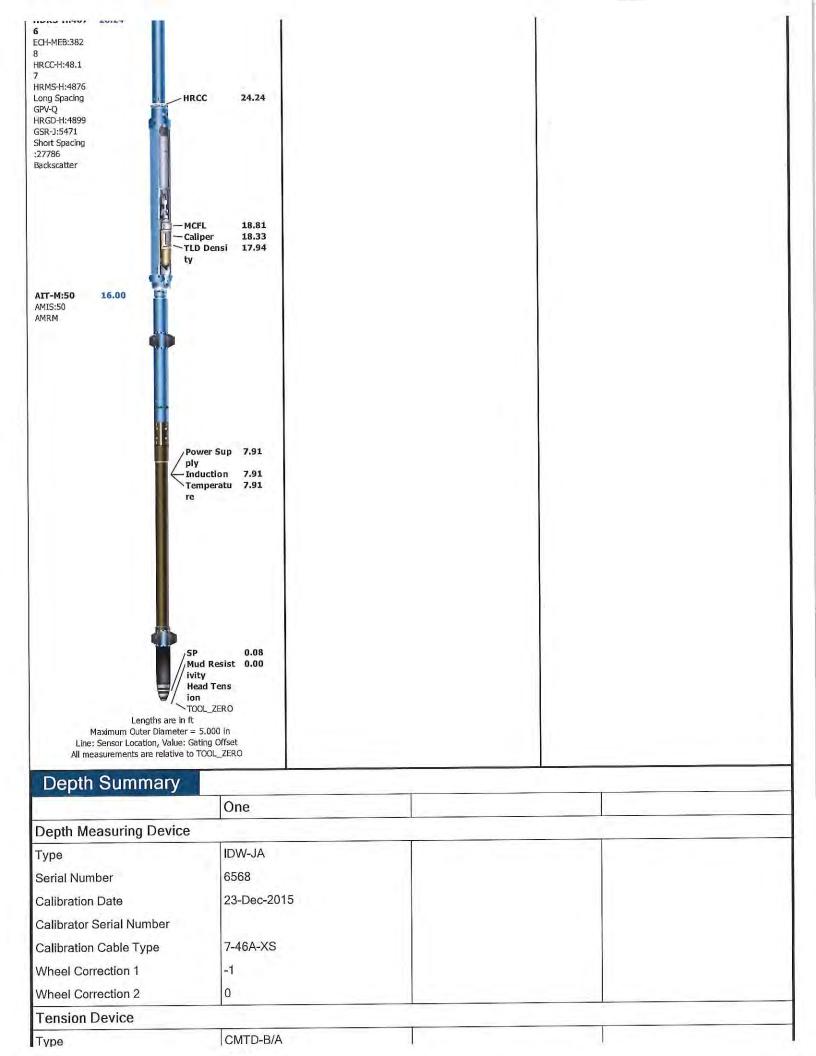

				SCUIU	Schunderger
Company:	Western R	efining, Sc	Western Refining, Southwest, Inc.	ġ,	
Well:	WWD #2				
Field:	Wildcat				
County:	San Juan		State:	New Mexico	0
	Platform Express	SSS			
I, R11W	Triple Combo				
T29N 2	Sec 27, T29N, R11W	11W X 111' EEI		Elev.: K.B.	3. 5550.00 ft
VD #	Lat/Long: 36.6986/-107.97035	36/-107.97035		D.F.	5549.00
Wil Sec WV	tion: Permanent Datum:	5	Ground Level	Elev.:	5535.00 f
n:	-		Kelly Bushing	- training the	
ounty ield: ocatio /ell: ompa	API Serial No.		Section:	Township:	Range:
aging Date		05-Sep-2016			
Run Number	0	One			
Depth Driller	7	7525.00 ft			
Schlumberger Depth		7532.00 ft			
Bottom Log Interval	0 ~	7532.00 ft			
Casing Driller Size @ Denth		9.625 in @	3500.00 ft		
Casing Schlumberger					
Bit Size		8.75 in			
Type Fluid In Hole		WBM			
Density	cosity	9.9 lbm/gal	55 s		
D Fluid Loss	PH	9 cm3	8.6		
10					
RMF @ Meas Temp		0.9 ohm.m @	@ 68 degF		
RMC @ Meas Temp					
Source RMF	RMC		Ca		
RM @ BHT	BHT	0.46 @ 177	0.37 @ 177	7	
Max Recorded Temperatures	1	177 degF			
Circulation Stopped	Time (07-Sep-2016	20:25:00		
Unit Number		9115	Ft Morgan, CO		
Recorded By		Avery Becker			
Witnessed By	-	Larry Candelaria			


Disclaimer

THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

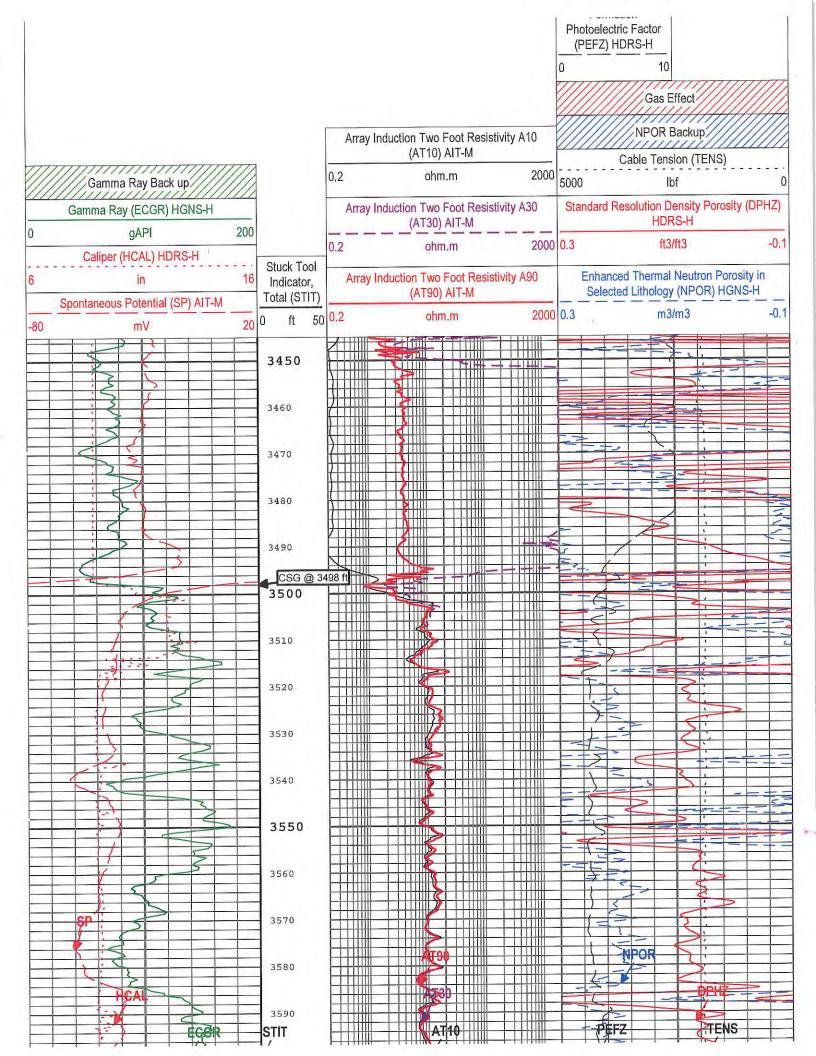
Contents

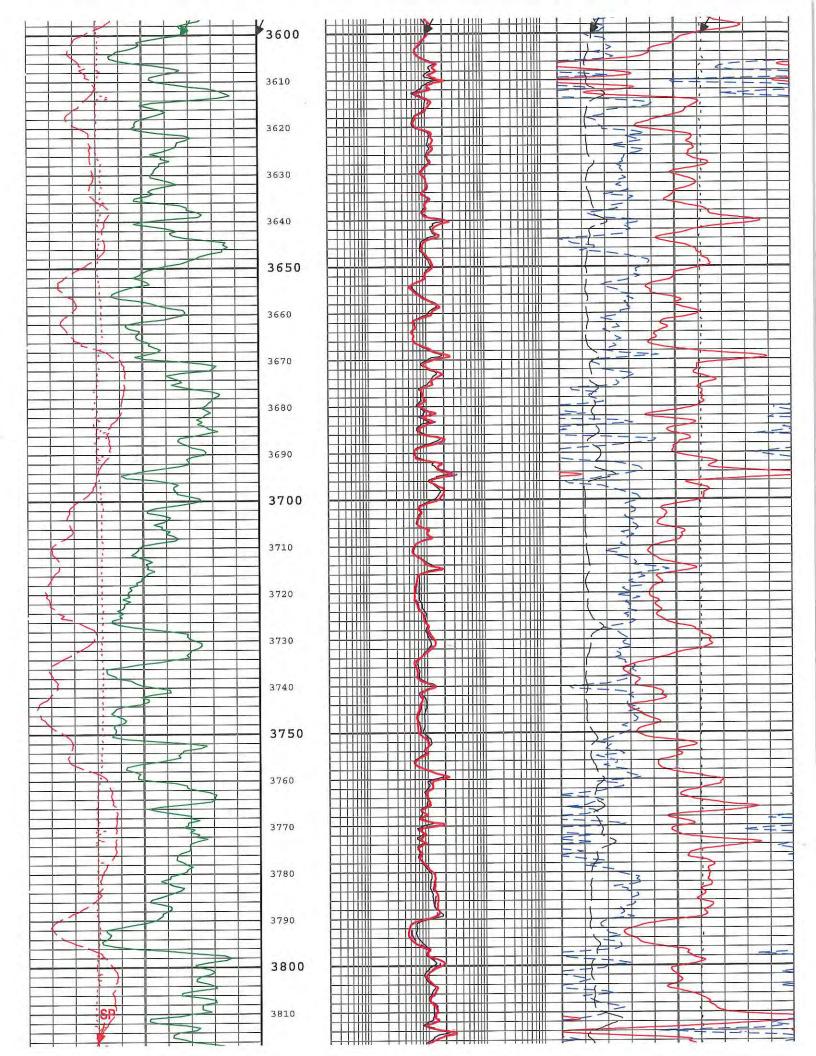
- 1. Header
- 2. Disclaimer
- 3. Contents
- 4. Well Sketch
- 5. Borehole Size/Casing/Tubing Record
- 6. Remarks and Equipment Summary
- 7. Depth Summary
- 8. One 5" Triple Combo
 - 8.1 Integration Summary
 - 8.2 Composite Summary
 - 8.3 Log (TripleCombo-5)
 - 8.4 Parameter Listing
- 9. One 5" Triple Combo
 - 9.1 Composite Summary
 - 9.2 Log (TripleCombo-5 RA)
- 10. Calibration Report
- 11. Tail

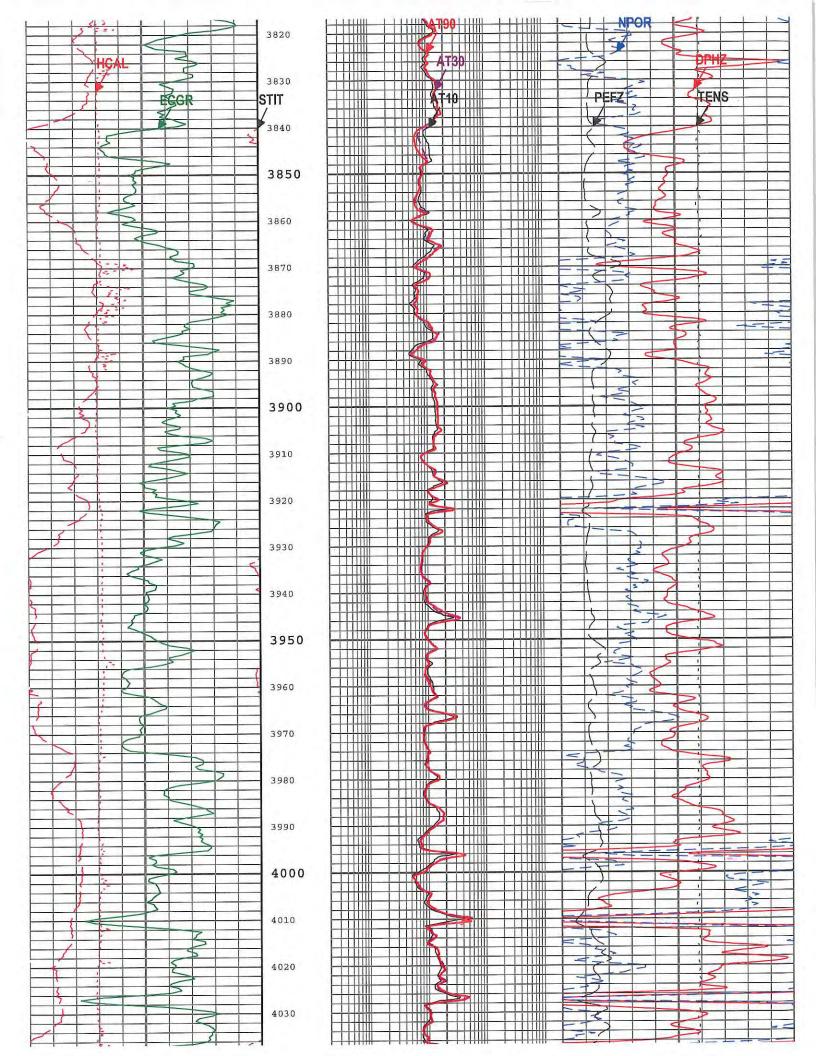


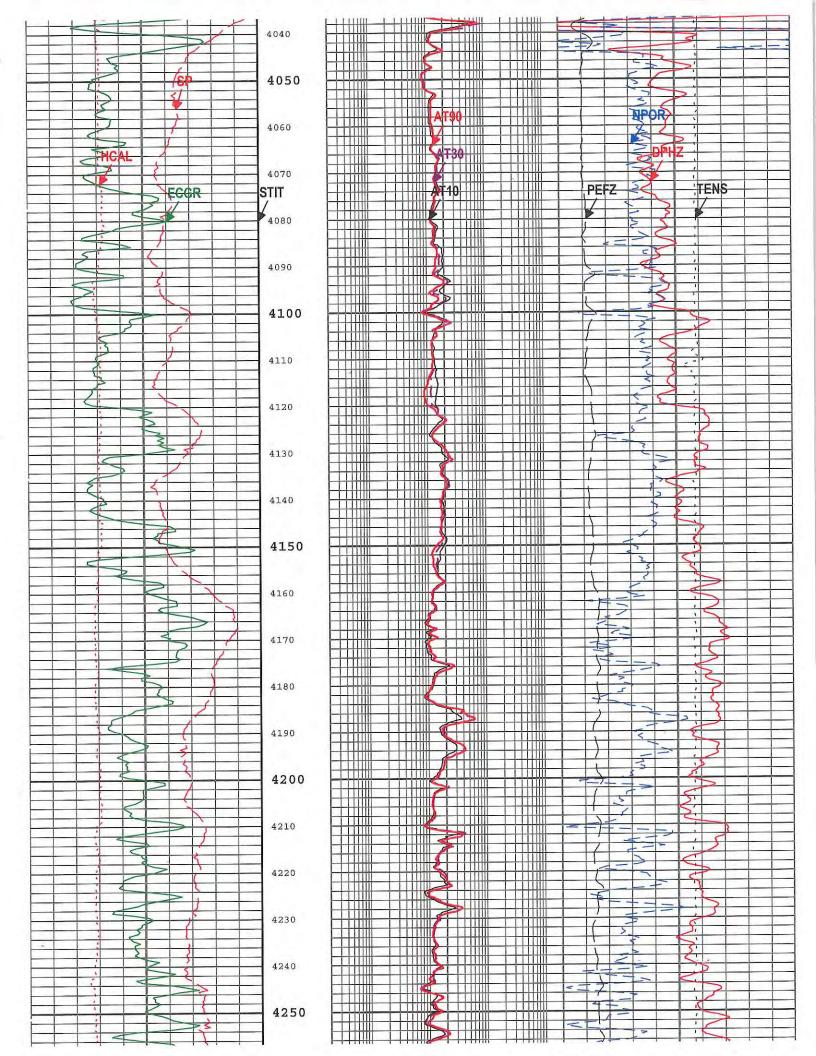
Borehole Size/Casing/Tubing Record

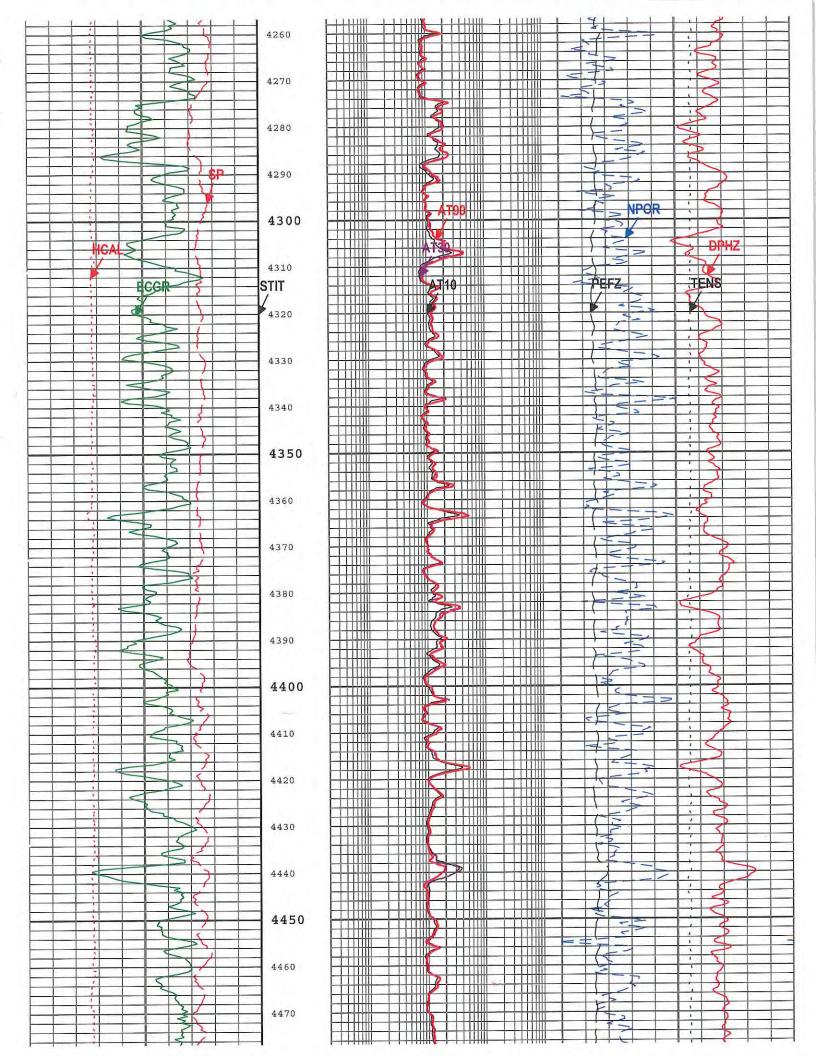
Bit				
Bit Size (in)	12.25	8.75		
Top Driller (ft)	0	3515		
Top Logger (ft)	0	3515		
Bottom Driller (ft)	3515	7525		
Bottom Logger (ft)	3515	7532		
Casing				1
Size (in)	9.625			1
Weight (lbm/ft)	40			
Inner Diameter (in)	8.835			
Grade	N/A			
Top Driller (ft)	0			
Top Logger (ft)	0			
Bottom Driller (ft)	3500			
Bottom Logger (ft)	3498			

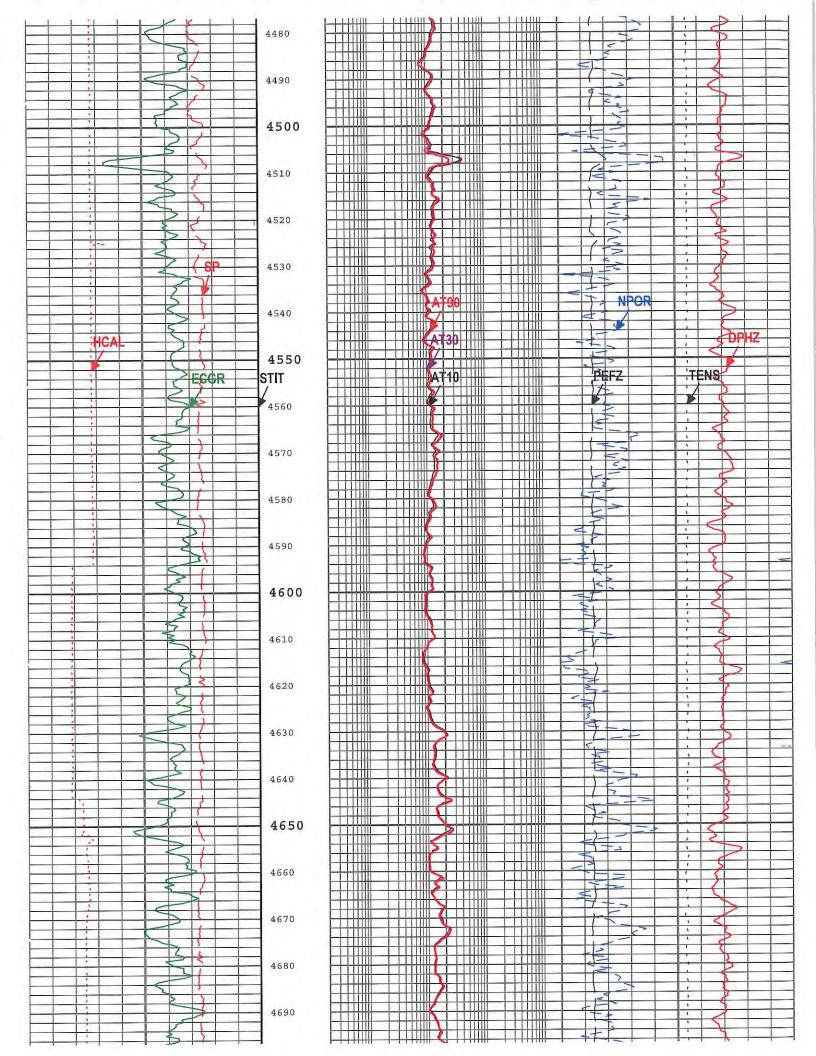

Remarks and Equipment Summary

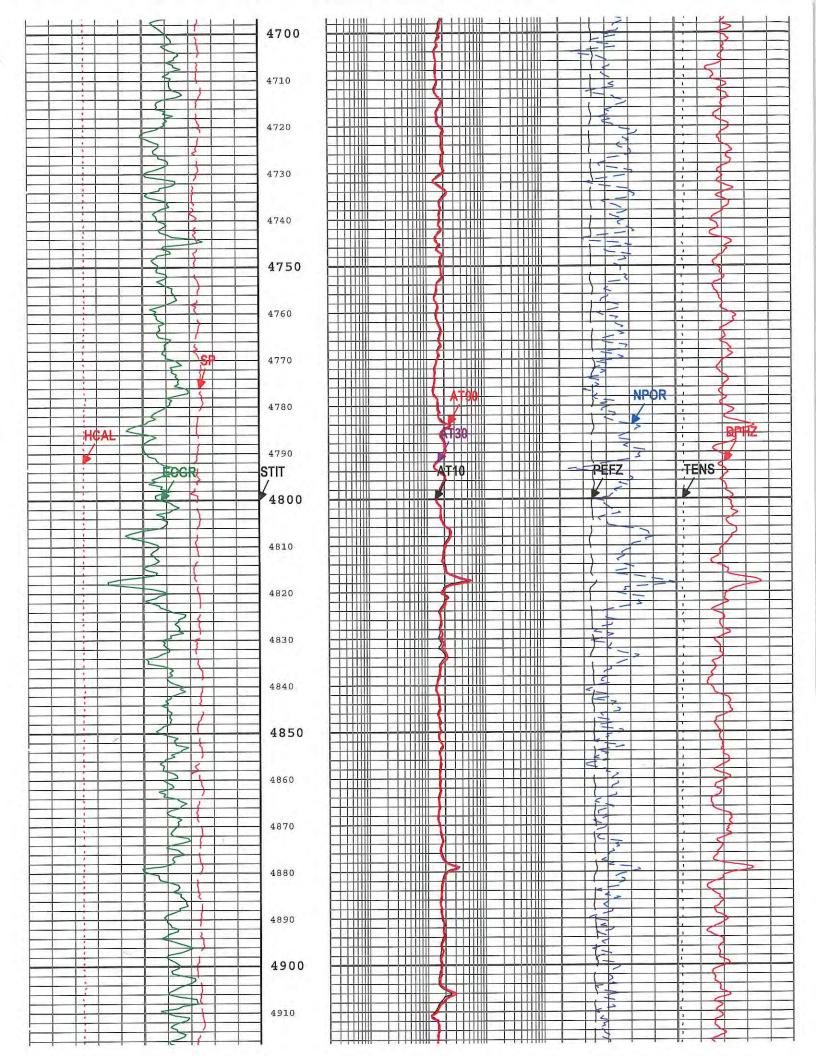

	One: To	oolstring		One: Remarks
Equip name	Length	MP name	Offset	Toolstring run as per tool sketch
LEH-QT LEH-QT	43.57			Matrix: Sandstone (2.65 g/cc)
				Log may be affected by 20% LCM in drilling mud
DTC-H:8980	40.65		39.75	Caliper check in casing=8.87 in, within tolerance
ECH-KC:1005 3 DTC-H:8980			0.00	Cement volume calculated using 7 in future casing diameter
		TelStatus ToolStatus	37.65 37.65	Rig: Aztec 920
HGNS-H:481 7	37.65	Temperatu re	37.62	Crew: Derrick Hunter
HGNH:4865 NPV-N NSR-F:5068 HGNS-H:4817 HACCZ-H:699		GR	36.91	Thank you for choosing Schlumberger
1 HMCA-H	1	A		
		CNL Poros ity	30.57	
		HMCA HGNS Accelerom	28.24 28.24 0.00	
HDDC-H-497	28 24	eter		1

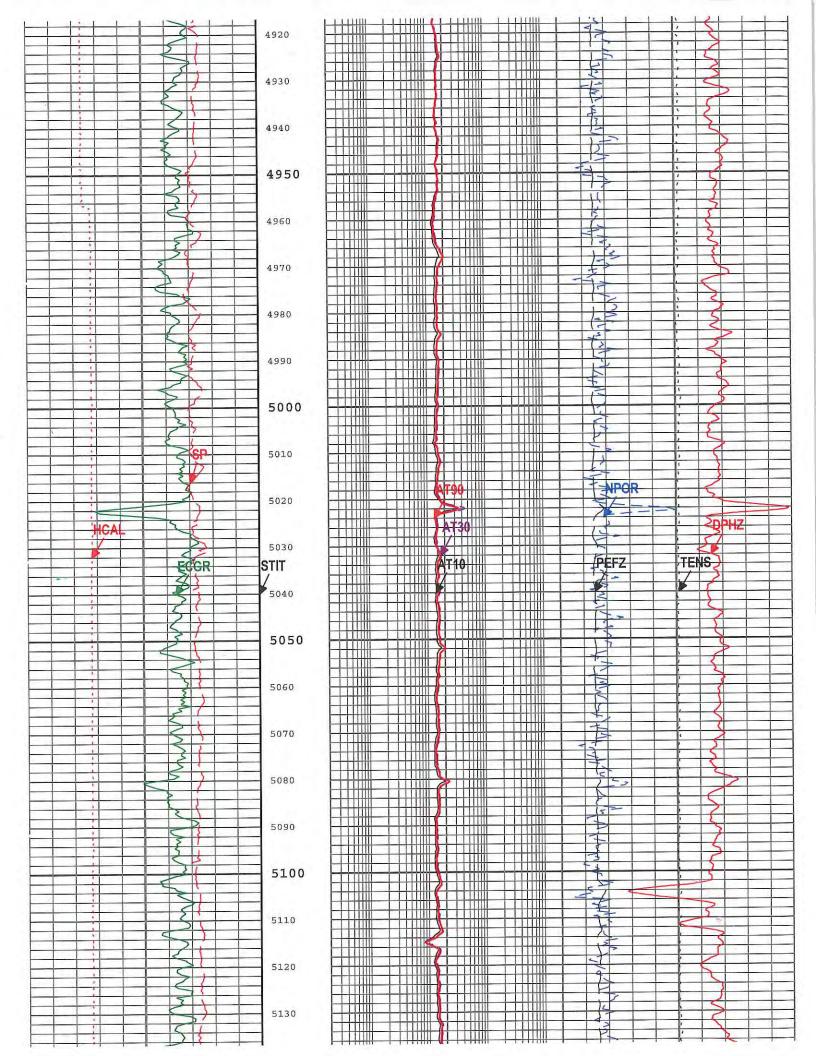


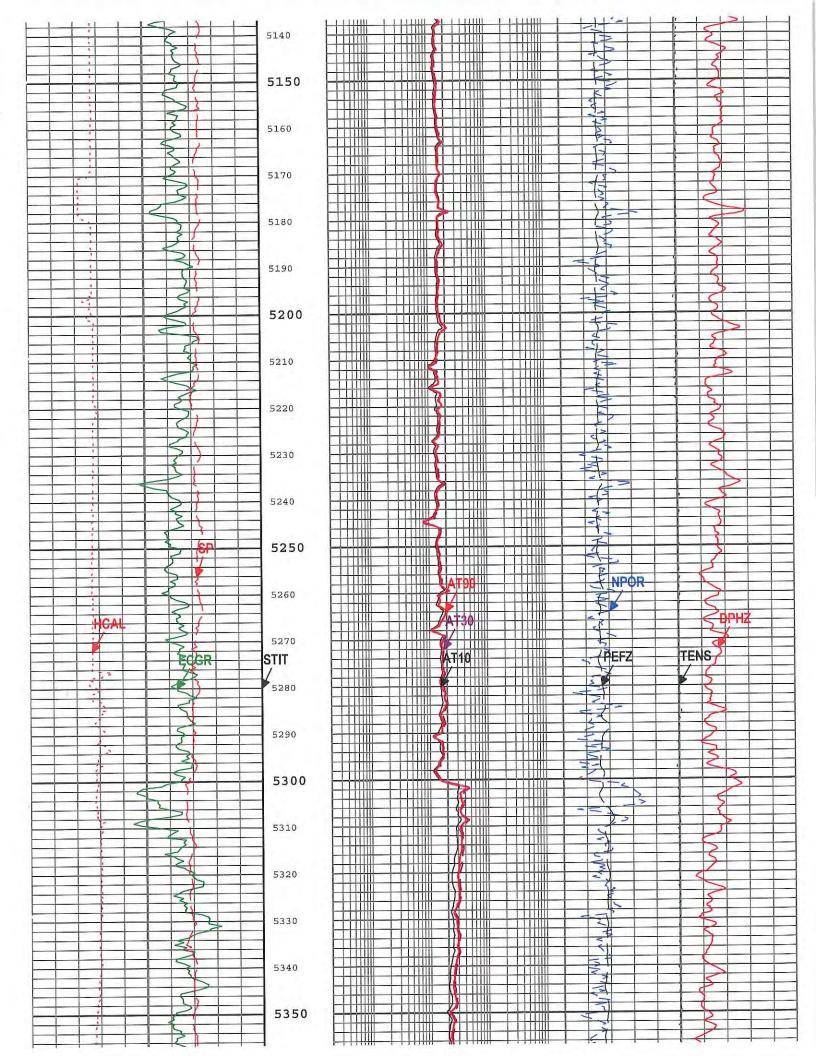

Serial Numl	ber	147							
Calibration	Date	18-Aug-2	2016						
Calibrator S	Serial Number	78805A							
Number of	Calibration Points	10							
	Root Mean Square	7							
Error									
	Peak Error	10		-	1	-			
Logging C	Cable								
Туре		7-46A-X	S						
Serial Num	ber	U715043	3						
Length		24000.0	0 ft						
Conveyanc	се Туре	Wireline							
Rig Type		Land							
One:Dept	th Control Parame	ters			Depth Cor	ntrol Rema	arks		
Log Seque			g In the Well		First run in v	well depth c	ontrol procedures	s followed	
	igth At Surface				IDW used a	s primary de	epth device, z-ch	art used for se	condary
	igth At Bottom					201			
	igth Correction								
Stretch Cor	rrection								
	Chack At Surface								
	Check At Surface				0.00				
	Check At Surface				One				
	Check At Surface								
Tool Zero (One ole Combo				
Tool Zero (Summary			5" Trip	ole Combo		Lesser 4		
Tool Zero (Pass (Summary	Direction	Тор			Stop	DSC Mode	Depth Shift	Include Parallel Dat
Pass Run Name	Summary	Direction	Тор	5" Trip	Start		DSC Mode	Depth Shift	
Pass Run Name	Summary Pass Objective	Up	Тор	5" Trip Bottom	ole Combo				Parallel Dat
Tool Zero (Pass : Run Name One All depths a	Summary Pass Objective	Up	Тор	5" Trip Bottom	Start 07-Sep-2016 5:52:06 AM	Stop	ON	0.00 ft	Parallel Dat
Pass Run Name	Summary Pass Objective	Up	Тор	5" Trip Bottom	Start 07-Sep-2016 5:52:06 AM	Stop		0.00 ft st, Inc. W	Parallel Dat
Pass Run Name One All depths a	Summary Pass Objective Log[4]:Up are referenced to toolst	Up 'ing zero		5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM	Stop Vestern Re	ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Pass Run Name One All depths a Log	Summary Pass Objective	Up ring zero on porosities ate: 07-Sep-2	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Pass Run Name One All depths a Log Description: H Type: Measu Channel	Summary Pass Objective Log[4]:Up are referenced to toolst HGNS standard resoluti red Depth Creation D Source	Up 'ing zero on porosities ate: 07-Sep-2 Samp	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Tool Zero (Pass Run Name One All depths a Log Description: H Type: Measu Channel AT10	Summary Pass Objective Log[4]:Up the referenced to toolst HGNS standard resoluti red Depth Creation D Source AIT-M:AMIS:AMIS	Up ring zero on porosities ate: 07-Sep-2 Samp 3in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Tool Zero (Pass Run Name One All depths a Log Description: H Type: Measu Channel AT10 AT30	Summary Pass Objective Log[4]:Up the referenced to toolst HGNS standard resoluti red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS	Up ring zero on porosities ate: 07-Sep-2 Samp 3in 3in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Tool Zero (Pass (Run Name One All depths a Log Description: H Type: Measu Channel AT10 AT30 AT90	Summary Pass Objective Log[4]:Up the referenced to toolst HGNS standard resoluti red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS	Up ring zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in 3in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Tool Zero (Pass Run Name One All depths a Log Description: H Type: Measu Channel AT10 AT30 AT90 CALI	Summary Pass Objective Log[4]:Up the referenced to toolst HGNS standard resolution red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS HDRS-H:HRCC-H:HR	Up ring zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in 3in CC-H 1in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Tool Zero (Pass (Run Name One All depths a Log Description: H Type: Measu Channel AT10 AT30 AT90 CALI DPHZ	Summary Pass Objective Log[4]:Up tre referenced to toolst HGNS standard resoluti red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS HDRS-H:HRCC-H:HR HDRS-H:HRMS-H:HR	Up ring zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in 3in CC-H 1in GD-H 2in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Pass Run Name One All depths a Log Description: H ype: Measu Channel C	Summary Pass Objective Log[4]:Up the referenced to toolst HGNS standard resoluting the Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS HDRS-H:HRCC-H:HR HDRS-H:HRMS-H:HR	Up ing zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in CC-H 1in GD-H 2in NS-H 6in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Pass Run Name One All depths a Log Description: H Type: Measu Channel AT10 AT30 AT90 CALI DPHZ BR NPOR	Summary Pass Objective Log[4]:Up tre referenced to toolst HGNS standard resoluti red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS HDRS-H:HRCC-H:HR HDRS-H:HRMS-H:HR HGNS-H:HGNS-H:HG	Up 'ing zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in 3in CC-H 1in GD-H 2in NS-H 6in NS-H 6in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Tool Zero (Pass Run Name One All depths a Log Description: H Type: Measu Channel AT10 AT30 AT90 CALI DPHZ SR NPOR PEFZ	Summary Pass Objective Log[4]:Up the referenced to toolst HGNS standard resoluting red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS HDRS-H:HRCC-H:HR HDRS-H:HRMS-H:HR HGNS-H:HGNS-H:HG HGNS-H:HGNS-H:HG	Up ing zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in 3in CC-H 1in GD-H 2in NS-H 6in NS-H 6in GD-H 2in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Pass Run Name One All depths a Log Description: H ype: Measu Channel AT10 AT30 AT90 CALI DPHZ BR NPOR PEFZ SP	Summary Pass Objective Log[4]:Up re referenced to toolst HGNS standard resoluti red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS HDRS-H:HRCC-H:HR HDRS-H:HRMS-H:HR HGNS-H:HGNS-H:HG HGNS-H:HGNS-H:HG HDRS-H:HGNS-H:HG	Up 'ing zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in CC-H 1in GD-H 2in NS-H 6in NS-H 6in GD-H 2in 6in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Tool Zero (Pass Run Name One All depths a Log Description: H Type: Measu Channel AT10 AT30 AT90 CALI DPHZ SR NPOR PEFZ SP STIT	Summary Pass Objective Log[4]:Up the referenced to toolst HGNS standard resoluting red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS HDRS-H:HRCC-H:HR HDRS-H:HRMS-H:HR HDRS-H:HGNS-H:HG HGNS-H:HGNS-H:HG HGNS-H:HGNS-H:HG HDRS-H:HRMS-H:HR AIT-M:AMIS:AMIS DepthCorrection	Up ing zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in 3in CC-H 1in GD-H 2in NS-H 6in GD-H 2in 6in 6in	for Platform E 2016 07:05:13	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012
Tool Zero (Pass Run Name One All depths a Log Description: H Type: Measu Channel AT10 AT30 AT90 CALI DPHZ GR NPOR PEFZ SP STIT TENS	Summary Pass Objective Log[4]:Up re referenced to toolst HGNS standard resoluti red Depth Creation D Source AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS AIT-M:AMIS:AMIS HDRS-H:HRCC-H:HR HDRS-H:HRMS-H:HR HGNS-H:HGNS-H:HG HGNS-H:HGNS-H:HG HDRS-H:HGNS-H:HG	Up 'ing zero on porosities ate: 07-Sep-2 Samp 3in 3in 3in CC-H 1in GD-H 2in NS-H 6in NS-H 6in GD-H 2in 6in	for Platform E 2016 07:05:13 Jling	5" Trip Bottom 7548.83 ft	Start 07-Sep-2016 5:52:06 AM Company:V	Stop Vestern Re	ON fining, Southwes	0.00 ft st, Inc. W One: Lo	Parallel Dat No Vell:WWD #2 q[4]:Up:S012

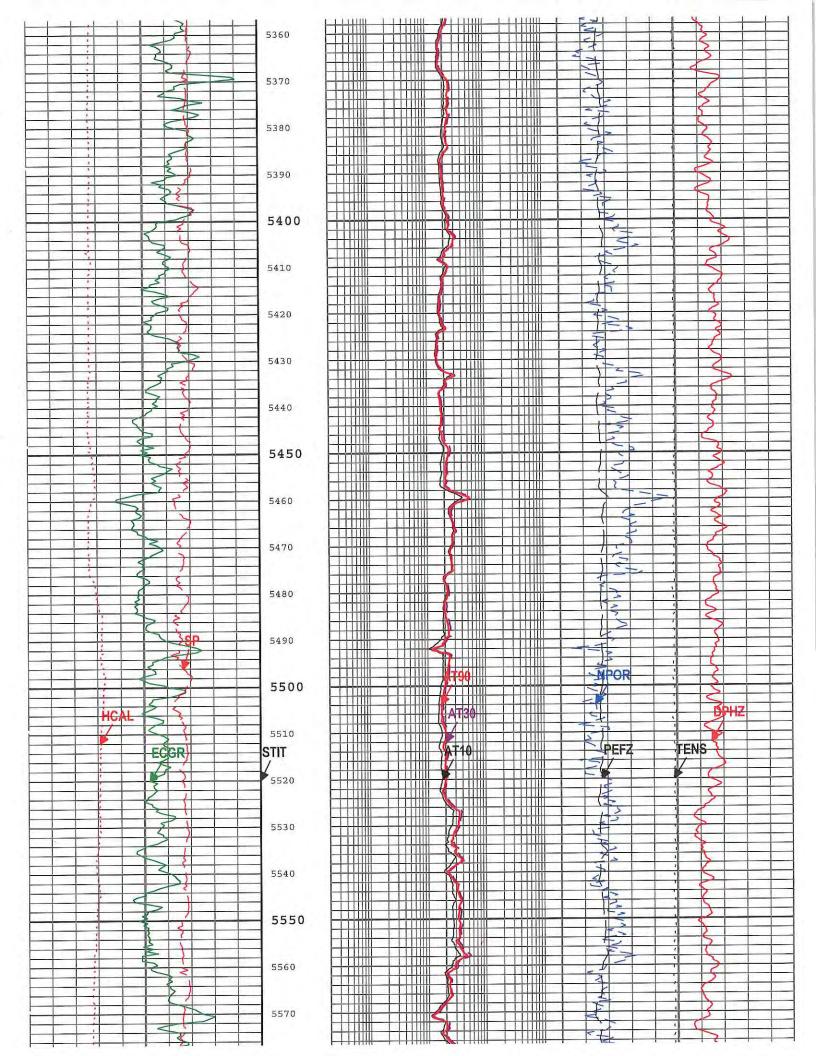

Formation

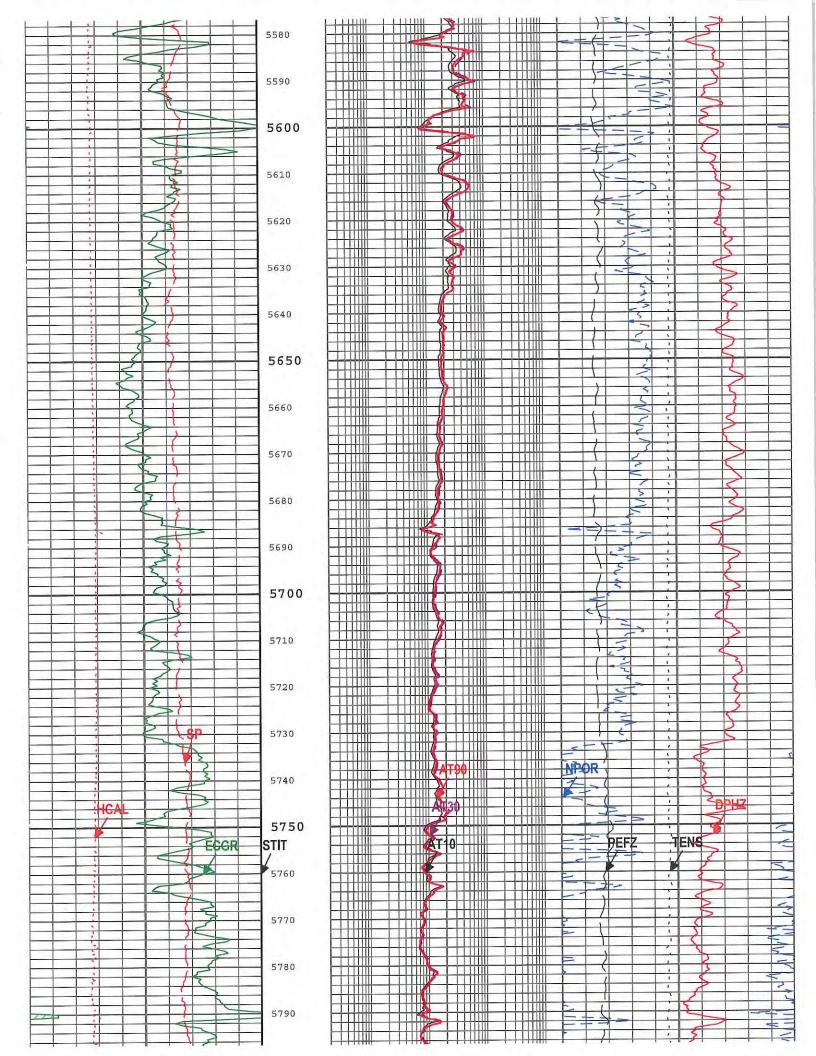


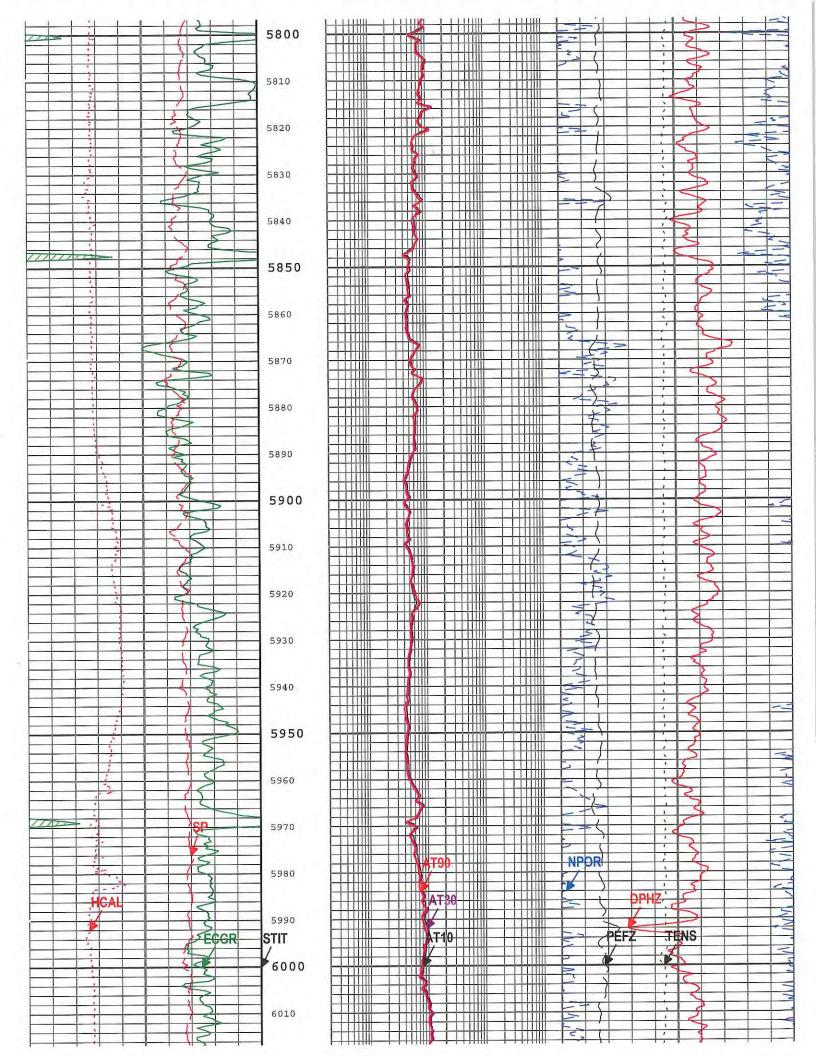


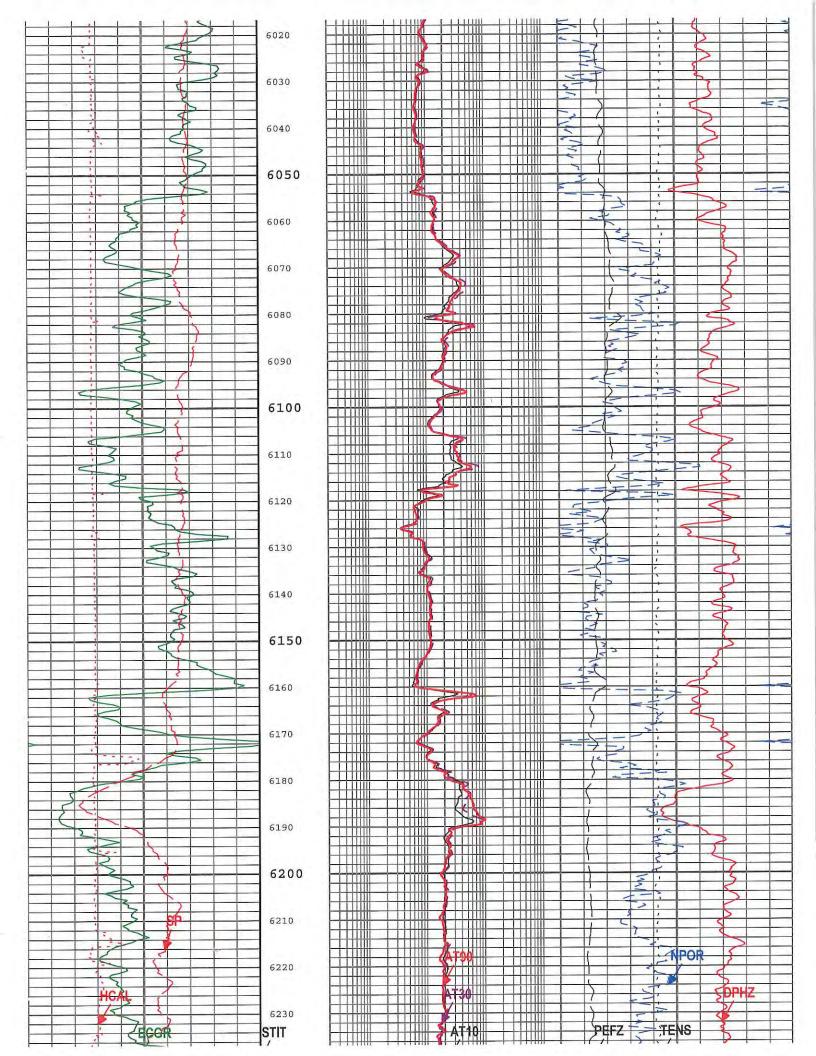


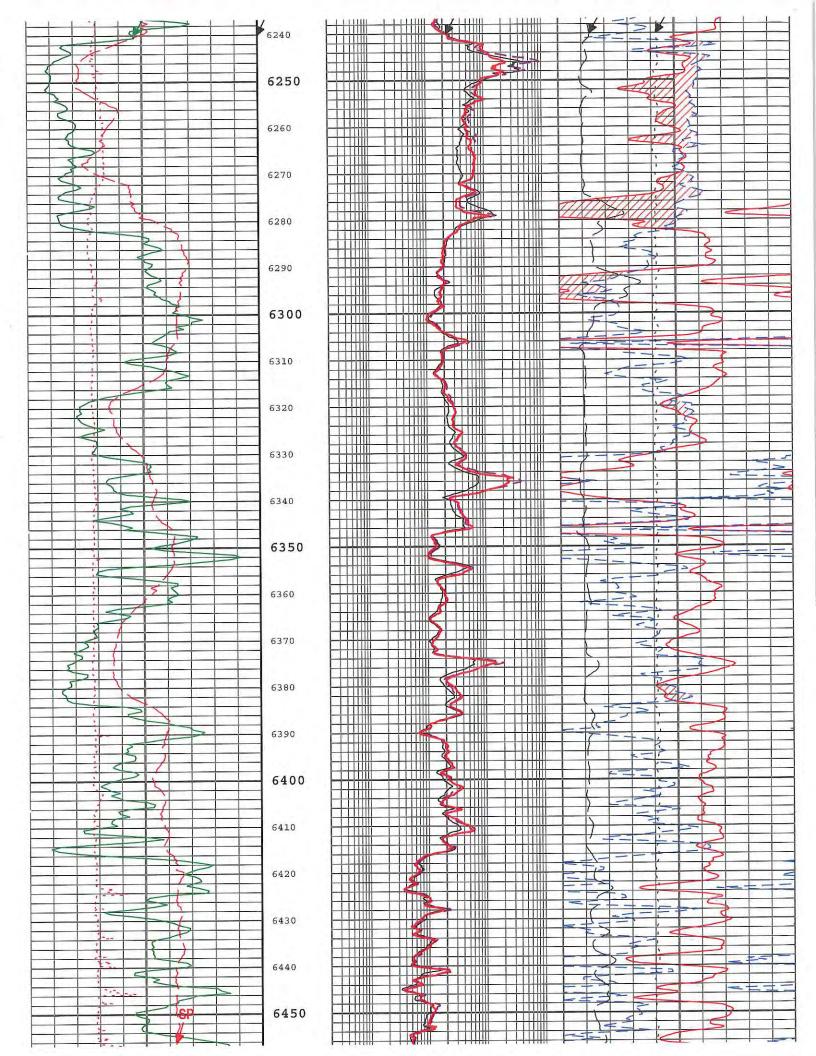


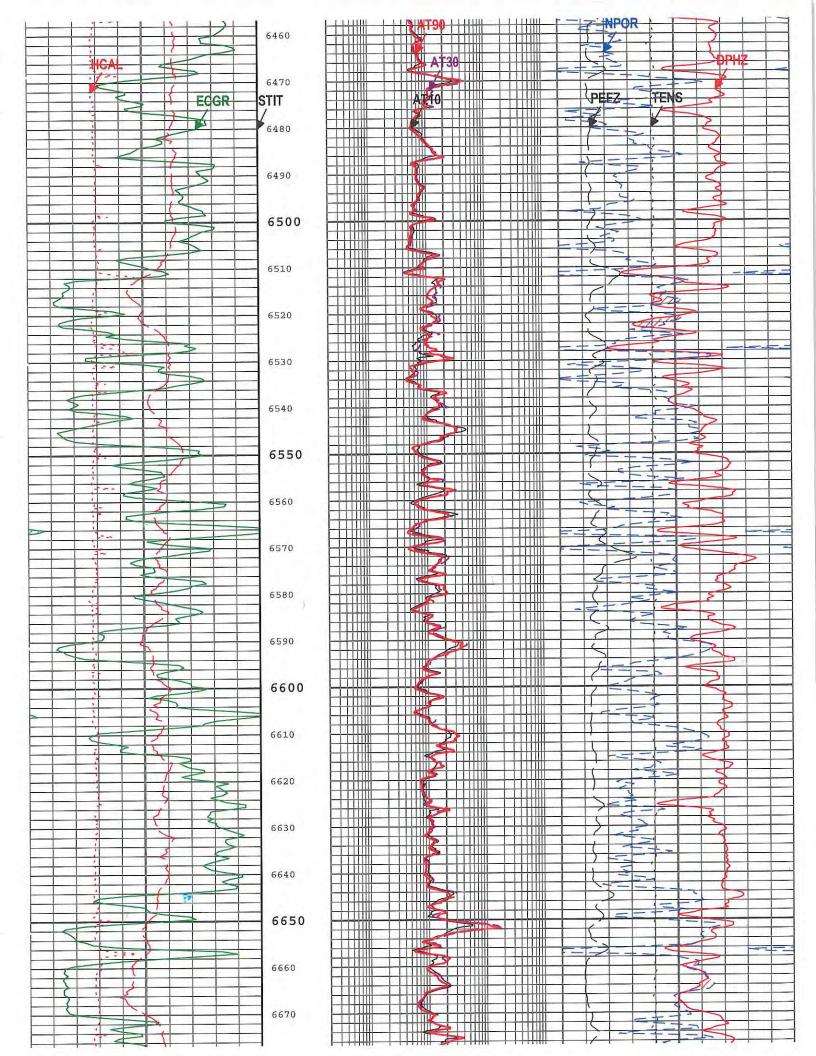


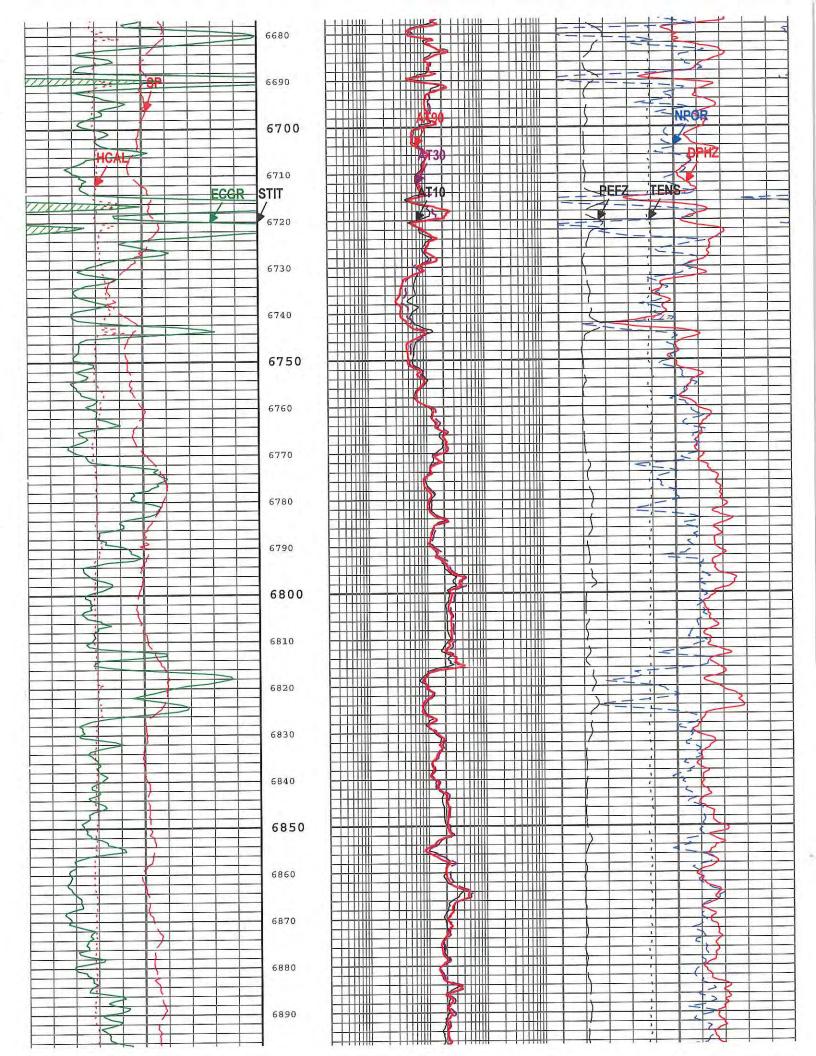


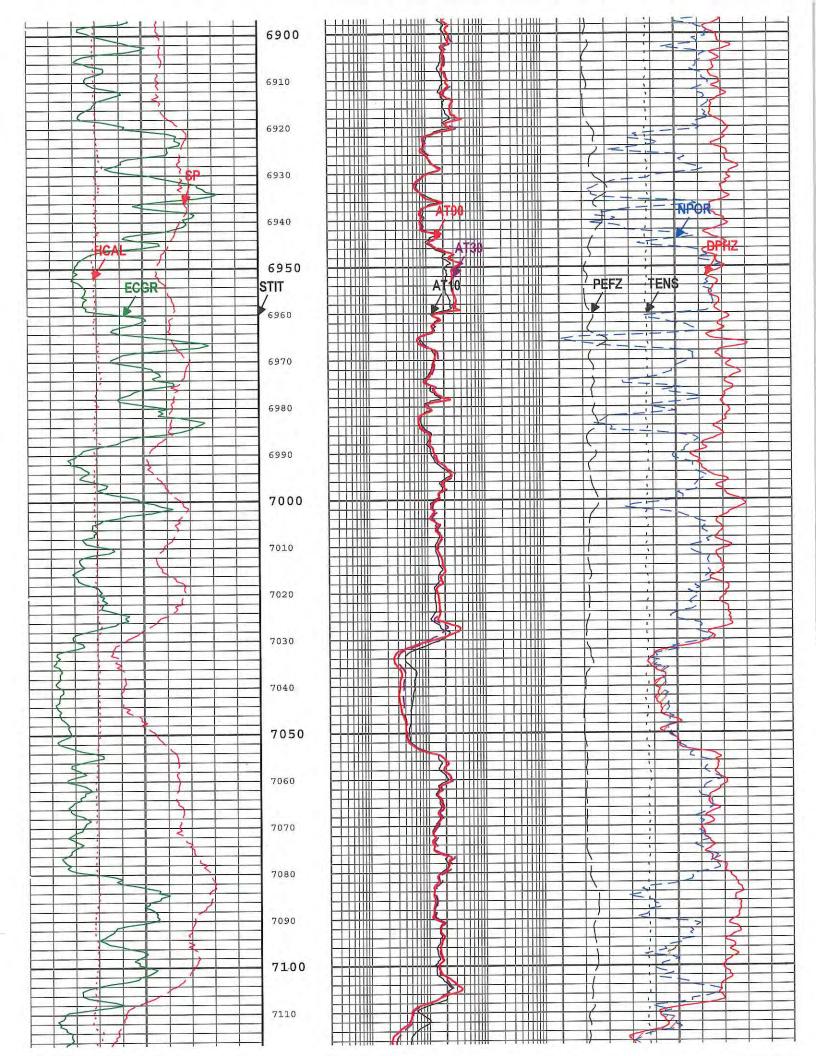


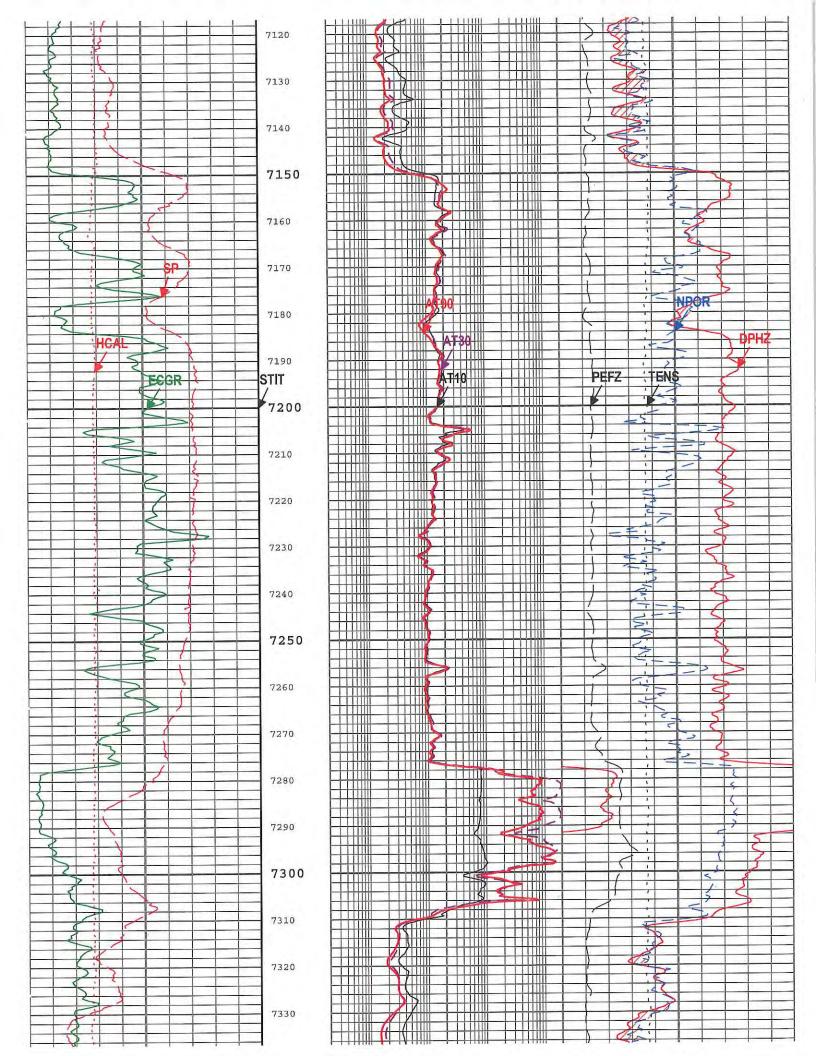


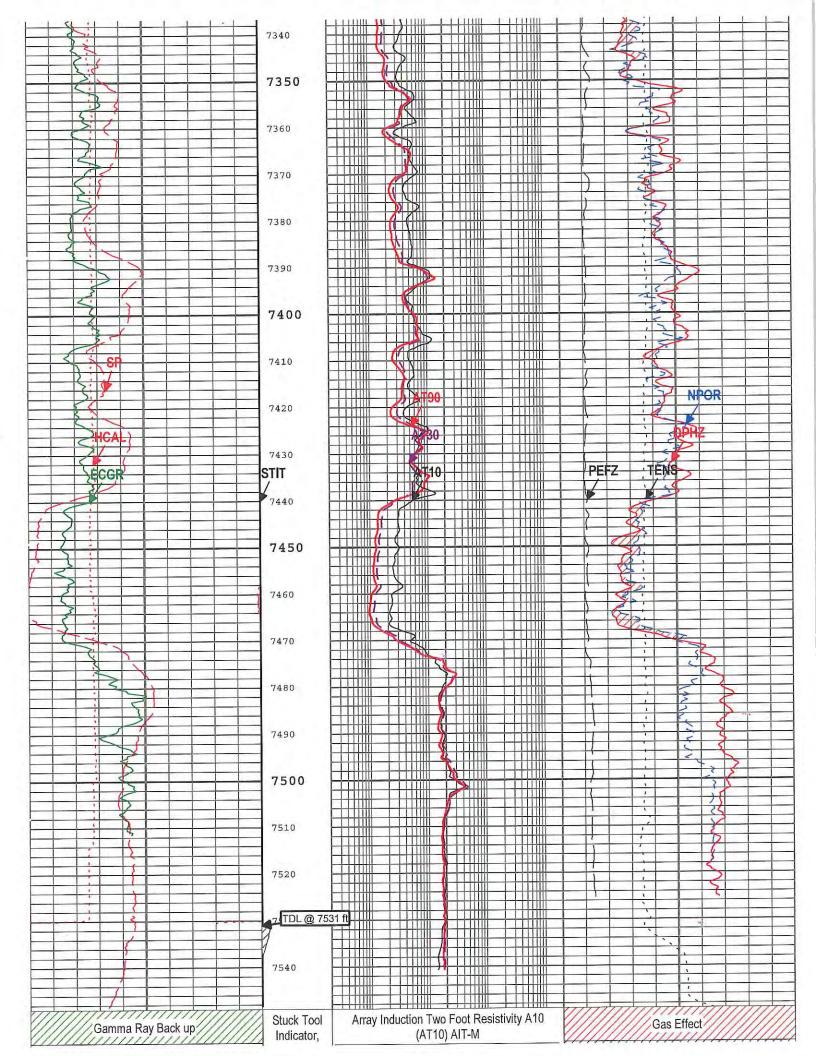


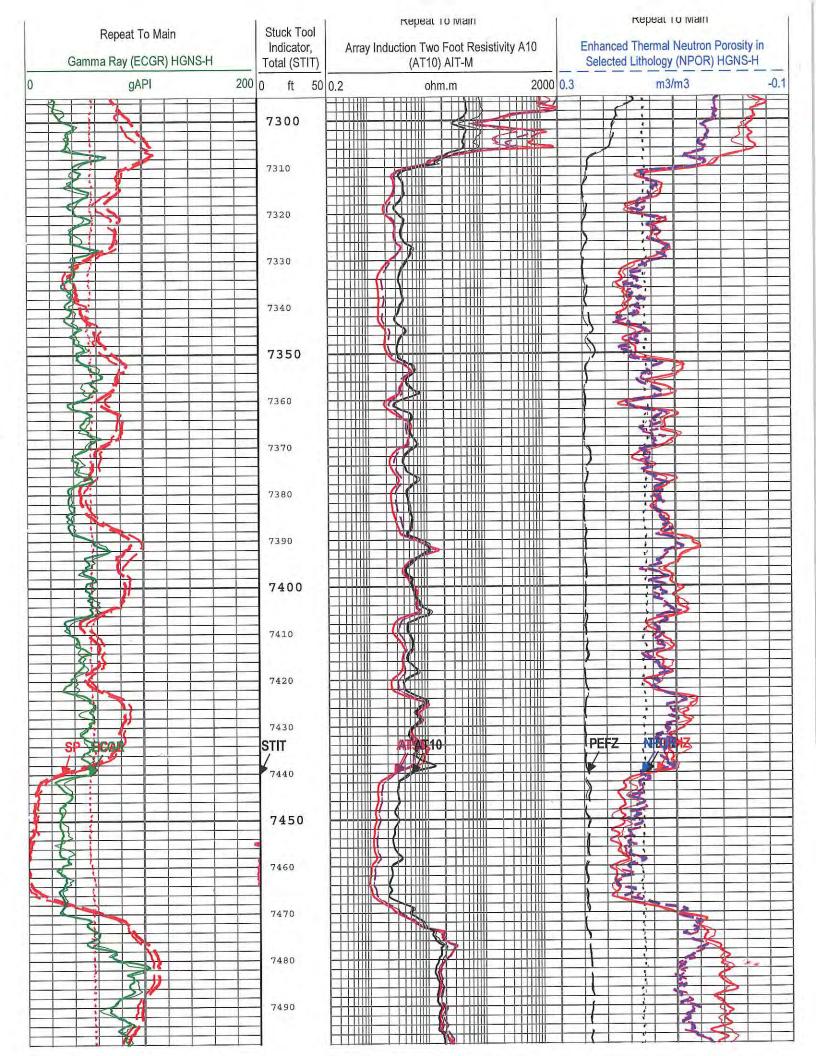


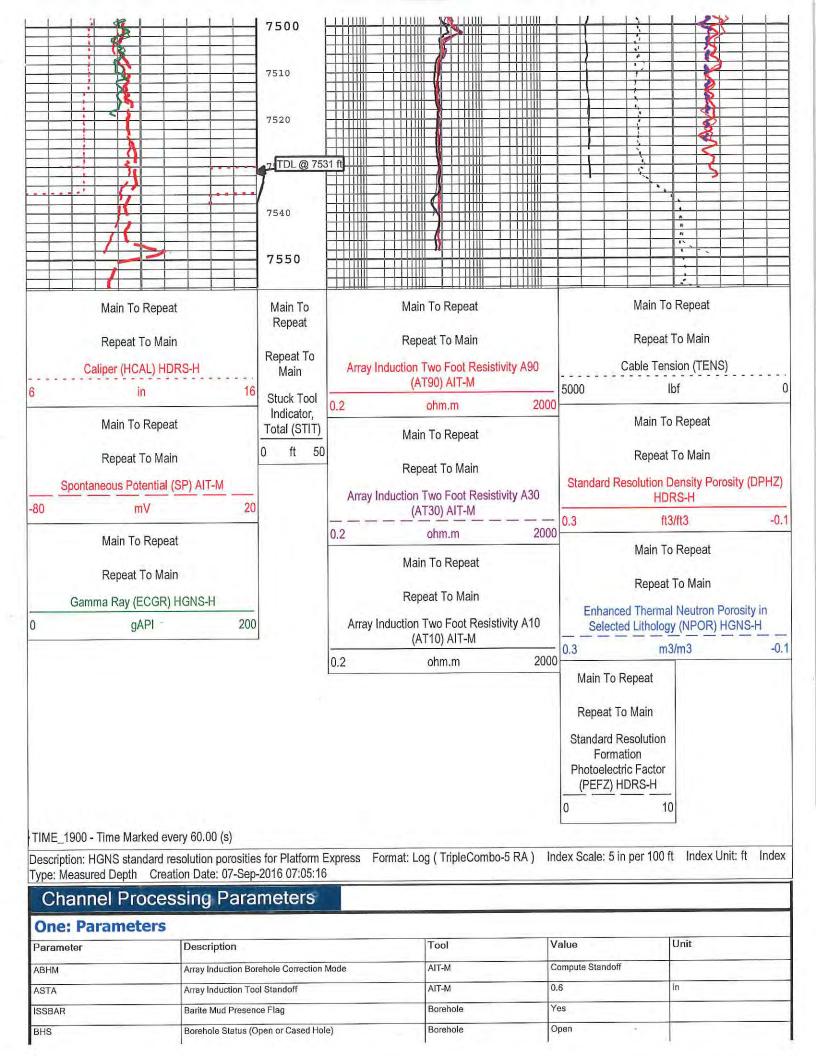












	Ray (ECGR) HG	200	0 f	t 50	0.2	ohm.m	2000		NPOR Backup	////////
b	gAPI				Array Induction	Two Foot Resistivit	y A30	C	able Tension (TEN	IS)
Calipe	r (HCAL) HDRS	-H			(AT30) AIT-M		5000	lbf	(
Crantonau	in Detential /SP	16			0.2	ohm.m	2000	Standard Res	solution Density Po HDRS-H	prosity (DPHZ)
30	us Potential (SP mV	20				n Two Foot Resistivit AT90) AIT-M	y A90	0.3	ft3/ft3	-0.
					0.2	ohm.m	2000	Elinanced	I Thermal Neutron Lithology (NPOR	
								0.3	m3/m3	-0.
								Standard Re Formati Photoelectric (PEFZ) HD	on c Factor	
escription: HGN	ne Marked every S standard reso Depth Creatior	ution porositie	s for Pla -2016 0	atform 1 7:05:13	Express Format: I	_og (TripleCombo-5) Index	Scale: 5 in per	100 ft Index Uni	t: ft Index
	Process	ing Para	mete	ers						
One: Para		Description		_		Tool	N	/alue	Unit	
		array Induction Bo	rehole Co	rection	Mode	AIT-M	0	Compute Standoff		
BHM		Array Induction Bo			Mode	AIT-M		0.6	in	
STA						Borehole		/es		
SSBAR		Barite Mud Preser				Borehole		Dpen		
BHS		Borehole Status (C		ased Ho	le)	Borehole		177	degF	_
внт		Bottom Hole Temp	erature			WLSESSION		Depth Zoned	in	
3S		Bit Size	_			Borehole		900	ppm	
BSAL		Borehole Salinity		_		HDRS-H).1	in	
CALI_SHIFT		CALI Supplement		_		WLSESSION		3498	ft	
CBLO		Casing Bottom (Lo	ogger)			HGNS-H		2	g/cm3	-
CDEN		Cement Density				Borehole		9.9	lbm/gal	
DFD		Drilling Fluid Dens		-		Borehole		Water	izinger	
DFT		Drilling Fluid Type				Borehole		WBM		
DFT_WATER		Drilling Fluid Wate				HDRS-H		Bit Size		
DHC		Density Hole Corr	ection	_		Borehole		1	g/cm3	
FD		Fluid Density	_					0	ppm	
FSAL		Formation Salinity				Borehole		BS(RT)	ppm	
GCSE_DOWN_PAS					L Log Down Passes	Borehole		CALI		
GCSE_UP_PASS					/L Log Up Passes	Borehole		AMF		_
GRSE		Computed Mud R	esistivity		on, from Measured or	Borehole				
GTSE		Generalized Tem Computed Tempe	perature S trature	Selection	, from Measured or	Borehole		CTEM		
HSCO		Hole Size Correct		n		HGNS-H		Yes		
MATR		Rock Matrix for N	eutron Po	rosity Co	prrections	Borehole		SANDSTONE		
MDEN		Matrix Density for	Density F	Porosity		Borehole		2.65	g/cm3	
MFST		Mud Filtrate Sam	ole Tempe	erature		Borehole		68	degF	
RMFS		Resistivity of Muc	Filtrate S	ample		Borehole		0.9	ohm.m	
SOCO		Standoff Correction	on Option			HGNS-H		Yes		
SPDR		SP Drift Per Foot				AIT-M		0	mV/ft	
TD		Total Measured D	epth			Borehole		7532	ft	
	1					100				

	one Paramete						Ston / ft)		
Parameter	Valu	le	Start	(ft)			Stop (ft)		
3S	12.2	5					3515		
3S	8.75	A.	3515				7532		
All depth are a	ictual.	_					1		
Tool Co	ontrol Paran	neters							
One: Par	ameters							1	
Parameter	Des	scription			Tool		Value	Unit	
HMCA_BOARD_		CA Board Type			HGNS-H		1		
HRGD_BOARD_1		D Board Type			HDRS-H		WITH_HET	6.15	
MAX_LOG_SPEE	ED Too	Istring Maximum	Logging Speed		WLSESSIO	N	3600	ft/h	
					One				
				5" Trip	ole Combo)			
	ummary	1	-	10.11	01-1	Chan	DSC Mode	Depth Shift	Include
Run Name	Pass Objective	Direction	Тор	Bottom	Start	Stop	DOC WOUR		Parallel Dat
One	Log[3]:Up	Up	7294.65 ft	7556.27 ft	07-Sep-2016 5:43:06 AM	07-Sep-2016 5:48:19 AM	ON	5.53 ft	No
One	Log[4]:Up	Up		7548.83 ft	07-Sep-2016 5:52:06 AM		ON	0.00 ft	No
All depuis are	e referenced to tools	ang zoro							
ype: Measure	GNS standard resolut ad Depth Creation I Time Marked every 6	Date: 07-Sep-	for Platform E 2016 07:05:16		Company:V nat: Log (TripleC	Western Refir Combo-5 RA)			
Description: H Type: Measure	ed Depth Creation D	Date: 07-Sep-	for Platform E 2016 07:05:16				Index Scale: 5 in Main To F Repeat To Standard R Forma	One: Lo o per 100 ft Ind Repeat o Main Resolution ation	g[4]:Up:S012
Description: H Type: Measure	ed Depth Creation D	Date: 07-Sep-	for Platform E 2016 07:05:16				Index Scale: 5 in Main To F Repeat To Standard R	One: Lo n per 100 ft Ind Repeat o Main Resolution ation ric Factor	g[4]:Up:S012
Description: H Type: Measure	ed Depth Creation D	Date: 07-Sep-	for Platform E 2016 07:05:16				Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelect	One: Lo n per 100 ft Ind Repeat o Main Resolution ation ric Factor	g[4]:Up:S012
Description: H Type: Measure	ed Depth Creation E Time Marked every 6	Date: 07-Sep-	for Platform E 2016 07:05:16		nat: Log (TripleC Main To Repe	combo-5 RA)	Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelecti (PEFZ) H	One: Lo o per 100 ft Ind Repeat o Main Resolution ation ric Factor IDRS-H	<u>g[4]:Up:S012</u> ex Unit: ft Inc
Description: H Type: Measure	ed Depth Creation E Time Marked every 6 Main To Repeat	Date: 07-Sep-	for Platform E 2016 07:05:16		nat: Log (TripleC	combo-5 RA) eat	Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelecti (PEFZ) H 0	One: Lo o per 100 ft Ind Repeat o Main Resolution ation ric Factor IDRS-H 10 Main To Repo Repeat To M	<u>g[4]:Up:S012</u> ex Unit: ft Ind eat ain
Description: H0 Type: Measure TIME_1900 - 1	ed Depth Creation E Time Marked every 6 Main To Repeat Repeat To Main	Date: 07-Sep-2	for Platform E 2016 07:05:16	Array Ind	nat: Log (TripleC Main To Repe Repeat To Ma luction Two Foot (AT90) AIT-I	Combo-5 RA) eat ain Resistivity A90 M	Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelecti (PEFZ) H 0	One: Lo o per 100 ft Ind Repeat o Main Resolution ation ric Factor IDRS-H 10 Main To Repo Repeat To M Cable Tension (<u>g[4]:Up:S012</u> ex Unit: ft Inc eat ain
Description: Ho Type: Measure TIME_1900 - 1	ad Depth Creation E Time Marked every 6 Main To Repeat Repeat To Main	Date: 07-Sep-1	2016 07:05:16		nat: Log (TripleC Main To Repe Repeat To Ma luction Two Foot (AT90) AIT-1 ohm.m	Combo-5 RA) eat ain Resistivity A90 M	Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelecti (PEFZ) H 0	One: Lo o per 100 ft Ind Repeat o Main Resolution ation ric Factor IDRS-H 10 Main To Repu Repeat To M Cable Tension (<u>g[4]:Up:S012</u> ex Unit: ft Ind eat ain TENS)
Description: H0 Type: Measure TIME_1900 - 1	ed Depth Creation E Time Marked every 6 Main To Repeat Repeat To Main aliper (HCAL) HDRS- in	Date: 07-Sep-2	2016 07:05:16	Array Ind	nat: Log (TripleC Main To Repe Repeat To Ma luction Two Foot (AT90) AIT-I ohm.m Main To Repe	combo-5 RA) eat ain Resistivity A90 M 20 eat	Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelecti (PEFZ) H 0	One: Lo o per 100 ft Ind Repeat o Main Resolution ation ric Factor IDRS-H 10 Main To Report Repeat To M Cable Tension (Ibf Main To Rep	<u>g[4]:Up:S012</u> ex Unit: ft Ind eat ain TENS) eat
Description: HG Type: Measure TIME_1900 - 1	ad Depth Creation E Time Marked every 6 Main To Repeat Repeat To Main aliper (HCAL) HDRS- in Main To Repeat	Date: 07-Sep-1	2016 07:05:16	Array Ind	nat: Log (TripleC Main To Repe Repeat To Ma Juction Two Foot (AT90) AIT-J ohm.m Main To Repe Repeat To Ma	Combo-5 RA) eat ain Resistivity A90 M 20 eat ain	Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelecti (PEFZ) H 0	One: Lo o per 100 ft Ind Repeat o Main tesolution ation ric Factor IDRS-H 10 Main To Rep Repeat To M Cable Tension (Ibf Main To Rep Repeat To M	<u>a[4]:Up:S012</u> ex Unit: ft Ind eat ain TENS) eat
Description: H0 Type: Measure TIME_1900 - T	ad Depth Creation E Time Marked every 6 Main To Repeat Repeat To Main aliper (HCAL) HDRS- in Main To Repeat Repeat To Main	Date: 07-Sep-1 0.00 (s) H 16	2016 07:05:16	Array Ind	nat: Log (TripleC Main To Repe Repeat To Ma luction Two Foot (AT90) AIT-I ohm.m Main To Repe	Combo-5 RA) eat ain Resistivity A90 M 20 eat ain Resistivity A30 M	Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelecti (PEFZ) H 0 5000 5000	One: Lo o per 100 ft Ind Repeat o Main Resolution ation ric Factor IDRS-H 10 Main To Rep Repeat To M Cable Tension (Ibf Main To Rep Repeat To M Repeat To M Repeat To M Repeat To M	<u>a[4]:Up:S012</u> ex Unit: ft Ind eat ain TENS) eat ain y Porosity (DPF
Description: H0 Type: Measure TIME_1900 - 1	ad Depth Creation E Time Marked every 6 Main To Repeat Repeat To Main aliper (HCAL) HDRS- in Main To Repeat	Date: 07-Sep-1 0.00 (s) H 16	Main To Repeat	Array Ind	nat: Log (TripleC Main To Repe Repeat To Ma luction Two Foot (AT90) AIT-I ohm.m Main To Repe Repeat To Ma luction Two Foot	Combo-5 RA) eat ain Resistivity A90 M 20 eat ain Resistivity A30 M	Index Scale: 5 in Main To F Repeat To Standard R Forma Photoelecti (PEFZ) H 0	One: Lo o per 100 ft Ind Repeat o Main Resolution ation ric Factor IDRS-H 10 Main To Rep Repeat To M Cable Tension (Ibf Main To Rep Repeat To M Repeat To M	<u>g[4]:Up:S012</u> ex Unit: ft Ind eat ain TENS) eat ain y Porosity (DPF

BHT	Bottom Hole Temperature		Borehole	177	degF	
35	Bit Size		WLSESSION	Depth Zoned	in	
SAL	Bit Size Borehole Salinity		Borehole	900	ppm	
ALI SHIFT	CALI Supplementary Offset		HDRS-H	0.1	in	
	Casing Bottom (Logger)		WLSESSION	3498	ft	
BLO			HGNS-H	2	g/cm3	
DEN	Cement Density		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	9.9	lbm/gal	
FD	Drilling Fluid Density	-	Borehole		ibiii/gai	
FT	Drilling Fluid Type		Borehole	Water		
FT_WATER	Drilling Fluid Water Type		Borehole	WBM		
HC	Density Hole Correction		HDRS-H	Bit Size		_
D	Fluid Density		Borehole	1	g/cm3	
SAL	Formation Salinity		Borehole	0	ppm	
CSE_DOWN_PASS	Generalized Caliper Selection	for WL Log Down Passes	Borehole	BS(RT)		_
CSE_UP_PASS	Generalized Caliper Selection	for WL Log Up Passes	Borehole	CALI		
RSE	Generalized Mud Resistivity Se Computed Mud Resistivity		Borehole	AMF		
TSE	Generalized Temperature Sele Computed Temperature	ction, from Measured or	Borehole	CTEM		
SCO	Hole Size Correction Option		HGNS-H	Yes		
IATR	Rock Matrix for Neutron Porosi	ty Corrections	Borehole	SANDSTONE		
IDEN	Matrix Density for Density Poro	sity	Borehole	2.65	g/cm3	
IFST	Mud Filtrate Sample Temperate	ure	Borehole	68	degF	
MFS	Resistivity of Mud Filtrate Sam	ple	Borehole	0.9	ohm.m	
000	Standoff Correction Option		HGNS-H	Yes		
PDR	SP Drift Per Foot		AIT-M	0	mV/ft	
D	Total Measured Depth		Borehole	7532	ft	
Depth Zone Pai	rameters					
	Value	Start (ft)		Stop (ft)		
Parameter		Start (ft)		Stop (ft) 3515		
Parameter	Value	Start (ft) 3515				
Parameter 3S 3S	Value 12.25			3515		
Parameter as as All depth are actual.	Value 12.25 8.75			3515		
Parameter as All depth are actual. Tool Control	Value 12.25 8.75 Parameters			3515		
Parameter as All depth are actual. Tool Control One: Paramete	Value 12.25 8.75 Parameters rs		Tool	3515	Unit	
Parameter IS IS II depth are actual. Tool Control One: Paramete Parameter	Value 12.25 8,75 Parameters Description		0.272	3515 7532	Unit	
Parameter s s Il depth are actual. Tool Control One: Paramete Parameter MCA_BOARD_TYPE	Value 12.25 8.75 Parameters Description HMCA Board Type		HGNS-H	3515 7532 Value 1	Unit	
Parameter S S Il depth are actual. Tool Control One: Parameter Parameter MCA_BOARD_TYPE HRGD_BOARD_TYPE	Value 12.25 8,75 Parameters Image: Description HMCA Board Type HRGD Board Type	3515	HGNS-H HDRS-H	3515 7532 Value 1 WITH_HET		
Parameter as as All depth are actual. Tool Control One: Parameter Parameter HMCA_BOARD_TYPE HRGD_BOARD_TYPE MAX_LOG_SPEED	Value 12.25 8.75 Parameters ITS Description HMCA Board Type HRGD Board Type Toolstring Maximum Logging S	3515	HGNS-H	3515 7532 Value 1	Unit ft/h	
Parameter as as All depth are actual. Tool Control One: Paramete Parameter HMCA_BOARD_TYPE HRGD_BOARD_TYPE MAX_LOG_SPEED Calibration R	Value 12.25 8.75 Parameters Description HMCA Board Type HRGD Board Type Toolstring Maximum Logging S Ceport	3515 Speed	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET		
Parameter as as All depth are actual. Tool Control One: Parameter Parameter HMCA_BOARD_TYPE HRGD_BOARD_TYPE MAX_LOG_SPEED Calibration R	Value 12.25 8.75 Parameters ITS Description HMCA Board Type HRGD Board Type Toolstring Maximum Logging S	3515 Speed	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET		
Parameter as as All depth are actual. Tool Control One: Paramete Parameter HMCA_BOARD_TYPE HRGD_BOARD_TYPE MAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment :	Value 12.25 8.75 Parameters Description HMCA Board Type HRGD Board Type Toolstring Maximum Logging S Ceport uction Tool - M) Calibr	3515 Speed	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET	ft/h	
Parameter as as All depth are actual. Tool Control One: Parameter Parameter MCA_BOARD_TYPE MAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment :	Value 12.25 8.75 Parameters Description HMCA Board Type HRGD Board Type Toolstring Maximum Logging S Ceport	3515 Speed	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET		
arameter s s ll depth are actual. Tool Control Dne: Paramete Parameter MCA_BOARD_TYPE MAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment : Fi Auxiliary Equipment :	Value 12.25 8.75 Parameters ITS Description HMCA Board Type HRGD Board Type HRGD Board Type Toolstring Maximum Logging S Ceport uction Tool - M) Calibr ile code for AIT-MA Sonde Tool Ele	3515 Speed	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET	ft/h	
arameter s s ll depth are actual. Tool Control Dne: Paramete arameter MCA_BOARD_TYPE IRGD_BOARD_TYPE IAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment : Fi Auxiliary Equipment :	Value 12.25 8.75 Parameters Description HMCA Board Type HRGD Board Type Toolstring Maximum Logging S Ceport uction Tool - M) Calibr	3515 Speed	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET	ft/h	
arameter s s ll depth are actual. Tool Control One: Parameter Parameter MCA_BOARD_TYPE MCA_BOARD_TYPE MAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment : Fi Auxiliary Equipment : Al	Value 12.25 8,75 Parameters Parameters ITS Description HMCA Board Type HRGD Board Type HRGD Board Type Toolstring Maximum Logging S Ceport uction Tool - M) Calibr ile code for AIT-MA Sonde Tool Ele ITM Rm/SP Bottom Nose	3515 Speed ation - Run One	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET	ft/h	
arameter S S II depth are actual. Tool Control One: Parameter Parameter IMCA_BOARD_TYPE IRGD_BOARD_TYPE IAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment : Fi Auxiliary Equipment : AIT	Value 12.25 8.75 Parameters ITS Description HMCA Board Type HRGD Board Type HRGD Board Type Toolstring Maximum Logging S Ceport uction Tool - M) Calibr ile code for AIT-MA Sonde Tool Ele	3515 Speed ation - Run One	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET	ft/h	
Parameter S S S All depth are actual. Tool Control One: Parameter Para	Value 12.25 8.75 Parameters Parameters ITS Description HRCA Board Type HRGD Board Type Toolstring Maximum Logging S Ceport uction Tool - M) Calibr ile code for AIT-MA Sonde Tool Ele ITM Rm/SP Bottom Nose ration - Test Loop Gain	3515 Speed Pation - Run One ement	HGNS-H HDRS-H WLSESSION	3515 7532 Value 1 WITH_HET 3600	ft/h	
Parameter as as as all depth are actual. Tool Control One: Parameter Parameter MCA_BOARD_TYPE MAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment : Fi Auxiliary Equipment : Alt AIT Sonde Calibr Master (EEPROM): Measurement	Value 12.25 8,75 Parameters Parame	3515 Speed ation - Run One ament Phase No	HGNS-H HDRS-H WLSESSION AMIS AMRM	3515 7532 Value 1 WITH_HET 3600	ft/h 50	
Parameter All depth are actual. Tool Control One: Parameter Anca_BOARD_TYPE ARGD_BOARD_TYPE AAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment : Fi Auxiliary Equipment : Auxiliary Equipment : Alt Sonde Calibr Master (EEPROM): Measurement Test Loop Gain - 0	Value 12.25 8,75 Parameters Parame	3515 Speed ation - Run One ement Phase No	HGNS-H HDRS-H WLSESSION AMIS AMRM minal Low Li .000 0.95 0 -3.00	3515 7532 Value 1 WITH_HET 3600	50 High Limit 1.050	
Parameter as as All depth are actual. Tool Control One: Paramete Parameter HMCA_BOARD_TYPE HRGD_BOARD_TYPE MAX_LOG_SPEED Calibration R AIT-M (Array Indu Primary Equipment : Fi Auxiliary Equipment : Al	Value 12.25 8.75 Parameters ITS Description HMCA Board Type HRGD Board Type HRGD Board Type Toolstring Maximum Logging S Ceport uction Tool - M) Calibr ile code for AIT-MA Sonde Tool Ele ITM Rm/SP Bottom Nose ration - Test Loop Gair 20:19:37 05-Aug-2016	3515 Speed ation - Run One ement Phase No Master 1 Master 1	HGNS-H HDRS-H WLSESSION AMIS AMRM minal Low Li ,000 0.95	3515 7532 Value 1 WITH_HET 3600 imit Actual 0 1.013 0 1.013 0 1.009	50 High Limit	

Test Loop Phase - 2	deg	Master	0	-3.000	-0.008	3.000	
est Loop Gain - 3		Master	1.000	0.950	1.012	1.050	
est Loop Phase - 3	deg	Master	0	-3.000	0.319	3.000	
est Loop Gain - 4		Master	1.000	0.950	0.998	1.050	
est Loop Phase - 4	deg	Master	0	-3.000	0.071	3.000	
est Loop Gain - 5		Master	1.000	0.950	1.022	1.050	
est Loop Phase - 5	deg	Master	0	-3.000	0.391	3.000	
est Loop Gain - 6		Master	1.000	0.950	1.035	1.050	
Test Loop Phase - 6	deg	Master	0	-3.000	0.531	3.000	
est Loop Gain - 7		Master	1.000	0.950	1.047	1.050	
Test Loop Phase - 7	deg	Master	0	-3.000	0.270	3.000	THI
and the second sec	1						
AIT Sonde Calibration - So		orrection					
Master (EEPROM): 20:19:37	05-Aug-2016	1				T	
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Sonde Error Correction Real - 0	mS/m	Master		-231.000	-97.409	119.000	
Sonde Error Correction Quad - 0		Master	- 6 y *	-2250.000	-596.848	2250,000	
Sonde Error Correction Real - 1	mS/m	Master		114.000	156.040	204.000	
Sonde Error Correction Quad - 1		Master		-625.000	-247.744	625.000	
Sonde Error Correction Real - 2	mS/m	Master	<u> </u>	66.000	112,609	156.000	
Sonde Error Correction Quad - 2		Master	10 - 1 0 - 10	-350.000	120.325	350.000	
Sonde Error Correction Real - 3	mS/m	Master		39.000	68.195	89.000	
Sonde Error Correction Quad - 3		Master		-250.000	-161.507	250.000	
Sonde Error Correction Real - 4	mS/m	Master	()	15.000	24.223	35.000	
Sonde Error Correction Quad - 4		Master		-63.000	-0.939	63.000	
Sonde Error Correction Real - 5	mS/m	Master		4.000	15.665	24.000	
Sonde Error Correction Quad - 5		Master	(111)	-50.000	-27.113	50.000	
Sonde Error Correction Real - 6	mS/m	Master		5.000	10.064	15.000	
Sonde Error Correction Quad - 6		Master	. T. Q <u></u>	-30.000	-6.498	30.000	
Sonde Error Correction Real - 7	mS/m	Master		-5.000	-1.483	5.000	
Sonde Error Correction Quad - 7		Master		-30.000	-4.619	30.000	
AIT Mud Calibration - Mud	Calibration	Gain					
		Gain					
	05-Aug-2016	1			A	1 112-04 1 Sauce F	
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Coarse Gain		Master	1.000	0.800	0.934	1.200	
Fine Gain		Master	1.000	0.800	0.938	1.200	
AIT Electronics Check - Th	ru Calibratio	n Check					
Master (EEPROM): 20:19:37	05-Aug-2016		Before (Measured):		21:11:27 05-Sep	-2016	
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Thru Cal Mag - 0	V	Master		0.366	0.603	0.854	
Thru Car Mag - 0		Before	_	0.366	0.603	0.854	
		Before-Master			0.000	ľ	
Thru Cal Phase - 0	deg	Master		137.000	-165.864	-103.000	1 CON
	uog			137.000	-161.111	-103.000	
		Before				 Description of the 	
		Before Before-Master	_		4.753	and the second	
Thru Cal Mag - 1	V	Before-Master	_	1 (<u></u>	4.753 1.237	1.778	
Thru Cal Mag - 1	v	Before-Master Master		7.67,75,255		1.778 1.778	
Thru Cal Mag - 1	v	Before-Master		0.762	1.237		
	V	Before-Master Master Before		0.762	1.237 1.237		
		Before-Master Master Before Before-Master		0.762 0.762 ——	1.237 1.237 0.000	1.778	
		Before-Master Master Before Before-Master Master		0.762 0.762 136.000	1.237 1.237 0.000 -166.823	1.778 	
Fhru Cal Phase - 1		Before-Master Master Before Before-Master Master Before		0.762 0.762 136.000	1.237 1.237 0.000 -166.823 -162.071	1.778 	
Fhru Cal Phase - 1	deg	Before-Master Master Before Before-Master Master Before Before-Master		0.762 0.762 136.000 136.000	1.237 1.237 0.000 -166.823 -162.071 4.752	1.778 -104.000 -104.000 	
Thru Cal Phase - 1	deg	Before-Master Master Before Before-Master Before Before-Master Master		0.762 0.762 136.000 136.000 0.372	1.237 1.237 0.000 -166.823 -162.071 4.752 0.613	1.778 -104.000 _104.000 0.868	
Thru Cal Phase - 1 Thru Cal Mag - 2	deg	Before-Master Before Before-Master Master Before-Master Before-Master Before		0.762 0.762 136.000 136.000 0.372	1.237 1.237 0.000 -166.823 -162.071 4.752 0.613 0.613	1.778 -104.000 _104.000 0.868	
Thru Cal Phase - 1 Thru Cal Mag - 2	deg V	Before-Master Master Before-Master Master Before Before-Master Before Before Before		0.762 0.762 	1.237 1.237 0.000 -166.823 -162.071 4.752 0.613 0.613 0.000	1.778 	
Thru Cal Phase - 1 Thru Cal Mag - 2	deg V	Before-Master Before Before-Master Master Before Before-Master Before Before Before Before		0.762 0.762 136.000 136.000 0.372 0.372 0.372 132.000	1.237 1.237 0.000 -166.823 -162.071 4.752 0.613 0.613 0.613 0.000 -170.304	1.778 	
Thru Cal Phase - 1 Thru Cal Mag - 2 Thru Cal Phase - 2	deg V	Before-Master Before Before-Master Before Before-Master Master Before Before-Master Before-Master Before		0.762 0.762 136.000 136.000 0.372 0.372 0.372 132.000	1.237 1.237 0.000 -166.823 -162.071 4.752 0.613 0.613 0.000 -170.304 -165.578	1.778 	
Thru Cal Mag - 1 Thru Cal Phase - 1 Thru Cal Mag - 2 Thru Cal Phase - 2 Thru Cal Mag - 3	deg V deg	Before-Master Before Before-Master Before-Master Before-Master Before Before-Master Before Before Before Before		0.762 0.762 	1.237 1.237 0.000 -166.823 -162.071 4.752 0.613 0.613 0.000 -170.304 -165.578 4.726	1.778 	
Thru Cal Phase - 1 Thru Cal Mag - 2 Thru Cal Phase - 2	deg V deg	Before-Master Before Before-Master Before Before-Master Before Before-Master Master Before Before Before Before Before Master		0.762 0.762 136.000 136.000 0.372 0.372 0.372 132.000 132.000 132.000 0.420	1.237 1.237 0.000 -166.823 -162.071 4.752 0.613 0.613 0.000 -170.304 -165.578 4.726 0.691	1.778 	

		Before Before-Master		131.000	-166.313 4.728	-109.000	163
Thru Cal Mag - 4	V	Master		/ 0.804	1.297	1.876	
i nru Cai Mag - 4	v	Before	1.22	0.804	1.296	1.876	INT
		Before-Master		0.001	-0.001		
	3.2	Master		125.000	-177.009	-115,000	-
Thru Cal Phase - 4	deg			125.000	-172.279	-115.000	
		Before Before-Master	_	123.000	4.730		
Fhru Cal Mag - 5	V	Master		1,176	1.888	2.744	TIT
		Before		1,176	1.887	2.744	
		Before-Master			-0.001	— İ	
Thru Cal Phase - 5	deg	Master		122.000	-178.544	-118.000	
		Before		122.000	-173.812	-118.000	
		Before-Master			4.732	— — Ē	
Thru Cal Mag - 6	V	Master		1.176	1.887	2.744	
		Before	1.44	1.176	1.886	2.744	
		Before-Master	()	-	-0.001	IĒ	ii.
Thru Cal Phase - 6	deg	Master		121.000	-178.521	-119.000	
		Before		121.000	-173.790	-119.000	
		Before-Master			4.731		
Thru Cal Mag - 7	V	Master		0.846	1.358	1.974	
		Before		0.846	1.353	1.974	
		Before-Master			-0.005		
Thru Cal Phase - 7	deg	Master		115.000	-179.305	-125.000	
		Before		115.000	-174.661	-125.000	
		Before-Master			4.644		
SPA Zero	mV	Master		-50.000	0.156	50.000	
		Before		-50.000	0.146	50.000	
		Before-Master		· · · · · · · · · · · · · · · · · · ·	-0.010		
SPA Plus	mV	Master	_	941.000	988.093	1040.000	
		Before		941.000	988.030	1040.000	
		Before-Master	-		-0.063		
Temperature Zero	V	Master		-0.050	0.000	0.050	
		Before		-0.050	0.000	0.050	
		Before-Master		\rightarrow	0.000		
Temperature Plus	V	Master		0.870	0,915	0.960	
		Before		0.870	0.915	0.960	
		Before-Master			0.000		

Primary Equipm	ent:						
	HILT High-Resolution Control Cart	idge, 150 degC	1	IRCC-H		48.17	
	HILT Resistivity Gamma-Ray Dens	ity Device, 150 deg	gC	IRGD-H		4899	
Auxiliary Equipn	nent :						
	HRDD Backscatter Detector			Backscatter			
	HRDD Long Spacing Detector	1	ong Spacing				
	HRDD Short Spacing Detector	3	Short Spacing		27786		
	Cesium 137 Gamma-Ray Logging	19	ASR-J	5471			
	HILT High-Resolution Control Carl		IRCC-H	48.17			
	HILT High-Resolution Mechanical	Sonde, 150 degC	3	IRMS-H	4876		
Calibration Para	ameter :						
	Small Ring Size (Caliper Calibration	n Small Ring)		00			
	Large Ring Size (Caliper Calibration	n Large Ring)		2.00			
HDRS Calip	er Calibration - Caliper Ad	cumulation	S				
Before (Measured)	: 21:07:42 05-Sep-2016						
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Small Ring	in	Before	8.00	6.00	7.80	10.00	
Larne Rinn	in	Refore	12 00	9 00 1	12 20	15 00	

		00000	12100	0.00	1	1 10.00	1
HDRS Density Calibratio	n - Inversion F	Results					
	1:40 24-Aug-2016						1
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Rho Aluminum	g/cm3	Master	2.596	2.586	2.600	2.606	
Rho Magnesium	g/cm3	Master	1.686	1.676	1.685	1.696	
Pe Aluminum		Master	2.570	2.470	2.571	2.670	
Pe Magnesium		Master	2.650	2,550	2.618	2.750	
HDRS Density Calibratio	n - Deviation	Summary					
):40 24-Aug-2016	Jurninary					
		Phase	Nominal	Low Limit	Actual	High Limit	
Measurement	Unit %	Master	0	-0,6000	0.2221	0,6000	
3S Average Deviation	%	Master	0	-1.6000	0.6566	1.6000	
3S Max Deviation	%	Master	0	-1.0000	0.2278	1.0000	
SS Average Deviation	%	Master	0	-2.5000	0.9144	2.5000	
S Average Deviation	%	Master	0	-1.5000	0,6741	1.5000	
S Max Deviation	%	Master	0	-3.5000	1,7270	3,5000	
		- 13K 91.467	0	0,0000	1.7270		
HDRS Density Calibration							
Master (EEPROM): 11:40	0:40 24-Aug-2016		Before (Measured		21:08:15 05-Sep		1.
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
BS Window Ratio		Master	1.0000		0.7337		
		Before	0.7337	0.6970	0.7348	0.7704	
		Before-Master			0.0011		
3S Window Sum	1/s	Master	1	and and be	25241	and a	
		Before	25241	23979	25499	26504	
		Before-Master			258	(
SS Window Ratio		Master	1.0000	0.4557	0.4797	0.5007	
		Before	0.4797	0.4557	0.4811	0,5037	
		Before-Master			0.0014		
SS Window Sum	1/s	Master	1 11057	10504	11037	11610	
	- U. P	Before Before-Master	11057	10504	-22	11010	
O Mindow Datia		Master	1.0000		0.3012		
_S Window Ratio		Before	0.3012	0.2861	0.3073	0,3162	TIT
		Before-Master	0.0012		0.0061		
_S Window Sum	1/s	Master	1		1233		
		Before	1233	1171	1232	1294	
		Before-Master			-1		
HDRS Density Calibration	pp Photo mul		/oltages	1		- J.	
			Before (Measure	۵۱.	21:08:15 05-Sep	2016	
	0:40 24-Aug-2016	1					1
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
BS PM High Voltage	V	Master		1000 1000	1452 1449	2400 2400	
		Before Before-Master		-100	-3	100	
DO DM Llink Voltann		Master		1000	-3	2400	╎┝╾┿╺╋╾┿
SS PM High Voltage	V	Before		1000	1410	2400	
		Before-Master		-100	1	100	
_S PM High Voltage	v	Master		1000	1480	2400	
со питніўні у окаде	v	Before		1000	1473	2400	
		Before-Master	-	-100	-7	100	
HDDC Donaity Collibratio	on Crustal Or	- Caller of Section	tione	1	L	1	
HDRS Density Calibration	The second se			4).	01-00-1E 0E 0	2016	
	0:40 24-Aug-2016	1	Before (Measure	1	21:08:15 05-Sep		1
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
BS Crystal Resolution	%	Master		5.00	11.74	25.00	
		Before		5.00	11.74	25.00	
		Before-Master		-1.00	0.00	1.00	┼╞═╪╼╝╇
SS Crystal Resolution	%	Master		5.00	10.26	20.00	
		Before		5.00	10.24	20.00	
		Before-Master	1	-1.00	-0.02	1.00	╎╞═┽═╋═┿
LS Crystal Resolution	%	Master					

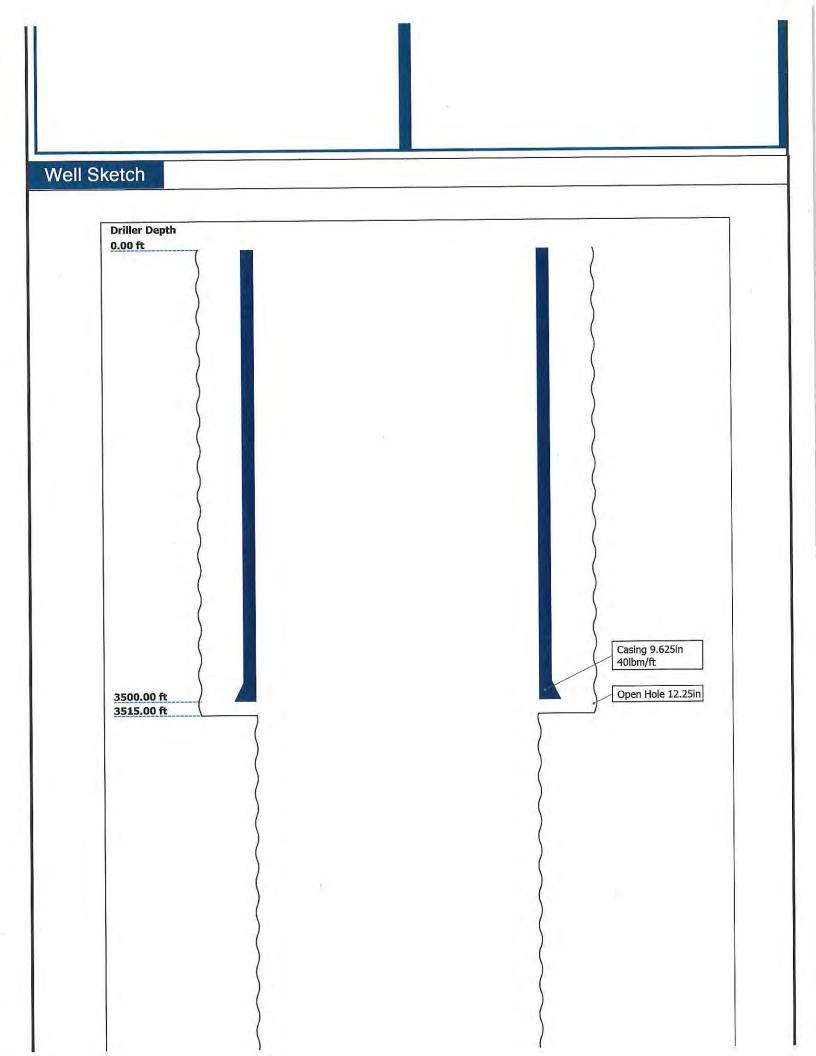
		Before-Master		-1.00	-0.24	1.00	
IDRS MCFL Calibration - MC	CEL Accur						
efore (Measured): 21:10:47 05-		nalations					
leasurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Aain Resistivity	ohm.m	Before	3875	3565	3886	4185	THI
Deep Resistivity	ohm.m	Before	3830	3524	3830	4136	
Shallow Resistivity	ohm.m	Before	3830	3524	3839	4136	
Site in the statistic ty	onnan	Dolora					
				0.111	D 0		
HGNS-H (HILT Gamma-Ray	and Neutr	on Sonde, 1	50 degC) (Calibration -	Run One		
Primary Equipment :		a longer and the				1017	
HILT Gamma-Ray a	nd Neutron Son	de, 150 degC	HGN	IS-H		4817	
Auxiliary Equipment :							
HGNS Acceleromete	er, 150 degC		HAC	CZ-H		6991	
AmBe Neutron Logg	ing Source		NSF	}-F		5068	
Calibration Parameter :							
Water Temperature							
Housing Size							
JIG-BKG (Jig minus	background ref	erence)	165				
			5.44	100.0			
HGNS Accelerometer Calibra	ation - Acc	elerometer	Accumulation	ons			
Before (Measured): 05:14:18 07	-Sep-2016					1	
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Z Vertical Measurement	ft/s2	Before	32.2	31.5	32.0	32.8	
HGNS Accelerometer EEPR	OM - Acce	lerometer E	EPROM Re	ead			
Master (EEPROM): 00:00:00 15							
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Accelerometer Manufacturer	Onit	Master	Nominar	Low Entite	QAT_160	right Entre	
Accelerometer Reference Temperature	degF	Master		30.2	77.0	122.0	
Accelerometer Coefficients - 0	- dog.	Master			1000.000		
Accelerometer Coefficients - 0		Madici			-4298.000	the second se	
		Master			-4298.000 50.180		
		Master Master			50.180		
Accelerometer Coefficients - 2		Master				-	
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3		Master Master			50.180 -0.002		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4		Master Master Master			50.180 -0.002 0.000		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5		Master Master Master Master	_		50.180 -0.002 0.000 2.754		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6		Master Master Master Master Master	-		50.180 -0.002 0.000 2.754 0.000		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7		Master Master Master Master Master Master			50.180 -0.002 0.000 2.754 0.000 0.000		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8		Master Master Master Master Master			50.180 -0.002 0.000 2.754 0.000 0.000 0.000		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9		Master Master Master Master Master Master Master Master			50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration -		Master Master Master Master Master Master Master Master Master Utron Accun	 nulations		50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19	-Jul-2016	Master Master Master Master Master Master Master Utron Accun	nulations	 	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement	9-Jul-2016 Unit	Master Master Master Master Master Master Master Utron Accun	 nulations Before (Measured Nominal	J): Low Limit	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration -	-Jul-2016	Master Master Master Master Master Master Master Utron Accun	 nulations Before (Measured Nominal 0	 i): Low Limit 5.0	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6	 	
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement	9-Jul-2016 Unit	Master Master Master Master Master Master Master Utron Accun	 nulations Before (Measured Nominal	 d): Low Limit 5.0 5.0	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2	 	
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement	9-Jul-2016 Unit 1/s	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before-Master	nulations Nominal	 d): Low Limit 5.0 5.0 4.1	50.180 -0.002 0.000 2.754 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 7 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement	9-Jul-2016 Unit	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before Before-Master Master	nulations Nominal 0 0	 d): Low Limit 5.0 5.0 -4.1 5.0	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement	9-Jul-2016 Unit 1/s	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before-Master Before Before	nulations Nominal	 i): Low Limit 5.0 5.0 -4.1 5.0 5.0 5.0 5.0	50.180 -0.002 0.000 2.754 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5 29.7		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement Far Zero Measurement	9-Jul-2016 Unit 1/s 1/s	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before-Master Before Before Before Before Before	nulations Before (Measured Nominal 0 0 0 0	 	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement Far Zero Measurement	9-Jul-2016 Unit 1/s	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before-Master Before Before-Master Master Before Before-Master	nulations Nominal 0 0	 i): Low Limit 5.0 5.0 -4.1 5.0 5.0 5.0 5.0	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5 29.7 0.2		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement Far Zero Measurement	9-Jul-2016 Unit 1/s 1/s	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before Before Before Before Before Before Before Before Before Before Before Before	nulations Before (Measured Nominal 0 0 0 0	 	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5 29.7 0.2		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement Far Zero Measurement Near Plus Measurement	9-Jul-2016 Unit 1/s 1/s 1/s	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before-Master Master Before Before-Master Master Before Before-Master Before Before Before Before Before	nulations Before (Measured Nominal 0 0 0 0	 	50.180 -0.002 0.000 2.754 0.000 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5 29.7 0.2		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement Far Zero Measurement Near Plus Measurement	9-Jul-2016 Unit 1/s 1/s	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before Before Before Before Before Before Before Before Before Before Before Before		 a): Low Limit 5.0 5.0 -4.1 5.0 5.0 -4.1 5.0 5.0 -4.4 4700.0 	50.180 -0.002 0.000 2.754 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5 29.7 0.2 5290.0 —		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement Far Zero Measurement Near Plus Measurement	9-Jul-2016 Unit 1/s 1/s 1/s	Master Master Master Master Master Master Master Utron Accun Phase Master Before Before-Master Master Before Before-Master Master Before Before-Master Before Before-Master Master Before Before-Master		 a): Low Limit 5.0 5.0 -4.1 5.0 5.0 -4.1 5.0 5.0 -4.4 4700.0 	50.180 -0.002 0.000 2.754 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5 29.7 0.2 5290.0 —		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement Far Zero Measurement Far Plus Measurement Far Plus Measurement	9-Jul-2016 Unit 1/s 1/s 1/s	Master Master Master Master Master Master Master Master Utron Accun Phase Master Before Before-Master Before Before-Master Master Before Before-Master Master Before Before-Master Master Before Before-Master Before Before-Master		 a): Low Limit 5.0 5.0 -4.1 5.0 5.0 -4.1 5.0 5.0 -4.4 4700.0 	50.180 -0.002 0.000 2.754 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5 29.7 0.2 5290.0 —		
Accelerometer Coefficients - 2 Accelerometer Coefficients - 3 Accelerometer Coefficients - 4 Accelerometer Coefficients - 5 Accelerometer Coefficients - 6 Accelerometer Coefficients - 7 Accelerometer Coefficients - 8 Accelerometer Coefficients - 9 HGNS Neutron Calibration - Master (EEPROM): 15:25:00 19 Measurement Near Zero Measurement Far Zero Measurement Near Plus Measurement	3-Jul-2016 Unit 1/s 1/s 1/s 1/s	Master Master Master Master Master Master Master Master Utron Accun Phase Master Before Before-Master Master Before Before-Master Master Before Before-Master Before Before-Master Before Before-Master Before Before Master Before Before Master		 	50.180 -0.002 0.000 2.754 0.000 0.000 300.500 0.994 21:06:20 05-Sep Actual 27.6 28.2 0.6 29.5 29.7 0.2 5290.0 2194.0 		

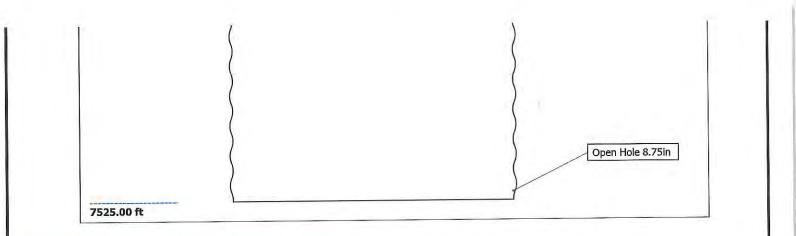
						1	
Far Corrected Plus Measurement	1/s	Master		1900.0	2097.0	2900.0	
		Before				IC	
		Before-Master					
HGNS Gamma-Ray Calibra	ition - Gami	ma-Ray Acc	umulations				
Before (Measured): 21:11:47 (05-Sep-2016				•		
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
RGR Zero Measurement	gAPI	Before	30.0	0	78.9	120.0	
RGR Plus Measurement	gAPI	Before	185,4	157.1	165.1	206.3	
GR Calibration Gain		Before	0.89	0.80	1.00	1.05	

Company:	Western Refining, Southwest, Inc.	Schlumberger
Well:	WWD #2	
Field:	Wildcat	
County:	San Juan	
State:	New Mexico	

Triple Combo

;

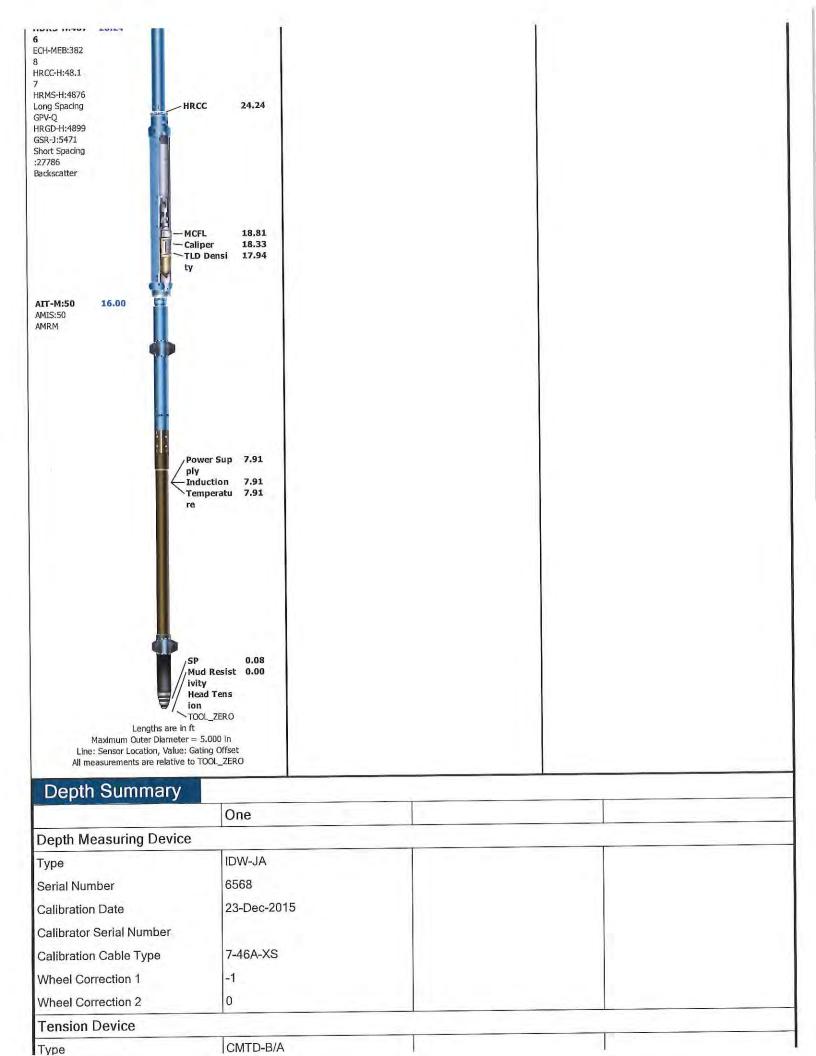

Company:	Western R	Western Refining, Southwest, Inc.	thwest, Inc	č	lininnei.Aei.
Well:	WWD #2				
Field:	Wildcat				
County:	San Juan	St	State:	New Mexico	co
	Platform Express	ess			
	Compensated Neutron	Neutron			
R11V	Litho-Density				
	Sec 27, T29N, R11W	N11W		Elev.:	K.B. 5550.00 ft
27, T: D #2	SHL: 2028' FNL X 111' FEL	X 111' FEL			G.L. 5535.00 ft
Vild Sec WW	E Permanent Datum:	101.01000	Ground Level	Elev.:	5535.00 f
1	Log Measured From:	12	Kelly Bushing	15.00 ft	above Perm.Datum
on:	1.00		Kelly Bushing		
County Field: Locatio Vell: Compa	API Serial No. 30-045-35747-0000		Section: 27	Township: 29N	Range: 11W
gging Date		05-Sep-2016			
Run Number		One			
Depth Driller		7525.00 ft			
Schlumberger Depth		7532.00 ft			
Top Log Interval		3498.00 ft			
Casing Driller Size @ Depth		9.625 in @	3500.00 ft		
Casing Schlumberger		3498 ft			
Bit Size		8.75 in			
Type Fluid In Hole		WBM	n n 0		
o Fluid Loss	PH	9 cm3	8.6		
Source of Sample		Active Tank			
5		1.13 ohm.m @	68 degF		
RMF @ Meas Temp			68 degF		
RMC @ Meas Temp		1.4 ohm.m @	68 degF		
Source RMF		d	ulated		
RM @ BHT	® BHT	0.46 @ 1//	0.37 @ 1//	,	
Circulation Stonned	Time	06-Sep-2016	20:25:00		
Logger on Bottom		07-Sep-2016	05:00:00		
Unit Number	Location:	9115	Ft Morgan, CO		
Recorded By		Avery Becker			
Witnessed By		Larry Candelaria			


Disclaimer

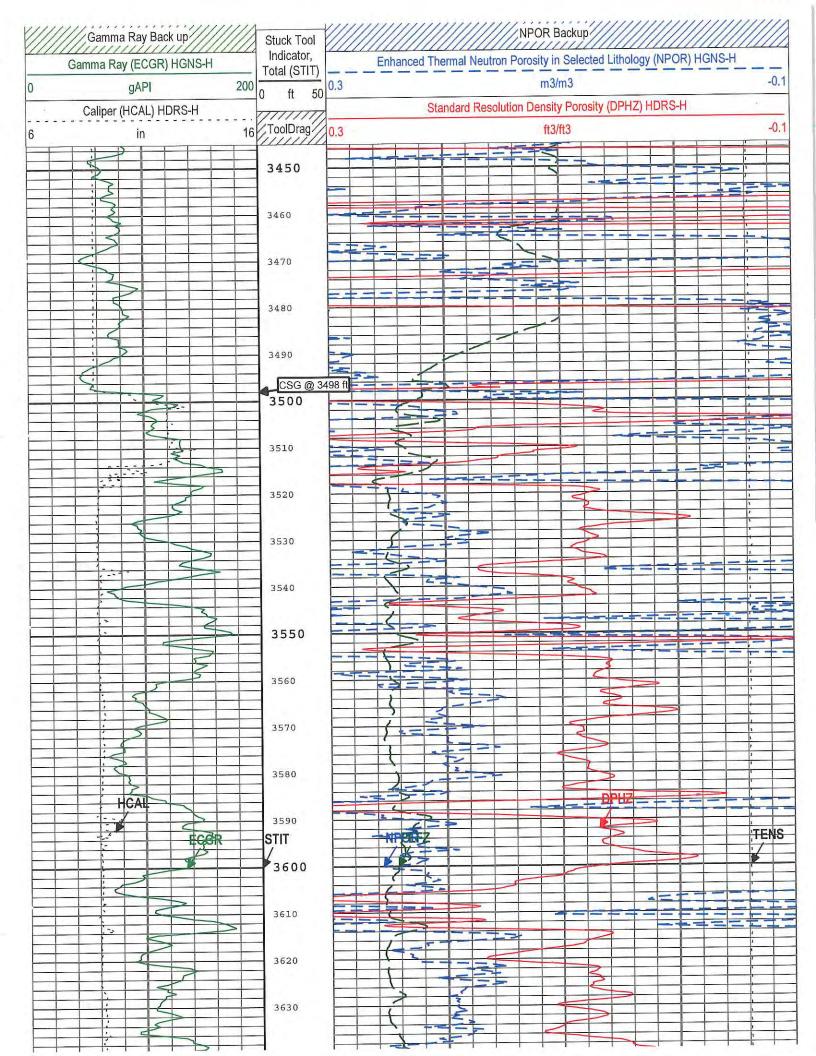
THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

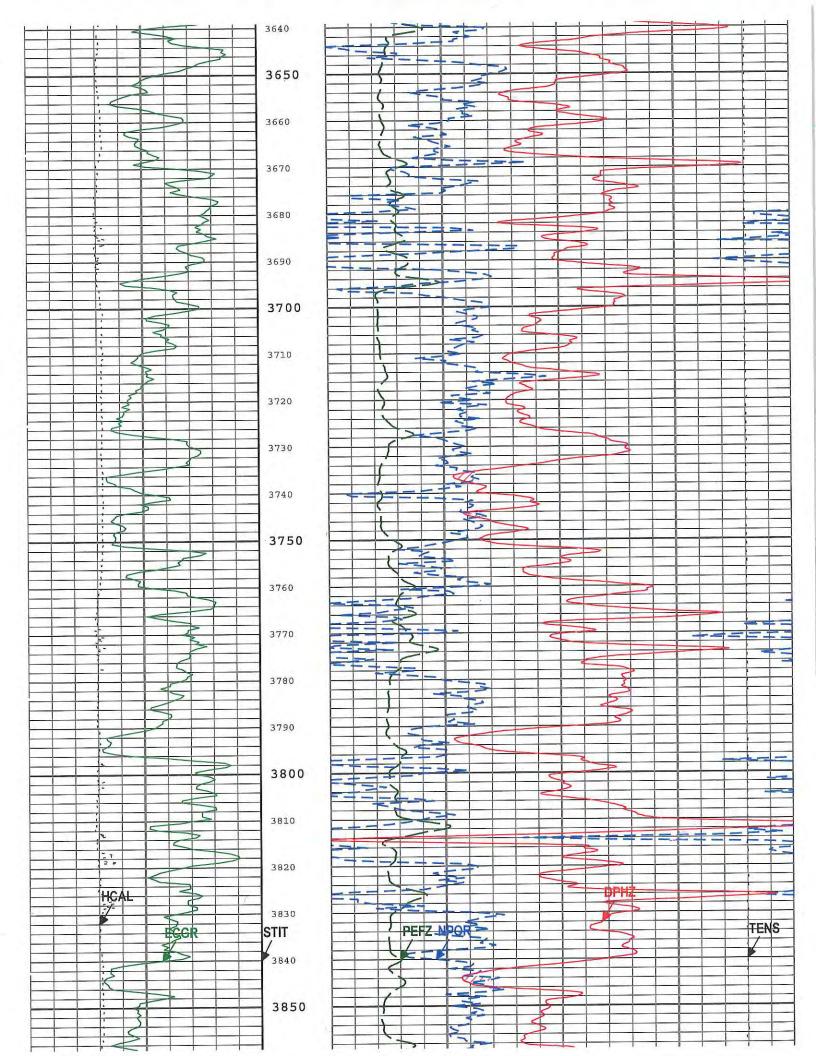
Contents

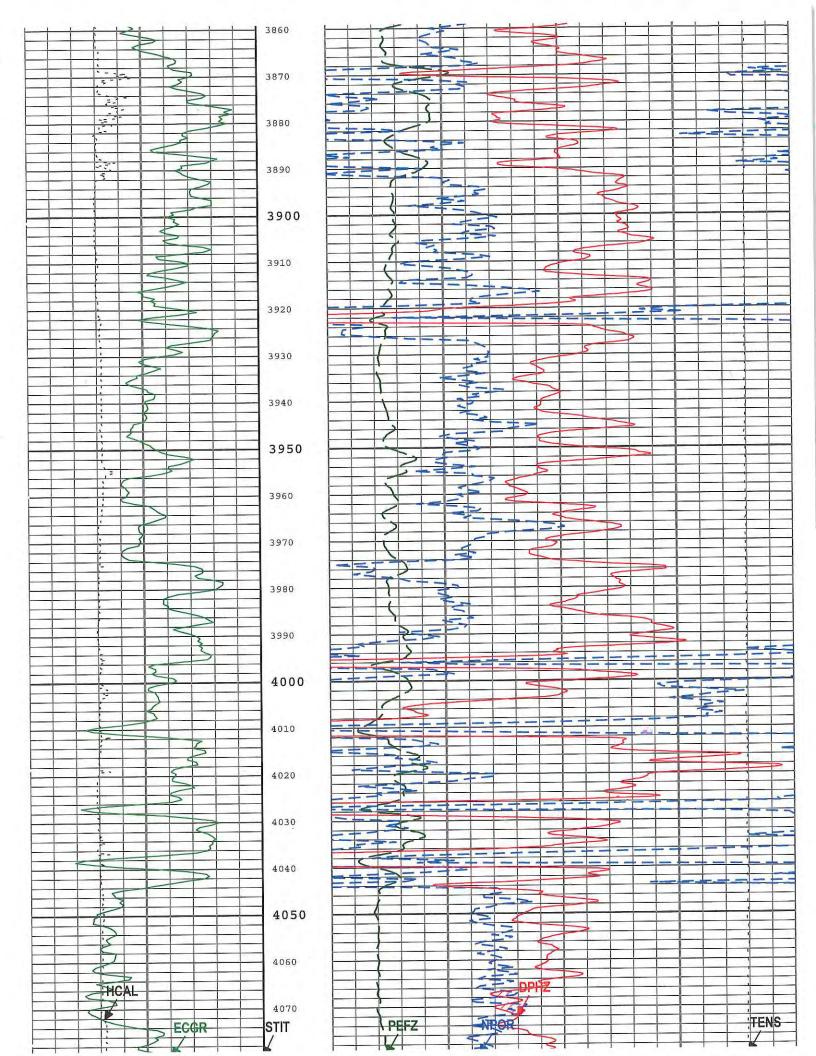
- 1. Header
- 2. Disclaimer
- 3. Contents
- 4. Well Sketch
- 5. Borehole Size/Casing/Tubing Record
- 6. Remarks and Equipment Summary
- 7. Depth Summary
- 8. One 5" Porosity
 - 8.1 Integration Summary
 - 8.2 Composite Summary
 - 8.3 Log (Porosity-5)
 - 8.4 Parameter Listing
- 9. One 5" Porosity
 - 9.1 Composite Summary
 - 9.2 Log (Porosity-5 RA)
- 10. Calibration Report
- 11. Tail

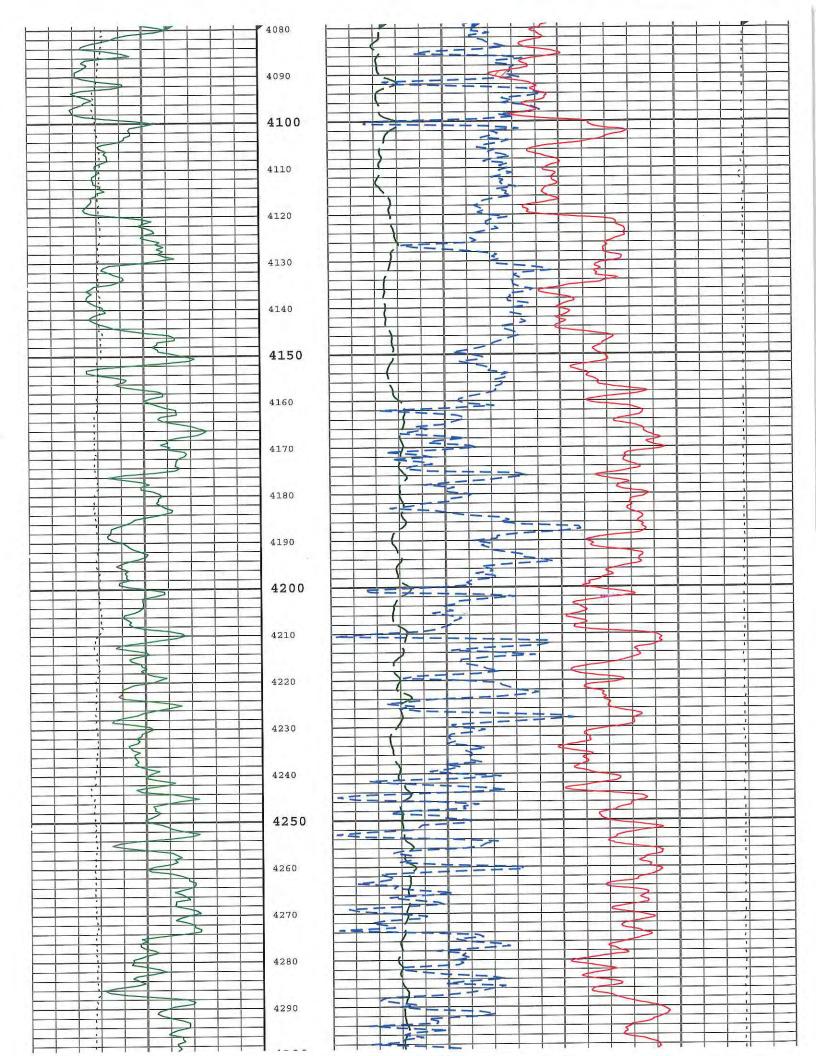


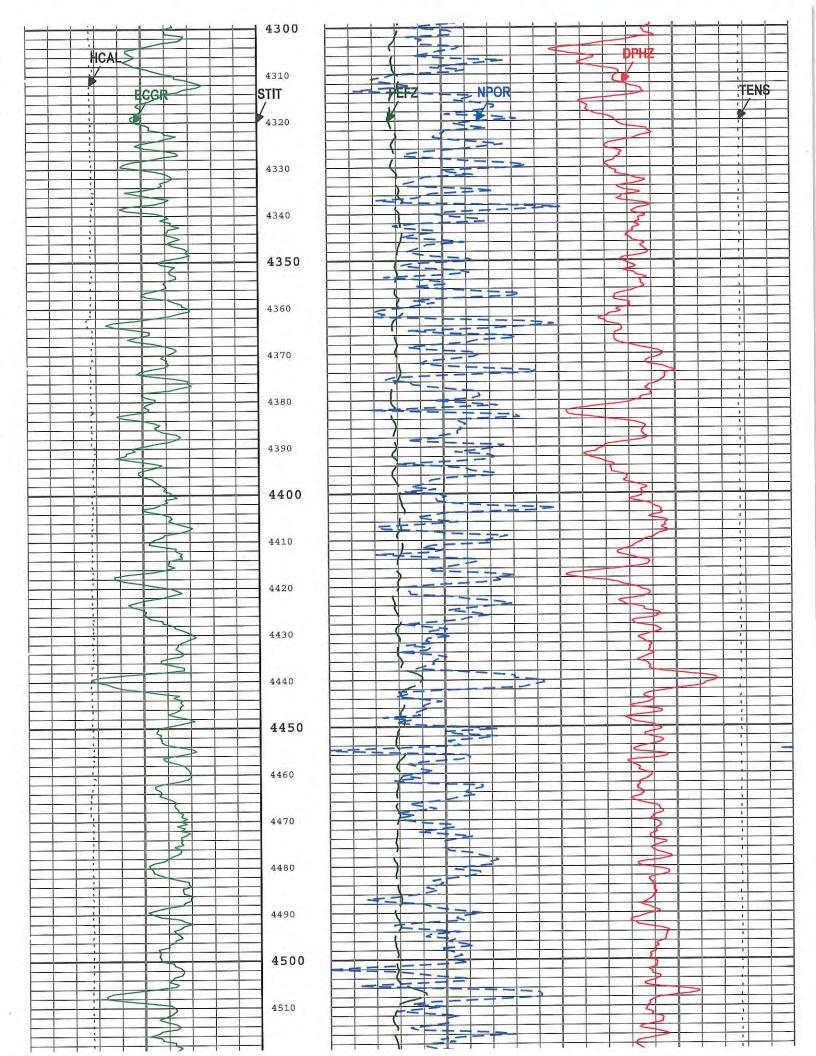
Borehole Size/Casing/Tubing Record

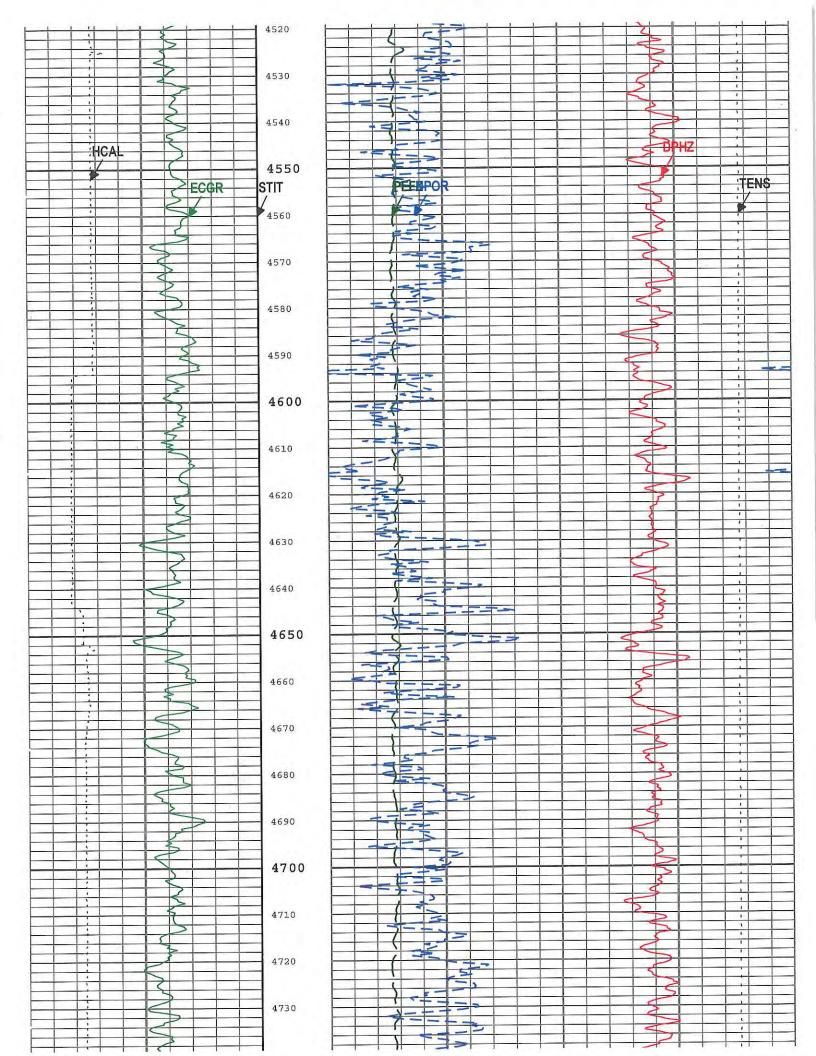

Bit			
Bit Size (in)	12.25	8.75	
Top Driller (ft)	0	3515	
Top Logger (ft)	0	3515	
Bottom Driller (ft)	3515	7525	
Bottom Logger (ft)	3515	7532	
Casing			
Size (in)	9.625		
Weight (Ibm/ft)	40		
Inner Diameter (in)	8.835		
Grade	N/A		
Top Driller (ft)	0		
Top Logger (ft)	0		
Bottom Driller (ft)	3500		
Bottom Logger (ft)	3498		

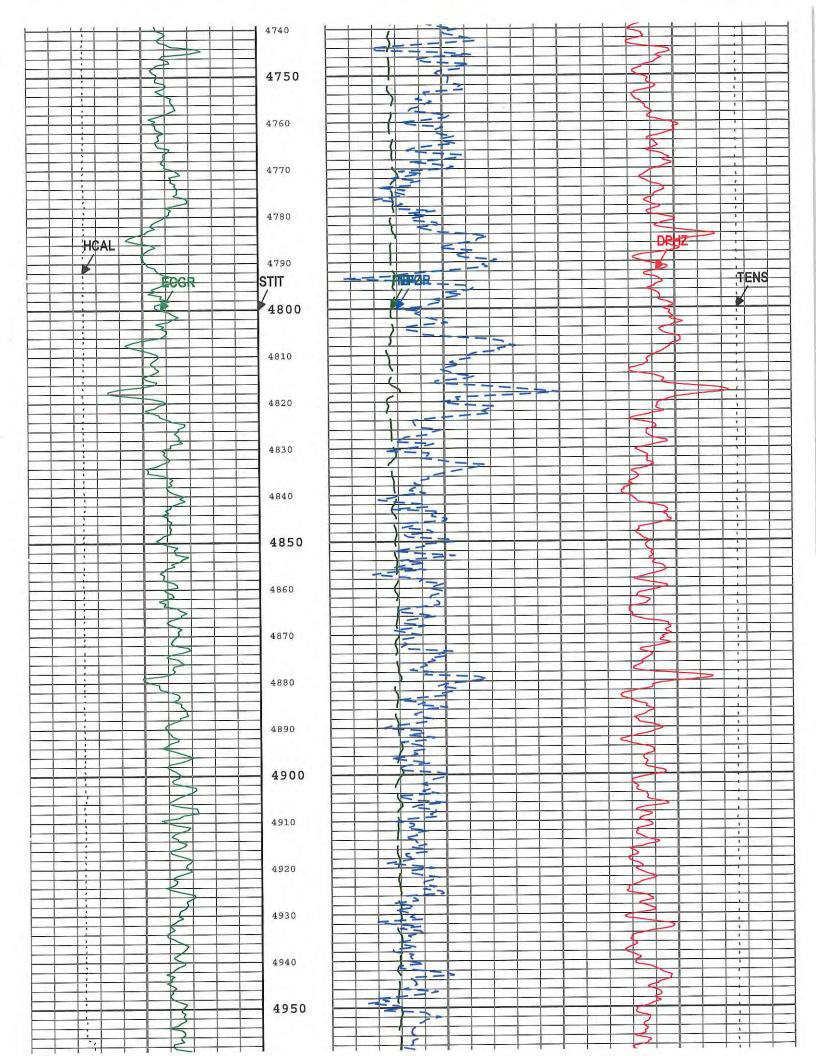

Remarks and Equipment Summary

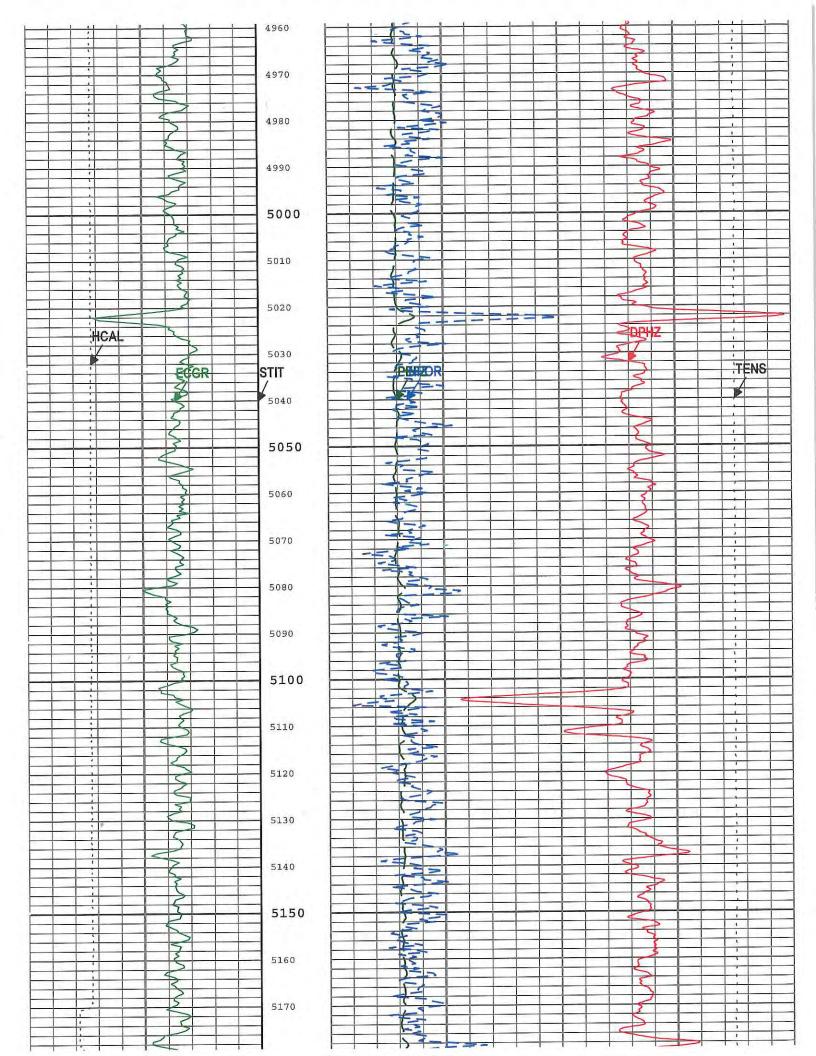

	One: T	oolstring	One: Remarks			
Equip name	Length	MP name	Offset	Toolstring run as per tool sketch		
LEH-QT LEH-QT	43.57	ů –		Matrix: Sandstone (2.65 g/cc)		
				Log may be affected by 20% LCM in drilling mud		
DTC-H:8980	40.65	ATT N	39.75	Caliper check in casing=8.87 in, within tolerance		
ECH-KC:1005 3 DTC-H:8980			0.00	Cement volume calculated using 7 in future casing diameter		
		TelStatus	37.65 37.65	Rig: Aztec 920		
HGNS-H:481 7	37.65	Temperatu re	37.62	Crew: Derrick Hunter		
HGNH:4865 NPV-N NSR-F:5068 HGNS-H:4817 HACCZ-H:699 1		GR	36.91	Thank you for choosing Schlumberger		
HMCA-H	28.24	CNL Poros ity HMCA HGNS Accelerom eter	30.57 28.24 28.24 0.00			

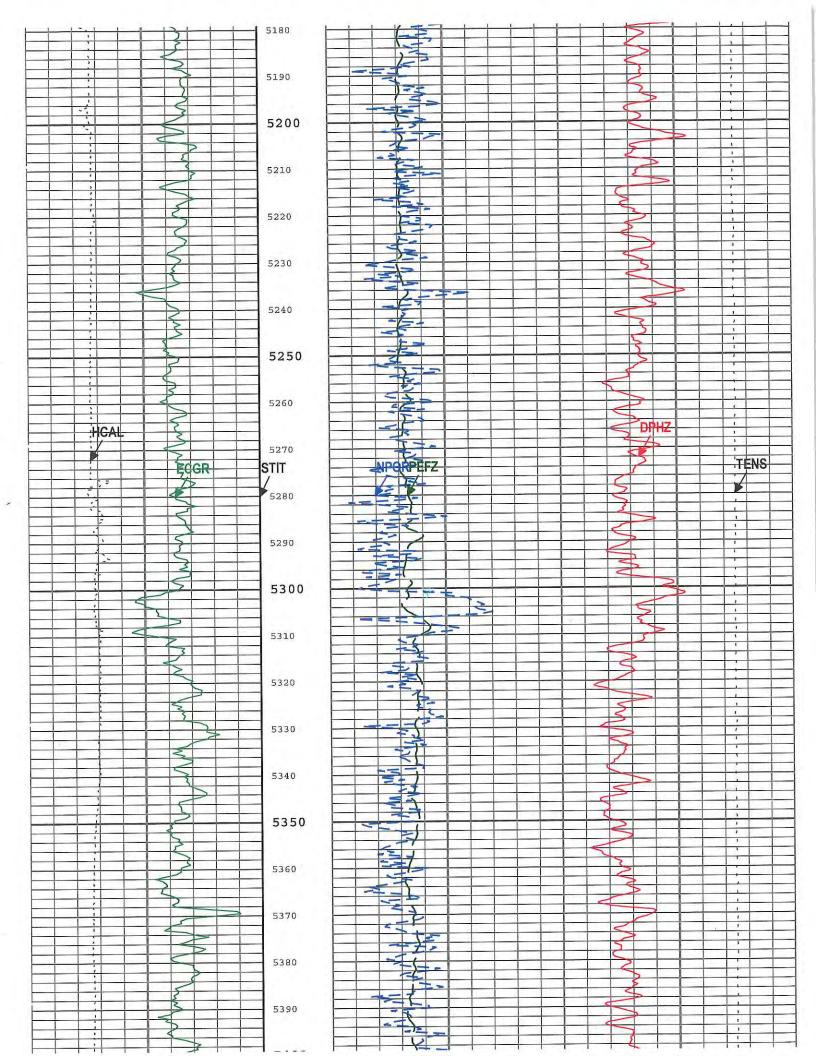


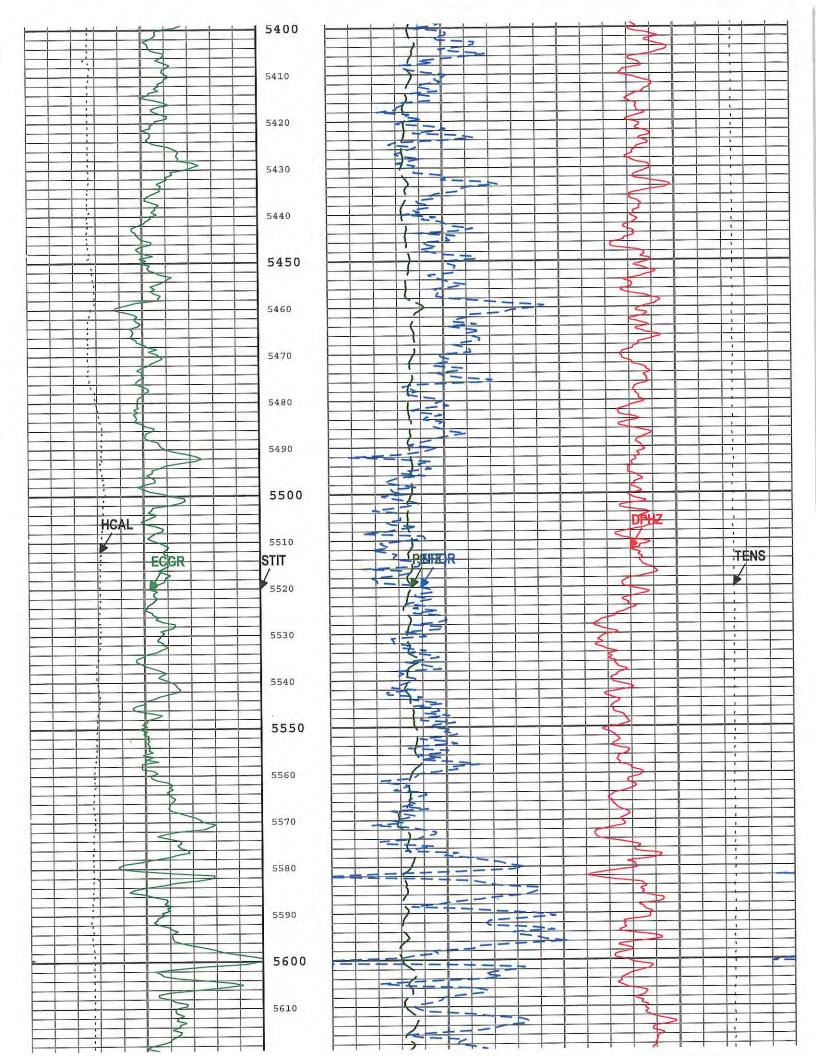

		147			Ϋ́.		. T				
Serial Number			2016								
Calibration D		18-Aug-									
Calibrator Se		78805A 10									
	alibration Points										
Error	loot Mean Square	7 10									
Calibration P	eak Error			1							
Logging Ca	able						1				
Туре		7-46A-X	S								
Serial Numbe	er	U71504	3								
Length		24000.0	0 ft				0.0				
Conveyance Type Wireline											
Rig Type Land											
	Control Parame			Depth Control Remarks							
One:Depth Control Parameters					First run in well depth control procedures followed						
Log Sequence First Log In the Well					IDW used as primary depth device, z-chart used for secondary						
Rig Up Leng Rig Up Leng						is prinary (20ptil 069106, 2-011				
122-1275-121-2	th Correction										
Stretch Corre)			
	neck At Surface										
Tool Zelo Cl	IECK AL SUITACE				One						
					One						
				5" F	orosity						
Deeg	ummon/										
	Summary	Direction	Тор	Bottom	Start	Stop	DSC Mode	Depth Shift	Include		
Run Name	Pass Objective	Direction	төр	Bouom	Start	Otop	DOO Mode	Doput office	Parallel Data		
One	Log[4]:Up	Up		7548.83 ft	07-Sep-2016 5:52:06 AM		ON	0.00 ft	No		
All donths are	e referenced to tools	ring zero			0.02.00 AW						
					Company:	Nestern R	efining, Southwe	st. Inc. W	/ell:WWD #2		
Log					oompany.	Western	onning, oournio		oq[4]:Up:S012		
Description: H	GNS standard resolut	ion porosities	for Platfor	m Express Forn	nat: Log (Porosi	ty-5) Index	x Scale: 5 in per 100		ft Index Type:		
Measured Dep		7-Sep-2016 0	7:04:46								
	Source	Sam	oling								
	IDRS-H:HRCC-H:HR										
EVEL B IS V	HDRS-H:HRMS-H:HR										
GR H	HGNS-H:HGNS-H:HG	SNS-H 6in									
	HGNS-H:HGNS-H:HG										
	HDRS-H:HRMS-H:HF										
Maria and	DepthCorrection	6in									
A CONTRACTOR OF	WLWorkflow	6in									
TIME_1900 \	NLWorkflow	0.1in	1								
TIME_1900 -	Time Marked every 6	0.00 (s)									
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	esolution Forma		ectric				
			Factor (PEFZ) HDRS-H			Cable Tension (TENS)					
				0			10 10000	lbf			
				1//////	///////////////////////////////////////	//////		///////////////////////////////////////	7////////		
							Gas Effect				
1111111	1111111111111	1111111	2	VIIIII	mmm	111111	11111111111	(((((((((((((((((((annin annin annin annin annin anni anni		

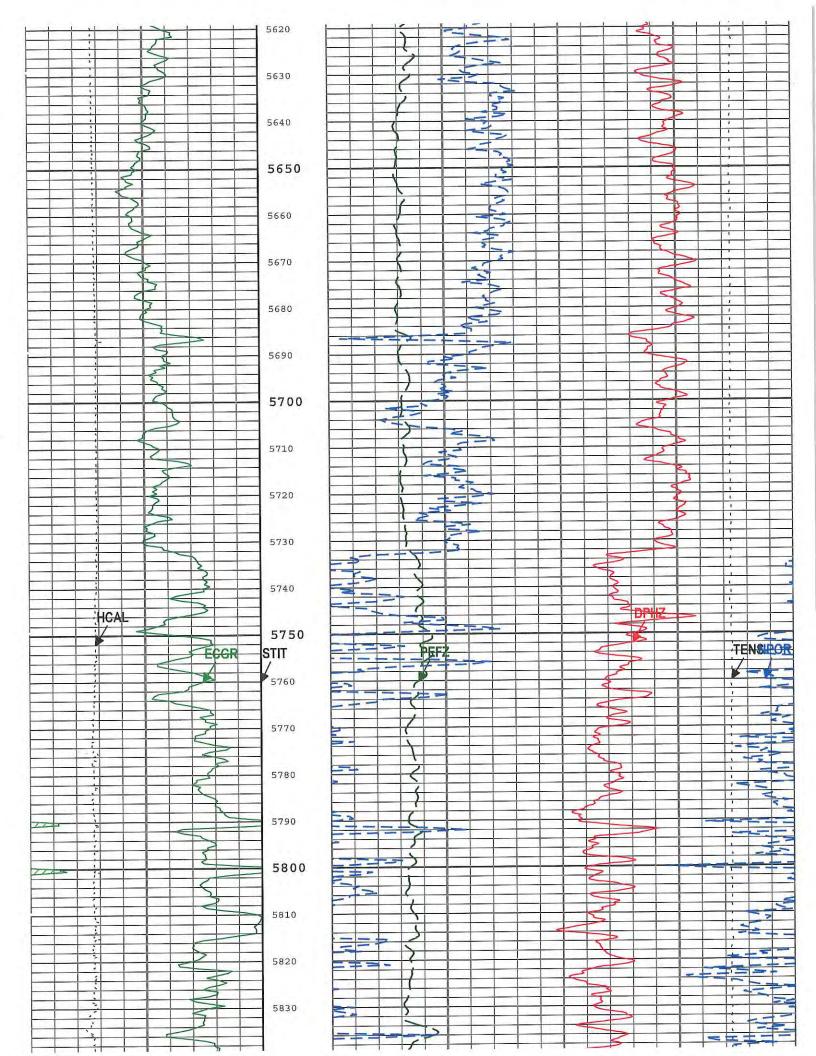


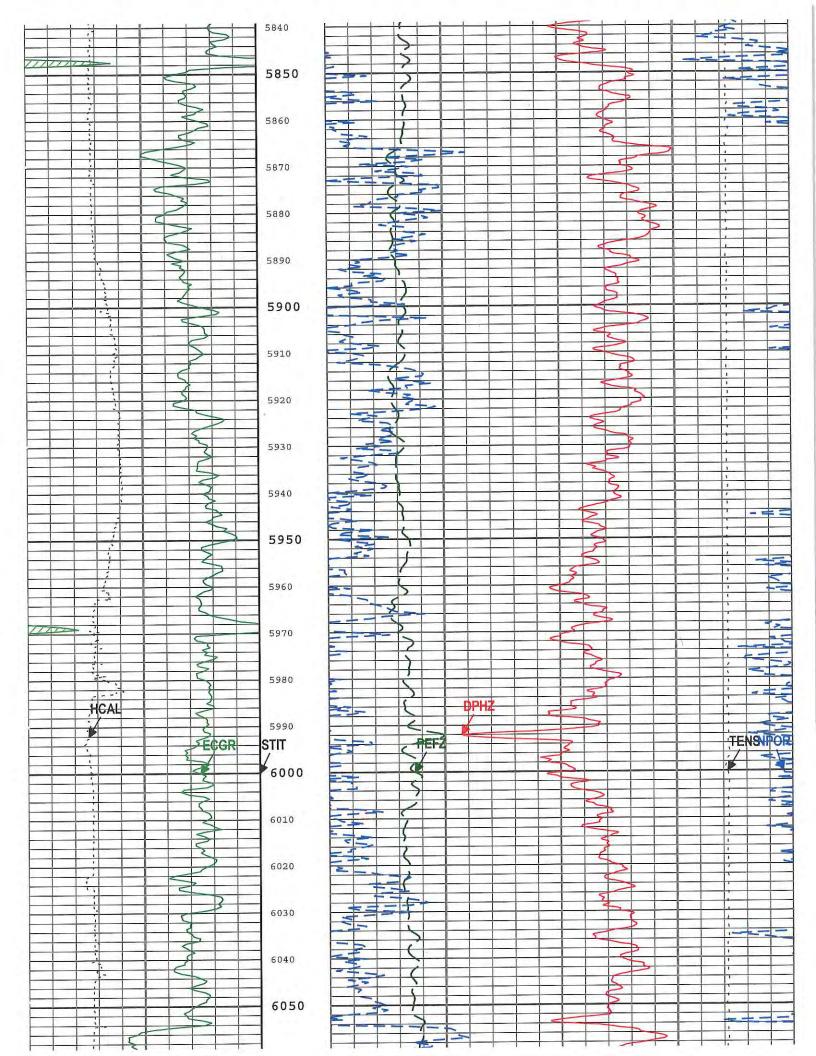


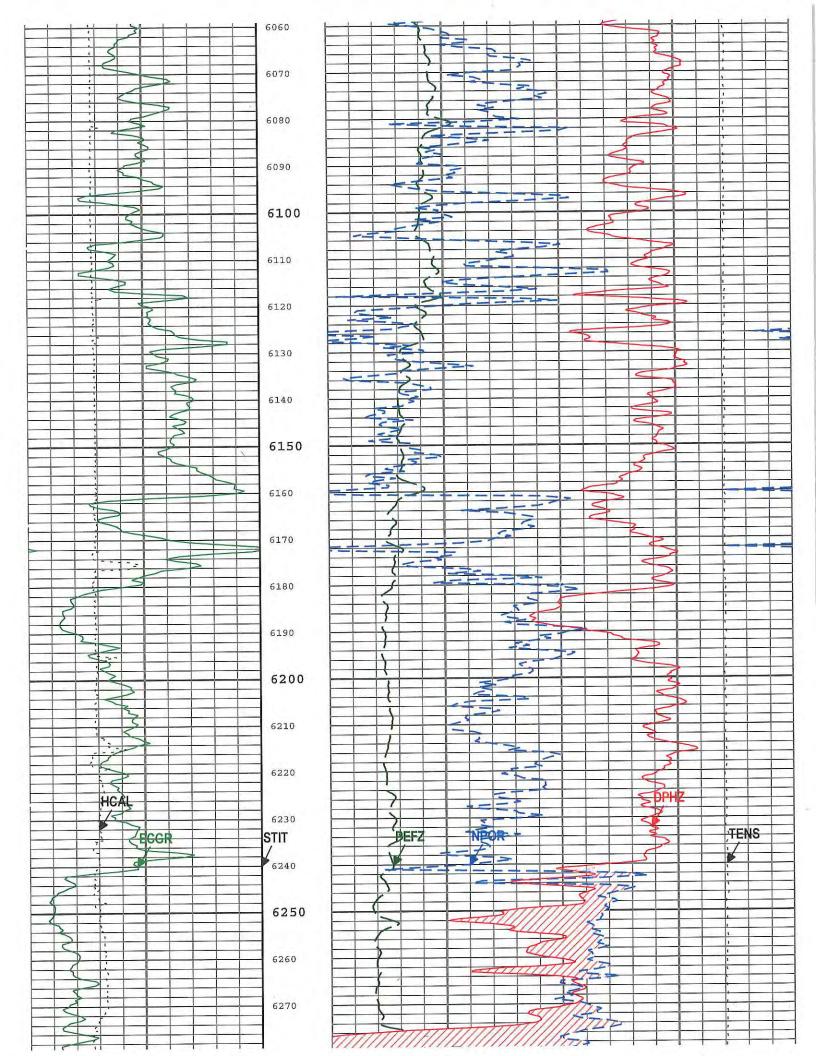


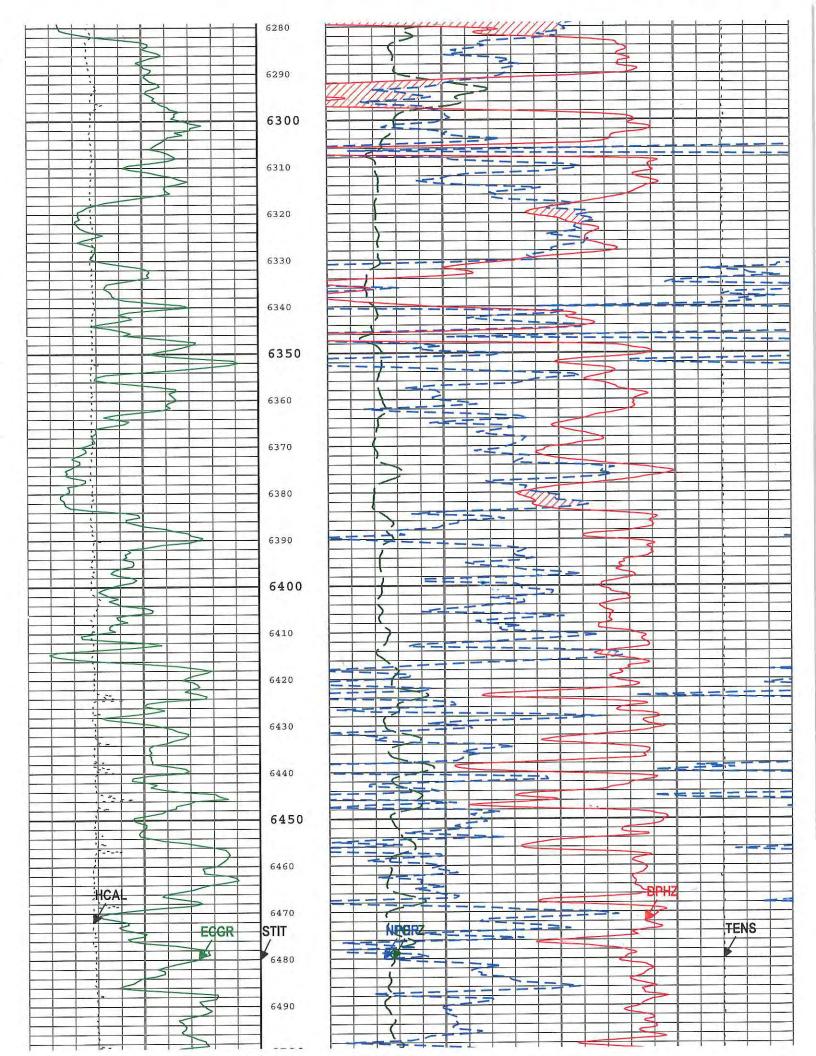


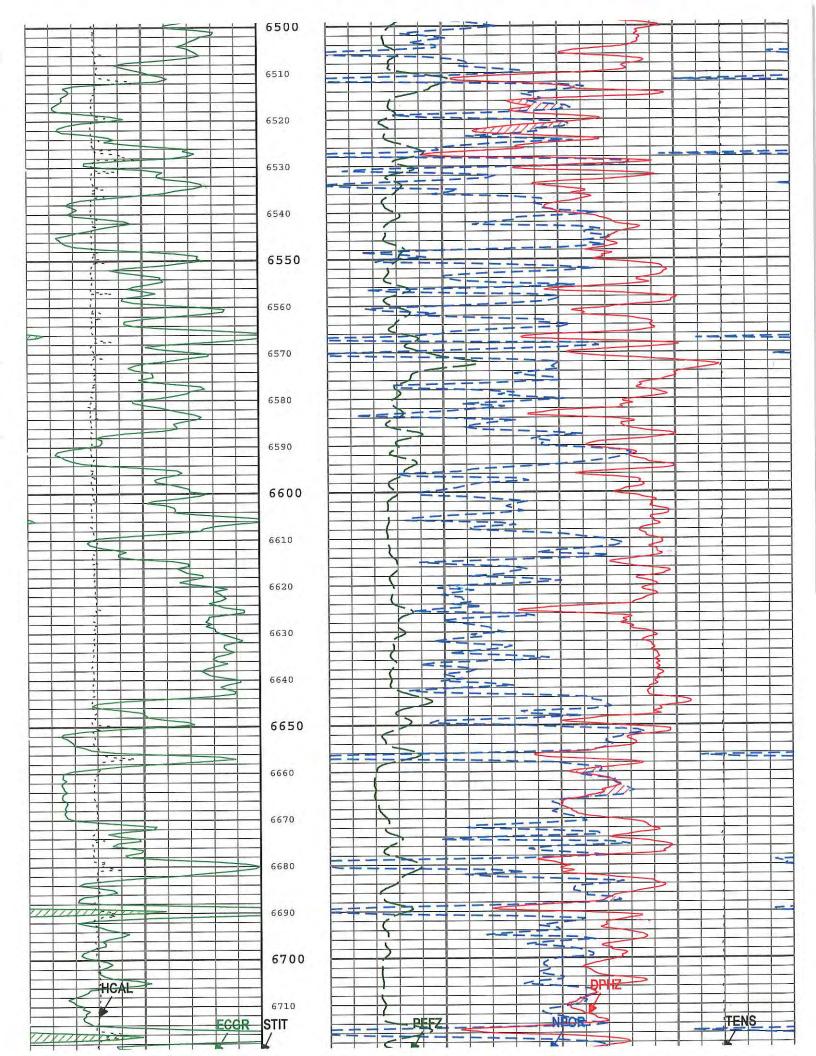


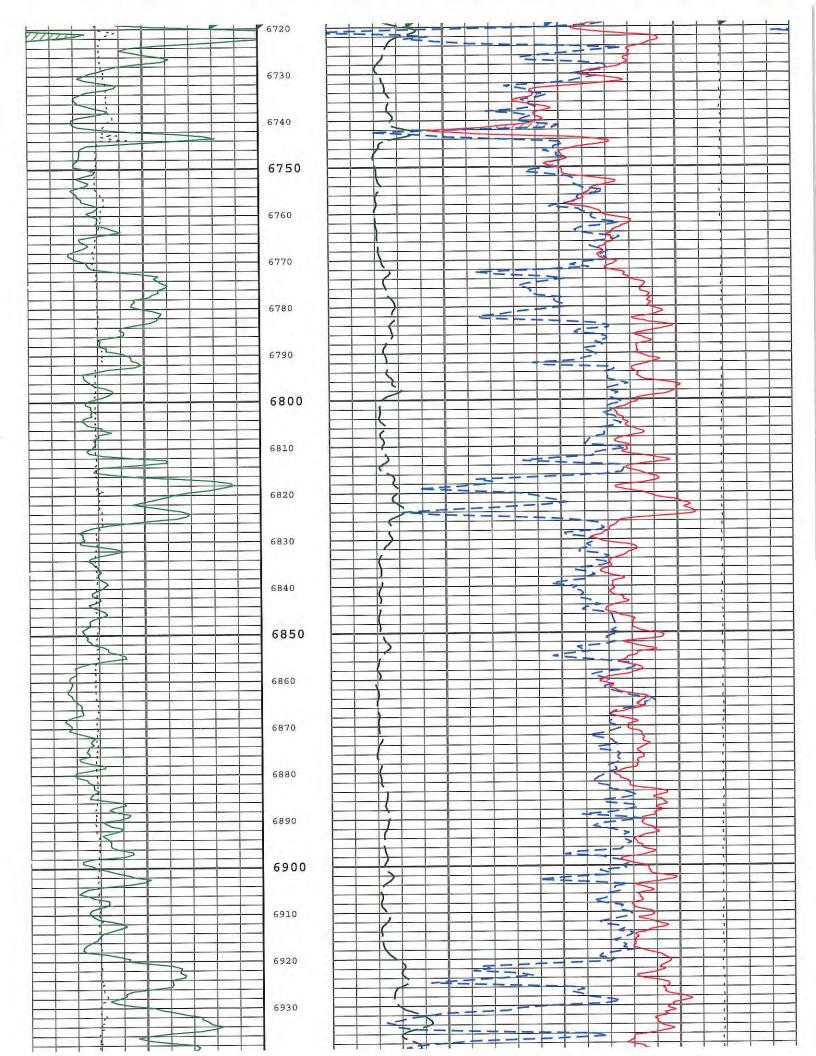


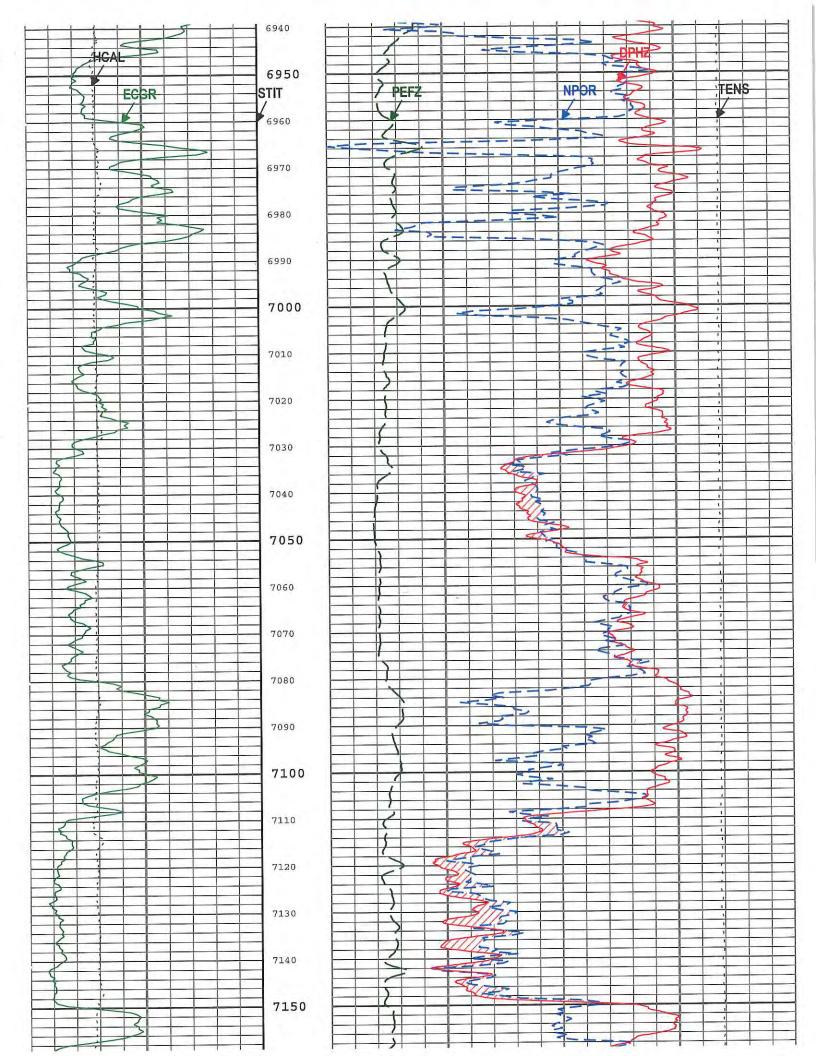


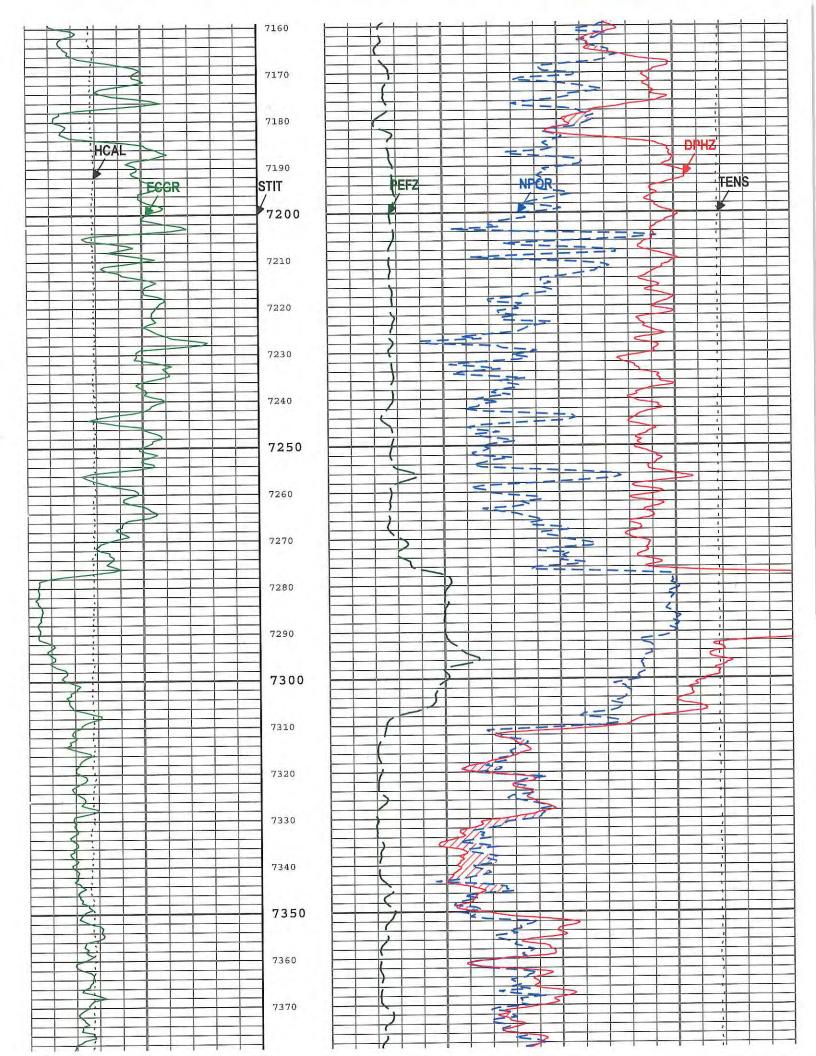


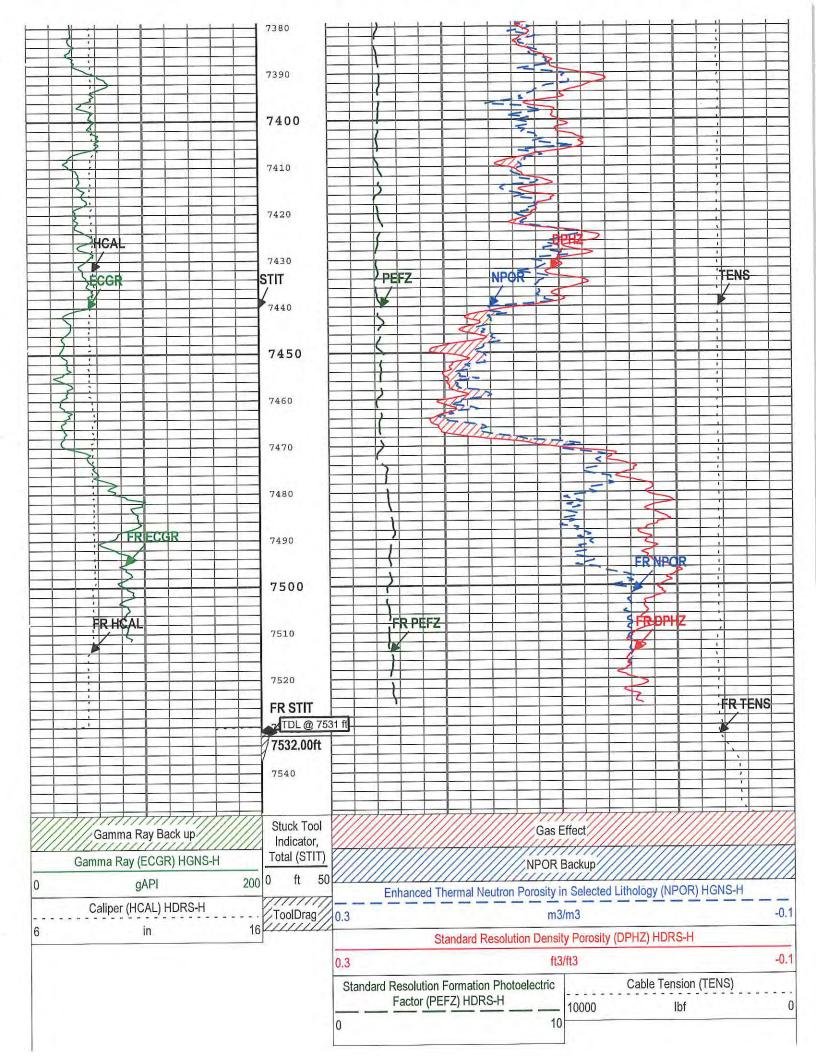


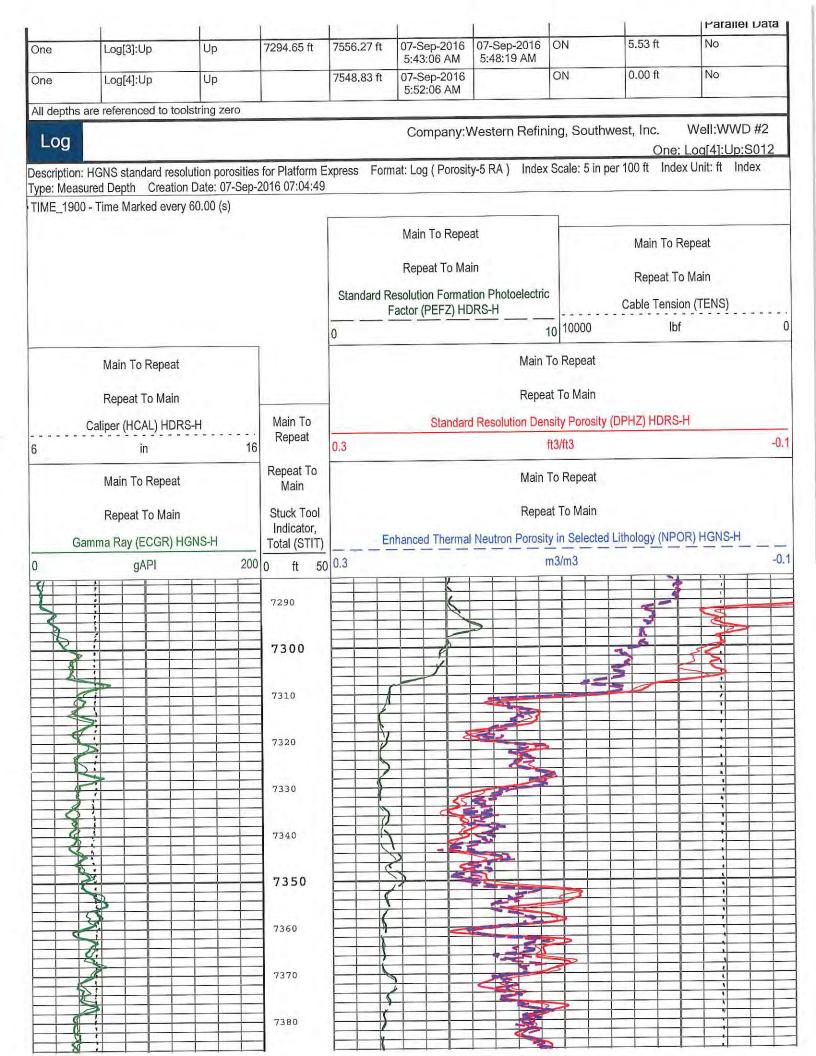


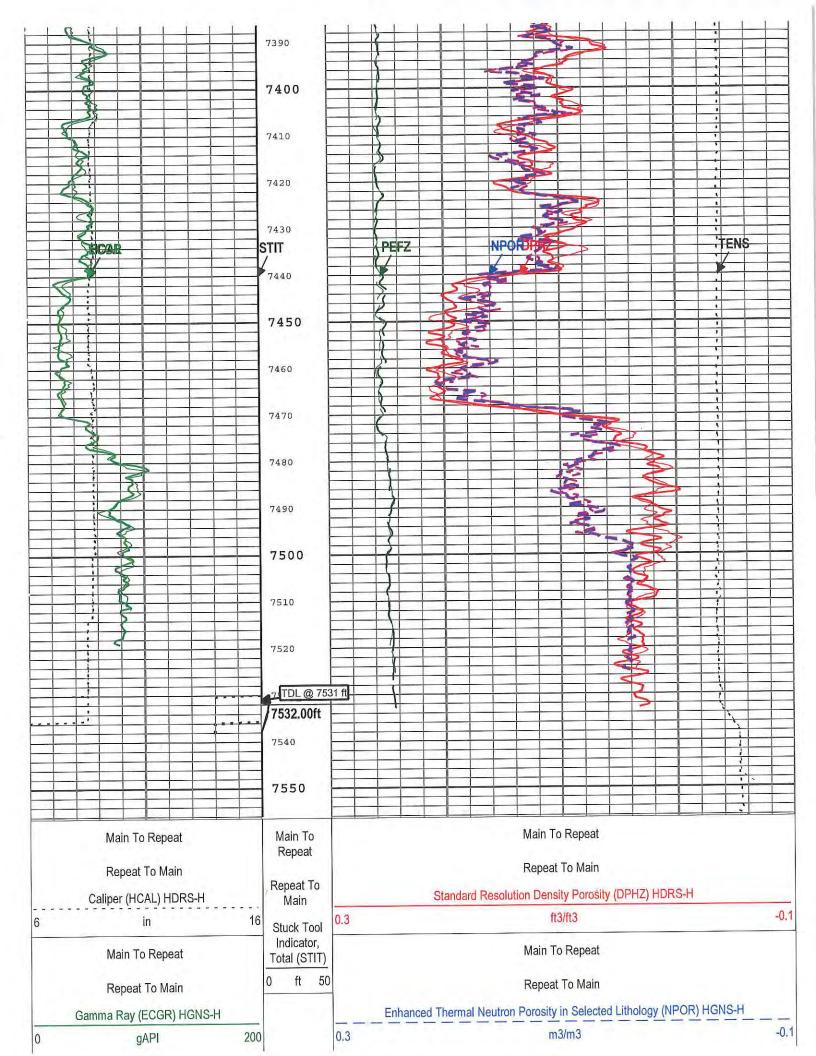











Description: HGNS standard resolution porosities for Platform Express Format: Log (Porosity-5) Index Scale: 5 in per 100 ft Index Unit: ft Index Type: Measured Depth Creation Date: 07-Sep-2016 07:04:46

Channel Processing Parameters

Une: Parameters	One:	Parameters
-----------------	------	-------------------

Parameter	Description		Tool	Value	Unit
SSBAR	Barite Mud Presence	Flag	Borehole	Yes	
BHS	Borehole Status (Ope	n or Cased Hole)	Borehole	Open	
ЗНТ	Bottom Hole Tempera	ture	Borehole	177	degF
BS	Bit Size		WLSESSION	Depth Zoned	in
BSAL	Borehole Salinity		Borehole	900	ppm
CALI_SHIFT	CALI Supplementary	Offset	HDRS-H	0.1	in
CBLO	Casing Bottom (Logg	er)	WLSESSION	3498	ft
CDEN	Cement Density		HGNS-H	2	g/cm3
DFD	Drilling Fluid Density		Borehole	9.9	lbm/gal
DFT	Drilling Fluid Type		Borehole	Water	
DFT_WATER	Drilling Fluid Water T	уре	Borehole	WBM	
DHC	Density Hole Correct	on	HDRS-H	Bit Size	
FD	Fluid Density		Borehole	1	g/cm3
FSAL	Formation Salinity		Borehole	0	ppm
GCSE_DOWN_PASS	Generalized Caliper	Selection for WL Log Down Passes	Borehole	BS(RT)	
GCSE_UP_PASS	Generalized Caliper	Selection for WL Log Up Passes	Borehole	CALI	
GRSE	Generalized Mud Re Computed Mud Resi	sistivity Selection, from Measured or stivity	Borehole	AMF	
GTSE	the second of a contraction of the second second	ature Selection, from Measured or	Borehole	CTEM	
HSCO	Hole Size Correction		HGNS-H	Yes	
MATR	Rock Matrix for Neut	ron Porosity Corrections	Borehole	SANDSTONE	
MDEN	Matrix Density for De	nsity Porosity	Borehole	2.65	g/cm3
MFST	Mud Filtrate Sample	Temperature	Borehole	68	degF
RMFS	Resistivity of Mud Fil	trate Sample	Borehole	0.9	ohm.m
SOCO	Standoff Correction	Option	HGNS-H	Yes	
TD	Total Measured Dep	th	Borehole	7532	ft
Depth Zone Par	rameters				
Parameter	Value	Start (ft)		Stop (ft)	
BS	12.25			3515	
BS	8.75	3515		7532	
All depth are actual.					
Tool Control	Daramotors				
One: Paramete	TS Description		Tool	Value	Unit
Parameter				1	
HMCA_BOARD_TYPE	HMCA Board Type		HGNS-H	WITH_HET	
HRGD_BOARD_TYPE	HRGD Board Type	Linete Oracel	HDRS-H	3600	ft/h
MAX_LOG_SPEED	Toolstring Maximum		WLSESSION	3000	
		Or	ne		
		5" Po	rosity		
D	Concernant of the second se	10			
Pass Summa	ary		tart Stop	DSC Mode	Depth Shift Include

Main To Repeat	Main To Repeat	
Repeat To Main	Repeat To Main	
Standard Resolution Formation Photoelectric	Cable Tension (TENS)	
Factor (PEFZ) HDRS-H	10000 lbf	0
0 10		

TIME_1900 - Time Marked every 60.00 (s)

Description: HGNS standard resolution porosities for Platform Express Format: Log (Porosity-5 RA) Index Scale: 5 in per 100 ft Index Unit: ft Index Type: Measured Depth Creation Date: 07-Sep-2016 07:04:49

Channel Processing Parameters

Parameter	Description		Tool	Value	Unit
			Borehole	Yes	
SSBAR.	Barite Mud Presence Flag	1-3	Borehole	Open	
BHS	Borehole Status (Open or Cased Hol	ie)		177	degF
ВНТ	Bottom Hole Temperature		Borehole		in
BS	Bit Size		WLSESSION	Depth Zoned	
BSAL	Borehole Salinity		Borehole	900	ppm
CALI_SHIFT	CALI Supplementary Offset		HDRS-H	0.1	in
CBLO	Casing Bottom (Logger)		WLSESSION	3498	ft
CDEN	Cement Density		HGNS-H	2	g/cm3
DFD	Drilling Fluid Density		Borehole	9.9	lbm/gal
DFT	Drilling Fluid Type		Borehole	Water	
DFT_WATER	Drilling Fluid Water Type		Borehole	WBM	
DHC	Density Hole Correction		HDRS-H	Bit Size	
FD	Fluid Density		Borehole	1	g/cm3
FSAL	Formation Salinity		Borehole	0	ppm
GCSE_DOWN_PASS	Generalized Caliper Selection for WL Log Down Passes		Borehole	BS(RT)	
GCSE_UP_PASS	Generalized Caliper Selection for WL Log Up Passes Generalized Mud Resistivity Selection, from Measured or Computed Mud Resistivity		Borehole	CALI	
GRSE			Borehole	AMF	
GTSE	Generalized Temperature Selection Computed Temperature	, from Measured or	Borehole	CTEM	
HSCO	Hole Size Correction Option		HGNS-H	Yes	
MATR	Rock Matrix for Neutron Porosity Co	prrections	Borehole	SANDSTONE	
MDEN	Matrix Density for Density Porosity		Borehole	2.65	g/cm3
MFST	Mud Filtrate Sample Temperature		Borehole	68	degF
RMFS	Resistivity of Mud Filtrate Sample		Borehole	0.9	ohm.m
SOCO	Standoff Correction Option		HGNS-H	Yes	
TD	Total Measured Depth		Borehole	7532	ft
Depth Zone Par					
Parameter	Value Sta	rt(ft)		Stop (ft)	
BS	12.25			3515	
BS	8.75 351	5		7532	
All depth are actual.					
	D				
Tool Control					
One: Paramete			lan i		11
Parameter	Description		Tool	Value	Unit
HMCA_BOARD_TYPE	HMCA Board Type		HGNS-H	1	
HRGD_BOARD_TYPE	HRGD Board Type		HDRS-H	WITH_HET	

MAX_LOG_SPEED	looistring Maxim	ium Logging S	peed	WLSESS		3600	tt/h	
Calibration F	Report							
-	Density and Rx	o Sonde	, 150 deaC)	Calibration	- Run One			
Primary Equipment :			,	and the second second				1
	HILT High-Resolution Co	ontrol Cartrid	ge, 150 degC	HRCC	-н		48.17	
	HILT Resistivity Gamma	-Rav Densitv	Device, 150 degC	HRGD	-н		4899	
Auxiliary Equipment	: HRDD Backscatter Dete	ctor		Backs	catter			
	HRDD Long Spacing De	tector			Spacing			
	HRDD Short Spacing De	etector		Short	Spacing		27786	
	Cesium 137 Gamma-Ra	y Logging So	ource	GSR-J	Kale -		5471	
	HILT High-Resolution C	ontrol Cartric	ge, 150 degC	HRCC	-н		48.17	
	HILT High-Resolution M			HRMS	-H		4876	
	and a state of the second s	contantical of						
Calibration Paramete		· Oaliber "	Cmall Dina	0.00				
	Small Ring Size (Calipe			8.00				
	Large Ring Size (Calipe	r Calibration	Large Ring)	12.00				
HDRS Caliper (Calibration - Cal	iper Acc	umulations					
Before (Measured):	21:07:42 05-Se							
Measurement		Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Small Ring		in	Before	8.00	6.00	7.80	10.00	
Large Ring		in	Before	12.00	9.00	12.20	15.00	
HDRS Density	Calibration - Inv	ersion F	Results					
Master (EEPROM):	11:40:40 24-Au							
Measurement		Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Rho Aluminum		g/cm3	Master	2.596	2,586	2.600	2.606	
Rho Magnesium		g/cm3	Master	1.686	1.676	1.685	1.696	
Pe Aluminum		-	Master	2.570	2.470	2.571	2.670	
Pe Magnesium			Master	2.650	2.550	2.618	2.750	
HDRS Density	Calibration - De	viation S	Summary					
Master (EEPROM):	11:40:40 24-Au							
Measurement		Unit	Phase	Nominal	Low Limit	Actual	High Limit	
BS Average Deviation		%	Master	0	-0.6000	0.2221	0.6000	
BS Max Deviation		%	Master	0	-1.6000	0.6566	1.6000	
SS Average Deviation		%	Master	0	-1.0000	0.2278	1,0000	
SS Max Deviation		%	Master	0	-2.5000	0.9144	2.5000	
LS Average Deviation		%	Master	0	-1.5000 -3.5000	0.6741	1.5000	╞═╪═╋╤╪
LS Max Deviation		%	Master	0	-3,3000	1.7270	0.0000	
HDRS Density	Calibration - Ba					01.00 15 05 0	2016	
Master (EEPROM):	11:40:40 24-Au		1	Before (Measured)		21:08:15 05-Sep		
Measurement		Unit	Phase	Nominal	Low Limit	Actual	High Limit	
BS Window Ratio			Master Before	1.0000 0.7337	0.6970	0.7337 0.7348	0.7704	
			Before-Master	0.7357	0.0370	0.0011		
BS Window Sum		1/s	Master	1		25241		
		113	Before	25241	23979	25499	26504	
			Before-Master			258		
SS Window Ratio			Master	1.0000	a second	0.4797		
			Before	0.4797	0.4557	0.4811	0.5037	
		-	Before-Master			0.0014		
SS Window Sum		1/s	Master	1	10504	11057 11035	11610	
			Before Before-Master	11057	10504	-22		
1 C Mindow Datio		1	Master	1.0000		0.3012		
LS Window Ratio			Before	0.3012	0.2861	0.3073	0.3162	
				225.2777.24-27		0.0061		

_S Window Sum	1/s	Master Before	1 1233	1171	1233 1232	1294	
		Before-Master			-1		
HDRS Density C	alibration - Photo-m	ultiplier High V	/oltages				
Master (EEPROM):	11:40:40 24-Aug-2016		Before (Measured):	21:08:15 05-Sep	-2016	
Measurement	Uni	Phase	Nominal	Low Limit	Actual	High Limit	
BS PM High Voltage	V	Master		1000	1452	2400	
		Before		1000	1449	2400	
		Before-Master		-100	-3	100	
SS PM High Voltage	V	Master		1000	1410	2400	
		Before		1000	1411	2400	
		Before-Master		-100	1	100	
LS PM High Voltage	V	Master		1000	1480	2400	
		Before		1000	1473	2400	
		Before-Master	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	-100	-7	100	
HDRS Density C	alibration - Crystal (Quality Resolu	tions				
Master (EEPROM):	11:40:40 24-Aug-2016		Before (Measured	l):	21:08:15 05-Sep	-2016	
Measurement	Uni	Phase	Nominal	Low Limit	Actual	High Limit	
BS Crystal Resolution	%	Master		5.00	11.74	25.00	
an and the state of the state o		Before		5.00	11.74	25.00	
		Before-Master		-1.00	0.00	1.00	
SS Crystal Resolution	%	Master		5.00	10.26	20.00	
		Before		5.00	10.24	20.00	
		Before-Master		-1.00	-0.02	1.00	
LS Crystal Resolution	%	Master		5.00	8.09	20.00	
		Before		5.00	7.85	20.00	
		Before-Master		-1.00	-0.24	1.00	
HDRS MCFL Ca	libration - MCFL Act	cumulations					
Before (Measured):	21:10:47 05-Sep-2016						
Measurement	Uni	t Phase	Nominal	Low Limit	Actual	High Limit	
Main Resistivity	ohm.	m Before	3875	3565	3886	4185	
Deep Resistivity	ohm.		3830	3524	3830	4136	
Shallow Resistivity	ohm.		3830	3524	3839	4136	
Chantow Prostourity							
HGNS-H (HILT	Gamma-Ray and Ne	utron Sonde,	150 degC)	Calibration -	Run One		
Primary Equipment :	a new file and					1.14	
1	HLT Gamma-Ray and Neutron	Sonde, 150 degC	HG	NS-H		4817	
Auxiliary Equipment :							
	HGNS Accelerometer, 150 deg0		HA	CCZ-H		6991	
			NS	R_F		5068	
	AmBe Neutron Logging Source		00			0000	
Calibration Paramete	r:						
	Water Temperature						
	Housing Size						
			165				
	JIG-BKG (Jig minus background						

HGNS Accelerometer Calibration - Accelerometer Accumulations

Accelerometer Coefficients - 1

Before (Measured): 05:14:1	3 07-Sep-2016						
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
AZ Vertical Measurement	ft/s2	Before	32.2	31.5	32.0	32.8	
HGNS Accelerometer EEF	PROM - Acce	lerometer l	EEPROM R	ead			
Master (EEPROM): 00:00:0	0 15-May-2007						
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Accelerometer Manufacturer		Master			QAT_160		
Accelerometer Reference Temperature	degF	Master		30.2	77.0	122.0	

Master

50.180

Г

Accelerometer Coefficients - 2	Master			-0.002	
Accelerometer Coefficients - 3	Master		· · · · · · · · · · · · · · · · · · ·	0.000	
Accelerometer Coefficients - 4	Master			2.754	
Accelerometer Coefficients - 5	Master		(and	0.000	
Accelerometer Coefficients - 6	Master		÷.	0.000	
Accelerometer Coefficients - 7	Master	1		0.000	
Accelerometer Coefficients - 8	Master			300.500	
Accelerometer Coefficients - 9	Master			0.994	

HGNS Neutron Calibration - HGNS Neutron Accumulations

gAPI

Before

Before

Master (EEPROM): 15:25:00 19	9-Jul-2016	E	Before (Measured	i):	21:06:20 05-Sep	-2016	
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
Near Zero Measurement	1/s	Master	0	5.0	27.6	40.0	
		Before	0	5.0	28.2	40.0	
		Before-Master		-4.1	0.6	4.1	
Far Zero Measurement	1/s	Master	0	5.0	29.5	40.0	
		Before	0	5.0	29.7	40.0	
		Before-Master	<u> </u>	-4.4	0.2	4.4	
Near Plus Measurement	1/s	Master	6031.0	4700.0	5290.0	6900.0	
		Before		-		_	
		Before-Master					
Far Plus Measurement	1/s	Master	2793.0	1900.0	2194.0	2900.0	
		Before					
		Before-Master					
Near Corrected Plus Measurement	1/s	Master		4700.0	5156.0	6900.0	
		Before				- C	
		Before-Master				·	
Far Corrected Plus Measurement	1/s	Master		1900.0	2097.0	2900.0	
		Before		-	() () () () () () () () () () () () () (-	
		Before-Master				-	
HGNS Gamma-Ray Calibrat	tion - Gam	ma-Ray Acc	umulations				
Before (Measured): 21:11:47 0	5-Sep-2016						
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
RGR Zero Measurement	gAPI	Before	30.0	0	78.9	120.0	

185.4

0.89

157.1

0.80

165.1

1.00

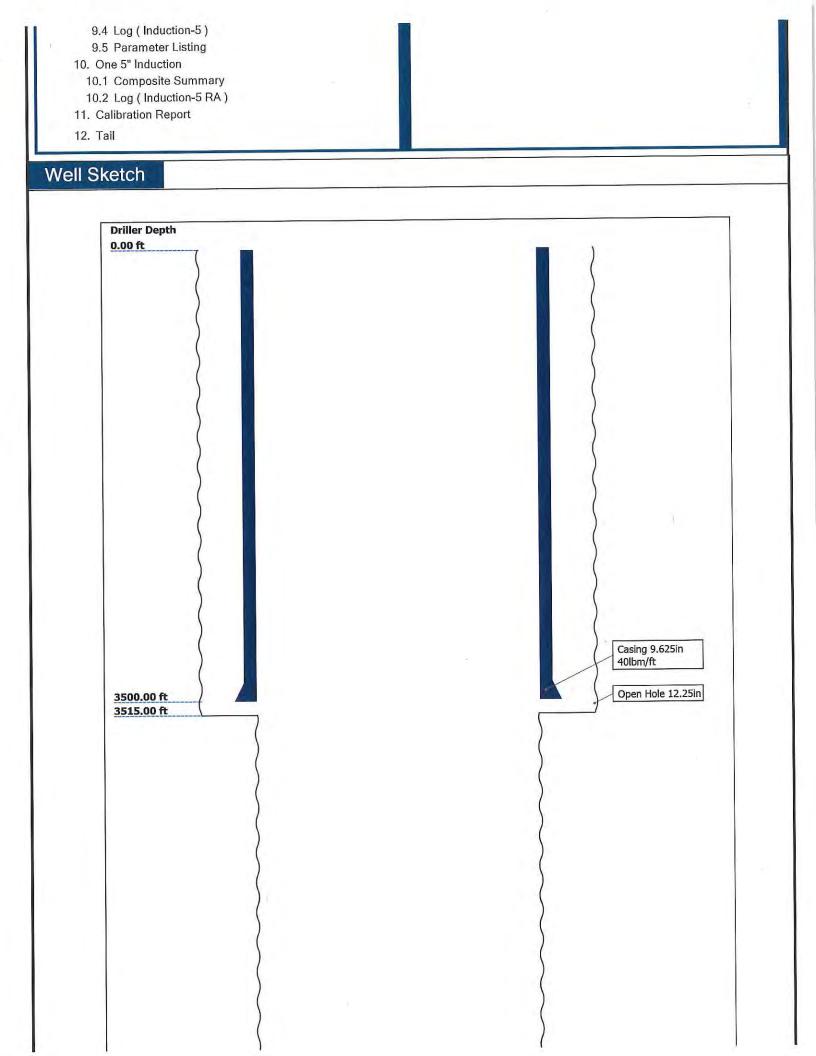
206.3

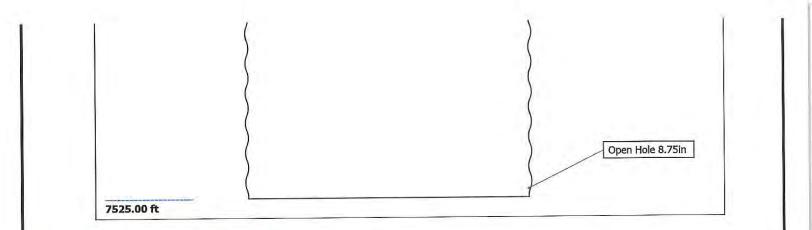
1.05

RGR Plus Measurement

GR Calibration Gain

Company:	Western Refining, Southwest, Inc.	Schlumberger
Well:	WWD #2	
Field:	Wildcat	
County:	San Juan	
State:	New Mexico	
Platform	Express	
Compens	sated Neutron	
Litho-Der	nsity	

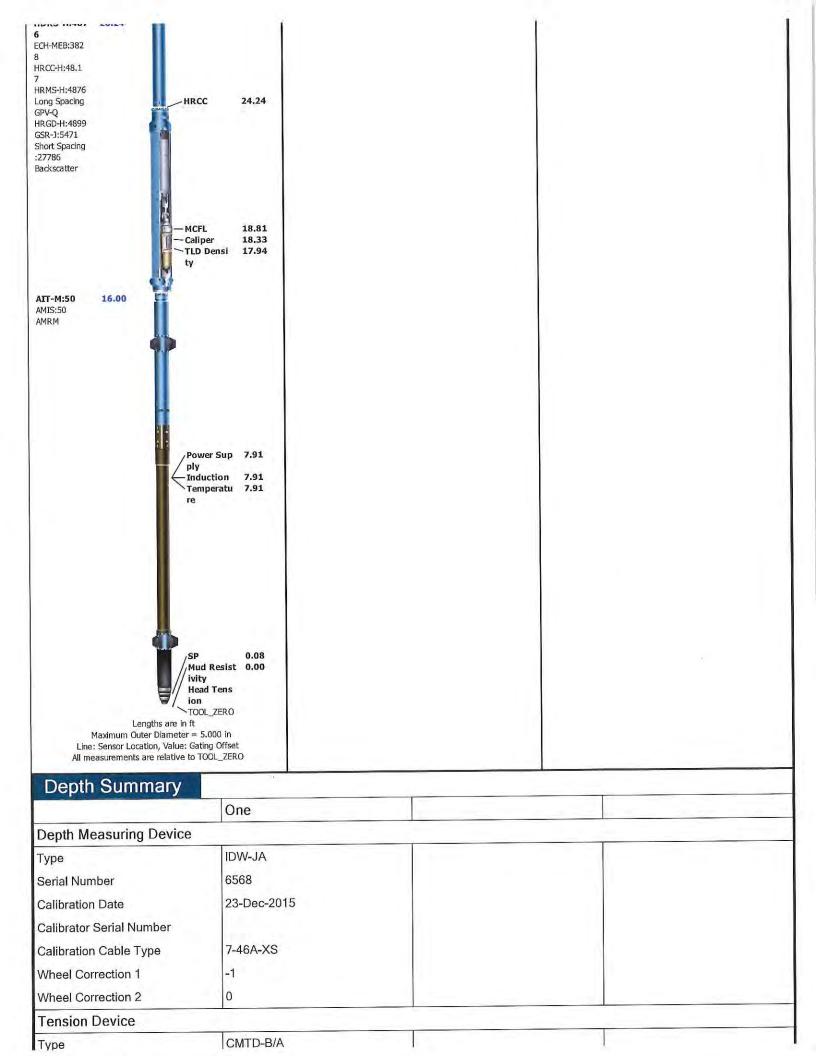

		ш	Larry Candelaria	L		Witnessed By	5
			Avery Becker	~		Recorded By	Re
	ö	Ft Morgan, CO	9115	Location: 9	5	Unit Number	ç
		05:00:00	07-Sep-2016	Time 0		Logger on Bottom	5
		20:25:00	06-Sep-2016	Time	Ц	Circulation Stopped	<u>Ω</u>
			177 degF		Iperat	Max Recorded Temperatures	N
	177	177 0.37 @		RMF @ BHT 0	RN	RM @ BHT	R
		Calculated	Pressed	RMC P	RN	Source RMF	S
		@ 68 degF	1.4 ohm.m	1	du	RMC @ Meas Temp	R
			0.9 ohm.m	0	du	RMF @ Meas Temp	R
		Ĩ	1.13 ohm.m	1	q	RM @ Meas Temp	RN
			Active Tank	A	ple	0	ML
		8.6	9 cm3		PH	Fluid Loss	JD
		55 s	9.9 lbm/gal	Viscosity 9	Vis	Density	
			WBM	V		Type Fluid In Hole	Ty
			8.75 in	8		Bit Size	Bit
			3498 ft	4	Jer	Casing Schlumberger	Ca
		2 3500.00 ft	9.625 in @		@ De	Casing Driller Size @ Depth	Ca
			3498.00 ft	φ	24	Top Log Interval	7
			7532.00 ft	7.		Bottom Log Interval	Во
			7532.00 ft	7.	ь	Schlumberger Depth	Sc
			7525.00 ft	7.		Depth Driller	De
			One	0		Run Number	Ru
			05-Sep-2016	0		_ogging Date	5
11W	29N	27	00	30-045-35747-0000	00	Fie Loc We	Col
	Township:	Section:		API Serial No.	mpe	ld: catio	unty
		Kelly Bushing	From:	Drilling Measured From:	-	on:	1:
ft above Perm.Datum	15.00	Kelly Bushing	om:	Log Measured From:	cati		
	Elev.:	Ground Level	n:	Permanent Datum:		Se W	Sa
D.F. 5549.00 ft	-		5/-107.97035	Lat/Long: 36.6986/-107.97035		ND	n Ju
			(111' FEL	SHL: 2028' FNL X 111' FEL		7, T #2	Jan
K.B.	Elev.:		W	Sec 27, T29N, R11W			
			relation	with Linear Correlation		l, R11	
				Array Induction			
			S	Platform Expres	ס		
lexico	New Mexico	State:		San Juan		County:	0
				Wildcat		Field:	
				WWD #2		Well:	5
	Inc.	outhwest, I	fining, S	Western Refining, Southwest, Inc.		Company:	Q
indina.ñai.	U.						
himhannan	2						

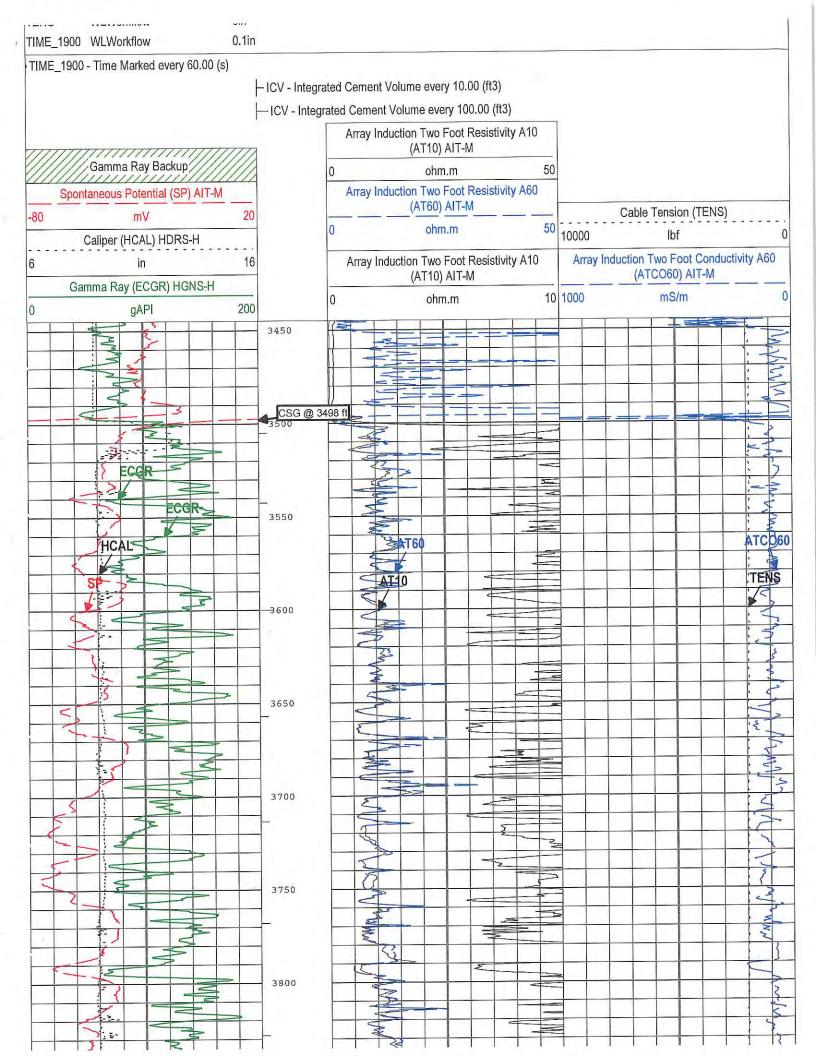

Disclaimer

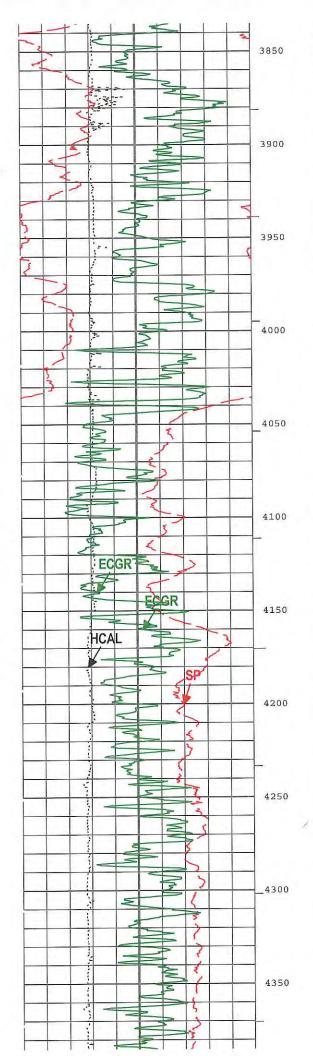
THE USE OF AND RELIANCE UPON THIS RECORDED-DATA BY THE HEREIN NAMED COMPANY (AND ANY OF ITS AFFILIATES, PARTNERS, REPRESENTATIVES, AGENTS, CONSULTANTS AND EMPLOYEES) IS SUBJECT TO THE TERMS AND CONDITIONS AGREED UPON BETWEEN SCHLUMBERGER AND THE COMPANY, INCLUDING: (a) RESTRICTIONS ON USE OF THE RECORDED-DATA; (b) DISCLAIMERS AND WAIVERS OF WARRANTIES AND REPRESENTATIONS REGARDING COMPANY'S USE AND RELIANCE UPON THE RECORDED-DATA; AND (c) CUSTOMER'S FULL AND SOLE RESPONSIBILITY FOR ANY INFERENCE DRAWN OR DECISION MADE IN CONNECTION WITH THE USE OF THIS RECORDED-DATA.

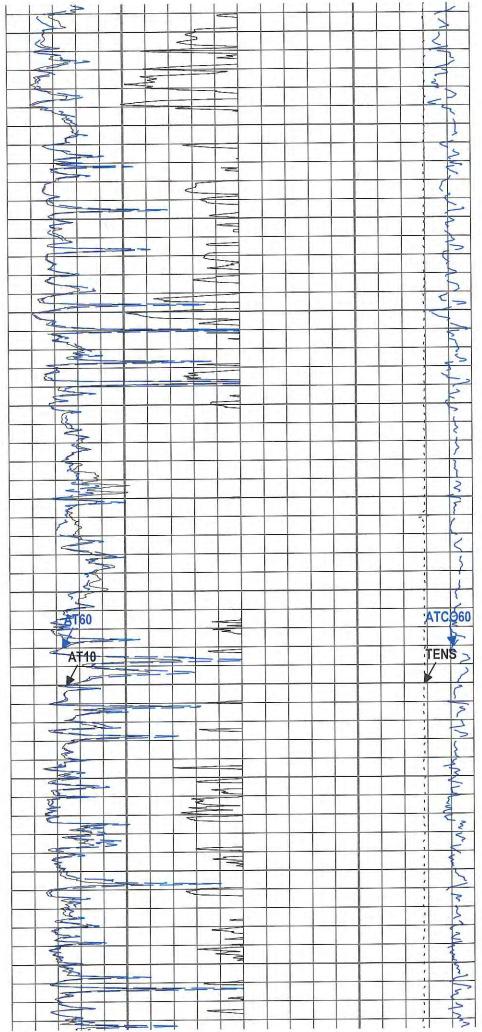
Contents

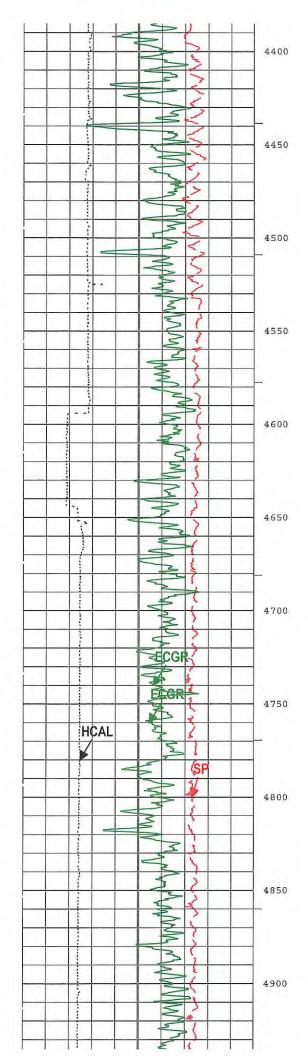
- 1. Header
- 2. Disclaimer
- 3. Contents
- 4. Well Sketch
- 5. Borehole Size/Casing/Tubing Record
- 6. Remarks and Equipment Summary
- 7. Depth Summary
- 8. One 2" Induction
 - 8.1 Integration Summary
 - 8.2 Software Version
 - 8.3 Composite Summary
 - 8.4 Log (Induction-2)
 - 8.5 Parameter Listing
- 9. One 5" Induction
 - 9.1 Integration Summary
 - 9.2 Software Version
 - 9.3 Composite Summary

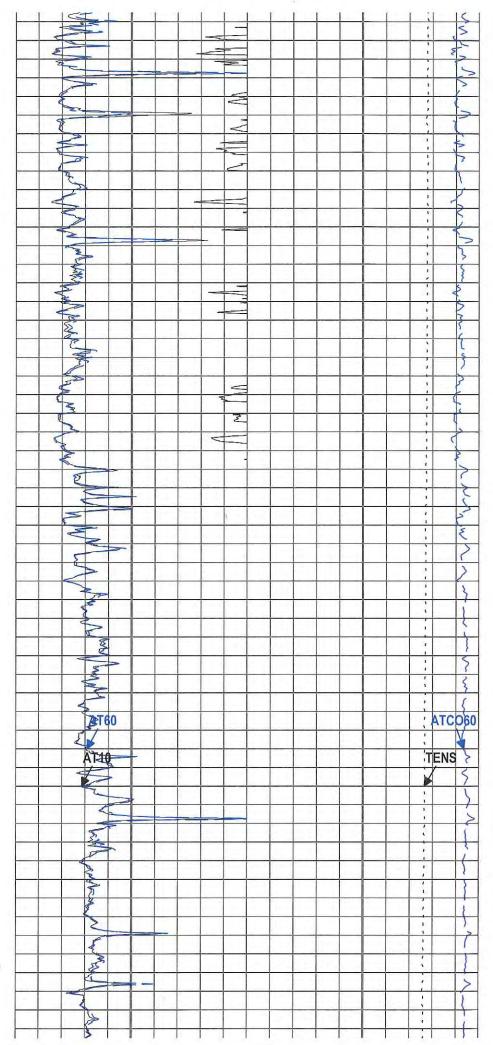


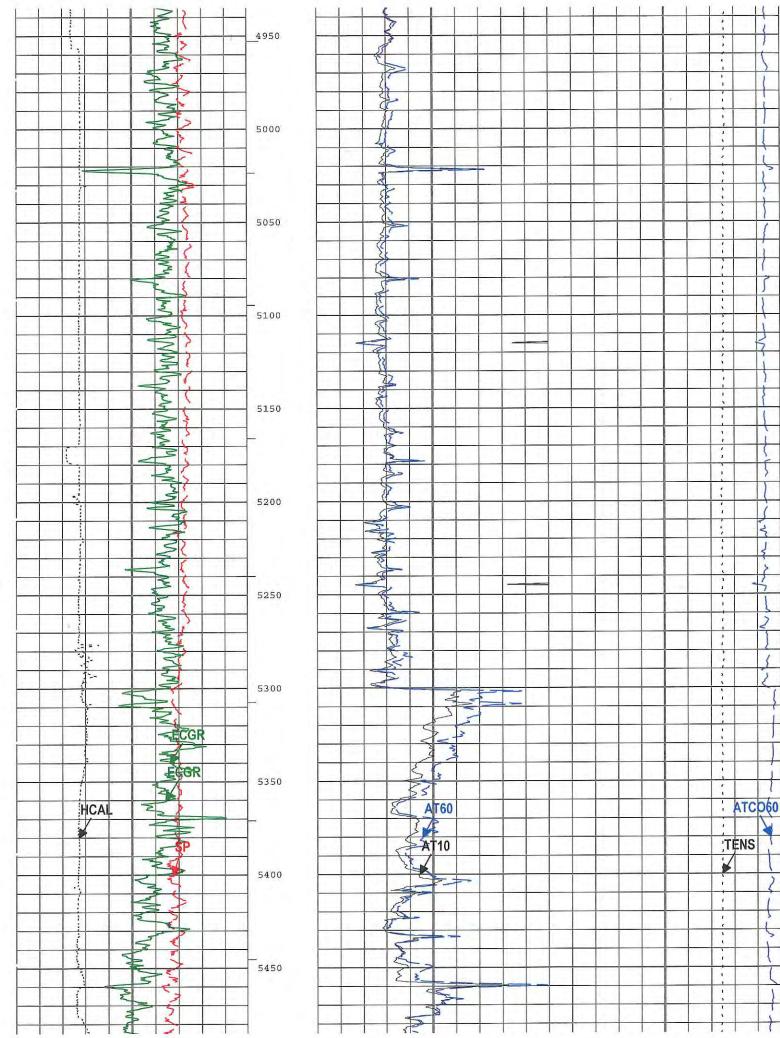

Borehole Size/Casing/Tubing Record

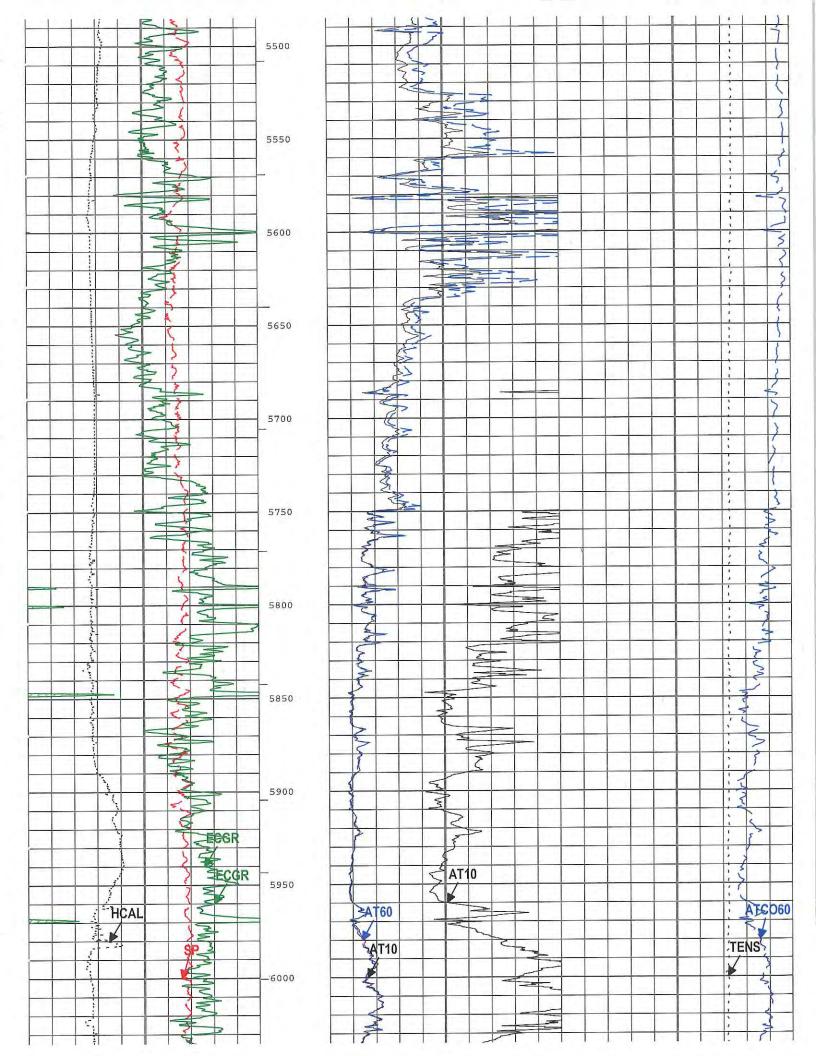

Bit				
Bit Size (in)	12.25	8.75		
Top Driller (ft)	0	3515		
Top Logger (ft)	0	3515		
Bottom Driller (ft)	3515	7525		
Bottom Logger (ft)	3515	7532		
Casing				
Size (in)	9.625			
Weight (Ibm/ft)	40			
Inner Diameter (in)	8.835		1	
Grade	N/A			
Top Driller (ft)	0			
Top Logger (ft)	0			
Bottom Driller (ft)	3500			
Bottom Logger (ft)	3498			

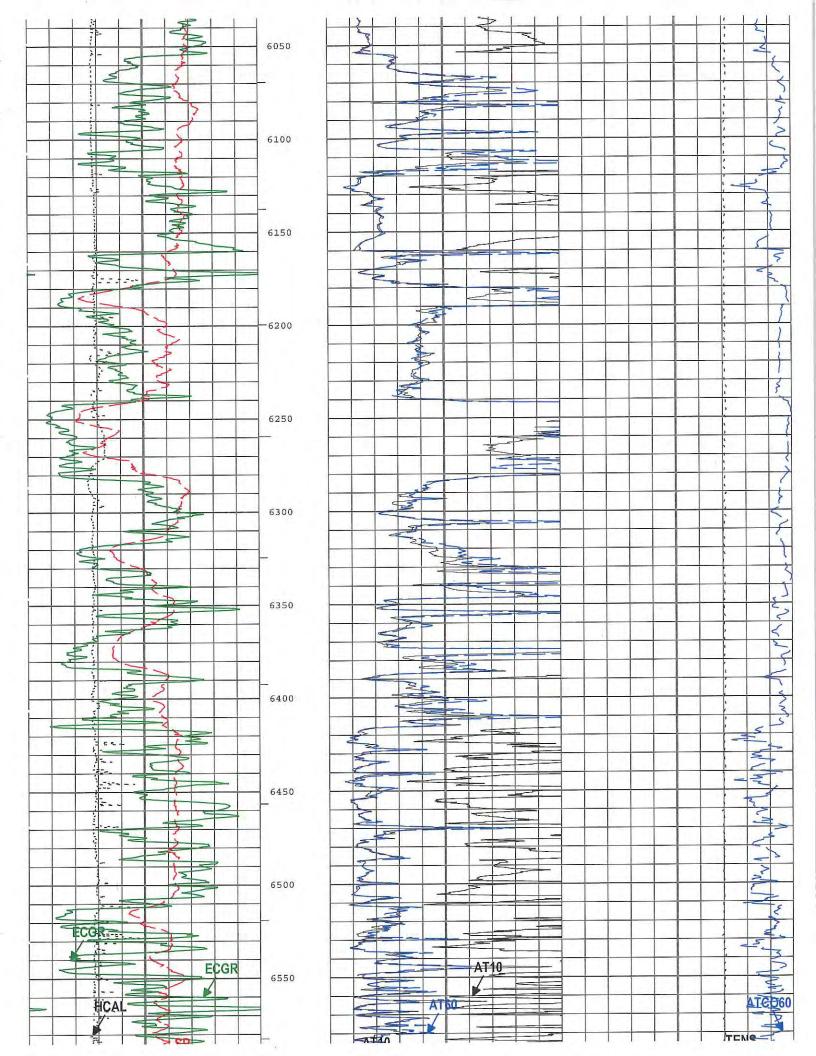

Remarks and Equipment Summary

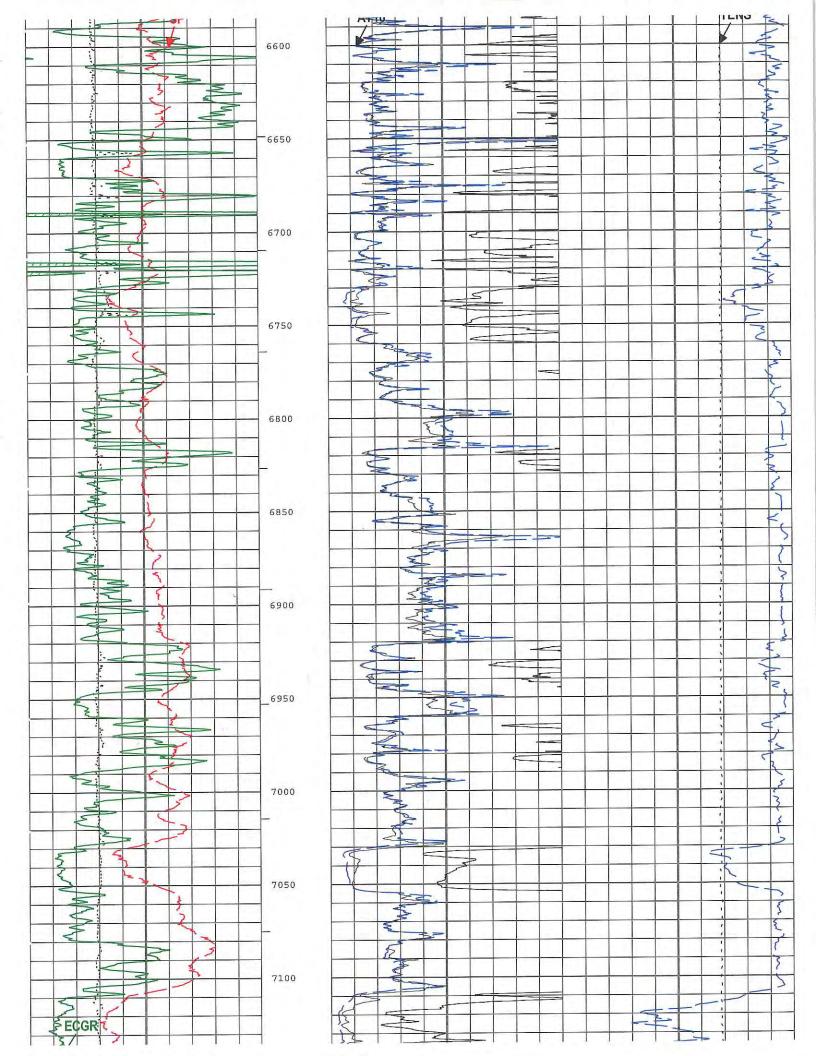


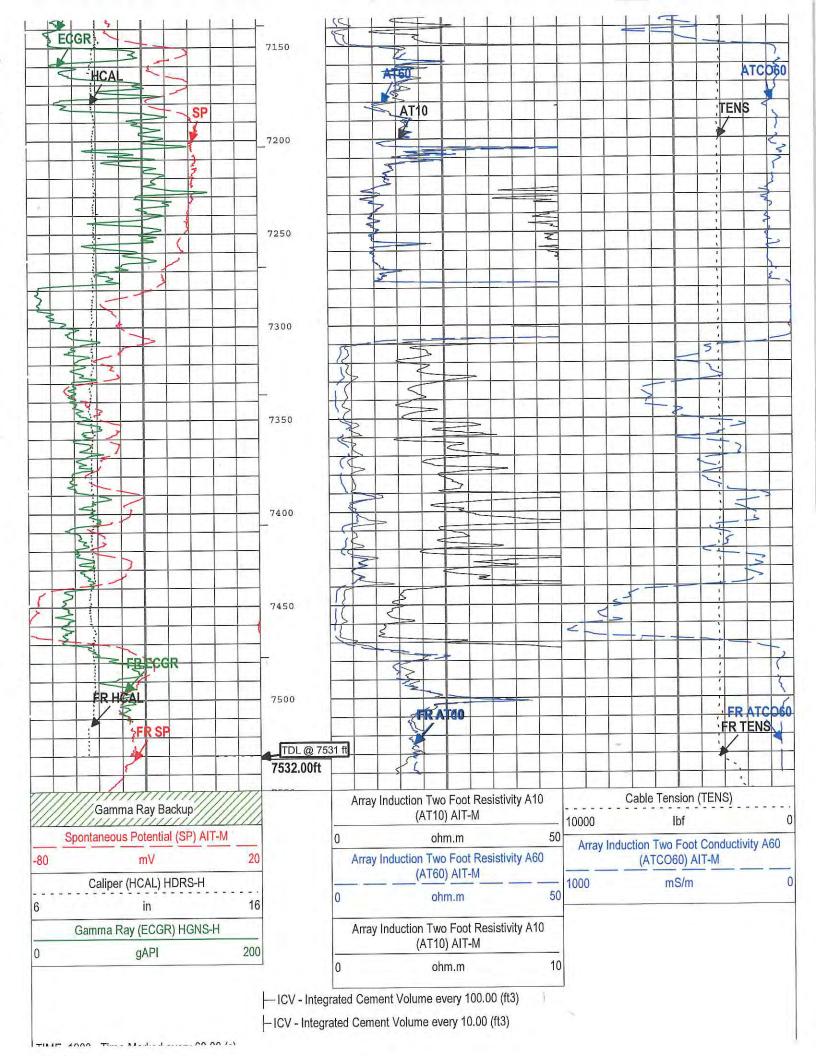

	É.		- T		1		
Serial Number	147						
Calibration Date	18-Aug-2	016					
Calibrator Serial Number	78805A						
Number of Calibration Point	ts 10						
Calibration Root Mean Squa Error	are 7						
Calibration Peak Error	10						
_ogging Cable							
Гуре	7-46A-XS	5					
Serial Number	U715043						
_ength	24000.00	ft					
Conveyance Type	Wireline						
Rig Type	Land						
One:Depth Control Para			Depth Cor	ntrol Remai	rks		
Log Sequence		In the Well			ntrol procedures	followed	
Rig Up Length At Surface	1 100 209				oth device, z-ch		condary
				- F			
Rig Up Length At Bottom							
Rig Up Length Correction							
Stretch Correction							
Tool Zero Check At Surface	9		One				
Integration Sum Output Channel(s)	mary Output Descripti	on Input	Parameter	0	Output Value	Unit	-
	ntegrated Cement	Volume GCSE	UP_PASS, FCD	6	623.08 ft3		
ICV							
Software Versio				Version			
Software Versio				Version 6.2.68624.	3100		
Software Versio Acquisition System Maxwell 2016 SP2					3100		
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary	n	Top Bottom	Start		3100 DSC Mode	Depth Shift	Include Parallel Data
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object	n	Top Bottom 7548.83		6.2.68624.		Depth Shift 0.00 ft	Include Parallel Data No
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up	ive Direction		ft 07-Sep-2016	6.2.68624.	DSC Mode	0.00 ft	Parallel Data
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t	ive Direction		ft 07-Sep-2016 5:52:06 AM	6.2.68624.	DSC Mode	0.00 ft st, Inc. W	Parallel Data No 'ell:WWD #2
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log	ive Direction Up oolstring zero	7548.83	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Data No ell:WWD #2 q[4]:Up:S012
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log Description: AIT Basic Log Two	ive Direction Up oolstring zero	7548.83	ft 07-Sep-2016 5:52:06 AM	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log Description: AIT Basic Log Two 7-Sep-2016 07:04:12	ive Direction Up oolstring zero	7548.83 duction-2) Index Scal	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No ell:WWD #2 q[4]:Up:S012
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log Description: AIT Basic Log Two 7-Sep-2016 07:04:12 Channel Source	ive Direction Up oolstring zero	7548.83 duction-2) Index Scal	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No ell:WWD #2 q[4]:Up:S012
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to the Log Description: AIT Basic Log Two 7-Sep-2016 07:04:12 Channel Source CT10 AIT-M:AMIS:AMI	ive Direction Up oolstring zero	7548.83 duction-2) Index Scal	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No ell:WWD #2 q[4]:Up:S012
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log Description: AIT Basic Log Two 7-Sep-2016 07:04:12 Channel Source T10 AIT-M:AMIS:AMI T60 AIT-M:AMIS:AMI	n ive Direction Up oolstring zero Format: Log (Ind Sampli S 3in S 3in	7548.83 duction-2) Index Scal	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No ell:WWD #2
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log Description: AIT Basic Log Two 7-Sep-2016 07:04:12 Channel Source XT10 AIT-M:AMIS:AMI XT60 AIT-M:AMIS:AMI XTCO60 AIT-M:AMIS:AMI	ive Direction Up oolstring zero	7548.83 duction-2) Index Scal	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No ell:WWD #2
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log[4]:Up Description: AIT Basic Log Two Oright Source Oright Source AIT-M:AMIS:AMI AT10 AIT-M:AMIS:AMI ATCO60 AIT-M:AMIS:AMI CALI HDRS-H:HRCC-H	n ive Direction Up oolstring zero Format: Log (Ind Sampli S 3in S 3in S 3in H:HRCC-H 1in	7548.83 duction-2) Index Scal	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No ell:WWD #2 q[4]:Up:S012
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log Description: AIT Basic Log Two Or-Sep-2016 07:04:12 Channel Source AT10 AIT-M:AMIS:AMI AT60 AIT-M:AMIS:AMI ATCO60 AIT-M:AMIS:AMI CALI HDRS-H:HRCC-H	n ive Direction Up oolstring zero Format: Log (Ind Sampli S 3in S 3in S 3in H:HRCC-H 1in	duction-2) Index Scal	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No ell:WWD #2 q[4]:Up:S012
Software Versio Acquisition System Maxwell 2016 SP2 Pass Summary Run Name Pass Object One Log[4]:Up All depths are referenced to t Log Description: AIT Basic Log Two O7-Sep-2016 07:04:12 Channel Source AT10 AIT-M:AMIS:AMI AT60 AIT-M:AMIS:AMI ATCO60 AIT-M:AMIS:AMI CALI HDRS-H:HRCC-F GR HGNS-H:HGNS-I	Direction Up Up oolstring zero Format: Log (Ind Sampli S 3in S 3in S 3in H:HRCC-H 1in H:HGNS-H 6in 6in - F	duction-2) Index Scal	ft 07-Sep-2016 5:52:06 AM Company:\	6.2.68624.	ON ON	0.00 ft st, Inc. W One: Lo	Parallel Dat No ell:WWD #2 q[4]:Up:S012

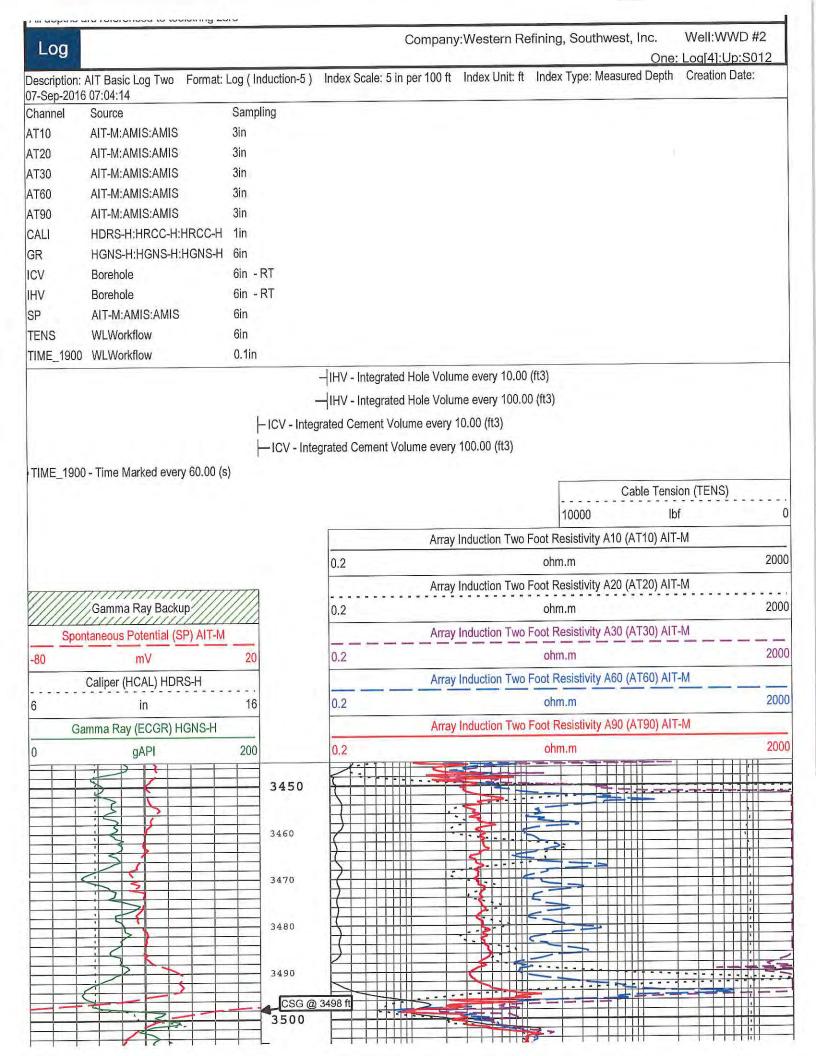


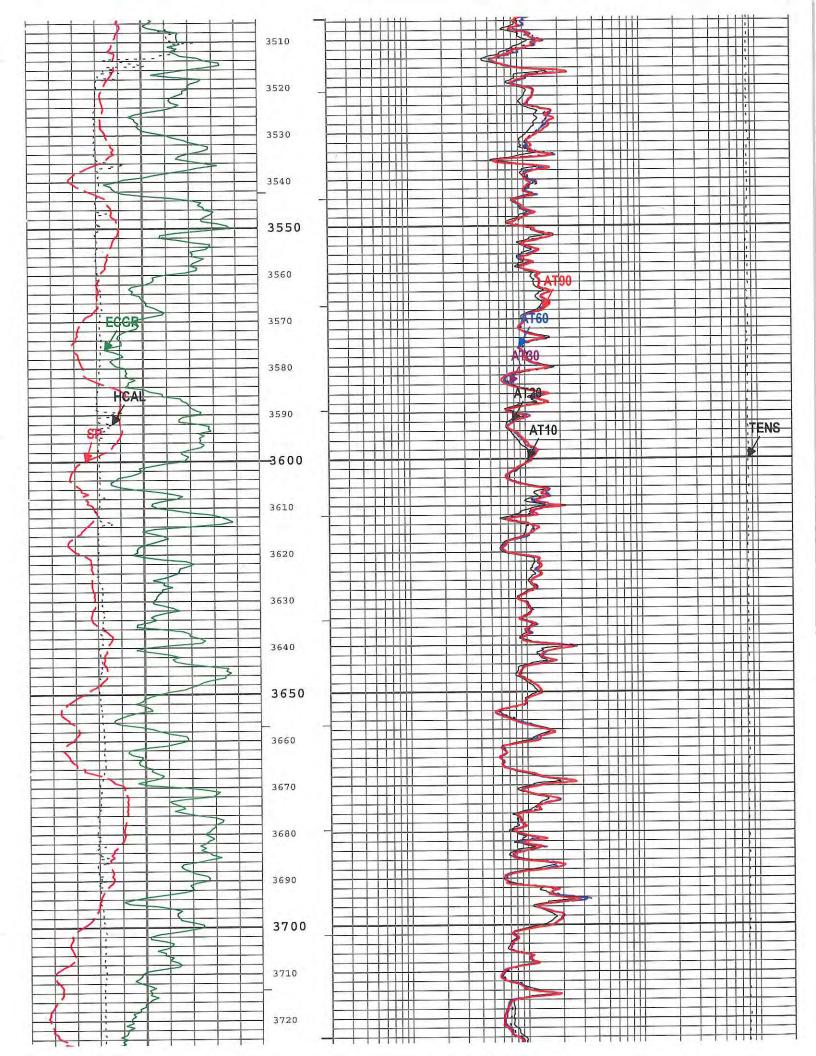


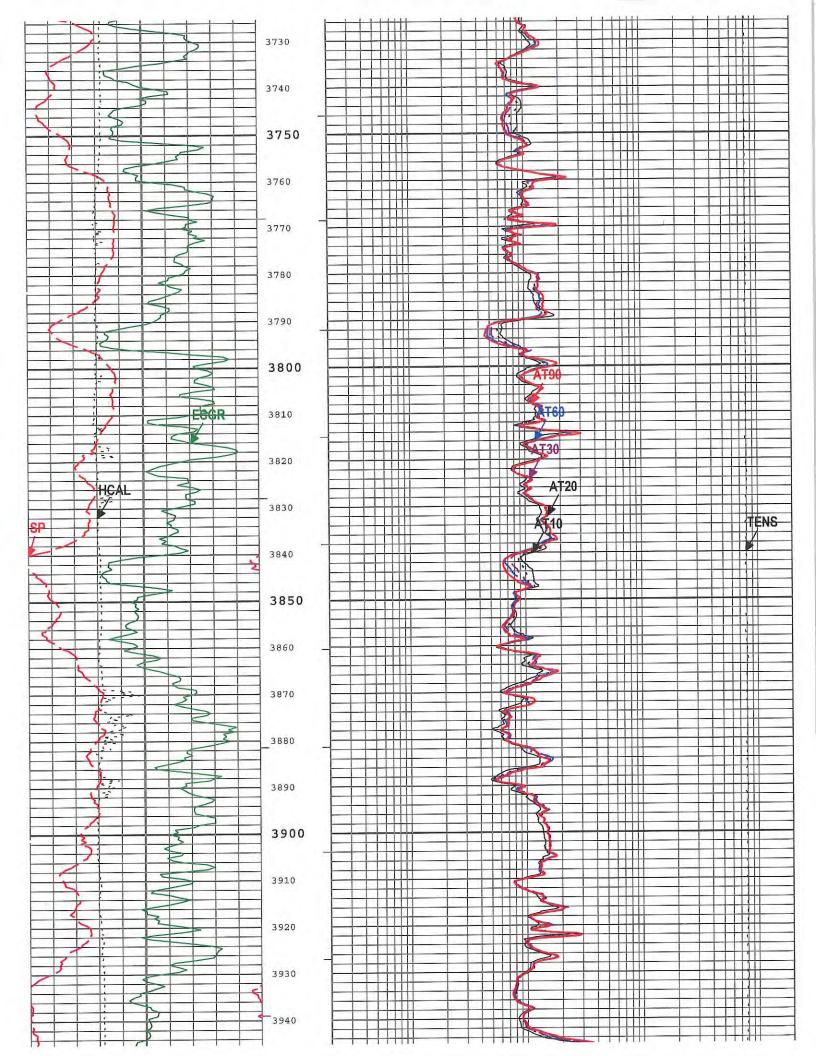


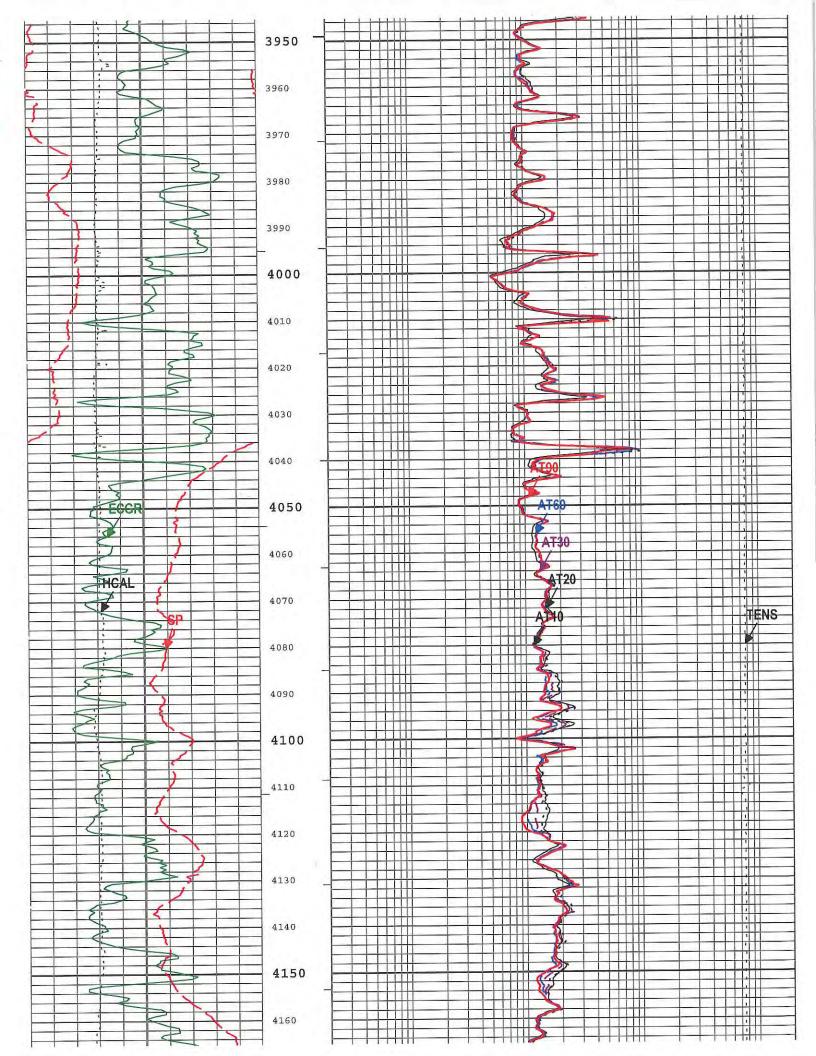


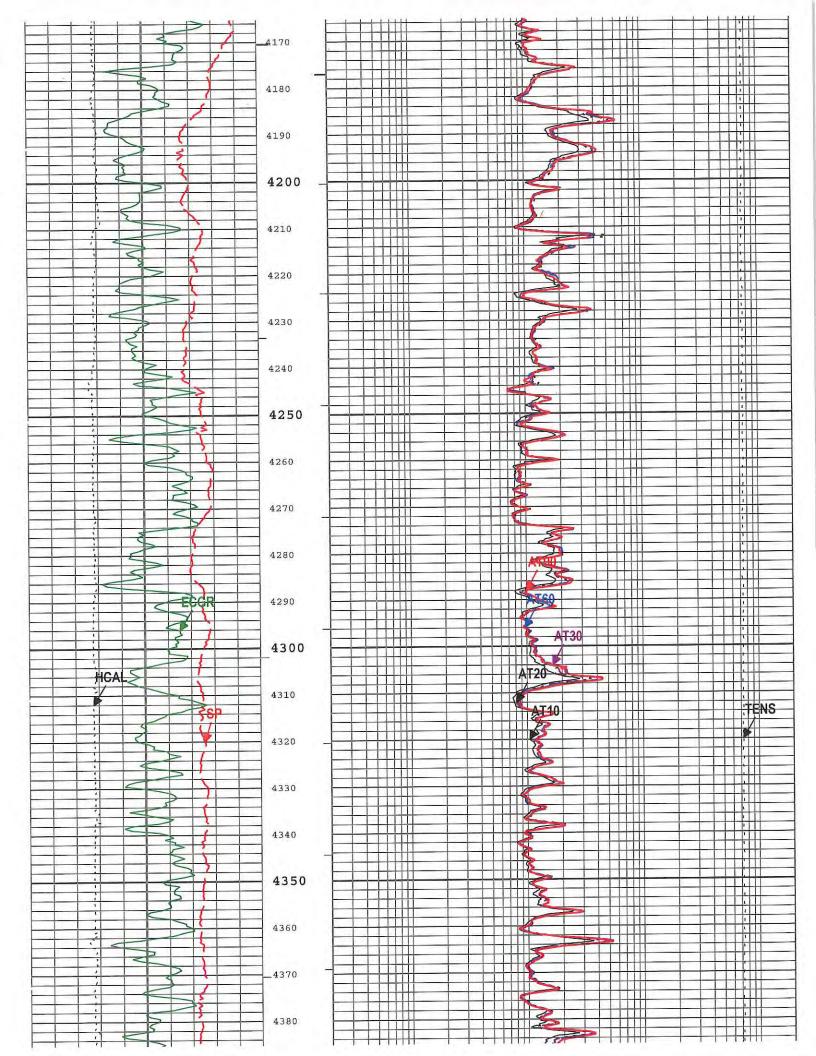


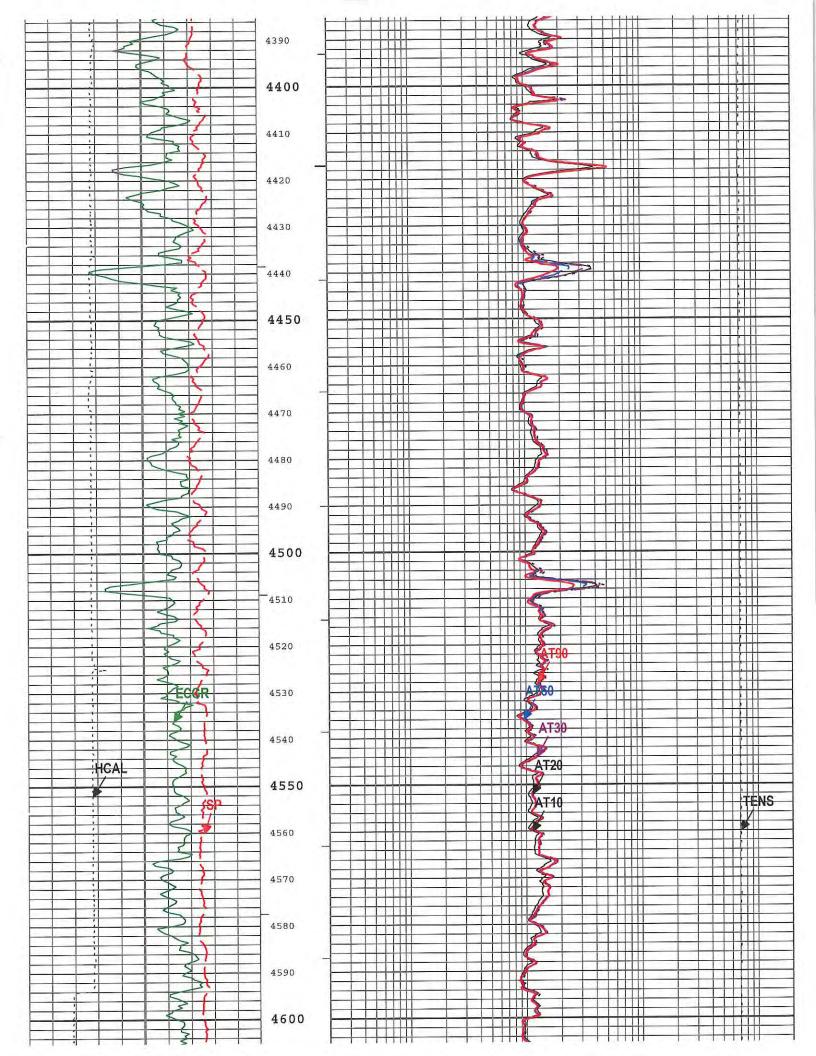

Description: AIT Basic Log Two Format: Log (Induction-2) Index Scale: 2 in per 100 ft Index Unit: ft Index Type: Measured Depth Creation Date: 07-Sep-2016 07:04:12

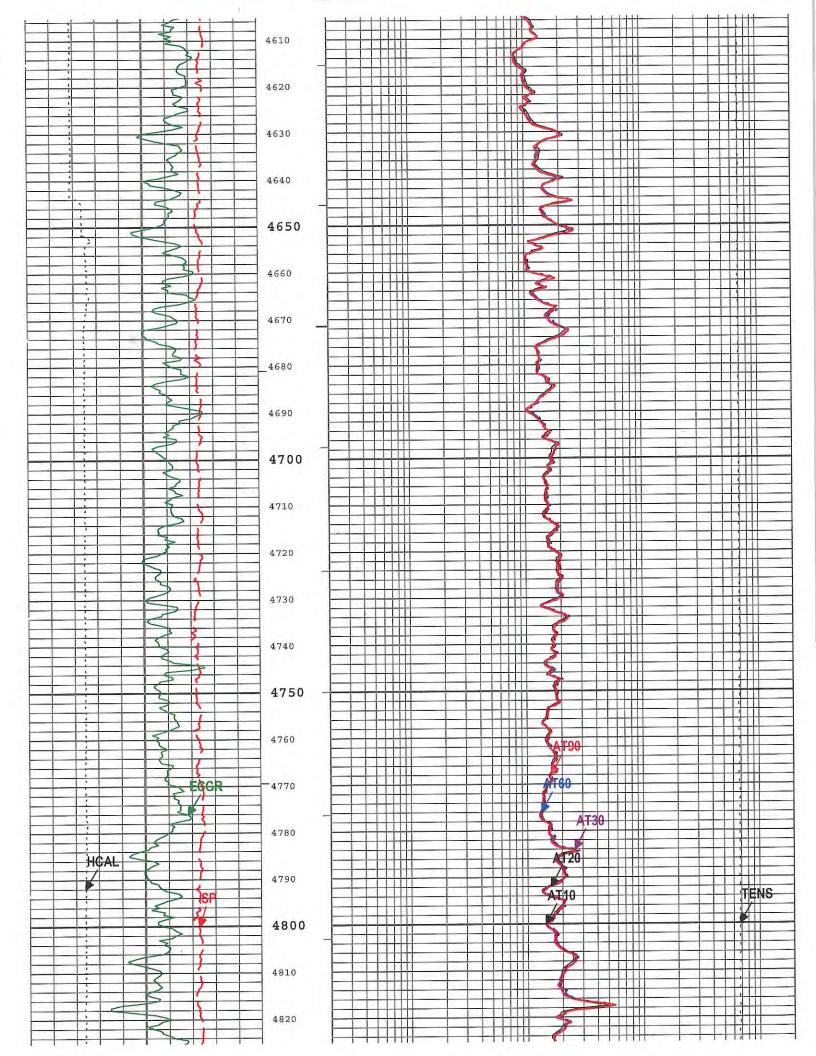

Channel Processing Parameters

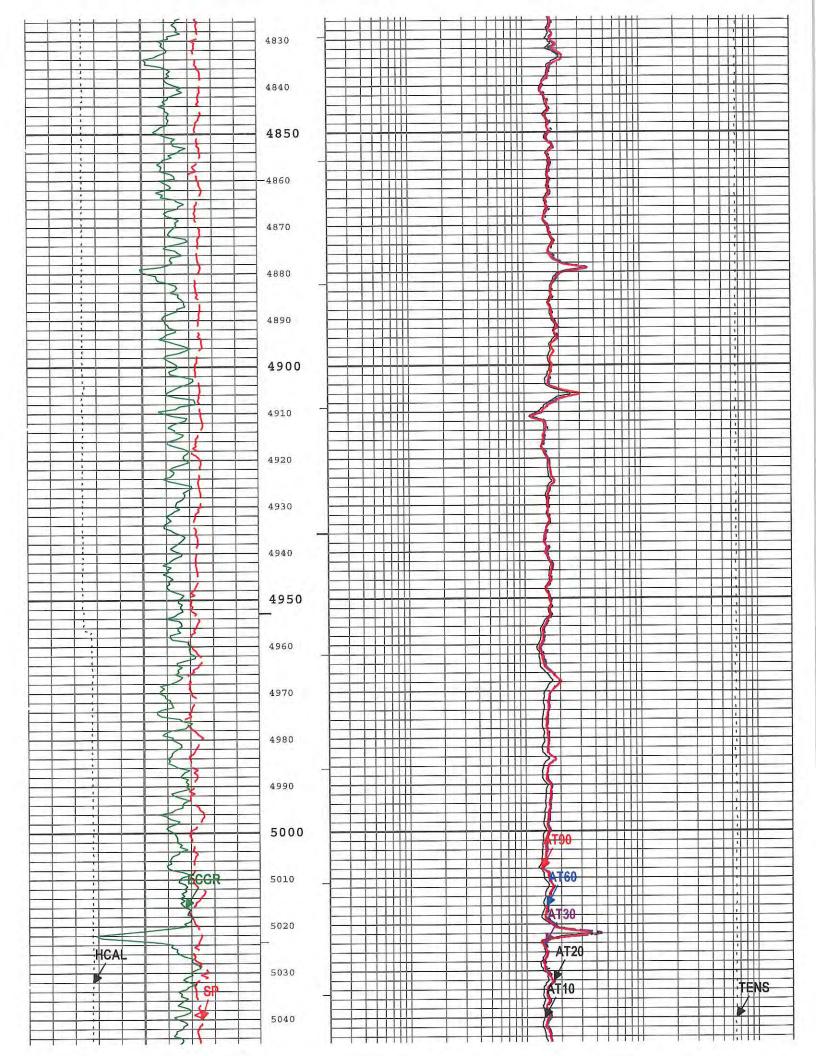

One:	Param	eters
------	-------	-------

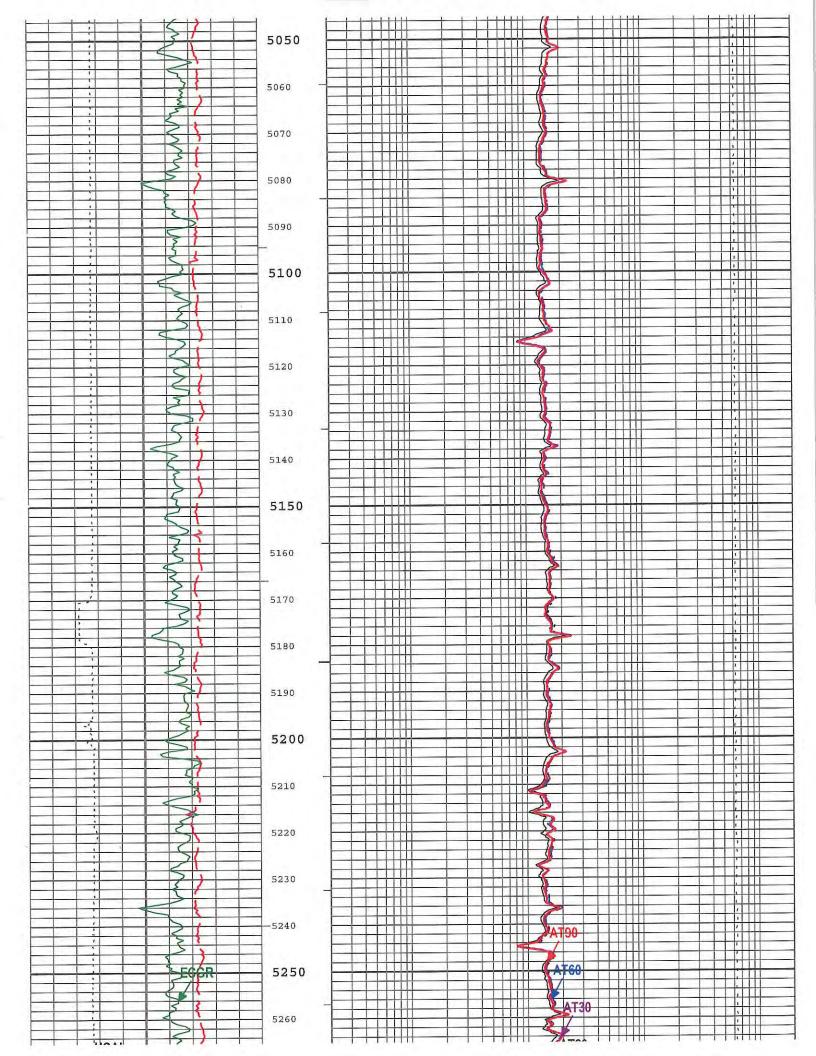

Parameter	Description		Tool		Value	Unit	
ABHM	Array Induction Borehole C	Correction Mode	AIT-M		Compute Standoff		
ASTA	Array Induction Tool Stand	loff	AIT-M		0.6	in	
SSBAR	Barite Mud Presence Flag		Borehole		Yes		
BHS	Borehole Status (Open or	Cased Hole)	Borehole		Open		
BS	Bit Size		WLSESSION		Depth Zoned	in	
CALI_SHIFT	CALI Supplementary Offse	CALI Supplementary Offset			0.1	in	
CBLO	Casing Bottom (Logger)	Casing Bottom (Logger)			3498	ft	
CDEN	Cement Density	Cement Density			2	g/cm3	
CSODDRL	Casing Outer Diameter - Z	Casing Outer Diameter - Zoned along driller depths			9.625	in	
DFD	Drilling Fluid Density	Drilling Fluid Density			9.9	lbm/gal	
DFT	Drilling Fluid Type	1	Borehole		Water		
FCD	Future Casing (Outer) Dia	meter	WLSESSION		7	in	
GCSE_DOWN_PASS	Generalized Caliper Selec	Generalized Caliper Selection for WL Log Down Passes			BS(RT)		
GCSE_UP_PASS	Generalized Caliper Selec	ction for WL Log Up Passes	Borehole		CALI		
GRSE	Generalized Mud Resistivity	ity Selection, from Measured or	Borehole		AMF		
SOCO	Standoff Correction Option		HGNS-H		Yes		20
SPDR	SP Drift Per Foot		AIT-M		0	mV/ft	
				-			il n
Depth Zone Pa	arameters				1		
	Value	Value Start (ft)		Stop (ft)			
Parameter	Value						
	12.25				3515	1	
Parameter BS BS		3515			3515 7532	1	
BS	12.25					-	
BS BS All depth are actual.	12.25 8.75						
BS BS All depth are actual. Tool Contro	12.25 8.75					1	
BS BS All depth are actual.	12.25 8.75 I Parameters ers				7532	Unit	
BS BS All depth are actual. Tool Contro	12.25 8.75		Tool		7532 Value	Unit	
BS All depth are actual. Tool Contro One: Paramet Parameter	12.25 8.75 I Parameters ers	3515	Tool WLSESSION	1	7532	Unit ft/h	
BS All depth are actual. Tool Contro One: Paramet	12.25 8.75 I Parameters ers Description	3515 jing Speed		4	7532 Value	6. A.M.	
BS All depth are actual. Tool Contro One: Paramet Parameter	12.25 8.75 I Parameters ers Description	3515 jing Speed		4	7532 Value	6. A.M.	
BS All depth are actual. Tool Contro One: Paramet Parameter	12.25 8.75 I Parameters ers Description	3515 jing Speed	WLSESSION	1	7532 Value	6. A.M.	
BS All depth are actual. Tool Contro One: Paramet Parameter MAX_LOG_SPEED	12.25 8.75 I Parameters Cers Description Toolstring Maximum Logg	3515 jing Speed		4	7532 Value	6. A.M.	
BS All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED	12.25 8.75 I Parameters ers Description Toolstring Maximum Logg	3515 jing Speed O 5" Ind	wlsession ne luction		7532 Value 3600	ft/h	
BS All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED Integration S Output Channel(s)	12.25 8.75 I Parameters ers Description Toolstring Maximum Logg Summary Output Description	jing Speed O 5" Inc	WLSESSION NC Iuction meter		7532 Value 3600 Output Value	ft/h	
BS All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED Integration S Output Channel(s)	12.25 8.75 I Parameters Cers Description Toolstring Maximum Logg Summary Output Description Integrated Cement Vol	3515 jing Speed O 5" Inc Input Paran plume GCSE_UP_1	WLSESSION ne luction meter PASS, FCD		7532 Value 3600 Output Value 623.08	ft/h Unit ft3	
BS All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED Integration S Output Channel(s) ICV	12.25 8.75 I Parameters ers Description Toolstring Maximum Logg Summary Output Description	3515 jing Speed O 5" Inc Input Paran plume GCSE_UP_1	WLSESSION ne luction meter PASS, FCD		7532 Value 3600 Output Value	ft/h	
BS All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED Integration S Output Channel(s) ICV	12.25 8.75 I Parameters ers Description Toolstring Maximum Logg Summary Output Description Integrated Cement Volum Integrated Hole Volum	3515 jing Speed O 5" Inc Input Paran plume GCSE_UP_1	WLSESSION ne luction meter PASS, FCD		7532 Value 3600 Output Value 623.08	ft/h Unit ft3	
All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED Integration S Output Channel(s) ICV IHV Software Ve	12.25 8.75 I Parameters ers Description Toolstring Maximum Logg Summary Output Description Integrated Cement Vo Integrated Hole Volum ersion	3515 jing Speed O 5" Inc Input Paran plume GCSE_UP_1	WLSESSION ne luction meter PASS, FCD		7532 Value 3600 Output Value 623.08	ft/h Unit ft3	
All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED Integration S Output Channel(s) ICV IHV Software Ve Acquisition System	12.25 8.75 I Parameters ers Description Toolstring Maximum Logg Summary Output Description Integrated Cement Vo Integrated Hole Volum ersion	3515 jing Speed O 5" Inc Input Paran plume GCSE_UP_1	WLSESSION ne luction meter PASS, FCD		7532 Value 3600 Output Value 623.08 1705.5	ft/h Unit ft3	
BS All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED Integration S Output Channel(s) ICV IHV Software Ve Acquisition System Maxwell 2016 SP2	12.25 8.75 I Parameters ers Description Toolstring Maximum Logg Output Description Integrated Cement Vo Integrated Hole Volum ersion n	3515 jing Speed O 5" Inc Input Paran plume GCSE_UP_1	WLSESSION ne luction meter PASS, FCD	Version	7532 Value 3600 Output Value 623.08 1705.5	ft/h Unit ft3	
BS BS All depth are actual. Tool Contro One: Parameter MAX_LOG_SPEED Integration S Output Channel(s) ICV IHV Software Ve Acquisition System Maxwell 2016 SP2 Pass Summ	12.25 8.75 I Parameters ers Description Toolstring Maximum Logg Output Description Integrated Cement Vo Integrated Hole Volum ersion n	3515 jing Speed O 5" Ind Sume GCSE_UP_I ne GCSE_UP_I	WLSESSION ne luction meter PASS, FCD	Version	7532 Value 3600 Output Value 623.08 1705.5	ft/h Unit ft3	Include Parallel Dat

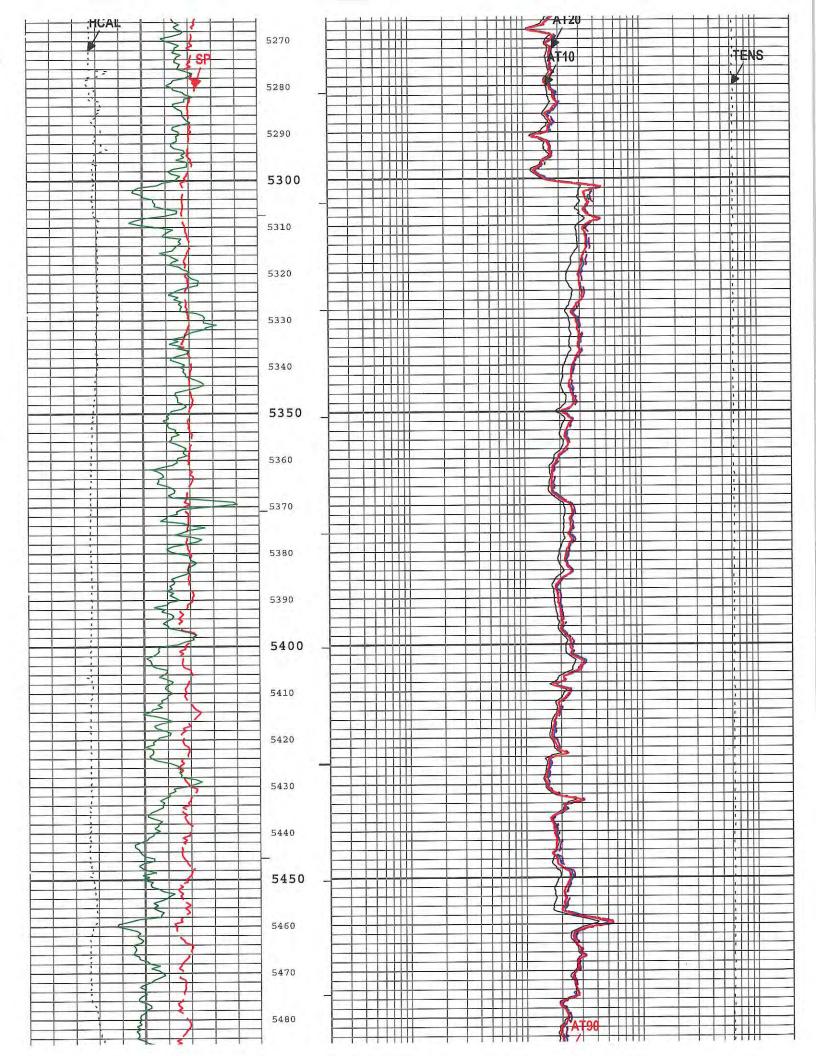

All denths are referenced to toolstring zero

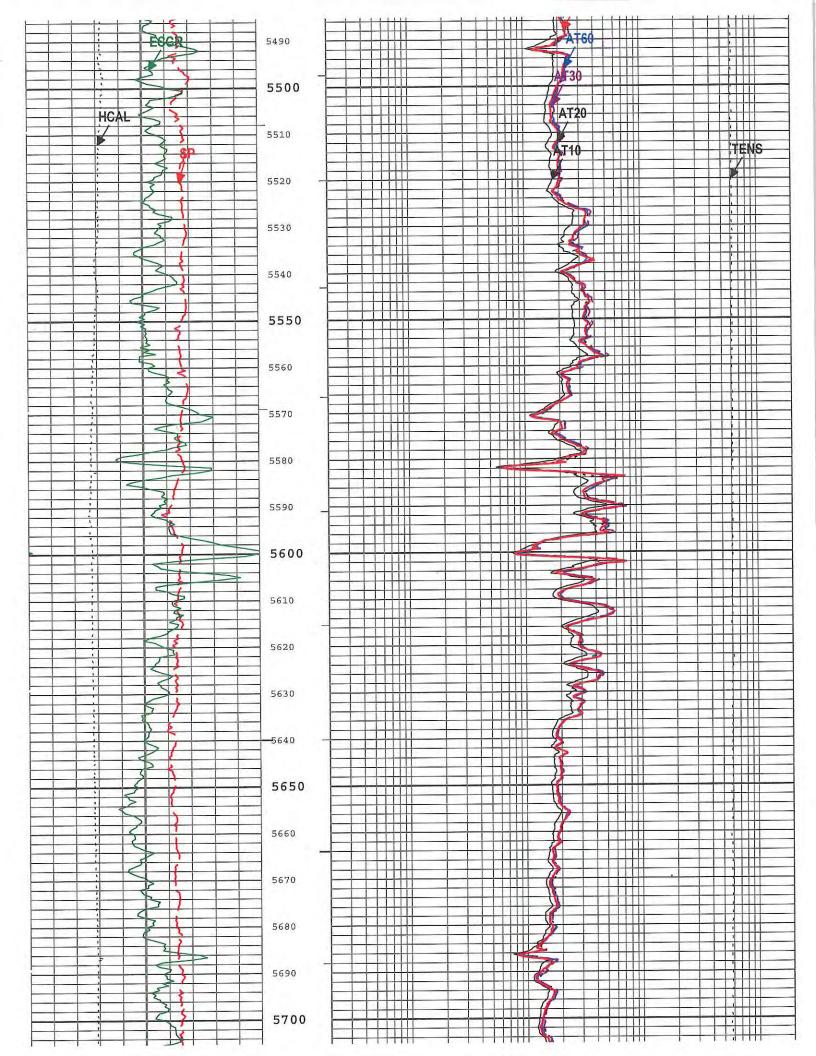


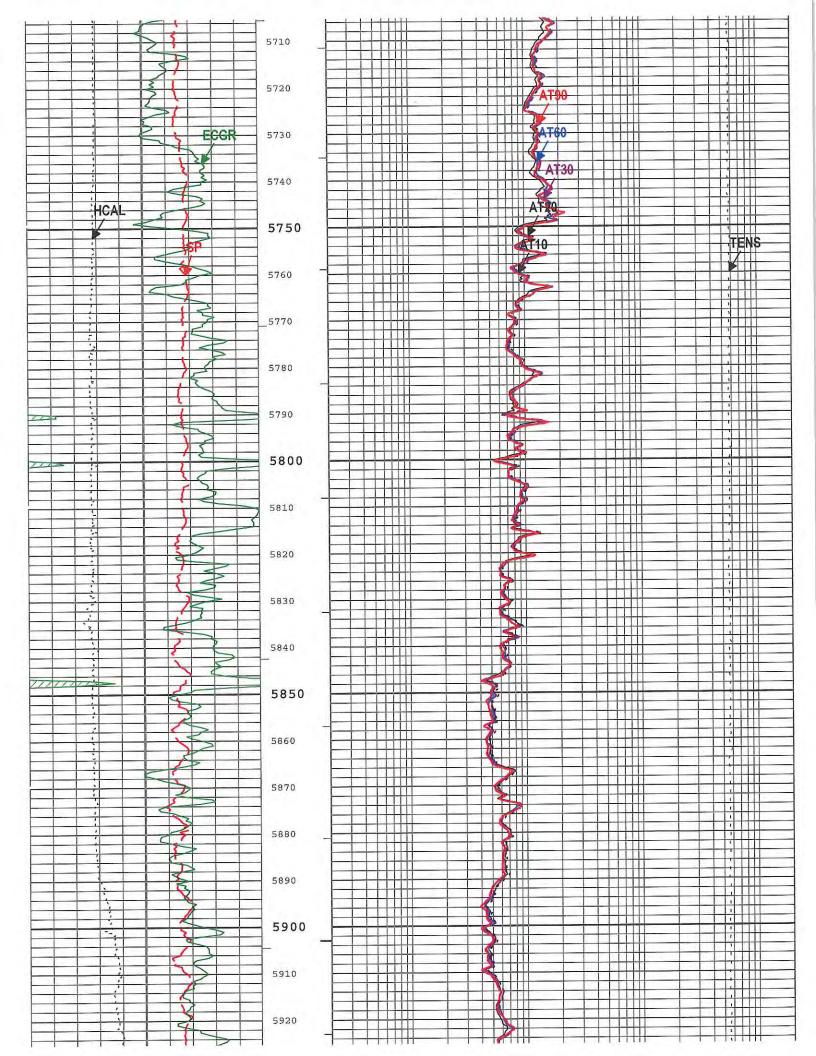


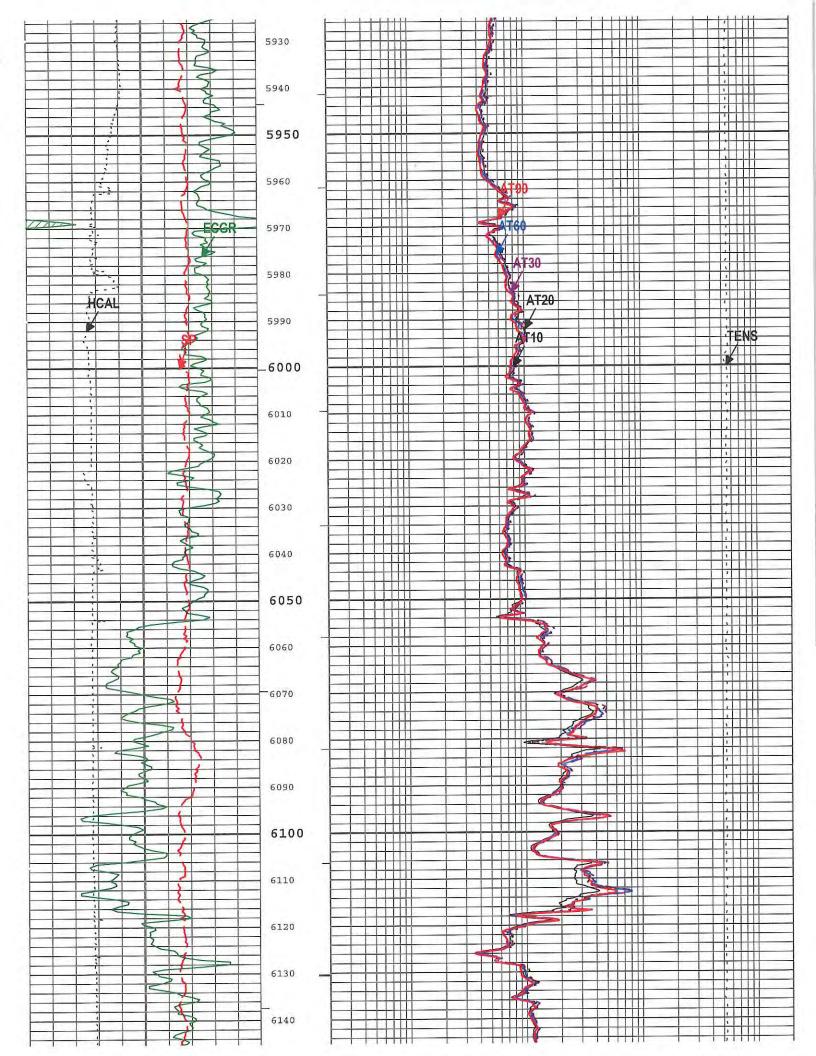


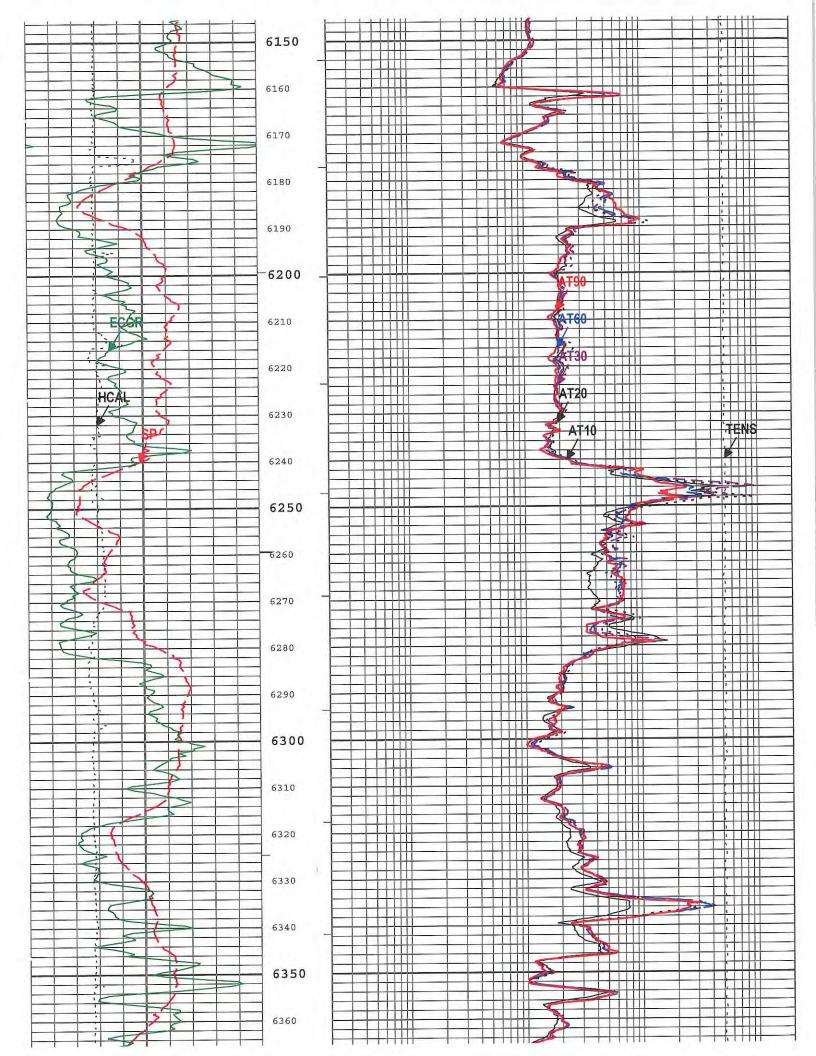


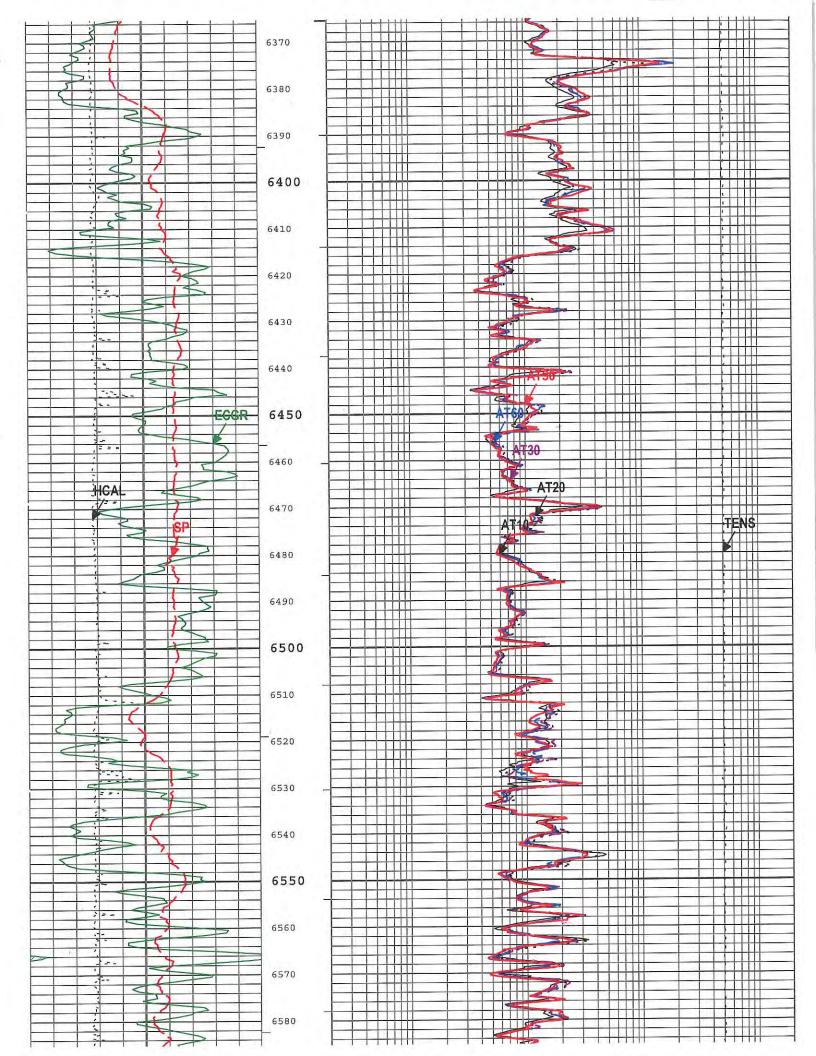


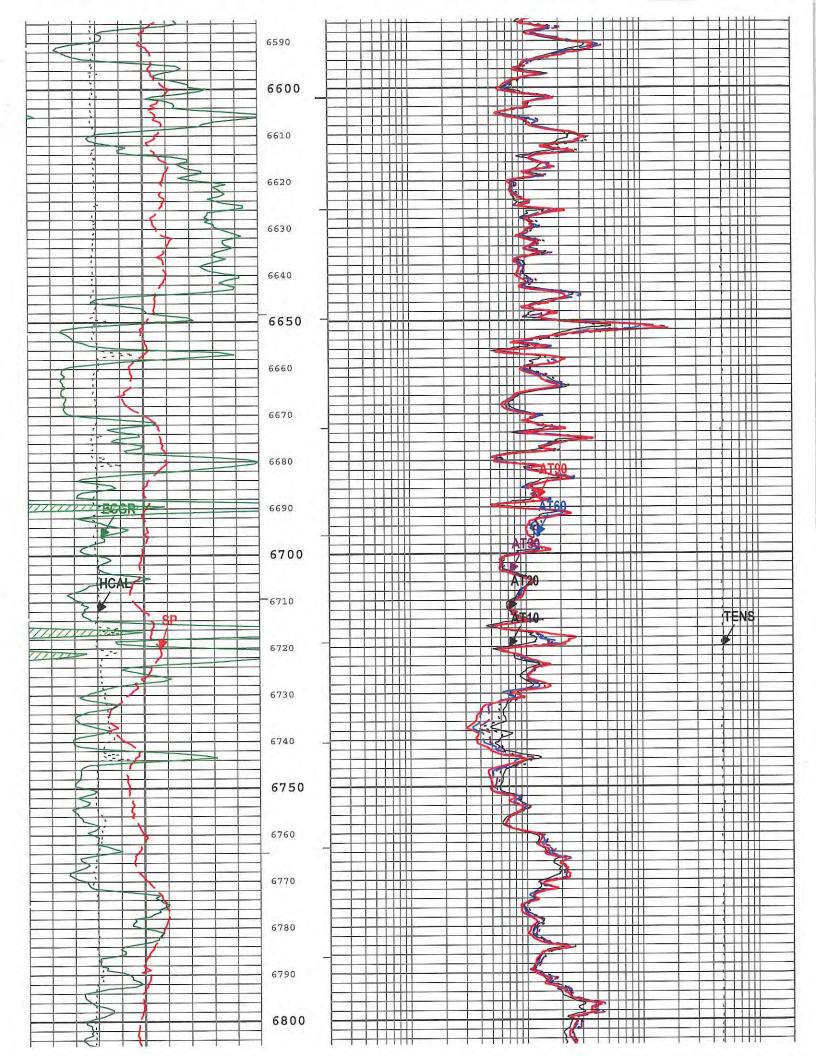


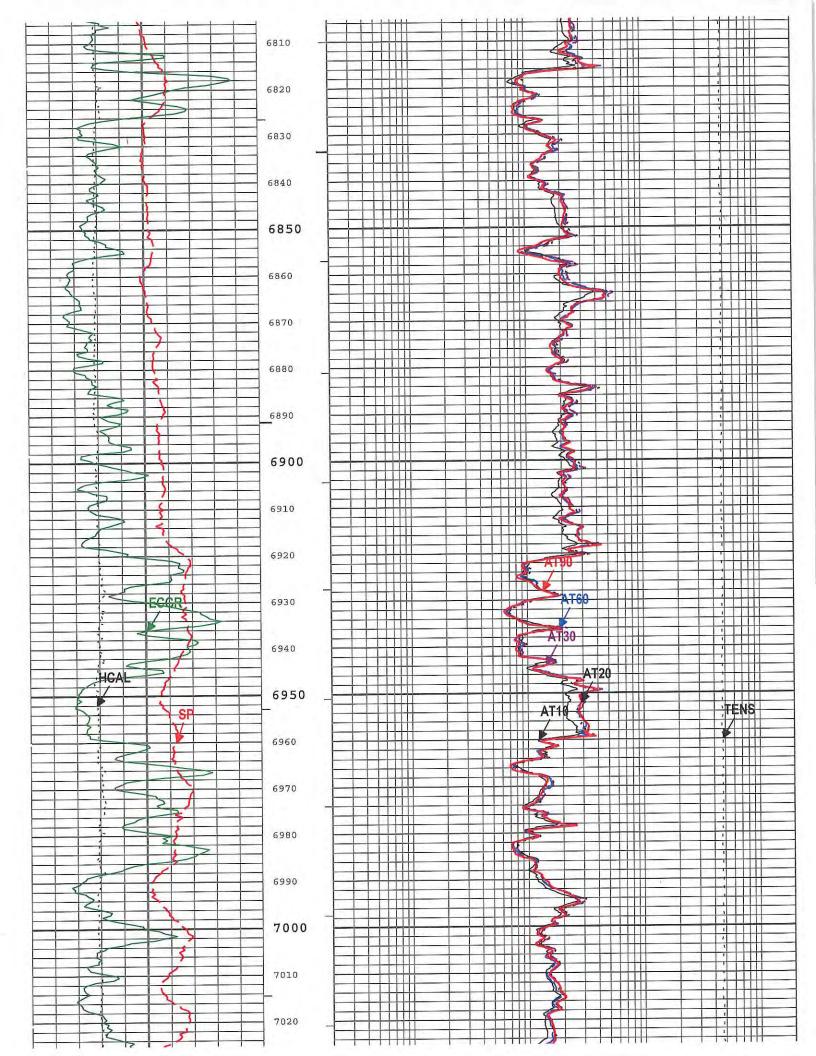


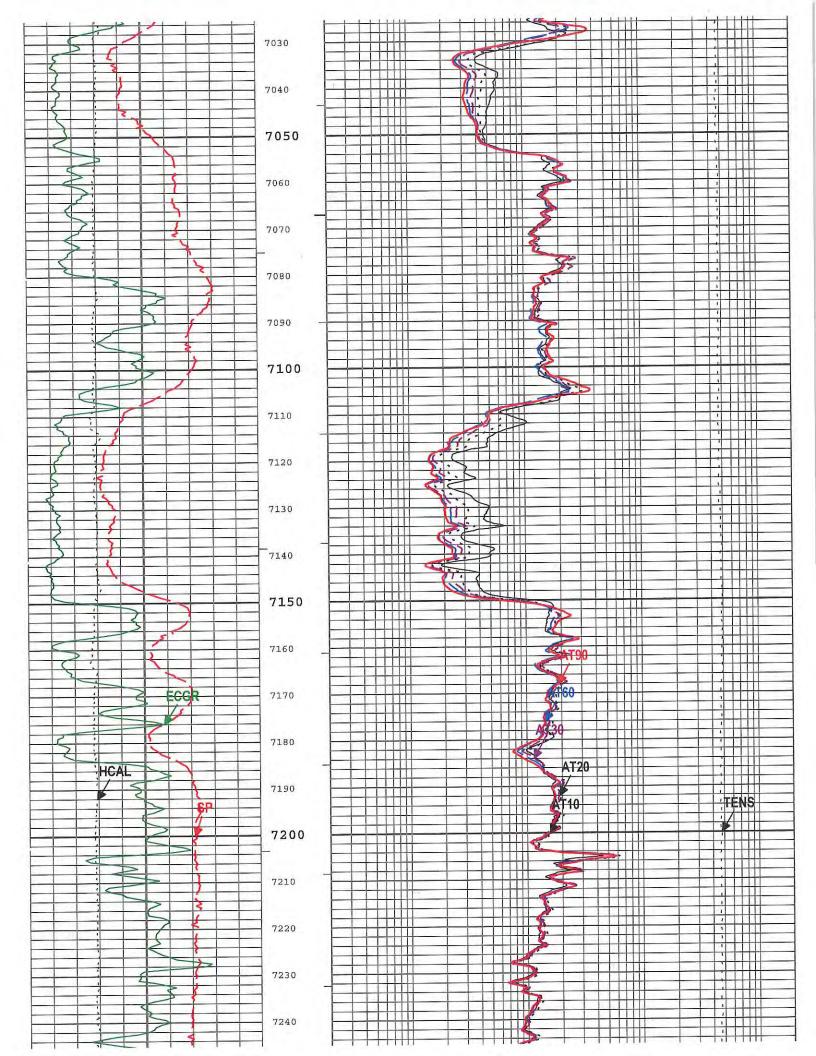


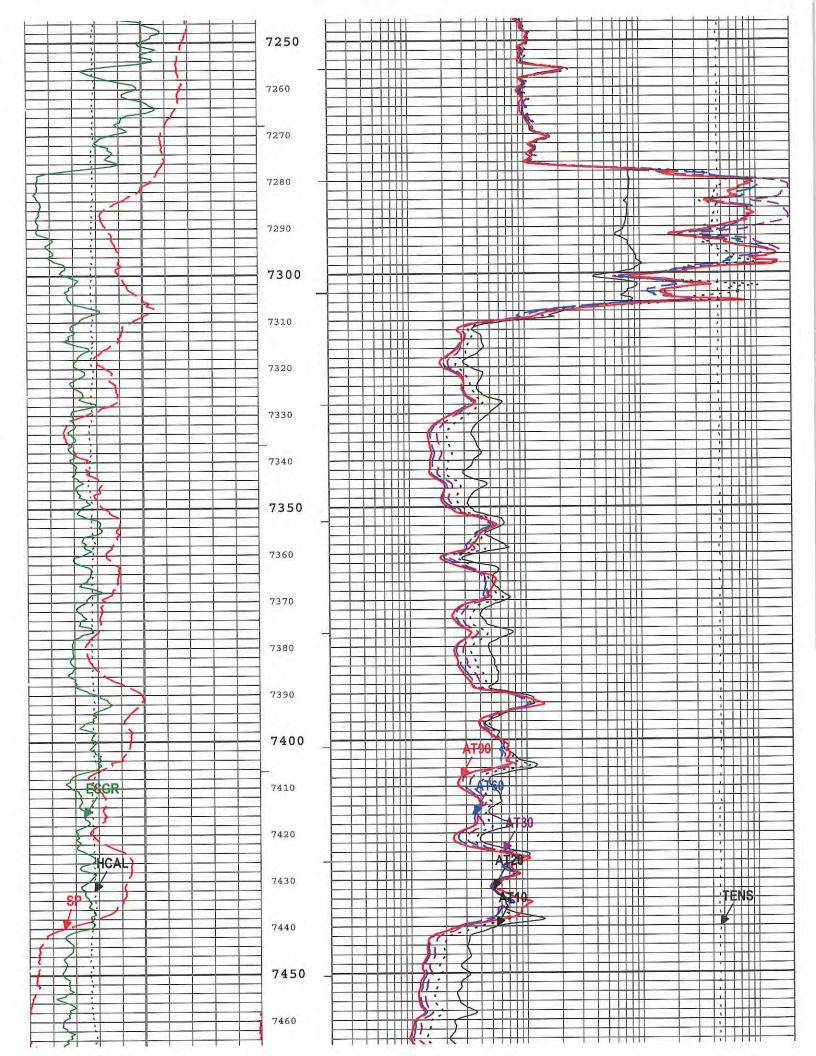


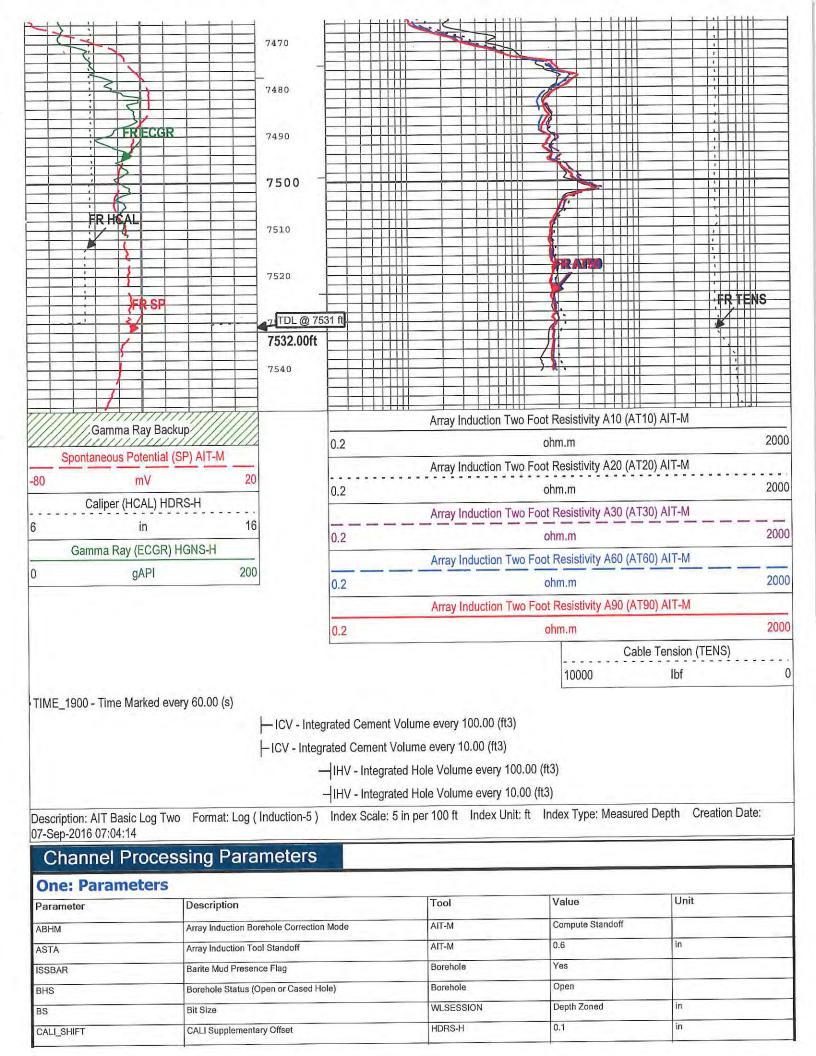


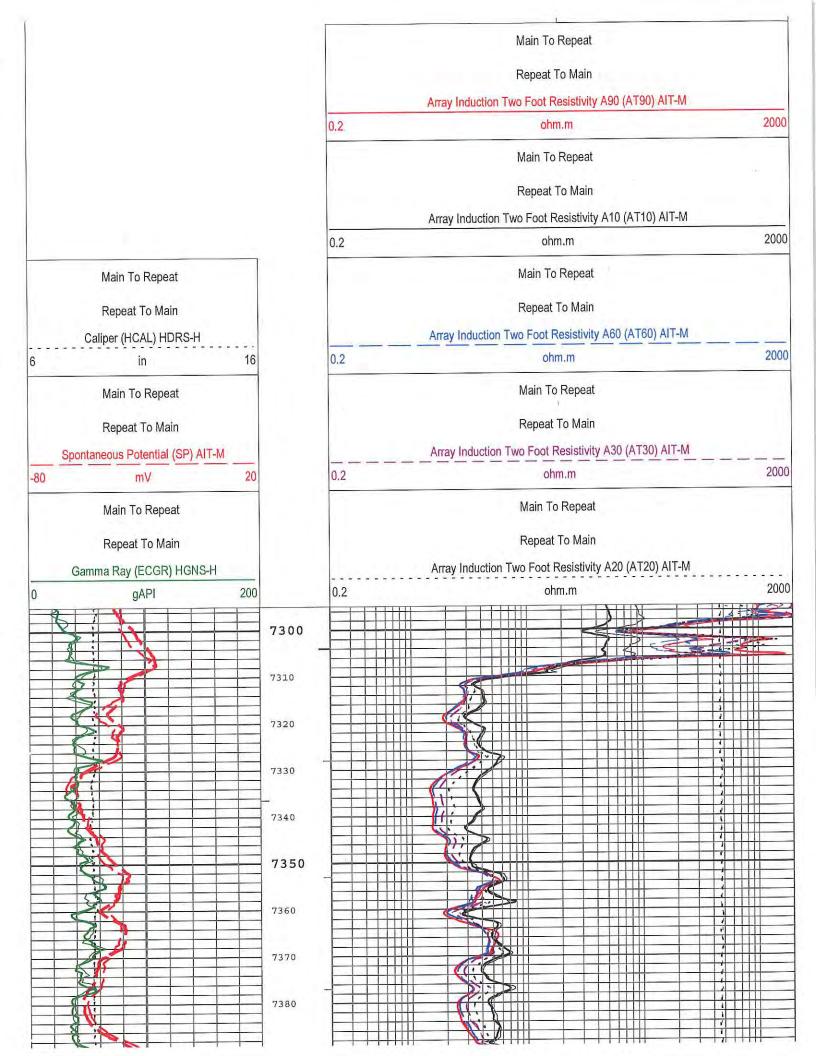


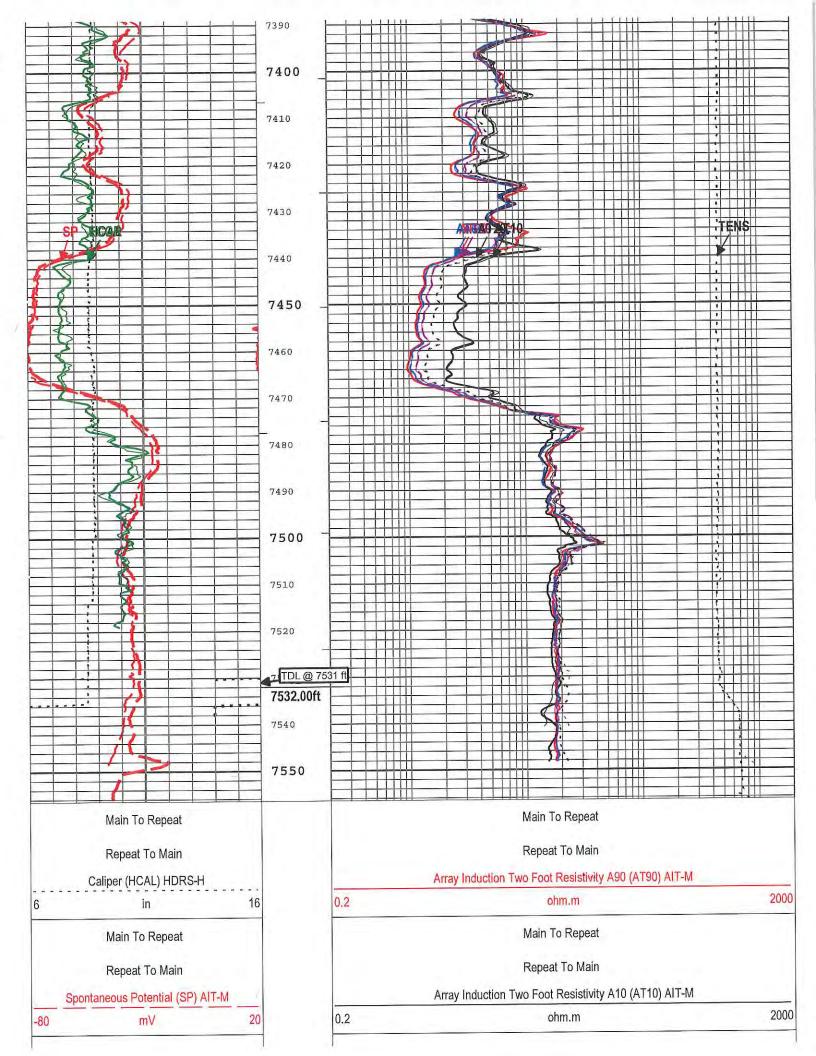


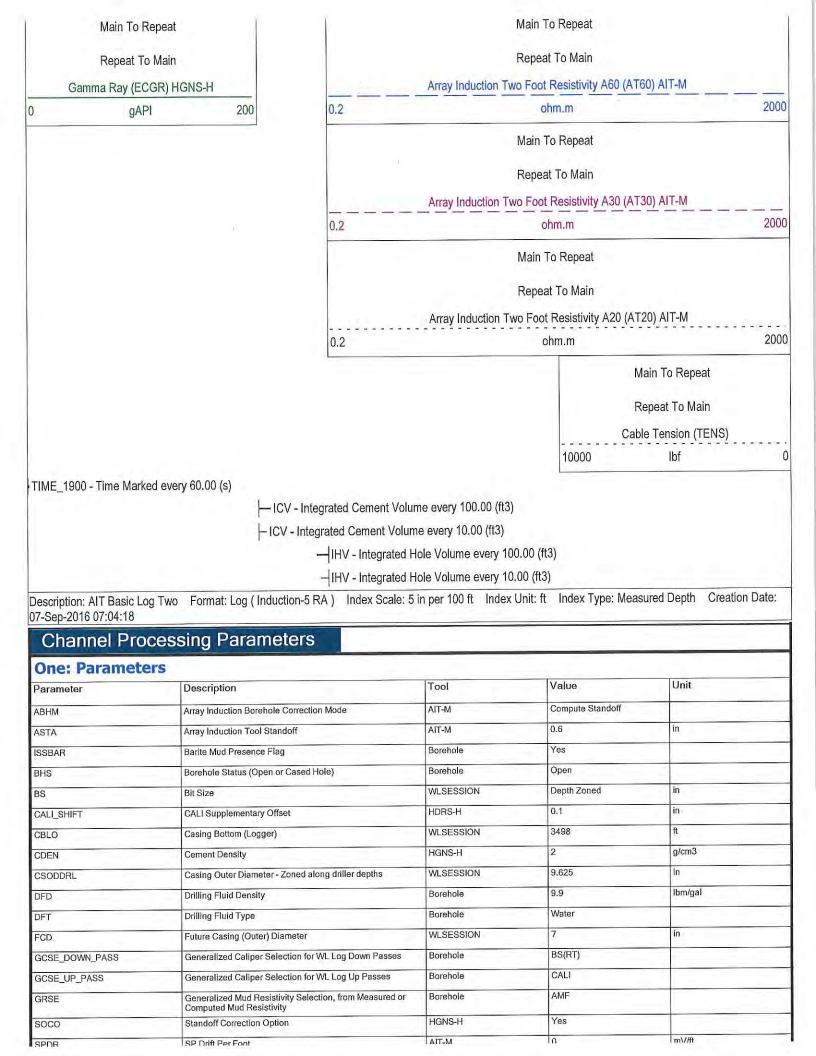












CBLO	Casir	ng Bottom (Logg	er)		WLSESSION	i s	3498	ft	
CDEN	Cem	ent Density			HGNS-H	2	2	g/cm3	
CSODDRL	Casir	ng Outer Diamet	er - Zoned along	driller depths	WLSESSION	1 5	9.625	In	
DFD	Drillin	ng Fluid Density			Borehole	5	9.9	lbm/gal	
DFT	Drillin	ng Fluid Type			Borehole	1	Water		
CD	Futu	re Casing (Outer) Diameter		WLSESSION	4	7	in	
CSE_DOWN_P	ASS Gene	eralized Caliper	Selection for WL	Log Down Passes	Borehole	1	BS(RT)		
CSE_UP_PASS	Gene	eralized Caliper	Selection for WL	Log Up Passes	Borehole		CALI		
RSE	Gene	eralized Mud Re puted Mud Resis	sistivity Selection	n, from Measured or	Borehole		AMF		
000	Stan	doff Correction (Option		HGNS-H	-	Yes		
SPDR	SP D	orift Per Foot			AIT-M		0	mV/ft	
Depth Zo	one Paramete	rs							
arameter	Valu		Star	t(ft)			Stop (ft)		
IS	12.2	5		A.10			3515		
IS	8.75		3515			-	7532		
NI depth are a									
		otore							
	ontrol Paran	leters				1			
One: Par	ameters						Value	Unit	
Parameter	Des	cription			Tool		Value		
MAX_LOG_SPE	ED Tool	string Maximum	Logging Speed		WLSESSIO	N	3600	ft/h	
				C	ne				
	-			ER L.	lucidities.				
				5" Inc	duction				
Softwa	re Version								
Acquisition						Version			
Maxwell 2016						6.2.68624.3	100		
	Summary								
Run Name	Pass Objective	Direction	Тор	Bottom	Start	Stop	DSC Mode	Depth Shift	Include
			7004 05 4	7550 07 #	07-Sep-2016	07-Sep-2016	ON	5.53 ft	Parallel Data
One	Log[3]:Up	Up	7294.65 ft	7556.27 ft	5:43:06 AM	5:48:19 AM	UN	0.00 10	110
One	Log[4]:Up	Up		7548.83 ft	07-Sep-2016 5:52:06 AM		ON	0.00 ft	No
All depths are	e referenced to toolst	tring zero			and an and				1
					Company:\	Western Refir	ning, Southwe	st, Inc. W	ell:WWD #2
Log									a[4]:Up:S012
		ormat: Log (I	nduction-5 R/	A) Index Scale	: 5 in per 100 f	t Index Unit: ft	Index Type: N	leasured Depth	Creation Date:
)7-Sep-2016 (07:04:18			liner in sin	(11-1-Malamera		Λ		
				HV - Integrate					
			-	-IHV - Integrate	d Hole Volume	every 100.00 (fl	(3)		
			-ICV - Integr	rated Cement Vo	lume every 10.	00 (ft3)			
			-ICV - Integ	grated Cement V	olume every 10	0.00 (ft3)			
IME 1900 -	Time Marked every 6	0.00 (s)							
								Martin	
				20				Main To Rep	eat
								Repeat To M	ain
					Ŷ				
								Cable Tension (TENS)
							10000	lbf	

						1			
Depth Zone Pa						10			_
Parameter	Value	- 12	Start (ft)			Stop (ft)			
3S	12.25		1.2			3515			
35	8.75		3515			7532			
All depth are actual.									
		-							
Tool Control	Parameters								
One: Paramete	ers	-							
Parameter	Description			Tool		Value	l	Jnit	
MAX_LOG_SPEED	Toolstring Maximur	n Logging S	peed	WLSE	SSION	3600	fi	t/h	-
						1			
Calibration F	кероп								
AIT-M (Array Inc	luction Tool - M)	Calibra	ation - Run	One					
Primary Equipment :									
F	ile code for AIT-MA Sond	e Tool Eler	ment	AM	IS		50		
Auxiliary Equipment :									
ł	AITM Rm/SP Bottom Nose	9		AM	RM				
AIT Sonde Calib	ration - Test Loc	p Gain							
Master (EEPROM):	20:19:37 05-Aug-2								-
Measurement		Unit	Phase	Nominal	Low Limit	Actual	High Lim	nit 🚺	
Test Loop Gain - 0			Master	1.000	0.950	1.013	1.050		
Test Loop Phase - 0		deg	Master	0	-3.000	1.893	3.000		
Test Loop Gain - 1			Master	1.000	0.950	1.009	1.050		T
Test Loop Phase - 1		deg	Master	0	-3.000	0.092	3.000		
Test Loop Gain - 2			Master	1.000	0.950	1.015	1.050		
Test Loop Phase - 2		deg	Master	0	-3.000	-0.008	3.000		-
Test Loop Gain - 3		daa	Master	1.000	0.950	1.012 0.319	3.000		
Test Loop Phase - 3		deg	Master Master	1.000	0.950	0.998	1.050		
Test Loop Gain - 4 Test Loop Phase - 4		deg	Master	0	-3.000	0.071	3.000		T
Test Loop Gain - 5		uog	Master	1.000	0.950	1.022	1.050		
Test Loop Phase - 5		deg	Master	0	-3.000	0.391	3.000		T
Test Loop Gain - 6			Master	1.000	0.950	1.035	1.050		
Test Loop Phase - 6		deg	Master	0	-3.000	0.531	3.000		
Test Loop Gain - 7	T -		Master	1.000	0.950	1.047	1.050		
Test Loop Phase - 7		deg	Master	0	-3.000	0.270	3.000		
AIT Sonde Calib	oration - Sonde E	Error Co	orrection						_
Master (EEPROM):	20:19:37 05-Aug-	2016	-						
Measurement		Unit	Phase	Nominal	Low Limit	Actual	High Lin		
Sonde Error Correction F		mS/m	Master		-231.000	-97.409	119.000		
	Quad - 0		Master		-2250.000	-596.848	2250.00		-
Sonde Error Correction G		mS/m	Master		114.000	156.040	625.000		1
Sonde Error Correction F		mom	Maater	1.00	-625 000				
Sonde Error Correction F Sonde Error Correction C	Quad - 1		Master Master		-625.000	-247.744 112.609	156.000		
Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F	Quad - 1 Real - 2	mS/m	Master		-625.000 66.000 -350.000				
Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction C	Quad - 1 Real - 2 Quad - 2				66.000	112.609	156.000		
Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F	Quad - 1 Real - 2 Quad - 2 Real - 3	mS/m	Master Master		66.000 -350.000	112.609 120.325	156.000		
Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction C	Quad - 1 Real - 2 Quad - 2 Real - 3 Quad - 3	mS/m	Master Master Master	-	66.000 -350.000 39.000	112.609 120.325 68.195	156.000 350.000 89.000		
Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction C	Quad - 1 Real - 2 Quad - 2 Real - 3 Quad - 3 Real - 4	mS/m mS/m	Master Master Master Master	-	66.000 -350.000 39.000 -250.000	112.609 120.325 68.195 -161.507 24.223 -0.939	156,000 350,000 89,000 250,000 35,000 63,000		
Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F	Quad - 1 Real - 2 Quad - 2 Real - 3 Quad - 3 Real - 4 Quad - 4	mS/m mS/m	Master Master Master Master Master		66.000 -350.000 39.000 -250.000 15.000 -63.000 4.000	112.609 120.325 68.195 -161.507 24.223 -0.939 15.665	156.000 350.000 89.000 250.000 35.000 63.000 24.000		
Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction F	Quad - 1 Real - 2 Quad - 2 Real - 3 Quad - 3 Real - 3 Real - 4 Quad - 4 Real - 5 Quad - 5	mS/m mS/m mS/m mS/m	Master Master Master Master Master Master Master Master		66.000 -350,000 39.000 -250,000 15.000 -63.000 4.000 -50.000	112.609 120.325 68.195 -161.507 24.223 -0.939 15.665 -27.113	156.000 350.000 89,000 250.000 35.000 63.000 24.000 50.000		
Sonde Error Correction F Sonde Error Correction C Sonde Error Correction F Sonde Error Correction F Sonde Error Correction F Sonde Error Correction F Sonde Error Correction C Sonde Error Correction C Sonde Error Correction C Sonde Error Correction C Sonde Error Correction C	Quad - 1 Real - 2 Quad - 2 Real - 3 Quad - 3 Real - 4 Quad - 4 Real - 5 Quad - 5 Quad - 5 Real - 6	mS/m mS/m mS/m	Master Master Master Master Master Master Master Master Master		66.000 -350.000 39.000 -250.000 15.000 -63.000 4.000 -50.000 5.000	112.609 120.325 68.195 -161.507 24.223 -0.939 15.665 -27.113 10.064	156.000 350.000 89.000 250.000 35.000 63.000 24.000 50.000 15.000		
Sonde Error Correction F Sonde Error Correction F	Quad - 1 Real - 2 Quad - 2 Real - 3 Quad - 3 Real - 4 Quad - 4 Real - 5 Quad - 5 Real - 6 Quad - 6	mS/m mS/m mS/m mS/m	Master Master Master Master Master Master Master Master		66.000 -350,000 39.000 -250,000 15.000 -63.000 4.000 -50.000	112.609 120.325 68.195 -161.507 24.223 -0.939 15.665 -27.113	156.000 350.000 89,000 250.000 35.000 63.000 24.000 50.000		

Master (EEPROM):	20:19:37 05-Aug-2016										
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit					
Coarse Gain		Master	1.000	0.800	0.934	1.200					
Fine Gain		Master	1.000	0.800	0.938	1.200					

AIT Electronics Check - Thru Calibration Check

Master (EEPROM): 20:"	19:37 05-Aug-2016	E	Before (Measured	l):	21:11:27 05-Sep-	2016	
Measurement	Unit	Phase	Nominal	Low Limit	Actual	High Limit	
íhru Cal Mag - 0	V	Master		0.366	0.603	0.854	
		Before		0.366	0.603	0.854	
		Before-Master	-		0.000		
Thru Cal Phase - 0	deg	Master	-	137.000	-165.864	-103.000	
		Before	<u> </u>	137.000	-161.111	-103.000	
		Before-Master			4.753		
Fhru Cal Mag - 1	V	Master		0.762	1.237	1.778	TIT
nru Cai Mag - 1	v	Before		0.762	1.237	1.778	
		Before-Master			0.000		
		in the set of the set of the set		136.000	-166.823	-104.000	-
Fhru Cal Phase - 1	deg	Master	·	136.000	-162.071	-104.000	
		Before	1	130.000	4.752	-104.000	
the second s		Before-Master				0.868	
Thru Cal Mag - 2	V	Master		0.372	0.613		
		Before		0.372	0.613	0.868	
		Before-Master			0.000		
Thru Cal Phase - 2	deg	Master		132.000	-170.304	-108.000	
		Before		132.000	-165.578	-108.000	
		Before-Master			4.726		
Thru Cal Mag - 3	V	Master		0.420	0.691	0.980	
		Before	<u> </u>	0,420	0.691	0.980	
		Before-Master			0.000	- 1 -1	
Thru Cal Phase - 3	deg	Master		131.000	-171.041	-109.000	
		Before	<u> </u>	131.000	-166.313	-109.000	
		Before-Master			4.728		
Thru Cal Mag - 4	V	Master		0.804	1.297	1.876	
		Before		0.804	1.296	1.876	
		Before-Master			-0.001		
Thru Cal Phase - 4	deg	Master	-	125.000	-177.009	-115.000	
Thru Cal Phase - 4	uey	Before		125.000	-172.279	-115.000	
		Before-Master			4.730		
	V			1.176	1.888	2.744	
Thru Cal Mag - 5	V	Master		1.176	1.887	2.744	
		Before		1.170	-0.001	2.744	
		Before-Master					
Thru Cal Phase - 5	deg	Master		122.000	-178.544	-118.000	
		Before		122.000	-173.812	-118.000	
		Before-Master			4.732		
Thru Cal Mag - 6	V	Master		1.176	1.887	2.744	
		Before		1.176	1.886	2.744	
		Before-Master			-0.001		
Thru Cal Phase - 6	deg	Master	\rightarrow	121.000	-178.521	-119.000	
		Before		121.000	-173.790	-119.000	
		Before-Master			4.731		
Thru Cal Mag - 7	V	Master		0.846	1.358	1.974	
		Before	-	0.846	1.353	1.974	
		Before-Master			-0.005		1
Thru Cal Phase - 7	deg	Master	-24	115.000	-179.305	-125,000	
		Before		115.000	-174.661	-125.000	
		Before-Master	-		4.644		
SDA Zoro	mV	Master		-50.000	0.156	50.000	
SPA Zero	inv.	Before		-50.000	0.146	50.000	
		Before-Master			-0.010		
				941.000	988.093	1040.000	
SPA Plus	mV	Master		941.000	988.093	1040.000	
		Before		941.000			
		Before-Master			-0.063	0.050	
Temperature Zero	V	Master		-0.050	0.000	0.050	

		Before Before-Master	 -0.050	0.000 0.000	0.050	
Temperature Plus	V	Master	0.870	0.915	0.960	
		Before	0.870	0.915	0.960	
		Before-Master	 	0.000		

Company:	Western Refining, Southwest, Inc.	Schlumberger								
Well:	WWD #2									
Field:	I: Wildcat									
County:	San Juan									
State:	New Mexico									
Platform E	xpres									
Array Indu	Array Induction									
with Linea	with Linear Correlation									

APPENDIX E

Fall-Off Test Report – April 17, 2019

P. O. Box 1198 Farmington, New Mexico 87499 (505) 325-1731 Fax (505) 325-1148 FARMINGTON, NEW MEXICO/ GRAND JUNCTION, COLORADO

2332 Interstate Ave. Grand Junction, CO 81505 (970) 241-0403 Fax (970) 241-7634

WESTERN REFINING SOUTHWEST, INC.

WATER DISPOSAL WELL NO. 2

APRIL 17 - 30, 2019

Serving the Rocky Mountains and the Western Slope

05/02/19 File Reference F240501.RED

Well Name Well Location Field / Pool Status (Oil, Gas, Other) WATER DISPOSAL 7312' 7312' ... Start: 4-17-2019 Stop: 4-30-2019 Duration: 315 TANDEM ELEC. MEMORY INST. TIME 9 186 DEGREES @ 7312' Bottom Hole Temperature Gauge Identification Pressure Range Battery Type Calibration I.D. Last Calibration 2/23/18 Gauge Setup Parameters ********* Probe Set Up Time Time Delay to First Reading Test Type Selection Test Duration Selection 4/17/19 11:24: 0 INJECTION FALL-OFF_TEST 315 HRS. TANDEM ELEC. MEMORY INST. TIME

Page A

COMPANY: WESTERN REFINING SOUTHWEST, INC.

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

FILE REF: F240501.RED

ncup .	DOCATION 1	SAN DUAN CUU	NII, NEW MEAL			FILE REF: F240501 RED
Date	Time	Test Time	Pressure	Temp	deltaP	Comment
			Psig	Deg F	Pei	Ga, Dreas Ref. to 14.7 Pdi Atm,
04/17	11:24:00	,0000	.01	77.97		
	11:34:00	10,0000	, 01	74.72	.00	
	1.2:04:00	40,0000	14.59	75.37	14.58	PRESSURED UP LUBRICATOR
•	12:04:30	40,5000	776.21	75,37	761.63	
	12:09:00	45,0000	770,50	72.22	~5,71	
	12:11:30	47,5000	776.31	70.35	5.81	SURFACE STOP
	12:12:00	48,0000	802.59	69.85	26.28	TRIPPED IN WELL WITH TANDEM ELEC. INST.
	12:12:30/ 12:13:00	48,5000	816.27	69.35	13.67	
	12:13:00	49,0000 49,5000	860.79 900.48	68.85 68.36	44.52 39.69	
	12;14:00	50,0000	923.28	67,85	22,50	
•	12:14:30	50,5000	966.46	67,36	43.18	
04/17	12:15:00	51,0000	1009.11	66,86	42,65	
04/17	12:15:30	51,5000	1061,81	66,36	52.71	
04/17	12:16:00	52,0000	1120.69	65,86	58,88	
	12:16:30	52,5000	1180.62	65,50	59.92	·
	12:17:00	53,0000	1242.43	66,15	61.81	
	12:17:30	53,5000	1267.61	65,81	25.18	
1.	12:18:00	54.0000	1295.08	67.46 CP 10	27.46	
	12:18:30 12:19:00	54.5000 55.0000	1334.75	68.12 68.77	39.67	
	12:19:00	55.5000	1378.30 1411.79	68,77 69,43	43.56 33.49	
	12:20:00	56.0000	1447,29	70.09	35.50	
	12:20:30	56.5000	1464,53	70.74	37.24	
	12:21:00	57.0000	1534,11	71.40	49.57	
04/17	12:21:30	57,5000	1591.06	72.06	56.95	
04/17	12;22;00	58.000D	1670.01	72.71	79.75	
	12;22:30	58.5000	1731.66	74.21	50.84	
-	12:23:00	59.0000	1788.20	76.07	56.55	
	12:23:30	59.5000	1843.51	77.95	55.31	
	12:24:00 12:24:30	60,0000 60,5000	1887.01 1942,40	79.81 81.69	43,49 55,40	
	12:25:00	61,0000	1992.55	B1.05 B3.57	50,15	
	12:25:30	61,5000	2024,84	85.44	32.29	
•	12:26:00	62,0000	2080.44	87.32	55.60	
	12:26:30	62,5000	2135.20	89,21	54.77	
04/17	12:27:00	63.0000	2192.23	91.08	57.02	
04/17	12:27:30	63.5000	2276.04	92.97	83.81	
-	12:28:00	64,0000	2359.02	94.86	82.98	· ·
	12:28:30	64.5000	2441,12	96.55	82,10	
	12:29:00	65.0000	2524.22	99.24	83,10	
	12:29:30 12:30:00	65.5000 66.0000	2598.69	101.93	74.47	
· · · ·	12:30:00	56.5000	2693.34 2771.86	104.63 107.33	94,65 78.52	
	12:31:00	67.0000	2846.84	110,04	74.98	
	12:31:30	67.5000	2918.69	112.74	71,85	
	12;32:00	68.0000	2987.14	115.45	68,45	
	12:32:30	68,5000	3067.73	118.17	80,58	
	12:33:00	69,0000	3143.84	120.89	76.11	
	12:33:30	69,5000	3219,23	123,61	75.39	
	12:34:00	70.0000	3290.95	126,34	71.72	
· · ·	12:34:30	70,5000	3377.71	129,55	86.76	
	12:35:00	71,0000	3464.28	132,95	86.57	
•	12:35:30 12:36:00	71.5000 72.0000	3573,53 3669.44	136,35 139,76	109,24 95,91	
•	12:36:00	72,5000	3758.33	143,17	88,89	
	12:37:00	73,0000	3841.27	146.59	82,94	
	12:37:30	73.5000	3896.76	150.01	55,49	
	12:38:00	74.0000	3935.52	153.44	38.76	
04/17	12:30:30	74.5000	3940.07	156.87	4.56	
	12:39:00	75.0000	3939.44	160.31	64	
	12:39:30	75.5000	3938.55	163.75	88	
	12:40:00	76,0000	3936.78	167.20	~1,77	
	12:44:30	B0,5000	3937,26	170.40	,48 6 5 6	TANDEM INST. @ 7312 '
u4747	12:50:30	86.5000	3943,82	171.41	6,56	STARTED INJECTION PUMP

COMPANY; WESTERN REFINING SOUTHWEST, INC.

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

FILE REF: F240501.RED

Date Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD hh:mm:ee		Palg	Deg F	Psí	Ga. Press Ref. to 14.7 Psi Atm.
04/17 12:51:00	87.0000	3968.75	171.43	24,92	
04/17 12:51:30	87.5000	3984.34	171.45	15,59	
04/17 12:52:00	88,0000	3996,06	171,47	11.72	
04/17 12:53:00	89.0000	4012.24	172.00	16.18	
04/17 12:53:30	89.5000	4018.4B	172,45	6.24	
04/17 12:56:00	92,0000	4040,47	174.69	21,99	
04/17 12:56:30	92.5000	4043,91	175.14	•3.44	
04/17 13:00:00	96,0000	4064.03	177.82	20.12	
04/17 13:00:30 04/17 13:06:30	96,5000	4066.79	178.09	2,76	
04/17 13:07:00	102.5000 103.0000	4087.99 4089,42	180.37 180.43	21.20 1.43	
04/17 13:17:30	113,5000	4110,99	180.43	21,50	
04/17 13:16:00	114.0000	4111.89	180.28	,90	
04/17 13:33:30	129,5000	4133.94	178,77	22.06	
04/17 13:34:00	130,0000	4134,51	178,72	56	
04/17 13:56:30	152,5000	4156,41	176.81	21,90	
04/17 13:57:00	153,0000	4156.90	176.77	.49	
04/17 14:34:30	190,5000	4179.11	174.07	22,21	
04/17 14:35:00	191.0000	4179,28	174.04	.17	
04/17 15:14:00	230,0000	4195,17	171.59	15.89	
04/17 15:52:00	268,0000	4207.00	169.60	11,83	
04/17 16:30:00	306.0000	4217,62	167.93	10,62	
04/17 17:08:00	344.0000	4224.33	166.53	6,71	
04/17 17:46:00	382.0000	4231,03	165,49	6.69	
04/17 18:24:00	420,0000	4236.05	164,56	5.02	
04/17 19:02:00	458.0000	4239.33	163,78	3.29	
04/17 19:40:00	496,0000	4243.36	163,15	4,03	
4/17 20:18:00	534,0000	4247,42	162,60	4.06	i
4/17 20:56:00	572.0000	4251,34	161.96	3,92	
04/17 21:34:00	610,0000	4254.43	161.40	3.10	
04/17 22:12:00	648.0000	4257,80	160.93	3.37	
04/17 22:50:00	686.0000	4261.63	160.49	3.83	
04/17 23:28:00	724.0000	4264,54	160.05	2,91	
04/18 00:06:00	762.0000	4265.37	159.69	.83	
04/18 00:44:00	800.0000	4266.02	159,48	.65	·
04/18 01:22:00	838.0000	4265.94	159,37	~.08	
04/18 02:00:00	876,0000.	4267.93	159.26	1,90	
04/18 02:38:00	914.0000	4270.01	159,15	2.08	
04/18 03:16:00 04/18 03:54:00	952.0000	4271.24	159,06	1,24	
04/18 04:32:00	990.0000 1028.0000	4270.73	158,97	-,51	
04/18 05:10:00	1066.0000	4270.42 4269.52	159.02	-,31 -,90	
04/18 05:48:00	1104.0000	4270,40	159,07 159,10	- , 90	
4/18 06:26:00	1142,0000	4271.22	159.10	.87	
04/18 06:57:00	1173,0000	4291.16	159.10	. 5. 19.94	
4/18 06:57:30	1173,5000	4293.70	159,10	2.54	
4/18 07:11:00	1187,0000	4315,95	158.63	22,25	
4/18 07:11:30	1197.5000	4316.46	150.60	, 52	
4/18 07:50:00	1226,0000	4333.83	156.47	17.37	
4/18 08:28:00	1264.0000	4343.06	155.18	9,23	
4/18 09:06:00	1302.0000	4358.96	153.82	15,91	
4/18 09:44:00	1340,0000	4366,53	152.80	7.56	
4/18 10:22:00	1378,0000	4372.20	152.01	5,68	
4/18 11:00:00	1416.0000	4376.32	151.41	4,12	
4/18 11:38:00	1454.0000	4376.85	150.BB	,53	
4/18 12:16:00	1492.0000	4379.35	150.47	2,50	
4/18 12:54:00	1530.0000	4381.90	150,09	2.54	
4/18 13:32:00	1568,0000	4381.87	149,87	02	
4/18 14:10:00	1605.0000	4385.16	149.65	3.29	
4/18 14:48:00	1644,0000	4387,63	149.3B	2.47	
4/18 15:26:00	1682,0000	4389.98	149,15	2.36	
4/18 16:04:00	1720.0000	4392.91	148,91	2,93	
4/10 16:42:00	1758.0000	4395,30	148.75	2.39	
4/18 17:20:00 4/18 17:58:00	1796,0000	4398,06	148,56	2.75	
	1834,0000	4399,79	148,39	1.73	

COMPANY: WESTERN REFINING GOUTHWEST, INC.

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 3 OF 11

DATE : 05/02/19

FILE REF: F240501.RED

•

Date Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD hh;mm:ss		Psig	Deg F	Psi	Ga, Press Ref. to 14.7 Ppi Atm.
04/18 19:36:00	1872,0000	4401.97	148,25	2,18	
04/18 19:14:00		4402.79	148.19	.82	STOP @ 2000'
04/18 19:52:00		4404.53	148.10	1.73	
04/18 20;30:00 04/18 21:08:00	1986.0000 2024.0000	4406,70 4409.46	148.00 147.90	2,17 2,77	
04/18 21:46:00	2062,0000	4412.15	147,83	2,69	
04/18 22:24:00	2100.0000	4413,34	147.75	1,19	
04/18 23:02:00		4414.31	147.69	, 97	
04/18 23:40:00 04/19 00:18:00	2176.0000 2214.0000	4415.83 4417,00	147.67 147.63	1.52 1.17	
04/19 00:56:00	2252,0000	4419,46	147.57	2.46	•
04/19 01:34:00		4421,97	147,30	2,51	
04/19 02:12:00	2328.0000	4424.50	147,18	2,53	
04/19 02:50:00 04/19 03:28:00	2366.0000 2404.0000	4427,19 4428,67	147.01 146.91	2.59 1.48	
04/19 04:06:00	2442.0000	4430.68	146.81	2.01	
04/19 04;44:00	2460.0000	4433,10	146.70	2.42	
04/19 05;22:00	2518.0000	4434.77	146,64	1.67	
04/19 06:00:00 04/19 06:38:00	2556.0000 2594.0000	4437.52 4435.13	146.57 146.56	2.75	
04/19 07:16:00	2632.0000	4434.99	146.68	-2.39 15	
04/19 07:54:00		4436.08	146.76	1.09	
04/19 08:32:00	2708.0000	4436.26	146,83	,18	
04/19 09:10:00 04/19 09:48:00	2746.0000	4438.18	146.88	1,92	
04/19 10:26:00	2784.0000 2822.0000	4439.19 4440,05	146.91 146.91	1.01 .86	
04/19 11:04:00	2860,0000	\$455.79	146,78	15,74	
04/19 11:42:00	2898.0000	4460.10	146.02	4.31	
04/19 12:20:00	2936.0000	4463.15	145,63	3,05	
04/19 12:58:00 04/19 13:36:00	2974.0000 3012.0000	4464,26 4466,77	145,40 145,20	1.10 2.51	
04/19 14:14:00	3050.0000	4468.10	145,06	1.33	
04/19 14:52:00	3088.0000		144,94	1.44	
04/19 15:30:00	3126.0000		144,80	1.97	
04/19 16:08:00 04/19 16:35:00	3164.0000 3191.0000	4473.79 4452,45	144.68 144.60	2,29 -21,34	
04/19 16:35:30	3191,5000	4450,84	144.51	-1,61	
04/19 16:55:30	3211,5000	4428.51	145.34	~22,32	
04/19 16:56:00	3212.0000	4428.33	145.36	-,18	
04/19 17:34:00 04/19 18:12:00	3250.0000	4417.29	146.74	-11.04	
04/19 18:12:00	3288.0000 3326.0000	4411,92 4408.74	147.68 148.34	-5,37 -3,10	
04/19 19:28:00	3364.0000	4406.71	149.81	-2.02	
04/19 20:06:00	3402.0000	4405.33	149,20	-1.39	
04/19 20:44:00	3440.0000	4404.23	149,50	-1,10	
04/19 21:22:00 04/19 22:00:00	3478.0000 3516.0000	4402.99 4398,94	149.76 150.03	-1.24 -4.05	
04/19 22;3B:00	3554.0000	4396,54	150.45	-2,40	
04/19 23:16:00	3592.0000	4395,63	150.73	91	
04/19 23:54:00	3630.0000	4394.55	150.98	-1.08	
04/20 00;32:00 04/20 01:10:00	3668.0000 3706.0000	4395.15 4394.76	151.21 151.36	51 - 40	
04/20 01:4B:00	3744.0000	4394,02	151.52	74	
04/20 02:26:00	3782,0000	4393.67	151,67	35	
04/20 03:04:00	3820.0000	4393.91	151.80	.24	ι,
04/20 03:42:00 04/20 04:20:00	3858.0000 3896.0000	4393.72 4392,61	151.90 152.04	19 -1.10	
04/20 04:58:00	3934.0000	4392.21	152.16	~,41	
04/20 05:36:00	3972,0000	4392,10	152.27	-,10	
04/20 06:14:00	4010,0000		152,32	·,10	
04/20 06:18:30 04/20 05:19:00	4014.5000 4015.0000	4412.37 4414.50	152,35 152,35	20,44	
04/20 05:58:00	4054,0000	4414.50	152,35	2,14 12,50	
04/20 07:36:00	4092,0000	4433.60	150.59	6,60	
04/20 08:14:00	4130,0000	4427,02	150.26	-6,58	

COMPANY: WESTERN REFINING SOUTHWEST, INC.

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 4 OF 11

DATE : 05/02/19

FILE REF: F240501.RED

÷

Date	Time	Test Time	Pressure	Temp	deltaP	Comment
	hh;mm:ea	ממומים ערבים	Psig	Deg F	Pai	Ga. Press Ref. to 14.7 Psi Atm,
				beg r		da, Freas Rei, to 14,7 PSI Atin,
04/20	08:52:00	4168.0000	4406 99	150 04		
			4426.99	150.24	03	
	09:30:00	4206,0000	4427.43	150.17	.45	
-	10;08:00	4244.0000	4428,33	150.14	.90	
•	10:1B:00	4254,0000	4428.24	150,12	09	
	10:20:00	4256,0000	4458,70	150,12	30.45	
04/20	10:21:00	4257,0000	4438.90	150.13	-19.80	
04/20	10:21:30	4257.5000	4435.82	150.13	-3.09	
04/20	10:37:00	4273.0000	4413.62	150,18	-22.20	
04/20	10:37:30	4273.5000	4413.44	150.19	17	
	11:16:00	4312,0000	4406.77	150.79	-6.68	
	11:54:00	4350,0000	4404,11	151.15	~2.65	
	12:20:00	4376,0000	4403.04	151.37	-1.07	INJECTION STOPPED
	12:22:00	4378.0000		151.39		BEGAN FALL-OFF
-	12:23:30		4370.45		-32,59	BEGAN FADD-OFF
		4379.5000	4348.88	151.46	-21.57	
	12:24:00	4380.0000	4343.25	151.48	-5.63	1
· · · ·	12:26:30	4382.5000	4322,72	151.59	-20,53	
	12:27:00	4383.0000	4319.63	151.61	-3.09	
	12:31:30	4387.5000	4297.35	151.92	-22,28	
	12;32:00	4388,0000	4295.44	151.97	-1,91	
04/20	12;39;30	4395.5000	4273.15	152.67	-22,30	
Q4/20	12:40:00	4396,0000	4272.54	152.72	6D	
04/20	12:51:30	4407,5000	4250,55	153,94	-22,00	
04/20	12;52:00	4408,0000	4249,71	153.95	- , 84	
	13:10:00	4426,0000	4227,35	155.54	-22,36	
	13:10:30	4426,5000	4226,85	155,58	- , 49	
	13:37:00	4453.0000	4204,83	157.13	~22.03	
	13:37:30	4453.5000	4204,32	157.16	-,51	
	14:15:30		4183,55			
		4491,5000		158.81	~20.77	
• .	14:54:00	4530.0000	4167.83	159,92	-15.71	
	15:32:00	456B.0000	4154,89	160,76	-12.94	
	16:10:00	4605.0000	4143.89	161.51	-11.01	
	16:48:00	4644.0000	4134,16	162.15	-9.72	
04/20	17:26:00	4682.0000	4125.50	162.71	-8.67	
04/20	18:04:00	4720.0000	4117.69	163.18	-7.80	
04/20	18:42:00	4758.0000	4110.31	163.50	~7,38	
04/20	19:20:00	4796.0000	4103,88	163,95	-6.44	
	19:58:00	4834,0000	4097.68	164.26	-6,20	
	20136:00	4872.0000	4091.88	164.54	-5,80	
	21;14:00	4910,0000	4086.60	164,80	~5,28	
	21:52:00	4948,0000	4081,30	165,05	-5.30	
-						
	22;30:00	4986,0000	4076.79	165,28	-4.51	
	23:08:00	5024.0000	4072,24	165.49	-4.55	
•	23:46:00	5062.0000	4067.96	165.69	-4.28	
	00:24:00	5100,0000	4063,95	165.88	-4.01	
· · ·	01;02:00	5138.0000	4060.10	166.05	~3.85	
· · ·	01:40:00	5176.0000	4056.37	166,22	-3,73	
	02:18:00	5214.0000	4052,88	1,66,38	~3.49	
	02:56:00	5252,0000	4049.54	166.54	-3.33	
04/21	03:34:00	5290.0000	4046.30	166.68	-3.24	
04/21	04:12:00	5328.0000	4043,20	166.82	-3.10	
	04:50:00	5366.0000	4040.19	166.96	~3,01	
-	05:28:00	5404.0000	4037.37	167.09	-2,83	
	06:06:00	5442.0000	4034.56	167.21	~2,80	
	06:44:00	5480.0000	4032.02	167,33	-2,55	
	07122:00	5518.0000	4029.30	167,44		
•	09,00,00				-2.71	
		5556.0000	4026.84	167.55	-2,46	
	00:30:00	5594,0000	4024.58	167.65	-2,26	
•	09:16:00	5632.0000	4022.23	167,76	-2.35	
	09;54;00	5670,0000	4019.89	167,85	-2,34	
	10;32;00	5708,0000	4017.68	167,95	-2.21	
	11:10:00	5746.0000	4015.35	168,04	-2,32	
04/21	11:48:00	5784,0000	4013.47	168,13	-1.89	
04/21	12:26:00	5822,0000	4011,42	168.21	-2.05	
04/21	13:04:00	5860,0000	4009,38	168.29	-2,04	
04/21	13:42:00	5898,0000	4007.50	168.37	-1.88	

COMPANY; WESTERN REFINING SOUTHWEST, INC.

1

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 5 OF 11

DATE ; 05/02/19

FILE REF; F240501.RED

1

Date	Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD]	hh:mm:sa	៣ៈចការវាភាគ , ភេពភាគា	Psig	Deg F	Psi	Ga. Press Ref, to 14,7 Poi Atm,
	14:20:00 14:58:00	5936.0000	4005.67	168.45	-1.83	
	15:36:00	5974.0000 6012.0000	4003.83 4002.06	168.54 168.62	-1,83 -1,78	
	15:14:00	6050.0000	4000,32	168.69	~1,73	
	16:52:00	6088,0000	3998.71	168.73	-1,61	
04/21	17:30:00	6126,0000	3997.01	168,79	-1.70	
04/21	18;08;00	6164,0000	3995.39	168.86	-1.62	
04/21 :	18:46:00	6202,0000	3993.82	168.93	-1.57	
	19:24:00	6240,0000	3992.31	168,98	-1,51	
	20:02:00	6278.0000	3990.80	169.05	-1,51	
	20:40.00	6316,0000	3989.33	169.10	-1,47	
-	21:18:00	6354.0000	3987.87	169,16	-1.46	
	21:56:00	6392,0000	3986,44	169.22	-1.43	
	22:34:00 23:12:00	6430.0000 6468.0000	3985,10 3983,68	169.27 169.32	-1.34 -1,42	
	23:50:00	6506,0000	3982,36	169.38	-1.32	
	00:28:00	6544,0000	3901.05	169.43	-1,31	
	01:06:00	6582,0000	3979,74	169.48	-1.31	
	01:44:00	6620,0000	3978,52	169.53	-1.22	
	02:22:00	6658,0000	3977.24	169.58	-1,28	
	03:00:00	6696.0000	3976,06	169.62	-1.18	
	03:38:00	6734.0000	3974.83	169.67	~1.23	
	04:16:00	6772,0000	3973.68	169.72	~1.15	
	04:54:00	6810.0000	3972,45	169.77	-1.23	
-	05:32:00	6848.0000	3971.39	169.79	~1.06	
	QG:10:00 06:48:00	6886,0000 6924,0000	3970,29 3969.19	169,85 169,90	-1.10 -1.10	
	07:26:00	6962.0000	3968,12	169.90	~1.07	
•	08:04:00	7000,0000	3967.03	169,97	-1.09	
	08:42:00	7038,0000	3966.02	170.01	-1.01	
04/22 (09:20:00	7076.0000	3964.97	170,04	-1.05	
04/22 (09:5B:00	7114,0000	3963,96	170.09	-1.01	
04/22 ;	10;36:00	7152.0000	3962,98	170,12	-,98	
· .	11:14:00	7190.0000	3961,96	170.16	-1.01	
	11:52:00	7228.0000	3960.96	170.20	-1,01	
	12:30:00	7266,0000	3960,00	170.24	95	
-	13:08:00	7304.0000	3959.04	170.27	96	
	13:46:00 14:24:00	7342.0000 7380.0000	3958.13 3957.22	170.31 170.34	-,91 -,91	
· · · ·	15:02:00	7418,0000	3956,30	170,38	92	
· · · ·	15:40:00	7456.0000	3955.44	170.40	87	
· · · ·	16:18:00	7494.0000	3954.51	170.44	- 93	
	16:56:00	7532.0000	3953.65	170,47	-,86	
04/22 1	17:34:00	7570.0000	3952.85	170.51	r.80	
	18:12:00	760B,0000	3952.03	170.53	-,82	
	18;50:00	7646,0000	3951.10	170.56	÷,85	
	19;28:00	7684.0000	3950,31	170,59	-, B7	
	20105:00	7722.0000	3949.56	170,63	-,76	
	20:44:00	7760.0000	3948.80	170,65	76	
	21:22:00 22:00:00	7798.0000 7836.0000	3947.96 3947,21	170.68 170.72	84 ~.75	
•	22:00:00	7874.0000	3946.37	170.74	~,85	
	23:16:00	7912,0000	3945.61	170.77	76	
•	23:54:00	7950.0000	3944.87	170,80	74	
	00;32:00	7988.0000	3944.11	1.70.83	76	
	01:10:00	8026,0000	3943,40	170.86	~.71	
	01:48:00	8064.0000	3942.66	170.88	74	
	02:26:00	8102,0000	3941.90	170.91	76	
	03:04:00	8140,0000	3941.19	170.94	72	
	03:42:00	8178.0000	3940.46	170,97	73	
	D4:20:00	8216.0000	3939.79	170.98	67	
	04:58:00 05:36:00	8254.0000 8292.0000	3939.11	171.01	57	
	05136:00 06:14:00	8330,0000	3938.46 3937.79	171.03 171.06	56 ~.67	
	06:52:00	8350,0000	3937.08	171,08	-,70	
,			0207190	2/2,00	.,,,,	

COMPANY: WESTERN REFINING SOUTHWEST, INC.

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : BAN JUAN COUNTY, NEW MEXICO

PAGE 5 OF 11

DATE : 05/02/19

FILE REF: F240501.RED

		DIE OURI COD					1100 (011 1210301.160
Date	Time	Test Time	Pressure	Temp	deltaP	Comment	
	hh:mm:sa		Psig	Deg F	Psi	Ga. Press Ref. to 14.7 Psi Atm.	

	07:30:00	8406.0000	3936.46	171.11	~.62		
	07:30:00	8444.0000			72		
			3935.74	171,13			
	0B;46:00	8482.0000	3935,13	171.16	-,62		
	09:24:00	8520.0000	3934.49	171.19	63		
	10:02:00	8558,0000	3933.86	171.21	63		
	10;40:00	8596,0000	3933,20	171.22	- , 67		
	11:18:00	B634.0000	3932.57	171.26	62		
04/23	11:56:00	8672.0000	3931.92	171.27	~.65		
04/23	12;34;00	8710.0000	3931.38	171.30	55		
04/23	13:12:00	8748.0000	3930.70	171.32	- 68		
04/23	13;50:00	8786.0000	3930.10	171.35	-,60		
04/23	14:28:00	8824,0000	3929.50	171 36	-,60		
04/23	15:06:00	8862,0000	3928.89	171,38	-,62		
	15;44;00	8900,0000	3920.27	171.41	62		
	16;22:00	8938,0000	3927,72	171.43	~,55		
	17:00:00	8976,0000	3927.18	171,45	-,55		
	17:38:00	9014,0000	3926.61	171,47	~ 57		
	18;16:00	9052,0000	3926,02	171.49	~,59		
	18:54:00	9090,0000	3925,45	171,52	- ,57		
	19:32:00	9128,0000	3924,91	171.53	- ,55		
-					- 53		
	20:10:00	9166,0000	3924.38	171,55			
	20:48:00	9204.0000	3923.88	171.57	50		
-	21;26:00	9242.0000	3923,32	171.59	-,55		
1.	22;04;00	9280,0000	3922,81	171.61	51		
	22:42:00	9318.0000	3922.27	171.63	55		
	23:20:00	9356,0000	3921.75	171.65	-,52		
04/23	23:58:00	9394,0000	3921.21	171.67	55		
04/24	00:36:00	9432,0000	3920.68	171.60	53 .		
04/24	01:14:00	9470.0000	3920.16	171,71	-,52		
04/24	01:52:00	9508,0000	3919.67	171,73	-,49		
04/24	02:30:00	9546.0000	3919.16	171,75	- ,51		
	03:08:00	9584.0000	3918.61	171,76	~,55		
	03:46:00	9622.0000	3918.14	171,78	-,48		
	04:24:00	9660.0000	3917.67	171.79	-,47		
	05:02:00	9698.0000	3917.19	171,82	~.49		
•	05:40:00	9736,0000	3916.67	171.85	51		
	06:18:00	9774,0000	3916,21	171.85	-,46		
· · ·	06:56:00	9812,0000	3915,75	171.88	46		
· .	07:34:00	9850,0000	3915.24	171.90	-,51		
· · ·	08:12:00	9888,0000	3914.80	171,90	- ,44		
		9926,0000	3914.28	171.93	-,51		
•	08:50:00				42		
•	09:28:00	9964.0000	3913.86	171.95			
	10:06:00	10002.0000	3913,35	171.96	-,51		
	10:44:00	10040.0000	3912.89	171.98	46		
•	11:22:00	10078.0000	3912,41	172.00	48		
	12:00:00	10116.0000	3912.01	172.01	-,40		
	12:38:00	10154.0000	3911.53	172.03	- , 48		
	13:16:00	10192,0000	3911.10	172.05	4 4		
	13:54:00	10230.0000	3910.63	172,06	-,47		
	14:32:00	10268.0000	3910.19	172,08	44		
-	15:10:00	10306,0000	3909.73	172.10	46		
04/24	15:4B:00	10344,0000	3909.27	172.12	46		
04/24	16:26:00	10382.0000	3908,84	172.13	43		
04/24	17:04:00	10420.0000	3908.44	172.15	41		
04/24	17:42:00	10458.0000	3908,00	172.16	-,44		
04/24	18:20:00	10496.0000	3907.60	172.18	,40		
04/24	18;58:00	10534,0000	3907,15	172,18	-,45		
•	19:36:00	10572.0000	3906.76	172.21	40		
	20:14:00	10610.0000	3906,33	172,23	- 43		
	20:52:00	10648,0000	3905.91	172.23	42		
•	21:30:00	10686.0000	. 3905.55	172,26	-,36		
	22:08:00	10724.0000	3905,12	172.26	43		
•	22:46:00	10762.0000	3904.74	172.20	-,37		
			3904.36		-,3B		
	23:24:00	10800,0000		172.30			
04/25	00:02:00	10838.0000	3903.95	172.32	41		

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 7 OF 11

DATE : 05/02/19

						FIDE RMC (F240501 (RED
Date	Time	Test Time	Pressure	Temp	deltaP	Comment
		ություղուղի. դուկին	Paig	-	Pei	Ga. Preas Ref. to 14.7 Psi Atm.
	·			Deg F		Gd. FIGB RCL, LD I4./ FBI ALM.
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	00:40:00	10876.0000	3903,54	172,33	~.41	
· · · ·	01;18;00	10914,0000	3903,12	172,34	42	
	01;56:00	10952.0000	3902.74	172.37	38	
04/25	02:34:00	10990.0000	3902.35	172.37	39	
04/25	03:12:00	11028,0000	3901.98	172,39	-,37	
04/25	03;50:00	11066.0000	3901.57	172,40	-,42	
04/25	04:28:00	11104.0000	3901.20	172.42	-,37	
04/25	05:06:00	11142.0000	3900.82	172,42	~.38	
04/25	05;44;00	11180.0000	3900.43	172.45	40	
04/25	06:22:00	1121B.0000	3900.07	172.46	-,36	
04/25	07:00:00	11256,0000	3899.70	172,48	37	
	07:3B:00	11294,0000	3899.36	172,49	-,34	
	08:16:00	11332,0000	3899,00	172,51	- 36	
	08:54:00	11370,0000	3898.63	172.52	-,3B	
	09:32:00	11408,0000	3898.27	172.53	-,36	
	10;10;00	11446,0000	3897.92	172.55	-,35	
	10:48:00	11484.0000	3897.53	172,56	~.39	
	11:26:00	11522,0000	3897,11	172.59	41	
,	12:04:00		3896,84	172.59	-,27	
	12:04:00	11560.0000				
,		11598,0000	3896,46	172.61	38	
	13:20:00	11636,0000	3896.10	172.62	36	
,	13:58:00	11674.0000	3895.72	172.63	36	
	14:36:00	11712.0000	3895.36	172,65	36	
	15:14:00	11750,0000	3895.01	172.67	-,35	
	15:52:00	11788,0000	3894.69	172.67	32	
	16:30:00	11826,0000	3894,38	172.69	30	
	17:08:00	11864.0000	3893,97	172.71	-,41	
04/25	17:46:00	11902.0000	3893.64	172.72	~.33	
04/25	18:24:00	11940.0000	3893.28	172,73	÷,36	
04/25	19:02:00	11978.0000	3892.95	172.75	33	
04/25	19:40:00	12016,0000	3892.66	172.75	-,29	
04/25	20:18:00	12054,0000	3692.28	172.77	-,37	
04/25	20:56:00	12092.0000	3892.00	172,78	29	
04/25	21:34:00	12130,0000	3891,71	172.80	28	
	22:12:00	12168,0000	3891.34	172.81	-,37	
	22:50:00	12206,0000	3891.02	172.82	32	
	23:28:00	12244.0000	3890.66	172.84	- 36	
	00:06:00	12282,0000	3890,36	172.85	31	
	00:44:00	12320.0000	3890.08	172.86	28	
· .	01:22:00	12358.0000	3889.73	172.87	35	
	02:00:00	12396.0000	3889.40	172.89	33	
· · ·	02:38:00	12434,0000		172.90	27	
	02:38:00		3889.13 3000 84	172.91	-,29	
		12472.0000	3888.84			
	03:54:00	12510.0000	3888.48	172.92	-,36	
	04:32:00	1254B.0000	3888.17	172.93	~,30	
	05:10:00	12586.0000	3887.87	172.95	30	
	05;48;00	12624.0000	3867.54	172,96	-,33	
	06:26:00	12662.0000	3867,25	172.97	30	
	07:04:00	12700.0000	3886.92	172,99	33	
	07:42:00	1273B.0000	3886.62	173.00	30	
	DB:20:00	12776.0000	3886.28	173.01	34	
•	08:58:00	12814.0000	3886.01	173.03	27	
04/26	09:36:00	12852,0000	3865,70	173.04	-,30	
04/26	10:14:00	12890,0000	3885,43	173,05	27	
04/26	10:52:00	12928,0000	3885,17	173.06	26	
04/26	11;30:00	12966.0000	3884.91	173.08	26	
04/25	12:08:00	33004.0000	3884,59	173.09	32	
	12:46:00	13042.0000	3684,21	173.11	38	
•	13:24:00	13080,0000	3883,96	173,11	~,26	
	14:02:00	13118,0000	3883,65	173,13	~,30	
	14:40:00	13156.0000	3883,35	173.14	-,30	
	15:18:00	13194.0000	3883,09	173,15	-,27	
•	15:56:00	13232.0000	3882,75	173,16	~,34	
	15:34:00	13270.0000	3882,49	173.17	26	
	17:12:00	13308,0000	3682,19	173,19	29	
04/20	A7;12:00	T3300,0000	3002.13	T13'13	47	

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

#### PAGE 8 OF 11

DATE : 05/02/19

4/26	Time hh:mm:ฮฮ	Test Time	Pressure Psiq	Temp	deltaP	Comment
4/26	hh:mn:ss		Peta	<b>D</b> - <b>D</b>		
4/25	~~~~~~		5	Deg F	Pei	Ga. Press Ref. to 14.7 Psi Atm.
14/26	17:50:00	13346,0000	3881.94	173.20	26	
1100	18:28:00	13384.0000	3081.59 3081.36	173.21 173.21	35 23	
· ·	19:06:00 19:44:00	13422.0000 13460.0000	3881.30	173.22	- 29	
	20122:00	13498.0000	3880.77	173.24	30	
	21:00:00	13536.0000	3880.49	173.25	~ . 26	
	21138:00	13574.0000	3880.21	173,26	-,28	
-	22:16:00	13612.0000	3879.97	173.27	- 24	
14/26	22:54:00	13650.0000	3879.70	173.28	27	
4/26	23:32:00	13688.0000	3879,48	173.30	~.22	
· · ·	00:10:00	13726,0000	3879.14	173.31	34	
	00:48:00	13764.0000	3678,65	173,32	-,29	
-	01:26:00	13802.0000	3878.64	173,33	-,20	
· · .	02:04:00	13840.0000	3878.33	173.35 173.36	31 30	
	02:42:00 03:20:00	13878.0000 13916.0000	3878.04 3877.83	173.37	~.20	
	03:20:00	13954,0000	3877.60	173.38	23	
	04:36:00	13992,0000	3877.31	173.38	-,29	
	05:14:00	14030.0000	3876.99	173.40	-,32	
	05:52:00	14068,0000	3876.74	173,41	-,25	
)4/27	05:30:00	14106,0000	3876.48	173.43	-,26	
)4/27	07:08:00	14144,0000	3876.22	173 43	26	
	D7:46:00	14182,0000	3875.97	173.44	~,25	
	08:24:00	14220.0000	1675.70	173.46	27	
	09:02:00	14258.0000	3875.52	173,47	10	
- C.	09:40:00	14296.0000	3875.21 3874.99	173.48 173.49	31 22	
	10;18:00 10:56:00	14334.0000 14372.0000	3874.69	173.51	-,30	
	11:34:00	14410.0008	3874.45	173.52	24	
	12:12:00	14448.0000	3874.19	173 53	27	
	12:50:00	14486.0000	3873,94	173.53	25	
24/27	13:28:00	14524.0000	3873,67	173.55	26	
04/27	14:06:00	14562.0000	3873.40	173,56	~.27	
· · ·	14:44:00	14600.0000	3873.18	173,57	~,22	
	15:22:00	14638,0000	3672.95	173,58	-,23	
	16:00:00	14676.0000	3872.67	173.59	- 27	
· · ·	16:38:00 17:16:00	14714.0000	3872,41 3072,10	173,60 173,61	-,26 -,23	
	17:14:00	14752,0000 14790,0000	3871.93	173,62	-,25	
· · · ·	18:32:00	14828.0000	3871.71	173.63	23	
	19:10:00	14866,0000	3871.44	173.64	27	
· · ·	19;48:00	14904,0000	3671.21	171,66	-,23	
4/27	20:26:00	14942.0000	3870,96	173,66	-,25	
4/27	21:04:00	14980,0000	3870,76	1,73,68	-,20	
	21:42:00	15018.0000	3870,47	173,69	29	
· · ·	22:20:00	15056.0000	3870.23	173.69	~.24	
	22:58:00	15094.0000	3870.05	173,71	17	
	23:36:00	15132.0000	3869,79	173.72	26	
	00:14:00 00:52:00	15170.0000 15208.0000	3869.58 3869.33	173,73 173,74	-,21 -,25	
	00152:00	15246,0000	3869.10	173,74	- ,23	
	02:08:00	15284,0000	3868.93	173.76	~,18	
	02:46:00	15322,0000	3868,69	173.77	24	
	03:24:00	15360,0000	3858,48	173.78	-,21	
	04:02:00	15398.0000	3868.19	173.79	~,29	
	04:40:00	15436.0000	3867.98	173.80	21	
	05:18:00	15474,0000	3667.70	173.81	-,28	
	05:56:00	15512.0000	3867.57	173.62	-,13	
	05;34;00	15550.0000	3867.30	173,83	27	*
	07:12:00	15508.0000	3867.06	173.84	24	
· · ·	07:50:00	15626.0000	3866.01	173.85 173 86	25	
· · ·	08:28:00	15664.0000 15702.0000	3866,64 3866, <b>43</b>	173,86 173,88	17 21	
	09:08:00	15740.0000	3866,15	173.88	26	
	10:22:00	15778.0000	3865.97	173,90	-,18	
,		,			•	

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 9 OF 11

DATE : 05/02/19

Date	Time	Test Time	Pressure	Temp	deltaP	Comment
	hh(mm:89	ດແກດແກ່ດນັກ ເກັດຖາກ	Sera	Deg F	Psi	Ga. Press Ref. to 14.7 Psi Atm.
				~~~~		
04/28	11:00:00	15916,0000	3865.77	173.90	-,20	
04/28	11:38:00	15854,0000	3865.51	173.92	~,26	
04/28	12:16:00	15892.0000	3865.26	173,93	~.25	
	12:54:00	15930.0000	3865.02	173,93	-,24	
	13:32:00	15968.0000	3864.82	173.94	20	
	14:10:00	16006,0000	3864,60	173 96	- , 22	
	14:48:00	16044.0000	3864.39	173.96	21	
	15:26:00	16092,0000	3864.23	173.97	~,16	
	16:04:00	16120.0000	3863,99	173,98	~,24	
	16:42:00	16158,0000	3863,78	173.99	-,21	
	17:20:00 17:58:00	16196,0000 16234,0000	3863,53 3863,26	174.00 174.01	-,25 -,27	
	18:36:00	16272,0000	3863,20	174.02	-,16	
	19:14:00	16310,0000	3862.81	174.03	- ,29	
	19:52:00	15348.0000	3862,71	174,04	-,10	
	20:30:00	16386.0000	3862,43	174.05	- , 27	
04/28	21:08:00	16424.0000	3862,26	174.06	~.17	
04/28	21:46:00	16462.0000	3862.06	174.07	21	
04/28	22:24:00	16500.0000	3861.80	174.07	-,25	
04/28	23:02:00	16538.0000	3861.60	174.08	20	
	23:40:00	16576,0000	3861,41	174.09	- 19	
	00;18:00	16614,0000	3861.24	174.10	17	
· · · ·	00;56;00	16652,0000	3861.01	174.11	-,23	
	01:34:00	16690.0000	3860.85	174.12	~.16	
· .	02:12:00	16728,0000	3860.59	174,13	-,26	
	02:50:00 03:28:00	16766,0000	3860,43 3860,20	174.14 174.15	16 23	
	04:06:00	16804,0000 16842.0000	3860.20 3860,03	174.16	-,17	
-	04:44:00	16880.0000	3859,80	174.17	23	
	05:22:00	16918,0000	3859,62	174 18	18	
-	06:00:00	16956,0000	3859.45	174,18	-,17	
	06:38:00	16994,0000	3859.22	174,20	22	
04/29	07:16:00	17032.0000	3859.00	174.21	-,23	
04/29	07:54:00	17070.0000	3858.79	174.21	20	
04/29	08:32:00	17108.0000	3658.64	174.23	16	
	09:10;00	17146.0000	3858,39	174.24	25	
	09:48:00	17184 0000	3858.20	174.24	19	
	10:26:00	17222.0000	3058.02	174,26	18	
	11:04:00	17260,0000	3657.80	174,27	22	
	11:42:00 12:20:00	17298,0000 17335,0000	3857.60 3857.41	174.28 174.29	-,20 -,19	
	12:58:00	17374,0000	3857.41	174.29	-,20	
	13:36:00	17412.0000	3857.03	174.30	-,1B	
	14:14:00	17450.0000	3856.84	174.32	-,19	
	14:52:00	17488.0000	3856.61	174,32	23	
	15:30:00	17526.0000	3856.47	174.32	14	
	16:08:00	17564.0000	3656.27	174,33	20	
	16:46:00	17602.0000	3856,10	174.35	17	
	17:24:00	17640.0000	3855.91	174,35	20	
	18:02:00	17678.0000	3855,68	174.37	- ,22	
· · ·	18:40:00 19:18:00	17716.0000 17754.0000	3855.49 3855.37	174.38 174.38	19 12	
	19:18:00	17792.0000	3855.11	174.30	12	
'	20:34:00	17830.0000	3854.91	174.40	~.20	
	21;12:00	17868.0000	3054.77	174.41	1.4	
	21:50:00	17906.0000	3854.53	174.41	- ,23	
	22:28:00	17944,0000	3854.30	174.43	23	
	23:05:00	17982,0000	3054.17	174.43	-,13	
	23:44:00	18020,0000	3853.99	174.44	-,18	
,	00:22:00	18058,0000	3853,76	174.45	23	
-	01:00:00	10096.0000	3853,58	174.46	-,19	
	01:38:00	16134,0000	3853,43	174.46	15	,
	02:16:00	16172.0000	3853,26	174,48	16	
	02:54:00 03:32:00	18210.0000 18248,0000	3853,09 3852,90	174.49 174,49	-,17	
04/30	00,22,00	10240,0000	0014.20	1/4/43	-,19	

WELL NAME ; WATER DISPOSAL WELL NO. 2 (TOP INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

Date	Time	Test Time	Pressure	Temp	deltaP	Comment
	hh:mm:28		Paig	Deg F	Psi	Ga. Press Ref. to 14.7 Psi Atm.
	04:10:00 04:48:00	18286.0000 18324,0000	3852,75 3852,53	174.50 174.51	15 ~.22	
	05:26:00	18362.0000	3652,33	174.52	-,14	
· · · ·	06:04:00	18400.0000	3652.19	174.53	~.20	
	06:42:00	18438.0000	3852,04	174.54	16	
	07:20:00	18476.0000	3851.85	174.55	19	
	07:58:00 08:36:00	18514.0000 18552.0000	3051,68 3851,51	174.56 174.57	17 17	
	09:14:00	18590.0000	3851,31	174.57	~.24	
	09:52:00	18628,0000	3851,14	174.58	-,13	
04/30	10:30:00	18666.0000	3850.97	174.59	-,17	
	11:0B:00	18704.0000	3850.77	174,60	20	
	11:46:00	18742.0000	3850.63	174.60	~,14	
	12:24:00 13:01:00	18780.0000 18817,0000	3850,44 3842,15	174.62 176.20	- 18 -6.29	TANDEM INST. OFF BOTTOM
· · · ·	13:01:30	18817.5000	3823.58	177.00	-18,57	
· · ·	13;02:00	18818.0000	3802.69	177.80	-20.89	
· · ·	13;02:30	10818.5000	3781.54	178.60	-21,15	
	13:03:00	18819.0000	3760.12	179.41	-21.42	
•	13:03:30 13:05:30	10819,5000 18821,5000	3730.31 3716,77	180,21 193,41	-21.81 -21,54	
	13:12:00	18828.0000	3703,60	185.71	-13,17	STOP @ 7000'
, ,	13:12:30	18628,5000	3662,70	185.74	-40,90	
04/30	13:13:00	18829,0000	3621,15	185.04	-41.54	
	13:13:30	18829,5000	3579.08	184,34	-41.28	
	13:14:00	18830.0000	3537.67	183.64	-42,21	
•	13:14:30 13:15:00	18830.5000 18831.0000	3495,85 3453,50	182.94 182.24	-41,81 -42,35	
•	13:15:30	18831,5000	3412.76	181.54	-40.75	
-	13:16:00	18832,0000	3372.54	180.84	-40.22	
04/30	13:16:30	18832,5000	3340.04	180.14	-32,49	
	13:17:00	18833.0000	3308.48	179.44	-31,56	
•	13;19:00 13:21:30	18835,0000 18837,5000	3288.37 3287,68	175.97 172.52	-20,11 69	
	13:24:00	18840.0000	3288,79	169.08	1.11	STOP @ 6000'
	13;24:30	18840,5000	3253,62	166,93	-35,18	
-	13:25:00	18841,0000	3212,82	167.74	-40,80	
· · ·	13:25:30	18841,5000	3172,14	166,65	-40,67	
	13:26:00 13:26:30	18842,0000	3130,93	165.56 164.47	-41,21 -43,08	
· · ·	13:27:00	10842.5000 10843.0000	3087,85 3044,10	163.38	~43,75	
· · · ·	13:27:30	18843,5000	3000,34	162,29	-43.76	
04/30	13;28:00	19844.0000	2956.17	161.20	-44.17	
	13:28:30	18844.5000	2914,53	160.12	~41.64	
	13;29:00	18845.0000	2876.35	159,03	-36,17	
	13:30:30 13:32:30	18846.5000 18848.5000	2858.24 2857.06	155.19 152.03	~18.11 ~1.18	
	13:34:30	18850.5000	2857.68	148.88	,63	STOP @ 5000'
	1,3:35:30	18851.5000	2858.17	147.30	.49	
	13:36:00	18852.0000	2835.01	146,52	-23,16	
•	13:36:30	18852.5000	2789.92	145,22	-45,09	
	13:37:00 13:37:30	18853.0000 18853,5000	2745,24 2700,29	145,20 144,17	-44,68 -44,95	х х
•	13;38:00	18854,0000	2652.26	143,15	-48.03	
04/30	13:30:30	18854,5000	2602.76	142.12	-49,50	
•	13:39:00	18855,0000	2553.38	141,10	-49,38	
•	13:39:30	18855,5000	2504,13	140,07	-49,25	
	13:40:00 13:40:30	18956.0000 18856.5000	2464.89 2437,27	139,05 138.03	-39,24 -27,62	
	13:40:30	18858,0000	2426.29	134,97	-10,98	
	13:44:00	18860,0000	2426.00	131.94	29	
	13:47:00	18863.0000	2426.50	128.45	.50	
	13:49:00	18865.0000	2411.94	126.21	-14.55	STOP @ 4000'
	13:49:30 13:50:00	18865.5000 18866.0000	2361.45 2307.21	125.34 124.46	-50.49 -54.24	
04/30		7999910000	2301122	20.1120	U1.2X	

WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP, INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 11 OF 11

DATE : 05/02/19

Date	Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD	hh:mm:ss		Paig	Deg F	587 587	Ga, Press Ref. to 14.7 Psi Atm,
04/20	17.50.30	10066 K000	2251.90	123.59	-55,32	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	13:50:30	18866.5000	2197.11	122.72	-54,79	
	13:51:00	18867.0000		121,05	-55.46	
	13:51:30	18867.5000	2141.64			
	13:52:00	1886B.0000	2087.78	120,97	-53,86	
	13:52:30	18868.5000	2038.59	120.11	-49,19	
	13:53:00	18869.0000	1995.82	119,23	-42.77	
	13:54:30	18870.5000	1993,39	115,85	-2.42	
	13:57:00	18873.0000	1993.25	112.24	14	BROP @ 3000'
	13:59:30	19875.5000	1993.9B	108,63	.74	SKOP @ 3000'
	14:00:00	19876.0000	1978.45	107,90	~15.53	
· · ·	14:00:30	18876,5000	1924.36	107.64	-54.09	
•	14:01:00	18877.0000	1867.67	106.89	-56.69	
	14:01:30	18877,5000	1809,90	106,14	-57.77	
•	14:02:00	18879,0000	1752.27	105.30	-57.63	
	14:02:30	18878.5000	1694.63	104,64	-57.65	
	14:03:00	18879.0000	1636.05	103,88	-58.58	
	14:03:30	18879,5000	1583,21	103,13	-52.83	
	14:04:00	18880.0000	1559.82	102.38	-23.39	
-	14:06:30	10882.5000	1560.10	99.40	,28	
· · ·	14:10:00	19886.0000	1560.18	95.27	,08	
•	14:11:00	18887.0000	1541.61	94,36	-18,57	
	14:11:30	18887.5000	1497.18	93,93	-44.43	
	14:12:00	19888.0000	1447.11	93,49	-50.07	
	14:12:30	18088.5000	1395.82	93,11	-51.30	
	14:13:00	18889.0000	1343.24	91,60	-52.58	
•	14:13:30	18889.5000	1289.70	90.49	-53.53	
	14:14:00	1,8890.0000	1235.08	89.18	-54.62	
	14:14:30	18890.5000	1180.72	87.87	-54,36	
	14:15:00	18891,0000	1126.73	86,57	~53,98	
	14:16:30	18892.5000	1124.27	82.65	~2.47	
	14:18:00	18894,0000	1124,80	78,75	.53	
	14:21:00	18897.0000	1124.95	75.45	15	STOP @ 1000'
	14;23:00	18899.0000	1107.66	73.62	-17.29	
-	14:23:30	18899,5000	1065.01	73,15	-42.65	
•	14:24:00	18900.0000	1022.62	72.69	-42.39	
	14:24:30	18900.5000	979.53	72,32	-43.09	
	14:25:00	18901.0000	935.59	71,63 T0 DE	-43.94	
	14:25:30	18901,5000	891.64	70.95	-43.95	
	14:25:00	18902.0000	844.88	70.26	~46.77	
	14:26:30	18902.5000	796.09	69,58 CD 20	-48.79	
	14:27:00	18903.0000	746.90	68,89	~49,19	
-	14:27:30	18903,5000	709.38	60.20	-37.52	
•	14:29:00	18904,0000	688.49	67,52	-20.85	
	14:28:30	18904.5000	686.78	66,84	-1.71	
	14:32:30	18908,5000	686,17	65.43	-,60	SURFACE STOP
-	14:33:00	18909,0000	,01	65.60	-686.16	
-	14:58:00	18934.0000	,01	70.21	,00	
04/30	15:04:00	18940.0000	,01	74.24	.00	

COMPANY : WESTERN REFINING SOUTHWEST, INC. WELL NAME : WATER DISPOSAL WELL NO. 2 (TOP INST.) WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO PAGE : B1

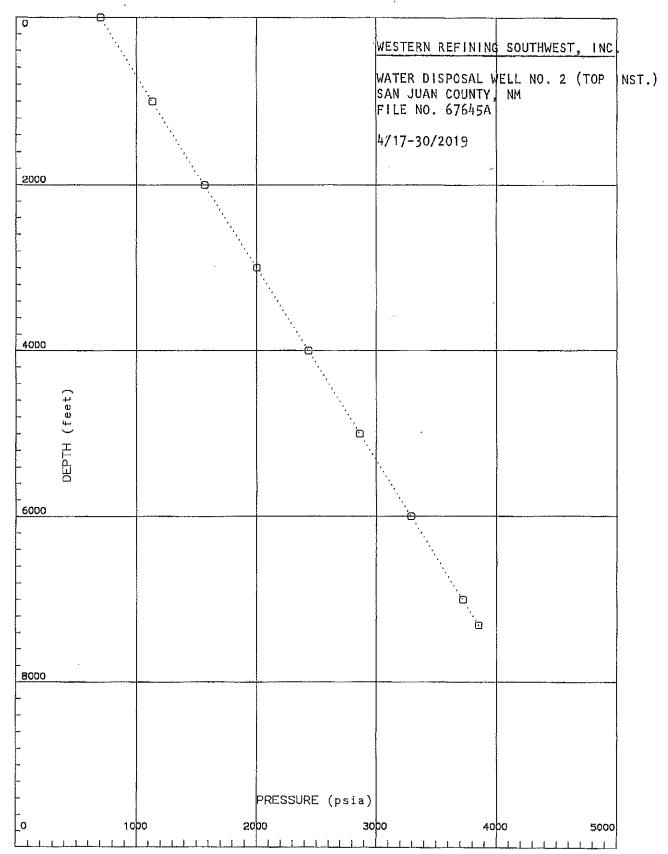
DATE : 05/02/19

Date MM/DD	Time hh:mm:se	Test Time mamaan.madu	Key Event	Pressure Psig	Temp Deg F
04/17		40,0000	PRESSURED UP LUBRICATOR	14,59	75,37
04/17	12;11;30	47,5000	SURFACE STOP	776.31	70,35
04/17	12:12:00	48,0000	TRIPPED IN WELL WITH TANDEM ELEC. INST.	602,59	69,89
04/17	12:44:30	80,5000	TANDEM INST. @ 7312'	3937.26	170.40
04/17	12:50:30	86,5000	STARTED INJECTION PUMP	3943.82	171,41
04/18	19:14:00	1910.0000	STOP @ 2000'	4402.79	148.19
04/20	12:20:00	4376.0000	INJECTION STOPPED	4403.04	151.37
04/20	12:22:00	4378,0000	BEGAN FALL-OFF	4370.45	151,39
04/30	13:01;0D	18817,0000	TANDEM INST. OFF BOTTOM	3842.15	176.20
04/30	13:12:00	18828,0000	STOP @ 7000'	3703.60	185.71
04/30	13:24:00	18040.0000	STOP @ 6000'	3288.79	169.00
04/30	13:34:30	19850.5000	STOP @ 5000'	2857.68	148.88
04/30	13:49:00	19965,0000	STOP @ 4000'	2411,94	126,21
04/30	13:59:30	18875,5000	SROP @ 3000'	1,993,98	108,63
04/30	14:21:00	18897,0000	STOP @ 1000'	1124.95	75.45
04/30	14:32:30	18908,5000	SURFACE STOP	686.17	65,43

					Fres :	sure	(Psig)	,				Σ
88.8	20 0	500,00	1999.99	1500.00	2996.60	2500.00	3000.00	0 5 6 6 6		4998.99	4500.00	WATER DISPOSAL WELL NO, 2 (TOP INST.)
32.60										\square		SAL WELL
64.00											5	NO JURN F25
07 99										\square		NP INST.)
												_
1 KR RR RR RR RR 1												-
								- <u> </u>				TEFTELLER,
ол К 20 00												ER, INC. ON FALL-OFF
200 BB 830												OFF TEST
329.00					····				<u> </u>			

WESTERN REFINING SOUTHWEST, INC.

Pressure (Psig)


Company: WESTERN REFINING SOUTHWEST, INC. SAN JUAN NEW MEXICO Well: WATER DISPOSAL WELL NO. 2 County: Field: ENTRADA State: NEW MEXICO Date: 04/17/2019 Well Type: WATER DISPOSAL Engineer: NEIL TEFTELLER Gauge Type: ELECTRONIC MEMORY Gauge Range: 0 - 5000 Test Type: GRADIENT Gauge Depth: 7312 ft Status: SHUT IN Serial No.: 240 (TOP INST.) File Name: Tubing: 4" ΤO Tubing: TO Casing: 7" то Oil Level Perfs.: H2O Level Shut-in BHP 7312 ft Shut-in BHT 186 F @ 7312 ft 3852 @ Shut-in WHP 700 Shut-in WHT 0 F

[Tefteller Incorporated]

÷.

#	MD	TVD	PRESSURE	PSI/ft
1	7312	7312	3852,00	
2	7000	7000	3716.00	0.436
3	6000	6000	3291.00	0.425
4	5000	5000	2863.00	0.428
5	4000	4000	2432.00	0.431
6	3000	3000	1999.00	0.433
7	2000	2000	1565.00	0.434
8	1000	1000	1131.00	0.434
9	0	0	700.00	0.431

٨

-

05/02/19 File Reference F262501.RED

CustomerWESTERN REFINING SOUTHWEST, INC.StreetP.O. BOX 159City/StateBLOOMFIELD, NM 87413CountryUSAService CompanyTEFTELLER, INC.Well NameWATER DISPOSAL WELL NO. 2 (BOTTOM INST.Well LocationSAN JUAN COUNTY, NEW MEXICOField / PoolFIELDStatus (OII, Gas, Other)WATER DISPOSALTest TypeINJECTION FALL-OFF TESTDate of Test4-17-19Producing Interval7312'Recorder PostionStatt: 4-17-2019Stop:Stop:Duration:315 HRS. TANDEM BLEC. MEMORY INST. TIMEBottom Hole TemperatureMICRO-SMART SYSTEMSSerial NumberSP2000Pressure RangeSP2000Pressure RangeSP2000Station I.D.5/15/18Gauge Setup Parameters5/15/18

Gauge Secup Farameters

Page A

WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 1 OF 13

DATE : 05/02/19

WELL LOCATION :	SAN JUAN COUR	TY, NEW MEATC	U		
Date Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD hh:mm:ss		Paig	Deg F	Pai	Ga, Press Ref, to 14.7 Psi Atm.
		-			***************************************
04/30 11:24:00	,0000	.01	65.11		
04/17 12:00:00	36.0000	.01	68.17	.00	
04/17 12:04:15	40,2500	21.99	68.49	21.90	PRESSURED UP LUBRICATOR
04/17 12:04:30	40.5000	88.35	68,46	66.36	
04/17 12:04:45	40.7500	746,65	68,42	658.30	
04/17 12:05:00	41,0000	771.51	68,39	24.87	
04/17 12:12:00	48,0000	787,97	67.54	16.46	SURFACE STOP TRIPPED IN WELL WITH TANDEM ELEC. INST.
04/17 12:12:15	48,2500		67.53	18.40	TRIPPED IN WELL WITH IMADEM ELLC, INSI,
04/17 12:12:45	48,7500	817.01	67.50	10.65	
04/17 12:13:00	49.0000	843.03	67.49	26.02	
04/17 12:13:15	49,2500	870.69	67.33	27.66 22,36	
04/17 12:13:30	49.5000	893.04	67.15 66.97	11.29	
04/17 12:13:45	49.7500	904,33 916,64	66.79	12,30	
04/17 12:14:00	50.0000	927.79	66.61	11,15	
04/17 12:14:15	50.2500 50.5000	953.45	66.43	25,67	
04/17 12:14:30	50.3000	933.40 977.40	66.24	23.95	
04/17 12:14:45 04/17 12:15:00	51.0000	995,74	66.06	18.34	
04/17 12:15:15	51.0000	1016.67	65,88	20,93	
04/17 12:15:30	51,5000	1042,35	65.69		
04/17 12:15:45	51,7500	1070,33	65.51	27.96	·
04/17 12:16:00	52,0000	1098,60	65.33	28.27	
04/17 12:16:15	52,2500	1129,42	65,21	30.83	
04/17 12:16:30		1157,13	65.30	27,71	
04/17 12:16:45		1188,87	65.37	31.74	
04/17 12:17:00		1219.31	65.46	30,44	
04/17 12:17:15		1246.59	65.53	27.28	
04/17 12:17:30	53,5000	1257,62	65.61	11.03	
04/17 12:17:45	53.7500	1271.23	65.69	13.62	
04/17 12:18:00	54,0000	1286,15	65.77	14.91	
04/17 12:18:15	54.2500	1297.89	65.85	11.75	
04/17 12:18:30	54,5000	1317.84	65,93	19,94	
04/17 12:18:45	54.7500	1339.36	66,01	21,52	
04/17 12:19:00	55,0000	1360,31	66,09	20,95	
04/17 12:19:15		1383.60	66.36	23.29	
04/17 12:19:30		1400.19	66,79	16,59	
04/17 12:19:45		1417.78	67,21	17,59	
04/17 12:20:00		1436,37	67,64	18.59	
04/17 12:20:15		1449,22	68.07	12.84	
04/17 12:20:30		1465,65	68,50	16,43	
04/17 12:20:45		1488.54	68.94	22.89 22.61	
04/17 12:21:00		1511,15	69.37 69.80	28.64	
04/17 12:21:15		1539,79	70,23	30.22	
04/17 12:21:30		1570.01 1598.21	70,23	28.20	
04/17 12:21:45		1642.79	70.00	44.58	
04/17 12:22:00 04/17 12:22:15		1675.03	71.71	32.25	
04/17 12:22:19		1707,16	72.51	32,13	
04/17 12:22:30		1734,55	73,31	27,38	
04/17 12:22:00		1763.50	74.12	28,95	
04/17 12:23:00		1790.29	74.92	26,79	
04/17 12:23:30		1816.50	75.72	26,21	
04/17 12:23:45		1846.01	76.53	29.50	
04/17 12;24:00		1867.32	77.33	21,32	
04/17 12:24:15		1889.35	78,13	22.03	
04/17 12:24:30		1913.52	78,94	24.17	
04/17 12:24:45		1943.29	79.74	29.77	
04/17 12:25:00		1971.03	80,55	27.74	
04/17 12:25:15		1990.79	81,49	19.76	
04/17 12:25:30	61,5000		82.38	18,93	
04/17 12:25:45			83.27	13.47	
04/17 12:26:00			84.17	26,22	·
04/17 12:26:15			85.06	32.95	
04/17 12:26:30			85.96	25.77	
04/17 12:26:45	5 62.7500	2137.05	86.95	28.92	

WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 2 OF 13

DATE : 05/02/19

٦

		Test Time mmmmmmm.mmmm	Pressure Psig	Tamp Dag F	deltaP Psi	Comment Ga, Fress Ref. to 14.7 Psi Atm,
		63.0000	2161.37	67,75	24.32	
	12:27:00	63,2500	2198.44	88.64	37.07	
	12:27:30	63.5000	2240.22	89.54	41.78	
	12:27:45	63.7500	2281,70	90,44	41.48	
- C.	12:28:00	64.0000	2318.30	91.33	36.60	
	12,28,15	64.2500	2368,09	92.19	49.79	
4/17	12:28:30	64,5000	2408.40	93.26	40.31	
4/17	12:28:45	64,7500	2446,40	94,34	38.00	
4/17	12;29:00	65,0000	2486.52	95.43	40.13	
	12:29:15	65.2500	2528.78	96.50	42.26	
	12:29:30	65,5000	2563.29	97.58	34.51	
•	12:29:45	65,7500	2603,36	98.67	40.07 47.51	
	12:30:00	65,0000	2650.87	99,74	47.91	
	12:30:15	66.2500	2698.70 2737.65	100.82 101.91	38,87	
	12:30:30	66.5000	2775.94	102.99	38.29	
	12:30:45 12:31:00	66.7500 67.0000	2812.64	104.07	36,70	
	12:31:15	67.2500	2852.00	105.37	39,36	
-	12:31:15	67.5000	2886.39	106.77	34,39	
	12:31:45	67.7500	2922.46	108.19	36,07	
	12:32:00	68.0000	2955.23	1,09.60	32,77	
	12:32:15	68.2500	2991,12	111.01	35.89	
04/17	12;32:30	68.5000	3034.12	112,42	43,00	
04/17	12:32:45	68,7500	3072.09	113,84	37,97	
04/17	12;33:00	69,0000	3108.90	115,25	36.81	
	12:33:15	69,2500	3148.25	116.67	39.35	
	12:33:30	69,5000	3189.00	118.09	40.75	
	12:33:45	69,7500	3222.45	119.51 120.92	33.45 35.00	
	12:34:00	70.0000	3257.45 3295.45	122,45	38.00	
	12:34:15	70.2500 70.5000	3337.50	124.18	42.05	
	12:34:30 12:34:45	70.3000	3382.07	125,91	44,57	
	12:35:00	71.0000	3426.60	127.64	44.53	
	12:35:15	71,2500	3475.23	129.37	48.62	
-	12:35:30	71.5000	3529.21	131.11	53.98	
· · ·	12:35:45	71.7500	3577.18	132.84	47.97	1
	12:36:00	72,0000	3625.38	134.58	48.20	
04/17	12:36:15	72.2500	3673,84	136.31	48,46	
04/1.7	12:36:30	72.5000	3717.55	138.05	43,72	
	12:36:45	72.7500	3759.81	139,79	42,26	
	12:37:00	73,0000	3805.44	141,53	45,63	
	12:37:15	73.2500	3938,58	143.48	33.14	
· · ·	12:37:30	73,5000	3866.34	145.02	27.76 28,84	
-	12;37:45	73,7500	3095,18 3910,75	146,58 148,14	23,57	
	12:38:00	74,0000 74,5000	3918,75	151,25	14,35	
	12:39:30 12:39:00	75,0000	3934,36	154.37	1.26	
	12:39:30	75.5000	3935.01	157.49	,66	
	12:40:00	76.0000	3934.79	160.61	~,22	
	12:41:30	77.5000	3936,53	163.98	1,73	TANDEM INST, @ 7312'
	12:43:15	79.2500	3935,60	167.24	~,85	
· · · ·	12:50:00	86,0000	3935.10	169.91	57	STARTED INJECTION PUMP
04/17	12:51:00	87.0000	3959,31	170.01	24.21	
· · · ·	12:51:30	67,5000	3977,58	170.10	18,27	
	12:51:45	87.7500	3984.57	170.15	6,98	
	12;52;45		4004.16	170,40	19,59	
	12:53:00		4008.04	170.45	3,88	
	12;55:00	91.0000	4029.27	171.43	21,23 1,07	
	7 12:55:15	91,2500	4031.14 4052.56	171.63 174.78	21.42	
· ·	7 12:58:45	94,7500 98,5000	4052,56 4071.9B	170,78	19,42	
	7 13:02:30 7 13:10:15		4071.98	180,41	21,96	
-	/ 13/10/15 / 13/10/30		4094.54	180,44	.61	
-	7 13:10:30 7 13:22:45		4116.69	180.25	22.14	
		119.0000	4117.12	180.24	.44	

WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

.

DATE : 05/02/19

ł

FILE REF: F262501.RED

					a	
Date Time	Test Time	Pressure	Temp	deltaF	Comment	to 14.7 Psi Atm.
MM/DD hh:mm:se		Psig	Deg F	Psi		FO TH'' EDI VOWA
		4120 42	178,77	22.29		
04/17 13:40:30	136.5000	4139.41	178.76	.28		
04/17 13:40:45	136.7500	4139.69 4162,01	176.71	22.32		
04/17 14:08:00	164.0000	4162.61	176.63	.60		
04/17 14:09:00	165.0000 203.0000	4182.93	174.11	20,32		
04/17 14:47:00	241,0000	4197.64	171.98	14.71		
04/17 15:25:00	279.0000	4209.04	170.13	11,40		
04/17 16:03:00	317.0000	4210.77	168.57	9.73		
04/17 16:41:00 04/17 17:19:00	355.0000	4225.40	167.29	6.70		
04/17 17:57:00	393,0000	4231,85	166.23	6,38		
04/17 10:35:00	431.0000	4236.56	165.43	4.71		
04/17 19:13:00	469.0000	4239.53	164.70	2.97		
04/17 19:51:00	507.0000	4243.95	164,09	4,42		
04/17 20:29:00	545,0000	4248.16	163.54	4.22		
04/17 21:07:00	583,0000	4251.91	162.92	3.75		
04/17 21:45:00	621,0000	4255.00	162.42	3.09		
04/17 22:23:00	659,0000	4258.78	161.96	3.78		
04/17 23;01:00	697,0000	4262,74	161.54	3,96		
04/17 23:39:00	735,0000	4265,00	161,13	2,26		
04/18 00:17:00	773.0000	4265.20	160.80	.20		
04/18 00:55:00	811,0000	4265.63	160.62	.43		
04/18 01:33:00	849.0000	4266,50	160.49	.87		
04/18 02:11:00	887.0000	4268,62	160.37	2.12		
04/18 02:49:00	925.0000	4270.37	160.25	1.75		
04/18 03:27:00	963.0000	4272,05	160.17	1.68		
04/18 04:05:00	1001.0000	4270.53	160.10	-1.52		
04/18 04:43:00	1039.0000	4270.38	160.13	15		
04/18 05:21;00	1077.0000	4270.00	160.10	37		
04/18 05:59:00		4270.00	160.18	, 8 D		
04/18 06:37:00		4271.68	160.16	.88 22,31		
04/10 06:57:45		4293.99	160.16	,99		
04/1B 06:58:00		4294,98	160.16	22,1B		
04/18 07:12:15		4317.16	159.67 159.65	, 38		
04/18 07:12:30		4317.55	157,61	17.04		
04/18 07:51:00		4334,50 4344,28	156.33	9,70		
04/18 08:29:00		4359,62	154,95	15.34		
04/18 09:07:00		4367,37	153.96	7,75		
04/18 09:45:00		4373,07	153.15	5.70		
04/18 10:23:00		4377,10	152,54	4,03		
04/18 11:01:00 04/18 11:39:00		4377.76	152.04	. 65		
04/18 11:39:00		4380.20	151.64	2.45		
04/18 12:55:00		4382,92	151.26	2.71		
04/18 12:55:00		4382.91	151.04	-,00		
04/18 13:33:00		4386.20	150.01	3,29		
04/18 14:11:00		4388.76	150,58	2,56		
04/18 15:27:00		4390,92	150,36	2,16		
04/18 16:05:00		4394.17	150.13	3,25		
04/18 16:43:00		4396.46	149.94	2,29		
04/18 17:21:00		4399.17	149,77	2.71		
04/18 17:59:00		4400.94	149,59	1.77		
04/18 18:37:00	1873,0000	4403.14	149.40	2.19		
04/18 19:15:00	1911.0000	4403.94	149.36	.80		
04/18 19:53:00	D 1949.0000	4405,60	149.30	1.67		
04/18 20:31:0		4407.B6	149.21	2.25		
04/18 21:09:00		4410.72	149.07	2.86		
04/18 21:47:0		4413.37	148.99	2.65		
04/18 22:25:0			14B.89	1.11		
04/18 23:03:0			148.84	.99		
04/18 23:41:0			148.82	1,53		
04/19 00:19:D			148.77	1.29 2.43		
04/19 00:57:0			148.70	2,43		
04/19 01:35:0			148,54 148,38	2,32		
04/19 02:13:0			148.38	2.82		
04/19 02:51:0	0 2367.0000	4140.47	*****	v.		
			e			

WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

FILE REF: F262501.RED

1

WELL LOCATION :	SAN JUAN COUN	ITY, NEW MEXIC	20		FILE REF: F262501.RED
Date Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD hh:mm:as	נהוואתיוות - נוונטונות	Psig	Deg F	Psi	Ga. Press Ref, to 14.7 Psi Atm.
04/19 03:29:00	2405.0000	4429.96	148.14	1.47	
04/19 04:07:00	2443.0000	4432.04	148.02	2.07	
04/19 04:45:00	2481.0000	4434.45	147.92	2.41	
04/19 05:23:00	2519.0000	4435.07	147.85	1.62	
04/19 06;01:00	2557.0000	4438.92	147.75	2,85	•
04/19 06:39:00	2595.0000	4436.45	147.76	-2,47	
04/19 07:17:00	2633.0000	4436.25	147.86	-,20 1,18	
04/19 07;55:00	2671.0000	4437.43 4437.62	147.93 147.97	.18	
04/19 08:33:00 04/19 09:11:00	2709.0000 2747.0000	4439,54	148.02	1,92	
04/19 09:49:00	2785.0000	4440.62	148.03	1,08	
04/19 10:27:00	2823.0000	4441.40	148.03	.78	
04/19 11:05:00	2861.0000	4457.33	147,85	15.93	
04/19 11:43:00	2899,0000	4461.57	147.17	4.24	
04/19 12:21:00	2937.0000	4464.53	146.79	2.96	
04/19 12:59:00	2975.0000	4465.82	146.54 146.35	1.29 2.42	
04/19 13:37:00	3013,0000	4468.25 4469.71	146.35	1.46	
04/19 14:15:00 04/19 14:53:00	3051.0000 3089.0000	4471.09	146.05	1.38	
04/19 15:31:00	3127.0000	4473.02	145,92	1,93	
04/19 16:09:00	3165,0000	4475.42	145.80	2,40	
04/19 16:35:15	3191,2500	4453.66	145.75	-21.76	
04/19 16:35:30	3191.5000	4452,89	145.75	77	
04/19 16:54:00	3210.0000	4431.03	146.31	-21.86	
04/19 16:55:00	3211.0000	4430,49	146.35 147.81	54 -11.31	
04/19 17:33:00	3249.0000 3287.0000	4419.17 4413.25	148.72	-5.92	
04/19 18:11:00 04/19 18:49:00	3325,0000	4410.23	149.39	-3.02	
04/19 19:27:00	3363,0000	4408.08	149.87	-2.15	
04/19 20:05:00	3401.0000	4406.74	150.26	-1,34	
04/19 20:43:00	3439.0000	4405.59	150,57	-1,15	
04/19 21:21:00	3477.0000	4404.27	150.85	-1,32	
04/19 21:59:00	3515,0000	4400.28	151.10	-4.00	
04/19 22:37:00	3553.0000	4397.88	151,47 151,76	-2,39 -,90	
04/19 23:15:00	3591,0000 3629.0000	4396,98 4395,73	152,01	-1.25	
04/19 23:53:00 04/20 00:31:00	3667.0000	4396,35	152.21	.62	
04/20 01:09:00	3705.0000	4396,00	152.35	36	
04/20 01:47:00	3743.0000	4395,36	152.52	64	
04/20 02:25:00	3781.0000	4395.00	152.66	36	
04/20 03:03:00		4395,10	152.78	,10	
04/20 03:41:00		4395.06	152,89	-,05 -1,14	
04/20 04:19:00		4393,91 4393,52	153.02 153.13	-,40	
04/20 04:57:00 04/20 05:35:00		4393.36	153,24	-,16	
04/20 06:13:00		4393.25	153.30	11	
04/20 06:19:00		4415.46	153,31	22,21	
04/20 06:19:15	4015,2500	4416,71	153,31	1,25	
04/20 06:58:00	4054,0000	4428.37	152,31	11.65	
04/20 07:36:00		4434,92	151,62	6.55 -6.54	
04/20 08:14:00		4428.38 4428.40	151,26 151,24	-0.54	
04/20 08:52:00		4428.89	151.19	. 49	
04/20 10:08:00		4429.69	151,14	.81	
04/20 10:19:00		4429.69	151,12	00	
04/20 10:20:00		4460.21	151,13	30.51	
04/20 10:21:15	4257.2500	4438,52	151,12	-21.68	
04/20 10:21:30		4437.25	151.12	-1.28	
04/20 10:37:00		4415.08	151.15	22,17- 54-	
04/20 10:38:00		4414.54 4408.20	151.16 151.75	-6,34	
04/20 11:16:00 04/20 11:54:00		4408.20	152,12	-2,80	
04/20 12:21:15		4308,18	152.34	-17,22	INJECTION STOPPED
04/20 12:21:30		4382.23	152.34	~5,95	BEGAN FALL-OFF
04/20 12:22:30		4363.21	152,36	-19.02	

WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

FILE REF: F262501, RED

WELL LOCATION :	SAN JUAN COU	MIL, MEW MEALV			
Date Time	Test Time	Pressure	Tentp	deltaP	Comment
MM/DD hh:mm:se		Psig	Deg F	Psi	Ga, Press Ref. to 14.7 Psi Atm.
04/20 12:22:45	4378,7500	4359.52	152.36	-3.69	
04/20 12:24:45	4380,7500	4337,37	152.39	-22,15	
04/20 12;25;00	4381.0000	4335,37	152.40	-2,00	
04/20 12:28:15	4384,2500	4313,67	152.52	-21,70	
04/20 12:28:30	4384,5000	4312,37	152.54	-1.30	
04/20 12:34:00	4390.0000	4290,18	152,92	-22.19	
04/20 12:34:15	4390,2500	4289.38	152,94	-,80	
04/20 12:42:45	4398.7500	4267.44	153.65 153.66	~21.94 52	
04/20 12:43:00	4399.0000 4412,2500	4266.93 4244.77	154,58	-22.16	
04/20 12:56:15 04/20 12:56:30	4412,5000	4244.52	154.60	-,25	
04/20 13:16:30		4222.33	155.82	-22.20	
04/20 13:16:45	4432,7500	4222,10	155.83	- , 22	
04/20 13:46:00	4462,0000	4200.31	157,25	-21,79	
04/20 13:47:00	4463.0000	4199.70	1.57.29	-,62	
04/20 14:25:00	4501,0000	4180.30	1,58,65	-19.39	
04/20 15:03:00	4539,0000	4165.37	159,63	-14,93	
04/20 15:41:00	4577.0000	4152.83	160,39	-12,54	
04/20 16:19:00	4615,0000	4142.36	161,01	-10,47	
04/20 16:57:00	4653,0000	4132.89	161,55	-9,47	
04/20 17:35:00	4691.0000	4124.46	162.02	-8,43	
04/20 18:13:00	4729.0000	4116.68	162,46	-7,79 -6,97	
04/20 18:51:00	4767.0000	4109.70 4103.11	162.02 163,14	-6.59	
04/20 19129:00 04/20 20107:00	4805.0000 4843.0000	4097,05	163,45	-6.06	
04/20 20:45:00	4881,0000	4091,34	163.72	-5.71	
04/20 21:23:00	4919,0000	4086.14	163.98	-5.21	
04/20 22:01:00	4957.0000	4081.17	164.21	-4.97	
04/20 22:39:00	4995,0000	4076.39	164.42	-4,78	
04/20 23:17:00	5033.0000	4072.02	164.62	-4.37	
04/20 23;55:00	5071.0000	4067,74	164.81	-4.29	:
04/21 00:33:00	5109.0000	4063.78	164.99	-3,96	
04/21 01;11:00	5147.0000	4059,92	165.16	-3.86	
04/21 01;49:00	5185,0000	4056,28	165.32	-3.63	
04/21 02:27:00	5223.0000	4052.82	165.46	~3,47	
04/21 03:05:00	5261.0000	4049.44	165,61	-3.38 -3.16	
04/21 03:43:00	5299.0000	4046.29	165.74 165.88	-3,13	
04/21 04:21:00	5337.0000 5375.0000	4043.17 4040.25	166.01	-2.92	
04/21 04:59:00 04/21 05:37:00		4037.36	166,15	-2,89	
04/21 05:37:00		4034.78	166.21	-2.58	
04/21 06:53:00		4032.17	166.29	-2,62	
04/21 07:31:00		4029,58	166,42	-2.59	
04/21 08:09:00		4027.00	166.53	-2,58	
04/21 08:47:00	5603.0000	4024,51	166.63	-2.49	
04/21 09:25:00	5641,0000	4022,23	166.72	-2.28	
04/21 10:03:00	5679,0000	4019.97	166,81	-2,26	
04/21 10:41:00		4017.72	166.91	-2.24	
04/21 11:19:00		4015.59	166.99	-2.13	
04/21 11:57:00		4013.53	167,07	-2.07 -2.06	
04/21 12:35:00		4011.47 4009.50	167.15 167.23	-2.06	
04/21 13:13:00		4009.50	167.30	-1.86	
04/21 13:51:00 04/21 14:29:00		4007.81	167.38	-1,84	
04/21 14:29:00		4003.95	167.46	-1.82	
04/21 15:45:00		4002,16	167.53	-1.79	
04/21 16:23:00		4000.50	167.59	-1,65	
04/21 17:01:00		3998.76	167.67	-1,74	
04/21 17:39:00		3997.16	167.74	-1,60	
04/21 18:17:00		3995.61	167.79	-1.55	
04/21 18:55:00		3994,02	167.85	-1.59	
04/21 19:33:00		3992,52	167,90	-1,50	
04/21 20:11:00		3991,03	167.96	-1,49	
04/21 20:49:00		3989,52	168,03	-1,51 -1,42	
04/21 21:27:00	6363,0000	3988,11	158,08	- 1, 40	

,

WELL NAME ; WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

WELL LOCATION :	EAN JUAN COU	NTY, NEW MEXI	co			FILE REF: F262501.RED
Date Time MM/DD hh:mm:ss	Test Time management	Pressure Psig	Temp Deg F	deltaP Pei	Comment Ga, Press Ref, to 14.7 Psi Atm,	
04/21 22:05:00	6401,0000	3986.69	168.14	-1,42		
04/21 22:43:00	6439.0000	3985.30	168.19	-1.39		
04/21 23:21:00	6477.0000	3963,96	168.24	-1.34		
04/21 23:59:00	6515.0000	3982.58	168.29	-1.38		
04/22 00:37:00	6553.0000	3981.31	168,34	-1.27		
04/22 01:15:00	6591.0000	3980.05	168.38	-1.25		
04/22 01:53:00	6629.000D	3978.79	16B.44	-1.27		
04/22 02:31:00	6667.0000	3977,54	168.40	-1,25		
04/22 03:09:00	6705.0000	3976.35	160,53	~1.19 ~1,23		
04/22 03:47:00 04/22 04:25:00	6743.0000 6781.0000	3975.13 3973.98	168,58 168,63	-1.14		
04/22 05:03:00	6819.0000	3972.82	168.66	-1.17		
04/22 05:41:00	6857.0000	3971.70	168,71	~1,13		
04/22 06:19:00	6895.0000	3970.60	168.75	-1.10		
04/22 06:57:00	6933.0000	3969.52	168,79	-1.09		
04/22 07:35:00	6971.0000	3968.43	168,83	-1,09		
04/22 00:13:00	7009.0000	3967.38	168.87	-1.05		
04/22 08;51:00	7047,0000	3966.38	168.91	-1.01		
04/22 09:29:00	7095,0000	3965,33 3964,28	168,95 168,99	-1.05 -1.05		
04/22 10:07:00 04/22 10:45:00	7123,0000 7161,0000	3963.32	169.02	~,96		
04/22 11:23:00	7199,0000	3962,30	169.06	-1.02		
04/22 12:01:00	7237.0000	3961.32	169.10	-,99		
04/22 12:39:00	7275,0000	3960.33	169.13	- , 98		
04/22 13:17:00	7313.0000	3959.3B	169.18	-,95		
04/22 13:55:00	7351,0000	3958,39	169,21	99		
04/22 14:33:00	7369.0000	3957.53	169.23	-,85		
04/22 15:11:00	7427.0000	3956.62	169,27	-,91		
04/22 15:49:00	7465.0000	3955.67	169.31	95 95		
04/22 16:27:00	7503.0000 7541.0000	3954,72 3953.88	169.34 169.30	-,85		
04/22 17:05:00 04/22 17:43:00	7579.0000	3953.04	169,41	~,83		
04/22 18:21:00	7617.0000	3952.17	169.44	- 88		
04/22 18:59:00	7655,0000	3951.26	169.47	-,91		
04/22 19:37:00	7693,0000	3950.36	169.51	-,90		
04/22 20:15:00	7731.0000	3949.48	169,53	-,B8		
04/22 20:53:00	7769,0000	3948.46	169.57	-1,02		
04/22 21:31:00	7807.0000	3947.40	169.60	-1.05		
04/22 22:09:00	7845,0000	3947.08	169,63	-,31		
04/22 22:47:00 04/22 23:25:00	7883.0000 7921.0000	3947.08 3946.90	169,66 169,70	01 18		
04/23 00:03:00	7959.0000	3946.45	169.72	- 45		
04/23 00:41:00	7997,0000	3945.48	169.76	-,97		
04/23 01:19:00	8035.0000	3944.57	169,78	- 91		
04/23 01:57:00	8073.0000	3943.72	1,69.81	-,85		
04/23 02:35:00	8111.0000	3942.87	169.83	85		
04/23 03;13:00	8149,0000	3942.14	169.87	73		
04/23 03:51:00	8187.0000	3941.42	169.91 160 01	72		
04/23 04:29:00	8225.0000	3940.68	169.93 169.95	-,74 -,74		
04/23 05:07:00 04/23 05:45:00	8263,0000 8301,0000	3939,94 3939,24	169.95	70		
04/23 05:45:00	8339.0000	3938.58	170,01	-,66		
04/23 07:01:00	8377,0000	3937,94	170.03	- 64		
04/23 07:39:00	8415,0000	3937,22	170.06	72		
04/23 08;17:00	8453,0000	3936,55	170,09	- , 67		
04/23 08:55:00	8491.0000	3935,89	170.12	-,67		
04/23 09:33:00	8529.0000	3935,18	170.14	71		
04/23 10:11:00	8567.0000	3934,59	170,16	59		
04/23 10:49:00	8605.0000	3933,96	170.19	64		
04/23 11:27:00	8643.0000	3933.30 3932.74	170.23 170.24	-,66 ~,55		
04/23 12:05:00 04/23 12:43:00	8681,0000 8719,0000	3932.00	170.24	74		
04/23 13:21:00	B757,0000	3931.44	170.30	56		
04/23 13:59:00	8795,0000	3930.83	170,32	-,61		
04/23 14:37:00	B\$33.0000	3930.25	170.34	-,50		

WELL NAME ; WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 7 OF 13

DATE ; 05/02/19

FILE REF: F262501.RED

Date	Time	Test Time	Pressure	Temp	deltaP	Comment
			Paig	Deg F	Pei	Ga. Press Ref. to 14.7 Psi Atm.
04/23	15;15;00	8871,0000	3929.61	170.36	~.64	
	15:53:00	8909.0000	3929.04	170.39	57	
	16:31:00	B947,0000	3928,45	170.41	60	
	17:09:00	8985,0000	3927.89	170.44	56	
	17:47:00	9023.0000	3927.33	170.46	-,56	
	18:25:00	9061,0000	3926.77	170.49	-,56	
	19:03:00	9099,0000	3926,23	170.51	-,54	
	19:41:00	9137.0000	3925.69	170.53	54	
,	20:19:00	9175.0000	3925.14	170.55	55	
	20:15:00		3924,66	170.57	-,48	
	21:35:00	9251,0000	3924.09	170,59	- ,57	
· · ·		9289,0000	3923,51	170.62	- ,58	
	22:13:00		3922.98	170.64	- 53	
· · ·	22:51:00	9327,0000	3922.48	170,66	-,51	
	23:29:00	9365.0000	3921.94	170,68	~,54	
	00:07:00	9403.0000		170,70	- , 47	
	00:45:00	9441.0000	3921.46		- 45	
	01;23:00	9479,0000	3921.01	170,73		
	02;01:00	9517,0000	3920.43	170.75	-,50	
	02:39:00	9555,0000	3919,89	170,77	-,54	
	03:17:00	9593,0000	3919,39	170,80	50	
	03:55:00	9631,0000	3918.94	170.82	-,45	
'	04:33:00	9669,0000	3918.49	170,83	45	
	05:11:00	9707,0000	3917.92	170.85	57	
04/24	05:49:00	9745,0000	3917,44	170,87	47	
04/24	06:27:00	9783,0000	3916,68	170,90	-,56	
04/24	07:05:00	9821,0000	3916.51	170.92	37	
04/24	07;43;00	9859,0000	3916.00	170.94	-,51	
04/24	08;21,00	9897.0000	3915.62	170.96	38	
04/24	08:59:00	9935.000D	3915,06	170.98	56	
04/24	09:37:00	9973.0000	3914.65	171.01	-,41	
04/24	10:15:00	10011.0000	3914.12	171.02	-,53	
04/24	10:53:00	10049.0000	3913.65	171.04	47	
04/24	11:31:00	10087.0000	3913.21	171.06	44	
04/24	12:09:00	10125.0000	3912.79	171.08	~.41	
04/24	12:47:00	10163.0000	3912.29	171.10	50	
04/24	13:25:00	10201,0000	3911.85	171.11	~.44	
04/24	14:03:00	10239,0000	3911.39	171,14	46	
04/24	14:41:00	10277.0000	3910,96	171.16	-,43	
04/24	15:19:00	10315,0000	3910.52	171.17	-,44	
04/24	15:57:00	10353,0000	3910.06	171.19	46	
04/24	16:35:00	10391,0000	3909.66	171,21	-,41	
• .	17:13:00	10429,0000	3909.23	171,24	∽ .4 3	
	17:51:00	10467.0000	3908,81	171.24	-,42	
	18:29:00	10505.0000	3908.45	171.26	36	
	19:07:00	10543.0000	3907.99	171,29	46	
· · ·	19:45:00	10581,0000	3907.64	171.30	36	
	20:23:00	10619,0000	3907.18	171.32	45	
	21:01:00		3906.80	171,33	38	
	21:39:00	10695,0000	3906,32	171.35	~,48	
	22:17:00		3905.97	171.37	~,35	
	22:55:00		3905,64	171.39	34	
	22:35:00 23:33:00		3905.19	171.40	~.45	
	5 00:11:00		3904.78	171.42	~,41	
	5 00:49:00		3904.39	171,44	~.40	
	5 01:27:00		3903.99	171,45	~,40	
			3903.64	171.47	~,35	
	5 02:05:00		3903,25	171.49	-,39	
	5 02143100		3902,85	171,51	- 40	
	5 03:21:00				~,40	
	5 03:59:00		3902,45	171,53	-,38	
	5 04:37:00		3902,06	171.54		
	5 05:15:00		3901.73	171,56	-,33	
	5 05:53:00		3901.35	171.57	38	
04/2	5 06:31:00		3900,91	171.59	44 28	
	5 07:09:00 5 07:47:00		3900,63 3900,26	171,61 171,63	/38	

.

WELL NAME ; WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

PAGE 8 OF 13

DATE : 05/02/19

NOTION NOCHION		MITT' MIDIC LANGER.	60		
Date Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD hh:mm:es		Psig	Deg F	Psi	Ga, Press Rof, to 14.7 Psi Atm.

04/25 08:25:00	11341,0000	3899.86	171.64	39	
04/25 09:03:00		3899.55	171.66	31	
04/25 09:41:00	11417.0000	3899.12	171.68 171.69	-,43 -,29	
04/25 10:19:00 04/25 10:57:00	11455.0000 11493.0000	3898.83 3898.45	171.71	38	
04/25 11:35:00	11531.0000	3898.06	171.73	40	
04/25 12:13:00	11569.0000	3697.65	171.74	41	
04/25 12:51:00	11607.0000	3897.34	171.76	31	
04/25 13:29:00	11645.0000	3896.97	171.77	-,38	
04/25 14:07:00	11683.0000	3896,67	171,79	30	
04/25 14:45:00	11721,0000	3896.24	171,81	-,43	
04/25 15:23:00	11759,0000	3895.90	171.82	-,34	
04/25 16:01:00		3895.53	171.84	-,37	
04/25 16:39:00	11835,0000	3895.27	171,85	-,25	
04/25 17:17:00	11873.0000	3894,91	171.07 171.8B	-,36 -,38	•
04/25 17:55:00	11911.0000 11949,0000	3894.53 3894,23	171,90	-,30	
04/25 18:33:00 04/25 19:11:00		3893.83	171,92	-,39	
04/25 19:49:00		3893.57	171,93	26	
04/25 20;27:00		3893.25	171.94	~,32	
04/25 21:05:00		3892.95	171.95	-,31	
04/25 21:43:00		3892.60	171.98	-,34	
04/25 22:21:00	12177.0000	3892.25	171,99	35	
04/25 22:59:00	12215.0000	3891.94	172.00	31	
04/25 23:37:00		3891.65	172,02	- , 29	
04/26 00:15:00		3891.29	172.03	36	
04/26 00:53:00		3890.98	172.05	-,31 27	
04/26 01:31:00		3890.71 3890,34	172.06 172.08	-,36	
04/26 02:09:00 04/26 02:47:D0		3690,06	172.09	28	
04/26 03:25:00		3889,68	172.11	-,38	
04/26 04:03:00		3669,42	172.12	26	
04/26 D4:41:00		3889.08	172.13	-,34	
04/26 05;19:00		3888,79	172.15	29	
04/26 05:57:00	12633.0000	3666,43	172.16	~,36	
04/26 06:35:00	12671,0000	3888.23	172.17	-,20	
04/26 07:13:00		3887,86	172.18	-,36	
04/26 07:51:00		3887.61	172.21	25	
04/26 08:29:00		3887.26	172.22 172,23	-,35 -,30	
04/26 09:07:00		3886,95 3886,68	172.25	27	
04/26 09:45:00		3886.39	172,26	30	
04/26 11:01:00		3886,11	172.27	28	
04/26 11:39:00		3885,76	172.29	35	
04/26 12:17:00		3885.45	172.30	31	
04/26 12:55:00	13051,0000	3885,20	172.32	-,25	
04/26 13:33:00		3884.86	172.33	34	
04/26 14:11:00		3884.58	172.35	- , 27	
04/26 14:49:00		3884.24	172.35	34 ~.28	
04/26 15:27:00		3883.96 3883.75	172.37 172.38	-,21	
04/26 16:05:00		3003.41	172.40	-,34	
04/26 17:21:00		3063.11	172.41	-,29	
04/26 17:59:00		3882.86	172.42	-,25	
04/26 18:37:00		3882.50	172,43	-,28	
04/26 19:15:00		3882.28	172,45	-,30	
04/26 19:53:00		3882.04	172.46	-,24	
04/26 20:31:00		3881.70	172.47	35	
04/26 21:09:00		3681,45	172,48	~.25	
04/26 21:47:00		3401.18	172,50	- , 27	
04/26 22:25:00		3860,90 3860,68	172,50 172,52	-,27 -,23	
04/26 23:03:00 04/26 23:41:00		3880,68	172.52	27	
04/27 00:19:00		3880,41	172.54	-,32	
04/27 00:57:00		3879,84	172.55	25	
.,					

WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

.

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

ate	Time	Test Time	Pressure	Temp	deltaP	Comment
	hh:mm:88		Psig	Deg F	Psi	Ga. Prées Ref. to 14.7 Pei Atm.
	01:35:00	13811.0000	3879.55	172.57	30	
•	02:13:00	13849,0000	3879,35	172.58	19	
· · · ·	02:51:00	13887,0000	3879.07	172.59	~ .29	
· · ·	03:29:00	13925,0000	3878.77	172,60	~,29	
1/27	04:07:00	13963.0000	3878.54	172.62	~ . 23	
1/27	04:45:00	14001.0000	3878.28	172.63	26	
/27	05:23:00	14039.0000	3878.03	172.63	- ,25	
	06;01;00	14077.0000	3877.71	172.66	32	
	06:39:00	14115.0000	3877.47	172,66	24	
	07:17:00	14153.0000	3877.23	172.68	-,24	
· · ·	07:55:00	14191.0000	3876.96	172.68 172.70	-,27 -,24	
	OB:33:00	14229.0000	3876.72 3876.44	172.70	-,28	
•	09:11:00	14267.0000 14305.0000	3876.22	172.72	22	
	09:49:00 10:27:00	14343,0000	3875,91	172.73	-,31	
	11:05:00	14381.0000	3875.65	172.74	25	
· .	11:43:00	14419.0000	3875,39	172,76	-,27	
	12:21:00	14457,0000	3875,18	172.77	21	
	12:59:00	14495,0000	3874,90	172.78	28	
	13:37:00	14533,0000	3874.65	172.79	25	
4/27	14:15:00	14571,0000	3874,42	172,80	-,23	
4/27	14:53:00	14609,0000	3874,18	172.82	23	
	15:31:00	14647.0000	3873.94	172.82	25	
	16:09:00	14685,0000	3873.66	172.84	27	
	16:47:00	14723.0000	3873.44	172.85	23	
	17:25:00	14761.0000	3873.20	172.86 172.87	24 24	
	18:03:00	14799.0000 14837.0000	3872,95 3872,74	172.88	22	,
	18:41:00 19:19:00	14875.0000	3872,48	172,69	-,26	
	19:19:00	14913,0000	3872.23	172,90	25	
	20135:00	14951.0000	3871.99	172,92	- , 24	
· · ·	21:13:00	14989,0000	3671.74	172,92	25	
· · · ·	21:51:00	15027,0000	3871.54	172,93	-,19	
	22:29:00	15065,0000	3871.31	172,94	24	
4/27	23:07:00	15103.0000	3871.05	172.96	-,26	
4/27	23:45:00	15141.0000	3870,85	172,97	-,20	
4/28	00:23:00	15179.0000	3870.57	172.98	-,28	
	01;01;00	15217,0000	3870,33	172.99	24	
	01;39;00	15255.0000	3870.14	173.00	-,20 -,24	
	02:17:00	15293.0000	3869.90 3869.69	173.02 173.02	21	
	02:55:00	15331.0000 15369.0000	3869,49	173,04	20	
,	03:33:00 04:11:00	15407.0000	3869.26	173.05	23	
	04:49:00	15445.0000	3869.02	173.07	24	
	05:27:00	15483.0000	3868.78	173.07	~.24	
	06:05:00	15521,0000	3868.60	173.08	~,18	
4/28	06:43:00	15559,0000	3868.34	173.10	-,25	
4/28	07;21:00	15597,0000	3868,12	173.10	-,22	
	07:59:00	15635.0000	3867,88	173,12	-,25	
	08;37:00		3867.65	173.13	23	
	09:15:00		3867.43	173.14	22	
	09:53:00		3867.16	173,15	27 19	
	10:31:00		3866,97 3866,78	173,16 173,17	19	
	11:09:00 11:47:00		3866.58	173,18	-,20	
	11:47:00		3866.27	173.20	-,31	
	; 12:25:00 ; 13:03:00		3866.15	173.21	11	
	3 13:41:00		3865.91	173.21	-,25	
	14:19:00		3865.70	173.23	-,21	
	14:57:00		3865.46	173.24	24	
	15:35:00		3865,28	173.25	18	
	16:13:00		3865,04	173.25	24	
	3 16;51:00		3864.83	173.26	21	·
	17:29:00		3864.62	173.27	-,21	
14/28	18:07:00	16243,0000	3864.39	173.28	23	

WELL NAME | WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

.

04/28 16/46/10 16281.000 3064.21 173.29 19 04/28 19/21.00 16357.000 3063.47 173.30 24 04/28 02/03.91 16357.000 3063.5 171.31 31 04/28 02/03.91 16357.000 3063.45 171.31 31 04/28 12.17.16 1641.1000 3063.45 171.31 41 04/28 12.17.16 16537.000 3663.45 171.37 12 04/28 10.16557.000 3663.45 173.37 17 04/28 01.0557.000 3663.45 173.39 20 04/29 01.4100 16653.000 3661.47 173.40 41 04/29 01.4100 1669.000 3661.37 173.44 47 04/29 01.4100 1663.000 3661.37 173.45 20 04/29 01.100 1661.000 3661.37 173.46 47 04/29 01.200 1661.50 173.45			Comment Ja, Press Ref. to 14.7 Psi Atm.	deltaP Psi	Temp Deg F	Pressure Psig	Test Time manama.manaa	Time hh:ពេ៣:ss	Date MM/MD
a a a a a a b a a a a a b a a a a a b a a a a a b a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a									•
14/2 00 1537 0000 166.76 173.32 41 04/2 00 1539.000 186.34 173.33 21 04/2 00 1547.100 1643.1000 186.134 173.34 20 04/2 02 123.100 1559.000 186.137 173.44 20 04/2 02 123.100 1559.000 186.235 173.35 13 04/2 02 10.101 1554.000 186.235 173.37 17 04/2 00 10.510 1662.000 186.131 173.40 40 04/2 00 10.510 1662.000 186.141 173.40 41 04/2 00.1510 1627.000 366.174 71 42 04/2 00.1510 1627.000 366.174 71 42 04/2 00.1510 1627.000 366.174 21 41 04/2 00.1510 1627.000 366.175 21 41 04/2 00.1610 1707.000 386.175 173.50 21 04/2 00.									
a 20.38.0 305.900 306.35 173.33 21 a 21.55.00 166.74.0000 306.34 173.34 20 a 21.55.00 166.97.0000 306.34 173.35 19 a 22.55.00 166.95.000 306.23 173.35 19 a 20.27.00 16623.000 306.31 173.37 27 a 20.27.00 16623.000 306.31 173.38 20 a 20.27.00 16623.000 306.11 173.43 21 a 20.43.00 166.100 306.13 173.43 20 a 20.55.100 1697.000 366.14 173.43 20 a 20.55.100 1697.000 366.14 173.45 20 a 1697.000 366.16 173.46 21 a 1697.000 366.16 173.47 21 a 1697.000 386.16 173.42 21 a									•
04/3 21:11:00 1631.000 366.24 173.33 -21 04/28 21:31:00 1650.000 366.25 173.35 -19 04/28 21:31:00 1650.000 366.25 173.37 -27 04/28 21:11:00 1651.000 366.21 173.37 -27 04/28 01:05:00 1662.100 366.21 173.37 -20 04/29 01:01:00 1662.000 366.11 173.39 -24 04/29 01:01:00 1663.000 366.13 173.42 -47 04/29 01:41:00 1663.000 366.13 173.42 -47 04/29 01:41:00 1661.1000 366.13 173.42 -47 04/29 01:31:00 1663.000 366.14 173.45 -20 04/29 01:31:00 1663.000 366.17 173.47 -19 04/29 01:31:00 1663.000 366.17 173.50 -21 04/29 01:31:00 173.50									
04/32 02/35 01/35 01/35 20 04/32 02/3100 1650.0000 3662.95 173.35 13 04/32 02/3100 1650.0000 3662.35 173.37 17 04/32 00.27100 1653.0000 3662.31 173.38 20 04/39 00.27100 1653.0000 3662.11 173.39 20 04/39 01.43100 1669.0000 3661.71 174.40 14 04/39 02.101 1677.0000 3661.75 174.40 20 04/39 02.110 1681.9000 3661.75 174.41 21 04/39 01.101 1692.0000 3660.75 173.43 20 04/39 01.1010 1692.000 3660.77 173.47 13 04/39 01.1010 1692.000 3660.77 173.47 14 04/39 01.0100 1695.700 170.39 14 04/39 01.0100.000 3695.15 173.50									
94/28 22:33:00 1550,0000 JA62.95 173.35 19 94/28 22:49:00 1585.000 JA62.15 173.37 17 94/28 02:34:00 1585.000 JA62.15 173.39 20 94/29 01:05:00 1663.000 JA62.11 173.39 20 94/29 01:21:00 1677.000 JB61.70 171.42 27 94/29 01:37:00 1611.000 JB61.70 171.42 14 94/29 01:37:00 1611.000 JB61.31 171.42 10 94/29 01:51:00 1603.000 JB60.77 171.47 40 94/29 01:51:00 1205.00 JB60.77 171.47 43 94/29 01:30:00 1205.00 JB60.15 173.50 22 94/29 01:30:00 1205.00 JB60.15 173.80 22 94/29 01:30:00 1355.15 173.30 22 42 94/29 01:30:00 1355.15 173.30 21 42 94/29 01:30:00									
adv bit bit bit bit adv bit bit bit bit bit bit adv bit bit bit bit bit bit bit adv bit bit bit bit bit bit bit bit adv bit bit<				19	173.35	3862.95			
14/25 00: 37:00 1523.0000 3662.11 173.36 20 04/25 01: 60: 50: 5661.000 3662.11 173.36 20 04/25 01: 61: 00 1669.0000 3661.15 173.42 17 04/25 01: 61: 00 1651.51 173.42 17 04/25 01: 10: 00 361.15 173.43 20 04/25 01: 10: 00 1661.50 173.46 17 04/25 01: 10: 00 1661.50 173.46 17 04/25 01: 50: 00 1660.50 173.46 17 04/25 01: 50: 00 1660.50 173.46 21 04/26 01: 60: 1000 1660.50 173.46 21 04/26 01: 61: 00: 000 1860.16 173.50 21 04/28 01: 01: 0173.000 385.93 173.50 22 04/28 01: 01: 0173.000 385.95 173.57 32 04/29 01: 01: 0173.000 385.16 173.57 32 04/29 11: 51: 00 173.50 31					173.37	3862.67	16547.0000		-
14/29 01.05.00 1662.000 3661.00 20 04/29 01.100 1669.000 3661.70 173.42 27 04/29 01.37.00 1661.000 3661.31 173.42 27 04/29 01.37.00 1661.000 3661.31 173.42 17 04/29 01.37.00 1661.000 3661.41 173.45 20 04/29 01.37.00 1609.000 3660.56 173.46 11 04/29 01.37.00 1605.000 3660.55 173.40 21 04/29 01.31.00 1605.000 3660.55 173.50 21 04/29 01.100 1701.000 3669.55 173.82 16 04/29 01.170.000 369.55 173.82 16 04/29 01.170.000 369.55 173.82 16 04/29 01.171.000 369.55 173.82 12 04/29 01.97.000 369.55 173.82 16 04/29 </td <td></td> <th></th> <td></td> <td></td> <td></td> <td>3862.51</td> <td>16585,0000</td> <td>23;49;00</td> <td>04/28</td>						3862.51	16585,0000	23;49;00	04/28
9 9 1:4:100 1:6:09:000 3:6:1.05 -:14 94/29 9:1:5:00 1:6:7:00 3:6:1.53 1:7:4:2 -:17 94/29 9:1:5:00 1:6:1.000 3:6:1.53 1:7:4:3 -:20 94/29 9:1:5:00 1:6:1.000 3:6:1.14 1:7:4:5 -:20 94/29 9:1:1:00 1:6:0:1.000 3:6:0.14 -:17 94/29 9:1:1:00 1:6:0:1.000 3:6:0.15 -:17 94/29 9:1:1:00 1:6:0:0:0 3:6:0.15 -:11 94/29 9:1:1:00 1:70:3:00 3:6:0.15 -:11 94/29 9:1:1:00 1:70:3:00 3:5:0.3 1:71:50 -:21 94/29 9:1:1:00 1:71:00 3:5:0.3 1:71:50 -:21 94/29 9:1:1:00 1:72:1:00 3:5:0.3 1:71:50 -:21 94/29 9:1:1:1:00 1:72:1:00 3:5:0 1:72:1:00 -:21 94/29 9:1:1:5:00 1:72:1:00 1:72:1:00 -:21								00:27:00	04/29
14/29 91:21:00 12737.0000 3661.70 173.42 27 04/29 91:37:00 1661.0003 3661.33 173.43 20 04/29 91:37:00 1661.0003 3661.41 173.45 20 04/29 91:33:00 1669.0003 3661.41 173.45 20 04/29 91:33:00 1669.0003 3660.55 173.46 11 04/29 90:32:00 1695.0000 3660.55 173.46 21 04/29 90:47:00 17021.000 3660.15 173.50 20 04/29 90:47:00 17021.000 3859.35 173.80 22 04/29 90:47:00 17159.000 3859.35 173.87 31 04/29 90:57:00 1713.60 1725.000 3859.45 173.87 32 04/29 91:37:00 1725.000 3859.45 173.87 32 0 04/29 13:45:00 1724.000 3856.45 173.87 32 0									
14/29 19:75.000 3661.53 173.42 17 14/29 19:70 1661.000 3661.14 173.45 20 14/29 19:15:00 1661.000 3661.14 173.45 20 14/29 05:11:00 1603.000 360.77 173.47 11 14/29 05:31:00 1603.000 360.35 173.40 21 14/29 06:47:00 1703.000 380.35 173.50 21 14/29 06:31:00 17073.000 3853.33 173.50 22 14/29 06:31:00 17073.000 3853.55 173.42 16 14/29 09:19:00 1735.50 173.13 21 44 14/29 10:15:00 1730.000 3853.45 173.55 21 14/29 10:15:00 1730.000 3853.45 173.55 21 14/29 11:51:00 1730.000 3853.45 173.55 21 14/29 11:51:00 1730.000 3									
04/29 01/37/100 1611.0000 3661.31 172.43 20 04/29 04.551.00 16809.0000 3860.96 173.45 30 04/29 06.100 16955.0000 3860.96 173.47 19 04/29 06.0100 11055.0000 3860.56 173.47 19 04/29 06.0100 11055.0000 3853.55 173.50 22 04/29 06.0100 1701.0000 3853.55 173.50 22 04/29 06.0100 1717.0000 3853.55 173.50 22 04/29 01.7150.0000 3853.55 173.57 11 04/29 01.7150.0000 3859.77 173.57 12 04/29 11.51.000 3859.78 173.57 13 04/29 11.51.000 3859.78 173.57 13 04/29 11.51.000 3859.78 173.50 22 04/29 11.51.000 1479.79 15 0.42 04/29									
04/29 04/15:00 16451.00 3661.14 172.45 20 04/29 04/35.00 1600 3660.77 173.46 17 04/29 06/31.00 15065.00 3660.77 173.47 13 04/29 06/470 1703.000 3860.55 173.50 21 04/29 06/3100 17041.000 3853.53 173.50 22 04/29 06/4100 17117.000 3853.55 173.52 61 04/29 06/4100 17117.000 3853.55 173.55 21 04/29 06/100 17015.000 3853.55 173.55 21 04/29 06/100 17015.000 3853.57 173.57 13 04/29 101.710 1738.000 3851.81 173.57 13 04/29 11.13.00 17269.000 3851.81 173.57 13 04/29 12.13.00 17450.000 3857.65 173.61 16 04/29 15.10 1747		×							
14/29 14 151 16895.0000 3860.96 173.46 17 14/29 051.100 15955.0000 3860.77 173.47 19 14/29 051.100 15955.0000 3860.55 173.40 21 14/29 051.00 17041.0000 3850.57 173.50 22 04/29 051.00 17017.0000 3859.77 173.52 16 04/29 051.00 1717.0000 3859.55 173.50 22 04/29 051.00 1717.0000 3859.56 173.57 10 04/29 11.151.00 172.66 171.57 12 04/29 11.151.00 172.66 173.57 10 04/29 11.151.00 172.66 173.57 10 04/29 11.151.00 172.60 3851.65 173.57 10 04/29 13.071.00 17459.000 3851.65 173.60 22 04/29 13.01.00 17479.000 3857.65 17									
14/29 05:51:00 1580.70 173.47 19 04/29 06:00 1580.5000 1860.56 173.50 21 04/29 06:10:00 1703.0000 1860.16 173.50 20 04/29 06:10:10 1707.0000 1859.83 173.50 20 04/29 06:11:10 1707.0000 1859.77 173.52 16 04/29 06:13:00 1715.0000 1859.75 173.53 21 04/29 06:13:00 1715.0000 1859.75 173.53 21 04/29 10:10:01 1725.0000 3859.75 173.57 18 04/29 12:10:01 1730.0000 3859.176 173.59 17 04/29 12:10:01 1747.0000 3857.65 173.60 18 04/29 13:45:00 17475.0000 3857.65 173.61 16 04/29 15:10:01 1764.70000 3857.45 173.63 21 04/29 15:10:01 1765.75 </td <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
64/29 66 109:00 14965.0000 3860.35 173.50 21 64/29 66 101 1705.0000 3850.35 173.50 20 64/29 66 101 1707.5000 3859.97 173.50 22 64/29 66 110 1707.5000 3859.57 173.52 16 64/29 56 1160 1713.0000 3859.55 173.53 21 64/29 36 1500 1723.0000 3859.14 173.55 21 64/29 31 610 1723.0000 3856.98 173.57 22 64/29 31 610 17307.0000 3856.150 173.59 18 64/29 13 610 17435.0000 3856.130 173.60 22 64/29 13 610 17445.0000 3857.151 173.60 22 64/29 13 610 17457.0000 3857.151 173.60 22 64/29 15 3100 17457.0000 3857.151 173.61 16 64/29 15 31.00 17647.000 3857.151 173.61 17 64/29 <t< td=""><td></td><th></th><td></td><td>- 19</td><td></td><td></td><td></td><td></td><td></td></t<>				- 19					
04/29 00:0 17041.000 3660.16 173.50 00 04/29 00:0 17017.000 3659.77 173.50 22 04/29 00:10:0 17017.000 3659.77 173.50 23 04/29 00:11:0 17137.000 3659.15 173.53 21 04/29 00:31:00 17231.000 3659.15 173.55 21 04/29 11:10 1723.000 3659.17 173.57 18 04/29 11:10 1730.000 3551.79 173.57 12 04/29 11:10 1730.000 3551.20 173.57 12 04/29 11:51.00 1743.000 3551.20 173.60 12 04/29 11:51.00 1749.000 3557.65 173.61 16 04/29 15:39.00 1757.65 173.63 19 04/29 16:15:00 1757.00 3657.65 173.64 20 04/29 16:14:000 365.28 173.64 <td></td> <th></th> <td></td> <td>-,21</td> <td>173.48</td> <td>3860,56</td> <td></td> <td></td> <td>-</td>				-,21	173.48	3860,56			-
04/29 003.00 17079.0000 3859.33 173.50 22 04/28 08141.00 1717.000 3859.77 173.52 16 04/29 09157.00 17159.0000 3859.55 173.52 21 04/29 09157.00 17159.0000 3859.14 173.55 21 04/29 115100 1730.0000 3859.45 173.57 16 04/29 115100 1730.0000 3856.56 173.57 18 04/29 115100 1730.0000 3856.30 173.57 18 04/29 115100 1730.0000 3857.45 173.60 16 04/29 151.300 1748.0000 3857.65 173.60 16 04/29 151.3900 17851.0000 3857.65 173.61 16 04/29 151.3900 17651.0000 3857.65 173.61 16 04/29 161.3900 17851.0000 3857.65 173.61 16 04/29 161.3900					173.50	3860,35	17003.0000	05:47:00	04/29
04/28 0814100 17137.000 3859.77 173.52 16 04/28 0814100 17135.000 3859.56 173.52 21 04/29 081500 1733.000 3859.35 173.53 21 04/29 1013500 1733.000 3859.44 173.55 21 04/29 1113100 17265.0000 3858.35 173.57 13 04/29 115100 1735.0000 3858.65 173.57 14 04/29 13.07.00 1735.0000 3858.20 173.59 15 04/29 14.23.00 17450.0000 3857.81 173.60 22 04/29 15.01.00 1747.0000 3857.65 173.61 16 04/29 15.01.00 1747.0000 3857.25 173.63 19 04/29 15.01.00 1752.000 385.75 173.65 17 04/29 15.01.00 3857.25 173.63 19 04/29 173.10 1765.00 385.75 173.65 17 04/29 16.10.000 385.65.							17041.0000	97:25:00	04/29
04/29 0915700 17155.000 3659.55 173.52 21 04/29 0915700 17139.000 3659.35 173.53 21 04/29 11.5100 17320.000 3659.35 173.55 21 04/29 11.13100 17269.0000 3658.45 173.55 19 04/29 12.15100 17360.000 3658.78 173.59 12 04/29 13.45100 17449.0000 3658.03 173.59 18 04/29 14.23100 17459.0000 3657.65 173.60 18 04/29 14.23100 17459.0000 3657.65 173.63 19 04/29 15.39.000 3657.65 173.63 21 04/29 16.55100 1761.000 3657.65 173.65 17 04/29 16.13100 17667.0000 3656.68 173.65 17 04/29 16.13100 17667.0000 3656.68 173.65 17 04/29 16.13100 17667.0000 3656.51 173.65 17 04/29 16.13100									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
04/29 0135100 17331.0000 385.14 173.55 21 04/29 1113100 17269.0000 3858.95 173.56 19 04/29 1213100 17307.0000 3858.95 173.57 22 04/29 1213100 17307.0000 3858.95 173.57 22 04/29 13145.00 17410.0000 2858.20 173.59 18 04/29 151300 17457.0000 3857.45 173.60 22 04/29 1513100 17497.0000 3857.45 173.60 22 04/29 1513100 17497.0000 3857.45 173.61 16 04/29 1513100 17647.0000 3857.45 173.63 21 04/29 1513100 17647.0000 3856.51 173.65 17 04/29 1613100 1767.0000 3856.51 173.66 17 04/29 1613100 17657.0000 3856.51 173.66 17 04/29 121300 17647.0000 3856.52 173.66 17 04/29									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-,22					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				17	173.59				
04/29 15:01:00 17497.0000 3857.65 173.60 22 04/29 15:39:00 17535.0000 3857.65 173.61 16 04/29 16:55:00 17611.000 3857.64 173.63 19 04/29 16:55:00 17611.000 3857.46 173.63 21 04/29 17:31:00 17647.0000 3857.46 173.65 17 04/29 18:1:00 17767.0000 3856.61 173.65 17 04/29 10:7063.0000 3856.28 173.66 23 04/29 21:51:00 1787.0000 3855.70 173.70 20 04/29 21:51:00 1795.0000 3855.70 173.71 20 04/29 21:50:00 1795.0000 3855.11 173.73 19 04/29 21:50:00 1795.0000 3855.21 173.74 15 04/30 10:30:00 1855.21 173.75 19 14 04/29 21:50:00 1795.0000 3855.21 173.75 19 04/30 01:47:00					173.59	3858,20	17421.0000		
04/29 15:39:00 17535.0000 3857.65 173.61 16 04/29 16:15:00 17513.0000 3857.25 173.63 21 04/29 16:15:00 17649.0000 3857.25 173.63 21 04/29 16:15:00 17649.0000 3857.25 173.65 17 04/29 18:11:00 176725.0000 3856.89 173.65 71 04/29 19:27:00 17763.0000 3856.51 173.66 17 04/29 19:27:00 17763.0000 3855.66 173.76 18 04/29 1:21:00 17877.0000 3855.50 173.70 20 04/29 21:21:00 17977.0000 3855.54 173.73 16 04/29 21:59:00 17951.0000 3855.54 173.75 22 04/29 21:50 17991.0000 3854.40 173.75 22 04/30 01:09:00 1805.0000 3854.41 173.75 15 04/30 01:09:00 18054.000 3854.47 173.75 19 04/30	•					3850.03	17459.0000	14:23:00	04/29
04/29 16:17:00 17573.0000 3857.46 173.63 19 04/29 16:55:00 17611.0000 3857.25 173.63 21 04/29 16:17:30:00 17649.0000 3857.06 173.64 20 04/29 18:11:00 1767.0000 3856.89 173.65 17 04/29 18:11:00 1763.0000 3856.51 173.66 17 04/29 20:05:00 17801.0000 3856.28 173.66 17 04/29 20:05:00 17801.0000 3855.90 173.70 20 04/29 21:15:00 17975.0000 3855.90 173.71 20 04/29 21:15:00 17953.0000 3855.51 173.73 16 04/29 21:15:00 17953.0000 3855.35 173.73 19 04/29 21:5:00 18029.0000 3854.84 173.75 22 04/30 01:09:00 1805.000 3854.80 173.75 19 04/30 01:47:00 18143.0000 3854.71 173.79 16 04								15:01:00	04/29
04/29 16:55:00 17649.0000 3857.25 173.63 21 04/29 17:31:00 17649.0000 3857.06 173.64 20 04/29 18:11:00 17647.0000 3856.68 173.65 17 04/29 18:49:00 17725.0000 3856.68 173.65 21 04/29 19:27:00 17763.0000 3856.51 173.68 23 04/29 20:43:00 17897.0000 3855.10 173.70 20 04/29 21:37:00 17975.0000 3855.71 173.71 20 04/29 21:37:00 17953.0000 3855.54 173.73 16 04/29 21:35:00 17953.0000 3855.51 173.74 15 04/29 21:50 18029.0000 3855.51 173.74 15 04/29 21:50 18029.0000 3854.99 173.75 22 04/30 01:09:00 18029.0000 3854.47 173.76 15 04/30 01:09:00 18043.0000 3854.47 173.79 16 04/30<									
04/29 17:13:00 17649.0000 3857.06 173.64 20 04/29 18:11:00 17649.0000 3856.89 173.65 17 04/29 18:149:00 17725.0000 3856.51 173.65 17 04/29 20:05:00 1780.0000 3856.51 173.66 17 04/29 20:43:00 17839.0000 3056.10 173.66 23 04/29 21:59:00 17915.0000 3655.90 173.70 20 04/29 21:59:00 17915.0000 3655.71 173.71 20 04/29 21:59:00 17915.0000 3655.21 173.73 16 04/29 21:59:00 17915.0000 3655.21 173.73 15 04/30 0:31:00 18029.0000 3655.21 173.75 22 04/30 0:30:00 18143.0000 3654.40 173.75 19 04/30 0:4150:0000 3654.47 173.79 19 04/30 0:4100 18257.000 3654.47 173.79 19 04/30 0:4100<									
04/29 18:11:00 17687.0000 3856.89 173.65 17 04/29 18:49:00 17725.0000 3856.68 173.65 21 04/29 19:27:00 17763.0000 3856.11 173.66 17 04/29 20:05:00 17801.0000 3856.28 173.66 23 04/29 20:05:00 17807.0000 3855.90 173.70 20 04/29 21:15:00 17877.0000 3855.70 173.71 20 04/29 21:15:00 17953.0000 3855.36 173.73 16 04/29 23:15:00 17991.0000 3855.36 173.75 19 04/30 01:09:00 18057.00 3855.41 173.75 22 04/30 01:09:00 18050.000 3854.47 173.75 15 04/30 01:09:00 18105.0000 3854.51 173.77 16 04/30 01:09:00 18295.0000 3853.54 173.77 16 04/30 01:09:00 18295.000 3853.54 173.77 17 04/3									
04/29 18:43:00 17725.0000 3856.68 173.65 21 04/29 19:27:00 17763.0000 3856.51 173.66 17 04/29 20:05:00 17801.0000 3056.28 173.68 23 04/29 20:43:00 17877.0000 3655.90 173.70 20 04/29 21:25:00 17953.0000 3855.54 173.70 20 04/29 21:25:00 17951.0000 3855.54 173.73 16 04/29 23:15:00 17991.0000 3855.36 173.73 19 04/29 23:15:00 18029.0000 3855.31 173.75 22 04/30 01:31:00 18057.0000 3854.48 173.75 22 04/30 01:47:00 1843.0000 3854.47 173.76 15 04/30 01:47:00 1843.0000 3854.77 173.77 19 04/30 03:03:00 1854.10 173.79 17 04/30 03:41:00 18257.0000 3853.74 173.81 20 04/30 04:57:0									-
04/29 19:27:00 17783.0000 3856.51 173.66 17 04/29 20:05:00 17801.0000 3856.28 173.68 23 04/29 20:43:00 17839.0000 3056.10 173.69 16 04/29 21:21:00 17915.0000 3855.70 173.70 20 04/29 21:59:00 17915.0000 3855.70 173.71 20 04/29 21:59:00 17915.0000 3855.74 173.73 16 04/29 23:15:00 17991.0000 3855.21 173.75 12 04/29 23:53:00 18029.0000 3855.21 173.75 22 04/30 01:09:00 1805.2000 3854.80 173.75 22 04/30 01:47:00 18143.0000 3854.80 173.77 16 04/30 01:47:00 18143.0000 3854.27 173.79 19 04/30 03:41:00 18257.0000 3854.27 173.79 19 04/30 04:457:00 18247.000 3853.41 173.81 20 0									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•		- , 17					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,23	173,68				-
04/29 21:159:00 17915.0000 3855.70 173.71 20 04/29 22:37:00 17953.0000 3855.54 173.73 16 04/29 23:15:00 17991.0000 3855.36 173.73 19 04/29 23:53:00 18029.0000 3855.21 173.74 15 04/30 00:31:00 18029.0000 3854.40 173.75 22 04/30 01:47:00 18165.0000 3854.40 173.75 19 04/30 01:47:00 18143.0000 3854.47 173.79 19 04/30 03:03:00 18219.0000 3854.47 173.79 19 04/30 03:04:10 18257.0000 3853.94 173.81 16 04/30 04:19:00 18295.000 3853.74 173.81 20 04/30 04:19:00 1833.0000 3853.74 173.83 21 04/30 04:19:00 1833.000 3853.74 173.81 20 04/30 04:19:00 18371.000 3853.59 173.83 21 04/3				18	173,69	3056,10			
04/29 22:37:00 17953.0000 3855.54 173.73 16 04/29 23:15:00 17991.0000 3855.36 173.73 19 04/29 23:53:00 18029.0000 3855.21 173.74 15 04/30 00:31:00 1807.0000 3855.21 173.75 22 04/30 01:09:00 18105.0000 3854.80 173.75 19 04/30 01:47:00 18105.0000 3854.47 173.77 18 04/30 02:25:00 18181.0000 3854.27 173.79 19 04/30 03:03:00 18219.0000 3854.27 173.79 17 04/30 03:41:00 18257.0000 3853.74 173.81 16 04/30 04:157:00 1833.0000 3853.59 171.82 16 04/30 06:13:00 18409.0080 3853.24 173.83 21 04/30 06:51:00 18447.0000 3853.24 173.84 14 04/30 06:07:00 1852.000 3653.65 173.87 21 04/							17877.0000	9 21:21:00	04/29
04/29 23:15:00 17991.0000 3855.36 173.73 19 04/29 23:53:00 18029.0000 3855.21 173.74 15 04/30 00:31:00 18067.0000 3654.99 173.75 22 04/30 01:09:00 18105.0000 3654.80 173.75 19 04/30 01:47:00 18143.0000 3654.64 173.76 15 04/30 02:25:00 18141.0000 3654.47 173.77 10 04/30 03:03:00 18219.0000 3654.47 173.79 17 04/30 03:41:00 18257.0000 1854.10 173.79 16 04/30 04:57:00 1833.0000 3853.74 173.81 16 04/30 04:57:00 18371.0000 3853.59 173.83 21 04/30 06:51:00 1847.0000 3853.24 173.84 14 04/30 06:51:00 1847.0000 3853.24 173.84 23 04/30 06:07:00 1852.65 173.87 21 04/30 08:45:00							17915.0000	21:59:00	04/29
04/29 23:53:00 18029.0000 3855.21 173.74 15 04/30 00:31:00 18067.0000 3654.99 173.75 22 04/30 01:09:00 18105.0000 3654.80 173.75 19 04/30 01:47:00 18143.0000 3854.64 173.76 15 04/30 02:25:00 18181.0000 3854.71 173.77 18 04/30 03:03:00 18219.0000 3854.71 173.79 19 04/30 03:03:00 18257.0000 3854.10 173.79 17 04/30 04:19:00 18255.0000 3853.94 173.81 16 04/30 04:57:00 1833.0000 3853.74 173.81 20 04/30 05:35:00 18371.0000 3853.59 173.62 16 04/30 06:13:00 1845.000 3853.24 173.84 14 04/30 06:51:00 1847.0000 3853.26 173.85 15 04/30 06:07:00 1853.0000 3853.65 173.85 15 04/30									
04/30 00:31:00 18067.0000 3854.99 173.75 22 04/30 01:09:00 18105.0000 3854.80 173.75 19 04/30 01:47:00 18143.0000 3854.64 173.76 15 04/30 02:25:00 18181.0000 3854.47 173.77 18 04/30 03:03:00 18239.0000 3854.27 173.79 17 04/30 03:41:00 18257.0000 3853.94 173.81 16 04/30 04:15:00 18235.0000 3853.74 173.81 20 04/30 04:15:00 1833.0000 3853.74 173.81 20 04/30 05:35:00 18371.0000 3853.59 173.82 16 04/30 06:13:00 18447.0000 3853.24 173.84 14 04/30 06:51:00 1845.0000 3853.01 173.84 23 04/30 06:07:00 18523.0000 3852.65 173.87 21 04/30 08:07:00 3852.65 173.87 21 04/30 08:45:0									
04/30 01:09:00 18105.0000 3854.80 173.75 19 04/30 01:47:00 18143.0000 3854.64 173.76 15 04/30 02:25:00 18181.0000 3854.47 173.77 18 04/30 03:03:00 18219.0000 3854.27 173.79 19 04/30 03:03:00 18257.0000 3854.10 173.79 17 04/30 04:19:00 18257.0000 3653.94 173.81 16 04/30 04:19:00 18257.0000 3853.74 173.81 20 04/30 05:13:00 1833.0000 3853.74 173.82 16 04/30 05:13:00 18409.0080 3853.38 173.83 21 04/30 06:13:00 1845.000 3853.24 173.84 14 04/30 06:07:00 1853.000 3853.65 173.85 15 04/30 08:07:00 1852.000 3852.66 173.85 15 04/30 08:07:00 3852.65 173.87 21 04/30 09:123:00 <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>									-
04/30 01:47:00 18143.0000 3854.64 173.76 15 04/30 02:25:00 18181.0000 3854.47 173.77 18 04/30 03:03:00 18219.0000 3854.27 173.79 19 04/30 03:03:00 1827.0000 3854.10 173.79 17 04/30 04:19:00 18257.0000 3853.94 173.81 16 04/30 04:19:00 18275.0000 3853.74 173.81 20 04/30 05:13:00 1833.0000 3853.74 173.82 16 04/30 05:13:00 1847.0000 3853.74 173.83 21 04/30 06:13:00 1847.0000 3853.24 173.84 14 04/30 06:07:00 1853.000 3853.01 173.84 23 04/30 08:07:00 1852.66 173.85 15 04/30 08:45:00 1852.65 173.87 21 04/30 09:123:00 1852.65 173.87 17 04/30 09:123:00 1852.49 173.88									
04/30 02:25:00 18481.0000 3854.47 173.77 18 04/30 03:03:00 18219.0000 3854.27 173.79 19 04/30 03:41:00 18257.0000 1854.10 173.79 17 04/30 04:19:00 18257.0000 3853.94 173.81 16 04/30 04:57:00 1833.0000 3853.74 173.81 20 04/30 05:15:00 18371.0000 3853.59 173.82 16 04/30 06:13:00 18409.0080 3853.24 173.83 21 04/30 06:51:00 18447.0000 3853.24 173.84 14 04/30 06:07:00 18485.0000 3853.01 173.84 23 04/30 08:07:00 18485.0000 3853.01 173.85 15 04/30 08:4:01 18523.000 3852.65 173.87 21 04/30 08:4:10 18523.000 3852.65 173.87 21 04/30 08:14:10 1851.000 3852.65 173.87 21 04/30 </td <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
04/30 03:41:00 18257.0000 3854.10 173.79 17 04/30 04:19:00 18257.0000 3653.94 173.81 16 04/30 04:57:00 18333.0000 3853.74 173.81 20 04/30 05:35:00 18371.0000 3853.59 173.82 16 04/30 05:13:00 18409.0080 3853.38 173.82 16 04/30 06:51:00 18447.0000 3853.24 173.84 21 04/30 06:51:00 18485.0000 3853.01 173.84 23 04/30 08:07:00 1852.000 3852.86 173.85 15 04/30 08:07:00 1852.000 3852.65 173.87 21 04/30 08:07:00 1852.000 3852.86 173.85 15 04/30 08:07:00 1852.49 173.87 21 04/30 09:123:00 1859.000 3852.49 173.87 21 04/30 10:01:00 18637.0000 3852.49 173.88 16 04/30 10:01:00 <td></td> <th></th> <td></td> <td>19</td> <td></td> <td></td> <td></td> <td></td> <td></td>				19					
04/30 04:57:00 18333.0000 3853.74 173.81 20 04/30 05:35:00 18371.0000 3853.59 173.82 16 04/30 06:13:00 18409.0080 3853.38 173.83 21 04/30 06:51:00 18447.0000 3853.24 173.84 14 04/30 06:51:00 1845.0000 3853.01 173.84 23 04/30 07:29:00 18453.0000 3853.66 173.85 15 04/30 08:07:00 18523.0000 3852.65 173.87 21 04/30 08:45:00 1852.49 173.87 15 04/30 09:23:00 1859.0000 3852.45 173.87 21 04/30 09:23:00 1859.0000 3852.49 173.87 17 04/30 10:01:00 18637.0000 3852.31 173.88 18				17	173.79	3854.10			-
04/30 05:45:00 18371.0000 3853.59 173.82 16 04/30 06:13:00 18409.0080 3853.38 173.83 21 04/30 06:51:00 18447.0000 3853.24 173.84 14 04/30 07:29:00 18455.0000 3853.01 173.84 23 04/30 08:07:00 18523.0000 3852.66 173.85 15 04/30 08:45:00 1852.65 173.87 21 04/30 09:23:00 1852.65 173.87 15 04/30 09:23:00 1852.49 173.87 17 04/30 10:01:00 18637.0000 3852.31 173.88 18					173.81	3853.94	18295,0000	0 04:19:00	04/30
04/30 06:13:00 18409.0080 3853.38 173.83 21 04/30 06:51:00 18409.0080 3853.24 173.84 14 04/30 07:29:00 18485.0000 3853.01 173.84 23 04/30 08:07:00 18523.000 3852.86 173.85 15 04/30 08:45:00 18523.000 3852.65 173.87 21 04/30 08:45:00 1852.49 173.87 21 04/30 09:23:00 18599.0000 3852.49 173.87 21 04/30 10:01:00 18637.0000 3852.31 173.87 17							18333.0000	0 04:57:00	04/30
04/30 06;51:00 1847.0000 3853.24 173.84 14 04/30 07;29:00 18485.0000 3853.01 173.84 23 04/30 08:07:00 18523.0000 3852.86 173.85 15 04/30 08:45:00 1851.0000 3852.65 173.87 21 04/30 09:23:00 18599.0000 3852.49 173.87 17 04/30 10:01:00 18637.0000 3852.31 173.88 18									
04/30 07;29;00 18485,0000 3853.01 173.84 23 04/30 08:07:00 18523.0000 3852.86 173.85 15 04/30 08:45:00 18561.0000 3852.65 173.87 21 04/30 09:23:00 18599.0000 3852.49 173.87 17 04/30 10:01:00 18637.0000 3852.31 173.88 18									
04/30 08:07:00 18523.0000 3852.86 173.8515 04/30 08:45:00 18561.0000 3852.65 173.8721 04/30 09:23:00 18599.0000 3852.49 173.8717 04/30 10:01:00 18637.0000 3852.31 173.8818									
04/30 08;45;00 18551,0000 3852,65 173.8721 04/30 09:23:00 18599.0000 3852.49 173.8717 04/30 10:01:00 18637.0000 3852.31 173.8818									
04/30 09:22:00 18599.0000 3852.49 173.8717 04/30 10:01:00 18637.0000 3852.31 173.8818									
04/30 10:01:00 18637.0000 3852.31 173.8818									
	2								
				- , 22		3852.09			•
04/30 11:17:00 18713.0000 3851.95 173.9014				~.14	173.90	3851,95			-

WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

WELL LOCATION :	SAN JUAN COU	NTY, NEW MEXI	20		FINE REF; FZ62501.RED
Date Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD hh:mm:se		Psig	Deg F	Psi	Ga. Press Ref. to 14.7 Psi Atm.
04/30 11:55:00	18751.0000	3851.77	173.92	19 18	
04/30 12:33:00	18789.0000	3851,58 3835,41	173.92 175.65	-16.17	ENDED FALL-OFF/TANDEM INST. OFF BOTTOM
04/30 13:00:30 04/30 13:00:45	18816.5000 18816.7500	3824.77	175.94	-10.65	
04/30 13:01:15	18817.2500	3803,61	176.52	-21,15	
04/30 13:01:30	18817,5000	3792.53	175.82	-11,0B	
04/30 13:02:00	18818,0000	3771.11	177,40	-21,42	
04/30 13:02:15	18818.2500	3760.07	177.90	~11,04	
04/30 13:02:45	18818.7500	3738.05	178,75	-22.03	
04/30 13:03:00	18819.0000 18820.7500	3727.38 3715.67	179,18 182,18	~10,66 -11,72	
04/30 13:04:45 04/30 13:08:30	18824.5000	3716.24	185,23	. 58	
04/30 13:11:15	18827,2500	3706.35	186.07	~9,89	STOP @ 7000'
04/30 13:11:30	18827,5000	3687.13	186,03	~19,22	
04/30 13:11:45	18827.7500	3666,23	185,98	-20.90	
04/30 13:12:00	19828,0000	3644.61	185,94	-21,62	
04/30 13:12:15	19828,2500	3624,13	185,90	-20.49 -20.62	
04/30 13:12:30 04/30 13:12:45	18828,5000 18828,7500	3603,51 3582,88	185.85 185.81	-20,63	
04/30 13:12:40	18829,0000	3561,68	185.77	-21,19	
04/30 13:13:15	18829.2500	3540,50	185.72	-21.18	
04/30 13:13:30	18829,5000	3519.59	185.68	-20.91	
04/30 13:13:45	18829,7500	3498.69	185.63	-20.90	
04/30 13:14:00	18830,0000	3477.49	185,59	-21.19	
04/30 13:14:15	18830,2500 18830,5000	3456.65 3435.88	185.37 184.96	-20.84 -20.77	
04/30 13:14:30 04/30 13:14:45	18830.7500	3416.51	184.56	-19.37	
04/30 13:15:00	18831.0000	3396.85	164.16	-19.66	
04/30 13:15:15	16831,2500	3376.91	183.76	-19,94	
04/30 13:15:30	10831,5000	3359.77	183.36	-17.13	
04/30 13:15:45	18831.7500	3344.20	182.95	-15,58	
04/30 13:16:00	18832,000D	3328.61	182.55 182.15	-15,59 -15,59	
04/30 13:16:15 04/30 13:16:30	18832.2500 18832.5000	3313.01 3298.40	181.75	-14.61	
04/30 13:18:15		3292.00	178,40	-6.40	
04/30 13:20:00	18836.0000	3291,66	174.91	34	
04/30 13:22:45	18838.7500	3291.18	171,77	48	
04/30 13:23:30		3279,60	171.04	-11.58	STOP @ 6000'
04/30 13:23:45		3259.15	170.77	-20,45	
04/30 13:24:00		3238.55 3218.09	170,51 170,25	-20.60 -20.46	
04/30 13:24:15 04/30 13:24:30		3197.63	169.99	~20.46	
04/30 13:24:45		, 3177, 31	169,73	~20.32	
04/30 13:25:00		3156.85	169.47	-20,46	
04/30 13:25:15		3136,24	169.21	-20.61	
04/30 13:25:30		3115.35	168.95	~20,89	
04/30 13:25:45		3093,63 3071,60	168.69 168.42	-21.73 -22.02	
04/30 13:26:00 04/30 13:26:15		3049.91	167.97	-21.69	,
04/30 13:26:30		3028,56	167.33	-21.35	•
04/30 13:26:45		3007.06	166,69	-21,50	
04/30 13:27:00		2985.54	166.05	-21,52	·
04/30 13:27:15		2963,76	165,41	~21,78	
04/30 13:27:30		2941.38 2922.26	164.78 164.14	-22.30 -19.13	· ·
04/30 13:27:45 04/30 13:28:00		2922.25	164,14	~18,86	
04/30 13:28:00		2884.69	162.87	~18.71	
04/30 13:29:30		2864.32	159.59	-20.37	
04/30 13:30:45		2863.90	156.48	42	
04/30 13:32:00		2863.66	153.38	24	
04/30 13:34:15		2862.99	150.28	-,67 -,20,45	8TOP @ 5000'
04/30 13:35:15		2842.54 2820.46	149.07 148.76	-20,45 -22.09	
04/30 13:35:30 04/30 13:35:45			148.46	-22.67	
04/30 13:36:00			148.15	-22.52	

, WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

FILE REF: F262501.RED

.

WELL LOCATION :	: 9AN JUAN COU	NTY, NEW MEXIC	20				BILLS REF: BZ6Z501.RED
		.	Manna	deltaP	Comment		
Date Time	Test Time	Pressure Psig	Temp Deg F	Psi		to 14.7 Pai Atm.	
MM/DD hh:mm:ss		-	Deg r				
		2752,00	147.85	-22,39			
04/30 13:36:15 04/30 13:36:30		2730.64	147.54	-22,24			
		2708.24	147,24	-22,40			
04/30 13:36:45		2684.30	146.93	-23,95			
04/30 13:37:00		2660.48	146.63	-23,82			
04/30 13:37:15		2636.24	146,32	~24,24			
04/30 13:37:30		2611.43	146,02	-24.81			
04/30 13:37:45		2586,62	145,71	-24.81			
04/30 13:38:00		2562,23	145,25	-24.40			
04/30 13:38:15 04/30 13:38:30		2537.93	144.67	-24.30			
04/30 13:38:30		2513.50	144.09	-24.43			
04/30 13:39:00		2489.33	143.50	-24.17			
04/30 13:39:00		2473.11	142,91	-16,22			
04/30 13:39:30		2459.72	142,32	-13,39			
04/30 13:39:45		2445,89	141.74	-13,83			
04/30 13:40:00		-2435,19	141,15	-10.70			
04/30 13:40:00		2433.91	137,69	-1,28	N		
04/30 13:43:15		2432,91	134,28	-1,00			
04/30 13:45:30		2432.43	131,16	~ .48			
04/30 13:48:15		2419,90	128,75	-12.53	STOP @ 4000'		
04/30 13:48:15		2395,72	128.58	-24.18			
04/30 13:48:50		2369,56	128.40	-26.16			
04/30 13:49:00		2342.39	128.23	-27,17			
04/30 13:49:15		2315.23	128,06	~27,17			
04/30 13:49:30		2288.06	127.89	-27.17			
04/30 13:49:45		2250.03	127.72	-20.02			
04/30 13:50:00		2232.71	127.56	-27.32			
04/30 13:50:15		2205.21	127.27	-27,51			
04/30 13:50:30		2177.89	126.72	-27.31			
04/30 13:50:45		2150.72	126,15	-27,17			
04/30 13:51:00		2122.69	125.61	-28.03			
04/30 13:51:15		2097.21	125.05	-25,48			
04/30 13:51:30		2073.01	124,49	-24.20			
04/30 13:51:45		2048,94	123.94	-24.07			
04/30 13:52:00		2024.58	123,38	-24.35			
04/30 13:52:15		2005,06	122,83	-19.53			
04/30 13:52:30		2000,90	122.27	-4,16			
04/30 13:54:00	-	2000,99	118,70	.09			
04/30 13:55:30		2000,23	115,20	~,76			
04/30 13:57:30	18873.5000	1999.44	112.06	-,80			
04/30 13:59:15	18875.2500	1986.38	109.96	-13,06	STOP @ 3000*		
04/30 13:59:30	18875.5000	1961.55	109,77	-24.83			
04/30 13:59:45	5 18875.7500	1933,14	109.58	-20.41			
04/30 14:00:00	18875.0000		109.38	-28,40			
04/30 14:00:15		1876.20	109.18	-28,54			
04/30 14:00:30			108,98	~28.83			
04/30 14:00:45			108.78	-29.12			
04/30 14:01:00			108,58	-28,98			
04/30 14:01:15			108.39	-28.84			
04/30 14:01:30			108,19	-28,70			
04/30 14:01:45			107,99	-28,84			
04/30 14:02:00			107.80	-28,99			
04/30 14:02;15			107.51	-29.36			
04/30 14:02:30			107.04	-29.11			
04/30 14:02:45			106.57	-24,26			
04/30 14:03:00			106,11	-19,71			
04/30 14:03:15			105,64	-6.00			
04/30 14:05:00			102,38	. 94			
04/30 14:07:00			99.30	90	STOP @ 2000'		
04/30 14:10:00			96.10	40	PION & YOUR.		
04/30 14:10:1			95.89	~15.81 -21,76			
04/30 14:10:30			95.68				
04/30 14:10:4			95.48	~22.47			
04/30 14:11:0			95.27	~24.05 -25 77			
04/30 14:11:1	5 10807.2500	1455.24	95,07	-25.77			

WELL NAME ; WATER DISPOSAL WELL NO. 2 (BOTTOM INST.)

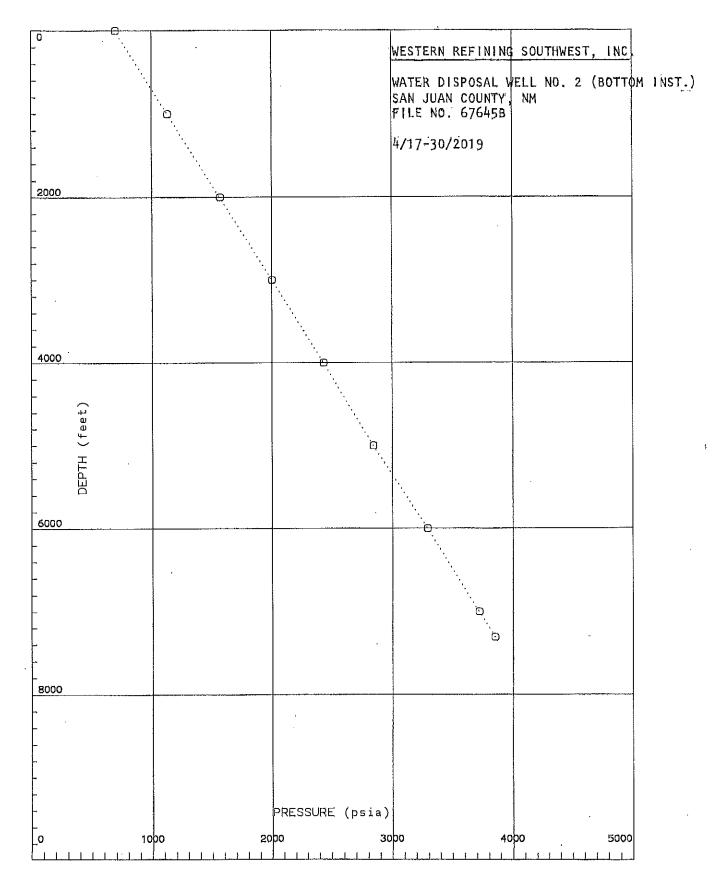
WELL LOCATION : SAN JUAN COUNTY, NEW MEXICO

DATE : 05/02/19

WEDL DOCATION ;					
Date Time	Test Time	Pressure	Temp	deltaP	Comment
MM/DD hh:mm:se		Psig	Deg F	Psi	Ga, Press Ref. to 14.7 Psi Atm.
04/30 14:11:30	18887.5000	1430,00	94,69	-25,24	
04/30 14:11:45	16687,7500		94,30	-25.39	
04/30 14:12:00	18888.0000	1378.51	93.91	~26,10	
04/30 14:12:15	18888,2500	1352.25	93.53	-26,25	
04/30 14:12:30	18888,5000	1326.14	93,14	-26,12	
04/30 14:12:45	18688.7500	1299.45	92.74	-25.68	
04/30 14:13:00	18889,0000	1272.19	92.36	~27.27	
04/30 14:13:15	18889,2500	1245.06	91,97	-27.12	
04/30 14:13:30	18889,5000	1218.65	91,58	-26,41	
04/30 14:13:45	18889.7500	1191.37	91,20	-27,28	
D4/30 14:14:00	18890.0000	1163.66	90.B1	~27.71	
04/30 14:14:15		1137.08	90.17	-26.59	
04/30 14:15:30		1132.60	86.74	-4.48	
04/30 14:16:45		1132.19	83,32	41	
04/30 14:18:30		1131.23	79,91	-,96	
04/30 14:20:30		1130.83	76,79	-,40	STOP @ 1000'
04/30 14:22:15		1115.75	75,16	-15.08	•
04/30 14:22:30		1094.19	74.93	-21.55	
04/30 14:22:45	18898.7500	1072.91	74,69	-21.28	
04/30 14:23:00		1051,79	74.46	-21.13	
04/30 14:23:15		1030.65	74.24	-21.14	
04/30 14:23:30		1009.40	73.94	-21.25	
04/30 14:23:45	18899,7500	988.02	73.62	-21.38	
04/30 14:24:00	18900.0000	966,20	73.31	-21.82	
04/30 14:24:15	18900,2500	944,3B	73.00	-21.82	
04/30 14:24:30	18900,5000	922.70	72.69	-21,68	
04/30 14:24:45	18900,7500	901.02	72.38	-21,60	
04/30 14:25:00	18901.0000	878.49	72.07	-22.54	
04/30 14:25:15	18901,2500	854.64	71.76	-23.84	
04/30 14:25:30) 18901.5000	830.36	71,45	-24.27	
04/30 14:25:45	18901.7500	805.95	71,13	-24.41	
04/30 14:25:00) 18902.0000		70,83	-24.28	
04/30 14:26:15	5 18902.2500		70,43	-24.67	
04/30 14:26:30) 10902.5000	732,15	70,09	~24.84	
04/30 14:26:4			69,73	-14.21	
04/30 14:27:00			69.38	-12.92 -7.51	
04/30 14:29:1			66.37	-7.51	SURFACE STOP
04/30 14:31:4			65.66	-707.86	
04/30 14;32:0			65.59	-707.86	
04/30 14:47:0			68.60	.00	
04/30 15:00:0			71,51	,00	
04/30 15:06:0	0 18942.0000	.01	75.18	,	

COMPANY : WESTERN REFINING SOUTHWEST, INC. WELL NAME : WATER DISPOSAL WELL NO. 2 (BOTTOM INST.) WELL LOCATION ; SAN JUAN COUNTY, NEW MEXICO PAGE : Bl

DATE : 05/02/19


ate Time	Test Time	Key Event	Pressure	Temp
M/DD hh:mm:ss	mmmmmm, mmmm		Psig	Dag F
4/17 12:04:15 4/17 12:12:00 4/17 12:12:13 4/17 12:15:00 4/17 12:50:00 4/20 12:21:15 4/20 12:21:15 4/20 12:21:15 4/20 13:00:30 4/30 13:11:15 4/30 13:23:30 4/30 13:34:15 94/30 13:48:15 94/30 13:59:15 94/30 14:10:00 94/30 14:20:30	18827.2500 18839.5000 18850.2500 18864.2500 18865.2500 18886.0000	PRESSURED UP LUBRICATOR SURFACE STOP TRIPPED IN WELL WITH TANDEM ELEC. INST. TANDEM INST. © 7312' STARTED INJECTION PUMP INJECTION STOPPED HEGAN FALL-OFF ENDED FALL-OFF/TANDEM INST. OFF BOTTOM STOP © 7000' STOP © 5000' STOP © 5000' STOP © 4000' STOP © 3000' STOP © 2000' STOP © 1000' STOP © 1000'	21.99 767.97 806.37 3936,53 3935,10 4388.18 4382.23 3835.41 3706.35 3279.60 2862.99 2419.90 1986.38 1565.11 1130.83 707.87	68.49 67.54 67.53 163.98 169.91 152.34 175.65 186.07 171.04 150.28 128.75 109.96 96.10 76.79 65.66

					Pre	ssure	(Psig	>				AATE	
8.99	8,88	500.00	1000.00	1500,00	2000.00	2500,00	3000,00	3500,60	4000.00	4500.00	5888.88	AATER DISPOSAL WELL	
32.00												WELL NO.	
64,00										}		2 (BOTT) JUAN F28	
96, ØØ		, , , , , , , , , , , , , , , , , , ,										2 (BOTTOM INST) JUAN F202561: RUN	WEST ERN
128.00												h	
160.00 192 dt (Hours)													REFINING SOUTHWEST,
. 98													ITHWEST,
224.00												TEFTELLER, TNJECTION J	INC.
256,00 2												ER, INC. ON FALL-OFF	
288,00 3												OFF TEST	
320.00		······				,							

Company: WESTERN REFINING SOUTHWEST, INC. Well: WATER DISPOSAL WELL NO. 2 SAN JUAN County: NEW MEXICO State: Field: ENTRADA 04/17/2019 Date: Engineer: NEIL TEFTELLER Well Type: WATER DISPOSAL Gauge Type: ELECTRONIC MEMORY Test Type: GRADIENT Gauge Range: 0 - 5000 Gauge Depth: 7312 ft SHUT IN Status: Serial No.; 262 (BOTTOM INSTRUMENT) File Name: 67645B Packer Depth 7230 ft то Tubing: 4" TO Tubing: Oil Level Casing: 7" то H2O Level Perfs.: 3852 @ 7312 ft Shut-in BHT 186 F @ 7312 ft Shut-in BHP Shut-in WHT 0 F 700 Shut-in WHP

[Tefteller Incorporated]

#	MD	TVD	PRESSURE	PSI/ft
1	7312	7312	3852.00	
2	7000	7000	3716.00	0.436
3	6000	6000	3291.00	0,425
4	5000	5000	2843.00	0,448
5	4000	4000	2432.00	0,411
6	3000	3000	1999.00	0.433
7	2000	2000	1565.00	0.434
8	1000	1000	1131.00	0.434
9	0	0	700.00	0.431

APPENDIX F

Test Gauge Calibration Certificates

	Range 5 K 7 0.05% Full Scale
sure	Difference Percent (%)
	5 0.0270%
2.3	7 0.0474%
. 1.5	8 0.0316%
1 2.1	6 0.0432%
	orded ssure sig psi 1.2 0.9 0.2

Oven Temperature: 17.

179.7 °F

Probe Temperature:

179.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Gauge Model	SP-2000	Pressure Range	5 K
Gauge S/N	262	Accuracy 0.05%	Full Scale

Applied	Recorded Pressure	Diffe	rence
Pressure psig	psig	psi	Percent (%)
0.01	1.40	1.39	0.0278%
774.08	774.85	0.77	0.0154%
1498.24	1499.96	1,72	0.0344%
2222.36	2222.84	0.48	0.0096%
2946.53	2947.01	0.48	0.0096%
3670.66	3671.21	• 0,55	0.0110%
4394.87	4395.43	0.56	0.0112%
5119.00	5119.62	0.62	0.0124%
4394,87	4395.86	0.99	0.0198%
3670.66	3671.85	1.19	0.0238%
2946.53	2947.82	1.29	0.0258%
2222,36	2223.50	1.14	0.0228%
1498.24	1499.51	1.27	0.0254%
774.08	775.37	1.29	0.0258%
0.01	1.52	1,51	0.0302%

Oven Temperature: 25

253.9 °F

Probe Temperature:

253.7 °F

Ì

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Gauge Model Gauge S/N	SP-2000 262	Pressure Range Accuracy 0.05%	5 K Full Scale
Applied Pressure psig	Recorded Pressure psig	Differer	nce Percent (%)
0.01 774.08 1498.24 2222.36 2946.53 3670.66 4394.87 5119.00 4394.87 3670.66 2946.53 2222.36	1.40 774.85 1499.96 2222.84 2947.01 3671.21 4395.43 5119.62 4395.86 3671.85 2947.82 2223.52 1499.51	$ \begin{array}{r} 1.39 \\ 0.77 \\ 1.72 \\ 0.48 \\ 0.48 \\ 0.55 \\ 0.56 \\ 0.62 \\ 0.99 \\ 1.19 \\ 1.29 \\ 1.16 \\ 1.27 \\ \end{array} $	0.0278% 0.0154% 0.0344% 0.0095% 0.0096% 0.0110% 0.0112% 0.0124% 0.0124% 0.0198% 0.0238% 0.0258% 0.0232% 0.0254%
1498.24 774.08 0.01	775.37 1.52	1.29 1.51	0.0258% 0.0302%

Oven Temperature: 274

274.3 °F

Probe Temperature:

274.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

Gauge ModelSP-2000Pressure Range5 KGauge S/N262Accuracy0.05%Full Scale

Applied Pressure	Recorded Pressure	Diffe	rence
psig	psig	psi	Percent (%)
	4.00	1.26	0.0252%
0.01	1.27		
774.08	775.05	0.97	0.0194%
1498.24	1498.48	0.24	0.0048%
2222.36	2222.51	0,15	0.0030%
2946,53	2946.99	0.46	0,0092%
3670.66	3671.93	1.27	0.0254%
4394,87	4396.59	1.72	0.0344%
5119.00	5120.35	1.35	0.0270%
4394.87	4397.28	2.41	0.0482%
3670.66	3673.03	2.37	0.0474%
2946.53	2948.40	1,87	0.0374%
2222.36	2223.94	1.58	0.0316%
1498.24	1499,88	1.64	0.0328%
774.08	776.24	2.16	0.0432%
0.01	2.11	2.10	0.0420%

Oven Temperature:

168.2 °F

Probe Temperature:

168.1 °F

Smart Gauge Calibration accuracy is confirmed.

.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

A C C UR A C Y VERIFICATION 15-May-2018

Gauge Model	SP-2000	Pressure R	ange	5 K
Gauge S/N	240	Accuracy	0.05%	Full Scale

Applied	Recorded Pressure	Diffe	rence
Pressure psig	psig	psi	Percent (%)
0.01	0.01	0.00	0.0000%
0.01 774.08	772,99	-1.09	-0.0218%
1498.24	1496.97	-1.27	-0.0254%
2222.36	2221.20	-1.16	-0,0232%
2946.53	2945.44	-1.09	-0.0218%
3670.66	3669.59	-1.07	-0.0214%
4394.87	4393.80	-1.07	-0.0214%
5119.00	5118.00	-1.00	-0.0200%
4394.87	4393.83	-1.04	-0.0207%
3670.66	3669.56	-1,10	-0.0220%
2946.53	2945.51	-1.02	-0.0204%
2222,36	2221.22	-1.14	-0.0228%
1498.24	1496.99	-1.25	-0.0250%
774.08	772.81	-1.27	-0.0254%
0.01	0.01	0.00	0.0000%

Oven Temperature: 1

re: 179.1 °F

Probe Temperature:

179.9 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 Compensated to local acceleration due to gravity

ACCURACY VERIFICATION 15-May-2018

Gauge Model	SP-2000	Pressure Ran	•	5 K
Gauge S/N	240	Accuracy (0.05%	Full Scale

Applied Pressure	Recorded Pressure	Diffe	rence
psig	psig	psi	Percent (%)
	2.38	2.37	0.0474%
0.01 774.08	776.30	2.22	0.0444%
1498.24	1500.18	1,94	0.0388%
2222,36	2224,29	1.93	0.0386%
2946.53	2948.24	1.71	0.0342%
3670.66	3672.19	1.53	0.0305%
4394,87	4396.25	1.38	0.0276%
5119.00	5120.28	1,28	0.0256%
4394.87	.4396.11	1.24	0,0248%
3670.66	3671.87	1.21	0.0242%
2946.53	2947.80	1.27	0.0254%
2222.36	2223.57	1.21	0.0242%
1498.24	1499.16	0.92	0.0184%
774.08	775.38	1.30	0.0260%
0.01	1.83	1.82	0.0364%

Oven Temperature:

254.1 °F

Probe Temperature:

253.4 °F

Smart Gauge Calibration accuracy is confirmed.

Calibrated with RUSKA Pressure Standard, model # 2451-700-00 Serial #26618, Mass Set Serial #25608 . Compensated to local acceleration due to gravity

APPENDIX G

i

Mechanical Integrity Test Report (MIT)

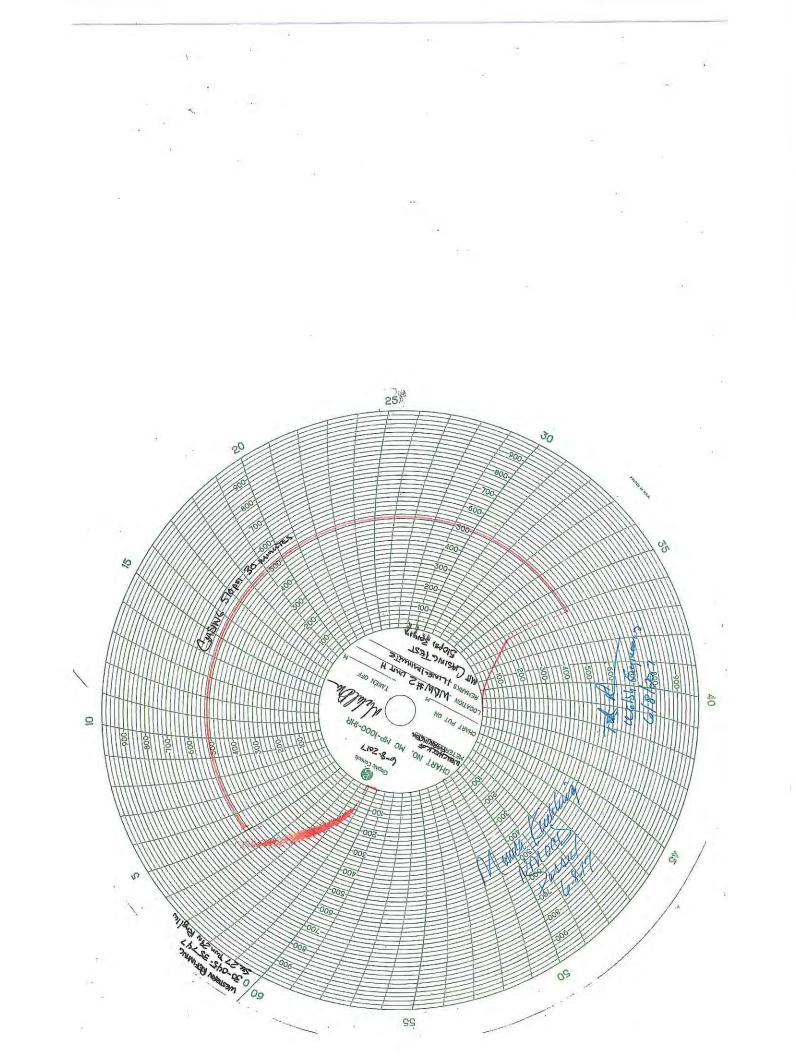
1

NEW MEXICO ENERGY, MINERALS and NATURAL RESOURCES DEPARTMENT

MECHANICAL INTEGRITY TEST REPORT

(TA OR	UIC
Date of Test 6-8-17 Operator Wester	n Cuf. Sw MAPI # 30-0 45-35747
Property Name Wasle Disp. Will well #	Location: Unit <u>A</u> Sec <u>27</u> Twn <u>29</u> Rge <u>11</u>
Land Type: State Federal Private Indian	Well Type: Water Injection Salt Water Disposal Gas Injection Producing Oil/Gas Pressure obervation
Temporarily Abandoned Well (Y/N):	TA Expires:
Casing Pres. Bradenhead Pres. Tubing Pres. Int. Casing Pres. D	
Pressured annulus up to <u>510</u> psi. for <u>3</u>	mins. Test passed/failed
REMARKS:	
Packar Set 7230	
-toppu	1312-1470
dropped to sos juid lust is	min.
By TAR (walsh Engreewithess (Operator Representative)	Monula Kuelleng (NMOCD)
(Position)	Revised 02-11-02

Oil Conservation Division * 1000 Rio Brazos Road * Aztec, New Mexico 87410 Phone: (505) 334-6178 * Fax (505) 334-6170 * <u>http://www.emnrd.state.nm.us</u>



NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION AZTEC DISTRICT OFFICE 1000 RIO BRAZOS ROAD AZTEC NM 87410 (505) 334-6178 FAX: (505) 334-6170 http://emnrd.state.nm.us/ocd/District III/3distric.htm

BRADENI (submit 1	TEAD TEST REPORT 1 copy to above address)		
Date of Test $6-8-17$ Operator	r Western Res. API #30-0 45-35747		
Property Name Uste Dis Well No	<u>2</u> Location: Unit <u>A</u> Section <u>7</u> Township <u>7</u> Range <u>1</u>		
Well Status(Shut-In or Producing) Initial PSI: Tu	ubing 000 Intermediate 0 Casing 00 Bradenhead 0		
OPEN BRADENHEAD AND INTERMEDIATE	TO ATMOSPHERE INDIVIDUALLY FOR 15 MINUTES EACH		
PRESSURE Testing Bradenhead INTERM	FLOW CHARACTERISTICS BRADENHEAD INTERMEDIATE		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Steady Flow		
$10 \min 0 0 0 0 0 0 000$	Surges		
15 min_D_D_(00_0. (00	. Down to Nothing		
20 min	Nothing		
25 min	Gas		
30 min	Gas & Water		
	Water		
If bradenhead flowed water, check all of the description	ons that apply below:		
CLEAR FRESH SALTY	SULFUR BLACK		
5 MINUTE SHUT-IN PRESSURE BRADENH	EAD 0 INTERMEDIATE 0		
REMARKS: BA-Dulbuhene	Denecl. Nothing when		
opened after Smin /	Thutan' But light blow		
HOCHACKINS DUCKAF	Witness Monuta Cuelleun		
<u>Site Supervisir</u> (Position)			
E-mail address	3		

î

APPENDIX H

3

2

Table of Wells in a One-Mile Radius

Wells	
Area	
and	
Well #2	
-	
Disposal	Dorf

o I I I I I	Zone	Yes	0 0	2 2	0	0	So No	No	No	٩	No	No	No	No	No	No	No	No	No	No	٥Z	oN :	°2	92 Z	8	٩	۵N	No No	Yes	Yes	No No	No	No	No	No	No	No	No	No	No	No	No
٥			Z Z	: Z	z	z	Z	Z	z	Z	Z	Z	Z	Z	z	z	z	z	z	Z	Z	Z :	Z :	Z	Z	Z	Z	_			Z	Z	Z	Z	z	Z	Z	z			z	Z
	Status	ACTIVE INJ	ACTIVE ACTIVE	ACTIVE	INACTIVE	Ρ&Α	ACTIVE	ACTIVE	Ρ&Α	ACTIVE	Ρ&Α	ACTIVE	Ρ&Α	Ρ&Α	ACTIVE	Ρ&Α	ACTIVE	INACTIVE	INACTIVE	INACTIVE	ACTIVE				ACTIVE	ACTIVE	Р&А			ACTIVE INJ	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	Ρ&Α	P&A	INACTIVE	ACTIVE	ACTIVE	ACTIVE
	Reservoir	ENTRADA	FRUITLAND COAL	DAKOTA	Unknown	MESAVERDE	GALLUP	DAKOTA	MESAVERDE	FRUITLAND COAL	CHACRA	DAKOTA	DAKOTA	CHACRA	FRUITLAND COAL	PICTURED CLIFFS	DAKOTA	FRUITLAND COAL	PICTURED CLIFFS	FRUITLAND COAL	GALLUP	FRUITLAND COAL	(N/A)	CHACRA	CHACRA	DAKOTA	DAKOTA	FRUITLAND SAND	Morrison Bluff Entrada	ENTRADA	PICTURED CLIFFS	GALLUP	DAKOTA	DAKOTA	CHACRA	FRUITLAND SAND	PICTURED CLIFFS	PICTURED CLIFFS	(N/A)	CHACRA	GALLUP	FRUITLAND COAL
	Operator	WESTERN REFINING	HOLCOMB OIL& GAS	XTO ENERGY, INC.	PRE-ONGARD WELL	SAN JUAN REFINING	XTO ENERGY, INC.	XTO ENERGY, INC.	BP AMERICA	HOLCOMB OIL& GAS	XTO ENERGY, INC.	XTO ENERGY, INC.	BP AMERICA	XTO ENERGY, INC.	HOLCOMB OIL& GAS	PRE-ONGARD WELL	HILCORP ENERGY	(N/A)	(N/A)	HOLCOMB OIL& GAS	HILCORP ENERGY	HILCORP ENERGY	PRE-ONGARD WELL	MANANA GAS INC	SOUTHLAND ROYALTY	XTO ENERGY, INC.	MANANA GAS INC	JOHN C PICKETT	XTO ENERGY, INC.	XTO ENERGY, INC.	HILCORP ENERGY	HILCORP ENERGY	HILCORP ENERGY	HILCORP ENERGY	MANANA GAS INC	MANANA GAS INC	PRE-ONGARD WELL	PRE-ONGARD WELL	PRE-ONGARD WELL	XTO ENERGY, INC.	HILCORP ENERGY	HOLCOMB OIL& GAS
	ULSTR	H-27-29N-11W	H-27-29N-11W	H-27-29N-11W	H-27-29N-11W	I-27-29N-11W	I-27-29N-11W	I-27-29N-11W	F-26-29N-11W	F-26-29N-11W	F-26-29N-11W	F-26-29N-11W	I-27-29N-11W	I-27-29N-11W	I-27-29N-11W	I-27-29N-11W	M-26-29N-11W	-27-29N-11W	-27-29N-11W	F-27-29N-11W	K-26-29N-11W	N-26-29N-11W	M-26-29N-11W	P-22-29N-11W	N-26-29N-11W	B-26-29N-11W	P-22-29N-11W	0-22-29N-11W	B-26-29N-11W	B-26-29N-11W	K-27-29N-11W	K-27-29N-11W	F-27-29N-11W	J-26-29N-11W	F-27-29N-11W	F-27-29N-11W	G-26-29N-11W	G-26-29N-11W	G-27-29N-11W	B-26-29N-11W	A-34-29N-11W	K-23-29N-11W
	d)																																									
Ţ	pth P&A Date	0/1	589 563	262	759	514 P&A	177		330 P&A		030 P&A	242	298 P&A	۵	714	304 P&A	348	128*	128*	350	370	760		754	369		۵	466 P&A	382	382	308	308	160	430	710	354)28* P & A	٩		761	148	761
rf +> Totol	-		39 1689 10 6262			3514 P &		6177	4030 P	4030	4030 P &		6298 P	2839 P	14 1714	1804 P	18 6348	'9* 3028*	'9* 3028*			SO 1760				6160	6274 P	1466 P								54 1354	3028* P	1442 P		61 2761	48 6148	
Perf	E E	7470	1689	6262		3514 3514 P &	5646	6308 6177	4030 4030 P	1645 4030	2772 4030 P &	6242	6298 6298 P	2839 2839 P	1714	1746* 1804 P	6348	1679*	1679*	1679*	5870	1760		2754	2869	6160 6160	6274 6274 P	1466 1466 P	7070	7382	1770	5808	6160	6430	2710	1354	1679* 3028* P	1746* 1442 P		2761	6148	1648
Perf	E E	7470		6262		3514 3514 P &	5646	6308 6177	4030 4030 P	1645 4030	2772 4030 P &	6242	6298 P	2839 2839 P	1714	1804 P				1679*	5870			2754	2869	6160 6160	6274 6274 P	1466 P	7070	7382	1770	5808	6160	6430	2710		3028* P	1442 P				
Perf	Top m	7312 7470	30-045-34409 1483 1689 30.045.24084 2704 2840	30-045-24084 6163 6262	30-045-07883	3276 3514 3514 P &	30-045-30833 5314 5646	30-045-30833 6177 6308 6177	3970 4030 4030 P	1462 1645 4030	30-045-25329 2631 2772 4030 P &	30-045-24083 6086 6242	6298 6298 P	2827 2839 2839 P	1543 1714	1746* 1804 P	6348	1679*	1679*	30-045-34266 1474* 1679*	30-045-25612 5295 5870	30-045-31118 1468 1760	30-045-07776	30-045-26721 2627 2754	30-045-24572 2746 2869	6047 6160 6160	6072 6274 6274 P	1466 1466 P	6952 7070	7224 7382	30-045-25673 1680 1770	30-045-25673 5419 5808	30-045-24673 6024 6160	6430	2578 2710	1354	30-045-29107 1474* 1679* 3028* P	30-045-07870 1692* 1746* 1442 P	30-045-07896	2750 2761	6148	1648
Perf	Top m	7312 7470	- 1483 1689 2704 2040	30-045-24084 6163 6262	30-045-07883	3276 3514 3514 P &	30-045-30833 5314 5646	6177 6308 6177	3970 4030 4030 P	1462 1645 4030	1 30-045-25329 2631 2772 4030 P &	1E 30-045-24083 6086 6242	6157 6298 6298 P	2827 2839 2839 P	1543 1714	1692* 1746* 1804 P	6176 6348	1474* 1679*	1474* 1679*	1474* 1679*	30-045-25612 5295 5870	1468 1760	30-045-07776	30-045-26721 2627 2754	9 30-045-24572 2746 2869	1 30-045-07733 6047 6160 6160	6072 6274 6274 P	1380 1466 1466 P	6952 7070	7224 7382	30-045-25673 1680 1770	30-045-25673 5419 5808	6024 6160	6172 6430	2578 2710	1326 1354	· 1474* 1679* 3028* P	1692* 1746* 1442 P	30-045-07896	2750 2761	6086 6148	1470 1648
Perf	N2 Wellname # API No Top m	 Waste Disposal Well 2 30-045-35747 7312 7470 	30-045-34409 1483 1689 30.045.24084 2704 2840	DAVIS GAS COM F 1E 30-045-24084 6163 6262	PRE-ONGARD WELL 0 30-045-07883	1 30-045-29002 3276 3514 3514 P &	DAVIS GAS COM F 1R 30-045-30833 5314 5646) DAVIS GAS COM F 1R 30-045-30833 6177 6308 6177	1 30-045-25329 3970 4030 4030 P	I DAVIS GAS COM J 1 30-045-25329 1462 1645 4030	1 30-045-25329 2631 2772 4030 P &	SULLIVAN GAS COM D 1E 30-045-24083 6086 6242	1 30-045-07825 6157 6298 6298 P	2827 2839 2839 P	1 30-045-34463 1543 1714	1692* 1746* 1804 P	6176 6348	1474* 1679*	1474* 1679*	0.51 MANGUM 1S 30-045-34266 1474* 1679*	CALVIN 3 30-045-25612 5295 5870	0.55 CALVIN 100 30-045-31118 1468 1760	0.55 PRE-ONGARD WELL 0 30-045-07776	0.57 NANCY HARTMAN 2 30-045-26721 2627 2754	0.57 CONGRESS 9 30-045-24572 2746 2869	0.59 SULLIVAN GAS COM D 1 30-045-07733 6047 6160 6160	0.60 HARTMAN 1 30-045-07961 6072 6274 6274 P	0.64 GRACE PEARCE 1 30-045-07959 1380 1466 1466 P	0.64 ASHCROFT SWD 1 30-045-30788 6952 7070	0.64 ASHCROFT SWD 1 30-045-30788 7224 7382	0.65 CONGRESS 18 30-045-25673 1680 1770	0.65 CONGRESS 18 30-045-25673 5419 5808	0.66 MANGUM 1E 30-045-24673 6024 6160	0.68 CALVIN 1F 30-045-33093 6172 6430	0.69 MARIAN S 1 30-045-27365 2578 2710	1326 1354	30-045-29107 1474* 1679* 3028* P	30-045-07870 1692* 1746* 1442 P	0.72 PRE-ONGARD WELL 0 30-045-07896	0.73 EARL B SULLIVAN 1 30-045-23163 2750 2761	6086 6148	0.75 STATE GAS COM BS 1 30-045-23550 1470 1648

Disposal Well #2 and Area Wells

Pne Inj Zone 2 2 ۶ ۶ 원 ž 2 ۶ å ۶ ۶ 9 ۶ ž å ۶ å ۶ å 우 운 9 ۶ ž ۶ r ₽ å INACTIVE INACTIVE INACTIVE INACTIVE NACTIVE ACTIVE Ρ&Α P&A Ρ&Α Ρ&Α P&A Status Ρ&Α P⊗A PICTURED CLIFFS PICTURED CLIFFS PICTURED CLIFFS FRUITLAND SAND FRUITLAND SAND FRUITLAND SAND FRUITLAND COAL FRUITLAND COAL FRUITLAND COAL FARMINGTON VIANCOS CHACRA CHACRA CHACRA DAKOTA CHACRA DAKOTA CHACRA DAKOTA DAKOTA CHACRA Reservoir CHACRA DAKOTA GALLUP GALLUP GALLUP GALLUP DAKOTA SOUTHLAND ROYALTY SOUTHLAND ROYALTY SOUTHLAND ROYALTY CHAPARRAL ENERGY HOLCOMB OIL& GAS HOLCOMB OIL& GAS HOLCOMB OIL& GAS HOLCOMB OIL& GAS GENERAL MINERALS HOLCOMB OIL& GAS PRE-ONGARD WELL PRE-ONGARD WELL HILCORP ENERGY HILCORP ENERGY HILCORP ENERGY XTO ENERGY, INC. XTO ENERGY, INC. **HILCORP ENERGY** XTO ENERGY, INC. HILCORP ENERGY HILCORP ENERGY MANANA GAS INC MANANA GAS INC MANANA GAS INC MANANA GAS INC BURLINGTON BURLINGTON **BP AMERICA** Operator M-27-29N-11W H-26-29N-11W C-35-29N-11W M-27-29N-11W M-27-29N-11W H-26-29N-11W N-22-29N-11W C-34-29N-11W H-26-29N-11W E-35-29N-11W E-35-29N-11W K-23-29N-11W N-22-29N-11W A-34-29N-11W N-22-29N-11W V-22-29N-11W K-23-29N-11W P-26-29N-11W P-26-29N-11W E-35-29N-11W P-26-29N-11W J-23-29N-11W I-23-29N-11W K-23-29N-11W I-26-29N-11W J-23-29N-11W ULSTR Depth P&A Date P⊗ A P&A 1790 P&A P&A 1678 P&A 6182 P & A 468 P&A 1747 6214 1608 6226 1410 1478 5943 2856 5970 2790 5530 6363 5622 5622 6328 6328 945 6263 6263 6263 6214 2857 2732 Total 2761 Botto 6263 2856 5970 2790 5530 2906 6328 1790 6263 6263 Estimated for area Perf 6182 6214 2857 1608 6226 1410 1468 5943 1747 6363 1678 1706 5622 2761 2732 478 945 1661 Ε 6216 1776 6078 6078 1535 2784 2668 6209 1648 5264 6078 2746 1440 1390 1443 5369 2852 5326 1664 5346 6154 6102 1388 2622 2747 6052 1444 940 Perf Ъ Д 30-045-24082 30-045-13089 30-045-22639 30-045-24082 IE 30-045-24082 IE 30-045-24082 30-045-07985 30-045-07835 30-045-08009 30-045-07903 30-045-20752 30-045-07835 30-045-24574 30-045-34312 30-045-07940 30-045-07868 30-045-25675 30-045-25707 30-045-24573 30-045-25195 30-045-24772 30-045-24837 30-045-24837 30-045-23550 30-045-26731 30-045-21457 30-045-21732 30-045-25621 30-045-25621 API No Å ш 4 9 ЩΨ Ξ 5 5 2 # σ 2 N m STATE GAS COM BS PRE-ONGARD WELL PRE-ONGARD WELL PEARCE GAS COM PEARCE GAS COM PEARCE GAS COM PEARCE GAS COM EARL B SULLIVAN EARL B SULLIVAN ROYAL FLUSH MARY JANE GARLAND B CONGRESS CONGRESS CONGRESS SULLIVAN GARLAND MANGUM MANGUM LEA ANN Wellname SUMMIT SUMMIT CALVIN CALVIN COOK COOK DELO 0.99 0.90 0.99 0.89 0.93 0.95 0.95 0.97 0.98 0.75 0.78 0.78 0.79 0.80 0.80 0.83 0.83 0.87 0.87 0.88 0.90 0.91 0.93 0.94 0.96 0.96 0.99 0.75 DW2 Miles Map to 222 55 55 57 57 57 57 57 35 52 36 39 6 4 46 \$ 49 Seq 37 38 42 ₽ C \$ 47 37

APPENDIX I

Injection History

,

		Average	Minimum	Average	Maximum		Cellens	Flow Data
5.7.	Flow Rate	Casing	Injection	Injection	Injection	Totalizer	Gallons	Flow Rate
Date	GPM	Pressure	Pressure	Pressure	Pressure	BBLS	Injected	bbl/min
1/1/2019	0.00	70.38	598.00	603.19		105444.10	0	0.00
1/2/2019		59.52	588.00	592.50	597.00	105444.10	0	0.00
1/3/2019		48.77	581.00	584.31	588.00	105444.10	0	0.00
1/4/2019		46.94	575.00	577.75		105444.10	0	0.00
1/5/2019		46.88	570.00	572.38	575.00	105444.10	0	0.00
1/6/2019		51.27	566.00	568.02		105444.10	0	0.00
1/7/2019	0.00	54.69	562.00	563.98	and the second second	105444.10	0	0.00
1/8/2019	0.00	54.31	559.00	560.40	22 CO. SA 194	105444.10	0	0.00
1/9/2019	0.00	54.33	556.00	557.56	559.00	105444.10	0	0.00
1/10/2019	0.00	55.19	554.00	554.77	556.00	105444.10	0	0.00
1/11/2019	0.00	56.48	551.00	552.38	554.00	105444.10	0	0.00
1/12/2019	0.00	56.81	549.00	550.06	551.00	105444.10	0	0.00
1/13/2019	0.00	56.16	547.00	548.10	549.00	105444.10	0	0.00
1/14/2019	0.00	56.83	545.00	546.12	547.00	105444.10	0	0.00
1/15/2019	0.00	57.42	544.00	544.48	545.00	105444.10	0	0.00
1/16/2019	17.41	21.79	543.00	769.45	964.00	106037.94	24941	0.41
1/17/2019	25.95	(2.40)	966.00	1021.59	1070.00	106927.94	37380	0.62
1/18/2019	25.42	(1.94)	1072.00	1112.59	1149.00	107805.94	36876	0.61
1/19/2019	25.13	(2.00)	1150.00	1173.99	1197.00	108670.10	36295	0.60
1/20/2019	24.79	(2.00)	1198.00	1216.78	1235.00	109516.10	35532	0.59
1/21/2019	24.18	(2.00)	1236.00	1248.22	1259.00	110350.94	35063	0.58
1/22/2019	8.07	2.87	873.00	1051.11	1267.00	110641.10	12187	0.19
1/23/2019	0.00	17.83	795.17	827.91	871.00	110641.10	0	0.00
1/24/2019	0.00	29.10	755.00	773.30	794.00	110641.10	0	0.00
1/25/2019	0.00	38.67	728.17	740.81	755.00	110641.10	0	0.00
1/26/2019	0.00	47.20	708.00	717.80	728.00	110641.10	0	0.00
1/27/2019	0.00	55.00	693.00	700.17	708.00	110641.10	0	0.00
1/28/2019	0.00	62.02	680.00	685.93	693.00	110641.10	0	0.00
1/29/2019	0.00	68.40	669.00	674.05	680.00	110641.10	0	0.00
1/30/2019	0.00	74.08	659.00	663.88	669.00	110641.10	0	0.00
1/31/2019	0.00	79.33	651.00	655.10	659.00	110641.10	0	0.00
2/1/2019	0.00	84.31	644.00	647.38	651.00	110641.10	0	0.00
2/2/2019		88.81	638.00	640.61	644.00	110641.10	0	0.00
2/3/2019	-	93,19	632.00	634.42	637.00	110641.10	0	0.00
2/4/2019		96.69	626.00	628.89	632.00	110641.10	0	0.00
2/5/2019		100.33	622.00	623.83	626.00	110641.10	0	0.00
2/6/2019		103.00	617.00	619.29		110641.10	0	0.00
2/7/2019		105.40	613.00	614.92	617.00	110641.10	0	0.00
2/8/2019		107.85	609.00	610.98	613.00	110641.10	0	0.00
2/9/2019	-	110.58	606.00	607.35	609.00	110641.10	0	0.00

Appendix I Western Disposal Well #2 Injection History

		Average	Minimum		Maximum		Callona	
	Flow Rate	Casing	Injection	Injection	Injection	Totalizer	Gallons	Flow Rate
Date	GPM	Pressure	Pressure	Pressure	Pressure	BBLS	Injected	bbl/min
2/10/2019		112.92	602.00	603.98	606.00	110641.10	0	0.00
2/11/2019	1	41.79	601.00	845.22	1033.00	111212.93	24017	0.40
2/12/2019		(2.07)	1036.00	1123.28	1197.00	112169.10	40159	0.66
2/13/2019		(1.00)	823.00	1171.70	1376.00	113098.92	39052	0.66
2/14/2019		2.58	842.00	1048.65	1424.00	113447.10	14624	0.24
2/15/2019		20.41	767.00	797.68	840.00	113447.10	0	0,00
2/16/2019	0.00	34.33	731.00	747.15	766.00	113447.10	0	0.00
2/17/2019	0.00	45.46	708.00	719.02	731.00	113447.10	0	0.00
2/18/2019	0.00	55.02	692.00	699.69	708.00	113447.10	0	0.00
2/19/2019	0.00	63.14	679.00	685.11	692.00	113447.10	0	0.00
2/20/2019	0.00	69.92	669.00	673.53	679.00	113447.10	0	0.00
2/21/2019	0.00	76.27	660.00	663.94	668.00	113447.10	0	0.00
2/22/2019	0.00	81.81	652.00	655.68	659.00	113447.10	0	0.00
2/23/2019	0.00	86.25	645.00	648.42	652.00	113447.10	0	0.00
2/24/2019	0.00	90.25	639.00	642.10	645.00	113447.10	0	0.00
2/25/2019	0.00	94.38	634.00	636.56	639.00	113447.10	0	0.00
2/26/2019	22.01	33.23	632.00	947.29	1202.00	114194.94	31409	0.52
2/27/2019	32.87	(3.00)	1206.00	1277.18	1343.00	115320.93	47292	0.78
2/28/2019	8.84	3.45	847.00	1050.74	1381.00	115647.10	13699	0.21
3/1/2019	0.00	22.46	774.00	803.67	844.00	115647.10	0	0.00
3/2/2019	0.00	37.02	740.00	755.15	773.00	115647.10	0	0.00
3/3/2019	0.00	48.52	718.00	728.07	739.00	115647.10	0	0.00
3/4/2019	0.00	57.92	702.00	709.61	718.00	115647.10	0	0.00
3/5/2019	0.00	65.67	690.00	695.57	702.00	115647.10	0	0.00
3/6/2019	0.00	72.58	680.00	684.28	689.00	115647.10	0	0.00
3/7/2019	0.00	78.42	671.00	674.94	679.00	115647.10	0	0.00
3/8/2019	0.00	83.40	663.84	667.00	671.00	115647.10	0	0.00
3/9/2019	0.00	87.75	657.00	659.94	663.00	115647.10	0	0.00
3/10/2019	0.00	91.78	651.00	653.90	657.00	115647.10	0	0.00
3/11/2019	0.00	95.48	646.00	648.35	651.00	115647.10	0	0.00
3/12/2019	0.00	98.58	641.00	643.34	646.00	115647.10	0	0.00
3/13/2019	0.00	101.00	636.00	638.83	641.00	115647.10	0	0.00
3/14/2019	0.00	103.73	632.00	634.22	636.00	115647.10	0	0.00
3/15/2019		106.77	628.00	630.27	632.00	115647.10	0	0.00
3/16/2019		109.13	625.00	626.46	628.00	115647.10	0	0.00
3/17/2019	1	111.63	621.00	622.98	625.00	115647.10	0	0.00
3/18/2019		113.77	618.00	619.75	621.00	115647.10	0	0.00
3/19/2019		115.79	615.00	616.54	618.00	115647.10	0	0.00
3/20/2019	-	117.65	612.00	613.67	615.00	115647.10	0	0.00
3/21/2019		57.27	611.00	792.14	1075.00	116044.10	16674	0.27

Appendix I Western Disposal Well #2 Injection History

		Average	Minimum	Average	Maximum		C III	FI D I
	Flow Rate	Casing	Injection	Injection	Injection	Totalizer	Gallons	Flow Rate
Date	GPM	Pressure	Pressure	Pressure	Pressure	BBLS	Injected	bbl/min
3/22/2019	26.06	0.75	706.16	1103.63	CONTRACTOR STOL	116935.92	37456	0.62
3/23/2019	25.26	(1.81)	1252.00	1306.64	1348.00	117796.10	36128	0.60
3/24/2019	9.48	3.48	884.00	1132.61	1.2.2.2.2.2.2.2.2	118133.10	14154	0.23
3/25/2019	0.00	23.02	790.00	827.30	880.00	118133.10	0	0.00
3/26/2019		38.33	749.00	767.09	789.00	118133.10	0	0.00
3/27/2019	12.02	23.98	737.00	963.83	1230.00	118543.10	17220	0.29
3/28/2019	22.31	0.00	1235.00	1309.04		119304.94	31997	0.53
3/29/2019	8.56	5.25	904.00	1139.47	1390.00	119596.10	12229	0.20
3/30/2019	0.00	24.66	816.00	851.11	901.00	119596.10	0	0.00
3/31/2019	0.00	38.08	775.00	793.13	814.00	119596.10	0	0.00
4/1/2019	5,96	30.46	760.00	887.00	1079.00	119795.93	8393	0.14
4/2/2019	14.97	2,42	1082.00	1160.06	1237.17	120304.93	21378	0.36
4/3/2019	16.10	1.00	1238.00	1261.76	1284.00	120859.10	23275	0.38
4/4/2019	15.16	1.00	1285.00	1288.19	1296.00	121381.93	21959	0.36
4/5/2019	7.89	3.94	943.00	1164.17	1302.00	121662.10	11767	0.19
4/6/2019	0.00	20.98	850.00	886.47	939.00	121662.10	0	0.00
4/7/2019	0.00	32.85	809.00	826.83	849.00	121662.10	0	0.00
4/8/2019	0.00	41.87	782.00	794.40	808.00	121662.10	0	0.00
4/9/2019	0.00	49.31	772.00	844.29	1002.00	121662.10	0	0.00
4/10/2019	0.00	55.50	540.00	638.80	815.18	121662.10	0	0.00
4/11/2019	0.00	60.50	482.00	536.31	598.00	121662.10	0	0.00
4/12/2019	0.00	65.44	462.00	631.01	869.17	121662.10	0	0.00
4/13/2019	0.00	70.10	506.00	635.61	763.00	121662.10	0	0.00
4/14/2019	0.00	74.21	500.00	679.58	914.00	121662.10	0	0.00
4/15/2019	10.01	37.53	531.00	863.10	1117.00	121993.10	13902	0.24
4/16/2019	9.35	6.56	822.00	1028.80	1185.00	122320.10	13734	0.22
4/17/2019	5.98	19.98	(3.84)	908.53	1087.00	122518.10	8316	0.14
4/18/2019	13.85	2.88	1087.00	1170.70	1234.00	122978.10	19320	0.33
4/19/2019	14.72	1.88	1214.00	1250.43	1292.00	123477.10	20958	0.35
4/20/2019	5.25	6.41	903.00	1099.74	1250.17	123664.10	7854	0.12
4/21/2019	0.00	25.41	821.00	853.26	900.00	123664.10	0	0.00
4/22/2019	0.00	38.00	785.00	801.02	820.00	123664.10	0	0.00
4/23/2019		46.89	763.00	773.02	785.00	123664.10	0	0.00
4/24/2019		54.55	746.00	753.79	762.00	123664.10	0	0.00
4/25/2019		61.13	733.00	739.31	746.00	123664.10	0	0.00
4/26/2019		66.52	722.00	727.50	733.00	123664.10	0	0.00
4/27/2019		71.71	714.00	717.67	722.00	123664.10	0	0.00
4/28/2019		75.83	705.00	709.09	713.00		0	0.00
4/29/2019		79.14	698.00	701.56	705.00	123664.10	0	0.00
4/30/2019		82.10	(5.00)	433.67	698.00	123664.10	0	0.00

Appendix I Western Disposal Well #2 Injection History